

ABSTRACT

Wang, Xinyuan. Tracing Intruders behind Stepping Stones. (Under the direction of Dr. Douglas S.
Reeves.)

Network based intruders seldom attack directly from their own hosts but rather stage their attacks

through intermediate “stepping stones” to conceal their identity and origin. To track down and

apprehend those perpetrators behind stepping stones, it is critically important to be able to correlate

connections through stepping stones.

Tracing intruders behind stepping stones and correlating intrusion connections through stepping

stones are challenging due to various readily available evasive countermeasures by intruders:

• Installing and using backdoor relays (i.e. netcat) at intermediate stepping stones to evade logging

of normal logins.

• Using different types of connections (i.e. TCP, UDP) at different portions of the connection chain

through stepping stones to complicate connection matching.

• Using encrypted connections (with different keys) across stepping stones to defeat any content

based comparison.

• Introducing timing perturbation at intermediate stepping stones to counteract timing based

correlation of encrypted connections.

In this dissertation, we address these challenges in detail and design solutions to them.

For unencrypted intrusion connections through stepping stones, we design and implement a novel

intrusion tracing framework called Sleepy Watermark Tracing (SWT), which applies principles of

steganography and active networking. SWT is "sleepy" in that it does not introduce overhead when

no intrusion is detected. Yet it is "active" in that when an intrusion is detected, the host under attack

will inject a watermark into the backward connection of the intrusion, and wake up and collaborate

with intermediate routers along the intrusion path. Our prototype shows that SWT can trace back to

the trustworthy security gateway closest to the origin of the intrusion, with only a single packet from

the intruder. With its unique active tracing, SWT can even trace when intrusion connections are idle.

Encryption of connections through stepping stones defeats any content based correlation and makes

correlation of intrusion connections more difficult. Based on inter-packet timing characteristics, we

develop a novel correlation scheme of both encrypted and unencrypted connections. We show that

(after some filtering) inter-packet delays (IPDs) of both encrypted and unencrypted, interactive

connections are preserved across many router hops and stepping stones. The effectiveness of IPD

based correlation requires that timing characteristics be distinctive enough to identify connections.

We have found that normal interactive connections such as telnet, SSH and rlogin are almost always

distinctive enough to provide correct correlation across stepping stones

The timing perturbation at intermediate stepping stones of packet flows poses additional challenge in

correlating encrypted connections through stepping stones. The timing perturbation could either make

unrelated flows have similar timing characteristics or make related flows exhibit different timing

characteristics, which would either increase the false positive rate or decrease the true positive rate of

timing-based correlation. To address this new challenge, we develop a novel watermark based

correlation scheme that is designed to be specifically robust against such kinds of timing perturbation.

The idea is to actively embed a unique watermark into the flow by slightly adjusting the timing of

selected packets of the flow. If the embedded watermark is unique enough and robust enough against

the timing perturbation by the adversary, the watermarked flow could be uniquely identified and thus

effectively correlated. By utilizing redundancy techniques, we develop a robust watermark correlation

framework that reveals a rather surprising result on the inherent limits of independent and identically

distributed (iid) random timing perturbations over sufficiently long flows. We also identify the

tradeoffs between the defining characteristics of the timing perturbation and the achievable

correlation effectiveness. Our experiments show that our watermark based correlation performs

significantly better than existing passive timing based correlation in the face of random timing

perturbation.

In this research, we learn some general lessons about tracing and correlating intrusion connections

through stepping stones. Specifically, we demonstrate the significant advantages of active correlation

approach over passive correlation approaches in the presence of active countermeasures. We also

demonstrate that information hiding and redundancy techniques can be used to build highly effective

intrusion tracing and correlation frameworks.

Tracing Intruders behind Stepping Stones

by

Xinyuan Wang

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Computer Science

Raleigh

2004

APPROVED BY:

Dr. George N. Rouskas Dr. Gregory T. Byrd

Dr. Peng Ning Dr. Douglas S. Reeves
Chair of Advisory Committee

ii

To those who love me

My parents Qingfeng Wang, Maolan Jiang

My wife Ning Li

My daughter Serena Wang

iii

BIOGRAPHY

Xinyuan Wang was born in Beijing. P.R. China. He received B.S. in Computer Science from

Peking University in 1987, M.S. in Computer Science from Chinese Academy of Space

Technology in 1990 respectively.

iv

ACKNOWLEDGEMENTS

First I want to thank my advisor, Dr. Douglas S. Reeves. Without his advice and guidance in

the past four years, this dissertation would never come into existence. Getting a PhD is never

an easy task, especially when I have a demanding full-time job at the same time. There was a

moment that I was lost and I wanted to quit. Thanks to God, I was able to find Dr. Reeves

and ask him to be my advisor. This has turned out to be the turning point of my PhD research.

I have benefited greatly from Dr. Reeves’ insight and the hard questions he asked. It is those

hard questions that guide me to look deeper into the problem and the solution I investigated,

and it is those hard questions that lead me to conduct award-winning research on a seemly

unsolvable problem.

I would like to thank Dr. George N. Rouskas, Dr. Gregory T. Byrd and Dr. Peng Ning for

serving my advisory committee. I appreciate Dr. Byrd’s encouragement and his word-by-

word proofreading on my dissertation. I always enjoy the discussion with Dr. Ning about the

tracing work, which has inspired a new solution to the tracing problem.

I would like to thank Dr. Felix Wu of The University of California at Davis for leading me

into the exciting field of network security research while he was faculty of N.C. State

University.

I would also like to thank my parents for their love and support and for giving me the best

possible education they could.

Finally, my utmost thanks go to my wife for her love, support and encouragement over the

years.

v

Contents

LIST OF FIGURES .. IX

LIST OF TABLES ..XI

CHAPTER 1 INTRODUCTION... 1
1.1 MOTIVATION.. 1
1.2 CHALLENGES IN TRACING INTRUDERS IN THE INTERNET — THE BIG PICTURE .. 2
1.3 CHALLENGES IN TRACING THROUGH STEPPING STONES 6

1.3.1 Host Login Information Disguise, Deletion and Forgery................................. 7
1.3.2 Connection Content Transformation .. 8
1.3.3 Timing Perturbation.. 8
1.3.4 Introducing Loops to the Intrusion Connection Chain 9
1.3.5 Flow Level Traffic Padding .. 9
1.3.6 Packets Drop and Retransmission .. 9
1.3.7 Flow Repacketization.. 10
1.3.8 Packet Reorder.. 10
1.3.9 Flow Split and Merge.. 10
1.3.10 Mixing Multiple Flows.. 11

1.4 CONTRIBUTIONS .. 11
1.5 ORGANIZATION.. 13

CHAPTER 2 STEPPING STONE TRACING PROBLEM AND RELATED WORKS
... 15

2.1 THE OVERALL STEPPING STONE TRACING PROBLEM MODEL.......................... 15
2.1.1 Correlation Problem Solution Model ... 17

2.2 EVALUATION CRITERIA AND CLASSIFICATION OF TRACING AND CORRELATION
APPROACHES ... 18

2.2.1 Evaluation Criteria of Tracing and Correlation Approaches 19
2.2.2 Classification of Tracing and Correlation Approaches.................................. 21

2.3 TRACING AND CORRELATING UNENCRYPTED CONNECTIONS 23
2.3.1 Distributed Intrusion Detection System (DIDS) ... 23
2.3.2 Caller Identification System (CIS) .. 23
2.3.3 Thumbprinting... 24
2.3.4 Intrusion Detection and Isolation Protocol (IDIP) .. 24
2.3.5 Session Token Protocol (STOP).. 25

2.4 TRACING AND CORRELATING ENCRYPTED CONNECTIONS 26
2.4.1 ON/OFF Based ... 26
2.4.2 Deviation Based .. 26

2.5 TRACING AND CORRELATING ENCRYPTED CONNECTIONS WITH TIMING
PERTURBATION.. 27

2.5.1 Wavelet Based... 27
2.6 SUMMARY.. 28

vi

CHAPTER 3 SLEEPY WATERMARK TRACING .. 30
3.1 INTRODUCTION .. 30
3.2 MINIMIZING CORRELATION FALSE POSITIVE RATE.. 32

3.2.1 Making the Network Content More Unique by Watermarking....................... 33
3.2.2 Making the Embedded Watermark Invisible by Steganography..................... 35

3.3 SWT OVERVIEW.. 36
3.3.1 SWT Objective... 36
3.3.2 Basic SWT Concepts ... 37
3.3.3 Basic SWT Assumptions.. 38

3.4 SWT ARCHITECTURE AND PROTOCOL ... 39
3.4.1 Sleepy Intrusion Response .. 41
3.4.2 Watermark Correlation... 43
3.4.3 Active Tracing... 44

3.5 SWT ANALYSIS ... 48
3.5.1 Robustness and Security ... 48
3.5.2 Intrusiveness and Privacy ... 49

3.6 EXPERIMENTS .. 50
3.7 SUMMARY.. 53

CHAPTER 4 IPD-BASED CORRELATION OF ENCRYPTED CONNECTIONS..... 55
4.1 INTRODUCTION .. 55
4.2 IPD BASED CORRELATION MODEL.. 56

4.2.1 Basic IPD Correlation Concepts and Definitions .. 57
4.2.2 Heuristics in Finding Correlation Points ... 59
4.2.3 Correlation Point Function Assessment Criteria ... 60

4.3 CORRELATION POINT FUNCTION.. 61
4.3.1 Mini/Max Sum Ratio (MMS)... 61
4.3.2 Statistical Correlation (STAT) .. 62
4.3.3 Normalized Dot Product 1 (NDP1) .. 62
4.3.4 Normalized Dot Product 2 (NDP2) .. 63

4.4 CORRELATION VALUE FUNCTION .. 64
4.5 EXPERIMENT .. 65

4.5.1 Correlation Point Experiment... 65
4.5.2 Aggregated Flow Correlation Experiment ... 69
4.5.3 Correlation Performance.. 74

4.6 SUMMARY.. 74

CHAPTER 5 ROBUST CORRELATION OF ENCRYPTED CONNECTIONS
THROUGH WATERMARKING ... 77

5.1 INTRODUCTION .. 77
5.2 OVERVIEW OF WATERMARK-BASED CORRELATION.. 79

5.2.1 Watermarking Model and Concept... 80
5.3 EMBEDDING ONE WATERMARK BIT INTO ONE IPD... 81

5.3.1 Basic Watermark Bit Embedding and Decoding .. 81
5.3.2 Maximum Tolerable Perturbation, Tolerable Perturbation Range and

Vulnerable Perturbation Range.. 83
5.4 PROBABILISTICALLY ROBUST WATERMARKING OVER IPD............................. 85

vii

5.4.1 Embedding Watermark Bit over the Average of Multiple IPDs 85
5.4.2 Embedding Multiple Watermark Bits.. 87
5.4.3 Attacker’s Impact Over the Average of Multiple IPDs................................... 88

5.5 ANALYSIS ON THE DISTRIBUTION OF WATERMARK BIT ROBUSTNESS 90
5.6 WATERMARK DETECTION, AND ANALYSIS OF DETECTION AND COLLISION

RATES.. 94
5.6.1 Limitations .. 97

5.7 EXPERIMENT .. 97
5.7.1 Correlation True Positive Experiment.. 98
5.7.2 Correlation False Positive Experiment .. 101
5.7.3 Tradeoffs in Watermark Detection Rate ... 102
5.7.4 Impact of Non-Independent Timing Perturbation over Watermark-Based

Correlation.. 105
5.7.5 Embedding and Detecting Multiple Watermarks at the Same Time 106

5.8 SUMMARY.. 108

CHAPTER 6 THE SERIALIZATION IN TRACING INTRUSION CONNECTIONS
THROUGH STEPPING STONES.. 110

6.1 INTRODUCTION .. 110
6.1.1 Ordinals of Basic Set Theory .. 111
6.1.2 Tracing Problem Formulation.. 112

6.2 THE LOOP FALLACY IN DETERMINISTIC SERIALIZATION OF CORRELATED
CONNECTIONS.. 113

6.3 DETERMINISTIC SERIALIZATION OF CORRELATED CONNECTIONS.................. 115
6.3.1 Point Connectivity and Serialization Based on Point Adjacency 116
6.3.2 Edge Connectivity and Serialization Based on Edge Adjacency 118
6.3.3 Serialization Based on Adjacent Connection Pairs 121
6.3.4 Finding Adjacent Correlated Connection Pairs ... 125

6.4 SUMMARY.. 127

CHAPTER 7 CONCLUSIONS AND FUTURE WORK.. 128
7.1 SUMMARY.. 128

7.1.1 Tracing and Correlation of Unencrypted Connections across Stepping Stones
... 129

7.1.2 Correlation of Encrypted Connections across Stepping Stones 130
7.1.3 Robust Correlation of Encrypted Connections against Active Timing

Perturbation.. 130
7.1.4 Deterministic Serialization in Tracing Intrusion Connections through

Stepping Stones ... 131
7.1.5 General Principles and Lessons ... 132

7.2 FUTURE DIRECTIONS.. 134
7.2.1 Robust Correlation against Sophisticated Countermeasures 134
7.2.2 Tracing and Correlation of Non-Interactive Traffic..................................... 135
7.2.3 The Balance between Privacy and Traceability ... 135
7.2.4 Automatic Intrusion Response .. 136
7.2.5 Tracing of Other Forms of Network-Based Attacks 136
7.2.6 Survivable System and Network.. 137

viii

BIBLIOGRAPHY... 138

ix

List of Figures

Figure 1. 1 Packet Transformation when Forwarded through Intermediate Host 3
Figure 1. 2 The Overall Tracing Problem Model ... 4

Figure 2.1 Venn Diagram of Detection Problem.. 19

Figure 3.1 Random String Collision Rate with TCP/UDP Payload 34
Figure 3.2 Guardian Gateway Set... 38
Figure 3.3 Intrusion Chain Tracing Model ... 38
Figure 3.4 SWT Architecture.. 39
Figure 3.5 Active Intrusion Tracing Table ... 41
Figure 3.6 SIR Processing... 41
Figure 3.7 Guardian Gateway Correlation.. 43
Figure 3.8 Gateway Correlation Table.. 45
Figure 3.9 Active Tracing Architecture .. 46
Figure 3.10 Active Tracing Protocol Operations.. 47
Figure 3.11 Latency of SWT Guardian Gateway ... 51
Figure 3.12 Throughput of SWT Guardian Gateway (Kpps) ... 52
Figure 3.13 Throughput of SWT Guardian Gateway (KB/Sec) ... 53

Figure 4.1 CPF over IPD Correlation Windows Wj, s(X) and Wj+k, .. 58
Figure 4.2 Bounded Area of Correlation Points ... 60
Figure 4.3 Correlation Experiment on telnet and ssh ... 66
Figure 4.4 Correlation Point between Two Correlated Flows Detected by MMS 67
Figure 4.5 Correlation Points Detected by MMS, Stat, NDP1 and NDP2 with 69
Figure 4.6 True Positive and False Positive of Correlation between 16 and 15..................... 71
Figure 4.7 True Positive Rate of Correlation between 279 and 279, 400............................... 72
Figure 4.8 False Positive of Correlation between 16 and 279 Uncorrelated Flows 73
Figure 4.9 False Positive of Correlation between 144 and 135 Uncorrelated Flows 73

Figure 5.1 Quantization of the scalar value x ... 81
Figure 5.2 Mapping between Unwatermarked ipd and Watermark ipdw after Embedding

Watermark Bit w ... 82
Figure 5.3 Embedding/Decoding Watermark Bit over the Average of Multiple (m) IPDs.... 86
Figure 5.4 Embedding l-bit watermark into l sequences of IPDs ... 87
Figure 5.5 Probability Distribution of the Impact of Random Delays over the Average of

Multiple (m) IPDs ... 92
Figure 5.6 Distribution of Expected Watermark... 96
Figure 5.7 Comparison of 288 Selected IPDs before and... 99
Figure 5.8 Time Adjustment on Selected Packets by ... 100
Figure 5.9 Correlation True Positive Rates under Random Timing Perturbation 100
Figure 5.10 Correlation False Positive (Collision) Rate vs Hamming Distance Threshold h

... 101

x

Figure 5.11 Correlation False Positive (Collision) Rate vs .. 102
Figure 5.12 Watermark Detection Rate vs Redundancy Number m..................................... 103
Figure 5.13 Watermark Detection Rate vs Hamming Distance Threshold h 104
Figure 5.14 Watermark Detection Rate vs Watermark Bit Number l................................... 104
Figure 5.15 Correlation True Positive Rates under Self-Similar Timing Perturbation 105

Figure 6.1 Loopless Linear Connection Chain ... 114
Figure 6.2 The Loop Fallacy in Serializing Correlated Connections 114
Figure 6.3 Tracing Dilemma with Limited Observing Area... 114
Figure 6.4 Point Connectivity <PC and Edge Connectivity <EC .. 121
Figure 6.5 Edge Serialization Based on Edge Connectivity <EC .. 121
Figure 6.6 m Incoming Connections Adjacent to n Outgoing Connections 122
Figure 6.7 Edge Serialization Based on Adjacent Connection Pair PE-Adj......................... 125

xi

List of Tables

Table 2.1: Classification of Existing Tracing and Correlation Approaches 22

Table 4.1: Traces of Flows Used in Correlation Experiments.. 70
Table 4.2: Throughput (Millions per Second) of Correlation Point Calculation with

Correlation Window Size 15... 74

Table 5.1 Watermark Bit Robustness Estimation and Simulation with.................................. 93
Table 5.2 Watermark Detection Rates of Multiple Watermarks Embedded at the Same Time

... 107

1

Chapter 1

Introduction

1.1 Motivation

Network based attacks have become an increasingly serious threat to the critical information

infrastructure we depend on daily. According to CERT/CC [22], the number of computer

security incidents reported has been doubling every year since 1997. For example, there were

2,134 and 3,724 incidents reported to CERT in 1997 and 1998 respectively. The number of

reported incidents has increased to 52,658 in 2001 and 82,094 in 2002. In 2003, there are

137,529 incidents reported.

Why is this the case? We believe there are two major factors that contribute to the growing

trend of network based attacks:

• The widespread proliferation of global Internet access. At the beginning of 1990, there

were about 1.1 million Internet users worldwide, about 86% of whom were in the US. By

end of 2002, there were about 544 million Internet users, 70% of whom were outside the

US. Now in many countries, people can easily access the Internet from an ISP, a public

library, a café, a hotel, an airport and even a flying airplane. While the widespread global

Internet access brings productivity and convenience in our daily life, it also enables the

perpetrators to attack Internet hosts from virtually anywhere in the world.

• The lack of effective source tracing and identification in the current Internet. Unlike the

telephone systems, the Internet was never designed for tracking and tracing users’

behavior. Most existing network security mechanisms such as firewalls [38, 55], IPSEC

[41] and IDS [34, 50, 57] are focused on intrusion prevention and detection. Until

recently, intrusion tracing and response have been an afterthought and are generally

limited to logging, notification and disconnection at local hosts. What is missing from

existing network security mechanisms is an effective way to identify network based

intruders and hold them accountable for their intrusions.

2

With widespread global Internet access, network based attackers have more possible points

to launch attacks from and more targets to attack. Without effective intrusion source tracing

and identification, those network based intruders have all the potential gains with virtually no

risk of being caught. On the other hand, an effective and accurate attack tracing capability

helps to eliminate network based attack from its root by identifying and catching those

perpetrators responsible for the attack. From the attacker’s point of view, if the risk of being

caught and the consequent penalty are high enough compared with the potential gain of

network based attack, he or she would be reluctant to attack again. Thus even an imperfect

attack tracing capability could help to repel potential future attacks. However, because of the

current Internet architecture, it is much easier for network based attackers to conceal their

origin than for defenders to trace and identify their origin. Consequently, there is a pressing

need to develop a capability for identifying the intruders responsible for an attack. Network

based attack can not be effectively repelled or eliminated until its source is known.

1.2 Challenges in Tracing Intruders in the Internet — the Big Picture

In this dissertation, we refer to network-based attack as the process or event that an attacker

sends out attack packets from an attacker host, through the network, to one or more victim

hosts (or target hosts) and causes damage. The tracing (or traceback) problem of network-

based attack is to identify the attack source. Ideally a tracing system, as a solution to the

tracing problem, would be able to identify the person who is responsible for the attack.

However, the identification or authentication of a user of a machine will not be addressed

here as it is a generic problem to information assurance. In this research, the tracing problem

is limited to determining the source host of the network-based attacks.

When attack packets reach the attack target, one important clue about the attack source is the

source of attack packet. However, the source of attack packet is usually not the attack source

as most attackers take advantage of one or more anonymity techniques to hide their origin.

The tracing problem is to determine the attack source disguised by various anonymity

techniques.

3

Another technique to disguise the attack source is by “staging” the attack packets through

some intermediate hosts. For example, the attack traffic may pass through a number of

intermediate hosts, H1, …Hn, before attacking the final target. When passing the intermediate

hosts, the attack traffic will be forwarded with transformation. Figure 1.1 depicts such

transformation at intermediate host. The reception of packet Pi at time t causes Hi to generate

and send out a new packet Pi+1 to Hi+1 at time t+δ. When packet Pi reaches Hi from Hi-1, it has

source address Hi-1, destination address Hi. Now packet Pi+1 has source address Hi and

destination address Hi+1. Furthermore, the packet content of Pi+1 could be transformed from

that of Pi. For example, Pi from Hi-1 to Hi could be a telnet packet and Pi+1 from Hi to Hi+1

could be a SSH packet. One invariant relation between packets Pi and Pi+1 of the same attack

traffic is the causality relation: the arrival of packet Pi at Hi at one time somehow causes Hi to

generate and send out packet Pi+1 to a new destination at a later time. However, the causality

between packet Pi and packet Pi+1 becomes difficult to recognize when the delay δ between

the two packets is large.

Depending on the degree of transformation and connection characteristics, staging hosts

along the attack path could be classified into three types: 1) stepping-stone, 2) zombie, and 3)

reflector. A stepping-stone [71] is a compromised host that acts as a bidirectional-conduit for

the attack traffic. The stepping-stone supports real-time bidirectional communication and it

usually introduces very small delay δ. While the content of the packets could be changed

drastically (by encryption for example), the essence of the packet content remains the same

across the stepping-stone. Because stepping-stone supports bi-directional, interactive

communications while conceals the source of the communication, it is frequently used in

intrusion type of attacks. Classic penetration attack [71] usually comes through multiple

stepping-stones.

Figure 1.1 Packet Transformation when Forwarded through Intermediate Host

Hi-1 Hi Hi+1
Pi Pi+1

Pi (src: Hi-1, dst: Hi, content, t)
Pi+1 (src: Hi, dst: Hi+1, T(content),

4

A zombie [83] host is a compromised intermediate host that is used as an attack launching

point when triggered by the attacker. The trigger of the attack traffic from the zombie could

be some special packet sent by the attacker or a Trojan or logic bomb previously planted by

the attacker into the zombie host. The zombie is unidirectional and the attack triggering

traffic and the triggered attack traffic are usually fundamentally different. For example, a

single ping packet from the attacker to the zombie could trigger an enormous amount of

essentially different attack traffic sent from zombie further to the target. The attacker could

also plant into the zombie some logical bomb timed to execute minutes, hours or even days

later. All these make it very difficult to identify the trigger of the attack traffic. This kind of

zombie hosts has been widely used in distributed denial-of-service (DDoS) attacks.

Unlike stepping-stone and zombie host, a reflector is an uncompromised host that has been

tricked to take part in the attack in an innocent manner that is consistent with its normal

operation. For example, the attacker could send some host with ICMP request packet devised

with attack target’s address as its source address. Upon reception of such ICMP request, the

host would think it comes from the attack target, and it would send the ICMP reply to the

attack target. In such a way, the uncompromised host acts as the reflector of the attack traffic.

When the attacker tricks many such reflectors into sending ICMP reply packets to one target,

that target could be flooded. “Smurf” [19] is a well-known DDoS attack that utilizes an

ICMP reflector to flood the target.

Figure 1.2 depicts a model of existing anonymity gaining techniques that a network-based

attacker could use to conceal its real source. The double arrowed line represents bi-

Figure 1.2 The Overall Tracing Problem Model

Stepping
Stone Attacker Zombie Reflector Target

Malicious Host Compromised Host Uncompromised Host

5

directional connection and the single arrowed line denotes one-way communication.

Generally, zombie and reflector can only be used in unidirectional attack (i.e. denial of

service attack [17,18,19,20]). Stepping-stone, however, could be used in both bi-directional,

interactive break-in type of intrusions and unidirectional flooding type of attacks.

Analysis of the overall tracing problem model shows that there are two distinct sub-problems

that are fundamental to the general tracing problem of network-based attacks:

1) To identify the real source of packet with spoofed source address.

2) To identify the causality of traffic into and out of the same intermediate host (or

equivalently to identify which incoming flow, if there is any, causes a particular outgoing

flow).

For the first sub-problem, IP traceback techniques [28,31,56,60,66,67] have been developed

to trace packets with spoofed source address. However, IP traceback could not identify the

causality of traffic through intermediate host thus it could not trace through intermediate

hosts. For example, when attack traffic originating from host A is forwarded by host B

toward host C, the victim at host C can use IP traceback technique to find the attack traffic

comes from host B (even if the attack traffic from B to C has a spoofed source address). But

IP traceback techniques could not determine that the attack traffic from B to C actually

originated from host A. In order to trace through the intermediate host B, we need techniques

that could identify which, if any, incoming flow into host B causes the attack flow from B to

C.

The stepping-stone is a special case of staging intermediate host, and it is attractive to the

attacker due to the following reasons. First, a stepping stone supports real-time bidirectional

communication, thus it conserves all the attack capability from the attack source. Second, it

just needs normal user’s access to convert any networked host into a stepping stone. Third,

the stepping stone makes the intrusion source tracing significantly harder. All these make the

using of stepping stones one of the most widely used and effective attack source concealment

techniques [90].

6

Since the stepping stone acts merely as a bidirectional conduit, it will send out the packets it

has received after some transformation has been performed. Therefore the identification of

the causality of connections through a stepping-stone could be achieved by matching the

incoming connections with outgoing connections of the stepping-stone. We refer this

matching as the correlation of connections. One major challenge in the correlation is that the

connections may be transformed in content or other flow characteristics. Another challenge

comes from the fact that the stepping stone may be unknown before any correlation has been

identified. Determining which connections need to be compared becomes non-trivial when

there are a large number of concurrent connections in the network. Further more if the attack

passes some hosts outside the observing area of the tracing system, correlation is needed

among those connections separated by unknown number of intermediate stepping-stones.

This requires the capability to correlate any two connections observed at different points in

the network. Efficient scoping of the connections to be matched is needed to make real-time

tracing through stepping-stones practical.

In this research, we focus on addressing how to trace the interactive intrusion connections

through stepping-stones at real-time.

1.3 Challenges in Tracing through Stepping Stones

Tracing attack connections through stepping stones is challenging, because there are a

number of techniques available for the attackers to obscure the correlation of intrusion

connections across the stepping stones. They include:

1) Host Login Information Disguise, Deletion and Forgery

2) Connection Content Transformation (i.e. encryption, compression)

3) Timing Perturbation

4) Introducing Loops to the Intrusion Connection Chain.

5) Traffic Padding (i.e. adding bogus packet, packet padding)

6) Packet Drop and Retransmission

7) Flow Repacketization

8) Packet Reorder

9) Flow Split and Merge

7

10) Mixing Multiple Flows (i.e. tunneling)

These evasive techniques represent different classes of countermeasures. They can be used

either separately or jointly to make the correlation of intrusion connections through stepping

stones much more difficult. Existing intrusion tracing and correlation schemes have not yet

been able to addressed all these countermeasures and thus are not effective when all the

countermeasures are used by intruders.

In this dissertation, we analyze these countermeasures in detail and develop solutions to the

first four classes, using information hiding techniques and active approach. The rest of this

section summarizes the problems caused by these countermeasures.

1.3.1 Host Login Information Disguise, Deletion and Forgery

Disguise, deletion and forgery of local host login information aim to defeat any host based

tracing and correlation approach. While the attackers do not need root access of a host to

make it a stepping stone, attackers usually use some previously compromised hosts as

stepping stones. In this case, the attacker could have total control of the stepping stone, and

could easily modify, remove and even forge any connection login information. If one

stepping stone is providing misleading login and host activity information, the whole host-

based tracing systems would be fooled. In addition, the attacker could install some backdoor1

at the stepping stone to bypass the normal login process. Furthermore, the attacker could

install some back door relay at the stepping stone that forwards the incoming connection to

some outgoing connection of different type. For example, netcat at one host could relay an

incoming TCP connection to a predefined outgoing UDP connection to some other host.

Earliest work on tracing intruders behind stepping stones were based on tracking users’ login

activities at different hosts [40,65], and they are vulnerable to above host login information

disguise. To overcome this shortcoming, tracing and correlation based on connection content

have been developed [69,82].

1 An undocumented way of gaining access to a program, online service or an entire computer system.

8

1.3.2 Connection Content Transformation

One fundamental limitation of any network content based correlation and tracing approach is

that it requires that the payload content of the intrusion connections remain the same across

stepping stones. Therefore, network content based correlation and tracing approaches are

vulnerable to connection transforms that changes the connection payload.

The connection content transforms an attacker could use include payload encryption, payload

compression and payload padding. In particular, payload encryption is easily achievable

through widely available SSH [54,87] and IPSEC[41,37]. The encryption of connection

content defeats any content based correlation and tracing.

To address this countermeasure, inter-packet timing based correlation has been proposed.

While the timing based correlation is currently the most promising and capable approach in

correlating encrypted connections through stepping stones, it is also subject to a number of

countermeasures that are specifically designed to obscure the inter-packet timing.

1.3.3 Timing Perturbation

To disguise encrypted connections from being correlated by timing based approaches, the

attacker could actively perturb the timing characteristics of a connection by selectively or

randomly introducing extra delays at some stepping stone when forwarding packets. The

timing perturbation could either make unrelated flows have similar timing characteristics or

make related flows exhibit different timing characteristics, which would increase the false

positive rate and decrease the true positive rate of timing based correlation respectively.

In the extreme (but unrealistic) case, adding extra delays at the stepping stones could make

all flows exhibit very similar timing characteristics. For example, a stepping stone could, in

theory, buffer all packets of each flow, and later flush out all packets in burst). However, due

to the real-time constraint of interactive connections, there is an upper bound on the delays

that any stepping stone could introduce when forwarding packets. The upper bound of the

delays the adversary could add imposes some inherent limit of the adverse impact by the

timing perturbation.

9

1.3.4 Introducing Loops to the Intrusion Connection Chain

Another way to confuse the correlation of connections across stepping stones is to have the

intrusion connections passing some stepping stones more than once. This would make some

stepping stones have more than one incoming connection and one outgoing connection

correlated. The multiple correlated incoming and outgoing connections at a stepping stone

would make the serialization of those correlated connections nondeterministic. In case some

intrusion connections are out of the observing scope of the tracing system, it could be

difficult for the stepping stone with multiple correlated incoming and outgoing connections

to determine the right direction from which the intrusion really comes from. Therefore, even

a perfect correlation solution, which gives us all and only those correlated connections, is not

adequate to construct the complete and accurate intrusion path when there is loop in it.

1.3.5 Flow Level Traffic Padding

To disguise encrypted connections from being correlated by timing based approaches, the

attacker could, at some stepping stones, introduce bogus packets2 into the flow he wants to

disguise. The injected bogus packets would change the inter-packet timing characteristics of

the disguised flow. For example, assume flow fAB from host A to B is correlated to flow fBC

from host B to host C, then the number of packets per unit time and the inter-packet timing

characteristics of flow fAB would be very similar to those of flow fBC. If the attacker adds

some bogus packets to flow fBC at host B, the original flow fBC would be turned into some

other flow f’BC with substantially different inter-packet timing characteristics, which would

obscure the correlation of flow fAB and fBC based on inter-packet timing characteristics.

Obviously adding bogus packets wastes useful network bandwidth. This would in a way limit

how many bogus packets could be injected by the attackers.

