
ABSTRACT 

BJERKAAS, JAMES KEVIN. Modeling Ground Sensor Acquisitions of Low Earth Orbit 

Objects. (Under the direction of Professor Thom J. Hodgson). 

 

The United States Strategic Command (STRATCOM) utilizes a sensor network to 

accomplish several of its missions.  These missions include missile defense, missile warning, 

intelligence collection, and space surveillance.  For the task of space surveillance, the 

locations of all man-made satellites, as well as debris formed by the collisions of these 

satellites, is of great interest to the United States. 

Previous work has focused on assigning the various sensors in the sensor network to the 

separate tasks required.  This thesis focuses on developing a simulation to learn more about 

the dynamic interactions between the sensors and the constantly moving orbiting field of 

satellites and debris. 

The stochastic model developed shows over time what happens to the knowledge of the 

objects in Low Earth Orbit (LEO) when the sensors assigned to tracking their progress are 

changed.  When sensors are reassigned from space surveillance to another task, the 

simulation exhibits a transient period where the state of the system adjusts to the new sensor 

coverage.  Similarly, when a sensor is added to the task of space surveillance, a transient 

period occurs while the system adjusts to the new sensor. 

This transient information can be used by decision makers as a tool in scheduling sensors to 

these various tasks, and can also be used to help refine heuristic methods developed 

previously in addressing this scheduling problem. 



Modeling Ground Sensor Acquisitions of Low Earth Orbit Objects 

 

 

by 

James Kevin Bjerkaas 

 

 

A thesis submitted to the Graduate Faculty of 

North Carolina State University 

in partial fulfillment of the  

requirements for the degree of 

Master of Science 

 

Operations Research 

 

 

Raleigh, North Carolina 

2010 

 

APPROVED BY: 

 

 

_______________________________  ______________________________ 

Thom J. Hodgson     Russell E. King 

Committee Chair 

 

 

________________________________  

James R. Wilson 

 



 ii 

BIOGRAPHY 

James Kevin Bjerkaas was born in Urbana, Illinois in 1970.  He attended University of 

Maryland at College Park and graduated in May 1993 with a Bachelor of Science in 

Mathematics and a Bachelor of Science in Mathematics Education.  After Graduation, he 

began Basic Combat Training at Fort Leonard Wood, Missouri, where he began his training 

as a Personnel Administration Assistant in the United States Army Reserve.  After serving 

four years in the United States Army Reserves, he was commissioned as a Second Lieutenant 

in the United States Army in 1997 through Officer Candidate School (OCS) at Fort Benning, 

Georgia.  He was branched Engineers and returned to Fort Leonard Wood, Missouri to begin 

his military officer education as a combat engineer. 

His military assignments include serving as a Combat Engineer Battalion Intelligence Officer 

at Fort Hood Texas and deployed to Bosnia-Herzegovina, a Combat Engineer Platoon Leader 

at Fort Hood, Texas, an Executive Officer for a Combat Engineer Company in South Korea, 

as well as a Combat Engineer Battalion Assistant Operations Officer, a Staff Engineer 

Officer for the Coalition Joint Civil-Military Operations Task Force in Kabul, Afghanistan, a 

Budget Officer for a Combat Engineer Brigade, an Assistant Battalion Operations Officer, 

and a Combat Engineer Company Commander at Fort Lewis, Washington, a Combat 

Engineer Brigade Battle Captain in Tikrit, Iraq, and a Operations Research Analyst for the 

TRADOC Analysis Center at White Sands Missile Range, New Mexico.  He has also earned 

a Master of Science Degree in Engineering Management from the University of Missouri at 



 iii 

Rolla and a Master of Science Degree in Industrial Engineering from New Mexico State 

University in Las Cruces, New Mexico. 

James currently holds the rank of Major in the United States Army, and upon graduation, will 

serve as a mathematics instructor at the United States Military Academy at West Point, New 

York. 

Jim and his wife Julie will celebrate their fifth wedding anniversary this June. 

  



 iv 

ACKNOWLEDGEMENTS 

I would like to recognize and express my appreciation to the following people for their help 

and support to me while I worked on this thesis. 

My wife Julie 

My parents and brothers 

Derek Tharaldson 

Rajneesh 

 

  



 v 

TABLE OF CONTENTS 

LIST OF TABLES .................................................................................................................. vii 

LIST OF FIGURES ............................................................................................................... viii 

1 INTRODUCTION ............................................................................................................ 1 

1.1 Background ................................................................................................................ 1 

1.2 Problem ...................................................................................................................... 2 

1.3 Assumptions and Limitations ..................................................................................... 3 

1.4 Overview .................................................................................................................... 6 

2 LITERATURE REVIEW ................................................................................................. 7 

2.1 Current Models ........................................................................................................... 7 

3 MODEL ............................................................................................................................ 8 

3.1 Overall Model Structure ............................................................................................. 9 

3.2 Step One: Initialization............................................................................................. 10 

3.2.1 Generate Positions for Objects in Low Earth Orbit (LEO)............................... 11 

3.2.2 Generate Positions for Sensors ......................................................................... 25 

3.2.3 Initialize Object Lists ........................................................................................ 29 

3.3 Step Two: Increment Time ....................................................................................... 30 

3.4 Step Three: Actions at each Time Step .................................................................... 30 

3.4.1 Update Positions for Objects in Orbit and Sensors ........................................... 30 

3.4.2 Calculate Detections of Objects in Orbit by Sensors ........................................ 32 

3.4.3 Update Known, Unknown, and Update Lists ................................................... 34 

3.5 Simulation Input ....................................................................................................... 35 

3.5.1 Orbiting Objects Data ....................................................................................... 35 

3.5.2 Sensor Data ....................................................................................................... 36 

3.5.3 Simulation Parameters ...................................................................................... 37 

3.6 Simulation Output .................................................................................................... 37 

4 EXPERIMENTATION ................................................................................................... 38 

4.1 Parameter Selection .................................................................................................. 39 

4.1.1 Number of Partitions for Orbiting Objects ....................................................... 39 

4.1.2 Time Step .......................................................................................................... 43 



 vi 

4.1.3 Probability of Detection for an Object within a Radar‟s Field of View ........... 45 

4.1.4 Movement Times between Object Lists ........................................................... 46 

4.2 Test Runs .................................................................................................................. 49 

4.2.1 Demonstration of Steady State Behavior .......................................................... 50 

4.2.2 Demonstration of Sensor Changes .................................................................... 51 

4.2.3 Demonstration of Sensor Changes with Actual Data for Objects..................... 52 

5 FUTURE RESEARCH ................................................................................................... 54 

5.1 Constant Velocity ..................................................................................................... 54 

5.2 Additional Sensor Types .......................................................................................... 55 

5.3 Orbital Perturbations ................................................................................................ 55 

5.3.1 Orbital Perturbations due to the Non-Spherical Shape of the Earth ................. 55 

5.4 Geographical Locations for Additional Sensors ...................................................... 57 

REFERENCES ....................................................................................................................... 58 

APPENDICES ........................................................................................................................ 60 

 

  



 vii 

LIST OF TABLES 

Table 3.1. Orbital Parameters for International Space Station ............................................... 13 

Table 3.2. XY Coordinates for ISS within Orbital Plane......................................................... 15 

Table 3.3. XY Coordinates for ISS within Orbital Plane adjusted for Argument of the Perigee

................................................................................................................................................. 19 

Table 3.4. XYZ Coordinates for ISS with Adjustment for Inclination .................................... 21 

Table 3.5. XYZ Coordinates for ISS with Adjustment for Right Ascension of the Ascending 

Node ........................................................................................................................................ 23 

Table 3.6. XYZ Coordinates for ISS with time indexing......................................................... 25 

Table 3.7. Sensor Positions with a Latitude of 30 degrees ..................................................... 29 

Table 3.8. Phased Array Radar Locations Used ..................................................................... 36 

Table 4.1. Interpolation Error by Number of Partitions.......................................................... 43 

Table 4.2. Results with Addition then Subtraction of Sensors ............................................... 54 

 

  



 viii 

LIST OF FIGURES 

Figure 3.1. Simulation Structure ............................................................................................. 10 

Figure 3.2. International Space Station Two-Line Elements .................................................. 12 

Figure 3.3. Elliptical Parameters ............................................................................................. 14 

Figure 3.4. Graphical Representation of ISS Orbit within Orbital Plane ............................... 16 

Figure 3.5. Argument of the Periapsis .................................................................................... 18 

Figure 3.6. Graphical Representation of ISS Orbit within Orbital Plane with Adjustment for 

Argument of the Perigee ......................................................................................................... 19 

Figure 3.7. Inclination ............................................................................................................. 20 

Figure 3.8. Graphical Representation of ISS Orbit with Adjustment for Inclination ............. 21 

Figure 3.9. Right Ascension of the Ascending Node.............................................................. 22 

Figure 3.10. Graphical Representation of ISS Orbit with Adjustment for Right Ascension of 

the Ascending Node ................................................................................................................ 24 

Figure 3.11. Sensor Positions with a Latitude of 30 degrees .................................................. 28 

Figure 3.12. Object Lists State Diagram ................................................................................. 34 

Figure 3.13. Sample Simulation Output ................................................................................. 38 

Figure 4.1. Possible Detections by Orbit Partitions ................................................................ 40 

Figure 4.2. Possible Detections by Sensor Partitions ............................................................. 41 

Figure 4.3. Interpolation Error ................................................................................................ 42 

Figure 4.4. Effects of Changing Time Steps on Detections .................................................... 44 

Figure 4.5. Impact of Change in Probability Factor ............................................................... 46 



 ix 

Figure 4.6. Simulation Results for a Lapse Time of 0.5 Days ................................................ 47 

Figure 4.7. Simulation Results for a Lapse Time of 0.25 Days .............................................. 48 

Figure 4.8. Simulation Results for a Lapse Time of 0.75 Days .............................................. 49 

Figure 4.9. Object Lists Over Time ........................................................................................ 51 

Figure 4.10. Object Lists over Time with Subtraction of Sensor ........................................... 52 

Figure 4.11. Results with Addition then Subtraction of Sensors ............................................ 53 

 

  



 1 

1 INTRODUCTION 

1.1 Background 

Two recent events have demonstrated the importance of tracking debris in orbit around the 

Earth.  In January 2007 China conducted an anti-satellite test (Fengyn-1C), and in February 

2009 two satellites, Iridium 33 and Cosmos 2251, collided 490 miles (790 kilometers) above 

the surface of the Earth.  These two events created approximately 5000 objects of debris over 

10 centimeters in diameter in Low Earth Orbit (LEO), increasing the number of objects 

tracked by the National Aeronautics and Space Administration (NASA) Space Debris 

program by about 50%. (Liou, 2010)  This increase in debris makes it increasingly likely that 

man made satellites will suffer collisions during their orbit around the Earth.  In addition, 

these objects pose risks to manned vehicles in orbit, including the International Space 

Station.   

The United States Strategic Command (STRATCOM) is one of the unified commands under 

the Department of Defense.  One of its missions is “to provide integrated surveillance and 

reconnaissance allocation recommendations to the Secretary of Defense.” (U.S. Strategic 

Command Public Affairs Office, 2009)  To accomplish this mission, STRATCOM considers 

the network of sensors available to the Department of Defense, including some of the sensors 

used by the NASA Space Debris program.  This network is utilized to carry out several 

distinct tasks for the Department of Defense.  One of these tasks is to maintain space 

situational awareness through space surveillance.  This mission involves continuously 
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monitoring and collecting information on all man-made objects in orbit around Earth.  From 

this information they produce a satellite catalog, “used by predictive orbital analysis tools to 

anticipate satellite threats and mission opportunities for friendly, adversary, and third party-

assets.” (3-14, 2009)  

Previous work has been conducted in allocating sensors to this task, as well as other tasks 

such as missile defense, missile warning, and intelligence collection.  Dulin developed a 

heuristic method for determining an optimal allocation of these sensors to their tasks. (Dulin, 

2009)  In his research, he treated space surveillance as a secondary task, and considered only 

the probability of success in these tasks. The interaction between sensors and objects in orbit 

was considered static, while in reality it is a dynamic system.  Dulin identified the need to 

model this task of space surveillance as a dynamic system to achieve a greater level of 

precision in the overall model.  Subsequent work will update Dulin‟s heuristic with a 

dynamic representation of this task of Space Surveillance.  In support of this ongoing 

research, this thesis provides a simulation for modeling this task of Space Surveillance with 

greater fidelity and providing insight into the behavior of this dynamic system when sensors 

are removed or added to the network. 

