
ABSTRACT

ASGHARZADEH TALEBI, ZOHREH. Exact and Inexact Methods for Solving the
View and Index Selection Problem for OLAP Performance Improvement. (Under the
direction of Dr. Yahya Fathi and Dr. Rada Chirkova).

In on-line analytical processing (OLAP), precomputing (materializing as views)

and indexing auxiliary data aggregations is a common way of reducing query-evaluation

time (cost) for important data-analysis queries. We consider an OLAP view- and

index-selection problem as an optimization problem, where (i) the input includes the

data-warehouse schema, a set of data-analysis queries of interest, and a storage-limit

constraint, and (ii) the output is a set of views and indexes that minimizes the total

cost of evaluating the input queries, subject to the storage limit. While greedy and

other heuristic strategies for choosing views or indexes might have some success in

reducing the cost, it is highly nontrivial to arrive at a globally optimal solution, one

that reduces the processing cost of typical OLAP queries as much as is theoretically

possible.

In this dissertation we present a systematic study of the OLAP view- and index-

selection problem. Our specific contributions are: (1) we introduce an integer pro-

gramming model for OLAP view- and index-selection problem; (2) we develop an

algorithm that effectively and efficiently prunes the space of potentially beneficial

views and indexes of the problem, and provide formal proofs that our pruning al-

gorithm keeps at least one globally optimal solution in the search space, thus the

resulting integer-programming model is guaranteed to find an optimal solution; this

allows us to solve realistic-size instances of the problem within reasonable execution

time. (3) we develop a family of algorithms to further reduce the size of the search

space so that we are able to solve larger instances of the problem, although we no

longer guarantee global optimality of the resulting solution; and (4) we present an

experimental comparison of our proposed approach with other approaches discussed

in the open literature. Our experiments show that our proposed approach to view and

index selection results in high-quality solutions — in fact, in the global optimal solu-

3

tions for many realistic-size problem instances. Thus, it compares favorably with the

well-known OLAP-centered approach of [13] and provides for a winning combination

with the end-to-end framework of [2] for generic view and index selection.

Zohreh
Rectangle

Exact and Inexact Methods for Solving the View and Index Selection Problem for
OLAP Performance Improvement

by
Zohreh Asgharzadeh Talebi

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fullfillment of the
requirements for the Degree of

Doctor of Philosophy

Operations Research

Raleigh, North Carolina

2010

APPROVED BY:

Dr. Yahya Fathi Dr. Rada Chirkova
Co-Chair of Advisory Committee Co-Chair of Advisory Committee

Dr. Matthias Stallmann Dr. Carla Savage

ii

DEDICATION

To My Parents...

iii

BIOGRAPHY

Zohreh Asgharzadeh Talebi has received her B.S. degree in Industrial Engineering

from Sharif University of Technology in 2003 and her M.S. degree in Operations

Research from North Carolina State University in 2006.

While studying at North Carolina State University, Zohreh has been an active

member of several student associations. She served as a president of Omega Rho

Honor Society NCSU chapter, and as a secretary of INFORMS NCSU chapter. In

2006 Zohreh won the Elmaghraby distinguished student award. She is a member

of Phi Kappa Phi, Omega Rho, INFORMS, SIAM, and IEE. Currently, Zohreh is

working as an operations research analyst at SAS Institute in Cary, NC.

iv

ACKNOWLEDGMENTS

I would like to offer my sincerest gratitude to my advisors Dr. Yahya Fathi and

Dr. Rada Chirkova for their supervision, advice, and their continued support and

encouragement. Their invaluable advice toward being a professional is one of my

greatest assets which I will carry throughout my life.

I also would like to thank Dr. Matt Stallmann and Dr. Carla Savage for serving

on my committee. I have benefited a lot from Dr. Stallmann’s comments on my work.

Also Dr. Savage’s Graph Theory course was the most joyful course I have ever taken

which affected my dissertation path significantly.

For the last year and a half I was lucky to have Reza beside me who has been a

great source of motivation and joy in my life. I would like to thank him very much.

Last and most, I would like to express my deepest affection for my parents, who I

dedicate this work to, and my brothers and sister who are always there for me. It has

not been easy living so far away from them, but their motivation and support made

this journey a lot easier.

vii

LIST OF TABLES

Table 2.1 The Sales table of Example 3. 14

Table 2.2 The Company table of Example 3 . 14

Table 2.3 The Time table of Example 3 . 14

Table 2.4 The table for view V of Example 3. 15

Table 2.5 The table for the raw-data view of Example 3. Since the group-
ing attributes of the raw-data view is all of the dimension attributes of the
stored data, the columns related to aggregations (i.e. Sum(QtySold) and
Max(QtySold)) are the same as the column QtySold. 15

Table 2.6 The table for view V1 of Example 4 . 17

Table 4.1 Comparison of the number of views and indexes in models IP1 and IP2
for the instances over the 7-attribute TPC-H database. 36

Table 4.2 Comparison of the number of views and indexes in models IP1 and IP2
for the instances over the 13-attribute TPC-H database. 36

Table 4.3 The time required to solve the instances over the 7-attribute database
using model IP2, and the time required to build the search space of views and
indexes. 37

Table 4.4 The time required to solve the instances over the 13-attribute database
using model IP2, and the time required to build the search space of views and

viii

indexes. We could not solve the last four instances as the computer ran out
of memory. 38

Table 6.1 The value of cost obtained using model IPN and the optimal value of
cost (obtained from solving model IP2) for instances over the 13-attribute
database. α is defined in the context of Formula 4.1 for storage space. 49

Table 6.2 The value of cost obtained by model IPN and the optimal value of cost
(obtained from solving model IP2) for instances on the 13-attribute database.
Queries in instances 1 and 2 are from the upper levels of the view lattice,
queries in instances 3-7 are from the middle levels of the view lattice, and
queries in instances 8-12 are from the lower levels of the view lattice. 50

Table 6.3 Comparison of (1) the value of cost obtained from solving model IPN
with the value of cost obtained from solving model IP2 (optimal), (2) the total
time required to solve each of the instances using model IPN with the total
time required to solve the same instance using model IP2, and (3) the number
of indexes in the search space of indexes of model IPN with the corresponding
number in model IP2 for each of the instances over the 7-attribute database. 52

Table 6.4 Comparison of (1) the value of cost obtained from solving model IPN
with the value of cost obtained from solving model IP2 (optimal), (2) the total
time required to solve each of the instances using model IPN with the total
time required to solve the same instance using model IP2, and (3) the number
of indexes in the search space of indexes of model IPN with the corresponding
number in model IP2 for each of the instances over the 13-attribute database. 53

Table 6.5 Comparison of the value of cost obtained from model IPNIRp with the
value of cost obtained from model IPN for different values of p for a large
instance on the 13-attribute database with 100 queries. 55

Table 6.6 The value of p0.01 for instances on the 13-attribute database. 56

Table 6.7 The value of p0.01 for instances on the 17-attribute database. 57

ix

Table 6.8 Solving a large instance with 70 queries on the 17-attribute database
using model IPNIRp with p=20. We could not solve this instance using p=10
in one hour. 58

Table 6.9 The result of solving instance 1 over the 17-attribute database using
model IPVs for different values of s. 59

Table 6.10 The result of solving instance 2 over the 17-attribute database using

model IPVs for different values of s. 59

Table 6.11 The result of solving instance 3 over the 17-attribute database using

model IPVs for different values of s. 60

Table 6.12 The result of solving instance 4 over the 17-attribute database using

model IPVs for different values of s. 60

Table 6.13 Comparing model IPVs when s = 1 and model IPN for 18 instances

over a 13-attribute database. Instances are the same as instances in Table 6.6. 61

Table 6.14 Comparing model IPVs when s = 1 and model IPNIRp with p = p0.01 for

18 instances over a 13-attribute database. Instances are the same as instances
in Table 6.6.. 62

Table 6.15 Comparing model IPVs when s = 1 and model IPN for some of the

instances in Table 6.13 when α = 0.1.. 63

Table 6.16 Comparing model IPVs when s = 1 and model IPN for some of the

instances in Table 6.13 when α = 0.2.. 63

Table 6.17 Comparison of (1) the costs obtained from solving models IPN and

IPACN, and (2) the time required to solve each of these instances using models
IPN and IPACN. Instances are over the 17-attribute database. Each instance
has 20 queries. 66

x

Table 6.18 Comparison of (1) the costs obtained from solving models IPN and

IPACN, and (2) the time required to solve each of these instances using models
IPN and IPACN. Instances are over the 13-attribute database. Each instance
has 20 queries. 68

Table 6.19 The value of cost obtained from GHRU when it is applied on different

search spaces for 6 instances over the 7-attribute database. 72

Table 6.20 The total execution time of applying GHRU on different search spaces

for 6 instances over the 7-attribute database. (In these instances, the time
required to find each search space is significantly shorter than the time required
to apply GHRU on that search space.) . 73

Table 6.21 Comparison of (1) the cost obtained from solving model IPN with the

cost obtained by algorithm GHRU, and (2) the execution times of solving IPN
with the required times to apply algorithm GHRU for each of the instances
over a 7-attribute database. Each instance has 10 queries. 73

xi

LIST OF FIGURES

Figure 3.1 Digraph Gv for Example 5. 28

Figure 6.1 Comparison of the size of the search space of views and indexes in
models IPN and IPACN for the instances over the 17-attribute database. . . . 67

Figure 6.2 Comparison of the size of the search space of views and indexes in
model IPN and IPACN for the instances over the 13-attribute database. . . . 69

1

Chapter 1

Introduction

On-line analytical processing (OLAP) and data warehousing are specially designed

to enable executives, managers, and analysts to make better and faster decisions.

OLAP applications include marketing, business and management reporting, budget-

ing, forecasting, health care, systems analysis, etc. Users are mainly interested in

summary information of a measure as a function of some business aspects (dimen-

sions). For instance, consider a warehouse that keeps the information related to a

company’s sales. For each sales event, interesting dimensional information can be the

product sold, the time of sale, and the customer.

In practice, the number of dimensions for a data warehouse can be relatively

large, and each dimension can have a number of distinct attributes which are stored

in a separate dimension table (e.g., attributes of “product” could be its “color”,

its “size”, its “weight”, etc.). User queries typically specify these attributes, and

preparing a response to a query could involve an extensive search through a number

of dimension tables for proper attribute values. As a result, it may be quite time

consuming to answer aggregate queries directly from the stored data in the database.

In order to accelerate query evaluation, a common practice is to pre-compute and

store (materialize) auxiliary data such as views and indexes (see [10]).

As we shall explain later, for a given database, the total number of distinct views

and indexes can be extremely large; hence it is not always practicable to materialize

2

all potentially beneficial views and indexes due to the limited amount of storage space

that we can physically maintain. This is where the problem of selecting a subset of

views and indexes arises. In this context we are typically interested in making the

selection that would maximize the associated benefit (e.g., minimize the response

time for a given collection of queries) while observing the storage space limit.

Throughout this work we assume that data warehouses under consideration have

the star schema [10] with a single fact table and several dimension tables under the

realistic assumption that in each table all rows have a single fixed length (upper

bound), and that the time (cost) of evaluating a query is proportional to the number

of stored-data tuples scanned by the query-processing system when evaluating the

query [13, 14]. We now give an example that shows how materialized views and

indexes may speed up the evaluation times of aggregate queries.

Example 1. Consider a data warehouse with three stored tables: Sales(CID,DateID,

QtySold), Company(CID,CompName,State), and Time(DateID,Day,Month,Year).

Here, Sales is the fact table in the star schema of the data warehouse, and Company

and Time are dimension tables, with key attributes underlined.

Suppose the query workload has two queries, Q1 and Q2. Q1 asks for the total

quantity of products sold in November 2006. Q2 asks for the maximum product

quantity sold in 2006 to companies in North Carolina. The SQL representation of

the queries is as follows:

Q1 : Q2 :

SELECT SUM(QtySold) SELECT MAX(QtySold)

FROM Sales s, Time t, Company c FROM Sales s, Time t, Company c

WHERE s.DateID = t.DateID WHERE s.DateID = t.DateID

AND s.CID = c.CID AND Year = 2006 AND s.CID = c.CID AND State = ‘NC’

AND Month = ’Nov’; AND Year = 2006;

Each of Q1 and Q2 can be answered using either the original stored fact and

3

dimension tables or the raw-data view1 of this data warehouse. (Under the realistic

assumption that the warehouse contains indexes on the primary keys of all the stored

tables, these two strategies for evaluating Q1 have similar costs; the same point holds

about Q2.)

We can use techniques from [1, 14] to show that the following view V can be used

to give exact answers to each of Q1 and Q2.

V :

SELECT s.CID, Year, Month, State, SUM(QtySold) AS SumQS, MAX(QtySold) AS

MaxQS

FROM Sales s, Time t, Company c

WHERE s.DateID = t.DateID AND s.CID = c.CID

GROUP BY s.CID, Year, Month, State;

When we materialize V as a table in the data warehouse, under a wide range of

realistic assumptions on the contents of the stored data, there is an evaluation-time

benefit to use V instead of the raw-data view (or of the original stored tables) in

answering each of Q1 and Q2. This benefit is present even when we assume that no

indexes have been created on the stored table V. However, if we create a B+-tree

index I on the sequence of attributes Month, State, Year, CID of the table V, we

may be able to further cut the evaluation costs for Q1 using V. The reason for this

further cost reduction is that index I permits the OLAP system to scan only those

tuples of the view that contribute directly to the answer to Q1. (These are the tuples

that have the sales information only for November.) At the same time, in answering

query Q2 using view V, index I is not beneficial, because the order of the attributes

in I is in such a way that I cannot be used to limit the number of tuples scanned for

Q2. 2

1The raw-data view of a star-schema data warehouse is the table resulting from the star join of
all the stored (both fact and dimension) tables. The raw-data view can be defined in SQL as a
GROUP BY, on all the dimension attributes of the stored data, of the table resulting from the star
join.

4

The prominent role of materialized views and indexes in improving query-processing

performance has long been recognized, see, for instance, [7, 22]. Enterprise-class

database-management systems that provide modules for generic view and index se-

lection include Microsoft SQL Server [2, 23] and DB2 [7].

We consider the following optimization problem that we refer to as the OLAP

view- and index-selection problem. Given a data warehouse schema, a set of data-

analysis queries of interest, and an upper bound b on the available storage space, find

a collection of views and indexes that would fit within the storage limit b and would

minimize the cost measure (evaluation time) for the given queries.

Since the total number of possible views (subsets of the set of attributes) and

their associated indexes (permutations of the attributes in the given view) is finite,

in theory this problem can always be solved using a complete enumeration of all

solutions. But even for a database with a relatively small number of attributes, this

approach is not practicable since the total number of such solutions can be extremely

large. Note that for a collection of k attributes, we have 2k views in the data cube

and 22k
distinct subsets of views, and for each view v we have (|v|)! possible indexes,

where |v| represents the number of attributes in view v. In fact, NP-completeness of

a variant of the problem described here is proved in [13]. Thus, it is natural to look

for heuristic solutions. Well-known past efforts in this direction include [2, 13]; we

discuss these approaches in detail in Section 1.3.

1.1 Contributions

Our approach for solving the view- and index-selection problem is to develop an

integer programming model for this problem and to use the structural properties of

the views and indexes to reduce the number of potential views and indexes in the

search space of this model. More specifically, our contributions are as follows:

1- We model the view- and index-selection problem as an integer programming

(IP) model.

5

2- We develop an algorithm that effectively and efficiently prunes the search space

of potentially beneficial views and indexes (Chapter 3). The pruned search

space significantly reduces the size of our IP model, so that for realistic-size

instances of the problem this IP model can be solved efficiently by an IP solver

such as CPLEX [15].

3- We provide formal proofs that our pruning algorithm keeps in the search space

at least one globally optimal solution. Thus, the solution obtained after solving

the corresponding IP model is guaranteed to be globally optimal. This includes

many problem instances of practical interest.

4- We develop a family of algorithms to further reduce the size of the search space.

In this reduction, we only keep a collection of promising views and indexes and

remove many other feasible solutions. With this reduction, we bring the size

of the search space down to a manageable level even for larger instances of the

problem. However, we can no longer guarantee that the solution obtained by

the IP model is optimal for the original problem. Thus, our proposed algorithms

in this context are IP-based inexact methods (heuristic procedures) for solving

the OLAP view- and index-selection problem.

5- We present an experimental comparison of our IP-based inexact approach with

an OLAP-modified view- and index-pruning approach of [2]. Our experiments

show that for the special case of OLAP queries, the resulting IP model is small

enough to solve by an IP-solver such as CPLEX within reasonable execution

time while still retaining solutions that have significantly better (i.e., lower)

cost than those produced when the OLAP-modified approach of [2] is used as

a heuristic to reduce the size of the search space.

6- We report the results of a computational experiment where we evaluate the

performance of the well-known view- and index-selection approach of [13], which

we refer to it as Algorithm GHRU, when it is applied on several different search

spaces that we propose in Chapters 3 and 5. In our experiments we observed

6

that when we apply GHRU on the original search space of views and indexes, we

obtain solutions which are far away from the optimal solutions. Furthermore,

when we reduce the search space of views and indexes through our proposed

approach (prior to applying GHRU), then GHRU selects a better combination

of views and indexes as compared with those it originally obtains.

In Chapter 6 we report the results of applying our IP-based heuristic and the

approach of [13] on a collection of instances.

Our research in the context of selecting views and indexes has resulted in several

publications including [3], [4], and [21].

