
ABSTRACT

CHOI, JUNGSOON. Multivariate Spatial-Temporal Modeling of Environmental-Health
Processes. (Under the direction of Professor Montserrat Fuentes.)

In many applications in environmental sciences and epidemiology, data are often

collected over space and time. In some cases, the spatial-temporal data of interest are

multivariate, and these multivariate spatial-temporal processes often have a compli-

cated dependency structure. Hence, multivariate spatial-temporal modeling is a very

challenging task. In this study, we develop statistical models to effectively account for

multivariate spatial-temporal dependency structures of air pollution concentrations

and human health outcomes.

Fine particulate matter (PM2.5) is an atmospheric pollutant that has been linked

to serious health problems, including mortality. PM2.5 has five main components: sul-

fate, nitrate, total carbonaceous mass, ammonium, and crustal material. These com-

ponents have complex spatial-temporal dependency and cross dependency structures.

It is important to gain better understanding about the spatial-temporal distribution

of each component of the total PM2.5 mass, and also to estimate how the composition

of PM2.5 changes with space and time. We introduce a multivariate spatial-temporal

model for speciated PM2.5. Our hierarchical framework combines different sources

of data and accounts for potential bias. In addition, a spatiotemporal extension of

the linear model of coregionalization is developed to account for spatial and tempo-

ral dependency structures for each component as well as the associations among the

components. We apply our framework to speciated PM2.5 data in the United States

for the year 2004.

In addition, the chemical composition of PM2.5 varies across space and time so



the association between PM2.5 and mortality could change with space and season.

Thus, we develop and implement a multi-stage Bayesian framework that provides a

very broad and flexible approach to studying the spatial-temporal associations be-

tween mortality and population exposure to daily PM2.5 mass, while accounting for

different sources of uncertainty. In the first stage, we map ambient PM2.5 air con-

centrations using all available monitoring data and an air quality model (CMAQ) at

different spatial and temporal scales. In the second stage, we examine the spatial-

temporal relationships between the health end-points and the exposures to PM2.5 by

introducing a spatial-temporal generalized Poisson regression model. We adjust for

time-varying confounders, such as seasonal trends. A common seasonal trends model

uses a fixed number of basis functions to account for these confounders, but the re-

sults can be sensitive to the number of basis functions. Thus, instead the number of

the basis functions is treated as an unknown parameter in our Bayesian model, and

we use a space-time stochastic search variable selection method. The framework is

illustrated using a data set in North Carolina for the year 2001.
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Chapter 1

Introduction

In diverse fields such as environmental sciences and epidemiology, data are col-

lected over space and time. For example, temperature data are measured at many

monitoring stations every day in the United States. Also, mortality data in the state

of North Carolina are collected every day. These data often have spatial-temporal

dependency, and such dependency structure should be considered when analyzing

the data. Thus, developing statistical models to account for spatial and tempo-

ral dependency is not only very challenging but also essential. In some cases, the

spatial-temporal data of interest are multivariate. For example, levels of several pol-

lutants (e.g., sulfate, nitrate, and ammonium) are measured at monitoring stations

over time. In this situation, multivariate statistical model is needed to explain cross

dependency as well as spatial-temporal dependency. In this thesis, we develop statis-

tical frameworks for analyses of multivariate spatial-temporal data on air pollution

concentrations and human health outcomes.
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In order to model spatial-temporal data, we first discuss different types of data.

Spatial data are generally categorized into one of three basic types: point-referenced

data, areal data, and point pattern data. Point-referenced data are called when a

location s ∈ Rd varies continuously over a fixed region, D1 ⊂ Rd and often referred

to as geostatistical data. For instance, weekly ozone concentrations are measured at

fixed monitoring stations over the eastern United States. One of main interests in

point-referenced data is to model the spatial distribution of measurements for taking

into account spatial correlation and for predicting values at new locations. Areal data

arise when a region D1 is a fixed domain of regular or irregular shape and divided into

a finite number of subregions with well defined boundaries (e.g., zipcodes, counties,

and districts). The data are often referred to as lattice data, and statistical models for

such data provide adjacency information of the areal units. For example, the number

of deaths due to air pollution is collected in the counties of North Carolina. Point

pattern data arise when a region D1 is itself random, and an event of interest (e.g., an

outbreak of a disease) occurs at random locations. That is, the response variable is

often fixed, and only the locations are random. In some cases, this information might

be supplemented by other covariate information (e.g., age) at the event locations.

Such data are often interested in studying whether the pattern is exhibiting complete

spatial randomness, clustering, or regularity. Residences of persons suffering from

lung cancer could be one of examples. See the books by Banerjee et al. (2004) and

Schabenberger and Gotway (2004) for many examples and additional discussion.

