
ABSTRACT

BJERKAAS, JAMES KEVIN. Modeling Ground Sensor Acquisitions of Low Earth Orbit

Objects. (Under the direction of Professor Thom J. Hodgson).

The United States Strategic Command (STRATCOM) utilizes a sensor network to

accomplish several of its missions. These missions include missile defense, missile warning,

intelligence collection, and space surveillance. For the task of space surveillance, the

locations of all man-made satellites, as well as debris formed by the collisions of these

satellites, is of great interest to the United States.

Previous work has focused on assigning the various sensors in the sensor network to the

separate tasks required. This thesis focuses on developing a simulation to learn more about

the dynamic interactions between the sensors and the constantly moving orbiting field of

satellites and debris.

The stochastic model developed shows over time what happens to the knowledge of the

objects in Low Earth Orbit (LEO) when the sensors assigned to tracking their progress are

changed. When sensors are reassigned from space surveillance to another task, the

simulation exhibits a transient period where the state of the system adjusts to the new sensor

coverage. Similarly, when a sensor is added to the task of space surveillance, a transient

period occurs while the system adjusts to the new sensor.

This transient information can be used by decision makers as a tool in scheduling sensors to

these various tasks, and can also be used to help refine heuristic methods developed

previously in addressing this scheduling problem.

Modeling Ground Sensor Acquisitions of Low Earth Orbit Objects

by

James Kevin Bjerkaas

A thesis submitted to the Graduate Faculty of

North Carolina State University

in partial fulfillment of the

requirements for the degree of

Master of Science

Operations Research

Raleigh, North Carolina

2010

APPROVED BY:

_______________________________ ______________________________

Thom J. Hodgson Russell E. King

Committee Chair

James R. Wilson

 ii

BIOGRAPHY

James Kevin Bjerkaas was born in Urbana, Illinois in 1970. He attended University of

Maryland at College Park and graduated in May 1993 with a Bachelor of Science in

Mathematics and a Bachelor of Science in Mathematics Education. After Graduation, he

began Basic Combat Training at Fort Leonard Wood, Missouri, where he began his training

as a Personnel Administration Assistant in the United States Army Reserve. After serving

four years in the United States Army Reserves, he was commissioned as a Second Lieutenant

in the United States Army in 1997 through Officer Candidate School (OCS) at Fort Benning,

Georgia. He was branched Engineers and returned to Fort Leonard Wood, Missouri to begin

his military officer education as a combat engineer.

His military assignments include serving as a Combat Engineer Battalion Intelligence Officer

at Fort Hood Texas and deployed to Bosnia-Herzegovina, a Combat Engineer Platoon Leader

at Fort Hood, Texas, an Executive Officer for a Combat Engineer Company in South Korea,

as well as a Combat Engineer Battalion Assistant Operations Officer, a Staff Engineer

Officer for the Coalition Joint Civil-Military Operations Task Force in Kabul, Afghanistan, a

Budget Officer for a Combat Engineer Brigade, an Assistant Battalion Operations Officer,

and a Combat Engineer Company Commander at Fort Lewis, Washington, a Combat

Engineer Brigade Battle Captain in Tikrit, Iraq, and a Operations Research Analyst for the

TRADOC Analysis Center at White Sands Missile Range, New Mexico. He has also earned

a Master of Science Degree in Engineering Management from the University of Missouri at

 iii

Rolla and a Master of Science Degree in Industrial Engineering from New Mexico State

University in Las Cruces, New Mexico.

James currently holds the rank of Major in the United States Army, and upon graduation, will

serve as a mathematics instructor at the United States Military Academy at West Point, New

York.

Jim and his wife Julie will celebrate their fifth wedding anniversary this June.

 iv

ACKNOWLEDGEMENTS

I would like to recognize and express my appreciation to the following people for their help

and support to me while I worked on this thesis.

My wife Julie

My parents and brothers

Derek Tharaldson

Rajneesh

 v

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

1 INTRODUCTION .. 1

1.1 Background .. 1

1.2 Problem .. 2

1.3 Assumptions and Limitations ... 3

1.4 Overview .. 6

2 LITERATURE REVIEW ... 7

2.1 Current Models ... 7

3 MODEL .. 8

3.1 Overall Model Structure ... 9

3.2 Step One: Initialization... 10

3.2.1 Generate Positions for Objects in Low Earth Orbit (LEO)............................... 11

3.2.2 Generate Positions for Sensors ... 25

3.2.3 Initialize Object Lists .. 29

3.3 Step Two: Increment Time ... 30

3.4 Step Three: Actions at each Time Step .. 30

3.4.1 Update Positions for Objects in Orbit and Sensors ... 30

3.4.2 Calculate Detections of Objects in Orbit by Sensors .. 32

3.4.3 Update Known, Unknown, and Update Lists ... 34

3.5 Simulation Input ... 35

3.5.1 Orbiting Objects Data ... 35

3.5.2 Sensor Data ... 36

3.5.3 Simulation Parameters .. 37

3.6 Simulation Output .. 37

4 EXPERIMENTATION ... 38

4.1 Parameter Selection .. 39

4.1.1 Number of Partitions for Orbiting Objects ... 39

4.1.2 Time Step .. 43

 vi

4.1.3 Probability of Detection for an Object within a Radar‟s Field of View 45

4.1.4 Movement Times between Object Lists ... 46

4.2 Test Runs .. 49

4.2.1 Demonstration of Steady State Behavior .. 50

4.2.2 Demonstration of Sensor Changes .. 51

4.2.3 Demonstration of Sensor Changes with Actual Data for Objects..................... 52

5 FUTURE RESEARCH ... 54

5.1 Constant Velocity ... 54

5.2 Additional Sensor Types .. 55

5.3 Orbital Perturbations .. 55

5.3.1 Orbital Perturbations due to the Non-Spherical Shape of the Earth 55

5.4 Geographical Locations for Additional Sensors .. 57

REFERENCES ... 58

APPENDICES .. 60

 vii

LIST OF TABLES

Table 3.1. Orbital Parameters for International Space Station ... 13

Table 3.2. XY Coordinates for ISS within Orbital Plane... 15

Table 3.3. XY Coordinates for ISS within Orbital Plane adjusted for Argument of the Perigee

... 19

Table 3.4. XYZ Coordinates for ISS with Adjustment for Inclination 21

Table 3.5. XYZ Coordinates for ISS with Adjustment for Right Ascension of the Ascending

Node .. 23

Table 3.6. XYZ Coordinates for ISS with time indexing... 25

Table 3.7. Sensor Positions with a Latitude of 30 degrees ... 29

Table 3.8. Phased Array Radar Locations Used ... 36

Table 4.1. Interpolation Error by Number of Partitions.. 43

Table 4.2. Results with Addition then Subtraction of Sensors ... 54

 viii

LIST OF FIGURES

Figure 3.1. Simulation Structure ... 10

Figure 3.2. International Space Station Two-Line Elements .. 12

Figure 3.3. Elliptical Parameters ... 14

Figure 3.4. Graphical Representation of ISS Orbit within Orbital Plane 16

Figure 3.5. Argument of the Periapsis .. 18

Figure 3.6. Graphical Representation of ISS Orbit within Orbital Plane with Adjustment for

Argument of the Perigee ... 19

Figure 3.7. Inclination ... 20

Figure 3.8. Graphical Representation of ISS Orbit with Adjustment for Inclination 21

Figure 3.9. Right Ascension of the Ascending Node.. 22

Figure 3.10. Graphical Representation of ISS Orbit with Adjustment for Right Ascension of

the Ascending Node .. 24

Figure 3.11. Sensor Positions with a Latitude of 30 degrees .. 28

Figure 3.12. Object Lists State Diagram ... 34

Figure 3.13. Sample Simulation Output ... 38

Figure 4.1. Possible Detections by Orbit Partitions .. 40

Figure 4.2. Possible Detections by Sensor Partitions ... 41

Figure 4.3. Interpolation Error .. 42

Figure 4.4. Effects of Changing Time Steps on Detections .. 44

Figure 4.5. Impact of Change in Probability Factor ... 46

 ix

Figure 4.6. Simulation Results for a Lapse Time of 0.5 Days .. 47

Figure 4.7. Simulation Results for a Lapse Time of 0.25 Days .. 48

Figure 4.8. Simulation Results for a Lapse Time of 0.75 Days .. 49

Figure 4.9. Object Lists Over Time .. 51

Figure 4.10. Object Lists over Time with Subtraction of Sensor ... 52

Figure 4.11. Results with Addition then Subtraction of Sensors .. 53

 1

1 INTRODUCTION

1.1 Background

Two recent events have demonstrated the importance of tracking debris in orbit around the

Earth. In January 2007 China conducted an anti-satellite test (Fengyn-1C), and in February

2009 two satellites, Iridium 33 and Cosmos 2251, collided 490 miles (790 kilometers) above

the surface of the Earth. These two events created approximately 5000 objects of debris over

10 centimeters in diameter in Low Earth Orbit (LEO), increasing the number of objects

tracked by the National Aeronautics and Space Administration (NASA) Space Debris

program by about 50%. (Liou, 2010) This increase in debris makes it increasingly likely that

man made satellites will suffer collisions during their orbit around the Earth. In addition,

these objects pose risks to manned vehicles in orbit, including the International Space

Station.

The United States Strategic Command (STRATCOM) is one of the unified commands under

the Department of Defense. One of its missions is “to provide integrated surveillance and

reconnaissance allocation recommendations to the Secretary of Defense.” (U.S. Strategic

Command Public Affairs Office, 2009) To accomplish this mission, STRATCOM considers

the network of sensors available to the Department of Defense, including some of the sensors

used by the NASA Space Debris program. This network is utilized to carry out several

distinct tasks for the Department of Defense. One of these tasks is to maintain space

situational awareness through space surveillance. This mission involves continuously

 2

monitoring and collecting information on all man-made objects in orbit around Earth. From

this information they produce a satellite catalog, “used by predictive orbital analysis tools to

anticipate satellite threats and mission opportunities for friendly, adversary, and third party-

assets.” (3-14, 2009)

Previous work has been conducted in allocating sensors to this task, as well as other tasks

such as missile defense, missile warning, and intelligence collection. Dulin developed a

heuristic method for determining an optimal allocation of these sensors to their tasks. (Dulin,

2009) In his research, he treated space surveillance as a secondary task, and considered only

the probability of success in these tasks. The interaction between sensors and objects in orbit

was considered static, while in reality it is a dynamic system. Dulin identified the need to

model this task of space surveillance as a dynamic system to achieve a greater level of

precision in the overall model. Subsequent work will update Dulin‟s heuristic with a

dynamic representation of this task of Space Surveillance. In support of this ongoing

research, this thesis provides a simulation for modeling this task of Space Surveillance with

greater fidelity and providing insight into the behavior of this dynamic system when sensors

are removed or added to the network.

1.2 Problem

For this thesis, a simulation was developed to model man-made satellites in orbit and the

sensors used to track those satellites by the United States. With estimates of over 15,000

distinct objects of size 10 cm and larger in LEO, the task of tracking these pieces, which

 3

range in size from small bolts to large man-made satellites, is non-trivial. Of particular

interest is an understanding of what happens to the knowledge of these objects when one or

more sensors are reassigned from the task of monitoring the objects to another higher priority

task. The questions of interest are: 1) What is the steady state of the system when all sensors

are focused on tracking the objects in orbit, 2) What happens to this steady state when one or

more sensors are removed. In addition, 2a) what is the new steady state, and 2b) How long

does it take to reach this new state? The steady state of the system is defined as the long run

average values of what is known about the objects in orbit. For example, with three sensors

working to track objects in orbit, how many objects, on average, do they have data on from

recent detections.

The simulation represents the movement of these objects in orbit in and out of the acquisition

range of the sensors; the acquisition of these objects by the sensors when they are in range of

the sensors; and the loss of individual sensors and the effect on the overall system.

1.3 Assumptions and Limitations

1.3.1.1 Perturbations to Orbits due to Non-Spherical Shape of the Earth

For the purposes of this model, perturbations to the orbits of the objects in LEO are ignored.