1.2 Dissertation Structure

In the remainder of this chapter, we review the related work. In Chapter 2 we

present a formal definition of the view- and index-selection problem and discuss the

formulation and settings. In Chapter 3 we present the integer programming model for

view- and index-selection problem. In this chapter we also propose specific procedures

to reduce the size of the initial search space of views and indexes, with the goal

of reducing the size of the integer programming model, while maintaining that the

resulting optimal solution of the IP model is also globally optimal for the original

problem. In Chapter 4 we present our experimental results for the proposed exact

approach of Chapter 3. In Chapter 5 we propose methods for further reducing the

size of the search space of views and indexes in order to reduce the size of the resulting

IP model, but we no longer guarantee global optimality. We present and discuss our

experimental results for the proposed inexact methods in Chapter 6. In Chapter 7

we conclude our work.

7

1.3 Related Work

The prominent role of materialized views and indexes in improving query-processing

performance has long been recognized, see, for instance, [7] and [22]. Enterprise-class

database-management systems that provide modules for generic view and index selec-

tion include Microsoft SQL Server (see [2] and [23]) and DB2 (see [5], [26], and [28]).

At the same time, while it can be relatively easy to improve to some degree query-

evaluation costs by using, for instance, greedy strategies for choosing indexes or views,

it is highly nontrivial to arrive at a globally optimal solution, i.e., one that reduces the

processing costs of the given OLAP queries as much as is theoretically possible. As

observed in [17] and to the best of our knowledge, there is no known approximation

algorithm (with nontrivial performance guarantees) for the view- and index-selection

problem in the open literature. Hence it is natural to look for heuristic approaches

for solving the problem. Well-known past efforts in this direction include the work

by Agrawal et al. in [2] and Gupta et al. in [13].

Two families of algorithms for solving the problem of view and index selection in

a generalization of the OLAP setting is proposed in [13]. Karloff and Mihail in [17]

disproved the strong performance bounds of these algorithms, by showing that the

underlying approach of [14] cannot provide the stated worst-case performance ratios

unless P=NP.

A well-known tool for automated selection of materialized views and indexes for

a wide variety of query, view, and index classes in relational database systems is

presented in [2]. The approach of [2], implemented in Microsoft SQL Server, is based

partly on the authors’ previous work (see [11]) on index selection. The contributions

stated in [2] are (i) an end-to-end framework for view and index selection in practical

systems, and (ii) a module for building (pruning) the search space of potential views

and indexes for a given query workload. In this dissertation, we experimentally show

that our proposed pruning algorithms for view and index selection fare well when

compared (in the special case of OLAP queries) to the pruning algorithm proposed

by [2]. This implies that our proposed algorithms are also suitable for complementing

8

the overall framework proposed in [2] in the special case of OLAP.

A uniform approach for selecting views and indexes for OLAP queries is proposed

in [12]. This approach considers view- and index-maintenance costs alongside query-

response costs. The paper proposes to use a “bond energy” algorithm for initial

clustering of indexes, and then to apply a partitioning method to select a set of

views or indexes. Once the best partition is found, views or indexes are eliminated

in a greedy manner, until the storage-space constraint is satisfied. This paper leaves

out most implementation details as well as any performance study of the proposed

approach, which makes the approach rather hard to compare with other work.

Other past work considers either selection of views only (VSP) (see, e.g., [6, 16, 24,

27] and references therein) or selection of indexes only (ISP) (see, e.g., [8, 9, 19, 11]

and references therein) for OLAP. Our work in this dissertation differs from the work

of these papers in that we consider the problem of selection of views and indexes

simultaneously. Yang and colleagues [27] propose an integer programming model for

selecting the search space of views, coupled with a heuristic algorithm for selecting

views from the resulting space. They include both query-processing costs and view-

maintenance costs in the cost measure. Note that in our approach we use integer

programming at the stage of view selection, rather than at the stage of forming or

pruning the search space, and that our search space includes not only views but also

indexes.

Caprara et al. in [8] introduced an uncapacitated facility location model in the

context of integer programming for solving ISP under the storage space constraint

to minimize the query response time and maintenance cost of indexes in a database.

They proposed optimal and heuristic methods to solve their model. They also pro-

posed an algorithm to solve very large scale instances of ISP.

Approaches proposed in [19] and [11] for ISP are configuration based where

each configuration is composed of several indexes. In [19] a genetic algorithm is

developed for solving ISP to select some predefined configurations that maximize the

total benefit of configurations minus the maintenance cost of the indexes in configu-

rations. In the setting of the approach in [19], each query can be responded using

9

indexes of at most one configuration. In [11], indexes in a configuration are built

based on the “useful” columns of the queries in the workload, and k single-column

indexes are selected using a Greedy(m,k) algorithm where first the combination of m

best indexes is selected by enumeration and the next k −m indexes are selected in a

greedy manner. After selecting single-column indexes, the approach of [11] considers

multi-column indexes as well.

Chaudhuri et al. in [9] studied the hardness of ISP by considering two subprob-

lems of ISP: one with the storage space constraint and the other with the clustered

index constraint (every table in the database has at most one clustered index). They

proved that both of these subproblems are NP-hard. They also proposed a heuristic

approach based on a knapsack model [20]. In their approach, they considered the

interactions of indexes on queries as well: They assigned a benefit to each index not

only by considering the effect of that index on that query, but also by considering the

effect of other indexes that can be useful for the same query. In this heuristic, the

benefit of each index is the sum of its benefit for all queries in the workload. They use

a greedy algorithm to solve the knapsack problem and have instance specific guaran-

tees for their algorithm. The number of indexes that they have to consider for each

query can be very large, which makes the benefit assignment to indexes substantially

more difficult.

10

Chapter 2

Preliminaries

In this chapter, first we define the scope of the view- and index-selection problem

that we consider, i.e., the type of the database, queries, views, and indexes. Next,

we introduce a cost model for this problem. Finally, we provide a formal definition

of the view- and index-selection problem.

We consider relational select-project-join queries with grouping and aggregation

(SPJGA) in star-schema data warehouses [10, 18]. Similarly to [13, 14, 16, 24], we

assume users frequently ask a limited number of SPJGA queries, such as itemized

daily sales reports, for a variety of parameters for products, locations, etc. Thus, we

assume parameterized queries, by allowing arbitrary constant values in the WHERE

clauses of the queries, and assume that specific values of these constants are not

known in advance. We consider star-schema data warehouses with a single fact table

and several dimension tables, under the following realistic assumptions. First, in each

base table all rows have a single fixed (upper bound on) length. Second, the fact table

has many more rows than each dimension table. Finally, we assume that each base

table has a single index, on the table’s key.

Our (original) search space of views is the view lattice defined in [14], which

includes all star-join views with grouping and aggregation (JGA views) on the base

11

tables. Each lattice view (1) has grouping on some of the attributes of the database,

and (2) has aggregation on all the attributes aggregated in the input queries, using

all the aggregation functions in the queries (such views are called “multiaggregate

views” [1]).

B+-tree indexes play an important role in answering queries efficiently by reducing

the number of rows needed to be scanned to answer the queries. As we will explain

in Subsection 2.1, the ordering of attributes in an index is important in answering a

query using that index. A B+-tree index can be defined by any permutation of any

subset of unaggregated (grouping) attributes of a view. In our study we consider only

fat indexes over the lattice views — an index for a given view v is said to be a fat

index if it is associated with a permutation of all of the grouping attributes of view

v.

We say a SPJGA query q can be answered using a JGA view v if and only if

the set of grouping attributes of v is a superset of the set of attributes in the GROUP

BY clause of q and those attributes in the WHERE clause of q that are compared with

constants. Furthermore, if view v is chosen for answering query q, then at most one

index of view v can be used to answer query q. By definition, each query q can be

answered using the raw-data view in the view lattice.

Example 2. Consider view v = {a, b, c, d} and queries q1={a, b} and q2={d, e} where

the letters a, b, c, d, and e represent distinct attributes in the database. Attributes

a, b, c, and d are the grouping attributes of view v. Attributes a and b form the

collection of attributes that are either in the GROUP BY clause of q1, or among those

attributes in the WHERE clause of q1 that are compared with constants. Similarly,

attributes d and e form the collection of attributes that are either in the GROUP BY

clause of q2 or among those attributes in the WHERE clause of q2 that are compared

with constants. Since q1 ⊆ v, view v can answer query q1. However, since q2 * v,

view v cannot answer query q2. 2

For ease of presentation, throughout this dissertation we use the letter v to repre-

sent both a view and the collection of grouping attributes for that view, and we use

12

the letter q to represent both a query and the collection of attributes in the GROUP

BY clause of that query plus those attributes in the WHERE clause of the query that

are compared with constants. Also, we use the character π to represent both a fat

index and the permutation vector associated with that fat index.

2.1 Cost Model

The cost model that we use is similar to the one proposed in [13], i.e., the cost of

answering query q using view v is the size of that portion of v that must be processed

(scanned) in order to construct the result of query q. We measure the size of a view

or a portion of a view as the number of rows in that view or in the portion thereof.

When we answer query q using only view v with no indexes, then we have to

scan all rows of v. Hence the corresponding cost is equal to the size of view v itself.

However, when we answer query q using view v and an index π of v, we only need to

read the part of v referenced by π with respect to q, hence the corresponding cost is

potentially smaller. Naturally the cost of answering a query in this situation depends

on the actual contents of the data set under consideration, and it can be factually

determined only after we have scanned the corresponding data. But in order to

compare various courses of action and devise an appropriate action plan we need to

evaluate this cost prior to scanning the data. Gupta et al. in [13] propose an approach

to obtain a reasonable estimate for this cost using the available information about

the size of various views in the view lattice. We adopt this approach to estimate the

cost coefficients in our models, and in the remainder of this section we introduce and

explain this approach.

Suppose A1 is the set of attributes in the GROUP BY clause of query q, and A2 is

the set of attributes that are compared with constants in the WHERE clause of query q.

Also suppose B is the set of grouping attributes of view v. Let π represent an index

over view v, i.e., a permutation of attributes in the set B. (Recall that we use the

character π to represent both the index and the corresponding permutation vector of

13

its attributes). As mentioned earlier, view v can be used to answer query q if and

only if (A1 ∪ A2) ⊆ B.

Let us use the notation cq(v, π) to denote the estimated cost of answering query q

using view v and its index π. Naturally cq(v, π) is defined only if view v can be used

to answer query q, i.e., if (A1 ∪ A2) ⊆ B. The value of cq(v, π), however, depends

on the size of view v and the relationship between its index π and the collection of

attributes A1 and A2. In particular, let vπ(q) denote the view whose set of grouping

attributes is identical to the largest subset of A2 that forms a prefix (not necessarily

proper) of π, i.e., the largest subset of attributes that are compared with constants

in the WHERE clause of q, and form a prefix of π. Then [13] suggests the following

formula to estimate the cost of answering query q using view v and index π

cq(v, π) =
size(v)

size(vπ(q))
(2.1)

where size(v) represent the size of view v as defined above1. For notational con-

venience, we use v = ∅ to represent the view which is aggregated on all of the at-

tributes of the database, and define size(∅) = 1. Furthermore, following the articles

by [14], [21], and [13], we assume that the total cost of answering a given collection

of queries is the sum of the costs of evaluating the individual queries.

In order to determine the size of a view in the view lattice, we can use either the

sampling method or the analytical method proposed by [13]. For a given view, if we

know that its grouping attributes are statistically independent, we can estimate its

size analytically from the size of the raw-data view. In this case the size of the view

is the number of distinct values of the grouping attributes of the view. Otherwise, we

estimate the size of the view by sampling from the raw data.

For ease of presentations, throughout the rest of this dissertation we assume that

for every query q in the workload, all of its attributes are in its WHERE clause and

they are compared with constants, and that its GROUP BY clause is empty, i.e., we

assume q = A2. Hence from here onward the notation vπ(q) in Equation 2.1 denotes

1Note that if the set of the grouping attributes of view v1 is a subset of the set of grouping
attributes of view v2, then we have size(v1) ≤ size(v2).

14

Table 2.1: The Sales table of Example 3

CID DateID QtySold
1 1 70
1 2 100
1 3 80
1 6 100
1 8 100
1 7 100
1 9 80
2 1 25
2 3 14
2 6 12
2 7 12
2 8 50
3 2 30
3 4 40
3 5 30
3 6 100
3 8 100

Table 2.2: The Company table of Exam-
ple 3

CID Name State
1 NCFL NC
2 SouthRoad SC
3 Unolits NC

Table 2.3: The Time table of Example 3

DateID Day Month Year
1 1 Nov 2006
2 10 Nov 2006
3 20 Nov 2006
4 5 Dec 2006
5 15 Dec 2006
6 5 Jan 2007
7 15 Jan 2007
8 5 Feb 2007
9 15 Feb 2007

the view whose set of grouping attributes are identical to the largest subset of q that

forms a prefix of π. (With minor modification, all results that we obtain here are

valid without this assumption.)

Example 3. Consider a data warehouse with three stored tables as in Example 1:

Sales(CID,DateID,QtySold), Company(CID,CompName,State), and Time(DateID,D-

ay,Month,Year). Here, Sales is the fact table, and Company and Time are dimension

tables. Tables 2.1, 2.2, and 2.3 present (for the purposes of this toy example) the

data in these tables.

Suppose the query workload consists of two queries, Q1 and Q2, described in

Example 1. Q1 asks for the total quantity of products sold in November 2006. Q2

asks for the maximum product quantity sold in 2006 to companies in North Carolina.

As we said in Example 1 we can use techniques from [1, 14] to show that the

following view V can be used to give exact answers to each of Q1 and Q2.

15

Table 2.4: The table for view V of Example 3

CID Year Month State Sum(QtySold) Max(QtySold)
1 2006 Nov NC 250 100
1 2007 Jan NC 200 100
1 2007 Feb NC 180 100
2 2006 Nov SC 39 25
2 2007 Jan SC 24 12
2 2007 Feb SC 50 50
3 2006 Nov NC 30 30
3 2006 Dec NC 70 40
3 2007 Jan NC 100 100
3 2007 Feb NC 100 100

Table 2.5: The table for the raw-data view of Example 3. Since the grouping at-
tributes of the raw-data view is all of the dimension attributes of the stored data,
the columns related to aggregations (i.e. Sum(QtySold) and Max(QtySold)) are the
same as the column QtySold.

CID Name State DateID Day Month Year QtySold
1 NCFL NC 1 1 Nov 2006 70
1 NCFL NC 2 10 Nov 2006 100
1 NCFL NC 3 20 Nov 2006 80
1 NCFL NC 6 5 Jan 2007 100
1 NCFL NC 8 5 Feb 2007 100
1 NCFL NC 7 15 Jan 2007 100
1 NCFL NC 9 15 Feb 2007 80
2 SouthRoad SC 1 1 Nov 2006 25
2 SouthRoad SC 3 20 Nov 2006 14
2 SouthRoad SC 6 5 Jan 2007 12
2 SouthRoad SC 7 15 Jan 2007 12
2 SouthRoad SC 8 5 Feb 2007 50
3 Unolits NC 2 10 Nov 2006 30
3 Unolits NC 4 5 Dec 2006 40
3 Unolits NC 5 15 Dec 2006 30
3 Unolits NC 6 5 Jan 2007 100
3 Unolits NC 8 5 Feb 2007 100

16

Q1 : Q2 :

SELECT SUM(QtySold) SELECT MAX(QtySold)

FROM Sales s, Time t, Company c FROM Sales s, Time t, Company c

WHERE s.DateID = t.DateID WHERE s.DateID = t.DateID

AND s.CID = c.CID AND Year = 2006 AND s.CID = c.CID AND State = ‘NC’

AND Month = ’Nov’; AND Year = 2006;

V :

SELECT s.CID, Year, Month, State, SUM(QtySold) SumQS, MAX(QtySold) MaxQS

FROM Sales s, Time t, Company c

WHERE s.DateID = t.DateID AND s.CID = c.CID

GROUP BY s.CID, Year, Month, State

Table 2.4 presents the data in this view when it is materialized on the database

presented in Tables 2.1, 2.2, and 2.3. Also, both queries Q1 and Q2 can be answered

by the raw-data view of this data warehouse. Table 2.5 presents the data in the

raw-data view.

Now consider the fat index I for view V with the following sequence of attributes:

I=(Month, State, Year, CID)

This index is beneficial to query Q1 as it has attribute Month first which is also an

attribute in Q1 ; yet this index is not helpful for Q2 as the first attribute of index I,

i.e. Month, does not appear in this query. In other words, none of the subsets of the

set of attributes of Q2 forms a prefix of I. 2

Example 4. For the data warehouse defined in Example 3, suppose view V1 is

defined as follows:

V1 :

SELECT t.Month, SUM(QtySold),MAX(QtySold)

FROM Sales s, Time t, Company c

17

Table 2.6: The table for view V1 of Example 4

Month Sum(QtySold) Max(QtySold)
Nov 319 100
Dec 70 40

WHERE s.DateID = t.DateID AND s.CID = c.CID

AND Year = 2006

GROUP BY t.Month;

Table 2.6 presents the data in this view when it is materialized on the database

presented in Tables 2.1, 2.2, and 2.3. Based on the formula for cost presented in this

section, the cost of answering query Q1 using view V and index I (both defined in

Example 3) is: cQ1(V, I) = size(V)
size(V1)

= 10
2

= 5 (Note that in this example vI(Q1)=V1).