Time series data like spatial data are classified into one of two types: continuous

or discrete. Continuous time series data arise when observations are made at every
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instant of time (e.g., lie detectors and electrocardiograms). Discrete time series data

arise when observations are made at equi-spaced intervals (e.g., weekly rainfall). Note

that in practice discrete time series can approximate continuous time series.

In this thesis, we consider point-referenced data or areal data for space and discrete

time series data. In this chapter, we provide some general concepts in modeling

spatial-temporal data in Section 1.1, and then we give some background for the

spatial-temporal modeling of air pollution and its health effects in Sections 1.2 and

1.3, respectively.

1.1 Introduction of spatial-temporal process

We suppose that the data

{Z(si, t) : i = 1, . . . , N, t = 1, . . . , T} (1.1)

are a finite sample of the stochastic process {Z(s, t) : s ∈ D1, t ∈ D2}, where D1 ⊂ Rd

and D2 ⊂ R. The process Z(s, t) is called weakly stationary (or stationary) if its mean

function is constant and

Cov(Z(s + h1, t + h2), Z(s, t)) = C(h1, h2) < ∞, (1.2)

where h1 ∈ Rd and h2 ∈ R. Thus, a stationary spatial-temporal process has the

covariance depending only on the separation vector (h1, h2).

A stationary process is called isotropic if

C(h1, h2) = C(||h1||, |h2|). (1.3)
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Thus, the covariance function depends on vector (h1, h2) only through Euclidean dis-

tance between them. A process which is not isotropic is called anisotropic. Isotropic

processes are simple and interpretable, and they have several simple parametric forms

for the covariance, so they are very popular.

The process Z(s, t) is called separable in space and time if

Cov(Z(s, t), Z(s′, t′)) = C(1)(s, s′)C(2)(t, t′), (1.4)

where C(1) is a spatial covariance and C(2) is a temporal covariance. The covariance

matrix of a separable spatial-temporal process can be written as the Kronecker prod-

uct of a covariance matrix for time with a covariance matrix for space. Thus, it is

easy to compute the covariance matrix. If a separable process is stationary, then

Cov(Z(s, t), Z(s′, t′)) = C(1)(s− s′)C(2)(t− t′). (1.5)

In addition, if a separable stationary process is isotropic, the covariance can be written

as

Cov(Z(s, t), Z(s′, t′)) = C(1)(||s− s′||)C(2)(|t− t′|). (1.6)

A common choice for the functions C(1)(·) and C(2)(·) is the Matern covariance func-

tion (Matern, 1986) and the ARMA covariance function (Box and Jenkins, 1976),

respectively.

There is a large amount of literature on spatial-temporal modeling. Early ap-

proaches include the STARMA (Pfeifer and Deutsch, 1980a,b) and STARMAX (Stof-

fer, 1986) models which add spatial covariance structure to standard time series mod-

els. Recently, Carroll et al. (1997) used a spatially homogeneous and temporally
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stationary Gaussian process models, assuming a separable spatial-temporal covari-

ance function to study ground level ozone. Brown et al. (2000) modeled rainfall data

by using a stochastic differential equation approach, which is non-separable spatial-

temporal model. They addressed that non-separable modeling is more appropriate

for realistic problems.

To capture non-separable and/or non-stationary structure when analyzing spatial-

temporal data, Cressie and Huang (1999) and Gneiting (2002) introduced non-separable

stationary covariance functions using a spectral approach. Stein (2005) also provided

a class of spectral densities extending the Matern form. These densities allow spatial-

temporal covariance functions to be non-separable. Guttorp et al. (1994) proposed

a non-stationary spatial-temporal model for ozone levels via the spatial deformation

method of Sampson and Guttorp (1992).

Researchers have also worked with dynamic models, or state-space models for

analyzing spatial-temporal data. Examples include Huang and Cressie (1996), Mardia

et al. (1998), and Wikle and Cressie (1999). Huang and Cressie (1996) provided a

separable dynamic model to predict snow water, and Mardia et al. (1998) proposed

a kriged Kalman filter.

In recent years, Bayesian approaches are becoming very popular for spatial-temporal

modeling. Since spatial-temporal data in environmental sciences and epidemiology

have variability over space and time, the statistical characterization of such compli-

cated processes using traditional spatial-temporal models and methods can be limited.

Moreover, there can often be very different spatial behavior at different points in time

as well as different temporal variability at different locations in space, and the space-
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time variability can be more complicated. However, Bayesian hierarchical modeling

provides a natural framework in which scientific knowledge is included and accounts

for all sources of uncertainty. Also, it offers not only a technique for combining data

from different sources but also posterior distributions on quantities of interest that

can be used for scientific inference.