1.2 Problem 

For this thesis, a simulation was developed to model man-made satellites in orbit and the 

sensors used to track those satellites by the United States.  With estimates of over 15,000 

distinct objects of size 10 cm and larger in LEO, the task of tracking these pieces, which 
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range in size from small bolts to large man-made satellites, is non-trivial.  Of particular 

interest is an understanding of what happens to the knowledge of these objects when one or 

more sensors are reassigned from the task of monitoring the objects to another higher priority 

task.  The questions of interest are: 1) What is the steady state of the system when all sensors 

are focused on tracking the objects in orbit, 2) What happens to this steady state when one or 

more sensors are removed.  In addition, 2a) what is the new steady state, and 2b) How long 

does it take to reach this new state?  The steady state of the system is defined as the long run 

average values of what is known about the objects in orbit.  For example, with three sensors 

working to track objects in orbit, how many objects, on average, do they have data on from 

recent detections. 

The simulation represents the movement of these objects in orbit in and out of the acquisition 

range of the sensors; the acquisition of these objects by the sensors when they are in range of 

the sensors; and the loss of individual sensors and the effect on the overall system. 

1.3 Assumptions and Limitations 

1.3.1.1 Perturbations to Orbits due to Non-Spherical Shape of the Earth 

For the purposes of this model, perturbations to the orbits of the objects in LEO are ignored.  

These perturbations include changes in each successive orbit due to the non-spherical shape 

of the Earth and from the gravity of other physical objects in space other than the Earth.  As 

an object orbits around the Earth, the shape of the Earth tends to pull the orbit westward, 

causing the path of the orbit to change at each rotation.  In addition, the point of perigee, 
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where the object is closest to the Earth along its orbit, changes due to the shape of the Earth.  

For this simulation, the exact positions of objects are not required.  The emphasis of the 

simulation is on the ability to track objects in LEO, not the exact locations of these objects.  

Ideally, the positions should be simulated as accurately as possible, however, because of run 

time considerations these perturbations are ignored.  This topic is covered in more depth in 

Chapter 5 Future Research. 

1.3.1.2 Perturbations to Orbits due to other Factors 

Other perturbations to the orbits around the Earth are also ignored.  These include the 

gravitational forces of other objects, such as the Moon and the Sun, and atmospheric 

conditions such as atmospheric drag and solar winds.  These perturbations have less of an 

impact on the orbits than the perturbations due to the shape of the Earth.   (Capderou, 2005) 

1.3.1.3 Galilean Frame of Reference 

The simulation assumes a Galilean frame of reference for the orbits in question.  This means 

that the frame of reference is fixed with the origin at the Earth‟s center, the Z axis oriented 

along the line running from the North to South Pole, and the plane formed by the X and Y 

axes lies along the equatorial plane of the Earth, with the X axis oriented towards the Vernal 

Equinox.  

1.3.1.4  Constant Velocity 

 The simulation assumes constant velocity for the orbits because the majority of the orbits are 

near-circular.  This assumption also greatly simplifies computational complexity and 
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shortens run-time.  For the sample set of 4880 object in orbit used for this thesis, 4803 have 

eccentricities less than 0.1, where an eccentricity of 0 represents a circular orbit. 

1.3.1.5 Sensors Modeled 

The sensors modeled are assumed to have similar characteristics to the Phased Array radar.  

Exact operating data was not available, so approximate ranges and failure rates were 

parameterized.  In addition, the Space Fence was not modeled.  The Space Fence is a set of 

transmitters and receivers along 33 degrees North latitude which detect any objects passing 

over the United States.  

1.3.1.6 Sensors not Modeled 

Long range sensors, such as optical telescopes, were not modeled.  The focus of the model 

was on sensors focused on LEO, which are defined for purposes of this simulation as any 

orbit with an altitude of less than 2000 km from the surface of the Earth.  In addition, passive 

receivers, which track transmissions from functioning man-made satellites, are not modeled. 

1.3.1.7 Time Dependency of Object Lists 

The behavior of the knowledge of objects in LEO over time is managed by lists of Known, 

Update, and Unknown objects.  The simulation assumes that objects move from one list to 

another as a function of time.  For example, if an object has not been detected for at least n 

hours, it will move from the Known list to the Update list.  While other events may trigger 

movement of objects from one list to another in reality, such as a collision between objects in 
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orbit, or a maneuverable satellite changing course, this simulation deals with only changes 

due to elapsed time. 

1.3.1.8 Classification of Parameters 

In addition, some information, such as the reliability of the radars, and the schedules for 

which sensors are used when to track objects in orbit, was unavailable.  Some of this 

information is sensitive, and not releasable to the public, while other information changes 

over time.  For purposes of this thesis, parameters are used in place of this actual 

information.  In particular, for the probability of detection equations, the actual probabilities 

of detection for a given phased array radar are estimated using the equation explained in 

Chapter 3.  The purpose of these parameters is to allow the simulation to function as 

designed, but also allow for changes if actual data becomes available.  

1.4 Overview 

Chapter One includes background material, a statement of the problem, and a list of the main 

assumptions and limitations of this work.  Chapter Two describes previous research in this 

area.  Chapter Three describes the methodology used to address the problem, mainly 

explaining the model used to describe the behavior of the objects in orbit and the sensors 

tasked to track these objects.  Chapter Four describes the preliminary experimentation 

conducted with the model, and describes the methods used to verify and validate the model.  

Chapter Five discusses areas for future research.  These chapters are followed by references 

and appendices, including the code for the model and some examples of model output. 
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2 LITERATURE REVIEW 

2.1 Current Models 

There are currently two main types of models used by NASA to help in understanding space 

debris, engineering models and evolutionary models. (Stansbery, 2009)  In addition, the 

North American Aerospace Defense Command (NORAD), uses several models, including 

SPG4, to predict positions of objects in orbit. (Hoots & Roehrich, 1980) 

Engineering models, such as ORDEM2000 (Orbital Debris Engineering Model), are used to 

model the orbital debris environment in detail.  This model is useful to spacecraft designers 

and mission planners in determining what type of protection the spacecraft will require.  It is 

also useful to those interesting in sensing orbital debris in determining the best strategy for 

detecting debris.  ORDEM2000 uses altitude, latitude and debris size to model the debris 

environment. (Liou, Matney, Anz-Meador, Kessler, Jansen, & Theall, 2002)  ORDEM2000 

does not model the behavior of sensors, however, and provides more detail than necessary for 

the problem. 

Evolutionary models, such as LEGEND (LEO-to-GEO Environment Debris), model the long 

term behavior of space debris.  This model, and other similar models, can help predict the 

future environment and assess the impact of satellite collisions and policy changes on the 

debris environment.  These models take a longer view than would be of interest for this 

problem, as time horizons of 100 years or more are common. (Johnson, 2004) 
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NORAD uses a series of models to predict the locations of objects in orbit around the Earth.  

These models include SGP4 (Simplified General Perturbations), developed in 1970, for 

predicting positions of near Earth satellites, SDP4 (Simplified Deep-Space Perturbations), 

developed in 1979 for predicting deep space orbits, and SGP8, developed in 1980 which also 

predicts orbits near Earth.  All of these models use the standard NORAD two-line data set, 

and take into account perturbations to individual orbits.  These models are highly detailed, 

and take into account the methods by which the two line elements are generated by NORAD. 

(Hoots & Roehrich, 1980)  

For the current problem, a model is needed that will simulate both the behavior of objects in 

orbit and the behavior of sensors detecting the objects in orbit.  The models listed do not take 

sensors into account, but focus only on the objects in orbit.  In addition, the level of detail 

used in the engineering models and the NORAD predictive models is not required for this 

problem.  So a new simulation was developed to meet the specific goals of this thesis. 

3 MODEL 

This section describes the model used to represent the dynamic system of sensors and objects 

in LEO.  First, the overall structure of the model is discussed, followed by an in-depth look at 

each of the main sub-structures involved.  As each step is explained, the modeling of the 

orbit of the International Space Station (ISS) is presented as an example.  

 



 9 

3.1 Overall Model Structure 

The model, a stochastic simulation programmed in MATLAB, utilizes discrete time steps to 

analyze what happens to the knowledge of objects in space over time.  This is accomplished 

by the following process.  In Step One, the system is initialized.  This involves four sub-

steps.  First, reference tables for the locations of the objects in LEO are determined.  Second, 

reference tables for the locations of the sensors on the surface of the Earth are determined.  

Third, the lists which summarize the knowledge, or situational awareness, of the different 

objects in LEO are initialized, these lists are referred to as Object Lists.  Lastly, time is set to 

0.  This completes Step One.  In Step Two, time is incremented by a pre-determined step 

size.  In Step Three, for each time increment, three actions are carried out by the model.  

First, the positions of the objects in orbit and the sensors on the surface of the Earth are 

updated using the reference tables generated in Step One.  Next, calculations are performed 

to determine which objects would be acquired by sensors.  Finally, the Object Lists are 

updated if necessary.  In Step Four, the simulation then repeats Steps Two and Three until the 

designated end time is reached. 
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Figure 3.1. Simulation Structure 

3.2 Step One: Initialization 

The model requires a set of coordinates for each object indexed by time steps.  As part of 

initialization, these arrays of XYZ coordinates and times are created.  The simulation 

references this data when determining current positions at specific times.  Because the time 

steps of the simulation are different than the time steps in the initial reference tables, the 

positions of objects are determined by interpolating between coordinates in the initial data 

which lie on either side of the time needed.  This process is further explained within the 

discussion of Step Two.  This section discusses how these reference tables of initial positions 

are created for both objects in orbit and sensors on the surface of the Earth.  This section 

concludes with a description of the Object Lists describing the knowledge of objects in orbit 

over time.  
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3.2.1 Generate Positions for Objects in Low Earth Orbit (LEO) 

Before the model can determine the location of each object and sensor for a given time, the 

model generates a reference table for each object in the form of an array representing one 

complete orbit around the Earth.  This array is composed of a set of XYZ coordinates 

referenced by a time t.  As time is incremented in the simulation, each position is determined 

by interpolating between the appropriate times stored in this array.  This section describes the 

construction of this array for each object in LEO. 

The positions of man-made satellites in orbit around the Earth, as well as space debris, are 

cataloged according to their orbital parameters.  Orbital parameters are a set of six elements 

which can uniquely determine the position of an object with respect to the Earth.  The 

simulation, for ease of calculation, does not store the objects using these parameters.  Instead, 

the objects are stored by their XYZ coordinates over time.  The simulation represents each 

item in orbit by converting the object‟s orbital parameters into a three-dimensional Cartesian 

coordinate system.  These coordinates are then indexed by a set of time steps breaking down 

one complete orbit into n distinct intervals.  Using these specific time steps, the model 

determines where along the orbital path an object is at any given time.  The following 

sections describe this conversion from orbital parameters to time indexed Cartesian 

coordinates. 
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3.2.1.1 Converting Orbital Parameters into Time-stepped Cartesian Coordinates 

There are six orbital parameters necessary to describe an object‟s position along its orbital 

path in space.  These orbital elements describe the object of interest‟s Keplerian motion in 

space and are used by NASA in tracking the positions of satellites and debris in orbit.  

(Grimaldi, 1997).  The six elements can be divided into three main groups: the elements 

which describe the object‟s orbital ellipse, the elements which orient this ellipse within the 

frame of reference, and an element which fixes the position of the object at a set time.  The 

next section explains in detail each of the orbital elements, discussing how these elements are 

used within the model, and demonstrating this process through an example: the International 

Space Station (ISS). 

