
 
 

ABSTRACT 
 
 
 
PAZHAYAVEETIL, ULLAS CHANDRASEKHAR. Hardware Implementation of a 
Low Power Speech Recognition System. (Under the direction of Dr. Paul Franzon.) 
 
Speech is envisioned as becoming an important mode of communication and interaction 

with computing devices and systems in the future. The potential for speech recognition 

applications both in our living environment as well as our workplace is well understood, 

and is driving the shift from current command and control applications to full fledged 

speech recognition systems. While these systems would be especially useful in future 

mobile embedded domains, the real-time performance requirements of such systems 

cannot be met by current embedded processors. Even modern high performance 

microprocessors are barely able to keep up with the real time requirements of 

sophisticated speech recognition applications often straining the resources of the host 

processor while incurring a power consumption that is prohibitive in the embedded space. 

Custom ASIC solutions in the past have focused on faster clock rates and logic speeds, 

and have largely ignored the power reduction aspect of the problem. In this dissertation, 

we approach the speech recognition problem by a) designing a custom ASIC that is 

flexible enough to adapt to evolutionary improvements in the design and take advantage 

of these improvements at the algorithmic level to achieve low power operation, and b) 

restructuring the memory and adapting a lexical style dictionary along with an innovative 

‘Timestamp’ scheme to reduce overall memory requirements, bandwidth requirements, 

power and energy consumption.   



 Our Gaussian Estimator achieves real-time performance while reducing power 

consumption by 2 orders of magnitude over a software implementation running on a 

Pentium 4 processor, and by 43% over the best previous comparable ASIC design. Our 

design also achieves 3 orders of magnitude improvement in energy consumption over the 

Pentium 4 and 35% improvement in energy consumption over the previous ASIC design.  

 Similarly our Viterbi Decode unit performs real-time speech recognition while 

achieving an improvement of 3 orders of magnitude over the Pentium 4 and 1 order of 

magnitude improvement over the previous design – the perception processor – in both 

power and energy savings.  

 Our final design achieves real-time recognition over a vocabulary that is 6-12 

times as much as competing designs while taking up only 2.5 times as much area. 
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CHAPTER 1  
 
Introduction 
 
 
 
Speech recognition has been an area of active research for more than 40 years [1], 

maturing from an area of pure academic research to one with growing use in the 

marketplace. Opportunities for application of speech recognition are immense and 

diverse. The trend of a constantly increasing number of computing devices, both in our 

living environment, as well as our workplace, calls for a better way of interacting with 

them. Speech is already an established mode of communication in many mobile 

embedded environments, and the value of speech recognition applications in such 

environments is immeasurable. When compared to other forms of communication, speech 

has some attractive advantages. A person can speak about 3-4 times faster than they can 

type, allowing for greater communication efficiency. It is ideal for multi-modal tasks 

since the hands and eyes are free to do other tasks. Speech accessories are cheap, easily 

available and small, creating mobile capacity. Thus this hands-free, user friendly nature 

of speech coupled with improvements in processor speeds and trends of ubiquitous 

computing, promise to make speech a primary human/machine interface in the near 

future. 
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1.1 The Problem 

A variety of software packages for speech recognition are available in the mass market 

today, such as Dragon Systems' Dragon Naturally Speaking, IBM's ViaVoice, Lernout & 

Hauspie's Voice Xpress, and Philips FreeSpeech98[2]. Vocabularies in commercial 

systems today range from 20,000 to 150,000 words. Recognition accuracies have been 

steadily improving as well, though current systems are still not sufficiently accurate to 

easily take dictation without straining the resources of the microprocessor. The CMU 

‘Speech in Silicon’[3] is another project that is working at developing a hardware 

solution to speech recognition. 

A successful design of a speech recognition system involves achieving accuracy 

levels of >95% while being fast enough to be able to process speech in real time. The 

system should be able to achieve speaker-independent speech recognition for multiple 

languages. (i.e. the system must be deployed with base training (speaker independent 

models) with update and training facilities). The system should be flexible enough to 

handle different dialects and speech model parameters with minimal effort to change 

dialects, ideally requiring only a download of a new model. Power savings have also 

come to be of significant importance during the designing of such systems due to their 

application in the embedded domain. 

Even modern high performance microprocessors are barely able to keep up with 

the real time requirements of sophisticated speech recognition applications. The run times 

[4] for a 29.3 sec segment of speech over the SPHINX III speech recognition system is 

shown in Figure 1.1. The theoretical run times are based on ideal scaling of performance 

with frequency. It is evident that for speech recognition the performance of the processor 
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does not scale ideally. In theory a 2.4 GHz processor should achieve real time 

performance. In practice a processor frequency of approximately 2.9 GHz is required to 

satisfy real time requirements.  

 

Figure 1.1 - Performance of SPHINX 3 on Intel Pentium 3 and later processors (900MHz to 3GHz) 

 

This performance gap suggests that when moving to more complex future speech 

recognition workloads higher frequencies alone are not the solution, fundamental 

architectural improvements are called for. The speech recognition system also severely 

limits the processor’s availability for other task. The results clearly show that speech 

applications stress the performance limits of high-end processors.    

By their very nature, applications such as speech are likely to be most useful in 

mobile embedded systems. A fundamental problem that plagues these applications is that 

they require significantly more performance than current embedded processors can 

deliver. Most embedded and low-power processors, such as the Intel XScale, do not have 

the hardware resources and performance that would be necessary to support a full-
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featured speech recognizer. The energy consumption that accompanies the required 

performance level is often orders of magnitude beyond typical embedded power budgets. 

Figure 1.2 provides a rough estimate of the speech recognition rate achievable on various 

modern computing systems [5]. Annotated above each bar is the time each processor 

class would operate on a single “AA” rechargeable battery (1600 mA·Hr). It is clear that, 

while high-end systems are within the performance range necessary for real-time speech 

recognition, they far exceed the power budget of portable devices. 

 

Figure 1.2 - Performance and power considerations for speech recognition on modern architectures 

 

Another problem that these systems face especially in the mobile domain is that 

with new and emerging techniques in speech recognition, it is more attractive to find a 

solution that can readily adapt to most if not all of the developments and techniques. 

Often many of these new techniques prove to be useful in more than one domain. As an 

example, ‘Frame skipping’ is a technique used in speech recognition that proves to 
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reduce both processing and power consumption as well as required memory bandwidth. It 

is prudent to look into finding a way to incorporate these into our own system.  

  

1.2 The Solution 

The problem can now be redefined as finding a solution that provides high accuracy 

speech recognition at speeds high enough for real time processing while consuming 

minimum power and also being able to incorporate a degree of flexibility to new and 

emerging techniques. These problems are easily dealt with by a custom ASIC 

coprocessor with some flexibility built into it. Speech and security interfaces are by 

nature always on. Stressing the host processor with the speech recognition task limits its 

availability for other tasks.  Thus a speech coprocessor can help free-up resources so that 

the host processor can focus on other tasks. An ASIC can also help achieve high-end 

speech recognition within the power budget of embedded processors. Similar to video 

cards in a standard PC, speech on a chip has the ability to perform better than a speech 

recognition system in software running on a processor.   

While an ASIC solution is attractive, it limits the flexibility and level of generality 

offered. Speech is a rapidly growing field and the techniques used to process and 

recognize speech improve constantly. These improvements reflect not only such factors 

such as accuracy and speed, but also on the reduction in power consumption and a 

general improvement of the process as a whole.  In this dissertation, one of our strategies 

was to preserve a level of flexibility in the architecture that we developed. The advantage 

to this was two-fold. Firstly, new and emerging techniques may become a standard for 

how speech recognition is done in the future. By making sure that our architecture can 
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adapt to these techniques, we ensure that our design remains competitive. Secondly, our 

design will be able to take advantage of the performance improvements offered by these 

new techniques to achieve even better performance numbers.  

A bottleneck that has been commonly identified in speech recognition designs is 

the memory bandwidth required by this application especially when trying to perform 

real-time recognition. The total amount of data that is needed to support and perform an 

application such as speech recognition is quite large. A large training set, complex 

acoustic and language models, and a very large parameter set is usually required to 

support the complex nature of the application. Having a larger parameter set and better-

trained models also contribute to the performance of the application in terms of accuracy 

and recognized vocabulary size. However the tradeoff is speed and power.   

While the total amount of data required for speech recognition is large, not all of 

this data is used all the time. By controlling and manipulating the amount of data 

accessed each time frame, it is possible to maximize the use of data accessed, while at the 

same time minimizing or eliminating unnecessary accesses.  

Keeping this in mind, we restructured how the data is arranged and accessed, 

switching from a flat vocabulary structure to a lexical structure. By coupling this with our 

innovative ‘Timestamp’ technique and dynamic memory allocation, we eliminated 

redundancies and reduced the total data that needed to be processed every time frame. 

This led to a design that provided immediate savings in terms of memory bandwidth, 

speed and power.   
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1.3 Organization of the Dissertation 

Chapter 2 will provide an introduction to the basics of speech recognition. Chapter 3 will 

describe previous research and related work. Chapter 4 will provide an overview of the 

system design and also discuss the front end in some detail. Chapter 5 presents the 

design(s) of the Gaussian Estimation unit. Chapter 6 presents the Viterbi Decoder Unit 

with emphasis on the design issues and advantages of switching from a flat tree structure 

to a lexical tree structure. The performance of these designs is analyzed in Chapter 7. 

Chapter 8 draws conclusions and highlights important points in the design 

methodologies.   
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CHAPTER 2 
 
Background 
 
 
 

2.1 Acoustic Modeling 
 
2.1.1 A brief overview of speech recognition and HMMs [1, 4, 6, 7, 8, 9] 

The front-end converts an unknown speech waveform into a sequence of acoustic vectors 

Y=y1,y2,y3…each representing a short time (10 ms) speech spectrum of the speech signal. 

This is also known as the observation sequence. This sequence may correspond to a 

number of actual word sequences W= w1,w2,w3…(It should noted that W actually refers 

to a sequence of representative models which could be words, but usually are sub word 

units). The basic speech recognition task is to determine the most probable word 

sequence Wp =w1,w2,w3…, given the observed acoustic signal Y: 

Wp = 
w
maxarg P(W|Y) = 

w
maxarg ((P(W)P(Y|W)/P(Y))             (2.1) 

The first term P(W) is the probability of observing W independent of the observed signal 

(sequence) Y, which is determined by a language model. The probability P(Y|W) is 

determined by an acoustic model. Figure 2.1 shows the computation of the probabilities 

of a postulated word sequence W = "This is speech". Each word is converted into a 

sequence of phones applying a pronouncing dictionary, and for each phone there is a 

corresponding statistical model, a hidden Markov model (HMM). The sequences of 
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HMMs (representing the postulated utterance) are concatenated to form a single 

composite model. The probability of that model generating the observed signal Y is 

calculated, yielding the wanted probability P(Y|W). This decoding process may be 

repeated for all possible word sequences, and the most likely sequence is selected for the 

recognizer output as the ‘recognized speech’. 

 

 

Figure 2.1 - Schematics of an LVR (Large Vocabulary Recognition) system. It  

shows the computation of the probabilities of a postulated word sequence  

W = "This is speech" [7] 

 

An N-state Markov Model is completely defined by a set of N states forming a finite state 

machine, and an NxN stochastic matrix defining transitions between states, whose 

elements aij represent the probability of transitioning from state i to j at time t; these are 

the transition probabilities.  With a Hidden Markov Model, each state additionally has 

associated with it a probability density function bj(yt) which determines the probability 
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that state j emits a particular observation Yt at time t (the model is “hidden” because any 

state could have emitted the current observation). The probability density function (p.d.f). 

can be continuous or discrete; accordingly the pre-processed speech data can be a multi-

dimensional vector or a single quantized value. The quantity bj(yt) is known as the 

observation probability.  Such a model can only generate an observation sequence 

Y=y1,y2,y3…yT via a state sequence of length T, as a state only emits one observation at 

each time t. The set of all such state sequences can be represented as routes through the 

state-time trellis shown in Figure 2.2. The (j,t)th node (a state within the trellis) 

corresponds to the hypothesis that observation Yt was generated by state j. Two nodes (i,t-

1) and (j,t) are connected if and only if aij > 0. 

 

Figure 2.2 - Hidden Markov Model showing the finite state machine for the HMM (left), 
 the Observation sequence (top),and all possible routes through the trellis 

 

As described above, we compute P(W|Y) by first computing P(Y|W). Given a state 

sequence Q=q1 q2…qT, where the state at time t is qt, the joint probability, given a model 

W, of state sequence Q and observation sequence Y is given by: 

P(Y,Q|W) = b1(y1)∏
=

T

t 2

aqt-1qtbqt(yt)        (2.2) 

Assuming the HMM is in state 1 at time t = 1, P(Y,Q|W) is the sum of all possible routes 

through the trellis, i.e. 
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P(Y|W) =∑
allQ

 P(Y,Q|W)                                        (2.3) 

In practice, the probability P(Y|W) is approximated by the probability associated with the 

state  sequence which maximizes P(Y,Q|W). This probability is computed efficiently 

using Viterbi decoding. Firstly, we define the value δt (j), which is the maximum 

probability that the HMM is in state j at time t. It is equal to the probability of the most 

likely partial state sequence Q=q1 q2…. qt, which emits observation sequence 

Y=y1,y2,y3…, and which ends in state j: 

δt(j) = 
qtqq ...2,1

max P(q1,q2…qt ; qt = j ; y1,y2…yt|W)   (2.4) 

It follows from Equation 2.2 and 2.4 that the value of δt(j) can be computed recursively as 

follows: 

     δt(j) = 
Ni≤≤1

max [ δt-1(i)aij].bj(yt)    (2.5) 

where i is the previous state (i.e. at time t-1). This value determines the most likely 

predecessor state ψ t(j), for the current state j at time t, given by: 

   ψ t(j) = 
Ni≤≤1

maxarg [ δt-1(i)aij]    (2.6) 

At the end of the observation sequence, we backtrack through the most likely predecessor 

states in order to find the most likely state sequence. Each utterance has an HMM 

representing it, and so this sequence not only describes the most likely route through a 

particular HMM, but by concatenation provides the most likely sequence of HMMs, and 

hence the most likely sequence of words or sub-word units uttered. 

Each node in the trellis must evaluate Equation 2.5 and Equation 2.6. This 

consists of multiplying each predecessor node’s probability δt-1(i) by the transition 

probability aij, and comparing all of these values. The most likely is multiplied by the 
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observation probability bj(yt) to produce the result. After a number of stages of 

multiplying probabilities in this way, the result is likely to be very small. In addition, 

without some scaling method, it demands a large dynamic range of floating point 

numbers, and implementing floating point multiplication requires more resources than for 

fixed point. A convenient alternative is therefore to perform all calculations in the log 

domain[10]. This converts all multiplications to additions, and narrows the dynamic 

range. Hence Equation 2.5 becomes 

   δt(j) = 
Ni≤≤1

max [ δt-1(i) +log aij] +log [bj(yt)]   (2.7) 

The result of these changes means that a node can have the structure shown in Figure 2.3. 

The figure highlights the fact that each node is dependent only on the outputs of nodes at 

time t-1, hence all nodes in all HMMs at time t can perform their calculations in parallel. 

The way in which this can be implemented is to deal with an entire column of nodes of 

the trellis in parallel.  

 

Figure 2.3 - Block diagram of node representing state j 
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Figure 2.4 - Decoder structure showing forward computation and backtracking 

As the speech data comes in as a stream, we can only deal with one observation vector at 

a time, and so we only need to implement one column of the trellis (In actuality, 

implementing the entire trellis is area heavy and unnecessary as will be seen later. Instead 

an optimum number of ‘node units’ are designed so that each unit will update a set 

number of nodes).  The new data values (observation vector yt and maximal path 

probabilities δt-1(j)) pass through the column, and the resulting δt values are latched, ready 

to be used as the new inputs to the column when the next observation data appears. 

Each node outputs its most likely predecessor state yt(j), which is stored in a 

sequential buffer external to the nodes. When the current observation sequence reaches 

its end at time T, a sequencer module reads the most likely final state from the buffer, 

chosen according to the highest value of δT(j). It then uses this as a pointer to the 

collection of penultimate states to find the most likely state at time T-1, and continues 

with backtracking in this way until the start of the buffer is reached. As the resulting state 

sequence will be produced in reverse, it is stored in a sequencer until the backtracking is 

complete, before being output. This state sequence reveals which HMMs have been 

traversed, and hence which words or sub-word units have been uttered. This information 

can then be passed to software, which assembles the utterances back into words and 

sentences. 
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2.1.2 Phones & Triphones[11,12,13,14] 
 
Equation 2.1 needs the quantity P(Y|W), the probability of an acoustic vector sequence Y 

given a word sequence W to find the most probable word sequence. A simplistic 

approach to achieve this would be to obtain several samples of each possible word 

sequence, convert each sample to the corresponding acoustic vector sequence and 

compute a statistical similarity metric for the given acoustic vector sequence Y to the set 

of known samples. For large vocabulary speech recognition this is not feasible because 

the set of possible word sequences is very large. Instead words may be represented as 

sequences of basic sounds. Knowing the statistical correspondence between the basic 

sounds and acoustic vectors, the required probability can be computed. The basic sounds 

from which word pronunciations can be composed are known as phones or phonemes. 

Approximately 50 phones may be used to pronounce any word in the English language. 

For example, the sentence ‘This is speech’ is represented as ‘th ih s ih z s p iy ch’. 

While phones are an excellent means of encoding word pronunciation, they are 

less than ideal for recognizing speech. The mechanical limits of the human vocal 

apparatus leads to co-articulation effects where the beginning and end of a phone are 

modified by the preceding and succeeding phones. Recognizing multiple phone units in 

context tends to be more accurate than recognizing individual phones. Current speech 

recognition systems deal with three-tuples of phones called triphones. It is customary to 

denote triphones as left context-current phone+right context. For example ‘th-ih+s’ is a 

triphone that represents the context of the ‘ih’ phone in the word ‘this’. The final ‘ch’ 

phone in dissertation can be modeled with a cross-word triphone whose right context is 

the first phone in the next word or by the triphone ‘iy+ch-sil’ where ‘sil’ is a special 
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phone that denotes silence. Though there are approximately 50x50x50 = 125000 possible 

triphones, only about 60,000 actually occur in English. 

The front-end processes every 10ms data input and extracts relevant features that 

will enable the recognition process. This involves converting every 10ms of speech into a 

39-element vector, that has statistical information about itself (each element having 

means, variances, mixture weights and scale factors). This then needs to be compared 

using some distance measure to every triphone phone model and the observation output 

probability for this input was obtained.  

Initial HMM recognizers used discrete OPFs and sub-vector quantized (VQ) 

models, which are easy to compute. The acquired acoustic vector was replaced by the 

index of the closest codebook vector, and OPFs were just look-up tables containing the 

VQ index probabilities. While this is computationally efficient, the discretization of 

observation probability leads to excessive quantization error and thereby poor recognition 

accuracy. To obtain better accuracy, modern systems use a continuous probability density 

function and the common choice is a multivariate mixture Gaussian in which case the 

computation may be represented as [8]: 

∑ ∑
∏= =

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=

M

m

N

n jm

jmt

N

n
jm

D

m
tj n

nny

n

wyb
1 1

2

2

1

22/ ][
])[][(

2
1exp

][)2(
)(

σ
µ

σπ

  (2.8) 

Here yt is the input vector, µjm and σjm represent the mean and standard deviation of the 

multivariate Gaussian, wm is the mixture weight, m is the no. of mixtures and n is the no. 

of feature vectors. The term before the exponent does not depend on the input and can be 

pre-calculated. Doing all calculations in the log domain significantly simplifies Equation 
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2.8 and reduces the exponent calculation to simple multiplications. Performing these 

modifications, Equation 2.8 reduces to 

∑ ∑
= =

×−=
M

m

N

n
imjmtimtj nVnnycyb

1 1

2 ][])[][()(log µ    (2.9) 

Cim being the final mixture weight and Vim being the variance. The HUB4 speech 

database which was considered for this research chose the values of M and N to be 8 and 

39 respectively. The outer term represents an addition in the log domain. Every triphone 

model would require pre-training which means that the number of parameters to be 

estimated is about 60000 x (39x8x2+8) = 11.37 million parameters. The training data 

usually available is insufficient to estimate so many parameters. The usual solution is to 

cluster together HMM states and share a probability density function among several 

states (Figure 2.6). Systems using such clustered probability density functions are called 

semi-continuous or tied-mixture systems. Groups of states that are tied together are called 

‘senones’. The total number of senones in the English Language ranges between 4000 

and 6000.    