However, the cost of answering query Q1 using view V without any of its indexes is

size(V) = 10, and the cost of answering this query using the raw-data view vRD is

size(vRD) = 17. 2

2.2 Problem Statement

In practical settings, the amount of available storage space is a natural constraint

in the (OLAP) view- and index-selection problem, as storing all possibly beneficial

views and indexes is infeasible in today’s database systems (see [2],[13]). We consider

the following OLAP view- and index-selection (OLAP-VI) problem: Given a star-

schema data warehouse and a set (workload) of parameterized SPJGA queries, our

goal is to minimize the estimated evaluation cost of the queries in the workload, by

selecting and pre-computing (1) a set of lattice (JGA) views that can be used in

answering the queries, and (2) some fat indexes over those views. We consider this

minimization problem under a given storage-space limit, which is an upper bound

18

on the amount of disk space that can be allocated for the materialized views and

indexes. Thus, our problem input is of the form (D,Q, b), where D is a database, Q
is the workload (which is a set of parameterized queries), and b is the storage limit.

Definition 1. (Feasibility) For a problem input (D,Q, b), a set of views and indexes

VI is feasible if (1) each query in Q can be answered using the views in VI, and (2)

the set VI satisfies the storage limit b.

Definition 2. (Optimality) For a problem input (D,Q, b), an optimal set of views

and indexes is a set of views and indexes VI∗ such that (1) VI∗ is feasible for the

problem input, and (2) VI∗ minimizes the cost of evaluating Q on the database Dv,

among all feasible sets of views and indexes for the problem input. Here, Dv is the

database that results from adding to D the relations for all of the views and indexes

in VI∗.

Definition 3. (OLAP-VI problem) For a given problem input (D,Q, b), the OLAP

view- and index-selection (OLAP-VI) problem is the problem of finding an optimal

set of views and indexes, as defined above.

A solution for a given instance of OLAP-VI problem consists of a set of material-

ized views V∗ (which includes the raw-data view on D and all additional views that

we choose to materialize), a set Π∗ of indexes over the views in V∗, and an association

between each element of Q and its corresponding elements of V∗ and Π∗, i.e., which

view in V∗ and which index in Π∗ (if any) should be used to answer each query in Q.

Following the work of [13] and [14] we assume that the raw-data view (i.e., the top

of the view lattice) is always in the solution, although in the context of our proposed

models this assumption can be easily removed.

19

Chapter 3

The Exact Approach

In this chapter we introduce an integer programming (IP) model for the OLAP

view- and index-selection problem (OLAP-VI) and study its properties. Subsequently,

we use these properties to remove some variables and constraints from this model and

obtain a model which is significantly smaller, yet its optimal solution is guaranteed

to be optimal for the original OLAP-VI problem. This, in turn, allows us to solve

larger instances of the problem.

3.1 Integer Programming Model IP1

In this section we propose an integer-programming model for OLAP-VI problem.

For a given problem input (D,Q, b), we define the following notation:

V : The set of all views in the view lattice

Π(v) : The set of all indexes of view v, ∀v ∈ V

Q(v) : The set of all queries in Q that can be answered by view v, ∀v ∈ V .

The cardinality of the set V is 2k, where k is the total number of distinct attributes

20

in the database. We use the notation vj to represent the jth view in the set V , for

j = 1 to 2k, and use the letter J to represent the corresponding collection of subscripts

(i.e., J = {1, 2, 3, . . . , 2k}).
In order to introduce the decision variables for the integer programming model,

we need additional notation as follows. Clearly for each view v, the cardinality of the

corresponding set of indexes Π(v) is equal to the total number of permutations of the

elements of v, i.e., |Π(v)| = (|v|)!. For a given view vj we denote its lth index by πjl,

for l = 1, . . . , (|v|)!, and, for brevity, we denote the collection of all indexes associated

with vj by Πj. In other words, we use Πj to denote the set Π(vj), for j = 1, . . . , 2k.

We use the notation qi (for i = 1, . . . ,m) to denote the ith element of the given set of

queries Q, i.e., Q={q1, q2, . . . , qm}. For each i = 1, . . . ,m, let Vi = {vj ∈ V : vj ⊇ qi}
represent the collection of views that can be used to answer query qi, and let Ji

represent the corresponding collection of subscripts, i.e., Ji = {j ∈ J : vj ∈ Vi}.
We are now prepared to define the decision variables for the integer programming

model. The following variables are defined for subscript values i = 1, 2, · · · , m, j ∈ Ji,

and l = 1, 2, · · ·, (|vj|)!.

sij =

{
1 If view vj is used to answer query qi with no index

0 Otherwise

yijl =

{
1 If view vj and its index πjl are used to answer query qi

0 Otherwise

The following variables are defined for subscript values j = 1, 2, · · · , 2k and l = 1, 2, · · ·,
(|vj|)!.

tj =

{
1 If view vj is materialized

0 Otherwise

xjl =

{
1 If index πjl of view vj is materialized

0 Otherwise

Our OLAP-VI problem can now be stated as the following integer programming

model that we refer to as model IP1. In this model we use the notation cijl to

21

represent the value cqi
(vj, πjl), which is the estimated cost of answering query qi using

view vj and its index πjl as defined earlier. Correspondingly we use the notation dij

to represent the estimated cost of answering query qi using view vj with no index at

all. As stated earlier we have dij = size(vj).

min
m∑

i=1

∑
j∈Ji

dijsij +

(|vj |)!∑
l=1

cijl.yijl

 IP1

subject to
∑
j∈Ji

sij +

(|vj |)!∑
l=1

yijl

 = 1 for all i = 1 to m (3.1)

2k∑
j=1

size(vj)

tj +

(|vj |)!∑
l=0

xjl

 ≤ b (3.2)

xjl ≤ tj for all j = 1 to 2k, and l = 1 to (|vj|)! (3.3)

sij ≤ tj for all i = 1 to m , and j ∈ Ji (3.4)

yijl ≤ xjl for all i = 1 to m, j ∈ Ji, and l = 1 to (|vj|)! (3.5)

t1 = 1 (3.6)

tj, sij, xjl, yijl ∈ {0, 1} ∀i, j, l (3.7)

Equation (3.1) states that each query must be answered by exactly one view and

either with no index or with exactly one of its indexes. Constraint (3.2) states that

the total storage requirement for the selected views and indexes should not exceed

the pre-specified limit b. Recall that we measure the size of each view by the number

of rows in that view. Also note that the size of each index for a view is the same as

the size of the view itself. Correspondingly we state the storage limit b in terms of the

number of rows that we can store. Constraint (3.3) states that index πjl for view vj

can be materialized only if the view itself is materialized. Similarly constraint (3.4)

states that query qi can be answered by view vj (with no index) only if this view is

materialized, and constraint (3.5) states that query qi can be answered by view vj

and its index πjl only if this index is materialized. Finally, constraint (3.6) simply

22

states that the raw-data view is always selected1.

In the OLAP-VI problem and the resulting integer programming model IP1 we

consider all views in the view lattice that can answer at least one query in the work-

load and all their corresponding indexes to be in the search space of the problem.

For a realistic size instance of the problem the total number of views and indexes

in this search space, and hence the size of the corresponding integer programming

model IP1, can be quite large. Note that for a database with k dimensions (at-

tributes) the total number of views in the view lattice is 2k and each view vj has

(|vj|)! indexes. For an instance of the problem with k attributes and m queries this

results in at most
∑m

i=1

[
|Ji|+

∑
j∈Ji

[(|vj|)!]
]

+
∑2k

j=1 [(|vj|)!] + 2k variables and at

most
∑m

i=1

[
|Ji|+

∑
j∈Ji

[(|vj|)!]
]
+

∑2k

j=1 [(|vj|)!] + m + 2 constraints in the integer

programming model IP1. Hence even for relatively small values of k and m the result-

ing integer programming model can be quite large, and the corresponding execution

time for solving this model can be excessively long even if we use a relatively fast

IP solver such as CPLEX 10 (see [15]). This, in turn, limits the applicability of this

approach (i.e., using the integer programming model) to only very small instances of

the problem.

In the next two sections we characterize various properties of the views and indexes

that appear in an optimal solution for this problem. This allows us to identify a

relatively small subset of views and indexes that contain at least one set of optimal

views and indexes for the problem. This, in turn, allows us to reduce the size of the

corresponding integer programming model for a given instance of OLAP-VI problem,

hence enabling us to solve larger instances of the problem using this approach within

reasonable execution times.

1In our IP model we denote this raw-data view by t1.

23

3.2 Reducing the Set of Views

In this section we identify a relatively small subset of views V ′ which, along with

their corresponding collection of indexes, contain at least one set of optimal views

and indexes.

Proposition 1. Given an instance of the OLAP-VI problem with input data (D,Q, b),

if a view v ∈ V is not a superset of at least one query in the set Q, then the problem

has an optimal solution that does not include view v.

Proof. This result follows from the fact that all view sizes are positive and, since

any such view cannot be used to answer any query in Q, then it cannot affect the

value of the objective function. 2

Lemma 1. If view v1 is a proper subset of view v2 and both v1 and v2 can answer

the same set of queries, i.e., Q(v1) = Q(v2), then for any index π2 of view v2 there

exists an index π1 of view v1 such that for every query q in Q(v2) (or equivalently in

Q(v1)) we have cq(v1, π1) ≤ cq(v2, π2).

Proof. Recall that for any query q ∈ Q(v2) we have cq(v2, π2) = size(v2)
size(vπ2 (q))

, where

vπ2(q) is the largest subset of q that forms a prefix of π2. We now construct an

index π1 for v1 as follows. For each q ∈ Q(v2) (or equivalently in Q(v1)), find its

corresponding set vπ2(q). Each of these sets has the property that it is a prefix of

π2. Let v′ be the largest such set. It follows that v′ contains all elements of every set

vπ2(q) for all q ∈ Q(v2). Let the elements of v′ be the first group of elements in π1

in the same order that they appear in π2. Note that since we have Q(v1) = Q(v2),

it follows that for every q ∈ Q(v1) every element of the set vπ2(q) is also an element

of view v1, hence it can form a prefix of π1. The remaining elements of v1 can be

inserted in π1 in any order to complete this permutation vector. It follows that for

every query q in Q(v2) (or equivalently in Q(v1)) we have vπ2(q) ⊆ vπ1(q). Thus

size(vπ2(q)) ≤ size(vπ1(q)). Also from v1 ⊂ v2 we have size(v1) ≤ size(v2). As a

24

result, cq(v1, π1) = size(v1)
size(vπ1 (q))

≤ size(v2)
size(vπ2 (q))

= cq(v2, π2) for every query q in Q(v2) (or

equivalently in Q(v1)). 2

The above lemma says that if the set of queries that can be answered by view v1

is the same as the set of queries that can be answered by view v2, and if view v1 is

a proper subset of view v2, then for any index π2 of v2 we can find an index π1 of v1

which is at least as good as π2 in reducing the cost of answering each query.

Proposition 2. Given an instance of the OLAP-VI problem with input data (D,Q, b),

if view v ∈ V has at least one attribute, say attribute a, that is not in any of the

queries in Q(v), then the problem has an optimal solution that does not include view

v.

Proof. If v is not in the optimal set of views obtained by solving the integer

programming model IP1, then clearly removing v from the set V does not affect the

optimality of the corresponding solution. So let us assume that view v is in the set

of optimal views obtained by solving IP1. Consider view v′ = v \ {a} (the set of all

of the attributes in v excluding a). v′ is a proper subset of v and since attribute a is

not in any of the queries in Q(v), we have Q(v) = Q(v′). By Lemma 1, for each index

πv of view v there exists an index π′
v′ of view v′ where cq(π

′
v′ , v′) ≤ cq(πv, v). Thus

substituting v by v′ in the optimal set of indexes and replacing each selected index

of v, say πv, by a corresponding index of v′ constructed in the manner explained in

the proof of Lemma 1, will not increase the total cost of answering the corresponding

queries. This implies that an alternative optimal solution can be obtained in which

neither view v nor any of its indexes are present. 2

We define the reduced set of views, V ′, as a subset of the set V where each view v

in V ′ is a superset of at least one query in Q, and each attribute of v is an attribute

of at least one query in Q(v). Also, any view in V with these two characteristics is

in the set V ′.

In order to construct the set V ′, first we remove from the set V every view that is

25

not a superset of at least one query in Q. Subsequently, from the remaining views we

also remove every view whose set of attributes is larger than the union of the set of

attributes of the queries that it can answer. The remaining collection of views forms

the set V ′.

Further, when a view is removed from the search space of views, all of its indexes

are also removed automatically from the search space of indexes. As a result, reducing

the search space of views directly result in reducing the search space of indexes.

In order to evaluate the computational requirement of determining the set V ′ we

note that there are two methods to construct this set. In the first method we take

the union of each combination of r queries (for all 1 ≤ r ≤ |Q|) and add the resulting

view to the set V ′. In the second method, we consider each of the 2k views in the

view lattice and check whether its set of attributes is equal to the union of the sets

of attributes of the queries that it can answer. Note that we always add the raw-

data view to the set V ′. The computational requirement of the first method is of

order O(2|Q|), while the computational requirement of the second method is of order

O(|Q|2k). Depending on the specific values of k and |Q|, we choose either the first or

the second method, whichever results in the smaller computational effort.

3.3 Reducing the Set of Indexes

We now focus on the properties of indexes that appear in an optimal solution for

the problem and use these properties to identify a relatively small subset of these

indexes for inclusion in our model. In particular, for each view v ∈ V ′ we identify

a subset Π′(v) of Π(v) that contains at least one optimal index for this view in the

context of any optimal solution for the problem. In order to characterize this restricted

collection of indexes Π′(v) for each view v, we define and construct a directed graph

(digraph) Gv associated with this view.

Each node of the digraph Gv corresponds to a set of attributes that is either equal

to the set of attributes of one of the queries in Q(v) or equal to the intersection of

26

the sets of attributes of two or more queries in Q(v). It follows that associated with

each combination of r queries, for r = 1, 2, . . . , |Q(v)|, there is a node in digraph Gv.

Two additional nodes are also included in Gv : one node is associated with the view

v itself and one node represents the empty set ∅. For each pair of nodes w1 and w2

in Gv, there is an arc from w1 to w2 if and only if w1 ⊂ w2 and there is no node

w ∈ Gv where w1 ⊂ w ⊂ w2. Note that Gv has a single source ∅ and a single sink v.

For a given view v, the total number of nodes in Gv is at most min{2|v|, 2|Q(v)|}. In

practice, however, the actual number of nodes in Gv may be smaller than this limit.

For each view v, the computational requirement for constructing the corresponding

digraph Gv is of order O(min{8|v|, 8|Q(v)|}). In Appendix A, we provide pseudocode

for generating the adjacency list for digraph Gv.

Definition 4. Given a view v and its corresponding digraph Gv, let P represent a

path that begins at the source node ∅ and ends at any node w of Gv. For a given

index π ∈ Π(v) we say that index π is associated with path P if the set of attributes

of each and every node in P is a prefix of π.

Definition 5. Given a view v and its corresponding digraph Gv, let P represent a

path that begins at the source node ∅ and ends at a node ws. Suppose the order of

the nodes on path P is ∅, w1, w2, . . ., wi−1, wi, wi+1, . . ., ws. Given a query q ∈ Q(v),

we say that query q agrees with path P up to node wi if the set of attributes of each

of the nodes w1, w2, . . . , wi−1 is a subset of the set of attributes in q, but the set of

attributes of the node wi is not a subset of q.

Lemma 2. Given a view v and its corresponding digraph Gv, if two indexes π1 and

π2 of view v are associated with the same source-sink path in Gv, then cq(v, π1) =

cq(v, π2) for every query q ∈ Q(v).

Proof. Let the source-sink path be denoted by P . Consider the relationship

between an arbitrary query q ∈ Q(v) and the path P . Suppose query q agrees with

P up to node z on P . Also, suppose w is the node immediately before z on P . From

Definition 5 we have q ∩ w = w and q ∩ z = w. This is because if q has some of the

27

attributes in z \ w then there must exist a node w′ = q ∩ z on P between nodes w

and z. We know that this is not the case, since there is an arc from node z to node w

in Gv. On the other hand, since π1 and π2 are associated with path P , both of them

have all of the attributes in w and all of the attributes in z as their prefix; hence

neither of them has any of the attributes in q \w after their first |w| attributes. Thus,

the largest subset of q that forms a prefix of π1 is the same as the largest subset of q

that forms a prefix of π2, i.e., vπ1(q)=vπ2(q). As a result, cq(v, π1) = cq(v, π2). 2

Lemma 3. Given a view v and its corresponding digraph Gv, if an index π of view v

is not associated with any source-sink path in digraph Gv, then there exists another

index π′ of view v associated with a source-sink path in Gv such that cq(v, π′) ≤
cq(v, π) for every query q ∈ Q(v).

Proof. Let P (π) be the longest path of Gv that is associated with π. Let w be

the last node in P (π) and let r = |w|. Since π is not associated with any source-sink

path of Gv, P (π) is not a source-sink path; thus w 6= v and 0 ≤ r < |v|. Suppose the

order of attributes in π after the first r attributes is (ar+1, ar+2, . . . , a|v|). We define

the set Qj for r + 1 ≤ j ≤ |v| as follows: Qj = {q ∈ Q(v)|w ∪ {ar+1, . . . , aj} ⊂ q}.
Let t = maxr+1≤j≤|v|{j|Qj 6= ∅}. We identify node wj in Gv, for r + 1 ≤ j ≤ t,

as the node that corresponds to the intersection of all the queries in Qj. We have

w ⊆ wr+1 ⊆ wr+2 ⊆ . . . ⊆ wt. As a result, there exists a source-sink path P that

contains all of the nodes on P (π) and nodes wr+1, wr+2, . . ., wr+t. Suppose π′ is an

index associated with P . Also, suppose the order of the first r attributes in π′ is the

same as the order of the first r attributes in π. We now show that cq(v, π′) ≤ cq(v, π)

for all q ∈ Q(v).