 

Figure 3.2. International Space Station Two-Line Elements 

Figure 3.2 shows the orbital parameters for the International Space Station in the standard 

form of the data tracked for each known object in orbit.  The shaded numbers represent the 

six orbital parameters, identified in Table 3.1 below. 

 

 

ISS (ZARYA)

1 25544U 98067A 10060.39299677 .00014318 00000-0 10455-3 0 6766

2 25544 51.6464 63.9887 0007280 0.0341 141.1443 15.73525555646494

1 2 3 4 5 6
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Table 3.1. Orbital Parameters for International Space Station 

Number Element Value for ISS 

1 Inclination 51.6464° 

2 Right Ascension of Ascending Node 63.9887° 

3 Eccentricity 0.0007280 

4 Argument of the Perigee (Periapsis) 51.6464° 

5 Mean Anomaly 141.1443° 

6 Revolutions per Day 15.73525555 

 

3.2.1.2 The Characteristics of the Orbit’s ellipse. 

The elements which describe the characteristics of the object‟s orbital ellipse are the 

eccentricity and the length of the semi-major axis.  NASA uses revolutions per day instead of 

the length of the semi-major axis.  However, the length of the semi-major axis can be derived 

from the revolutions per day using the equation for the Keplerian Period. (Capderou, 2005) 

 

 (3.1) 

where μ represents the Earth‟s gravitational constant ≈ 398600.4418, T is the period of 

revolution (the inverse of revolutions per day), and a is one half the length of the semi-major 

axis of the ellipse.  Once the semi-major axis and eccentricity are known, the movement of 

the object in the plane of its ellipse can be modeled.  The semi-minor axis of the ellipse, b, 

can be found using the eccentricity and the semi-major axis. 
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Figure 3.3. Elliptical Parameters 

Then the distance from either foci to the center of the ellipse, c, can be found. 

  (3.2) 

  (3.3) 

For the ISS example, these equations yield the following values: a = 3.441994, b = 3.441993 

and c = 0.002506.  The semi-major and semi-minor axes are very close in length, as the orbit 

of the ISS is nearly circular (with eccentricity 0.000728).  In terms of eccentricity a perfect 

circle has eccentricity 0, while an eccentricity of 1 describes a parabola, and values greater 

than 1 describe hyperbola.  For our purposes, the orbits we are interested in are ellipses, so 

their eccentricities lie between 0 and 1. 

Assuming constant velocity around the ellipse, an X and Y coordinate system (within the 

plane of the ellipse) is then derived, incrementing t from 0 to 360 degrees.  Equations (3.4) 

and (3.5) demonstrate this procedure, using Cartesian coordinates in the plane of the orbit.  

c

b a



 15 

For the remainder of equations used throughout this section, either Cartesian or Polar 

coordinates are used for simplicity.  In the simulation, whichever set of coordinates was 

simpler to manipulate was used, the equations for only the sets of coordinates used within the 

simulation are included in this section. 

  (3.4) 

  (3.5) 

For the ISS example, incrementing t by 30 degrees, breaking the orbit into 12 steps, 

following XY coordinates are obtained.  The dimensions for x(t) and y(t) are with respect to 

the center of the Earth. 

Table 3.2. XY Coordinates for ISS within Orbital Plane 

t x(t) y(t) 

0 5830.6217 3363.4827 

30 3368.3808 5825.7229 

60 4.8972 6726.9654 

90 -3358.5863 5825.7229 

120 -5820.8272 3363.4827 

150 -6722.0699 0.0000 

180 -5820.8272 -3363.4827 

210 -3358.5863 -5825.7229 

240 4.8972 -6726.9654 

270 3368.3808 -5825.7229 

300 5830.6217 -3363.4827 

330 6731.8644 0.0000 

360 5830.6217 3363.4827 
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Figure 3.4. Graphical Representation of ISS Orbit within Orbital Plane 

There is another orbital parameter, the Mean Anomaly, which describes the position of the 

object along the orbital path at a specified time.  This parameter is not used due to the 

constant velocity assumption.  The starting position of each object in orbit is determined 

randomly, thus eliminating the need for this parameter.  In the ISS example, we would 

simply randomly select one of the 12 coordinate sets to start with at time 0. 

3.2.1.3 The Orientation of the Orbital Plane with Respect to the Reference Plane 

To orient the elliptical plane within the frame of reference, three angles are needed.  They are 

the argument of the periapsis, the inclination, and the right ascension of the ascending node.  

These are sometimes referred to as Euler angles, or the angle of proper rotation, the angle of 

nutation, and the angle of precession, respectively. (Capderou, 2005) 
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3.2.1.4 The Argument of the Periapsis 

 The argument of the periapsis, ω, orients the ellipse within the orbital plane.  The periapsis is 

the point of the orbit which passes closest to the body being orbited, for an object orbiting 

around the Earth, this is called the perigee.  For an object orbiting the Sun, this is the 

perihelion.  As a result, this orbital element is sometimes referred to as the argument of the 

perigee for Earth orbits.  This element is an angle describing the difference between the 

primary axis of the orbital plane and the semi major axis of the orbit‟s ellipse.  In Figure 3.5 

the orbital plane is formed by (P0, N, N’), where N and N’ represent where in the orbital 

plane the path of the orbit crosses the equatorial plane of the Earth.  The variable N is 

referred to as the Ascending Node, where N’ is the Descending Node.  The variable P0 

represents the direction of the perigee.  So O (representing the center of the Earth) and P0 lie 

along the semi-major axis of the elliptical orbit. (Capderou, 2005) 
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Figure 3.5. Argument of the Periapsis 

In Polar coordinates, this is accomplished by the following equation.  The variable θ 

represents the angle (in polar coordinates), of the current position along the orbital path of the 

object. 

  (3.6) 

For the ISS, this rotates the XY coordinates to the following values shown in Table 3.3 and 

Figure 3.6.  In the figure and the table, red represents the coordinates before the 

transformation, and blue represents the transformed coordinates.  This color coding is also 

followed for the remainder of the figures in this section. 
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Table 3.3. XY Coordinates for ISS within Orbital Plane adjusted for Argument of the 

Perigee 

t  old x(t)  new x(t) old y(t) new y(t) 

0 5830.6217 980.3456 3363.4827 6659.4360 

30 3368.3808 -2478.3861 5825.7229 6256.4078 

60 4.8972 -5272.2221 6726.9654 4178.0093 

90 -3358.5863 -6652.5561 5825.7229 981.1456 

120 -5820.8272 -6249.5289 3363.4827 -2477.5863 

150 -6722.0699 -4171.1312 0.0000 -5271.4219 

180 -5820.8272 -974.2680 -3363.4827 -6651.7552 

210 -3358.5863 2484.4637 -5825.7229 -6248.7270 

240 4.8972 5278.2997 -6726.9654 -4170.3285 

270 3368.3808 6658.6337 -5825.7229 -973.4648 

300 5830.6217 6255.6065 -3363.4827 2485.2671 

330 6731.8644 4177.2088 0.0000 5279.1027 

360 5830.6217 980.3456 3363.4827 6659.4360 

 

 

Figure 3.6. Graphical Representation of ISS Orbit within Orbital Plane with 

Adjustment for Argument of the Perigee 
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3.2.1.5 The Inclination 

The inclination, i, describes the angle between the orbital plane and the equatorial plane of 

the Earth.  In Figure 3.7, the inclination describes the angle between the orbital plane (N, O, 

P0) and the equatorial plane (N, O, y). 

 

Figure 3.7. Inclination 

In Cartesian coordinates, this translation is accomplished by the following equations.   

  (3.7) 

  (3.8) 

  (3.9) 
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For the International Space Station, the following table and figure demonstrate this 

translation, with an inclination of approximately 51 degrees, the orbit is inclined 51 degrees 

from the equator. 

Table 3.4. XYZ Coordinates for ISS with Adjustment for Inclination 

t  x(t) y(t) z(t) 

0 980.3456 4132.2660 5222.3046 

30 -2478.3861 3882.1819 4906.2514 

60 -5272.2221 2592.5087 3276.3791 

90 -6652.5561 608.8135 769.4107 

120 -6249.5289 -1537.3743 -1942.9138 

150 -4171.1312 -3270.9854 -4133.8291 

180 -974.2680 -4127.5000 -5216.2813 

210 2484.4637 -3877.4158 -4900.2282 

240 5278.2997 -2587.7427 -3270.3559 

270 6658.6337 -604.0475 -763.3874 

300 6255.6065 1542.1403 1948.9371 

330 4177.2088 3275.7514 4139.8524 

360 980.3456 4132.2660 5222.3046 

 

Figure 3.8. Graphical Representation of ISS Orbit with Adjustment for Inclination 
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3.2.1.6 The Right Ascension of the Ascending Node 

The last angle is the right ascension of the ascending node, Ω, which describes the angle 

describing the point where the orbit‟s path crosses the equatorial plane.  In Figure 3.9, Ω is 

the angle xON, where N is the point where the path of the orbit crosses the Earth‟s equatorial 

plane, from below the equator to above the equator, hence „ascending,‟ O is the Earth‟s 

center, and x is chosen so that Ox points to a distant star to fix the reference frame. 

 

Figure 3.9. Right Ascension of the Ascending Node 

This translation is accomplished by the following equation, in cylindrical coordinates. 

  (3.10) 
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Note that Equation (3.10) looks very similar to Equation (3.6), however, because of the order 

in which the translations are applied, they do not perform the same action.  When the 

argument of the periapsis was applied in Equation (3.6), it was still a two-dimensional 

problem within the orbital plane.  In Equation (3.10) this is no longer the case, and the z 

coordinate is kept fixed, while orientation of the x and y coordinate‟s in the Earth‟s equatorial 

plane is adjusted. 

The following figure and table portray the completed orbit for the International Space 

Station.  In its current form, the table of XYZ values is indexed by an angle t which ranges 

from 0 through 360 degrees.  The final step for determining the reference points for the ISS is 

to index these XYZ coordinates by time. 

Table 3.5. XYZ Coordinates for ISS with Adjustment for Right Ascension of the 

Ascending Node 

t  x(t) y(t) z(t) 

0 -3283.7698 2693.2427 5222.3046 

30 -4575.8385 -524.8197 4906.2514 

60 -4642.0318 -3601.2453 3276.3791 

90 -3464.6132 -5711.7084 769.4107 

120 -1359.0710 -6290.7120 -1942.9138 

150 1110.4164 -5183.1126 -4133.8291 

180 3282.1518 -2685.6906 -5216.2813 

210 4574.2206 532.3718 -4900.2282 

240 4640.4138 3608.7974 -3270.3559 

270 3462.9952 5719.2605 -763.3874 

300 1357.4530 6298.2641 1948.9371 

330 -1112.0343 5190.6647 4139.8524 

360 -3283.7698 2693.2427 5222.3046 
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Figure 3.10. Graphical Representation of ISS Orbit with Adjustment for Right 

Ascension of the Ascending Node 

3.2.1.7 Time 

The last step is to assign a time value for each set of XYZ coordinates.  This is done by 

multiplying the period T of the orbit by the fractional revolution of the orbit. 

 
 (3.11) 

The following table shows the final result, using the orbital period of the ISS, approximately 

91 minutes.  Note, for simplicity only 12 points were used in defining the orbit.  This number 

is generally higher in actual practice, as is explained in Chapter 4.   
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Table 3.6. XYZ Coordinates for ISS with time indexing 

t (min)  x(t) y(t) z(t) 

0.00 -3283.7698 2693.2427 5222.3046 

7.63 -4575.8385 -524.8197 4906.2514 

15.25 -4642.0318 -3601.2453 3276.3791 

22.88 -3464.6132 -5711.7084 769.4107 

30.50 -1359.0710 -6290.7120 -1942.9138 

38.13 1110.4164 -5183.1126 -4133.8291 

45.76 3282.1518 -2685.6906 -5216.2813 

53.38 4574.2206 532.3718 -4900.2282 

61.01 4640.4138 3608.7974 -3270.3559 

68.64 3462.9952 5719.2605 -763.3874 

76.26 1357.4530 6298.2641 1948.9371 

83.89 -1112.0343 5190.6647 4139.8524 

91.51 -3283.7698 2693.2427 5222.3046 

3.2.1.8 MATLAB function for Initial Object Locations 

The MATLAB code for the process of defining the initial positions of each object in low 

Earth orbit is included in the appendix, the function name is ORBIT. 

