
ABSTRACT 
 

BERRINGS, LAUREN M.  State clustering in Markov Decision Processes with An 
Application in Information Sharing.   
(Under the direction of Dr. Russell E. King and Dr. Thom J. Hodgson) 
 

This research examines state clustering in Markov Decision processes, 

specifically addressing the problem referred to as Markov Decision process with 

restricted observations. The general problem is a special case of a Partially Observable 

Markov Decision process where the state space is partitioned into mutually exclusive sets 

representing the observable portion of the process.  The goal is to find an optimal policy 

defined over the partition of the state space that minimizes (maximizes) some 

performance objective.  Algorithms presented to solve this problem for the infinite 

horizon undiscounted average cost case have largely been based on enumerative 

procedures.  A heuristic solution procedure based on Howard’s (1960) policy iteration 

method is presented.   

Applications of Markov decision processes with restricted observations exist in 

networks of queues, retrial queues, maintenance problems and queuing networks with 

server control.  A new application area is proposed in the field of information sharing to 

measure the value of information sharing in a supply chain under optimal control.  This is 

achieved by representing a model of full information sharing as a completely observable 

Markov Decision process (MDP), while no information sharing is represented as an MDP 

with restricted observations.   Solution procedures are presented for the general Markov 

Decision process with restricted observations.  Heuristic solutions are evaluated against 

the optimal solution obtained via total enumeration.  Both random Markov Decision 

processes and information sharing problems are studied.  The value of sharing 

information in a two-stage supply chain system is studied.  The influence of capacity, 

demand, cost and retailer policy on the value of information sharing is considered. Insight 

on the structure of the optimal policy with and without information sharing is provided. 
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Chapter 1 Problem Description 

1.1 General Description 
This research examines state clustering in Markov Decision processes, 

specifically addressing the problem referred to as Markov Decision process with 

restricted observations. The general problem is a special case of a Partially Observable 

Markov Decision process where the state space is partitioned into mutually exclusive sets 

representing some observable portion of the process.    The goal is to find an optimal 

policy defined over the observable portion of the state space that minimizes (maximizes) 

some performance objective.  The policy obtained is referred to as an implementable 

policy.  The initial motivation for work on state clustering derived from the need to 

reduce the dimensionality of the state space for large-scale multi-stage inventory 

problems, thus enabling solutions of these problems to be obtained in a reasonable 

amount of time on a computer.  We are motivated to continue work in this area due to our 

interest in its applicability for measuring the value of information sharing in a supply 

chain.  Howard(1971), Kemney and Snell(1960), and Dietz(1983) provide conditions 

under which a cluster state can be created.  Observability constraints for the MDP were 

added to reflect systems in which the entire state space is not visible to the decision-

maker.  In this situation, new policies are required to determine optimal control based on 

what could be observed and implemented by a decision-maker in a real time system.   

Algorithms developed to address this problem have covered infinite and finite 

time horizons as well as discounted and undiscounted costs.  Serin and Avsar (1997) 

studied the finite horizon discounted cost case and proposed an algorithm that finds a 

global deterministic optimal policy.  This research will cover the infinite horizon 

undiscounted average cost case, which has relied on heuristic procedures for determining 

implementable policies.  This research will extend the work done by Smith (1971), 

Hordijk and Loeve(1994), and Hastings and Sadjadi (1979), to provide stronger bounds 

on local optimal solutions.  Empirical results demonstrate that 90% of the problems 

generated can be solved to optimality, and the instances in which an optimal solution can 

not be found have an average error of 1%. 



 2

 Applications of Markov decision processes with restricted observations exist in 

networks of queues, retrial queues, maintenance problems and queuing networks with 

server control (Hordijk and Loeve (1994),Serin and Avsar(1997)). A new application 

area is proposed in the field of information sharing. Specifically, the algorithm can be 

used to measure the value of information sharing in a supply chain under various supply 

chain structures.  Information sharing entails sharing key pieces of operational data 

between supply chain partners to improve performance.  Supply chain partners can share 

any combination of inventory, demand, sales forecast, and production or delivery 

schedule information.  Supply chain members consist of suppliers, manufacturing sites, 

distribution centers, retailers and consumers which can be contained within one company 

or consist of several external parties whose resources are combined into an end product 

for the consumer.  By sharing information, it is believed that the negative impact of 

uncertainty (demand, production, etc.) on the supply chain performance can be 

minimized. 

Several applications of information sharing have been incorporated into the logistics 

operations of many companies, reportedly improving the efficiency of the members in the 

supply chain.  Lee and Whang (2000) provide a thorough description of the levels of 

information sharing and the companies using such programs to improve supply chain 

performance. Several papers have been published quantifying the value of information 

sharing to the supply chain and characterizing the conditions in which it is most 

beneficial.  These papers examine impact of sharing inventory, point of sale (POS) data, 

sales forecast, and production and delivery schedule data in several supply chain 

structures.   The value of the information is measured by developing a model that 

compares the supply chain costs and order decisions with and without the additional 

information, and analyzing key performance measures such as average inventory, order 

quantity, backorders, and per period costs.  The following assumptions are commonly 

made in these models. 

1. Two-stage supply chains with a single supplier and retailer or a single supplier 

and multiple retailers 

2. Capacitated supplier 

3. Independent and identically distributed demand 
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4. Order-up-to or (s, S) inventory control policy employed by retailer and/or supplier 

5. Periodic-review inventory management 

 

For these models, optimal or near-optimal inventory control or supply allocation 

policies are determined and the cost savings associated with the various levels of 

information sharing compared.  The methodology used to determine the optimal policies 

and cost benefits have varied.  A gradient-based simulation procedure known as 

infinitesimal perturbation analysis is used by Zhao and Simchi-Levi(2002), Gavirneni 

(2001,2002), and  Gavirneni et al.(1999).  Zhao et al. (2002a) uses a simulation model to 

quantify the value of information sharing.  Analytical models incorporating information 

flow into inventory control models are employed by Cachon and Fisher (2002), Lee et al. 

(2000), Yu et al. (2001) and Raghunathan (2001).   

In this research, Markov Decision models are developed to determine the gain and 

optimal control policies, which are used to determine the associated savings with and 

without information sharing.  A Markov model is a natural way to represent a system 

where information is shared.  Based on the supply chain structure being used, the 

definition of the state space indicates the available information known to the decision-

maker at any point in time.  A completely observable MDP is used to model the 

information sharing case.  The case of no or limited information sharing is modeled as a 

Markov Decision Process with restricted observations and solved via the algorithm 

proposed in this research.   

1.2 Proposed Research 

 The research proposed is two-fold; to provide a new heuristic for solving the 

restricted observation Markov Decision problem and using it to analyze the value of 

information sharing under steady state optimal control.  Randomly generated problems 

will be analyzed to validate the performance of the algorithm under different problem 

structures.  MDP models for representing information sharing as a Markov Decision 

process will be developed for various supply chain structures and information sharing 

policies. A subset of those models will be analyzed to characterize the structure of the 

optimal policies under demand and inventory information sharing.  
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Chapter 2 contains a summary of the approaches taken to study the value of information 

sharing and the results gleaned from those models.   Solution procedures and conditions 

for state clustering in Markov decision processes are also presented. 

A new heuristic for solving the MDP with restricted observations (ROMDP) is outlined 

in chapter 3.  Initial results are presented in chapter 4 for a simple two-stage supply chain 

sharing demand and inventory information. Results are also given for a randomly 

generated Markov Decision process. Sensitivity analysis and refinement of the heuristic 

are discussed in Chapter 5.  Chapter 6 outlines a successive approximation counterpart to 

solving the ROMDP.  The value of information sharing in a two stage supply chain is 

studied in Chapter 7.  Experimentation considers the influence of variance, capacity, 

retailer inventory control policy and cost.  Conclusions and further research are discussed 

in Chapter 8.
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Chapter 2 Literature Review 

2.1 Information sharing 

2.1.1. Information Sharing Policies 
 Information sharing is the action of taking imperfect information and making it 

‘nearly’ perfect.  This action between supply chain members involves sharing one or 

more characteristics about the demand or manufacturing process.  This additional 

information enables the recipient to provide better service in the form of better supply 

commitments, fewer lost sales or backorders, or better management of demand 

fluctuations and thus improved reliability.   Some of the characteristics that can be shared 

are the actual demand realized during the period, the demand forecast, inventory position 

or inventory control policy. The parameters that define an information sharing policy are 

typically the type of information being shared and the direction of information flow 

between the participating supply chain members.   

There is no standard terminology or nomenclature to characterize information 

sharing policies.  The definition of the policy structure is usually subject to the 

researcher.  However, the no information sharing policy is commonly recognized as the 

historical method of communication between suppliers and retailers.  Under this policy, 

information about the retailer’s demand or ordering policy is unknown.  The only 

information the supplier receives is in the form of orders from the retailer.  Therefore, the 

retailer’s process is like a ‘black box’ to the supplier.  Gavirneni(2001) uses the term 

partial information sharing to denote a policy in which the demand distribution and the 

parameters of the inventory control policy used by the retailer are known. 

Gavirneni(2001) also defines a full information sharing policy as one in which the 

demand distribution, retailer inventory control policy parameters and immediate demand 

information is known. A similar policy, with a different name is employed by Yu et al. 

(2001) to define a policy for vendor managed inventory.   

The direction of information flow between supply chain members has 

traditionally been upstream in the form of orders.  In a multi-stage supply chain structure, 

the lowest level is considered the point at which demand occurs.  With new information 
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sharing policies being developed, the direction of information flow can continue to be 

upstream.  The potential amount of information flowing upstream is now greater.  For 

example, the supplier can have access to the retailer’s inventory data in addition to point 

of sale data.  The information can also flow downstream from the supplier to the retailer.  

An example of this type of policy may be in the form of consignment, where the retailer 

has access the supplier’s inventory and is only charged based on the amount they extract 

from inventory.  Bi-directional type of information flow can also occur between the 

supply chain members.  Cachon and Fisher (2000) model this type of policy with 1 

supplier and N retailers sharing inventory data between all members in the supply chain 

retailer to retailer as well as supplier to retailer.  This type of supply chain configuration 

may be seen between regional distribution centers, where stock can be reallocated 

between the warehouses by a single controlling entity. 

 

2.1.2 Models of information sharing 
 A vast amount of literature has been published studying the value of sharing 

various types of information within different supply chain structures.  The information 

shared is largely inventory, demand or point of sale data.  Huang et al. (2003) provide a 

comprehensive summary of the literature covering this topic, as well as a theoretical 

framework for future research.  Several supply chain structures are defined and used as a 

hierarchy for categorizing existing information sharing research. A dyadic structure, 

depicted in Figure 2.1, represents a two-stage supply chain consisting of a one-to-one 

relationship between two business entities.  A partnership between a supplier and retailer 

is an example of a typical dyadic structure.  A serial supply chain represents an N stage 

structure where each supply chain member performs its activity sequentially.  A typical 

serial supply chain may consist of a supplier, manufacturer, distributor and retailer.  An 

example of a serial supply chain is depicted in Figure 2.2.  A divergent supply chain, 

shown in figure 2.3, represents a two-stage network consisting of a single entity 

supplying several parallel entities.  A distribution chain consisting of a single supplier 

and multiple retailers is a typical example of a divergent structure.  A convergent 

structure, as shown in figure 2.4, is a variant of a serial structure.  A manufacturing 

supply chain typically represents a convergent structure, where you may have multiple 
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suppliers and multiple stages in the manufacturing process depending upon the structure 

of the end item being produced.  Finally, a network structure is a complex supply chain 

combining elements from the divergent and convergent structure.  Refer to figure 2.5 for 

an example of a network supply chain structure.  The bulk of the research consists of 

analytical models of dyadic and divergent structures.  Selected papers relevant to this 

research are discussed in the following sections and summarized below in table 2.1 by 

supply chain structure and modeling approach.  Some of the models are included in the 

hierarchical summary by Huang et al. (2003) and some are new contributions since the 

publication of his work.   

 

Table 2.1 Information Sharing Research By Structure and Model 

SUPPLY CHAIN 
STRUCTURE 

SIMULATION 
 

GAME 
THEORY 

ANALYTICAL  MATHEMATICAL 
PROGRAMMING  

Dyadic  Gavirneni et al. 
(1999)  

Lee et al. (2000) 
Raghunathan (2001) 
Yu et al. (2001) 
Gavirneni (2002) 
Zhao and Simchi-Levi 
(2002) 

Divergent  
Zhao et al. 
(2002a) 

Zhao et al. 
(2002b) 
 

Li (2002) Cachon and Fisher (2000)
Gavirneni (2001) 

 

Serial 
 

 Chen (1998)  

Convergent 
 

 Wei and Krajewski 
(2000) 

 

Networked 
 

  D’Amours et al. (1999) 

 

 

Supplier Retailer  
Figure 2. 1 Dyadic Supply Chain 
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Supplier Manufacturer Distributor Retailer  
Figure 2. 2 Serial Supply Chain 

 

Supplier Retailers

 
Figure 2. 3 Divergent Supply Chain 

 
Supplier RetailerManufacturer (multiple stages)

 
Figure 2. 4 Convergent Supply Chain 

 
 

Supplier
Final AssemblyManufacturer (multiple

Production Points)
Distribution
Centers

 
Figure 2. 5 Network Supply Chain 
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2.1.2.1 Simulation Models 
Zhao et al. (2002a) use a simulation model to study the value of sharing sales 

forecast information in a divergent supply chain system consisting of a single capacitated 

supplier and four retailers.  Transportation lead-time is one period, implying that a single 

truck can deliver the required shipment to each retailer during that time.  The retailers use 

an EOQ inventory policy and the supplier uses single-item capacitated lot-sizing to plan 

its production activities.  Backorders are allowed at the supplier and retailers.  The cost 

savings to the supply chain are evaluated by varying retailer’s demand pattern, supplier 

capacity, information sharing level, and order coordination.  Ordering coordination (OC) 

refers to negotiating longer lead-time for parts by placing orders with the supplier in 

advance.  Conditions by which the retailer and/or supplier benefit are characterized by 

examining the decisions made by the supplier under each information sharing policy and 

quantifying the resulting affect on the performance of the supply chain.  When no 

information is shared (NIS), the supplier’s production decisions are based on the orders 

received from the retailer.  When demand forecast data is shared (DIS), the supplier’s 

production decisions are based on the retailer’s order and the forecasted demand.  The 

supplier’s decision under the policy of sharing planned orders (OIS) is based on the 

retailer’s order and future planned orders generated as a result of the retailer demand 

forecast.  Using the same model assumptions described above, Zhao et al. (2002b) also 

study the impact of forecast model selection on the value of information sharing.  Several 

forecasting methods are evaluated ranging from simple models with poor level of 

accuracy to exact models representing a perfect forecast. Forecast accuracy is measured 

in terms of standard deviation of the forecast error.  Simulation is used to evaluate the 

difference in total costs and service level when the Retailer uses different forecasting 

methods.  They also examine the influence of the forecast model selection on the cost 

savings associated with the information policies (OIS,DIS, and NIS). The results indicate 

the value of information sharing is higher when the forecast accuracy is high.  

 Gavirneni et al. (1999) study the value of demand information sharing in 

capacitated supply chains.  The supply chain model has a dyadic structure with periodic 

review, zero supplier lead time, independent and identically distributed retailer demand 

and an (s, S) inventory control policy for the retailer.  The retailer always obtains the 
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order quantity either in full from the supplier or in part from the supplier and part from 

somewhere else.  Infinitesimal perturbation analysis is used to determine the optimal 

order up to level and total costs incurred by the supplier at each level of information 

sharing.  Simulation is performed to measure the value of information sharing under the 

optimal policies.  The interaction between information sharing and different measures of 

performance, such as inventory and capacity, are also examined by varying demand 

distributions, levels of capacity, and inventory control parameters.  The three possible 

policies associated with information sharing are no sharing, partial sharing and full 

sharing.  Under a policy of no information sharing, information about the retailer demand 

or ordering policy is not known.  The supplier demand and subsequent control policy is 

based on the order quantity.  With a partial information sharing policy, the demand 

distribution and the parameters of the inventory control policy are known.  With this 

information, the supplier can determine the probability of an order being generated at the 

end of the period and the CDF of the order size.  Under a policy of full information 

sharing, the demand distribution, (s, S) policy parameters, and immediate information 

about demand are known.  Again, the CDF of the order size and probability an order is 

placed can be determined.  The results indicate increasing levels of information flow, in 

all cases, reduces the supplier’s costs.  The degree of the savings depends on the capacity 

available, the end-item demand variance, and the retailer order quantity (S-s). 

2.1.2.2 Analytical Models 
Lee et al. (2000) develop a base stock model to investigate the impact of sharing 

point of sale data in a two-stage supply chain consisting of a single retailer and a single 

manufacturer.  The retailer demand follows a first order autoregressive (AR(1)) process 

and both the retailer and manufacturer employ an order-up to  inventory control policy.  

The ordering cost is assumed to be zero and the manufacturer knows the demand follows 

an AR(1) process.  When no information sharing (NIS) occurs, the manufacturer’s order 

decision is based solely on the demand as a function of the retailer’s order quantity at the 

end of the period.  Under information sharing (IS), the manufacturer receives the order 

quantity and the retailer’s demand at the end of the time period.  Based on the 

information being shared, the supplier’s order up to level as a function of the forecast 

demand can be determined.  Expressions to quantify the average inventory and expected 
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cost as a function of the forecast demand are developed.  The variance of the forecast 

demand is smaller when information sharing occurs and thus the supplier experiences 

inventory reduction.  The expressions obtained analytically are verified with a simulation 

study.  

Raghunathan (2001) uses the model developed by Lee et al. (2000) to 

demonstrate the value reported is insignificant.  The key difference between the two 

models is that under a policy of no information sharing, Raghunathan assumes the retailer 

order history is used to forecast future orders while Lee et al. (2000) assume the 

manufacturer uses only the most recent order from the retailer to forecast future orders.  

Ragunathan reports the value of information sharing decreases monotonically with each 

time period, converging to zero in the limit.  He suggests that information sharing of 

demand data can be valuable to the manufacturer if none of the demand parameters can 

be inferred from the order history. 

Yu et al. (2001) analyze the value of sharing point of sale and inventory 

information in a two-stage supply chain.  They develop a discounted cost-minimizing 

inventory model that is used to derive the optimal inventory policy for the members in 

the supply chain.  The resulting policy is then used to analyze the average inventory level 

and expected costs under the different levels of information sharing. Both supply chain 

partners use an (s, S) inventory control policy with periodic review.  Excess demand is 

backlogged and each supply chain member incurs holding, penalty, and order costs 

during each period.  The information sharing and order coordination policies evaluated 

are no sharing, coordinated control and centralized control.  When no information is 

shared, the inventories at the different sites are controlled independently.  Under a policy 

of coordinated control, the retailer's customer demand is shared with the manufacturer.  

The manufacturer’s order decision is based on both the customer demand the retailer's 

order information.  When complete information and coordination occurs (centralized 

control), the customer demand and retailer inventory information is shared.  The 

manufacturer uses Vendor Managed Inventory (VMI) policy to coordinate replenishment 

at the retailer.  

Chen (1998) examines the value of using localized demand information versus 

centralized demand information in a multi-stage production system.  The system incurs 
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linear holding costs at every stage and linear backorder costs at the first stage. Production 

lead times are constant between stages and it is assumed that a reorder point /order 

quantity policy is used at all stages.  The order quantities at each stage are fixed and the 

reorder point at each stage is the decision variable.  The value of centralized demand 

information is measured as the relative cost difference associated with implementing an 

echelon based batch reorder point policy and installation based batch reorder point 

policy.  Echelon based policies represent the optimal replenishment strategy when 

centralized demand information is used, while installation based policies represent the 

optimal replenishment strategy when local demand information is used. The optimal 

echelon reorder point policies are determined by decomposing the problem into single-

stage models which are solved sequentially, similar to the approach developed by Clark 

and Scarf (1960).  The installation based reorder point policies are determined using a 

bounded search procedure. 

 Cachon and Fisher (2000) develop an analytical model to examine the value of 

inventory information sharing on a supplier’s order and allocation decisions in a periodic 

review system.  The supply chain structure consists of N identical retailers and a single 

infinite capacity supplier.  Batch reorder point policies are used by the retailer and the 

supplier when no information is shared and by the retailer only when information is 

shared.  The supplier’s optimal policy and allocation decision are determined from the 

shared information.  Under traditional information sharing, the supplier receives only the 

order quantity and allocates available inventory based on a batch priority scheme.  In full 

information sharing, the supplier knows the inventory level at all retailers, and allocates 

supply in a manner that balances the retailer’s inventory levels across the system.  The 

additional shared information is used to determine the optimal policy and allocation 

decision for the supplier.  Simulation is used to approximate the optimal policy and 

estimate the expected per period supply chain costs associated with the full information 

sharing policy.  The optimal policy and per period costs under the traditional case is 

determined via a search over all feasible policies. 

Gavirneni (2001) also examines the value of inventory information sharing on a 

supplier’s allocation decision in a divergent supply chain environment.  The model is 

similar to that of Cachon and Fisher (2000) with the following exceptions: the supplier is 
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capacitated; there is no batch size for reordering; and the benefits of information sharing 

are computed by comparing optimal policies.  The model of Cachon and Fisher (2000) 

uses at least one non-optimal policy in computing the benefits.  When no information is 

shared the orders are filled in a predetermined sequence.  When partial information is 

shared, retailer demand and inventory levels between the supplier and retailers are 

known.  Inventory is allocated amongst the retailers in a manner that ensures retailers 

with lower inventories receive larger shipments.  In a system with complete information 

sharing, inventory levels are shared between all members in the supply chain, supplier to 

retailer and retailer-to-retailer.  Retailers with very high inventory levels are willing to 

give up inventory and face higher penalty costs in order to help those retailers with very 

low inventory levels.  As a result, the supplier can move inventory between retailers to 

satisfy other retailers order quantities.  Demand not satisfied by the supplier is lost and 

demand not satisfied by the retailers is backlogged.  Infinitesimal Perturbation Analysis is 

used to compute the optimal order up to level and per period retailer holding and penalty 

costs for each model.  When no information is shared, each retailer has its own order up 

to level, while in the other models each retailer has the same order up to level.  

Gavirneni (2002) examines the effect of information sharing when operating 

policies used by the retailer are changed to make better use of the information flows 

within the supply chain.  Two models consisting of demand and cost information sharing 

between a supplier and retailer are evaluated.  In the first model (Model 1), the retailer 

uses his optimal (s,S) inventory control policy and the optimal order up to policy for the 

supplier is determined using IPA.  The supplier knows the cumulative demand at the 

retailer since the last order occurred and therefore can estimate, in each period, the 

probability that an order will occur and the CDF of the order size.  In model 2, the retailer 

places orders after his next customer demand only if his current cumulative demand in 

the period is greater than some value, δ. The optimal δ value must be found using an 

exhaustive search. The resulting policy used by the retailer in model 2 is an order-up-to 

policy.  This model allows the supplier to know a period in advance that an order is being 

placed and again he can estimate the CDF of the order size. Under the assumptions of 

model 2, the supplier knows for certain that an order is occurring in the next period.  That 

information is not known with certainty in model 1and therefore holding costs may be 
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incurred as a result of producing earlier in anticipation of demand.  The cost function is 

formulated as a stochastic dynamic program and IPA is used to compute the optimal 

order up to levels.  