1.3.6 Packets Drop and Retransmission

Another way to disguise encrypted connections from being correlated by timing based

approaches is to selectively or randomly drop some packets at some stepping stones. By

2 The packets that will be ignored or removed at the receiver end without affecting the semantics of original
flow

10

reducing the number of packets in the flow, the inter-packet timing characteristics are

changed. For a connection based on reliable transport protocols such as TCP, packet dropped

could trigger packet retransmission, which in turn further obscures the inter-packet timing

characteristics of the flow.

Packet drop and retransmission also waste useful network bandwidth.

1.3.7 Flow Repacketization

Flow repacketization refers to either splitting one bigger packet into multiple smaller packets

or merging several adjacent packets into one bigger packet in the same flow. Each case

would change the original inter-packet timing characteristics.

Flow repacketization generally does not waste useful network bandwidth except increased IP

header overhead. Packet splitting could be used as long as the packet has a payload bigger

than one byte. Merging adjacent packets is only feasible for flows with short inter-packet

timing due to the real-time constraint.

1.3.8 Packet Reorder

To disguise encrypted connections from being correlated by timing based approaches, the

attacker could, at some stepping stone, buffer some packets of a flow and later send out

buffered packets with different order and inter-packet timing.

Packet reorder generally does not waste useful network bandwidth. Similar to the packet

merging case of flow repacketization, packet reordering is only feasible for flows with short

inter-packet timing. The exact number of packets can be buffered before flushing is

determined by the maximum tolerable delays and the inter-packet timing of the original flow.

1.3.9 Flow Split and Merge

Another way to disguise encrypted connections from being correlated by timing based

approaches is to split the flow at a stepping stone into multiple flows and later merge the

multiple flows at the next stepping stone. The flow split and merge can be done by simply

11

changing the IP header of the packets after which the packets would belong to some different

flows. By splitting one flow of packets into multiple flows of packets, the inter-packet timing

characteristics of original flow is lost.

Flow split and merge does not waste useful network bandwidth as no new packet is

introduced and there is no change on the payload part of the packets.

1.3.10 Mixing Multiple Flows

To disguise encrypted connections from being correlated by timing based approaches, the

attacker could mix and encapsulate packets from multiple flows at a stepping stone to form a

new flow. The encapsulated packets could be encrypted so that the outside observer has no

way to determine which encapsulated packet is from which flow originally. An example of

such a packet mixing and encapsulation is IPSEC tunnel mode. Similar techniques have been

proposed to build anonymous communication [3, 58, 73].

1.4 Contributions

In this dissertation, we address the tracing and correlation problem of intrusion connections

through stepping stones under various settings and we analyze the theoretical limits of

correlation only approaches. We design, implement and evaluate solutions to the first three

classes of countermeasures and fill the gap between the perfect correlation solution and

perfect tracing solution.

For unencrypted intrusion connections through stepping stones, we design and implement a

novel intrusion tracing framework called Sleepy Watermark Tracing (SWT), which applies

principles of steganography and active networking. SWT is "sleepy" in that it does not

introduce overhead when no intrusion is detected. Yet it is "active" in that when an intrusion

is detected, the host under attack will inject a watermark into the backward connection of the

intrusion, and wake up and collaborate with intermediate routers along the intrusion path.

Our prototype shows that SWT can trace back to the trustworthy security gateway closest to

the origin of the intrusion, with only a single packet from the intruder. With its unique active

tracing, SWT can even trace when intrusion connections are idle.

12

Encryption of connections through stepping stones defeats any content based correlation and

makes correlation of intrusion connections more difficult. Based on inter-packet timing

characteristics, we develop a novel correlation scheme of both encrypted and unencrypted

connections. We show that (after some filtering) inter-packet delays (IPDs) of both encrypted

and unencrypted, interactive connections are preserved across many router hops and stepping

stones. The effectiveness of IPD based correlation requires that timing characteristics be

distinctive enough to identify connections. We have found that normal interactive

connections such as telnet, SSH and rlogin are almost always distinctive enough to provide

correct correlation across stepping stones.

The timing perturbation at intermediate stepping stones of packet flows poses additional

challenge in correlating encrypted connections through stepping stones. The timing

perturbation could either make unrelated flows have similar timing characteristics or make

related flows exhibit different timing characteristics, which would either increase the false

positive rate or decrease the true positive rate of timing-based correlation. To address this

new challenge, we develop a novel watermark based correlation scheme that is designed to

be specifically robust against such kinds of timing perturbation. The idea is to actively embed

a unique watermark into the flow by slightly adjusting the timing of selected packets of the

flow. If the embedded watermark is unique enough and robust enough against the timing

perturbation by the adversary, the watermarked flow could be uniquely identified and thus

effectively correlated. By utilizing redundancy techniques, we develop a robust watermark

correlation framework that reveals a rather surprising result on the inherent limits of

independent and identically distributed (iid) random timing perturbations over sufficiently

long flows. We also identify the tradeoffs between the defining characteristics of the timing

perturbation and the achievable correlation effectiveness. Our experiments show that our

watermark based correlation performs significantly better than existing passive timing based

correlation in the face of random timing perturbation.

We use set theoretic approach to analyze the theoretical limits of the correlation-only

approach and demonstrate the gap between the perfect correlation-only approach and the

13

perfect solution to the tracing problem of stepping stones. In particular, we identify the

serialization problem and the loop fallacy in tracing connections through stepping stones. We

formally demonstrate that even with perfect correlation solution, which gives us all and only

those connections that belong to the same connection chain, it is still not adequate to serialize

the correlated connections in order to construct the complete intrusion path deterministically.

We further show that the complete set of correlated connections, even with loops, could be

serialized deterministically without synchronized clock. We present an efficient intrusion

path construction method based on adjacent correlated connection pairs.

In this research, we learn some general lessons about tracing and correlating intrusion

connections through stepping stones. Specifically, we demonstrate the significant advantages

of active correlation approach over passive correlation approaches in the presence of active

countermeasures. We also demonstrate that information hiding and redundancy techniques

can be used to build highly effective intrusion tracing and correlation frameworks.

1.5 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we first formulate

the tracing problem and correlation problem of intrusion connections through stepping stones.

We then review related work in tracing and correlating connections through stepping stones.

In particular, we assess previous work in the presence of the various countermeasures.

In Chapter 3, we describe Sleepy Watermark Tracing (SWT) in detail. After presenting the

SWT architecture, we analyze SWT and discuss our prototype implementation. We then

present our experimental results about SWT.

In Chapter 4, we address the challenges posed by encryption of intrusion connections through

Inter-Packet Delay (IPD) based correlation. We first present our correlation solution model,

we then present four different correlation point functions. We evaluate the correlation

effectiveness of our correlation metrics in a number of experimental settings.

In Chapter 5, we present IPD-based watermark correlation that is designed specifically to be

14

robust against 1) host login information corruption; 2) network content transformation; and 3)

random timing perturbation by adversary. We first describe the basic embedding of a single

watermark bit into the inter-packet timing domain, then present a probabilistically robust

watermark bit embedding scheme over multiple IPDs. After analyzing the watermark bit

robustness and tradeoffs, we further analyze the overall watermark detection and collision

probability and formally establish the robustness strength of our watermarking scheme. We

empirically evaluate the correlation effectiveness and validate the tradeoffs of our watermark

based correlation.

In Chapter 6, we analyze the theoretical limits of correlation-only approach in solving the

problem of tracing intrusion connections through stepping stones. We identify the gap

between the perfect correlation solution and the perfect tracing solution, and we show what it

takes to bridge the gap.

In Chapter 7, we summarize our work and contributions. We conclude this dissertation with a

discussion of the general lessons learned about the robust and effective correlation and

tracing of intrusion connections through stepping stones and outline some directions for

future research.

15

Chapter 2

Stepping Stone Tracing Problem and Related Works

In this chapter, we formally formulate the stepping stone tracing problem, and we review and

evaluate previous related works.

2.1 The Overall Stepping Stone Tracing Problem Model

In this dissertation, we refer to one network communication between two hosts in the Internet

as one connection. The host that originates the connection is called the source host, and the

host that terminates the connection is called the destination host. The connections that

originate from one host are called the outgoing connections of the host, and the connections

that terminate at one host are called the incoming connections of the host. One host may have

multiple outgoing connections and multiple incoming connections at the same time. In the

Internet environment, a connection consists of flows of packets between the source host and

the destination hosts, and it could be either unidirectional or bidirectional. Each packet in a

connection has at least one header and optional payload, and each packet has a departure time

from the source host and arrival time at the destination host. Generally, a connection can also

be called flow, which can be uniquely identified by tuple

<Source IP, Source Port, Destination IP, Destination Port, Protocol>

Given a series of computer hosts H1, H2, … Hn+1 (n>1), when a person (or a program)

sequentially connects from Hi into Hi+1 (i=1,2, … n), we refer to the sequence of connections

<c1, c2, … cn>, where ci=<Hi, Hi+1> (i=1, …n), as a connection chain on <H1, H2, … Hn+1>,

and intermediate hosts H2, … Hn as stepping stones. Here connection ci terminated at host

Hi+1 causes another connection ci+1 outgoing from host Hi+1 and host Hi+1 essentially forwards

the traffic of ci to ci+1. All ci’s are always distinct, but not all Hi’s are always distinct. In case

some host appears more than once in sequence < H1, H2, … Hn+1>, there exists loop in the

connection chain <c1, c2, … cn>.

16

The tracing problem of a connection chain through stepping stones is, given cn of some

unknown connection chain <c1, c2, … cn> (n>1), to identify <c1, c2, … cn>.

Any particular connection chain <c1, c2, … cn> is a sequence of connections. We refer those

connections within the same connection chain as correlated to each other and the

corresponding set {c1, c2, … cn} as the set of correlated connections or correlation set. This

can be formally modeled by a binary relation on the overall connection set. Let Ĉ represent

all connections being examined, we define binary relation CORR on the overall connection

set Ĉ such that

 ∀c, c’∈ Ĉ (c CORR c’ iff (c ∈ {c1, c2, … cn} ⇒ c’ ∈ {c1, c2, … cn})) (2.1)

It is obvious that CORR is specific to correlation set and it is 1) self-reflexive; 2) symmetric

and 3) transitive. Therefore binary relation CORR is an equivalence relation on Ĉ and it

partitions the overall set of connections into a particular set of correlated connections and

else.

Because connection chain <c1, c2, … cn> is a sequence of connections, each ci has a unique

order number Ord(ci) associated with it. The overall ordering information of <c1, c2, … cn>

can be formally modeled by the binary relation ∠ on {c1, c2, … cn} such that

 ∀c, c’∈{c1, c2, … cn} (c∠c’ iff Ord(c)<Ord(c’)) (2.2)

It is obvious that ∠ well orders set {c1, c2, … cn} and it uniquely determines <c1, c2, … cn>

from {c1, c2, … cn}.

For any particular connection chain <c1, c2, … cn>, there exists unique binary relation CORR

and ∠, which in turn uniquely determines <c1, c2, … cn>. Therefore, the overall tracing

problem of stepping stone can be divided into the following sub-problems:

1) Correlation Problem:

17

Given cn of some unknown connection chain <c1, c2, … cn>, identify set {c1, c2, … cn};

Or equivalently, given any two connections c and c’, determine if c CORR c’.

2) Serialization Problem:

Given a set of correlated connections C={c1, c2, … cn} and some information about the

relative order of correlated connections, serialize {c1, c2, … cn} into a sequence <c1’,

c2’, … cn’> (ci’ ∈ C, i=1, … n) such that ci’ ∠ ci+1’ (i=1, … n-1); Or equivalently, given

any two connections c and c’, determine if c ∠ c’ or c’ ∠ c.

The result of solution for the correlation problem is an unordered set of connections and the

result of solution for the serialization problem is a sequence of connections. It is easy to see

that the solution of the serialization problem is based upon the result of the correlation

problem solution. Therefore, the correlation problem has to be solved first in order to solve

the overall tracing problem of stepping stones.

2.1.1 Correlation Problem Solution Model

Given binary relation CORR, we can define corresponding correlation function CF: Ĉ × Ĉ →

{0, 1} such that:





=
otherwise

cCORRc
ccCF

0
'1

)',((2.3)

Therefore the correlation problem can be equivalently expressed as: given any two

connections c and c’, find correlation function CF such that CF(c, c’)=1 iff c CORR c’.

In practice, connection correlation analysis is based on the characteristics of the connections,

which may include connection content, header information (such as packet size) and inter-

packet timing. The connection characteristics can be modeled by a metric function of the

connection

 M: Ĉ × P → Z (2.4)

18

where Ĉ is the set of connections to be correlated, P is some domain of parameters and Z is

the connection metric domain.

Based on connection metric, a correlation value function (CVF) can be defined as

 CVF: Z × Z × δ → {0, 1} (2.5)

where δ is some threshold3. The result of CVF is either 0 or 1 indicating whether the two

connections are detected to be correlated based on their corresponding correlation metric and

threshold δ.

In other word, connections c and c’ are considered correlated iff

 CVF(M(c, p), M(c’, p), δ) = 1 (2.6)

Therefore the correlation problem is now translated to: find or construct M, p, CVF and δ

such that

 ∀ci∈<c1, c2, … cn> ∀c [CVF(M(ci, p), M(c, p), δ) = 1 iff c ∈ {c1, c2, … cn}] (2.7)

In finding M, p, CVF and δ, the key is to identify those unique characteristics of connections

that are invariant across routers and stepping-stones. If those identified invariant

characteristics of connections are unique enough to exclude other uncorrelated connections,

reliable correlation of connections could be constructed from these metrics. In case the

original connections do not have unique enough correlation metric, the original connections

could be actively but slightly adjusted to make their correlation metric more unique so that

the connections could be correlated more effectively.

2.2 Evaluation Criteria and Classification of Tracing and Correlation

3 Depending the metric function M and parameter P, threshold δ can be real value, integer or other appropriate
form.

19

Approaches

2.2.1 Evaluation Criteria of Tracing and Correlation Approaches

According to the overall tracing problem model, both correlation and serialization problems

can be modeled as detection problem – determining if certain property exists or not.

Therefore, the stepping stone tracing and correlation approaches can be evaluated by the

generic detection problem assessment criteria.

Assume p is the property to be detected. Let S denote the whole space in which property p

could be true, let T denote the space within S in which property p is true, and let P denote the

space within S that the detector reports positive of property p. Therefore T ⊆ S, T + ¬T = S,

P ⊆ S and P + ¬P = S. Figure 2.1 illustrates the relations between S, T and P. A perfect

detector would generate P exact the same as T, and a less than perfect detector would

generate P that either misses part of T or mistakenly includes part of ¬T.

Set of T∩P is considered true positive (TP), set of ¬T∩P is considered false positive (FP),

set of T∩¬P is considered false negative (FN) and set of ¬T∩¬P is considered true negative

(TN). A TP indicates the case that a positive detection is actually correct in that the property

p exists. A FP indicates the case that a positive detection is actually wrong in that the

property p does not exist.

The conditional probability Pr(P|T) = Pr(T∩P)/Pr(T) is considered as true positive rate

Figure 2.1 Venn Diagram of Detection Problem

S

T∩P
(TP)

T∩¬P
(FN)

¬T∩P
(FP)

¬T∩¬P
(TN)

T

P

20

(TPR), which represents the probability of positive detection assuming the property p exists.

The TPR quantitatively expresses the “completeness” of the detector. In Figure 2.1, the TPR

is represented by the ratio between area of T∩P and area of T.

The conditional probability Pr(P|¬T) = Pr(¬T∩P)/Pr(¬T) is considered as false positive rate

(FPR), which represents the probability of positive detection assuming the property p does

not exist. The FPR quantitatively express the “soundness” of the detector. In Figure 2.1, the

FPR is represented by the ratio between area of ¬T∩P and area of ¬T.

The conditional probability Pr(¬P|T) = Pr(T∩¬P)/Pr(T) is considered as false negative rate

(FNR), which represents the probability of negative detection assuming the property p exists.

In Figure 2.1, the FNR is represented by the ratio between area of T∩¬P and area of T.

The conditional probability Pr(¬P|¬T) = Pr(¬T∩¬P)/Pr(¬T) is considered as true negative

rate (FNR), which represents the probability of negative detection assuming the property p

does not exist. In Figure 2.1, the TNR is represented by the ratio between area of ¬T∩¬P

and area of ¬T.

It is easy to see that TPR+FNR=1 and FPR+TNR=1. Therefore we only need to consider

correlation true positive rate and correlation false positive rate when assess a correlation

solution.

The solution of tracing problem can be characterized by three criteria: usability, effectiveness,

and robustness. In particular, usability is a measure of applicability of the tracing and

correlation system, which usually includes 1) assumptions of the attacks; 2) required

information for tracing; 3) limitation of the tracing system; and 4) overhead introduced. For

example, some tracing approach needs sustained steady packet streams to be useful, while

some other tracing approaches may need only a few packets to be effective. Ideally, a tracing

solution should have as few as possible assumptions, require as few as possible information

for tracing, have as few as possible limitations, and have as few as possible overhead to be

effective. Effectiveness is the measure of usefulness and correctness of tracing result under

21

various conditions. It can be quantitatively expressed by true positive rate (TPR) and false

positive rate (FPR). Usually the correlation true positive rate and false positive rate are

conflicting in that higher true positive rate usually causes higher false positive rate and lower

false positive rate usually causes lower true positive rate. Each correlation solution has an

inherent tradeoff between the true positive rate and the false positive rate. Ideally, a tracing

solution should have as high as possible true positive rate and as low as possible false

positive at the same time. The limit of achievable true positive rate and false positive rate at

the same time in a way measures the inherent difficulty of the tracing problem. Robustness

refers to the capability to withstand active countermeasures by the adversary to further

disguise its source and identity from being identified. It could be quantitatively expressed by

the countermeasure’s negative impact over the tracing and correlation effectiveness. Ideally,

the adverse impact of adversary’s countermeasures over the true positive and false positive

rates of a robust tracing solution should be minimal.

2.2.2 Classification of Tracing and Correlation Approaches

Based on source of tracing or correlation information, the stepping stones tracing and

correlation approaches can be divided into two categories: host-based and network-based.

Host-based approaches rely on information collected at the hosts that are used for stepping

stones. Such information includes user login activity, new arrival of connections and new

initiation of connections to other hosts. Network-based approaches use some characteristics

of network connections and exploit the property of network connections: the essence or

semantics of the application level content of connections is invariant4 across stepping stones.

Based on how the traffic is traced, tracing approaches can further be classified into either

active or passive. In particular, passive approaches passively monitor and compare all the

traffic all the time and they do not scope the traffic to be traced. On the other hand, active

approaches may actively but slightly change some characteristics of selected packets in order

to make the packet flow easier to identify and correlate. Furthermore, active approaches

could dynamically control when, where, what and how the traffic is to be correlated through

4 The form of application level content of connections could be transformed by (i.e. encryption, compression).

22

customized packet processing, and they only trace “interested” traffic when needed. Table

2.1 provides a classification of existing tracing and correlation approaches as well as our

tracing and correlation approaches5.

 Passive Active
Host-based DIDS

 CIS
 STOP

Network-based Thumbprinting IDIP
 ON/OFF-based SWT
 Deviation-based IPD-Watermarking
 IPD-based
 Wavelet-based

Table 2.1: Classification of Existing Tracing and Correlation Approaches

The fundamental problem of host-based tracing approach is that it requires the participation

of each stepping stones and it places its trust upon those monitored stepping stones

themselves. In specific, the host-based tracing approach depends on the correlation of

connections at every stepping stone in the intrusion connection chain. If one stepping stone

provides misleading correlation information, the whole tracing system is fooled. On the other

hand, network-based approach does not require participation of stepping stones, nor does it

place its trust on the monitored stepping stones. It only requires the information about the

connections to and from stepping stones.

The earliest work on connection correlation was host-based which tracks the users’ login

activity at different hosts. Later work has been network-based that exploits different

characteristics of network connections. The earlier network-based approaches relied on

comparing the packet contents of the connections to be correlated, and recent network-based

approaches have focused on the timing characteristics of connections, in order to correlate

encrypted connections (i.e. traffic encrypted using IPSEC [41] or SSH [54,87]).

5 printed in bold font

23

2.3 Tracing and Correlating Unencrypted Connections

The tracing and correlating of unencrypted connections through stepping stones have been

studied since the earliest works on the tracing problem of stepping stones. Notable works

include:

• Distributed Intrusion Detection System (DIDS)

• Caller Identification System (CIS)

• Thumbprinting

• Intrusion Detection and Isolation Protocol (IDIP)

• Session TOken Protocol (STOP)

In the rest of this section, we review and evaluate these works.

2.3.1 Distributed Intrusion Detection System (DIDS)

Distributed Intrusion Detection System (DIDS) [65] developed at UC Davis was designed to

address the intrusion detection problem in LAN environment. To the best of our knowledge,

it is the first work that tracks users’ login activity across network. DIDS uses a host-based

distributed architecture to keep track of all the users in the LAN through so-called NID

(Network-user Identification) and account for all activities to network-wide intrusion

detection systems. Each monitored host in the DIDS domain collects audit trails and sends

audit abstracts to a centralized DIDS director for analysis. Besides the inherent limitations of

host-based tracing approach, DIDS is limited to tracking users’ login activity across the LAN

through normal login within the DIDS domain. Furthermore, because of its centralized

monitoring of network activities, it seems not feasible in large-scale network such as the

Internet.

2.3.2 Caller Identification System (CIS)

The Caller Identification System (CIS) [40] is another host-based tracing mechanism. It

eliminates centralized control by utilizing a distributed model. In CIS, each host assumes

each remote user who tries to login has a connection chain, and each host keeps record about

its view of the login chain for each logged in user. When the user from host Hn-1 attempts to

login into the host Hn, Hn asks Hn-1 about its view of the login chain of that user, which

24

should be H1, H2, … Hn-1 ideally. After getting the login chain information from Hn-1, Hn

queries each host in the login chain (ideally H1, H2, … Hn-1) about their views of the login

chain for the user who tries to login into Hn. Only when the login chain information from all

queried hosts matches, will the login be granted at host Hn. Besides the inherent limitations

of host-based approach, CIS introduces excessive overheard to the normal login process by

requesting and reviewing information from every hosts along the login chain. In addition,

CIS requires the capability to correlate incoming connection and outgoing connection at each

stepping stone, which was not available when CIS was proposed. Later work of STOP [11]

recognized this and tried to provide a way to determine the correlation of incoming and

outgoing connections at a host.

2.3.3 Thumbprinting

Thumbprinting [69] is the first published network-based correlation technique. It utilizes a

small quantity of information (called thumbprint) to summarize a certain section of a

connection. The thumbprint is built, through principle component analysis technique in

statistics, upon the frequencies that each character occurs within a period of time. Ideally it

can distinguish a connection from unrelated connections and correlate a connection with

those related connections in the same connection chain. Because it correlates based on

connection content, thumbprinting works even when all stepping stones are compromised

and under attacker’s total control, and it can be useful when only part of the Internet

implements thumbprinting. However, thumbprinting depends on clock synchronization to

match the thumbprints of corresponding intervals of connections, and it is vulnerable to

packet retransmission variation. One area that thumbprinting has not addressed is how to

determine which connections are to be thumbprinted and how to determine which thumbprint

should be matched with which thumbprint in order to find correlated connections.

2.3.4 Intrusion Detection and Isolation Protocol (IDIP)

IDIP (Intrusion Identification and Isolation Protocol) [61,62] is a proposal by Boeing’s

Dynamic Cooperating Boundary Controllers Program that uses an active approach to trace

the incoming path and source of intrusion. In the proposal, special gateways called boundary

controllers collaboratively locate and block the intruder by exchanging intrusion detection

25

information, namely, attack descriptions. If the distributed boundary controllers are able to

detect the ongoing attack described by the attack description, IDIP could identify the ongoing

attack path by querying appropriate boundary controllers. While it does not require any

boundary controller to record any connections for correlation, its intrusion tracing is closely

coupled with intrusion detection. The effectiveness of IDIP depends on the effectiveness of

intrusion identification through the attack description at each boundary controller. Therefore

IDIP requires each boundary controller to have the same intrusion detection capability as the

IDS at the intrusion target host. It is questionable whether the intermediate boundary

controller is able to identify an intrusion at real-time based on a hard-coded attack description.

2.3.5 Session Token Protocol (STOP)

Session Token Protocol (STOP) [11] aims to find the mapping between the incoming and

outgoing connections at a host. It is based upon the Identification Protocol (ident) defined in

RFC1413, which enables the server side of a TCP connection to ask the client side about the

process and corresponding UID that initiated the TCP connection. STOP extends the

Identification Protocol by allowing the host to save application-level data about the process

and user that opened the connection, and to send request to other host recursively. By saving

and examining information about processes that originate the outgoing connection or

terminate the incoming connection, STOP tries to map an incoming connection to a host with

an outgoing connection from the host. However, there are few fundamental flaws in the

design of STOP that severely limits its usability. First, STOP is a host-based protocol whose

functionality depends on the correct information collected at the stepping stone itself. As the

attacker is usually assumed to have total control over the stepping stone, he can easily kill or

replace the STOP daemon running at the stepping stone, which would completely defeat the

STOP system. Second, even if the STOP daemon is not touched by the attacker, it is still not

guaranteed to provide the mapping between the incoming and outgoing connections at a host.

This is because one process in a host could open multiple sockets and handles multiple

incoming connections concurrently. Therefore, even if the STOP could find the process P

and its corresponding UID that opened an outgoing connection Co, it may not be able to

determine which one of the multiple incoming connections handled by process P should be

mapped to the outgoing connection Co. In other word, STOP only works when 1) every

26

stepping stone runs STOP daemon; and 2) no STOP daemon at each stepping stone is

stopped or replaced by the attacker; and 3) each process that relays connections at each

stepping stone opens only one incoming connection and one outgoing connections. In

summary, it is questionable how useful the STOP would be in real-work situations.

2.4 Tracing and Correlating Encrypted Connections

As the connection encryption tools (such as IPSEC and SSH) have been widely deployed,

network based attackers can easily encrypt their attack connections when passing stepping

stones. To address this new challenge, recent research work on the stepping stones tracing

problem has been focused on how trace and correlate encrypted connections through stepping

stones.

2.4.1 ON/OFF Based

The ON/OFF based correlation [90] by Zhang and Paxson is the first network-based

correlation scheme that utilizes the inter-packet timing characteristics to correlate interactive

connections across stepping-stones. Depending on whether there is any traffic for a

(adjustable) period of time, the duration of a flow can be divided into either ON of OFF

periods. The correlation of two flows is based on mapping the ends of OFF periods (or

equivalently the beginnings of ON periods). Because it correlates based on inter-packet

timing characteristics rather than packet content, ON/OFF based correlation is able to

correlate both encrypted and unencrypted connections, and it is robust against packet payload

padding. However, ON/OFF based correlation requires that the packets of connections have

precise, synchronized timestamps in order to be able to correlate them. This makes ON/OFF

based correlation limited to detecting the correlation between only those connections that can

be monitor at the same one point. And it is difficult or impractical for ON/OFF based

correlation to correlate measurements taken at different points in the network.

2.4.2 Deviation Based

The deviation-based approach [88] by Yoda and Etoh is another network-based correlation

scheme. It defines the minimum average delay gap between the packet streams of two TCP

connections as deviation. The deviation based approach considers both the packet timing

27

characteristics and the TCP sequence numbers. It does not require clock synchronization and

is able to correlate connections observed at different points of network. However, it can only

correlate TCP connections that have one-to-one correspondences in their TCP sequence

numbers, and thus is not able to correlate connections where padding is added to the packet

payload (e.g. when certain types of encryptions are used).

The deviation based approach has been evaluated against several large network traces, and it

has been shown that it is rare to have low deviation between random uncorrelated flows. This

suggests that deviation based approach has low false positive rates. However, the published

paper by Yoda and Etoh does not have evaluation on the correlation true positive rates.

2.5 Tracing and Correlating Encrypted Connections with Timing
Perturbation

The timing-based approach is the most capable and promising current method for correlating

encrypted connections. However, existing timing-based correlation approaches, are

vulnerable to countermeasures by the attacker. In particular, the attacker can perturb the

timing characteristics of a connection by selectively or randomly introducing extra delays

when forwarding packets at the stepping stone. This kind of timing perturbation will

adversely affect the effectiveness of any timing-based correlation. The timing perturbation

could either make unrelated flows have similar timing characteristics, or make related flows

exhibit different timing characteristics. Either case could cause a timing-based correlation

method to fail.

2.5.1 Wavelet Based

Donoho et al [29] have recently investigated the theoretical limits on the attacker’s ability to

disguise his traffic through timing perturbation and packet padding (i.e., injection of bogus

packets). By using a multiscale analysis technique, they are able to separate the long term

behavior of the connection from the short term behavior of the connection, and they show

that correlation from the long term behavior (of sufficiently long flows) is still possible

despite timing perturbation by the attacker. However, they do not present any tradeoffs

between the magnitude of the timing perturbation, the desired correlation effectiveness, and

the number of packets needed. Another important issue that is not addressed by [29] is the

28

correlation false positive rate. While the coarse scale analysis for long term behavior may

filter out packet jitter introduced by the attacker, it could also filter out the inherent

uniqueness and details of the flow timing. Therefore coarse scale analysis tends to increase

the correlation false positive rate while increasing the correlation true positive rate of timing

perturbed connections. Nevertheless, Donoho et al ‘s work [29] represents a significant first

step toward a better understanding of the inherent limitations of timing perturbation by the

attacker on timing-based correlation. The important theoretical result is that correlation is

still achievable for sufficiently long flows despite certain type of timing perturbations. What

left open are the question whether correlation is achievable for arbitrarily distributed (rather

than Pareto distribution conserving) random timing perturbation, and an analysis of the

achievable tradeoff of the false positive and true positive rates.

2.6 Summary

The earliest work on the correlation of connections through stepping stones had focused on

unencrypted connection and had been based on tracking users’ login activities at different

hosts [40,65,11]. Later work on correlation of unencrypted connections relied on comparing

the packet contents of the connections to be correlated [69,82].

To address the challenges introduced by the encryption of packets (i.e. traffic encrypted

using IPSEC[41] or SSH [54,87]), recent works [80,88,90] have focused on utilizing the

packet timing characteristics to correlate encrypted connections. As a result, timing based

correlation approaches are vulnerable to the active timing perturbation by adversary.

To address the new challenges introduced by the active timing perturbation of encrypted

connection, Donoho et al [29] has used multi-scale analysis techniques to investigate the

theoretical limits of active timing perturbation by attacker. They show that it is still possible

to correlate the timing perturbed encrypted connections as long as the flow has enough

packets.

We observe that previous approaches for tracing and correlating intrusion connections

through stepping stones have substantial limitations and leave a number of fundamental

29

questions open. In the remainder of this dissertation, we address the limitations of existing

approaches under various settings and we describe our solutions for

1) Tracing unencrypted connections through stepping stones

2) Correlation of encrypted connections through stepping stones

3) Robust correlation of timing perturbed encrypted connections through stepping stones

30

Chapter 3

Sleepy Watermark Tracing

This chapter addresses the real-time correlation and tracing of unencrypted connections

through stepping stones. Here we assume:

• The attackers have total control over the stepping stones and they can freely disguise,

delete or forge the host login information at each stepping stone.

• The attackers use only unencrypted connections6.

We describe the design and implementation of the Sleepy Watermark Tracing protocol,

which significantly improves the capability and effectiveness over previous approaches for

tracing unencrypted connections through stepping stones.

3.1 Introduction

In chapter 1, we have described that one way for the attackers to conceal their origin and

identity is to disguise, delete or forge the host login information at stepping stones. Because

the host based tracing approaches (i.e. DIDS[65], CIS[40]) rely on the host login information

at each stepping stone, they could easily be defeated by disguise, deletion or forgery of host

login information at one stepping stone.