3.2.2 Generate Positions for Sensors 

There are two main types of sensors used to track space debris in low Earth orbit from the 

surface of the Earth, Phased Array Radar and a collection of transmitters and receivers 

known as the Space Fence.  For this simulation, the sensors on the surface of the Earth, 

referred to as Earth-based sensors, are assumed to be Phased Array Radars.  The Space Fence 

is planned as a future modification to this simulation.  Other types of sensors, such as optical 

telescopes and orbital platforms, are not considered, but could easily be adapted to fit into the 

simulation.  The optical telescopes are utilized mainly for objects farther out than low Earth 

orbit.  And orbital sensors are not currently being used as a persistent source for debris 

detection. 
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The initial positions for Earth-based sensors are determined through a similar method to 

objects in orbit.  However, a simpler method for sensors can be used, since they are on the 

surface of the Earth.  The Latitude and Longitude of the sensors position determine where the 

sensor orbits the Earth, as well as the sensor‟s starting position.  The starting position is 

important, since it also fixes the sensors‟ positions relative to each other. 

3.2.2.1 The Characteristic’s of the Orbit’s ellipse. 

The sensor‟s rotation is modeled as an orbit along the surface of the Earth with a period of 

rotation of one day.  The orbital plane of this orbit then becomes a circle – with eccentricity 

of 0.  To determine the length of the semi-major axis, or radius for a circle, the Latitude is 

used.  The Latitude measures approximately the angle between a line running from the center 

of the Earth to the sensor‟s location, and a line running from the center of the Earth to a point 

on the Equator along the same Longitude as the sensor.  In reality, this number is slightly 

different due to the non-spherical nature of the Earth.  However, for this simulation, the Earth 

is assumed to be spherical, therefore the Latitude is used for this simulation.  To determine 

the radius of the circular path of the sensor, the following equation is used. 

  (3.12) 

 Here Lat represents the Latitude of the sensor and ER is the radius of the Earth, for which we 

use 6371 km, the Earth‟s mean radius.  To determine the circular path, equations (3.4) and 

(3.5) are used to determine the XY coordinates within the plane of the sensor‟s rotation.  

However, since the sensor is assumed to move in a circle, the equation simplifies.  In a circle, 
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the semi-major and semi-minor axes are both equal to the radius, and there is only one focus, 

the center of the circle.  In algebraic notation, a = b and c = 0.  The equations then become: 

  (3.13) 

  (3.14) 

3.2.2.2 The Orientation of the Orbital Plane with Respect to the Reference Plane 

This orientation also simplifies for a circular orbit.  Because the sensor moves in a circle 

parallel to the equator, the orbit never crosses the equatorial plane.  Therefore, the Right 

Ascension of the Ascending Node is not relevant.  Similarly, the inclination of this circular 

path to the orbital plane is 0 degrees.  The only parameter that is relevant for the sensors 

circular orbit is the Argument of the Periapsis (or Perigee).  This parameter is replaced by the 

Longitude of the sensor‟s position.  The Longitude is similar to the Latitude in that it 

measures an angle formed by two lines meeting at the center of the Earth, with one line 

moving to the position of the sensor.  For Longitude, the base reference is not the Equator, 

but the Prime Meridian.  So Longitude measures the angle between a line running from the 

center of the Earth to the sensor‟s location, and a line running from the center of the Earth to 

a point on the Prime Meridian along the same Latitude as the sensor.  To adjust the sensor‟s 

position for Latitude, Equation (3.6) is used, modified by replacing ω (the Argument of the 

Periapsis) with Longitude (Long) 

  (3.15) 
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3.2.2.3 Time 

The last step is to assign a time value for each set of XYZ coordinates.  This is done exactly 

the same as with objects in low Earth orbit, only using a period of 1 day.  Equation (3.11) 

then becomes: 

 
 (3.16) 

where θ represents the portion of 360 degrees represented by a given set of XYZ coordinates.   

The following figure and table show the results of these calculations for a sensor with 

Latitude of 30 degrees. 

 

Figure 3.11. Sensor Positions with a Latitude of 30 degrees 
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Table 3.7. Sensor Positions with a Latitude of 30 degrees 

t (min) x(t) y(t) z(t) 

0.0000 2758.7239 4778.2500 3185.5000 

0.0833 0.0000 5517.4478 3185.5000 

0.1667 -2758.7239 4778.2500 3185.5000 

0.2500 -4778.2500 2758.7239 3185.5000 

0.3333 -5517.4478 0.0000 3185.5000 

0.4167 -4778.2500 -2758.7239 3185.5000 

0.5000 -2758.7239 -4778.2500 3185.5000 

0.5833 0.0000 -5517.4478 3185.5000 

0.6667 2758.7239 -4778.2500 3185.5000 

0.7500 4778.2500 -2758.7239 3185.5000 

0.8333 5517.4478 0.0000 3185.5000 

0.9167 4778.2500 2758.7239 3185.5000 

1.0000 2758.7239 4778.2500 3185.5000 

 

3.2.2.4 MATLAB function for Initial Sensor Locations 

The MATLAB code for the process of defining the initial positions of each sensor is included 

in the appendix, the function name is SENSORPOSITION. 

3.2.3 Initialize Object Lists 

As mentioned in the problem summary in Chapter 1, three lists are kept to summarize the 

knowledge of objects in low Earth orbit.  The first list consists of those objects whose 

locations are known.  This list is initially set to 0.  The second list consists of those objects 

whose positions are unknown; all objects in low Earth orbit are initially added to this list.  

The final list includes objects whose position needs to be updated.  Each list is stored as a 

number of elements for a given time within the simulation.  The initial value of each list at 

time zero would be 0 known objects, N unknown objects, and 0 update objects, where N is 
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the total number of objects simulated in low Earth orbit.  The transitions between these lists 

are discussed in Section 3.4. 

3.3 Step Two: Increment Time 

After all positions of objects in low Earth orbit and sensors on the Earth are initialized, and 

the initial object lists are set, time is incremented by a set step size, dt. 

3.4 Step Three: Actions at each Time Step 

After the time has been incremented, the simulation performs three actions.  It updates the 

locations of all objects and sensors in the simulation, it calculates which objects have been 

detected, and it updates the object lists.  All of these steps are explained in detail in the 

following sections. 

3.4.1 Update Positions for Objects in Orbit and Sensors 

At each time increment in the simulation, all of the positions of the objects in orbit and the 

sensor locations are updated.  The simulation accomplishes this task by linearly interpolating 

between points in the initial position locations.  Because there are only a finite set of 

reference locations for each object, and the periods of rotation differ for most of the objects 

in low Earth orbit, the time indexes for each set of XYZ coordinates will be different.  So 

whatever time increment dt is chosen, it will not match the coordinate time references.  The 

interpolation procedure then works in a two step process.  First, it finds which two sets of 

XYZ coordinates it should use for interpolating a given object for a given time, and second, it 

determines the desired position by linear interpolation. 
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3.4.1.1 Determining Upper and Lower Time Bounds 

For a given time and a given object, the simulation must first determine how far along in time 

the object has moved from its initial position.  The simulation divides the current time by the 

period of rotation of the object of interest.  It then uses the remainder (or modulo) to then 

find the desired sets of coordinates.  The simulation finds the first time index greater than this 

remainder.  It then selects the time index below, or the last time index less than the 

remainder.  These two sets of coordinates are then used for interpolation. 

3.4.1.2 Linearly Interpolating to Determine Current Location 

Linear interpolation is used to find the desired location.  Given two time referenced sets of 

coordinates, (x1,y1,z1,t1) and (x2,y2,z2,t2) and the current time, t, the following equations are 

used. 

 
 

(3.17) 

 
 

(3.18) 

 
 

(3.19) 

3.4.1.3 MATLAB function for Interpolating Object Positions 

The MATLAB code for the process of interpolating object positions is included in the 

appendix, the function name is INTERPORBIT. 
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3.4.2 Calculate Detections of Objects in Orbit by Sensors 

To determine which objects have been acquired by sensors in the given time period, the 

simulation calculates which objects have passed within the field of view of each sensor, and 

then determines if they have been detected based upon probability of detection. 

3.4.2.1 Determining Objects within Field of View of Sensors 

To determine which objects are in a given sensors field of view, the simulation calculates the 

angle between a line running from the center of the Earth to the sensor‟s location, and a line 

running from the sensor‟s location to the location of the object in low Earth orbit. 

 
 (3.20) 

After determining this angle, the simulation checks to see if this angle is less than the field of 

view of the sensor.  If it is, it moves on to the next step. 

The simulation determines if the object is within the sensors field of view by calculating the 

azimuth and elevation from the sensor to the object in orbit.  The elevation is determined 

from the angle θ calculated previously. 

  (3.21) 

The azimuth is determined using the latitudes and longitudes of the sensor and the object in 

orbit.  The longitude is determined relative to the X axis, and not the Prime Meridian, this 

takes into account how far the Earth has rotated from the Prime Meridian at its current 

position. 
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(3.22) 

In equation (3.22) A represents the Sensor while B represents the object in LEO.  This 

azimuth lies between -90 and 90 degrees.  To convert to an azimuth between 0 and 360 

degrees, the simulation determines which quadrant the resulting azimuth belongs to, adding 

180 degrees if necessary. 

3.4.2.2 Checking for Detection within Field of View of Sensors  

If an object falls within the field of view of a sensor, the simulation generates a random 

number between 0 and 1 and compares the result to the probability of detection for the given 

sensor.  The test runs for the simulation utilized both of these methods for this probability, as 

the actual data was unavailable.  The first method was to simply set a probability of detection 

for an object within a sensor‟s field of view. 

  (3.23) 

The second method was to use a probability dependent on the angle of detection, where E is 

the field of view of the sensor in terms of elevation, M is the midpoint angle of that field of 

view, and θ is the angle determined in the previous step.  This method increases the 

probability of detection for an object within the central portions of a field of view, and 

decreases the likelihood of detection at the limits of the field of view.  

 
 (3.24) 
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In either case, if the randomly generated number is less than the calculated probability, the 

object has been detected. 

3.4.2.3 MATLAB function for Checking for Detections 

The MATLAB code for the process of checking for detection within a sensor‟s field of view 

is included in the appendix, the function name is FINDANGLE.  In addition, the function 

TESTHORIZON is also used for this process, calculating the azimuth and elevation for a 

given object in orbit with respect to a given sensor. 

3.4.3 Update Known, Unknown, and Update Lists 

There are four possible transitions between the known, unknown and update lists. 

 

Figure 3.12. Object Lists State Diagram 

If an object is detected for the first time, it moves from the unknown list to the known list.  If 

an object is detected while it is on the update list, it moves to the known list.  If an object is 
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detected while on the known list, it remains on the known list.  As an object is detected, the 

last time it was detected is stored.  The simulation uses this time to determine when an object 

moves from the Known or Update lists.  If an object is on the Known list, and has not been 

detected in a certain amount of time, t*, the object moves to the Update lists.  If an object is 

on the Update list, and has not been detected in a certain amount of time, s*, the object 

moves to the Unknown list.  In this manner the lists are maintained.  The rates, λi, from one 

object list to another, can then be determined based on the behavior of the object lists over 

time. 

The MATLAB code for updating the object lists is included in the main program file, which 

is included in the appendix, the function name is SIMORBIT. 

3.5 Simulation Input 

The simulation uses three main sources of data.  First, data for the orbital elements of the 

objects simulated in LEO, which are obtained by observed data.  Second, data for the sensors 

on the surface of the Earth, which are based on the actual geographical locations and 

limitations of the radars simulated.  Third, various parameters within the simulation are set 

for each run.  The following sections describe each of these inputs. 