There are various examples of hierarchical Bayesian modeling for spatial-temporal

data. For example, Wikle et al. (1998) analyzed monthly averaged maximum temper-

ature data by introducing a Bayesian non-stationary spatial-temporal model. Golam

Kibria et al. (2002) developed a Gaussian generalized inverted Wishart model to map

air pollution in Philadelphia, allowing the covariance structure to be non-stationary.

Schmidt and O’Hagan (2003) used a Bayesian approach to construct a non-stationary

spatial-temporal covariance structure using spatial deformations. Fuentes et al. (2005)

proposed a generalized class of non-stationary and also non-separable spatial-temporal

covariance models. In addition, a Markov random field structure in the form of con-

ditionally autoregressive (CAR) specifications has been employed on spatial-temporal

modeling for areal data. Using Markov random field structures, Waller et al. (1997)

analyzed Ohio lung cancer rates during the period 1968-1988, and Gelfand et al.

(1998) focused single family home sales.

Similarly, Bayesian approaches have been reported in dynamic modeling. In West

and Harrison (1997), Markov Chain Monte Carlo methods for dynamic modeling

were explained in detail. Tonellato (1997) developed a state-space model for fixed

observation stations, incorporating both stationary and non-stationary components,

then Tonellato (1998) applied the model to an Irish wind power prediction problem.
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The dynamic model proposed by Stroud et al. (2001) is applied to any data set

that is discrete in time and continuous in space and allows quick and straightforward

computation using Kalman filtering. Gelfand et al. (2005) explained univariate space-

time dynamic models and multivariate spatial dynamic models.

We briefly introduce the hierarchical Bayesian model proposed by Wikle et al.

(2001). The strategy for the basic hierarchical spatial-temporal model is based on

the formulation of three stages:

• Stage 1: Data model: [data|process, θ1]

• Stage 2: Process model: [process|θ2]

• Stage 3: Prior on parameters: [θ1, θ2]

Here [·] represents the probability density function, [·|·] represents the conditional

density function (e.g., Gelfand and Smith, 1990), and θ1 and θ2 are parameters intro-

duced in the modeling. The basic idea is to approach complex problems by breaking

them into subproblems.

1. First stage: Data Model

Stage 1 models only measurement errors. Let Ẑ denote observed data. The

model is specified as

[Ẑ|Z, θ1], (1.7)

where Z is the true process, and θ1 is a collection of parameters considered

in this stage. The fundamental assumptions are that, conditional on Z and
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θ1, Ẑ(s, t) for all s and t are independent. For example, we assume normally

distributed errors,

Ẑ(s, t) ∼ N(Z(s, t), σ2
s,t), (1.8)

where θ1 = {σ2
s,t} is the set of measurement error variances.

2. Second stage: Process model

In this stage, the true process Z is decomposed into several meaningful compo-

nents. We assume

Z(s, t) = µ(s, t) + w1(s; θw1) + w2(t; θw2), (1.9)

where µ(s, t) = X(s, t)β(s, t) is the mean structure with the vector of covariates

X(s, t) and the vector of coefficients β(s, t), w1 is a spatial random effect with

the parameter vector θw1, and w2 is a temporal random effect with the parameter

vector θw2. Under the assumption that the components µ,w1, w2 are mutually

independent,

[Z|β, θw1, θw2] = [µ|β][w1|θw1][w2|θw2], (1.10)

where β = {β(s, t)} and θ2 = {β, θw1, θw2}.

3. Third stage: Prior on parameters

This stage specifies the priors for all parameters in the model. The standard

assumption is that

[θ1, θ2] = [θ1][θ2]. (1.11)

In this case, it can be written as

[θ1, θ2] = [σ2][β][θw1][θw2]. (1.12)
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1.2 Statistical models for air pollution

Particulate matter (PM) is a complex mixture of small solid and liquid particles

found in the ambient air. Generally, PM consists of many components including

dust, dirt, smoke, acids (such as nitrates and sulfates), and organic chemicals. PM

has been linked to a range of cardiovascular, respiratory, and other serious health

problems including mortality. PM is classified by its size, aerodynamic diameter,

because the size of particles is directly linked to their potential for causing adverse

health outcomes. In particular, particles of interest are PM10 and PM2.5. PM10

includes particles less than or equal to 10µm in diameter, and PM2.5 (known as fine

PM) includes particles less than or equal to 2.5µm in diameter. Exposure to these

smaller particles leads to a variety of serious health effects because of their ability to

penetrate into the respiratory tract. Moreover, the U.S. Environmental Protection

Agency (EPA) set standards for PM2.5 in 1997 because fine particles are more closely

associated with serious health effects.