 Zhao and Simchi-Levi (2002) also use infinitesimal perturbation analysis (IPA) to 

quantify the cost savings to the supplier when demand information is shared in a two-

stage production inventory system.  The information sharing problem is modeled as a 

Markov decision process to prove that a cyclic order up to policy for the supplier is 

optimal and has a finite steady state average cost for the discounted and average cost 

criteria.  However, infinitesimal perturbation analysis is used to compute the optimal 

policy and compare the resulting costs under the different information sharing levels.  

The retailer uses a periodic review system with an order-up-to inventory policy.  The 

model also examines the effect of frequency and timing of information shared on the 

costs incurred by the supplier.  The point in time where demand is shared and production 

decisions can be made but no retailer order is placed is referred to as an Information 

Period.  The time at which retailer orders are placed is referred to as an Ordering Period.  

Several information periods exist between ordering periods.  Under a policy of no 

information sharing, demand information is received at the order interval.  When 

information sharing is employed, the retailer shares point of sale data for each 

information period and places orders during their ordering period.  The model of no 

information sharing is the information sharing model with zero information periods.  

Wei and Krajewski (2000) examine the value of sharing schedule information in a 

convergent supply chain structure.  There is a single manufacturer with several tiered 

suppliers.  The first and second tiers of the supply chain provide lower level components 

for the production of an end item.  The manufacturer must try to determine the best 

scheduling policy based on the information available.  The information available is 

determined from the level of integration between the manufacturer and suppliers within 

the supply chain.  There are several suppliers within the supply chain structure at 

different tiers with whom the schedule information can be shared. The level of sharing 

and thus integration of the schedule within the supply chain evaluated are Myopic, Tier –

1, Critical path and total.  Under a myopic level of integration, the manufacturer only 

uses its cost when determining its scheduling and purchasing policy. With tier-1 
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integration, the manufacturer considers the flexibility capability of all tier 1 suppliers 

when determining his scheduling policy.  Under critical path, only the capabilities of the 

critical path suppliers are used in the determination of the best policy.  Total integration 

considers the capability for all members in the supply chain.  Flexibility capabililty is  a 

numerical measure describing the ability of the members to adapt to schedule changes by 

the manufacturer.  A stochastic cost model is used to determine the best policy that 

minimizes the total costs associated with schedule changes, shipping costs, material and 

inventories. Results indicate that the ranking of costs associated with schedule integration 

is total sharing < critical path < tier-1 < myopic.  Schedule change costs are a primary 

driver of the optimal policies and the cost ranking is unaffected by demand variation.  

Based on analysis of the results, Wei and Krajewski (2000) suggest that it is more cost 

effective for the manufacturer to focus on integration with suppliers in the critical path. 

2.1.2.3 Game Theoretic Models 
 Li (2002) models the single manufacturer - multiple retailers supply chain as a 

Cournot competition game.  The objective is to study the direct effect and indirect effect 

of demand information sharing in a supply chain.  The direct effect consists of the payoff 

achieved between the partners directly involved in the information sharing.  The indirect 

effect consists of the effect on other competing firms due to leakage of information.  As a 

result of the information leakage, the competing firms may respond by changing their 

ordering strategies.  The leakage effect occurs by assuming that the supplier’s product 

price is a monotone function of the sum of the shared retailer’s information.  Therefore, 

retailer’s can infer the sum of the shared signals from the supplier’s price.  The model 

consists of a 3-stage subgame.  During the first stage, the retailer’s must decide whether 

to share their private information with the supplier.  At the second stage, the manufacture 

sets the price for the product being supplied based on the information known about the 

demand.  At the last stage, the retailers choose their sales quantities.  From this model, 

expressions are derived for the expected equilibrium profits and equilibrium sales 

quantities from which the value of information sharing can be quantified. 
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2.1.2.4 Mathematical Programming Models 
D’Amours et al. (1999) use a network flow model to examine the impact of price 

and capacity information sharing in a networked manufacturing environment.  The supply 

chain structure consists of a single (networking) firm with partnerships between several 

manufacturing, transportation and storage firms.  The networking firm must choose and 

schedule the order among the available firms in order to satisfy the customer order.  The 

information policies are expressed in terms of the bidding protocols representing 

information transferred between the networking firm and the contracting firms.  In 

supplier–type bids, information transferred in the bid is publicly known price and time 

packages.  In customizing-type bids, price and time packages are customized based on 

the needs of the networking firm.  The networking firm shares capacity and time 

requirements.  The contracting firms share price-time package information based on 

needs of the networking firms.  The package represents a maximum set of alternatives 

that can be constructed to support the order.  In webbing-type bids, information shared 

from contracting firms to networking firms is day-to-day operating characteristics, 

production capability, capacity requirements and pricing functions.  From this 

information, the networking firm generates their own set of bid alternatives.  All possible 

bids within each type are formulated as a network flow problem.  The objective is to 

configure and schedule a virtual manufacturing and logistics network to satisfy delivery 

and quantity requirements of customer. 

2.1.3 Value of sharing information 
The existing models examine the value of information sharing from different 

reference points; the supplier, the retailer, and the total supply chain.  Actual results on 

the value associated with sharing information differ based on the assumptions of the 

model, reference point, and integration of the information into the decision process.  As a 

result, it is difficult to understand how and when information should be shared, and how 

to develop a best practice within the supply chain as a result of undertaking information 

sharing partnerships.  The model assumptions, capacity, demand distribution and measure 

of performance influence the results from the models discussed in section 2.1.1.  One 

common thread amongst all results is that the supplier clearly benefits in all cases of 

information sharing.  Additional information creates better demand information resulting 
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in reduced inventories and reduced costs.  A summary of the results is presented by 

supply chain structure and reference point. 

2.1.3.1 Benefits to the supplier under Dyadic Models 
Lee et al. (2000) show the inventory reduction and cost reduction with 

information sharing is significant only when the demand is highly correlated over time, 

highly variable or when the lead-time is long.  However, Ragunathan (2001) shows, for 

the same model, that information sharing decreases monotonically with each time period 

when the supplier uses a better forecasting method under no information sharing.  Only 

when the demand parameters cannot be inferred from the order history, is information 

sharing significant.  These two papers demonstrate how results vary based on the 

integration of information into the decision process.  Gavirneni et al. (1999) also examine 

the effect demand variance has on possible savings with information sharing. They varied 

the variance of Normal, Uniform, and Erlang distributions while keeping the mean value 

common.  For each distribution, the percentage savings increased and then decreased as 

the coefficient of variation was decreased.  They concluded the variance of the retailer’s 

demand distribution limits the cost benefits that can be achieved with information 

sharing.  When the demand variance is high, the reduction in uncertainty due to the 

additional information is insignificant from a cost perspective. At moderate values of 

demand variance, information sharing appears to be most beneficial. 

Gavirneni et al. (1999) also examine the effect capacity has on the value of 

information sharing.  Under low levels of capacity cost benefits are not significant.  

However, as supplier capacity increases, some reduction in cost can be achieved due to 

the fact that information sharing allows the supplier to postpone production.  Zhao and 

Simchi-Levi (2002) also demonstrate significant supplier cost savings as capacity 

increases.  Their computational study illustrates savings ranging from 5 to 35 percent as 

production capacity increases.  In addition, percentage savings increase as the number of 

information periods within an ordering period increase.  However, most of the benefit is 

achieved within a few information periods.  In terms of the timing of information sharing, 

they conclude that when capacity is large relative to mean demand, it is appropriate to 

postpone the time of information sharing to the last production opportunity in the 
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ordering period.  When capacity is tight, the cost is less sensitive to the timing of 

information sharing. 

With respect to the inventory control parameters of an (s,S) policy, Gavirneni et 

al. (1999) show the percentage savings between partial information sharing and full 

information sharing has no significant differences.  Both policies demonstrate the 

information is less beneficial at extreme values of the order quantity (S-s).  The authors 

attribute this behavior to the fact that the extreme order quantities reduce the benefit of 

sharing information.  When (S-s) is large, the supplier has to build up inventory in 

anticipation for a large order.  When (S-s) is small, the demand information is passed to 

the supplier almost every period, thus reducing the benefit of sharing demand 

information. 

Yu et al. (2001) use their model to study the expected per period costs.  The 

results show that suppliers benefit under each increasing level of information sharing; no 

information sharing, coordinated control (demand is shared) and centralized control 

(demand and inventory is shared).  As information is shared, the inventory levels at the 

manufacturer decrease, resulting in smaller expected per period cost.   

2.1.3.2 Benefits to the Retailer under Dyadic Models 
Yu et al. (2001) examine the affect of information sharing on the retailer as well 

as the supplier.  The key results indicate there is no benefit to the retailer by sharing their 

customer demand with the manufacturer.  The average inventory and expected costs 

between coordinated control (demand information is shared) and no information sharing 

remain the same.  Under centralized control, where demand and inventory information is 

shared, the retailer realizes performance improvement because the retailer's lead-time is 

reduced due to the improvement in the manufacturer’s reliability as a result of using 

VMI.  Since the supplier receives most of the benefit from information sharing, the 

authors suggest some incentive should be offered to induce the retailer to share their 

demand information. 

2.1.3.3 Benefits to supply chain partners under Divergent models 
When competition and information leakage is incorporated in the model, Li 

(2002) shows the supplier is better off acquiring information from as many retailers as 
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possible.  However, the expected profit for the retailers is less when they share 

information.  The incremental loss from sharing gets smaller as more retailers share 

information.  So the resulting equilibrium strategy is to not share information.  From a 

total supply chain perspective, profit is larger with information sharing when the 

information each retailer has is informative in a statistical sense or when there is a 

sufficiently large number of retailers.  Li also suggests the manufacturer should provide 

incentives to the retailer to share information and discusses a contract signing game 

where retailers are compensated by some fixed amount.  Boundary conditions are 

provided for the compensation value. 

Zhao et al. (2002a,) also study the value of information sharing from the supplier, 

retailer and total supply chain perspective.  The supplier is usually the benefactor in all 

cases of increased information sharing and ordering coordination.  The retailer benefits 

only when all retailers face identical demands with decreasing trend and the supplier’s 

capacity utilization with respect to capacity needed to meet the demand is high (85% or 

95%).  When order coordination is high and demand is different for each retailer, the 

supplier’s service level increases but at the expense of the retailer and the supply chain.   

High order coordination implies the lead-time between orders increase. Retailers are 

placing their orders several periods in advance.  When this occurs, retailer’s forecast 

errors increase, resulting in deteriorated service levels and increased backorder costs.  

Therefore, total costs for the retailers and the supply chain increase.  Similar results are 

reported when studying the impact of forecast model selection on the value of 

information sharing. (Zhao et al. (2002b)). In addition, the value of information sharing is 

greatest when the forecast accuracy, measured in terms of standard deviation of the 

forecast error, is high. 

Under varying levels of capacity, Zhao et al. (2002a) illustrate sharing planned 

orders performs better than sharing no information or demand information.  Information 

sharing is beneficial to the supplier under all levels of capacity tightness (the ratio of the 

total available capacity to total capacity needed).  The total capacity needed is a one-to-

one relationship with the demand requested.  The authors suggest the supplier's benefit is 

due to his ability to make better use of his capacity and fill more retailers’ orders in time.  

However, Gavirneni (2001) analyzes the value of information sharing from supplier cost 



 20

view and finds that information is more beneficial at lower capacities and higher penalty 

costs, when comparing no information sharing to demand and inventory level sharing.  At 

lower capacities, the supplier is not able to meet all of the retailers’ demands and 

information enables him to allocate capacity better.  When capacity is high, the demand 

can be satisfied for all retailers and thus information is not beneficial.  Gavirneni (2001) 

measures capacity as a ratio of supplier’s capacity to the retailer’s mean demand.  This 

contradicts results discussed earlier in Gavirneni et al. (1999) for a dyadic supply chain 

structure.  However, these results demonstrate how the affect of capacity on the value of 

information sharing differs under different supply chain structures, information sharing 

policy, measures of capacity and model assumptions. 

Gavirneni (2001) also finds information to be less beneficial between no 

information and some cooperation (demand and inventory sharing) when demand is not 

highly variable.  Using the Erlang and Exponential distributions, results show as variance 

decreases, the percentage benefit decreases. He also studies the affect the number of 

retailers in the distribution chain has on the value of information.  In this case, as the 

number of retailers increase, the benefit from information sharing decrease. 

Cachon and Fisher (2000) look at total supply chain costs to quantify the benefits 

of information sharing.  Their results indicate full information sharing provide an average 

benefit of 2.2% over the traditional information sharing case.  The authors also conclude 

that higher cost savings can be achieved through lead-time reduction and smaller order 

batch sizes.  Lead time reduction results in an average cost savings of 21% while batch 

size reduction results in an average cost savings of 22%. 

2.1.3.4 Benefits to supply chain under Network models 
D’Amours et al. (1999) examine the impact of sharing capacity and price 

information in a networked based supply chain.  Using network flow analysis, they 

determine that web-type bids (day-to-day production capability and capacity information 

is shared) achieve the lowest cost network with a cost reduction of 28.2% over the 

standard supplier-type bids (price time information is shared).  The results show that as 

the contractors share more information on the price and capacity with the networking 

firm, better price-time scheduling performance is achieved.  However, better price-time 



 21

scheduling comes at the cost of more complexity.  The complexity is in terms of the 

number of manufacturing and logistics units selected to schedule the order. 

2.1.4 Markov modeling approach to information sharing 

 In all of the papers studying information sharing, no one has examined this 

problem from the perspective of steady state optimal control.  A Markov model is a 

natural way to represent a system where information is shared.  Based on the supply 

chain structure being used, the definition of the state space indicates the available 

information known to the decision maker at any point in time.  By collapsing the state 

space, you restrict the information known and affect the policy chosen.  Both models 

yield the steady-state optimal policy and gain, which provide a consistent and equivalent 

measure of performance between the two systems.  There are several advantages to 

studying information sharing as a Markov Decision process.  There is a single model that 

yields the optimal policy for the decision maker along with one consistent measure of 

performance: the gain.  With simulation, you are not comparing the systems under 

optimal environments.  You are approximating the performance of near-optimal policies.  

In the area of Markov Decision problems, there has been extensive research discussing 

methods for rapid convergence and computational efficiency (e.g. Ding et al., 1988 and 

White, 1963) to assist in studying large-scale problems.  Therefore, the existing research 

in supply chain information sharing can be extended to study larger and more complex 

supply chain structures.  In addition, it is easy to analyze information sharing from 

different vantage points by structuring the costs from the desired view; total supply chain, 

retailer, or supplier.  The next section introduces the recent work in state clustering in 

Markov decision problems, which enables us to take the completely observable Markov 

process and restrict it to a partially observable process, representing a system with no or 

limited information sharing. 

2.2 Markov Decision Processes  

2.2.1 State clustering 
Early work on state clustering in Markov Processes was motivated by reducing 

the dimensionality of large problems to make them reasonably solvable with a computer.  
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Howard (1971) defines conditions under which the states of a Markov process can be 

grouped to define a new state, referred to as a ‘super-state’.  The resulting process with 

super-states is called a Mergeable Markov Process.  The partitioning of states into super-

states is dictated by the transition probability.   Each member in a super-state must have 

the same probability of transitioning to another super-state.  Kemney and Snell (1960) 

formally define this condition for the finite horizon Markov Chains as strong lumpability.  

For every pair of super-states, Sk and Sj,  

kSk ikiS Sipp
jj

∈∀= ∑ ∈
       (2.1) 

where pik is the transition probability from state i to state k, and ., kkSiS Skipp
jj

∈∀=   

The new states are now represented by the sets formed from the merged process with 

transition probabilities defined by equation (2.1).  The benefit of a mergeable process is 

that it allows very large problems to be scaled to a more manageable size and solved 

using existing Markov Chain theory, thus, allowing for analysis on the state groups as 

opposed to the original states. 

Dietz (1983) described similar conditions for a strongly lumpable Markov 

Decision Model.  Given two countable sets E and E` where, `EE ≥ , φ is defined as a 

function mapping E -> E`.  This function represents a cluster mapping or lumpation of 

the state space E, where φ(x) is an element of E` and is a cluster state, and x is an element 

of E.  Given a cluster state s in E`, φ-1(s) = { Ex ∈ , where g(x) =s : g( ) := cluster 

mapping E to E`}.  The ExE transition matrix P is strongly lumpable if it satisfies 

equation (2.1), which implies P(x, φ-1(s)) = P(y, φ-1(s)) holds for all x,y in E with φ(x) = 

φ(y).  If P allows a strong lumpation, then an E`xE` transition matrix P` is defined in the 

same manner described by Howard.  A Markov Decision model associated with the 

lumped transition matrix P` has a decision space D` defined for the cluster image such 

that the decision function for cluster images: D`(s) = D(x) if φ(x)=s for s in E` and φ(x)= 

φ(z) implies D(x) = D(z) for all x, z, in E.  This states the decision space must be identical 

for all states in the cluster state.  A payoff structure r`(s,d) for the cluster image defined 

for s in E`, d in D`(s), is equivalent to r(x,d) if φ(x)=s holds.  Although not stated, this 

implies the reward value is the same for all states x in the cluster state s.  The recursive 
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relations developed by Howard (1960) hold for the lumped chain and can be used to find 

an optimal policy for the lumped process for a finite horizon problem.  

In the algorithm proposed in this research, we are not requiring the transition 

matrix to exhibit strong lumpability, nor are we redefining the transition matrix in terms 

of the state groups.  We are analyzing the original process, but restricting the set of 

feasible policies to those that are applicable to a super-state.  The policy constraint 

requires all states in a given superstate to have the same optimal action.  Thus, the 

optimal policy is defined based on the superstate (or set partition) and not the individual 

states of the Markov process.  In this context, the superstate can be interpreted as an 

observable part of the Markov decision model under analysis.   

2.2.2 Markov processes with partial information  
Smallwood and Sondik (1973) study Markov decision processes with partial 

information, both in the finite horizon and infinite horizon case.  In a Partially Observable 

Markov Decision Process (POMDP), the internal state of the system cannot be directly 

observed.  However, some output of the system,θ , is observable and is probabilistically 

linked to the true state of the system.  These observed outputs are used to determine the 

true state of the system.  Along with the observed outputs, there exists a set of 

alternatives from which the optimal control alternative is to be determined.  If the prior 

state of information about the internal sate of the system is denoted as π and we observe 

output θ  after using alternative a, then the updated probability that the internal state of 

the system is j given the new information is ∑∑=
ji

a
j

a
iji

i

a
j

a
ijij rprp

,
/' θθ πππ . 

Each output and control alternative determines a different vector in the space of 

information vectors and therefore π acts as a continuous state, discrete time Markov 

decision process where the state space is all possible π vectors.  The optimal control 

alternative at a point in time is a function of all possible distributions of the π vector.  

Smallwood and Sondik (1973) devise a dynamic programming algorithm for the finite 

horizon case over the space of information vectors, which is similar to Howard’s (1960) 

dynamic programming formulation for the completely observable process.  The payoff 

function is defined similarly as: 
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This expression defines the expected reward the system can accrue if the current 

information vector is π and n control intervals are remaining.  It is determined from the 

immediate reward ( a
iq ) associated with being in state i plus the expected reward if the 

system transitions to state j and observes output θ  with one fewer control interval 

remaining.  This function is piecewise linear, convex and partitions the space of 

information vectors into regions where one alternative is the maximizing alternative for 

all vectors in that area.  

For the infinite horizon case discounted cost case, Sondik (1978) develops an 

algorithm to find near-optimal control alternatives.  The method finds a set of Markov 

Partitions, the associated control functions for each partition, and the markov mapping 

defined for each observation and partition.  A Markov partition is set of information 

vectors that have the same control alternative and the same markov mapping.  A Markov 

mapping is a function that defines which partition or set of information vectors the 

system is likely to transition to when output θ  is observed.  Therefore, if the decision 

maker knows what set he starts in and can observe some output, the Markov mapping 

indicates the next set of information vectors the system will transition to, which in turn 

indicates the next control alternative to operate under.  The control alternatives found 

may not necessarily be deterministic. 

The optimal control policies for partially observable processes are often 

randomized policies mapped against all possible states of the information vector.  These 

policies are difficult to implement in practice.  The algorithm proposed in chapter 3 will 

determine the optimal deterministic policy associated with the observable outputs.  The 

class of problems which maps the policy set to the observable outputs is known as the 

Markov Decision process with Restricted Observations. 

2.2.3 Markov processes with restricted observations 

2.2.3.1 General Problem 
A Markov Decision Process with restricted observations is a special case of a 

POMDP.  For a POMDP, the state of the system cannot be directly observed.  However, 
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some output of the system  is observable and is probabilistically linked to the true state of 

the system.   These observed outputs are used to convert the unobservable MDP with 

finite state space to an observable MDP with a continuous state space.  The observability 

assumption for the Restricted Observation problem partitions the state space S into K sets 

S1,S2,…Sk which are mutually exclusive.  Adopting the notation from Smallwood and 

Sondik, a matrix R of observable outputs consists of row vectors that sum to unity and 

defines the probability of observing output θ given the true state of the system is j.  For 

the MDP with restricted observations, each row vector of the matrix R contains exactly 

one entry with value one if the state is in output set k and zero otherwise.  Thus, mutually 

exclusive sets are created.  The best policy found is implementable for the observed set 

and is not a function of the set of all possible distributions of the information state vector, 

π.  The policy for the partitioned state space is called an implementable policy with 

respect to the partition S.  In an implementable policy, every state that is a member of 

partition Sk takes the same action at time n (An) with the same probability.  Formally, 

)|( iXaAP nn ==  is the same for all states kSi ∈ .  

 

Table 2.2 Research summary by method 

Time 
Horizon 

Discounted Total 
Cost 

Undiscounted Average 
Cost 

Finite Nonlinear 
Programming 

 

Infinite Nonlinear 
Programming 

Successive Approximation 
Enumerative Search 
Bounded Enumeration 

 
Table 2.3 Research summary by author 

Time 
Horizon 

Discounted Total 
Cost 

Undiscounted Average 
Cost 

Finite Serin and Avsar (1997)  
Infinite Serin and Kulkarni 

(1995) 
Smith (1971), 
Hordijk and Loeve (1994), 
Hastings and Sadjadi (1979) 

 

There have been several approaches to solving this problem both for the infinite 

and finite horizon instances.  Table 2.2 summarizes this research by time horizon and cost 

function.  Table 2.3 summarizes the corresponding research effort by author.  The 
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notation listed below will be used in the following sections that discuss solution 

procedures implemented for this problem. 

A:  The set of available actions {1…M}. 

S: The set of possible states {1…N}. 

O: The set of observable outputs {1...K}.  

Gi: A function mapping state i to a single observable output in the set O.  

Sk: A given partition of the state space S satisfying {i: Gi = k}.  

Xn: A random variable denoting the state of the system at time  n=0,1…. 