To address the issue of host login information disguise, deletion and forgery in tracing and

correlating unencrypted connections through stepping stones, network based approaches have

been developed. The network based correlation and tracing is based on some invariant

properties of the network connections across stepping stones. For example, the essence of

application level content of the connection chain is invariant across the stepping stone,

although the form of the application level content could be changed (i.e. by encryption). In

particular, the packet content of unencrypted connections (such as telnet, rlogin) remains the

6 We will address the case of encrypted connections in the following chapters

31

same across stepping stones. Therefore, the packet content can be used to correlate

unencrypted connections through stepping stones.

Notably, thumbprinting [69] is the first network content based correlation approach proposed.

It utilizes a small quantity of information called thumbprint to summarize a certain section of

unencrypted connection. The thumbprint is defined, through principle component analysis

technique in statistics, upon the frequencies that each character occurs within a period of time.

Because the packet content of unencrypted connections remains invariant across stepping

stones, the thumbprint defined over the packet content of a certain section of connection

could be used to correlate unencrypted connection. If the frequencies of each character’s

occurrence in a certain section of the connection are unique enough, the thumbprint defined

over that section of connection can be used to uniquely identify the whole connection and to

distinguish that connection from unrelated connections.

While thumbprint is robust against local host login information disguise, deletion and forgery,

and it could be useful even when only part of the Internet implements it, it has several

drawbacks and limitations. First, thumbprinting requires the thumbprints calculated over the

same time interval in order to be able to correlate correctly, which makes it dependent on the

clock synchronization over the network. Second, because thumbprinting is defined over all

packets transmitted during a certain time interval, it is vulnerable to local packet

retransmission variation. Third, thumbprinting is unable to correlate when the connections

are idle. Lastly, because the uniqueness of thumbprint depends on the uniqueness of packet

content, the false positive rate of thumbprinting depends on the uniqueness of packet content.

When different flows have similar packet content (i.e. flows connected to different hosts with

same shell prompts), thumbprinting of these flows tends to have high false positive rate.

In this chapter, we address the limitations of thumbprinting in tracing intrusion connections

through stepping stones. In particular, we strive to make network content based correlation

• Have as low as possible correlation false positive rate, even if the correlated flow has

very similar packet content with uncorrelated flows.

• Have as high as possible correlation true positive rate with as few as possible packets.

32

• Be able to correlate and trace even when there is no traffic from the intruder.

• Be robust against packet retransmission variation.

• Be effective without clock synchronization.

By applying principles of active networking and steganography, we developed a novel

intrusion response framework: Sleepy Watermark Tracing (SWT). SWT is “sleepy” in that it

does not introduce any overhead when there is no intrusion detected. Yet it is “active” in that

when there is intrusion detected, it will trigger and coordinate network-wide tracing at real-

time. SWT exploits these observations: 1) interactive intrusions connections through stepping

stones are bi-directional and symmetric at the granularity of connection; 2) application level

content of unencrypted connections is invariant across stepping stones. By “injecting”

carefully designed watermarks into the payload of backward-response traffic of the intrusion

connection chain, SWT is able to trace the intrusion connections through stepping stones

within a single keystroke by the intruder. Through its unique active tracing, SWT can trace

through the connection chain even when the intrusion connections are idle. All these

represent substantial improvements over existing capabilities for tracing unencrypted

interactive connections through stepping stones.

In the following sections, we first discuss how SWT minimizes the correlation false positive

rate. We then present the SWT architecture and protocols and show how SWT achieves

single packet tracing and correlation. After presenting the experimental results, we

summarize our findings.

3.2 Minimizing Correlation False Positive Rate

The false positive rate (FPR) of network content based correlation is inherently determined

by the uniqueness of the network content. In general, the more unique the network content,

the lower the correlation false positive rate; the less unique the network content, the higher

the correlation false positive rate. In case the packet payload is not unique enough, network

content based correlation needs more packets to achieve a low correlation false positive rate.

Our goal is to achieve as low as possible correlation false positive rate with as few as

33

∏∏
−

=

−

=






 −=

−
=

1

1

1

1

1),(
n

i

n

i m
i

m
imnmP

possible packets, even if the original network content is not unique enough.

3.2.1 Making the Network Content More Unique by Watermarking

Unlike thumbprinting, which passively correlates connections based on their original

network content, SWT uses an active approach to make the network content more unique by

watermarking the packet content.

Traditional watermark refers to the translucent mark or design that is pressed into fine paper

during the paper making process, and the printed watermark is visible when the paper is held

up to the light. Digital watermark, according to Webopedia [83], is a pattern of bits inserted

into a digital image, audio or video file that identifies the file's copyright information. Unlike

printed watermark, which is intended to be somewhat visible, digital watermark is designed

to be invisible or inaudible. Digital watermarking, according to Cox, et al [24], is the

practice of imperceptibly altering a work to embed a message about that work, where the

work can be image, audio, video or any other media.

For the purpose of uniquely identifying unencrypted connections, SWT uses a randomly

generated string as watermark. By injecting the unique watermark into the payload content of

selected packets of unencrypted connection, the watermarked connection becomes more

unique and thus becomes easier to be identified and correlated.

It is desirable to have as low as possible collision probability for the randomly generated

watermark. For n > 1 sites, assume each site independently generates an equi-probable

random integer number between 1 and m, where m >> n; let P(m, n) be the probability such

that those n random numbers are different from each other. Then we have:

When m > n2, we have:

Therefore, given n = 232, having m ≥ 273 will make P(m, n) > 0.999. That means having 73

random bits in watermarks is sufficient to cover the whole IPv4 address space such that the

m
n

m
in

i 2
11

21

1

−>





 −∏

−

=

34

probability of collision of generated watermarks by all possible hosts with distinct IP address

is less than 0.1%.

Our research indicates that a randomly generated string of length of 4 or more bytes is

distinct enough such that it would almost never be part of TCP or UDP payload of any

particular IP packet. Figure 3.1 shows the average collision rate of 1000 randomly generated

string of different lengths for two representative traces: a trace of 999,987 TCP packets and a

trace of 999,986 UDP packets. Both traces were collected from an active 100 Mbps LAN at

Computer Science Department of N.C. State University. A collision refers to the case such

that the random string is a substring of the payload of an IP packet in the trace. Our

experiments showed that each additional byte of the random string would make the collision

rate at least 2 orders of magnitude lower. A 4-byte random string has average collision rate of

5×10-9 with TCP payload. A 3-byte random string has average collision rate of 1.7×10-8 with

UDP payload.

Therefore, a few bytes of random string injected into the payload of one packet are able to

make the entire unencrypted connections sufficiently unique for effective correlation. In

order to be used for correlation, the embedded watermark must be able to traverse multiple

stepping stones and remain invariant across stepping stones. This requires the watermark be

injected into the application layer of connections; therefore, the watermark on packet content

is application specific. For example, to watermark telnet connections, the watermark has to

be injected into the telnet payload to make it invariant across stepping stones.

Figure 3.1 Random String Collision Rate with TCP/UDP Payload

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

C
ol

lis
io

n
R

at
e

1 2 3 4 5 6 7 8

Random String Length (byte)

TCP Trace

UDP Trace

35

To embed the random watermark into the application payload, SWT requires support from

the application server itself. In particular, watermark-enabled applications are those network

server applications (such as telnetd, rlogind) that have been modified to be able to “inject”

requested watermark string into their response traffic upon request.

3.2.2 Making the Embedded Watermark Invisible by Steganography

While embedding watermark could make unencrypted connections much more unique, it is

desirable to make the embedded watermark invisible to normal end users of the network

applications at the same time. By utilizing steganography techniques, SWT is able to make

the embedded watermark invisible to normal users of network applications such as telnet, and

rlogin.

Steganography is the art of concealed communication [83]. The term of steganography

derives from Greek words stegano, which means “covered”, and graphia, which means

“writing”. Unlike cryptography, whose goal is to make the message content a secret,

steganography aims to conceal the very existence of the message to be communicated.

For text based network applications such as telnet and rlogin, hiding watermark is, in many

ways, similar to hiding data in text [6], which is much more difficult than hiding data in

pictures or sounds. The open space method is one of the major methods of hiding data in text

files through manipulating white space. In particular, inserting spaces at the end of each line

of text file will not be noticed by readers. But for network applications such as telnet and

rlogin, simply inserting spaces will change the cursor position, and it is likely to be noticed

by end users. Fortunately, the text being transferred to network applications is not necessarily

the same as that being displayed. For example, the string

 “See meabc\b\b\b \b”

 transferred to telnet or rlogin will be displayed as the string

 “See me”

We define a virtual null string of a network application as a string that appears null to end

users of the network application. A virtual null string consists of two parts, namely, the

36

random part and the covering part. The random part consists of the random string that is

used for identifying the watermarked flow. The covering part consists of string of special

characters that is used for hiding the random part from being viewed by the normal

telnet/rlogin end users. For example, “abc\b\b\b \b” is a virtual null string of telnet and

rlogin whose random part is “abc” and covering part is “\b\b\b \b”. For most text based

network applications (such as telnet, rlogin), given any particular random string, we can find

a covering part such that the concatenation of the random string and covering part is a virtual

null string. Therefore by constructing virtual null strings, we can make watermarks invisible

to end users of telnet or rlogin.

3.3 SWT Overview

In previous section, we have shown how to minimize the correlation false positive rate by

watermarking the packet content. In this section, we give an overview of the SWT

architecture and its protocol.

3.3.1 SWT Objective

SWT architecture and protocol have been designed to achieve the following objectives:

1. to provide true real-time, one packet tracing capability and support post-attack tracing.

2. to have the capability to trace even when the intrusion connection is idle.

In order to achieve above objectives, SWT has followed three primary design principles:

1. Use hidden information to watermark backward traffic of the intrusion connections, and

use watermarks to guide network-wide correlation of connections.

2. Use active and yet sleepy tracing protocol to dynamically control when, where, what and

how to trace network-wide.

3. Integrate both application layer and network layer into a collaborative tracing

infrastructure.

Design principle 1 exploits the observation that interactive intrusion connections through

stepping stones are bi-directional and symmetric at the granularity of connections. By

injecting carefully selected watermarks into the payload of the backward traffic, the

37

watermarked backward traffic could be uniquely identified and thus effectively correlated.

Because the payload content of unencrypted connection is invariant across stepping stones,

SWT is able to trace intrusion connections across all the stepping stones with a single

watermarked packet. Unlike packet marking [31,56,60,67], SWT uses hidden information to

watermark the packet; therefore it is more robust against mark spoofing attack [56] than

probabilistic packet marking.

SWT tracing protocol is "sleepy" in that it does not introduce overhead when no intrusion is

detected. Yet it is "active" in that when an intrusion is detected, the target will inject a

watermark into the backward connection of the intrusion and “wakes up” intermediate

routers along the intrusion path. After configurable period of time, the “awakened”

intermediate routers that participate watermark tracing will “fall asleep” if no further wakeup

message is received.

The integration of application layer and network layer enables SWT’s generic network layer

tracing to be synchronized with application-specific watermark injection. This enables SWT

to correlate only watermarked traffic at request.

3.3.2 Basic SWT Concepts

In order to keep track of network-based intrusions to hosts, it is desirable to monitor hosts

through the nearest router or gateways. We term the monitoring router or gateway as

Guardian Gateway. We define the Incoming Guardian Gateway of host H as the nearest

router that forwards incoming traffic to H and the Outgoing Guardian Gateway of host H as

the nearest router that forwards outgoing traffic from H. It is possible that one host has more

than one incoming or outgoing guardian gateway. We define the union of incoming and

outgoing guardian gateways of a host as its Guardian Gateway Set (e.g., {GWin1, GWin2,

GWout1, GWout2} in Figure 3.2). For a host H, while the traffic between H and its directly-

connected neighbor hosts does not pass through any gateways, the traffic between H and any

non-directly-connected hosts must pass through its guardian gateway set.

We further define a leap as one connection between hosts or stepping stones within a

38

connection chain (e.g., <Hi , Hi+1> in Figure 3.3). One leap may consist of multiple hops (or

links in the physical network) and the two guardian gateways of the two end hosts. A leap

can be specified by a 5-tuple consisting of

<protocol number, source ip address, source port number, destination ip address,

destination port number>

Now the tracing problem of chained intrusion is defined as discovering and sequencing the

guardian gateways of those hosts in the intrusion path, or (equivalently) as finding the leaps

along the intrusion path.

3.3.3 Basic SWT Assumptions

We have identified the following assumptions that motivate and constrain our design:

• Intrusions are interactive and bidirectional,

• Routers are trustworthy and hosts are not trustworthy,

• Each host has a single SWT guardian gateway, and

• There is no link-to-link encryption.

The first two assumptions represent our assessments of the nature of the intrusions. Here we

refer to intrusions as those attacks aiming to gain unauthorized access, rather than denial of

service attacks. A study of CERT security incidents [35] indicates that almost all security

Figure 3.2 Guardian Gateway Set

Figure 3.3 Intrusion Chain Tracing Model

GWout2

GWin1

GWin2

GWout1H0

H1

Hi: Host
GWin: Incoming Guardian Gateway
GWout: Outgoing Guardian Gateway

Final Target

H1

H0

H2

H3

H4

H5

H6

GW1 GW2

GW3

GW4

Intruder

Hi: Host
GWi: Guardian Gateway

H6

39

incidents, especially unauthorized access incidents, happened at computer hosts rather than

routers or gateways. Therefore we believe our assumption to trust routers will cover most

intrusion cases. In case there are indeed compromised routers involved in intrusion, the

compromised router will be effectively indistinguishable from an attacker. The compromised

router needs to be addressed first, before the tracing of the intrusion can go any further. In

this case SWT can still trace to the farthest trustworthy guardian gateway.

The assumption of each host having a single SWT guardian gateway is only for simplifying

the presentation of the SWT architecture. In case some host has multiple SWT guardian

gateways, the guardian gateway set will be used in SWT tracing. In case not all stepping

stones have SWT guardian gateways, SWT is able to trace to the furthest stepping stone that

has SWT guardian gateway.

The final assumption represents the inherent limitation of any tracing based on network

content. We will address the correlation of encrypted connections in subsequent chapters.

3.4 SWT Architecture and Protocol

As shown in Figure 3.4 the Sleepy Watermark Tracing Architecture consists of two

complementing parties, namely, the SWT guarded host and the SWT guardian gateway. The

Figure 3.4 SWT Architecture

Host

Normal Traffic

Watermarked Traffic

Active Tracing Protocol

Watermark
Correlation

Active Tracing

SWT Guardian Gateway

IDS

Sleepy Intrusion
Response

Active Tracing

Watermark
Enabled

SWT Guarded Host

SWT Subsystem

40

SWT guarded host is the host that supports SWT and thus is protected by SWT. The SWT

guardian gateway is the router or gateway that supports SWT. In our trust model, each SWT

guarded host has a unique SWT guardian gateway, and it maintains a pointer to its SWT

guardian gateway. Each SWT guardian gateway may guard one or more SWT guarded hosts

and it maintains the list of its SWT guarded hosts.

IDS and watermark-enabled applications at a SWT guarded host are SWT supporting

components. In particular, IDS refers to the application level interface to any Intrusion

Detection System, which is the ultimate initiator of SWT tracing. It interacts with SWT

subsystem within SWT guarded host and triggers active watermark tracing once it detects an

intrusion. Watermark enabled applications are those network service applications (such as

telnetd, rlogind) that have been modified to inject arbitrary watermarks upon request.

The core of Sleepy Watermark Tracing Architecture consists of three interacting

components: Sleepy Intrusion Response (SIR), Watermark Correlation (WMC) and Active

Tracing (AT). In particular, Sleepy Intrusion Response accepts tracing requests from IDS,

coordinates active tracing and keeps track of tracing information of intrusions. Watermark

Correlation correlates incoming and outgoing connections based on provided watermarks.

Active Tracing coordinates different parties in the network to collaboratively trace the

incoming path and source of intrusions.

These three components work tightly together across SWT hosts and SWT guardian

gateways. In specific, SIR and AT form the SWT subsystem within a SWT guarded host.

Upon request from IDS, SIR coordinates appropriate WM-enabled application and the AT

module to initiate active tracing from the SWT guarded host to SWT guardian gateways. At

the SWT guardian gateway, the AT module receives tracing requests and asks the WMC

module to correlate incoming and outgoing flows based on the watermark contained in the

tracing request. The WMC module in turn provides AT module information about the next

stepping stone after successfully correlating an outgoing flow with an incoming flow. Once

the SWT guardian gateway finds the next stepping stone, AT will send trace information to

the original host that initiated the whole tracing and notify the SWT guardian gateway of the

41

next stepping stone to start watermark tracing.

3.4.1 Sleepy Intrusion Response

SIR controls and coordinates overall SWT intrusion tracing. It is in a SWT guarded host and

it interacts with IDS and WM-enabled applications in the same host. To achieve high

efficiency, SIR introduces “sleepiness” into SWT. By default, the SWT system is inactive

and in sleep mode. When IDS detects an intrusion, it triggers SWT tracing by notifying SIR

with appropriate connection information. Upon request from IDS, SIR first registers the

intrusion connection as active for a configurable period of time, if it is not active already.

Then SIR triggers active tracing through SWT guardian gateways by sending out tracing

request. Finally SIR notifies the WM-enabled application that terminates the intrusion

connection to start injecting the requested watermark. SIR also keeps track of tracing

information of intrusions returned by the SWT guardian gateway, and upon request from

IDS, SIR will provide tracing information on any specific active intrusion. If there is no trace

information returned from the SWT guardian gateways and no further tracing request from

IDS for an active intrusion connection within a configurable period of time, the intrusion

response for the intrusion connection will become inactive (“fall asleep”).

The core of SIR is managed through Active Intrusion Tracing Table (AITT) as shown in

Figure 3.5 Active Intrusion Tracing Table

Figure 3.6 SIR Processing

timeout watermark C0 trace information

…

…

 IDS

Sleepy Intrusion
Response

Active Tracing

Watermark Enabled
Application

IDSTraceOn, IDSFallAsleep, IDSGetTraceInfo

SIRStartWM

SIREndWM

SIRTraceOn GWTraceInfo

SIRTraceInfo

42

Figure 3.5. Each entry in AITT stores information about an intrusion connection. In

particular, the timeout field contains the remaining time for an intrusion connection to be

active; the watermark field contains the watermark used for tracing an intrusion connection

chain; C0 is the terminating intrusion connection detected by IDS; and tracing information

contains the information about stepping stones discovered and reported by the “awakened”

SWT Guardian Gateways.

The basic processing of SIR is shown in Figure 3.6. SIR interacts with IDS, watermark-

enabled application, and AT through processing 4 messages:

• IDSTraceOn message from IDS, which requests SIR to start active tracing on an intrusion

connection. SIR first checks if the to be traced connection is already in AITT. If so, it

refreshes the timer on that connection; otherwise, SIR registers the to-be-traced

connection and generates a watermark for it. Then SIR requests AT to start tracing with

the generated watermark before asking the watermark-enabled application to start

injecting a corresponding watermark. By doing so, it makes the watermark correlation

module at SWT guardian gateway ready to correlate watermarked connections before the

first watermarked packet is sent

• IDSFallAsleep message from IDS, which informs SIR that active tracing of a particular

connection is no longer needed. SIR notifies the corresponding watermark-enabled

application through the message SIREndWM to stop injecting a watermark.

• IDSGetTraceInfo from IDS, which asks SIR about trace information collected on a

particular intrusion connection chain. SIR first checks if the intrusion connection is in

AITT; if so, SIR sends the corresponding trace information back to IDS.

• GWTraceInfo from AT, which reports SIR with trace information on a particular

intrusion connection chain. SIR first makes sure that the trace information is what it

wanted by matching the watermark in the message with an existing watermark in AITT.

If a match is found, SIR registers the trace information in AITT.

43

As shown, the sleepiness of SIR is designed to be on the basis of per-intrusion connection.

Active tracing is triggered only for detected active intrusion connections and no network-

wide action will be taken on any non-active intrusion from SIR. While the IDSFallAsleep

message from IDS will explicitly let SIR fall asleep on the corresponding intrusion

connection, the timer will also put SIR to sleep for those intrusions that have been idle for a

configurable period of time. Thus SIR introduces no tracing overhead if there is no active

intrusion detected.

3.4.2 Watermark Correlation

In order to trace the intrusion connections through stepping stones, a mechanism is needed to

correlate the incoming connections with outgoing connections of stepping stones. According

to the SWT tracing model, the hosts along the intrusion connection chain are not trustworthy;

therefore, SWT is designed to correlate at SWT guardian gateways.

The through traffic of a SWT guardian gateway can be divided into two classes: guarded and

bypassing (Figure 3.7). We define guarded traffic of a SWT guardian gateway as that traffic

that either terminates at or originates from one of the SWT guardian gateway’s guarded

hosts, and bypassing traffic as all other traffic. It is obvious that the SWT guardian gateway

needs to scan only the guarded traffic for possible correlation.

One challenge of correlation at the SWT guardian gateway is that there may be multiple

incoming or outgoing connections that terminate at or originate from one SWT guardian

Figure 3.7 Guardian Gateway Correlation

incoming

Guarded
Host

Guardian
Gateway

 …

 …
 outgoing

 …

 …
 Bypassing

44

gateway concurrently. For a SWT guardian gateway with m incoming and n outgoing

connections, there are m×n combinations of possible matches after those m+n connections

have been scanned. In specific, after m incoming connections have been scanned, each of the

n outgoing connections scanned has m possible matches for correlation. Therefore exhaustive

matching at multiple SWT guardian gateways would be computationally expensive.

SWT utilizes watermark-enabled application to watermark the backward traffic from the

attack target to the attack source. The watermark-enabled application processes two messages

from SIR: WM-Start and WM-End, where WM-Start requests watermark-enabled application

to start injecting the requested watermark for specified times, and WM-End requests the

watermark-enabled application to stop injecting the watermark.

With an identifying watermark injected to backward traffic of the intrusion connection chain,

correlation at intermediate SWT guardian gateways is simplified to scanning incoming and

outgoing connections and matching those with the same registered watermark. In particular,

both incoming and outgoing connections are scanned for any registered watermark. If there is

no registered watermark at SWT guardian gateway, no incoming and outgoing connections

are scanned for correlation. In this sense, the watermark correlation in SWT is “guided”,

compared to previous passive correlation.

The following observations can be made about watermark correlation:

• The accuracy of correlation is purely based on the uniqueness of the watermark. The low

watermark collision probability ensures low false positive rate of correlation from even a

single watermarked packet.

• While the watermark is application specific, watermark correlation is generic. The

computation overhead for watermark correlation is linear to the number of stepping

stones.

3.4.3 Active Tracing

The AT protocol coordinates SWT guardian gateways in the network to collaboratively trace

the incoming path and source of detected intrusion. At each SWT guardian gateway, the AT

45

module works closely with the watermark correlation module. By default, the SWT guardian

gateway is in the sleep mode and there is no watermark to scan for. Upon request from a

SWT guarded host or guardian gateway, AT will register the corresponding watermark and

the incoming connection information as active for a configurable period of time. Once the

watermark correlation module finds a match between an incoming connection and an

outgoing connection, AT will wake up the next SWT guardian gateway along the outgoing

connection and send the correlation information back to the original SWT guarded host.

Therefore the overall trace information consists of connection correlation information from

various SWT guardian gateways. To facilitate sequencing various correlation information

from SWT guardian gateways at a SWT guarded host, AT introduces the leap number to the

connections. When a SWT guarded host sends out tracing request to its guardian gateway, it

initializes the leap number to 1. Each SWT guardian gateway that receives the tracing request

will keep the leap number of the incoming connection. When sending the tracing request to

the next SWT guardian gateway, it will set the outgoing leap number as the incoming leap

number plus one. When sending correlation information back to the original SWT guarded

host, the SWT guardian gateway includes the leap number of the incoming connection as the

sequence number of correlation.

The core data structure of AT at a SWT guardian gateway is the Gateway Correlation Table

(GWCT), as shown in Figure 3.8. Each entry in GWCT contains correlation information for a

watermark. In particular, the timeout field contains the remaining time for the corresponding

watermark to be active; the target field refers to the IP address of the original SWT guarded

host that initiated active tracing; the WM field contains the watermark that AT will scan for;

and the correlation field contains a pointer to the correlation information that has been found

so far. Because an intrusion connection may pass through a SWT guardian gateway multiple

Figure 3.8 Gateway Correlation Table

leap# inC outC next

leap# inC outC next

…

timeout target WM correlation

…

…

46

times, the correlation information is organized as a linked list. Specifically, leap# contains

the leap number of the incoming connection; inC contains the incoming leap and outC

contains the outgoing connection information.

The structure of the AT protocol is shown in Figure 3.9. AT consists of two communicating

halves, namely, the ATSend and ATReceive. Both halves work at the IP level at the SWT

guardian gateway and intercept IP input and output packets. The intercept interface is

abstracted into four functions: readInput(), writeInput(), readOutput() and writeOutput().

The AT protocol introduces two SWT messages: GWTraceOn and GWTraceInfo. Both

messages include: (1) the IP address of the original SWT guarded host that initiated the trace,

denoted by msg.target; (2) the watermark to be scanned, denoted by msg.WM; (3) the leap

number of the incoming connection, denoted by msg.leap#; (4) and the incoming connection

information, denoted by msg.inC. GWTraceInfo message also contains corresponding

outgoing connection information correlated with the incoming connection, denoted by

msg.outC. Both SWT messages have a SWT header, denoted by msg.SWTHeader, and each

message has its own SWT header type, denoted by SWTHeader.type. The two SWT

messages are transported through UDP with specific port numbers.

ATSend() in Figure 3.10 shows the AT protocol processing at the IP output side. After

intercepting an IP packet p, AT first checks if the packet originates from one of its guarded

hosts and is not a SWT message; if so, AT scans the packet for registered watermark. That is

AT tries to correlate only those packets of outgoing connections. If an outgoing connection is

found having a registered watermark, AT first sends the tracing request to the SWT guardian

gateway along the outgoing connection and then sends trace information back to the original

host that initiated watermark tracing. After that, AT sends out the watermarked packet

Figure 3.9 Active Tracing Architecture

SWT Guardian
Gateway ATSend ATReceive

readOutput

writeOutput readInput

writeInput

47

through writeOutput(p).

The following observations can be made about AT:

• AT Protocol does not require the SWT guardian gateway to have any knowledge of other

SWT guardian gateways. Trace request is sent to the next stepping stone (or the intrusion

source) and the SWT guardian gateway receives it by intercepting SWT messages that

are destined to one of its guarded hosts.

• There is no explicit FallAsleep message in AT protocol; the SWT guardian gateway falls

asleep only through time out on those active tracing items.

• Because AT sends out trace request to the next guardian gateway before sending a

corresponding watermark packet to the next stepping stone, the next guardian gateway is

Function ATReceive()
{ p=readInput();
 if (p.dest is not in my guarded host list or
 p is not SWT message)
 writeInput(p);
 else
 { if (p.SWTHeader.type==GWTraceOn)
 { (target,WM,leap#,inC)=getGWTraceOnMsg(p);
 if (there exist an item in GWCT such that
 item.target==target && item.WM==WM)
 { refresh item.timeout;
 if ((leap#,inC,*) does not in
 item->correlation)
 add(leap#,inC,NULL) to item->correlation;
 }
 else
 { add new item=(timeout,target,WM) into GWCT
 add (leap#,inC,NULL) to item->correlation;
 }
 }
 }
}

Function ATSend()
{ p=readOutput();
 if (p.src is in my guarded host list and
 p is not SWT message)
 { if (Match(p) is found with item in GWCT and
 (leap#,inC,outC) in item->correlation
 { construct GWTraceOn =
 (item.target,item.WM,leap#+1,outC);
 send GWTraceOn to outC.dest;
 construct GWTraceInfo =
 (item.target,item.WM,leap#,inC,outC);
 send GWTraceInfo to item.target
 }
 };
 writeOutput(p);
}

Figure 3.10 Active Tracing Protocol Operations

48

able to get ready before the watermarked packet arrives. This makes SWT to be able to

trace back to the farthest trustworthy SWT guardian gateway to the origin of intrusion

with only one watermarked packet.

• Because AT intercepts at the IP level and utilizes a watermark to correlate, AT is a

generic tracing facility in that it can be used to trace connection chains of various IP

based protocols.

3.5 SWT Analysis

By watermarking selected packets and processing them accordingly, SWT provides many

potential advantages over existing intrusion tracing approaches. 1) SWT separates intrusion

tracing from intrusion detection, and it does not require any node other than the intrusion

target to have the intrusion detection capability. 2) Unlike thumbprinting, ON/OFF-based and

deviation-based approaches, SWT does not need to record all the concurrent incoming and

outgoing connections at any node, and it does not need to match each of the incoming

connections with each of the outgoing connections for correlation at any node. 3) SWT

requires no clock synchronization and is robust against retransmission variation. 4) SWT

traces only when needed. 5) So far the most compelling advantage of SWT is its correlation

accuracy and efficiency. By using watermarks, SWT can trace the intrusion connection chain

to its origin within a single keystroke of the intruder. With its unique active tracing, SWT can

trace the intrusion connection chain back to its origin even when the intruder is inactive. 6)

We have found that SWT can be implemented efficiently. It does not introduce any

noticeable overhead to routers, and it only requires a few network server applications at the

intrusion target host to be modified to inject watermarks.

3.5.1 Robustness and Security

Because SWT puts its trust on SWT guardian gateway rather than hosts, it is robust against

compromised hosts. One possible attack on SWT is sending false alarms to SWT guardian

gateways. While this may introduce a bogus GWCT entry at SWT guardian gateway, it only

affects the receiving SWT guardian gateway, as the further wakeup of other SWT guardian

gateways happens only when a correlation is found. The impact of this kind of denial-of-

49

service attack can also be limited as we utilize a least frequently used algorithm to replace

those faked items of GWCT with valid tracing requests when they arrive. Some heuristics

can also be developed to make SWT more robust against false alarms by differentiating those

false alarm messages that have been received multiple times without any correlation found.

Another potential attack against SWT tracing is to detect and filter the embedded watermark

from watermarked packets. When watermark uses virtual null string, it could be detected

through the backspace characters in the covering part. To make the watermark detection and

filtering more difficult, we could put the random part and covering part of the watermark into

two consecutive packets so that the first packet only has the random part without backspace.

To make the embedded watermark more robust against detection and filtering, we could even

omit the covering part and make the watermark a pure random string. This will make the

embedded watermark a pure random string and it is difficult to be distinguished from the

packet’s original payload. A potential side effect of this is that the intruder could be alarmed

as the content displayed is different from the original one. This is essentially a tradeoff

between the tracing robustness and stealthiness.

In considering security, SWT does not change the correct operation of routers. The SWT

gateway only scans guarded traffic and generates tracing information upon request. While

bringing the benefits of active networks, this limited programmability does not introduce new

security concerns that some active networks may have.

3.5.2 Intrusiveness and Privacy

Unlike most other tracing mechanisms, SWT is intrusive in the sense that the watermark-

enabled application actively injects a watermark into the backward traffic of the intrusion

connection, which would slightly increase the size of some packets. For interactive

applications such as telnet, rlogin, watermark can be made invisible to normal end users by

careful selection. For applications such as ftp, rcp, injecting watermark will break the

integrity of data that the intruder receives. Because watermark injection only happens when

there is an intrusion detected, only the intruder’s network application will receive

watermarked response. Therefore only the intruder’s intrusive network application could

50

potentially be broken by watermarks. We believe this is a reasonable price to pay for the

highly accurate, real-time, single packet tracing capability. By controlling the number of

watermarks injected by watermark-enabled application, we can further keep the intrusiveness

to a minimum and make SWT harder to detect by intruders and their confederates.

As with any other traceback systems, SWT is in direct conflict of interest with the use of

anonymizer and its new tracing capability may introduce potential privacy concerns.

However, SWT does not disclose any original content to any third party and its tracing is

based on the watermark injected by the content sender. While it is already a common practice

for the digital content providers to inject cookies or watermarks into the original digital

content for profile tracking or copyright protection, it is relatively new to use watermarks to

identify and trace computer communications.

3.6 Experiments

As a proof of concept, we have implemented a SWT prototype on FreeBSD 4.3. The

prototype includes a SWT guarded host, SWT guardian gateways and a watermark-enabled

application all running on the FreeBSD platforms.