Consider any query q ∈ Q(v). One of the following cases is true:

(1) (q ∩ w) ⊂ w

(2) q = w

(3) q ⊃ w

If case (1) is true, i.e., q has some (but not all) of the attributes of w, then we have

vπ(q) = vπ′(q). This is because both π and π′ have all of the attributes of w as their

28

c e

a,b,c c,d,e e,f,g

a,b,c,d,e,f,g

Figure 3.1: Digraph Gv for Example 5.

prefix in the same order. If case (2) is true, then we clearly have vπ(q) = vπ′(q) = w.

Now suppose case (3) is true. If q has all of the attributes in {ar+1, ar+2, . . . , a|v|},
then q = v; thus, vπ(q) = vπ′(q) = v. On the other hand, if q does not contain ar+1,

then vπ(q) = w. Also, we know that the order of the first r attributes in π and π′

is the same. Thus vπ′(q) ⊇ w. As a result, if q does not contain ar+1 then we have

vπ′(q) ⊇ vπ(q). Now let us consider the case where q contains ar+1, but does not

contain all attributes in {ar+1, ar+2, . . . , a|v|}. Furthermore, let us assume that q has

all of the attributes in {ar+1, ar+2, . . . , ah}, where r +1 ≤ h < t, but does not include

the attribute ah+1. It follows that q ∈ Qh and vπ(q) = w∪{ar+1, ar+2, . . . , ah}. Based

on the definition of wh, we have w ∪ {ar+1, ar+2, . . . , ah} ⊆ wh. Thus vπ(q) ⊆ wh.

From the fact that q ∈ Qh we have wh ⊆ q. Since wh is a node on P and π′ is

associated with P , all of the attributes of wh form a prefix of π′. Thus vπ′(q) ⊇ wh.

It follows that for all queries in case (3) we have vπ′(q) ⊇ vπ(q).

We conclude that vπ′(q) ⊇ vπ(q) for any query q in Q(v). Thus we have size(vπ′(q)) ≥
size(vπ(q)) and consequently cq(v, π′) ≤ cq(v, π) for every query q ∈ Q(v). 2

From Lemma 2 it follows that if two indexes of view v are associated with the

29

same source-sink path of digraph Gv, then they have the same effect on reducing the

cost of answering each query in Q(v). From Lemma 3 it follows that for each index

π of view v that is not associated with any source-sink path of digraph Gv, we can

find an index π′ of view v which is associated with a source-sink path of Gv and is at

least as effective as π in reducing the cost of answering each query in Q(v). We are

now ready to define the set Π′(v) for each view v ∈ V ′.

Definition 6. For a given view v construct the corresponding digraph Gv and

determine all distinct source-sink paths in this digraph. For each source-sink path

Pi obtained in this manner, determine an associated index πi. We define Π′(v) as

the collection of all indexes for view v obtained in this manner. In Appendix B we

provide the pseudocode for generating the set Π′(v) for a given view v.

Following is a small illustrative example:

Example 5. Consider view v = {a, b, c, d, e, f, g} and suppose Q(v) consists of

the following queries: q1 = {a, b, c}, q2 = {c, d, e}, and q3 = {e, f, g}. Figure 3.1

represents digraph Gv for v. The source-sink paths in this digraph are as follows:

1. (∅) → (c) → (a, b, c) → (a, b, c, d, e, f, g)

2. (∅) → (c) → (c, d, e) → (a, b, c, d, e, f, g)

3. (∅) → (e) → (c, d, e) → (a, b, c, d, e, f, g)

4. (∅) → (e) → (e, f, g) → (a, b, c, d, e, f, g)

An index associated with the first path should have attribute c at its first position,

then attributes a and b (in any order), and next attributes d, e, f , and g, in any order

after a, b, and c. Thus, the permutation vector (c, a, b, d, e, f, g) is an index associated

with the first path. Similarly, we observe that permutation vectors (c, d, e, a, b, f, g),

(e, c, d, a, b, f, g), and (e, f, g, a, b, c, d) are indexes associated with the second, the

third, and the fourth paths, respectively. Thus, we have:

Π′(v)={(c, a, b, d, e, f, g), (c, d, e, a, b, f, g), (e, c, d, a, b, f, g), (e, f, g, a, b, c, d)}. We note

that in this example, |Π′(v)| = 4 while |Π(v)| = (|v|)!=5,040. 2

30

From the above discussion it follows that for each view v and for each query q ∈ Q,

the set Π′(v) contains at least one index that is at least as effective as any other index

in Π(v) for answering query q. It follows that we can reduce the search space of

indexes in the OLAP-VI problem by limiting our search to the smaller collection

Π′(v) rather than Π(v) for each view v, and the resulting (smaller) search space is

guaranteed to produce at least one optimal solution for the original problem.

This observation, along with the observations that we made earlier regarding the

reduction in the size of the search space of views, could lead to potentially significant

reductions in the size of the entire search space of views and indexes for the OLAP-

VI problem as we shall see in the randomly constructed instances in Chapter 4.

Correspondingly we can remove all associated variables and constraints from the

integer programming model IP1, leading to a smaller model for the problem; we refer

to this model as IP2 as described below.

Modified Integer Programming Model IP2.

In this model we use the following notation to represent various restricted subsets

of views and indexes and their corresponding collections of subscripts. For each

i = 1, 2, . . . ,m let V ′
i = {vj ∈ V ′ : vj ⊇ qi} represent the restricted collection of views

that can be used to answer query qi (where V ′ is as defined in Section 3.2), and let J ′
i

represent the corresponding collection of subscripts, i.e., J ′
i = {j ∈ J : vj ∈ V ′

i }. Also

let J ′ represent the collection of subscripts of all views in V ′. For each view vj ∈ V ′,

let Π′(vj) represent the restricted collection of its indexes as defined above, and let

L′
j represent the corresponding collection of subscripts, i.e., L′

j = {l : πjl ∈ Π′(vj)}.
We can now write the integer programming model IP2 using this notation.

31

min
m∑

i=1

∑
j∈J ′

i

dijsij +
∑
l∈L′

j

cijl.yijl

 IP2

subject to
∑
j∈J ′

i

sij +
∑
l∈L′

j

yijl

 = 1 for all i = 1 to m

∑
j∈J ′

size(vj)

tj +
∑
l∈L′

j

xjl

 ≤ b

xjl ≤ tj for all j ∈ J ′ and l ∈ L′
j

sij ≤ tj for all i = 1 to m and j ∈ J ′
i

yijl ≤ xjl for all i = 1 to m, j ∈ J ′
i , and l ∈ L′

j

t1 = 1

tj, sij, xjl, yijl ∈ {0, 1} ∀i, j, l

The following theorem follows directly from Propositions 1 and 2, and Lemmas 2

and 3.

Theorem 1. Given an OLAP-VI problem with input data (D,Q, b), if we define

the set V ′ as in Section 3.2, and the set Π′(v) for all v ∈ V ′ as in definition 6, then

we have the following.

i) every optimal solution of the integer programming model IP2 is also an optimal

solution for the integer programming model IP1, and

ii) the integer programming model IP1 has at least one optimal solution that is also

an optimal solution for model IP2.

For a given OLAP-VI problem, the number of views and indexes considered in

model IP2 can be significantly smaller than the corresponding number in model IP1.

This is partly due to the fact that the restricted set of views V ′ can be substantially

smaller than the original set V , and partly due to the smaller number of indexes Π′(v)

for each view v that we consider in model IP2. In Chapter 4 we provide numerical

32

values for a large collection of randomly generated instances of the problem, and

observe that the number of distinct paths in Gv, i.e., cardinality of set Π′(v), is

indeed much smaller than (|v|)! for these instances.

33

Chapter 4

Experiments with Our Exact

Approach

In this chapter we present the results of a computational experiment with the exact

approach presented in the previous chapter for solving the OLAP-VI problem. Our

objectives in this experiment are:

• evaluating the effectiveness of our approach in reducing the search spaces of

views and indexes, and

• evaluating the scalability of the exact model IP2 (see Subsection 3.3) and its

effectiveness in solving relatively large instances of the OLAP-VI problem.

To this end, we construct a collection of instances of the OLAP-VI problem of varying

sizes using a number of databases of the TPC-H benchmark (see [25]). We then solve

each instance using different models and procedures as applicable and report our

findings.

We implemented all of our algorithms in C++ and ran them on a PC with a

3GHz Intel P4 processor, 1GB RAM, and a 80GB hard drive running Red Hat Linux

34

Enterprise 4. We used CPLEX 10 [15] to solve the integer-programming models.

In this chapter first we describe how we construct each of the instances in our

experiments. Next we evaluate the effectiveness of our exact approach for solving the

OLAP-VI problem. Finally in Section 4.4 we present a summary of our experimental

results.

4.1 Constructing Instances

Each instance of the OLAP-VI problem is identified by a given database D, a given

collection of queries Q, and a given storage space b. We used two different databases

of the TPC-H benchmark (see [25]). More specifically, we used a 7-attribute database

and a 13-attribute database to construct the collection of instances in our experiment.

We measured the sizes of views in each of these databases using analytical methods.

Aside from the number of attributes in the database, the size of each instance is

determined by the number and the makeup of its queries. Within each database we

constructed instances of the OLAP-VI problem with the number of queries ranging

from 3 to 50. The sizes of the instances that we solved are realistic and comparable

to the sizes of the instances used in the related work (cf. [2, 9, 11, 16]).

For each instance we constructed the corresponding collection of queries randomly.

More specifically, to construct an instance of the OLAP-VI problem with g queries

over a database with k attributes, we first determined the number of attributes in

each query as a randomly generated integer (t) between 1 and k-1. Then for each

query with t attributes we constructed its actual collection of attributes by randomly

generating t distinct integer values between 1 and k. These t integer values uniquely

identify the collection of attributes for that query.1

The difficulty of solving a specific instance of the OLAP-VI problem depends on

the relative value of the storage space b as compared with the size of the raw-data

1Consistent with the assumption that we made earlier, we continue to assume that for each query
all associated attributes are in its WHERE clause and they are compared with constants.

35

view plus the size of the queries in the set Q. Suppose the value of storage space b is

expressed as:

b = size(v1) + α(
∑
q∈Q

size(q)) (4.1)

where v1 represents the raw-data view. If α < 0 then the problem is infeasible, since

the available storage space b is not even sufficient for storing the raw-data view (which

is a required selection). If α = 0 then the problem is not challenging, since there is

only enough space to select the raw-data view. If α ≥ 2 again the problem is not

challenging since the best solution is clearly to materialize the raw-data view plus

all queries in the set Q and an optimal index for each query. Thus, in order for an

instance of the view- and index-selection problem to be nontrivial, we need to have

0 < α < 2.

In our experiments for each instance we set the value of α = 0.5, i.e., the storage

space limit b is equal to the size of the raw-data view plus one-half of the sum of

the sizes of its collection of queries. For some instances we also solved the problem

by setting α to several other values between 0 and 2; the pattern of findings did not

change very much, although the actual solution did change as expected.

4.2 Reducing the Search Space

In this section we compare the sizes of models IP1 and IP2 for some realistic-size

instances of the view- and index-selection problem. More specifically, we compare

the number of views and indexes in models IP1 and IP2 for each instance. Our

first collection consists of ten instances over the 7-attribute database and the results

are presented in Table 4.1. For each instance (each row) we report the number of

queries in that instance and the corresponding number of views and indexes in each

of the models IP1 and IP2. Table 4.2 contains similar results for a collection of ten

instances over the 13-attribute database. We observe that the number of views and

indexes in model IP2 is significantly smaller than those in model IP1, specifically for

the relatively smaller instances.

36

Table 4.1: Comparison of the number of views and indexes in models IP1 and IP2
for the instances over the 7-attribute TPC-H database.

instance number of number of views number of indexes
queries IP1 IP2 IP1 IP2

1 20 120 45 13,684 913
2 20 118 45 13,681 500
3 20 124 56 13,695 561
4 20 120 47 13,684 521
5 20 120 43 13,684 713
6 20 104 40 13,586 694
7 20 114 42 13,665 418
8 30 126 64 13,698 802
9 40 122 58 13,692 1356
10 50 126 64 13,698 2,117

Table 4.2: Comparison of the number of views and indexes in models IP1 and IP2
for the instances over the 13-attribute TPC-H database.

instance number of number of views number of indexes
queries IP1 IP2 IP1 IP2

1 10 1,516 27 16,102,349,550 1,218
2 10 6,144 28 16,818,292,374 409
3 10 4,604 25 16,629,888,043 534
4 10 5,376 29 16,801,413,801 358
5 15 5,168 49 16,838,545,683 5,437
6 15 3,280 60 16,718,207,042 7,069
7 20 6,608 165 16,921,115,940 15,460
8 30 7,456 305 16,925,556,971 3,061,155,903
9 40 7,022 556 16,925,054,570 3,177,400,892
10 50 7,092 725 16,924,507,774 3,166,128,428

37

Table 4.3: The time required to solve the instances over the 7-attribute database using
model IP2, and the time required to build the search space of views and indexes.

instance number of time to build IP2
queries search space (sec.) execution time (sec.)

1 20 1.45 10.14
2 20 1.35 2.17
3 20 1.29 3.66
4 20 1.27 1.93
5 20 1.52 3.26
6 20 1.40 2.99
7 20 1.31 4.01
8 30 1.52 13.82
9 40 1.98 50.57
10 50 1.91 500.50

4.3 Scalability of the Exact Model IP2

In this section we evaluate the scalability of model IP2 to solve instances of the

OLAP-VI problem. To do so, we solve each of the instances of the two sets of

experiments explained in the previous section using model IP2, and report the total

time required to solve each of these instances in Tables 4.3 and 4.4. We do not report

similar results for model IP1, since the corresponding execution times are excessive

and consistently larger than those for IP2.

As observed in these two tables, we could solve all instances over the 7-attribute

database using model IP2. However, we could not solve those large instances over

the 13-attribute database where the number of queries is 20 or more as the computer

ran out of memory. We also solved many other instances over these two databases.

We could always solve the instances over the 7-attribute database within one hour.

However, we could never solve instances with more than 30 queries over the 13-

attribute database.

In the instances that we could solve model IP2, we also separately measured the

time required to build the search space of views and indexes of model IP2 and the time

required to solve this model, and report them in Tables 4.3 and 4.4. We observed that

38

Table 4.4: The time required to solve the instances over the 13-attribute database
using model IP2, and the time required to build the search space of views and indexes.
We could not solve the last four instances as the computer ran out of memory.

instance number of time to build IP2
queries search space (sec.) execution time (sec.)

1 10 1.71 2.10
2 10 1.32 1.96
3 10 1.4 1.96
4 10 1.31 1.83
5 15 15.81 287.34
6 15 18.92 520.74
7 20 151.31 memory shortage
8 30 511.82 memory shortage
9 40 844.21 memory shortage
10 50 1472.13 memory shortage

for all instances the time required to build the search space of model IP2 is smaller

than the time required to solve the corresponding model IP2, and for the larger

instances with larger execution times this difference is quite significant (instances 8,

9, and 10 in Table 4.3 and instances 5 and 6 in Table 4.4).

4.4 Summary of Observations

From the above experiments we observe that the search space of views and indexes

in model IP2 is significantly smaller than the search space of views and indexes in

model IP1. This allows us to solve realistic-size instances of the OLAP-VI problem

optimally using model IP2 while we cannot solve these instances using model IP1.

Also, we observe that there are many realistic cases that due to their large sizes we

are not able to solve the problem within a reasonable execution time, even when we

use the smaller model IP2. In order to be able to solve such larger instances, we

developed several heuristic approaches that we present in the next chapter.

39

Chapter 5

Inexact Methods

In this chapter we propose three strategies to reduce the size of the integer pro-

gramming model for the view- and index-selection problem. The primary objective

of these strategies is to reduce the size of the IP model for larger instances of the

OLAP-VI problem so that it can be solved within reasonable execution time. The

downside of this approach, however, is that we can no longer guarantee that an op-

timal solution of the resulting integer programming models is an optimal solution of

the original OVIP-VI problem.

In the first strategy, we limit the number of indexes for each view v ∈ V ′ to

a collection of promising alternatives which is a subset of Π′(v). This collection

is significantly smaller than the corresponding collection in model IP2; hence the

corresponding integer programming model is also smaller. In the second strategy,

again we limit the choice of indexes for each view v ∈ V ′ to a collection of promising

alternatives which is also significantly smaller than the corresponding collection in

model IP2. However, unlike the first strategy, this collection is not necessarily a subset

of Π′(v). In the third strategy, we limit the choice of views to a collection of promising

alternatives. This collection of views is significantly smaller than the corresponding

collection in model IP2, hence again the corresponding integer programming model

40

is smaller (than IP2). The trade off among these three strategies is the size of the

instances that we can solve verses the quality of the solutions that we obtain. As we

will demonstrate in Chapter 6 through our experimental results, we can get solutions

with better qualities using the first strategy while we can solve larger instances using

the second and the third strategies. All of these strategies would allow us to solve the

instances of the view- and index-selection problem that are much larger than those

instances that we are able to solve with our exact methods.

We propose three specific methods for carrying out these strategies, resulting in

three integer programming models that we refer to as IPN, IPNIRp, and IPVs. In

model IPN, the set of indexes for each view v ∈ V ′ is a subset of the corresponding set

Π′(v). Model IPNIRp is an extension of model IP2 with significantly smaller number

of indexes for each view v ∈ V ′. In model IPVs, the set of views is limited to a subset

of V ′ which we refer to it as V ′′. Also, in model IPVs, the set of indexes for each

view v ∈ V ′′ is a proper subset of the corresponding set Π′(v).