Yn: A random variable denoting the observation at time n taking on values in 
the set O. 

An:  Action chosen at time n. 

α: The policy vector for the observed process [α1,α2…αK ] where αk is the 
action chosen for each state in the observation set Sk and αk ∈ A.  

Π: The vector of steady state probabilities, [π1,π2,..πΝ]  of the Markov 
process, where πι is the long term probability of being in state i. 

( )apij  The one step transition probability from state i to j under alternative a ∈ A. 

( ) },|{ 1 aAiXjXPap nnnij ==== +  

:iac   The immediate expected reward associated with transitioning from state i 
under alternative a ∈ A. },|),({ aAiXAXCEc nnnnia === .  In Howard’s 
(1960) algorithm, this is denoted a

iq . 

gα: The steady state gain associated with a policy α. 

g*: The optimal gain associated with an instance of the problem. 

)( 0 jXPp j ==  is the initial probability at time n=0. 

2.2.3.2 Infinite Horizon Discounted Cost 
Serin and Kulkarni (1995) propose an algorithm to find locally optimum policies 

for the infinite horizon discounted cost case.  The algorithm is based on a nonlinear 

programming formulation of the discounted cost problem.  The algorithm is not 

guaranteed to find a deterministic policy but gives sufficient conditions under which a 

deterministic global optimal policy exists.  Serin and Kulkarni (1995) refer to the policies 

generated from the algorithm as implementable policies, which may be randomized or 

deterministic.  The restriction of the policy set for a completely observable MDP to an 

implementable policy is achieved by introducing observability constraints in the linear 
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programming model developed in Derman (1970), Kallenberg (1983) and Ross (1983).  

The decision variable for the linear programming model, xia,  represents the long run 

proportion of time the process is in state i under alternative a discounted by factor γ . 

{ }∑
∞

=

===
0

,
n

nn
n

ia aAiXPx γ       (2.2) 

Determining the optimal policy that minimizes the expected total discounted cost over the 

infinite horizon is found by solving the problem below. 

Minimize ∑∑
==

M

a
iaia
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jiaij
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a
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1 11

)(γ  for all Sj ∈  

   0≥iax     for all AaSi ∈∈ ,  

 

Observability constraints are introduced into this model using a new variable, kaα , which 

represents the probability that action a is chosen for set k.  Redefining kaα in terms of the 

existing decision variable for the linear programming model, one obtains the equation 

below. 

AaSiallfor
x
x

x
x

k
i

ia
M

a ia

ia
ka ∈∈==

∑ =

,
1

α       (2.3) 

This allows the original LP formulation to be rewritten in terms of the new variable, kaα , 

and the existing decision variable, xi, which results in a non-linear programming problem. 
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This can be expressed in vector notation as 

Minimize )()( αα xc=Φ         (2.4) 
Subject to pPIx =− )]([ αγ        (2.5) 

   ∑
=

=
M

a
ka

1
1α     for all Ok ∈  

   0≥kaα     for all AaOk ∈∈ ,  

0≥ix      for all AaSi ∈∈ ,  

 

The algorithm starts with an initial implementable policy.  The policy is evaluated 

by inverting the matrix in (2.5) to find x and then the cost associated with policy α 

( )()( αα xc=Φ ) is computed.  If possible, a new policy, `α , is found such that 

( `) ( )α αΦ < Φ .  A new policy is determined by using the method of feasible directions 

described in Bazarra and Shetty (1979).  ` ( *)α α θβ= +  represents the new policy where 

β∗ is the steepest descent direction and θ the stepsize.  The stepsize is determined by 

using a search procedure to minimize the Taylor’s polynomial approximation of 

( *)α θβΦ + .  The steepest descent direction is a vector ( )11 1 1,... ,.... ,...m K KMβ β β β β= that 

will have one component *k aβ equal to1/2, one component * 'k aβ equal to -1/2 and all other 

components set to zero.  The non-zero components of the vector correspond to two 
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actions within one observation k, whose current probabilistic values kaα will be increased 

or decreased. 

In determining a new policy, a policy change is only made in one observation set 

and between two actions.  The algorithm can be modified to allow policy changes in all 

sets, Sk simultaneously, but Serin and Kulkarni (1995) note this will result in slow 

convergence, and results are not reported using that method. In addition, the policies 

determined are randomized locally optimal policies. 

2.2.3.3 Finite Horizon Discounted Total Cost 
Serin and Avsar (1997) study the restricted observation problem for the finite 

horizon discounted total cost problem.  Their algorithm is based on a nonlinear 

programming formulation of the finite horizon problem with observability constraints 

added.  The method of feasible directions is used to solve an instance of this problem.  

With the nonlinear programming formulation, the authors show the feasible set for the 

finite horizon restricted observation problem is a polyhedral set with extreme points 

corresponding to deterministic policies.  Therefore, a global optimal deterministic policy 

exists and can be found by their solution method. 
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The above formulation is the linear programming model for the finite horizon 

MDP.  This is converted to a finite horizon restricted observation MDP, by introducing a 

new decision variable, αkat, which is the probability that action a is taken for observation 

set k at time period t.  Rewriting the above formulation in terms of the new decision 

variable, yields the following (for the minimization problem) 
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Recursive substitution of vit results in the following NLP. 
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The algorithm closely mirrors the dynamic programming formulation of Howard.  

It begins with an initial policy, which is evaluated by calculating the expected discounted 

cost.  Policy improvement is obtained by determining a direction that leads to a new 

policy with smaller cost.  If so, only one alternative (for one observation set) is changed 

in this policy.  The sequence of policy improvement and policy evaluation continues until 

no improving directions exist.  Termination occurs at the optimal deterministic policy.  

The algorithm iterates over deterministic policies and guarantees a decrease in the 

objective value each time.  For each period t and observation set k where the optimal 

action is b, the resulting optimal policy satisfies the equation below. 
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tjijibitAb vbpcwMinimum

1
1γ       (2.6) 

This equation depends upon relative values (vj(t-1)) calculated from policies of the future 

periods and the weighted sum of the discounted probabilities (wit), which is determined 

from the policies of the past periods.  This closely resembles how policies are selected in 

Howard’s algorithm and in the algorithm presented in chapter 3. 
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2.2.3.4 Infinite Horizon Average Cost 
Smith (1971) developed an enumerative approach for the undiscounted infinite 

horizon Markov decision problem.  The algorithm iterates among admissible 

deterministic policies (implementable policies) until an optimal policy can be determined.  

Smith proved that the gain associated with an admissible policy β is better than the 

current admissible policy α (gβ > gα) for a maximization problem if the difference in the 

test quantities (di(β,α)) for the alternatives under policies α and β contain at least one 

recurrent state i where di(β,α) > 0 and for all other states di(β,α) ≥ 0. 

The test quantity is the well-known policy evaluation quantity used in Howard’s 

dynamic programming approach (1960).  In some cases, the test quantity may evaluate to 

a positive or negative quantity within a given state set.  When this occurs, it is not 

possible to determine if the policy β is better.  Therefore, policy β is referred to as an 

undetermined policy.  A new iteration process is performed until the policy converges or 

all undetermined policies are resolved.  The iteration equation is defined as  

 ( ) ( ) ( ) ( )[ ]αβαβαβ βββ ,,,1 dPPdPd nnn ==+  

Successive powers of the P matrix are calculated and multiplied by the decision vector, 

basically obtaining values for the steady state information vector, π, for each 

undetermined policy.  Convergence is guaranteed if the iteration process is transformed 

into  

( ) 10,])1([),(1 <<αβ−+=αβ β+ sdIssPd nn . 

From within this process, if for any n, di
n(β,α) > 0  for at least one i and i is recurrent, and 

dj
n(β,α) ≥ 0 for all j, then gβ > gα.  The steps defined above repeat until an optimal policy 

is found or all undetermined policies have been resolved.  Smith notes that for very large 

problems, this method could degenerate into successive elimination of undetermined 

policies.  In addition, at the enumeration stage, it is hard to keep track of which policies 

have been examined.  An alternative evaluation technique was proposed using the entry 

derived semi-Markov process.  The entry-derived process can reduce the dimension of 

the problem and make it more unlikely that undetermined policies will arise. 

 Hordijk and Loeve (1994) present a search heuristic that finds locally optimal 

solutions for the infinite horizon MDP with average cost criterion.  They use the method 
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of successive approximations to find the locally optimal deterministic policy for the state 

set.  Their algorithm is applied to both periodic policies and stationary limiting policies.  

They define the current iteration step, n, equal to 1.  The algorithm begins with 

generating an initial policy (α1), choosing an initial Π vector (x1) and relative values (v1). 

The gain gn(s,a) associated with observation set s under action a is computed as  

∑ ∑
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The new policy αn+1 is the one that minimizes the cost gn(s,a) for all observations Si.  The 

algorithm continues by updating the estimates of the steady state pi vector and relative 

values using equations  

xn+1 = xnP(an+1)  

vn+1 = (an+1) + P(an+1)vn  

After the values have been updated, return to policy evaluation until the termination 

criteria ( ε<−ε<−α= +++ )(spanand,, mLmmLmmLm vvxxa ) has been met.  

Termination occurs when the difference between the Π vectors (either for the periodic 

policy or stationary policy) is less than some chosen value, ε,  and the policy has 

converged. 

 Hastings and Sadjadi (1979) developed a bounded enumeration algorithm 

applicable to solving policy constrained Markov decision problems.  Their algorithm 

begins with solving the unconstrained problem using value iteration.  Using the optimal 

action from the unconstrained problem, they develop bounds for the constrained problem 

via action ranking.  Bounds on the gain of any policy can be generated from the action 

ranking and used to develop a ranking for the set of all admissible policies.  The bounded 

enumeration technique applies value iteration to the admissible policies in the ranked set 

until the gain of the current best policy is greater than the upper bound of the policy being 

evaluated.  An action difference (d(n,i,k)) for each state and possible action is determined 

from the expected n and n-1 stage rewards as follows: 
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The optimal action for the unconstrained problem as n tends to infinity can be determined 

and used as the n-1 stage reward in the equations above.  The action differences are 

calculated for all possible states and actions.  The admissible policies are then ranked by 

determining the upper and lower bounds on the gain using the action differences.  Given 

a policy α, the upper bound U(α) = ( )),,(max kindk  over all states i in the policy.  

Similarly, the lower bound L(α) = ( )),,(min kindk  over all states in the policy.  The 

bounded enumeration is performed on the ranked policy list.  The algorithm iterates 

through each policy, performing value iteration and updating the bounds and best gain. 

For large problems, the authors suggest stopping at the best policy obtained after some 

number of iterations, or some epsilon optimal policy. 

2.2.4 Applicability of previous work to current problem 

The model of no information sharing is an MDP with Restricted Observations.  

We use the completely observable Markov model to define a partition of states where all 

states in the partition must have the same control decision.  Conceptually, this can be 

thought of as a partially observable system where the observable outputs are some aspect 

of the state space.  For example, the observable output for a first stage decision maker in 

a two-stage supply chain, with state space defined as inventory level at each stage, would 

be his/her own inventory position.  While the completely observable model reflects 

information that is known at both stages, we want to quantify the difference associated 

with the level of information sharing by comparing the optimal control decision and the 

gain of the process under all levels.  In the POMDP, one must find the optimal control for 

the entire space of vectors, which is not easily implementable or usable.  The restricted 

observation model determines the optimal control alternative the decision maker would 

choose given he possesses partial information about the process; his observable outputs.  
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Therefore, we are seeking the optimal control decision for the available outputs that are 

linked to the internal process.  The optimal gain and associated control policy when 

information is shared can be determined using Howard’s (1960) dynamic programming 

solution method.  The algorithm proposed in this research, can determine the optimal 

gain and associated control policy for the undiscounted average cost case, when no 

information is shared.  The algorithm determines the policy by altering Howard’s (1960) 

policy iteration to calculate the expected transition cost as a function of the payoff 

structure for each state in the set and their corresponding steady state probabilities. 

Existing research for finding optimal policies for the restricted observation 

undiscounted cost case have been dominated by enumerative based searches.  Although 

these have provided acceptable locally optimum solutions for their applications, a more 

robust and computationally efficient algorithm must be used to study the information 

sharing application.  In addition, some of the heuristics have no guaranteed performance 

bound (Hordijk and Loeve, 1994 and Smith, 1971) or guaranteed deterministic policy 

(Serin and Avsar, 1997).  The method proposed by Smith (1971), and Hastings and 

Sadjadi (1979) cannot handle very large problems, as their algorithmic structure is 

enumeration based.  The algorithm by Hordijk and Loeve (1994) finds locally optimal 

solutions.  However, the best performance that algorithm could achieve for the 

information sharing problem, if the information vector and the relative values were 

solved for explicitly, is at most 54% of the problems solved optimally and the remaining 

with an average relative error of approximately 6%.  Our algorithm without 

randomization serves as an upper bound on the possible solution obtained from their 

algorithm.  The details of the algorithm are discussed in chapter 3. 
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Chapter 3 Heuristic for MDPs with Restricted observations 

3.1. Background 
In this chapter, we present a computationally efficient procedure to determine control 

policies for an infinite horizon Markov Decision process with restricted observations (ROMDP).  

The optimal policy for the system with restricted observations is a function of the observation 

process and not the unobservable states of the system.  Thus, the policy is stationary with respect 

to the partitioned state space.  Recall for a partially observable MDP, the optimal policies are not 

stationary with respect to the original process but are functions of all possible states of the 

information vector, also known as a ‘belief-state’.  

Serin and Kulkarni (1995) develop an algorithm that finds locally optimal policies for the 

infinite horizon discounted cost case.  The algorithm we propose addresses the undiscounted 

average cost case.  Algorithms for the infinite horizon undiscounted cost problem are presented 

by Smith (1971), Hordijk and Loeve (1994), and Hastings and Sadjadi (1979).  The algorithms 

developed by Hastings and Sadjadi (1979) are enumerative based and thus  intractable for large 

problems.  The algorithm developed by Smith (1979) is a policy iteration algorithm containing 

an enumerative component that is used when a better policy can not be determined.  All of the 

algorithms developed to address the infinite horizon average reward ROMDP provide local 

optimal policies.  In contrast, the algorithm we present combines a local search with a modified 

version of Howard’s (1960) policy iteration method to provide optimal or near-optimal policies.  

We demonstrate empirically that the algorithm finds the optimal deterministic policy for over 

97% of the problem instances generated.  In the instances where the optimal policy cannot be 

determined, the average error is close to one percent.   

3.2. An algorithm for the undiscounted case 

3.2.1. Background and notation 
The process being analyzed is a Markov Decision Process with state space S and action 

space A.  The state of the system can not be observed, however some output of the system is 

observable.  Based on those outputs, one can infer the state or possible states the system may be 

in.  We seek to find an optimal control policy defined over the observation process that 
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minimizes the long term average cost.  The optimal policy has the property that each state within 

a given observation set takes the same action.  Let O represent the set of observable outputs that 

partitions the state space into mutually exclusive sets Sk.  Each state i∈S is a member of only one 

observable set defined by a mapping function Gi.  A summary of the problem notation is 

presented below. 

 

A:  The set of available actions {1…M} 

S: The set of possible states {1…N}. 

O: The set of observable outputs {1...K}.  

G(i):  A function mapping a state i to a single observable output in the set O.  

Sk:  A given partition of the state space S satisfying {i:G(i) = k}.  

A(k): The set of admissible actions for observation set Sk.  A(k)⊆A. 

Xn: A random variable denoting the state of the system at time n=0,1… 

An: The action chosen at time n. 

( )apij : The one step transition probability from state i to j under alternative a ∈ A. 

( ) },|{ 1 aAiXjXPap nnnij ==== +  

:iac   The immediate reward associated with transitioning to state i under alternative      
a ∈ A.  },|),({ aAiXAXCEc nnnnia === .  In Howard’s (1960) policy 
iteration algorithm, this quantity is denoted a

iq . 

3.2.2 Model and Solution Method for ROMDP 
3.2.2.1 Mathematical Model for Infinite Horizon average cost ROMDP 

Wolf and Dantzig (1962) develop a linear programming formulation for the infinite 

horizon completely observable MDP under the average cost criterion.  The model is briefly 

described below. 
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The decision variable iax  denotes the long run proportion of time the system is in state i 

under alternative a.  Wolf and Dantzig (1962) show the optimal policy will always be 

deterministic. That is only one alternative a will be selected for each state such that xia > 0.  The 

dual formulation to the above linear programming problem is 

.free

,
tosubject

max

Sjv

AaSicvpvg

g

j

ia
j

j
a
iji

∈∀

∈∈∀≤−+ ∑  

The infinite horizon average cost case can be formulated as an MDP with restricted 

observations by adding constraints to the primal model of Wolf and Dantzig (1962) to represent 

the observability restrictions of the process.  Let kaα denote the probability of choosing action a 

for observation set k.  The probability of choosing action a for any state i is defined as 

∑
a

ia

ia

x
x

.   

In order for all states i in observation set Sk to take the same action at a point in time, the 

following must hold for every observation set Sk. 

AaSi
x

x
kka

a
ia

ia ∈∈∀=
∑

,α . 

This constraint ensures all states have the same probability of choosing action k.  In addition to 

this constraint, only one action can be taken for any given observation set Sk.  This ensures the 

resulting policy is deterministic. 

}1,0{

1

∈

=∑
ka

a
ka

α

α
 

Let ∑=
a

iai xx then, ika
a

iakaia xxx αα == ∑ .  The primal LP with the observability 

constraints added is shown below. 
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Let ( ) ( ) ( ) ( )]...)([ 21 ααααα Na kaiai cccacc == ∑ c .  Here, ci(α) is immediate reward 

associated with state i under policy α.  Let P(α) be the matrix defined with entries pij(α) where  
( ) ( )∑=

a
ijaiGij app )(αα . 

Then the NLP can be written in matrix notation as 

( ) ( )
tosubject

x αα c=Φmin
 

( )[ ] 0=− αPIx   (3.1) 

∑ =
i

ix 1    (3.2) 

∑ ∈∀=
a

ka Ok1α   (3.3) 

Sixi ∈∀≥ 0    (3.4) 

AaOkka ∈∈∀∈ ,}1,0{α  (3.5) 

The above problem is a mixed integer nonlinear programming problem (MINLP). There 

is no exact solution known for solving this problem and thus heuristic methods must be used.  

We exploit some mathematical properties of the above stated problem to provide insight into 

developing a simple heuristic.  .  Therefore, we relax the integrality constraints on αka to derive 

the gradient vector with respect to αka.  The gradient will be used as a guide to finding a better 

deterministic policy.   

 

3.2.2.2 Characterization of Feasible Descent Direction 
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We first derive the gradient of the objective function at the point α ( ( )αΦ∇  ).
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∂
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we have, 
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Then from constraint 3.1 above 

[ ] ka
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xx PPI =−
∂
∂ )(α
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. 

The matrix [I-P(α)] is not invertible because it contains a redundant constraint.  However, we 

make it invertible by arbitrarily replacing the Nth constraint with the following equation. 

∑ =
∂
∂

i ka

ix
0

α
  

This equation represents the partial derivative with respect to αka for constraint 3.2.  Replace the 

Nth column of the matrix [I-P(α)]  with all ones and let this transformed matrix be defined as 

( )
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Replace the Nth column of the matrix Pka with all zeros.  As a result of this transformation, 

[Q(α)]-1 exists and  

[ ] 1)( −=
∂
∂ α
α

QP ka

ka

xx . 
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Then 
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xxc )()( 1 αα
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Let ]...[ 1 nvvv = be the solution to Q(α) v = c(α).  Then we can write the gradient of the objective 

function with respect to a given policy as follows as  
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Note, this equation is simply the policy improvement test statistic for a given observation set Sk.  

The solution to v =[Q(α)]-1c(α) is in fact the relative values obtained from solving the 

simultaneous equations from the Howard (1960) value determination step with vN  set to 0.  

With vN = 0, we have [I-P(α)] v =c(α) which is equivalent to 

( ) ( ) ( ) ∑∑ +=+⇒=+−
j

jijii
j

ijiji vpcgvcgvpv ααα . 

Although the matrix Pka was modified above to remove the redundant constraint, the 

modification corresponds to the column where vN = 0 so that 
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So, we obtain both x  =b [Q(α)]-1  and v =[Q(α)]-1c(α), with v = [v1…vN-1,g], g 

representing the gain of the process ( )(αΦ ) and b an N-element vector  defined as [0,...,0,1].  

Using the definition of Q(α) and b above, the NLP can be rewritten as 
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As a result of this transformation and the existence of [Q(α)]-1 for any policy α, there 

corresponds a unique vector x  such that (α, x ) is a feasible solution to the problem.  So the 
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policy variable α can be considered the only variable of the model.  The problem can be 

equivalently stated as  

( )[ ] ( )
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If the integrality constraints on the policy variable are relaxed, and an instance of this 

problem is solved using the method of feasible directions, then we must find a feasible direction, 

β = [ ]KMM ββββ ,...,... 112,11 such that  α+θ β∈ A and ( )αΦ∇ t β < 0 for some θ  >0.  If this 

direction can be found, then the maximum distance, θ , which can be traveled along that 

direction such that Φ(α+θ β) is minimized must be determined.  First, the gradient direction will 

be discussed followed by the computation of the maximum distance (step size) of θ .  Since we 

are only concerned with deterministic policies, the gradient direction will be used as a guide to 

finding a better deterministic policy.  As derived above, the gradient direction reduces to the 

policy improvement test statistic of Howard(1960) weighted by the state probabilities associated 

with a given observation set.  From Serin(1989), a feasible direction β associated with an 

improving policy, satisfies 
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. 

For a given observation set Sk, let Uk(α) = {a ∈A(k)| αka < 1)  and u(k) represent an 

alternative for set Sk that minimizes the directional derivative.  That is, select u(k) such that  
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Further, let d(k) represent the current alternative a. Then it follows that u(k) is an improving 

alternative if  
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A value r(k) can be defined for all Sk , Ok ∈ .  Since αka can only take on values in the 

discrete set {0,1}, then to move in a direction that minimizes the directional derivative, βka can 

only take on values {1,0,-1}.  Formally, 

⎪
⎩

⎪
⎨

⎧
=−
=

=β
otherwise

kdaif
kuaif

ka
0

)(1
)(1

 

which implies the new policy α ′ is defined by  

kakaka θβαα +=′ . 

Since we are only concerned with feasible policies that are deterministic, then the only 

feasible (and maximal) value that θ  can take is one. Any value less than one would lead to a 

randomized and thus infeasible policy for this problem.   If the optimal value of θ   that 

minimizes Φ(α+θ β)  is less than one, than the new policy α+θ β will result in an objective 

function value which is worse.  As illustrated in Serin and Kulkarni (1995), an approximation of 

the optimal θ  can be determined using Taylor’s polynomial approximation.  For the purposes of 

this algorithm, this evaluation is not needed. It is sufficient to simply move in the direction of β 

at the maximal value and compute the resulting gain.  If the gain is better, find a new direction to 

travel at this new policy α ′ . If the gain is worse, then stop at the current policy α   that has been 

found.   