These perturbations include changes in each successive orbit due to the non-spherical shape

of the Earth and from the gravity of other physical objects in space other than the Earth. As

an object orbits around the Earth, the shape of the Earth tends to pull the orbit westward,

causing the path of the orbit to change at each rotation. In addition, the point of perigee,

 4

where the object is closest to the Earth along its orbit, changes due to the shape of the Earth.

For this simulation, the exact positions of objects are not required. The emphasis of the

simulation is on the ability to track objects in LEO, not the exact locations of these objects.

Ideally, the positions should be simulated as accurately as possible, however, because of run

time considerations these perturbations are ignored. This topic is covered in more depth in

Chapter 5 Future Research.

1.3.1.2 Perturbations to Orbits due to other Factors

Other perturbations to the orbits around the Earth are also ignored. These include the

gravitational forces of other objects, such as the Moon and the Sun, and atmospheric

conditions such as atmospheric drag and solar winds. These perturbations have less of an

impact on the orbits than the perturbations due to the shape of the Earth. (Capderou, 2005)

1.3.1.3 Galilean Frame of Reference

The simulation assumes a Galilean frame of reference for the orbits in question. This means

that the frame of reference is fixed with the origin at the Earth‟s center, the Z axis oriented

along the line running from the North to South Pole, and the plane formed by the X and Y

axes lies along the equatorial plane of the Earth, with the X axis oriented towards the Vernal

Equinox.

1.3.1.4 Constant Velocity

 The simulation assumes constant velocity for the orbits because the majority of the orbits are

near-circular. This assumption also greatly simplifies computational complexity and

 5

shortens run-time. For the sample set of 4880 object in orbit used for this thesis, 4803 have

eccentricities less than 0.1, where an eccentricity of 0 represents a circular orbit.

1.3.1.5 Sensors Modeled

The sensors modeled are assumed to have similar characteristics to the Phased Array radar.

Exact operating data was not available, so approximate ranges and failure rates were

parameterized. In addition, the Space Fence was not modeled. The Space Fence is a set of

transmitters and receivers along 33 degrees North latitude which detect any objects passing

over the United States.

1.3.1.6 Sensors not Modeled

Long range sensors, such as optical telescopes, were not modeled. The focus of the model

was on sensors focused on LEO, which are defined for purposes of this simulation as any

orbit with an altitude of less than 2000 km from the surface of the Earth. In addition, passive

receivers, which track transmissions from functioning man-made satellites, are not modeled.

1.3.1.7 Time Dependency of Object Lists

The behavior of the knowledge of objects in LEO over time is managed by lists of Known,

Update, and Unknown objects. The simulation assumes that objects move from one list to

another as a function of time. For example, if an object has not been detected for at least n

hours, it will move from the Known list to the Update list. While other events may trigger

movement of objects from one list to another in reality, such as a collision between objects in

 6

orbit, or a maneuverable satellite changing course, this simulation deals with only changes

due to elapsed time.

1.3.1.8 Classification of Parameters

In addition, some information, such as the reliability of the radars, and the schedules for

which sensors are used when to track objects in orbit, was unavailable. Some of this

information is sensitive, and not releasable to the public, while other information changes

over time. For purposes of this thesis, parameters are used in place of this actual

information. In particular, for the probability of detection equations, the actual probabilities

of detection for a given phased array radar are estimated using the equation explained in

Chapter 3. The purpose of these parameters is to allow the simulation to function as

designed, but also allow for changes if actual data becomes available.

1.4 Overview

Chapter One includes background material, a statement of the problem, and a list of the main

assumptions and limitations of this work. Chapter Two describes previous research in this

area. Chapter Three describes the methodology used to address the problem, mainly

explaining the model used to describe the behavior of the objects in orbit and the sensors

tasked to track these objects. Chapter Four describes the preliminary experimentation

conducted with the model, and describes the methods used to verify and validate the model.

Chapter Five discusses areas for future research. These chapters are followed by references

and appendices, including the code for the model and some examples of model output.

 7

2 LITERATURE REVIEW

2.1 Current Models

There are currently two main types of models used by NASA to help in understanding space

debris, engineering models and evolutionary models. (Stansbery, 2009) In addition, the

North American Aerospace Defense Command (NORAD), uses several models, including

SPG4, to predict positions of objects in orbit. (Hoots & Roehrich, 1980)

Engineering models, such as ORDEM2000 (Orbital Debris Engineering Model), are used to

model the orbital debris environment in detail. This model is useful to spacecraft designers

and mission planners in determining what type of protection the spacecraft will require. It is

also useful to those interesting in sensing orbital debris in determining the best strategy for

detecting debris. ORDEM2000 uses altitude, latitude and debris size to model the debris

environment. (Liou, Matney, Anz-Meador, Kessler, Jansen, & Theall, 2002) ORDEM2000

does not model the behavior of sensors, however, and provides more detail than necessary for

the problem.

Evolutionary models, such as LEGEND (LEO-to-GEO Environment Debris), model the long

term behavior of space debris. This model, and other similar models, can help predict the

future environment and assess the impact of satellite collisions and policy changes on the

debris environment. These models take a longer view than would be of interest for this

problem, as time horizons of 100 years or more are common. (Johnson, 2004)

 8

NORAD uses a series of models to predict the locations of objects in orbit around the Earth.

These models include SGP4 (Simplified General Perturbations), developed in 1970, for

predicting positions of near Earth satellites, SDP4 (Simplified Deep-Space Perturbations),

developed in 1979 for predicting deep space orbits, and SGP8, developed in 1980 which also

predicts orbits near Earth. All of these models use the standard NORAD two-line data set,

and take into account perturbations to individual orbits. These models are highly detailed,

and take into account the methods by which the two line elements are generated by NORAD.

(Hoots & Roehrich, 1980)

For the current problem, a model is needed that will simulate both the behavior of objects in

orbit and the behavior of sensors detecting the objects in orbit. The models listed do not take

sensors into account, but focus only on the objects in orbit. In addition, the level of detail

used in the engineering models and the NORAD predictive models is not required for this

problem. So a new simulation was developed to meet the specific goals of this thesis.

3 MODEL

This section describes the model used to represent the dynamic system of sensors and objects

in LEO. First, the overall structure of the model is discussed, followed by an in-depth look at

each of the main sub-structures involved. As each step is explained, the modeling of the

orbit of the International Space Station (ISS) is presented as an example.

 9

3.1 Overall Model Structure

The model, a stochastic simulation programmed in MATLAB, utilizes discrete time steps to

analyze what happens to the knowledge of objects in space over time. This is accomplished

by the following process. In Step One, the system is initialized. This involves four sub-

steps. First, reference tables for the locations of the objects in LEO are determined. Second,

reference tables for the locations of the sensors on the surface of the Earth are determined.

Third, the lists which summarize the knowledge, or situational awareness, of the different

objects in LEO are initialized, these lists are referred to as Object Lists. Lastly, time is set to

0. This completes Step One. In Step Two, time is incremented by a pre-determined step

size. In Step Three, for each time increment, three actions are carried out by the model.

First, the positions of the objects in orbit and the sensors on the surface of the Earth are

updated using the reference tables generated in Step One. Next, calculations are performed

to determine which objects would be acquired by sensors. Finally, the Object Lists are

updated if necessary. In Step Four, the simulation then repeats Steps Two and Three until the

designated end time is reached.

 10

Figure 3.1. Simulation Structure

3.2 Step One: Initialization

The model requires a set of coordinates for each object indexed by time steps. As part of

initialization, these arrays of XYZ coordinates and times are created. The simulation

references this data when determining current positions at specific times. Because the time

steps of the simulation are different than the time steps in the initial reference tables, the

positions of objects are determined by interpolating between coordinates in the initial data

which lie on either side of the time needed. This process is further explained within the

discussion of Step Two. This section discusses how these reference tables of initial positions

are created for both objects in orbit and sensors on the surface of the Earth. This section

concludes with a description of the Object Lists describing the knowledge of objects in orbit

over time.

 11

3.2.1 Generate Positions for Objects in Low Earth Orbit (LEO)

Before the model can determine the location of each object and sensor for a given time, the

model generates a reference table for each object in the form of an array representing one

complete orbit around the Earth. This array is composed of a set of XYZ coordinates

referenced by a time t. As time is incremented in the simulation, each position is determined

by interpolating between the appropriate times stored in this array. This section describes the

construction of this array for each object in LEO.

The positions of man-made satellites in orbit around the Earth, as well as space debris, are

cataloged according to their orbital parameters. Orbital parameters are a set of six elements

which can uniquely determine the position of an object with respect to the Earth. The

simulation, for ease of calculation, does not store the objects using these parameters. Instead,

the objects are stored by their XYZ coordinates over time. The simulation represents each

item in orbit by converting the object‟s orbital parameters into a three-dimensional Cartesian

coordinate system. These coordinates are then indexed by a set of time steps breaking down

one complete orbit into n distinct intervals. Using these specific time steps, the model

determines where along the orbital path an object is at any given time. The following

sections describe this conversion from orbital parameters to time indexed Cartesian

coordinates.

 12

3.2.1.1 Converting Orbital Parameters into Time-stepped Cartesian Coordinates

There are six orbital parameters necessary to describe an object‟s position along its orbital

path in space. These orbital elements describe the object of interest‟s Keplerian motion in

space and are used by NASA in tracking the positions of satellites and debris in orbit.

(Grimaldi, 1997). The six elements can be divided into three main groups: the elements

which describe the object‟s orbital ellipse, the elements which orient this ellipse within the

frame of reference, and an element which fixes the position of the object at a set time. The

next section explains in detail each of the orbital elements, discussing how these elements are

used within the model, and demonstrating this process through an example: the International

Space Station (ISS).

Figure 3.2. International Space Station Two-Line Elements

Figure 3.2 shows the orbital parameters for the International Space Station in the standard

form of the data tracked for each known object in orbit. The shaded numbers represent the

six orbital parameters, identified in Table 3.1 below.

ISS (ZARYA)

1 25544U 98067A 10060.39299677 .00014318 00000-0 10455-3 0 6766

2 25544 51.6464 63.9887 0007280 0.0341 141.1443 15.73525555646494

1 2 3 4 5 6

 13

Table 3.1. Orbital Parameters for International Space Station

Number Element Value for ISS

1 Inclination 51.6464°

2 Right Ascension of Ascending Node 63.9887°

3 Eccentricity 0.0007280

4 Argument of the Perigee (Periapsis) 51.6464°

5 Mean Anomaly 141.1443°

6 Revolutions per Day 15.73525555

3.2.1.2 The Characteristics of the Orbit’s ellipse.

The elements which describe the characteristics of the object‟s orbital ellipse are the

eccentricity and the length of the semi-major axis. NASA uses revolutions per day instead of

the length of the semi-major axis. However, the length of the semi-major axis can be derived

from the revolutions per day using the equation for the Keplerian Period. (Capderou, 2005)

 (3.1)

where μ represents the Earth‟s gravitational constant ≈ 398600.4418, T is the period of

revolution (the inverse of revolutions per day), and a is one half the length of the semi-major

axis of the ellipse. Once the semi-major axis and eccentricity are known, the movement of

the object in the plane of its ellipse can be modeled. The semi-minor axis of the ellipse, b,

can be found using the eccentricity and the semi-major axis.

 14

Figure 3.3. Elliptical Parameters

Then the distance from either foci to the center of the ellipse, c, can be found.

 (3.2)

 (3.3)

For the ISS example, these equations yield the following values: a = 3.441994, b = 3.441993

and c = 0.002506. The semi-major and semi-minor axes are very close in length, as the orbit

of the ISS is nearly circular (with eccentricity 0.000728). In terms of eccentricity a perfect

circle has eccentricity 0, while an eccentricity of 1 describes a parabola, and values greater

than 1 describe hyperbola. For our purposes, the orbits we are interested in are ellipses, so

their eccentricities lie between 0 and 1.

