
ABSTRACT 

 

SINGH, URVIR. Load Estimation for Distribution Feeder Monitoring and Management. 

(Under the direction of Mesut E Baran). 

Load Estimation is an indispensable tool for distribution system studies, since knowledge 

of load profiles along the feeder has direct influence on system planning and operation 

activities. The main difficulties in the load modeling result from the random behavior of loads, 

diverse load shapes at customer sites, limitation and uncertainty in the information on loads. 

This thesis explores a new technique of load modeling and estimation on distribution 

systems. With the AMI technology on the distribution systems, real-time data about customer 

loads would be available at the control center, hence an estimate of loads on the distribution 

feeder can be made. With this estimation and the temperature forecast, a load model 

predicting the real-time load variations, can be made. This thesis elaborates the statistical 

approach used to build such a harmonics-based model with auto-correlated errors (a time 

series model). 

 A time series approach to model and predict the random behavior of distribution 

feeder loads is explained, by harmonically decomposing the seasonal and daily variation of 

load consumption. With the historical power data of residential and commercial class 



available, statistical tools are used to perform load estimation on distribution feeder using 

SAS (Statistical Analysis System).  

Various load data sets can be grouped or clustered together, using available 

‘clustering analysis’ techniques. The data of a meter whose readings are not available at any 

time instant can be estimated using the proposed time series method and other available 

meter readings from its respective cluster. 
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Chapter 1 
 
Introduction 
 
1.1 Background 
 

One of the main components of distribution automation is real-time monitoring and control 

of distribution-level circuits. To achieve the goal of real-time monitoring and control, a 

distribution circuit state estimator tool which can provide real-time estimates of the states of 

the system is required. Due to the limitation on the availability of the real-time measurements 

on the distribution systems, a load modeling technique is required, which can provide real-

time estimates of customer load demands.  
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With the development of distribution automation (DA) and other advanced applications in 

distribution systems, the real-time monitoring and control of distribution systems becomes 

possible. Now there are only a limited number of real-time measurements on the distribution 

systems. The load monitoring and estimation of customers can be an important source of 

information used by the distribution analysis applications. In recent years, an increasing 

number of automated meter reading (AMR) systems have been installed. AMR can provide

customer consumption information and other data such as confirmations for outages and 

restoration. 

Load Estimation is a challenging field because of the size and complexity of distribution 

systems and the features then distinguish them. The modeling techniques, which can be found 

in literature, extend from being simple approaches (based on assumptions such as load (power) 

is directly proportional to kWhr consumption / transformer kVA ratings) to more statistically 

intensive oriented methods. 

Any practical distribution state estimator needs a load modeling technique that can provide 

load estimates, where the measurements are not available. Because of the limited real-time 

measurements in the distribution systems, the state estimator cannot acquire enough real-time 

measurements, so pseudo-measurements are necessary for a distribution system state 

estimator. Since most of the load modeling techniques rely on just the historical kWhr data or 

static data (kVA ratings) to predict the load on the system. Any load-modeling technique 



which models the load, considering the real time system data and weather conditions also, is 

bound to be more accurate the former. 

 

1.2 Related Work 

Various load-modeling techniques found in literature were reviewed .They range from simple 

estimates for simple planning purpose using transformer kVA and billing kWh to more 

sophisticated approaches for operation studies which take advantage of statistical analysis 

techniques, power flow tools and available SCADA information.[10][11][12][13][14] 

A major drawback of traditional load modeling procedures has been their inability to 

provide a measure of uncertainty regarding its estimates. Lubkeman [2] proposed a 

probabilistic load modeling technique, based on daily load curves, illustrating need for the 

time of day dependency. Time of day variation is incorporated by building daily load curves. 

Charytoniuk and Chen [6] discussed the application of non-parametric probability density 

estimation to the problem of customer demand forecasting, using the data available at utilities. 

They use the demand survey information (energy data of a sample number of customers) and 

temperature conditions to build a probabilistic model, which denotes both the random nature 

of demand and its temperature dependence. The main input is the energy usage and outside 

temperature. The accuracy of forecast depends upon the quality of customer classification, 

size of sampling populations and composition and size of the estimated group. Chen, Hwang 
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[8] and others proposed a load survey system to determine the load characteristics of various 

classes, served by a utility company, followed by a statistical analysis on the acquired data to 

build a power consumption model of each class. 

The number of AMR systems on the distribution side has been increasing, and a method is 

proposed by Schulz and Wang[1] , based on AMR data and customer class curves. They 

suggest a procedure to estimate the real and reactive loads at various nodal points (where 

distribution transformers are connected), in the distribution system, with data (kWh) available 

from AMR technology. Energy meters would transmit meter readings at various intervals. 

Average real-time power at time ‘t’ can be estimated, based on two consecutive meter 

readings and the time interval between them. The shorter the interval, the better the estimation 

of real time power. 

 

1.3 Thesis Objective 

Usually on the distribution feeder, measurements for all the loads are not available all 

the times (meters are not installed at all the customer sites or due to some meter failures). 

Hence in that case a load estimation technique is required which can estimate the missing 

data about the customers. A load estimation technique aims to model and predict those 

missing values based on the available historical data from those customers and other real-

time data pertaining to those factors, which influence power consumption. 
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In this thesis, a time series approach to model and predict the random behavior of 

distribution feeder loads is explained, for load-monitoring purposes. With the historical power 

data of residential and commercial class available, statistical tools are used to perform load 

estimation of meters on distribution feeder.   

Observing the trend of changes occurring in a day and seasonal changes, we propose 

(hypothesize) a model using harmonic components based on the concept of Fourier series. The 

power consumption variations would be broken down into its harmonic parts. 

Furthermore, application of a clustering algorithm is presented, which is used to 

cluster or group customers based on similar consumption pattern. 

Consider a line section on a distribution feeder with ‘x’ customers. On a specific day 

and time, usually all the customers data is not known. In that case, a load estimation 

technique helps to estimate the missing customer data. Based on the historical data of all the 

customers, available with the utility, a ‘clustering’ algorithm can be used to find groups or 

‘clusters’ of customers. There would be some real time data (AMI) available within each 

cluster and some of the data may be unavailable. So within each cluster the Load Estimation 

technique can be used to predict the missing customer’s data, using the available data within 

that cluster. 

Consider a 33 node sample feeder (Figure 1);  
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Figure 1. Sample feeder 

 

For example: the data of some of the customers on the line section between node 2and 3 (real 

time power consumption) would be not available due to a failed meter or any other reason. A 

‘clustering technique’ (Chapter 4) would be implemented to cluster these customers into 

various homogenous groups. In a particular cluster, there may be some customers with 

missing data. The load modeling technique proposed in Chapter 3 would used to estimate the 

missing data of the affected customers from their historical data and other customers in their 

cluster. 
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1.4 Organization 

The thesis is organized as follows. In Chapter 2, a method developed by Noel Schulz[1] 

is implemented and extended using statistical tests. The proposed algorithm makes use of the 

information that AMR provides as its input. It also incorporates the use of the basic customer 

class load curve to improve the accuracy of individual customer real-time load estimates. In 

Chapter 3 a novel method of load modeling based on harmonic decomposition of power 

consumption and use of an autocorrelation model to predict the load consumption is described 

and implemented. Chapter 4 focuses on ‘load clustering’ i.e. grouping consumers based on 

similarities. The load modeling technique proposed in Chapter 3 is modified to estimate the 

missing data of the affected customers from their historical data and real-time data of other 

customers in their cluster. 

 

1.5 Glossary 

AMI : Automated Meter Infrastructure is an intelligent technology that includes metering 

systems capable of recording and reporting energy consumption and other measurements at 

more frequent intervals that the customer’s billing cycle. 
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AMR : Automatic Meter Reading is the technology of automatically collecting consumption, 

diagnostic, and status data from metering devices (water, gas, electric) and transferring that 

data to a central database for billing, troubleshooting, and analyzing. 

SCADA : Supervisory Control And Data Acquisition systems are used to monitor and 

control power system in a wide range of applications like power station control, transmission, 

distribution automation. 

SE : State Estimation as a mathematical analysis tool acts as a noise filter to eliminate errors 

in data. In practices, other conveniently measured quantities such as P, Q line flows are 

available, but they cannot be used in conventional power-flow calculations. these limitations 

can be removed by state estimation. 

SAS: ‘Statistical Analysis System’, statistical software used to perform regression analysis 

and implement the clustering algorithm. 
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Chapter 2 

Using 2 days AMR data for load 

estimation  

 

In this chapter the method developed in [1], which estimates the missing load of a meter based 

on the latest available AMR data of that meter and its historical power consumption pattern is 

implemented and extended through statistical tests. These estimates of load can be used as 
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pseudo-measurements to account for the meters whose readings are not available. The 

proposed algorithm makes use of the information that AMR provides as its input. It also 

incorporates the use of the basic customer class load curve to improve the accuracy of 

individual customer real-time load estimates. This method demonstrates how AMR data can 

be used for other functions besides billing. 

In recent years an increasing number of Automated Meter Reading (AMR) systems have been 

installed, which can provide consumer consumption information and other useful data such as 

outages and restorations. The collection of data is done remotely over telecommunication, 

power, radio lines etc. This information can be useful while developing any load modeling 

algorithm.  