The utterance hierarchy for the word ‘HI’ is shown in Figure 2.5. Each triphone is 

represented by a 4 state HMM. Only the first 3 states are emitting states (i.e., they can 

produce an observation vector yt). The last state is a null state. The overall effect is that of 

combining all the triphone HMMs by adding null transitions between the final states of 

one triphone HMM to the initial state of its successor. To model continuous speech, null 

transitions are added from the final state of each word to the initial state of all words. 
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sil-hh+ay   hh-ay+sil 

 
Figure 2.5 - HMM for word ‘HI’, with phones ‘hh’&’ay, and triphones ‘sil-hh+ay’&‘hh-ay+sil’. 

 Each HMM has 3 emitting senone states (striped oval) and one nullstate (plain oval). 
 

 

Figure 2.6 - State-tying[7] 

The viterbi search is modeled as a lexical tree search[15,16]. The roots of the tree 

correspond to the set of all triphones that start any word in the dictionary. Each node in 

the tree points to the next triphone in the expanded pronunciation of a word etc. 

Triphones that occur at the end of a word are specially marked so that a language model 

may be consulted at those points. Thus the lexical tree is a multi-rooted tree where each 

node points to an HMM and a successor node. In the case of word exit triphones there are 

multiple successors. Given an acoustic vector sequence Y, each vector in the sequence is 

b1(yt) b3(yt) b2(yt) 
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applied successively to the HMMs and the probability that the HMM generated that 

vector is noted. Transitions are made in each step to successor nodes. On reaching a word 

exit triphone, the state sequence history is consulted to find the word that has been 

recognized. The last n words (usually n=3) are checked against a language model for 

further analysis. Acoustic vectors are evaluated successively and on evaluating an HMM 

for the current vector, if the HMM generates a probability above a certain threshold, the 

successors of the HMM will be evaluated in the next time step. Thus there is always a list 

of currently active HMMs/lexical tree nodes and a list of nodes that will be active next. 

This combination of the Viterbi search combined with pruning techniques (comparing 

with threshold) is known as the Viterbi Beam Search[17-20]. Pruning prevents 

uncontrolled generation and maintenance of nodes with time by deactivating low-

probability paths. 

 

2.2 Language modeling 

The introduction of a language model to the speech recognition unit increases accuracy of 

the recognition hypothesis [21-23]. It helps introduce additional biases to the several 

alternate similar words that the acoustic model recognizes and cannot choose between. 

This also helps in the quick pruning of improbable paths and the unnecessary explosion 

of node generation. All state-of-the-art speech recognition systems implement a language 

model in one form or the other, and so it is necessary to study the language model in 

order to build a system that is commercially competitive. 

N-gram models [24,25] that predict the probability of a word sequence (in other 

words the probability of a word given the previous N-1 words) prove to be an effective 
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and common approach. They encode simultaneously the syntax, semantics and 

pragmatics and they concentrate on local dependencies. They are thus extremely effective 

for languages like English in which word order is important and the strongest contextual 

effects come from near neighbors. They also have the distinct advantage of being easy to 

train. N-grams can be trained automatically from a large corpus of text. 

The complexity of the modeling increases logarithmically with the size of the 

vocabulary V (the complexity for an N-gram vocabulary will be V^N). Large values of N 

lead to complexities both in the viterbi decoding stage as well as the training stage, where 

sparse training data leads to incorrect parameter estimation. This may even have a 

deteriorating effect on the recognition accuracy. Thus a modest value of 3 is chosen, and 

this has proven to be sufficient in systems like Sphinx and HTK. Such models are called 

trigrams. A trigram model may be trained using the following equation [26]: 

    
)2,1(

)3,2,1()2,1|3(
wwF

wwwFwwwP =    (2.10)  

Here, F(w1,w2,w3) refers to the frequency of occurrence of the trigram (w1,w2,w3) in the 

training text and F(w1,w2) refers to the frequency of occurrence of the bigram (w1,w2). 

In practice, for a large vocabulary all possible trigrams will not be present in the training 

corpus. In that case bigram or unigram probabilities are used in the place of trigram 

probabilities after reducing the probability by a back-off weight, which accounts for the 

fact that the next higher N-gram has not been seen and therefore has a lower chance of 

occurring [27]. 

A typical example of the use of a language model is shown in Figure 2.7. The 

Bigram probabilities were taken from the Brown Switchboard Corpus. Without the 

language model, the speech recognition system recognizes the phrase ‘on’ and has a close 
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contention in recognizing the phrase ‘I the’, instead of the actual phrase ‘I need the’. 

With the language model, the improbable paths are pruned out leading to a good 

recognition and increase in accuracy.  
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Figure 2.7 - Use of Language model  
 

(a) Shows the four words ‘I’,’Need’,’The’ and ‘on’, on the y-axis and the paths that 
the different hypotheses take as the input phones ‘aa n iy dh ax’ come in. 

(b) Shows the word models for the 4 words.  
(c) Shows the Bigram Probabilities obtained from the Brown Switchboard Corpus 
(d) Shows the path probabilities without the use of the language model. 
(e) Shows the path probabilities with the language model. 
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   (a)     (b) 
    

Bigram Probabilities

# Need 0.00018
# The 0.016
# On 0.00077
# I 0.079
I need 0.0016
I the 0.00018
I on 0.000047
I I 0.039
on need 0.000055
on the 0.094
on on 0.0031
on I 0.00085
need need 0.000047
need the 0.012
need on 0.000047
need I 0.000016
the need 0.00051
the the 0.0099
the on 0.00022
the I 0.00051            
   
  (c) 
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    (d) 
 

 
 
    (e) 
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CHAPTER 3 
 
Related Work 
 
Several speech recognition applications have been developed in the industry and sold as 

commercial products. Several speech applications and training kits are also available 

from universities that are mainly oriented at speech research.  Speech Recognition is 

inherently a computationally demanding task and hence software solutions running on a 

general-purpose processor are not good at real-time speech recognition. These systems 

are not particularly designed keeping underlying architecture in mind and hence end up 

squeezing all available resources of the processor. Some of the systems available are 

discussed below. 

 

3.1 Commercially Available Systems 

Commercially available software systems are IBM’s ViaVoice and Dragon Systems  

Dragon Naturally Speaking, claim to be able to support between 10k and 150k 

vocabulary sizes. They are speaker independent though some amount of training is 

encouraged. The systems can support multiple languages and report a >95% accuracy. 

They are however slow and sensitive requiring the user to speak slowly and 

discontinuously, and cannot be truly called a continuous speech recognition system. It is 

also not real-time since there is a lag between the spoken sentence and the recognized 
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output. These also take up a large amount of the CPU processing power effectively 

blocking it from doing other tasks and also consume a large amount of power. 

Considering the ‘always on’ nature of speech, these software at best work as a ‘speech-

to-text’ solution used for small periods of time for very specialized functions, and are not 

the best step towards making speech a general user interface. 

Since a lot of the research has been done with a product in mind, the systems used 

at Dragon [28-30] usually require a lot less resources than other research systems. For 

instance, while most systems were using a 10ms frame size, Dragon decided to use a 

coarser sampling of 20ms frame sizes. While most systems use 32-bit floating point 

formats for their input features, Dragon used 8-bit fixed-point parameters. To reduce the 

resource requirements even more, the commercial version applies automatic vocabulary 

switching to restrict the search space.  

The IBM speech recognition system differs form other competing systems by the 

early use of a rank-based approach for the computation of observation probabilities that 

allows avoiding certain search problems related to extreme probability values. The search 

strategy is a combination of an A*[31,32] with a time-synchronous Viterbi search (the so 

called ‘envelope search’) and is therefore difficult to compare to the fully time-

synchronous search of other systems. Other features that made this system substantially 

different from its competitors include that during the first recognition pass the usual 

mixture of Gaussian probabilities were replaced by a probability derived from the rank of 

the models score [33-36]. The system has a recognition vocabulary of 65,000 words.  

A version of ViaVoice is also available for embedded processors and mobile 

devices such as PDA’s. However this is a command and control type application working 
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on template recognition rather than speech processing. It has a maximum of 16k 

vocabulary and maintains a dynamically swappable 4,000 word phonetic flat list. It is 

speaker independent but has small database support. This system requires several minutes 

of read speech to adapt to a new user. 

The AT&T Watson speech recognition engine [27,37-39] is a software 

implementation of the AT&T voice processing technology. It uses a gender based 

triphone model and a 5-gram language model. The recognition takes place in 2 phases – 

the first pass does the phone recognition, word recognition and builds the word lattice; 

the second pass rescores the word graph.  

Microsoft’s Whisper [31,40,41] is an adaptation of CMU’s SPHINX and 

incorporates speaker adaptation and noise cancellation.  The acoustic models are 

compressed and hence Whisper claims to be memory efficient. The software supports a 

60,000-word vocabulary with the ability to add new words. It works with any Windows 

application and has two specialized applications for use in Windows - "Dictation Pad" 

provides enhanced dictation features while "IntelliSense" converts spoken numbers and 

times automatically. 

SRI’s DECIPHER [42-44] is another HMM-based system that uses multi-pass 

time synchronous Viterbi decoding. A first forward-backward pass generates word-

lattices using a 60,000-word bigram language model and context-dependent hidden 

Markov models. Only within-word context dependent models were used in the first pass. 

The Gaussian computation was sped up using vector quantization and Gaussian shortlists. 

The second pass performed a forward-backward N-best search on the word-lattices using 

the first-pass hidden Markov models. The N-best lists were then re-scored using more 
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expensive acoustic and language models. Most of the development effort went into the 

reduction of the error rate, and only little research was reported on means for achieving 

real time recognition. 

SRI‘s ‘Phraselator’ [45] is a template based phrase recognition and translation 

system. The Phraselator is a handheld, wireless computer used to translate more than 

1,000 spoken English phrases into languages such as Arabic and Pashto. This is again a 

lookup engine rather than a recognition engine. 

Several smaller companies have developed IC’s for small end applications like 

voice-responsive toys and voice dialers [46-50]. 

 

3.2 Research Systems 

SPHINX speech recognition systems [4,13,20,51-56] are CMU’s state-of-the-art large 

vocabulary speech recognition systems. They are semi continuous HMM based [13] 

systems and use state-tied triphone models. It uses scaled integer observation probability 

computation. Decoding is done in 2 phases with a first pass viterbi decoding done to 

reduce the search space and a second pass A* algorithm to combine the results of the first 

pass and the language models. Beam searches and various pruning strategies ate used to 

reduce the computations and prune paths quickly. However the CMU-SPHINX system 

uses an extraordinary amount of power while running on desktops and the power required 

is prohibitive for mobile applications. The SPHINX–IV system is CMU’s speech 

recognition system for the mobile domain.  It however supports a much lower vocabulary 

size and is still not real-time. 
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Cambridge University’s ABBOT system differs significantly from other systems 

by being the only neural net driven system used in large-scale evaluations [57-59]. It is 

also among the few systems to use a stack decoder rather than a time synchronous Viterbi 

algorithm for the search process. The ABBOT system supports a 65,000-word 

vocabulary. The recognition speed for this system in the evaluation was estimated to 

about 60 times slower than real time on a 170MHz UltraSparc.  

Cambridge University’s HTK system was the best recognizer in the 1994 LVCSR 

evaluation with a word error rate of only 10.5% [60,61]. All promising algorithms such 

as quinphone models, cross-word models, 4-gram language models and unsupervised 

speaker adaptation were applied to this system. Considerable effort was also invested in 

the pronunciation dictionaries. The commercial cousin of this system ‘Entropics’ is more 

stable and more toolkit-oriented.  

SONIC [62] is a toolkit for enabling research and development of new algorithms 

for continuous speech recognition.  The system uses HMM acoustic models and a two-

pass search strategy.  Model-based adaptation methods such as Maximum Likelihood 

Linear Regression (MLLR), Structured MAP Linear Regressions as well as  feature-

based adaptation methods such as Vocal Tract Length Normalization, cepstral mean & 

variance normalization, and Constrained MLLR are implemented [63].  

 

3.3 Implementations on general-purpose processors 

Several approaches have been taken towards finding solutions to the problems of speed, 

accuracy and power consumption. Research has been traditionally geared towards 

improving accuracy, with performance as a secondary goal. Power efficiency has been 
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largely ignored. Even the yearly HUB speech recognition evaluation reports typically 

emphasize improvements in recognition accuracy and mention improvements in 

performance as a multiple of “slow down over real-time” [64, 65]. 

Binu [4] used rapid semi-automatic generation of low-power high performance 

VLIW processors for the perception domain. Energy efficiency was primarily achieved 

by minimizing communication and activity using complier-controlled fine-grain clock 

gating. Ravishanker’s research improved the performance of the Sphinx speech 

recognition system by trading off accuracy in a computationally intensive phase for faster 

run time and then recovered the lost accuracy by doing additional processing in a 

computationally cheaper phase of the application [52]. This research also reduced the 

memory footprint of speech recognition by using a disk based language model cached in 

memory by the software. Agram, Burger and Keckler characterized the Sphinx II speech 

recognition system in a manner useful for computer architects [66]. They focused on ILP 

as well as memory system characteristics including cache hit rates and block sizes and 

concluded that available ILP was low. They compared the characteristics of the Sphinx II 

system with those of Spec benchmarks and also hinted at the possibilities and problems 

associated with exploiting thread level parallelism.  

Intel ICRC lab researchers executed the Intel speech recognition system on 

several versions of the x86 processor [67]. The study focused on the run time and size of 

the working set, and the language was Mandarin Chinese. They reported a decrease in 

ILP with increased clock rate. IPC decreased from between 1 and 1.2 at 500MHz to .4 at 

1.5 GHz. Obviously increasing clock rate is not the solution to improving speech 

recognition performance. The decrease in ILP was attributed to memory system behavior, 
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but a detailed explanation was not provided. The ICRC speech system is not publicly 

available, and details of the ICRC workload are not available. 

 

3.4 Hardware solutions 

A common approach to finding a solution to the problems of speed, accuracy and power 

consumption is to build hardware accelerators to speed up parts of the speech recognition 

process or build a complete hardware speech recognition system.  

 An earlier attempt to accelerate speech recognition may be found in the work of 

Anantharaman and Bisiani [68], who presented a multi-processor architecture as well as a 

custom architecture for improving the beam search algorithm used in the CMU 

distributed speech recognition system. The paper also describes the design process of the 

custom architectures and presents a number of ideas on the automatic design of custom 

systems for data dependent computations. 

Researchers at the Norwegian University of Science and Technology designed a 

custom probability density function (PDF) coprocessor in a 0.8µ CMOS process that 

could accelerate the computation of Gaussian observation probabilities in a hidden 

Markov model based speech recognizer [69]. This research concluded that memory 

bandwidth was a limiting factor for Gaussian computation. They approached the memory 

bandwidth problem by using a new fixed point representation called dynamical circular 

fixed-point format which reduced the memory bandwidth in half. The PDF coprocessor 

could evaluate 40,000 39-element Gaussian components in real time using this format at 

154 MHz consuming 853 mW of power. The workload has worsened by a factor of 15.3 

since this effort. Also the design was a fixed-point implementation and it is obvious from 
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current systems that fixed point does not meet the required range of generated 

probabilities necessary for high accuracy speech recognition.  

Sergiu.et.al[70] implemented a low power speech recognition system that 

performs real-time speech  recognition. This is a complete design that has its own 

language and acoustic model. It exploits parallelism existing in speech recognition 

algorithm with multiple Processing Elements (PE). Parallel execution helps in reducing 

clock frequency resulting in reduced power usage. Dynamic loading of speech models is 

used for changing language grammar and retraining, while reprogramming is used to 

support evolution of recognition algorithms. The focus on small sets of words (at one 

time) reduces the complexity, cost and power consumption. The recognizer is extremely 

flexible and can support multiple languages or dialects with speaker-independent 

recognition. The average power dissipation for the logic part of the decoder was about 

5.125mW in the 0.18µm process, and area of the design was about 2.5mm2. Evaluations 

demonstrate an order of magnitude improvement in power compared with optimized 

recognition software running on a low-power embedded general-purpose processor of the 

same technology and of similar capabilities. The design however is only good for a very 

small vocabulary and is phoneme based, therefore it is not good for real life use. 

  Binu [71] improved memory bandwidth on the SPHINX –III systems by using a 

blocking scheme whereby a single retrieved set of variances, means, weights and scales 

were used to calculate the observation probabilities for 10 frames. A special-purpose 

accelerator for the dominant Gaussian probability phase was developed for a 0.25µ 

CMOS process. Area, power and bandwidth efficiency are achieved by reducing the 

floating-point precision (a 24-bit format rather than the standard 32-bit format), 
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restructuring the computation, and sharing memory bandwidth.  The accelerator improves 

performance of a Pentium 4 (.13µ) system running the SPHINX – III system by a factor 

of 2, while simultaneously improving on the energy consumption by 2 orders of 

magnitude. The Gaussian accelerator consumed 1.8 watts while the Pentium 4 consumed 

52.3 watts during Gaussian computation, representing an improvement of 29 fold.  

 Researchers at the Tsinghua University developed a single chip speech 

recognition system based on an 8051 microcontroller core [72]. The chip was designed 

based on the SOC (system on chip) philosophy and an 8-bit MCU, RAM, ROM, 

ADC/DAC, PWM, I/O ports and other peripheral circuits were all embedded in it. 

Software modules including control/communication, speech coding and speech 

recognition algorithms were implemented in an 8051 compatible microcontroller core, 

resulting in the extremely low cost of the chip. The speech recognition adopted the 

template matching technique, and recognized up to 20 phrases with an average length of 

1 second and a recognition accuracy reaching more than 95% with the background SNR 

above 10 dB. The design operated at 40 MHz and consumed 60mW of power. 

Borgatti et.al [73] developed a low-power, low-voltage speech processing 

intended to be used in remote speech recognition applications where feature extraction is 

performed on terminal and high-complexity recognition tasks are moved to a remote 

server accessed through a radio link. Power optimization of portable terminals featuring 

speech recognition was pursued by partitioning speech recognition complexity between 

on-terminal circuitry and remote hosts. The proposed system was based on a CMOS 

feature extraction chip for speech recognition that computed 15 cepstrum parameters, 

each 8 ms, and dissipated 30 µW using a 0.9-V supply. Single-cell battery operation was 
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achieved. Processing relied on a novel feature extraction algorithm using 1-bit A/D 

conversion of the input speech signal. The chip was implemented as a gate array in a 

standard 0.5-µm, three-metal CMOS technology. Recognition rates above 98% were 

achieved in isolated-word speech recognition tasks.  

LOGOS [74] is a real time hardware speech recognition system that uses both 

parallel and pipelined processing techniques, matching up to several hundred words from 

a previously stored vocabulary of whole word "templates" in real time. An efficient 

single pass dynamic programming algorithm is used to find the sequence of templates 

that best represents the input. Continuous recognition is achieved using a trace back 

technique on partial recognition results. Vargas et.al [75] proposed a novel HW/SW co-

design with redundancy techniques to implement a speech recognition system. Special 

attention needs to be taken when partitioning digital signal processing algorithms into 

hardware and software parts. The design methodology in this work partitions the HW and 

SW parts in such a way as to boost system performance while maintaining low area 

overhead. The proposed approach is called the "speech recognition-oriented HW/SW 

partitioning and fault-tolerant design" approach (or simply SCORPION approach). Other 

VLSI-based designs[76,77] for HMM speech recognition also exist. 