Assuming constant velocity around the ellipse, an X and Y coordinate system (within the

plane of the ellipse) is then derived, incrementing t from 0 to 360 degrees. Equations (3.4)

and (3.5) demonstrate this procedure, using Cartesian coordinates in the plane of the orbit.

c

b a

 15

For the remainder of equations used throughout this section, either Cartesian or Polar

coordinates are used for simplicity. In the simulation, whichever set of coordinates was

simpler to manipulate was used, the equations for only the sets of coordinates used within the

simulation are included in this section.

 (3.4)

 (3.5)

For the ISS example, incrementing t by 30 degrees, breaking the orbit into 12 steps,

following XY coordinates are obtained. The dimensions for x(t) and y(t) are with respect to

the center of the Earth.

Table 3.2. XY Coordinates for ISS within Orbital Plane

t x(t) y(t)

0 5830.6217 3363.4827

30 3368.3808 5825.7229

60 4.8972 6726.9654

90 -3358.5863 5825.7229

120 -5820.8272 3363.4827

150 -6722.0699 0.0000

180 -5820.8272 -3363.4827

210 -3358.5863 -5825.7229

240 4.8972 -6726.9654

270 3368.3808 -5825.7229

300 5830.6217 -3363.4827

330 6731.8644 0.0000

360 5830.6217 3363.4827

 16

Figure 3.4. Graphical Representation of ISS Orbit within Orbital Plane

There is another orbital parameter, the Mean Anomaly, which describes the position of the

object along the orbital path at a specified time. This parameter is not used due to the

constant velocity assumption. The starting position of each object in orbit is determined

randomly, thus eliminating the need for this parameter. In the ISS example, we would

simply randomly select one of the 12 coordinate sets to start with at time 0.

3.2.1.3 The Orientation of the Orbital Plane with Respect to the Reference Plane

To orient the elliptical plane within the frame of reference, three angles are needed. They are

the argument of the periapsis, the inclination, and the right ascension of the ascending node.

These are sometimes referred to as Euler angles, or the angle of proper rotation, the angle of

nutation, and the angle of precession, respectively. (Capderou, 2005)

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

 17

3.2.1.4 The Argument of the Periapsis

 The argument of the periapsis, ω, orients the ellipse within the orbital plane. The periapsis is

the point of the orbit which passes closest to the body being orbited, for an object orbiting

around the Earth, this is called the perigee. For an object orbiting the Sun, this is the

perihelion. As a result, this orbital element is sometimes referred to as the argument of the

perigee for Earth orbits. This element is an angle describing the difference between the

primary axis of the orbital plane and the semi major axis of the orbit‟s ellipse. In Figure 3.5

the orbital plane is formed by (P0, N, N’), where N and N’ represent where in the orbital

plane the path of the orbit crosses the equatorial plane of the Earth. The variable N is

referred to as the Ascending Node, where N’ is the Descending Node. The variable P0

represents the direction of the perigee. So O (representing the center of the Earth) and P0 lie

along the semi-major axis of the elliptical orbit. (Capderou, 2005)

 18

Figure 3.5. Argument of the Periapsis

In Polar coordinates, this is accomplished by the following equation. The variable θ

represents the angle (in polar coordinates), of the current position along the orbital path of the

object.

 (3.6)

For the ISS, this rotates the XY coordinates to the following values shown in Table 3.3 and

Figure 3.6. In the figure and the table, red represents the coordinates before the

transformation, and blue represents the transformed coordinates. This color coding is also

followed for the remainder of the figures in this section.

N

N’

ω

P0

O

 19

Table 3.3. XY Coordinates for ISS within Orbital Plane adjusted for Argument of the

Perigee

t old x(t) new x(t) old y(t) new y(t)

0 5830.6217 980.3456 3363.4827 6659.4360

30 3368.3808 -2478.3861 5825.7229 6256.4078

60 4.8972 -5272.2221 6726.9654 4178.0093

90 -3358.5863 -6652.5561 5825.7229 981.1456

120 -5820.8272 -6249.5289 3363.4827 -2477.5863

150 -6722.0699 -4171.1312 0.0000 -5271.4219

180 -5820.8272 -974.2680 -3363.4827 -6651.7552

210 -3358.5863 2484.4637 -5825.7229 -6248.7270

240 4.8972 5278.2997 -6726.9654 -4170.3285

270 3368.3808 6658.6337 -5825.7229 -973.4648

300 5830.6217 6255.6065 -3363.4827 2485.2671

330 6731.8644 4177.2088 0.0000 5279.1027

360 5830.6217 980.3456 3363.4827 6659.4360

Figure 3.6. Graphical Representation of ISS Orbit within Orbital Plane with

Adjustment for Argument of the Perigee

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

 20

3.2.1.5 The Inclination

The inclination, i, describes the angle between the orbital plane and the equatorial plane of

the Earth. In Figure 3.7, the inclination describes the angle between the orbital plane (N, O,

P0) and the equatorial plane (N, O, y).

Figure 3.7. Inclination

In Cartesian coordinates, this translation is accomplished by the following equations.

 (3.7)

 (3.8)

 (3.9)

N

N’

ω

P0

O

i

y

 21

For the International Space Station, the following table and figure demonstrate this

translation, with an inclination of approximately 51 degrees, the orbit is inclined 51 degrees

from the equator.

Table 3.4. XYZ Coordinates for ISS with Adjustment for Inclination

t x(t) y(t) z(t)

0 980.3456 4132.2660 5222.3046

30 -2478.3861 3882.1819 4906.2514

60 -5272.2221 2592.5087 3276.3791

90 -6652.5561 608.8135 769.4107

120 -6249.5289 -1537.3743 -1942.9138

150 -4171.1312 -3270.9854 -4133.8291

180 -974.2680 -4127.5000 -5216.2813

210 2484.4637 -3877.4158 -4900.2282

240 5278.2997 -2587.7427 -3270.3559

270 6658.6337 -604.0475 -763.3874

300 6255.6065 1542.1403 1948.9371

330 4177.2088 3275.7514 4139.8524

360 980.3456 4132.2660 5222.3046

Figure 3.8. Graphical Representation of ISS Orbit with Adjustment for Inclination

 22

3.2.1.6 The Right Ascension of the Ascending Node

The last angle is the right ascension of the ascending node, Ω, which describes the angle

describing the point where the orbit‟s path crosses the equatorial plane. In Figure 3.9, Ω is

the angle xON, where N is the point where the path of the orbit crosses the Earth‟s equatorial

plane, from below the equator to above the equator, hence „ascending,‟ O is the Earth‟s

center, and x is chosen so that Ox points to a distant star to fix the reference frame.

Figure 3.9. Right Ascension of the Ascending Node

This translation is accomplished by the following equation, in cylindrical coordinates.

 (3.10)

Ω

N

N’

ω

P0

O

i

y

x

z

 23

Note that Equation (3.10) looks very similar to Equation (3.6), however, because of the order

in which the translations are applied, they do not perform the same action. When the

argument of the periapsis was applied in Equation (3.6), it was still a two-dimensional

problem within the orbital plane. In Equation (3.10) this is no longer the case, and the z

coordinate is kept fixed, while orientation of the x and y coordinate‟s in the Earth‟s equatorial

plane is adjusted.

The following figure and table portray the completed orbit for the International Space

Station. In its current form, the table of XYZ values is indexed by an angle t which ranges

from 0 through 360 degrees. The final step for determining the reference points for the ISS is

to index these XYZ coordinates by time.

Table 3.5. XYZ Coordinates for ISS with Adjustment for Right Ascension of the

Ascending Node

t x(t) y(t) z(t)

0 -3283.7698 2693.2427 5222.3046

30 -4575.8385 -524.8197 4906.2514

60 -4642.0318 -3601.2453 3276.3791

90 -3464.6132 -5711.7084 769.4107

120 -1359.0710 -6290.7120 -1942.9138

150 1110.4164 -5183.1126 -4133.8291

180 3282.1518 -2685.6906 -5216.2813

210 4574.2206 532.3718 -4900.2282

240 4640.4138 3608.7974 -3270.3559

270 3462.9952 5719.2605 -763.3874

300 1357.4530 6298.2641 1948.9371

330 -1112.0343 5190.6647 4139.8524

360 -3283.7698 2693.2427 5222.3046

 24

Figure 3.10. Graphical Representation of ISS Orbit with Adjustment for Right

Ascension of the Ascending Node

3.2.1.7 Time

The last step is to assign a time value for each set of XYZ coordinates. This is done by

multiplying the period T of the orbit by the fractional revolution of the orbit.

 (3.11)

The following table shows the final result, using the orbital period of the ISS, approximately

91 minutes. Note, for simplicity only 12 points were used in defining the orbit. This number

is generally higher in actual practice, as is explained in Chapter 4.

 25

Table 3.6. XYZ Coordinates for ISS with time indexing

t (min) x(t) y(t) z(t)

0.00 -3283.7698 2693.2427 5222.3046

7.63 -4575.8385 -524.8197 4906.2514

15.25 -4642.0318 -3601.2453 3276.3791

22.88 -3464.6132 -5711.7084 769.4107

30.50 -1359.0710 -6290.7120 -1942.9138

38.13 1110.4164 -5183.1126 -4133.8291

45.76 3282.1518 -2685.6906 -5216.2813

53.38 4574.2206 532.3718 -4900.2282

61.01 4640.4138 3608.7974 -3270.3559

68.64 3462.9952 5719.2605 -763.3874

76.26 1357.4530 6298.2641 1948.9371

83.89 -1112.0343 5190.6647 4139.8524

91.51 -3283.7698 2693.2427 5222.3046

3.2.1.8 MATLAB function for Initial Object Locations

The MATLAB code for the process of defining the initial positions of each object in low

Earth orbit is included in the appendix, the function name is ORBIT.

3.2.2 Generate Positions for Sensors

There are two main types of sensors used to track space debris in low Earth orbit from the

surface of the Earth, Phased Array Radar and a collection of transmitters and receivers

known as the Space Fence. For this simulation, the sensors on the surface of the Earth,

referred to as Earth-based sensors, are assumed to be Phased Array Radars. The Space Fence

is planned as a future modification to this simulation. Other types of sensors, such as optical

telescopes and orbital platforms, are not considered, but could easily be adapted to fit into the

simulation. The optical telescopes are utilized mainly for objects farther out than low Earth

orbit. And orbital sensors are not currently being used as a persistent source for debris

detection.

 26

The initial positions for Earth-based sensors are determined through a similar method to

objects in orbit. However, a simpler method for sensors can be used, since they are on the

surface of the Earth. The Latitude and Longitude of the sensors position determine where the

sensor orbits the Earth, as well as the sensor‟s starting position. The starting position is

important, since it also fixes the sensors‟ positions relative to each other.

3.2.2.1 The Characteristic’s of the Orbit’s ellipse.

The sensor‟s rotation is modeled as an orbit along the surface of the Earth with a period of

rotation of one day. The orbital plane of this orbit then becomes a circle – with eccentricity

of 0. To determine the length of the semi-major axis, or radius for a circle, the Latitude is

used. The Latitude measures approximately the angle between a line running from the center

of the Earth to the sensor‟s location, and a line running from the center of the Earth to a point

on the Equator along the same Longitude as the sensor. In reality, this number is slightly

different due to the non-spherical nature of the Earth. However, for this simulation, the Earth

is assumed to be spherical, therefore the Latitude is used for this simulation. To determine

the radius of the circular path of the sensor, the following equation is used.

 (3.12)

 Here Lat represents the Latitude of the sensor and ER is the radius of the Earth, for which we

use 6371 km, the Earth‟s mean radius. To determine the circular path, equations (3.4) and

(3.5) are used to determine the XY coordinates within the plane of the sensor‟s rotation.