For efficiency reasons, SIR and AT at SWT guarded host are combined together into one

daemon process. IDS is abstracted into a user process which interacts with SIR through IPC.

Strictly speaking, the watermark-enabled application is not part of SWT, but is a supporting

component. We have modified telnetd on FreeBSD to support arbitrary watermark injecting.

We have used a 72- bit watermark that is invisible to telnet users.

The SWT guardian gateway implementation utilizes ipfw and divert socket mechanisms from

FreeBSD so that all the SWT gateway processing is at the user level. Watermark correlation

and AT are implemented into a process that intercepts IP packets through divert socket. We

have used UDP port 1999 at SWT guarded host and UDP port 2000 at SWT guardian

gateways.

We have performed two functional experiments on tracing a telnet connection chain: A ⇒ B

51

⇒ C ⇒ D, where A is the source of intrusion and D is the final intrusion target. The first is to

trace the intrusion source while the intruder is active. Our SWT prototype demonstrates the

capability of real-time tracing of a single watermarked packet: SIR at host D gets all the trace

information pointing to intrusion source A within one keystroke from intruder at A. The

second experiment is to trace the intrusion source while the intruder is inactive or silent. By

actively sending back a watermark from watermark-enabled telnetd, our SWT prototype also

gets all the trace information pointing to the intrusion source A. As we have expected, for

each watermarked packet, SWT triggers one GWTraceOn message travel from D ⇒ C ⇒ B

⇒ A, and two GWTraceInfo messages from C and B respectively.

To quantify the overheads incurred due to SWT itself, we have measured latency and

throughput of SWT gateways with four different configurations:

(1) FreeBSD kernel IP forwarding without SWT;

(2) divert socket IP forwarding without SWT;

(3) SWT configured to scan traffic.

The latency and throughput measurements were performed on a three node testbed

configured in a straight line topology. The gateway at the intermediate node was a Pentium

III 750MHz PC with 512MB RAM, 512KB cache, and two Intel EtherExpress Pro 100 fast

Figure 3.11 Latency of SWT Guardian Gateway

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

0 200 400 600 800 1000 1200 1400 1600

Packet Size (bytes)

La
te

nc
y

(m
ic

ro
se

co
nd

s)

SWT Scan

Divert So cke t

FreeBSD Kerne l

52

Ethernet adapters, running FreeBSD 4.3.

Figure 3.11 shows that the latency of FreeBSD kernel IP forwarding is about 11 µs,

independent of packet sizes. The latency of divert socket IP forwarding ranges from 40 µs to

49 µs depending on the size of IP packets. The 29 µs to 38 µs overhead for divert socket

forwarding over kernel forwarding includes: (1) overhead for two context switches for data

reading and writing; (2) overhead for data copy in and out of user space; (3) overhead for

dispatching system calls. Compared with divert socket IP forwarding, SWT scanning takes 6

to 13 µs more time to forward IP packets of various sizes. This indicates that the SWT

gateway latency overhead due to SWT itself is about 6 to 13 µs.

Figure 3.12 presents throughput in term of packets per second. As shown in the figure, the

throughput gap is bigger between FreeBSD kernel and divert socket or SWT scan for smaller

packets. In particular, for 64-byte packets, FreeBSD kernel can forward 81,100 packets per

second, while divert socket and SWT scan can forward 27,200 and 22,200 packets per

second respectively. This suggests that the overheads for context switches and dispatching

system calls become dominant factor of overall throughout limit for small packets.

Throughputs of FreeBSD kernel and divert socket converge after packet size reaches 500

bytes. At 700-byte packet size, SWT scan reaches the same throughput of FreeBSD kernel.

Figure 3.13 depicts throughput in terms of bytes per second. It shows that SWT scan is able

Figure 3.12 Throughput of SWT Guardian Gateway (Kpps)

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200 1400 1600

Packet Size (bytes)

Th
ro

ug
hp

ut
 (K

pp
s)

FreeBSD Kernel

Divert Socket

SWT Scan

53

to saturate the fast Ethernet with packets of size of 700 bytes.

3.7 Summary

Tracing intrusion connections through stepping-stones at real-time is a challenging problem,

and tracing an idle intrusion connection chain has been viewed as impossible due to the lack

of traffic from the intruder. We have presented SWT as an active network-based intrusion

response framework to address the problem of real-time tracing unencrypted, interactive

intrusion connections through stepping-stones. We believe SWT’s key contribution is to

demonstrate: 1) watermark and information hiding techniques could be used to build highly

effective and efficient IP traceback system; 2) active approach can make the traceback

system more effective and efficient; 3) single packet correlation of unencrypted connections

is feasible; 4) tracing idle unencrypted connections is feasible.

The integration of watermarking technique and active approach makes SWT’s tracing

“guided” compared with previous tracing approaches for unencrypted connections. SWT is a

complete, practical system and it only requires some of the edge routers to participate tracing.

Our prototype shows that SWT is able to trace back to the trustworthy SWT guardian

gateway that is closest to the source of intrusion chain, within single keystroke of the

intruder. By actively injecting watermark back to the intrusion connection, it is able to trace

even when the intruder is silent. Our experience also shows that SWT can be implemented

Figure 3.13 Throughput of SWT Guardian Gateway (KB/Sec)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000

0 200 400 600 800 1000 1200 1400 1600

Packet Size (bytes)

Th
ro

ug
hp

ut
 (K

B/
Se

c)

FreeBSD Kernel

Divert Socket

SWT Scan

54

efficiently. Our prototype shows that the SWT’s own impact on a gateway’s processing delay

is only about 6~13 µs, and SWT gateway on Pentium III 750MHz PC is able to saturate the

fast Ethernet with 700-byte packets.

55

Chapter 4

IPD-Based Correlation of Encrypted Connections

In this chapter, we address the new challenge, introduced by the encryption of connections by

attackers, in correlating and tracing of connections through stepping stones. Here we assume

• The attackers have total control over the stepping stones and they can freely disguise,

delete or forge the host login information at each stepping stone.

• The attackers could encrypt any and all connections with any encryption scheme and

different keys.

• There is no active timing perturbation from attackers.

• The original packet order is kept.

• There is no bogus packets added or packets dropped.

Our goal is to investigate how encrypted as well as unencrypted interactive connections

could be effectively correlated. We propose a novel correlation scheme based on inter-packet

timing characteristics of both encrypted and unencrypted connections. Our experimental

results demonstrate that both encrypted and unencrypted interactive connections could be

effectively correlated based on inter-packet timing characteristics.

4.1 Introduction

Network-based correlation approaches are robust against disguise, deletion and forgery of

host login information at stepping stones. In particular, network content based approaches

(i.e. Thumbprinting, SWT) correlate flows based on their payload content, which require that

the payload content remains invariant across routers and stepping stones. With the

widespread deployment and availability of IP connection encryption utilities (i.e. SSH,

IPSEC), the attackers can easily defeat network content based correlation by encrypting some

or all connections across the stepping stones. This new level of countermeasure against

correlation calls for new approaches in correlating connections through stepping stones.

56

In principle, the correlation of connections is based on inherent characteristics of connections.

To correlate potentially encrypted connections, the key is to identify a correlation metric

from the connection characteristics that is: 1) invariant across routers and stepping stones; 2)

not affected by encryption and decryption; 3) unique to each connection chain across

stepping stones; 4) common for all the connections that are in the same connections chain.

Potential candidates for the correlation metric of a flow of packets include header

information, packet size, inter-packet timing etc.

In this chapter, we investigate the correlation of both encrypted and unencrypted connections

based on their inter-packet timing characteristics and we present an original correlation

method based on inter-packet delays or IPDs. In particular, we seek answers to the following

specific questions:

1. How do inter-packet delays (IPD) change or persist across routers, stepping stones?

2. Whether and how do the packet encryption and decryption affect the inter-packet delays?

3. How distinctive are inter-packet delays in identifying various flows?

4. How well do inter-packet delays differentiate unrelated flows?

To answer these questions, we design and evaluate four correlation metrics defined over

inter-packet delays. Our experimental results show that (after some filtering) inter-packet

delays (IPDs) of both encrypted and unencrypted, interactive connections are preserved

across many router hops and stepping stones. Both encrypted and unencrypted interactive

connections can be effectively correlated based on IPDs. The effectiveness of this method for

correlation purposes also requires that the timing characteristics be distinctive enough to

identify connections. We have found that normal interactive connections such as telnet, SSH

and rlogin are almost always distinctive enough to provide correct correlation across stepping

stones. The number of packets needed to correctly correlate two connections is also an

important metric, and is shown to be quite modest for this method.

4.2 IPD Based Correlation Model

The overall IPD correlation of two connections is a two-step process. First, the two

connections to be correlated are processed to generate a number of correlation points

57

between the two connections. Second, these generated correlation points are evaluated to

obtain the overall correlation value of the two connections. The rationale behind this two-

step process is to support the true real-time correlation, which is the capability to correlate

“live” traffic when they come and go. This means that the approach must be able to correlate

connections before their ends are reached. Therefore, the correlation metric for true real-time

correlation cannot be defined over the entire duration of a connection; we choose instead to

compute it over a window of packets in the connection. A correlation point generated from

IPDs within the window reflects some local similarity between the two flows; the overall

correlation value obtained from all the correlation points will indicate the overall similarity

of the two flows.

4.2.1 Basic IPD Correlation Concepts and Definitions

Given a bi-directional connection, we can split it into two unidirectional flows. We define

our correlation metric over the unidirectional flow of connections. Given a unidirectional

flow of n > 1 packets, we use ti to represent the timestamp of the ith packet observed at some

point of the network. We assume all the ti’s of a flow are measured at the same observation

point with the same clock. We define the ith adjacent inter-packet delay (IPD) as

 iii ttd −= +1 (4.1)

Therefore, for any flow consisting of n > 1 packets, we can have the adjacent IPD vector

<d1, …, dn-1>.

Ideally, the adjacent IPD vector would uniquely identify each flow and we could construct

our correlation metric from the adjacent IPD vectors. To support real-time correlation based

on the adjacent IPD vector, we define the IPD correlation window Wj, s on <d1, …, dn> as

 >=<>< −+ 11, ,...,),...,(sjjnsj ddddw (4.2)

where 1 ≤ j ≤ n-s+1 represents the starting point of the window, and 1 ≤ s ≤ n-j+1 is the size

of the window.

Given any two flows X and Y, whose adjacent IPD vectors are <x1, …xm> and <y1, …yn>

respectively, we define a Correlation Point Function CPF over IPD correlation windows of

58

X: Wj,s (X) and of Y: Wj+k,s (Y) as

))(),((),,,,(,, YWXWskjYXCPF skjsj += φ (4.3)

where φ is a function of two vectors: Rs × Rs → [0, 1], 1 ≤ j ≤ min (m-s+1, n-k-s+1) is the

start of the IPD correlation window, -j+1 ≤ k ≤ n-j-s+1 is the offset between the two IPD

correlation windows, and 1 ≤ s ≤ min (m-j+1, n-j-k+1) is the size of the two IPD correlation

windows. As shown in Figure 4.1, CPF(X, Y, j, k, s) quantitatively expresses the correlation

between Wj,s(<x1, …xm>) and Wj+k,s(<y1, …yn>). The higher value of CPF(X, Y, j, k, s), the

better correlation between Wj,s(<x1, …xm>) and Wj+k,s(<y1, …yn>).

Because the value of CPF(X, Y, j, k, s) changes as j and k change, we can think of CPF(X, Y,

j, k, s) as a function of j and k. Given any particular value of j, CPF(X, Y, j, k, s) may have a

different value for each different value of k. For any particular value of j, we are interested in

the maximum value of CPF(X, Y, j, k, s), which represents the best correlation between

Wj,s(<x1, …xm>) and Wj+k,s(<y1, …yn>) for all possible values of offset k.

For different values of j, the maximum value of CPF(X, Y, j, k, s) could be any where from 0

to 1. We are interested in those maximum values of (X, Y, j, k, s) that are no less than a

certain threshold.

We define (j, j+k) as a correlation point if

11

),,,,(max
+−−≤≤+−

≥
sjnkj

skjYXCPF cpδ
 (4.4)

where δcp is the correlation point threshold with value between 0 and 1. The δcp here is for

detecting correlation point and is different from δ in inequality (2.6). A correlation point (j,

j+k) represents the local correlation between one flow starting from packet number j and

another flow starting from packet number j+k.

Figure 4.1 CPF over IPD Correlation Windows Wj, s(X) and Wj+k,

Flow Y: y1,…, yj+k,…,yj+k+s-1,…yn

Flow X: x1,…, xj,…,xj+s-1,…xm

59

We further define k for this correlation point (j, j+k) as the correlation-offset of CPF(X, Y, j,

k, s) and the correlation point.

Given flow X, Y, correlation window size s and threshold δcp, by applying formula (4.4), we

can obtain a series of correlation points: (j1, j1+k1), (j2, j2+k2), …, (jn, jn+kn), where n ≥ 0.

Here the value of correlation offset ki may be different. Assuming one packet of flow X

corresponds to one packet of flow Y7, if flow X and Y are really part of the same connection

chain, the IPDs of flow X should have a one-to-one correspondence with the IPDs of flow Y.

In this case, all the correlation points should have same correlation offset k’. This can be

formally represented with CPF as

11

)],,,,(max
),',,,(['

+−−≤≤+−
=∀∃

sjnkj
skjYXCPF

skjYXCPFjk
iii

ii
ii (4.5)

That is there exists an offset k’ such that for all possible j, CPF(X, Y, j, k’, s) is the maximum

for all possible k (after is j determined). Or equivalently, all ki= k’. In this case, all the

correlation points (ji, ji+ki) will fall on a line defined by linear function y=x+k’.

After obtaining n>0 correlation points: (j1, j1+k1), (j2, j2+k2), …, (jn, jn+kn), we represent those

n correlation points with two n-dimensional vectors Cx=< j1, … jn> and Cy=< j1+k1, … jn+kn>.

The Correlation Value Function CVF(Cx, Cy) gives the overall correlation value between the

two flows based on all the correlation points obtained through formula (4.4). We use the

overall correlation threshold δ to determine if two flows are correlated. If CVF(Cx, Cy) ≥δ,

we declare flow X and Y are correlated.

4.2.2 Heuristics in Finding Correlation Points

Given flow X of m packets and flow Y of n packets, we could find one or more correlation

points (ji, ji+ki) through formula (4.4). Because (ji, ji+ki) is a 2-dimensional variable, a brute-

force method to find all correlation points would have O(m×n) computation complexity.

7 We have found this is true for most packets in correlated flows.

60

One heuristics to reduce the computation complexity of finding correlation points is to set an

upper bound on correlation-offset k. The idea is that if two flows are really correlated, the

corresponding IPD should start at approximately the same time, where the time difference is

determined by the network transmission delay (such as processing delay, queuing delay etc.

at intermediate routers and hosts). Given that the flows are interactive, the overall network

transmission delay could be bounded. Given that the network is loosely synchronized in time,

the clock skew could also be bounded. Therefore, if flow X=<Px,1,…, Px,m> and flow

Y=<Py,1,…, Py,n> are really correlated and packet Px,i corresponds Py,j, we have

 tjyix tt ∆<− || ,, (4.6)

where tx,i and tx,i are the timestamp of packets Px,i and Py,j respectively, ∆t>0 is a time window

determined by network delay and clock skew.

Let K denotes the upper bound of correlation-offset k, given ∆t, we can obtain the value of K

with constraints | tx,i − tx,i+K |<∆t and | tx,i − tx,i-K |<∆t within O(K) computations. Having k

bounded, the correlation point (j, j+k) is also bounded as shown in Figure 4.2.

4.2.3 Correlation Point Function Assessment Criteria

A critical issue in this method is the choice of the function φ for computing the correlation

Figure 4.2 Bounded Area of Correlation Points

Bounded
Correlation
Point Area

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y

K

K

61

point function CPF. Criteria by which the CFP may be evaluated include:

• Uniqueness of perfect correlation: for any flow X and Y, only when Wj,s(X)=Wj+k,s(Y)

would have CPF(X, Y, j, k, s) =1. This is an expression of the tightness of the correlation

point function.

• Correlation Point (CP) true positive (hit): if a correlation point (j, j+k) is detected

between two correlated flows by equation (4.4) and packet number j in one flow really

corresponds to packet number j+k in the other flow, then the correlation point (j, j+k) is a

true positive (or hit). The true positive rate is the number of hits divided by the number of

corresponding packet pairs between two correlated flows minus correlation window size

s8.

• Correlation Point (CP) false positive (miss): if a correlation point (j, j+k) is detected

between two flows by equation (4.4) and packet number j in one flow does not

correspond to packet number j+k in the other flow, then (j, j+k) is a CP false positive (or

miss).

Ideally, we would expect a perfect correlation point function would 1) have unique perfect

correlation; 2) have a 100% CP true positive rate; and 3) have 0 CP misses or false positives.

4.3 Correlation Point Function

We now propose four correlation point functions, each of which enjoys certain advantages or

applicability, as discussed below.

4.3.1 Mini/Max Sum Ratio (MMS)

One simple metric to quantitatively express the “similarity” between two vectors is the ratio

between the summation of the minimum elements and the summation of the maximum

elements.

∑
∑

++

= +

++

= +
=

1

1

),max(

),min(
),,,,(

sj

ji kii

sj

ji kii

MMS
yx

yx
skjYXCPF (4.7)

8 This is because starting from the last s packets in a flow, there are not enough (s+1) subsequent packets
needed for correlation window of size s, and we should only count all possible correlated packet pairs that can
be the start point of correlation window of size s.

62

The range of CPF(X, Y, j, k, s)MMS is [0, 1]. Only when xi=yi+k for i=j, …, j+k-1, will CPF(X,

Y, j, k, s) MMS have the value 1. Therefore, CPF(X, Y, j, k, s) MMS has unique perfect

correlation.

4.3.2 Statistical Correlation (STAT)

Based on the concept of the coefficient of correlation from statistics [28], we can define





<
≥

=
0),,,,(,0
0),,,,(,),,,,(

),,,,(
skjYX
skjYXskjYX

skjYXCPF Stat ρ
ρρ

 (4.8)

 where [] []∑∑
∑

++

= +
++

=

++

= +

−×−

−×−
=

1 21 2

1

))(())((

))(())((
),,,,(

sj

ji ki
sj

ji i

sj

ji kii

YEyXEx

YEyXEx
skjYXρ

The range of CPF(X, Y, j, k, s)Stat is also [0, 1]. Unlike CPF(X, Y, j, k, s)MMS, for a given

Wj,s(X), there are more than one value of Wj+k,s(Y) for which CPF(X, Y, j, k, s)Stat has the

value 1. For example, for a particular Wj,s(X), any linear transform of Wj,s(X): Wj+k,s(Y)

w=a×Wj,s(X) +b will result in CPF(X, Y, j, k, s)Stat being equal to 1 (a>0). Therefore CPF(X, Y,

j, k, s)Stat does not have unique perfect correlation, and is more likely to result in false

positives.

4.3.3 Normalized Dot Product 1 (NDP1)

In digital signal processing, linear correlation (or matched filtering) of two discrete signals

will reach a maximum at the point where the signals have the most similarity. It is well

known that linear correlation is optimal in detecting the similarity between a discrete signal

and the corresponding signal distorted by additive, white Gaussian noise. However the range

of linear correlation is not necessarily between 0 and 1.

If the discrete signals are replaced by two vectors, the corresponding operation to linear

correlation of signals is the inner-product or dot-product of two vectors in n-dimensional

space. From linear algebra, the inner-product (or dot-product) of two n-dimensional vectors

is equal to the cosine of the angle between the two vectors, multiplied by the lengths of the

two vectors. That is:

 |)(||)(|)cos()()(YWXWYWXW ××=• θ (4.9)

63

or

|)(||)(|

)()()cos(
YWXW

YWXW
×
•

=θ (4.10)

where θ is the angle between vector W(X) and W(Y), and |W(X)| and |W(Y)| are the lengths

of vector W(X) and W(Y) respectively.9

cos(θ) in (4.10) can be used as a correlation point function. The range of cos(θ) is [-1, 1] and

it provides a measure of the similarity of two vectors. Given any vector Wj,s(X), cos(θ) will

be 1 for any vector Wj+k,s(Y) =a×Wj,s(X) +b.

To make the correlation point function to exhibit unique perfect correlation, we can define it

as follows:

[]

∑ ∑
∑

∑

∑

−+

=

−+

= +

−+

= +

−+

= +

−+

= +

×
=

×
=

×

×
×=

×=

1 1 22

1

2

1

1

1

),max(

|))(||,)(max(|

|)(||)(||))(||,)(max(|
|))(||,)(min(|

)cos(
|))(||,)(max(|
|))(||,)(min(|

),,,,(

sj

ji

sj

ji kii

sj

ji kii

sj

ji kii

sj

ji kii

NDP

yx

yx

YWXW

yx

YWXW

yx

YWXW
YWXW

YWXW
YWXW

skjYXCPF

θ

 (4.11)

Because xi and yi are non negative, the range of CPF(X, Y, j, k, s)NDP1 is [0, 1]. It is obvious

to see that when Wj,s(X) ≠ Wj+k,s(Y), min(|Wj,s(X)|, |Wj+k,s(Y)|)<max(|Wj,s(X)|, |Wj+k,s(Y)|)

and CPF(X, Y, j, k, s)NDP1<1. That is, CPF(X, Y, j, k, s) NDP1 will be 1 only when Wj,s(X) =

Wj+k,s(Y). Therefore, CPF(X, Y, j, k, s)NDP1 has unique perfect correlation.

4.3.4 Normalized Dot Product 2 (NDP2)

Another way to normalize the dot-product of two vectors is

9 We have dropped the subscripts of W(X) and W(Y) for clarity purposes in this section.

64

[]21

1

2
),max(

),,,,(
∑
∑
−+

= +

−+

= +×
=

sj

ji kii

sj

ji kii
NDP

yx

yx
skjYXCPF (4.12)

Because xi and yi are non negative, the range of CPF(X, Y, j, k, s)NDP2 is [0, 1]. It is obvious

that CPF(X, Y, j, k, s)NDP2 equals to 1 only when Wj,s(X) = Wj+k,s(Y).

Among these four proposed correlation point functions, Mini/MaxSum Ratio (MMS) is likely

to be the most sensitive to local details of the IPD vectors to be correlated. This is because it

does not average any differences, and it accumulates all the IPD differences. As a result,

MMS may potentially have a lower CP true positive rate due to its emphasis on local details.

While the STAT CPF is much more robust to noise, we expect it to have substantially more

CP false positives. The normalized dot product functions (NDP1 and NDP2) are likely to be

in between MMS and STAT in terms of sensitivity to local detail and robustness to noise.

4.4 Correlation Value Function

Given flows X, Y, correlation window size s and threshold δ, by applying formula (4.4), we

can potentially obtain a set of correlation points: (j1, j1+k1), (j2, j2+k2), …, (jn, jn+kn). We

represent this sequence of correlation points through two n-dimensional vectors Cx=< j1, … jn>

and Cy=< j1+k1, … jn+kn>.

We define the overall Correlation Value Function CVF of flows X and Y from this sequence

of correlation points, as follows:














=
>

<∧>
=

=
11
1),(

0),(1
0

0
0

),(
n
nCC

CCn
n

CCCVF yx

yx

yx ρ
ρ

 (4.13)

where [] []∑∑
∑

==

=

−+×−

−+×−
=

n

i yii
n

i xi

n

i yiixi
yx

CEkjCEj

CEkjCEj
CC

1
2

1
2

1

))(())((

))(())((
),(ρ

CVF(Cx,Cy) has value range of [0, 1], and it quantitatively expresses the overall correlation

between flows X and Y based on the correlation points detected through formula (4.4). When

65

flow X and Y have no correlation point detected, CVF(Cx,Cy) is defined to be 0. When flow

X and Y has only one correlation point detected, CVF(Cx,Cy)=1. When there are more than

one correlation point detected and all the correlation points have same correlation offset (i.e.,

k1=k2 =…kn), CVF(Cx,Cy) = 1. When there are more than one correlation point detected and

not all the correlation points have same correlation offset (i.e., ki ≠kj), CVF(Cx,Cy) < 1.

In summary, CVF(Cx,Cy) not only considers the number of correlation points detected (which

corresponds to CP true positives), but also evaluates how well those detected correlation

points are linearly aligned (which corresponds to CP false positives). CVF(Cx,Cy) considers

the two flows are better correlated with fewer, but better linearly aligned (which means fewer

CP false positives), detected correlation points than more, but poorly linearly aligned (which

means more CP false positives), detected correlation points.

4.5 Experiment

The goal of the experiments is to answer the following questions about IPD based correlation:

1 Are inter-packet delays preserved through routers and stepping stone, and to what

extent?

2 Are inter-packet delays preserved across encryption/decryption and various network

applications (such as telnet/rlogin/SSH)?

3 How effective is the IPD-based correlation metric in determining whether two

connections belong to the same chain?

4 How well does the IPD-based correlation metric differentiate a connection from

connections that are not part of the same chain?

4.5.1 Correlation Point Experiment

To answer the first two questions, we have conducted the following experiment. We first

telnet’ed from a Windows 2000 PC behind a cable modem connected to an ISP in North

Carolina to a Sun workstation via VPN. From the workstation, we used SSH to login to

another workstation at N. C. State University. We then telnet’ed to a PC running Linux at

UC Davis, and from there we SSH’ed back to a PC running FreeBSD at NC State. As shown

in Figure 4.3, the connection chain has a total of 3 stepping-stones and 59 hops and covers a

66

distance on the order of 10,000 km. The connection chain consists of links of different speeds

-including residential Internet access, typical campus LAN and public Internet backbone. We

have captured the packet traces at the Windows 2000 node and the FreeBSD node; both

traces have a timestamp resolution of 1 microsecond. We label the telnet return path10 flow

from the Sun workstation to the Windows 2000 PC as flow X, and the SSH backwards flow

from the FreeBSD PC to the Linux PC as flow Y. Therefore, flow X consists of telnet

packets and flow Y consists of SSH packets.

Before calculating the IPD vectors, we have filtered out the following sources of errors from

the packet flow:

• Duplicated packets

• Retransmitted packets

• ACK only packets

We then calculated correlation points (j, j+k) by applying (4.4) using each of the four

correlation point functions, with different correlation window sizes s and correlation point

thresholds δcp.

Figure 4.4 shows the correlation points between flow X and Y obtained by the MMS CPF

with different correlation window sizes s and thresholds δcp. In these plots, a point at position

(j, j+k) indicates that inequality (4.4) was true for that value of j, k, s and δcp. True positives

are points located along the major diagonal. False positives are points located off the major

diagonal.

10 The “return path” is the echoed traffic generated on the destination host and sent to the origination host.

Figure 4.3 Correlation Experiment on telnet and ssh

Windows 2000
nc.rr.com
24.25.x.x

telnet (5 hops)
VPN ssh (18 hops)

Sun OS
64.102.x.x

Sun OS
ncsu

152.14.x.x

telnet (18 hops)

Linux
ucdavis

169.237.x.x

ssh (18 hops)

FreeBSD
ncsu

152.14.x.x
flow X flow Y

67

Figure 4.4 Correlation Point between Two Correlated Flows Detected by MMS
 with Different Correlation Window Sizes and Thresholds

MMS Correlation Points with Window
Size 5, Threshold 0.95

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y

max CPF(X, Y, 5)>0.95
CVF()=0.5830

MMS Correlation Points with Window
Size 10, Threshold 0.95

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y

max CPF(X, Y, 10)>0.95
CVF()=0.9999

MMS Correlation Points with Window
Size 15, Threshold 0.95

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y

max CPF(X, Y, 15)>0.95
CVF()=1.0

MMS Correlation Points with Window
Size 20, Threshold 0.95

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y

max CPF(X, Y, 20)>0.95
CVF()=1.0

MMS Correlation Points with Window
Size 25, Threshold 0.95

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y

max CPF(X, Y, 25)>0.95
CVF()=1.0

MMS Correlation Points with Window
Size 5, Threshold 0.80

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y

max CPF(X, Y, 5)>0.80
CVF()=0.2771

MMS Correlation Points with Window
Size 10, Threshold 0.80

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y

max CPF(X, Y, 10)>0.80
CVF()=07879

MMS Correlation Points with Window
Size 15, Threshold 0.80

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y

max(X, Y, 15)>0.80
CVF()=0.9999

MMS Correlation Points with Window
Size 20, Threshold 0.80

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y

max CPF(X, Y, 20)>0.80
CVF()=1.0

MMS Correlation Points with Window
Size 25, Threshold 0.80

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y

max CPF(X, Y, 25)>0.80
CVF()=1.0

MMS Correlation Points with Window
Size 5, Threshold 0.70

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y

max CPF(X, Y, 5)>0.70
CVF()=0.1707

MMS Correlation Points with Window
Size 10, Threshold 0.70

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y

max CPF(X, Y, 10)>0.70
CVF()=0.4637

MMS Correlation Points with Window
Size 15, Threshold 0.70

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y

max CPF(X, Y, 15)>0.70
CVF()=0.9999

MMS Correlation Points with Window
Size 20, Threshold 0.70

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y

max CPF(X, Y, 20)>0.70
CVF()=1.0

MMS Correlation Points with Window
Size 25, Threshold 0.70

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y

max CPF(X, Y, 25)>0.70
CVF()=1.0

68

With correlation window size of 5 and δcp threshold of 0.70, there are a large number of

falsely detected correlation points (CP false positives) in addition to the true correlation

points (CP true positives). The overall CVF value (equation (4.13)) for this case is 0.1707.

With larger correlation window size, or a higher threshold δcp, MMS results in fewer CP false

positives and has a higher CVF value, as would be expected. At correlation window size 15,

and a threshold δcp of 0.70, MMS detects most of the true correlation points between flow X

and Y, finds no false positives, and has an overall CVF value of 0.9999. When the threshold

δcp is increased to 0.95 with the same correlation window size of 15, MMS detects

substantially fewer correlation points between flow X and Y, with no CP false positives, and

has an overall CVF value of 1.0. This suggests that with correlation window size 15, the

threshold δcp of 0.95 is probably too high for MMS. The correlation points missed by

correlation windows size 15 and threshold δcp of 0.95 are actually due to correlation-offset

shifts. The correlation-offset between our sample flows X and Y has shifted 3 times between

the start and finish. This indicates that a telnet packet may trigger more than one SSH packet,

or vice versa. Fortunately, such correlation-offset shifts are infrequent between correlated

flows. Generally, a larger correlation window size is very effective in filtering out CP false

positives, and a higher threshold δcp tends to filter out both CP true positive and CP false

positive. An excessively large correlation window size with a high threshold δcp tends to have

a low CP true positive rate, due to both correlation-offset shifts and IPD variations

introduced by the network.

Figure 4.5 compares the detected correlation points between flow X and Y by different CPFs:

MMS, STAT, NDP1 and NDP2, with identical correlation window sizes of 10 and threshold

δcp of 0.80. As expected, the statistical CPF results in substantially more CP false positives

than the other three CPFs. While NDP2 has slightly fewer CP false positives than NDP1,

they both have somewhat more CP false positives than MMS. Generally, MMS is very

sensitive to localized details of IPDs and is able to accurately correlate the flows using a

smaller correlation window (i.e. 5). NDP1 and NDP2 are less effective with a small

correlation window, but they are able to correlate effectively with a moderate window size

(15 or 20). The statistical CPF appears to fail to consider enough localized details to correlate

accurately.

69

4.5.2 Aggregated Flow Correlation Experiment

To evaluate more generally the performance of the different correlation point functions, we

have used five sets of flows (Table 4.1). FS1 and FS2 were collected at two ends of

connection chains similar to the scenario shown in Figure 4.2. FS1 and FS2 contain 16 SSH

flows and 15 Telnet flows, respectively; for each flow in FS2, there is one flow in FS1 which

was in the same connection chain. FS3 and FS4 are derived from 5 million packet headers

and 12 million packet headers of the Auckland-IV traces of NLANR [52]. FS5 is derived

from over 49 million packet headers of the Bell Lab-I traces of NLANR [52].