3.5.1 Orbiting Objects Data 

There are two main methods used to populate the objects in the simulation.  The first method 

involves randomly generating objects.  This method was primarily used to test the mechanics 

of the simulation for purposes of validation.  The second source was a database of objects in 
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North American Aerospace Defense Command‟s (NORAD) two line format, which included 

approximately 5,000 objects of the 15,000 objects currently catalogued.  From each of these 

two line elements, the six orbital parameters of interest were obtained.  The entire set of 

15,000 objects, or a random subset of these objects, can be used to simulate the effect of 

changing sensors over time.  The original sets of two line elements for each object were 

obtained from the CelesTrak website, www.celestrak.com, associated with the Center for 

Space Standards and Innovation. (Kelso, 2010)  Sample input data is included in the 

Appendices. 

3.5.2 Sensor Data 

For the sensors in the simulation, the locations of eight Phased Array Radar are used.  These 

radar are part of the Space Surveillance Network utilized by the United States Department of 

Defense.  The coordinates for each radar, as well as the azimuth and elevation limits for their 

fields of view are summarized in the following table, from a 2001 list furnished by Dr. 

Nicholas Johnson, Chief Scientist for Orbital Debris, NASA Johnson Space Center. 

Table 3.8. Phased Array Radar Locations Used 

Location Latitude Longitude Azimuth Limits Elevation Limits 

Eglin AFB, FL 30.57° N 273.79° E 120°-240° 1°-105° 

Thule AFB, Greenland 76.57° N 291.70° E 297°-177° 3°-80° 

RAF Fylingdales, UK 54.37° N 359.33° E 0°-360° 4°-70° 

Clear AS, AK 64.29° N 210.81° E 170°-110° 1.5°-90° 

Cavalier AS, ND 48.72° N 262.10° E 298°-78° 1.9°-95° 

Cape Cod AS, MA 41.75° N 289.46° E 347°-227° 3°-80° 

Beale AFB, CA 39.14° N 238.65° E 126°-6° 3°-80° 

Eareckson AFB, AK 52.74° N 174.09° E 259°-19° 0.6°-80° 
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The MATLAB code for loading the data for the actual sensors is located in the appendix, the 

function name is GETREALSENSORS. 

3.5.3 Simulation Parameters 

Throughout the development of the simulation, values for several key parameters were 

chosen.  These parameters include the number of steps to partition each object‟s orbit into, 

the time step used to increment the simulation, the probability of detection given an object is 

within a sensor‟s field of view, and the time threshold for moving an object from the known 

list to the update list, and from the update list to the unknown list.  The values chosen for 

these parameters are discussed in Chapter 4. 

3.6 Simulation Output 

As output, the simulation generates the object lists referenced by time.  This information 

demonstrates the dynamic behavior of the system of sensors and orbiting objects as sensors 

are removed or added over time.  The following figure shows sample output for a run of ten 

days with 25 objects and 2 sensors.  The update rate for movement from Known to Update 

and Update to Unknown was 2.5 for this sample run.  From this output, the behavior of the 

Known, Unknown and Update lists can be examined over time.  Sensors can be added or 

subtracted to simulate changes in mission for individual sensors.  The effects of these 

changes on the Object Lists will then demonstrate the effect the removal or addition of the 

sensor has on the ongoing task of Space Surveillance. Section 4 includes larger runs 

demonstrating long run behavior of these Object lists. 
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Figure 3.13. Sample Simulation Output 

4 EXPERIMENTATION 

This section summarizes the experimentation conducted using the simulation.  This includes 

experimentation involved in the selection of key parameters necessary for the simulation to 

function.  In addition, this section discusses some test runs conducted to demonstrate the 

simulation‟s ability to model the dynamic system of sensors and orbiting objects. 
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4.1 Parameter Selection 

4.1.1 Number of Partitions for Orbiting Objects 

As mentioned previously in Chapter 3, the simulation generates a reference data set for each 

object in low Earth orbit.  This data set consists of a time referenced set of XYZ coordinates.  

One important parameter for the simulation is how many time indexes, or partitions, should 

be used to generate this set.  In the International Space Station (ISS) example illustrated 

previously, 12 partitions were used.  This number is a little low, as the distance between each 

point in the data set for 12 partitions is over 3,000 kilometers. 

To assess the impact of different size partitions on model performance, some small test runs 

were made varying the number of partitions for each orbit.  Figure 4.1 shows the results of 

these test runs.  The runs consisted of 100 orbiting objects and 6 sensors and ran for 1.25 

simulated days.  The 100 orbiting objects were randomly selected from the CelesTrak list, 

and the same 100 objects were used for all of the described iterations. 
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Figure 4.1. Possible Detections by Orbit Partitions 

Further runs were made varying the partitions of the sensor position while maintaining the 

orbit partitions constant.  Figure 4.2 shows the results when orbit partitions were held 

constant at 60 while the number of partitions for sensor positions was varied from 10 to 120.  

Again, these runs consisted of the same 100 objects and 6 sensors and ran for 1.25 days 

simulated time.  The results of this latter experiment shows the increase in detections when 

the number of partitions is small.  This is a result of the exaggerated field of view of the 

sensor when only a small number of partitions are used.  For the remainder of the simulation 

runs referenced in this section, we used 60 partitions for both objects in orbit and sensors on 

the ground. 
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Figure 4.2. Possible Detections by Sensor Partitions 

To determine if this size partition is appropriate, consider the resulting error in determining 

the position of each object in orbit by interpolation.  The greater the number of partitions 

used, the greater the distance is between any two points, and so the interpolation between 

those two points will result in a greater degree of error.  Using 60 partitions, the greatest 

magnitude of error due to interpolation would be approximately 10 km at an altitude of 1000 

km above the surface of the Earth.  To determine the approximate error, assume the orbit is 

near circular between the two points used to interpolate.  In Figure 4.3, ti and ti+1 represent 

the two interpolation points, RS represents the radius of the orbit at either point, RI represents 

the interpolated radius, D represents the straight line distance between ti and ti+1, θ represents 

the angle between ti and ti+1 passing through the center of the Earth, and E, the error.  The 
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coordinates of the two points, RS, D and θ are known.  The Error is then calculated using the 

Pythagorean Theorem.  For an object in LEO with an altitude of 1000 km, this error is 

approximately 10.10 km. 

 

Figure 4.3. Interpolation Error 

Table 4.1 shows the resulting approximate error (in kilometers) for varying numbers of 

partitions for objects in orbit altitudes of 1000 km and 2000 km.  For the purposes of our test 

runs, 60 partitions is satisfactory.  If a greater level of accuracy in altitude is required, the 

number of partitions can be increased, with a penalty to run time. 

 

 

 

 

ti

O

ti+1

θ

RS

E

RI

D



 43 

Table 4.1. Interpolation Error by Number of Partitions 

Number of Partitions Error for an Orbit at 2000km Error for an Orbit at 1000km 

10 410 361 

20 103 91 

30 46 40 

40 26 23 

50 17 15 

60 11 10 

70 8 7 

80 6 6 

90 5 4 

100 4 4 

4.1.2 Time Step 

The size for the time step used to increment the model has a great impact on both run time 

and model performance.  As expected, the smaller the time step, the greater accuracy within 

the simulation, but the slower the run time.  Figure 4.4 shows the results of a series of 

experiments to determine this relationship.  Using the same 100 objects in orbit, 6 sensors 

and 1.25 days in simulated time, the simulation was run for various sized time steps.  Using 2 

minute time steps (900 total steps for 1.25 days), all 100 objects in orbit were detected at 

least once over the simulation run.  However, using 12 minute time steps (150 total steps for 

1.25 days), only 92 objects in orbit were detected.  Ideally, 2 minute time steps would be 

chosen, however the run time is over 4 times as long as that for 9 minute time steps, the 

number used for most of our test runs during simulation development.  For all subsequent 

runs discussed in this section, a time step of 6 minutes was used, a compromise between 

speed and performance. 
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Figure 4.4. Effects of Changing Time Steps on Detections 

The impact of this compromise is on how much time passes between each step within the 

simulation.  The greater this time, the more likely it is that a possible detection will not be 

calculated, degrading the accuracy of the simulation.  For a sensor with a 120 degree field of 

view, the diameter of what this sensor sees at 1000 km is approximately 1700 km using a 

simple law of cosines approximation.  According to the NASA Orbital Debris Program 

Office, debris travels at 7 to 8 km/s. (Stansbery, 2009)  This translates to roughly 420 to 480 

km/min. For any time increment greater than 4 minutes, the likelihood of missing possible 

detections increases, as we saw in out small experiments.  Again, for a desired level of 

accuracy, a smaller time step can be used. 
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4.1.3 Probability of Detection for an Object within a Radar’s Field of View 

As mentioned in Chapter 3, two different methods for determining probability of detection 

were considered for use within the simulation.  The first method involved a simple Bernoulli 

distribution, with a set probability of detection given the object entered the radar‟s field of 

view.  The second method also involved a Bernoulli distribution for the probability of 

detection, but also used the angle of detection to adjust this probability, as shown in Equation 

(4.1).  The effect of this adjustment was to cause the probability of detection to increase the 

closer the object to be detected is to the center of the radar‟s field of view.  Data sets were 

not available to use in validating this choice of probability, and so a value of 0.99 was 

selected as what is called the probability factor, which adjusts the calculated probability 

based on the angle of elevation.  This value can be set at different levels to calibrate the 

model to actual probabilities if they are known. 

 
 (4.1) 

where p is the probability factor, θ is the angle of elevation of the object in orbit from the 

given sensor, M is the midpoint of that sensor‟s elevation range, and E is the sensor‟s 

elevation range.   In Figure 4.5, the results of altering the probability factor p are shown over 

runs using 1000 objects in orbit, and 1 sensor, over a period of 10 days.  The average size of 

the Known lists, from 5 to 10 days, are shown, as well as the overall percentage of 

detections.  This percentage is the total number of successful detections divided by the total 

number of objects which passed through the azimuth and elevation of the sensor during the 
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course of the simulation run.  Little variation occurred as a result of this change in probability 

factor, as most of the probability of detection is a function of the angle of elevation. 

 

Figure 4.5. Impact of Change in Probability Factor 

4.1.4 Movement Times between Object Lists 

In this simulation, an object moves between the Known List, the Update List, and the 

Unknown List as a function of time.  This time period was set at 0.5 days, but the actual 

mechanism that changes objects is unknown.  The value of 0.5 days was chosen by taking the 

average time between detections and adding two standard deviations to this value.  This 

would allow most detections to occur within a lapse time interval.  For one sensor, Eglin 

AFB, the average time between detections was approximately 0.1 days, or 2.4 hours.  The 

standard deviation of the time between detections was 0.18 days, or 4.5 hours.  This resulted 
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in a value of 0.46 days for a lapse time, which was rounded to 0.5 days, or 12 hours, for 

simplicity.  This period of time coincides with the observation that most objects are detected 

several times a day. (Johnson, 2004)   

 

Figure 4.6. Simulation Results for a Lapse Time of 0.5 Days 

Figure 4.6 shows the results of a simulation run with 1000 objects and 1 sensor (Eglin AFB) 

over a simulated time period of 10 days.  Steady state behavior seems to emerge at about 1 

day, or two lapse time periods.  This outcome occurred in all simulated runs made during the 

development of the model.  The steady state could not emerge prior to this time, as no object 

could have moved from the Known list to the Unknown list in any time less than two lapse 

periods. 
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more, with the size of the Known list ranging from approximately 400 objects to 550 objects, 

a range of 150 objects.  This range was approximately 50 objects with a lapse time of 0.5 

days.  In addition, the average value of the Known objects is approximately 450 with a lapse 

time of 0.25 versus an average of approximately 800 objects with a lapse time of 0.5 days.  

Similar results are obtained by increasing the lapse time to 0.75 hours.  The longer the lapse 

time period, the greater chance that objects will remain in the Known list, so the average 

known objects increases. 