The most recent research effort towards a hardware solution to the speech 

recognition problem is CMU’s ‘Moving Speech Recognition from Software to Silicon: 

the In Silico Vox’ research project [3,78]. The project is looking at both an FPGA 

approach as well as an ASIC solution to building massively parallel, energy efficient 

speech chips that will attain high performance. The FPGA approach plans to use a Xilinx 

Vertex II based chip with a clock rate of 50MHz to recognize about 1000 words. The 
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design will operate about 2.3 times slower than real-time due to memory bandwidth 

constraints. The ASIC implementation will be designed to recognize about 5000 words, 

operating at about 6 times faster than real time requirements. The overall size of the chip 

is estimated to be about 10mm2. The latest publication [79] from this group indicates 

successful design of an ASIC implementation that recognizes speech at .6xRT (real time), 

and runs at 125MHz. Hardware prototyping on a Xilinx XC2VP30 FPGA, using a Xilinx 

XUP development board has also been completed. The prototype recognizes about 1000 

words at roughly 2xRT. No power readings were reported. 

The use of reconfigurable logic and FPGA devices is another common approach 

to the speech recognition problem [6, 80]. Techniques vary from power aware mapping 

of designs onto commercially available FPGA devices to hybrid methods where 

specialized function blocks are embedded into a reconfigurable logic array [81,82]. The 

inherent reconfigurability of FPGAs provides a level of specialization while retaining 

significant generality. FPGAs, however, have a significant disadvantage both in 

performance and power when compared to either ASIC or CPU logic functions. 

 Melnikoff et. tried to exploit the parallel nature of the algorithm to implement the 

decoder part of the speech recognition system onto an FPGA[83]. The question of how to 

deal with limited resources, by reconfiguration or otherwise, was also addressed. A later 

publication [84] indicated that the design was implemented on a Xilinx Virtex XCV1000 

FPGA, sitting on Celoxica’s RC1000-PP development board. The design occupied 5,590 

of the XCV1000’s slices, equal to 45%, and ran at 44 MHz. The correctness values (less 

than 60%) are clearly much lower than those found in commercial speech recognition 

products. This is because such products use significantly more complex models. 
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 Vargas et a.[85] used a new approach by which the Viterbi algorithm is built in 

with the HMM structure. The probabilistic state machines run as parallel processes and 

the entire system is built as a hardware/software co-design. The design is intended for 

isolated  word recognition, and runs 500 faster than classic implementations.  

 

3.5 Digital Signal Processing solutions 

It is common practice to use special DSP techniques to try to reduce the number of 

operations performed and speed up the algorithm. Bocchieri [86] used vector quantization 

of the input vector to identify a subset of gaussian neighbors so that only a smaller subset 

of  likelihood  computations needed to be calculated with only a small loss in accuracy. 

In [87], the authors reduced the word error rate for speaker-independent continuous 

speech recognition by modeling subphonetic events with HMM states and treating the 

state in phonetic hidden Markov models as the basic subphonetic unit.  Lee et al [88] 

used context-independent models for selection and back off of corresponding triphone 

models. Another study [89] used lookahead HMMs and frame skipping to skip the 

gaussian calculation for frames that do not show significant change from the previous 

frame(s).  Much effort has been spent on optimizing the computation of likelihood for all 

tied triphone states [90-94]. The authors in [95] categorize the different schemes into 4 

layers, and described how the different layers can interact with each other and 

compliment each other.  These techniques and their relevance are discussed further in 

detail in Chapter 5. 
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CHAPTER 4 
 
System Architecture  
 
 
 
The Speech Recognition System can be separated into 3 separate units – the Front-End, 

the Gaussian Estimator, and finally, the Viterbi Decoder. Figure 4.1 shows the overview 

of the system. The Front end processes the spoken input and provides mel-frequency 

cepstral coefficients (MFCCs) of the input data to the Gaussian Estimator. The Gaussian 

Estimator then uses this input along with the acoustic models to provide the 

phone/senone scores. The Viterbi Decoder uses this information along with the language 

models to calculate the state transitions and word-to-word transition probabilities and 

search for the most likely sequence of words. 

 

 

 

 

 

 

 

Figure 4.1 - System Overview 

Profiling of the speech recognition process shows that system spends approximately 

.89%, 49.8% and 49.3% [4] of its compute cycles in the Front-End, Gaussian Estimation 
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and Viterbi Decoding Stages respectively. Fortunately, both the compute heavy stages are 

extremely parallelizable, making them ideal candidates for translation into hardware.  

In our implementation we used a 4 state HMM model that was the most common 

choice among speech recognition systems. The Gaussian Estimator unit was modeled as a 

32-bit unit though 20-bit implementations have proven to be sufficient [101]. This was so 

that we would be able to work with standard 32-bit acoustic scores, and optimize down 

once the initial implementation was complete.   

Figure 4.2 shows the overview of the implementation of the complete system. The 

system consists of a ‘Gaussian Estimator’, a ‘Viterbi Decoder’, a ‘System Control’, an 

‘Arbiter’, three DRAMS and an SRAM. The system acts like a co-processor that 

interfaces with a host processor. The front-end will be implemented on the host processor 

providing inputs to our co-processor at 16kbps. The Arbiter acts as control to the 

Gaussian Estimator and also directs the inputs from the front-end to it. Initially it was 

envisioned that the Arbiter would be used to control any feedback from the Viterbi 

Decoder that we may implement. The final system does not contain feedback. The 

Arbiter is also responsible for initializing the DRAM Unit (with the Acoustic Models). 

The Gaussian Estimator updates and places the phone/senone scores in the SRAM every 

frame. The Viterbi Decoder accesses these scores as well as other data in the two DRAM 

units to complete the process, and place the outputs in the form of a sequence of word 

indexes on the ‘output’ bus. The Viterbi Decoder is an extremely self-sufficient unit 

requiring minimal external control. System Control acts as control unit for the entire 

system and is also responsible for initializing DRAM UNIT –1 and DRAM UNIT –2 

which hold the Language Models.  
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Figure 4.2 - System Implementation Overview 

The different parts of the system are discussed in detail in the following chapters. We use 

this chapter to also briefly describe the Front End.  This part of the system is not 

implemented in hardware as it is responsible for less that 1% of the total computation 

workload and can easily be done by a host processor 

 

4.1 Front-End    

Even though the front end only occupies less than 1% of the compute time on speech 

systems, it is very important for two reasons – (a) The front-end is responsible for 

generating a good smooth spectral estimate of the incoming speech waveform and is 

directly responsible for obtaining good output observation probability estimates (b) 

Understanding acoustic vectors is a crucial prerequisite to understanding the operation of 

the acoustic model. The Front-End is not dealt with in detail in this research, and the 

implementation (which is almost standardized at this point) is obtained from [102]. The 

overview is shown in Figure 4.3. 
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Figure 4.3 - Front-End [102] 
 
The human vocal apparatus has mechanical limitations that prevent rapid changes to 

sound generated by the vocal tract. Thus, speech signal are considered to be quasi-

stationary, i.e., stationary in short time intervals (typically 5-20 ms), during which the 

spectral characteristics are relative constant.  DSP techniques may be used to summarize 

the spectral characteristics of a speech signal into a sequence of acoustic observation 

vectors, with a single vector representing about 10 ms of speech. 

The front-end segments the signal into blocks and makes a smooth spectral 

estimate for each block. The (constant) length of the blocks is typically chosen to be 10 

ms, and the blocks are overlapped in time to give a longer analysis window of 25 ms 

(commonly a Hamming window, i.e., a raised cosine). The raw signal is also pre-

emphasized, i.e., high frequencies are amplified in order to compensate for their 
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attenuation because of the mouth directivity. Other processing such as noise suppression 

and band-pass filtering (usually frequencies limited to 300-3400 Hz) and removal of long 

silences is also necessary. 

The spectral estimates can be computed via linear prediction or discrete Fourier 

analysis or cepstrum analysis, and the coefficients, i.e., the final acoustic vectors can be 

obtained via a number of transformations. The most typical method of modern LVR 

systems is to use the mel-frequency cepstral coefficients (MFCCs). The processing is 

mainly done in order to satisfy constrains in the acoustical modeling component. The 

Fourier spectrum of each speech block is smoothed by a mel-scale filter-bank that 

consists of 24 band-pass filters that simulate the human cochlea processing. The mel-

scale is linear up to 1000 Hz and logarithmic thereafter, creating a so-called perceptual 

weighting to the signal.  

From the output of the filter-bank a squared logarithm is computed, which 

discharges the unnecessary phase information and performs a dynamic compression 

making the feature extraction less sensitive to dynamic variations. This also makes the 

estimated speech power spectrum approximately Gaussian.  

Finally, the inverse DFT is applied to the log filter-bank coefficients, which 

actually is reduced to a discrete cosine transformation (DCT). DCT compresses the 

spectral information into lower-order coefficients, and it also decorrelates them allowing 

simpler statistical modeling. The acoustic modeling assumes that each acoustic vector is 

uncorrelated with its neighbors. Due to human articulatory system, this requirement is not 

well satisfied; there is continuity between consecutive spectral estimates. Second and 

third order differentials greatly reduce this problem. A linear regression is fitted over two 
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preceding and two following vectors resulting the final acoustic vector with 39 

components (each 32 bits wide). 
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CHAPTER 5 
 
Gaussian Estimator  
 
 
 
Chapter 2 described how modern systems use a continuous probability density function to 

evaluate the senone scores every time frame, and the common choice is a multivariate 

mixture Gaussian. This Gaussian Estimation is perhaps the most computationally 

intensive part of the speech recognition process. The complex nature of these 

computations require several IEEE 754 format floating point operations to take place per 

time frame. Several multiplications, additions, multiply-accumulate-compares, (a-b)2 type 

operations, scaling and weighing need to be carried out for the computation of each 

senone score. Current research trends also show that these computations are steadily 

increasing in complexity and number. These factors impact the real-time performance of 

the system, requiring faster evaluations of scores. They also have a significant impact on 

the total power consumption of the system. Porting the computation to hardware is 

justified both by the need to speed up the number of computations that are carried out 

during the process as well as the need to lower the power consumption of the process.  

This chapter discusses two and a half versions of Gaussian Estimators that were 

designed. The first version is the baseline system. It is a highly pipelined floating-point 

unit that efficiently ports the algorithm to hardware. This baseline system forms the 

foundation for the second design. It was also used to test the improvements in 



 43

performance of the later designs. An improved and more power efficient unit – the 

Reduced Calculation Gaussian Estimation was also designed. This version was not 

completely implemented and tested due to a shift in research focus (hence its reference as 

a ‘half’ version). However, the ideas of this design were incorporated in the final version 

of the working design and hence it merits a brief discussion. 

The constant push to improve both speed and accuracy of the gaussian estimation 

has led to the emergence of several new techniques [86-90]. Chan et al. [95] has 

categorized these techniques into four unique layers and discussed their interaction. They 

also showed that any new technique that emerges could be placed in one of the four 

layers. The final version of the Gaussian Estimator is a highly flexible floating-point unit 

that can be programmed to adapt to new techniques at three of these four layers. The 

gains offered by an ASIC design in terms of speed and power consumption at the circuit 

level are obvious. However, this design, also offers the ability to incorporate new 

techniques in speech recognition and use it to reduce power consumption at the algorithm 

level. The area of speech recognition is fast-paced and constantly growing. A technique 

that is new today may become a standard among speech recognition systems in the 

future. Hence, an important implication of the flexibility of this design is that it can adapt 

(at least in part) to such changes in the future and not become obsolete.    

 

5.1 Baseline Gaussian Estimator 

The baseline Gaussian Estimator (GE) is shown in Figure 5.1. The 3 values of mean 

(Mean_0), variance (Variance_0) and the input vector component enter the GE pipeline, 

and are processed. During this time, the next values of mean and variance are brought 
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into buffers Mean_1 and Variance_1. One the next iteration, these values are used along 

with the input, and the buffers Mean_0 and Variance_0 are updated to be used for the 

next cycle. 

 

Figure 5.1 - Baseline Gaussian Estimator 

Each vector codebook consists of 8 mixtures of 39 variance and mean values each. Each 

of these are 32 bits wide. Every mixture also has its own weight value. Effectively, this 

would mean that each Gaussian Estimator unit would have to read in 

(39x2+1)x8x32=20224 bits of data per senone. Thus for about 6000 senones, this 

amounts to 15.16MB of data every 10ms, or 1.516GBps. The input data accounts for 

another 16KBps. 

The total on-chip memory required would be the buffers for the variance and 

mean values, as well as the buffer memory on the accumulators (to hold the temporary 

values during the looping stage). This works out to be about (32*4+32*39*2)+32*2 

+32*8= 2.944Kbits of memory per GE unit.   

Binu [71] used a blocking technique and data-reuse to arrive at a partial solution 

to the memory bandwidth problem on a PC. On an custom ASIC, the bottleneck will be 

the maximum operating speed of each of the three FPU’s. Correspondingly multiple such 

units would have to work in parallel to realize real-time requirements. The FPU units 
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were written in Verilog and simulated in Synopsys for a .25µ technology. The total area 

occupied by the coprocessor design (not including memory) was about 1.955mm2. The 

fully pipelined designed functioned at about 233Mhz. At this speed, evaluating about 

6000 senones in real time would mean implementing about 6 such units in parallel.    

Table 5.1 gives the current memory speed and area measures for SRAMs and 

DRAMs. The required on-chip memory area would be 6x2.944Kbits/(3Mbits/10mm2) = 

.0588mm2. The total logic circuitry area is about 11.73mm2. The required off-chip is 

about 15.16 MB and the required bandwidth of 1.5GBps is also met.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.1 – SRAM and DRAM specifications 
 
While real time implementation is possible, we also need to focus on building a low-

power design. Let us look carefully at Equation 2.9. The higher the value of the output in 

the log domain (the o/p is a probability and the negative is implicit and not used for 

calculations), the worse off the input is at matching this particular senone. With this 

insight, we can reduce the number of performed calculations by using this algorithm - if 

the value of the accumulators reaches/exceeds a particular predetermined threshold, the 

GE unit squashes all further calculations for that input on that senone and returns a high 

value (modeling negative log (0)). This reduced-calculation GE is shown in Figure 5.2. 

Obviously, the efficiency of this technique depends on how quickly a good estimate of 

> Off-chip DRAM 
 E.g. 800 MHz DDR2 (x16 bit) 

◊ Bandwidth : 160 – 1600 MBps 
◊ 256 Mbit – 1Gbit 

> On-chip DRAM 
 ~4 GBps (256-bit embedded DRAM) 
 16 Mbit/10 sq.mm 

> On-chip SRAM 
 ~16 GBps (256-bit, 500 MHz embedded 

SRAM) 
 3 Mbit/10 sq.mm 
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the output observation probability can be obtained. Thus the components of the vector 

codebook that are the heaviest contributors to the output probability need to be brought in 

and computed first, followed by components contributing less. Thus if the vector code 

book is properly setup after profiling, unnecessary calculations leading to incremental 

differences can be avoided and in the case of speech recognition, improbable paths can be 

pruned quickly. This can lead to huge power savings both at the GE level as well as 

during the Viterbi decoder search. Note: This technique is dependant on the ability of the 

profiling to clearly demarcate heavy and light contributors to the distortion. Also it is 

important to note that for inputs that closely match the acoustic vector codebook, all 

contributions will be small, and the final output will also be small (indicating a high 

probability).   

 
 

Figure 5.2 - Reduced Calculation Gaussian Estimator 
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spent on trying to reduce computation at the algorithm level. In particular, several 

techniques have been proposed to speed up the computation of the senone score [86-89]. 

We realized that in order to be commercially competitive, any coprocessor that we build 

has to be able to adapt (at least in part) to these new techniques. 

The techniques have been proposed to speed up the computation of the senone 

scores have been categorized into different layers [95]. Individual fast GMM computation 

techniques can be associated with specific layers. This allows two things – first, 

representative techniques associated with each layer can be compared for effectiveness, 

and secondly techniques from different layers can be used in tandem to improve the 

speeds of different parts of the computation simultaneously. It should be noted that using 

two techniques associated with the same layer will perhaps not be as effective as they 

will be working on the same part of the computation and in fact may reduce performance 

due to increased overhead with low returns. We will briefly go through these layers and 

techniques. 

 

5.2.1 Layer Categorization  

5.2.1.1 Frame-Layer Algorithms 

Frame-layer algorithms decide whether the senone score of the current frame should be 

computed or skipped. Speech is a slowly changing signal, and so the observation 

probabilities do not usually change dramatically from one frame to the next.  The score of 

a skipped frame is assumed to be copied from the most recently computed frame. The 

simplest technique called Simple-Down Sampling (SDS) computes the frame scores only 

for every other frame. There is no faster way to compute a score than to assume it has not 
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changed and not compute it at all. This technique can be extended to skipping every two 

out of three frames as well. Errors introduced by this system can be, at least in part, 

recovered by using wider beams (more relaxed pruning). The technique is discussed in 

detail in [89].  

Another technique used that falls into this category is the Conditional Down 

Sampling (CDS) [89]. A VQ (Vector Quantized) codebook is trained from all means of 

GMMs of a set of trained acoustic models. Then, in decoding, every frame’s feature 

vector is quantized using that codebook. A frame is skipped if the feature vector is 

quantized to a codeword, which is the same as that of the previous frame. For rapid 

speech the error rate introduced by SDS can be prohibitive, especially if the concept is 

extended from skipping only every other frame to skipping every two out of three frames.  

It is thus important to estimate if the signal remains static for the next couple of 

frames. This is done by calculating the output of the HMMs for the lookaheads [89]. 

Lookahead HMMs are similar to monophone (context independent) HMMs. These are 

small in number allowing the computation of the observation probabilities bj(Ot)(senones 

scores) for these models to be fast enough to be performed for every input frame t and 

every state j of the lookahead HMM models.  

The Euclidean distance between the vectors of these scores for the next two 

frames is used to determine whether or not the signal is currently changing:  
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The maximum score Dmax = max(0<i<t)D(i) is also recorded. The normalized value if then 

compared to find out how many frames need to be skipped. 
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( ) 3.00.0 ≤< tD norm   : skip 2 frames 
( ) 6.03.0 ≤< tD norm : skip 1 frame 
( ) 0.16.0 ≤< tD norm :skip no frames                        (5.3) 

 

5.2.1.2 GMM-Layer algorithms 

Algorithms that decide which senone scores need to be computed in each computed 

frame are placed in the Gaussian mixture model (GMM) layer. One such representative 

technique is the Context-Independent (CI) GMM-based selection (CIGMMS) [88]. CI 

GMM scores (scores of monophone models instead of triphone models) are first 

computed (50 in number). A beam or threshold is then applied to these scores. For those 

scores that are within the preset threshold, the detailed context dependent CD GMM 

(senone) scores are computed. The rest are backed-off by their corresponding CI GMM 

score.   

 

5.2.1.3 Gaussian-Layer algorithms 

The different techniques used to decide which Gaussians dominate the senone score 

computation are categorized as Gaussian-Layer techniques. One such technique is the 

Sub-Vector Quantization Gaussian Selection (SVQGS) [86] where a rough model 

computation is first used to decide which Gaussians (in the multidimensional Gaussian 

distribution) need to be computed. 

In this scheme, all mixture components are clustered into neighborhoods[86] 

during system training. A vector quantizer, consisting of one codeword for each 

neighborhood of gaussians is also defined. During the recognition, vector Quantization of 



 50

the input frame vector allows the selection of a small subset (neighborhood) of Gaussians 

whose likelihoods must be exactly computed, and a complimentary set whose likelihoods 

can be quickly approximated by table look-up or by a small constant. 

An input observation Ot is said to be quantized to a particular codeword if  
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                                 (5.4) 

Here Ot[d] represents the dth element (or dimension) of the input, and µt[d], and Ut[d], 

represents the dth element (or dimension) of the jth mean and covariance. ϕ is the 

quantization threshold. Once this codeword has been identified, only the input vector 

likelihoods of the Gaussians of the codeword neighborhood are exactly computed and 

added into the state likelihoods.   

 

5.2.2 Implementation 

The Front-End takes up less than 1% of the total computation, and can be implemented 

using the host processor. The system context for our Gaussian Estimator (GE) is shown 

in Figure 5.3. The extracted feature vectors are fed into the GE through an arbiter unit. 

The arbiter also initializes the DRAM with the acoustic models for all senones, and 

obtains feedback from the Viterbi Decoder. It uses this information to provide the input 

to the GE. The results or senone scores are stored in an SRAM, from which the Viterbi 

Decoder accesses them. Figure 5.4 shows the block diagram of the GE itself. 