With yearly power (residential & commercial) data available from Pacific Gas & Electric 

Company, for a specific location, following procedure was followed (on the lines of the above 

proposed method): 

 

2.1 Method : 

    

 Generate the load curve – If the meters (installed at various customer location) 

transmit energy with an interval of time of Δt, 
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     t t
t

kWh kWh
P

t





t  

 
     Where, 
 
       is the time periodt
     
      is the meter reading at time ttkWh

 
 
     So, as the time period between two-meter readings Δt is reduced, Pt would closely 

approximate the real time power. This procedure is applied on many customers, 

individual load profiles are obtained, and then averaging all of customer load profiles, 

a general class based load curve can be generated. 

 

 Generate the real load for two days –The load values on the curve are the mean values 

and assuming normal distribution for the loads, so along with the standard deviation σ, 

two day’s load is generated. 

 

 Generate the meter readings for two days-Accumulate the load for some time interval 

Δt and get the meter consumption reading kWh 

 

 Estimate the load for two days –If the data from the meters can be transmitted to the 

utility ‘n’ times per day, then one day can divided into ‘n’ intervals. If the time of 
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1,
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.i today
i today i day before
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Here day before is the day before today in weekday or weekend. 

Then the estimated load is  

 

,
,.i today

t i
i

kWh
P P

S
 norm   

 
Here,

 is the kWh of interval i in normalized load curve

 is the power of time t in normalized load curve
i

t

S

P

 

 
If there is an outage, then 0tP   

 
 
 The error in the estimation procedure is reflected by the RRMSE : 
 
  

  

1440

1
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1

( )
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( )

t t
t

t
t

P P
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
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


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Here, 

 is the simulated actual load at time 't'

 is the estimated load at time 't'
t

t

P

P


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the number of terms in the summation are 1440 if loads are generated/estimated at one-

minute interval. 

 

2.2 Implementation 

 
      With yearly power (residential & commercial) data available from Pacific Gas & Electric 

Company, for a specific location, following procedure was followed (on the lines of the 

above proposed method): 

 

 Actual residential and commercial load data was collected .(source-Pacific Gas & 

Electric company) 

 Load profiles corresponding to two residential and one commercial class was 

generated based on the above collected data, which shows the expected value along 

with the standard deviation, for 30 minute intervals in a day. 

 For testing purposes, the load data was generated for customers of these three classes, 

based on the mean and standard deviation values available from the load data. 

 Energy data (which would be available through AMR technology, in actual 

implementation) is generated for these two days, at 30 minutes and 10 minutes 

intervals. 
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 If the data from AMR is available ‘n’ times in a day, then ‘n’ intervals are present in 

day and if the time of estimation is in the i’th interval then 

 

1,
, ,

1, _

.i today
i today i day before

i day before

kWh
kWh kWh

kWh




 _  

 
,where day_before is the day before today in either weekday/weekend 

 

    Estimated load (on the assumption that if the interval energy is same for today and the day 

before, then the load ‘P ’follows the same pattern as the load curve of the class, to which the 

customer belongs, and is given by: 

 

,
,.i today

t i
i

kWh
P P

S
 norm  

where Si is the kWh is the i’th interval 
 
Pt is the estimated load at time ‘t’ 
 
For our case n = t, i.e the time of estimation is same as the time of AMR data 

recording 

     Following RRMSE values were obtained for 30 minutes and 10 minutes interval for 

varying number of customers: 
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Table 1. 30 Minute Interval (one residential class only) 

  Number of customers Average RRMSE (100 runs) 

1 0.1869858 

2 0.185000095 

5 0.184372514 

10 0.184398356 

15 0.184777484 

20 0.185538033 

 

 

   Table 2. 10 Minute Interval (one residential class only)    

            Number of customers        Average RRMSE (100 runs) 

1 0.1869858 

2 0.185000095 

5 0.184372514 

10 0.184398356 

15 0.184777484 

20 0.185538033 

 

The number of customers was increased, but there was insignificant effect on the RRMSE, it 

remained around 18.5% throughout. Also, decreasing the time-interval had no effect on the 

error, which was expected as all the 10 minute values were obtained from interpolation of the 

30 minute interval 
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2.3  Statistical tests (Extension)  

To check if the estimates are biased or not, a histogram of the errors between the estimated 

values and the actual values of load is plotted and as seen from the figure 2. the errors are 

biased, they don’t fit in a normal distribution. The mean of the errors was found to be -.0053, 

which is towards the negative side and also the distribution doesn’t follow the normal 

distribution completely. 

 

Figure 2. Histogram of errors 
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The estimated vector is an unbiased estimate of the actual values if the expected value of the 

estimated vector is equal to the actual vector. 

( ) tE x x


 , 

Where x


 is the vector of the estimated load values 

tx  is the vector of the actual load values 

 

‘t’ test : 

One of the uses of a  t-test is to determine whether the means of two groups (populations) are 

statistically different from each other. The test statistic follows a students ‘t’ distribution , if 

the null hypothesis is true, where students ‘t’ distribution is a probability distribution ,which 

arises while estimating the mean of  a normally distributed population ,when the sample size 

is small, (n<30). 

 

As the sample size increases, the ‘t’ distribution approaches a normal distribution, and it 

doesn’t matter whether to use a ‘Z’ test or a ‘t’ test. 

 

Confidence interval for μ1-μ2 (population variances different and unknown): An 

approximate (1-α) 100% confidence interval for μ1-μ2 is , 
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2 2 2 2
1 2 1 2

/ 2 1 2 / 2( 1 2) . ( ) ( 1 2) ( )
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Where, 

2
1  and 1x s are the mean and sample variance from population 1 

 
2

2  and 2x s  are the mean and sample variance from population 2 

 

/ 2t  is the value of the ‘t’ distribution with degrees of freedom ‘v’ given by the expression  
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The expression is always > 29 hence a value of tα/2 (v=infinity)= 1.645 
 
Samples from two populations are taken, and based on the statistics of those samples, 

conclusions about the parameters of the parent populations can be made (with some degree of 

confidence). There are two approaches to test a research hypothesis: 

 

1) Calculating the statistic and compare it with a threshold value of the test statistic 

(based on a particular value of level of confidence), to either accept or reject the 

hypothesis. 

2) Compute an interval for the difference of population means (based on some level of 

confidence) and check if the desired difference (stated in the research hypothesis) is 
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In our case, we follow the second approach as follows: 

 The two populations are the –  

Population1 -measurement data (AMR data) of whole class 

Population 2 -estimated data of whole class 

At any time‘t’ 

 Mean of 20 customer’s measured data is one sample of population 1 

 Mean of 20 customer’s estimated data is one sample of population 2 

 If a 24 day is divided into 30 minutes interval, then we would have 49 such  
 
      samples, and ‘t’ test can be applied at all these intervals, as follows : 
 
 A (1-α)*100% confidence interval for μ1-μ2 is given by, 

 
2 2 2 2

1 2 1 2
/ 2 1 2 / 2( 1 2) . ( ) ( 1 2) ( )

1 2 1 2

s s s s
x x t x x t

n n n n            

 
 
Where , 

 

μ1-μ2 =mean difference between measured and estimated load estimates of whole 

class (population) 

x1= mean of measured load of 20 customers value at time ‘t’ 
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x2= mean of estimated load of 20 customers at time ‘t’ 

1-α =confidence coefficient 

σ1=mean of standard deviation of measured data of 20 customers at time ‘t’ 

σ2=mean of estimated standard deviation of 20 customers at time ‘t’ 

n1=n2 = 20 
 

 If the acceptable difference between the measured and estimated load values lies 

in the obtained confidence interval, then the estimates are acceptable 

 

 So this method, would give an estimate of how good the load estimation process 

is, from a class point of view, based on samples of some customers, tested 

throughout a day. 

 

2.4  Conclusion 
 

To check the effect of number of customers on the average RRMSE, the number of 

customers was increased, but there was insignificant effect on the RRMSE, it remained 

around 18.5% throughout. 
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The results of testing the estimates through the‘t’ tests, are unsatisfactory, as most of the 

intervals do not contain ‘zero’, indicating considerable difference between the actual 

measurement and its estimation. 

 

12 out of 48 tests were negative (failure of hypothesis that the means of the two populations 

–measured data and estimated data are same), indicating an accuracy of just 25% for the 

estimation process, for the ideal case (difference between measured data and estimated data 

being zero). 

But if some difference between the measured load data and its corresponding estimation is 

acceptable, then the success rate of these‘t’ tests would increase considerably. 