 

Figure 4.7. Simulation Results for a Lapse Time of 0.25 Days 
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Figure 4.8. Simulation Results for a Lapse Time of 0.75 Days 
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4.2.1 Demonstration of Steady State Behavior 

In order for the simulation to help detect changes in performance due to the addition or 

subtraction of a sensor, the simulation must be able to define the state of the system at a 

given point in time.  This state is defined by the Object Lists for a given time.  The following 

output shows that a steady state is reached after an initial warm-up period.  Because the 

Object Lists begin at 0 known and all unknown, objects must be detected to populate the 

lists.  In this sample run, 5000 random objects and 5 random sensors were generated; these 

sensors had azimuth ranges of 0 to 360 degrees, with elevation of 0 to 90 degrees.  The 

simulation was run for 60 days with an update rate of 2.5 days.  After about 5 days in 

simulated time, the simulation reached an apparent steady state, where the number of objects 

in each of the Known, Update, and Unknown lists appear to remain close to their long run 

values for this system. As mentioned earlier, this behavior exhibited itself in all runs made, 

with different degrees of variation in each lists size over time.  Fewer sensors tended to 

exhibit a higher level of variation, while more sensors lessened the variation of the list sizes 

over time. 
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Figure 4.9. Object Lists Over Time 
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down, although the initial change in the Known lists takes less time as those objects detected 

are immediately moved to the Known list.  There is a cyclical behavior present in the 2 

sensor state, as the Eglin radar and the Thule radar remain in coverage.  Once the Fylingdales 

radar is returned to coverage, this variation disappears and returns to the previous steady 

state. 

 

Figure 4.10. Object Lists over Time with Subtraction of Sensor 
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one to three sensors (Eglin, Thule and Fylingdales) run for 30 simulated days.  At the tenth 

day, 2 additional sensors are added (Thule and Fylingdales), and then at the fifteenth day, 1 

sensor (Fylingdales), is removed. 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 2 4 6 8 10 12 14 16 18

P
e

rc
e

n
t 

o
f 

O
b

je
ct

s

Simulated Time (Days)

5000 Objects, 3-2-3 Sensors

Unknown

Update

Known



 53 

 

Figure 4.11. Results with Addition then Subtraction of Sensors 
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Table 4.2. Results with Addition then Subtraction of Sensors 

 

 

5 FUTURE RESEARCH 

Several of the assumptions used during the development of this simulation could be revisited 

for future improvements to this simulation.  In addition, the simulation could be used as a 

tool in examining additional problems.  Some of these assumptions include constant velocity, 

type of sensor utilized, and orbit perturbations.  Additionally, the simulation could be useful 

in determining geographic locations for future and/or mobile sensors. 

5.1 Constant Velocity 

For this thesis, constant velocity was assumed.  However, this is not the case for elliptical 

orbits, near circular or not.  Further work could be conducted to determine the impact on the 

performance and accuracy of this model by using variable velocity.  In addition to more 

accurately determining the positions of each object in LEO, this could also be used to 

increase the fidelity of the detection calculations.  The position and speed of the object would 

be used to determine whether or not an object is detected by a given radar. 

 

Known Update Unknown

1 Sensor Mean 80.88% 11.76% 7.36%

2 to 10 Std Dev 1.31% 1.28% 0.14%

3 Sensors Mean 96.03% 0.66% 3.31%

12 to 15 Std Dev 0.17% 0.17% 0.04%

2 Sensors Mean 92.97% 1.95% 5.08%

17 to 30 Std Dev 1.31% 1.31% 0.04%
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5.2 Additional Sensor Types 

For this thesis, a phased-array radar was used as the basis of all sensors used.  In reality, 

several different types of sensors, with different capabilities and reliabilities, are used as part 

of the Space Surveillance Network.  In addition to other types of radar, some optical 

telescopes, as well as the Space Fence, are key contributors to space surveillance.  While 

optical telescopes mainly concentrate on Deep Space and Geosynchronous Orbits, they 

would add further fidelity to the simulation.  In addition, the altitude and azimuth for each 

sensor could be more accurately modeled, and the resulting impact on the simulation 

assessed. 

5.3 Orbital Perturbations 

As mentioned in section 1, the non-spherical shape of the Earth has an impact on all objects 

in orbit around it.  In addition, the gravity of the moon and other objects in space, as well as 

atmospheric drag, all work to perturb the orbits.  Work could be done to assess the value of 

adding these perturbations into the simulation. 

5.3.1 Orbital Perturbations due to the Non-Spherical Shape of the Earth 

The non-spherical shape of the Earth causes a precessional effect on the orbit of an object 

around the Earth.  The two orbital elements affected by this precessional effect are the Right 

Ascension of the Ascending Node and the Argument of the Periapsis.  Both of these changes 

vary as a function of the inclination and eccentricity of the given orbit. 



 56 

 
 (5.1) 

 

 (5.2) 

In Equations (5.1) and (5.2), Jn represents the harmonic coefficient for the geopotential, a 

quantity which is approximately 1.624 x 10
-3

 for the Earth. (Haymes, 1971), i represents the 

orbit‟s inclination, a the length of the orbit‟s semi-major axis, and e the orbit‟s eccentricity.  

For the change in the Right Ascension, Ω, the effect is that as the orbit moves around the 

Earth, it is pulled Westward, and so crosses the Equator (the Right Ascension), further and 

further from its „original‟ crossing point.  The variables i and e refer to the orbit‟s inclination 

and eccentricity respectively.  This effect is not realized for a polar orbit, with and inclination 

of 90 degrees, as cos(90)=0.  The second element effected is the Argument of the Periapsis, 

ω.  As the object moves around the Earth, its perigee will shift at each subsequent orbit.  An 

orbit around the Earth that is near equatorial (with 0 degrees inclination), will exhibit little or 

no change in the Argument of the Periapsis, as sin(0)=0. 

For all other orbits, these changes have significant impact on the orbits.  As an example, for 

an orbit with an inclination of 45 degrees, the Right Ascension will change by -3.37º per day, 

and the Argument of the Periapsis by 3.58 º per day. (Haymes, 1971) 

The implications for this on the simulation are great.  The simulation currently uses the Right 

Ascension and Argument of the Periapsis during the initialization phase of the run.  These 

values are used to generate the reference tables from which the locations of the objects in 
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orbit are updated throughout the run.  But the values of the Right Ascension and the 

Argument of the Perigee are constantly changing, so these reference tables would need to be 

constantly changed.  One possible solution would be to generate a reference table covering 

the entire desired run length of the simulation.  This would only have to be generated once.  

Then subsequent runs could interpolate positions from these pre-generated numbers that 

include perturbative effects. 

5.4 Geographical Locations for Additional Sensors 

This simulation could be adapted as a decision tool for locating new sensors or mobile 

sensors to maximize effectiveness.  Given certain capabilities of a sensor, requirements for 

detection coverage, and geographical and political constraints, possible locations could be 

evaluated using this simulation. 
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SIMORBIT (Main Program): 

 
function 

[times,known,unknown,update,Object,Sensor,period,sensorperiod,diffTimes] = 

simorbit(numorbits,numsensors,userealsensors,lapsetime,usesatdata,SD,simti

me) 

% THESIS VERSION NOTES 

 

% Simulates detection of objects in Low Earth Orbit (LEO) by ground based 

% sensors.  Outputs lists of Known, Update, and Unknown sensors over time. 

% Either randomly generates objects and sensors, or user provided input 

% data.  Assumes no perturbations to orbits due to shape of Earth, or 

other 

% factors. 

 

% DATE LAST MODIFIED: 19 March 2010 

 

% INPUT PARAMETERS 

% numorbits=1;          % number of objects to simulate in orbit 

% numsensors=1;         % number of sensors to simulate  

% userealsensors;       % 1 if real sensors used, 0 o/w 

% lapsetime = 2.5;      % time since last detection for satellite to 

change lists 

% usesatdata = 0;       % 1 if sat data used, 0 o/w generates random data 

% SD;                   % database of orbital parameters of satdata 

% simtime=10;           % time to be simulated (in days) 

 

% OUTPUT 

% times: vector of size n=numtimesteps with simtime at each step 

% known: vector of size n with values of known list at each time step 

% unknown: vector of size n with values of unknown list at each time step 

% update: vector of size n with values of update list at each time step 

% Object: reference table (array) of orbiting values used for run 

% Sensor: reference table (array) of sensors used for run 

% period: vector with object periods 

% sensorperiod: vector with sensor periods 

% diffTimes: test vector used to calculate avg time between unique time 

% acquisitions 

 

tic 

 

% SET RUN PARAMETERS 

graphics = 0;               % 0 graphics off, 1 graphics on 

tindex=0.00;                % initial starting time 

tstep=0.00625;              % 9 minutes with 0.00625 

numtimeint=round(simtime/tstep);   % number of time steps used to reach 

sim time 

n=60;                       % number of points used to estimate each orbit 

diffTimes=[]; 

k=1; 
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fprintf('----------------------START----------------------'); 

 

% PLOT 3D REPRESENTATION OF EARTH 

if (graphics==1) 

    hold off; 

    drawearth; 

end 

 

% GENERATE ORBITS (for numorbits of objects in Low Earth Orbit) 

classification=zeros(1,numorbits); 

LTA=zeros(1,numorbits); 

badorbitcount=0; 

    

Object=zeros(4,n+1,numorbits); %1 = X, 2 = Y, 3 = Z, 4 = time 

period=zeros(1,numorbits); 

 

for i=1:numorbits 

     

    if (usesatdata==1)   %use external data SD 

        e=SD(i,3); 

        p=SD(i,4); 

        inc=SD(i,1); 

        L=SD(i,2); 

        RPD=SD(i,6); 

        M=SD(i,5);  

    else                 %use random data 

        e=unifrnd(0.0,0.12); 

        p=unifrnd(0,180); 

        inc=unifrnd(0,90); 

        L=unifrnd(0,360); 

        RPD=unifrnd(12.5,16.5); 

        M=unifrnd(0,360); 

    end 

     

    [t,A,B,C,badorbit]=orbit(e,p,inc,L,RPD,M,n); %generates orbit vectors 

from orbital parameters 

    if (badorbit==1) %if orbit identified bad orbit == orbit with < 160km 

altitude 

        badorbitcount=badorbitcount+1; 

    end 

     

    while (badorbit==1) %if badorbit detected, alter eccentricity and 

period until goodorbit achieved 

        e=unifrnd(0.0,0.12); 

        RPD=unifrnd(12.5,16.5); 

        [t,A,B,C,badorbit]=orbit(e,p,inc,L,RPD,M,n); 

    end     

     

    Object(1,:,i)=A; 

    Object(2,:,i)=B; 

    Object(3,:,i)=C; 
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    Object(4,:,i)=t; 

 

    period(i)=1/RPD; 

    classification(i)=0;% 0 = unknown, 1 = known, 2 = needs updating 

    LTA(i)=0; % Last Time Acquired 

     

    % OPTIONAL GRAPH INSTRUCTIONS 

    % plot3(A(1),B(1),C(1),'o'); 

    % grid on; 

    % axis square; 

    % hold on; 

 

end 

 

badorbitcount 

 

% TEST ORBITS FOR CRASHES 

 

numcrash=testorbitsforcrash(Object,numorbits,n) % s/b 0! 