5.1 Model IPN

In the approach we propose in this section, for a given instance of the OLAP-VI

problem with input data (D,Q, b), we limit the number of indexes for each view v ∈ V ′

to a relatively small positive integer that we refer to as Nv. We select Nv = |Q(v)|.
Other values of Nv can also be used in this context. Our choice of the value of Nv,

i.e., |Q(v)|, is inspired by the fact that it is an upper bound on the number of indexes

for view v at the optimal solution of model IP2 presented in Section 3.3 (note that

each query q ∈ Q(v) can be answered optimally with respect to v by at most one

index of v).

For each view v ∈ V ′, we determine a set Π′′(v) which is a collection of Nv

promising indexes among all indexes over view v, and remove all other indexes over

view v from the integer programming model. The resulting integer programming

model is smaller than model IP2, although it has the same structure, i.e., same

41

type of variables and constraints. We refer to this model as IPN and define it more

specifically later in this section.

We select the Nv indexes associated with each view v ∈ V ′ in a greedy manner as

follows:

π1
v = argminπ∈Π′(v)

∑
q∈Q(v) cq(v, π)

π2
v = argminπ∈Π′(v)

∑
q∈Q(v) min{cq(v, π), cq(v, π1

v)}
π3

v = argminπ∈Π′(v)

∑
q∈Q(v) min{cq(v, π), cq(v, π1

v), cq(v, π2
v)}

. . .

πNv
v = argminπ∈Π′(v)

∑
q∈Q(v) min{cq(v, π), cq(v, π1

v), cq(v, π2
v), . . . , cq(v, πNv−1

v)}
and define the set Π′′(v) = {π1

v , π
2
v , . . . , π

Nv
v }.

Model IPN

We define model IPN similarly to model IP2, except that we use the set of indexes

Π′′(v) in place of Π′(v) for each view v ∈ V ′. Note that while the number of variables

and constraints in model IPN can be significantly smaller than the corresponding

numbers in model IP2, the optimal solution of this model is no longer guaranteed to

be optimal for the original problem.

In the remainder of this section, we present an efficient algorithm which we refer

to as Algorithm IPNIDX to determine the set Π′′(v) for each view v ∈ V ′.

Algorithm IPNIDX

The pseudocode for Algorithm IPNIDX is displayed in the next page. This algo-

rithm is iterative: In each iteration we find one index. That is, in the first iteration we

find π1
v , in the second iteration we find π2

v , and so on. In each iteration, we consider

the nodes of digraph Gv in topological order. For each node w we find an order for

the attributes of w, based on the order of the attributes of one of its parent nodes.

We refer to this order as perm(w). The last node considered in this topological order

is the sink node v, and we declare the corresponding order perm(v) as the index

42

selected in that iteration.

At the end of each iteration, we update the value of MCS(q) for each q ∈ Q(v),

where MCS(q) is the minimum cost of answering query q using the indexes selected

so far. At the beginning of the first iteration, MCS(q) = size(v) for all queries in

Q(v).

To find the order of attributes of node w in each iteration, first we consider the

set of queries that affect the order of the attributes of w, i.e., queries in the set

Q′ = {q ∈ Qtemp|q∩w 6= ∅ and q∩w 6= w}. Note that query q ∈ Q(v) is in Qtemp if its

set of attributes does not form a prefix of any index selected so far in the algorithm.

Also, from the property of indexes in Π′(v) we have perm(w) = (perm(u), arb(w\u)),

where u is one of the parent nodes of node w in Gv, and arb(w \ u) is an arbitrary

order of the attributes in w \ u. Thus, we need to find the parent of w that yields

the minimum total cost of answering the queries in Q′. Since we consider the nodes

in the topological order, at the time of computing perm(w) we know the value of

cost(u, q) for each parent node u and for each query in Q′; thus we can compute

cost(u) =
∑

q∈Q′ min{cost(u, q), MCS(q)} for each parent node u of node w.

Given the digraph Gv for view v, the computational requirement of Algorithm IP-

NIDX is O(Nv × |Q(v)| × 4min{|Q(v)|,|v|}). Too see this, note that the while loop of

Algorithm IPNIDX is repeated Nv times. The for loop in the while loop is repeated

at most (the number of nodes)2× |Q(v)| times. As stated earlier, the maximum

number of nodes in Gv is 2min{|Q(v)|,|v|}. Thus, the computational requirement of

Algorithm IPNIDX is of the order of O(|Q(v)|2 × 4min{|Q(v)|,|v|}).

Note that the number of variables and constraints in model IPN can be signifi-

cantly smaller than the corresponding number in model IP2, but the optimal solution

of this model is no longer guaranteed to be optimal for the original problem. In

the next chapter we present the results of a computational experiment in which we

evaluate the execution time and the quality of solutions obtained using this approach

for a relatively large collection of instances of OLAP-VI problem. In Appendix C we

provide an example for constructing the set Π′′(v) for a given view v.

43

Algorithm 1: IPNIDX
An efficient algorithm to find the elements of the set Π′′(v)
Input : view v, digraph Gv, and the set of queries Q(v)

(See Section 3.3 for construction of Gv.)
Output: all elements of the set Π′′(v)
begin

MCS(q) = size(v) for all q ∈ Q(v)
cost(∅, q) = size(v) for all q ∈ Q(v)
Qtemp ← Q(v)
r ← 1
while r ≤ Nv do

for each node w (other than ∅) in Gv in topological order do
set Q′ ← {q ∈ Qtemp|q ∩ w 6= ∅ and q ∩ w 6= w}
for each node u which is a parent node of w do

cost(u) =
∑

q∈Q′ min{cost(u, q),MCS(q)}
û = argminu∈parent(w) cost(u)
perm(w) = perm(û),arb(w \ û)
cost(w, q) = cq(v, perm(w)) for each q ∈ Qtemp

return perm(v)
MCS(q) = min{cost(v, q),MCS(q)} for each q ∈ Qtemp

Qtemp ← {q ∈ Qtemp| vperm(v)(q) 6= q}.
r ← r + 1

end
The notation arb(w) in this algorithm represents an arbitrary order of attributes of
set w, the set parent(w) represents the set of parent nodes of node w, and perm(w)
represents the order of the attributes of node w.

44

5.2 Model IPNIRp

Through studying the structure of the OLAP-VI problem, we observed that in

most of the instances the order of the first few attributes of each index is much more

important than the order of the rest of the attributes of that index. When the first

few attributes of index π are common to the largest number of queries in Q(v), the

index π tends to be more effective in reducing the total cost of answering the queries.

Therefore, another promising approach to reduce the size of the integer programing

model is to remove from the digraph Gv every node that is an intersection of only a

small number of queries in Q(v). This way, the number of nodes and consequently the

number of source-sink paths and the number of indexes in the search space of indexes

of each view v would decrease (compared to Π′(v)). Based on these observations,

in this section we introduce another reduced IP model which we refer to as model

IPNIRp. To do so, first we define digraph Gp
v for each view v ∈ V ′ and the reduced

set of indexes Π′
p(v).

For each view v we define digraph Gp
v as follows. Each node of digraph Gp

v cor-

responds to a set of attributes that is the intersection of the sets of attributes of p

or more queries in Q(v) (note that associated with each combination of r queries,

for r = p, p + 1, . . . , |Q(v)|, there is a node in digraph Gp
v.) Two additional nodes

associated with v and ∅ are also included in the set of nodes for Gp
v. Similar to Gv, for

each two nodes wi and wj in Gp
v, there is an arc from wi to wj if and only if wi ⊂ wj

and there is no node wk ∈ Gp
v where wi ⊂ wk ⊂ wj. Note that Gp

v has a single source

∅ and a single sink v.

Definition 7. (Reduced Set of Indexes Π′
p(v)) For each view v construct the cor-

responding digraph Gp
v and determine all distinct source-sink paths in this digraph.

For each source-sink path Pi obtained in this manner, determine an associated index

πi. We define Π′
p(v) as the collection of indexes for view v obtained in this manner.

45

Model IPNIRp

We define model IPNIRp similarly to model IP2, except that we use the set of

indexes Π′
p(v) in place of Π′(v) for each view v ∈ V ′.

Note that p is the parameter of model IPNIRp. As we increase the value of p, most

likely the number of nodes in Gp
v would decrease; thus the number of source-sink paths

in Gp
v would decrease as well. As a result, as we increase the value of p, most likely

the number of indexes in Π′
p(v) would decrease, and IPNIRp would become smaller.

Thus when the value of parameter p is large enough, we can solve very large scale

instances using model IPNIRp. However, note that if p ≥ 2, the optimal solution of

model IPNIRp is not necessarily optimal for the original OLAP-VI problem. (Note

that when p = 1 then IPNIRp is the same as IP2 and provides optimal solutions.)

A reasonable strategy to solve an instance of the OLAP-VI problem using model

IPNIRp is to decrease the value of parameter p as much as time allows.

5.3 Model IPVs

In our experiments (as we will present in Section 6.3) we observed that although

we can solve significantly larger instances using model IPN compared to the instances

that we can solve using model IP2, there are still large instances that we could not

solve using model IPN within our time limit of one hour. In this section we propose a

strategy to reduce the size of the integer programming model for the view- and index-

selection problem further. In this strategy, we limit the choice of views to a collection

of promising alternatives. Depending on the value of parameter s, this collection

can be significantly smaller than the corresponding collection in our previous models

IP2, IPN, and IPNIRp; hence the corresponding integer programming model can be

smaller.

46

The reduced set of views

We define the set V ′′
s as the reduced set of views where each view in V ′′

s is the

union of at most s queries in Q. It follows that with respect to each r queries in Q,

1 ≤ r ≤ s, there is a view in V ′′
s which is the union of these r queries.

Note that as we increase the value of parameter s, most likely the number of views

in V ′′
s would increase as well, and when s = |Q| we have V ′′

s = V ′.

Model IPVs

We define the integer programming model IPVs similarly to model IPN, except

that we use the reduced set of views V ′′
s in place of V ′. Also, as in model IPN, in

model IPVs we consider the reduced set of indexes Π′′(v) to be the search space of

indexes for each view v ∈ V ′′
s .

Although when s = |Q| we have V ′′
s = V ′, our experimental results in Section

6.3 show that when s is smaller that |Q|, |V ′′
s | is significantly smaller that |V ′|. As a

result when the value of parameter s is small enough, we can solve very large-scale

instances using model IPVs. A reasonable strategy to solve an instance of the OLAP-

VI problem using model IPVs is to increase the value of parameter s as large as time

allows.

The computational requirement of obtaining V ′ is of order of O(
∑s

i=1 C
(
|Q(v)|

i

)
).

47

Chapter 6

Experiments with Our Inexact

Methods

In this chapter we present the results of computational experiments with the

approaches presented in the previous chapter for solving the OLAP-VI problem. Our

objectives in these experiments are (1) to evaluate the scalability of the inexact models

IPN, IPNIRp, and IPVs (see Chapter 5) and the quality of the solutions obtained by

these models, and (2) to compare the effectiveness of the proposed model IPN with

other heuristic procedures in the open literature.

To this end, we construct a collection of instances of the OLAP-VI problem in

the same way that we explained in Section 4.1. We then solve each instance using

different models and procedures as applicable and report our findings. In this chapter,

not only we used the 7-attribute and the 13-attribute TPC-H databases (described

in Section 4.1), but also we used a larger size TPC-H database with 17 attributes.

As stated in Chapter 4, we implemented all of our algorithms in C++ and ran

them on a PC with a 3GHz Intel P4 processor, 1GB RAM, and a 80GB hard drive

running Red Hat Linux Enterprise 4. For comparative purposes, we also implemented

48

a modified version of the approach for selecting views and indexes proposed in [2],

which we refer to as algorithm ACN, and experimentally compared the results of

our inexact approach IPN with the results obtained from this algorithm. We also

implemented a heuristic approach for selecting views and indexes proposed in [13]

which we refer to as algorithm GHRU. We experimentally evaluated this algorithm

and compare it with our approaches too. We implemented algorithms ACN and

GHRU in C++ and ran on the same platform as the rest of our algorithms.

The rest of this chapter is organized as follows: In Sections 6.1 through 6.3 we

present a detailed account of our experiments and analysis on our inexact approaches

explained in Chapter 5. In Section 6.4 we experimentally compare our inexact ap-

proach IPN with algorithm ACN for selecting views and indexes. Finally in Section 6.5

we evaluate algorithm GHRU and compare it with our proposed approaches.

6.1 Experiments with the Inexact Model IPN

We pursue the following goals in this section:

• experimentally evaluating the quality of the solutions obtained using model

IPN.

• study the effect of the storage space bound on the quality of the solutions

obtained from model IPN.

• evaluating the performance of model IPN when queries in the workload are from

certain levels of the view lattice.

As mentioned earlier, we set the value of Nv = |Q(v)| in algorithm IPNIDX. In

fact, we solved a collection of instances for several values of Nv such as 1, 0.1|Q(v)|,
0.2|Q(v)|, 0.3|Q(v)|, 0.5|Q(v)|, and 1.5|Q(v)|. In our analysis we observed that the

choice of value |Q(v)| for parameter Nv in algorithm IPNIDX would consistently result

in solutions of acceptable qualities for all instances in this collection.

49

Table 6.1: The value of cost obtained using model IPN and the optimal value of cost
(obtained from solving model IP2) for instances over the 13-attribute database. α is
defined in the context of Formula 4.1 for storage space.

instance number of α=0.1 α=0.3
number queries IPN optimal IPN optimal

1 7 1798880.00 1798880.00 12041.20 12041.20
2 9 2572900.00 2572900.00 71.98 71.97
3 11 2398520.00 2398520.00 299942.00 299942.00
4 13 2698330.00 2698330.00 300028.00 299956.00
5 15 3297958.00 3297958.00 299892.00 299857.00

instance α=0.5 α=1
number IPN optimal IPN optimal

1 49.62 49.62 7.00 7.00
2 9.24 9.24 9.00 9.00
3 11.26 11.13 11.00 11.00
4 13.08 13.00 13.00 13.00
5 15.02 15.01 15.00 15.00

In the first set of experiments, we evaluate the quality of the solutions obtained

from model IPN for different values of storage space bound. We solve five instances

over the 13-attribute database. These instances have 7, 9, 11, 13, and 15 queries.

We solve each instance with several values of the storage space limit as depicted by

the value of α: 0.1, 0.3, 0.5, and 1. (α is defined in the context of Formula 4.1 in

Section 4.1.)

In Table 6.1 for each instance and each value of α we present the value of cost

obtained using model IPN as well as the optimal value of cost (obtained from model

IP2). In these instances we observe that regardless of the value of α, IPN provides

solutions which are either optimal or very close to optimal.

In the next set of experiments we evaluate the quality of solutions obtained using

model IPN for the cases where all of the queries in the workload are from certain

levels of the view lattice. We solve twelve instances over the 13-attribute database.

In the first two instances the number of attributes in each query is a random number

50

Table 6.2: The value of cost obtained by model IPN and the optimal value of cost
(obtained from solving model IP2) for instances on the 13-attribute database. Queries
in instances 1 and 2 are from the upper levels of the view lattice, queries in instances
3-7 are from the middle levels of the view lattice, and queries in instances 8-12 are
from the lower levels of the view lattice.

instance number of α=0.1 α=0.3
number queries IPN optimal IPN optimal

1 7 2098700.00 2098700.00 7.10 7.06
2 9 2698330.00 2698330.00 11.89 11.47

3 7 2098700.00 2098700.00 35982.40 35982.40
4 9 2698330.00 2698330.00 611639.00 611639.00
5 11 300060.00 300060.00 11.29 11.15
6 13 899923.00 899923.00 188.84 188.79
7 15 309819.00 309818.00 626.55 625.22

8 7 599633.00 599633.00 599633.00 599633.00
9 9 1705540.00 1705540.00 602696.00 602696.00

10 11 1533840.00 1533830.00 1249140.00 1249140.00
11 13 1199270.00 1199270.00 960973.00 960973.00
12 15 2452170.00 2452170.00 600112.00 600112.00

instance number of α=0.5 α=1
number queries IPN optimal IPN optimal

1 7 7.00 7.00 7.00 7.00
2 9 9.00 9.00 9.00 9.00

3 7 7.80 7.79 7.00 7.00
4 9 10.36 9.75 9.00 9.00
5 11 11.02 11.00 11.00 11.00
6 13 13.07 13.01 13.00 13.00
7 15 15.59 15.05 15.01 15.00

8 7 539242.00 539242.00 299820.00 299820.00
9 9 197.62 197.62 10.10 10.10

10 11 331397.00 331397.00 49.00 49.00
11 13 299948.00 299945.00 13.05 13.03
12 15 77.11 77.11 15.08 15.08

51

between 9 and 12, so queries are from the upper levels of the view lattice. In the next

five instances the number of attributes in each query is a random number between 5

and 8, so queries are from the middle levels of the view lattice. Finally, in the last five

instances the number of attributes in each query is a random number between 1 and

4, so queries are from the lower levels of the view lattice. We solve each instance for

different values of α: α = 0.1, 0.3, 0.5, and 1. We also solve each instance optimally

(using model IP2). In Table 6.2, for each instance we present the cost obtained by

model IPN and the optimal value of cost obtained from solving model IP2. In this

table we observe that regardless of the position (level) of the queries in the view

lattice, model IPN provides solutions which are close to optimal. (When queries are

from the upper levels of the view lattice, in our case when each query has between 9

and 12 attributes, for the instances where the number of queries is more than nine we

could not obtain the optimal solution using model IP2 due to the memory shortage,

hence we do not include such instances in Table 6.2. Note that when queries are from

the upper levels of the view lattice, they have many attributes in common which

results in large digraph Gv’s for many views, hence a larger IP model.)