 

Table 3. ‘t’ test results for residential class 

Lower limit of difference between 
means  

Upper Limit of 
difference  

between means  

Result (P=PASS, 
F=FAIL)  

0.1055  0.1713  F  
-0.0024  0.06  P  
0.0057  0.0611  F  
0.0607  0.1105  F  
0.0069  0.0483  F  
-0.0504  -0.0094  F  
0.0087  0.0461  F  
-0.037  -0.0036  F  
0.0025  0.0343  F  
-0.0167  0.0139  P  
-0.0327  -0.0003  F  
0.0162  0.0532  F  
-0.0873  -0.0349  F  
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Table 3. (Continued) 

Lower limit of difference between 
means  

Upper Limit of 
difference  

between means  

Result (P=PASS, 
F=FAIL)  

0.0097  0.0891  F  
-0.3043  -0.1985  F  
-0.0347  0.0911  P  
-0.2798  -0.1682  F  
-0.0548  0.0376  P  
-0.1244  -0.0368  F  
-0.0485  0.0465  P  
0.0415  0.1429  F  
-0.0914  0.0096  P  
0.1388  0.2524  F  
0.017  0.1304  F  

-0.1218  -0.0072  F  
-0.0085  0.1095  P  
-0.3319  -0.2029  F  
-0.2022  -0.0654  F  
0.0861  0.2377  F  
-0.052  0.1064  P  
-0.2142  -0.0366  F  
0.3172  0.5028  F  
-0.3069  -0.1121  F  
-0.2441  -0.0565  F  
0.0777  0.2811  F  
-0.3204  -0.1076  F  
0.5184  0.7212  F  
0.0107  0.2101  F  
0.053  0.2288  F  

0.0489  0.2043  F  
-0.215  -0.075  F  
-0.057  0.0616  P  
0.1984  0.3144  F  
-0.3129  -0.2059  F  
-0.1668  -0.0632  F  
-0.0074  0.0872  P  
-0.0657  0.0201  P  
-0.0091  0.0643  P  
-0.1287  -0.0615  F  
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Chapter 3 

Harmonics based Time-series 

Model 

3.1 General Multiple Regression Procedure 

 
Multiple linear regression is a means to express the idea that a response variable ‘ y ’, 

varies with a set of independent variables 1 2, ....., mx x x .The variability that the response 

variable y exhibits has two components: a systematic part and a random part. The systematic 

variation of y can be modeled as a function of x variables. The model that relates y to 
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1 2, ....., mx x x is called the regression equation. The random part accounts for the fact that the 

model does not exactly describe the behavior of the response variable. 

Multiple regression fits a response variable y as a function of regressor variables and 

parameters. The general linear regression model can be seen as : 

0 1 1. ... .m my x x                                                                               (1) 

Where, 
 
y =response variable 

0 1, ,..., m  

1 2, ....., m

 are unknown parameters 

x x x  are the regressor or independent variables 

  is a random error part 

 

Least Squares is a technique which is used to estimate the unknown parameters based on a 

set of observed values of these variables. The aim is to find the estimates of the parameters 

0 1, ,..., m    that can minimize the sum of the squared difference between the actual values 

of the response variable  and the values of  that are predicted by the model (1). y y

 
The estimates of the unknown parameters 0 1, ,..., m   are called the least-squares estimates  

and the quantity that is minimized to find these estimates is called the ‘Error sum of squares’. 

The whole process can be laid down in terms of the following 5 steps: 
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1) Identify a list of probable predictors 'x s , which could be used to build a model to predict  

the dependent variable. 

 

2) Use ‘step-wise regression’ to identify the important independent variables out of that list. 

‘step-wise’ regression is described as follows:  

 

Stepwise Regression: Used to identify the important independent variables out of many 

given variables, to be used to construct the model. 

The user first identifies the variables 1 2, ,..., kx x x  

First the computer fits all the possible one-variable forms of the form 

0 1( ) . iE y x    

For each model the test of 

Ho: 1 =0 

Ha: 1 ~= 0 

Is carried out and the variable which produces the largest ‘t’ value is considered as the 

best one variable predictor of y and is included in the model. 

Now the test is done on the model 
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 0 1 1 2( ) . . iE y x x      with k-1 option for ix  

‘t’tests are again performed again and the variable which produces the largest ‘t’  

value is retained 

the better software packages go back and check if the ‘t’ value for 1  has changed ,if 

yes ,again the search is made. 

Such a search is made until all the x’s with significant‘t’ values are identified 

 

3) Based on them model hypothesized after the stepwise regression, subject it to the least 

squares process in SAS, and obtain the estimates of   parameters . 2R  goodness of fit test 

should be used to check how good the model is, in predicting the dependent variable. value 

of 2R  indicates what percent variation in the dependent variable ‘y’ is explained by the 

model. 2R  is a sample statistic ,so a more formal ,statistical test of hypothesis is used to 

check the correctness of model 

 

4) Perform the ANOVA ‘F’ test, to check the adequacy of the correctness of the model. 

 

Testing the utility of a model –F test 

 

Ho: 0 1 2 .... 0k         

Ha: atleast one of the parameters differs from zero 
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Rejection region:  > F F  

Degrees of freedom, numerator = k, denominator = (n - k+1) 

Test statistic: F =  mean square for model  
                              mean square for error 
 
 

                          = 
[ (m od ) / ]

[ /( ( 1))]

SS el k

SSE n k 
 

 

If Ho is accepted, then hypothesize another model, else conduct t test on those β 

which seems more relevant (usually the higher order terms) 

 

5) Check if certain terms in the proposed model are required or not, example the 2nd order 

terms, which contribute curvature to the model, by performing individual‘t’ tests for each 

important   parameters. 

 

Test of individual parameter coefficient in the model   

 

One-tailed test                    

(for 2nd order curvature terms 

/ negative or positive curvature) 
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Ho: i =0                          

Ha : i <0 (or i >0)                                   

Test statistic t = i  / s ( i ) 

Rejection region                       

t > t                        

(or t  < t ) 

 

Two tailed test 

Ho: i =0 

Ha: i  ~= 0 

Rejection Region 

| t | >  / 2t

Where, 

n =number of observations, 

k =number of independent variables in the model 
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3.2 Proposed Harmonic-Auto correlative Load Modeling      
technique  
 

Energy meters can transmit data to intermediate controllers at very short time intervals. For 

some wireless systems, this is a one-way communication for such a transmission of data, but 

there is two-way communication between the controller and the utility. So, using the on 

demand reading of every constant time interval, we can estimate the average real-time power 

at time t 

 

t t
t

kWh kWh
P

t





t  

Where, 

 is the time periodt  

 is the meter reading at time ttkWh  

Since, actual AMR data was not available to develop the model, actual power data from 

‘Pacific Gas & Electric Company’ was used to develop and test the modeling technique. 

Another point worth noting is that only one variable (power ‘P’) would be used to build the 

model and predict the future consumption. 
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3.2.1 Principle used in the modeling  
 

Observing the trend of changes occurring in a day and seasonal changes, we propose 

(hypothesize) a model using harmonic components based on the concept of Fourier series. 

The power consumption would be broken down into its harmonic parts. 

 

Based on the yearly data available, following are the plots of the load data for the month of 

January for the residential class and the power consumption at 3 PM throughout the year. The 

plot clearly shows a distorted sinusoidal variation, which can be modeled as a sum of 

harmonic components. 
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Figure 3. Monthly load data for residential class (January)   
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Figure 4. Yearly load data at 3 PM (residential class) 

 

The pattern shows the increase in energy consumption in the summer months (July, August 

and September) and winter months (December and January). Hence, this leads to the inclusion 

of seasonal harmonics components in the model. 

Similarly the load consumption of any random day shows a distorted sinusoidal variation, 

which can be modeled by harmonics. Figure 4. shows the load profile for the first day of 

January of the available data of residential class. 
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Figure 5.  Load profile of January -1 (residential class) 

 

 

Fourier series: An infinite series whose terms are constants multiplied by sine and cosine 

functions and that can, if uniformly convergent, approximate a wide variety of functions. 

 

Since, the daily variation can be seen as a distorted sinusoid so it can be modeled using 

harmonics. Same for the yearly variation.  

We hypothesize the model with 5 harmonics for seasonal (yearly variation) and 5 harmonics 

for daily variation. The reason for hypothesizing the model with 5 harmonics is as follows: 
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The available yearly data was fitted with the time series model for various numbers of 

harmonics. The results of the SAS regression output for 3, 5, 7 and 10 harmonics is attached 

in appendix A. The R-square value for the four settings of number of harmonics is 99.09, 

99.15, 99.19 and 99.22. When the number of harmonics is doubled the change in R-square 

value is insignificant. Also, the value of the ‘P’ values shows that the excess seasonal 

harmonics have no contribution to the model. Hence hypothesizing the model with 5 

harmonics seems to be an optimum value to start with. Depending on the SAS output and the 

‘P’ values obtained and the R-square value of the fitted model, the number of harmonics to 

be used in the model can again be varied.  

 

5 5 5

0
1 1 1

5

1

cos( 2 / 48*365) sin( 2 / 48*365) cos( 2 / 48)

sin( 2 / 48)

i i j
i i j

j
j

y i t i t j

j t

      

  

  



   

 

  



t

 

 

y = power (response variable in the regressive model) 

0  = slope of the regressive model 

'i s  = unknown parameters for the harmonic components, representing the yearly (seasonal) 

variation. 

'j s  = unknown parameters for the harmonic components, representing the daily variation 

 =uncorrelated errors. 
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To check if the errors in the model are correlated or not, the ‘Durbin-Watson’ test is used, 

The Durbin-Watson test is a test for first-order serial correlation in the residuals of a time 

series regression. A value of 2.0 for the Durbin-Watson statistic indicates that there is no 

serial correlation. 

This result is biased toward the finding that there is no serial correlation if lagged values of 

the regressors are in the regression. Formally, the statistic is: 

2
1

2

2

1

( )
T

t t
t

T

t
t

e e
d

e











 

Where the series of et are the residuals from a regression.  

 

Multiple regression procedure was performed in SAS,  

 

From the output: D (Durbin-Watson) =.0325 

 

Since D =2 implies no correlation. 
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The more closer the value to 0 implies stronger positive correlation 

The more closer the value to 4 implies stronger negative correlation 

 

So in this case there is a very strong evidence of positive correlation. 