However, since the sensor is assumed to move in a circle, the equation simplifies. In a circle,

 27

the semi-major and semi-minor axes are both equal to the radius, and there is only one focus,

the center of the circle. In algebraic notation, a = b and c = 0. The equations then become:

 (3.13)

 (3.14)

3.2.2.2 The Orientation of the Orbital Plane with Respect to the Reference Plane

This orientation also simplifies for a circular orbit. Because the sensor moves in a circle

parallel to the equator, the orbit never crosses the equatorial plane. Therefore, the Right

Ascension of the Ascending Node is not relevant. Similarly, the inclination of this circular

path to the orbital plane is 0 degrees. The only parameter that is relevant for the sensors

circular orbit is the Argument of the Periapsis (or Perigee). This parameter is replaced by the

Longitude of the sensor‟s position. The Longitude is similar to the Latitude in that it

measures an angle formed by two lines meeting at the center of the Earth, with one line

moving to the position of the sensor. For Longitude, the base reference is not the Equator,

but the Prime Meridian. So Longitude measures the angle between a line running from the

center of the Earth to the sensor‟s location, and a line running from the center of the Earth to

a point on the Prime Meridian along the same Latitude as the sensor. To adjust the sensor‟s

position for Latitude, Equation (3.6) is used, modified by replacing ω (the Argument of the

Periapsis) with Longitude (Long)

 (3.15)

 28

3.2.2.3 Time

The last step is to assign a time value for each set of XYZ coordinates. This is done exactly

the same as with objects in low Earth orbit, only using a period of 1 day. Equation (3.11)

then becomes:

 (3.16)

where θ represents the portion of 360 degrees represented by a given set of XYZ coordinates.

The following figure and table show the results of these calculations for a sensor with

Latitude of 30 degrees.

Figure 3.11. Sensor Positions with a Latitude of 30 degrees

 29

Table 3.7. Sensor Positions with a Latitude of 30 degrees

t (min) x(t) y(t) z(t)

0.0000 2758.7239 4778.2500 3185.5000

0.0833 0.0000 5517.4478 3185.5000

0.1667 -2758.7239 4778.2500 3185.5000

0.2500 -4778.2500 2758.7239 3185.5000

0.3333 -5517.4478 0.0000 3185.5000

0.4167 -4778.2500 -2758.7239 3185.5000

0.5000 -2758.7239 -4778.2500 3185.5000

0.5833 0.0000 -5517.4478 3185.5000

0.6667 2758.7239 -4778.2500 3185.5000

0.7500 4778.2500 -2758.7239 3185.5000

0.8333 5517.4478 0.0000 3185.5000

0.9167 4778.2500 2758.7239 3185.5000

1.0000 2758.7239 4778.2500 3185.5000

3.2.2.4 MATLAB function for Initial Sensor Locations

The MATLAB code for the process of defining the initial positions of each sensor is included

in the appendix, the function name is SENSORPOSITION.

3.2.3 Initialize Object Lists

As mentioned in the problem summary in Chapter 1, three lists are kept to summarize the

knowledge of objects in low Earth orbit. The first list consists of those objects whose

locations are known. This list is initially set to 0. The second list consists of those objects

whose positions are unknown; all objects in low Earth orbit are initially added to this list.

The final list includes objects whose position needs to be updated. Each list is stored as a

number of elements for a given time within the simulation. The initial value of each list at

time zero would be 0 known objects, N unknown objects, and 0 update objects, where N is

 30

the total number of objects simulated in low Earth orbit. The transitions between these lists

are discussed in Section 3.4.

3.3 Step Two: Increment Time

After all positions of objects in low Earth orbit and sensors on the Earth are initialized, and

the initial object lists are set, time is incremented by a set step size, dt.

3.4 Step Three: Actions at each Time Step

After the time has been incremented, the simulation performs three actions. It updates the

locations of all objects and sensors in the simulation, it calculates which objects have been

detected, and it updates the object lists. All of these steps are explained in detail in the

following sections.

3.4.1 Update Positions for Objects in Orbit and Sensors

At each time increment in the simulation, all of the positions of the objects in orbit and the

sensor locations are updated. The simulation accomplishes this task by linearly interpolating

between points in the initial position locations. Because there are only a finite set of

reference locations for each object, and the periods of rotation differ for most of the objects

in low Earth orbit, the time indexes for each set of XYZ coordinates will be different. So

whatever time increment dt is chosen, it will not match the coordinate time references. The

interpolation procedure then works in a two step process. First, it finds which two sets of

XYZ coordinates it should use for interpolating a given object for a given time, and second, it

determines the desired position by linear interpolation.

 31

3.4.1.1 Determining Upper and Lower Time Bounds

For a given time and a given object, the simulation must first determine how far along in time

the object has moved from its initial position. The simulation divides the current time by the

period of rotation of the object of interest. It then uses the remainder (or modulo) to then

find the desired sets of coordinates. The simulation finds the first time index greater than this

remainder. It then selects the time index below, or the last time index less than the

remainder. These two sets of coordinates are then used for interpolation.

3.4.1.2 Linearly Interpolating to Determine Current Location

Linear interpolation is used to find the desired location. Given two time referenced sets of

coordinates, (x1,y1,z1,t1) and (x2,y2,z2,t2) and the current time, t, the following equations are

used.

(3.17)

(3.18)

(3.19)

3.4.1.3 MATLAB function for Interpolating Object Positions

The MATLAB code for the process of interpolating object positions is included in the

appendix, the function name is INTERPORBIT.

 32

3.4.2 Calculate Detections of Objects in Orbit by Sensors

To determine which objects have been acquired by sensors in the given time period, the

simulation calculates which objects have passed within the field of view of each sensor, and

then determines if they have been detected based upon probability of detection.

3.4.2.1 Determining Objects within Field of View of Sensors

To determine which objects are in a given sensors field of view, the simulation calculates the

angle between a line running from the center of the Earth to the sensor‟s location, and a line

running from the sensor‟s location to the location of the object in low Earth orbit.

 (3.20)

After determining this angle, the simulation checks to see if this angle is less than the field of

view of the sensor. If it is, it moves on to the next step.

The simulation determines if the object is within the sensors field of view by calculating the

azimuth and elevation from the sensor to the object in orbit. The elevation is determined

from the angle θ calculated previously.

 (3.21)

The azimuth is determined using the latitudes and longitudes of the sensor and the object in

orbit. The longitude is determined relative to the X axis, and not the Prime Meridian, this

takes into account how far the Earth has rotated from the Prime Meridian at its current

position.

 33

(3.22)

In equation (3.22) A represents the Sensor while B represents the object in LEO. This

azimuth lies between -90 and 90 degrees. To convert to an azimuth between 0 and 360

degrees, the simulation determines which quadrant the resulting azimuth belongs to, adding

180 degrees if necessary.

3.4.2.2 Checking for Detection within Field of View of Sensors

If an object falls within the field of view of a sensor, the simulation generates a random

number between 0 and 1 and compares the result to the probability of detection for the given

sensor. The test runs for the simulation utilized both of these methods for this probability, as

the actual data was unavailable. The first method was to simply set a probability of detection

for an object within a sensor‟s field of view.

 (3.23)

The second method was to use a probability dependent on the angle of detection, where E is

the field of view of the sensor in terms of elevation, M is the midpoint angle of that field of

view, and θ is the angle determined in the previous step. This method increases the

probability of detection for an object within the central portions of a field of view, and

decreases the likelihood of detection at the limits of the field of view.

 (3.24)

 34

In either case, if the randomly generated number is less than the calculated probability, the

object has been detected.

3.4.2.3 MATLAB function for Checking for Detections

The MATLAB code for the process of checking for detection within a sensor‟s field of view

is included in the appendix, the function name is FINDANGLE. In addition, the function

TESTHORIZON is also used for this process, calculating the azimuth and elevation for a

given object in orbit with respect to a given sensor.

3.4.3 Update Known, Unknown, and Update Lists

There are four possible transitions between the known, unknown and update lists.

Figure 3.12. Object Lists State Diagram

If an object is detected for the first time, it moves from the unknown list to the known list. If

an object is detected while it is on the update list, it moves to the known list. If an object is

UNKNOWN

KNOWN

UPDATE

λ1

λ2

λ3

λ4

 35

detected while on the known list, it remains on the known list. As an object is detected, the

last time it was detected is stored. The simulation uses this time to determine when an object

moves from the Known or Update lists. If an object is on the Known list, and has not been

detected in a certain amount of time, t*, the object moves to the Update lists. If an object is

on the Update list, and has not been detected in a certain amount of time, s*, the object

moves to the Unknown list. In this manner the lists are maintained. The rates, λi, from one

object list to another, can then be determined based on the behavior of the object lists over

time.

The MATLAB code for updating the object lists is included in the main program file, which

is included in the appendix, the function name is SIMORBIT.

3.5 Simulation Input

The simulation uses three main sources of data. First, data for the orbital elements of the

objects simulated in LEO, which are obtained by observed data. Second, data for the sensors

on the surface of the Earth, which are based on the actual geographical locations and

limitations of the radars simulated. Third, various parameters within the simulation are set

for each run. The following sections describe each of these inputs.

3.5.1 Orbiting Objects Data

There are two main methods used to populate the objects in the simulation. The first method

involves randomly generating objects. This method was primarily used to test the mechanics

of the simulation for purposes of validation. The second source was a database of objects in

 36

North American Aerospace Defense Command‟s (NORAD) two line format, which included

approximately 5,000 objects of the 15,000 objects currently catalogued. From each of these

two line elements, the six orbital parameters of interest were obtained. The entire set of

15,000 objects, or a random subset of these objects, can be used to simulate the effect of

changing sensors over time. The original sets of two line elements for each object were

obtained from the CelesTrak website, www.celestrak.com, associated with the Center for

Space Standards and Innovation. (Kelso, 2010) Sample input data is included in the

Appendices.

3.5.2 Sensor Data

For the sensors in the simulation, the locations of eight Phased Array Radar are used. These

radar are part of the Space Surveillance Network utilized by the United States Department of

Defense. The coordinates for each radar, as well as the azimuth and elevation limits for their

fields of view are summarized in the following table, from a 2001 list furnished by Dr.

Nicholas Johnson, Chief Scientist for Orbital Debris, NASA Johnson Space Center.

Table 3.8. Phased Array Radar Locations Used

Location Latitude Longitude Azimuth Limits Elevation Limits

Eglin AFB, FL 30.57° N 273.79° E 120°-240° 1°-105°

Thule AFB, Greenland 76.57° N 291.70° E 297°-177° 3°-80°

RAF Fylingdales, UK 54.37° N 359.33° E 0°-360° 4°-70°

Clear AS, AK 64.29° N 210.81° E 170°-110° 1.5°-90°

Cavalier AS, ND 48.72° N 262.10° E 298°-78° 1.9°-95°

Cape Cod AS, MA 41.75° N 289.46° E 347°-227° 3°-80°

Beale AFB, CA 39.14° N 238.65° E 126°-6° 3°-80°

Eareckson AFB, AK 52.74° N 174.09° E 259°-19° 0.6°-80°

 37

The MATLAB code for loading the data for the actual sensors is located in the appendix, the

function name is GETREALSENSORS.

3.5.3 Simulation Parameters

Throughout the development of the simulation, values for several key parameters were

chosen. These parameters include the number of steps to partition each object‟s orbit into,

the time step used to increment the simulation, the probability of detection given an object is

within a sensor‟s field of view, and the time threshold for moving an object from the known

list to the update list, and from the update list to the unknown list. The values chosen for

these parameters are discussed in Chapter 4.

3.6 Simulation Output

As output, the simulation generates the object lists referenced by time. This information

demonstrates the dynamic behavior of the system of sensors and orbiting objects as sensors

are removed or added over time. The following figure shows sample output for a run of ten

days with 25 objects and 2 sensors. The update rate for movement from Known to Update

and Update to Unknown was 2.5 for this sample run. From this output, the behavior of the

Known, Unknown and Update lists can be examined over time. Sensors can be added or

subtracted to simulate changes in mission for individual sensors. The effects of these

changes on the Object Lists will then demonstrate the effect the removal or addition of the

sensor has on the ongoing task of Space Surveillance. Section 4 includes larger runs

demonstrating long run behavior of these Object lists.

 38

Figure 3.13. Sample Simulation Output

4 EXPERIMENTATION

This section summarizes the experimentation conducted using the simulation. This includes

experimentation involved in the selection of key parameters necessary for the simulation to

function. In addition, this section discusses some test runs conducted to demonstrate the

simulation‟s ability to model the dynamic system of sensors and orbiting objects.