PM2.5 has five main components by U.S. EPA (2003): sulfate, nitrate, total car-

bonaceous mass, ammonium, and crustal material (including calcium, iron, silicon,

aluminum, and titanium). The different components come from specific sources and

are often formed in the atmosphere. Sulfates form from sulfur dioxide emissions from

power plants and industrial facilities, and nitrates form from nitrogen oxide emis-

sions from cars, trucks, and power plants. Total carbonaceous mass is a mixture of

elemental and organic carbon. Elemental carbon is emitted directly from fossil fuel

combustion sources, and organic carbon is from combustion, geological processes,
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road dusts, and photochemistry. Ammonium sulfate and ammonium nitrate are the

most common compounds containing ammonium. Crustal material is estimated by

summing the elements predominantly associated with soil.

These PM2.5 components vary by location and by time of year. For example, fine

particles in the eastern United States contain more sulfates than those in the western

United States, while fine particles in southern California contain more nitrates than

other areas of the country. Total carbonaceous mass is a substantial component of

PM2.5. Thus, the components have complex spatial-temporal dependency and cross

dependency structures. In addition, some of the toxicology studies indicated that

some components of PM2.5 were more closely linked with human health effects than

other components (U.S. EPA, 2004). Fuentes et al. (2006) introduced a statistical

model to study the spatial association between speciated PM2.5 and mortality and

provided that each component of speciated PM2.5 has different impact on mortality

across the United States. In order to investigate the health effects associated to spe-

ciated fine PM across space and time together, we need to have first the speciated

PM2.5 information. However, daily speciated PM2.5 measurements are available at a

limited number of monitoring stations, and missing values may occur at a given time

point. Rao et al. (2003) and Malm et al. (2004) investigated the spatial and tempo-

ral patterns of speciated PM2.5, but they only conducted an exploratory analysis of

speciated PM2.5. Thus, it is very challenging to develop a spatial-temporal model for

speciated PM2.5 to study its spatial-temporal patterns and predict speciated PM2.5.

There exists considerable literature on the spatial-temporal modeling of air pollu-

tion data. In an early Bayesian approach, Guttorp et al. (1994) developed a spatial



11

covariance function for hourly ozone levels using the deformation approach of Samp-

son and Guttorp (1992). The parameters of the model depended on a function of the

time of day. Carroll et al. (1997) considered stationary Gaussian processes based on a

separable spatial-temporal covariance function to study ground level ozone in Texas.

In their model, the correlation in the residuals was a nonlinear function of space

and time, and in particular the spatial structure was a function of the lag between

observations.

In recent years, hierarchical Bayesian approaches for air pollution modeling have

been developed. Zidek et al. (2002) developed predictive distributions of hourly PM10

at unmonitored sites in Vancouver, Canada. Shaddick and Wakefield (2002) used a

dynamic linear modeling framework for four pollutants at eight monitoring sites in

London to provide predictions of the pollutants for investigating the health effects

of air pollution. Huerta et al. (2004) modeled hourly ozone levels in Mexico City

and estimated ozone values using a dynamic model. Sahu et al. (2006) developed a

hierarchical non-stationary spatial-temporal model for PM2.5 in 2001. Their model

introduced two spatial-temporal processes: one for rural or background effects and

the other for additional risks for urban areas. The daily PM2.5 was modeled using a

weighted combination of the two processes.

Smith et al. (2003) developed a spatial-temporal model for PM2.5, which was

used for spatial prediction within three southeastern states. The PM2.5 field was

represented as the sum of semi-parametric spatial-temporal functions with a random

component that was spatially but not temporally correlated. They applied a variant of

the expectation-maximization algorithm to explain missing data. Sahu and Mardia
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(2005) used the Bayesian kernel convolution approach discussed by Ver Hoef and

Barry (1998) for short-term forecasting of PM2.5 data.

In Chapter 2 of this thesis, we propose a multivariate spatial-temporal model for

speciated PM2.5 using a hierarchical Bayesian approach in order to explore the spatial-

temporal patterns of speciated PM2.5 and predict speciated PM2.5 at all locations and

times of interest. In addition, we introduce a statistical framework in order to combine

all available information for speciated PM2.5.