We perform two other sets of experiments to evaluate the performance of model

IPN for larger instances. These sets of experiments consist of solving a collection of

ten instances over the 7-attribute database and a collection of ten instances over the

13-attribute database with the number of queries ranging between 10 and 50. In these

instances the value of α is 0.5, and queries are selected randomly (these instances are

exactly the same as instances that we described in Chapter 4). We report our findings

in Tables 6.3 and 6.4, respectively. For each instance we report (1) the number of

queries, (2) the optimal value of the corresponding integer programming models IP2

and IPN, (3) the total time required to solve each instance using each of models IP2

and IPN, and (4) the number of indexes in model IP2 and model IPN. Note that

for each instance, the number of views in models IP2 and IPN is the same and it

is reported in Tables 6.3 and 6.4. For these collections of instances, we make the

following observations:

52

Table 6.3: Comparison of (1) the value of cost obtained from solving model IPN
with the value of cost obtained from solving model IP2 (optimal), (2) the total time
required to solve each of the instances using model IPN with the total time required
to solve the same instance using model IP2, and (3) the number of indexes in the
search space of indexes of model IPN with the corresponding number in model IP2
for each of the instances over the 7-attribute database.

instance number of IP2 cost IPN IP2 IPN
queries (optimal) cost time (sec.) time (sec.)

1 20 20.25 20.25 10.14 0.73
2 20 20.41 22.17 2.17 0.62
3 20 20.29 20.54 3.66 0.75
4 20 20.42 20.66 1.93 0.76
5 20 20.41 20.52 3.26 0.74
6 20 20.17 21.00 2.99 0.66
7 20 21.05 21.16 4.01 1.59
8 30 30.29 30.30 13.82 1.69
9 40 40.35 40.35 50.57 1.16

10 50 50.16 50.30 500.5 3.56

instance number of number of number of indexes number of indexes
queries views in V ′ in IP2 in IPN

1 20 45 913 150
2 20 45 500 132
3 20 56 561 172
4 20 47 521 159
5 20 43 713 161
6 20 40 694 113
7 20 42 418 125
8 30 64 802 259
9 40 58 1356 324

10 50 64 2117 408

53

Table 6.4: Comparison of (1) the value of cost obtained from solving model IPN
with the value of cost obtained from solving model IP2 (optimal), (2) the total time
required to solve each of the instances using model IPN with the total time required
to solve the same instance using model IP2, and (3) the number of indexes in the
search space of indexes of model IPN with the corresponding number in model IP2
for each of the instances over the 13-attribute database.

instance number of IP2 cost IPN IP2 IPN
queries (optimal) cost time (sec.) time (sec.)

1 10 10.00 10.00 2.10 0.65
2 10 10.07 10.07 1.96 0.61
3 10 10.00 10.00 1.96 0.61
4 10 10.29 10.64 1.83 0.62
5 15 15.11 15.44 287.34 0.93
6 15 15.12 15.23 520.74 0.82
7 20 - 20.63 memory shortage 1.49
8 30 - 30.11 memory shortage 10.17
9 40 - 40.14 memory shortage 21.71

10 50 - 50.01 memory shortage 291.57

instance number of number of number of indexes number of indexes
queries views in V ′ in IP2 in IPN

1 10 27 1218 77
2 10 28 409 77
3 10 25 534 72
4 10 29 358 88
5 15 49 5,437 159
6 15 60 7,069 203
7 20 165 15,460 619
8 30 305 3,061,155,903 1207
9 40 556 3,177,400,892 2464

10 50 725 3,166,128,428 4345

54

• The time required to solve each of the instances using the inexact model IPN

is significantly smaller than the corresponding time for model IP2 (especially

for the larger instances). Furthermore, the quality of the solution obtained via

model IPN is close to optimal for those instances where we know the optimal

solution (obtained via the exact model IP2). For this collection of instances,

on average the value of cost obtained from model IPN is 1% more than the

corresponding optimal value obtained from model IP2. The maximum deviation

of the value of cost obtained by solving model IPN from the optimal value is

9% (instance 2 in Table 6.3). For the remaining instances where we do not

have the optimal value (instances 7-10 in Table 6.4), the cost obtained via IPN

is at most 4% larger than the corresponding lower bound (i.e., the number of

queries).1

• In all instances we observe that the number of indexes in model IPN is sig-

nificantly smaller than the corresponding number in model IP2, especially for

larger instances.

As in the experiments with model IP2, in these instances we also measured the

time required to build the search space of views and indexes for model IPN using

algorithm IPNIDX and the time required to solve model IPN, separately. We observed

that for the larger instances where the execution time is significant, the time required

to build the search space of model IPN is significantly smaller than the time required

to solve the corresponding model IPN.

We also solved a larger instance on the 13-attribute database with 100 queries

using model IPN. The total time required to solve this instance using model IPN was

2,674 seconds, and the value of cost obtained from this model is 100.06. We could

not solve model IP2 for this instance as the computer ran out of memory.

1Consistent with the assumption that we made earlier, we continue to assume that for each query
all associated attributes are in its WHERE clause and they are compared with constants. As vπ(q) ⊆ v,
we have size(vπ(q)) ≤ size(v); thus cq(v, π) = size(v)

size(vπ(q)) ≥ 1. It follows that the cost of answering
each query would be at least 1. As a result, for every instance in our experiments, the number of
queries forms a lower bound for its associated cost.

55

Table 6.5: Comparison of the value of cost obtained from model IPNIRp with the
value of cost obtained from model IPN for different values of p for a large instance
on the 13-attribute database with 100 queries.

p IPNIRp IPN IPNIRp IPN number of number of
cost cost time time indexes indexes

(sec.) (sec.) in IPNIRp in IPN
20 100.12 100.06 356.30 2674 4043 22100
25 100.44 64.79 2936
30 103.20 40.99 2743
35 156.00 48.52 2667
40 156.40 34.95 2655
45 156.00 33.02 2651
50 364.43 36.90 2639

6.2 Experiments with the Inexact Model IPNIRp

In this section we evaluate the quality of the solutions obtained from model

IPNIRp described in Section 5.2. Also, we study the impact of parameter p in this

model on the quality of the solutions.

Consider the large instance (with 100 queries) that we mentioned at the end of

the previous section. We solved this instance using model IPNIRp for p=20, 25, 30,

35, 40, 45, and 50. The results are presented in Table 6.5. As we can see in this table,

when p=20 and 25, the cost obtained from model IPNIRp is close to the cost obtained

from model IPN. Also we observe that for all values of p, the time required for solving

this large instance using model IPNIRp is significantly smaller than the time required

for solving this instance using model IPN (as expected). Furthermore, we observe

that mostly, as we increase the value of parameter p, the number of indexes in the

search space of model IPNIRp and the time required for solving IPNIRp decrease,

but the value of cost increases.

Our goal in the next set of experiments is to find those values of parameter p which

result in solutions with acceptable qualities. To this end, we construct and solve a

collection of eighteen relatively large instances (with number of queries between 50

56

Table 6.6: The value of p0.01 for instances on the 13-attribute database.

instance number of p0.01 IPNIRp0.01 IPN IPNtime
IPNIRp0.01time

number queries time (sec.) time (sec.)
1 50 15 10.55 101.53 9.6
2 50 15 16.09 108.64 6.8
3 50 15 8.42 66.62 7.9
4 60 15 10.32 89.99 8.7
5 60 10 47.74 83.92 1.8
6 60 20 5.35 61.88 11.6
7 70 10 66.48 384.35 5.8
8 70 20 7.75 304.88 39.3
9 70 15 7.12 158.98 22.3

10 80 20 12.74 277.67 21.8
11 80 20 52.39 423.09 8.1
12 80 15 14.27 308.7 21.6
13 90 25 14.10 282.77 20.1
14 90 20 23.18 449.66 19.4
15 90 20 17.06 505.76 29.6
16 100 20 43.06 287.08 6.7
17 100 20 20.99 485.64 23.1
18 100 20 28.52 667.93 23.4

and 100) over the 13-attribute TPC-H database. For each instance, we decrease the

value of p in IPNIRp from 30 to 25 to 20, . . . until v(IPNIRp)≤ 1.01v(IPN), where

v(IPNIRp) represents the value of cost obtained from model IPNIRp and v(IPN)

represents the value of cost obtained from model IPN. We use the notation p0.01 to

represent the largest value of parameter p among values 5, 10, 15, 20, 25, 30 that results

in v(IPNIRp)≤ 1.01v(IPN). In Table 6.6 for each instance we report p0.01, the time

required to solve that instance using model IPN, and the time required to solve that

instance using model IPNIRp0.01. From this table, we observe that in this experiment,

10≤ p0.01 ≤ 25, and on average the time required to solve each instance using model

IPNIRp0.01 is 16 times less than the time required to solve that instance using the

corresponding model IPN.

We also solved three larger instances with 50 queries over the 17-attribute database

57

Table 6.7: The value of p0.01 for instances on the 17-attribute database.

instance number of p0.01 IPNIRp with p = p0.01 IPN IPNtime
IPNIRp0.01time

number queries time (sec.) time (sec.)
1 50 15 18.95 514.74 27.2
2 50 10 184.05 1723.09 9.4
3 50 20 23.34 927.14 39.7

using IPN and IPNIRp with different values of p. For these instances we report p0.01,

the time required to solve each instance using model IPN, and the time required to

solve each instance using model IPNIRp with p = p0.01 in Table 6.7. From this table,

we observe that for these instances, 15≤ p0.01≤ 20, and the time required to solve

each instance using model IPNIRp with p = p0.01 is between about 10 to 40 times

less than the time required to solve the corresponding model IPN. We could not solve

instances with 60 queries and more over this database (the 17-attribute database)

using IPN in our time limit of one hour.

In our above experiments we observe that we can solve instances using model

IPNIRp with p = p0.01 significantly faster than when we use model IPN (and of

course model IPNIRp with p = p0.01 provides solutions of acceptable qualities with

respect to the solutions obtained from model IPN) . As a result, we can solve many

large instances using model IPNIRp that we are not able to solve in our time limit

using model IPN. An example of such instances is presented in Table 6.8 which is an

instance with 70 queries on the 17-attribute database. As we observe in this table,

for this instance the search space of indexes in model IPN is relatively large and we

could not solve this instance using model IPN. However, we could solve this instance

using model IPNIRp when p=20 in 660.96 seconds.2 (The value of cost obtained from

IPNIRp is within 1% of lower bound for the value of cost.)

2We need to mention that we could not solve this instance using model IPNIRp when p=10 in
one hour.

58

Table 6.8: Solving a large instance with 70 queries on the 17-attribute database using
model IPNIRp with p=20. We could not solve this instance using p=10 in one hour.

IPNIRp(p=20) IPNIRp(p=20) number of indexes in number of indexes in
cost time (sec.) IPNIRp(p=20) IPN

70.560 660.96 11,485 88,649

6.3 Experiments with the Inexact Model IPVs

In this section we evaluate the quality of the solutions obtained from model IPVs.

Also, we study the effect of parameter s on the quality of the solutions obtained

using this model. To this end, we solve four instances on the largest database, i.e.,

the 17-attribute database using model IPVs with different values of parameter s, and

present the results in Tables 6.9 through 6.12 (each table corresponds to a separate

instance). In each of these instances we have 50 randomly generated queries. In

Tables 6.9, 6.10, 6.11, and 6.12 for each value of parameter s, we present the value of

cost obtained from model IPVs, the number of views and indexes in the search space

of model IPVs, and the time required for solving each instance using model IPVs.

Note that in these instances when s = 50 model IPVs is the same as model IPN. As

we can observe in Tables 6.10 and 6.12 we cannot solve the second and the fourth

instances using model IPN in one hour.

From Tables 6.9 through 6.12 we observe that for those instances that we were able

to solve model IPN (instances 1 and 3), when s = 1 model IPVs provides solutions

which are close to the solution of model IPN. Furthermore, we observe that the value

of cost obtained via model IPVs (as a function of s) is monotonically non-increasing

as expected.

To further evaluate the quality of the solutions obtained from model IPVs when

s = 1, we solved the 18 instances of Table 6.6 using model IPVs for s = 1. In

Table 6.13 for each instance we present the value of cost and the time required to

solve that instance using model IPVs (s=1), as well as the value of cost and the time

required to solve that instance using model IPN. From this table we observe that in

59

Table 6.9: The result of solving instance 1 over the 17-attribute database using model
IPVs for different values of s.

s Number of Number of IPVs IPVs
views in |V ′′

s | indexes in IPVs cost time (sec.)
1 51 361 50.37 38.84
2 128 515 50.37 36.25
3 300 1029 50.37 37.20
4 572 2088 50.37 41.84
5 912 3723 50.37 58.62
6 1231 5559 50.37 80.91
7 1516 7460 50.37 185.58
8 1718 9006 50.35 286.18
9 1850 10135 50.26 388.35

10 1950 11095 50.26 623.57
20 2114 13130 50.14 736.97
30 2125 13385 50.10 936.65
40 2125 13385 50.10 934.90
50 2125 13385 50.10 1013.60

Table 6.10: The result of solving instance 2 over the 17-attribute database using
model IPVs for different values of s.

s Number of Number of IPVs IPVs
views in |V ′′

s | indexes in IPVs cost time (sec.)
1 51 313 50.97 23.08
2 99 409 50.97 22.27
3 272 885 50.97 23.23
4 616 2144 50.97 35.91
5 1071 4221 50.95 82.40
6 1489 6520 50.92 183.43
7 1802 8534 50.87 428.71
8 2005 10064 50.87 2502.35
9 2124 11100 − >1hr

10 2184 11696 − >1hr
20 2210 13287 − >1hr
30 2321 13540 − >1hr
40 2321 13540 − >1hr
50 2321 13540 − >1hr

60

Table 6.11: The result of solving instance 3 over the 17-attribute database using
model IPVs for different values of s.

s Number of Number of IPVs IPVs
views in |V ′′

s | indexes in IPVs cost time (sec.)
1 51 375 50.62 14.87
2 77 427 50.62 14.14
3 152 622 50.62 14.58
4 292 1077 50.62 15.62
5 511 1904 50.62 19.36
6 789 3099 50.62 25.36
7 1085 4512 50.23 28.59
8 1390 6117 50.23 30.51
9 1666 7705 50.23 52.40

10 1928 9366 50.23 132.73
20 2953 20717 50.21 751.72
30 2981 21383 50.15 984.80
40 2982 21415 50.15 800.30
50 2982 21415 50.15 799.18

Table 6.12: The result of solving instance 4 over the 17-attribute database using
model IPVs for different values of s.

s Number of Number of IPVs IPVs
views in |V ′′

s | indexes in IPVs cost time (sec.)
1 51 391 50.12 12.69
2 98 485 50.12 11.67
3 253 917 50.12 11.86
4 599 2159 50.12 18.76
5 1141 4539 50.12 28.52
6 1790 7875 50.12 79.78
7 2436 11678 50.12 226.64
8 2978 15291 50.12 497.48
9 3420 18624 50.12 971.89

10 3743 21324 50.12 1296.46
20 4529 30595 − >1hr
30 4556 31247 − >1hr
40 4556 31247 − >1hr
50 4556 31247 − >1hr

61

Table 6.13: Comparing model IPVs when s = 1 and model IPN for 18 instances over
a 13-attribute database. Instances are the same as instances in Table 6.6.

instance number of IPVs (s = 1) IPN IPVs (s = 1) IPN
number queries cost cost time (sec.) time (sec.)

1 50 50.06 50.04 12.43 101.53
2 50 50.07 50.03 8.88 108.64
3 50 50.06 50.04 8.87 66.62
4 60 60.27 60.08 2.14 89.99
5 60 60.62 60.09 1.94 83.92
6 60 60.20 60.02 2.04 61.88
7 70 71.95 70.17 2.89 384.35
8 70 70.32 70.10 2.39 304.88
9 70 70.43 70.09 2.44 158.98

10 80 80.29 80.10 5.26 277.67
11 80 80.74 80.04 4.33 423.09
12 80 80.95 80.25 3.79 308.7
13 90 90.37 90.07 5.77 282.77
14 90 90.16 90.05 4.99 449.66
15 90 90.28 90.05 4.02 505.76
16 100 100.32 100.05 6.92 287.08
17 100 100.13 100.06 5.56 485.64
18 100 101.12 100.11 6.61 667.93

all of these instances, the value of cost obtained by model IPVs with s=1 is very

close to the value of cost obtained from model IPN (within at most 2%). Also, in

all of these instances we observe that the time required to solve each instance using

model IPVs was significantly shorter than the time required to solve that instance

using model IPN, on average 66 times.