Figure 4.5 Correlation Points Detected by MMS, Stat, NDP1 and NDP2 with
Same Window Size and Threshold

MMS Correlation Points with Window
Size 10, Threshold 0.80

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y
max CPF(X, Y, 10)>0.80
CVF()=07879

Statistical Correlation Points with
Window Size 10, Threshold 0.80

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y

max CPF(X, Y, 10)>0.80
CVF()=0.0979

NDP1 Correlation Points with Window
Size 10, Threshold 0.80

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y

max CPF(X, Y, 10)>0.80
CVF()=0.4713

NDP2 Correlation Points with Window
Size 10, Threshold 0.80

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Packet # of Flow X

Pa
ck

et
 #

 o
f F

lo
w

 Y
max CPF(X, Y, 10)>0.80
CVF()=0.3784

70

Flow
Set

Date Flow Type Flow # Packet #

FS1 03/02/02 SSH 16 12372
FS2 03/02/02 Telnet 15 5111
FS3 02/20/01 Telnet/SSH 144 34344
FS4 02/26/01 Telnet/SSH 135 38196
FS5 05/xx/02 SSH 400 364158

Table 4.1: Traces of Flows Used in Correlation Experiments

We have conducted four sets of aggregated correlation experiments. Based on results of

correlation point experiments shown in Figure 4.4 and Figure 4.5, we choose to set the

overall CVF correlation threshold δ to be 0.6. For all of these experiments, two flows were

regarded as being correlated if the CVF of their correlation points (equation (4.13)) was

greater than δ=0.6.The first set of experiments tests how well different correlation metrics

detect correlation between sets FS1 and FS2. Figure 4.6 shows both the number of true

positives (out of a total of 15) and the number of false positives (out of 15*15=225) of flow

correlation detection with different correlation window sizes and correlation point thresholds

δcp.

With a δcp threshold of 0.70, MMS reaches its true positive peak of 93% at a correlation

window size of 20, and NDP2 reaches its true positive peak of 80% with a correlation

window size of 20 or 25. However NDP2 has a significantly higher number of false positives

at the window size corresponding to its peak true positive rate than does than MMS. Both

STAT and NDP1 have very low (<7%) true positive rates with all correlation window size.

This indicates that STAT and NDP1 are ineffective with a low δcp threshold.

For all δcp threshold values, MMS attains its peak true positive rate with 0 false positives.

NDP1 and NDP2 show a similar success rate, with a somewhat higher failure (false positive)

rate. STAT is generally not successful at correlating the flows in the same chain. The best

results are obtained for the highest δcp threshold setting. MMS is able to achieve 100% true

positive rate with 0 false positives with correlation window size 15, δcp threshold 0.90 and

window size 10, δcp threshold 0.95. NDP2 is also able to have 100% true positive rate with 0

false positive at correlation window size 15, δcp threshold 0.95. NDP1’s overall true positive

71

peak is 93% with 7% false positive at correlation window size 20, δcp threshold 0.90.

Figure 4.6 True Positive and False Positive of Correlation between 16 and 15
 Correlated Flows

True Positive of 15 Correlated Flow Pairs
with Threshold 0.70

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

Correlation Window Size

Tr
ue

 P
os

iti
ve

MMS

Stat

NDP1

NDP2

True Positive of 15 Correlated Flow Pairs
with Threshold 0.90

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

Correlation Window Size

Tr
ue

 P
os

iti
ve

MMS

Stat

NDP1

NDP2

True Positive of 15 Correlated Flow Pairs
with Threshold 0.95

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

Correlation Window Size

Tr
ue

 P
os

iti
ve

MMS

Stat

NDP1

NDP2

False Positive of 15 Correlated Flow Pairs
with Threshold 0.70

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

Correlation Window Size

Fa
ls

e
Po

si
tiv

e

MMS

Stat

NDP1

NDP2

True Positive of 15 Correlated Flow Pairs
with Threshold 0.80

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

Correlation Window Size

Tr
ue

 P
os

iti
ve

MMS

Stat

NDP1

NDP2

False Positive of 15 Correlated Flow Pairs
with Threshold 0.80

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

Correlation Window Size

Fa
ls

e
Po

si
tiv

e

MMS

Stat

NDP1

NDP2

False Positive of 15 Correlated Flow Pairs
with Threshold 0.90

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

Correlation Window Size

Fa
ls

e
Po

si
tiv

e

MMS

Stat

NDP1

NDP2

False Positive of 15 Correlated Flow Pairs
with Threshold 0.95

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

Correlation Window Size

Fa
ls

e
Po

si
tiv

e

MMS

Stat

NDP1

NDP2

72

The second set of experiments shows the correlation detection effectiveness by different

correlation metrics. We use combined flow set of FS3 and FS4 (279 flows) and flow set FS5

(400 flows) to correlate themselves respectively. Figure 4.7 shows the true positive rate of

different correlation metrics with different correlation window sizes and δcp thresholds.

Again the STAT correlation point function consistently performs poorly. MMS and NDP2

almost have identical correlation detection rates across all the correlation window size and

δcp threshold combinations in both data sets, where NDP1 has little lower detection rate. For

flow set FS5, the detection rates of both MMS and NDP2 reach 92% and higher with

correlation window size 25 or bigger. At correlation window size 35, MMS’s and NDP2’s

detection rate achieve over 97%. For the combined flow set FS3 and FS4, at a correlation

window size of 15, for δcp threshold 0.95, MMS, NDP1and NDP2 all have the highest

correlation detection rate of 76.7%. This lower detection rate is due to the nature of the flows

in FS3 and FS4. We have found a number of SSH flows in FS3 and FS4 show very similar

periodicity, with constant very short IPDs. We suspect they are bulk data transfers within the

Figure 4.7 True Positive Rate of Correlation between 279 and 279, 400
and 400 Correlated Flows

True Positive Rate of 279 Correlated Flow
Pairs with Threshold 0.90

0
10
20
30
40
50
60
70
80
90

100

10 15 20 25 30 35

Correlation Window Size

Tr
ue

 P
os

iti
ve

 %
MMS

Stat

NDP1

NDP2

True Positive Rate of 279 Correlated Flow
Pairs with Threshold 0.95

0
10
20
30
40
50
60
70
80
90

100

10 15 20 25 30 35

Correlation Window Size

Tr
ue

 P
os

iti
ve

 %

MMS

Stat

NDP1

NDP2

True Positive Rate of 400 Correlated Flow
Pairs with Threshold 0.90

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

10 15 20 25 30 35

Correlation Window Size

Tr
ue

 P
os

iti
ve

 %

MMS

Stat

NDP1

NDP2

True Positive Rate of 400 Correlated Flow
Pairs with Threshold 0.95

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

10 15 20 25 30 35

Correlation Window Size

Tr
ue

 P
os

iti
ve

 %

MMS

Stat

NDP1

NDP2

73

SSH connections. This shows a potential limitation of IPD-based correlation.

The third set of experiments is intended to evaluate the ability of the different correlation

point functions to successfully discriminate flows that are not part of the same chain. Figure

4.8 shows the number of false positives (out of 16*279=4464) when correlating FS1 and the

combined flow set of FS3 and FS4. Because no flow from FS1 correlates with any flow from

FS3 and FS4, any detected correlation by the correlation metric is a false positive. MMS

consistently has 0 false positives; and NDP1 and NDP2 false positives decrease as the

correlation window size increases. The STAT correlation point function reports an increasing

number of false positive with larger correlation sizes.

The fourth set of experiments similarly investigates the false positive rate, this time between

Figure 4.8 False Positive of Correlation between 16 and 279 Uncorrelated Flows

Figure 4.9 False Positive of Correlation between 144 and 135 Uncorrelated Flows

False Positive of 16 and 279 Uncorrelated
Flows with Threshold 0.90

0

2

4

6

8

10

12

10 15 20 25

Correlation Window Size

Fa
ls

e
Po

si
tiv

e

MMS

Stat

NDP1

NDP2

False Positive of 16 and 279 Uncorrelated
Flows with Threshold 0.95

0

2

4

6

8

10

12

10 15 20 25

Correlation Window Size

Fa
ls

e
Po

si
tiv

e

MMS

Stat

NDP1

NDP2

False Positive of 144 and 135 Uncorrelated
Flows with Threshold 0.90

0

100

200

300

400

500

600

700

800

10 15 20 25 30 35 40 45

Correlation Window Size

Fa
ls

e
Po

si
tiv

e

MMS

Stat

NDP1

NDP2

False Positive of 144 and 135 Uncorrelated
Flows with Threshold 0.95

0

100

200

300

400

500

600

700

800

10 15 20 25 30 35 40 45

Correlation Window Size

Fa
ls

e
Po

si
tiv

e

MMS

Stat

NDP1

NDP2

74

sets FS3 and FS4. Figure 4.9 shows the results. The number of false positives (out of

144*135 = 19440) for MMS, NDP1 and NDP2 decreases dramatically when the correlation

window size increases; that of MMS decreases faster than NDP1 and NDP2. Again, the

statistical correlation metric has a consistently higher false positive rate with increasing

correlation window size. For the MMS method, a window size of 20 0r 25 packets is

sufficient to reduce the false positive rate to a fraction of a percent.

In summary, we have found that MMS is very effective in both detecting interactive,

correlated flows and differentiating uncorrelated flows with even relatively small correlation

window sizes (10, 15). NDP1 and NDP2 are not as sensitive as MMS with small correlation

windows; however, they both perform well with larger correlation windows. We have

confirmed that the statistical correlation metric is not effective in detecting correlation and

differentiating uncorrelated flows.

4.5.3 Correlation Performance

 40k 379k 937k 2309k 5704k 54210k
MMS 2.00 1.65 1.74 1.75 1.43 1.35
STAT 0.90 0.76 0.69 1.14 1.22 1.83
NDP1 3.99 3.16 2.23 3.25 2.29 3.24
NDP2 1.33 1.31 1.16 1.37 1.17 1.13

Table 4.2: Throughput (Millions per Second) of Correlation Point Calculation
with Correlation Window Size 15

We have measured the number of calculations of correlation points per second achieved by

our unoptimized code. Table 4.2 shows the average number of millions of correlation point

calculation per second of various correlation point functions under different loads in term of

total number of correlation points calculated. Despite dynamic overheads of disk operation,

the overall throughput remains largely constant at various loads.

4.6 Summary

The encryption of connections makes the correlation and tracing of intrusion connections

through stepping stones much harder. We have addressed the problem of tracing encrypted

75

(as well as unencrypted) connections based on the inter-packet delays of the connections.

We proposed and investigated four correlation point functions. Our correlation metric does

not require clock synchronization, and allows correlation of measurements taken at widely

scattered points. Our method also requires only small packet sequences (on the order of a few

dozen packets) for correlation. We have found that after some filtering, IPDs (Inter-Packet

Delay) of both encrypted and unencrypted, interactive connections are largely preserved

across many hops stepping-stones. We have demonstrated that both encrypted and

unencrypted, interactive connections can be effectively correlated and differentiated based on

IPD characteristics.

Our experiments also indicate that correlation detection is significantly dependent on the

uniqueness of flows. We have found that normal interactive connections such as telnet, SSH

and rlogin are almost always unique enough to be differentiated from connections not in the

same chain. Bulk data transfer with SSH connection introduces an additional challenge in

correlation detection, and its impact on correlation differentiation could be offset by larger

correlation windows and higher correlation point thresholds. However, IPD-based correlation

is generally not effective in correlating flows of massive data transfer (i.e. ftp) which exhibit

similar IPD patterns to each other.

One countermeasure against IPD-based correlation is to set some telnet connection into line

mode while keeping other connection in character-at-a-time mode. When telnet client is in

line mode, it buffers user’s input till the end-of-line is entered, then it tries to send out the

whole line input at a time rather than a character at a time. When some part of connection

chain uses telnet character-at-a-time mode and some other part of connection chain uses line

mode, the boundary and number of packets will be changed. However, the server side shell

could always request for character-at-a-time mode [72], and the telnet client always changes

to character-at-a-time mode when application at server side requires it.

Another countermeasure the intruders could use to thwart IPD-based correlation is to

deliberately perturb the inter-packet timing of some connection in a connection chain by

introducing additional delays at some stepping stone. Such timing perturbation could either

76

decrease the correlation true positive rate, or increase the correlation false positives rate.

There are relatively simple means of accomplishing such traffic shaping, although they may

require kernel-level manipulations. The amount of delay that can be added by the intruder is

limited by the maximum delay that is tolerable for interactive traffic.

We will address the active timing perturbation by intruders in next Chapter.

77

Chapter 5

Robust Correlation of Encrypted Connections
through Watermarking

Adding extra delays to packets of encrypted connections will adversely affect any correlation

schemes based on inter-packet timing characteristics in that the timing perturbation could

either increase the correlation false positive rate or decrease the correlation true positive rate.

In this chapter, we investigate on how to correlate timing perturbed encrypted connections

through stepping. Here we assume

• The attackers have total control over the stepping stones and they can freely disguise,

delete or forge the host login information at each stepping stone

• The attackers could encrypt any and all connections at any and all stepping stones with

any encryption scheme and different keys

• The attacker could add random, but bounded delays at any or all stepping stones when

forwarding any or all packets

• The original packets order is kept

• There is no bogus traffic added or packets dropped

Our goal is to understand the adverse impact as well as the inherent limitation of active

timing perturbation by adversary over timing based correlation schemes, develop a practical

correlation scheme that is robust against random timing perturbation by adversary, and to

answer fundamental questions concerning the maximum effectiveness of such techniques and

the tradeoffs involved in implementing them.

5.1 Introduction

The timing-based approach is the most capable and promising current method for correlating

encrypted connections. However, previous timing-based approaches are vulnerable to packet

timing perturbations introduced by the attacker at stepping stones. In particular, the attacker

78

can perturb the timing characteristics of a connection by selectively or randomly introducing

extra delays when forwarding packets at the stepping stone. This kind of timing perturbation

will adversely affect the effectiveness of any timing-based correlation. The timing

perturbation could either make unrelated flows have similar timing characteristics, or make

related flows exhibit different timing characteristics. Either case could cause a timing-based

correlation method to fail.

Donoho et al [29] have recently investigated the theoretical limits on the attacker’s ability to

disguise his traffic through timing perturbation and packet padding (i.e., injection of bogus

packets). By using a multiscale analysis technique, they are able to separate the long term

behavior of the connection from the short term behavior of the connection, and they show

that correlation from the long term behavior (of sufficiently long flows) is still possible

despite timing perturbation by the attacker. However, they do not present any tradeoffs

between the magnitude of the timing perturbation, the desired correlation effectiveness, and

the number of packets needed. Another important issue that is not addressed by [29] is the

correlation false positive rate. While the coarse scale analysis for long term behavior may

filter out the packet timing jitter introduced by the attacker, it could also filter out the

inherent uniqueness and details of the flow timing. Therefore coarse scale analysis tends to

increase the correlation false positive rate while increasing the correlation true positive rate

of timing perturbed connections. Nevertheless, Donoho et al ‘s work [29] represents a

important first step toward a better understanding of the inherent limitations of timing

perturbation by the attacker on timing-based correlation. The important theoretical result is

that correlation is still achievable for sufficiently long flows despite certain type of timing

perturbations. What left open are the question whether correlation is achievable in the

presence of arbitrarily distributed (rather than Pareto distribution conserving) random timing

perturbation, and an analysis of the achievable tradeoff of the false positive and true positive

rates.

In the following sections we show, with our watermark-based correlation, that for sufficient

long flows, it is indeed possible to achieve both high true positive rate and low false positive

rate at the same time in correlation against arbitrarily distributed iid random timing

79

perturbations of arbitrary distribution.

We describe a novel watermark-based connection correlation method that is designed to be

robust against random timing perturbations by the attacker. The idea is to actively embed

some unique watermark into the flow by slightly adjusting the timing of selected packets in

the flow. If the embedded watermark is unique enough and robust enough against the timing

perturbation by the attacker, the watermarked flow can be uniquely identified, and thus

effectively correlated. It is very desirable to minimize the adjustment of inter-packet timing,

so that the watermark embedding is difficult to detect without prior knowledge of how it was

created. By utilizing a redundant watermark, we have developed a robust correlation

framework for which the following property can be proved: our watermark-based correlation

scheme can achieve, with arbitrarily small average adjustment of inter-packet timing, a

detection (true positive) rate arbitrarily close to 100%, and a watermark collision (false

positive) rate arbitrarily close to 0 at the same time, against an arbitrarily large (but bounded)

independent and identically distributed (iid) random timing perturbation of arbitrary

distribution, as long as there are enough packets in the flow to be watermarked.

5.2 Overview of Watermark-Based Correlation

The objective of watermark-based correlation is to make the correlation of encrypted

connections robust against random timing perturbations introduced by the attacker. Unlike

existing timing-based correlation schemes, our watermark-based correlation is “active” in

that it embeds a unique watermark into encrypted flows by slightly adjusting the timing of

selected packets. The unique embedded watermark gives us an advantage over passive timing

based correlation in resisting timing perturbation.

We assume the following about the random timing perturbation:

1) While the attacker can add extra delay to any or all packets of an outgoing flow of the

stepping stone, the maximum delay he/she can introduce is bounded.

2) The random timing perturbation on each packet is independent and identically distributed

(iid).

3) All packets in the original flow are kept in their original order, i.e., no padding packet is

80

added and no packet is dropped by the attacker.

4) While the watermarking scheme may be known to the attacker, the parameters of the

watermarking are not known by the attacker.

5.2.1 Watermarking Model and Concept

Generally, digital watermarking[24] involves the selection of a watermark carrier domain and

the design of two complementary processes: embedding and decoding. The watermark

embedding process embeds the watermark bits into the carrier signal by a slight modification

of some property of the watermark carrier, and the watermark decoder process detects and

extracts any watermark bits (or equivalently determines the existence of a given watermark)

from the carrier signal. To correlate encrypted connections, we propose to use inter-packet

timing as the watermark carrier domain.

Given a bidirectional connection, we can split it into two unidirectional flows and process

each independently. For a unidirectional flow of n>1 packets, we use ti and t’i to represent the

arrival and departure times, respectively, of the ith packet Pi of a flow incoming to and

outgoing from some stepping stone.

Assume without loss of generality that the normal processing and queuing delay added by the

stepping stone is a constant c>0, and that the attacker introduces extra delay di to packet Pi at

the stepping stone; then we have t’i =ti+c+di.

We define the arrival inter-packet delay (AIPD) between Pi and Pj as

 ijji ttipd −=, (5.1)

and the departure inter-packet delay (DIPD) between Pi and Pj as

 ijji ttipd ''' , −= (5.2)

We will use IPD to denote either AIPD or DIPD when it is clear in the context. We further

define the impact or perturbation on ipdi,j by the attacker as the difference between ipd’i,j and

ipdi,j: ipd’i,j - ipdi,j = dj-di.

81

Assume D>0 is the maximum delay that the attacker can add to Pi (i=1,…,n), then the impact

or perturbation on ipdi,j is dj-di∈[-D, D]. Accordingly range [-D, D] is called the perturbation

range of the attacker.

To make our method robust against timing attacks, we choose to embed the watermark only

over selected IPDs. The selection of IPDs consists of randomly choosing the set of packets

and random pairing of those chosen packets to get IPDs. The random IPD selection is

unknown to the attacker; it should be difficult for the attacker to detect the existence of,

extract, or corrupt the embedded watermark, without knowing the IPD selection function and

other watermark embedding parameters.

5.3 Embedding One Watermark Bit into One IPD

5.3.1 Basic Watermark Bit Embedding and Decoding

As an IPD is conceptually a continuous value, we will first quantize the IPD before

embedding the watermark bit. Given any IPD ipd>0, we define the quantization of ipd with

uniform quantization step size s>0 as the function

)/(),(sipdroundsipdq = (5.3)

where round(x) is the function that rounds off real number x to its nearest integer (i.e.,

round(x) = i for any x ∈ (i - ½, i + ½]).

Figure 5.1 illustrates the quantization of scalar x. It is easy to see that q(k×s, s) = q(k×s+y, s)

for any integer k and any y∈(-s/2, s/2].

Let ipd denote the original IPD before watermark bit w is embedded, and ipdw denote the IPD

after watermark bit w is embedded. To embed a binary bit w into an IPD, we slightly adjust

that IPD such that the quantization of the adjusted IPD will have w as the remainder when the

Figure 5.1 Quantization of the scalar value x

0 -s -2s 2s 3s -3s s x

0-1-2-3 1 2 3 q(x,s))

82

modulus 2 is taken11.

Given any ipd>0, s>0 and binary bit w, the watermark bit embedding is defined as function

 swssswipdceilingswipde ×−××+= 2)2/)((),,((5.4)

where ceiling(x) is the function that returns the least integer greater than or equal to x.

The embedding of one watermark bit w into scalar ipd is done through increasing ipd to the

least (2k+w)s, so that the quantization of resulting ipdw will have w as the remainder when

modulus 2 is taken. Figure 5.2 illustrates the embedding of watermark bit w by mapping

ranges of unwatermarked ipd to the corresponding watermarked ipdw, which is a step

function.

The watermark bit decoding function is defined as

 2mod),(),(sipdqsipdd ww = (5.5)

The correctness of watermark embedding and decoding is guaranteed by the following

11 We will show later that it is optimal to use modulus 2 and embed the watermark in binary form.

Figure 5.2 Mapping between Unwatermarked ipd and Watermark ipdw

after Embedding Watermark Bit w

ipdw

s

2s

3s

2(k+1)s

2(k+2)s

2s2s
ipd

s (2k+1)s (2k+2)s3s

w=1
w=0

83

theorems.

THEOREM 5.1. For any ipd>0, s>0 and binary bit w, d(e(ipd, w, s), s) = w.

Proof:

Given any ipd>0, we can find unique a≥0 and 0≤b<2s such that ipd+w×s=2a×s+b. Then

we have ceiling((ipd+w×s)/2s)=ceiling((2a×s+b)/2s)=a+1, and e(ipd, w, s)=2(a+1)s−w×s.

Therefore

d(e(ipd, w, s), s)

= q(e(ipd, w, s), s) mod 2

= q(2(a+1)s−w×s, s) mod 2

= round(2(a+1)−w) mod 2

= [2(a+1)−w] mod 2

= [2a+2−w] mod 2

= w

THEOREM 5.2. For any ipd>0, s>0 and binary bit w, 0 ≤ e(ipd, w, s) − ipd < 2s.

Proof:

By definition of function ceiling(x), we have x≤ ceiling(x) <x+1. Then we have

(ipd+w×s)/2s ≤ ceiling((ipd+w×s)/2s) < (ipd+w×s)/2s)+1

Therefore

ipd ≤ ceiling((ipd+w×s)/2s)×2s−w×s < ipd+2s

That is

ipd ≤ e(ipd, w, s) < ipd+2s

Therefore 0 ≤ e(ipd, w, s) − ipd< 2s.

5.3.2 Maximum Tolerable Perturbation, Tolerable Perturbation Range and
Vulnerable Perturbation Range

Given any ipd>0, s>0, we define the maximum tolerable perturbation ∆max of d(ipd, s) as the

upper bound of the perturbation over ipd such that

∀x>0 (x<∆max ⇒ d(ipd±x, s) = d(ipd, s))

and either

84

(d(ipd+∆max, s) ≠ d(ipd, s)

or

d(ipd-∆max, s) ≠ d(ipd, s))

That is, any perturbation smaller than ∆max on ipd will not change d(ipd, s), while a

perturbation of ∆max or greater on ipd may change d(ipd, s).

We define the tolerable perturbation range as the subset of the perturbation range [-D, D]

within which any perturbation on ipd is guaranteed not to change d(ipd, s), and the

vulnerable perturbation range as the perturbation range outside the tolerable perturbation

range.

Given any ipd>0, s>0 and binary watermark bit w, by definition of quantization q in (5.3) and

watermark decoding function d in (5.5), it is easy to see that when x∈(-s/2, s/2]

d(e(ipd, w, s)+x, s) = d(e(ipd, w, s), s)

and

d(e(ipd, w, s)-s/2, s) ≠ d(e(ipd, w, s), s).

This indicates that the maximum tolerable perturbation, the tolerable perturbation range and

the vulnerable perturbation range of d(e(ipd, w, s), s) are s/2, (-s/2, s/2] and (-D, -s/2]∪(s/2,

D), respectively.

In summary, if the perturbation of an IPD is within the tolerable perturbation range (-s/2, s/2],

the embedded watermark bit is guaranteed not to be changed by the timing attack. If the

perturbation of the IPD is outside this range, the embedded watermark bit may be altered by

the attacker. Therefore the larger the value of s (equivalently, the larger the tolerable

perturbation range), the more robust the embedded watermark bit will be. However, a larger

value of s may disturb the timing of the watermarked flow more, as the watermark bit

embedding itself may add up to 2s delay to selected packets.

It is desirable to have a watermark embedding scheme that 1) disturbs the timing of

85

watermarked flows as little as possible, so that the watermark embedding is less noticeable;

and 2) ensures the embedded watermark bit is robust, with high probability, against timing

perturbations that are outside the tolerable perturbation range (-s/2, s/2].

In the following section, we address the case when the maximum delay D>0 added by the

attacker is bigger than the maximum tolerable perturbation s/2. By utilizing redundancy

techniques, we develop a framework that could make the embedded watermark bit robust,

with arbitrarily high probability, against arbitrarily large (and yet bounded) iid random

timing perturbation by the attacker, as long as the flow to be watermarked contains enough

packets.

5.4 Probabilistically Robust Watermarking Over IPD

5.4.1 Embedding Watermark Bit over the Average of Multiple IPDs

We have shown that watermark bit embedded with quantization step size s over any ipd>0

has maximum tolerable perturbation s/2, and the embedded watermark bit is vulnerable to

any delay added by the attacker that is greater than s/2.

To make the embedded watermark bit probabilistically robust against larger random delays

than s/2, the key is to contain and minimize the impact of the random delays on the

watermark-bearing IPDs so that the impact of the random delays will fall, with high

probability, within the tolerable perturbation range (-s/2, s/2].

We exploit the assumptions that: a) the attacker does not know the exact IPD(s) where the

watermark bit(s) will be embedded; and, b) the random delays added by the attacker are

independent and identically distributed (iid).

We apply the following strategies to contain and minimize the impact of random delays over

the watermark-bearing IPDs:

1) Distributing watermark-bearing IPDs over a longer duration of the flow
2) Embedding a watermark bit in the average of multiple IPDs
3) Offsetting the impact of random delays with each other

86

The rationale behind these strategies is as follows. While the attacker may add a large delay

to a single IPD, it is impossible for the attacker to add large delays to all IPDs. In fact,

random delays tend to increase some IPDs and decrease others. Therefore the impact on the

average of multiple IPDs is more likely to be within the tolerable perturbation range (-s/2,

s/2], even when the perturbation range [-D, D] is much larger than (-s/2, s/2].

Instead of embedding a watermark bit in one IPD, we propose to use m≥1 IPDs. The

watermark bit is embedded in the average of the m IPDs (as shown in Figure 5.3). Since one

bit is embedded in m IPDs, we call m the redundancy number.

Let <Pi,k, Pj,k> be the k-th pair (out of m≥1 pairs) of the packets selected to embed the
watermark bit, whose timestamps are ti,k and tj,k respectively. Then we have m IPDs: ipdk=
tj,k- ti,k (k=1, …, m). We represent the average of these m IPDs as

 ∑
=

=
m

k
kavg ipd

m
ipd

1

1 (5.6)

Given a desired ipdavg>0, and the values for s and w, we can embed w into ipdavg by applying

the embedding function defined in (5.4) to ipdavg. Specifically, the timing of the packets Pj,k

tj,k (k=1…m) is modified so that ipdavg is adjusted by e(ipdavg, w, s)−ipdavg. If all ipdk are

known before any packet needs to be delayed, we know what ipdavg is, thus we can easily

adjust each ipdk by delaying each packet Pj,k for e(ipdavg, w, s)−ipdavg. However, during real-

time communication, we see one packet at a time, and we may not be able to buffer any

packet before we need to forward the newly received packet Pj,k. In this case, ipdavg is

Figure 5.3 Embedding/Decoding Watermark Bit over the Average of
Multiple (m) IPDs

. . .

ti,1 ti,m

. . .

tj,m tj,1

ipd1

ipdm

t

m selected IPDs

87

unknown before the last selected packet is seen by the watermark embedder. This makes the

adjustment of Pj,k challenging as the watermark embedder doesn’t know exactly how much

delay needs to be added. Fortunately, the watermark embedder can always adjust the last

selected packet Pj,m to make the final adjustment on ipdavg correct, even if the timing

adjustment on all previous selected packets are not even. The challenge in real-time

watermark embedding is how to delay each packet Pj,k evenly at real-time to achieve the

desired overall adjustment on ipdavg. This is an area of future work.

To decode the watermark bit, we first collect the m IPDs (denoted as w
kipd , k=1…m) from

the same m pairs of chosen packets and compute the average w
avgipd of wipd1 … w

mipd . Then we

can apply the decoding function defined in (5.5) to w
avgipd to decode the watermark bit.

5.4.2 Embedding Multiple Watermark Bits

We have described how to use m≥1 IPDs to embed one watermark bit with the desired

robustness. Embedding this bit requires 2m packets selected (to form m packet pairs), and m

packets delayed appropriately.

An l-bit watermark can be embedded simply by applying the above method l times, to l

sequences of m packet pairs. This is illustrated in Figure 5.4. It is possible to reduce the

number of packets selected from 2lm to (l+1)×m by making the second packet of the kth

(k=1,…m) packet pair chosen for embedding bit i the same as the first packet of the kth packet

pair chosen for embedding bit i+1.

Figure 5.4 Embedding l-bit watermark into l sequences of IPDs

I1,1

I1,m

Il,1

Il,m

...

m

bit 1

. . . t

. . .
bit l

...

m

...

m

...

m

88

The following information about watermark embedding is shared between the watermark

embedder and the decoder, which is assumed to be unknown to the attacker.

1) The random selection of the (l+1)×m packets and random pairing of those (l+1)×m

packets for embedding and decoding the watermark.

2) The redundancy number m.

3) The number of watermark bits l.

4) The quantization step size s.

Without knowing the timing of both watermarked and unwatermarked flows12, it is difficult

for the adversary to find out which packets have been adjusted in timing by watermarking.

Without knowing which packets have been adjusted by watermarking, it is difficult for the

adversary to find out watermarking parameters from watermarked (or unwatermarked) flow

only.

If the adversary has access to the timing of both watermarked and unwatermarked flows,

depending on the characteristics of the natural (i.e. processing, queuing, propagation) delay

on each packet, the adversary could potentially identify those packets whose timing have

been adjusted by watermarking. It is an open problem to establish the computation

complexity for identifying watermarking parameters given the characteristics of natural

timing perturbation and the timing of both unwatermarked and watermarked flows.

5.4.3 Attacker’s Impact Over the Average of Multiple IPDs

Let di,k and dj,k be the random variables that denote the random delays added by the attacker

to packets Pi,k and Pj,k respectively for k=1,…,m. By assumption, di,k and dj,k (k=1,…,m) are

independent and identically distributed. Therefore di,1,…,di,m and dj,1,…,dj,m form two random

samples from the distribution of random delays added by the attacker.

Let Xk=dj,k-di,k be the random variable that denotes the impact of these random delays on ipdk

12 If the flow is watermarked from its source, then the adversary does not see the timing of the original
unwatermarked flow.

89

and mX be the random variable that denotes the overall impact of random delay on ipdavg.

From (5.6) we have

 ∑∑
==

=−=
m

k
k

m

k
kikjm X

m
dd

m
X

11
,,

1)(1 (5.7)

Therefore the impact of the random delay by the attacker over ipdavg equals the sample mean

of X1…Xm.

By the result of the previous section, we know that as long as the overall impact of the

attacker on ipdavg is within the tolerable perturbation range (-s/2, s/2], the watermark bit

embedded in ipdavg is guaranteed to be unchanged by the timing perturbation by the attacker.

We define the probability that the impact of the timing perturbation by the attacker is within

the tolerable perturbation range (-s/2, s/2] as the watermark bit robustness p, which can be

expressed as p = Pr(|| mX < s/2).