 

Hence, ‘AUTOREG’ procedure is used in SAS with autoregressive model for the correlated 

errors a second order model is hypothesized: 

 

1 1 2 2.t t tR R R       

1 =First order lag  

2 = Second order lag 

 =uncorrelated errors. 

 

As seen from the output R square= .9913 for the auto correlated model, as compared to R 

square =.8518 of the model with uncorrelated errors. 

 

3.3  Choice of components  
 

The ‘P’ values obtained dictate which components are to be included in the 

model .The ‘P’ value (denoted by ‘Pr’ in the SAS output) means the probability of getting 
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a‘t’ value greater than the threshold .Hence, with 95% level of confidence, any variable with 

‘P’ value > .05 would fail to make a place in the model. 

 

Following is the SAS output for predicting the load consumption for January 22 (Residential), 

based on the first 3 weeks of data of the same month. ‘s’ and ‘c’ are the seasonal components 

whereas ‘sd’ and ‘cd’ are the daily components. As seen clearly, the seasonal components 

seem to not have any regressive influence on the load consumption, which is intuitive as the 

data belongs to the same month, where seasonal variation would be minimum. Hence only 

daily-variation components would be used to predict the consumption for January 22. 

Including seasonal components would make the prediction results poor.  

 

Table 4. ANOVA (Analysis of variance) table from SAS 

Variable 

 

DF Standard 

Estimate 

Approx 

Error 

t Value Pr > |t| 

Intercept 1 0.6151 0.004165 147.66 <.0001 

s1 1 -0.0117 0.005906 -1.98 0.0483 

s2 1 0.003039 0.005904 0.51 0.6069 

s3 1 0.0185 0.005902 3.14 0.0017 

s4 1 0.002236 0.005899 0.38 0.7047 

s5 1 0.006772 0.005894 1.15 0.2509 

c1 1 -0.003158 0.005875 -0.54 0.5910 

c2 1 0.0148 0.005873 2.52 0.0119 
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Table 4 (contd.) ANOVA (Analysis of variance) table from SAS 

c3 1 -0.0161 0.005871 -2.75 0.0061 

c4 1 0.008577 0.005868 1.46 0.1441 

c5 1 0.0000412 0.005863 0.01 0.9944 

sd1 1 -0.1590 0.005683 -27.97 <.0001 

sd2 1 -0.1484 0.004969 -29.87 <.0001 

sd3 1 0.0191 0.003921 4.87 <.0001 

sd4 1 0.0256 0.002926 8.76 <.0001 

sd5 1 -0.0178 0.002176 -8.16 <.0001 

cd1 1 -0.0402 0.005656 -7.11 <.0001 

cd2 1 -0.0467 0.004952 -9.44 <.0001 

cd3 1 -0.0230 0.003914 -5.86 <.0001 

cd4 1 0.004495 0.002924 1.54 0.1246 

cd5 1 -0.002855 0.002175 -1.31 0.1897 

 

                                           

       

       

RRMSE (as a measure of goodness of estimator): 

 

48
2

1
48

2

1

[ ( ) ( )]
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i
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P actual
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



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Hence, the above method seems to fit a considerably accurate model to the data and then the 

forecast obtained is also accurate. 

 

 

 

3.4 Prediction using the harmonic model 
 

On the same lines, a model is hypothesized with the monthly data of January, May and 

September, using only the harmonic components for daily variation, not the seasonal 

variation (as the ‘p’ values of the seasonal components make them useless in the predicting 

model) 

Following results show the actual and forecasted power for January 22, May 22 and 

September 22 (Residential) of the data. Figure 5 shows the pattern of load consumption 

observed for the month of January, pertaining to the residential class of customers. Initially 

neglecting this trend, prediction for this class is based irrespective of the type of day’s data, 

used for prediction. For the commercial class, based on the available data it was observed 

there is significant difference between the power consumption for weekdays and 

weekends/public holidays (Figure 6). Hence, for predicting the consumption of a weekday, 

historical data corresponding to weekdays is used. Forecast of February 2, June 8 and 

 38



October 1 is shown below along with the actual data. The RRMSE for each prediction is also 

shown 
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      Figure 6. Consumption pattern of residential class, for various type of day 
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     Figure 7. Consumption pattern of commercial class, for various type of day 

3.4.1 Prediction Results and corresponding RRMSE values  
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                  Figure 8.  Forecast of January 22 (RRMSE =.0561),Residential class 
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Figure 9.   Forecast of Feb 2 (RRMSE=.0585), Commercial class 
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Figure 10. Forecast of May 22 (RRMSE =.0852),Residential class 
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Figure 11. Forecast of June 8 (RRMSE=.0673), Commerical class 
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Figure 12. Forecast of September 22 (RRMSE =.11), Residential class 
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                  Figure 13. Forecast of Oct 1(RRMSE=. 0660), Commercial class 

 
 

3.5 Prediction of weekdays, based on historical 

weekdays data 

3.5.1 Residential class 

For the residential class, a weekday and weekend/public holidays load consumption was 

observed and it was found that the consumption on weekends and public holidays followed a 

pattern different from that on weekdays, primarily during the middle of a day as shown in 

Figure 13. 

Hence weekday’s data was used to predict the load consumption of a weekday. 

 43



Also 3 PM consumption for a month showed the following pattern (to account for a very 

slight seasonal variation component) Figure 14. As seen from the scale of the ‘y’ axis, there 

is insignificant seasonal variation on the load consumption, which is expected as only 

January data is being considered right now. The SAS output is shown below which shows 

that the seasonal components (Pr > .05) are insignificant in predicting the load consumption. 

 
                               Using 5 Harmonics                               2 
 
                             The AUTOREG Procedure 
 
                     Estimates of Autoregressive Parameters 
 
                                             Standard 
                  Lag     Coefficient           Error    t Value 
 
                    1       -0.815935        0.029701     -27.47 
                    2       -0.063503        0.029701      -2.14 
 
 
                             Yule-Walker Estimates 
 
         SSE                 0.15885665    DFE                     1129 
         MSE                  0.0001407    Root MSE             0.01186 
         SBC                 -6807.3384    AIC               -6923.4713 
         Regress R-Square        0.9023    Total R-Square        0.9959 
         Durbin-Watson           2.0101 
 
 
                                          Standard                 Approx 
      Variable        DF     Estimate        Error    t Value    Pr > |t| 
 
      Intercept        1       0.5892     0.002882     204.45      <.0001 
      s1               1     0.008827     0.004095       2.16      0.0313 
      s2               1     0.005942     0.004083       1.46      0.1459 
      s3               1     0.009414     0.004062       2.32      0.0206 
      s4               1     0.001070     0.004033       0.27      0.7908 
      s5               1    -0.007750     0.003997      -1.94      0.0528 
      c1               1     0.002320     0.004047       0.57      0.5667 
      c2               1     0.001343     0.004035       0.33      0.7394 
      c3               1     0.001876     0.004015       0.47      0.6404 
      c4               1    -0.004816     0.003987      -1.21      0.2274 
      c5               1    -0.001885     0.003952      -0.48      0.6336 
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      sd1              1      -0.0956     0.002767     -34.57      <.0001 
      sd2              1      -0.0114     0.001710      -6.67      <.0001 
      sd3              1       0.0275     0.001207      22.82      <.0001 
      sd4              1      -0.0149     0.000930     -16.02      <.0001 
      sd5              1     0.003979     0.000759       5.24      <.0001 
      cd1              1      -0.2306     0.002751     -83.81      <.0001 
      cd2              1       0.0507     0.001706      29.74      <.0001 
      cd3              1    -0.003031     0.001205      -2.52      0.0120 
      cd4              1      -0.0187     0.000929     -20.18      <.0001 
      cd5              1     0.005638     0.000758       7.43      <.0001 
 
________________________________________________________________________________ 
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Figure 14. Consumption pattern of residential class, for various type of day 
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                  Figure 15. Consumption at 3PM during the weekdays of January 

Following is the prediction result for Feb1-Feb5, Residential class (Figure 15-19): 
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                 Figure 16. Forecast of February 1 (RRMSE=.0558), Residential class. 
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Figure 17. Forecast of February 2 (RRMSE=.0892), Residential class. 
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Figure 18. Forecast of February 3 (RRMSE=.0856), Residential class. 
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Figure 19. Forecast of February 4 (RRMSE=.0900), Residential class. 
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Figure 20. Forecast of February 5 (RRMSE=.0918), Residential class. 
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3.5.2 Commercial class 
 
A weekday and weekend load consumption was observed and it was found that the 

consumption on weekends and public holidays followed a pattern different from that on 

weekdays, primarily during the middle of a day as shown in Figure 6 

Weekday’s data of January is used to predict the first week of February (weekdays) as shown 

(Figure 20-24) : 
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Figure 21. Forecast of February 2 (RRMSE=.0461), Commercial class 
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Figure 22. Forecast of February 3 (RRMSE=.0499), Commercial class 
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Figure 23. Forecast of February 4 (RRMSE=.0337), Commercial class 
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Figure 24. Forecast of February 5 (RRMSE=.0663), Commercial class 
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Figure 25. Forecast of February 6 (RRMSE=.0566), Commercial class 
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Chapter 4 

Proposed Approach 
 
            

4.1 Clustering Analysis  

All the Load modeling methods reported in literature (chapter 1) and the method explained in 

chapter 3 cannot conduct overall analysis on the recorded data. The models obtained by 

implementing those techniques only have the ability to make curve-fitting for several groups 

of data. As it is unfeasible to install the load measurement units in each substation and its 

unnecessary to construct a model for each load nodal point, ‘load clustering’ technology 
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provides an effective approach on handling the above mentioned problem and increasing the 

credibility of the modeling technique. 