We also compare the value of cost obtained from model IPVs (s = 1) to the value

of cost obtained from model IPNIRp with p = p0.01 for the eighteen instances of Ta-

ble 6.13. Also, we compare the total time required to solve each instance using model

IPVs (s = 1) and the total time required to solve the corresponding model IPNIRp

with p = p0.01. We present the results in Table 6.14. From this table we observe

that the quality of solutions obtained from model IPVs (s = 1) is not significantly

62

Table 6.14: Comparing model IPVs when s = 1 and model IPNIRp with p = p0.01

for 18 instances over a 13-attribute database. Instances are the same as instances in
Table 6.6.

instance number of IPVs (s = 1) IPNIRp IPVs (s = 1) IPNIRp
number queries cost with p = p0.01 time (sec.) with p = p0.01

cost time (sec.)
1 50 50.06 50.07 12.43 10.55
2 50 50.07 50.09 8.88 16.09
3 50 50.06 50.29 8.87 8.42
4 60 60.27 60.30 2.14 10.32
5 60 60.62 60.22 1.94 47.74
6 60 60.20 60.32 2.04 5.35
7 70 71.95 70.28 2.89 66.48
8 70 70.32 70.79 2.39 7.75
9 70 70.43 70.44 2.44 7.12

10 80 80.29 80.67 5.26 12.74
11 80 80.74 80.21 4.33 52.39
12 80 80.95 80.47 3.79 14.27
13 90 90.37 90.67 5.77 14.10
14 90 90.16 90.45 4.99 23.18
15 90 90.28 90.49 4.02 17.06
16 100 100.32 100.85 6.92 43.06
17 100 100.13 100.92 5.56 20.99
18 100 101.12 100.51 6.61 28.52

different from the quality of solutions obtained from model IPNIRp with p = p0.01,

however, the amount of time needed to solve each instance using IPVs (s = 1) is on

average 6 times less than the time required to solve the corresponding model IPNIRp

with p = p0.01.

We changed the value of α (defined in the context of formula 4.1) in some of the

above instances (instances 1, 4, 7, 10, 13, and 16) and solved these instances using

model IPVs with s=1. Tables 6.15 and 6.16 presents the value of cost obtained by

models IPN and IPVs (s=1) as well as the time required to solve each of these models

for α = 0.1 and α = 0.2, respectively. From these two tables we observe that except

63

Table 6.15: Comparing model IPVs when s = 1 and model IPN for some of the
instances in Table 6.13 when α = 0.1.

instance number of IPVs (s = 1) IPN IPVs (s = 1) IPN
number queries cost cost time (sec.) time (sec.)

1 50 141783.00 103654.00 45.86 934.90
4 60 402.90 402.90 2.18 40.25
7 70 683.97 683.97 2.84 124.27

10 80 182.84 182.84 3.88 149.56
13 90 243.15 243.15 5.31 299.53
16 100 100.32 100.05 7.13 418.76

Table 6.16: Comparing model IPVs when s = 1 and model IPN for some of the
instances in Table 6.13 when α = 0.2.

instance number of IPVs (s = 1) IPN IPVs (s = 1) IPN
number queries cost cost time (sec.) time (sec.)

1 50 107.71 107.71 8.23 75.50
4 60 67.89 66.31 2.05 330.91
7 70 86.98 85.78 2.49 398.71

10 80 83.47 82.15 5.90 1042.91
13 90 92.88 91.83 6.10 524.91
16 100 104.26 102.82 6.97 498.39

for instance 1 in Table 6.15, the value of cost obtained by model IPVs with s=1 is

very close to the value of cost obtained from model IPN (within 2%). For instance

1 in Table 6.15, when we increased the value of s to 3, the value of cost obtained

by model IPVs lies within 2% of the value cost obtained by model IPN. Also, in all

of these instances we observe that the time required to solve model IPVs (s = 1) is

significantly shorter than the time required to solve the corresponding model IPN: on

average 39 times for instances in Table 6.15 and 110 times for instances in Table 6.16.

In our experiments with model IPVs, we observe that s = 1 provides solutions

which are close to the solutions obtained from model IPN. We investigated the reason

for this phenomenon. We observed that the size of 94% of the views in the 13-attribute

database are either less than 10% of the size of the raw-data view or more than 90%

64

of the size of the raw-data view, i.e., views are either very small or very large. As

a result for small queries like query q, a view v which is the same as query q is

selected. Larger queries like q′ are answered by the raw-data view v1 where size(q)

≈ size(v1). Thus when s = 1, i.e., when the search space of views is limited to only

those views that are the same as queries and the raw-data view, we still get good

solutions from Model IPVs. But this phenomenon doesn’t necessarily happen when

the storage space bound is small, as we observed in instance 1 of Table 6.15. Note

that in this instance α = 0.1 and storage space is very limited.

In general, for each instance it seems reasonable to increase the value of s as much

as possible while the corresponding execution time remains relatively small.

6.4 Comparison with the Heuristic Approach ACN

In this section, we compare the search space of views and indexes in model IPN

with the search space of views and indexes generated by algorithm ACN which is

an OLAP modified approach proposed in [2]. The approach for selecting views and

indexes explained in [2] is as follows:

- First reduce the size of the search space of views by a “view-merging” approach.

- Next use a Greedy(n, k) algorithm3 to reduce the size of the search space of indexes.

- Finally use another Greedy(n, k) algorithm to find a set of views and indexes simul-

taneously among the reduced search spaces of views and indexes.

The authors in [2] do not define the cost of answering queries and just mention that

the cost is calculated by an estimation module.

We used the approach of [2] to develop algorithm ACN as follows: We reduce

the size of the search space of views and indexes in the same way as in [2]. However,

instead of applying a Greedy(n, k), we use our integer programming model to find the

3In a Greedy(n, k) algorithm, first each combination of n indexes are evaluated and the combi-
nation which result in the lowest cost would be selected. Then from the k − n indexes left, indexes
are selected one by one in a greedy manner until no more indexes can be selected due to the space
constraint.

65

best set of views and indexes among the reduced search space of views and indexes.

This way we guarantee that we find the best set of views and indexes in the reduced

search space. Also, we use our cost model defined in Section 2.1, rather than the

estimation module in [2].

In the first step of algorithm ACN, each query is considered to be a potential

view, and a randomly selected order of the attributes of each such view is considered

an index for that view. Subsequently, ACN considers the union of each pair of views,

v1 and v2, as a new “merged” view v. If the size of a merged view v is less than the

sum of the sizes of views v1 and v2, the algorithm adds view v to the search space

of views. In this case, for each index of views v1 and v2, we also construct a similar

index for the merged view v: If π is an index of view v1, we add the attributes in

v \ v1 to the end of the sequence of attributes of index π to get an index for view v.

Similarly, we get the other indexes of v from indexes of v2. ACN terminates once it

can add no more merged views to the search space.

In each instance of the OLAP-VI problem, suppose V ACN is the set of views

generated by algorithm ACN and ΠACN(v) is the set of indexes for each view v ∈
V ACN . We define model IPACN as a model which is the same as model IPN, except

that we use the set of views in V ACN in place of V ′ and the set of indexes ΠACN(v)

in place of Π′′(v) for each view v ∈ V ACN .

Our goals in this section is to (1) compare the size of the search space of views

and indexes in our proposed model IPN with the size of the search space of views

and indexes generated by algorithm ACN, and (2) compare the quality of the search

spaces generated through these two approaches in terms of containing a set of views

and indexes which result in lower cost of answering the queries.

Our first set of experiments consists of ten instances over the 17-attribute database.

Each instance has twenty queries in the workload. For each instance we measure the

size of the search space of views and indexes in model IPN and the size of the search

space of views and indexes generated by algorithm ACN. Also, for each instance we

solve models IPN and IPACN. In Figure 6.1(a) we compare the size of the search

spaces of views of IPN and IPACN, and in Figure 6.1(b) we compare the size of the

66

Table 6.17: Comparison of (1) the costs obtained from solving models IPN and
IPACN, and (2) the time required to solve each of these instances using models
IPN and IPACN. Instances are over the 17-attribute database. Each instance has 20
queries.

instance IPN IPACN IPN IPACN
cost cost time (sec.) time (sec.)

1 20.84 359360.00 12.08 11.95
2 20.00 243476.70 1.22 10.43
3 20.68 92580.19 17.51 7.98
4 20.20 1810970.47 2.58 16.06
5 22.08 576012.00 2.44 32.20
6 20.12 144209.00 3.99 5.43
7 21.42 743439.54 11.02 40.76
8 20.00 35627.84 38.63 12.72
9 20.51 481878.12 6.94 4.28

10 20.14 43369.08 33.51 4.45

search spaces of indexes of IPN and ACN for each instance. For all of these instances,

the search space of views and indexes generated by ACN is significantly smaller than

the search space of views and indexes in IPN. On average, both the number of indexes

and the number of views in IPACN is half the number of indexes and the number of

views in IPN.

For each of these instances, we also measure the cost obtained from solving models

IPN and IPACN and report them in Table 6.17. In this table, we also report the total

time required to solve each instance using model IPN and the time required to solve

the corresponding model IPACN. From this table we observe that for each instance,

the cost obtained using model IPN is significantly smaller than the cost obtained

using model IPACN. Also, we observe that the total time of solving each instance

using model IPN is comparable with the total time of solving that instance using

model IPACN.

Our second set of experiments consists of ten instances over the 13-attribute

database. Each instance has twenty queries. Again, for each instance we compare the

size of the search space of views and indexes in model IPN and IPACN and present

67

263

174

108

342

277
257

464

278

146

222

161

90
60

112

166

111

251

169

84
110

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

Instance

N
u

m
b

e
r

o
f

V
ie

w
s

IPN

ACN

(a) Comparison of the sizes of the search spaces of views.

941

683

415

1324
1191

1021

1941

1078

525

865

616

316
169

668 638
471

1094

695

261
444

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

Instance

N
u

m
b

e
r

o
f

In
d

e
x

e
s

IPN ACN

(b) Comparison of the sizes of the search spaces of indexes .

Figure 6.1: Comparison of the size of the search space of views and indexes in models
IPN and IPACN for the instances over the 17-attribute database.

68

Table 6.18: Comparison of (1) the costs obtained from solving models IPN and
IPACN, and (2) the time required to solve each of these instances using models
IPN and IPACN. Instances are over the 13-attribute database. Each instance has 20
queries.

instance IPN IPACN IPN IPACN
cost cost time (sec.) time (sec.)

1 85.16 469959.42 28.59 7.72
2 25.42 769250.00 1.88 37.19
3 21.10 1237010.15 4.57 21.52
4 20.66 656023.71 5.18 13.08
5 20.23 598928.00 2.13 27.4
6 20.03 74779.27 4.17 5.6
7 20.19 72352.68 1.31 8.47
8 20.01 19959.04 1.8 15.58
9 20.01 336517.00 15.16 19.03

10 20.12 3839.23 3.4 3.98

the results in Figures 6.2(a) and 6.2(b). For all of these instances, we observed that

the search space of views and indexes generated by ACN is smaller than the size of

the search space of views and indexes in IPN. On average, both the number of indexes

and the number of views in ACN is half of the number of indexes and the number of

views in IPN.

For each of these instances, we also measured the values of cost obtained from

solving models IPN and IPACN and report them in Table 6.18. In this table, we also

report the total time required to solve each instance using model IPN and the time

required to solve that instance using the corresponding model IPACN. Consistent with

our previous set of experiments, from Table 6.18 we observe that for each instance,

the cost obtained using model IPN is significantly smaller than the cost obtained

using model IPACN. Also, we observe that the total time of solving each instance

using model IPN is comparable with the total time of solving that instance using

model IPACN.

Discussion. We believe the reason for the relatively poor performance of algo-

rithm ACN is the manner in which its indexes are selected. In fact, it is very likely

69

260

316
295

223

110 106
119 113

152

73

132

108
89 87

55 51

73
62

79

41

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

Instance

N
u

m
b

e
r

o
f

V
ie

w
s

IPN ACN

(a) Comparison of the sizes of the search spaces of views.

1092
1139 1130

823

353 361
443

369

537

229

519
475

314 324

147 137
195 176

258

104

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Instance

N
u

m
b

e
r

o
f

In
d

e
x
e
s

IPN ACN

(b) Comparison of the sizes of the search spaces of indexes .

Figure 6.2: Comparison of the size of the search space of views and indexes in model
IPN and IPACN for the instances over the 13-attribute database.

70

that each index in the search space of indexes generated by Algorithm ACN is useful

for one or only a few of the corresponding queries. Since the storage space is not

enough to select one distinct index per query, there may be no useful index among

the selected indexes for some of the queries. To clarify this, we present the following

example:

Example 6. Suppose queries in the workload are q1={a, b} and q2={a, c}. Suppose

the sizes of views va={a}, vb={b}, vc={c}, v1={a, b}, v2={a, c}, and v= {a, b, c} are

10000, 2000, 15000, 15000, 17000, and 20000, respectively. In the first iteration of

ACN, v1 and v2 are in the set of potential views. Suppose the order of the attributes

of the index for v1 is (b, a) (a random order of attributes of q1), and the order of

attributes of the index for v2 is (c, a) (a random order of attributes of q2). Since s(v) ≤
s(v1) + s(v2) (i.e., 20000 ≤ 32000), in the second iteration view v is added to the set

of potential views, and the set of potential indexes for v would be {(b, a, c), (c, a, b)}.
Suppose the space limit is 40000. Thus the optimal solution of model IPACN for this

instance includes view v and index (c, a, b), at the cost of 20001.18. However, in the

optimal solution (obtained from model IP2), view v and index (a, c, b) over view v

would be selected, and the value of cost in the optimal solution is 3.18.2

6.5 Comparing with the Heuristic Approach GHRU

In all procedures that we proposed in this dissertation, we used integer program-

ming (IP) models to find the best set of views and indexes among those considered. In

this section, we compare our IP-based approach with a greedy heuristic approach pro-

posed in [13] for selecting views and indexes. We refer to this algorithm as algorithm

GHRU.

71

Algorithm GHRU

There are two algorithms proposed in [13] for selecting views and indexes. For

our experimental comparisons we chose, from the algorithms proposed in [13], the

algorithm with the best performance guarantees, i.e., the r-greedy algorithm, and set

r = 4 for the parameter of this algorithm as suggested in this paper. GHRU includes

two types of basic steps: (1) select an index for an already selected view; or (2) pick

a view and at most three indexes. In each iteration, GHRU selects an index or a

combination of a view with at most three indexes that maximizes the benefit per unit

space by enumeration. For a full description of the algorithm see [13].

We apply algorithm GHRU on several different search spaces of views and indexes

that we proposed in Chapters 3 and 4, and evaluate the quality of the solutions

obtained from this algorithm. More specifically, we apply GHRU on the original

search space of views and indexes, the search space of views and indexes in model

IP2, and the search space of views and indexes in model IPN. Also, we apply GHRU

on the search space of views and indexes generated by algorithm ACN which we

explained in the previous section.4

Our first set of experiments include six instances over the 7-attribute database.

We used the smallest size database so that we will be able to apply GHRU on the

original search space.5 For each instance, we measured the cost obtained via GHRU

on each search space and report the results in Table 6.19. Also, we measured the total

time required to build each search space and apply GHRU on that search space, and

report it in Table 6.20. From Table 6.19 we observe that the quality of the solutions

obtained via GHRU when it is applied on the search space of IPN is significantly

better than the quality of the solutions obtained when it is applied on the other

search spaces. Furthermore, from Table 6.20 we observe that on average the time

required to solve instances by applying GHRU on the original, IP2, IPN, and ACN

4Algorithm GHRU in [13] is primarily designed to be applied on the original search space of views
and indexes.

5Note that the size of the original search space of views and indexes is huge for larger databases;
thus GHRU cannot be applied (within reasonable execution time limits) on the original search space
of views and indexes for instances on larger databases.

72

Table 6.19: The value of cost obtained from GHRU when it is applied on different
search spaces for 6 instances over the 7-attribute database.

instance search space
number original IP2 IPN ACN

1 1173610 15 16 1396639
2 1199264 299866 299866 900263
3 900710 68 44 127
4 1199262 899451 43 1199288
5 1199262 299826 13 1061397
6 1199262 599754 299853 594775

search spaces are 615.50, 12.63, <0.01, and 0.02 seconds, respectively. Thus, not

only we obtained the best (smallest) cost when we applied GHRU on the IPN search

space, but also applying GHRU on the IPN was faster than applying GHRU on any

other search space. This implies that most of the time GHRU by itself does not select

a good combination of views and indexes, however, if the search space is reduced

by our approaches prior to applying GHRU, then GHRU selects a relatively better

combination of views and indexes. Also, GHRU did not provide good solutions when

it was applied on ACN search space. We believe this is due to the fact that for most

instances the ACN search space does not contain good combination of views and

indexes.

In the second set of experiments in this section, we compare the performance of

algorithm GHRU with our inexact approach IPN for a set of six instances over a 7-

attribute database where each instance has ten queries. The results are displayed in

Table 6.21. For each instance, we report (1) the value of cost obtained via model IPN,

(2) the cost obtained using algorithm GHRU, and (3) the corresponding execution

times. From this table we observe that:

• In all six instances, the cost obtained using model IPN is significantly lower

than the corresponding cost we obtained using algorithm GHRU. See Remark 1

below.

73

Table 6.20: The total execution time of applying GHRU on different search spaces for
6 instances over the 7-attribute database. (In these instances, the time required to
find each search space is significantly shorter than the time required to apply GHRU
on that search space.)

instance search space
number original IP2 IPN ACN

1 817.78 38.13 <0.01 <0.01
2 524.42 17.33 <0.01 0.03
3 614.86 15.07 <0.01 0.04
4 641.01 0.01 <0.01 <0.01
5 571.10 5.25 <0.01 <0.01
6 523.84 0.01 <0.01 0.04

Table 6.21: Comparison of (1) the cost obtained from solving model IPN with the cost
obtained by algorithm GHRU, and (2) the execution times of solving IPN with the
required times to apply algorithm GHRU for each of the instances over a 7-attribute
database. Each instance has 10 queries.

instance cost execution time (sec.)
IPN GHRU IPN GHRU

1 12.52 1,173,633.70 0.93 817.85
2 53.96 1,199,286.60 0.61 524.49
3 31.59 900,728.16 0.63 615.02
4 11.68 1,199,262.84 0.60 641.09
5 12.15 1,473,421.00 0.60 571.19
6 14.85 1,199,290.98 0.60 523.90

74

• The execution time for solving each instance using GHRU is significantly higher

than the time required to solve model IPN for the corresponding instance. See

Remark 2 below.