0

5

10

15

20

25

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

N
u

m
b

e
r

o
f

O
b

je
ct

s
in

 O
rb

it

Time in Days

Object Lists over Time (25 objects, 2 sensors)

Unknown

Update

Known

 39

4.1 Parameter Selection

4.1.1 Number of Partitions for Orbiting Objects

As mentioned previously in Chapter 3, the simulation generates a reference data set for each

object in low Earth orbit. This data set consists of a time referenced set of XYZ coordinates.

One important parameter for the simulation is how many time indexes, or partitions, should

be used to generate this set. In the International Space Station (ISS) example illustrated

previously, 12 partitions were used. This number is a little low, as the distance between each

point in the data set for 12 partitions is over 3,000 kilometers.

To assess the impact of different size partitions on model performance, some small test runs

were made varying the number of partitions for each orbit. Figure 4.1 shows the results of

these test runs. The runs consisted of 100 orbiting objects and 6 sensors and ran for 1.25

simulated days. The 100 orbiting objects were randomly selected from the CelesTrak list,

and the same 100 objects were used for all of the described iterations.

 40

Figure 4.1. Possible Detections by Orbit Partitions

Further runs were made varying the partitions of the sensor position while maintaining the

orbit partitions constant. Figure 4.2 shows the results when orbit partitions were held

constant at 60 while the number of partitions for sensor positions was varied from 10 to 120.

Again, these runs consisted of the same 100 objects and 6 sensors and ran for 1.25 days

simulated time. The results of this latter experiment shows the increase in detections when

the number of partitions is small. This is a result of the exaggerated field of view of the

sensor when only a small number of partitions are used. For the remainder of the simulation

runs referenced in this section, we used 60 partitions for both objects in orbit and sensors on

the ground.

9000

9100

9200

9300

9400

9500

9600

9700

9800

0 20 40 60 80 100 120

N
u

m
b

e
r

o
f

P
o

ss
ib

le
 D

e
te

ct
io

n
s

Number of Orbit Partitions for Each Object

Possible Detections by Orbit Partitions

 41

Figure 4.2. Possible Detections by Sensor Partitions

To determine if this size partition is appropriate, consider the resulting error in determining

the position of each object in orbit by interpolation. The greater the number of partitions

used, the greater the distance is between any two points, and so the interpolation between

those two points will result in a greater degree of error. Using 60 partitions, the greatest

magnitude of error due to interpolation would be approximately 10 km at an altitude of 1000

km above the surface of the Earth. To determine the approximate error, assume the orbit is

near circular between the two points used to interpolate. In Figure 4.3, ti and ti+1 represent

the two interpolation points, RS represents the radius of the orbit at either point, RI represents

the interpolated radius, D represents the straight line distance between ti and ti+1, θ represents

the angle between ti and ti+1 passing through the center of the Earth, and E, the error. The

8000

8500

9000

9500

10000

10500

11000

11500

12000

12500

13000

0 20 40 60 80 100 120 140

N
u

m
b

e
r

o
f

P
o

ss
ib

le
 D

e
te

ct
io

n
s

Number of Position Partitions for Each Sensor

Possible Detections by Sensor Partitions

 42

coordinates of the two points, RS, D and θ are known. The Error is then calculated using the

Pythagorean Theorem. For an object in LEO with an altitude of 1000 km, this error is

approximately 10.10 km.

Figure 4.3. Interpolation Error

Table 4.1 shows the resulting approximate error (in kilometers) for varying numbers of

partitions for objects in orbit altitudes of 1000 km and 2000 km. For the purposes of our test

runs, 60 partitions is satisfactory. If a greater level of accuracy in altitude is required, the

number of partitions can be increased, with a penalty to run time.

ti

O

ti+1

θ

RS

E

RI

D

 43

Table 4.1. Interpolation Error by Number of Partitions

Number of Partitions Error for an Orbit at 2000km Error for an Orbit at 1000km

10 410 361

20 103 91

30 46 40

40 26 23

50 17 15

60 11 10

70 8 7

80 6 6

90 5 4

100 4 4

4.1.2 Time Step

The size for the time step used to increment the model has a great impact on both run time

and model performance. As expected, the smaller the time step, the greater accuracy within

the simulation, but the slower the run time. Figure 4.4 shows the results of a series of

experiments to determine this relationship. Using the same 100 objects in orbit, 6 sensors

and 1.25 days in simulated time, the simulation was run for various sized time steps. Using 2

minute time steps (900 total steps for 1.25 days), all 100 objects in orbit were detected at

least once over the simulation run. However, using 12 minute time steps (150 total steps for

1.25 days), only 92 objects in orbit were detected. Ideally, 2 minute time steps would be

chosen, however the run time is over 4 times as long as that for 9 minute time steps, the

number used for most of our test runs during simulation development. For all subsequent

runs discussed in this section, a time step of 6 minutes was used, a compromise between

speed and performance.

 44

Figure 4.4. Effects of Changing Time Steps on Detections

The impact of this compromise is on how much time passes between each step within the

simulation. The greater this time, the more likely it is that a possible detection will not be

calculated, degrading the accuracy of the simulation. For a sensor with a 120 degree field of

view, the diameter of what this sensor sees at 1000 km is approximately 1700 km using a

simple law of cosines approximation. According to the NASA Orbital Debris Program

Office, debris travels at 7 to 8 km/s. (Stansbery, 2009) This translates to roughly 420 to 480

km/min. For any time increment greater than 4 minutes, the likelihood of missing possible

detections increases, as we saw in out small experiments. Again, for a desired level of

accuracy, a smaller time step can be used.

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12

R
u

n
 T

im
e

 in
 S

e
co

n
d

s

P
e

rc
e

n
t

o
f

O
b

je
ct

s
D

e
te

ct
e

d

Step Size in Minutes

Effects of Changing Time Steps on Detections

Known at 12 Hours

Known at 24 Hours

Run Time

 45

4.1.3 Probability of Detection for an Object within a Radar’s Field of View

As mentioned in Chapter 3, two different methods for determining probability of detection

were considered for use within the simulation. The first method involved a simple Bernoulli

distribution, with a set probability of detection given the object entered the radar‟s field of

view. The second method also involved a Bernoulli distribution for the probability of

detection, but also used the angle of detection to adjust this probability, as shown in Equation

(4.1). The effect of this adjustment was to cause the probability of detection to increase the

closer the object to be detected is to the center of the radar‟s field of view. Data sets were

not available to use in validating this choice of probability, and so a value of 0.99 was

selected as what is called the probability factor, which adjusts the calculated probability

based on the angle of elevation. This value can be set at different levels to calibrate the

model to actual probabilities if they are known.

 (4.1)

where p is the probability factor, θ is the angle of elevation of the object in orbit from the

given sensor, M is the midpoint of that sensor‟s elevation range, and E is the sensor‟s

elevation range. In Figure 4.5, the results of altering the probability factor p are shown over

runs using 1000 objects in orbit, and 1 sensor, over a period of 10 days. The average size of

the Known lists, from 5 to 10 days, are shown, as well as the overall percentage of

detections. This percentage is the total number of successful detections divided by the total

number of objects which passed through the azimuth and elevation of the sensor during the

 46

course of the simulation run. Little variation occurred as a result of this change in probability

factor, as most of the probability of detection is a function of the angle of elevation.

Figure 4.5. Impact of Change in Probability Factor

4.1.4 Movement Times between Object Lists

In this simulation, an object moves between the Known List, the Update List, and the

Unknown List as a function of time. This time period was set at 0.5 days, but the actual

mechanism that changes objects is unknown. The value of 0.5 days was chosen by taking the

average time between detections and adding two standard deviations to this value. This

would allow most detections to occur within a lapse time interval. For one sensor, Eglin

AFB, the average time between detections was approximately 0.1 days, or 2.4 hours. The

standard deviation of the time between detections was 0.18 days, or 4.5 hours. This resulted

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

100

200

300

400

500

600

700

800

900

1 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.9

D
e

te
ct

io
n

 R
at

e

A
ve

ra
ge

 K
n

o
w

n
 O

b
je

ct
s

Probability Factor

Impact of Change in Probability Factor

Average Known

Detect %

 47

in a value of 0.46 days for a lapse time, which was rounded to 0.5 days, or 12 hours, for

simplicity. This period of time coincides with the observation that most objects are detected

several times a day. (Johnson, 2004)

Figure 4.6. Simulation Results for a Lapse Time of 0.5 Days

Figure 4.6 shows the results of a simulation run with 1000 objects and 1 sensor (Eglin AFB)

over a simulated time period of 10 days. Steady state behavior seems to emerge at about 1

day, or two lapse time periods. This outcome occurred in all simulated runs made during the

development of the model. The steady state could not emerge prior to this time, as no object

could have moved from the Known list to the Unknown list in any time less than two lapse

periods.

Figures 4.7 and 4.8 show the results of lowering and raising the lapse time, respectively.

With a lapse time less than 0.5 days, the behavior of the Object lists over time varies much,

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

O
b

je
ct

s

Simulated Time (Days)

1000 Objects, Eglin AFB Radar (0.5 L)

Unknown

Update

Known

 48

more, with the size of the Known list ranging from approximately 400 objects to 550 objects,

a range of 150 objects. This range was approximately 50 objects with a lapse time of 0.5

days. In addition, the average value of the Known objects is approximately 450 with a lapse

time of 0.25 versus an average of approximately 800 objects with a lapse time of 0.5 days.

Similar results are obtained by increasing the lapse time to 0.75 hours. The longer the lapse

time period, the greater chance that objects will remain in the Known list, so the average

known objects increases.

Figure 4.7. Simulation Results for a Lapse Time of 0.25 Days

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

O
b

je
ct

s

Simulated Time (Days)

1000 Objects, Eglin AFB Radar (0.25 L)

Unknown

Update

Known

 49

Figure 4.8. Simulation Results for a Lapse Time of 0.75 Days

As mentioned in the assumptions, there are other events which could potentially move an

object from the Known list to the Update or even Unknown list. For a man-made satellite,

these could include navigation changes triggered remotely or automatically based on certain

criteria. For foreign satellites, this information would not always be known, and so satellite

positions could change significantly. In addition, collisions between satellites and debris in

orbit could alter the path of the satellites orbit significantly. These effects are not currently

modeled within the simulation.

4.2 Test Runs

The following section discusses test runs demonstrating the ability of the simulation to

address the given problem.

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

O
b

je
ct

s

Simulated Time (Days)

1000 Objects, Eglin AFB Radar (0.75 L)

Unknown

Update

Known

 50

4.2.1 Demonstration of Steady State Behavior

In order for the simulation to help detect changes in performance due to the addition or

subtraction of a sensor, the simulation must be able to define the state of the system at a

given point in time. This state is defined by the Object Lists for a given time. The following

output shows that a steady state is reached after an initial warm-up period. Because the

Object Lists begin at 0 known and all unknown, objects must be detected to populate the

lists. In this sample run, 5000 random objects and 5 random sensors were generated; these

sensors had azimuth ranges of 0 to 360 degrees, with elevation of 0 to 90 degrees. The

simulation was run for 60 days with an update rate of 2.5 days. After about 5 days in

simulated time, the simulation reached an apparent steady state, where the number of objects

in each of the Known, Update, and Unknown lists appear to remain close to their long run

values for this system. As mentioned earlier, this behavior exhibited itself in all runs made,

with different degrees of variation in each lists size over time. Fewer sensors tended to

exhibit a higher level of variation, while more sensors lessened the variation of the list sizes

over time.