Similarly we define the probability that the impact of the timing perturbation by the attacker

is out of the tolerable perturbation range (-s/2, s/2] as the watermark bit vulnerability, which

can be quantitatively expressed as Pr(|| mX ≥ s/2).

Let σ2 be the variance of the random delay added by the attacker. Because the maximum

delay that may be added by the attacker is assumed to be bounded, σ2 is finite.

From the properties of the mean and variance of random variables, we have

0)()()(,, =−= kikjk dEdEXE and 2
,, 2)()()(σ=+= kikjk dVardVarXVar . We further have

0)(=mXE and mXVar m
22)(σ= . This indicates that the probability distribution of mX is

more concentrated around its mean than Xk.

According to the Chebyshev inequality in statistics [28], for any random variable X with

90

finite variance Var(X) and for any t>0, 2)()|)(Pr(| tXVartXEX ≤≥− . This means that the

probability that a random variable deviates from its mean by more than t is bounded by

Var(X)/t2.

By applying the Chebyshev inequality to mX with t=s/2, we have

 228)2|Pr(| mssX m σ≤≥ (5.8)

This means that the probability that the overall impact of iid random delays on ipdavg is

outside the tolerable perturbation range (-s/2, s/2] is bounded. In addition, that probability

can be reduced to be arbitrarily close to 0 by simply increasing m, the number of redundant

IPDs averaged for embedding the watermark.

Inequality (5.8) is a powerful result. Regardless of the mean or the variance of the iid

random delays added by the attacker, or of the maximum quantization delay allowed for

watermark embedding, the robustness of the embedding can be made arbitrarily close to 1 by

increasing the number of redundant IPDs averaged.

5.5 Analysis on the Distribution of Watermark Bit Robustness

In the previous section, we established an upper bound for watermark bit vulnerability

)2|Pr(| sX m ≥ through the Chebyshev inequality. Now we apply the well-known Central

Limit Theorem in statistics[28] to get an accurate approximation to the distribution of the

robustness of embedded watermark bit .

Central Limit Theorem. If the random variables X1, …, Xn form a random sample of size n

from a given distribution X with mean µ and finite variance σ2,then for any fixed number x

)(])(Pr[lim xxXn n

n
Φ=≤

−
∞→ σ

µ
 (5.9)

where ∫ ∞−

−
=Φ

x
u

duex 2

2

2
1)(
π

.

91

The theorem indicates that whenever a random sample of size n is taken from any

distribution with mean µ and finite variance σ2, the sample mean nX will be approximately

normally distributed with mean µ and variance σ2/n, or equivalently the distribution of

random variable σµ)(−nXn will be approximately a standard normal distribution.

Let σ2 denote the variance of the distribution of the random delays added by the attacker,

then we have Var(di,k)=Var(dj,k)=σ2. Applying the Central Limit Theorem to random sample

X1=dj,1−di,1, …, Xm=dj,m−di,m, where Var(Xk)=Var(di,k)−Var(dj,k)=2σ2 and

E(Xk)=E(dj,k)−E(di,k)=0, we have

)(

]
2

Pr[

]
)(

))((Pr[

x

xXm

x
XVar

XEXm

m

i

im

Φ≈

<=

<
−

σ
 (5.10)

Since Φ(x) is symmetric, for x≥0, we have

 1)(2]|
2

Pr[| −Φ≈< xxXm m

σ
 (5.11)

Therefore,

1)
22

(2

]
22

|
2

Pr[|

]
2

|Pr[|

−Φ≈

<=

<=

σ

σσ
ms

msXm

sXp

m

m

 (5.12)

This means that the distribution of the watermark bit robustness is approximately normally

distributed with zero mean and variance 2σ2/m.

For random delay dj,k of range [0, D] (D>0), we call random variable dj,k/D the normalized

random delay whose range is normalized to [0, 1]. Let σu
2 denote the variance of the

normalized random delay dj,k/D, then σu
2=Var(dj,k/D)= Var(dj,k)/D2= (σ/D)2. That is σ =Dσu.

92

Replace σ in equation (5.12) with Dσu, we have

1)

22
(2

]
2

|Pr[|

−×Φ≈

<=

D
sm

sXp

u

m

σ

 (5.13)

This indicates that given any bounded random delay of any particular distribution, the

watermark bit robustness is determined by the square root of redundancy number m and

the ratio between the quantization step and the maximum delay s/D.

Equation (5.12) and (5.13) confirm the result of equation (5.8). Figure 5.5 illustrates how the

distribution of the impact of random timing perturbation by the attacker can be “squeezed”

into the tolerable perturbation range by increasing the number of redundant IPDs averaged.

Equation (5.12) and (5.13) also give us an accurate estimate of the watermark bit robustness.

For example, assume the maximum delay by the attacker is normalized to be 1 time unit, the

random delays added by the attacker are uniformly distributed over [0, 1] (whose variance σ2

is 1/12), s=0.4 units and m=12, then %911)22.1(2]2.0Pr[| 12 ≈−×Φ≈<X . We can expect

the impact of the random delays on the average of those 12 IPDs, with about 91% probability,

Figure 5.5 Probability Distribution of the Impact of Random Delays over
the Average of Multiple (m) IPDs

-D D-s/2 s/2

Tolerable
Perturbance range

Vulnerable
Perturbance

range

Vulnerable
Perturbance

range

m=16k

m=4k

m=k>1 m=1

93

fall within the range [-0.2, 0.2]. Table 5.1 shows the estimation and simulation results of

watermark bit robustness with uniformly distributed random delays over [0, 1], s=0.4 and

various sample values for m. It demonstrates that the Central Limit Theorem can give us a

precise estimate with a sample size as small as m=7.

m 7 8 9 10 11 12
Estimated
Robustness

(%)
80.46 83.32 85.84 87.86 89.58 91.02

Simulated
Robustness

(%)
80.27 83.27 85.68 87.79 89.54 91.02

Table 5.1 Watermark Bit Robustness Estimation and Simulation with

Uniformly Distributed Random Delay over [0, 1], and s=0.4

From equation (5.12) and (5.13), we can also see that it is easier to achieve the same

robustness by increasing s than by increasing m. For example, if s were reduced by a factor

of 2, m would have to be increased by a factor of 4 to maintain the same robustness level.

So far we have been using binary form and modulo 2 to embed watermark digits into IPDs,

we now consider using non-binary form and modulo b (b>2) to embed watermark digits.

Assume the maximum allowed averaged timing adjustment is C>0, the maximum

quantization steps for embedding watermark digits in binary form and non-binary form (with

based b>2) are s2 and sb respectively. Then we have 2×s2=b×sb=C. That is sb=2s2/b.

Assume the entropy (number of binary bits) of the watermark information needs to be

embedded is l2. Let lb denote the minimum number of non-binary digits (of base b>2) needed

to represent l2 binary digits. We have 22log ll bb ×= .

Let m2 and mb denote the redundancy numbers needed to achieve certain watermark bit

robustness in binary form and non-binary form of base b respectively. From equation (5.12)

or (5.13), we have bb msms =22 . Replace sb with 2s2/b, we get mb = b2×m2/4.

94

Therefore, the number of IPDs needed to embed lb digits of base b is

 22
2

2
2

2

2 log4
)

4
()2(log ml

b
bmblml bbb ×=

×
××=×

It is easy to see that 1
log4 2

2

>
b

b for b>2. That means it takes more IPDs to embed same

amount of information in non-binary form than in binary form.

In summary, given any particular maximum timing adjustment allowed for embedding

watermark of certain amount of information, it is optimal to embed watermark in binary form

in terms of minimum number of packets that need to be adjusted.

5.6 Watermark detection, and Analysis of Detection and Collision
Rates

Watermark detection refers to the process of determining if a given watermark is embedded

in the IPDs of a specific connection or flow.

Let the information shared between the watermark embedder and decoder be represented as

<S, m, l, s, wm>, where S is the selection function that returns (l+1)×m packets and the

pairing for l×m IPDs, m≥1 is the number of redundant pairs of packets in which to embed one

watermark bit, l>0 is the length of the watermark in bits, s>0 is the quantization step size,

and wm is the l-bit watermark to be detected. Let f denote the flow to be examined and wmf

denote the decoded l bits from flow f.

The watermark detector works as follows:

1) Decode the l-bit wmf from flow f.

2) Compare the decoded wmf with wm.

3) Report that watermark wm is detected in flow f if the Hamming distance between wmf and

wm, represented as H(wmf, wm), is less than or equal to h, where h is a threshold

parameter determined by the user, and 0≤ h<l.

95

The rationale behind using the Hamming distance rather than requiring an exact match to

detect the presence of wm is to increase the robustness of the watermark detector against

countermeasures by the attacker. Given any quantization step size s, there is always a slight

chance that the embedded watermark bit is corrupted by countermeasures by the attacker no

matter how many redundant pairs of packets are used. Let 0<p<1 be the probability that each

embedded watermark bit will survive the timing perturbation by the attacker. Then the

probability that all l bits survive the timing perturbation by the attacker will be pl. When l is

reasonably large, pl will tend to be small unless p is very close to 1.

By using the Hamming distance h to detect watermark wmf, the expected watermark

detection rate will be

 ∑
=

− −






h

i

iil pp
i
l

0
)1((5.14)

For example, for the values p=0.9102, l=24, h=5, the expected watermark detection rate with

exact bit match would be pl =10.45%. For the same values of p, l, and h, the expected

watermark detection rate using a Hamming distance h=5 would be 98.29%.

It is possible for the watermark detector to mistakenly report a watermark for a flow in which

no watermark has been embedded. It is termed a collision between wm and f if H(wmf,

wm)≤h for an unwatermarked flow f. That is, a collision indicates an unwatermarked flow

happens to exhibit the chosen watermark naturally.

Assuming the l-bit wmf extracted from random flow f is uniformly distributed, then the

expected watermark collision probability between any particular watermark wm and a

random flow f will be

∑
=








h

i

l

i
l

0
)

2
1(

 (5.15)

Figure 5.6 shows the derived probability distribution of the expected watermark detection

and collision rates with l=24 and p=0.9102. Given any watermark bit number l>1 and any

96

watermark bit robustness 0<p<1, the larger the Hamming distance threshold h is, the higher

the expected detection rate will be. However, a larger Hamming distance threshold tends to

increase the collision (false positive) rate of the watermark detection at the same time. An

optimal Hamming distance threshold would be the one that gives a high expected detection

rate, while keeping the false positive rate low.

Given any quantization step size s>0, any desired watermark collision probability Pc>0, and

any desired watermark detection rate 0<Pd<1, we can determine the appropriate Hamming

distance threshold 0<h<l. Assuming that h is chosen such that h < l/2 (we can always make

this true by increasing l to 2h+1), then we have

 l

h
l

h

i

h

i

l lh
h
l

i
l

2
)1()

2
1()

2
1(

00
+≤








≤







 ∑∑
==

 (5.16)

Because 0
2

lim =
→∞ l

h

l

l , we can always make the expected watermark collision probability

∑
=








h

i

l

i
l

0

)
2
1(<Pc by having sufficiently large watermark bit number l. Since

∑
=

− ≥−






h

i

liil ppp
i
l

0

)1(, we can always make the expected detection rate

∑
=

− −






h

i

iil pp
i
l

0
)1(>Pd by having 0<p<1 sufficiently close to 1. From equation (5.8), this

can be accomplished by increasing the redundancy number m.

Figure 5.6 Distribution of Expected Watermark
Detection and Collision

Probability Distribution of Expected
Detection and Collision with l =24, p =0.9102

0.00

0.10

0.20

0.30

0 5 10 15 20 25
Hamming Distance

Pr
ob

ab
ili

ty

Expected Detection

Expected Collision

97

Therefore, in theory, our watermark based correlation scheme can, with arbitrarily small

averaged adjustment of inter-packet timing (for embedding watermark), achieve arbitrarily

close to 100% watermark detection rate and arbitrarily close to 0% watermark collision

probability at the same time against arbitrarily large (and yet bounded) independent and

identically distributed (iid) random timing perturbation of arbitrary distribution, as long as

there are enough packets in the flow to be watermarked.

5.6.1 Limitations

In theory, our watermark correlation is effective and robust against random delays that are

independent and identically distributed (iid) over the set of watermarked packets. For random

delays that are independent but have different distributions over the set of watermarked

packets, the maximum tolerable perturbation s/2 may have to be greater than a specific non-

zero value to achieve an arbitrarily high watermark detection rate and arbitrarily low

watermark collision rate at the same time. This is due to the fact that the random variable Xk

= dj,k-di,k may have a non-zero mean if dj,k and di,k are of different distributions. In addition,

our watermark correlation method may be not as robust against non-independent random

delays. An extreme case would be when the attacker knows exactly which packets have been

delayed and by how much, making it much easier to corrupt the embedded watermark bits.

5.7 Experiment

The goal of the experiments is to answer the following questions about watermark-based

correlation (as well as existing timing-based correlation) in the face of random timing

perturbation by the attacker:

1) How vulnerable are existing (passive) timing-based correlation schemes to random

timing perturbations?

2) How robust is watermark-based correlation against random timing perturbations?

3) How effective is watermark-based correlation in correlating the encrypted flows that are

perturbed in timing?

4) What is the collision (false positive) rate of watermark-based correlation?

5) How well do the models of watermark bit robustness, watermark detection rate and

98

watermark collision rate predict the measured values?

We have used three flow sets, labeled FS1, FS1-Int and FS2 in our experiments. FS1 is

derived from over 49 million packet headers of the Bell Labs-1 Traces of NLANR [52]. It

contains 121 SSH flows that have at least 600 packets and that are at least 300 seconds long.

FS2 contains 1000 telnet flows generated from an empirically-derived distribution [26] of

telnet packet inter-arrival times, using the tcplib [25] tool.

Because SSH flows may contain non-interactive traffic such those of bulk data transfer and X

Window activities, it would be desirable to filter out those non-interactive traffic as much as

possible from the SSH flows to get more accurate evaluation on watermark-based correlation

of interactive flows. We examine the adjacent IPD of those SSH flows in FS1, and filter out

those flows whose adjacent IPDs are too short to be generated by human being. Since it is

very unlikely for human being to type more than 14 keystrokes per second, we choose 70ms

as the threshold to tell whether the adjacent IPD is generated by human typing or not. We

have found 33 out 121 flows in FS1 satisfy the following filtering conditions:

• Have >40% adjacent IPDs shorter than 70ms

• Have >10% 10-consecutive adjacent IPDs all of which are shorter than 70ms

By filtering out those 33 flows from FS1, we got a new flow set FS1-Int.

In principle, the packets selected for watermark embedding should be random in that every

packet in the flow should appear to the adversary equally probable to be used by the

encoding. In our experiments, the packets selected for watermark embedding are uniformly

distributed within a packet range in the flow that enables us to make the adjacent selected

packets at least 3 packets apart13.

5.7.1 Correlation True Positive Experiment

To answer the first three questions, we have conducted the following experiment. First, we

used a passive timing-based correlation method called IPD-Based Correlation [80] to

13 If there are enough packets in the flow, it is desirable to spread selected packets further in the flow.

99

correlate each flow in FS1 with the same flow, after the inter-packet delays of the flow have

been randomly perturbed. If the flow and the perturbed flow are reported correlated, it is

considered a true positive (TP) of the correlation in the presence of timing perturbation.

Second, we embedded a random 24-bit watermark into each flow of FS1, FS1-Int and FS2,

with redundancy number m=12, and quantization step size s=400ms for each watermark bit.

To embed a 24-bit watermark, we evenly selected 300 packets with at least 3 packets apart

from each other in the flows. The embedding of 24-bit watermark requires delaying 288 out

of the 300 selected packets. Figure 5.7 shows the effect of the watermark embedding, and

Figure 5.8 shows the distribution of actual delay over 288 selected packets. They illustrate

that the embedding is far from being obvious. Third, we randomly perturbed the packet

timing of the watermarked flows of FS1, FS1-Int and FS2. It is considered a true positive of

watermark-based correlation if the embedded watermark can be detected from the timing

perturbed watermarked flows, with a Hamming distance threshold h=5. Finally, we

calculated the expected detection rate from equations (5.12) and (5.14) under various

maximum delays of the random timing perturbation.

Each data point in Figure 5.9 shows the average of 100 separate experiments measuring the

true positive rates of IPD-based Correlation on FS1 and watermark-based correlation on FS1,

FS1-Int and FS2. The results clearly indicate that IPD-based correlation is vulnerable to even

moderate random timing perturbation. Without timing perturbation, IPD-based correlation is

Figure 5.7 Comparison of 288 Selected IPDs before and
after Watermark Embedding

Original 288 Selected IPDs

0

5

10

15

20

25

30

0 50 100 150 200 250 300

IPD Number

Se
le

ct
ed

 IP
D

 in
 s

ec
on

d

Watermarked 288 Selected IPDs

0

5

10

15

20

25

30

0 50 100 150 200 250 300

IPD Number

W
at

er
m

ar
ke

d
IP

D
 in

 s
ec

on
d

100

able to successfully correlate 93.4% of the SSH flows of FS1. However, with a maximum

100ms random timing perturbation, the true positive rate of IPD-based correlation drops to

45.5%, and for a 200ms maximum delay, the rate drops to 21.5%.

In contrast, the watermark-based correlation of the flows in FS1, FS1-Int and FS2 is able to

achieve virtually a 100% true positive rate, with up to a maximum 600ms random timing

perturbation. With a maximum 1000ms timing perturbation, the true positive rates of

watermark-based correlation for FS1, FS1-Int and FS2 are 84.2%, 89.85% and 97.32%,

respectively. It can be seen that the measured watermark-based correlation true positive rates

Figure 5.8 Time Adjustment on Selected Packets by
Watermark Embedding

Figure 5.9 Correlation True Positive Rates under Random Timing
Perturbation

Time Adjustment on 288 Selected Packets

0
100
200
300
400

500
600
700
800

0 50 100 150 200 250 300

288 Selected Packets

Ti
m

e
A

du
st

m
en

t i
n

m
s

True Positive Rate Comparison between
IPDCorr and IPDWMCorr with Perturbation

0
10
20
30
40
50
60
70
80
90

100

0 200 400 600 800 1000 1200 1400

Max Uniform Perturbation (ms)

Tr
ue

 P
os

iti
ve

 (%
)

IPDCorr TP
IPDWMCorr (FS1) TP
IPDWMCorr(FS1-Int) TP
IPDWMCorr (FS2) TP
Expected IPDWMCorr TP

101

are well approximated by the estimated values, based on the watermark detection rate model

(equation (5.14)). In particular, the true positive rate measurements of FS2 are almost

identical to the estimated values at all perturbation levels.

5.7.2 Correlation False Positive Experiment

As explained above, there is a non-zero probability that an un-watermarked flow will happen

to exhibit the randomly chosen watermark. This case is considered a correlation collision, or

false positive. According to our correlation collision model (5.15), the collision rate is

determined by the number of watermark bits l and the Hamming distance threshold h.

We therefore experimentally investigated the following, with 24-bit watermarks, for varying

values of the Hamming distance threshold h:

1) Collision rates between a given flow and 10,000~1,000,000 randomly generated 24-bit

watermarks.

2) Collision rates between a given 24-bit watermark and 10,000~1,000,000 randomly

generated (using tcplib) telnet flows.

We also experimentally investigated the following, with Hamming distance threshold h=3,

for varying values of the number of watermark bits l:

1) Collision rates between a given flow and 100,000 randomly generated watermarks of

Figure 5.10 Correlation False Positive (Collision) Rate vs Hamming
Distance Threshold h

False Positive (Collision) Rate between
Random Flows and Watermarks

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

2 3 4 5 6 7 8

Hamming Distance Threshold h

C
ol

lis
io

n
R

at
e

Flow -WM FP
WM-Flow FP
Expected FP

102

various lengths.

2) Collision rates between a given watermark of various lengths and 10,000~1,000,000

randomly generated (using tcplib) telnet flows.

Figure 5.10 shows the correlation false positive (collision) rates with various Hamming

Distance threshold h. Figure 5.11 shows the correlation false positive (collision) rates with

various watermark bit number l. Each data point in Figure 5.10 and figure 5.11 is the average

of measured values of 100 separate experiments.

The measured collision rates and expected values are surprisingly close. This validates our

assumption that the watermark bits decoded from random un-watermarked flows are

uniformly distributed, regardless of the value of the Hamming distance threshold h.

5.7.3 Tradeoffs in Watermark Detection Rate

Equation (5.12) gives us the quantitative tradeoff between the expected watermark bit

robustness and redundancy number m. With a given watermark bit robustness p, equation

(5.14) gives us the tradeoff between expected watermark detection rate and Hamming

distance threshold h and number of watermark bit l.

To verify the validity and accuracy of our models of watermark bit robustness and watermark

Figure 5.11 Correlation False Positive (Collision) Rate vs
Watermark Bit Number l

False Positive (Collision) Rate between
Random Flows and Watermarks

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

18 19 20 21 22 23 24

Watermakr Bit Number l

C
ol

lis
io

n
R

at
e

Flow -WM FP
WM-Flow FP
Expected FP

103

detection rate, we embedded a random 24-bit watermark into each flow in FS1, FS1-Int and

FS2, for different redundancy numbers m=7,8,9,10,11,12, different Hamming distance

thresholds h=2,3,4,5,6,7,8 and different numbers of watermark bit l=18,19,20,21,22,23,24.

The quantization step s was set to 400ms for each watermark bit. Then we perturbed the

watermarked flows with 1000ms maximum random delays. Finally, we measured the

watermark detection rate of the perturbed, watermarked flows.

Figure 5.12 shows, with h=5, l=24 and the various values of the redundancy number m, the

average of 100 experiments for the measured watermark detection rates of FS1 and FS1-Int,

the average of 10 experiments for the measured watermark detection rates of FS2, and the

expected detection rate derived from equations (5.12) and (5.14). The detection rates of FS2

are very close to the expected values, while the detection rates of FS1 are similar to but lower

than the expected values. The detection rates of FS1-Int are in between that of FS1 and FS2.

Figure 5.13 shows, with l=24, m=12 and the various values of Hamming distance threshold h,

the average of 100 experiments for the measured watermark detection rates of FS1 and FS1-

Int, the average of 10 experiments for the measured watermark detection rates of FS2, and

the expected detection rate derived from equations (5.12) and (5.14). The detection rates of

FS2 are very close to the expected values, while the detection rates of FS1 are similar to but

Figure 5.12 Watermark Detection Rate vs Redundancy Number m

Impact of Number of Redundant IPDs over
Watermark Detection Rate

0
10

20
30
40
50

60
70
80

90
100

7 8 9 10 11 12

Numeber of Redudant IPDs m

W
M

 D
et

ec
tio

n
R

at
e

(%
)

FS1 WM Detection Rate
FS1-Int WM Detection Rate
FS2 WM Detection Rate
Expected WM Detection Rate

104

lower than the expected values. The detection rates of FS1-Int are in between that of FS1 and

FS2.

Figure 5.14 shows, with h=3, m=12 and various values of the number of watermark bits l, the

average of 100 experiments for the measured watermark detection rates of FS1 and FS1-Int,

the average of 10 experiments for the measured watermark detection rates of FS2, and the

Figure 5.13 Watermark Detection Rate vs Hamming Distance Threshold
h

Figure 5.14 Watermark Detection Rate vs Watermark Bit Number l

Impact of Hamming Distance Threshold
over Watermark Detection Rate

0
10

20
30

40
50
60

70
80

90
100

2 3 4 5 6 7 8

Hamming Distance Threshold h

W
M

 D
et

ec
tio

n
R

at
e

(%
)

FS1 WM Detection Rate
FS1-Int WM Detection Rate
FS2 WM Detection Rate
Expected WM Detection Rate

Impact of Watermark Bit Number over
Watermark Detection Rate

0
10

20
30

40
50

60
70

80
90

100

18 19 20 21 22 23 24

Watermark Bit Number l

W
M

 D
et

ec
tio

n
R

at
e

(%
)

FS1 WM Detection Rate
FS1-Int WM Detection Rate
FS2 WM Detection Rate
Expected WM Detection Rate

105

expected detection rate derived from equations (5.12) and (5.14). The detection rates of FS2

are very close to the expected values, while the detection rates of FS1 are similar to but lower

than the expected values. The detection rates of FS1-Int are in between that of FS1 and FS2.

These results validate our models of watermark bit robustness and watermark detection rate.

5.7.4 Impact of Non-Independent Timing Perturbation over Watermark-Based
Correlation

It is one of our assumptions that the random delays added by adversary are independent and

identically distributed (iid), and we have validated our analysis model empirically with iid

random timing perturbations. Now we investigate empirically how our watermark-based

correlation works in the presence of some non-independent timing perturbations.

5.7.4.1 Self Similar Timing Perturbation
We investigated how our watermark-based correlation works when the inter-packet timing is

perturbed by the self-similar (where part resembles whole) type of random delays added by

the adversary.

We have used Gleen Kramer’s implementation [42] of Taqqu et al’s [74] self-similar

synthetic traffic generating method to generate bounded self-similar delays for perturbing the

inter-packet delays. In particular, we have used 128 aggregating sources of ON/OFF periods

Figure 5.15 Correlation True Positive Rates under Self-Similar Timing
Perturbation

True Positive Rate Comparison between
IPDCorr and IPDWMCorr with Perturbation

0
10
20
30
40
50
60
70
80
90

100

1200 1400 1600 1800 2000 2200 2400

Max Self-Similar Perturbation (ms)

Tr
ue

 P
os

iti
ve

 R
at

e
(%

)

IPDWMCorr (FS1) TP
IPDWMCorr(FS1-Int) TP
IPDWMCorr (FS2) TP
Expected IPDWMCorr TP

106

to generate self-similar delays in unit of millisecond.

Interestingly, the bounded self-similar traffic appears to have significantly less impact than

the same upper bounded uniformly distributed random delays over the watermark correlation

true positive rate.

Figure 5.15 shows the measured watermark correlation true positive rates under various

bounded self-similar timing perturbation, and expected watermark correlation true positive

rates of uniformly distributed random delays, with h=5; l=24; m=12; s=400ms. It clearly

shows that self-similar perturbation yields much higher watermark correlation true positive

rates than expected true positive rates of uniformly distributed random delay perturbation

under same delay upper bounds (1200ms ~ 2400ms).

We have observed that 1) bounded self-similar delays have substantial portions whose values

are close to each other; 2) most bounded self-similar delays are quite close to the mean.

As self-similar delays with same upper bound appears more clustered close to the mean than

uniformly distributed random delays, self-similar delays must have smaller variance σ2 than

that of uniformly distributed random delays of the same upper bound. From equation (5.12),

it is easy to see that the smaller the σ2 is, the higher the watermark bit robustness is (or

equivalently the higher the watermark detection rate is).

In summary, the experiments show that bounded self-similar perturbation consistently has

less negative impact over watermark correlation true positive rate than the uniformly

distributed random delays of same upper bound.

5.7.5 Embedding and Detecting Multiple Watermarks at the Same Time

Theoretically, multiple watermarks could be embedded and detected without interfering each

other if there is no overlap among the ranges of selected packets for embedding different

watermarks. However, if the range of watermark embedding packets of one watermark has

overlap with the range of watermark embedding packets of some other watermark, the later

107

embedded watermark could potentially corrupt some bits of the earlier embedded watermark.

To study the potentials and the limitations of multiple watermark embedding and decoding,

we first choose 4 different 24-bit watermarks, and then select 4 sets of 300 packets for

embedding the 4 watermarks from ranges of [1, 599], [2, 990], [1, 898] and [300, 1197]

respectively. With redundancy number m=12, quantization step s=400ms, we repeat the

following for 1000 times:

• Randomly generate a flow of 1200 packets (through tcplib)

• Embed watermark #1 into the original flow

• Detect watermark #1 from the flow embedded with watermark #1

• Embed watermark #2 into the flow embedded with watermark #1

• Detect watermark #1 from the flow embedded with watermark #1, #2

• Detect watermark #2 from the flow embedded with watermark #1, #2

• Embed watermark #3 into the flow embedded with watermark #1, #2

• Detect watermark #1 from the flow embedded with watermark #1, #2, #3

• Detect watermark #2 from the flow embedded with watermark #1, #2, #3

• Detect watermark #3 from the flow embedded with watermark #1, #2, #3

• Embed watermark #4 into the flow embedded with watermark #1, #2, #3

• Detect watermark #1 from the flow embedded with watermark #1, #2, #3, #4

• Detect watermark #2 from the flow embedded with watermark #1, #2, #3, #4

• Detect watermark #3 from the flow embedded with watermark #1, #2, #3, #4

• Detect watermark #4 from the flow embedded with watermark #1, #2, #3, #4

 D(WM1) D(WM2) D(WM3) D(WM4)
E(WM1) 100%
E(WM2) 99.10% 100%
E(WM3) 42.80% 56.50% 100%
E(WM4) 28.20% 48.60% 99.10% 100%

Table 5.2 Watermark Detection Rates of Multiple Watermarks Embedded at the Same Time

Table 5.2 shows the detection rates of the 4 watermarks under various conditions. The

108

number at cell (E(WMi), D(WMj)) (i≥j) shows the detection rate of watermark WMj after

WM1, … WMi have been embedded.

From table 5.2 we can see that even through the range of selected packets of watermark #1 is

almost completely within the range of watermark #2, embedded watermark #1 still has a

detection rate over 99% after watermark #2 is embedded. Watermark #3, 2/3 of whose range

of selected packets is within the range of watermark #4, also has a detection rate over 99%

after watermark #4 is embedded. However, the embedding of watermark #3 seems to have

more negative impact over watermark #2 embedded. This can be explained by the fact that

the range of watermark #2 and the range of watermark #3 are almost identical.

This preliminary result suggests that a later embedded watermark could potentially corrupt a

previously embedded watermark – depending on the overlap between the ranges of selected

packets for embedding previous watermark and current watermark. When the overlap is

small, the previously embedded watermark has good chance to survive the embedding of

another watermark. If the overlap between the ranges of selected packet for embedding

different watermarks is significant, the later embedded watermark is likely to degrade the

detection rate of previously embedded watermark.

5.8 Summary

We presented an active timing-based approach to deal with random timing perturbation. By

embedding a watermark into the packet timing, with sufficient redundancy we can correlate

in a way that is probabilistically robust against random timing perturbations. Our

experiments show that watermark-based correlation is substantially more effective than

passive, timing-based correlation in the presence of random timing perturbations.

For independent and identically distributed (iid) random delays added by the attacker, our

model reveals a rather surprising theoretical result on the limits of watermark-based

correlation: the proposed watermark based correlation scheme can, with arbitrarily small

average adjustment of inter-packet timing, achieve arbitrarily close to 100% watermark

detection (true positive) rate and arbitrarily close to 0% collision (false positive) probability

109

at the same time against arbitrarily large (but bounded) independent and identically

distributed (iid) random timing perturbations of arbitrary distribution, as long as there are

enough packets in the flow to be watermarked.

We also developed models of the tradeoff between the watermark detection (or true positive)

rate and watermark collision (or false positive) rate. Our experimental results validate the

accuracy of these tradeoff models. Thus our tradeoff models are of practical value in

optimizing the overall effectiveness of watermark-based correlation in real world situations.

Although our framework assumes the random delays are independent and identically

distributed (iid), we have found experimentally that certain non-iid random delays actually

have less adverse impact over the watermark-based correlation than uniformly distributed iid

random timing perturbation. In particular, we could always select our packets with no

obvious repetitive pattern so that the repetitive timing perturbation would have minimum

impact. For self-similar type of random timing perturbation, we have found that it almost

always has significantly less impact than the uniformly distributed iid timing perturbation.

We have also found that embedding and detecting multiple watermarks at the same time are

possible. In particular, when there is no substantial overlap among the ranges of selected

packets for embedding watermarks, multiple watermarks could be embedded without much

interference. This confirms our speculation that embedding another watermark after one

watermark is embedded is logically the same as the random timing perturbation on the first

embedded watermark, and it is the collision of the ranges of selected packets that determines

the impact over the embedded watermarks.