 

% GENERATE SENSORS (for numsensors located on the surface of the Earth) 

 

Sensor=zeros(4,n+1,numsensors); %1 = X, 2 = Y, 3 = Z, 4 = time 

sensorperiod = zeros(1,numsensors); 

sensorLat = zeros(1,numsensors); 

sensorLong = zeros(1,numsensors); 

LAzimuth1 = zeros(1,numsensors); 

RAzimuth1 = zeros(1,numsensors); 

LAzimuth2 = zeros(1,numsensors); 

RAzimuth2 = zeros(1,numsensors); 

LElevation = zeros(1,numsensors); 

UElevation = zeros(1,numsensors); 

MElevation = zeros(1,numsensors); 

 

numsensorstogenerate=numsensors+2;  %to allow for adding sensors to sensor 

network during run 

if (userealsensors==1) 

% Generate actual sensors 

    

[Sensor,sensorperiod,LAzimuth1,LAzimuth2,RAzimuth1,RAzimuth2,LElevation,UE

levation,MElevation]=genrealsensors(n,numsensors); 

    numsensorstogenerate=8; 

else 

    % Generate random sensors 

    for k=1:numsensorstogenerate 

        lat=unifrnd(-90.,90.); 

        long=unifrnd(-180.,180.); 

        [st,sA,sB,sC]=sensorposition(lat,long,n); 

 

        Sensor(1,:,k)=sA; 

        Sensor(2,:,k)=sB; 
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        Sensor(3,:,k)=sC; 

        Sensor(4,:,k)=st; 

         

        LAzimuth1(k) = 0.; 

        RAzimuth1(k) = 360.; 

 

        LAzimuth2(k) = 0.; 

        RAzimuth2(k) = 0.; 

 

        LElevation(k) = 0.; 

        UElevation(k) = 90.; 

        MElevation(k) = 0.5*(UElevation(k)-LElevation(k)); 

              

        sensorLat(k)=lat; 

        sensorLong(k)=long; 

         

        sensorperiod(k)=1; 

    end 

end 

 

 

% MAIN SIMULATION -  

% - increments time by tstep for numtimeint 

% - for each discrete time event, calculates position of objects in orbit 

%   and sensors on the earth, and then determines whether or not objects 

%   have been detected 

% - updates respective lists of objects in orbit (known, update, unknown) 

 

known=zeros(1,numtimeint); 

unknown=zeros(1,numtimeint); 

update=zeros(1,numtimeint); 

times=zeros(1,numtimeint); 

 

known(1)=0; 

unknown(1)=numorbits; 

update(1)=0; 

times(1)=tindex; 

 

printtime=160; 

 

numpossdetect=0; 

numdetect=0; 

testvector=zeros(3,numorbits); 

sensor1vector=zeros(3,numsensors); 

 

for j=1:numtimeint 

     

    if (j==2400) % PROGRAM subtraction of sensor 

        numsensors=numsensors-1 

        tindex 

    end 
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     if (j==4800)   % PROGRAM addition of sensor 

        numsensors=numsensors+1 

        tindex 

    end    

     

     

    if (j==printtime) 

        printtime 

        printtime=printtime + 160; 

    end 

     

    if j > 1 

        times(j)=tindex; 

        known(j)=known(j-1); 

        unknown(j)=unknown(j-1); 

        update(j)=update(j-1); 

    end 

     

    for i=1:numorbits 

        tremindex=rem(tindex,period(i)); 

         

        

[testvector(1,i),testvector(2,i),testvector(3,i)]=interporbit(Object(:,:,i

),tremindex,'mo','m',graphics); 

         

        for m=1:numsensors 

             

            sensortime=rem(tindex,sensorperiod(m)); 

            

[sensor1vector(1,m),sensor1vector(2,m),sensor1vector(3,m)]=interporbit(Sen

sor(:,:,m),sensortime,'ro','r',graphics); 

                 

            

[testangle,azelevcheck]=findangle(sensor1vector(:,m),testvector(:,i),graph

ics, LAzimuth1(m), LAzimuth2(m),RAzimuth1(m), 

RAzimuth2(m),LElevation(m),UElevation(m)); 

             

            objdetect=0; 

             

            % determine probability of detection 

            if testangle > 90   %object above sensor's local horizon 

                numpossdetect=numpossdetect+1; 

                probdetect=unifrnd(0,1); 

                % Probability of 1 in the middle of the average range at 

                % 45 degrees of elevation, and 0 at extremes (0 and 90 

                % elevation) 

                if (probdetect < (0.99*(1-

(((90+LElevation(m)+MElevation(m)-testangle)/MElevation(m))^2)))) 

                    objdetect=1; 

                end 
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            end   

             

            timecheck=lapsetime+LTA(i); 

            timecheck2=2*lapsetime+LTA(i); 

             

            if (objdetect==1) % satellite is detected 

                numdetect=numdetect+1; 

                if classification(i)==2 % the satellite was on update list 

                    update(j)=update(j) - 1; 

                    known(j)=known(j) + 1; 

                else if classification(i)==0 % the satellite was on the 

unknown list 

                       unknown(j)=unknown(j) - 1; 

                       known(j)=known(j) + 1; 

                    end 

                end 

 

                classification(i)=1; 

                if ((LTA(i) ~= tindex) && (LTA(i)>0)) %add interval 

between acquisitions to diffTimes vector 

                    diffTimes(k)=tindex-LTA(i); 

                    k=k+1; 

                end 

                     

                LTA(i)=tindex; 

                 

            else if (tindex > timecheck) && (classification(i)==1)  

                    classification(i)=2; 

                    known(j)=known(j) - 1; 

                    update(j)=update(j) + 1; 

                else if (tindex > timecheck2) && (classification(i)==2)  

                    classification(i)=0; 

                    unknown(j)=unknown(j) + 1; 

                    update(j)=update(j) - 1; 

                    end 

                end 

             

            end 

             

                       

        end 

    end 

     

     

    tindex=tindex+tstep; 

end 

 

numpossdetect 

numdetect 

toc 
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return 
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GETREALSENSORS (generates sensor data for actual sensor locations): 

 
function[Sensor,sensorperiod,Laz1,Laz2,Raz1,Raz2,Lel,Uel,Mel]=genrealsenso

rs(n,numsensors) 

% generates sensors using actual LAT/LONG (or close approximations 

thereof) 

 

% Eglin AFB (Florida) Phased array radar 30.57N, 273.79 

 

% Thule AFB (Greenland) Phased array radar 76.57N, 291.70E 

% RAF Fylingdales (Great Britain) Phased array radar 54.37N, 359.33E 

% Clear AS (Alaska) Phased array radar 64.29N, 210.81 E 

% Cavalier AS (North Dakota) Phased array radar 48.72N, 262.10E 

% Cape Cod AS (Massachusetts) Phased array radar 41.75N, 289.46E 

% Beale AFB (California) Phased array radar 39.14N, 238.65E 

 

% Eareckson AFB (Alaska) Phased array radar 52.74N, 174.09E 

 

Lat = [30.57,76.57,54.37, 64.29, 48.72, 41.75, 39.14, 52.74]; 

Long = [-86.21,-68.30,-0.67, -149.19, -97.90, -70.54, -121.35,-185.91]; 

 

LAzimuth1 = [120,297,0,170,298,347,126,259]; 

RAzimuth1 = [240,360,360,360,360,360,360,360]; 

LAzimuth2 = [0,0,0,0,0,0,0,0]; 

RAzimuth2 = [0,177,0,110,78,227,6,19]; 

LElevation = [1,3,4,1.5,1.9,3,3,0.6]; 

UElevation = [105,80,70,90,95,80,80,80]; 

 

for i=1:numsensors 

    senslat=Lat(i); 

    senslong=Long(i); 

    [st,sA,sB,sC]=sensorposition(senslat,senslong,n); 

 

    Sensor(1,:,i)=sA; 

    Sensor(2,:,i)=sB; 

    Sensor(3,:,i)=sC; 

    Sensor(4,:,i)=st; 

         

    sensorperiod(i)=1; 

    Laz1(i)=LAzimuth1(i); 

    Raz1(i)=RAzimuth1(i); 

 

    Laz2(i)=LAzimuth2(i); 

    Raz2(i)=RAzimuth2(i); 

     

    Lel(i)=LElevation(i); 

    Uel(i)=UElevation(i); 

    Mel(i)=0.5*(UElevation(i)-LElevation(i)); 

          

end 
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return 
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FINDANGLE (determines azimuth and elevation angles between sensor and object): 

 
function [angle,azelevcheck]= 

findangle(vectorA,vectorB,graphics,Laz1,Laz2,Raz1,Raz2,Lel,Uel) 

% function determines azimuth and elevation between sensor and orbiting 

% object 

% Vector A (v1) is the sensor's position, Vector B (v2) is the orbiting 

object's 

% position 

 

azelevcheck=0; 

v1=[vectorA(1),vectorA(2),vectorA(3)]; 

v2=[vectorB(1),vectorB(2),vectorB(3)]; 

v3=[v1(1)-v2(1),v1(2)-v2(2),v1(3)-v2(3)]; 

 

% Determine angle between v1 and v3 

C = dot(v1,v3); 

A = norm(v1); 

B = norm(v3); 

 

angle=acosd(C/(A*B)); 

 

% Determine azimuth and elevation between v1 and v2; 

[az,elev1]=testhorizon(v1,v2); 

 

    azimuth=az; 

     

    elevation=angle-90.; 

 

if (angle > 90.) 

 

        if (((Laz1 < azimuth) && (azimuth < Raz1)) || ((Laz2 < azimuth) && 

(azimuth < Raz2))) 

 

            if ((Lel < elevation) && (elevation < Uel)) 

 

                if (graphics==1) 

                    plot3(v2(1),v2(2),v2(3),'bo'); 

                    

line([v2(1),v1(1),0],[v2(2),v1(2),0],[v2(3),v1(3),0],'Color','r'); 

                    hold on 

                end 

                azelevcheck=1; % object within both elevation and azimuth 

            else 

                if (graphics==1) 

                    plot3(v2(1),v2(2),v2(3),'yo');  %object within azimuth 

but not elevation 

                end 

            end 

        else 

            if (graphics==1) 
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                plot3(v2(1),v2(2),v2(3),'go');    %object not within 

azimuth       

            end 

        end 

end    

 

return 
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INTERPORBIT (interpolates to find desired object position given time): 

 
function 

[targetA,targetB,targetC]=interporbit(object,tindex,color,color1,graphics) 

% function interpolates object for a given time (tindex) 

 

[row,timeindex]=find(object(4,:)>tindex,1); 

lowertimeindex=timeindex-1; 

 

targetA=object(1,timeindex)-(object(4,timeindex)-

tindex)/(object(4,timeindex)-

object(4,lowertimeindex))*(object(1,timeindex)-object(1,lowertimeindex)); 

targetB=object(2,timeindex)-(object(4,timeindex)-

tindex)/(object(4,timeindex)-

object(4,lowertimeindex))*(object(2,timeindex)-object(2,lowertimeindex)); 

targetC=object(3,timeindex)-(object(4,timeindex)-

tindex)/(object(4,timeindex)-

object(4,lowertimeindex))*(object(3,timeindex)-object(3,lowertimeindex)); 

 

% graphs output 

if (graphics==1) 

    % uncomment next line for additional display options 

%plot3(object(1,:),object(2,:),object(3,:),color1); 

%plot3(object(1,timeindex),object(2,timeindex),object(3,timeindex),'o') 

%plot3(object(1,lowertimeindex),object(2,lowertimeindex),object(3,lowertim

eindex),'o') 

plot3(targetA,targetB,targetC,color) 

hold on; 

 

end 

 

return 
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ORBIT (generates Cartesian coordinate reference table given orbital elements): 

 
function [tm,x,y,z,badorbit] = orbit(e,p,inc,L,RPD,M,n) 

% Orbital Elements 

% Shape, Size and Orientation of Ellipse 

%   Eccentricity (e) 

%   Semi-major axis (a) calculated from Period (T) in days, data is in 

%       revolutions per day (RPD) 

%   Argument of the periapsis (p) 

% Orientation of orbital plane 

%   Inclination (inc) 

%   Longitude of the ascending node (L) 

% Position of orbiting body 

%   Mean anomaly at epoch (M)not yet!!!!!! 

% 

% n is number of points along orbit 

% Orbital State Vectos 

%  Position (x,y,z) 

%  Velocity (x,y,z) don't use this yet! 