 51

Figure 4.9. Object Lists Over Time

4.2.2 Demonstration of Sensor Changes

The next run subtracted one sensor after 10 simulated days. Then, after 15 simulated days,

the sensor was again put back into the simulation. The effect of this change can be seen in

the following figure. Because the lists are not updated until the lapse time has passed, it

takes two lapse time periods (or 1 days for this run), until the changes in the steady states

take effect. In this example, 5000 objects in orbit and 3 sensors were used, and the model

run for 20 simulated days with an update rate (lapse time) of 0.5 days. Once the sensor was

replaced, there is again a transitional period between the 2 sensor state and a return to the

initial 3 sensor state. This period appears to also take two lapse periods, or 1 day to settle

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

P
e

rc
e

n
t

o
f

O
b

je
ct

s

Simulated Time (Days)

Object Lists over Time

Unknown

Update

Known

 52

down, although the initial change in the Known lists takes less time as those objects detected

are immediately moved to the Known list. There is a cyclical behavior present in the 2

sensor state, as the Eglin radar and the Thule radar remain in coverage. Once the Fylingdales

radar is returned to coverage, this variation disappears and returns to the previous steady

state.

Figure 4.10. Object Lists over Time with Subtraction of Sensor

4.2.3 Demonstration of Sensor Changes with Actual Data for Objects

The following figure shows the results of running the simulation with 4880 actual objects,

one to three sensors (Eglin, Thule and Fylingdales) run for 30 simulated days. At the tenth

day, 2 additional sensors are added (Thule and Fylingdales), and then at the fifteenth day, 1

sensor (Fylingdales), is removed.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 2 4 6 8 10 12 14 16 18

P
e

rc
e

n
t

o
f

O
b

je
ct

s

Simulated Time (Days)

5000 Objects, 3-2-3 Sensors

Unknown

Update

Known

 53

Figure 4.11. Results with Addition then Subtraction of Sensors

For each transition period, the transient time appears to take two lapse time periods, or 1 day.

In Table 4.2 the numerical results of the average size of each Object List, as well as the

standard deviation for each list, is displayed. The table takes these averages two days after

the sensor change to avoid including the transient period in the results. The impact of the

addition of two sensors can be seen in an increase from an average of 81% of objects known,

to an average of 96% of objects known. In addition, the lists are less sensitive to the orbital

position of the sensor. With only one sensor, there is greater variation in the size of the

Known list than with three sensors. One sensor exhibits a standard deviation of 1.3% of the

Known list, while three sensors exhibit a standard deviation of only 0.2% of the Known list.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

P
e

rc
e

n
t

o
f

O
b

je
ct

s

Simulated Time (Days)

5000 Objects, 1-3-2 Sensors

Unknown

Update

Known

 54

Table 4.2. Results with Addition then Subtraction of Sensors

5 FUTURE RESEARCH

Several of the assumptions used during the development of this simulation could be revisited

for future improvements to this simulation. In addition, the simulation could be used as a

tool in examining additional problems. Some of these assumptions include constant velocity,

type of sensor utilized, and orbit perturbations. Additionally, the simulation could be useful

in determining geographic locations for future and/or mobile sensors.

5.1 Constant Velocity

For this thesis, constant velocity was assumed. However, this is not the case for elliptical

orbits, near circular or not. Further work could be conducted to determine the impact on the

performance and accuracy of this model by using variable velocity. In addition to more

accurately determining the positions of each object in LEO, this could also be used to

increase the fidelity of the detection calculations. The position and speed of the object would

be used to determine whether or not an object is detected by a given radar.

Known Update Unknown

1 Sensor Mean 80.88% 11.76% 7.36%

2 to 10 Std Dev 1.31% 1.28% 0.14%

3 Sensors Mean 96.03% 0.66% 3.31%

12 to 15 Std Dev 0.17% 0.17% 0.04%

2 Sensors Mean 92.97% 1.95% 5.08%

17 to 30 Std Dev 1.31% 1.31% 0.04%

 55

5.2 Additional Sensor Types

For this thesis, a phased-array radar was used as the basis of all sensors used. In reality,

several different types of sensors, with different capabilities and reliabilities, are used as part

of the Space Surveillance Network. In addition to other types of radar, some optical

telescopes, as well as the Space Fence, are key contributors to space surveillance. While

optical telescopes mainly concentrate on Deep Space and Geosynchronous Orbits, they

would add further fidelity to the simulation. In addition, the altitude and azimuth for each

sensor could be more accurately modeled, and the resulting impact on the simulation

assessed.

5.3 Orbital Perturbations

As mentioned in section 1, the non-spherical shape of the Earth has an impact on all objects

in orbit around it. In addition, the gravity of the moon and other objects in space, as well as

atmospheric drag, all work to perturb the orbits. Work could be done to assess the value of

adding these perturbations into the simulation.

5.3.1 Orbital Perturbations due to the Non-Spherical Shape of the Earth

The non-spherical shape of the Earth causes a precessional effect on the orbit of an object

around the Earth. The two orbital elements affected by this precessional effect are the Right

Ascension of the Ascending Node and the Argument of the Periapsis. Both of these changes

vary as a function of the inclination and eccentricity of the given orbit.

 56

 (5.1)

 (5.2)

In Equations (5.1) and (5.2), Jn represents the harmonic coefficient for the geopotential, a

quantity which is approximately 1.624 x 10
-3

 for the Earth. (Haymes, 1971), i represents the

orbit‟s inclination, a the length of the orbit‟s semi-major axis, and e the orbit‟s eccentricity.

For the change in the Right Ascension, Ω, the effect is that as the orbit moves around the

Earth, it is pulled Westward, and so crosses the Equator (the Right Ascension), further and

further from its „original‟ crossing point. The variables i and e refer to the orbit‟s inclination

and eccentricity respectively. This effect is not realized for a polar orbit, with and inclination

of 90 degrees, as cos(90)=0. The second element effected is the Argument of the Periapsis,

ω. As the object moves around the Earth, its perigee will shift at each subsequent orbit. An

orbit around the Earth that is near equatorial (with 0 degrees inclination), will exhibit little or

no change in the Argument of the Periapsis, as sin(0)=0.

For all other orbits, these changes have significant impact on the orbits. As an example, for

an orbit with an inclination of 45 degrees, the Right Ascension will change by -3.37º per day,

and the Argument of the Periapsis by 3.58 º per day. (Haymes, 1971)

The implications for this on the simulation are great. The simulation currently uses the Right

Ascension and Argument of the Periapsis during the initialization phase of the run. These

values are used to generate the reference tables from which the locations of the objects in

 57

orbit are updated throughout the run. But the values of the Right Ascension and the

Argument of the Perigee are constantly changing, so these reference tables would need to be

constantly changed. One possible solution would be to generate a reference table covering

the entire desired run length of the simulation. This would only have to be generated once.

Then subsequent runs could interpolate positions from these pre-generated numbers that

include perturbative effects.

5.4 Geographical Locations for Additional Sensors

This simulation could be adapted as a decision tool for locating new sensors or mobile

sensors to maximize effectiveness. Given certain capabilities of a sensor, requirements for

detection coverage, and geographical and political constraints, possible locations could be

evaluated using this simulation.

 58

REFERENCES

3-14, J. P. (2009, January 9). Space Operations. United States Strategic Command.

Arney, K. (2008). Global Sensor Management: Allocation of Military Surveillance Assets.

Raleigh, NC: North Carolina State University.

Capderou, M. (2005). Satellites: Orbits and Missions. Paris: Springer.

Dulin, J. L. (2009). Global Sensor Management: Real-Time Reallocation of Military Assets

among Competing Tasks and Functions . Raleigh, NC: North Carolina State University.

Grimaldi, B. (1997, June 19). NASA/NORAD 2-Line Elements. Retrieved February 24, 2010,

from Science at NASA: http://science.nasa.gov/Realtime/rocket_sci/orbmech/state/2line.html

Haymes, R. C. (1971). Introduction to Space Science. New York: John Wiley & Sons, Inc.

Hoots, F. R., & Roehrich, R. L. (1980). Spacetrack Report No. 3. Peterson AFB, CO:

Aerospace Defense Center.

Johnson, N. L. (2004). The world state of orbital debris measurements and modeling. Acta

Astronautica 54 , 267-272.

Kelso, T. (2010, February 22). CelesTrak. Retrieved March 14, 2010, from CelesTrak:

http://celestrak.com/

Liou, J. (2010, January). An Updated Assessment of the Orbital Debris Environment in LEO.

NASA Orbital Debris Quarterly News , pp. 7-8.

 59

Liou, J.-C., Matney, M. J., Anz-Meador, P. D., Kessler, D., Jansen, M., & Theall, J. R.

(2002). The New NASA Orbital Debris Engineering Model ORDEM2000. Houston, Texas:

National Aeronautics and Space Administration.

Stansbery, E. (2009, July 22). NASA Orbital Debris Program Office. Retrieved March 13,

2010, from NASA: http://www.orbitaldebris.jsc.nasa.gov/index.html

U.S. Strategic Command Public Affairs Office. (2009, March). United States Strategic

Command Fact Sheet. Retrieved March 3, 2010, from United States Strategic Command:

http://www.stratcom.mil/factsheets/snapshot/

United Nations Committee on the Peaceful uses of Outer Space. (1999). Technical Report on

Space Debris. Scientific and Technical Subcommittee (pp. 1-41). New York, NY: United

Nations.

 60

APPENDICES

 61

SIMORBIT (Main Program):

function

[times,known,unknown,update,Object,Sensor,period,sensorperiod,diffTimes] =

simorbit(numorbits,numsensors,userealsensors,lapsetime,usesatdata,SD,simti

me)

% THESIS VERSION NOTES

% Simulates detection of objects in Low Earth Orbit (LEO) by ground based

% sensors. Outputs lists of Known, Update, and Unknown sensors over time.

% Either randomly generates objects and sensors, or user provided input

% data. Assumes no perturbations to orbits due to shape of Earth, or

other

% factors.

% DATE LAST MODIFIED: 19 March 2010

% INPUT PARAMETERS

% numorbits=1; % number of objects to simulate in orbit

% numsensors=1; % number of sensors to simulate

% userealsensors; % 1 if real sensors used, 0 o/w

% lapsetime = 2.5; % time since last detection for satellite to

change lists

% usesatdata = 0; % 1 if sat data used, 0 o/w generates random data

% SD; % database of orbital parameters of satdata

% simtime=10; % time to be simulated (in days)

% OUTPUT

% times: vector of size n=numtimesteps with simtime at each step

% known: vector of size n with values of known list at each time step

% unknown: vector of size n with values of unknown list at each time step

% update: vector of size n with values of update list at each time step

% Object: reference table (array) of orbiting values used for run

% Sensor: reference table (array) of sensors used for run

% period: vector with object periods

% sensorperiod: vector with sensor periods

% diffTimes: test vector used to calculate avg time between unique time

% acquisitions

tic

% SET RUN PARAMETERS

graphics = 0; % 0 graphics off, 1 graphics on

tindex=0.00; % initial starting time

tstep=0.00625; % 9 minutes with 0.00625

numtimeint=round(simtime/tstep); % number of time steps used to reach

sim time

n=60; % number of points used to estimate each orbit

diffTimes=[];

k=1;

 62

fprintf('----------------------START----------------------');

% PLOT 3D REPRESENTATION OF EARTH

if (graphics==1)

 hold off;

 drawearth;

end

% GENERATE ORBITS (for numorbits of objects in Low Earth Orbit)

classification=zeros(1,numorbits);

LTA=zeros(1,numorbits);

badorbitcount=0;

Object=zeros(4,n+1,numorbits); %1 = X, 2 = Y, 3 = Z, 4 = time

period=zeros(1,numorbits);

for i=1:numorbits

 if (usesatdata==1) %use external data SD

 e=SD(i,3);

 p=SD(i,4);

 inc=SD(i,1);

 L=SD(i,2);

 RPD=SD(i,6);

 M=SD(i,5);

 else %use random data

 e=unifrnd(0.0,0.12);

 p=unifrnd(0,180);

 inc=unifrnd(0,90);

 L=unifrnd(0,360);

 RPD=unifrnd(12.5,16.5);

 M=unifrnd(0,360);

 end

 [t,A,B,C,badorbit]=orbit(e,p,inc,L,RPD,M,n); %generates orbit vectors

from orbital parameters

 if (badorbit==1) %if orbit identified bad orbit == orbit with < 160km

altitude

 badorbitcount=badorbitcount+1;

 end

 while (badorbit==1) %if badorbit detected, alter eccentricity and

period until goodorbit achieved

 e=unifrnd(0.0,0.12);

 RPD=unifrnd(12.5,16.5);

 [t,A,B,C,badorbit]=orbit(e,p,inc,L,RPD,M,n);

 end

 Object(1,:,i)=A;

 Object(2,:,i)=B;

 Object(3,:,i)=C;

 63

 Object(4,:,i)=t;

 period(i)=1/RPD;

 classification(i)=0;% 0 = unknown, 1 = known, 2 = needs updating

 LTA(i)=0; % Last Time Acquired

 % OPTIONAL GRAPH INSTRUCTIONS

 % plot3(A(1),B(1),C(1),'o');

 % grid on;

 % axis square;

 % hold on;

end

badorbitcount

% TEST ORBITS FOR CRASHES

numcrash=testorbitsforcrash(Object,numorbits,n) % s/b 0!