Cluster analysis is a technique used for combining observations into various groups such that: 

a) Each group or cluster is homogenous with respect to certain characteristics, 

implying that the various observations in each cluster are similar to each other. 

b) Each cluster should be different from other groups with respect to the same 

characteristics, that is, observations of one group should be different from the 

observations of other groups.  

Zalewski [18] used fuzzy inference approach to cluster various substations and then used 

fuzzy regression models to predict load consumption of the substation clusters. Wang and Li 

[19] explained a fuzzy approach to choose cluster centers (cluster means). [5] and [20] 

explains the k-means method of clustering, the most widely used method used in clustering 

analysis. 

Based on the similarities or distances (dissimilarities), objects are grouped together into 

groups (no assumptions on the number of groups). All the customers can be classified into 

several clusters, using a clustering technique, and in case of partial available AMI field data 

from the customers, data for the remaining customers in the clusters can be estimated using 

their historical data and real-time AMI data of those in their clusters. 
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4.1.1 Distance and similarity coefficients  

 

 

All clustering algorithms require some type of a measure to assess the similarity of a pair of 

observations or clusters. Similarity measures can be distance measures, association 

coefficients or correlation coefficients. Distance measures are the most commonly used 

measures used in clustering algorithms, which are further divided into Euclidean and 

Statistical distances. For two p-dimensional observations ‘x’ and  ‘y’ (p=number of 

variables), these distances are defined as follows: 

 

For 1 2[ , ..., ]px x x x  and 1 2[ , ..., ]py y y y  

Euclidean distance: '( , ) ( ) ( )d x y x y x y    

Statistical distance: ( , ) ( ) '. .( )d x y x y A x y    

1A S   , S contains sample variances 

Without prior knowledge about population variances, statistical distance cannot be computed. 

Hence, Euclidean distance is offered preferred for clustering. 
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4.2 K-means method (Non-Hierarchical clustering 

method) 

K-means method of cluster detection is one of the most widely used ‘disjoint cluster analysis’ 

technique [5] [6] [20]. In k-mean clustering, the cluster centers are derived from the means of 

observations assigned to each cluster when the algorithm is run to complete convergence. In 

the k-means model, each iteration reduces the variation within the clusters and maximizes the 

difference between the distinct clusters until convergence is achieved. A set of points called 

‘cluster seeds’ is selected as the first guess of the means of the clusters. Each observation is 

assigned to the nearest seed to form temporary clusters. The seed are then replaced by the 

means of temporary clusters, and the process is repeated until no changes occur in the 

clusters. The procedure to group data through this method is summarized as follows: 

 

1) Partition the items into K initial clusters –While no perfect way to determine the number 

of clusters exist, macro FASTCLUS in SAS uses some statistics (Cubic Clustering Criterion, 

pseudo F statistic and pseudo statistic) to determine the optimum number of clusters.[21] 

These statistics are plotted against number of clusters and the place where a jump occurs is 

selected as a good number of clusters. 

2T
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 a) The Cubic Clustering Criterion (CCC) was developed by SAS as a comparative 

measure of the deviation of the clusters from the distribution expected if data points were 

obtained from a uniform distribution. The criterion is calculated as 

2

2

1 ( )
ln[ ]*

1

E R
CCC K

R





 

where E(R 2) is the expected R 2, R 2 is the observed R 2, and K is the variance-stabilizing 

transformation. R 2 is explained in section 4.4. Larger positive values of the CCC indicate a 

better solution, as it shows a larger difference from a uniform (no clusters) distribution. 

 b) The pseudo-F statistic is intended to capture the 'tightness' of clusters, and is in 

essence a ratio of the mean sum of squares between groups to the mean sum of squares 

within group The value reported is obtained from SAS PROC FASTCLUS and is calculated 

as 

( ) /(

/( )
G

G

T P G
Pseudo F

P n G

 
 


1)

 

where G is the number of clusters, T is the total sum of squares, and P G is the within-group 

sum of squares. Larger numbers of the pseudo-F usually indicate a better clustering solution 

 

 c) The pseudo-  statistic is a derived by transforming the ratio of Je(2)/Je(1) [23]. 2T

Je(2) is the sum of squared errors within clusters when the data are divided into two clusters 

and Je(1) is the sum of squared errors when only one cluster is present. The hypothesis of one 

cluster is rejected is smaller than a specified critical value. 
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2) Proceed through the list of items (number of customers) assigning an item to the cluster 

whose centroid is nearest. 

 

3) Recalculate the centroid for the cluster receiving the new item and for the cluster losing 

the item. 

 

4) Repeat above step, till no more assignments take place 

The above process can be explained via an example. Suppose we measure two variables X1 

and X2 for four observations A, B, C and D (Table 5).  

 

Table 5. Data for illustrative example 

 

Item 

Coordinates of Centroids  

1x


                                               2x


 

A 5 3 

B -1 1 

C 1 -2 

D -3 -2 
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Suppose we want to find two clusters out of these four items such that items within a cluster 

are closer to one another than items in different cluster. We arbitrarily partition the items into 

two clusters (AB) and (CD) and compute the coordinates ( 1x


and 2x


) of the cluster centroids. 

Thus at step 1 we have (Table 6.) 

 

 

      Table 6.  Calculation of cluster centroids (Step 1) 

 

Cluster 

Coordinates of Centroids  

1x


                                                                      2x


 

 

(AB) 

 

(CD) 

 

[5+(-1)]/2=2                                      [3+1]/2=2 
 
 
 
[1+(-3)]/2=-1 [-2+(-2)]/2=-2 

 

 

 

At step 2 Euclidean distances of each item from the group centroids are computed and each 

item is reassigned to the nearest group. If an item is moved from the initial configuration, the 

cluster centroids (mean) must be updated. The squared distances are: 
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2 2( , ( )) (5 2) (3 2) 10d A AB     2

2

2

2

 

2 2( , ( )) (5 1) (3 2) 61d A CD       

Since A is closer to cluster (AB) than (CD), it is not reassigned. For B, 

2 2( , ( )) ( 1 2) (1 2) 10d B AB        

2 2( , ( )) ( 1 1) (1 2) 9d B CD        

Consequently B is reassigned to cluster (CD), giving cluster BCD. The updated centroids are: 

 

 

       Table 7.  Re-calculation of cluster centroids  

 

Cluster 

Coordinates of Centroids  

1x


                                                                      2x


 

 

(A) 

 

(BCD) 

 

-5                                                                         3 
 
 
 

-1 -1 

 

Again each item is checked for reassignment. Computing the squared distances. 
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         Table 8.  Check for re-assignment of items 

 

Cluster 

Squared distances to group Centroids  

A                  B                         C                        D 

 

(A) 

 

(BCD) 

 

0                   40                       41 89 
 
 
 

52 4 5 5 

 

Hence, we see that each item is currently assigned to the cluster with the nearest centroid 

 

The residential load data from five different utilities is used as a database whose data is to be 

clustered using the k-means algorithm. Customers are generated by perturbing the load 

profiles with a known value of standard deviation. An idea about the goodness of clustering 

can be made easily since it is known beforehand that which customer is derived from which 

base profile (actual data) and also by visually looking at the pattern of load consumption of 

the five base profiles. Following steps can be used to cluster the available load data  : 
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Step 1: The database is generated by perturbing the actual load data with a known value of 

standard deviation. This database is imported into the SAS Enterprise Miner. Macro 

FASTCLUS is used to implement the above explained ‘k-means algorithm’ in SAS 

Enterprise Miner. 

 

Step 2:  FASTCLUS performs disjoint cluster analysis on the basis of distances computed 

from one or more variables. In this case the variables are times at which load data is available, 

240 variables in this case as data is the weekday data for two weeks ,i.e. 10days, each day 

having 24 variables. 

 

Step 3:  The observations are divided into clusters such that every observation belongs to 

only one cluster  

 

 

Clustering of load profiles 

 

 Five residential profiles (from different utilities) are used. 50 customers’ load data 

generated from these profiles is used to implement the clustering algorithm. 
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 Customers are generated from the profiles by using a deviation of 3. =20% , where  = 

standard deviation used to simulate customers associated with a profile. 

 

 For clustering purposes, two weeks data (weekdays) was used (Figure 25): Following 

standard deviations were observed for a month’s data belonging to the five profiles. 

Since considerable deviation was observed, it justifies using a month’s weekday data to 

cluster the customers belonging to these profiles. 

 

 

                                         Table  9. Customer Standard Deviation  

Profile Standard Deviation 

Profile 1 9.02% 

Profile 2 6.33% 

Profile 3 5.65% 

Profile 4 8.62% 

Profile 5 2.57% 
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  Figure 26. Two weeks of weekdays data for the five base profiles 
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4.3 Clustering Results 
 
Figure 26. shows a day’s plot of consumption patterns of the five profiles used in the 

clustering analysis. As can be visually observed, profiles profile 5 and profile 4 follow a 

distinct pattern, very different from each other. Profiles 1,2 and 3 follow a somewhat similar 

pattern. These observations are verified from the results obtained from SAS Enterprise miner. 