The Gaussian Estimator is a highly pipelined IEEE 754 32-bit floating-point unit. 

The data path consists of an (a-b)2*c floating point unit followed by an adder that 

completes the inner loop of Equation 2.9. A fused multiply-add unit – the Scale Weight 
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Adjust unit - (labeled SWA in Figure 5.4) then performs the scale and weight adjustment. 

A log_add unit completes the outer loop.  

The basic building units (adders /multipliers) for this design have a 3-stage 

pipeline needing three buffers at both adder units to complete the calculations. The 

internal control unit has a course grain control over most of the arithmetic units, and 

multiplexers (all shaded boxes in Figure 5.4). The different mode settings provide course-

grain control of different stages of the pipeline, as well as control over the interaction 

between the different units. This will be discussed in detail. From this point on, ‘a’,’b’ 

and ‘c’ will be used to refer to the inputs to the Gaussian Estimator. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 - Gaussian Estimator Interfacing 
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or dimension (dim), number of mixture (mix), scales, weights, thresholds and other setup 

information. It should be noted that many of these parameters change during the course 

of the computation, (for example, scale and weight values change for every GMM), and 

can be controlled separately and quickly. The SW (Scale Weight) register array stores the 

scale and weight values during the normal operation mode. The threshold array stores the 

different beam values, which the compare (x>y) unit uses to compare outputs at different 

stages of the pipeline against. 

During the normal observation probability estimation process, the input feature 

vector is first stored in the internal register array (labeled ‘Input Vector’ in Figure 5.4). 

Mean and variance values for each senone are then fed in parallel to the mean and 

variance buffers m0, v0. Buffers m1 and v1 are updated with these values in the next 

cycle, which in turn feeds the data path. The output of each of the completed internal loop 

(over the entire vector length) is a gaussian. This output is scaled and weighed and passed 

onto the log_add unit, which performs the outer loop calculations in the log domain 

(mixture of gaussians). The output (ScoreOut) of this is sent to the SRAM. A crude 

power save mode compares each of the individual gaussians as well as the summation 

(o/p of the log_add module) to one of four threshold values. If the observation probability 

falls below a particular threshold, further calculations for that particular senones are 

squashed and a preset ‘Constant backoff’ is sent to the output.   
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Figure 5.4 -  Gaussian Estimator 

The complete design has multiplexed inputs and outputs as well as trigger and handshake 

signals, which are not shown for the sake of simplicity. 

 

5.2.2.1 Adaptation to the layer techniques 

Frame layer 

For the SDS [89] implementation, the arbiter simply feeds the GM unit every other 

frame, and in turn updates senones score value every other frame. The arbiter contains a 

counter that can be externally set and triggered. For the SDS, this counter is activated and 

its last bit is monitored to find out which frames are to be skipped.  

For the CDS implementation, we first calculate the senone scores bj(Ot) for 

lookahead HMM models[89]. Two sets of scores are maintained in the SRAM memory, 

one for the previous calculated frame, and one for the current frame. Scores of 

consecutive frame models (the Euclidean distance) are compared and recorded. The 

maximum score Dmax = max(0<i<t)D(i) is also recorded. 
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For the D(t) calculations, dim is first modified to fit the required vector length, 

and then bj(Ot) is fed to a, bj(Ot-1)  is fed to b, and ‘1’ fed to c. D(t) is temporarily stored 

in the SW register array. Dmax is recorded by continually feeding the result of the first 

sumer unit to the compare unit and updating the threshold if the current output value is 

greater than the recorded Dmax till now.  

In our implementation, instead of the normalization (Equation 5.2), we scale the 

max score to obtain the thresholds (.3*Dmax, .6*Dmax). This is performed in 2 separate 

runs of the Gaussian Estimator, where √.3 and √.6 are fed into ‘a’, 0 into ‘b’, and Dmax 

into ‘c’. The outputs (for both values) from the first sumer unit as well as Dmax are sent to 

three of the four threshold buffers. Finally the values of D(t) are compared to these values 

using the compare_unit(labeled ‘x>y’ in Figure 5.4). The output of the compare unit 

(compareOut) is sent to the arbiter to set its internal counter in turn setting how many 

frames to skip. 

GMM layer 

Context Independent observation probabilities [88] are first calculated, and compared to a 

threshold value using the compare unit. The output ‘compareOut’ sets a bit in memory 

signaling whether the corresponding context dependent phones need to be computed or 

not. Else the CD scores are backed off by the CI score (ScoreOut). 

 

Gaussian Layer 

Codeword and cluster definitions are done offline. A pre-calculated threshold value is 

sent to the threshold register array. The output of the first adder unit is used to identify 

the codeword and neighborhood of the input vector [86]. The output of the compare unit 
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(compareOut) is sent to the arbiter and is used to select the codeword and its neighbors 

using a LUT. Now each GMM is made up of a reduced set of mixtures. Finally the mix 

parameter is varied for each senone and the observation probability of each one is 

calculated using the reduced set of mixture values. 
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CHAPTER 6 
 
Viterbi Decoder 
 
 
 
In Chapter 2, we discussed in detail the components that contribute to determining the 

most probable sequence of spoken words. One of these components was P(Y|W) - the 

probability with which a given HMM could have generated a particular observation 

sequence Y. This probability can be calculated using the Forward/Backward algorithm for 

HMMs[1]. However it is more common to do a Viterbi search and update, even though it 

is more expensive. The optimal state sequence is needed at a later stage anyway, and the 

Viterbi search can compute the probability and uncover the optimal state sequence 

simultaneously. One problem with the Viterbi search is that the number of active states 

can exponentially increase. Hence a heuristic classically called “beam search” is used to 

prune unlikely triphones that have little chance of having the best score in the future time 

step. The combinations of the two processes is called Viterbi beam search. In this 

dissertation, when we talk about the Viterbi search, we imply the Viterbi beam search.  

Another component that contributes to the recognition process is P(W), which is 

the probability of observing the sequence of words W independent of the observed signal 

(sequence) Y, which is determined by a language model. In our implementation, we 

integrate the language model search into the Viterbi Decoder.  
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The dictionary words can be phonetically broken down and are stored in either flat form 

or lexical tree form. Figure 6.1 shows two form of dictionary arrangement representing 

words – Start, Starting, Started and Startup. 

 

Figure 6.1 - Flat vs. Lexical Dictionary 

In this chapter we will discuss two implementations of the Viterbi Decoder. The 

first version is based on the conventional flat dictionary style. The advantage to this was 

that it was easy to implement. It was easier to keep track of word endings, and easier to 

transition in between words. The flat dictionary style was a good initial choice allowing 

us to lay down the foundations for the different operating stages of the Viterbi Decoder. 

This design has been discussed in Section 6.1. The initial design provided us with 

estimates on memory bandwidth and helped us identify critical memory components and 

bottlenecks.  

We realized early on that restructuring the memory was critical to reducing the 

number of operations and HMM transition evaluations per frame. This would also have a 

direct impact on the speed of the overall system in terms of real-time performance, as 

well as the power consumed. At this point the lexical tree dictionary seemed like a good 

option in terms of eliminating redundant calculations and also reducing the overall 
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memory requirements.  However the main problem with switching to the lexical tree 

dictionary was the difficulty in word-to-word transition. This is discussed in detail in 

Section 6.2. We solved this problem in our second implementation of the Viterbi Decoder 

using an innovative ‘TimeStamp’ concept and a unique memory arrangement style. The 

improvements made to the initial design are discussed in Section 6.2. We then move on 

to the implementation of the final design which has been discussed in Section 6.3. 

 

6.1 Implementation of the Viterbi Decoder (Flat Dictionary) 

The Viterbi decoder unit computes each state transition using data from several sources 

including the transition score, past score, and output probability score. It uses this 

information to compute the probability of being in a particular state at a given time, given 

the sequence of inputs till that time. Monitoring the last states of triphones allows us to 

search for and identify potential within-word triphone transitions and word-to-word 

transitions during state updates using the language model.  

We partition this search process into 2 stages – the State-Update-Stage and Word-

Transition-Stage. In the State-Update-Stage, each state within all active triphones are 

updated using transition scores, past scores and output probability scores. Last states of 

all active triphones that are not the last in a word are also monitored for transition into the 

next triphone of the word. In the Word-Update-Stage, the last triphone of all words are 

monitored for transition into the next word. Every triphone state must be updated within 

the 10ms window, for the application to run in real time. 
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6.1.1 State-Update-Stage 

We will first list out the different memory elements of the Viterbi Decoder in Section 

6.1.1.1 going into such detail as content and total size of each element. Next we will 

discuss how these memory elements are accessed and manipulated to perform the search 

process in Section 6.1.1.2. 

 

6.1.1.1 Viterbi Decoder Memory Elements 

Triphone_Block 

The Triphone_Block is the central element in the Viterbi decoder. Every triphone of 

every word in the language has an entry in the Triphone_Block. Each entry maintains the 

current score and history of each of the triphone states, its history, the ID of each state 

senone, and the transition ID of the triphone. The first 3 bits are the valid, second last and 

last bits indicating whether the triphone is an active one, whether it is the second last, or 

the last triphone in a word respectively. The next 4 blocks of 13 bits each are senone-ids 

for each of the 4 states (each senone is 1 of 6000 entries). These are used to index into the 

Senone_Score block. The next 4 blocks of 32 bits each are the current-scores of each of 

the states. The next 4 blocks of 16 bits each are the word-history for each state, which 

indicate the last word from which the transition to the current word was made. The 16 

bits are an index into the Identified_Words block. Since each time frame of 10ms can 

hypothetically lead to a new word to word transition, words that transition into the 

current word can differ for different time frames. The last 16 bits give the ID of the 

triphone – the transition_id (1 of 60,000 triphones), and are used to index into the 

Transition_Block.  
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Each word was assumed to have an average of 8 triphones (this is statistically true 

[103]). Thus a total of 60000x8 entries are present in the Triphone_Block. However since 

it is not possible to predict what the last triphone of any word might be (note: the last 

triphone depends on the first phone of the next word), the last triphone entry is simply a 

pointer to 50 locations in the Triphone_Block, each being one of the 50 possible last 

triphones of the word. With this in mind, the total number of entries increases by another 

60000x50. Thus a 60K vocabulary takes about 114.405MBytes of memory. Figure 6.2 

shows the Triphone_Block and Table 6.1 summarizes its contents. 
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Figure 6.2 - Triphone_Block 

Table 6.1 - Contents of Triphone_Block 

  NAMES SYMBOL WIDTH 
 

Valid Bit V 1 
Second-Last Bit S 1 

Last Bit L 1 

Senone-ID (4 states) ID0, ID1, ID2, ID3 4x13 

State current-scores (4 states) S0, S1, S2, S3 4x32 
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Table 6.1 (continued) 

Word –history (4 states) H0, H1, H2, H3 4x16 

Transition ID TID 16 

 

Transition_Block 

The 6 transition probabilities (a00, a01, a11, a12, a22, a23) for each triphone of each word are 

stored in the Transition_Block as 32-bit entries. They are indexed using the transition_id. 

The total number of entries is 60000 (one for every possible triphone), and the total 

memory requirement is about 1.44MBytes. The Transition_Block is shown in Figure 6.3 

(a). 

 

Senone_Score 

The Senone_Score contains the output observation probabilities (senone-scores) of each 

of the senones that occur in the language as 32 bit scores. As indicated in Chapter 5, this 

is updated by the Gaussian Estimator every frame. The last bit indicates whether the 

senone is active or not. This is used during the feedback from the decoder unit to the 

Gaussian Estimator unit. The senone-ids are used to index into this block. Using a total 

senone count of 6000, the memory required is about 24KBytes. The Senone_Score block 

is shown in Figure 6.3 (b). 

 

Word_Lookup 

The unique address of each triphone is used to index into the Word_Lookup table. This 

table basically helps identify which word has been identified after the last state of the last 

triphone passes pruning. Each entry is 16 bits (used to uniquely identify 1 of 60000 words 
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in the dictionary), and the total number of entries is 60000x8. This takes up about 

960KBytes of memory. The Word_Lookup block is shown in Figure 6.3 (c). 

  

6000

 

        (a)          (b)             (c)  

Figure 6.3 (a) Transition_Block  (b) Senone_Score  (c) Word_Lookup 

 

Identified_Words  

Words that pass the pruning stage of the Viterbi decoder are inserted into the 

Identified_Words block as a 16-bit Word_ID obtained from the Word_Lookup block. The 

history index of the word (in this case the history index of the last state of the last 

triphone of the word) is also inserted into this block as a 16-bit Word_History. When the 

final backtracking takes place, this block is traced back to obtain the final ‘hypothesis’. 

The number of entries into this block was chosen as a worst case of about 60000. In 

actuality only about 5000-10000 (including multiple instances of a word) will be present. 

The next 50 bits – the score_active_bits - indicate which of the 50 final triphones passed 

the pruning stage for this word. They are an indicator of which phones are active and 

need to be checked by the language models. The final 16-bit entry – the 
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Last_Phone_Score_index - is the index into the Last_Phone_Score block. The total 

memory size needed is about 802 KBytes. The Identified_Words block is shown in 

Figure 6.4(a).  

 

Last_Phone_Score 

The Last_Phone_Score contains the scores from the last 50 triphones of every recognized 

word. They are indexed using the Last_Phone_Score_index. The 16-bit 

Last_Phone_Score_index form the most significant bits of the 22-bit index. The 

Last_Phone_Score_index is the start location of the 1st of the 50 scores for a word. 

Adding the bit location of the valid bits from the Identified_Words block gave the other 

scores locations. The maximum score for all blocks is also maintained for backtracking. 

There are a total of 50x216 entries each 32 bits wide. The total memory requirement for 

this is about 13.1MBytes. The Identified_Words block is shown in Figure 6.4(b).  

 

 

   (a)      (b) 

Figure 6.4  (a) Identified_Words  (b) Last_Phone_Score 
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6.1.1.2 The Viterbi Decode Process 
 
Initially the pre-trained of the transition probabilities are placed in the Transition_Block. 

The valid bits for all the start triphones of all the words are also set to ‘1’. All senones of 

these triphones in the Senone_Score block are also activated (valid bit set to ‘1’).  

During the State-Update-Stage, the Triphone_Block is scanned and all triphones 

that have their valid bit set are sent for Viterbi decoding and update. During this process, 

the senone-ids of each of the states are read and are used as indexes into the 

Senone_Score block. The senone scores for each state is obtained from here. The 

transition_id is also used to access the Transition_Block and obtain the transition 

probabilities of the triphone HMM. Each update-unit then reads the senone scores, the 

transition probabilities and the past state score and produces a new score for the state. 

The number of update-units will depend both on the speed of the unit (to obtain real-time 

requirements) as well as memory bandwidth constraints. A typical update-unit is shown 

in Figure 6.5. Once the score for all states have been calculated, the updated score as well 

as the history bits of a state are written back. The best score for all the state calculations 

is maintained so that pruning can be done. 

In the transition phase of this stage, the last state of every triphone is monitored. 

For within word triphones, if this state score is a beam distance from the threshold, the 

next triphone of the word is activated (its valid bit is set to ‘1’). All senones for these 

triphones are also activated if not already active. If all 4 states of a triphone are a beam 

distance away from the threshold, then the triphone is deactivated (unless it is the first 

triphone in a word).  

For word end triphones, once the last state of the triphone(s) passes the prune 

threshold, the word-id number is looked up in the Word_Lookup block using the 
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transition_id, and this is entered along with the word-history into the Identified_Words 

block. Fifty entries are assigned for this word in the Last_Phone_Score block and the 

start location is written into the Last_Phone_Score_index. 

The 50 active bits are updated as the Triphone_Block is progressed (within the 

same 10ms window), and updates are also made to the Last_Phone_Score block. The 

word-id, the scores from the Last_Phone_Score block and the active bits in the 

Identified_Words block are used along with the language model in the Word-Transition-

Stage to determine the most probable next word following this word (word-word 

transitions). Once these words are determined, the score from the Last_Phone_Score 

block (now updated with some language model probabilities) are passed to the first state 

of the first triphone of these words, and the process repeats. 

During the backtracking phase, the maximum score of the Last_Phone_Score 

block is used to backtrack through the Identified_Words block and provide a hypothesis.  

  

Figure 6.5 - Update Unit 
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6.1.2 Word-Update-Stage 
 
The Word-Update-Stage does 3 levels of search using the language models– the trigram, 

bigram and finally the unigram search. Once again an understanding of the memory 

elements are required to proceed further. A typical 60K vocabulary contains about 64,001 

unigrams, 9,382,014 bigrams, and 13,459,879 trigrams [22]. We will first list out the 

different memory elements of the Language Model Memory Units in Section 6.1.2.1 

going into such detail as content and total size of each element. Next we will discuss how 

these memory elements are accessed to obtain the language model probability in Section 

6.1.2.2. 

 

6.1.2.1 Language Model Memory Blocks 

Unigram_Block 

The Unigram_Block contains the unigram score and backoff information, as well as 

Bigram_Block access information. The unigram_score of a word is the probability of that 

particular word appearing within a dictionary. It is a 32-bit value that is used as part of 

the language model score when both the bigram search and the trigram search fails. The 

unigram_backoff_score is a 32-bit weight attached to the language model score to 

indicate that the both the bigram search and trigram searches have failed. Similarly the   

bigram_backoff_score  is a 32-bit weight attached to the language model score indicating 

that the trigram search has failed. A 24-bit bigram_block_pointer provides the pointer 

(start address) into the Bigram_Block, while a 16-bit bigram_block_access_size indicate 

the number of enteries belonging to this word in the Bigram_Block. Together they are 



 67

used to access the Bigram_Block to obtain the bigram/trigram scores. The total memory 

required is 1.02MBytes. 

 

Bigram_Block 

The Bigram_Block contains a word-id tag, a pointer to its corresponding score, and 

Trigram_Block access information. The bigram_block_pointer is used to index into the 

Bigram_Block. It provides the location of the first allowed access into the Bigram_Block 

for this triphone with the bigram_block_access_size providing the total number of 

allowed accesses from this start point.  

A 16 bits word-id tag is used during the search of 2-word sequences. The 

bigram_score is stored in the Bigram_Score and is accessed using an 18-bit pointer into 

this block – the bigram_score_block_index. We had mentioned previously that the 

bigram_block_pointer and the bigram_block_access_size of the Unigram_Block are used 

to access the Bigram_Block. Similarly the 24-bit trigram_block_pointer and the 16-bit  

trigram_block_access_size of the Bigram_Block are used to access the Trigram_Block. 

The total memory requirement for this block is 86.78MBytes of memory. 

 

Bigram_Score_Block 

The Bigram_Score_Block is accessed using the bigram_score_block_index and stores all 

bigram_score information. This 32-bit value will be used as part of the language model 

score when the trigram search fails and the bigram search succeeds. A separate block is 

used since the number of probability values used is far less than the number of entries in 

the Bigram_Block, and so this mapping reduces memory requirements. Based on the data 

file sizes from the HTK Speech ToolKit, the total required memory size is about 1MByte.  
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Trigram_Block 

The Trigram_Block is accessed using the trigram_block_pointer and the 

trigram_block_access_size.  This block holds only 2 values, the first of which is a 16- bit 

word-id tag similar to the one found in the Bigram_Block, and the second being a 

trigram_score_block_index used as a pointer to the Trigram_Score_Block (once again 

similar to the bigram_score_block_index of the Bigram_Block).  The total memory size 

required is about 57.2MBytes. 

 

Trigram_Score_Block 
  
This is exactly similar to the Bigram_Score_Block, the only difference being that it holds 

trigram score information. Once again a 1MByte memory size should be sufficient. 

 

6.1.2.2 Language Model Search 

Let us denote the current recognized word as ‘W1’, its history word (the word from 

which a transition to this word was made) as ‘W2’ and finally any possible next words as 

‘x’.  The language model score will be one of three quantities – 

• The trigram_score obtained using the sequence of words ‘W2-W1-x’. 

• The bigram_score obtained using the sequence of words ‘W1-x’ along 

with a bigram_backoff score added to it to signify that the trigram 

sequence of ‘W2-W1-x’ did not return a match. 