% GENERATE SENSORS (for numsensors located on the surface of the Earth)

Sensor=zeros(4,n+1,numsensors); %1 = X, 2 = Y, 3 = Z, 4 = time

sensorperiod = zeros(1,numsensors);

sensorLat = zeros(1,numsensors);

sensorLong = zeros(1,numsensors);

LAzimuth1 = zeros(1,numsensors);

RAzimuth1 = zeros(1,numsensors);

LAzimuth2 = zeros(1,numsensors);

RAzimuth2 = zeros(1,numsensors);

LElevation = zeros(1,numsensors);

UElevation = zeros(1,numsensors);

MElevation = zeros(1,numsensors);

numsensorstogenerate=numsensors+2; %to allow for adding sensors to sensor

network during run

if (userealsensors==1)

% Generate actual sensors

[Sensor,sensorperiod,LAzimuth1,LAzimuth2,RAzimuth1,RAzimuth2,LElevation,UE

levation,MElevation]=genrealsensors(n,numsensors);

 numsensorstogenerate=8;

else

 % Generate random sensors

 for k=1:numsensorstogenerate

 lat=unifrnd(-90.,90.);

 long=unifrnd(-180.,180.);

 [st,sA,sB,sC]=sensorposition(lat,long,n);

 Sensor(1,:,k)=sA;

 Sensor(2,:,k)=sB;

 64

 Sensor(3,:,k)=sC;

 Sensor(4,:,k)=st;

 LAzimuth1(k) = 0.;

 RAzimuth1(k) = 360.;

 LAzimuth2(k) = 0.;

 RAzimuth2(k) = 0.;

 LElevation(k) = 0.;

 UElevation(k) = 90.;

 MElevation(k) = 0.5*(UElevation(k)-LElevation(k));

 sensorLat(k)=lat;

 sensorLong(k)=long;

 sensorperiod(k)=1;

 end

end

% MAIN SIMULATION -

% - increments time by tstep for numtimeint

% - for each discrete time event, calculates position of objects in orbit

% and sensors on the earth, and then determines whether or not objects

% have been detected

% - updates respective lists of objects in orbit (known, update, unknown)

known=zeros(1,numtimeint);

unknown=zeros(1,numtimeint);

update=zeros(1,numtimeint);

times=zeros(1,numtimeint);

known(1)=0;

unknown(1)=numorbits;

update(1)=0;

times(1)=tindex;

printtime=160;

numpossdetect=0;

numdetect=0;

testvector=zeros(3,numorbits);

sensor1vector=zeros(3,numsensors);

for j=1:numtimeint

 if (j==2400) % PROGRAM subtraction of sensor

 numsensors=numsensors-1

 tindex

 end

 65

 if (j==4800) % PROGRAM addition of sensor

 numsensors=numsensors+1

 tindex

 end

 if (j==printtime)

 printtime

 printtime=printtime + 160;

 end

 if j > 1

 times(j)=tindex;

 known(j)=known(j-1);

 unknown(j)=unknown(j-1);

 update(j)=update(j-1);

 end

 for i=1:numorbits

 tremindex=rem(tindex,period(i));

[testvector(1,i),testvector(2,i),testvector(3,i)]=interporbit(Object(:,:,i

),tremindex,'mo','m',graphics);

 for m=1:numsensors

 sensortime=rem(tindex,sensorperiod(m));

[sensor1vector(1,m),sensor1vector(2,m),sensor1vector(3,m)]=interporbit(Sen

sor(:,:,m),sensortime,'ro','r',graphics);

[testangle,azelevcheck]=findangle(sensor1vector(:,m),testvector(:,i),graph

ics, LAzimuth1(m), LAzimuth2(m),RAzimuth1(m),

RAzimuth2(m),LElevation(m),UElevation(m));

 objdetect=0;

 % determine probability of detection

 if testangle > 90 %object above sensor's local horizon

 numpossdetect=numpossdetect+1;

 probdetect=unifrnd(0,1);

 % Probability of 1 in the middle of the average range at

 % 45 degrees of elevation, and 0 at extremes (0 and 90

 % elevation)

 if (probdetect < (0.99*(1-

(((90+LElevation(m)+MElevation(m)-testangle)/MElevation(m))^2))))

 objdetect=1;

 end

 66

 end

 timecheck=lapsetime+LTA(i);

 timecheck2=2*lapsetime+LTA(i);

 if (objdetect==1) % satellite is detected

 numdetect=numdetect+1;

 if classification(i)==2 % the satellite was on update list

 update(j)=update(j) - 1;

 known(j)=known(j) + 1;

 else if classification(i)==0 % the satellite was on the

unknown list

 unknown(j)=unknown(j) - 1;

 known(j)=known(j) + 1;

 end

 end

 classification(i)=1;

 if ((LTA(i) ~= tindex) && (LTA(i)>0)) %add interval

between acquisitions to diffTimes vector

 diffTimes(k)=tindex-LTA(i);

 k=k+1;

 end

 LTA(i)=tindex;

 else if (tindex > timecheck) && (classification(i)==1)

 classification(i)=2;

 known(j)=known(j) - 1;

 update(j)=update(j) + 1;

 else if (tindex > timecheck2) && (classification(i)==2)

 classification(i)=0;

 unknown(j)=unknown(j) + 1;

 update(j)=update(j) - 1;

 end

 end

 end

 end

 end

 tindex=tindex+tstep;

end

numpossdetect

numdetect

toc

 67

return

 68

GETREALSENSORS (generates sensor data for actual sensor locations):

function[Sensor,sensorperiod,Laz1,Laz2,Raz1,Raz2,Lel,Uel,Mel]=genrealsenso

rs(n,numsensors)

% generates sensors using actual LAT/LONG (or close approximations

thereof)

% Eglin AFB (Florida) Phased array radar 30.57N, 273.79

% Thule AFB (Greenland) Phased array radar 76.57N, 291.70E

% RAF Fylingdales (Great Britain) Phased array radar 54.37N, 359.33E

% Clear AS (Alaska) Phased array radar 64.29N, 210.81 E

% Cavalier AS (North Dakota) Phased array radar 48.72N, 262.10E

% Cape Cod AS (Massachusetts) Phased array radar 41.75N, 289.46E

% Beale AFB (California) Phased array radar 39.14N, 238.65E

% Eareckson AFB (Alaska) Phased array radar 52.74N, 174.09E

Lat = [30.57,76.57,54.37, 64.29, 48.72, 41.75, 39.14, 52.74];

Long = [-86.21,-68.30,-0.67, -149.19, -97.90, -70.54, -121.35,-185.91];

LAzimuth1 = [120,297,0,170,298,347,126,259];

RAzimuth1 = [240,360,360,360,360,360,360,360];

LAzimuth2 = [0,0,0,0,0,0,0,0];

RAzimuth2 = [0,177,0,110,78,227,6,19];

LElevation = [1,3,4,1.5,1.9,3,3,0.6];

UElevation = [105,80,70,90,95,80,80,80];

for i=1:numsensors

 senslat=Lat(i);

 senslong=Long(i);

 [st,sA,sB,sC]=sensorposition(senslat,senslong,n);

 Sensor(1,:,i)=sA;

 Sensor(2,:,i)=sB;

 Sensor(3,:,i)=sC;

 Sensor(4,:,i)=st;

 sensorperiod(i)=1;

 Laz1(i)=LAzimuth1(i);

 Raz1(i)=RAzimuth1(i);

 Laz2(i)=LAzimuth2(i);

 Raz2(i)=RAzimuth2(i);

 Lel(i)=LElevation(i);

 Uel(i)=UElevation(i);

 Mel(i)=0.5*(UElevation(i)-LElevation(i));

end

 69

return

 70

FINDANGLE (determines azimuth and elevation angles between sensor and object):

function [angle,azelevcheck]=

findangle(vectorA,vectorB,graphics,Laz1,Laz2,Raz1,Raz2,Lel,Uel)

% function determines azimuth and elevation between sensor and orbiting

% object

% Vector A (v1) is the sensor's position, Vector B (v2) is the orbiting

object's

% position

azelevcheck=0;

v1=[vectorA(1),vectorA(2),vectorA(3)];

v2=[vectorB(1),vectorB(2),vectorB(3)];

v3=[v1(1)-v2(1),v1(2)-v2(2),v1(3)-v2(3)];

% Determine angle between v1 and v3

C = dot(v1,v3);

A = norm(v1);

B = norm(v3);

angle=acosd(C/(A*B));

% Determine azimuth and elevation between v1 and v2;

[az,elev1]=testhorizon(v1,v2);

 azimuth=az;

 elevation=angle-90.;

if (angle > 90.)

 if (((Laz1 < azimuth) && (azimuth < Raz1)) || ((Laz2 < azimuth) &&

(azimuth < Raz2)))

 if ((Lel < elevation) && (elevation < Uel))

 if (graphics==1)

 plot3(v2(1),v2(2),v2(3),'bo');

line([v2(1),v1(1),0],[v2(2),v1(2),0],[v2(3),v1(3),0],'Color','r');

 hold on

 end

 azelevcheck=1; % object within both elevation and azimuth

 else

 if (graphics==1)

 plot3(v2(1),v2(2),v2(3),'yo'); %object within azimuth

but not elevation

 end

 end

 else

 if (graphics==1)

 71

 plot3(v2(1),v2(2),v2(3),'go'); %object not within

azimuth

 end

 end

end

return

 72

INTERPORBIT (interpolates to find desired object position given time):

function

[targetA,targetB,targetC]=interporbit(object,tindex,color,color1,graphics)

% function interpolates object for a given time (tindex)

[row,timeindex]=find(object(4,:)>tindex,1);

lowertimeindex=timeindex-1;

targetA=object(1,timeindex)-(object(4,timeindex)-

tindex)/(object(4,timeindex)-

object(4,lowertimeindex))*(object(1,timeindex)-object(1,lowertimeindex));

targetB=object(2,timeindex)-(object(4,timeindex)-

tindex)/(object(4,timeindex)-

object(4,lowertimeindex))*(object(2,timeindex)-object(2,lowertimeindex));

targetC=object(3,timeindex)-(object(4,timeindex)-

tindex)/(object(4,timeindex)-

object(4,lowertimeindex))*(object(3,timeindex)-object(3,lowertimeindex));

% graphs output

if (graphics==1)

 % uncomment next line for additional display options

%plot3(object(1,:),object(2,:),object(3,:),color1);

%plot3(object(1,timeindex),object(2,timeindex),object(3,timeindex),'o')

%plot3(object(1,lowertimeindex),object(2,lowertimeindex),object(3,lowertim

eindex),'o')

plot3(targetA,targetB,targetC,color)

hold on;

end

return

 73

ORBIT (generates Cartesian coordinate reference table given orbital elements):

function [tm,x,y,z,badorbit] = orbit(e,p,inc,L,RPD,M,n)

% Orbital Elements

% Shape, Size and Orientation of Ellipse

% Eccentricity (e)

% Semi-major axis (a) calculated from Period (T) in days, data is in

% revolutions per day (RPD)

% Argument of the periapsis (p)

% Orientation of orbital plane

% Inclination (inc)

% Longitude of the ascending node (L)

% Position of orbiting body

% Mean anomaly at epoch (M)not yet!!!!!!