In a practical situation there would be hundreds of such profiles which can’t be manually 

clustered, there it becomes imperative to use a reliable clustering algorithm. 
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      Figure 27. Consumption pattern of the five residential profiles. 

 

The following parameters needed to be specified as input to the SAS macro FASTCLUS 

(which performs k-means clustering on a given data set), else default values are used.  
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RADIUS option specifies the minimum distance between an observation in consideration for 

potential seed and the existing seeds. If the observation does not meet this criterion, it cannot 

be selected as a seed. A too large value of RADIUS may result in number of seeds being less 

than the desired clusters. In this case, since per-unit values (small scale) of power consumed 

are being considered, a value of zero is used for RADIUS. 

 

REPLACE option governs how the seeds could be replaced after the initial selection. 

REPLACE=full uses two available criterion in SAS to determine replacement of seeds [6] 

 

MAXCLUSTER option specifies the number of clusters. 

MAXITER option specifies the maximum number of iterations. The iterations are continued 

until the change in the cluster centroids of two successive iterations is less than the 

convergence value specified by the researcher. Here a default value of .001 is used as the 

threshold convergence value 

 
 
4.3.1  Case 1: Customers generated from profiles with 10% Deviation 
(Tightly correlated profiles) 
 
Customers are generated from the profiles by using a deviation of 3. =10% , where  = 

standard deviation used to simulate customers associated with a profile. Following is the SAS 

clustering output: 
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The FASTCLUS Procedure  

                 Replace=FULL  Radius=0  Maxclusters=3 Maxiter=1  

   

                    Criterion Based on Final Seeds =   0.0601  

   

   

                                 Cluster Summary  

   

                                        Maximum Distance  

                             RMS Std           from Seed     Radius     Nearest  

  Cluster     Frequency    Deviation      to Observation    Exceeded    Cluster  

  -----------------------------------------------------------------------------  

     1               30       0.0765              1.3235                      3  

     2               10       0.0203              0.3261                      1  

     3               10       0.0277              0.4322                      1  

 

  

Statistics for Variables  

   

        Variable     Total STD    Within STD      R-Square     RSQ/(1-RSQ) 

OVER-ALL       0.11075       0.06197      0.699717        2.330195  
 

 

 
 

Cluster 1: Profile 1 (10) + Profile 2 (10) + Profile 3 (10) 

Cluster 2: Profile 5 (10)  

Cluster 3: Profile 4 (10)  

Which is in accordance to what could be predicted in 4.2.2 
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4.3.2  Case 2: Customers generated from profiles with  20% Deviation  
 
Customers are generated from the profiles by using a deviation of 3. =20% , where  = 

standard deviation used to simulate customers associated with a profile. Following is the SAS 

clustering output: 

 

 
                        The FASTCLUS Procedure  
                 Replace=FULL  Radius=0  Maxclusters=3 Maxiter=1  

   

                    Criterion Based on Final Seeds =   0.0737  

   

   

                                 Cluster Summary  

   

                                        Maximum Distance  

                             RMS Std           from Seed     Radius     Nearest  

  Cluster     Frequency    Deviation      to Observation    Exceeded    Cluster  

  -----------------------------------------------------------------------------  

     1               10       0.0569              0.9104                      2  

     2               30       0.0883              1.5835                      1  

     3               10       0.0424              0.7203                      2  

 

Statistics for Variables  

   

        Variable     Total STD    Within STD      R-Square     RSQ/(1-RSQ) 

OVER-ALL       0.11875       0.07597      0.607469        1.547568  

 

 

Cluster 1: Profile 4 (10) 

Cluster 2: Profile 1 (10) + Profile 2 (10) + Profile 3 (10) 

Cluster 3: Profile 5 (10) 
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As compared to the previous case, where clusters are same in terms of constituents but as 

would be seen in the next section, that clusters obtained in case 1 are more homogenous and 

well separated than in case 2. 

Figure 27, 28 and 29 show the two weeks of data for the three clusters in cases 1 and 2. 
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Figure 28. Two weeks of weekday’s data for the three clustered base profiles 
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Figure 29. Two weeks of weekday’s data for the base profile-4 
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Figure 30. Two weeks of weekday’s data for the base profile-5 
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4.4 Performance of clustering  
 
Although visual inspection of data and the clustering results can give a good idea as to how 

good is the clustering, i.e. how far apart the clusters are and also some idea about the 

homogeneity of the clusters. Still, some statistics are required which can quantify the 

goodness of clustering. Following statistics computed from the SAS output gives a measure 

of effectiveness of clustering: 

 

a) Overall R-square : It is the ratio of bS S  to tS S , where, 

bS S  = sum of the squares of distances between clusters, is a measure of the extent to which 

the groups (clusters) are different from each other 

 

2

1 1

.( )
p G

b g jg
j g

SS n x x
 

   j          

Where, 

G =number of clusters, 

gn =number of observations in group g 

jgx =mean of ‘j’th variable in the group ‘g’ 
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jx =mean of ‘j’th variable in the total data set 

p = number of variables 

1

( )
gn

wg jg j
j

SS x x


   

Where , 

jgx = ‘j’th observation of the group ‘g’ 

w gS S =sum of squares (within) for the group ‘j’ 

tS S = total sum of squares of all clusters (within + between), which is a constant for a given 

input data set. 

 

wS S = sum of the squares of distances within clusters, from the cluster centroid, which is a 

measure of the extent to which the groups (clusters) are homogenous. 

t bSS SS SS  w  

Hence for a given data set, the greater the differences between groups the more homogeneous 

each group is and vice-versa. 

R-square values ranges from 0-1, the values of 0 indicating no differences between clusters 

and 1 indicating maximum difference between clusters. 
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b) Ratio of Within RMS-STD to Total RMS-STD: The relative value of within RMS-STD 

(Root Mean Square standard deviation) to total RMS-STD s a good measure of the 

homogeneity of the clusters .It should be as low to indicate high homogeneity of clusters. 

 

2

1

ˆ
p

j
j

s

RMSSTD
p




 

2ˆ js =variance of the jth variable  

A low value suggests the clusters are homogenous. 

 

c) RMS-STD of the clusters: The RMS Standard Deviation of the clusters formed through 

the process gives an idea of how homogenous the clusters are. A low value suggests good 

homogeneity and also that cluster with the minimum value out of all the clusters is the 

most homogenous cluster out of the all. 

 

d) Centroid Distance between nearest clusters: The overall distance between two nearest 

clusters (considering all variables) is also a measure of the goodness of clustering. 
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From Table 6 and 7, it can be inferred that although clustering results are better for Case 1, 

but since these were based on different assumptions on standard deviations, in practical 

situation data to be clustered would be available for clustering, in other words data need not 

be ‘generated’, it would be available with the utility. 

 
 
 Table  10. Customers generated from profiles with 10% Deviation 
 

Performance Characteristic Value 

R-square .70 
Ratio of Within RMS-STD to Total RMS-
STD 

.5992 

RMS-STD of the clusters .0765, .0203 and .0277 
Centroid Distance between nearest clusters Around 2 
 

 

  Table 11. Customers generated from profiles with 20% Deviation. 
 

 
Performance Characteristic Value 

R-square .6074 
Ratio of Within RMS-STD to Total RMS-
STD 

.6394 

RMS-STD of the clusters  .0569, .0883 and .0424 
Centroid Distance between nearest clusters 2-2.5 
 

The overall R-square of .7 and .607 are large suggesting that the clusters are quite 

homogenous and well separated, but the result in case 1 shows that clustering is better than 
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case 2 ( since the profiles were generated  from 10% deviation or the customer profiles were 

tightly correlated). Ratio of within RMS-STD to total RMS-STD (.5992 and .6394) is low 

indicating the resulting clusters are quite homogenous. Again the result in case 2 is toward 

the higher side than case 1. The RMS-STD of the clusters is also low giving another measure 

of good homogeneity. Since the distance computed between the centroids of the clusters is 

high indicating that the clusters are well separated.                                                                                             

 

4.5 Case Study 

 

For load monitoring studies, usually all the loads on a line section are lumped together for 

implementing the State Estimation technique. Consider a line section on a distribution feeder 

with ‘x’ customers. On a specific day and time, usually all the customers data is not known. 

In that case, a load estimation technique helps to estimate the missing customer data. Based 

on the historical data of all the customers, available with the utility, a clustering algorithm 

can be used to find groups or ‘clusters’ of customers. There would be some real time data 

(AMI) available within each cluster and some of the data may be unavailable. So within each 

cluster the Load Estimation technique can be used to predict the missing customer’s data, 

using the available data within that cluster. 

Consider a 33 node sample feeder (Figure 27); there are some customers between node 2 and 

node 3. 
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Figure 31. Sample feeder 

 

Some of these  customers’ data (real time power consumption) would be not available due to 

a failed meter or any other reason. The previously explained ‘clustering technique’ would be 

implemented to cluster these customers between into various homogenous groups. In a 

particular cluster, there may be some customers with missing data. The load modeling 

technique proposed in Chapter 3 would be modified to estimate the missing data of the 

affected customers from their historical data and other customers in their cluster. 
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The load estimation technique explained in chapter 3 can be used, along with available 

measurements as predictor variables. For a given cluster, AMI data belonging to that cluster 

can be modeled as another predictor variable, to estimate the load for those customers with 

missing real-time data. 