• The unigram_score obtained by using the word ‘x’ along with a 

bigram_backoff score and a unigram_backoff score to signify that the 
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trigram sequence of ‘W2-W1-x’ and the bigram sequence of ‘W1-x’ 

returned no match. 

 

Figure 6.6 - Language Model Memory Blocks 

The three language model searches are discussed next.  

 

Trigram Search  

In the trigram search, the Unigram_Block is first accessed using the word history (W2) as 

the index. The bigram_block_pointer and the bigram_block_access_size is used to index 

into the Bigram_Block. The word-id bits are compared with the current word W1 for all 

entries defined by the bigram_block_pointer and the bigram_block_access_size. If an 

entry is found and the trigram pointer and size values for this entry are valid, this means 
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that the trigram for the word sequence ‘W2-W1-x’ exists. The range of ‘x’ is given by the 

trigram_block_pointer and the trigram_block_access_size with which we access the 

Trigram_Block.  The valid values of ‘x’ are searched for those with valid start-phones 

(those phones that have valid entries for the word W1 according to the score_active_bits 

in the Identified_Words Block).  If valid values exist, the trigram_score_block_index of 

those entries are used to index into the Trigram_Score_Block and access the trigram 

scores for those word sequences.   

 

Bigram Search 

If no word sequences ‘W2-W1-x’ can be found using the Trigram search, then a 

bigram_backoff probability is added and a bigram search is conducted. In the bigram 

search the Unigram_Block is accessed using the word W1. If an entry is found, and if the 

bigram pointer and size values for this entry are valid, then this means the bigram for the 

sequence ‘W1-x’ exists. The range of ‘x’ is given by the bigram_block_pointer and the 

bigram_block_access_size with which we access the Bigram_Block.  The valid values of 

‘x’ are searched for those with valid start-phones (those phones that have valid entries for 

the word W1 according to the score_active_bits in the Identified_Words Block). If valid 

values exist, the bigram_score_block_index of those entries are used to index into the 

Bigram_Score_Block and access the bigram_scores for those word sequences.   

 

Unigram Search 

If no word sequence ‘W1-x’ is found, a unigram_backoff probability is added, and the 

Unigram search is conducted. In the unigram search, the valid values of ‘x’ are once 
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again looked up according to the score_active_bits and these are used to index into the 

Unigram_Block and obtain the unigram_scores for those words. 

 

The final step is to take the scores from the Last_Phone_Score block and add the 

backoff scores as well as the language model scores from the unigram, bigram and 

trigram searches to it. The final score obtained by combining all these scores forms the 

starting score of the new word ‘x’. This value is then compared with the threshold  to see 

if passes the word-transition pruning requirement. If it does, it is written back as the new 

entry for the word ‘x’ into the Triphone_Block. 

 

6.1.3 Analysis 

Table 6.2 summarizes the memory element sizes for the state-update and word-update 

stages. The total memory requirements come up to about 280Mb with about 150Mb being 

taken up by the language model. It is obvious that the two areas that make up the bulk of 

memory requirements are the Triphone_Block and the language models stored in the 

Trigram_Block and the Bigram_Block.    

Table 6.2 - Viterbi Decoder Memory Element Sizes 

State-Update-Stage Word-Update-Stage 
  
Triphone_Block 114405KB Unigram_Block 1020KB
Transition_Block 1440KB Bigram_Block 86780KB
Senone_Score 24KB Trigram_Block 57200KB
Identified_Words 802KB Bigram_Score_Block 1000KB
Last_Phone_Score 13100KB Trigram_Score_Block 1000KB
Word_Lookup 960KB  
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The information stored in the Bigram_Block and Trigram_Block is part of the 

language model. Reducing the size of these blocks requires perhaps a different method of 

language model training and is outside the scope of this research. However, it is 

important to notice that while the language model takes up a large chunk of the memory, 

it is accessed only during the language model lookup. This happens only when the last 

triphone passes pruning and a word has completed and has been identified. Compare this 

with the fact that every active row in the Triphone_Block is accessed and updated every 

frame. 

Assume that about 40% of the first 60000x8 rows of the Triphone_Block are 

active at any given time (this an aggressive estimate). We also know that about 3000 

words also have their last 50 triphones active as well. Let us keep an aggressive worst-

case estimate of 4000 for this. Also assume that about 1000 rows (from amidst these 4000 

words) are activated for language model lookup every second (again a very aggressive 

estimate). These amounts to .0167% of total rows activated for language model lookup 

every frame. The Sphinx-III language model contains 60,000 unigrams, 9,382,014 

bigrams and 13,459,879 trigram[13]. This indicates that while 60,000 words can 

potentially lead to (60000)3 trigrams, only 13,459,879  or less that .00001% were trained. 

Allowing for the fact that many of these (60000)3 combinations may be illegal and 

grammatically incorrect, we hike this percentage to 1%.  Similarly out of a potential 

(60000)2 bigrams, only 9,382,014 or about .2% were trained. Once again factoring in the 

illegal combinations, we hike this percentage to 9%.   

The same statistics can be applied to the number of words with trigram, bigram 

and unigram scores in the test set as well, assuming that the training set and the test set 
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will not differ by an order of magnitude. Hence we can conclude that 1% of total words 

that initiate the language model lookup pass the trigram search (and use the trigram 

score), and 9% of the total words that initiate the language model lookup pass the bigram 

search(and use the bigram score). The rest 90% use the unigram score.  

Next, let us look at how many accesses each search will take. During the trigram 

search, the word sequence ‘W2-W1-x’ needs to be looked up. We use ‘W2’ to index into 

the Unigram_Block and then use try to find ‘W1’ among the list of bigram values in the 

Bigram_Block. Once we find this entry, we try to find ’x’ among the list of trigram 

entries in the Trigram_Block. Let us assume that each entry is found (if it is present) after 

accessing 75% of the total entries on an average. We assume the same statistic for the 

bigram search. The unigram search is conducted using the word as a direct index and 

hence no search is required. 

We can now break down the accesses as follows: 

• Trigram match: This involves, accessing the 16-bit bigram_block_pointer 

and 24-bit bigram_block_access_size of the Unigram_Block. Next, the 16-

bit word_ids from 75% of 216 locations in the Bigram_Block are accessed 

till a match is found. The 16-bit trigram_block_pointer and 24-bit 

trigram_block_access_size are read in. Next, the 16-bit word_ids from 

75% of 216 locations in the Trigram_Block are accessed till a match is 

found. The 18-bit trigram_score_block_index is read in and used to access 

the 32-bit trigram_score. 

• Bigram match: This involves 2 steps – 1) Failing the trigram search for 

‘W2-W1-x’, and 2) passing the bigram search for ‘W1-x’. 
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 Failing the trigram search: This can happen in 2 ways – finding 

valid entries for ‘W2-W1-yi’ (where yi are the valid words 

following the ‘W2-W1’ sequence) but not finding x amoung yi, OR 

finding no valid entries for ‘W2-W1-yi’ and proceeding directly to 

the bigram search for ‘W1-x’.  

The former case is more severe in terms of wasted accesses 

and hence is the one explored. In this case, the 16-bit 

bigram_block_pointer and 24-bit bigram_block_access_size of the 

Unigram_Block are first accessed. Next, the 16-bit word_ids from 

75% of 216 locations in the Bigram_Block are accessed till a match 

is found. The 16-bit trigram_block_pointer and 24-bit 

trigram_block_access_size are read in. Next, the 16-bit word_ids 

from 100% of 216 locations in the Trigram_Block are accessed and 

no match is found. The 32-bit bigram_backoff score is recorded. 

 Passing the Bigram search: Once again, the 16-bit 

bigram_block_pointer and 24-bit bigram_block_access_size of the 

Unigram_Block are first accessed. Next, the 16-bit word_ids from 

75% of 216 locations in the Bigram_Block are accessed till a match 

is found. The 18-bit bigram_score_block_index is read in and used 

to access the 32-bit bigram_score. 

• Unigram Search - This involves 3 steps – 1) Failing the trigram search for 

‘W2-W1-x’, 2) failing the bigram search for ‘W1-x’ and 3) using the 
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unigram search results. Once again we explore only the most severe 

case(s). 

 Failing the trigram search: This can happen in 2 ways – finding 

valid entries for ‘W2-W1-yi’ (where yi are the valid words 

following the ‘W2-W1’ sequence) but not finding x amoung yi, OR 

finding no valid entries for ‘W2-W1-yi’ and proceeding directly to 

the bigram search for ‘W1-x’.  

The former case is more severe in terms of wasted accesses 

and hence is the one explored. In this case, the 16-bit 

bigram_block_pointer and 24-bit bigram_block_access_size of the 

Unigram_Block are first accessed. Next, the 16-bit word_ids from 

75% of 216 locations in the Bigram_Block are accessed till a match 

is found. The 16-bit trigram_block_pointer and 24-bit 

trigram_block_access_size are read in. Next, the 16-bit word_ids 

from 100% of 216 locations in the Trigram_Block are accessed and 

no match is found. The 32-bit bigram_backoff score is recorded. 

 Failing the Bigram search: Once again, the 16-bit 

bigram_block_pointer and 24-bit bigram_block_access_size of the 

Unigram_Block are first accessed. Next, the 16-bit word_ids from 

100% of 216 locations in the Bigram_Block are accessed and no 

match is found. The 32-bit unigram_backoff score is recorded. 

 Using the Unigram Search values: The 32-bit unigram_score is 

recorded. 
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This discussion has been summarized in Table 6.3. The numbers indicate the number of 

bits needed per language model lookup of that type and not per frame.  

Table 6.3 - Language Model Search Access Breakup 

LANGUAGE MODEL SEARCH  
Search Steps Access Breakup (in bits) Step total(bits) Total (bits)

Trigram 
Search 

Trigram  
Pass 

16 + 24 + .75 x 2^16 x 16 + .75 x 
2^16 x 16 + 18 + 32 1572954  

 
Total Trigram 
Search   1572954 

Bigram 
Search Trigram Fail 

16 + 24 + .75 x 2^16 x 16 + 1.0 x 
2^16 x 16 + 32 1835080  

 Bigram Pass 16 + 24 + .75 x 2^16 x 16 + 18 + 32 786522  

 
Total Bigram 
Search   2621602 

Unigram 
Search Trigram Fail 

16 + 24 + .75 x 2^16 x 16 + 1.0 x 
2^16 x 16 + 32 1835080  

 Bigram Fail 16 + 24 + 1.0 x 2^16 x 16 + 32 1048648  
 Unigram Pass 32 32  

 
Total Unigram 
Search   2883760 

 

We now need to apply the percentage of such accesses taking place each frame. 

Remember that as per our prior discussions, about 1000 rows per second (or per 100 

frames) initiate the language model lookup with frequencies of 1%, 9% and 90% 

accessing the trigram_score, bigram_score and unigram_score respectively. Figure 6.7 

shows the breakup of the number of bytes accessed per frame for updating the first n-1 

triphones of the words(those that are active – about 40% of total), the set of 50 nth 

triphones of words (those that are active  - worst case estimate of 4000 total), and the 

language model lookup. Note that the scale is logarithmic. 
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a1 – First n-1 triphones (Triphone Block) 
a2 – First n-1 triphones (Senone Scores) 
a3 – First n-1 triphones (Transition Scores) 
a – Total memory access for updating first n-1 triphone states (a1+a2+a3) 
b1 – First set of 50 nth triphones (Triphone Block) 
b2 – First set of 50 nth triphones (Senone Scores) 
b3 – First set of 50 nth triphones (Transition Scores) 
b – Total memory access for updating first set of 50 nth triphone states (b1+b2+b3) 
c – Total memory access for updating triphone states(a+b) 
d1 – Trigram access  
d2 – Bigram access 
d3 – Unigram access 
d – Total Language Model access(d1+d2+d3) 
 

Figure 6.7 - Memory access per frame 

 It is obvious that the language model lookup (and hence its corresponding 

memory accesses) form a very small part of the total memory accesses as compared to 

updating the Triphone_Block. In other words, while the language model memory 

requirement is large, its memory bandwidth requirement is quite small.   

We must therefore concentrate on the other Triphone_Block and try to reduce its 

size or restructure it. Reducing the size of the Triphone_Block is beneficial in many 
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ways. Since it contains the core memory elements that are processed every frame, 

reducing its overall size implies reducing the number of calculations and operations 

involved. Reducing the number of operations increases the speed at which each frame can 

be processed as a whole and hence it improves the real-time performance of the system. 

The reduced number of calculations also translates to reduced power consumption. 

Smaller memory elements imply fewer blocks needing to be updated, fewer reads and 

writes and reduced bandwidth requirements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 79

6.2 Improvements to the initial design 

6.2.1 Switching to the lexical tree structure 

In our previous implementation we adopted a flat vocabulary structure.  The advantage to 

this was that it was easy to implement. It was easier to keep track of word endings, and 

easier to transition in between words. However it required a large amount of memory and 

also led to many redundant calculations. In spite of this, the main reason for not choosing 

the lexical tree was that if two words that shared the same triphones at the start had two 

different word histories i.e. two different words transitioning into them it was not 

possible to continue both possibilities since they could only keep one or the other. 

Assume for example that ‘Is-Starting’ and ‘Has-Started’ are 2 possible transitions that 

occur at the same time. With the flat dictionary the start score of  ‘Starting’ would be the 

end score of ‘Is’ combined with the probability of an ‘Is’ to ‘Starting’ transition. 

Similarly the start score of  ‘Started’ would be the end score of ‘Has’ combined with the 

probability of a ‘Has’ to ‘Started’ transition. However with the lexical tree structure, the 

start score of ‘S-T-AA’ would be either of the two above but not both (unless 2 copies are 

instantiated which would defeat the whole purpose of collapsing the dictionary) and so 

one of the paths is eliminated. Thus word-to-word transitions become a problem. 

Another issue was the memory structure for the lexical tree form and within word 

triphone to triphone transitions. We needed to come up with a simple method of being 

able to transition from one triphone to another within words. In the flat tree arrangement, 

this was simple enough because the next triphone was simply the one following the 

current one in the Triphone_block. However with the new scheme, a single triphone may 

have multiple successor triphones, and having a separate look up table (LUT) and 
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elaborate transition schemes would complicate the design while also adding power for all 

the extra processing.   

However if these problems could be solved, the lexical tree structure afforded 

many advantages. It eliminated redundant processing of words that shared start triphones. 

The scores for the same set of start triphones would not have to be evaluated for every 

word; rather one set would suffice. Only the end triphones would be unique and would 

need to be evaluated. This reduction in calculation would lead to an immediate reduction 

in required memory bandwidth, which is a big concern especially in a real-time 

bandwidth constrained design like this. We would also achieve huge power savings both 

from the reduced number of calculations required as well as the reduced number of reads 

and writes to memory. 

 

6.2.2 Implementing the tree structure 

In our new implementation, we have solved both these problems, and are able to take 

advantage of the lexical tree structure. As mentioned before most of the old design has 

been preserved with some fundamental changes in the new one. Thus instead of pulling 

up the entire design we simply highlight the differences from the old design in these 

discussions.   

Figure 6.8 shows how the memory structure for the Triphone_block has changed. 

One row each of the old and new structures are shown. Table 6.4 summarizes the 

different components of the Triphone_Block (old and new). 
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Figure 6.8 - Triphone_block row (old and new) 

Table 6.4 - Triphone_block row bits (old and new) 

OLD DESIGN NEW DESIGN 
v-‘valid’ bit (1) 
s – ‘second last triphone’ bit(1) 
l – ‘last triphone’ bit(1) 
ID – Senone ID(4x13) 
S – State current score(4x32) 
H – Word History (4x16) 
TID – Transition Block index (16) 
 
 
 
 
 
 
 
Total - 263 

v-‘valid’ bit (1) 
v1,v2- Used to indicate the type of triphone. (2) 
    00 - 1st triphone of the word 
    01 -  2nd to n-2th triphone of the word 
    10 -  n-1th triphone of the word 
    11 - Last triphone of the word 
prev – Pointer to previous triphone (18) 
ID & score – Senone ID & State current score (4x13) +  
(4x32) 
TSS – Timestamp Start (4x11) 
TID – Transition Block index (16) 
P_st – Start position of next set of triphones (18) 
P_no. – Number of next triphones (6) 
 
Total - 285 

 

6.2.2.1 Handling within word transitions – Memory structure for the lexicon tree  

As mentioned before, within word transitions needed to be implemented in a simple way 

(a generic non-mapping scheme must be developed) if we were to succeed in 

implementing the lexical tree structure. We did this through the addition of 2 sets of bits 

at the end of each triphone –  

P_st - which is a 18 bit address of the start position of the next set of triphones. 

v s l ID S H TID 
Old 

New 

ID & 
score TSS TID P_st P_no. 

vm v1 v2 prev 
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P_no. - which is a 6 bit number that indicates how many next triphone transitions 

are possible from the current triphone. 

  An example is shown in Figure 6.9. It should be noted that to keep things simple, 

the example has been shown with letters of the words rather than the actual triphones.  

This is an example of a set of 3 words ‘verify’, verified’ and ‘verification’.  Note that all 

bits have not been shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 - Within-word transition example 
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The example shows that any type of lexical tree can be handled by this memory 

structure. As a coarse estimate, for this example, we would be using 15*285 bits = 4275 

bits as opposed to (6+8+12) *263 = 6838 bits. 

Estimates for the memory reduction for a 60000-word vocabulary are discussed 

later in this document. Also note that the example shown above is a slightly simplified 

version of the actual one. For example once ‘Verification’ is complete, row 14 would not 

point to simply row 15, but actually a set of 50 locations each being the 50 possible last 

triphones of the word. 

 

6.2.2.2 Handling word to word transitions – Timestamps 

Word to word transitions were a problem when using the lexical tree. Language models 

gave the probability for transition between single words and not a single word to a group 

of words. Hence conventionally when a word (say A) completes, we then look at the 

language model for the probability of word B occurring after A, and combine this 

language model probability and the observation probability density of B (GE score of B) 

with the end score of A. This score is then assigned as the score of the first state of the 

first triphone of B, and we say that A ‘transitions into’ B with this score. However with a 

lexical tree, we do not know the language model probability of transitioning into a group 

of words from one word. More importantly, it would be difficult to separate out 

individual probability once shared triphone states are completed and the individual words 

start separating out. 

We solve this problem by the use of timestamps. Timestamps are basically a 

counter that runs in the background. This counter is updated every 10ms, so that we have 
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a new counter value for every frame. Obviously this timestamp has to be unique for every 

timeframe, yet the counter value cannot be infinite. Hence we make the reasonable 

assumption that a decision about all words that are actively being considered will be 

made at least (worst case estimate) 10sec after the start of that word. We would need a 

10bit counter to be able to give a unique counter values for 10sec. By adding an extra bit 

to this, we get twice the required count value. We then use the MSB and MSB-1 to 

monitor the current value of the counter and invalidate entries that are older than 10secs. 

For example if the current count value is 00XXXXXXXXX  , all values with timestamp 

01XXXXXXXXX are invalid. (We assume the counter counts up in which case all words 

with timestamps ‘01XX..’ come more than 15 secs before ‘00XX..’ 

Now, instead of assigning the score of the first state of the first triphone of a new 

word at the beginning (i.e. while transitioning into it), we assign it at the end (after it’s 

last state has passed pruning). When a word begins, we do not assign a transition score to 

it at the beginning. Instead we process the word as though it is the start of a new sentence 

(i.e. with no history score). But we assign a Start Timestamp (TSS) to it when it begins.  

We also assign a timestamp to a word once it gets completed (Finish Timestamp TSF).  