1.3 Statistical models for the health effects of air

pollution

The health impact of air pollution has received much attention in public health

over the past few years, and numerous epidemiological studies investigated the asso-

ciation between exposure to PM and adverse human health outcomes in a number

of U.S. cities. Several epidemiologic studies have showed that exposures to PM may

result in tens of thousands of excess deaths per year and many more cases of illness

among the U.S. population (e.g., Bates et al., 1990; Ostro et al., 1991; Dockery et al.,

1992; Schwartz, 1994; Pope et al., 1995a; American Thoracic Society and Bascom,

1996a,b). Most of the epidemiological studies of air pollution have been conducted

based on two types: time series studies and cohort studies. Time series studies assess

the association between short-term exposure to PM and adverse health outcomes,

and they estimate acute air pollution effects on health outcomes (e.g., Dockery et
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al., 1992; Schwartz, 1994; Dominici et al., 2000). On the other hand, cohort studies

investigate the association between long-term exposure to PM and adverse health

outcomes over several years, so they are suitable for the study of chronic air pollution

effects on health outcomes (e.g., Dockery et al., 1993; Pope et al., 1995b). However,

cohort studies are limited by the lack of available data, and we focus on time series

studies in this thesis.

By the early 1990’s, most of time series studies were conducted at a single site

(e.g., Bates et al., 1990; Schwartz, 1995) and showed health effects associated with

exposure to air pollution. However, these studies obtained results from a specific

site, and the statistical approaches vary with each study. In addition, sites have

different characteristics. Thus, the results can not be generalized to other sites. Due

to the limitations of single-site time series studies, multi-site time series studies were

introduced, which data on air pollution and health for each site are assembled under

a common structure and analyzed using the same statistical approach (Burnett and

Krewski, 1994; Katsouyanni et al., 1997; Dominici et al., 2000). Hierarchical modeling

is an appropriate approach for combining information on air pollution and health

across multi sites, and recently, it has been applied to analysis of multi-site time

series data. Dominici et al. (2000) estimated the association between exposure to

PM10 and daily mortality for the 20 largest cities in U.S. using a two-stage linear

regression model. Daniels et al. (2000) then extended this study to estimate the

shape of the PM10 mortality dose-response curve. The National Morbidity, Mortality

and Air Pollution Study (NMMAPS) (Samet et al., 2000a,b) is the largest multi-

site time series study analyzing data for the 90 largest U.S. cities. The NMMAPS
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estimated city-specific, regional, and national effects of PM10 on mortality. Dominici

et al. (2002a) developed a three-stage Bayesian hierarchical model to analyze the

NMMAPS data base. The results obtained for the 88 largest cities in U.S. from 1987

to 1994 showed positive associations between previous-day PM10 concentration and

mortality in most of the cities.

Most previous studies on the statistical association between PM and health effects

have been done only for PM10 because until recently, daily PM2.5 concentrations were

available at only a limited number of monitoring stations. More recently, Fuentes et

al. (2006) combined several sources of data about fine PM and showed the spatial

association between PM2.5 and mortality in the entire United States. But, they only

used monthly data and did not consider temporal association. Thus, it is suggested

that more studies are needed to investigate the spatial and temporal association

between PM2.5 and daily mortality.

An important issue when studying the association between ambient PM concen-

trations and daily mortality counts is whether the increased mortality associated with

higher PM levels is restricted to very frail people for whom life expectancy is short

even in the absence of PM exposure. This possibility is called the “harvesting hy-

pothesis” (also known as mortality displacement). If the effect exists, then higher

PM2.5 levels would lead to an increased risk of mortality for frail people and decrease

the pool of at-risk people. On subsequent days, the number of death counts would

be reduced, and the association between PM and daily mortality could be negative.

Recently, some of researchers have proposed statistical methods to investigate this

issue (e.g., lag models and time-scale models). Almon (1965) first proposed the dis-
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tributed lag model to estimate the effect of air pollution exposure over a few days

on daily health outcome. The model restricts the coefficients to being a low-degree

polynomial in the lags. Pope and Schwartz (1996) used parametric distributed lag

models, and Zanobetti et al. (2000) used non-parametric smoothing functions for the

coefficients. Time-scale models (e.g., Zeger et al., 1999; Schwartz, 2000; Dominici et

al., 2003) are used to estimate associations between smooth variations of air pollu-

tion and daily health outcomes using orthogonal predictors obtained by applying a

Fourier decomposition. Zeger et al. (1999) used a frequency domain log-linear re-

gression to estimate the association between air pollution and mortality at different

timescales. Schwartz (2000) examined the association between daily mortality and

different timescales of air pollution using the filtering method proposed by Cleveland

et al. (1990). Based on the work by Zeger et al. (1999) and Schwartz (2000), Dominici

et al. (2003) decomposed the time series of air pollution into orthogonal components

using a discrete Fourier transform and estimated a relative risk of mortality at each

component. This decomposition technique is simple and it provides computational

advantages.