 

3.2.2.3 Policy Iteration Heuristic for ROMDP 

To solve the problem, it is not necessary to construct a K*M vector in terms of the 

decision variable α to represent an implementable policy.  It is sufficient to only carry the 

information needed in terms of the action taken for a given observation set Sk.  Therefore, let 

π =[π1..πK] represent the implementable policy vector for the observed process, defined in terms 

of the action space A.  Then 

1== kak ifa απ . 

Then Q(α) has entries pij(α) where  

( ) ( )∑ ==
k

iGijijkiGij papp )(),( )( παα . 

Similarly, the vector c(α) has entries ci(α) where 
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 ( ) ∑ ==
j

ikaiai iG
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These substitutions are denoted as Q(α |π) and c(α |π). The heuristic for finding an 

admissible policy is summarized below.  The cost Φ(α) associated with a feasible policy α will 

hereafter be denoted by the gain g. 

Step 0. Initialization 

Generate an initial admissible policy π.  

Set *g = ∞. 

Step 1.Policy Evaluation 

  Determine the gain (gπ), relative values (vi) and steady state probabilities  

x associated with policy π using x  = b[Q(α |π)]-1  and v =[Q(α |π)]-1c(α | π).  

   (a). If gπ < *g , set *g = gπ  and proceed to Step 2. 

   (b) If *gg ≥π , the current solution *g  is a local minimum. 

Step 2. Policy Improvement. 

  For all k∈ O find an action πk that minimizes the directional derivative 

   ∑ ∑∈
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jijiaikAak vapcx

1
)( ))((minπ . 

In the algorithm proposed by Serin and Kulkarni (1995) for the infinite horizon 

discounted total cost case, only one observation set (k*) is chosen during the policy improvement 

step corresponding to  

)(minarg* krk Ok∈= . 

The new alternative corresponds to the steepest descent direction.  For the purposes of this 

heuristic, any k∈ O satisfying r(k) < 0 will be chosen to construct a new policy.  Although the 

resulting direction may not be the steepest descent direction, it will still satisfy ( )αΦ∇ tβ < 0 and 

can possibly result in a smaller objective function value. 

 

Lemma 3.1: Let α =[α 11,..αKM] be a solution to an instance of the ROMDP. 

α is a local minimum if either one of the following properties is true: 

1. No feasible direction β can be found such that ( )αΦ∇ tβ <0 
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2. A feasible direction β was determined using policy improvement, but Φ(α+θ β) > Φ(α) 

If condition 1 is met, α is referred to as a type 1 local optimal solution.  If condition 2 is met, α is 

referred to as a type 2 local optimal solution. 

Proof:  Assume α is not a local optimal solution.  This implies there exists some k∈ O and some 

alternative b∈A(k) such that 
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This implies b is an alternative that minimizes the directional derivative and a feasible 

direction β exists such that ( ) 0)( <Φ∇=∑ βα t

k
kr .  If no feasible direction is found, then the 

previous condition is not satisfied and the current solution is a local optimal solution.  Assume a 

feasible direction exists such that ( )αΦ∇ tβ <0 and the optimal value of θ   that minimizes 

Φ(α+θ β) is less than one.  If the new policy α` is constructed such that α`=α+β, then 

Φ(α+β)>Φ(α).  This implies the step size assumption of θ = 1 resulted in a move along the 

feasible direction which was too large, and thus a smaller objective function value was not 

attained.  Therefore, the current solution α is a local minimum (or critical point) of the current 

problem. Q.E.D. 

Lemma 3.2:  As long as there exists at least one local optimal solution, the algorithm defined 

above will terminate after a finite number of iterations. 

Proof:  Let L: = {α | Lemma 3.1 satisfied}.  It follows for any α ∈ L , there always exists a new 

policy δ found by policy improvement such that Φ(δ) < Φ(α ).  If δ∈ L , policy improvement 

continues.  If δ∈L , then one further iteration of policy improvement is performed and algorithm 

terminates.  

Since L is a finite set of policies which always contain a feasible direction yielding a 

better objective function value, it is impossible for policies within L to cycle amongst each other.  

Therefore, using the gradient vector to find a better policy is guaranteed to terminate on a local 

minimum. Q.E.D. 
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When the heuristic terminates on a local minimum characterized by Lemma 3.1, this 

convergence will be referred to as policy iteration convergence.  This minimum is not guaranteed 

to be the global minimum unless |L| = 1. Therefore, the policy iteration heuristic for the ROMDP 

is augmented by a local improvement procedure to increase the probability of finding the global 

minimum. 

 

3.2.2.4 Local Improvement Procedure 

Solution representation 

A solution is represented as an ordered sequence of alternatives denoting the actions 

taken for each observation set Sk.  Let π denote the policy vector of alternatives.   

Neighborhood Structure 

For a given policy π and a candidate solutionπ , new neighbor π` is constructed by 

interchanging elements of π  with π .  The number of elements to be interchanged depends on 

the type of neighborhood construction algorithm (policy perturbation) being performed. Policy 

perturbations will be described in detail in the following section.  Selection of a candidate 

solution π  is determined from π by minimizing the directional derivative at π.  This can be 

easily obtained from the policy improvement step of policy iteration, as the algorithm will 

terminate on a local minimum only after having found no improving direction.  This assumes the 

local minimum is a type 2 local minimum solution.  If the local minimum is a type 1 solution, 

then the policy constructed from choosing the second best alternative for all k that minimizes the 

directional derivative can be chosen as π .  Any neighbor constructed in this manner will be a 

feasible solution to the ROMDP. 

Evaluation of a Neighbor 

The value of the new policy π`is evaluated using the same equations defined in the policy 

evaluation step of policy iteration.  If the current solution is an improvement over the current 

best solution, then the policy iteration heuristic is restarted using the new neighboring solution as 

a starting point.   

Implementation Details 

The steps for the local improvement procedure are summarized below: 

Step 0. Initialization 
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Construct a neighbor π`∈ N(π),where π is local minimum from policy iteration 

convergence.  

Set *g = gπ  

Step 1.Policy Evaluation 

(a) Determine the gain (g`), relative values (vi) associated with policy π using 

v =[Q(α |π`)]-1c(α |π`).  

  (b) If g` < *g , set *g =g` and restart policy iteration procedure. 

  (c) If *` gg ≥ , construct new neighbor π` and return to 1(a). 

Step 2. Termination Criteria. 

  If *` gg ≥  for all π`∈ N(π), terminate with current local optimal solution. 

Combining the local improvement and policy iteration procedures we have the following 

heuristic. 

Step 0. Initialization 

Generate an initial admissible policy π.  

Set *g = ∞. 

Step 1.Policy Evaluation 

(a) Determine the gain (gπ), relative values (vi) associated with policy π using  

v =[Q(α |π)]-1c(α |π).  

(b) Determine the steady state probabilities x associated with policy π using       

x  =b[Q(α |π)]-1 

  (c) If gπ < *g , set *g =g and proceed to Step 2. 

  (d) If *gg ≥π , proceed to Step 3.. 

Step 2. Policy Improvement. 

  For all k∈ O find an action πk that minimizes the directional derivative and return  

to step 1. 
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Step 3. Initialization-Local Improvement 
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Construct a neighbor π`∈ N(π),where π is local minimum from policy iteration 

convergence.  

Set g* = gπ. 

Step 4.Policy Evaluation 

(a) Determine the gain (g`), relative values (vi) associated with policy α` using 

v =[Q(α|π`)]-1c(α|π`).  

  (b) If g` < *g , set *g =g`, π=π`and proceed to step 1b. 

  (c) If *` gg ≥ , construct new neighbor π` and return to 4(a). 

Step 5. Termination Criteria. 

  If  *` gg ≥  for all π`∈ N(π), terminate with current local optimal solution. 

 

3.2.2.5 Neighborhood based on Policy vector 

There are several ways in which a neighboring solution can be constructed.  Two 

methods will be discussed here.  The first method, referred to as policy perturbation 1 (pp1), 

takes one alternative from π and replaces it with the alternative in the same position from the 

candidate solution π .  Formally, for each index [i] , construct a neighbor π` such that  

[ ] [ ]

[ ] [ ] ijjj

ii

≠∀=

=

ππ

ππ

`
`

 

At most K neighbors can be generated under this neighborhood construction scheme. The second 

method, policy perturbation 2 (pp2) is similar to pp1 with the exception that two indices are 

chosen instead of 1.  At most 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
K  neighbors can be generated under this neighborhood 

construction scheme. 

 

3.2.2.6 Search Strategies and other considerations 

In the above mentioned neighborhood construction schemes, as soon as an improving 

solution is found, we move to it and then restart the policy iteration phase of the heuristic.  

Alternatively, we could evaluate all neighbors of a given solution and then move to the best 

neighbor.  This search method is also examined and is denoted as pp1A in the experimental 
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results section.  This method is only examined with the neighborhood constructed using method 

pp1, since the number of neighbors to evaluate is significantly smaller than pp2.  

Another search method deals with the selection of the candidate solution π .  Recall, in 

the previous section, that a candidate solution is determined by minimizing the directional 

derivative at the current local minimum π.  From the policy improvement step, two policies can 

be constructed representing the first and second best alternative for each observation set Sk.  Each 

candidate solution can serve as a starting point for the local improvement procedure, thus 

increasing the possible neighboring solutions evaluated.  This procedure is also examined in the 

experimental results section and denoted meta1. 

 

3.2.2.7. Neighborhood based on Information Vector 

The algorithm discussed above can also be modified to consider neighborhoods based on 

the steady state information vector ( x ) instead of the policy vector.  If the optimal steady state 

vector is known, then the optimal policy associated with that vector can be determined.  

Therefore, better results may be achieved by randomizing the current iterate of the information 

vector instead of the current iterate of the policy vector.  Modification of the local improvement 

algorithm to consider perturbations based on the steady state vector is summarized below.  The 

policy iteration phase of the algorithm is identical and omitted here.  

Step 3. Initialization-Local Improvement 

Construct a neighbor  x`∈ N( x ), where x  is steady state information vector 

associated with the local minimum policy π from policy iterationl convergence.  

Set *g = gπ. 

 Step 4. Policy Improvement 

  Find a new policy based on the new information vector x`. 

  For all k∈ O find an action πk that minimizes the directional derivative 
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Step 5.Policy Evaluation 

  (a)Determine the gain (g`), relative values (vi) associated with policy α` using  
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v =[Q(α|π`)]-1c(α|π`).  

  (b). If g` < *g , set *g =g`, π=π` and proceed to Step 1b. 

  (c) If *` gg ≥ , construct new neighbor x` and return to Step 4. 

Step 6. Termination Criteria. 

Terminate the algorithm after T total perturbations have been performed.  

 

There are certain issues to consider when using a neighborhood based on the steady state 

information vector instead of the policy vector.  Since the vector is a discrete set of continuous 

values, the perturbation method chosen can generate an infinite number of neighbors.  Therefore, 

terminating after all neighbors have been examined (as in the policy perturbation case) is not 

suitable.  The termination counter must be set large enough to ensure a good selection of 

neighbors is examined without compromising the execution time.  The actual method chosen to 

generate neighbors is also important.  Four methods are discussed below.   

3.2.4.1 Perturbation methods for steady state information vector 

Four perturbation methods are evaluated.  Each involves modifying the value of the 

information vector by some step size ε.  The value of ε is either randomly generated or is a 

constant value.  Let the starting vector for generating neighbors, πx , corresponds to the steady 

state information vector associated with the local minimum policy π obtained from policy 

iteration convergence.  Perturbation method 1 (pi1) adds a constant value, ε, to each element in 

the information vector.  A neighbor x` is constructed in the following manner with perturbation 

pi1. 

Step 1. 

ixx ii ∀+= επ`  

Step 2. 

i
x

x
x N

i
i

i
i ∀=

∑
=1

`

`

`
`  

The normalization step (Step 2) is performed for all perturbation methods and will be omitted in 

the subsequent sections. 
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Method 2 (pi2) randomly adds and subtracts a constant value, ε, to each element in the 

vector and then normalizes the vector as defined in Step 2 above.  A neighbor x` is constructed in 

the following manner with perturbation pi2. 

Step 1. 

(a) Generate a random number ui in [0,1] for state i. 

(b)
iuifxx

uifxx

ii

ii

∀≥+=

<−=

5.0`

5.0),0max(`

ε

ε
π

π

 

With method 3 (pi3), a uniformly distributed number between 0 and ε is added to each 

element in the information vector.  A neighbor x` is constructed in the following manner with 

perturbation pi3. 

 Step 1. 

i) ui = randomly generated number between 0 and 1 for state i. 

ii) iuxx iii ∀+= επ *`  

 

The last method (pi4) performs the same type of perturbation as method 3, with the 

exception that the quantity added to each element in the information vector is between ±ε/2.  A 

neighbor x` is constructed in the following manner with perturbation pi4. 

Step 1. 

 (a) ui = randomly generated number between 0 and 1 for state i. 

(b) ( )( ) iuxx iii ∀+−= εεπ *2/,0max`  

 It should be noted that if a constant value of ε is chosen, then any neighbor constructed 

using pi1 will always be the same.  The way to avoid this is to consider two possible methods of 

generating neighbors.  The first method always generates a different value of ε at each iteration.  

Therefore, the termination counter T defines the total number of neighbors evaluated for vector x.  

This generates neighbors more localized to x.  An alternative approach retains the constant value 

of ε but chooses a new starting point during each iteration.  This results in a broader search space 

since movement is allowed away from the current best value.  In effect, only one neighbor, x`, is 

generated and evaluated.  If a better objective function value is not found, then the next neighbor 

generated is in N(x`).  In this respect, the termination counter T defines the number of 

perturbations performed.  Experiments using this approach are summarized below and denoted 
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by the perturbation method defined above.  Experiments using the standard approach, which only 

generate neighbors localized to the current best information vector, are prefixed with a B. 

 

3.3  Experimental Results 

To validate the solution method developed in section 3.2, a randomly generated ROMDP 

is constructed.  The state space is defined by two parameters X, Y where X represents the number 

of observations sets and Y represents the number of states per observation set.  The total number 

of states is in the process is (X*Y).  A total of X transition probability matrices (P) are generated 

with each element in P having positive probability.   This results in single communicating class 

containing all states.  Since P is a regular matrix, each possible transition matrix P` that is 

constructed from the state space (S) and action space (A) will again result in a regular matrix, 

which has a solution.  Therefore every alternative in A is admissible for all observations sets Sk. 

The size of the action space is XX.  A total of 1000 problem instances are generated for 

evaluation. 

The algorithm of Hordijk and Loeve (1994) uses successive approximations to find a 

local optimal policy.  Since their algorithm does not have a local improvement component, the 

results obtained here under the policy iteration phase without perturbations serve as a benchmark 

for the best solution attainable by their algorithm.  Similarly, the enumerative based algorithms 

always yield the optimal solution, but at the cost of execution time.  The execution time for total 

enumeration is also presented to demonstrate the efficiency of the algorithm developed in this 

paper.  The fraction of optimal solutions found for the various policy perturbation algorithms 

defined earlier is displayed in the graph below. 
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Fraction Optimal Found
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Figure 3.1 Fraction optimal solutions found over 1000 instances 
 

In each instance, performing policy perturbations significantly improves the solution 

obtained from policy iteration (DP) alone.  Policy iteration with perturbations (LS-ppx) 

significantly increase the probability of finding the optimal solution.   Using LS-pp1 alone 

outperforms LS-pp2 in all cases.  However, combining the two algorithms yields even better 

results.  The results associated with LS-meta1 outperform all other perturbation methods.  This 

method uses multiple candidate solutions to construct neighboring polices and indicates a multi-

start or genetic algorithm may be suitable for solving instances of the ROMDP. 
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Figure 3.2 Average relative error for non-optimal solutions 
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Figure 3.3 Maximum relative error for non-optimal solutions 
 

In general, the average error for the problems where the optimal solution is not found is 

less than 5 percent.  In addition, as the problem size increases, this error is consistently below 1 

percent.  The maximum relative error is displayed in Figure 3.3.  This graph measures the 

deviation between the optimal solution and local solution found by the algorithm.  For the small 

(3,3) problem, this deviation is as much as 30% under dynamic programming phase.  As the 

problem sizes increase, the maximum error is below 5 percent.  The execution time of each 

algorithm is shown in the table below.  The algorithm is developed in C++ and executed on a 2.4 

GHz processer with 1GB of RAM.  The table displays the average execution time (in seconds) 

over the 1000 problems instances solved.  

Table 3.1 Average execution time in CPU seconds 

SIZ
E DP 

LS-
pp1 

LS-
pp2 

LS-
pp1a 

LS-
pp1and2 

LS-pp1A 
and 2 

LS-
meta1 

 
Enumeratio

n 
(3,3) 7.0E-05 1.0E-04 8.0E-05 1.5E-04 2.0E-04 2.1E-04 3.7E-04 0.00135 
(4,4) 0.00011 1.90E-04 0.00152 0.00032 0.00036 0.00042 0.00066 0.00369 
(5,5) 0.00040 0.00065 0.00101 0.00083 0.00135 0.00152 0.00175 1.43643 
(6,6) 0.00070 0.00131 0.00247 0.00177 0.00329 0.00337 0.00469 38.46965 

 

The random problem is also solved using perturbations on the state information vector as 

described earlier.  A total of 40 perturbations are executed before the algorithm terminates.  The 

graphs below illustrate the results for the various problem sizes generated.  For each problem 
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instance, the starting point for perturbation is the information vector associated with the local 

solution found during the policy iteration phase of the heuristic.  The value of the step size ε is 

1/N, where N denotes the total number of states in the Markov process.  Figures 3.4 – 3.7 display 

the fraction of optimal solutions found for each problem size and perturbation method. 
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Figure 3.4 Fraction optimal found (3x3) 
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Figure 3.5 Fraction optimal found (4x4) 
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Figure 3.6 Fraction optimal found (5x5) 
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Figure 3.7 Fraction optimal found (6x6) 

 

In all instances, PI1(BPI1) are dominated by the other perturbation methods.  As the 

problem size increases, PI2(BPI2) is dominated as well by PI3 and PI4.  When the problem size 

is small, PI2(BPI2), PI3(BPI3) and PI4(BPI4) are providing comparable results, with the 

exception of the (6x6) problem..  In that scenario, PI3 and BPI3 are the best perturbation 

methods.  Based on these results, PI1 and PI2 can be eliminated from further consideration. 

After 40 perturbations, more then 97% of the problems are being solved to optimality, 

which is comparable to the policy perturbation method.  However, as the problem size increases, 

the fraction of problems solved optimally starts to decrease. This was not observed in the policy 
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perturbation case. When doing perturbations on the information vector, it may be necessary to 

make the perturbation counter a function of the problem size in order to achieve the best results.  

Further experimentation with the perturbation methods and termination criteria is discussed in 

chapter 5. 

The execution time for performing 40 perturbations is shown in the table below.  The 

execution time includes the time for performing the policy iteration phase.  Perturbations using 

the information vector are more expensive than policy perturbations but the solutions obtained 

are slightly better in comparison. 

 

Table 3.2 Average execution time in CPU seconds 

SIZE PI1 PI2 PI3 PI4 

(3,3) 8.41E-03 8.24E-03 7.31E-03 7.76E-03 

(4,4) 1.17E-02 0.01031 0.01046 0.01045 

(5,5) 0.01959 0.01843 0.01858 0.01859 

(6,6) 0.04430 0.04382 0.04402 0.04364 

 

3.4 Conclusions 

 For the randomly generated problem instances, the results indicate the algorithm solves 

over 97% of the problems instances optimally with policy perturbations and 99% using 

perturbations on the information vector.  Using the local improvement procedure provides 

significant improvement over the policy iteration phase alone.  The algorithm is also very 

efficient as indicated by the table of execution times.  Further analysis with respect to the 

information sharing problem is examined in the next chapter.  Results for larger state and action 

spaces are examined in subsequent chapters.
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Chapter 4 Supply Chain Model 

4.1 Problem description for Inventory Information Sharing 
Consider a two-stage supply chain consisting of a single retailer and single supplier 

sharing inventory and demand information.  The retailer implements a fixed inventory 

control policy, while the production control policy for the supplier is to be determined 

from the model.  The delivery lead-time is one period and therefore, orders placed at the 

beginning of the period are received at the end of the period.  The sequence of events 

during a period is as follows. 

1. The retailer examines his inventory and places an order. 

2. The supplier receives the order and ships the available quantity from inventory. 

Any demand not filled from inventory is lost. 

3. The supplier makes his order decision according to the decision policy. 

4. Costs are calculated. 

5. The retailer’s order quantity is received into inventory. 

6. The supplier’s production quantity is received into inventory. 

The objective is to measure the value of sharing inventory information using a Markov 

Decision Model.   

The state definition is denoted by (Is,Ir) where Is represents the inventory level at 

the supplier and Ir represents the inventory level at the retailer, both observed at the 

beginning of the period.  Full information sharing represents a completely observable 

process, which is modeled and solved using Howard’s (1960) policy iteration algorithm.  

No information sharing represents a partially observable process, which is modeled and 

solved using the methods outlined in chapter 3.  The state space is partitioned into state 

sets representing the observable part of the process; the supplier’s inventory level.  

Formally, each observation set Si contains all states (i,j) where the supplier’s current 

inventory level is i. 

Two inventory control policies for the retailer are evaluated; an order-up-to policy 

and an (s,S) policy.  With an order–up-to policy, the retailer’s order quantity is simply the 

difference between his inventory capacity and current on hand inventory.  With an (s,S) 
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policy, the retailer places an order for the amount required to bring his inventory level 

back up to S when his available inventory falls below the safety stock, s.  Based on the 

assumptions of the model, the transition functions for the supplier (εs) and retailer (εr) can 

be represented by the equations below.   

εs(i,j,d)=  (i-zr )+ + zs   

εr(i,j,d)= (j-d)+ + zr   

Here, zr represents the retailer’s order quantity; zs represents the supplier’s production 

quantity; and d represents the retailer demand observed during the period.  The supplier’s 

production quantity represents the decision to be optimized in the model and can take on 

values x ∈ [0, Cs] with Cs denoting the capacity at the supplier.  Not all states allow the 

maximum production capacity, Cs, to be produced.  The set of admissible production 

decisions is limited by the capacity available during the period.  The new state 

transitioned to by the supplier (εs) after filling demand kr and producing quantity ks must 

not exceed his capacity Cs.  For example, assume the maximum capacity at the supplier 

and retailer is 4 units and, the retailer operates under an order-up-to policy.  If the current 

state of the system is (4,2) the set of admissible production alternatives under full 

information sharing is {0,1,2}, while under no information sharing, this set is simply {0}.  

Under a policy of no information sharing, the set of admissible actions for a given 

observation set is the union of all admissible actions for each state in the observation set.  

Given the assumptions defined for this problem, when no information is being shared the 

set of admissible actions, A(k), for observation set Sk is {0,…Cs-k}. 

The per period expected supply chain cost (Gsc) given the current state of the 

system (i,j) consists of the retailer and supplier inventory holding costs with unit costs hr 

and hs respectively, as well as their penalty costs (pr and ps) incurred when there is 

insufficient inventory to meet demand.