Let us say that a current path consists of n words, the nth word being under 

consideration now. The n-2nd and earlier words are stored in the Identified_words block 

in the form of a linked list, with each entry giving the word id, the path score till that 

word, and a pointer to the previous word (this pointer is simply an index to the previous 

word in the path which is stored somewhere in the Identified_words list). The n-1th word 

is stored in the temp_list along with its Finish Timestamp, a pointer to the n-2nd word in 

the Identified_words list as well as the index of its last triphone. 
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Figure 6.10 - (a) temp_list  (b) Identified_words 
 
 
Once the nth word completes (its last triphone state passes pruning), we compare its TSS 
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temp_list finished at the same time that the current word started, and so a transition could 

have been possible between these 2 words. Next, we recall that every word has 50 
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phones + the first phone of the next word. Since there are 50 possible first phones, we 

have 50 different last triphones for each word). Once the timestamps match, we compare 

the index of the last triphone of the word in the temp_list with the index of the first 

triphone of the current word. If this matches as well, we use the nth, n-1th and n-2nd words 
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to access the language model. We then combine the language model probabilities along 

with the score of the n-1th word/and the individual score of the nth word to assign the final 

score for the nth word. If this passes pruning, this word is inserted into the temp_list, and 

the n-1th word is copied to the Identified_words list. Thus using these 2 compare 

techniques we can link words together.  

Let us go back to the previous example (‘Is starting’ and ‘has started’). We would 

calculate the scores for ‘Started’ and ‘Starting’ individually with no scores associated 

with them at the start of these words. They would each be associated with a timestamp (in 

this case since they both start at the same time, the timestamp would be the same). Once 

each of these words completes and passes pruning, their start timestamps would be 

compared with all end timestamps of words in the temp_list. Let us assume 3 words ‘Is’, 

Has’ and ‘Dog’ give a match (i.e. their end timestamps are the same as the candidate 

word start timestamps). Now comparing the start and end triphones, both ‘Starting’ and 

‘Started’ would eliminate ‘Dog’. For the word ‘Started’, the language model would 

eliminate ‘Is’ and so only ‘Has started’ would pass through. ‘Started’ would then 

combine its own score with the score of ‘Has’ and the language model score to get its 

final score which would be inserted along with its entry into the temp_list. Similarily 

’Starting’ would only inherit from ‘Is’.  

Another possibility if the 2 compare techniques fail is that the current word is the 

start of a new sentence. To keep this possibility alive, once a word completes and fails 

both compares, it is inserted into the temp_list with a null pointer to the Identified_words 

list. This means that it has no predecessor.   
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All entries within the temp_list that have invalid timestamps (as discussed 

previously) would be eliminated, effectively pruning paths that show no promise.   

 

6.2.3 Modified Triphone_block 

Part of the modified Triphone_block is shown in Figure 6.11 illustrating how the final 50 

initialization takes place. Once the second last triphone of a word passes pruning, a Free 

Memory List is looked up to find available spaces for initiating the final 50 triphones. 

The valid bits and the pruning blocks continually update this list. The last 50 triphone do 

not need to point to any other triphones and so do  not need the P_st and P_no. bits. 

 

Figure 6.11 - Final 50 initialization  
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6.2.4 Memory Savings 

It is safe to assume that each word in the vocabulary would have at least 4 ‘forms’ of it 

(Verify, Verified, Verification, Verifying etc). This assumption is true even if we 

consider other languages. Assuming an average of 8 senones per word and assuming at 

least 5 of these can be shared by these 4 words, we have a total of 5 + 3x4 or 17 triphones 

as opposed to 8x4 = 32 previously. Thus for a 60000 word vocabulary, we have 60000/4 

x (5+3x4) = 255000 rows for the first n-1 triphones as opposed to 60000x8 = 480000 

rows. Each of these rows will have 285 bits as opposed to 263 bits (as shown in Figure 

6.8). Let us call these as type ‘A’ rows.  

We also know that only about ~3000 words (worst case estimate 4000) pass 

pruning all the way to the final triphone at any given time. Hence for the last triphones, 

we have about 4000x50 = 200000 rows as opposed to 60000x50 = 3000000 rows. Let us 

call these type ‘B’ rows. 

Total memory for the Triphone_block in the new scheme is 285x255000 + (285-

18-6-2)x200000 = 15.56MBytes as opposed to 114.405 MBytes from the previous 

implementation. The Last_Phone_Score block is no longer required giving an additional 

saving of 13MBytes. The completed words list would reduce by a small amount since we 

no longer need to keep track of the last phone score index. The additional memory 

needed for the temp_list is about (11+16+32+13 (13 bit index into Identified_Words 

list)+16)x(~5000). Thus total memory required for this block is 88x5000 = ~55KBytes. 

 

6.2.5 Implications of new implementation 

There are many advantages to the new implementation as compared to the older one:  
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• The memory savings alone may not be of importance especially since with the 

language model (which is a purely DSP aspect of the system), the total required 

memory will still be over 100MBytes. What is important however is that the 

memory savings come from an area that contains very volatile data. The 

Triphone_block is a block that is updated every frame and hence reducing the 

amount of data that needs to be updated by 7x is significant. Note that only a 

fraction of the memory holding the language model is looked up every frame, and 

that too only a ‘read’ operation takes place. We achieve significant savings in the 

number of reads and writes to the Triphone_block. 

• This translates to a direct savings in terms of power (both due to the reduced 

calculation as well as due to the reduced memory operations).  

• Since fewer calculations take place, redundant calculations are eliminated and 

lesser data need to be updated every frame, this scheme significantly improves the 

real-time performance of the system. 

• We also free up the memory-bandwidth bottleneck that may be encountered from 

using slower memories.  

• In our previous implementation since each word inherits the score of the path till 

now from the previous word in the path, only one transition to a word at any 

given time is possible. This means that say 2 paths try to transition into a word at 

any time, there will be a contention and only one of these paths will be allowed to 

continue. We solved this problem in the previous implementation by allowing 

duplicate copies of a word in the Triphone_Block.  
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With the new design, since we only allow histories to be inherited after the 

word has completed, no paths are lost. Any number of paths can be continued 

now since the score of the word can simply be added to each of the paths at the 

end of the word completion, instead of the path score being added to the word 

before the word beginning. 

• Word to word transitioning becomes easier now we no longer need to keep track 

of word and path histories. Assigning the right histories to the right words is 

critical to the application and is also something that is easy to get wrong. Now 

with the new scheme, we only to need to assign a global timestamp to the words 

when it begins and ends. This is much easier to keep track of and assign. 

• There is uniformity in the memory structure unlike the older memory structure 

where the last triphone row of each word simply served as a pointer to the last set 

of 50 triphones. 

There are some tradeoffs to the scheme as well: 

• Additional hardware would be required to perform the compare operations. It may 

be required to develop a hashing function to complete this operation in real time. 

This additional hardware translates to additional power as well as area. Since a 

mux/comparator array is all that is required, we do not assume the power and area 

addition would enough to degrade performance/overhead.  

• Unlike the old scheme dynamic addition of words would not be possible. We 

would need to re-map the Triphone_block statically and preload it every time a 

new word is added. To circumvent this, we would be adding a small section of 

memory in the Triphone block to implement a mixed flat-lexical tree type 
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arrangement. Any new words added would be added as a tree with only one 

branch thus being modeled as an inefficient tree structure. It should be noted that 

this is only an ‘On the go’ problem. We could still perform the re-mapping 

statically and reload the Triphone_block, but this would have to be done offline. 

• In the previous implementation it is possible that many words do not reach their 

last triphone due to the history scores and are pruned off. This leads to many paths 

being eliminated early and hence reduced number of calculations being 

performed. In the new scheme if the GE scores for a word are high, they will 

transition to their last triphone, and will be pruned only after their history scores 

are added in. This could potentially lead to a large number of calculations if many 

paths are kept active by the GE score. Statistically this has a low chance of 

happening, but is entirely dependent on speaker dialect, noise, as well as how well 

the acoustic model are trained. 
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6.3 Implementation of the Viterbi Decoder (Lexical Tree 

Dictionary) 

The Viterbi Decoder implementation can be broken up into 4 phases. In Phase 1 the first 

n-1 triphones are updated. In Phase 2 the last 50 triphones are initiated. In Phase 3 the last 

50 triphones are updated. Phase 4 is the language model lookup phase. These 4 phases 

are discussed in Section 6.3.1. Figure 6.12 shows the VITERBI DECODER and its 

interfacing with memory. The individual modules are discussed in detail in Section 6.3.4. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12 - Viterbi Decoder and its interfacing 
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6.3.1 Overview of the implementation 

During Phase 1, the first n-1 triphones are read into the VITERBI DECODER and the 

new values for each of the state scores are calculated. The corresponding timestamps for 

each of the four states are also updated. Three different processes are initiated at this 

point. 

Firstly the new scores (and their corresponding timestamps) are written back into 

memory – this process is called ‘Writeback’. If all four states of any triphone do not pass 

pruning, that triphone is deactivated, unless it is the first triphone of the word (The first 

triphone of a word is never deactivated because that word could be spoken in any frame, 

and it is the first triphone that will pick up on this and start a new word possibility when 

this happens).  

Secondly if the last state of the triphone passes pruning, and the triphone is one of 

the first n-2 triphones, it then activates the triphones that follow it in the word(s) (sets the 

vm bit of the successor triphones to ‘1’) – this process is called ‘vm-Activation’. By 

keeping only the relevant triphones activated, we speed up the update process and also 

save power due to reduced computations.  

Finally if the last state of the triphone passes pruning, and the triphone is the n-1th 

triphone, we need to initiate the last 50 triphones. The first step in this process is to insert 

the information required for this initiation into a FIFO (called FIFO50). This process is 

called ‘FIFO-insertion’ and is also done in Phase 1.  

Phase 1 is done entirely by ‘VITERBI UPDATE UNIT –1’, the details of which 

are discussed in Section 6.3.4.1. Phase 1 is shown in Figure 6.13. 
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Figure 6.13 - Phase 1 
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for both processes to take place in parallel thus hiding the processing time (including the 

memory access) of Phase 2.   

Note that there are 60k words in the dictionary. If space were allocated for all of 

the 50 triphones for each of these 60k words, we would need 60k x 50 = 3000000 rows.  

This translates to about 97.125 MBytes of memory required. Instead we use the fact that 

only a small number of these last triphone states for all the words are active at any given 

moment. We adopt a dynamic allocation scheme whereby all the words share a much 

smaller common space (called Triphone_Block_Type_B), which is allocated to words 

depending on which ones are currently nearing completion. Memory savings using this 

scheme had been discussed in Section 6.2.4. 

The actual initiation is done in Phase 2. In this phase, data is first extracted from 

FIFO50. Next the ‘Availability List’ is checked for free space. As shown in Figure 6.14, 

each location in this list maps to 50 locations in the Triphone_Block_Type_B and gives 

information about what the active words are, which sections they are currently 

occupying, and also which sections are currently free. For example say ‘word 7’ needs its 

final 50 triphones initiated. The availability list is checked for free space. In this example, 

List address 000000000100 is free. This List Address is made unavailable by setting the 

used bit to 1 and placing the address of Word 7 (which is the data extracted from 

FIFO50) into address. Six bits are then appended to this List Address and used to access 

the memory locations ‘000000000100000000’ through to ‘000000000100110001’. These 

are the locations that have now been allotted to Word 7. These locations are populated 

with the relevant information for each of the 50 last triphones of Word 7, and are ready 

for processing during the next run (next frame). 
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The set50 bit of the second last (n-1th) triphone of each word  indicates whether or 

not the word has been allotted its last 50 triphones or not. It is set to ‘1’ if it has, and ‘0’ 

otherwise. This bit also dictates what Phase 2 should do with the information in FIFO50. 

The initiation explained previously takes place if the bit was previously ‘0’. If it was ‘1’, 

this means that the word already has a set of 50 locations allotted to it, and all that needs 

to be done is to reactivate any of the 50 locations that had become deactivated due to 

pruning. Hence, Phase 2 compares the Data in FIFO50 with each of the entries in the 

Availability List. Once it finds a match, it uses the List Address to access and reactivate 

the 50 locations. Phase 2 is done entirely by FINAL 50 INITIATOR UNIT, the details of 

which are discussed in Section 6.3.4.2. Phase 2 is shown in Figure 6.15. 

During Phase 3 the last set of 50 triphones are read into the VITERBI DECODER 

(from Triphone_Block_Type_B) and the new values for each of the state scores are 

calculated. Similar to Phase 1, two processes are initiated. Firstly the new scores are 

written back into the Triphone_Block_Type_B memory – this process is called 

‘Writeback’. The current triphone is also if all the states do not pass pruning.  Secondly if 

the last state of the triphone passes pruning, this means the word has completed and we 

invoke the language model to add word-to-word transition probabilities to it. The first 

step in this process is to insert the information required for this language model lookup 

into a FIFO (called FIFO_Lang). This process is called ‘FIFO-insertion’ and is also done 

in Phase 3.  

These processes are done by VITERBI UPDATE UNIT –2, the details of which 

are discussed in Section 6.3.4.3. After every set of 50 triphones is updated, a DESELECT 

UNIT checks to see if all the 50 triphones are active.  
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Figure 6.15 – Phase 2 
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then extracts the address from this location in the Availability List, uses it to access the 

triphone (n-1th triphone of the word that initially requested space allocation for its final 

50 triphones) and sets the set50 bit of that triphone to ‘0’. This indicates that this triphone 

(or word) no longer has space allocated for it.  The DESELECT UNIT has been discussed 

in detail in Section 6.3.4.4. Phase 3 has been illustrated in Figure 6.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16 – Phase 3 
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LANGUAGE MODEL UNIT. In the next step the 2 conditions under which the word 

could be part of a sentence (discussed in Section 6.2.2.2) – the timestamp check and the 

last triphone check are performed. Upon passing these, the word is inserted as part of a 

sentence into the temp_list (i.e. it has a history). If it does not pass the 2 checks, it is still 

inserted into the temp_list, but with no history. (i.e. it is first word of a new sentence).  

The language model is consulted (using this word and the previous words in the sentence) 

to obtain a language model probability for this word.  

 

Figure 6.17 – Phase 4 
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At this point the final score of the word will be made up of a) the individual score of the 

word, b) the score of the sentence till now (the history score), and c) the language model 

probability for this word. This final score is written into the temp_list and forms the new 

score for the sentence till now. The promotion of a ‘completed’ word into an ‘identified’ 

word has been discussed in detail in Section 6.2.2.2. Phase 4 is performed completely by 

the LANGUAGE MODEL UNIT and is discussed in detail in Section 6.3.4.5.  

 As mentioned before, the MAIN CONTROL UNIT uses the start1 signal to start 

off Phase 1 and Phase 2. It then uses the waiting to start 1 signal from the VITERBI 

UPDATE UNIT –1 and the empty signal from FIFO50 to monitor when Phase 1 is done. 

Similarly it then uses the waiting to start 2 signal from the VITERBI UPDATE UNIT –2 

and the empty signal from FIFO-Lang to monitor when Phase 2 is done. It also uses some 

handshaking and assert signals to monitor and prevent memory overflow (during the 

initialization of the last 50 triphones). 

 

6.3.2 Accessing the Memory  

The VITERBI DECODER shown in Figure 6.12 interfaces with 2 DRAM units and 1 

SRAM unit. The design and memory interfacing was chosen to minimize contesting 

memory accesses. This is especially important given the high memory bandwidth nature 

of this application. The SRAM unit stores the Senone Scores for each of the 6000 

senones. All 6000 senones needs to get written to or updated every frame (10ms) by the 

Gaussian Estimator.  Simultaneously, the Viterbi Decoder needs to access the Senone 

Scores for updating the states of the triphones. In order to facilitate this, 2 separate 

memories are maintained. While one of them gets updated by the Gaussian Estimator, the 
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other one is accessed by the Viterbi Decoder. The next frame, the process is switched as 

shown in Figure 6.18. It is not possible to predict the sequence in which the senone scores 

will be accessed from this unit. Maintaining two separate memories guarantees that the 

wrong values of senone scores are not read (we don’t want the Viterbi Decoder to access 

values from a partially updated SRAM).  While this means the memory requirement 

doubles, the extra 24Kbytes, is a small price to pay to reduce the operating speed 

requirements of both the Gaussian Estimator AND the Viterbi Decoder.  This implies that 

the speech recognition process will always be 10ms behind actual speech. However it is 

still real-time speech recognition for all practical purposes. 

 

 

 

 

 

Figure 6.18 - Senone Score Updating 
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–1 and b) Phase 4 is invoked only once a word is identified and is not as frequent as 

Phase 3.  

 

6.3.3 DRAM Interface 

Figure 6.19 shows the general interface for the DRAM UNIT(s). The DRAM controller 

[Appendix A] takes care of the DRAM initialization sequence, the precharge delay, auto 

refresh etc. while also generating the correct control and address signals. Several 

functional units request memory access and so the MEM-control unit takes care of  

 

Figure 6.19 - DRAM Interfacing 
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chip/bank contention, scheduling and providing the right address to the DRAM 

controller. The MEM-control unit also provides the control signals to the DRAM 

controller as well as the control/select signals to the multiplexers/demultiplexors to 

correctly channel the data in and out of the DRAM controller. It is also responsible for 

initializing the SDRAM. 

 

6.3.4 Functional Units 

In this section we go over each of the functional units of the VITERBI DECODER in 

detail. We will be discussing the role of each unit as well as its interaction with other 

units.  It should be noted global signals such as ‘clock’ and ‘reset’, as well as some 

handshaking signals have not been shown in the block diagrams of the functional units so 

as not to clutter the diagrams. The widths of the different signals along with the 

functionality are given in the tables corresponding to each block diagram. Please note that 

from this point, ‘row’ refers to the row of the Triphone_block(s) and not the DRAM row 

unless otherwise mentioned. 

 

6.3.4.1 Viterbi Update Unit-1  

The VITERBI UPDATE UNIT-1 is shown in Figure 6.20. Table 6.5 gives details about 

the different signals within the design. Once the start bit is asserted (starting Phase 1), the 

‘validChecker’ proceeds through the Triphone_Block checking for rows that are active 

(rows with vm bit equal to ‘1’). Once a row is found it hands off this address to 

‘DataRetrieval’ using the valid_address and valid pins, and awaits a done signal that 

indicates that the current row has been updated. It then hands off the next active row to 
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‘DataRetrieval’ and the process continues. When it has reached the last address and 

receives a done signal, it signals the MAIN CONTROL UNIT that the Triphone_Block 

has been completely updated for this frame using the waiting_to_start signal. 

On receiving a valid address, ‘DataRetrieval’ proceeds to access and store all the 

data that will be required to update the row.  Scores, TID, SID(s), v1, v2, set50, prev, 

p_st and p_no are all addressed and accessed using the valid_address, and are stored in 

the register banks inside ‘DataRetrieval’. SID(s) are redirected as addresses to the 

Senone_Score block (in SRAM UNIT) to obtain the senone scores for each of the four 

senones. TID is redirected as the address to the Transition_Block (in DRAM UNIT-1) to 

obtain the transition scores of the triphone. Once all the data has been retrieved, the 

‘DataRetrieval’ signals that the data in its registers are the right values and is ready to be 

used by the rest of the system using the done_DataRetreival signal.  

‘NewScore’ actually does the Viterbi decoding, taking in the scores, the transition 

scores and the senone scores and feeding them to smaller ‘Update’ units (similar to those 

shown in Figure 6.5). The ‘Update’ units calculate the new scores as well as the 

corresponding TSS for each of the four states. The new scores are put through a 

‘thresholdCheck’ unit to see if the new scores of the four states pass pruning. This data is 

relayed to ‘WriteBack’. The ‘allValid’ unit is a counter that gets activated when the 

done_DataRetrieval signal is asserted and counts a fixed number of cycles till it reaches a 

value at which the new scores, TSS values and the ‘compare’ information would have 

filtered through the pipeline and is valid. It then signals that ‘WriteBack’ may begin the 

final process of Phase1. 
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Figure 6.20 – The Viterbi Update Unit –1  

Table 6.5 – Signals in the Viterbi Update Unit -1 

NAME OF  SIGNAL WIDTH DESCRIPTION 
start 1 Begins Phase1 for a new frame 
waiting_to_start 1 Indicates that Phase1 has been completed 
addr 18 Address to access vm bit of row 
vm 1 vm bit 
valid_address 18 Address of row that is valid 
valid 1 Indicates the valid_address is valid 
done 1 Indicates that row has been processed 
v1,v2 1+1 Indicates the type of triphone(of word having ‘n’ total triphones) 

                  00 – 1st triphone of word 
                  01 – 2nd to n-2th triphone of a word 
                  10 – n-1th triphone of a word 
                  11 – nth triphone of a word 

prev 18 Address of predecessor triphone – Used to access the Score and 
TSS of the predecessor triphone. 