So far we have focused on how to correlate connections through stepping stones under

various conditions. However, even a perfect correlation solution has a theoretical limit and

there is a gap between the perfect tracing solution and perfect correlation solution. We will

address this gap in next chapter.

110

Chapter 6

The Serialization in Tracing Intrusion Connections
through Stepping Stones

This chapter analyzes the theoretical limits of correlation based solutions to the problem of

tracing of intrusion connections through stepping stones.

Our goal is to understand the limit on the theoretically achievable effectiveness of the perfect

correlation solution, the gap between the perfect stepping stone correlation solution and the

perfect stepping stone tracing solution, as well as what it takes to fill the gap.

6.1 Introduction

As we have shown in the overall tracing problem model in Chapter 2, the overall problem of

tracing intrusion connections through stepping stones can be divided into two sub-problems:

the correlation problem and serialization problem.

Accordingly, a complete solution to the problem of tracing connections through stepping

stones consists of two complementary parts. First, the set of correlated connections that

belongs to the same intrusion connection chain has to be identified; second, those correlated

connections need to be serialized in order to construct the accurate and complete intrusion

connection chain.

However, almost all existing approaches to the tracing problem of intrusion connections

through stepping stones have focused on identifying the set of correlated connections that

belong to the same connection chain and have overlooked the serialization of those correlated

connections. While the correlation of encrypted attack traffic is till a challenging task due to

various active countermeasures used by adversary, there is a limit on the theoretically

achievable effectiveness of even the perfect correlation solution.

111

In this paper, we use set theoretic approach to analyze the theoretical limits of the

correlation-only approach and demonstrate the gap between the perfect correlation solution

and the perfect tracing solution of stepping stones problem. In particular, we identify the

serialization problem and the loop fallacy in tracing connections through stepping stone. We

formally demonstrate that even with perfect correlation solution, which gives us all and only

those connections in the connection chain, it is still not adequate to serialize the complete

intrusion connection chain deterministically. This is due to the lack of order information from

the set of correlated connections. We show that without deterministic connection serialization,

the effectiveness of existing correlation-only approaches for tracing intrusion connections

through stepping stones could be seriously affected by one simple practice of the attacker:

introducing loops by passing some stepping stone more than once. We further demonstrate

that correlated connections, even with loops, could be serialized deterministically without

synchronized clock. We present an efficient serialization method based on adjacent

correlated connection pairs from each stepping stone.

In the rest of this section, we first review the basic concepts of set theory we use, we then use

set theoretic approach to formulate and analyze the overall tracing problem.

6.1.1 Ordinals of Basic Set Theory

For binary relation R on set S, we use Field(R) to denote the set of elements of each ordered

pair in R. That is Field(R)={x: <x,y> ∈ R ∨ <y,x> ∈ R}.

Binary relation R is called

Reflexive: if ∀x∈Field(R) [x R x]

Irreflexive: if ∀x∈Field(R) [¬(x R x)]

Symmetric: if ∀ x, y∈Field(R) [x R y ⇔ y R x]

Anti-symmetric: if ∀ x, y∈Field(R) [x R y ∧ y R x ⇒ x=y]

Transitive: if ∀ x, y, z∈Field(R) [(x R y ∧ y R z) ⇒ x R z]

Linear (connected): if ∀ x, y∈Field(R) [x R y ∨ y R x]

Binary relation R on S is a partial-order if it is 1) reflexive and 2) anti-symmetric and 3)

112

transitive. Partial order R on S is a total-order if it is linear (connected).

Given partial order R on S and A⊆S, if there exists a ∈ A such that ∀x ∈ A [a R x], we say a

is the R-least (or R-minimal) in A. A total order R on S is a well-order on S if every non-

empty subset of S has a R-minimal.

6.1.2 Tracing Problem Formulation

For any particular connection chain <c1, c2, … cn>, there exists unique (equivalence) binary

relation CORR that uniquely determines set {c1, c2, … cn} and unique (well-order) binary

relation ∠ that uniquely determines set <c1, c2, … cn>. Together binary relations CORR and

∠ uniquely determine connection chain <c1, c2, … cn>. Therefore, the overall tracing

problem of connection chain can be divided into the following sub-problems:

1) Correlation Problem:

Given c1 of some unknown connection chain <c1, c2, … cn>, identify set {c1, c2, … cn};

Or equivalently, given any two connections c and c’, determine if c CORR c’.

2) Serialization Problem:

Given unordered set of correlated connections C={c1, c2, … cn}, serialize {c1, c2, … cn}

into an ordered set <c1’, c2’, … cn’> (ci’ ∈ C, i=1, … n) such that ci’ ∠ ci+1’ (i=1, … n-1);

Or equivalently, given any two connections c and c’, determine if c ∠ c’ or c’ ∠ c.

Two observations can be made about the overall tracing problem:

1) The result of the serialization problem is based upon the result of the correlation problem

2) The perfect result of the overall tracing problem consists of the perfect result of the

correlation problem and the perfect result of the serialization problem based upon the

perfect correlation result.

Observation 1) shows the inter-dependency between the correlation problem and the

serialization problem, and it explains why existing works on the overall tracing problem have

113

focused on the correlation problem. Observation 2) reveals that while the solution to the

correlation problem is the very foundation of the solution to the overall tracing problem, it is

not adequate to construct the complete solution to the overall tracing problem. What’s

missing from the correlation-only approach is the serialization of the correlation result.

In the remainder of this Chapter, we identify, analyze this gap and we present an efficient

solution to the serialization problem.

6.2 The Loop Fallacy in Deterministic Serialization of Correlated
Connections

Ideally the complete solution to the problem of tracing intrusion connections through

stepping stones would give the exact order of the intrusion connections that pass the stepping

stones in addition to identifying those correlated connections that belong to the same

connections chain. In case the tracing system has limited tracing area (or scope) and there are

intrusion connections and stepping stones outside the tracing area, the tracing system should

identify the intrusion’s first entry point to the tracing area and point out the right direction

from which the intrusion comes in. As the stepping stones used by intruders could easily be

thousands miles apart and under different jurisdictions, it is critically important to be able

accurately identify intrusion’s first entry point and point out the right direction from which

the intrusion comes in.

Unfortunately, even with perfect correlation solution, which gives all and only those

correlated connections within the observing scope that belong to the same connection chain,

it is still not adequate to deterministically construct the complete intrusion path. In case there

are intrusion connections or stepping stones outside the tracing system, a perfect correlation

solution with limited observing area is not sufficient to find the intrusion’s first entry point or

right direction from which intrusion comes in.

In case the intrusion connection chain passes each stepping stone only once each stepping

stone has only one incoming and outgoing connection, and there is only one way to serialize

those correlated connections to construct the intrusion path as shown in Figure 6.1.

114

However, when the intrusion connection chain passed some stepping stones more than once,

there exists loop or cycle in the intrusion connection chain, and there are more than one ways

to serialize those correlated connections. Figure 6.2 shows an example of intrusion

connection chain with multiple stepping stones, where node 1 is the intrusion target and e1, e2,

e3, e4, e5, e6, e7 are the backward connections from the intrusion target toward the source of

the intrusion. A perfect correlation solution would report that e1, e2, e3, e4, e5, e6, e7 are

correlated and belong to the same intrusion connection chain. Given the knowledge that node

1 is the intrusion target, we know that the intrusion to node 1 comes from node 2 as there is

only one correlated connection e1 from node 1 to node 2. However, node 2 has two outgoing

connections e2 and e5 that are part of same connection chain, and there are multiple ways to

serialize those correlated connections. Furthermore, when some stepping stones are outside

the observing area of the tracing system, loops in the intrusion connection chain could

introduce dilemma in determining the intrusion’s first entry point and the right direction from

which the intrusion comes in. Figure 6.3 shows two such examples. When node 3,4,5 are

Figure 6.1 Loopless Linear Connection Chain

Figure 6.2 The Loop Fallacy in Serializing Correlated Connections

Figure 6.3 Tracing Dilemma with Limited Observing Area

1 2
e1

3
e2

n
en-1…

e7 Source

5

3

4 1 2 e1

e5

e2 e3

e6
e4

Observing Area

1 2 e1

e5

e2

e4

source ?

source ?

e7

5

4 1 2 e1

e5

e2 e3

e6
e4

source ?

source ?
Observing Area

115

outside the observing area of the tracing system, node 2 sees two correlated outgoing

connections e2 and e5. Without additional information, there is no way for node 2 to

determine which connection points to the right direction to the intrusion source. When node 3

is out of the observing area, there are multiple ways to serializing the correlated connections,

which point to different directions to the intrusion source. For example, both serialization <e1,

e2, … e3, e4, e5, e6, e7> and <e1, e5, e6, e7, … e3, e4, e2> are possible, which imply e7 and e2

respectively as the connection pointing to the intrusion source. In this case, a perfect

correlation solution is able to detect all the correlated connections, but it is not even able to

tell whether node 2 or node 4 is the intrusion’s first entry point into the tracing system.

These examples indicate that correlation only approach is a partial solution to the problem of

tracing intrusion connections through stepping stones. What is missing from the correlation

only solution is the serialization of those correlated connections. It is this phenomenon – that

people in general do not take the potential loops or cycles of intrusion connection chain into

account when intuitively solving the tracing problem with correlation only approaches – that

is named “the loop fallacy” in tracing intrusion connections through stepping stones.

6.3 Deterministic Serialization of Correlated Connections

We have shown in previous section, the set of correlated connections itself is not adequate to

serialize those correlated connections deterministically. In order to deterministically serialize

correlated connections, some additional information on the correlated connection is needed.

One possible way to serialize correlated connection is use globally synchronized time-stamp

to determine the relative order of correlated connections. However, collecting precisely

synchronized timestamp on all connections across the internet is difficult due to the

following reasons: 1) not all the hosts on the internet have precise clock synchronization; 2)

dynamic network delay (which may cause out-of-order delivery) complicates distributed

timestamping; 3) distributed clock synchronization is also subject to malicious attacks.

Another way to serialize correlated connections is based on adjacency or causal relationship

of those correlated connections. Compared with timestamp based approach, adjacency based

116

approach does not require any global clock synchronization at all and is robust against

network delay jitters.

In this section, we focus on solving the problem of deterministic serialization of correlated

connections without global clock synchronization. We use set theoretic approach to formally

establish that while the set of correlated connection itself is not adequate to serialize those

correlated connections, the set of adjacent correlated connection pairs of each stepping stone

is sufficient to serialize those correlated connection deterministically even if there is loops

with the connection chain.

Given a set of correlated connections C, it can be thought as a set of edges of a directed graph

DG such that DG=<V, E>, V={x: ∃ <x, y> ∈ C ∨ ∃ <y, x> ∈ C} and E=C. We assume that

there is no self-loop edge in DG, that is ∀<u, v>∈E [u≠v]. Therefore, the serialization of

elements of C can be represented by the ordering of elements of either V or E.

We use u→v to represent that there is directed path from u to v. and we define DG to be one-

way connected if: ∀u, v∈V [∃ u→v ∨ ∃v→u], and DG to be edge one-way connected if: ∀<u1,

v1>, <u2, v2>∈E [v1→u2 ∨ v2→u1].

One necessary condition for the serialization of correlated connections to be correct is that

the ordering of the correlated connections maintains the one-way connectivity of the edges

and end-points of correlated connections.

6.3.1 Point Connectivity and Serialization Based on Point Adjacency

We first consider serialization of correlated connections based on point adjacency property of

those correlated connections.

We define Point-Adjacency (P-Adj) on V as the binary relation {<u, v>: <u, v> ∈ E}. It is

easy to see that P-Adj is irreflexive and it models the adjacency relation among the elements

of V.

117

We define Point Connectivity (PC) as the binary relation on V, such that

1) ∀<u, v> ∈ E [u PC v]

2) ∀u, v, w ∈ V [(u PC v ∧ v PC w) ⇒ u PC w]

Therefore binary relation PC is the transitive-closure of P-Adj. Here we use <PC to represent

PC. If there exists some v ∈ V, such that ∀ u ∈ V [u≠v ⇒ v <PC u], we define such an

element v as PC-minimal on V.

From the definitions, it is easy to see that given a DG, there is only one P-Adj and <PC

defined on V.

Here binary relation <PC formally models the directed connectivity among the vertices in V

and u <PC v iff there exists a path from u to v.

THEOREM 6.1: the necessary and sufficient conditions for <PC to be well-order on V are:

1) DG=<V, E> is one-way connected

2) DG has no directed cycles

PROOF:

Sufficiency:

Given that DG has no directed cycles, <PC is anti-symmetric: ∀u, v∈V [u <PC v ⇒ ¬ (v

<PC u)]. Because DG is one-way connected, <PC is transitive. Therefore <PC is a partial

order on V.

Given DG is one-way connected, ∀u, v ∈ V (u≠v), there exist a directed path either u→v

or v→u. We have either u <PC v or v <PC u. Therefore, <PC is a total-order on V.

Assume <PC is not a well-order on V, then there exist a non-empty set of vertices V’⊆ V

such that V’ does not have PC-minimal. That is ∀v∈V’, ∃u∈V’ such that u <PC v. We list

elements of V’, starting from ∀v1∈V’, and adding vi+1∈V’ to the left of vi∈V’ if vi+1 <PC

118

vi and vi+1∉{vi , vi-1 … v1} as following:

vn … vi+1 vi … v2 v1

Because V’ is finite, the above list is also finite. Assume the left-most element of above

list is vn, we have vi (1≤i<n) such that vi <PC vn, therefore <vi, vn, … vi> forms a directed

cycle in G. This contradicts condition 2). Therefore <PC well-orders V.

Necessity:

1) Because <PC is well-order on V, it is total-order on V. ∀u, v ∈ V (u≠v), we have

either u <PC v or v <PC u. Then there exist a path either u→v or v→u. Therefore DG is

one-way connected.

2) Assume DG has directed cycle of n>1 vertices: vn … v2 v1, consider non-empty subset

of V { vn … v2 v1}, there is no PC-minimal in that set. This contradicts the

prerequisite that <PC well-orders V. Therefore DG has no directed cycle.

Because an intrusion connection chain may pass a particular stepping stone more than once,

which introduces directed cycles in the connection chain, the serialization of end points of

correlated connections based on point adjacency is not deterministic.

6.3.2 Edge Connectivity and Serialization Based on Edge Adjacency

We now consider serialization of correlated connections based on edge adjacency relation

among those correlated connections. For any connection c between two hosts, we use Start(c)

to denote the origination host of c and we use End(c) to denote the termination host of c.

We define Edge-Adjacency (E-Adj) on E as the binary relation: {<<u, v>, <v, w>>: <u, v>,

<v, w> ∈ E}. It is easy to see that E-Adj is irreflexive and it models the adjacency relation

among the elements of E.

We define Edge Connectivity (EC) as the binary relation on E, such that

1) ∀ei, ej ∈ E [End(ei)=Start(ej)⇒ ei EC ej]

2) ∀ ei, ej, ek ∈ E [(ei EC ej ∧ ej EC ek) ⇒ ei EC ek]

119

Therefore binary relation EC is the transitive-closure of E-Adj. Here we use <EC to represent

EC. If there exists some e ∈ E, such that ∀ ei ∈ E [ei ≠ e ⇒ ei <EC e], we define ei as EC-

minimal on E.

From the definitions, it is easy to see that given a DG, there is only one E-Adj and <EC

defined on E.

Binary relation <EC also models the directed connectivity among vertices of V and <u1, v1>

<EC <u2, v2> iff there exists a path from v1 to u2.

THEOREM 6.2: the necessary and sufficient conditions for <EC to be well-order on E are:

1) DG=<V, E> is one-way connected

2) DG has no directed cycles

3) DG has no out-branch: ∀v∈V (v has at most single successor)

PROOF:

Sufficiency:

Given ∀<u1, v1>, <u2, v2>∈E and <u1, v1>≠<u2, v2>, we have u1≠u2 because of 3).

Assume v1=v2. Consider u1, u2∈V, because of 1), there exists path: u1→ u2. Because of 3)

we have v1→ u2, that is v2→ u2. Then we have a cycle <v2, u2, v2>, and it contradicts

condition 2). Therefore v1≠v2.

Assume v1→ u2, because of condition 2), there is no path from u2 to v1 (otherwise we

have a loop). Because of condition 3), no path from u2 to v1 means no path from v2 to u1.

That is ∀<u1, v1>, <u2, v2>∈E [<u1, v1> <EC <u2, v2> ⇒ ¬ (<u2, v2> <EC <u1, v1>)].

Therefore, <EC is a partial order on E.

Assume there is neither path from v1 to u2 nor path from v2 to u1. Because of 1), we have

u2→ v1 and u1→ v2. Because of 3), we have v2→ v1 and v1→ v2. That forms a cycle,

which contradicts condition 2). Therefore there is either v1→ u2 or v2→ u1. That is

120

equivalent to either <u1, v1> <EC <u2, v2> or <u2, v2> <EC <u1, v1>. Therefore <EC is a

total-order on E.

Assume <EC is not well-order on E, then there exist a non-empty set E’⊆E such that there

is no EC-minimal on E’. That is ∀<u1, v1>∈E’, ∃<u2, v2>∈E’ such that <u2, v2> <EC <u1,

v1>. We list elements E’, starting from ∀<u1, v1>∈E’, and adding <ui+1, vi+1>∈E’ to the

left of <ui, vi>∈E’ if <ui+1, vi+1> <EC <ui, vi> and <ui+1, vi+1> ∉{<ui, vi> , <ui-1, vi-1> … <u1,

v1>} as following:

<un, vn> … <ui+1, vi+1> <ui, vi> … <u2, v2> <u1, v1>

Because E’ is finite, the above list is also finite. Assume the left-most element of above

list is <un, vn>, we have <ui, vi> (1≤i<n) such that <ui, vi> <EC <un, vn>, therefore <<ui, vi>,

<un, vn>, … <ui, vi>> forms a directed cycle in DG. This contradicts condition 2).

Therefore <EC well-orders E.

Necessity:

1) ∀u, v ∈ V (u≠v), there exist e1, e2∈ E (e1≠e2) such that u is endpoint of e1 and v is

endpoint of e2. Without losing generality, we assume e1=<u, x> and e2=<v, y>.

Because EC well-orders E, it total-orders E. Therefore e1 <EC e2 or e2 <EC e1. There

exists path either from u to v or from v to u in G.

2) Assume G has directed cycle of n >1 edges: <v1, v2>, <v2, v3> , … <vn, v1>, consider

non-empty subset of E {<v1, v2>, <v2, v3> , … <vn, v1>}, there is no PDEC-minimal

in that set. This contradicts with the prerequisite that <EC well-orders E. Therefore DG

has no directed cycles.

3) Assume DG has out-branch: ∃<u, x>, <u, y>∈E (x≠y). Because <EC well-orders E, we

have either <u, x> <EC <u, y> or <u, y> <EC <u, x>. Without losing generality, we

assume <u, x> <EC <u, y>, then there exist path x→ u. {x, … u, x} forms a cycle,

which contradicts the necessary condition 2) just proved. Therefore DG has no out-

branch: ∀v∈V (v has single successor).

Please be noted that given DG=<V,E>, in order for <EC to well-orders E, DG must have no

out-branch, which is not required for <PC to well-order V. Figure 6.4 shows such an example,

121

where <PC well-orders {1,2,3,4} and <EC is not even a total-order on E as <2,3> and <2,4>

have no relative order.

Because no directed cycles is a necessary condition for <EC to be well-order on E, the

serialization of correlated connections based on edge adjacency is not deterministic either.

Figure 6.5 shows an example of serialization of connections based on edge adjacency, both

edge serializations: <<1,2>,<2,3>,<3,4>,<4,2>,<2,4>,<4,5>> and

<<1,2>,<2,4>,<4,2>,<2,3>,<3,4>,<4,5>> satisfy <EC.

6.3.3 Serialization Based on Adjacent Connection Pairs

We have demonstrated that the ordering of correlated connections based on either point or

edge adjacency is not always deterministic and unique. When the intrusion connection chain

Figure 6.4 Point Connectivity <PC and Edge Connectivity <EC

Figure 6.5 Edge Serialization Based on Edge Connectivity <EC

<3,4>

<1,2>

<2,3><2,4>

Edge ordering based on <EC

<EC on DG is partial-order on
{<1,2>, <2,3>, <3,4>, <2,4>}

<PC on DG is well-
order on {1, 2, 3, 4}

4

2 1

3
DG

<1,2>

<2,4>

<4,2> <2,3>

<3,4>

<4,5>

Edge ordering based on <EC

e3

e6

e5

e2

e4
e1

1

2 3

4
5

DG

<EC on DG is not well-order on {e1, e2, e3, e4, e5, e6}:
both edge serializations:

<<1,2>,<2,3>,<3,4>,<4,2>,<2,4>,<4,5>> and
<<1,2>,<2,4>,<4,2>,<2,3>,<3,4>,<4,5>> satisfy <EC

122

has loops or cycles, there are multiple ways to serialize those correlated connections while

keeping the connectivity. This dilemma is due to the fact that there could be more than two

connections adjacent to each other through one vertex and the set of correlated connections

gives no clue about how to pair match those incoming connections with outgoing connection.

As shown in Figure 6.6, a stepping stone may have multiple incoming connections and

outgoing connections correlated. To serialize multiple correlated incoming and outgoing

connections deterministically, we need information about how the incoming connections and

outgoing connections to and from a stepping stone are pair matched. This is modeled by the

concept of adjacent connection pair.

Given a connection chain <c1, c2, … cn> on host list <H1, H2, … Hn+1>, where connection ci

is from Hi to Hi+1, we define < ci, ci+1> (i=1,2, … n-1) as the adjacent connection pair on host

Hi+1. Please note that all Hi’s (1≤i≤n+1) are not necessarily distinct, but all ci’s (1≤i≤n) are

always distinct. Even if both ci and cj (1≤i,j≤n and i≠j) could start from the same host Hi=Hj

to the same host Hi+1=Hj+1, connections ci and cj are still different based on their setup time.

Therefore, the adjacent connection pair carries the relative order information about two

adjacent connections on a particular vertex, and < ci, ci+1> means connection ci happens right

before connection ci+1. We use PE-Adj to represent the set of adjacent connection pairs. By

definition, PE-Adj is anti-symmetric and irreflexive.

Given a set of adjacent connection pairs PE-Adj, we can construct the set of connection

EPE-Adj={e: ∃<e, ei>∈PE-Adj ∨ ∃<ej, e>∈PE-Adj}

and the set of vertices

 VPE-Adj={ v:∃< ei, ej>∈PE-Adj [v=Start(ei) ∨ v=End(ei) ∨ v=End(ej)] }

and the directed graph DG=<VPE-Adj , EPE-Adj>. Therefore PE-Adj is binary relation on EPE-Adj

Figure 6.6 m Incoming Connections Adjacent to n Outgoing Connections

v

…

…
 m n

123

and PE-Adj ⊆ E-Adj on EPE-Adj.

We define binary relation Paired Edge Connectivity (PEC) on EPE-Adj, such that

1) ∀<ei, ej> ∈ PE-Adj [ei PEC ej]

2) ∀ ei, ej, ek ∈ EPE-Adj [(ei PEC ej ∧ ej PEC ek) ⇒ ei PEC ek]

By definition of PEC, ei PEC ej means ei happens before ej. Therefore binary relation PEC is

anti-symmetric. Because of PEC is also transitive, PEC is a partial order. Here we use <PEC to

represent PEC. If there exists <u1, v1> ∈ E, such that ∀ <u2, v2> ∈ E [<u1, v1> ≠ <u2, v2> ⇒

<u1, v1> <PEC <u2, v2>], we define <u1, v1> as PEC-minimal on E.

To utilize result of Theorem 6.1, we transform the directed graph DG into another directed

graph. In specific, element of PE-Adj <ei, ej>, can also be thought as a directed edge whose

endpoints (tail and head) are ei and ej. By mapping edges in DG into vertices and mapping

element of PE-Adj, <ei, ej> into edges, another directed graph can be deterministically

constructed.

We define the paired line graph of DG, written as PL(DG), as the directed graph whose

vertices are the edges of DG, and whose edges are <ei, ej>∈PE-Adj. That is, the edges in DG

correspond to vertices in PL(DG), and adjacent connection pairs in DG corresponds to edges

in PL(DG).

Therefore V(PL(DG)) ≡ E(DG) ≡ EPE-Adj, PE-Adj on DG corresponds to P-Adj on PL(DG)

and <PEC on DG corresponds to <PC on PL(DG).

We further define reachable set of a particular edge e∈EPE-Adj as RSPE-Adj(e)={ei: e <PEC ei}.

PE-Adj is edge one-way connected iff ∀ei, ej∈ EPE-Adj (ei <PEC ei ∨ ei <PEC ei). PE-Adj is loop

less iff ∀e∈ EPE-Adj [e ∉ RSPE-Adj(e)].

We say PE-Adj is loop less if any connection within the set of adjacent connection pair will

not reach itself through the adjacent connection pairs. Because <PEC is known anti-symmetric,

124

PE-Adj is loopless.

THEOREM 6.3: If PE-Adj is edge one-way connected and loop less, <PEC well-orders EPE-

Adj.

PROOF:

Because PE-Adj is edge one-way connected, <PEC total-orders EPE-Adj.

Assume DG=< VPE-Adj, EPE-Adj>, consider the paired line graph of DG: PL(DG)=<V, E>,

where V=EPE-Adj and E=PE-Adj. <PEC total-orders EPE-Adj corresponds to <PC on V total-

orders V. Therefore PL(DG) is one-way connected.

Because PE-Adj is loop less, ∀v∈V, it won’t reach v again in PL(DG). That is PL(DG)

has no directed cycle.

Apply theorem 6.1, <PC well-orders V on PL(DG), which corresponds to <PEC well-orders

EPE-Adj.

For any ei≠ei ∈ EPE-Adj, ei and ei are part of some connection chain14. Assume without loosing

generality that ei happens before ei, and the segment between ei and ej in the connection chain

is: ei ei+1 … ei+k ei. If PE-Adj contains all the adjacent connection pairs of the connection

chain, < ei+j, ei+j+1 > ∈PE-Adj (0≤j≤k-1) and < ei+k, ej > ∈PE-Adj, that is ei <PEC ej. Similarly,

if ej happens before ei, ej <PEC ei. Therefore, if PE-Adj contains all the adjacent connection

pairs from every stepping stone along the connection chain, PE-Adj is edge one-way

connected.

Therefore, the complete and accurate intrusion connection chain can be constructed

deterministically from the complete set of adjacent correlated connection pairs, even if there

are loops within the connection chain. Figure 6.7 illustrate an example of the deterministic

serialization of correlated connections from the set of adjacent correlated connection pairs. In

14 Since we assume we have a perfect correlation solution that gives us all and only those connections in a
connection chain.

125

specific, the left graph in Figure 6.7 shows the complete correlated connection chain across

all stepping stones; the middle graph shows complete set of adjacent connection pairs PE-Adj

and the edge serialization based on PE-Adj; the right graph shows the corresponding point

serialization on PL(DG) based on P-Adj.

6.3.4 Finding Adjacent Correlated Connection Pairs

We have established that the complete set of correlated connections can be serialized

deterministically based on the complete set of adjacent correlated connections pairs. Now we

consider how to find the adjacent correlated connection pairs

We say that the set of adjacent correlated connection pairs is with regard to (wrt) connection

c if c is correlated with all connections that form the adjacent correlated connection pairs.

The complete set of adjacent correlated connection pairs (with regard to connection c) is the

union of all subset collected at each stepping stone.

The subset of adjacent correlated connections pairs at each stepping stone can be constructed

based on the connection initial arrival or departure time by the following algorithm:

1) For each new incoming (or outgoing) connection Ii (or Oi) that is not self-loop, record Ii

Figure 6.7 Edge Serialization Based on Adjacent Connection Pair PE-Adj

e3

e6

e5

e2

e4
e1

1

2 3

4
5

DG

31 2

e1 e2

42 3

e2 e3

23 4

e3 e4

44 2

e4 e5

52 4

e5 e6

31 2

e1 e2
24

e3 e4
54

e5 e6

Edge serialization based on PE-Adj Point serialization based on P-Adj

e1 e2 e3 e4 e5 e6

e1 e2

e3 e4

e4 e5

e2 e3

e5 e6

126

(or Oi) into queue Q: x1, x2, …xi-1, where xj (1≤ j ≤ i-1)could be either incoming or

outgoing connection.

2) Using correlation approach to find those, if any, connections that are correlated with c,

from all the connections recorded in Q.

3) Extract those correlated connections, in sequence, from Q into correlation queue Qc.

4) Assume Qc has c1, c2, …cm, if c1 is incoming connection, the subset of correlated

connection pairs is {< c1, c2 >, < c3, c4 >, … < c2×m/2-1, c2×m/2 >}; if c1 is outgoing

connection, the subset of adjacent correlated connection pairs is {< c2, c3 >, < c4, c5 >, …

< c2×(m-1)/2, c2×(m-1)/2+1>}.

The correctness of the algorithm is guaranteed by the following property of Qc = c1, c2, …cm :

if ci is incoming connection, then ci+1 is outgoing connection; if ci is outgoing connection,

then ci+1 is incoming connection.

Therefore, in order to construct the set of adjacent correlated connection pairs, we just need

to record the start of all the incoming and outgoing correlated connection at each stepping

stone in sequence, from which we can construct the subset of adjacent correlated connection

pairs of that stepping stone. Then we can construct the whole set of adjacent correlated

connection pairs by union of all the subsets collected at each stepping stone regarding to the

same correlation.

For example, assume the sequence of the backward traffic from the attack target to the attack

source showed in Figure 6.7 is <e1, e2, e3, e4, e5, e6>. By the applying the first three steps of

the algorithm described above, node 2 will have its Qc = e1, e2, e4, e5, node 3 will have its Qc

= e2, e3, and node 4 will have its Qc = e3, e4, e5, e6. After step 4, node 2 will have set of

correlated connection pairs: {<e1, e2>, <e4, e5>}, node 3 will have set correlated connection

pairs: {<e2, e3>}, and node 4 will have set correlated connection pairs: {<e3, e4>, <e5, e6>}.

Therefore, the complete set of the adjacent correlated connection pairs is {<e1, e2>, <e2, e3>,

<e3, e4>, <e4, e5>, <e5, e6>}.

127

6.4 Summary

In this paper, we used set theoretic approach to investigate the gap between the perfect

stepping stone correlation solution and perfect stepping stone tracing solution. We first

identified the largely overlooked serialization problem and the loop fallacy in tracing

intrusion connections though stepping stones. Existing approaches to the tracing problem of

stepping stones have focused on correlation only and have left the serialization of correlated

connections as an afterthought. We demonstrated that even the perfect correlation solution,

which gives all and only those correlated connections, is not sufficient to construct the

complete intrusion path deterministically, when there is loop in the intrusion connection

chain. We further showed that the complete intrusion path can be constructed

deterministically from the set of correlated connection pairs, no matter whether there is any

loop in the connection chain or not. We presented an efficient algorithm to construct the set

of correlated connection pairs and effective method to serialize correlated connections

without global clock synchronization.

The solution of serialization is based upon the correlation result, and the correlation of

connections through stepping stones is still a challenging and ongoing research task. Our

serialization solution helps to increase the effectiveness of existing correlation result. We

view our results as complementary to existing correlation approaches in solving the overall

problem of tracing intrusion connections through stepping stones.

128

Chapter 7

Conclusions and Future Work

We conclude this dissertation with a summary of our research contributions and directions

for future work.

7.1 Summary

This dissertation addresses the tracing and correlation problem of intrusion connections

through stepping stones under various settings. We first identify a number of

countermeasures the adversary could use to disguise his/her intrusion connections from being

traced across stepping stones, and identify the theoretical limits of correlation only approach

in tracing intrusion connections through stepping stones. We analyze the problems posed by

the first 4 countermeasures and we design, implement and evaluate a number of solutions to

the correlation and tracing problems under these countermeasure settings.