%

% n is number of points along orbit

% Orbital State Vectos

% Position (x,y,z)

% Velocity (x,y,z) don't use this yet!

% theta = originally theta, working towards time (seconds)

% Generate equation of ellipse (in two dimensions)

% eccentricity of an ellipse = sqrt(a^2 - b^2)/a where a is semi-major

% axis, b is semi-minor axis

% Derive semi-major axis using formula T = 2Pi*sqrt(a^3/mu)

ER = 6371; % estimated radius of the EARTH in km

mu = 398600.4418; % geocentric gravitational constant (km^3/s^2) +/-

0.0008

T = 1/RPD;

a = ((((T*24*60*60)/(2*pi))^2)*mu)^(1/3);

b = sqrt((a^2)*(1-e^2));

c = sqrt((a^2)-(b^2));

badorbit=0;

if ((a-c) < (ER + 160))

 badorbit=1;

 tm=0;

 x=0;

 y=0;

 z=0;

 return;

end

x1 = [];

y1 = [];

z1 = [];

theta = [];

for i = 1:n+1 %uses degrees, Cartesian coordinates

 t = (360*i)/n;

 74

 x1(i) = a*cosd(t)+c;

 y1(i) = b*sind(t);

 theta(i)=i;

end

[theta1,r1]=cart2pol(x1,y1);

% orients orbit in plane (Argument of the periapsis)

for i=1:n+1

 r2(i)=r1(i);

 theta2(i)=theta1(i)+pi*p/180;

end

z1 = zeros(n+1);

% inclination, uses degrees, Cartesian coordinates

[x2,y2]=pol2cart(theta2,r2);

z2=z1;

for i=1:n+1

 x3(i)=x2(i);

 y3(i)=y2(i)*cosd(inc);

 z3(i)=y2(i)*sind(inc);

end

[theta3,r3]=cart2pol(x3,y3);

%Longitude of the ascending node, uses Polar, radians

for i=1:n+1

 theta4(i)=theta3(i)+pi*L/180;

 r4(i)=r3(i);

 z4(i)=z3(i);

end

[x4,y4]=pol2cart(theta4,r4);

x=x4;

y=y4;

z=z4;

tm=(theta-1)*T/n;

return

 75

SENSORPOSITION (generates Cartesian coordinate reference table given sensor LAT LONG):

function [tm,x,y,z] = sensorposition(Lat,Long,n)

% MOD 18 MAR 10, changed i to i-1, line 49 to i

% given latitude, longitude of sensor, time T, number of points n

% output would be x,y,z coordinates for given time t

% center of earth assumed to be (0,0,0)

% radius = cos(lat)*radius of earth

% equals a, eccentricity 0

% z = sin(lat)*radius

% z is north, south displacement from equator (z=0)

ER = 6371; % Earth's radius (km)

x1 = [];

y1 = [];

z = [];

theta = [];

a=cosd(Lat)*ER;

z0=sind(Lat)*ER;

for i = 1:n+1 %uses degrees, Cartesian coordinates

 t = (360*(i-1))/n;

 x1(i) = a*cosd(t);

 y1(i) = a*sind(t);

 z1(i)=z0;

 theta(i)=i-1;

end

[theta1,r1]=cart2pol(x1,y1);

% orients sensor wrt longitude

for i=1:n+1

 t = (2*pi*(i-1))/n;

 r2(i)=r1(i);

 theta2(i)=theta1(i)+pi*Long/180;

end

[x2,y2]=pol2cart(theta2,r2);

z2=z1;

x=x2;

y=y2;

z=z2;

tm=(theta)/n;

return

 76

TESTHORIZON (determines azimuth and elevation angles between two objects):

function [Az, El] = testhorizon(v1,v2)

ER = 6371.;

% v1 sensor

% v2 satellite

[Lat1,Long1,r1] = XYZtoLatLong(v1(1),v1(2),v1(3));

[Lat2,Long2,r2] = XYZtoLatLong(v2(1),v2(2),v2(3));

% DETERMINE AZIMUTH BETWEEN POINTS

 Az1 = -atand((sind(Long1-Long2)*cosd(Lat2)) / (cosd(Lat1)*sind(Lat2)-

sind(Lat1)*cosd(Lat2)*cosd(Long1-Long2)));

 %origAz=Az1;

 if (((Long1-Long2 < 0.)&&(Az1<0.)) || ((Long1-Long2 >=0.) &&

(Az1>=0.)))

 Az2=Az1+180.;

 else

 Az2=Az1;

 end

if (Az2<0.)

 Az=Az2+360.;

else

 if (Az2>360.)

 Az=Az2-360.;

 else

 Az=Az2;

 end

end

% DETERMINE ALTITUDE BETWEEN POINTS

% Express altitude of satellite in terms of Earth radii

nu = r2/ER;

C = dot(v1,v2);

A = norm(v1);

B = norm(v2);

angle=acosd(C/(A*B));

Zeta = atand(sind(angle)/(cosd(angle)-(1/nu)));

El=90.-Zeta;

return

 77

TESTORBITSFORCRASH (determines if an orbital path intersects with the Earth):

function[numcrash]= testorbitsforcrash(orbit,numorbits,n)

ER = 6371;

numcrash = 0;

for j=1:numorbits

 numcrashpts = 0;

 for i=1:n

 [theta,phi,r]=cart2sph(orbit(1,i,j), orbit(2,i,j), orbit(3,i,j));

 if (r < ER)

 numcrashpts=numcrashpts+1;

 end

 end

 if (numcrashpts > 0)

 numcrash = numcrash + 1;

 end

end

return

XYZtoLatLong (Transforms Cartesian coordinates to LAT LONG):

function [Lat,Long,r] = XYZtoLatLong(x,y,z)

[u,w,r]=cart2sph(x,y,z);

Lat=w*180/pi;

Long=u*180/pi;

return

 78

SAMPLE OBJECT DATA

Type Name Catalog No Inclination

Right Ascension

of Ascending

Node

Eccentricity with

assumed leading

decimal

Argument of the

Perigee
Mean Anomaly

Revolutions per Day

(Mean Motion)

science ALOUETTE 1 (S-27) 62049A 80.4648 251.8838 0.0023025 349.5556 10.5107 13.68715984

visual ATLAS CENTAUR 2 63047A 30.3596 178.3192 0.0617140 232.2213 122.0908 13.95019150

visual THOR AGENA D R/B 64002A 99.1179 213.9160 0.0034184 329.0696 30.8477 14.31262047

visual SL-3 R/B 64053B 65.0783 114.7148 0.0067687 182.9541 177.1170 14.58087698

radar CALSPHERE 1 64063C 90.1618 327.4639 0.0029040 159.9719 200.2584 13.70471856

radar CALSPHERE 2 64063E 90.1601 330.4444 0.0017390 174.6886 185.4445 13.52465796

amateur OSCAR 3 (OSCAR III) 65016F 70.0729 120.2392 0.0017634 144.3028 215.9259 14.04716330

radar LCS 1 65034C 32.1390 105.2034 0.0006389 67.7772 292.3399 9.89276733

radar TEMPSAT 1 65065E 89.8120 299.9671 0.0069665 338.5007 21.3201 13.33258554

radar CALSPHERE 4(A) 65065H 90.1870 83.6638 0.0068244 264.5683 94.7659 13.35316532

engineering ATS 1 66110A 7.8760 310.5213 0.0004022 194.0313 166.1092 1.00287763

visual SL-8 R/B 67045B 74.0096 157.3332 0.0068430 188.9104 171.0837 14.42461491

nnss TRANSIT 16 67048A 89.6518 202.8668 0.0019166 167.5588 192.6038 13.49715187

radar OPS 5712 (P/L 160) 67053A 69.9333 114.5810 0.0005473 122.7943 237.3730 14.38270313

radar OPS 5712 (P/L 153) 67053H 69.9725 42.6828 0.0009334 293.9270 66.0858 13.95924200

radar SURCAL 150B 67053J 69.9562 290.1594 0.0005144 288.6539 71.4032 14.46484256

nnss TRANSIT 17 67092A 89.2601 121.1666 0.0049501 6.4027 353.7746 13.52425083

engineering ATS 3 67111A 9.4010 317.9042 0.0014372 41.1997 319.0219 1.00272521

nnss TRANSIT 18 68012A 89.9811 286.6698 0.0073208 258.1256 101.1673 13.50527125

visual SL-8 R/B 68040B 74.0371 254.7099 0.0034916 255.7323 103.9981 14.84217194

visual OAO 2 68110A 34.9967 319.3812 0.0004864 106.3304 253.7916 14.44867250

visual ISIS 1 69009A 88.4306 109.3396 0.1714745 116.8385 261.8099 11.28858762

visual METEOR 1-1 69029A 81.1640 18.4029 0.0008460 142.3132 217.8713 15.48132716

amateur OSCAR 5 (AO-5) 70008B 102.1298 203.1031 0.0027614 296.4760 63.3475 12.52156866

visual SERT 2 70009A 99.2111 63.5865 0.0004101 262.3381 97.7293 13.58227505

nnss NNSS 19 70067A 89.8661 311.4022 0.0173749 17.3789 343.3202 13.50136236

noaa NOAA 1 [-] 70106A 102.0767 182.6714 0.0032254 32.8711 327.4357 12.53929774

visual SL-3 R/B 70113B 81.1481 196.2695 0.0041901 128.2787 232.2263 15.13601856

visual SL-3 R/B 71028B 81.2357 210.1171 0.0049862 137.2753 223.2354 15.02304389

radar RIGIDSPHERE 2 (LCS 4) 71067E 87.6210 243.0759 0.0068264 98.6101 262.2848 14.31160538

visual ASTEX 1 71089A 92.7088 350.8867 0.0018584 39.6318 320.6234 14.46204194

visual SL-8 R/B 71119B 73.9034 113.7181 0.0805298 196.1176 161.2908 13.76817803

visual COSMOS 482 DESCENT CRAFT72023E 52.0992 348.7405 0.2209595 158.3818 212.7216 11.17121809

visual OAO 3 (COPERNICUS) 72065A 35.0093 290.9770 0.0006974 227.7892 132.2219 14.56569021

visual ATLAS CENTAUR R/B 72065B 35.0071 331.7782 0.0040162 64.5278 295.9586 14.67976629

radar RADCAT 72076A 98.5934 203.0972 0.0001841 276.6044 83.4994 15.28915313

noaa NOAA 2 [-] 72082A 101.4023 208.8402 0.0003289 237.7502 122.3252 12.53003216

amateur OSCAR 6 (AO-6) 72082B 101.3948 203.3712 0.0003671 203.4751 156.6155 12.53077661

nnss NNSS O-20 73081A 89.8572 357.7087 0.0160190 39.0686 322.1914 13.69753461

noaa NOAA 3 [-] 73086A 101.7248 213.3275 0.0006657 125.5673 234.6013 12.40298054

visual SL-8 R/B 73107B 73.9559 205.1120 0.0428516 63.4670 300.9743 14.68035739

visual SL-8 R/B 74044B 82.8815 58.6073 0.0218975 356.1483 3.8029 15.24923796

noaa NOAA 4 [-] 74089A 101.4400 215.4384 0.0008712 271.3318 88.6757 12.53052965

amateur OSCAR 7 (AO-7) 74089B 101.4247 215.2923 0.0011806 221.0439 138.9749 12.53575894

geodetic STARLETTE 75010A 49.8248 37.3686 0.0205926 151.0617 210.1880 13.82271245

visual DELTA 1 R/B 75072B 89.1518 336.0515 0.0946567 192.1329 165.5581 13.68710298

goes GOES 1 [-] 75100A 14.3596 347.6531 0.0002587 247.0011 113.0042 1.00286170

visual SL-8 R/B 75112B 74.0606 28.2981 0.0016716 206.0398 153.9926 14.35884543

geo LES 9 76023B 10.9221 147.7958 0.0023770 324.8980 34.7519 1.00267179

	abstract
	Bjerkaas_Thesis_Final