 )(])())([()()( dpjdpdjhhikpkihG Drrsrsrssc
++++ −+−++−+−=    

The function +− )( dj  is defined as ( )dj −,0max .  The optimal policy minimizes the 

undiscounted expected per period costs over an infinite horizon. 
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4.2 Design of Experiment 

4.2.1 Information sharing Models 
 Retailer demand is generated using distributions that are either randomized 

discrete distributions (RDD), binomial or discrete uniform.  The randomized discrete 

distribution is created by generating random integers for a vector of length Cs+1. Each 

element is then divided by the vector sum to yield a number between 0 and 1.  The 

resulting vector is a probability mass function for a distribution that takes on values 

between 0 and Cs.  The total number of states in the Markov Decision model is (Cs+1)* 

(Cr+1).  Cs and Cr denote the capacity at the supplier and retailer respectively.  For the no 

information sharing model, the total number of observation sets is (Cs+1), the number of 

states per observation set is (Cr+1) and the size of the action space is (Cs+1)!.  The 

penalty cost for the supplier is 3 units; penalty cost for the retailer is 14 units; holding 

costs for both parties are 1 unit.  The algorithm outlined in Chapter 3 is used to determine 

the optimal policy and gain associated with no information sharing and is validated via 

total enumeration.  The optimal policy and gain under full information sharing is 

determined using Howard’s (1960) policy iteration procedure. 

 The results displayed in tables 4.1 and 4.2 indicate the optimal policy (δs) and 

gain associated with no information sharing and information sharing on a small subset of 

problems.   

 
  

Table 4.1. Policies for Inventory Sharing/Perfect Supplier/Lost Sales 

 
CS CR DEMAND 

DISTRIBUTION δR δS 
NO IS 

# LOCAL 
MINIMUMS 

# OPTIMAL 
SOLUTIONS 

# FEASIBLE 
SOLUTIONS 

(ACTION SPACE) 
2 3 RDD[0,3]  Order-up-

to 
(2,1,0) 1 1 3! = 9 

3 3 RDD [0,3] Order-up-
to 

(3,2,1,0) 1 1 4! = 24 

4 3 RDD [0,3] Order-up-
to 

(3,2,1,0,0) 17 1 5! = 120 

5 3 RDD [0,3] Order-up-
to 

(3,2,1,0,0,0) 215 2 720 

4 5 Uniform 
[0,5] 

Order-up-
to 

(4,3,,2,1,0) 2 1 120 

4 5 Uniform [0,5] (S,s) 
s=Cr/2 

(4,3,0,0,0) 24 24 120 

7 7 Binomial Order-up-
to 

(5,5,5,4,3,2,
1,0) 

2213 1 40,320 

7 7 Binomial  (S,s) 
s=Cr/2 

(6,5,4,3,0,0,
0) 

4438 360 40,320 
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Table 4.2. Inventory Sharing/Perfect Supplier/Lost Sales – Gain 

CS CR GAIN OPT 
NIS 

GAIN ALG 
NIS 

GAIN 
IS 

EST. % 
SAVINGS 

ACT. % 
SAVINGS 

%ERROR 

2 3 8.47672 
 

8.47672 5.28535 60.38% 60.38% 0 

3 3 5.08768 
 

5.08768 5.08768 0 0 0 

4 3 5.08768 
 

5.08768 5.08768 0 0 0 

5 3 5.08768 
 

5.08768 5.08768 0 0 0 

4 5 7.50722 
 

7.50722 5.61047 33.81% 33.81% 0 

4 5 7.99804 
 

7.99804 7.99804 0 0 0 

7 7 1.35609 
 

1.35609 1.33672 1.45% 1.45% 0 

7 7 2.51928 2.51928 2.2939 12.84%  
 

0 

 
 
Initial results for this small subset of problems indicate the following. 

1. The algorithm is finding the optimal solution in all cases where an optimal 

solution can be determined via total enumeration.  

2. In some cases, cost savings can be achieved with inventory information sharing. 

The specific control rules by which this savings is achievable is discussed in 

subsequent chapters for larger models.   

3. In this limited experiment, the demand distribution, retailer policy, and supplier 

capacity affects the value of information sharing.  Table 4.3 illustrates the impact 

capacity has on the value of information sharing.  Since the optimal solution for 

no information sharing could not be determined via total enumeration, the 

estimated savings serves as an upper bound on the value of information sharing.  

The actual value could be less.  

4. The results indicate the value of information sharing is always positive.  It can 

never be more beneficial to not share information.  Lemma 4.1 further explains 

why this result is true. 
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Table 4.3. Capacity influence on Inventory Sharing/Perfect Supplier/Lost Sales instances 

CS CR DEMAND 
DISTRIBUTION δR δS 

NO IS 
δS 
WITH  IS 

δS OPT 
NO IS 

EST. 
SAVINGS  

# OF ALT. 
POLICIES 

5 15 Discrete 
Uniform [0,15] 

(S,s)s=5 16.7417 16.7417 16.7417 0 6! 

7 15 Discrete 
Uniform [0,15] 

(S,s)s=5 15.3037 15.3037 15.3037 0 8! 

9 15 Discrete 
Uniform [0,15] 

(S,s)s=5 13.8656 13.8656  0 10! 

11 15 Discrete 
Uniform [0,15] 

(S,s)s=5 12.4276 12.4276  0 12! 

13 15 Discrete 
Uniform [0,15] 

(S,s)s=5 11.6047 11.5082  0.832% 14! 

15 15 Discrete 
Uniform [0,15] 

(S,s)s=5 11.3890 11.0318  3.136% 16! 

18 15 Discrete 
Uniform [0,15] 

(S,s)s=5 11.3890 11.0318  3.136% 19! 

20 15 Discrete 
Uniform [0,15] 

(S,s)s=5 11.3890 11.0318  3.136% 21! 

23 15 Discrete 
Uniform [0,15] 

(S,s)s=5 11.3890 11.0318  3.136% 24! 

25 15 Discrete 
Uniform [0,15] 

(S,s)s=5 11.3890 11.0318  3.136% 26! 

 

 
Lemma 4.1:  If go is the optimal gain of the completely observable process and gr is the 

optimal gain of the restricted observation process then ( )roro gggg ≥≤  for a cost 

minimizing (maximization) Markov decision model.  This implies the cost reduction 

achievable with information sharing will always be greater than or equal to 

zero ( )0≥∆=− is
or gg .  It will never be more beneficial to not share information.  It will 

either be beneficial ( )0>∆ is  or not ( )0=∆ is . 

Proof: 

Let ΠD represent the set of all deterministic policies and ΠR represent the set of all 

admissible policies for the no information sharing model. ( DR ∏⊆∏ ).  Suppose policy 
oα  with gain go is found to be optimal for the completely observable MDP and policy 
rα  with gain gr  is found to be optimal for the ROMDP.  Also, assume gr< go.  Let 

superscripts r and o indicate quantities relevant to policies rα  and oα .  If policy rα is 

better than oα , then from Howard’s (1960) proof of convergence, it must be true that 

∑ ∑ =∀+≤+
j j

o
j

o
ij

o
i

o
j

r
ij

r
i Nivpqvpq ...1  
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and 

∑ ∑+<+
j j

o
j

o
ij

o
i

o
j

r
ij

r
i vpqvpq for at least one i. 

This implies that policy oα  could not be optimal for the completely observable MDP and 

policy rα would be found during the policy improvement step of Howard’s (1960) policy 

iteration algorithm.  Therefore, policy αr with gain gr is either optimal for the completely 

observable MDP and thus 0=∆ is , or there exists a some policy b with gain gb < gr which 

is optimal for the completely observable MDP and 0>∆ is . Q.E.D. 

It is easy to see the optimal policy under no information sharing is a subset of the 

admissible policies for the completely observable MDP. 

4.2.2 Randomly Generated Models 

4.2.2.1 Solution by policy perturbation 
In order to test the performance of the algorithm on a large number of information 

sharing problems, 1000 instances of the supply chain problem are generated.  The first 

case uses the same cost structure defined in section 4.1.1 using random demand 

distribution with fixed order-up to policy employed by the retailer.  The results associated 

with this experiment are summarized in figures 4.1 – 4.3. 

A second set of experiments is executed using binomial demand distribution with 

an (s,S) policy employed by the retailer with parameters Cs and Cs/2.  The results are 

summarized in Figures 4.4 – 4.6.  The fraction of optimal solutions found and the relative 

error measure performance of the algorithm with respect to total enumeration.  The 

relative error is defined as ( ) ** /~ ggg − , where g~  is the value obtained by the heuristic 

and *g is the optimal value obtained via total enumeration. 

In comparing the two sets of experiments, there is a large disparity in the fraction 

of optimal solutions found.   When a problem instance is generated using randomly 

generated customer demand distribution and order-up-to retailer policy, over 98% of the 

problem instances are solved optimally irrespective of the problem size.  When the 

binomial demand distribution is used with (s,S) retailer policy, only 98% of the problems 

are solved optimally when the problem size is small.  The fraction of optimal solutions 
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founds declines rapidly as the problem size increases. Similar trends exist for the average 

relative error and maximum relative error. Figure 4.6 illustrates that the maximum 

relative error increases as the problem size increases, while figure 4.3 shows maximum 

relative error decreasing.  It is evident from this experiment that the choice of parameters 

(demand distribution, retailer policy) vastly affects the performance of the problem.  

Chapter 5 discusses this discrepancy in detail and describes an improvement made to the 

algorithm to mitigate this problem.   
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Figure 4. 1 Fraction Optimal found – Randomized discrete distribution 
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Figure 4. 3 Maximum Relative Error – Randomized discrete distribution 
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Average Relative Error
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Figure 4. 5 Average Relative Error - Binomial demand distribution 
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Figure 4. 6 Maximum Relative Error - Binomial demand distribution 
 

 

4.2.2.2 Solution from Perturbations on information vector 
The information sharing models defined in section 4.2.2.1 are also solved using 

perturbations on the information state vector as described in chapter 3.  The results for 

both random demand and binomial demand are summarized in figures 4.7 – 4.15.  As 

observed in the prior section, the fraction of optimal solutions found is significantly less 
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when using binomial demand and (s,S) policy for the retailer.  The fraction of optimal 

solutions found is similar to the fraction found during policy perturbations and in some 

cases is less.  For example, in the (3,3) binomial demand case, policy perturbation solves 

93% optimally, while perturbations on the information vector only solves 90%.  

Similarly, with the (5,5) binomial demand case, the best policy perturbation solves 75% 

optimally while the best information vector perturbation only solves 70%.   

In the supply chain problem, information vector perturbation PI2 and BPI2 

significantly outperform all of the other perturbation methods.  For the (3,3) random 

demand case, after 40 perturbations PI2 solves 98.8%, while PI3 solves 94%.  Similarly 

for the (4,4) binomial demand case, PI2 solves 84%, while PI3 and PI4 solve 64%.  This 

result is different than what was observed for the random problems in chapter 3. Recall 

for those experiments, PI2 and BPI2 are dominated by PI3 and BPI3.  As in the randomly 

generated problems of chapter 3, PI1 and BPI1 provide no significant improvement over 

the solution obtained from the policy iteration phase of the heuristic.  Therefore, these 

methods are eliminated from further consideration.  Based on the results obtained in the 

supply chain problem, it appears the structure of the problem affects the selection of the 

dominating perturbation method.  This is examined further in chapter 5. 
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Figure 4. 7 Fraction optimal Found – Randomized discrete distribution (2,2) 
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Fraction Optimal found (3,3)
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Figure 4. 8 Fraction optimal found – Randomized discrete distribution (3,3) 

 
 

Fraction Optimal found (4,4)
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Figure 4. 9 Fraction optimal found – Randomized discrete distribution (4,4) 
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Figure 4. 10 Fraction optimal found – Randomized discrete distribution (5,5) 
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Fraction Optimal found (6x6)
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Figure 4. 11 Fraction optimal found – Randomized discrete distribution (6,6) 
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Figure 4. 12 Fraction optimal found - Binomial demand distribution (3,3) 
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Fraction Optimal found (4x4)
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Figure 4. 13 Fraction optimal found - Binomial demand distribution (4,4) 
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Figure 4. 14 Fraction optimal found - Binomial demand distribution (5,5) 
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Fraction Optimal found (6,6)
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Figure 4. 15 Fraction optimal found - Binomial demand distribution (6,6) 

4.3 Measuring the value of information sharing  
Using the small problems generated above, we summarize the value of 

information sharing results to identify any trends that may hold when larger problems are 

solved.  The table shows the number of problems out of the 1000 binomial demand (s,S) 

instances generated that had value in information sharing.  An interesting observation is 

that cost savings with information sharing is only achieved when the Coefficient of 

Variation (Cv) of demand meets or exceeds some critical value.  Table 4.4 summarizes 

the critical value determined during experimentation.   For example, in the (2,2) problem, 

there are a total of  429 problems that have value in information sharing.  This cost 

savings occurred on problems where the 795.0≥vC .  As the problem size increases, the 

minimum value of Cv decreases and there are more problems that have value in 

information sharing. However, the average relative cost reduction with information 

sharing is getting smaller.  Recall, this benefit is measured in terms of the total supply 

chain costs. 

Although we are more interested in the policy structure for the information 

sharing case, there are some interesting observations for the optimal policy structure in 

the case of no information sharing which are based on the value of Cv .  For the (2,2) 

problem, when 89.0795.0 <≤ vC , the optimal policy for no information sharing is an 

order up to policy.  When 68983.1890386.0 <≤ vC , the optimal policy is a fixed lot size 

policy.  When 5667.1768983.1 <≤ vC , the optimal policy is a base stock policy with 
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critical base stock level set to Cs-1.  Similar results are obtained at different problem sizes 

and different bounds on Cv.  When the mean demand is close to or less than one (about 

1.3 in 4x4 case) the optimal policy for NIS is base stock with critical value of 1.  Very 

large values of the relative cost increase with information sharing also occur when the 

mean demand is less than 1. This result shows as mean demand decreases, Cv increases 

and there is value in info sharing, which may occur with slow moving items. 

Table 4.4.  Information Sharing Summary for Binomial demand (s,S) problem 

                      STRUCTURE OF NIS POLICY 
SIZE # PROBLEMS 

WITH VALUE 
IN IS 

( )0>∆ is  

AVERAGE 

is∆  

Cv MIN 
THRESHOLD 

FOR is∆  

ORDER-UP TO 
OPTIMAL 

BASE STOCK OPTIMAL FIXED LOT SIZE 
OPTIMAL  

(S,1) OTHER 

(2,2) 429 2.66992 0.795 55 157 217 0 0 
(3,3) 565 1.81593 0.488688 48 95 76 0 346 
(4,4) 683 1.01654 0.336988 58 34 217 183 0 
(5,5) 757 0.953737 0.260369 57 22 0 0 678 
(6,6) 805 0.70409 0.208352 63 20  121  

 

 The results for the random demand, order-up-to policy do not possess a readily 

identifiable correlation between Cv and value in information sharing as in the binomial 

case.  Further discussion on the structure of the optimal policy (with and without 

information sharing) and average cost savings is discussed in chapter 7, when larger 

problems are examined.  
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Chapter 5 Sensitivity Analysis 

5.1 Overview 
 In this chapter, we analyze the performance of the ROMDP policy iteration/policy 

perturbation heuristic as parameters associated with the problem instance are varied.  

This analysis will serve as a means of identifying the perturbation strategy which yields 

the best results independent of the parameters of the problem being solved.  Recall in the 

randomly generated problems of chapter 3, the heuristic solves over 99% of the problems 

optimally.  This however, is not the case in chapter 4 where the supply chain problem is 

introduced.  When the demand distribution is a randomly generated discrete distribution, 

over 98% of the problems are solved optimally irrespective of the problem size.  In 

contrast, when the demand distribution is binomial, 100% of the problems are solved 

optimally for the (2,2) case and then performance decays as the solution space increases. 

These experiments illustrate how the performance (measured in terms of fraction of 

optimal solutions found) varies based on the problem parameters.     

We first begin with sensitivity analysis on the policy perturbation method by 

varying problem size, demand distribution, supplier penalty cost, and retailer order 

policy. Similar analysis is performed for perturbations based on the information vector. 

We conclude by identifying the best strategy based on the results obtained via 

experimentation. 

5.2 Sensitivity analysis with policy perturbation 

5.2.1 Experimental Design 
  Consider the supply chain information sharing model described in chapter 4 

where supplier capacity and retailer capacity equal 4.  There are a total of 25 states in this 

model with a policy space of size 5!.  All costs are held fixed except the penalty cost of 

the supplier, which is changed to roughly approximate 0, ¼pr, 2pr and 4pr.  The quantity 

pr denotes the penalty cost of the retailer.  Demand distributions examined are binomial 

and randomly generated discrete distributions.  The retailer order policy is either base 

stock with base stock level Cr or (s,S) with parameter s  equal to Cr/2 and S equal to Cr. 
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From both the randomly generated and supply chain problems, the algorithm Ls-

meta1 provides the best results over all policy perturbation methods examined.  

Therefore, further analysis will consider only this perturbation strategy. Recall Ls-meta1 

uses multiple candidate solutions to construct neighboring policies.   

In the previous experiments, a myopic policy is used as the initial starting point.  

The impact of starting from a randomly generated policy is also examined as well as the 

impact of using random restarts.   

5.2.2 Penalty Cost Analysis 
Figures 5.1 – 5.3 indicate the fraction of optimal solutions found as a function of 

the supplier penalty cost.  In each problem set, the external demand and retailer policy are 

held constant.  Figure 5.1 represents the results when the retailer demand distribution is a 

randomly generated discrete distribution and a base stock policy is used.  As the penalty 

cost increases, the fraction of optimal solutions found increases.  The best performance is 

achieved when the penalty cost is the highest (ps=50).  In this case, policy iteration alone 

solves all of the problem instances optimally without the use of perturbations.  Figure 5.2 

illustrates results when an (s,S) policy is used in place of a base stock policy.  In this case, 

over 95% of the problems are solved optimally when the penalty cost is 14 or higher.  

The worst results are achieved in both policy iteration and policy perturbation when the 

demand is binomially distributed and an (s,S) policy is used by the retailer (Figure 5.3).  

The policy perturbation greatly increases the solution obtained from policy iteration (88% 

increase when ps=3).  However, the perturbation strategy is not sufficient to yield 

performance comparable to that of figure 5.1.   
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Figure 5. 1 Randomly Generated Discrete Distribution, Base Stock Policy for 

retailer 
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Figure 5. 2 Randomly Generated Discrete Distribution (s,S) Policy for Retailer 
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Figure 5. 3 Binomial Demand, (s,S) Policy for Retailer 

Since the surface of the objective function is too complex to graph, we examine 

the distribution of the local minima to gain insight into the underlying surface of the 

problem being solved.  Using the definitions defined in chapter 3, all local minima of a 

given problem instance are determined during total enumeration.  Figures 5.4 – 5.6 

display the histogram of the local minima associated with the demand and policy 

characteristics of figures 5.1 and 5.3.   
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Figure 5. 4 Randomly Generated Discrete Distribution, Base Stock Policy,  
Penalty Cost of  0 
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Figure 5. 5 Randomly Generated Discrete Distribution, Base Stock Policy, 

Penalty Cost of  50 
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Figure 5. 6 Binomial Demand, (s,S) Policy,  Penalty Cost of  3 
 

The graphs summarize the total number of local minima per instance out of the 1000 

problem instances generated.  Figure 5.5 shows when the demand distribution is 

randomly generated, a base stock policy is used by the retailer, and the penalty cost for 

the supplier is 50, over 70% of the problem instances generated will have 1 local 

minimum.  Therefore, the local minimum is the global minimum and will be found 

during the policy iteration phase without the use of perturbations.  The rest of the 

problem instances have between 2 and 5 local minima.   

In contrast, when the demand is binomially distributed and an (s,S) policy is used 

by the retailer, the number of problems with 1 local minimum is significantly smaller.  

Since there are several local minima, the underlying surface of the solution space may be 

‘hilly’ and the optimal solution difficult for the heuristic find. Each local minimum can 
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be a potential stopping point for the policy iteration phase.  Figures 5.7 and 5.8 provide a 

closer comparison of the effect of the retailer policy on the solution space when the 

retailer demand is binomially distributed.  

Histogram for problem when (s,S) used by retailer
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Figure 5. 7 Binomial Demand, (s,S) Policy,  Penalty Cost of  3 
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Figure 5. 8 Binomial Demand, (s,S) Policy,  Penalty Cost of  3 
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 The histograms of the local minima indicate that changing the demand and 

retailer order policy, greatly influence the solution space and number of local minima that 

exist, thus affecting the ability of the heuristic to find the unique optimal solution.   

 

5.2.3 Retailer policy analysis 
Figures 5.9 and 5.10 illustrate the variation in performance (keeping penalty cost 

constant) with respect to the demand distribution and the retailer order policy. In the 

figures below, out denotes order up to policy and ss denotes (s,S)  policy. 
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Figure 5. 9 Policy Iteration Performance (No Perturbation) 
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Figure 5.10 Policy Iteration - Perturbation Performance 
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Again, each parameter variation yields different results.  When an order up to policy is 

used by the retailer, over 90% of the problems are solved optimally, getting up to 100% 

in some cases for policy iteration alone.  Again, this can be attributed to the structure of 

the solution space for the different problems under study.  The combination of binomial 

demand and (s,S)  policy results in the most changes to the solution space and thus 

performance of the heuristic.  The local improvement procedure (policy perturbation) 

definitely improves the solution obtained from policy iteration, but it also falls below 

90% for cases of binomial demand and (s,S) policy.   

5.2.4 Effect of initial policy 
 In all of the problems examined thus far, the algorithm is started with a myopic 

policy. Starting with a random policy is also examined and in some instances yields 

better results.  This is exhibited in the case with random demand.  In the following 

graphs, r denotes random policy start and m denotes myopic policy start. When ps equals 

0 or 3, the myopic policy starting point yields better results for the policy iteration-

perturbation heuristic.  The other scenarios achieve better results when a randomly 

generated starting policy is used.  However, the clear best starting point is not certain 

when using binomial demand.  In some cases, the myopic policy does lead to the optimal 

solution, but overall the graph shows that starting with the random policy yields slightly 

better results.  Therefore, we examine the effect of random restarts, letting the first policy 

be the myopic policy with subsequent policies generated randomly.  
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Figure 5. 11 Randomized Discrete Distribution, Base Stock policy for retailer 
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Figure 5. 12 Randomized Discrete Distribution, (S,s) Policy for Retailer 



 

 81  

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0 3 14 25 50
penalty cost

Fr
ac

tio
n 

op
tim

al
 fo

un
d

dp(r) dp(m) ls-meta1(r) ls-meta1(m)
 

Figure 5. 13 Binomial Demand Distribution, (s,S) Policy for Retailer 

5.2.2.5 Random restarts 
 In the previous sections, it is shown that different problem characteristics affect 

the ability of the heuristic to find the optimal solution.  The goal is to find some strategy 

that consistently provides good results independent of the problem characteristics.  

Therefore, we study the effect of random restarts on the performance of the algorithm.  