SID(0,1,2,3) 13x4 ID(s) of the senones – Used as address to access Senone Scores 
from SRAM UNIT 

TID 16 ID of the triphone – Used as address to access Transition Scores  

SRAM UNIT 
(Senone Scores) 

NewScore 

Update 
x 4 

threshold 
Check 

allValid 

WriteBack 
 
 

DRAM 
UNIT - 1 

vm 

set50 

v1v2 
prev 
SID0 
SID1 
SID2 
SID3 
TID 
P_st 
P_no 

 

Score0 
Score1
Score2 
Score3 

TSS 

{Tran-
sition 

scores} 
a00 
a01 
a11 
a12 
a22 
a23 

SRAM0 

SRAM1 validChecker 

address 
Generator 

v1    v2    
prev  

SID     TID 
Score(s)     

TSS 
P st    P no 

TID 

vm 

addr 
valid 

address 
valid 

start waiting_to_start 

valid 
address 

Data 
from 

Gaussian 
Estimator

start 

SID(s) 

Senone 
Score(s) 

Score(s)    TSS 
SenoneScore(s) 

a00 a01 a11 a12 a22 

CurrentTSS 

Threshold 
values 

FIFOInsertion 

vm Activation 

Writeback 

New Score(s) 
& TSS 

compare 

DataRetrieval 

Register 
Bank 

Start 
FIFOInsertion 

FIFOInsertion 
done 

Data to  
FIFO 

New Score(s) 
& TSS valid 

DataRetrieval 
done 

WriteBack  
address 

WriteBack Data 

From Main 
Control 

From  
FIFO50 

From 
Main 

Control 

VITERBI UPDATE UNIT -1 

done 

done 

a00  a01  a11  a12  a22  a23 

bus1 
 



 107

Table 6.5 (continued) 

Score(s) 32x(4+1) Scores of each of the four states of the triphone as well as the 
score of the last state of the predecessor triphone 

TSS 11x4 TimeStamps of each of the four states of the triphone as well as 
the TimeStamp of the last state of the predecessor triphone 

P_st 18 First address of the set of triphones that succeed this triphone 
P_no 6 No. of triphones that succeed this triphone 
a00 a01 a11 a12 a22 a23 32x6 Transition scores  
Senone Scores 32x4 Senone Scores of each senone (each state) 
DataRetrieval_done 1 Indicates that the row has been completely read and required 

Data has been retrieved 
bus1  {v1,v2, P_st, P_no} 
CurrentTSS 11 TSS for Current Frame 
Threshold values 32x4 Values used for pruning 
New Scores(s) and TSS 32x4 + 11x4 New values calculated for Score(s) and corresponding 

Timestamps 
compare 4x1 Indicates which of the new Scores(s) passed pruning 
StartFIFOInsertion 1 Signals FIFO50 to accept a new entry 
Data to FIFO 18+1 {addr,set50} – Data to be inserted into FIFO50 
FIFOInsertionDone 1 Signals that the Data has been inserted into FIFO50 
WriteBack address 18 Address used to writeback new values 
WriteBack Data 1+1+32x4 

+11x4 
Data that needs to be written back – {vm,set50,Score(s),TSS} 

 

As mentioned previously, the ‘WriteBack’ module is responsible for 3 different processes 

–‘writeback’, ‘vm-activation’ and ‘FIFO-insertion’. Note that v1 and v2 give information 

about what type of triphone the current one is (See Table 6.5). During WriteBack, if all 

the new scores fail the threshold check (as indicated by the compare signal), the current 

triphone is deactivated (vm set to ‘0’) unless the current triphone is the first triphone of a 

word (A word may start at any time frame and so the first triphone is always kept active 

to allow this). If at least one of the scores pass pruning, the triphone is kept active and the 

new scores and TSS are written back to the Triphone_Block using the WriteBack address 

and WriteBack Data buses. During ‘vm-Activation’, the ‘Writeback’ module gets the 

P_st value that provide the start address of the set of triphones that succeed the current 

triphone, and the P_no value that gives the number of triphones that succeed the current 

one. ‘WriteBack’ then proceeds to activate each of these triphones in case they had been 

deactivated, to ensure that a transition from current triphone to each of these ones 

triphones occur in the next time frame.  During the ‘FIFO-insertion’ process,  



 108

‘Writeback’ sends a startFIFOInsertion signal along with the address of the current 

triphone and the set50 value to FIFO50. Next, it also sets the set50 bit of this triphone to 

‘1’ and waits on a FIFOInsertionDone signal from FIFO50. This will indicate that the 

‘FIFO-Insertion’ has been completed. The WriteBack then sends a done signal to 

‘DataRetrieval’, which propagates it to the ‘validChecker’ signaling that the row (current 

triphone) has been processed and updated.  

 

6.3.4.2 Final 50 Initiator Unit 

The FINAL 50 INITIATOR UNIT is comprised of 2 modules – the ‘Initiator’ and the 

‘MEM_allocator’.  The Initiator is activated when FIFO50 signals that a new triphone is 

available for initialization/reactivation. FIFO50 does this by placing the required data 

(which is the address of the triphone and its set50 bit) on the data bus and asserting the 

Advance done signal . At this point one of two things take place depending on the value 

of the set50 bit. 

If the set50 bit had been ‘0’, this means that the triphone is requesting space 

allocation. The ‘Initiator’ looks down the Availability List for a space whose used bit is 

not set to ‘1’. Once such a space is found, it places the address of the triphone into this 

location and sets the used bit to ‘1’. The address of this location – know as the List 

address – along with the the address of the triphone and the set50 bit are relayed to the 

‘MEM_Allocator’. 

If the set50 bit had been ‘1’, this means that the triphone has already been 

allocated space and is requesting a reactivation. The ‘Initiator’ simply looks down the list 
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for the location at which the address of the triphone is stored. Once found, it sends the 

address, the List address and the set50 bit to the MEM_Allocator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.21 - Final 50 Initiator Unit - Initiator 

Table 6.6 - Signals in the Initiator 
 

NAME OF  SIGNAL WIDTH DESCRIPTION 
AdvanceDone 1 Indicates that FIFO50 has placed a valid data on the data lines – 

{address & set50} 
address 18 Address of the triphone that requested the initialization of the last 50 

triphones 
set50 1 set50 bit – used to indicate if space has been previously allocated or 

not 
advance 1 Indicates that the initialization process has completed and the 

FIFO50 may send the next value(s) 
List address (to 
Availability List) 

12 Address used to access the Availability List in DRAM UNIT-2 

List address (to 
MEM_allocator) 

12 Final List Address that will be used by the MEM_allocator to do the 
initialization/reactivation. 

Data to List 18+1 Data sent to(written to) the Availability List 
Data from List 18+1 Data retrieved from the Availability List 
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Table 6.6 (continued) 

deselect_Listaddress 12 During deselect process, this gives the location in Availability List 
that needs to be ‘freed up’ 

Valid_deselect_Listaddress 1 Used to start the deselection process 
Send_next_deselect 1 Used to indicate that the deselection process is complete 
Deselect_addr 18 Address of triphone/word that has been deallocated space in the 

Triphone_Block Type B – used to access ‘set50’ bit and set it to ‘0’ 
Valid_deselect_addr 1 Used to indicate that the ‘set50’ bit needs to be set to ‘0’ 
Done_deselect 1 Used to indicate that the ‘set50’ bit has been set to ‘0’ 
Start_Initialization 1 Used to signal the MEM_allocator to start the 

initialization/reactivation process 
Done_Initialization 1 Used to indicate that the MEM_allocator has completed the 

initialization/reactivation process 

 

When the DESELECT UNIT identifies a set of addresses that are inactive it sends the 

corresponding List address to the ‘Initiator’ using the deselect_Listaddress bus and 

signals ‘Initiator’ to start the deselection process by asserting the 

valid_deselect_Listaddress line. The ‘Initiator’ uses this address to access the 

Availability List. It sets the used bit to ‘0’, sends the address at that location to the 

Deselect_addr bus and asserts the valid_deselect_addr line signaling that the set50 bit of 

the triphone at this address needs to be set to ‘0’. The deselection process is completed 

when the Done_deselect line is asserted, at which point the ‘Initiator’ asserts the 

Send_next_deselect line to signals DESELECT UNIT that it is ready to deselect another 

set of locations if required. 

 ‘MEM_Allocator is responsible for initializing the Triphone_Block_Type_B with 

the right values (if the set50 bit was ‘0’) or reactivating a set of locations (if the set50 bit 

was ‘1’). Either process is started when the Start_Initialization signal is asserted. During 

initialization, the WordLookup table is accessed using the address. It provides the ID of 

the word that requested the initialization. The address of the location at which that the 

final set of 50 triphones will be stored, is obtained by appending the ListAddress with a 6 

bit extension as shown in Figure 6.22 and Figure 6.14. Appending the’ wordID’ to a 6-bit 
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extension will provide the address to the TID and SID of the triphones. This information 

is stored in the SIDTIDLoc block and is accessed during Phase 3. It acts as the 22 bit 

address to the TID’s and SID’s of the last 60000x50 triphones.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.22 – Initializing and updating Triphone_Block_Type_B 
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The vm bit is set to ‘1’, the prev is initialized with address and the Scores and TSS bits 

are set to the initial zero value. The initialization process is shown in Figure 6.22.  

On the other hand, during reactivation, the ‘MEM_Allocator’ uses the 

List_address to access the vm bits of the 50 triphones and set them to ‘1’. At the end of 

either process, the ‘MEM_Allocator’ asserts Done_Initialization, to signal the end of the 

initialization/reactivation process. The ‘MEM_Allocator’ is shown in Figure 6.23.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.23 - Final 50 Initiator Unit – MEM_Allocator 
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Table 6.7 - Signals in the MEM_Allocator 
 

NAME OF  SIGNAL WIDTH DESCRIPTION 
Start_Initialization 1 Used to signal the MEM_Allocator to start the 

initialization/reactivation process 
Done_Initialization 1 Used to indicate that the MEM_Allocator has completed the 

initialization/reactivation process 
address 18 Address of the triphone that requested the initialization of the last 50 

triphones – this is also used to access the WordLookup Block and 
get the word ID  

set50 1 set50 bit – used to indicate if space has been previously allocated or 
not 

advance 1 Indicates that the initialization process has completed and the 
FIFO50 may send the next value(s) 

List address (from 
MEM_Allocator) 

12 Final List Address that will be used by the MEM_Allocator to do the 
initialization/reactivation. 

WordID 16 ID of the word 

 

6.3.4.3 Viterbi Update Unit-2 

The VITERBI UPDATE UNIT –2 is quite similar to the VITERBI UPDATE UNIT-1 

and we refrain from repeating all the details. The main difference between the 2 units is 

that instead of updating the first n-1 triphones, VITERBI UPDATE UNIT -2 updates the 

last set of 50 triphones in Phase 3. The VITERBI UPDATE UNIT –2 accesses the 

DRAM UNIT –1 for the transition scores and DRAM UNIT –2 for everything else. 

During the ‘FIFO-Insertion’ The ‘Writeback’ module inserts the completed word into the 

FIFO-Lang i.e. it places the TID, the WordID, the Score of the last state, and the TSS of 

the last state on Data_to_FIFO and asserts the start_FIFOInsertion. The VITERBI 

UPDATE UNIT –2 signals the end of Phase 3 by asserting the waiting_to_start2 line. 

Figure 6.24 illustrates the VITERBI UPDATE UNIT –2. 

 

6.3.4.4 Deselect Unit 

The DESELECT UNIT (shown in Figure 6.25) serves to identify sets of locations in the 

Triphone_Block_Type_B that are inactive and can be freed up. Remember that the 

dynamic allocation scheme requires begin successfully able to identify such locations so 

that the design does not run out of memory.  



 114

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.24 – The Viterbi Update Unit –2  

Table 6.8 – Signals in the Viterbi Update Unit -2 

NAME OF  SIGNAL WIDTH DESCRIPTION 
start 1 Begins Phase3 for a new frame 
waiting_to_start 1 Indicates that Phase3 has been completed 
addr 18 Address to access vm bit of row 
vm 1 vm bit 
valid_address 18 Address of row that is valid 
valid 1 Indicates the valid_address is valid 
done 1 Indicates that row has been processed 
prev 18 Address of predecessor triphone – Used to access the Score and 

TSS of the predecessor triphone. 
SID(0,1,2,3) 13x4 ID(s) of the senones – Used as address to access Senone Scores 

from SRAM UNIT 
TID 16 ID of the triphone – Used as address to access Transition Scores  
Score(s) 32x(4+1) Scores of each of the four states of the triphone as well as the 

score of the last state of the predecessor triphone 
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Table 6.8 (continued) 

TSS 11x4 TimeStamps of each of the four states of the triphone as well as 
the TimeStamp of the last state of the predecessor triphone 

a00 a01 a11 a12 a22 a23 32x6 Transition scores  
Senone Scores 32x4 Senone Scores of each senone (each state) 
DataRetrieval_done 1 Indicates that the row has been completely read and required 

Data has been retrieved 
bus1  {v1,v2, WordID,TID} 
CurrentTSS 11 TSS for Current Frame 
Threshold values 32x4 Values used for pruning 
New Scores(s) and TSS 32x4 + 11x4 New values calculated for Score(s) and corresponding 

Timestamps 
compare 4x1 Indicates which of the new Scores(s) passed pruning 
StartFIFOInsertion 1 Signals FIFO50 to accept a new entry 
Data to FIFO 16+16+32+11 {{WordID, TID,Score,TSS}} – Data to be inserted into FIFO-

Lang 
FIFOInsertionDone 1 Signals that the Data has been inserted into FIFO50 
WriteBack address 18 Address used to writeback new values 
WriteBack Data 1+32x4 

+11x4 
Data that needs to be written back – {vm,Score(s),TSS} 

 

Once the VITERBI UPDATE UNIT –2 is done with updating a set of locations, it sends 

the first 12 bits of this address to DESELECT UNIT. The DESELECT UNIT then checks 

the 50 corresponding locations. If all the active bits (vms) are ‘0’ then this set of locations 

is marked for de-allocation. The 12-bit List address is sent to the ‘Initiator’ module 

(within the FINAL 50 INITIATOR UNIT) using the deselect_Listaddress bus and signals 

‘Initiator’ to start the deselection process by asserting the valid_deselect_Listaddress line.  

 

 

 

 

 

 

 

 

Figure 6.25 – Deselect Unit 
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6.3.4.5 Language Model Unit 

The ‘Identified_words’ block consist of words that have completed AND have a 

successor in the ‘temp_list’ block(meaning that they are part of a sentence). The 

‘temp_list’ block consist of words that may have a predecessor in the ‘Identified_words’ 

block OR may be the first word of a sentence.  Both of these are placed in DRAM UNIT 

–1. 

The first step in the process now is to check if the TSS of the completed word 

matches the TSF of any of the words in the ‘temp_list’. If there are one (or more) 

matches, this would indicate that the time this word started corresponds to the time the 

word in the ‘temp_list’ completed  - meaning that the word pair could be part of a 

sentence. The ID of the completed word (or more specifically, the ID of the last triphone 

of the word) is used to lookup possible next triphones for this word from the 

‘Possible_next_Triphone’ list. If any entry in this list corresponding to this ID (there can 

be max of 50 for any ID) matches the last triphone of the word in the ‘temp_list’ (which 

is a separate column entry in the ‘temp_list’), this means that a transition could have 

taken place. This condition checking is done by the ‘Conditon_Check Unit’. 

Scenario A - A match is found (a word pair is found that passes both compare 

steps). The temp_list word is checked to see if the it had any predecessor in the 

Identified_words list. At this point the word in the Identified_words list is called 

the n-2nd word (A null is used if no predecessor exists). The word in the temp_list 

is called the n-1st word. The completed word is called the nth word. The 3 words 

are then sent to the ‘Trigram Search’ to check for the language model 
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probabaility. The final scores and entries are written back into the ‘temp_list’ and 

‘Identified_word’ block. 

Senario B – No match is found. The word is inserted as a the first word of a new 

sentence. Once again the ‘Trigram Search’ is used to check the probability of this 

word being the first of a sentence, and the final scores and entries are written back 

into the ‘temp_list’ and ‘Identified_word’ block. 

Figure 6.26 shows the LANGUAGE MODEL UNIT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.26 – Language Model Unit 
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CHAPTER 7 
 
Evaluation 
 
 
 
In our evaluation of the systems developed, we will be considering two sets of results. 

Firstly we will be showing improvements and savings achieved by each of our designs 

compared to the baseline designs (the conventional design upon which we made 

improvements). Secondly, we will be comparing each of our designs to other 

implementations of the speech recognition system. 

Comparison of speech recognition systems, in part or as a whole, is often difficult 

owing to the vast majority of parameters that specify any such system. As an example, 

more often than not each system differs by the size of the vocabulary it targets. Real-time 

specifications for such systems differ, as it is hardly fair to compare a system that 

supports a 5k vocabulary set with one that is designed for a 60k set. The nuances of each 

design and design methodology may not allow for assumptions of complete parallel 

operation and linear scalability. For example the design developed by researchers at the 

Norwegian University of Science and Technology [69] is an earlier design of a gaussian 

estimation unit that reports real-time operation. However the results were based on an 

earlier test set, and the workload has worsened by 15.3 times since then. The design itself 

is based on a fixed-point format, while current designs are based on the IEEE 754 

floating-point format. Another example is the design by Nedevschi et al. [70], which is a 
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complete speech recognition system doing both the gaussian estimation and the viterbi 

search in a single design. It shows 1-2 orders of magnitude improvement in power 

consumption as compared to other designs. However this design handles only 28 

phonemes and 40 words, and cannot be considered a ‘complete’ speech recognition 

system by today’s standards. Even the researchers at CMU (Speech in Silicon project) 

[79] have compared their latest design, with implementations of the SPHINX software on 

different CPU configurations, perhaps for the same reasons. 

 Binu [4] evaluated his perception processor to other implementations of speech 

recognition systems, and it is these results that we will be comparing our system with. 

This particular study was chosen because of the variety of systems in different domains 

that this study was conducted on. The first of these systems is a software implementation 

of SPHINX running on a 2.4GHz Intel Pentium 4 processor – a system that is optimized 

for performance rather than energy efficiency. The second system is software running on 

a 400MHz Intel XScale (StrongARM) processor, which represents an energy efficient 

embedded processor. The third system is the perception processor developed by Binu. 

Finally, for the gaussian estimation task, we also compare our Gaussian Estimator with 

another custom gaussian accelerator [4].  Two benchmarks are run on each of these 

systems and compared for power and energy efficiency. The first benchmark developed 

for the gaussian estimation task compares the performance of these systems on a single 

input packet - where one input packet corresponds to evaluating a single acoustic model 

state over 10 frames of a speech signal. The second benchmark developed for the viterbi 

decoding task compares the performance of these systems on a single input packet – 

where one input packet to the consists of updating 32 triphones.  While the first 
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benchmark is floating-point operation dominated, the second benchmark is dominated by 

integer compares and select operations.  

Even with these implementations, we need to normalize across process, to make 

an accurate comparison. The perception processor and the Pentium 4 are both 

implemented in 0.13µ CMOS technology and their results need not be normalized. The 

XScale is implemented using a .18µ technology and Binu’s [4] custom Gaussian 

Accelerator is implemented in a .25µ technology. Our Gaussian Estimator and Viterbi 

Decoder designs have been implemented in a .25µ and .18µ technology respectively. All 

these results have been normalized to the to a .13µ technology. We used constant field 

scaling i.e. when the minimum feature size is scaled from λ to sλ, where s is a scale 

factor, the length and width of the channel, the oxide thickness, substrate concentration 

density and the operating voltage are all scaled by the same factor s so that the electric 

field in the transistor remains constant. The net result is that the dynamic power 

consumption P is scaled to s2P and energy consumption scales as s3. 