Our major research contributions are:

• We are the first to demonstrate that single packet tracing of unencrypted intrusion

connections across stepping stones is feasible

• We are the first to demonstrate that tracing and correlating idle intrusion connections is

feasible

• We have developed an efficient and effective method to correlate encrypted connections

observed from different point of network

• We are the first to reveal that it is indeed possible to correlate sufficiently long, encrypted

connections that are perturbed by arbitrary large iid random timing perturbation of

arbitrary distribution.

• We are the first to reveal that it is possible to achieve arbitrarily close to 100% true

positive rate and arbitrarily close to 0 false positive at the same time in correlating

sufficiently long encrypted flows, even under arbitrarily large iid random timing

perturbation of arbitrary distribution.

129

• We have identified accurate quantitative tradeoff between the achievable correlation

effectiveness and the defining characteristics of the iid random timing perturbation. The

achievable tradeoff is a more fundamental measure of the effectiveness of correlation

solutions and the inherent difficulty of the correlation problem. It is not only of

significant practical importance in optimizing the overall correlation effectiveness under

various settings but also useful for evaluating and comparing other solutions as well as

providing insight for designing new solutions.

• We have identified the gap between the perfect tracing solution and correlation solution

of stepping stone problem and we have shown what it takes to fill the gap. Our

serialization solution complements all existing correlation solutions and helps to increase

their effectiveness.

• We have demonstrated that active approach, information hiding and redundant techniques

can be used to build highly effective and robust intrusion connection correlation scheme.

7.1.1 Tracing and Correlation of Unencrypted Connections across Stepping
Stones

Our first contribution is a highly effective and efficient correlation and tracing solution for

tracing unencrypted intrusion connections across stepping stones, which is robust against the

following countermeasures: 1) host login information disguise, deletion and forgery; 2)

timing perturbation; 3) flow level traffic padding; 4) packet drop and retransmission; and 5)

packet reorder. By applying principles of steganography and active networking, we develop a

content based tracing and correlation framework: Sleepy Watermark Tracing (SWT). SWT

exploits two properties of the connections across stepping stones: 1) the essence of

application level content is invariant across stepping stones; 2) interactive intrusion

connections across stepping stones are bidirectional and symmetric at the granularity of

connection. Unlike other tracing and correlation approaches [40,65,69], SWT is “sleepy” in

that it does not introduce overhead when no intrusion is detected, yet it is “active” in that

when an intrusion is detected, the intrusion target “injects” carefully designed watermark into

the backward response traffic of the intrusion connection. SWT traces and correlates

intrusion connections based on the injected watermarks in their application content rather

than host login activities. All previous tracing and correlation approaches require that the

130

intrusion connection not be idle and need multiple packets to correlate, but SWT is able to

trace through the intrusion connection chain across all stepping stones within a single

keystroke of the intruder. With its unique active tracing, SWT is able to trace through all the

stepping stones even when the intrusion connection is idle.

7.1.2 Correlation of Encrypted Connections across Stepping Stones

Our second contribution is an effective Inter-Packet Delay based correlation approach for

tracing encrypted connections across stepping stones, which is robust against the following

countermeasures: 1) host login information disguise, deletion and forgery; and 2) connection

content transformation. In theory, connection transforms such as payload encryption,

compression and padding should not change the inter-packet timing characteristics. We have

found that after some filtering, IPDs (Inter-Packet Delay) of both encrypted and unencrypted,

interactive connections are largely preserved across many router hops and stepping-stones.

We proposed and investigated four correlation point functions. Compared with the method

of Zhang and Paxson [90], our correlation metric does not require clock synchronization, and

allows correlation of measurements taken at widely scattered points. Our method also

requires only small packet sequences (on the order of a few dozen packets) for correlation

purposes. We have demonstrated that both encrypted and unencrypted interactive

connections can be effectively correlated and differentiated based on IPD characteristics.

Our experiments also indicate that correlation detection is significantly dependent on the

uniqueness of flows. We have found that normal interactive connections such as telnet, SSH

and rlogin are almost always unique enough to be differentiated from connections not in the

same chain.

7.1.3 Robust Correlation of Encrypted Connections against Active Timing
Perturbation

Our third contribution is the development of robust correlation of encrypted connections

though stepping stones against active timing perturbation by theadversary, as well as the

identification of the inherent limitation of the negative impact of iid random timing

perturbation over timing based correlation.

131

To counteract the adverse impact of active timing perturbation over encrypted connections

through stepping stones, we develop inter-packet delay based watermark correlation that is

designed to be robust against random timing perturbation by adversary. The key idea is to

actively embed some unique watermark into the flow by slightly adjusting the timing of

selected packets in the flow and to use redundancy techniques to make the embedded

watermark robust. If the embedded watermark is unique enough and robust enough against

the timing perturbation by adversary, the watermarked flow could be uniquely identified and

thus effectively correlated. By utilizing redundancy techniques, we develop a robust

watermark correlation framework that reveals a rather surprising result on the inherent limits

of independent and identically distributed (iid) random timing perturbations over sufficiently

long flows. First, we demonstrate that a previously-proposed passive, timing-based

correlation scheme [80] is vulnerable to random timing perturbation. Second, we demonstrate

that our watermark-based correlation scheme is much more robust than existing passive

timing-based correlation against random timing perturbations. Our experimental results show

that the new method consistently has a higher detection (true positive) rate, no matter

whether there is random timing perturbation or not. Third, we have developed a robust

correlation framework for which the following property can be proved: our watermark-based

correlation scheme can achieve a detection (true positive) rate arbitrarily close to 100%, and

a watermark collision (false positive) rate arbitrarily close to 0 at the same time, for an

arbitrarily large (but bounded) independent and identically distributed (iid) random timing

perturbation of arbitrary distribution, with arbitrarily small adjustment of inter-packet timing,

as long as there are enough packets in the flow to be watermarked. Lastly, we identify

accurate models of the tradeoffs between the desired watermark correlation true positive rate

(and false positive rate) and the watermark embedding parameters, as well as the defining

characteristics of the random timing perturbation. The quantitative expression of the tradeoffs

is of significant practical importance in optimizing the overall correlation effectiveness under

a range of conditions.

7.1.4 Deterministic Serialization in Tracing Intrusion Connections through
Stepping Stones

Our fourth contribution is the identification of the largely overlooked limitation of

correlation-only approaches in tracing connections across stepping stones and the solution to

132

bridge the gap between the perfect correlation solution and the perfect tracing solution.

We use a set theoretic approach to analyze the theoretical limits of the correlation-only

approach and demonstrate the gap between the perfect correlation-only approach and the

perfect solution to the tracing problem of stepping stones. In particular, we identify the

serialization problem and the loop fallacy in tracing connections through stepping stones. We

formally demonstrate that even with a perfect correlation solution, which gives us all and

only those connections that belong to the same connection chain, it is still not adequate to

serialize the correlated connections in order to construct the complete intrusion path

deterministically. We further show that correlated connections, even with loops, could be

serialized deterministically without synchronized clock. We present an efficient intrusion

path construction method based on adjacent correlated connection pairs.

7.1.5 General Principles and Lessons

In addition to solving specific problems that arise from various countermeasures, we also

derive a set of general principles and lessons to the effective and robust correlation and

tracing of intrusion connections. These include:

• Active approach: Traditional tracing and correlation approaches are passive in that they

passively monitor and examine the intrusion connections. One fundamental limitation of

such passive approaches is that they can correlate or trace only when there is traffic in the

intrusion connection. Therefore, passive correlation and tracing approaches are

vulnerable to deliberate silence by intruders when correlating and tracing intrusion

connections. In our work, we apply an active approach in designing our tracing and

correlation scheme, such that the intrusion target could actively generate the backward

traffic and inject watermark into it. As a result, SWT is able to trace and correlate even

when there is no traffic from the intruder. The same active technique could also be

applied in IPD-based correlation and IPD-based watermark correlation to make them able

to correlate when the intrusion connections are idle.

The active timing perturbation by adversary imposes great challenge to all timing based

correlation approaches, and all passive timing based correlation schemes are vulnerable

133

to active timing perturbation. While the adversary’s active timing perturbation could

make the timing based correlation more difficult, we have found that we could actually

make the timing based correlation easier and more robust by actively embedding unique

watermark into the inter-packet timing. The slightly but active adjustment of timing of

selected packets gives us significant advantage over passive timing based correlation

approaches in the presence of active timing perturbation by adversary. Our analysis and

experiments show that our active IPD watermarking correlation is much more effective

and robust in correlating (both encrypted and unencrypted) connections than passive IPD-

based correlation when the connections are randomly perturbed in timing.

• Information hiding: A second general design principle we have used is information

hiding. Information hiding contributes to both the effectiveness and robustness aspects of

our correlation and tracing approaches. Because of the embedded watermark, the

watermarked flow can be made unique in some way and thus easier to correlate and trace.

In particular, it is the embedded unique watermark in SWT that enables the capability of

one-packet correlation and tracing of unencrypted connections. For encrypted

connections, the unique IPD-based watermark makes IPD-based watermark correlation

have a higher correlation detection rate than passive IPD-based correlation, even when

there is no timing perturbation.

Because the watermark is hidden information, it is difficult for the adversary to detect the

existence of, remove, corrupt or forge any watermark without knowing the specific

watermark embedding parameters. Our experiments show that IPD-based watermark

correlation is robust to random, repetitive and self-similar timing perturbations.

• Redundancy technique: This is one of the key techniques that make IPD-based

watermark correlation robust. By utilizing redundancy technique, we develop a robust

watermark correlation framework such that our embedded watermark bit can be made

with robustness arbitrarily close to 100%, no matter how big the maximum random delay

could be, no matter what the distribution of the random timing perturbation is, as long as

the random timing perturbation is independent and identically distributed (iid) and there

134

are enough packets in the flow to watermark. In addition, the overall watermark

correlation could achieve, with arbitrarily small averaged adjustment of inter-packet

timing, arbitrarily close to 100% correlation detection (true positive) rate and arbitrarily

close to 0% watermark collision (false positive) probability at the same time, as long as

the watermark bit has enough redundancy.

7.2 Future Directions

There are several interesting directions for future work based on the work described in this

dissertation. Some of these are extensions of our work, and some others are motivated by the

more general problems of network security in face of network based attacks.

7.2.1 Robust Correlation against Sophisticated Countermeasures

In this dissertation, we addressed the problem of tracing and correlation of intrusion

connections across stepping stones, and investigated problems posed by the following

countermeasures by adversary in concealing their source of attack: 1) Host Login

Information Disguise, Deletion and Forgery; 2) Connection Content Transformation (i.e.

encryption, compression); 3) Active Timing Perturbation; and 4) Introducing Loops in

Intrusion Connection Chain. We have successfully developed effective solutions against

these countermeasures through combination of active approach, information hiding and

redundancy techniques. We have not addressed the following advanced countermeasures

against the tracing and correlation of attack traffic: 1) Traffic Padding (i.e. adding bogus

packet, packet padding); 2) Packet Drop and Retransmission; 3) Flow Repacketization; 4)

Packet Reorder; 5) Flow Split and Merge; and 6) Mixing Multiple Flows (i.e. tunneling).

These sophisticated countermeasures form significant challenges in tracing and correlating

encrypted intrusion connections across stepping stones by drastically changing the inter-

packet timing characteristics. While we expect our active approach, information hiding and

redundancy techniques could applied in solving these problems, there are other important

problems to overcome. For example, some sophisticated countermeasures move or even

remove the watermark position, which makes the watermark detection significantly more

difficult. We leave robust correlation and tracing against these sophisticated countermeasures

as an area for future work.

135

7.2.2 Tracing and Correlation of Non-Interactive Traffic

So far we have focused on tracing and correlating interactive intrusion connections, and there

also appears a need to trace and correlate non-interactive traffic. For example, more and more

voice and teleconferencing communication have shifted from circuit-switched network to

packet-switched networks. This situation makes current wiretapping on circuit switched

network insufficient for the law enforcement purposes and calls for a new capability of

tracing and correlating (potentially encrypted) audio and video streams over IP network.

While we believe our techniques developed for tracing and correlating interactive traffic are

useful in tracing and correlating non-interactive traffic, tracing and correlating non-

interactive traffic have their special needs to meet to make them effective. The audio and

video streams transported in IP network are very different from interactive traffic (such as

telnet, SSH) in that 1) there are usually stringent real-time constraints; 2) they usually have

very short and similar inter packet delays. The similar inter packet delay would make IPD-

based correlation ineffective, and the stringent real-time constraint requires better real-time

watermark embedding and decoding capability for the IPD watermarking correlation to be

effective.

7.2.3 The Balance between Privacy and Traceability

While we have focused on the tracing intrusion connections through stepping stones, we

recognize that there are concerns and needs for privacy. In fact, some of the sophisticated

countermeasures against tracing and correlation have already been used in proposed

anonymity systems (i.e. Onion Routing [53,58,73], Crowds [59], Anonymizer [3], NetCamo

[33], Freenet [14]). It is our belief that no tracing system could be effective against all

possible anonymity systems, and no anonymity system is able to provide absolute anonymity

against all tracing systems. There appears some maximum achievable effectiveness for both

tracing system and anonymity systems. An important open question is where the technically

achievable balance and tradeoff between privacy and traceability are.

In term of watermarking and information hiding, there also exist open fundamental questions

regarding invisibility and detectability:

136

• Does there exist an undetectable watermark or hidden information?

• Does there exist a universal detection method that could detect all embedded watermarks

or hidden information?

• What is the fundamental tradeoff between the invisibility and capacity of hidden

information?

Fred Cohen has demonstrated [16] that there is no algorithm that could detect all computer

viruses, and David Chess and Steve White [13] have recently pointed out that there exist

computer viruses that no algorithm can detect. We suspect similar theoretical results hold for

hidden information detection.

7.2.4 Automatic Intrusion Response

We envision the intrusion source tracing as a building block toward an active, network-wide

intrusion response infrastructure. Ideally, such an intrusion response infrastructure could

automatically determine the sources of detected intrusions and take actions to “push-back” –

contain and stop the attacks near their sources so that the adverse impact of network-based

attacks could be minimized. Such an active defense framework show great promise in

defending both intrusion and denial of service types of attacks, and would greatly improve

the security of national critical information infrastructure.

There are still a number of open research problems need to be solved before such an active,

network-wide intrusion response infrastructure becomes available. First, what kind of

response is appropriate to certain detected attacks? Even with “perfect” IDS and intrusion

source tracing, an “overreacted response” could potentially do more harm than the responded

attack. Second, how should different (potentially far away) nodes trust each other? What

should be the trust model? How much trust should be there? How do we prevent misuse or

abuse of automatic intrusion response? Third, how do we protect privacy while supporting

active intrusion tracing and response?

7.2.5 Tracing of Other Forms of Network-Based Attacks

In addition to traditional intrusion and denial of service attack, other forms of network-based

137

attacks have become increasing threats to the normal function of networked systems. These

include computer worm, virus and email spam.

While there has been active research on detecting these attacks, little attention has been paid

so far to the tracing of these attacks. We believe these attacks could be much better contained

by applying appropriate active attack response framework once effective tracing capability of

these attacks has been developed. Therefore developing effective tracing capability for better

containing these attacks is likely to be an area of fertile research, with promise of significant

commercial impact.

7.2.6 Survivable System and Network

The known results that there exists no algorithm that can detect all possible computer virus

and that there exists some computer virus that no algorithm can detect clearly indicate the

fundamental limitation of virus detection. Similar limitation likely exists for detecting other

form of network based attacks such as intrusion, worm and email spam.

One way to mitigate the fundamental limitation of attack detection is to develop survivable

system and network. The goals of survivable system and network are 1) to be immune from

malicious attacks; 2) to provide as much as possible functionality in the event of partial

compromise; and 3) to automatically heal the partial compromise.

138

Bibliography
[1] R. Anderson. On the Limits of Steganography. In IEEE Journal of Selected Areas in

Communications, Vol 16(4), Pages 474−482, 1998.

[2] R. Anderson. Stretching the Limits of Steganography. In Proceedings of the 1st Information

Hiding Workshop (IH’1996) LNCS-1174, Pages 39−48, 1996.

[3] Anonymizer. http://www.anonymizer.com.

[4] S. M. Bellovin. ICMP Traceback Messages. Internet Draft: draft-bellovin-itrace-00.txt, March

2000.

[5] S. M. Bellovin. Using the Domain Name System for System Break-Ins. In Proceedings of 5th

USENIX Security Symposium, 1995.

[6] W. Bender, D. Gruhl, N. Morimoto and A. Lu. Technique for Data Hiding. IBM Systems Journal,

Vol. 35(3/4), Pages 313−336, 1996.

[7] S. Bhattacharjee, K. L. Calvert and E. W. Zegura. An Architecture for Active Networking. High
Performance Networking (HPN’97), Pages 265−279, White Plans, NY, April 1997.

[8] H. Burch and B. Cheswick. Tracing Anonymous Packets to Their Approximate Source. In

Proceedings of 9th USENIX LISA, 2000.

[9] K. L. Calvert, S. Bhattacharjee and E. Zegura. Directions in Active Networks. IEEE

Communication Magazine, Vol. 36(10), Pages 72−78, 1998.

[10] R. H. Campbell, Z. Liu, M. D. Mickunas, P. Naldurg and S. Yi. Seraphim: Dynamic
Interoperable Security Architecture for Active Networks. In Proceedings of IEEE
OPENARCH’2000, March 2000.

[11] B. Carrier and C. Shields. A Recursive Session Token Protocol For Use in Computer Forensics

and TCP Traceback. In Proceedings of IEEE INFOCOM’02, April 2002.

[12] H. Y. Chang, R. Narayan, S.F. Wu, B.M. Vetter, X. Wang M. Brown, J.J. Yuill, C. Sargor, F.

Jou, F. Gong. DecIdUouS: Decentralized Source Identification for Network-Based Intrusions, In
Proceedings of 6th IFIP/IEEE International Symposium on Integrated Network Management,
Pages 701−714, 1999.

[13] D. M. Chess and S. R. White. An Undetectable Computer Virus. In Virus Bulletin Conference

2000. http://www.research.ibm.com/antivirus/SciPapers/VB2000DC.pdf.

[14] I. Clarke, O. Sandberg, B. Wiley and T.W. Hong. Freenet: A Distributed Anonymous

Information Storage and Retrieval System. In Proceedings of International Workshop on Design
Issues in Anonymity and Unobservability, LNCS−2009, Pages 46−66, 2001.

[15] F. Cohen. Computational Aspects of Computer Viruses. Computers & Security, Vol. 8(4), Pages

325−344, 1989.

139

[16] F. Cohen. Computer Viruses: Theory and Experiments. Computers & Security, Vol. 6(1), Pages

22−35, 1987.

[17] Computer Emergency Response Team. CERT Advisory CA-96.21: CERT Advisory TCP SYN

Flooding and IP Spoofing Attacks. http://www.cert.org/advisories/CA-
96.21.tcp_syn_flooding.html, January 1998.

[18] Computer Emergency Response Team. CERT Advisory CA-96.26: Denial-of-Service Attack via

Pings. http://www.cert.org/advisories/CA- 96.26.ping.html, December 1996.

[19] Computer Emergency Response Team. CERT Advisory CA-98.01: CERT Advisory "smurf" IP

Denial-of-Service. http://www.cert.org/advisories/CA-98.01.smurf.html, January 1998.

[20] Computer Emergency Response Team. CERT Advisory CA-2000-01 Denial-of Service

Development. http://www.cert.org/advisories/CA-2000-01.html, January 2000.

[21] Computer Emergency Response Team. CERT/CC Overview 2003 www.cert.org/present/cert-
overview-trends/module-1.pdf

[22] Computer Emergency Response Team. CERT/CC Statistics 1988-2003

www.cert.org/stats/cert_stats_html

[23] Computer Emergency Response Team. Results of the Distributed-Systems Intruder Tools

Workshop. http://www.cert.org/reports/dsit_workshop.pdf, Nov. 1999.

[24] I. J. Cox, M. L. Miller and J. A. Bloom. Digital Watermarking. Morgan-Kaufmann Publishers,

2002.

[25] P. B. Danzig and S. Jamin. tcplib: A Library of TCP Internetwork Traffic Characteristics. USC

Technical Report, USC-CS-91-495.

[26] P. B. Danzig, S. Jamin R. Cacerest, D. J. Mitzel and E. Estrin. An Empirical Workload Model

for Driving Wide-Area TCP/IP Network Simulations. In Journal of Intenetworking, Vol. 3(1),
Pages 1−26. March 1992.

[27] D. Dean, M. Franklin and A. Stubblefield. An Algebraic Approach to IP Traceback. In

Proceedings of Network and Distributed System Security Symposium (NDSS’2001), 2001.

[28] M. H. DeGroot. Probability and Statistics. Addison-Wesley Publishing Company 1989.

[29] D. Donoho, A.G. Flesia, U. Shanka, V. Paxson, J. Coit and S. Staniford. Multiscale Stepping

Stone Detection: Detecting Pairs of Jittered Interactive Streams by Exploiting Maximum
Tolerable Delay. In Proceedings of the 5th International Symposium on Recent Advances in
Intrusion Detection (RAID’2002) LNCS-2516, Pages 17−35, October, 2002.

[30] N.G. Duffield and M. Grossglauser. Trajectory Sampling for Direct Traffic Observation. In

Proceedings of the ACM SIGCOMM ’2000, Pages 271−282, September 2000.

140

[31] M. T. Goodrich. Efficient Packet Marking for Large-Scale IP Traceback. In Proceedings of 9th
ACM Conference on Computer and Communication Security (CCS’2002), Pages 117−126,
October 2002.

[32] M. B. Greenwald, S. K. Singhal, J. R. Stone and D. R. Cheriton. Design an Academic Firewall:

Policy, Practice and Experience with SURF. In Proceedings of Internet Society Symposium on
Network and Distributed System Security (NDSS ‘1996), February 1996.

[33] Y. Guan, X. Fu, D. Xuan, P. Shenoy, R. Bettati, and Wei Zhao. NetCamo: Camouflaging

Network Traffic for QoS-Guaranteed Mission Critical Applications, in IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 31(4) 2001

[34] L. T. Heberlein, K. Levitt and B. Mukherjee. Internetwork Security Monitor: An Intrusion-

Detection System for Large-Scale Networks. In Proceedings of 15th National Computer Security
Conference, 1992.

[35] J. D. Howard. An Analysis of Security Incidents on The Internet 1989 - 1995, PhD Thesis,

http://www.cert.org/research/JHThesis/Start.html, April 1997.

[36] J. Ioannidis and S. M. Bellovin. Implementing Pushback: Router-Based Defense against DDoS

Attacks. In Proceedings of Internet Society Symposium on Network and Distributed System
Security (NDSS ‘2002), 2002.

[37] J. Ioannidis and M Blaze. The Architecture and Implementation of Network-Layer Security

under Unix. In Proceedings of 4th USENIX Security Symposium, 1993.

[38] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith. Implementing a Distributed
Firewall. In Proceedings of 7th ACM Conference on Computer and Communication Security
(CCS’2000), October 2000.

[39] W. Jansen, P. Mell, T. Karygiannis, D. Marks. Applying Mobile Agents to Intrusion Detection

and Response. NIST Interim Report (IR) – 6416, October 1999.

[40] H. Jung, et al. Caller Identification System in the Internet Environment. In Proceedings of 4th
USENIX Security Symposium, 1993.

[41] S. Kent, R. Atkinson. Security Architecture for the Internet Protocol. IETF RFC 2401,

September 1998.

[42] G. Kramer. Generator of Self-Similar Network Traffic.

http://wwwcsif.cs.ucdavis.edu/~kramer/code/trf_gen2.html.

[43] S. Lee and C. Shields. Tracing the Source of Network Attacks: A Technical, Legal, and Social

Problem. In Proceedings of the Second Annual IEEE Systems, Man, and Cybernetics
Information Assurance Workshop, June 2001.

[44] L. H. Lehman, S. J. Garland, and D. Tennenhouse. Active Reliable Multicast. In Proceedings of

IEEE INFOCOM ’1998, April 1998.

[45] Mark Linehan. Comparison of Network-Level Security Protocols. IBM T.J. Watson Research

Center, June 1994.

141

[46] M. Machover. Set Theory, Logic and Their Limitations. Cambridge University Press 1996.

[47] G. Mansfield, K. Ohta, Y. Takei, N. Kato, Y. Nemoto. Towards Trapping Wily Intruders in the

Large. Computer Networks, Vol. 34(2000), Pages 659−670, 2000.

[48] J. P. Mayberry. The Foundations of Mathematics in the Theory of Set. Cambridge University

Press 2000.

[49] S. Mittra, T. Y. Woo. A Flow-Based Approach to Datagram Security. In Proceedings of the

ACM SIGCOMM ’1997, September 1997.

[50] B. Mukherjee, L.T. Heberlein, and K.N. Levitt. Network Intrusion Detection, IEEE Network,

Vol. 8, No. 3, 1994.

[51] S. Murphy et al. Security Architecture for Active Nets. AN Security Working Group, July 15,

1998.

[52] NLANR Trace Archive. http://pma.nlanr.net/Special/.

[53] Onion Routing. http://www.onion-routing.net.

[54] OpenSSH. http://www.openssh.com.

[55] Rolf Oppliger. Internet Security: Firewalls and Beyond. Communications of the ACM, Vol. 40(5),
Pages 92−102, 1997.

[56] K. Park and H. Lee. On the Effectiveness of Probabilistic Packet Marking for IP Traceback

under Denial of Service Attack. In Proceedings of IEEE Infocom’2001, Pages 338−347, 2001.

[57] T. H. Ptacek and T. N. Newsham. Insertion, evasion, and denial of service: Eluding network

intrusion detection. Technical Report, Secure Networks, Inc., January 1998.

[58] M. G. Reed, P. F. Syverson, D. M. Goldschlag. Anonymous Connections and Onion Routing. In

IEEE Journal on Selected Areas in Communication, Vol. 16(4), Pages 482−494, 1998

[59] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for Web Transactions. In ACM Transactions

on Information and System Security (TISSEC), Vol. 1(1), Pages 66−92, 2000.

[60] S. Savage, D. Wetherall, A. Karlin and T. Anderson. Practical Network Support for IP

Traceback. Proceedings of the ACM SIGCOMM ’2000, Pages 295−306, September 2000.

[61] D. Schnackenberg. Dynamic Cooperating Boundary Controllers.
http://www.darpa.mil/ito/Summaries97/ E295_0.html, Boeing Defense and Space Group, March
1998.

[62] D. Schnackenberg, K. Djahandari, and D. Strene. Infrastructure for Intrusion Detection and

Response. In Proceedings of DISCEX, 2000.

142

[63] B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou, R. R. Rockwell and C. Partridge. Smart
Packets for Active Networks. In Proceedings of IEEE OPENARCH ‘1999, April 1999.

[64] V. Shmatikov. Probabilistic Analysis of Anonymity. In Proceedings of the 15th IEEE Computer

Security Foundations Workshop, Pages 119−128, 2002

[65] S. Snapp, et all. DIDS (Distributed Intrusion Detection System) – Motivation, Architecture and

Early Prototype. In Proceedings of the 14th National Computer Security Conference, Pages
167−176, 1991.

[66] A. C. Snoeren, C. Partridge, L. A. Sanchez and C. E. Jone, F. Tchakountio, Stephen T. Kent and

W. T. Strayer. Hash-Based IP Traceback. In Proceedings of the ACM SIGCOMM ’2001, Pages
3−14, November 2001.

[67] D. Song and A. Perrig. Advanced and Authenticated Marking Scheme for IP Traceback. In

Proceedings of IEEE INFOCOM’2001, Pages 878−886, April 2001.

[68] D. Song, D. Wagner and X. Tian. Timing Analysis of Keystrokes and Timing Attacks on SSH.

In Proceedings of 10th USENIX Security Symposium, 2001.

[69] S. Staniford-Chen, L. T. Heberlein. Holding Intruders Accountable on the Internet. In

Proceedings of the 1995 IEEE Symposium on Security and Privacy, Pages 39−49, 1995.

[70] W. R. Stevens. TCP/IP Illustrated Volume 1 The Protocol. Addison-Wesley Publishing

Company, 1994.

[71] C. Stoll. The Cuckoo’s Egg: Tracking Spy through the Maze of Computer Espionage. Pocket

Books, October 2000.

[72] R. Stone. Centertrack: An IP Overlay Network for Tracking DoS Floods. In Proceedings of 9th

USENIX Security Symposium, 2000.

[73] P. F. Syverson, D. M. Goldschlag and M. G. Reed. Anonymous Connections and Onion Routing.

In Proceeding of the 1997 IEEE Symposium on Security and Privacy, Pages 44−54, 1997

[74] M. S. Taqqu, W. Willinger, and R. Sherman. Proof of a Fundamental Result in Self-Similar

Traffic Modeling. ACM Computer Communication Review, Vol. 27, Pages 5−23, 1997.

[75] D Tennenhouse and D Wetherall, Towards an Active Network Architecture. In SPIE

Proceedings of Conference on Multimedia Computing and Networking1996, January 1996.

[76] V. C. Van. A Defense against Address Spoofing Using Active Networks. Master’s thesis,

Department of Electrical Engineering and Computer Science, MIT, May 1997.

[77] X. Wang. The Loop Fallacy and Serialization in Tracing Intrusion Connections through Stepping

Stones. In Proceedings of the 19th ACM Symposium on Applied Computing (SAC’2004), March
2004.

[78] X. Wang. Survivability through Active Intrusion Response. In Proceedings of the 3rd IEEE

Information Survivability Workshop (ISW-2000), Pages 173−176, October 2000.

143

[79] X. Wang, D. S. Reeves. Robust Correlation of Encrypted Attack Traffic through Stepping Stones

by Manipulation of Interpacket Delays. In Proceedings of the 10th ACM Conference on
Computer and Communications Security (CCS’2003), Pages 20−29, October 2003.

[80] X. Wang, D. S. Reeves and S.F. Wu. Inter-Packet Delay-Based Correlation for Tracing

Encrypted Connections through Stepping Stones. In D. Gollmann, G. Karjoth and M. Waidner,
editors, 7th European Symposium on Research in Computer Security (ESORICS’2002) LNCS-
2502, Pages 244−263, October 2002.

[81] X. Wang, D. S. Reeves and S. F. Wu. Tracing Based Active Intrusion Response. In Journal of

Information Warfare, Vol. 1(1), Pages 50−61, October 2002.

[82] X. Wang, D. S. Reeves, S. F. Wu and J. Yuill. Sleepy Watermark Tracing: An Active Network-

Based Intrusion Response Framework. In Proceedings of 16th International Conference on
Information Security (IFIP/Sec’01), Pages 369−384, June, 2001.

[83] Webopedia. http://www.webopedia.com/

[84] D. Wetherall, J. Guttag and D. Tennenhouse. ANTS: A Toolkit for Building and Dynamically

Deploying Network Protocols. In Proceedings of IEEE OPENARCH ’1998, April 1998.

[85] G. White and V. Pooch. Cooperating Security Managers: Intrusion Detection Systems. Computer

& Security, Vol. 16, No. 5, 1996.

[86] S. F. Wu. Sleepy Network-Layer Authentication Service for IPSEC. In G. Martella E. Bertino, H.

Kurth and E. Montolivo, editors, 4th European Symposium on Research in Computer Security
(ESORICS’1996) LNCS-1146, Pages 146−159, September 1996.

[87] T. Ylonen, et al. SSH Protocol Architecture. IETF Internet Draft: draft-ietf-secsh-architecture-

12.txt, July 2001.

[88] K. Yoda and H. Etoh. Finding a Connection Chain for Tracing Intruders. In F. Guppens, Y.

Deswarte, D. Gollmann and M. Waidner, editors, 6th European Symposium on Research in
Computer Security (ESORICS’2000) LNCS-1895, Pages 191−205, October 2000.

[89] K.H. Yung. Detecting Long Connection Chains of Interactive Terminal Sessions. In Proceedings

of the 5th International Symposium on Recent Advances in Intrusion Detection (RAID’2002)
LNCS-2516, Pages 1−16, October, 2002.

[90] Y. Zhang and V. Paxson. Detecting Stepping Stones. In Proceedings of 9th USENIX Security

Symposium, 2000.