We consider the extreme cases of performance; binomial distribution with (s,S) retailer 

policy, binomial distribution with order-up-to retailer policy, and a randomly generated 

discrete distribution with (s,S) policy.  These problem parameters are summarized in table 

5.1.  Recall without restarts, when the retailer follows an (s,S) policy with binomially 

distributed demand and supplier penalty cost of 3, the heuristic solves 85.5% of the 

problems optimally.  For the randomized discrete distribution with (s,S) policy and 

supplier penalty cost of 0, the heuristic solves 88.2% optimally. For a binomial 

distribution with an order up to policy and supplier penalty cost of 25, the heuristic solves 

99.7% optimally.  Figures 5.14, 5.16 and 5.18 display the fraction of optimal solutions 

found when random restarts are used.  In the random restart strategy, the starting policy is 

always the myopic policy and each subsequent policy is randomly generated. 
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Table 5. 1 Supply Chain Problem Parameters 

Problem number Demand Retailer policy ps 

P1 Binomial (S,s) 3 

P2 Binomial Order up to  25 

P3 Random (S,s) 0 
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Figure 5. 7 Fraction Optimal Found for Problem P1 
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Figure 5. 8 Maximum Relative Error for Problem P1 
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Figure 5. 16 Fraction Optimal Found for Problem P2 
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Figure 5. 9 Maximum Relative Error for Problem P2 
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Figure 5. 18 Fraction Optimal Found for Problem P3 
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Figure 5.19 Maximum Relative Error for Problem P3 
 

Figures 5.14, 5.16 and 5.18, shows after 30 random restarts, all of the problems 

are solved optimally.  Although difficult to see in figure 5.18, 100% is not achieved until 

restart number 28, while others achieve 100% at less than 30.  Also note that policy 

iteration without perturbation solves over 95% of the problem instances optimally, but 

higher restart numbers are required.  Problem P3 has the longest duration in terms of 

restarts required for a good solution.  To perform 30 random restarts takes on average 

0.15 seconds, while N/2 (N equal to the number of states) takes on average 0.08 seconds.  

Although with 30 restarts all 1000 problem instances are solved, the execution time is 

longer than total enumeration.  Recall, the number of states in this problem is 

(Cs+1)*(Cr+1) where Cs and Cr are 4. There are a total of (Cs+1)! possible solutions.  To 

enumerate all solutions takes 0.10 seconds.  Clearly for this problem, 30 random restarts 

are too much as enumeration can solve the problems optimally in less time.  However, as 
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the problem size increases and enumeration becomes intractable, executing random 

restarts is faster.  Table 5.2 illustrates the affect of executing N random restarts on larger 

problem instances. Note, there is no degradation in performance with random restarts.  In 

the next section, we examine perturbations on the information vector and the effect of 

combining that strategy with the policy perturbation restart strategy.   

 

Table 5. 2 Random Restart Results for Larger Problem Sizes 

Problem size 
(Cs,Cr) 

Fraction optimal 
found 

Average relative 
error 

Maximum relative 
error 

Average 
Execution time 
(CPU Secs) 

(5,5) 0.998 0.006 0.007 0.223 
(6,6) 1 0 0 0.834 
(7,7) 0.998 0.002 0.003 2.595 
(8,8) 0.99 4.47955E-6 4.47955E-6 8.004 

 

5.3 Sensitivity analysis with information vector perturbation 

5.3.1 Overview 

Based on the experiments from the previous chapters, strategy pi3 and pi4 yield 

the best results for the randomly generated problems, while pi2 yields the best results for 

the supply chain problem.  The perturbation strategy based on adding a constant value to 

the information vector (pi1) is not effective and no longer considered a viable strategy.  

Perturbations based on generating neighbors for the current best iterate outperform the 

method of allowing movement away from the best iterate.  Since the previous 

experiments only consider a fixed value of epsilon set to 1/N, where N is the number of 

states in the problem, we examine the sensitivity of the value of epsilon on performance. 

There may be other values of epsilon which provide better results and thus influence the 

choice of the dominating perturbation method.   

The appropriate choice of termination criteria based on the problem size is also 

examined.  The results of chapters 3 and 4 terminate after a fixed number of perturbations 

are executed.  The objective is to find an appropriate value based on the size of the 

problem being solved.  
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The results from previous experiments indicate that perturbations using the 

information vector yield comparable results to perturbations based on the policy, at the 

expense of higher information vector perturbations.  For example, in the (6,6) problem 

examined in section 3.3, it takes 40 information vector perturbations to achieve the same 

level of performance as local improvement based on policy perturbation.    Further 

analysis studies the use of combining policy and information vector perturbations to 

achieve the best possible performance without compromising efficiency.   

5.3.2 Sensitivity Analysis with epsilon 

 These experiments consider the supply chain problem with binomial retailer 

demand, (s,S) inventory control policy and supplier penalty cost of 3 (problem P1 in table 

5.1).  This is the same problem used above in the policy perturbation random restart 

analysis (figure 5.14). Additional problem sizes are considered to validate the choice of 

the best epsilon.  Figure 5.20 displays the various perturbation strategies using different 

values of epsilon.  Strategy pi2 is still the dominating perturbation method.  From the 

perspective of strategy pi2, using smaller values of epsilon achieves the fastest increase in 

the least amount of perturbations. However, in the long run, the larger values of epsilon 

give the best result. When epsilon is equal to 1/N, 88.2% are solved optimally after 60 

perturbations, while 89.2% are solved optimally when epsilon is equal to N/1 .  It is 

clear from this graph that using strategy pi2 is better for the supply chain problem.  Since 

we are only considered with the supply chain problem, we will select that strategy for the 

information vector perturbations.   
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Figure 5. 20 Fraction Optimal Found -Epsilon Changing 
 

Just focusing on strategy pi2, we show that for larger problem sizes, the larger values of 

epsilon continue to provide the best improvement, as shown in figures 5.19 – 5.21.  

Therefore, selecting 1/N or N/1  for epsilon is suitable.  
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Figure 5. 21 Fraction Optimal Found for (4,4) Problem 
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Figure 5. 22 Fraction Optimal Found for (5,5) Problem 
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Figure 5. 23 Fraction Optimal Found (6,6) Problem 
 

5.3.3 Termination Criteria based on problem size 

Figures 5.21-5.23 show that even after 100 perturbations are performed, at least 

20% of the remaining problems are still not solved optimally.  The time to execute the 

various perturbation strategies is summarized in the table below.   Performing 



 

 89  

information vector perturbations is relatively cheap, but a large number are required to 

achieve good performance.  For example, for the (4,4) problem it takes on average 0.014 

seconds to perform 40 perturbations which solve 85.4% optimally.  Recall that the policy 

perturbation strategy ls-meta1 solved 85% in approximately 0.000661 seconds.   

Table 5. 3 Information Vecotr Perturbation Performance 

Problem size Strategy # of 
perturbations 

Execution time Fraction 
optimal found  

Average 
relative error 

(4,4) pi2 40 = 1.6N 0.014 0.850 0.126 

(4,4) pi2 60 = 2.4N 0.020 0.874 0.126 

(4,4) pi2 100 = 4N 0.034 0.897 0.126 

(5,5) pi2 100 = 2.7N 0.069 0.810 0.048 

(5,5) pi2 60= 1.67N 0.043 0.736 0.056 

(6,6) pi2 100=2.1N 0.157 0.844 0.024 

(6,6) pi2 60=1.22N 0.102 0.788 0.031 

(6,6) pi2 4N 0.234 0.883 0.023 

(6,6) pi2 6N 0.446 0.921 0.028 
 
 

Table 5. 4 Total Enumeration Execution Time 

Problem size (Cs,Cr) Total Enumeration 
(time in secs) 

(2,2) 0.0002 
(3,3) 0.0003 
(4,4) 0.0074 
(5,5) 0.1090 
(6,6) 1.2838 

 
For the (6,6) problem, after 100 perturbations on the information vector, 84.4% are 

solved optimally with average execution time of  0.157 seconds. For meta1, 87.5% are 

solved optimally using one iteration of policy perturbation with average execution time 

equal to 0.048 seconds.  These examples illustrate that it takes more information vector 

perturbations to achieve the results of one iteration of policy perturbation.  Random 

restarts with policy perturbations provide the best performance but are more expensive 

than iterations on the information vector. Since it is fairly ‘cheap’ (from a computation 

standpoint) to execute information vector perturbations, the performance of the algorithm 

can be improved by combining information vector perturbations with policy 

perturbations.  The policy perturbation is performed first, followed by the information 
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vector perturbation. This constitutes one full iteration of the heuristic given some initial 

starting policy α.   Table 5.5 summarizes the results when both policy and information 

vector perturbations are used together for supply chain problem P1.  Recall for this 

supply chain problem, only 85.5% of the instances generated are solved optimally for the 

(4,4) problem size, 75.3% for the (5,5) problem size, and 75.9% for the (6,6) problem 

size. 

 

Table 5. 5 Random Restart with Information Vector Perturbation Results for (6,6) Problem 

Problem 

size 

(Cs,Cr) 

Epsilon Random 

restarts 

Information vector 

perturbations 

Execution 

time (in 

seconds) 

Fraction 

optimal 

found  

Average 

relative Error 

(6,6) 1/sqrt(N) N/5 2N  2.588 
 

0.994 0.006 

(6,6) 1/sqrt(N) N/2 2N 6.571 0.997 0.004 

(6,6) 1/N N/5 2N 2.155 0.997 0.002 

(6,6) 1/N N/2 N/2 1.979 0.999 0.005 

(6,6) 1/N N/2 2N 6.571 0.999 0.001 

(6,6) 1/(N*N) N/2 2N 6.571 1.000 0 

 

 

Table 5. 6 Random Restart with Information Vector Perturbation Results for (5,5) Problem 

Problem 

size 

(Cs,Cr) 

Epsilon Random 

restarts 

Information vector 

perturbations 

Execution 

time (in 

seconds) 

Fraction 

optimal 

found  

Average 

relative Error 

(5,5) 1/N N/4 2N  0.695 
 

0.998 0.004 

(5,5) 1/N N/2 2N 1.531 0.999 0.007 

(5,5) 1/N N/2 2N 1.531 0.999 0.007 

(5,5) 1/sqrt(N) N/2 2N 1.53 0.999 0.003 

(5,5) 1/(N*N) N/2 N 0.609 0.998 0.009 

(5,5) 1/(N*N) N/4 3N 0.647 0.995 0.009 

(5,5) 1/(N*N) N/2 2N 1.53 1.00 0 
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Table 5. 7 Random Restart with Information Vector Perturbation Results for (4,4) and (3,3) 
Problems 

Problem 

size 

(Cs,Cr) 

Epsilon Random 

restarts 

Information vector 

perturbations 

Execution 

time (in 

seconds) 

Fraction 

optimal 

found  

Average 

relative Error 

(4,4) 1/(N*N) N/2 2N 0.300 0.999 0.007 

(4,4) 1/N N/2 2N 0.300 1 0 

(4,4) 1/sqrt(N) N/2 2N 0.300 1 0 

(3,3) 1/sqrt(N) N/2 2N 0.027 1 0 

(3,3) 1/N N/2 2N 0.027 1 0 

(3,3) 1/(N*N) N/2 2N 0.027 1 0 

(3,3) 1/(N*N) N/2 N 0.018 1 0 

  
When using the combination of information vector perturbations with policy 

perturbations over 99.9% of the problems are solved optimally.  Increasing the 

termination counter for the information vector perturbations to 2N achieves 100% solved 

optimally.  The best results are achieved with the smaller values of epsilon on the (5,5) 

and (6,6) problem sizes.  For the smaller problem sizes, comparable results are achieved 

regardless of the choice of the value of epsilon.  Although not documented in the table 

above, the smaller value of epsilon for the (3,3) problem, solved all problem instances 

optimally in fewer iterations.  Although the termination counter for information vector 

perturbations is set at 2N, the problems are solved optimally after two full iterations of 

policy and information vector perturbations when epsilon is set to 1/(N*N).  When 

epsilon is set to 1/N, all are solved optimally after four iterations.  All are solved 

optimally after five iterations when epsilon is set to 1/sqrt(N). 

Table 5.8 displays the execution time in seconds for total enumeration (TE) and 

the random restart perturbation strategy (RR/PI).  For the small problems, the execution 

time associated with N/2 restarts with 2N information vector perturbations exceeds total 

enumeration.  However, total enumeration execution time increases exponentially as the 

problem size increases, while the random restart and perturbation strategy of the heuristic 

does not.    

 

 



 

 92  

Table 5. 8 Execution Time for ROMDP Heuristic and Total Enumeration 

Problem size (Cs,Cr) TE (in secs) RR/PI (in secs) 
(2,2) 0.0002 0.0011 

(3,3) 0.0003 0.0132 

(4,4) 0.0074 0.0920 

(5,5) 0.1090 0.3879 

(6,6) 1.2838 1.6143 

(7,7) 21.3479 5.5946 

 

5.4 CONCLUSIONS 
Incorporating random restarts into the ROMDP policy iteration/policy 

perturbation algorithm increases the percentage of finding optimal solutions when the 

structure of the solution space contains many local minima. One problem instance 

showed an increase of 89.7% when random restarts are used.  Incorporating information 

vector perturbations into the random restart strategy can provide further improvement.  

As more information vector perturbations are employed, fewer random restarts are 

required.  The results of table 5.5 illustrate the power of combining multiple strategies to 

tackle difficult problems.  The structure of the algorithm using both random restarts and 

information vector perturbations is summarized below. 

 

Step 0.  Initialization 

 Generate an initial policy. Policy can be myopic or randomly generated. 

 Initialize best gain *g  and best policy *π .   

Step 1.  ROMDP Policy iteration/policy perturbation 

Perform ROMDP policy iteration/policy perturbation as defined in section 

3.2.2.4  to obtain best policyπ~ and associated gain π~g . 

Step 2. Information Vector Perturbation 

Perturb the information vector associated with policy π~  as defined in 

section 3.2.2.5 to find a better policy and gain. Update π~  and π~g  

appropriately. 

Step 3.  Evaluate policy 
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 If *~
gg <π then set πππ ~, *~* == gg  

Step 4. Random restart/Termination Criteria 

If the number of random restarts not exceeded, generate a new starting 

policy and return to step 1. 

Good results are achieved by setting the maximum number of information vector 

perturbations to be at least twice the number of the random restarts.  
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Chapter 6 Successive Approximation approach to ROMDP 

6.1 Background 

In order to analyze the information sharing problem for larger models, a more 

efficient procedure for determining the gain, relative values, and information vector 

associated with each policy is required. The algorithm constructed in chapter 3, relies on 

matrix inversion during the policy evaluation phase of the heuristic to obtain the 

associated policy measures. Considerable computational effort is required to obtain those 

values during the search for a local minimum.   White (1963) introduces a more 

computationally efficient procedure by iterating on the policy improvement test quantity, 

also known as the value iteration equation. This method of successive approximations 

converges to the same unique solution determined by matrix inversion.  The method of 

successive approximations introduced by White (1963) has also been studied by 

Odoni(1967), Hodgson and Koehler (1979),  Hodgson and Zaldivar (1975), Morton 

(1971), Schweitzer et al. (1977), and Ding et al. (1988) for aperiodic markov chains.  Su 

and Deninger (1972) provide a comparable procedure for periodic markov chains.  The 

approach developed by Ding et al. (1988) applies to problems with a special structure, 

specifically, transition matrices that have a large number of transient states.   Since many 

of the supply chain problems examined possess the properties necessary for this 

procedure, it will be used as the base for developing a successive approximation 

counterpart applicable to solving the ROMDP.  The ROMDP procedure developed here 

applies to processes that are aperiodic and single chained.  Treatment of periodic and 

multi-chain policies will be discussed in a later section.   

 

6.2 Ding Procedure for undiscounted MDP 

For an undiscounted, aperiodic, single chained markov process, White (1963) proves 

that repeated computation of the following value iteration equations will result in 

convergence to the optimal gain. 
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The subscript m denotes the index of a state in which there is a positive probability of 

returning after some sequence of decisions are made.  Morton (1971) develops a parallel 

procedure, using the same value iteration equations defined above, which alternate 

between fixed policy successive approximation (cheap iterations) and policy 

maximization.  This approach also results in convergence to the optimal gain and 

associated policy.  Ding et al. (1988) develop an efficient procedure which takes 

advantage of the special structure of large scale MDPs to provide additional computation 

reduction.  For large scale markov chains, Ding characterizes two key properties of the 

transition matrices which provide the foundation for the algorithm presented.  He notes 

the transition matrices associated with large scale problems are frequently sparse, 

containing a large number of transient states. Thus, when testing if a given policy is 

optimal, the selection associated with a transient state does not influence the calculation 

of the relative values for the recurrent states or contribute to the calculation of the gain. 

He also notes that when there are a large number of transient states, the recurrent states of 

the optimal policy tend to cluster in a small number of compact groups. Taking these two 

observations into account, the Ding successive approximation procedure is as follows. 

Step 1. Policy Evaluation 

1. For a given policy, compute the limiting state probabilities to determine the 

set of recurrent states, R. 

2. Find neighboring states within some radius r for all recurrent states.  Let the 

set of all the neighboring states not in R be A. 

3. Find all the states that are reachable (in one or more transitions) from A but 

not including the states in A or R.  Let the set of these states be C. 

4. Implement fixed policy successive approximation for the states in the set 

R+A+C for a fixed number of iterations.  Formally,  
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Step 2. Policy Improvement 

5. Making use of the relative values wi, calculated in step 4 for states in R+A+C, 

implement the policy improvement. 

( ) CARjinwpc
j

j
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ijikKk i
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⎩
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⎧

+ ∑∈
,max `  

where `
iK  denotes the set of alternatives for state i that can only make transitions 

to states in R+A+C. 

 

Termination 

6. If there is no change in the policy set and the wi(n)’s have converged, stop.  

Otherwise go to step 1. 

 

For problems with a large number of transient states, Ding et al. (1988) achieve 

significant computational reduction over the full state space successive approximation 

approach of Morton (1971). 

6.3 Adaptation for ROMDP 

6.3.1. Successive Approximation heuristic for ROMDP 
In modifying Ding’s (1988) procedure there are several considerations specific to 

the ROMDP which must be addressed.  When determining the set of actions that can be 

used during policy improvement, the action evaluated can only make transitions into 

states contained in the set R+A+C.  Recall the set of all alternatives for a given 

observation set Sk is defined as A(k).  If any action ( )kAa ∈  exists with  pij > 0, 

kSiCARi ∈++∈ ,  and CARj ++∉ , then that action must be discarded.  This reduced 

set of admissible actions is denoted )(kA′ .  If during the policy improvement step, there 

are states for an observation set k in R+A+C with no corresponding alternatives in )(kA′  
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then consider increasing the radius r used for calculating the neighboring states.  Every 

new recurrent set R′  is a subset of R+A+C. If the radius of the neighborhood is not 

significantly large enough to allow movement to a new recurrent set, the procedure can 

terminate on a suboptimal solution.  

Ding et al. (1988) note that transient states do not effect the overall selection of 

the policy during policy improvement. However, to ensure that an improving policy is 

selected appropriately, several transient states (states in A+C) are included to complete 

the chain associated with the neighborhood of R.  These states and corresponding relative 

values are used in the policy improvement step of the algorithm.  In the ROMDP, the 

policy vector and policy improvement test quantity are functions of the observation set 

Sk.  Formally, the new alternative for observation set Sk satisfies  

( )∑ ∑
∈

∈
⎭
⎬
⎫

⎩
⎨
⎧

+
kSi j

jijiaikAa vapcx)(min  

Further computational efficiency can be obtained for the ROMDP by performing the 

summation across all recurrent states kSi ∈ . Since the limiting state probabilities 

associated with the transient states are effectively zero, they will not influence the 

selection of the policy for the observation set.  

Termination defined in Ding’s (1988) procedure occurs when there is no change 

in the policy set and the wi(n)’s have converged. It is shown in chapter 3, that policy 

improvement for the ROMDP can lead to another policy with a higher gain (lower for 

maximization problem).  When this occurs, the current solution which led to the non-

improving policy is a local minimum.  When evaluating a policy using simultaneous 

equations, we can determine the optimal gain associated with that policy and can 

therefore terminate on the current local minimum appropriately. However, in the 

successive approximation procedure, the optimal value of the gain is obtained only when 

the relative values have converged.  Performing fixed policy successive approximation 

for some finite number of iterations results in an approximation of the gain if 

convergence of the relative values has not been achieved. If the termination criteria 

defined by Ding et al. (1988) were used for the ROMDP, it would be possible to cycle 

indefinitely among non-converged policies.  Therefore, the approximation of the gain 

must be used to determine when a non-improving policy is found and convergence to a 
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local minimum is achieved. Odoni (1967) provides conditions for obtaining an upper and 

lower bound on the gain and proves the upper bound decreases monotonically and the 

lower bound increases monotonically as the number of iterations increase.  The gain can 

be approximated as the average of the upper and lower bounds. This approximation is 

exact when the number of iterations is large (Odoni,1967).  Making use of the Odoni 

bounds, convergence is achieved when the upper and lower bound are the same or within 

some value ε.  The convergence based on these bounds is defined as the span semi-norm 

and can be calculated very easily during the value iteration step (step 4) of Ding’s 

procedure.  In addition, implementing these bounds in the context of the ROMDP 

provides a simple mechanism for identifying suboptimal policies during the local 

improvement phase.  Implementing the modifications discussed above ensures 

termination can occur on a local minimum in the same manner as described in chapter 3.   

Making use of the observations above, a successive approximation counterpart to 

the policy iteration heuristic defined in 3.2.2 is given below.  The notation is in line with 

the notation defined in Chapter 3. Items superscripted with * denote converged values 

and the associated policy.  Items superscripted with ~ denote approximate (non-

converged) values and the associated policy.  

Step 0. Initialization 

 Generate an initial admissible policy,π. 

 Set ∞=*g  

 Set (R+A+C) = S 

Step 1. Policy Evaluation 

a. For a given policy,π, compute the limiting state probabilities in order to determine 

the set of recurrent states, πR .  That is, for a fixed number of iterations, compute 

( ) ( )∑
++∈

=+
CARj

jGjiji pnxnx )()(1 π  

b. Find neighboring states within some radius r for all recurrent states.  Let the set of 

all the neighboring states not in πR  be πA . 

c. Find all the states that are reachable, in one transition, from Aπ, which are not 

already in (R+A)π. Denote these sets of states as Cπ.  Formally, find all states  
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AaSiapwhereARj ij ∈∈∀>+∉ ,0)()( π  

d. Implement fixed policy successive approximation for the states ( )πCARi ++∈  

for a fixed number of iterations using the value iteration equation defined below.  

Compute the Odoni (1969) upper ( )''L  and lower ( )'L  bounds on the gain (gπ) as 

follows. 
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Step 2. Bounding and Convergence test 

Case a:  span ( ) εππ <−=−+ )(')(''1
nn

nn LLww  

If *gg <π  set πππ == ** ,gg and proceed to step 3. Otherwise, the 

current policy *π with gain g* is a local minimum. Proceed to local 

improvement (policy perturbation) phase. 

 Case b: span ( ) ε>−=−+ )(')(''1 nLnLww nn . 