%  theta = originally theta, working towards time (seconds) 

 

% Generate equation of ellipse (in two dimensions) 

% eccentricity of an ellipse = sqrt(a^2 - b^2)/a where a is semi-major 

% axis, b is semi-minor axis 

 

% Derive semi-major axis using formula T = 2Pi*sqrt(a^3/mu) 

ER = 6371;          % estimated radius of the EARTH in km 

mu = 398600.4418;   % geocentric gravitational constant (km^3/s^2) +/- 

0.0008 

T = 1/RPD; 

a = ((((T*24*60*60)/(2*pi))^2)*mu)^(1/3); 

b = sqrt((a^2)*(1-e^2)); 

c = sqrt((a^2)-(b^2)); 

badorbit=0; 

 

if ((a-c) < (ER + 160)) 

    badorbit=1; 

    tm=0; 

    x=0; 

    y=0; 

    z=0; 

    return; 

end 

 

 

x1 = []; 

y1 = []; 

z1 = []; 

theta = []; 

for i = 1:n+1   %uses degrees, Cartesian coordinates 

    t = (360*i)/n; 
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    x1(i) = a*cosd(t)+c; 

    y1(i) = b*sind(t); 

    theta(i)=i; 

            

end 

 

[theta1,r1]=cart2pol(x1,y1); 

 

% orients orbit in plane (Argument of the periapsis) 

for i=1:n+1 

    r2(i)=r1(i); 

    theta2(i)=theta1(i)+pi*p/180; 

end 

 

z1 = zeros(n+1); 

 

% inclination, uses degrees, Cartesian coordinates 

[x2,y2]=pol2cart(theta2,r2); 

z2=z1; 

 

for i=1:n+1      

    x3(i)=x2(i); 

    y3(i)=y2(i)*cosd(inc); 

    z3(i)=y2(i)*sind(inc); 

end 

 

[theta3,r3]=cart2pol(x3,y3); 

 

%Longitude of the ascending node, uses Polar, radians 

for i=1:n+1 

    theta4(i)=theta3(i)+pi*L/180; 

    r4(i)=r3(i); 

    z4(i)=z3(i); 

end 

 

[x4,y4]=pol2cart(theta4,r4); 

 

x=x4; 

y=y4; 

z=z4; 

tm=(theta-1)*T/n; 

 

return 
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SENSORPOSITION (generates Cartesian coordinate reference table given sensor LAT LONG): 

function [tm,x,y,z] = sensorposition(Lat,Long,n) 

% MOD 18 MAR 10, changed i to i-1, line 49 to i 

 

% given latitude, longitude of sensor, time T, number of points n 

% output would be x,y,z coordinates for given time t 

 

% center of earth assumed to be (0,0,0) 

 

% radius = cos(lat)*radius of earth 

% equals a, eccentricity 0 

 

% z = sin(lat)*radius 

% z is north, south displacement from equator (z=0) 

ER = 6371;      % Earth's radius (km) 

 

x1 = []; 

y1 = []; 

z = []; 

theta = []; 

a=cosd(Lat)*ER; 

z0=sind(Lat)*ER; 

for i = 1:n+1   %uses degrees, Cartesian coordinates 

    t = (360*(i-1))/n; 

    x1(i) = a*cosd(t); 

    y1(i) = a*sind(t); 

    z1(i)=z0; 

    theta(i)=i-1;           

end 

 

[theta1,r1]=cart2pol(x1,y1); 

% orients sensor wrt longitude 

for i=1:n+1 

    t = (2*pi*(i-1))/n; 

    r2(i)=r1(i); 

    theta2(i)=theta1(i)+pi*Long/180; 

end 

 

[x2,y2]=pol2cart(theta2,r2); 

z2=z1; 

 

x=x2; 

y=y2; 

z=z2; 

 

tm=(theta)/n; 

 

return  
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TESTHORIZON (determines azimuth and elevation angles between two objects): 

function [Az, El] = testhorizon(v1,v2) 

ER = 6371.; 

% v1 sensor 

% v2 satellite 

 

[Lat1,Long1,r1] = XYZtoLatLong(v1(1),v1(2),v1(3)); 

[Lat2,Long2,r2] = XYZtoLatLong(v2(1),v2(2),v2(3)); 

 

% DETERMINE AZIMUTH BETWEEN POINTS 

 

    Az1 = -atand( (sind(Long1-Long2)*cosd(Lat2)) / (cosd(Lat1)*sind(Lat2)- 

sind(Lat1)*cosd(Lat2)*cosd(Long1-Long2))); 

    %origAz=Az1; 

     

    if (( (Long1-Long2 < 0.)&&(Az1<0.)) || ((Long1-Long2 >=0.) && 

(Az1>=0.))) 

        Az2=Az1+180.; 

    else 

        Az2=Az1; 

    end 

 

if (Az2<0.) 

    Az=Az2+360.; 

else 

    if (Az2>360.) 

        Az=Az2-360.; 

    else 

        Az=Az2; 

    end 

end 

 

 

% DETERMINE ALTITUDE BETWEEN POINTS 

% Express altitude of satellite in terms of Earth radii 

nu = r2/ER; 

 

C = dot(v1,v2); 

A = norm(v1); 

B = norm(v2); 

 

angle=acosd(C/(A*B)); 

Zeta = atand(sind(angle)/(cosd(angle)-(1/nu))); 

 

El=90.-Zeta; 

 

return  
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TESTORBITSFORCRASH (determines if an orbital path intersects with the Earth): 

function[numcrash]= testorbitsforcrash(orbit,numorbits,n) 

 

ER = 6371; 

numcrash = 0; 

 

for j=1:numorbits 

     

    numcrashpts = 0; 

     

    for i=1:n 

        [theta,phi,r]=cart2sph(orbit(1,i,j), orbit(2,i,j), orbit(3,i,j)); 

        if (r < ER) 

            numcrashpts=numcrashpts+1; 

        end 

    end 

 

    if (numcrashpts > 0) 

        numcrash = numcrash + 1; 

    end 

end 

 

return 

 

XYZtoLatLong (Transforms Cartesian coordinates to LAT LONG): 

function [Lat,Long,r] = XYZtoLatLong(x,y,z) 

 

[u,w,r]=cart2sph(x,y,z); 

 

Lat=w*180/pi; 

Long=u*180/pi; 

 

return 
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SAMPLE OBJECT DATA 

 

Type Name Catalog No Inclination

Right Ascension 

of Ascending 

Node

Eccentricity with 

assumed leading 

decimal

Argument of the 

Perigee
Mean Anomaly

Revolutions per Day 

(Mean Motion)

science ALOUETTE 1 (S-27)       62049A  80.4648 251.8838 0.0023025 349.5556 10.5107 13.68715984

visual ATLAS CENTAUR 2         63047A  30.3596 178.3192 0.0617140 232.2213 122.0908 13.95019150

visual THOR AGENA D R/B        64002A  99.1179 213.9160 0.0034184 329.0696 30.8477 14.31262047

visual SL-3 R/B                64053B  65.0783 114.7148 0.0067687 182.9541 177.1170 14.58087698

radar CALSPHERE 1             64063C  90.1618 327.4639 0.0029040 159.9719 200.2584 13.70471856

radar CALSPHERE 2             64063E  90.1601 330.4444 0.0017390 174.6886 185.4445 13.52465796

amateur OSCAR 3 (OSCAR III)     65016F  70.0729 120.2392 0.0017634 144.3028 215.9259 14.04716330

radar LCS 1                   65034C  32.1390 105.2034 0.0006389 67.7772 292.3399 9.89276733

radar TEMPSAT 1               65065E  89.8120 299.9671 0.0069665 338.5007 21.3201 13.33258554

radar CALSPHERE 4(A)          65065H  90.1870 83.6638 0.0068244 264.5683 94.7659 13.35316532

engineering ATS 1                   66110A  7.8760 310.5213 0.0004022 194.0313 166.1092 1.00287763

visual SL-8 R/B                67045B  74.0096 157.3332 0.0068430 188.9104 171.0837 14.42461491

nnss TRANSIT 16              67048A  89.6518 202.8668 0.0019166 167.5588 192.6038 13.49715187

radar OPS 5712 (P/L 160)      67053A  69.9333 114.5810 0.0005473 122.7943 237.3730 14.38270313

radar OPS 5712 (P/L 153)      67053H  69.9725 42.6828 0.0009334 293.9270 66.0858 13.95924200

radar SURCAL 150B             67053J  69.9562 290.1594 0.0005144 288.6539 71.4032 14.46484256

nnss TRANSIT 17              67092A  89.2601 121.1666 0.0049501 6.4027 353.7746 13.52425083

engineering ATS 3                   67111A  9.4010 317.9042 0.0014372 41.1997 319.0219 1.00272521

nnss TRANSIT 18              68012A  89.9811 286.6698 0.0073208 258.1256 101.1673 13.50527125

visual SL-8 R/B                68040B  74.0371 254.7099 0.0034916 255.7323 103.9981 14.84217194

visual OAO 2                   68110A  34.9967 319.3812 0.0004864 106.3304 253.7916 14.44867250

visual ISIS 1                  69009A  88.4306 109.3396 0.1714745 116.8385 261.8099 11.28858762

visual METEOR 1-1              69029A  81.1640 18.4029 0.0008460 142.3132 217.8713 15.48132716

amateur OSCAR 5 (AO-5)          70008B  102.1298 203.1031 0.0027614 296.4760 63.3475 12.52156866

visual SERT 2                  70009A  99.2111 63.5865 0.0004101 262.3381 97.7293 13.58227505

nnss NNSS 19                 70067A  89.8661 311.4022 0.0173749 17.3789 343.3202 13.50136236

noaa NOAA 1 [-]              70106A  102.0767 182.6714 0.0032254 32.8711 327.4357 12.53929774

visual SL-3 R/B                70113B  81.1481 196.2695 0.0041901 128.2787 232.2263 15.13601856

visual SL-3 R/B                71028B  81.2357 210.1171 0.0049862 137.2753 223.2354 15.02304389

radar RIGIDSPHERE 2 (LCS 4)   71067E  87.6210 243.0759 0.0068264 98.6101 262.2848 14.31160538

visual ASTEX 1                 71089A  92.7088 350.8867 0.0018584 39.6318 320.6234 14.46204194

visual SL-8 R/B                71119B  73.9034 113.7181 0.0805298 196.1176 161.2908 13.76817803

visual COSMOS 482 DESCENT CRAFT72023E  52.0992 348.7405 0.2209595 158.3818 212.7216 11.17121809

visual OAO 3 (COPERNICUS)      72065A  35.0093 290.9770 0.0006974 227.7892 132.2219 14.56569021

visual ATLAS CENTAUR R/B       72065B  35.0071 331.7782 0.0040162 64.5278 295.9586 14.67976629

radar RADCAT                  72076A  98.5934 203.0972 0.0001841 276.6044 83.4994 15.28915313

noaa NOAA 2 [-]              72082A  101.4023 208.8402 0.0003289 237.7502 122.3252 12.53003216

amateur OSCAR 6 (AO-6)          72082B  101.3948 203.3712 0.0003671 203.4751 156.6155 12.53077661

nnss NNSS O-20               73081A  89.8572 357.7087 0.0160190 39.0686 322.1914 13.69753461

noaa NOAA 3 [-]              73086A  101.7248 213.3275 0.0006657 125.5673 234.6013 12.40298054

visual SL-8 R/B                73107B  73.9559 205.1120 0.0428516 63.4670 300.9743 14.68035739

visual SL-8 R/B                74044B  82.8815 58.6073 0.0218975 356.1483 3.8029 15.24923796

noaa NOAA 4 [-]              74089A  101.4400 215.4384 0.0008712 271.3318 88.6757 12.53052965

amateur OSCAR 7 (AO-7)          74089B  101.4247 215.2923 0.0011806 221.0439 138.9749 12.53575894

geodetic STARLETTE               75010A  49.8248 37.3686 0.0205926 151.0617 210.1880 13.82271245

visual DELTA 1 R/B             75072B  89.1518 336.0515 0.0946567 192.1329 165.5581 13.68710298

goes GOES 1 [-]              75100A  14.3596 347.6531 0.0002587 247.0011 113.0042 1.00286170

visual SL-8 R/B                75112B  74.0606 28.2981 0.0016716 206.0398 153.9926 14.35884543

geo LES 9                   76023B  10.9221 147.7958 0.0023770 324.8980 34.7519 1.00267179
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