Remark 1. One can easily observe that there is a large difference between the costs

obtained by the two methods, with the cost obtained by IPN model being consistently

much lower than that obtained via GHRU. This large difference is partly due to the

special structure of the instances in our experiments. Note that by the assumptions

made earlier for every instance in our experiments all attributes of each query are

in its WHERE clause. Hence the corresponding cost of answering this query using an

appropriate view and a proper index is as low as 1. It follows that the optimal cost of

answering a given collection of queries could be as low as the number of queries. For

this collection of instances model IPN consistently finds a cost relatively close to this

lower bound. This implies that the corresponding solutions contain a proper mixture

of views and indexes so that each query is answered by an appropriate view and an

associated index. On the other hand, if query q is answered by view v with no index

on v, then the cost of answering this query is equal to the size of the view itself. In the

database that we used for these instances, i.e., the 7-attribute database, the average

size of a view is 216,469 rows, and in the solution obtained by algorithm GHRU there

are many cases where we have no useful index for answering a query. This explains the

huge difference between the costs obtained using the two approaches. If the structure

of the instance allows some attributes of a query to be in its GROUP BY clause,

then we expect the difference between the costs obtained by the two approaches to

be somewhat more moderate, although still potentially significant.

Remark 2. In fairness, we must add that algorithm GHRU was originally proposed

to solve the problem where the collection of queries is relatively large (e.g., the entire

collection of possible queries). For each such instance the execution time for solving

the corresponding model IPN may be prohibitively excessive, especially if the number

of attributes in the database is relatively large, but algorithm GHRU may terminate

within more reasonable time limits.

75

6.6 Summary of Observations

Following is a summary of our observations regarding the inexact (heuristic) methods

that we considered for solving the OLAP-VI problem.

• We are able to solve large realistic-size instances of the problem using the inexact

model IPN, while we cannot solve these instances using the exact model IP2 due

to the excessive execution time or computer memory shortage. In all instances

in our experiments where we know the optimal value of cost, the value of cost

obtained from model IPN is either optimal or close to optimal (within 9% of

the optimal).

• For all instances that we were able to solve model IPN, we obtained a solution

from model IPNIRp with p = 10 where its value of cost was within 1% of

the value of cost obtained from model IPN. Also, for each of these instances

we could solve IPNIRp with p = 10 in a significantly shorter amount of time

compared to IPN.

• In our experiments, most of the times model IPVs provides solutions of accept-

able qualities when s = 1.

• The search space of views and indexes of model IPN contains a feasible set of

views and indexes for the OLAP-VI problem that is significantly better than the

best feasible set of views and indexes in the search space generated by algorithm

ACN (derived from the approach proposed [2]) in terms of reducing the total

cost of answering the queries.

• When we apply the algorithm of [13] (GHRU) on the search space of views and

indexes of model IPN, i.e., V ′ and Π′′(v) for each v ∈ V ′, we observed that this

algorithm performs significantly better compared to the case when it is applied

on the original search space of views and indexes, i.e., V and Π(v) for each

v ∈ V . In other words, the GHRU algorithm of [13] by itself does not select a

good combination of views and indexes. However, if the search space is reduced

76

through our inexact approach of section 5.1, then this algorithm selects a much

better combination of views and indexes, albeit still significantly larger than

the corresponding optimal value.

• In our experiments we observed that not only our inexact approach IPN provides

significantly better solutions that algorithm GHRU (in terms of reducing the

total cost of answering the queries) , but it also runs significantly faster than

GHRU.

77

Chapter 7

Conclusions and Future Research

In this dissertation we undertook a systematic study of the OLAP view- and

index-selection problem under the storage space constraint. The input of the view-

and index-selection problem includes a data warehouse schema, a set of data-analysis

queries of interest, and an upper bound b on the available storage space, and the

output is a collection of views and indexes that would fit within the storage limit b and

would minimize the cost measure (evaluation time) for the given queries. We proposed

several exact and inexact methods to solve this problem. Our specific contributions

to the view- and index-selection problem are as follows.

• We introduced an integer programming model for the OLAP-VI problem.

• We developed several algorithms that effectively and efficiently prunes the space

of potentially beneficial views and indexes, and provided formal proofs that our

pruning algorithms keep at least one globally optimal solution in the search

space, thus the resulting integer-programming model is guaranteed to find an

optimal solution. Using our approach, we could solve moderate-size realistic

instances of the OLAP-VI problem optimally.

• We developed several algorithms to further reduce the size of the search space of

78

views and indexes using the structure of the OLAP-VI problem so that we are

able to solve larger instances of the problem, although we no longer guarantee

the global optimality of the resulting solution; and

• we presented an experimental evaluation of our algorithms and compared our

approaches with the well-known approaches in [2, 13].

Our experiments show that our proposed approaches to view and index selection

result in high-quality solutions — in fact, in globally optimal solutions for many

realistic-size problem instances. Thus, they compare favorably with the well-

known OLAP-centered approach of [13] and provide for a winning combination

with the end-to-end framework of [2] for generic view and index selection.

Our contributions open new avenues for view and index selection and material-

ization in OLAP and other systems. Specifically, this research lays the foundation

for studying this and other versions of the view- and index-selection problem in a

systematic principled way. In addition, our contributions make it possible, in practi-

cal settings, to quantify the “goodness” of specific view- and index-selection solutions

with respect to the best possible (that is, globally optimal) counterparts, rather than

just with respect to the base line where the system does not use any views. Finally,

in a broader context [1] it has become clear that advances in view or index selection

and advances in query rewriting using views and indexes are interrelated, thus these

problems need to be studied together.

7.1 Future Research Avenues

We envision two immediate directions to extend the approaches outlined in this

dissertation. One direction of research pertains to considering attribute preferences

for queries and select indexes based on these preferences. The other direction is to

consider sparse indexes in the search space of indexes:

79

Considering attribute preferences

In practice, sometimes it is more important to have an index on a given subset of

the attributes of a query, rather than on all of its attributes. Thus, a possible future

research is to consider different effects of indexes in answering the queries that is not

limited to the order of the attributes of indexes.

Including sparse indexes

In our research we limited the choice of indexes to the fat indexes, i.e., those

indexes that include all attributes of their corresponding view. In practice however,

sparse indexes can be very beneficial to answer queries. In fact, since in our OLAP-

VI problem, storage space is the main constraint, by allowing sparse indexes in the

search space we may be able to use the available storage space more efficiently. As

a result, another possible future research is to consider sparse indexes in the search

space. However, by adding sparse indexes, the size of the search space of indexes and

the complexity of the problem would increase dramatically even for relatively small

instances.

80

Bibliography

[1] F. N. Afrati and R. Chirkova. Selecting and using views to compute aggregate

queries (extended abstract). In Proceedings of the 10th International Conference

on Database Theory, pages 383–397, 2005.

[2] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated selection of material-

ized views and indexes in SQL databases. In Proceedings of the 26th International

Conference on Very Large Data Bases, pages 496–505, 2000.

[3] Z. Asgharzadeh Talebi, R. Chirkova, and Y. Fathi. Exact and inexact methods

for solving the problem of view selection. International Journal of Business

Intelligence and Data Mining, 4(3/4):391– 415, 2009.

[4] Z. Asgharzadeh Talebi, R. Chirkova, Y. Fathi, and M. Stallmann. Exact and

inexact methods for selecting views and indexes for OLAP performance im-

provement. In Proceedings of the 11th International Conference on Extending

Database Technology, pages 311–322, 2008.

[5] A. Balmin, F. Ozcan, K. Beyer, R. Cochrane, and H. Pirahesh. A framework for

using materialized xpath views in xml query processing. In Proceedings of the

30th International Conference on Very Large Data Bases, pages 60–71, 2004.

[6] E. Baralis, S. Paraboschi, and E. Teniente. Materialized view selection in a

multidimensional database. In Proceedings of the 23th International Conference

on Very Large Data Bases, pages 156–165, 1997.

81

[7] C. M. Broughton. IBM DB2 cube views and DB2 materialized query ta-

bles in a SAS environment. http://www.sas.com/partners/directory/ibm/

cubeviews.pdf, 2005.

[8] A. Caprara, M. Fischetti, and D. Maio. Exact and approximate algorithms for

the index selection problem in physical database design. IEEE Transactions on

Knowledge and Data Engineering, 7(6):955–967, 1995.

[9] S. Chaudhuri, M. Datar, and V. R. Narasayya. Index selection for databases:

A hardness study and a principled heuristic solution. IEEE Transactions on

Knowledge and Data Engineering, 16(11):1313–1323, 2004.

[10] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP tech-

nology. SIGMOD Record, 26(1):65–74, 1997.

[11] S. Chaudhuri and V. R. Narasayya. An efficient cost-driven index selection tool

for microsoft SQL server. In Proceedings of the 23th International Conference

on Very Large Data Bases, 1997.

[12] C. I. Ezeife. A uniform approach for selecting views and indexes in a data

warehouse. In Proceedings of the 1997 International Symposium on Database

Engineering and Applications, pages 151–160, 1997.

[13] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman. Index selection for

OLAP. In Proceedings of the 13th International Conference on Data Engineering,

pages 208–219, 1997.

[14] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes

efficiently. In Proceedings of the 1996 ACM SIGMOD International Conference

on Management of Data, pages 205–216, 1996.

[15] ILOG. CPLEX Homepage, 2004. Information on CPLEX is available at

http://www.ilog.com/products/cplex/.

82

[16] P. Kalnis, N. Mamoulis, and D. Papadias. View selection using randomized

search. Data Knowledge Engineering, 42(1), 2002.

[17] H. J. Karloff and M. Mihail. On the complexity of the view-selection prob-

lem. In Proceedings of the 18th ACM SIGMOD-SIGACT-SIGART Symposium

on Principles of Database Systems, pages 167–173, 1999.

[18] R. Kimball and M. Ross. The Data Warehouse Toolkit (second edition). Wiley

Computer Publishing, 2002.

[19] J. Kratica, I. Ljubic, and D. Tosic. A genetic algorithm for the index selection

problem. Applications of Evolutionary Computing, 2611:281–291, 2003.

[20] L. L. and L. Wolsey. Integer Programming. Wiley, USA, 1998.

[21] J. Li, Z. Asgharzadeh Talebi, R. Chirkova, and Y. Fathi. A formal model for the

problem of view selection for aggregate queries. In Advances in Databases and

Information Systems, 9th East European Conference, Tallinn, Estonia, pages

125–138, 2005.

[22] Microsoft. Web page of the AutoAdmin project: Self-tuning and self-

administering databases. http://research.microsoft.com/research/dmx/

autoadmin.

[23] Microsoft. Web page of the data management, exploration and mining group.

http://research. microsoft.com/research/dmx/.

[24] A. Shukla, P. Deshpande, and J. F. Naughton. Materialized view selection for

multidimensional datasets. In Proceedings of 24rd International Conference on

Very Large Data Bases, pages 488–499, 1998.

[25] Transactions Performance Processing Council. TPC Benchmark-

H Statndard Specification Revision 2.1.0. http://www.tpc.

org/tpch/spec/tpch2.1.0.pdf, 2002.

83

[26] G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and A. Skelley. DB2 advisor: An

optimizer smart enough to recommend its own indexes. In Proceedings of the

16th International Conference on Data Engineering, 2000.

[27] J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view design in

data warehousing environment. In Proceedings of the 23rd International Confer-

ence on Very Large Data Bases, pages 136–145, 1997.

[28] D. Zilio, C. Zuzarte, S. Lightstone, L. G. Ma, W., R. Cochrane, H. Pirahesh,

L. Colby, J. Gryz, E. Alton, D. Liang, and G. Valentin. Recommending mate-

rialized views and indexes with IBM DB2 design advisor. In Proceedings of the

16th International Conference on Data Engineering, 2004.

84

Appendix

85

Appendix A

An Algorithm to Build Digraph Gv

for View v

Following we provide a detailed pseudocode (based on our C++ code) for our

algorithm to build digraph Gv for view v which is a view in a view lattice. The

inputs of the algorithm are the set Q(v) = {q1, q2, . . . , qg} and v. The first step of the

algorithm is to build the set of nodes of Gv which is array L in the following code.

Note that each element of L is a set of attributes.

for i=1:g do

list[i]={qi}

L[i]=qi

s1=0

s2=g

#nodes=g

while s1!=s2

for i=1:g do

for j=s1+1:s2 do

if qi intersect L[j] is not equal to the empty set

and qi is not an element of list[j]

#nodes = #nodes + 1

86

L[#nodes] = qi intersect L[j]

list[#nodes] = list[#nodes] union {qi}

endif

endfor

endfor

s1 = s2

s2 = #nodes

endwhile

if v is not equal to any L[i] (1 <= i <= #nodes)

#nodes = #nodes + 1

L[#nodes]=v

endif

remove repetitive nodes and update #nodes

The next part of the code is to build the adjacency list for graph G:

for i=1:#nodes

for j=i+1:#nodes

if L[i] is a subset of L[j]

t=true

k=1

while t=true and k<=#nodes

if k!=i and k!=j and L[i] is a subset of L[k] and

L[k] is a subset of L[j] then t=false

k=k+1

endwhile

if t=true

add L[j] to the adjacency list of L[i]

endif

endif

if L[j] is a subset of L[i]

t=true

k=1

while t=true and k<=#nodes

if k!=i and k!=j and L[j] is a subset of L[k] and

L[k] is a subset of L[i] then t=false

k=k+1

endwhile

if t=true

add L[i] to the adjacency list of L[j]

endif

87

endif

endfor

endfor

88

Appendix B

An Algorithm to Find the

Elements of the Set Π′(v) for view v

Following we provide a detailed pseudocode (based on our C++ code) for our

algorithm to find the elements of the set Π′(v) for view v which is a view in a view

lattice. The input of this algorithm is the digraph Gv.

numOfPaths[{}]=1;

path[{}][1]=({})

for all nodes u in Gv except for the source node (i.e., empty set)

numOfPaths[u]=0

end for

for each node v in Gv in topological order

for i=1:numOfPaths[v]

for each parent node u of node v

numOfPaths[u]=numOfPaths[u]+1

path[u][numOfPaths[u]]=path[v][i],u

end for

remove path[v][i]

end for

end for

89

construct the index associated with each of the remaining paths

90

Appendix C

An Example for Constructing the

Set Π′′(v) for a Given View v

In this appendix, we provide an example to show how we can apply Algorithm 1

in Chapter 5 to find the elements of the set Π′′(v) for a given view v.

Example 7. Consider view v = {a, b, c, d} and the set of queries Q(v) = {q1, q2, q3}
where q1 = {a, b}, q2 = {a, c}, and q3 = {b, d}. Let size({a}) = 200, size({b}) =

100, size({a, b}) = 250, size({a, c}) = 400, size({b, d}) = 200, and size({a, b, c, d}) =

1000. The corresponding digraph Gv is presented in Figure C. We have Nv=|Q(v)|=3.

Following we apply our algorithm to find the first element of Π′′(v). The other two

indexes of Π′′(v) can be found similarly:

MCS(q1) = MCS(q2) = MCS(q3) = MCS(q4) = s(v) = 1000

cost(∅, q1) = cost(∅, q2) = cost(∅, q3) = cost(∅, q4) = s(v) = 1000

Qtemp = {q1, q2, q3, q4}

91

r ← 1 ≤ Nv = 3

w = {a}

Q′ = ∅

u = ∅

cost(u) = 0

û = ∅

perm({a}) = (a)

cost((a), q1) = 1000
200 = 5

cost((a), q2) = 1000
200 = 5

cost((a), q3) = 1000

w = {b}

Q′ = ∅

u = ∅

cost(u) = 0

û = ∅

perm({b}) = (b)

cost((b), q1) = 1000

cost((b), q2) = 1000
100 = 10

cost((b), q3) = 1000
100 = 10

w = {a, c}

Q′ = {q2}

u = {a}

92

cost(u) = 5

û = {a}

perm({a, c}) = (a, c)

cost((a, c), q1) = 1000
400 = 2.5

cost((a, c), q2) = 1000
200 = 5

cost((a, c), q3) = 1000

w = {a, b}

Q′ = {q1, q3}

u = {a}

cost(u) = 1005

u = {b}

cost(u) = 1010

û = {a} (1005 < 1010)

perm({a, b}) = (a, b)

cost((a, b), q1) = 1000
200 = 5

cost((a, b), q2) = 1000
250 = 4

cost((a, b), q3) = 1000

w = {b, d}

Q′ = {q3}

u = {b}

cost(u) = 10

û = {b}

93

perm({b, d}) = (b, d)

cost((b, d), q1) = 1000

cost((b, d), q2) = 1000
100 = 10

cost((b, d), q3) = 1000
200 = 5

w = {a, b, c, d}

Q′ = {q1, q2, q3}

u = {a, c}

cost(u) = 1007.5

u = {a, b}

cost(u) = 1009

u = {b, d}

cost(u) = 1015

û = {a, c} (1007 < 1009 and 1007 < 1015)

perm({a, b, c, d}) = (a, c, b, d)

Thus π1
v = (a, c, b, d)

To find the next index we continue as follows:

MCS(q1) = min{1000, 1000
400 } = 2.5

MCS(q2) = min{1000, 1000
200 } = 5

MCS(q3) = min{1000, 1000
1000} = 1000

r ← 2 ≤ Nv = 3

Qtemp = {q2, q3}

...

94

a,b,c,d

a,c a,b b,d

a b

Digraph Gv for Example 7