If gg ~<π , set πππ gg == ~,~  and proceed to step 3. 

If gg ~>π , the current best non-converged policy π~   may be a local 

minimum. Repeat step 1d for states ( )π~CARi ++∈  until convergence is 

achieved or *)~(' gL >π .  If g* exists ( )* ∞<>g  and *~ gg < , then π~  is a 

local minimum.  Update *π and associated gain g* appropriately.  

Terminate with the current policy *π with gain g* as a local minimum. 

Proceed to local improvement phase. 

Step 3. Policy Improvement 

e. Making use of the relative values wi calculated in step 1d, implement the policy 

improvement for all observation sets k∈O with action space )(kA′ (defined 

earlier) and proceed to step 1. 
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a. πk = ( )( )∑ ∑∈ ++∈∈
+′

kRi CARj jijiaikAa
vapcx

π)()(`min   

where Rk denotes the set of recurrent states for observation set Sk. 

 

The bounding and convergence step ensures that time is not wasted forcing a suboptimal 

policy to convergence. If a current solution has been obtained but has not yet converged, 

then computational effort is expended toward the convergence of the identified local 

minimum.  Recall in chapter 3, a local minimum is reached when no improving feasible 

direction (via policy improvement) exists.  That is, the information vector and relative 

values associated with a policy π lead to either the same policy or a new policy with 

worse gain. This converged gain and associated policy serves as the starting point for the 

local improvement procedure.  When performing the local improvement phase of the 

heuristic, simply substitute the evaluation steps define in 3.2.2.4 with the successive 

approximation approach defined above.  When a neighboring policy is evaluated, 

perform fixed policy successive approximations on that neighbor until one of two things 

occur: The lower bound on the gain exceeds the best gain obtained thus far and the 

neighbor can be eliminated; Convergence to an improving gain is achieved after some 

fixed number of iterations. If a better neighboring solution is found, then policy iteration 

is restarted as described in chapter 3. 

 

6.3.2 Periodic and Multi-Chain policies 
Since the ROMDP recurrent state encapsulation method is based on White’s 

(1963) method of successive approximation, which converges for a completely ergodic 

process, then any policy in the ROMDP that leads to a completely ergodic process will 

also converge as long as an acceptable recurrent state j is chosen such that 

α≥+121 ... ukkk
ijp for some α in [0,1).  However, in the ROMDP, there may be policies that 

are constructed during the course of policy improvement which induce markov chains 

which are periodic or multi-chain. In this case, a limiting distribution does not exist (in 

the sense of White).  This is potentially problematic if the radius for calculating 

neighboring states is not large enough to capture all of the states in the single chain.  

During calculation of the information vector you may capture the recurrent states 
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associated with a certain period, which can lead to unexpected or erroneous results.  If the 

periodic chains can be detected during the course of determining the recurrent state set, 

then the associated policy can be discarded or the underlying transition matrix 

transformed to an aperiodic process.  Putterman (1994) provides transformation equations 

for converting a periodic transition matrix into an aperiodic one.  The transformed MDP 

has components defined as follows: 

( ) ( ) ( ) ( )
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Under this transformation, the average optimal stationary policies for the original and 

transformed problem are identical (Putterman 1994). The gain of the original model is 

proportional to the gain of the transformed model with proportionality factor 1/τ.  During 

the computation of the gain and relative values, it is not necessary to store or create a new 

matrix representing the transformed transition probabilities and reward structure.  Simply 

store the functional relationship and use the transformed values in the successive 

approximation computations.  The interpretation of this model under a discrete time 

system is that at each decision point, the system remains in the current state with 

probability τ regardless of the decision chosen.  Performing this transformation allows 

the solution associated with the policy to be solved in the same manner that it is solved 

under the simultaneous equations method.  For a single chain periodic process, a 

stationary distribution is found via the same set of simultaneous equations used for 

calculating the limiting distribution for a single chained aperiodic process.  Although the 

process is periodic, the underlying matrix for determining the gain, relative values, and 

associated information vector is invertible.  Su and Deninger (1972) provide a successive 

approximation approach to address periodic policies.  In this research, we are only 

concerned with single-chained, aperiodic processes. If a periodic policy is chosen, we can 

apply the transformation described above and move to a new policy via policy 

improvement.  The detection of a periodic process can introduce additional computation 

time into the heuristic.  During the course of the iterative procedure for determining the 

limiting state probabilities, the index associated with recurrent state with the largest 
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probability is saved.  All relative values are scaled during value iteration using this 

recurrent state.  For an aperiodic process, this recurrent state index converges to a single 

value as the limiting state probabilities for each state in R+A+C converges.  However, if 

the process is periodic, this index may alternate between two or more state values, 

depending on the length of the period.  This is simple to detect for a cycle of length two.  

Anything longer may be computationally wasteful.  An alternative approach is to assume 

if convergence has not occurred after some fixed number of iterations, then the policy is 

periodic. Careful consideration to the iteration number must be given so that well 

behaved policies are not discarded.  If it is suspected that a problem under study contains 

many periodic policies, it is best to consistently apply the periodic transformation during 

computation rather than apply the detection procedures above.   

Detection of multi-chain policies is considerably easier based on the work done 

by Fox and Landi (1968).  They developed a computationally efficient labeling algorithm 

for determining the number of ergodic chains in a Markov process.  Their algorithm has 

computational complexity of O(|S2|), where |S| denotes the number of states in the 

process.  If a new policy is selected via policy improvement, the Fox and Landi (1968) 

algorithm can be used to determine if the underlying transition matrix is single-chained.  

If it isn’t, then the policy can be discarded.  Incorporating these detection procedures 

within the context of the ROMDP algorithm is fairly straightforward.   During the policy 

iteration phase, if a converged policy has already been obtained, discard the multi-chain 

policy and terminate on the converged solution.  During policy perturbation, if the 

neighboring policy is multi-chain, then discard the neighbor as infeasible.   A similar 

approach can be taken for periodic policies as an alternative to computing the 

transformed values.   

6.4 Experimentation 

The experiments aim to show the efficiency, with respect to computation time, 

and the effectiveness (with respect to percent solved) of the successive approximation 

approach to the ROMDP.    The impact of the radius on both the computation time and 

quality of the solution has already been studied by Ding et al. (1988) and thus not 

considered here.  It is sufficient to state only that as the radius increases, the computation 
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time increases and approaches the execution time of the Morton (1971) successive 

approximation procedure.  The focus of this experimentation is on showing that good 

results can be obtained once the correct radius, via experimentation, is chosen.  In the 

experiments conducted by Ding et al. (1988) a radius of two provided good results for 

most of the problems solved.  Therefore, these experiments will start with that value and 

increase as necessary.   

We first consider the supply chain problem introduced in chapter 5 with randomly 

generated discrete distribution representing the demand experienced by the retailer.  The 

retailer employs an order-up-to replenishment policy. The supply chain problem with 

binomial demand, and an (s,S) retailer inventory control policy (s equal to Cr/2 and S 

equal to Cr)  is also considered. The latter problem is already shown in chapter 5 to be 

difficult to solve and provides the worse performance without random restarts.  

Therefore, this is a good problem for considering the effectiveness of the successive 

approximation heuristic.   A total of 10 cheap iterations are used per policy evaluation.  A 

maximum of 180 total iterations are allowed for determining the converged gain 

associated with a policy (step 2b).      

6.4.1 Performance with respect to optimal solutions 
Table 6.1 displays the fraction of instances solved optimally using successive 

approximations approach. For each problem size, 1000 instances are generated with the 

exception of the (8,8) case.  In this case, only 100 problems are generated due to the 

computation time required to enumerate all possible solutions.   The problems generated 

reflect the supply chain problem with discrete demand that is randomly generated and 

retailer order-up-to policy.  All of the problems are solved optimally with the exception 

of the (5,5) case.  However, the one problem not solved is very close to optimal as 

indicated by the maximum relative error.  A total of N random restarts and 0 information 

vector perturbations are used.   
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Table 6. 1 Results for Randomized Discrete Distribution and Base Stock (Cr) Policy 

(Cs,Cr) 

 
 

Policy 
Space 

Fraction 
Optimal 
found 

Average 
relative error 

Maximum 
relative 

error 
Execution 

time 
(3,3) 18 1 0 0 0.236 
(4,4) 96 1 0 0 0.364 
(5,5) 600 0.999 0.007 0.007 0.568 
(6,6) 4320 1 0 0 1.505 
(7,7) 35280 1 0 0 3.625 
(8,8) 322560 1 0 0 9.048 

 

Table 6.2 displays the results associated with the supply chain problem reflecting 

binomial external demand and (s,S) retailer policy.  Again a radius of 2 and total of N 

random restarts with 0 information vector perturbations are used. 

Table 6. 2 Results for Binomial Demand Distribution and (s,S) Retailer Policy 

(Cs,Cr) 

 
 

Policy 
Space 

Fraction 
Optimal 
found 

Average 
relative error 

Maximum 
relative 

error 
Execution 

time 
(4,4) 96 1 0 0 0.415 
(5,5) 600 0.998 0.002 0.001 0.838 
(6,6) 4320 0.999 0.009 0.009 2.324 
(7,7) 35280 0.981 0.004 0.009 5.497 
(8,8) 322560 1 0 0 13.828 

 
 

For the (7,7) problem, a radius of 4 is used, which results in 21 problems not 

being solved optimally. However, the average relative error is 0.004 and the maximum 

relative error of 0.009. So, the solution found is very close to optimal.  This example 

illustrates the importance of selecting the proper radius for the problem under 

investigation.  There are three control parameters driving the effectiveness of the 

heuristic; the radius, the number of random restarts, and the maximum number of 

iterations allowed for policy convergence. 

If the radius for determining neighboring states is too small, one or more 

improving policies will be missed and thus the algorithm will terminate on a suboptimal 

policy.  This situation is observed in the (7,7) problem instances of table 6. 

Ding et al. (1988) also noted that their approach may terminate on a suboptimal solution 

if the radius is not large enough to capture the states associated with the optimal chain. 

To mitigate this result, a simple extension to the procedure is made by checking a larger 
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radius on the last policy iteration after convergence is achieved.  This extension can be 

easily incorporated into the ROMDP by doing an additional iteration of the policy 

iteration heuristic at a larger radius once all randomly generated starting points have been 

exhausted.  The best solution obtained from the random restarts is used as the starting 

policy for policy iteration.   

Clearly, if the problems under study take longer to converge than the maximum 

number of iterations allowed, then the algorithm will never find a converged policy via 

policy iteration or policy perturbation.  When a local minimum policy has been 

determined via the conditions defined in the bounding and convergence test, if the gain 

associated with that policy has not converged (within some ε-value), then the equations 

of step 1d must be performed until convergence is achieved or some maximum number of 

iterations is exceeded.  Most policies converge quickly and termination occurs once the 

span semi-norm is less than ε.  However, for policies not meeting the convergence 

criteria and exceeding the maximum iterations, we are left with a solution of which we 

can not determine the converged value of the gain.  In the case of random restarts, we just 

start again with another policy hoping that the policy iteration phase will terminate on a 

local minimum which can be used to start the perturbation phase.  There is no way to 

know if the discarded policy is indeed the optimal policy.  If the maximum allowed 

number of iterations is too low, that policy may never be found.  The maximum allowed 

iteration must be chosen carefully as to not discard potentially improving or optimal 

policies.  In this experiment, instances did occur in which the policy iteration phase 

terminated on a non-converged policy.  However the experimental results indicate that 

random restarts and the perturbation component aide in overcoming that problem by 

allowing for better starting points and ultimately better policies to be found in the search 

for a global minimum. 

The selection of the number of restarts in previous chapters has been based on the 

size of the state space, N.  As the problem size increases, one would believe that less 

restarts should be needed since more policy perturbations are being performed. Recall 

from chapter 5, the number of policy perturbations is 
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which, as a function of the number of state groupings (Cs+1),  is on the order of 

( )( )21+sCO .  In the successive approximation case, the actual number can be less since 

the number of states restricts the number of changes that can be made during policy 

improvement.  If a state grouping contains no states in the set R+A+C, then the associated 

alternative is not changed.  Therefore, the number of restarts required for a good solution 

should decay as the size of the problem increases.  This is observed in experimentation 

when larger state spaces (400 plus states) are used.  A simple check can be added every 

100 restarts to see if the solution obtained is getting better. If it is, continue with the 

restarts, otherwise terminate. 

  

6.4.2 Performance with respect to computation time 

Table 6.3 summarizes the computation time for the ROMDP based on size of the 

policy space enumerated.  The execution time in CPU seconds is shown for total 

enumeration (TE), successive approximation (SA), and simultaneous equation (SE).  

Comparison of the successive approximation time and simultaneous equation time is 

done without the use of restarts.  In addition, the successive approximation approach uses 

a fixed radius of 2.  The successive approximation procedure is more efficient then 

simultaneous equations after the (10,10) problem instance.  In addition, table 6.4 reflects 

the procedure is efficient for larger problem sizes as well.   
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Table 6. 3 Execution time in CPU Seconds 

 (Cs,Cr) 

 
Policy 
Space TE time SE Time SA time 

(3,3) 18 0.0003 0.0009 0.00447053 
(4,4) 96 0.0074 0.002 0.007543 
(5,5) 600 0.1090 0.006 0.01503 
(6,6) 4320 1.2838 0.0164 0.0304675 
(7,7) 35280 21.3479 0.039 0.052214 
(8,8) 322560 1022.750 0.250 0.110156 

(10,10) 36288000 - 0.366 0.358833 
(15,15) 1.962E+13 - 6.314 3.2955 
(20,20) 4.866E+19 - 127.886 12.2835 

  

  

Table 6. 4 Execution Time in CPU Seconds for Larger State Spaces 

(Cs,Cr) 

 
Number 
of States SA time 

(10,10) 121 0.359 
(20,20) 441 12.284 
(30,30) 961 61.993 
(40,40) 1681 235.549 
(50,50) 2601 729.865 
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Chapter 7 A Case for Information Sharing 

7.1 Problem Description 

In the previous chapters, considerable attention was given to showing that the 

ROMDP algorithm provides good results for solving the no information sharing problem.  

That algorithm, along with Howard’s (1960) policy iteration heuristic is used to study the 

value of information sharing in a two-stage supply chain.  Recall, a completely 

observable MDP denotes a model with full information sharing.  Consider a two stage 

supply chain structure consisting of a supplier and a retailer.  The supplier replenishes his 

inventory from an exogenous source that has infinite capacity.  The supplier is the single 

source used by the retailer to meet its customer demand.  The retailer implements a fixed 

inventory control policy.  The type of policy is discussed in the experimentation.  The 

delivery lead time is assumed to be one period and therefore, orders placed at the 

beginning of the period are received at the end of the period.  The sequence of events 

during a period is as follows. 

1. The retailer examines his inventory and places an order. 

2. The supplier receives the order and ships the available quantity from 

inventory.  Any portion not filled from inventory is lost. 

3. Supplier makes his production decision according to the decision policy.   

4. Retailer demand occurs.  Excess demand is lost.  

5. Costs are calculated. 

6. The retailer’s order quantity is received into inventory. 

7. The supplier’s production quantity is received into inventory. 

The cost model in the experiment represents the expected supply chain costs 

incurred during the period.  

 )(])())([()()( dpjdpdjhhizpzihG Drrsrsrssc
++++ −+−++−+−=    

 

Measures used to quantify the value of information sharing (VOI) are the long run 

average cost (gain), long run average inventory level at the supply chain partners and the 

long run average lost sales incurred by the retailer.   Let VOIr represent the relative cost 
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reduction associated with the value of information sharing and ( )αφ denote the gain 

associated with policy α.  Then VOIr  can be represented as  

( ) ( )
( )*

**

nis

isnis
rVOI

αφ
αφαφ −

= . 

Let mI  and mL denote the long run average inventory level and lost sales of supply chain 

member m.   xi denotes the steady state probability of being in state i.  Recall with no 

information sharing, the set of observable outputs (O) represents the supplier’s inventory 

level.  Each observation set Sk partitions the state space based on the supplier’s inventory 

level Ok ∈ .   Therefore, the long run average inventory level of the supplier can be 

determined as  

( )∑ ∑∈ ∈
=

Ok Si is
k
xkI  

Each state i in the state space defines a two dimensional variable representing the supplier 

and retailer’s inventory position.  Therefore, a similar representation of the state 

partitioning can be made based on the retailer’s inventory position and the corresponding 

average inventory level determined. Let d denote the demand observed during the period 

with probability pd.  Let j represent the retailer’s current inventory position.  Assume we 

have partitioned the retailer states according to the method described above and denoted 

that partitioning as Rk. Each observation set Rk partitions the state space based on the 

retailer’s inventory level rOk ∈ .    Then the long run average lost sales can be 

determined as 

( )( )∑ ∑ ∑∈ ∈

+−=
r kOk Rj d jdr xpkdL  

The supplier’s average lost sales can be determined in the similar manner from the 

retailer’s order quantity, zr.  In addition to the measures for evaluating the value of 

information sharing, we are interested in studying the influence that demand, supplier 

capacity, retailer policy and cost have on the value of information sharing. 

The two stage supply chain model has been studied by Gavirneni et al. (1999), 

Lee et al.  (2001), Yu et al. (2001) and Zhao and Simchi-Levi (2002).  Lee et al. (2001) 

and Yu et al. (2001) consider uncapacitated models, while Gavirneni et al. (1999) and 

Zhao and Simchi-Levi (2002) consider capacitated suppliers only.  We consider capacity 

constraints for both the supplier and the retailer.  All previous papers consider excess 
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demand at the retailer to be backlogged, while we consider excess demand to be lost.  

Another common assumption among the previous models is that the retailer always gets 

all units demanded, regardless if the supplier can fill it or not.  The missing part of the 

order that can not be filled from the supplier’s inventory is usually assumed to come from 

some outside source that has to be restocked in the next period. In that respect, the 

supplier orders are also backlogged.  We consider orders to be lost at both stages in the 

supply chain.  Yu et al. (2001) study the value of information sharing on the total supply 

chain costs while Gavirneni et al. (1999), Lee et al.  (2001), and Zhao and Simchi-Levi I 

(2002) consider the value of information as a function of the supplier’s cost and thus no 

benefit to the retailer is quantified. 

 

7.2 Demand effect on value of information sharing  

7.2.1 Design of experiment 
First, we consider the impact of demand on the value of information sharing.  

Assuming the supplier and retailer capacity are fixed at 20 units, three demand 

distributions are considered: Binomial; Discrete Uniform; and Poisson.  The maximum 

demand that can occur in the period will not exceed the retailer’s capacity.  The mean 

demand is the same for each distribution.  For a binomial distribution, the mean ( µ ) and 

variance ( 2σ ) are functions of the success probability p.  Formally, np=µ  and 

)1(2 pnp −=σ .   For Poisson, the mean and variance are the rate of event occurrence per 

unit time ( λ ), namely the demand occurring per period.  For the discrete uniform, the 

mean and variance are functions of the minimum and maximum demand interval limits 

[a,b]. The mean is defined as the average of the interval limits and the variance is defined 

by the following equation.  

12
1)1( 2

2 −+−
=

abσ   

Let c denote the vector of holding and penalty costs for the supply chain problem with 

components ( )rrss phph ,,, .  For this experiment, ( )14,1,3,1=c .  Mean values of demand 

ranging from 12 to 18  are considered.  In all cases, the ratio of capacity to mean demand 



 

 111  

is greater than one.  Additional analysis where capacity is less than mean demand will be 

discussed in section 7.3.     

In order to study the effect of the variance on the value of information sharing, we 

generate problem instances using a discretized normal distribution as well as the discrete 

uniform. With the discretized normal distribution we can keep the mean and range of 

demand values constant while changing the value of the variance.  However, with the 

discrete uniform distribution, in order to keep the mean constant the range of possible 

demand values must be changed in order to generate varying values of the variance. 

7.2.2 Results 
 Table 7.1 summarizes the distribution parameters for the experiments performed. 

 

Table 7. 1 Distribution Parameters 

Distribution 8=µ  10=µ  12=µ  15=µ  

Binomial p = 0.6 p = 0.5 p = 0.6 p = 0.75 

Poisson 8=λ  10=λ  12=λ  15=λ  

Uniform [0,16] [0,20] [4,20] [10,20] 
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Figure 7. 1 Relative VOI versus Demand 
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Figure 7.1 displays the relative value of information sharing as a function of mean 

demand.   When the mean demand is 10, the value of information sharing is highest for 

the distribution with the lowest variance (binomial distribution) and decreases as the 

demand variance increases.   As the mean demand increases and approaches the retailer 

capacity, the relative value of information sharing is nearly identical for all distributions 

and approaches zero.  Since we are modeling a capacitated supply chain structure, the 

value of information sharing is affected by the excess or lack of excess capacity available 

to make production decisions. Section 7.2 discusses the capacity affect on the value of 

information sharing in detail. Here, we mainly focus on the demand distribution and 

demand variance.  

When the mean is held constant, figure 7.2 shows the value of information 

sharing increases then decreases.  When the variance and resulting coefficient of 

variation is small, the value of information increases.  As the variance increases, the 

value of information sharing starts to decrease.  Increasing the variance increases the 

range of possible demand values and pushes the system closer to the capacity limit.  This 

suggests that at higher demand variances, little improvement in the system can be 

achieved with sharing information when both supply chain members are capacitated.   

Overall, the value of information sharing is relatively small, not exceeding more than 

1.6%.  
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Figure 7. 2 Coefficient of Variation Effect on VOI for Discretized Normal 

Distribution (Mean 10) 
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7.3 Capacity effect on value of information sharing 

7.3.1 Design of Experiment  
 Next, we study the effect of the supplier capacity on the value of information 

sharing.  The mean demand incurred by the retailer is fixed and the capacity of the 

supplier is a function of the mean demand ( rµ ).  We match the means of the three 

distributions and vary supplier capacity with respect to mean demand.  Instances where 

the supplier capacity is 0.80 rµ , 0.90 rµ , 1.0 rµ  1.1 rµ  and 1.2 rµ  are considered.  Three 

distributions examined are summarized in table 7.2  with the associated parameters.  An 

order-up-to (base stock level Cr) replenishment policy is used by the retailer. 