The metrics chosen for these comparison was power and energy efficiency. Note 

that each design was required to meet real-time recognition, and the total energy and 

power consumption of an appropriate number of units that would ensure this was used for 

the comparisons. Power was chosen as a metric to evaluate the portability of our system 

where the power supply limits the maximum power that such designs can draw. Each 

design deals with the speech recognition process differently – some requiring a large 

number of cycles to complete processing a given set of inputs, but operating at higher 

frequencies (such as the Pentium-4), while others operating much slower, but requiring 

fewer cycles to completely process the set of inputs.  Energy efficiency, measured as 
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energy per input (what each ‘input’ is defined as, is discussed later) was chosen as a 

metric, both for its ability to normalize across such operating parameters, as well as to 

provide an ‘absolute’ measure of battery life. 

 

7.1 Gaussian Estimator 

We have designed and simulated the HMM-based GE using Verilog HDL and Synopsys. 

The design was synthesized using the Synopsys Design Analyzer tool in a .25µ CMOS 

technology. Feature vectors are extracted from the input speech waveforms using the 

Sphinx-3 front-end. An operational frequency of 50Mhz was achieved. Three of these 

units were sufficient to support real-time speech recognition for about 6000 senones. The 

die size was about 2.856 mm2.   

The design was evaluated for real time performance and power consumption for 

six configurations – Baseline system, crude threshold check (CTC), Simple Down 

Sampling (SDS), Conditional Down Sampling (CDS), Context Independent Gaussian 

Mixture Model Selection (CIGMMS) and Sub-Vector Quantization Gaussian Selection 

(SVQGS). Figure 7.1 shows the real time performance of each of these techniques on our 

design. Real-time performance is measured as a fraction of the sampling frame rate 

(every 10ms). Completion times are measured by dividing the number of cycles for each 

test set in the simulation by the operating frequency. Real time performance is achieved if 

all required senone scores are computed before the next set of input observation vectors is 

available (10ms later). Performance is thus reported as a fraction of this time of 10ms 

required to complete the computations. It should be noted that for the SDS, the frequency 

of operation was cut down to 25Mhz so as to reduce power consumption, which explains 
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its 1xRT performance. All results are shown for both the arbiter and the Gaussian 

Estimator units working together. A 128Mb (x32) Micron SDRAM  - MT48LC4M32B2 

– was chosen to model the DRAM Unit used for the tests, and a corresponding DRAM 

controller was also developed (Appendix A). A generic SRAM unit was used for 

modeling the SRAM for the senone scores. An additional 40% was added to both the area 

and power numbers to compensate for post placement and routing.  
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Figure 7.1 - Real Time Performance (speed) 

Figure 7.2 shows the power consumption for each of these techniques with our design.  

Power consumption was computed by annotating the activity of individual modules with 

each adaptation to the power consumption of individual modules (as reported by the 

‘report_power’ command in Synopsis Design Analyzer. The power consumption values 

reported are for a single GE. It should be noted that since three units are needed, the total 

power consumption would be three times the values reported. We achieve a power 

consumption reduction of up to 48% (as compared to the baseline system) using these 

techniques. 
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Figure 7.2 - Power Consumption 

Next we evaluate our system with the benchmarks and systems described at the 

beginning of this chapter to put our design in perspective.  

The baseline system was chosen for these evaluations to signify that the results 

we obtain are worst case, and will only improve depending on context and input. The 

results shown are for 3 of our units (required for real-time operation).  Figure 7.3 shows 

the process normalized steady state power consumption of the different implementations 

– XScale, Pentium 4 processor, the Perception Processor, Binu’s custom Gaussian 

Accelerator, and our Gaussian Estimator.While it was expected that our custom 

implementation of the Gaussian Estimator would achieve about 2 orders of magnitude 

power savings over the general purpose Pentium 4 processor, it is worthwhile to note that 

our design achieves a 43% reduction in power consumption over the previous custom 

ASIC design. Figure 7.4 shows the energy consumption per input packet. Once again 

while achieving significant improvement (3 orders of magnitude) over the Pentium 4 

implementation, we also achieve a 35% improvement in total energy consumption as 

compared to the previous custom ASIC design. 
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Figure 7.3 - Power Consumption across systems – Benchmark 1 
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Figure 7.4 – Process Normalized Energy Consumption across systems – Benchmark 1 
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7.2 Viterbi Decoder 

We have designed and simulated the Viterbi Decoder Unit using Verilog HDL and 

Synopsys. The design was synthesized using the Synopsys Design Analyzer tool in a 

.18µ CMOS technology. Eight of these units operating at 200MHz achieve real-time 

operation. The die size was about 2.278 mm2 per unit. The complete system of 8 units 

consumes about 80.5 mW of power.  A test bench of 1000 words modeled after the 1997 

Hub-5E dataset was used for the evaluation of the design. A 128Mb (x32) Micron 

SDRAM  - MT48LC4M32B2 – was chosen to model the DRAM Units used for the tests, 

and a corresponding DRAM controller was also developed. A generic SRAM was used 

for the senone score SRAM unit(s). 

The tests did not include the Gaussian Estimator running in parallel. Instead, 

senone scores for 50 frames were developed and used for the simulations. While the 

complete design could be ported to the Xilinx Vertex-II FPGA, it could not be tested due 

to the limited memory resources available on the Xilinx Virtex-II Pro™ Prototype 

Platform board[96]. However, the design was implemented part by part on the FPGA and 

tested on a smaller dataset to verify functionality. Table 7.1 shows the memory breakup 

of the initial and final implementations and this is further illustrated in Figure 7.5 and 

Figure 7.6. 
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Table 7.1 – Memory Requirement Breakup comparison 

FINAL IMPLEMENTATION 
MEMORY BREAKUP (MBYTES) 

 INITIAL IMPLEMENTATION 
MEMORY BREAKUP (MBYTES)

Triphone Block 15.38 Triphone Block 114.405
Transition Block 1.44 Transition Block 1.44
Senone Scores 0.048 Senone Scores 0.048
Availability List 0.009728 Identified_words 0.802
WordLookup Table 0.51 Last_Phone_Score 13.1
SID TID 10.875 Word_Lookup 0.96
temp_list 0.055 Language Model 147
Identified_words 0.062464   
Possible_next_triphones 6    
Language Model 147   
Total 181.38019 Total 277.755
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Figure 7.5 – Final Implementation Memory Breakup 
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Inital Implementation Memory Breakup
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Figure 7.6 – Initial Implementation Memory Breakup 
 

The total memory usage is slightly different from our initial estimates in Section 

6.2. Nevertheless, we see that we have managed to reduce the total memory requirement 

from the initial 277.755 MBytes to about 181.38 MBytes – savings of about 35%. More 

significantly, the language model now takes up about 81% of the total required memory. 

As mentioned before, a) the only way to reduce this model size is to adopt a radically 

new method of language model training and is outside the scope of this research, and b) 

while the total memory requirement of this block is high, its total bandwidth requirement 

is low. Secondly, the Triphone_Block now takes up only a small fraction of the total 

memory requirements - less than 9% as compares to the previous 41% - which was our 

goal to begin with since this is the bandwidth hungry memory block. 
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Table 7.2 – Memory access breakup for single frame 

STAGE  MBYTES
First n-1 triphones  Triphone Block 3.63375
  Senone Scores 1.632
  Transition Scores 2.448
 Total  7.71375
   
Last set of 50 triphones  Triphone Block 4.9175
  Senone Scores 2.24
  Transition Scores 3.36
 Total  10.5175
   
Language Model Trigram search 0.01966
 Bigram search 0.2949
 Unigram search 3.244
 Total for Language Model Lookup 3.55856

 

Table 7.3 –Memory access breakup by phase and memory unit for single frame 

  MBYTES
By Phase Phase1 7.71375
 Phase2 0.013
 Phase3 10.5175
 Phase4 3.55856
  
By Memory Unit SDRAM1 9.64032
 SDRAM2 8.2905
 SRAM 3.872

 

Table 7.2 shows the average memory access requirement for the different memory 

blocks as well as the language model lookup. Table 7.3 shows the memory access 

breakup by phase and by memory unit. This information is used to estimate the memory 

power savings of our design as shown in Table 7.4. Note that we need to convert the data 

in Table 7.3 from MBytes to number of 16 bit accesses which is used in Table 7.4. Note 

that data for the old design was obtained from Figure 6.7. SDRAM operating value data 
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were obtained from the datasheets[97]. SRAM operating value data was obtained from 

[70].  

Table 7.4 – Memory Power Savings  

 VOLTAGE CURRENT
ACCESS 

TIME 
BW 

(Macc/sec) POWER(mW)
New Design 
      
SDRAM1 3.3 190m 5.5n 482.016 1662.16 
SDRAM2 3.3 190m 5.5n 414.5248 1429.44 
SRAM 1.8 20m 70n 193.6 487.84 
     3579.44 
Old Design 
      
SDRAM 3.3 190m 5.5n 1292.678 4457.8 
SRAM 1.8 20m 70n 313.6 790.272 
     5248.072 

 

External memory power consumption forms a large portion of the total power 

consumption of speech recognition systems, but is largely ignored in most studies. Our 

lexical tree design gives a 32% improvement in external memory power consumption. It 

is clear that reducing the bandwidth requirement of such designs using schemes like those 

used in this research is a huge contributor to reducing the overall power requirements of 

the system. 

 As before, we also evaluate our system with the benchmarks and systems 

described at the beginning of this chapter to put our design in perspective. These results 

compare only the Viterbi Decoder unit itself to other such designs and do not reflect the 

underlying architectural power savings and memory power savings that our unit provides. 

The results shown are for 8 of our units (required for real-time operation).  Figure 7.7 and 

Figure 7.8 show the process normalized steady state power consumption and the energy 

efficiency, respectively, of the different implementations – XScale, Pentium 4 processor, 
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the Perception Processor and our Viterbi Decoder. We achieve an improvement of 3 

orders of magnitude in both power consumption and energy efficiency over the software 

implementation on the Pentium 4 processor as was expected. We also achieve 1 order of  
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Figure 7.7 - Power Consumption across systems – Benchmark 2 
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Figure 7.8 – Process Normalized Energy Consumption across systems – Benchmark 2 
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magnitude improvement in power consumption and energy efficiency over the viterbi 

decoder phase of the Perception Processor (note that this processor is designed especially 

for the speech recognition task). 
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CHAPTER 8 
 
Conclusion 
 
 
 
The desirability of portable operation of electronic systems and the applications they 

perform has become very clear in recent years. A major factor that governs the weight 

and size of such portable systems is the amount of batteries they carry, which in turn is 

governed by the power dissipated by such devices. The cost of providing this power, and 

the associated cooling has led to significant interest in power reduction for such 

applications. However, until recently, there had not been a major focus on design 

methodologies for such systems with power reduction in mind; the focus rather was on 

faster clock rates and logic speeds. This dissertation takes a different viewpoint, focusing 

on the design of a speech recognition system with power reduction in mind, while 

meeting the real-time requirements of the system, and supporting a large vocabulary. 

While system level design techniques such as sharing execution units and buses and 

reducing activity for arithmetic computation have been followed, the goal of this research 

was not to achieve power using standard power reduction such as voltage and frequency 

scaling, but to achieve power reduction of speech recognition applications at the 

algorithmic and structural level. It was envisioned that standard techniques could be 

applied on top of the power reduction schemes developed in this study.  
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We have designed dedicated low power hardware accelerators for the gaussian 

estimation phase and the viterbi-decoding phase – the two resource hungry and 

computation intensive parts of the speech recognition system. These specialized units 

allow us to achieve real-time speech recognition within the power budget of portable 

devices. While the power savings itself is a step towards porting our gaussian estimator 

design to mobile domains, what is more important is perhaps the degree of flexibility that 

our design incorporates. With new techniques emerging continually in speech 

recognition, it is important that any hardware accelerator built will be able to incorporate 

these techniques at least to some extent, and take advantage of the savings they provide. 

Much work on energy reduction has taken place in the circuit and device technology 

domains [8], and there has been an increasing emphasis on designing for power 

efficiency at the architectural level. This implies that the desired energy and power goals 

must be targeted early in the design cycle and that the system microarchitecture must 

work in concert with advances in circuit technology to reduce power demands. Our 

design has been able to incorporate new techniques in speech recognition and use it to 

reduce power consumption at the algorithm level. 

Note that Figure 7.3 and Figure 7.4 show the savings achieved by the gaussian 

estimator before taking into account algorithmic savings. The fact that the design is low 

power to start off with, and that its potential can be further extended by taking advantage 

of the flexible nature of the design to incorporate algorithm-level power and energy 

savings makes this an attractive solution to the gaussian estimation phase of the speech 

recognition system. 
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Similarly by restructuring our memory and adopting the lexical tree dictionary 

style, we have achieved our goal of reducing both the total memory required as well as 

reducing memory bandwidth and power consumption of the viterbi decoder unit. It is 

important to note that while the unit itself is low power, and reduces activity and power 

by eliminating redundant calculations and operations, the lexical trees structure also 

reduces the total external memory power consumption. The ability of this design to 

successfully address the problems with switching to the lexical tree structure thus taking 

advantage of the improvements it provides makes it a viable solution to the viterbi 

decoding phase of the speech recognition system. 

 

8.1 Summary 

8.1.1 Real time performance & area 

Three of our Gaussian Estimation units working in parallel achieved real-time 

performance for 6000 senone updates per 10ms time frame. In addition by adapting to the 

representative layer techniques we achieve a speed up of up to .5x RT (real time). Eight 

of our Viterbi Decoder units working in parallel achieved real-time performance for a 

60000-word vocabulary size. The total area for our chip was 11.825 mm2. Adding 100% 

for post routing and packaging, we get a total area of 23.6 mm2.  

 In comparison the latest Speech-in-Silicon chip from CMU has a area of 10 mm2 

that supports only 5000 words with a real time performance of .6 x RT. Assuming that 

this chip can support twice as much words in real-time, our design still manages to 

support 6 times as much vocabulary for about 2.5 times the area. 
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8.1.2 Memory Requirement 

Using our lexical tree structure, and our dynamic memory allocation scheme, we have 

manage to reduce the total required memory for the Viterbi Decoding part from 

227.75MBytes to 181.38Mbytes (a 35% reduction).  Adding the 15.16MBytes required 

by the Gaussian Estimation part, the total memory requirement is now 196.54MBytes. 

We also achieved a 7x reduction in the size of the high traffic Triphone_Block (from 

114.405MBytes to 15.38MBytes).  

 

8.1.3 Memory Bandwidth requirement 

The required memory bandwidth for the Gaussian Estimator unit was about 15Mbytes per 

frame. The memory bandwidth requirement for the Viterbi Decoder was about 18MBytes 

per frame for the Triphone_Block update for the lexical structure. This represented a 36% 

improvement over the previous flat structure. The bandwidth requirements are also 

balanced between both DRAM units ensuring parallel operation. 

 

8.1.4 Power & Energy 

The Gaussian Estimation Unit has a worst-case power budget of 3x245mW and a best-

case power rating of 3x121mW. The design also achieves a 43% improvement in power 

and 35% improvement in energy consumption over the previous comparable ASIC 

implementation before the savings due to adaptation are taken into account. As compared 

to the state-of-the-art software implementation of SPHINX on a general-purpose 

processor, the design also shows 2 orders of magnitude improvement in power and 3 

orders of magnitude in energy consumption. Clearly an ASIC solution is needed to push 
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the speech recognition application to within the power and energy budgets of the mobile 

domain. 

 While the ASIC implementation of the Viterbi Decoder is power efficient, most 

of the power savings for the unit itself can be attributed to the reduction in calculations 

and elimination of redundancy due to the lexical tree structure and the dynamic memory 

allocation. The total power required by the Viterbi Decoder unit(s) was 80.5mW. The 

design achieves 3 orders of magnitude improvement in both power and energy 

consumption compared to the software implementation of SPHINX on a general purpose 

processor, and 1 order of magnitude improvement in both power and energy consumption 

when compared to the closest custom processor for speech recognition – the perception 

processor. These results are before applying the additional savings due to the BW and 

operation reductions due to the new structure. 

 In addition the reduced BW requirement has lead to a 32% reduction in external 

memory power consumption (from about 5.2W to 3.6W) – a factor ignored by most 

studies. Clearly reducing the BW requirements is a huge contributor to reducing the 

overall power consumption of a system such as this. 

 

8.2 Contributions 

The main contributions of this dissertation are: 

• We re-designed the Gaussian Estimation unit to be flexible, thus allowing it to 

recast itself to algorithmic changes at 3 out of the 4 layers. This allows it to 

harvest the power and energy savings offered by these algorithms – savings that 
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can be applied on top of  standard techniques such as voltage and frequency 

scaling. 

• We successfully transitioned from the flat dictionary to the lexical tree dictionary 

– a move that has led to a reduced memory requirement, a reduced memory 

bandwidth requirement, reduced external memory power consumption, and 

elimination of redundant calculations and memory access. A simple but novel 

memory structure was used to solve the mapping problems associated with this 

shift while maintaining a structure that did not require a complicated network of 

LUTs.  

• A novel ‘timestamp’ technique were used to solve the problems associated with 

word-to-word transitions . 

• A dynamic memory allocation scheme was used to reduce the total memory 

requirement for the Viterbi Decoding phase for the last set of 50 triphones of 

every word. 

• The search sequence was analyzed for optimizations and parallelism, and the 

design was partitioned in a manner that allowed for these optimizations to be 

incorporated.  
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Appendix A 
 

DRAM Controller 
 
 
We had used the 128Mb (x32) Micron SDRAM - MT48LC4M32B2 -for our simulations, 

and needed to develop a DRAM controller to interface with this memory unit as well as 

take care of the initialization sequence, the precharge delay, auto refresh etc. while also 

generating the correct control and address signals. The Altera SOPC Builder is used to 

create and integrate a custom version of the DDR or DDR2 SDRAM controller 

MegaCore function to a larger system. The Avalon Switch Fabric is used to provide an 

interface that can seamlessly integrate all Avalon peripherals to the Altera Cyclone 2 

FPGA. The problem is that this interface requires at least one Avalon master device such 

as the NIOS II embedded processor, which serves as the platform for porting the software 

component of large designs. Our design is entirely built in hardware and does not require 

the onboard processor.  We can however use the DRAM controller generated by the 

Altera Quartus tool for our own designs. Small changes are necessary to make the 

generated design work independently with the rest of the hardware.  

• The original code generated timing violations which were fixed after the 

following code was inserted/replaced. 

o A condition for refresh following the initialization sequence is necessary- 

Immediately following this code: 

if (init_done) 
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Insert this code: 

                    begin 
                       if (refresh_request) 
                           begin 
        zs_cs_n <= 0; 
        zs_ras_n <= 1; 
        zs_cas_n <= 1; 
        zs_we_n <= 1; 
       end 
                       else  
          begin 
          zs_cs_n <= 1; 
        zs_ras_n <= 1; 
        zs_cas_n <= 1; 
        zs_we_n <= 1; 
  end  

  ……..rest of code….. 

o immediately following this code: 

  9'b001000000: begin 
             m_state <= 9'b000000100; 
             m_addr <= {12{1'b1}}; 
 

Insert this code:  
 

             if (refresh_request) 
                 {zs_cs_n, zs_ras_n, zs_cas_n, zs_we_n} <= 4'b0010; 
             else  
                 {zs_cs_n, zs_ras_n, zs_cas_n, zs_we_n} 

<={csn_decode,3'h2}; 
       

o Replace  

    assign cmd_code = {zs_ras_n, zs_cas_n, zs_we_n}; 
   assign cmd_all = {zs_cs_n, zs_ras_n, zs_cas_n, zs_we_n}; 
   
    instead of  
   
   assign cmd_code = {zs_ras_n, zs_cas_n, {1{1'b0}}}; 

assign cmd_all = {{1{1'b0}}, zs_ras_n, zs_cas_n,  
{1{1'b0}}}; 

 
• The clock to the SDRAM and the SDRAM controller need to be out of phase (Clk 

& ~Clk). 
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• The SOPC builder generates its own test bench when it generates the SDRAM 

controller. This test bench makes sure that a sufficient startup time elapses before 

any read/write occur, and is essential for completing the proper startup sequence, 

as well as for establishing operational mode. In a complete design, we need to 

ensure this, using alternate methods instead of leaving this to the test bench. We 

have done this in our design using condition checking in our DRAM unit(s).  

 

 
 