 
The model from chapter 3 is: 
 

5 5 5

0
1 1 1

5

1

cos( 2 / 48*365) sin( 2 / 48*365) cos( 2 / 48)

sin( 2 / 48)

i i j
i i j

j t
j

y i t i t j

j t R

      

 

  



   

 

  



t

 

                                                                                                                            (1) 
Where, 
 

1 1 2 2.t t tR R R       

1 =First order lag  

2 = Second order lag 

 =uncorrelated errors. 

y = power (response variable in the regressive model) 

0  = slope of the regressive model 

'i s  = unknown parameters for the harmonic components, representing the yearly (seasonal) 

variation. 

'j s  = unknown parameters for the harmonic components, representing the daily variation 

 =uncorrelated errors. 
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Consider a case where just one AMI data is used as another predictor variable (assuming just 

one customer’s real-time data is available for each cluster), that data can be added to the 

model in (1) as follows, 

 
 

5 5 5

0
1 1 1

5

0
1

cos( 2 / 48*365) sin( 2 / 48*365) cos( 2 / 48)

sin( 2 / 48)

i i j
i i j

j k t t
j

y i t i t j

j t P R

      

  

  



   

  

  



t

 

 
                                                                                                                                            (2) 
 
Here, at time‘t’ prediction is made for the missing data, using real time AMI data at time ‘t’, 

 of a related customer ( belonging to the same homogenous group).  tP

 

In the model shown in (2),  

0k  is the unknown coefficient relating the dependence on the AMI data at time ‘t’. 

Customers are generated from 5 base residential profiles. Case 4.4.1 shows the clustering and 

estimation results for customers generated by perturbing the base profiles with a perturbation 

of 10% (3 10%  ). Case 4.4.2 shows the clustering and estimation results for customers 

generated by perturbing the base profiles with a perturbation of 20% (3 20%  ). The 

customers are generated from the 5 base profiles as follows, 
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4.4.1  Case 1: Customers generated from profiles with 10% Standard 
Deviation 
 
Figure 28 shows a day’s trend for the 4 customers generated from base profile 1 
 
and Figure 29 shows the general pattern of the base profiles. 
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                  Figure 32. 4 customers generated from base profile 1 (3 10%  ) 
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                      Figure 33. A sample day variation of the 5 base profiles. 

The clustering results by using the k-means method in SAS Enterprise Miner is as follows: 
 
 

The FASTCLUS Procedure  

                 Replace=FULL  Radius=0  Maxclusters=3 Maxiter=1  

   

                    Criterion Based on Final Seeds =   0.0577  

   

   

                                 Cluster Summary  

   

                                        Maximum Distance  

                             RMS Std           from Seed     Radius     Nearest  

  Cluster     Frequency    Deviation      to Observation    Exceeded    Cluster  

  -----------------------------------------------------------------------------  

     1               10       0.0805              1.3262                      3  

     2                3       0.0207              0.2622                      1  

     3                6       0.0282              0.4210                      1  

 

Cluster 1: Profile 1 (4) + Profile 2 (3) + Profile 3 (3) 
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Cluster 2: Profile 5 (3)  

Cluster 3: Profile 4 (6)   

Now based on the modified time series model, prediction for customer 1 (assume its meter 

went bad) is done based on its historical data and real time data from customer 2 (available 

meter data), both are from the same cluster. Figures 30-33 show the results. ‘Forecast with 

meter’ implies using the modified time series model (taking into account the real-time data of 

a related meter) and ‘Forecast without meter’ is the prediction based on historical data only. 
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   Figure 34.  Forecast of February 15 (3 10%  ) 
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Figure 35.  Forecast of February 16 (3 10%  ) 
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Figure 36.  Forecast of February 17 (3 10%  ) 
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Figure 37.  Forecast of February 18 (3 10%  ) 

 
 
As seen from Figures 30-33, RRMSE for the predictions ‘Forecast with meter’ (using real-

time data of a related meter for prediction purpose) is lower than just based on historical data 

(Forecast without meter). 

 

4.4.2  Case 2: Customers generated from profiles with 20% Standard 
Deviation 
 

Figure 34 shows a day’s trend for the 4 customers generated from base profile 1 
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Figure 38. 4 customers generated from base profile 1 (3 20%  ) 

 

The clustering results by using the k-means method in SAS Enterprise Miner is as follows: 

The FASTCLUS Procedure  

                 Replace=FULL  Radius=0  Maxclusters=3 Maxiter=1  

   

                    Criterion Based on Final Seeds =   0.0715  

   

   

                                 Cluster Summary  

   

                                        Maximum Distance  

                             RMS Std           from Seed     Radius     Nearest  

  Cluster     Frequency    Deviation      to Observation    Exceeded    Cluster  

  -----------------------------------------------------------------------------  

     1                6       0.0561              0.8201                      3  

     2                3       0.0434              0.5646                      3  

     3               10       0.0929              1.4882                      1  
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Cluster 3: Profile 1 (4) + Profile 2 (3) + Profile 3 (3) 

Cluster 2: Profile 5 (3)  

Cluster 1: Profile 4 (6)   

Now based on the modified time series model, prediction for customer 1 (assume its meter 

went bad) is done based on its historical data and real time data from customer 2 (available 

meter data), both are from the same cluster. Figures 35-38 show the results. ‘Forecast with 

meter’ implies using the modified time series model (taking into account the real-time data of 

a related meter) and ‘Forecast without meter’ is the prediction based on historical data only. 

0 5 10 15 20 25
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

TIME

P
O

W
E

R

 

 

Forecast with meter (RRMSE=.0889)
Actual
Forecast without meter (RRMSE=.0927)

 

  Figure 39.  Forecast of February 15 (3 20%  ) 
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  Figure 40.  Forecast of February 16 (3 20%  ) 
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  Figure 41.  Forecast of February 17 (3 20%  ) 

 85



0 5 10 15 20 25
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

TIME

P
O

W
E

R

 

 

Forecast with meter (RRMSE=.1020)
Actual
Forecast without meter (RRMSE=.1522)

 

  Figure 42.  Forecast of February 18 (3 20%  ) 

 

As seen from Figures 35, 36 and 38 RRMSE for the predictions ‘Forecast with meter’ (using 

real-time data of a related meter for prediction purpose) is lower than just based on historical 

data (Forecast without meter). 

 

4.4.3 Case 3: Customers generated with 20% Standard Deviation 
(Predictor variable from different base profile) 
 

In this case, the predictor meter in the model, 
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is from the same cluster (as the meter being estimated) but from a different base profile. The 

meter being predicted is from profile 1 and the predictor from base profile 2. Following 

results are obtained, 
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Figure 43.  Case 3, Forecast of February 15 (3 20%  ) 
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Figure 44. Case 3, Forecast of February 16 (3 20%  ) 
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Figure 45. Case 3, Forecast of February 17 (3 20%  ) 
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Figure 46. Case 3, Forecast of February 18 (3 20%  ) 

 

As seen from Figures 42, 43 and 45 RRMSE for the predictions ‘Forecast with meter’ (using 

real-time data of a related meter for prediction purpose) is lower than just based on historical 

data (Forecast without meter). 

Hence, as seen from these results, using real-time data of customers from the same 

homogenous cluster along with the available historical data helps to increase the accuracy of 

the forecasts. 
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Chapter 5 

Conclusion and future work 

5.1 Conclusion 

 

On the distribution feeder, measurements for all the loads are not available all the 

times (meters are not installed at all the customer sites or due to some meter failures). A load 

estimation technique is required which can estimate the missing data about the customers. A 

new approach to model and predict the power consumption using an auto-regressive model, 

based on harmonic decomposition of the power consumption is proposed in this thesis. To 
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. 

Furthermore, application of a clustering algorithm is presented, which is used to 

cluster or group customers based on similar consumption pattern. A non-hierarchical 

clustering technique ‘k-means clustering’ is implemented in SAS enterprise miner to group 

various consumer profiles into homogenous groups. 

 In a particular cluster, there may be some customers with missing data. The load 

modeling technique proposed in Chapter 3 was modified to estimate the missing data of the 

affected customers from their historical data and real-time data of other customers in their 

cluster. The load estimation technique explained in chapter 3 was used, along with available 

measurements as other predictor variables in the time series model. For a given cluster, AMI 

data belonging to that cluster can be modeled as another predictor variable, to estimate the 

load for those customers with missing real-time data. 
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 As seen from the results in chapter 4, using real-time data of customers from the same 

homogenous cluster along with the available historical data helps to increase the accuracy of 

the estimates of power of meters with missing data. 

 

5.2  Future work 

The only data used in this work [22] was the power of the customers. Significant 

accuracy was achieved in the estimation of power values even without considering the real-

time temperature of the location of consumers. With historical and real-time data about the 

temperature available, the time-series model could be modified and accuracy of results is 

expected to increase.  

State Estimation is the main tool used for monitoring of distribution feeders and any 

load modeling technique helps in providing the pseudo-measurements to fill the voids created 

by bad meters or absence of meters due to any reason. The results of the proposed load 

estimation technique should be used as input to state estimation technique as pseudo-

measurements and results should be accordingly assessed.  
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APPENDIX I 
 
 

A) SAS output for fitting the time-series model on the yearly data with sets of 3 harmonics. 
 