Table 7. 2 Distribution Parameters for Capacity Analysis 

Distribution Cs=13 Cs=14 Cs=15 Cs=17 Cs=20 

Binomial p = 0.75 p = 0.75 p = 0.75 p = 0.75 p = 0.75 

Poisson 15=λ  15=λ  15=λ  15=λ  15=λ  

Uniform [10,20] [10,20] [10,20] [10,20] [10,20] 

7.3.2 Results 

7.3.2.1 Value of information sharing 

 Figure 7.3 shows that significant value can be achieved at lower capacities when 

information concerning the retailer’s inventory position and demand is shared.  However, 

as the capacity of the supplier increases, the value associated with the information 

decreases, approaching zero in the case when the supplier and retailer’s capacity are 

identical.  When supplier capacity is significantly less than mean demand there is little 

value in sharing the information.  The supplier’s only option is to produce to maximum 

capacity at all times.  As additional capacity becomes available, the relative VOI starts to 

increase.  The supplier can scale back production in certain states to mitigate costs of 

holding excess inventory while still satisfying the retailer’s replenishment orders.  The 

maximum value associated with sharing information is achieved when supplier capacity 

is half of the retailer’s capacity, as illustrated in figure 7.3.   From that point, any increase 

in supplier capacity results in a decrease in the relative VOI decreases.  This decrease is 
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attributable to the myopic policy under no information sharing improving.  The 

information sharing policy is not changing and therefore the lowest possible cost in the 

system can be achieved at a lower level of capacity (67%).    
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Figure 7. 3 Relative VOI when mean demand = 15 
 

From an overall reduction in lost sales, figure 7.4 shows the supplier receives the 

most benefit achieving 100% reduction.  This is obvious as the increase in system 

inventory helps to offset the lost sales incurred by both parties.  Without information 

sharing, the echelon inventory position in the system is lower because the supplier’s 

decisions are based solely on his inventory position driven by the retailer’s replenishment 

orders.  When information is available prior to making the production decision, the 

supplier’s production quantity is higher. He can build up inventory and better satisfy the 

retailer’s requests. 

A portion of the expected cost savings achieved by the supplier under a full 

information sharing policy can be passed to the retailer as an incentive for sharing his 

demand and inventory information. The amount the supplier is willing to pay to the 

retailer for obtaining real time access to the retailer’s information is a function of VOIr.     
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Figure 7. 4 Relative Lost Sales Reduction with Information Sharing 
 
 From a retailer perspective, it may seem the supplier gets most of the benefit. 

However, there is a direct relationship between the supplier’s production capability and 

the retailer’s available inventory.  Figure 7.5 shows the expected production output as a 

function of capacity for binomial demand. The other demand distributions have the same 

form and are therefore not shown. The production output of the supplier is exactly what is 

available for the retailer to meet their demand requirements.  As production output 

increases, the retailer’s lost sales decrease.  This relationship is depicted in figure 7.6 for 

the policy when no information is shared.  If the supplier is operating significantly below 

the mean retailer demand, the supplier can satisfy replenishment orders at a greater rate 

per period once the retailer’s inventory position and incoming demand are shared.  As 

illustrated in figure 7.3, as capacity increases and approaches the retailer’s capacity level 

there is little gained in sharing information.  
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Figure 7. 5 Expected Supplier Production Output for Binomial Demand Problem 
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Figure 7. 6 Expected Retailer Lost Sales and Supplier Production for Binomial 

Demand Problem 
 
7.3.2.2 Optimal production control policy under steady state 

In the absence of information, the supplier operates as close as possible to an (s,S) 

policy, delaying production until his inventory position falls below s. When s = S, the 

policy is an order up to policy.   Figure 7.7 shows the value of s as a function of the 

supplier capacity.  In some instances, the value of s is 1.  The supplier produces to 

capacity in one period and then is idle in the next, as his only recurrent states are Cs and 

0.   When information is not shared, the supplier in effect is making production decisions 

at the beginning of the period.  If his current inventory position is equal to his maximum 

capacity, then he will not produce.  With this type of policy, the supplier is utilizing his 

production resource about 50% of the time.   
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Figure 7. 7 Value of (s) As a Function of Supplier Capacity 
  
When the retailer shares his demand and inventory position, the supplier is in 

effect making decisions after receiving information.  He knows the retailer’s demand, 

order quantity and his remaining inventory capacity once the retailer’s order is filled.  

With this information, he is able to production in anticipation of the retailer’s expected 

order quantity in the next period leading to a more balanced production schedule. Under 

this type of policy, his production resources are utilized 100% of the time. In effect, the 

supplier produces in advance of demand to mitigate the stock out as opposed to reacting 

after demand has depleted his inventory.   

The structure of the optimal policy under information sharing also shows that as 

capacity becomes available, the supplier’s myopic policy (used in the absence of 

information) and the completely observable policy become identical. The optimal policy 

found under information sharing policy is a state dependent modified echelon base stock 

policy.  A modified base stock policy, as defined by Federgruen and Zipkin (1986), is a 

policy in which a base stock policy is followed when possible.  When the prescribed 

production quantity exceeds the capacity, production is set to capacity.  This is 

represented by the equation below were Zj represents the echelon base stock quantity 

given the current retailer state is j and IPe represents the current echelon inventory 

position at the beginning of the period.  

( )ejss IPZCz −= ,min    (7.1) 
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Figure 7.8 displays an example of a modified echelon base stock policy when the 

capacity of the supplier is 5 and capacity of the retailer is 8.  In this example, the state 

dependent echelon base stock quantities Zj are defined for each retailer state by the 

vector ( )13,13,13,12,11,10,9,8=Z .  Figure 7.9 displays the information sharing policy for 

the case of binomially distributed demand over the recurrent state set.  As the retailer’s 

inventory level increases, the supplier starts to scale back his production quantity.  This 

type of action is only achievable when information is shared because the production 

quantity is based on the inventory in the system, not just at the supplier.   
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Figure 7. 8 Modified State Dependent Echelon Base Stock Policy 
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Figure 7. 9 Modified State Dependent Echelon Base Stock Policy for Recurrent 

States (Binomial demand distribution) 
 

When supplier capacity is less than the mean demand, the supplier’s ability to 

make a decision after receiving information allows production to occur in cases (states) 

where it otherwise wouldn’t when information is not shared.  When the supplier’s 

capacity is equal to or greater than the retailer’s capacity, the supplier can operate under a 

base stock policy without the use of information and satisfy all replenishment orders from 

the retailer. In this case, the production quantity for the supplier under the modified 

echelon base stock policy and the production quantity under the myopic base stock policy 

are nearly identical and there is little value in sharing information.   

 

7.3.2.3 Sensitivity with respect to additional mean values 

Figure 7.10 illustrates the structure of the VOI curve does not change as the mean 

demand changes.  As the mean demand approaches the retailer’s capacity limit, little 

value is obtained from sharing information.  When the structure of the optimal policy is 

examined, the relative increase or decrease in the value of information can be attributed 

to two things; timing and scalability.   First, the policies under no information sharing and 

information sharing are affected by the timing of the information.  As stated earlier, when 

information is not shared, the available production is dependent upon the current 

inventory level of the supplier at the beginning of the period.   When information is 
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shared, the available production is higher because the timing of the decision occurs after 

information is received. This enables production to occur in states that otherwise may not 

dictate it when information is not shared.  Secondly, there is value in information when 

the supplier can scale back production based on the retailer’s inventory level.  When 

information is not shared, the supplier’s production decision only changes as a function 

of the supplier’s inventory level. Therefore, if multiple retailer states are recurrent when 

the supplier’s inventory level is a particular value, the NIS production decision will be 

the same across all states while the IS production decision may vary.  When the capacity 

exceeds the mean demand (as in the case when the mean is 12), the value in sharing 

information is high and largely attributed to the timing of decision as well as the ability to 

scale back  production in certain retailer states.  When capacity is tight relative to mean 

demand (as in the case when the mean is 18), the relative value of information sharing is 

lower.  Since the demand rate is high, there is no opportunity to selectively scale back 

production in certain states and the supplier has to produce to capacity every time to 

mitigate the stock out cost.  The little value that is achieved with sharing information is 

attributable only to the timing of the decision. 
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Figure 7. 10 Relative VOI for Binomial Distribution 
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7.4 Retailer policy effect on value of information sharing 

7.4.1 Design of Experiment  
 In the previous experiments, the retailer implemented a base stock policy with 

base stock level equal to his maximum capacity. Therefore, the retailer is ordering with 

the supplier every period since the probability that zero units are demanded is very small.  

We now consider an (s,S) policy in which the retailer only orders when his inventory 

position falls below his safety stock level of s.  An (s,S) policy is a base stock or order-

up-to policy when s=S.   Therefore, examining an (s,S) policy allows us to study the 

influence of (S-s) on the value of information sharing.   When an (s,S) policy is used, the 

supplier may not receive demand information every period, depending upon the value of 

s with respect to the realized demand values.  In this experiment, a value of s equal to 

Cr/2 is considered and all capacity and demand assumptions of section 7.3 hold.  

7.4.2 Results 
7.4.2.1 Value of information sharing 

For the equivalent capacity and mean demand assumptions of section 7.3, the 

value of information sharing is significantly smaller when an (s,S) policy is used by the 

retailer.  Figures 7.11 – 7.13 show the value of information sharing ranges from 0 to 50%  

when an order up to policy is used while the value is between 0 and 30% when an (s,S) 

policy is used.   This reduction in VOI can be attributed to the loss of demand 

information being shared from a frequency standpoint.  Several periods may elapse 

without ordering and therefore the supplier has less information from which to base his 

production decisions.  He can either build up excess inventory and hold it or try to hold 

some intermediate amount of inventory that will mitigate the stock out cost.  The latter 

choice is exactly what occurs when information is shared and is elaborated further in 

7.4.2.2. 
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Figure 7. 11 Relative VOI for Binomial Demand 
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Figure 7. 12 Relative VOI for Uniform Demand 
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Figure 7. 13 Relative VOI for Poisson Demand 
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Figure 7. 14 Expected Lost sales with (s,S) and base stock 
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Figure 7. 15 Average Per Period Costs with (s,S) and Base Stock 

 

The average per period costs and lost sales in the period are higher when an (s,S) 

policy is used as well. Figures 7.14 and 7.15 contrast the expected lost sales and expected 

per period supply chain cost between the two retailer inventory control policies when 

information is shared.  The minimum lost sales for the supplier and the retailer as well as 

the lowest possible supply chain cost is achieved when the retailer uses an order-up-to 

policy. 

Figure 7.16 shows expected production output when the demand is binomially 

distributed. The other demand distributions have the same form and are therefore not 

shown. As observed in the order-up-to case, the production output is higher when 
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information is shared.  As more capacity becomes available, the supplier produces more 

and thus raises the echelon inventory level of the system, getting closer to the target value 

achieved with information sharing.  This graph also shows that the output and associated 

information sharing policy is not changing.  The decrease in relative VOI as capacity 

increases is due the decrease in cost associated with the changing structure of the no 

information sharing policy.   
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Figure 7. 16 Expected Supplier Production as a Function of  Supplier Capacity 

 

7.4.2.2 Optimal production control policy under steady state 

One of the main differences in the relative VOI when different retailer policies are 

used is the manner in which the supplier responds once information from the retailer 

becomes available.  In the case of a base stock policy, the supplier always uses the 

additional information to operate under a state dependent modified echelon base stock 

policy. Since the demand information is received every review period, he can respond 

every review period with the appropriate production quantity. In actuality, the supplier is 

ensuring that his pipeline plus on hand inventory always equals the retailer’s base stock 

quantity, when capacity permits.  However, when the retailer’s inventory control policy is 

(s,S), a different operating policy under information sharing emerges.  This policy 

illustrates how the supplier manages the inventory in the entire system to achieve the 

lowest possible cost.  

As stated earlier, the optimal policy under no information sharing is an (s,S) 

policy.  The policy parameters are nearly identical to those found under no information 
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sharing when the retailer’s control policy is base stock for capacities 13, 14, 15 and 17.  

This is observed in all demand distributions of the experiment.  Since the critical value of 

the policy parameter S is equal to the supplier’s capacity Cs, the supplier fills 

replenishment orders that bring the retailer’s inventory position above his reorder point. 

As a result, the retailer is not guaranteed to order the next period.  

In contrast, the structure of the optimal policy under information sharing forces 

the retailer to order every period.  The supplier’s optimal control policy in steady state is 

to produce a fixed quantity every period. The quantity produced is insufficient to bring 

the retailer’s inventory level above s if his demand during the period depletes his initial 

stock position.  This guarantees that the retailer will order again in the next period. Figure 

7.17, shows the retailer’s steady state inventory position as a result of the supplier’s 

production control policy.  Once the retailer orders, his ending inventory position is based 

on what he receives from the supplier.  Since the retailer is only giving him (S-s-1) units, 

the probability that the demand will exceed that amount is high (0.999). Therefore the 

retailer will always end the period with zero units  and return to the same state at the 

beginning of the next period, from which he started in the previous period.   
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Figure 7. 17 Retailer Steady State Inventory Position each Review 

Period 
 

 The retailer order distribution resulting form this policy is shown in figure 7.18.  

This distribution shows the supplier’s production control policy forces the retailer to 

order the same quantity every period, which triggers production for the supplier.  Recall 

in section 7.3, when the retailer uses a base stock policy, the supplier satisfies all of the 

retailer’s order quantity from inventory when information is shared.  When an (s,S) 

policy is used by the retailer, controlling the retailer’s shortage quantity results in 

lowering the expected per period costs of the system.  
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Figure 7. 18 Retailer Steady State Order Distribution 
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production quantities are considered reflecting the supplier’s ability to produce in 

advance of demand.  The states in which production occur correspond to states in which 

the retailer is not ordering.  Therefore, the supplier is using the additional capacity to 

produce in advance of demand.   

 

7.5 Information sharing effect on order variance  

7.5.1 Design of experiment 
 In sections 7.2 and 7.3, experiments considered the effect capacity and the 

retailer’s inventory control policy have on the value of information sharing.  It is easy to 

determine the retailer’s order distribution and associated moments under steady state 

optimal control to determine how information sharing effects the order variance.  If the 

retailer operates under a base stock (Cr) policy, then his order quantity (zr) given his 

current state is j is simply Cr-j. Therefore the probability of ordering Cr-j using the same 

retailer partitioning defined in section 7.1 is defined  

( )∑ ∈
−

kRj rj jCx . 

Similarly, if an (s,S) policy is used by the retailer, he orders 0 when j is greater than or 

equal to (S-s) and S-j otherwise. 

7.5.2 Results  
Figures 7.19 and 7.20 display the order distribution for one problem instance where the 

supplier capacity is 14 and the retailer capacity is 20.  When a base stock policy is the 

used, the order mean and variance without information sharing are 13.4191 and 6.4312, 

respectively.  When information sharing occurs, the order mean and variance are 10 and 

0.75810, respectively.. From figure 7.19, the probability of receiving extreme order 

quantities (7 and 20) from the retailer are high when information is not shared and thus 

the order variance is very large.  Sharing information reduces that order variance.    

Similar results are observed in figure 7.20 when an (s,S) policy is used.   In this case, the 

extreme order quantities under no information share are 0 and 20. Again the order 

variance is reduced with information sharing from 96.641 to 0.188.  Under similar 

demand and capacity assumptions, an (s,S) policy magnifies the variance of the order 
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distribution since the retailer is not ordering every period.  Information sharing reduces 

that variance.  

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

NIS IS
 

Figure 7. 19 Order distribution when demand is B(20,0.75) and retailer policy is 
Base Stock Cr 
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Figure 7. 20 Order distribution when demand is B(20,0.75)  and retailer policy is 

(s,S) 
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7.6 Impact of costs on relative value of information sharing 

7.6.1 Design of Experiment 
 The experiments in sections 7.2 through 7.4 did not consider any variable 

order/production costs or fixed cost of production.  We considered costs that are 

increasing at the lower echelon. The unit holding and penalty costs at the supplier are 

cheaper than the costs at the retailer, which would be true in a production environment, 

where each stage adds value to the product.  If variable order costs are added for the 

retailer, the relative value of information sharing will be affected. The addition of fixed 

production cost also will also affect the value of information. We are concerned with not 

only the affect on the value of information, but the change (if any) in the optimal policy 

structure for both information sharing and no information sharing. 

 

7.6.2 Results 
 First we consider adding variable order costs to the retailer.  The supplier’s 

capacity is 13 and the retailer’s capacity is 20.   It was already shown earlier that the 

value of information sharing is high at lower capacities. The mean demand is equal to 15.  

As expected, increasing the variable order costs decreases the relative VOI, as shown in 

figure 7.21. The supplier’s production control policy is the same as the zero variable cost 

case for the respective problems. 
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Figure 7. 21 Relative VOI as function of variable order cost, Supplier 
Capacity=13, 
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Similarly, when a fixed cost of production is added for the supplier, figure 7.22 

shows the value of information decreases as the cost increases. The introduction of a 

fixed cost of production does not change the optimal policy under information sharing or 

no information sharing.  The experiments were also executed for the case when the 

supplier capacity is 15 and similar results are obtained. 
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Figure 7. 22 Relative VOI as a Function of Fixed Production Cost, supplier 
capacity 13 

7.7 Conclusions 

The value of information sharing in a two stage supply chain with a capacitated 

supplier and retailer are affected by capacity, demand, cost structure and retailer’s 

inventory control policy.  In some instances the value of sharing information was as high 

as 50%.  The relative value of information sharing is smaller when the retailer uses an 

(s,S) policy instead of a base stock policy.  With the (s,S) policy,  demand information is 

not passed every period and thus affects how the supplier can manage the inventory level 

and costs in the system.  Overall, the retailer order variance is magnified and the expected 

per period costs are higher as a result. 

 Both the supplier and the retailer benefit from sharing information.  The retailer 

is directly affected by not sharing information with the supplier in terms of their ability to 

satisfy their end item demand.  The expected production of the supplier affects what the 

retailer is able to deliver which equates to lost sales.  It is beneficial for the retailer to 

pass demand information every period. Whether or not this is information exchange 
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occurs through their inventory control policy or some other ‘information’ policy 

combined with their inventory control policy is an area of future work.   

The amount of available capacity influences the value of information sharing. At 

low capacities, when information is not shared the supplier can’t accommodate the 

demand from the retailer and much of the demand is lost thus impacting the retailer’s 

responsiveness to his own demand requirements. Sharing information allows him to make 

the best use of his capacity.  Increasing his capacity allows him to reach the maximum 

production output and system wide cost reduction.  Once this maximum output is 

reached, any additional capacity results in no further cost reduction and the value of 

information sharing decreases.    If the capacity constraint of the retailer is removed, 

increasing the supplier’s capacity may result in further cost reduction and increased value 

of sharing information.  This is an area of future work. 

When the structure of the optimal policy is examined, the additional information 

received by the supplier allows him to produce in advance of future demand.  This helps 

to mitigate the costs incurred from holding excess inventory and stocking out.  As 

additional costs are added into the model, the relative VOI decreases.    Although no 

change in the policy structure is observed under the assumptions of this model, other cost 

models and information sharing assumptions may induce changes and is an area of future 

work.  It is interesting to see under what cost structure and assumptions production will 

be delayed several periods.  Previous research on supply chain information sharing 

intimate sharing information is beneficial because the supplier can delay production. In 

the assumptions made in this study, the information sharing policy is one of constant 

production, even when fixed production costs are considered. 

Modeling the problem as a completely observable MDP and restricted observation 

MDP is fairly simple and easy to interpret. The cost structure can be easily adapted to 

consider the retailer’s cost only, supplier’s cost only, or total supply chain costs. In 

addition, several performance measures can be calculated once the steady state 

distribution is known such as throughput, utilization, average inventory and lost sales to 

name a few.   Further insight can be obtained by examining the optimal control policy of 

the supply chain member(s) being optimized.   The experiments show that there is some 



 

 132  

benefit in sharing information and that the information can allow the supplier to take a 

proactive approach to inventory management instead of reactive approach.   
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Chapter 8 Conclusions and Future Work 

8.1 Conclusions 
 
This research presents a new approach to measuring the value of information sharing in a 

supply chain.  Using a completely observable Markov Decision model and a Markov 

Decision model with restricted observations is an ideal method for studying systems with 

and without perfect information.  No assumption has to be made about the structure of the 

policy in order to find the value of information sharing. In this case, only the retailer’s 

policy structure is assumed to be known but this constraint can be easily relaxed as well.  

This research shows that there is value having the retailer share information with the 

supplier.  The magnitude of that value depends on the cost and capacity assumptions of 

the model.  In addition, we describe that some periods of delayed production can be 

optimal instead of constant production.   

 

8.2 Additional Research 
The obvious area for additional research is to relax the assumption that the retailer policy 

is known. The retailer policy can be optimized as the supplier policy is being optimized. 

Whether or not the retailer needs backward information from the supplier or forward 

information from his customer can be considered.   

In addition, this research only considers the case where demand is lost. Additional 

models including backlogging of demand and increased lead-time can be considered to 

understand the value of information sharing in those settings. 

This research only touched on the structure of the optimal policy under 

information sharing and no information sharing. Further analysis can be done to 

determine the relationship between the critical values of the inventory control policy as a 

function of the retailer demand.   

Additional models considering the timing of information are also important areas 

of work.   This research showed how the retailers order policy and the value of (S-s) 

affect the value of information sharing.  Additional policies that address timing of 

information flow if the retailer is using an (s,S) policy can be considered. 
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8.3 Stochastic Games 
A Markov Decision Process is the simplest form of a stochastic game. There is additional 

research being done on information sharing from the game theoretic approach to address 

competing objectives between different supply chain members.  The applicability of more 

complex models to this area can also be considered. 
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Appendix A Information Sharing Charts 
 
 
Information sharing charts when an Order-up-to policy is used by the retailer 
 
The relative lost sales reduction is measured using the following equation. 
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Information sharing charts when an(s,S) policy is used by the retailer 
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Appendix B Glossary of Terms 
 

kaα : The probability of choosing action a for observation set k.   
 
π   : The implementable policy vector for the observed process with components 

[π1..πK]. 
 
x  Steady state information vector with components xi denoting long run probability 

of being in state i.  
 
A:  The set of available actions for an instance of MDP/ROMDP {1…M} 

A(k): The set of admissible actions for observation set Sk.  A(k)⊆A. 

An: The action chosen at time n. 

:iac   The immediate reward associated with transitioning to state i under alternative      
a ∈ A.  },|),({ aAiXAXCEc nnnnia === .  In Howard’s (1960) policy 
iteration algorithm, this quantity is denoted a

iq . 

Cs : Variable denoting the capacity of the supplier. 
 
Cr  : Variable denoting the capacity of the retailer. 
 
g: The gain or long-run average cost associated with an implementable policy. Also 

referenced as Φ(α) in non-linear programming formulation of ROMDP. 
 

G(i):  A function mapping a state i to a single observable output in the set O.  

O: The set of observable outputs for an instance of ROMDP{1...K}.  

( )apij : The one step transition probability from state i to j under alternative a ∈ A. 

( ) },|{ 1 aAiXjXPap nnnij ==== +  

 

pp1 :      Neighborhood construction scheme based on policy vector . Given vectors π and  
π  and generated index i construct neighbor `π   

  [ ] [ ]

[ ] [ ] ijjj

ii

≠∀=

=

ππ

ππ

`
`

 

pp2 : Neighborhood construction scheme based on policy vector . Given vectors π and  
π  and generated indices i and j construct neighbor `π   
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RDD: A randomized discrete distribution generated by creating random integers for a 
vector of length Cs+1 and then dividing each element by the vector sum. The 
resulting vector is a probability mass function for a distribution that takes on 
values between 0 and Cs. 

 
 

S: The set of possible states for an instance of MDP/ROMDP{1…N}. 

Sk:  A given partition of the state space S satisfying {i:G(i) = k}.  Also referred to as 
observation set. 

Xn: A random variable denoting the state of the system at time n=0,1… 

 
VOIr  : Relative value associated with sharing information calculated as  

( ) ( )
( )*

**

nis

isnis
rVOI

αφ
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