In Chapter 3, we explore the spatial-temporal association between exposure to

PM2.5 and daily mortality that is resistant to short-term harvesting by using time-

scale models. We develop a Bayesian hierarchical framework to estimate the effects

of PM2.5 on mortality over space and time. In order to overcome the lack of fine PM

data, we use numerical model output as well as observed PM2.5 data, which improve

estimates of the effects of PM2.5 on mortality.
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Chapter 2

Multivariate spatial-temporal

modeling and prediction of

speciated fine particles

2.1 Introduction

The study of the association between ambient particulate matter (PM) and hu-

man health has received much attention in epidemiological studies in the last several

years. Özkaynak and Thurston (1987) conducted an analysis of the association be-

tween several particle measures and mortality using available data in 1980. Their

results showed the importance of considering particle size, composition, and source

information when modeling particle pollution health effects. In particular, fine PM,
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PM2.5, is an atmospheric pollutant that has been linked to numerous adverse health

effects (e.g., respiratory and cardiovascular diseases). As presented in the previous

chapter, PM2.5 is a mixture of pollutants which the U.S. EPA (2003) classified into five

main components: sulfate, nitrate, total carbonaceous mass (TCM), ammonium, and

crustal material (including calcium, iron, silicon, aluminum, and titanium). These

PM2.5 components have complex spatial-temporal dependency as well as cross de-

pendency structures and each component of speciated PM2.5 has different impact on

mortality. In order to study the association between speciated PM2.5 and adverse

health outcomes across space and time, we need to interpolate speciated PM2.5 at

the locations and times of interest. However, previous studies just carried out an

exploratory analysis of speciated PM2.5 (Rao et al., 2003; Malm et al., 2004). Our

goal here is to develop a statistical framework using all available sources of data about

speciated PM2.5 to investigate the spatial-temporal patterns of speciated PM2.5 and

then predict speciated PM2.5 at all locations and times of interest. We also study the

spatial-temporal patterns of the so called “unknown components” which are not the

main components of PM2.5.

In this chapter, we introduce a new statistical framework to combine information

for speciated PM2.5 from two monitoring networks, while accounting for potential bias.

Daily speciated PM2.5 measurements are available at a limited number of monitoring

sites and missing values are common. Therefore, we supplement these observations

with measurements of the PM2.5 mass. These observations are indirectly informa-

tive about the individual components and greatly expand our spatial and temporal

coverage. Incorporating total PM2.5 measurements poses a challenging data fusion
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problem. In our Bayesian approach, speciated PM2.5 data are represented in terms

of the underlying true sum of the five main components and the true proportions of

each speciated component relative to the total. We develop a spatial-temporal multi-

nomial logistic model which allows the proportions to vary smoothly across space and

time. Also, we extend the linear model of coregionalization (Grzebyk and Wacker-

nagel, 1994; Wackernagel, 1998; Gelfand et al., 2004) to the spatiotemporal setting

to account for the complex dependency structures of the speciated PM2.5.

We use a speciated PM2.5 data set that has not previously been analyzed. To

our knowledge, this is the first time that a statistical framework has been used to

analyze speciated PM2.5 across the entire United States. A Bayesian hierarchical

framework is used to study different random effects of interest. We show that the

total PM2.5 measurements are generally positively biased relative to the sum of the

speciated components and that magnitude of the bias varies across the U.S. We

also show that the proportions of each component vary considerably across space

and time and that accounting for the cross-dependency in the speciated components

dramatically improves prediction. In addition, we present a new approach to combine

different sources of PM2.5 information, which improves the prediction of the sum of

the five components of PM2.5. Wikle et al. (2001) presented a similar approach to

combine different sources of information of ocean surface winds, but they treated one

of the data sources as a prior process. In our approach, all of the data sources are

simultaneously represented in terms of the underlying truth, and we also model the

potential bias of the different sources of information as spatial-temporal processes.

This chapter is organized as follows. Section 2.2 describes the data used in this
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study. In Section 2.3, we present a Bayesian hierarchical multivariate spatial-temporal

model for speciated PM2.5. In Section 2.4, we present the results, and in Section 2.5,

we offer a general discussion.

2.2 Data Description

PM2.5 data from two monitoring networks and meteorological data in the conter-

minous United States for the year 2004 are used in this study. The first source of

PM2.5 data is the Speciated Trends Network (STN) established by the U.S. EPA in

1999. The STN measures the speciated PM2.5 either every day, every third day, or

every sixth day. It included about 200 monitoring sites in 2004, which are mostly in

urban areas. Figure 2.1 (a) shows the STN monitoring stations around the nation

in 2004. Even though the STN collects numerous trace elements, elemental carbon,

organic carbon, and ions (sulfate, nitrate, sodium, potassium, and ammonium), we

only consider the five main components of PM2.5 presented in the previous section.