 
    Yule-Walker Estimates 
 
         SSE                 4.45212709    DFE                    17505 
         MSE                  0.0002543    Root MSE             0.01595 
         SBC                 -95156.085    AIC               -95272.652 
         Regress R-Square        0.4210    Total R-Square        0.9909 
         Durbin-Watson           1.9206 
 
 
                                          Standard                 Approx 
      Variable        DF     Estimate        Error    t Value    Pr > |t| 
 
      Intercept        1       0.5708     0.001525     374.27      <.0001 
      s1               1      -0.0226     0.002157     -10.47      <.0001 
      s2               1       0.0251     0.002157      11.64      <.0001 
      s3               1      -0.0170     0.002157      -7.86      <.0001 
      c1               1    -0.003823     0.002156      -1.77      0.0762 
      c2               1       0.0480     0.002156      22.24      <.0001 
      c3               1     0.005355     0.002156       2.48      0.0130 
      sd1              1      -0.1659     0.002086     -79.51      <.0001 
      sd2              1      -0.1180     0.001693     -69.70      <.0001 
      sd3              1     0.000637     0.001126       0.57      0.5716 
      cd1              1      -0.0278     0.002085     -13.35      <.0001 
      cd2              1      -0.0328     0.001693     -19.35      <.0001 
      cd3              1      -0.0152     0.001126     -13.48      <.0001 

 
 
 
B) SAS output for fitting the time-series model on the yearly data with sets of 5 harmonics. 
 
 
 
    Yule-Walker Estimates 
 
         SSE                 4.18006471    DFE                    17497 
         MSE                  0.0002389    Root MSE             0.01546 
         SBC                 -96182.713    AIC               -96361.449 
         Regress R-Square        0.4653    Total R-Square        0.9915 
         Durbin-Watson           1.9577 

 96



 
 
                                          Standard                 Approx 
      Variable        DF     Estimate        Error    t Value    Pr > |t| 
 
      Intercept        1       0.5708     0.001667     342.39      <.0001 
      s1               1      -0.0226     0.002358      -9.58      <.0001 
      s2               1       0.0251     0.002358      10.64      <.0001 
      s3               1      -0.0170     0.002358      -7.19      <.0001 
      s4               1     0.001439     0.002358       0.61      0.5417 
      s5               1    -0.007191     0.002358      -3.05      0.0023 
      c1               1    -0.003810     0.002357      -1.62      0.1060 
      c2               1       0.0480     0.002357      20.36      <.0001 
      c3               1     0.005368     0.002357       2.28      0.0228 
      c4               1    -0.000014     0.002357      -0.01      0.9953 
      c5               1     0.006272     0.002357       2.66      0.0078 
      sd1              1      -0.1659     0.002096     -79.11      <.0001 
      sd2              1      -0.1180     0.001501     -78.62      <.0001 
      sd3              1     0.000637     0.000980       0.65      0.5159 
      sd4              1       0.0120     0.000652      18.37      <.0001 
      sd5              1      -0.0102     0.000456     -22.40      <.0001 
      cd1              1      -0.0278     0.002096     -13.28      <.0001 
      cd2              1      -0.0328     0.001501     -21.83      <.0001 
      cd3              1      -0.0152     0.000980     -15.49      <.0001 
      cd4              1    -0.007045     0.000652     -10.81      <.0001 
      cd5              1    -0.007013     0.000456     -15.38      <.0001 
 
 

 
C) SAS output for fitting the time-series model on the yearly data with sets of 7 harmonics. 
 
    Yule-Walker Estimates 
 
         SSE                 3.98212391    DFE                    17489 
         MSE                  0.0002277    Root MSE             0.01509 
         SBC                 -96954.445    AIC               -97195.349 
         Regress R-Square        0.4895    Total R-Square        0.9919 
         Durbin-Watson           2.0092 
 
 
                                          Standard                 Approx 
      Variable        DF     Estimate        Error    t Value    Pr > |t| 
 
      Intercept        1       0.5708     0.001729     330.04      <.0001 
      s1               1      -0.0226     0.002447      -9.23      <.0001 
      s2               1       0.0251     0.002447      10.26      <.0001 
      s3               1      -0.0170     0.002447      -6.93      <.0001 
      s4               1     0.001439     0.002447       0.59      0.5564 
      s5               1    -0.007191     0.002446      -2.94      0.0033 
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      s6               1     0.000120     0.002446       0.05      0.9609 
      s7               1     0.001257     0.002446       0.51      0.6072 
      c1               1    -0.003805     0.002445      -1.56      0.1197 
      c2               1       0.0480     0.002445      19.62      <.0001 
      c3               1     0.005373     0.002445       2.20      0.0280 
      c4               1    -9.277E-6     0.002445      -0.00      0.9970 
      c5               1     0.006277     0.002445       2.57      0.0103 
      c6               1    -0.000778     0.002445      -0.32      0.7502 
      c7               1     0.005307     0.002445       2.17      0.0300 
      sd1              1      -0.1659     0.002097     -79.08      <.0001 
      sd2              1      -0.1180     0.001439     -82.05      <.0001 
      sd3              1     0.000636     0.000931       0.68      0.4942 
      sd4              1       0.0120     0.000622      19.24      <.0001 
      sd5              1      -0.0102     0.000438     -23.31      <.0001 
      sd6              1    -0.005306     0.000324     -16.38      <.0001 
      sd7              1     0.005089     0.000250      20.39      <.0001 
      cd1              1      -0.0278     0.002097     -13.27      <.0001 
      cd2              1      -0.0328     0.001438     -22.78      <.0001 
      cd3              1      -0.0152     0.000931     -16.31      <.0001 
      cd4              1    -0.007046     0.000622     -11.32      <.0001 
      cd5              1    -0.007013     0.000438     -16.01      <.0001 
      cd6              1    -0.003646     0.000324     -11.25      <.0001 
      cd7              1    -0.001948     0.000250      -7.80      <.0001 

 
 
D) SAS output for fitting the time-series model on the yearly data with sets of 10 harmonics. 
 
 
    Yule-Walker Estimates 
 
         SSE                 3.83266524    DFE                    17477 
         MSE                  0.0002193    Root MSE             0.01481 
         SBC                 -97507.387    AIC               -97841.544 
         Regress R-Square        0.5038    Total R-Square        0.9922 
         Durbin-Watson           2.0524 
 
 
                                          Standard                 Approx 
      Variable        DF     Estimate        Error    t Value    Pr > |t| 
 
      Intercept        1       0.5708     0.001731     329.76      <.0001 
      s1               1      -0.0226     0.002449      -9.22      <.0001 
      s2               1       0.0251     0.002449      10.25      <.0001 
      s3               1      -0.0170     0.002449      -6.92      <.0001 
      s4               1     0.001439     0.002449       0.59      0.5568 
      s5               1    -0.007191     0.002449      -2.94      0.0033 
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 99

 
 
 
 
                                          Standard                 Approx 
      Variable        DF     Estimate        Error    t Value    Pr > |t| 
 
      s6               1     0.000120     0.002449       0.05      0.9610 
      s7               1     0.001257     0.002448       0.51      0.6076 
      s8               1    -0.001493     0.002448      -0.61      0.5419 
      s9               1     0.004631     0.002448       1.89      0.0586 
      s10              1    -0.005089     0.002448      -2.08      0.0377 
      c1               1    -0.003796     0.002447      -1.55      0.1209 
      c2               1       0.0480     0.002447      19.61      <.0001 
      c3               1     0.005382     0.002447       2.20      0.0279 
      c4               1    -1.815E-7     0.002447      -0.00      0.9999 
      c5               1     0.006286     0.002447       2.57      0.0102 
      c6               1    -0.000769     0.002447      -0.31      0.7533 
      c7               1     0.005316     0.002447       2.17      0.0298 
      c8               1    -0.001851     0.002447      -0.76      0.4493 
      c9               1    -0.004492     0.002447      -1.84      0.0664 
      c10              1    -0.002499     0.002447      -1.02      0.3071 
      sd1              1      -0.1659     0.002090     -79.36      <.0001 
      sd2              1      -0.1180     0.001423     -82.94      <.0001 
      sd3              1     0.000636     0.000917       0.69      0.4875 
      sd4              1       0.0120     0.000611      19.59      <.0001 
      sd5              1      -0.0102     0.000430     -23.76      <.0001 
      sd6              1    -0.005306     0.000318     -16.71      <.0001 
      sd7              1     0.005089     0.000245      20.80      <.0001 
      sd8              1     0.003152     0.000195      16.16      <.0001 
      sd9              1    -0.002912     0.000160     -18.19      <.0001 
      sd10             1    -0.000141     0.000135      -1.05      0.2957 
      cd1              1      -0.0278     0.002089     -13.31      <.0001 
      cd2              1      -0.0328     0.001423     -23.02      <.0001 
      cd3              1      -0.0152     0.000917     -16.56      <.0001 
      cd4              1    -0.007045     0.000611     -11.53      <.0001 
      cd5              1    -0.007013     0.000430     -16.31      <.0001 
      cd6              1    -0.003645     0.000318     -11.48      <.0001 
      cd7              1    -0.001948     0.000245      -7.96      <.0001 
      cd8              1    -0.000503     0.000195      -2.58      0.0100 
      cd9              1     0.001242     0.000160       7.76      <.0001 
      cd10             1     0.000404     0.000135       3.00      0.0027 
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