In the STN, sulfate, nitrate, and ammonium are measured independently. Total car-

bonaceous mass is the sum of elemental carbon mass and estimated organic carbon

mass which is 1.4× ([OC]− 1.53), where [OC] is the measured organic carbon value,

1.4 is the factor to correct organic carbon mass for other elements (Rao et al., 2003),

and 1.53 is the blank correction factor to adjust for sampling artifacts (Flanagan et

al., 2003). Elemental carbon is also measured at the STN monitoring sites. Crustal

material is computed using the IMPROVE equation (Malm et al., 2004) for the five

most prevalent trace elements.
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(a) STN

(b) FRM

Figure 2.1: (a) STN monitoring stations in 2004 (b) FRM monitoring stations in
2004.
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Since the PM2.5 data at the STN monitoring stations provide sparse spatial cov-

erage, using only the STN monitoring data might be insufficient for modeling the

speciated PM2.5 over the entire United States. Therefore, we use the total PM2.5

data from the Federal Reference Method (FRM) monitoring network which includes

rural and urban sites and measures PM2.5 samples either every day, every third day,

or every sixth day. While the STN is a smaller network, the FRM network is a large

national network, which consisted of about 1000 monitoring sites in 2004. Figure 2.1

(b) presents the monitoring stations of the FRM network in 2004.

Meteorological data for 2004 have been provided from the U.S. National Climate

Data Center. We use five daily meteorological variables: minimum temperature (�),

maximum temperature (�), dew point temperature (�), wind speed (m/s), and

pressure (hPa).

2.3 Statistical Models

While speciated PM2.5 is only available at STN monitoring stations, information

about the sum of the five components comes from both STN and FRM networks.

Therefore we expect the sum of the five main components to be better identified than

the individual components. Thus, we develop a statistical two-stage hierarchical

framework using empirical Bayes approach. In the first stage, we model and estimate

the sum of the five components using STN and FRM data across the entire United

States by introducing a spatial-temporal framework. The posterior estimates for the

true sum of the five components are used as the inputs in the next stage. In the second
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stage, we introduce a multivariate statistical model for speciated PM2.5 in terms of

the estimate of the true sum of the five components and the relative proportion

of each component to the sum. Thus, we can predict speciated PM2.5 at locations

and times of interest. As a consequence on this two-stage approach, our posterior

estimates of variability for the speciated components will reflect our uncertainty in

the proportions, but not our uncertainty in the sum of the five components in the

first stage. However, our calibration analysis in Section 2.4 shows that our prediction

intervals maintain the proper coverage probability.

2.3.1 Stage 1: Model for the sum of the five main compo-

nents

We introduce a spatial-temporal model for the sum of the five main components

using FRM and STN data (see Figure 2.2). We define the reconstructed fine mass

(RCFM), ẐR(s, t), as the sum of the five main components from the STN data at

location s ∈ D1 and at time t ∈ D2, where D1 = {s : s1, . . . , sNs} ⊂ R2 and

D2 = {t : 1 = t1, . . . , T = tT} ⊂ R. We assume

ẐR(s, t) = Z(s, t) + eR(s, t), (2.1)

where Z(s, t) is the true sum of the five components, and eR(s, t) ∼ N(0, σ2
R) is

the measurement error at location s and time t, which is independent of the true

underlying process, Z(s, t).
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Figure 2.2: Model framework for the sum of the five main components.

A second estimate of the sum of the five main components is the observed total

PM2.5 mass from the FRM network, ẐF (s, t). We model ẐF (s, t) as

ẐF (s, t) = a(s, t) + Z(s, t) + eF (s, t), (2.2)

where eF (s, t) ∼ N(0, σ2
F ) is the measurement error at location s and at time t, which

is also independent of processes eR and Z. Since total PM2.5 mass from the FRM

network consists of more pollutants than the five main components, the additive

bias term a(s, t) is needed. The bias term a(s, t) accounts for systematic differences

between the two networks. In addition, the bias term can be represented as “unknown

components” which are not the main components of PM2.5.
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Exploratory analysis suggests that the additive bias varies over space and time,

and we model a(s, t) using a hierarchical framework,

a(s, t) = a1(t) + a2(s, t), (2.3)

a1(t) = h(t) + e1(t), (2.4)

a2(s, t) = δa2a2(s, t− 1) + e2(s, t), (2.5)

where a1(t) represents the overall temporal trend in the bias of the FRM data, and

h(t) is a smoothing function of time to explain seasonality in the additive bias term.

The process a2(s, t) accounts for the spatial-temporal structure which is not captured

by the overall temporal trend. We assume the process a2(s, t) is an AR(1) with

coefficient δa2 , and e1 and e2 are independent white noise processes and independent

of the process Z. In this study, based on exploratory analysis, we assume that h(t)

is a linear combination of one sine and one cosine function with respect to one-year

period. We use a normal prior, N(0,0.1) (0.1 is the precision), for δa2 .

The true sum of the five components, Z(s, t), is modeled using a dynamic spa-

tiotemporal linear model (Gelfand et al., 2005). We assume

Z(s, t) = MT (s, t)β(s, t) + ez(s, t), (2.6)

where M(s, t) is a vector of meteorological variables (minimum temperature, maxi-

mum temperature, dew point temperature, wind speed, and pressure) and ez(·, t) =

(ez(s1, t), ..., ez(sNs , t)) is normal with mean ψzez(·, t − 1) and, based on exploratory

analysis, exponential covariance σ2
z exp (−h1/φz), where h1 = ||s − s′|| (in km). In

general, the regression coefficients β(s, t) may vary across space and time. In Section

2.4’s application, β(s, t) is constant over time and constant within nine geographic
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regions. The meteorological data might not exist at all the sites of interest. We thus

interpolate the weather data at those locations using a spatial model for each time

point (as part of the hierarchical framework). We use a normal prior, N(0,0.1) (0.1

is the precision), for ψz and uniform priors, Unif(1,1000) and Unif(0,100), for φz and

σz, respectively.

Since the results are somewhat sensitive to the priors of the standard deviations

σF and σR, σF and σR are fixed based on prior information regarding the precision of

the FRM monitoring devices and the STN monitoring devices, respectively. U.S. EPA

(1997, 2000) suggested that the coefficient of variation (CV) is 15% for the FRM data

and 13% for the RCFM data. From the CV, the standard deviation can be calculated

as sd = CV*mean/100, giving σF = 1.796 and σR = 1.376.

We seek to predict values of Z at location s0 and time t0 given the data, ẐF ,

ẐR, and M. Therefore, the posterior predictive distribution of Z(s0, t0) given the

observations Ẑ = (ẐF , ẐR) and M is

p(Z(s0, t0)|Ẑ,M) ∝
∫

p(Z(s0, t0)|Ẑ,M,ΘZ)p(ΘZ |Ẑ,M)dΘZ , (2.7)

where ΘZ is a collection of all parameters considered in this stage. The posterior

predictive distribution given the data is approximated using Markov Chain Monte

Carlo (MCMC) algorithms. We use a blocking Gibbs sampling algorithm to simulate

values from the posterior distribution of the parameters ΘZ (using WinBUGS). Our

Gibbs sampling algorithm has three steps. We alternate between the coefficients for

the weather covariates and the covariance parameters of the spatial-temporal process

ez(s, t) (Step 1), the parameters for the bias components of the FRM data (Step 2),
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and the values of Z at all monitoring sites and time points (Step 3). After simulating

N1 values from the posterior distribution of the parameters ΘZ , the estimator for the

predictive distribution is

p(Z(s0, t0)|Ẑ,M) =
1

N1

N1∑
n1=1

p(Z(s0, t0)|Ẑ,M,Θ
(n1)
Z ), (2.8)

where Θ
(n1)
Z is the nth

1 draw from the posterior distribution. These estimates are used

as the inputs in the second stage.

2.3.2 Stage 2: Model for speciated PM2.5

In this stage, we parameterize our statistical model for speciated PM2.5 in terms

of the true sum of the five components from the first stage and the relative propor-

tion of each component to the total. The proportion of each component to the sum

varies over space and time, and we use a hierarchical framework to account for the

spatial-temporal associations of the proportions. Even though the spatial-temporal

dependency structures of the proportions are considered, it could be insufficient to

capture the spatial-temporal dependency and the cross dependency structures of spe-

ciated PM2.5. We thus include a mean-zero spatial-temporal process in the model,

which explains the dependency structures of speciated PM2.5. This approach allows

us to estimate both the speciated PM2.5 in terms of the sum of the five components

and the cross-covariance between PM2.5 components. Figure 2.3 shows the framework

for the speciated fine PM.
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Figure 2.3: Model framework for speciated PM2.5.

Let V̂(s, t) = (V̂1(s, t), . . . , V̂5(s, t))
T be a vector of the observed speciated PM2.5 at

location s and at time t from the STN. The parameter θk(s, t) denotes the proportion

of the sum attributed to component k, and Z(s, t) is the estimate for the sum of the

five components from the first stage. Our model for speciated PM2.5 is

V̂k(s, t) = θk(s, t)Z(s, t) + εk(s, t) + εw
k (s, t), for k = 1, . . . , 5, (2.9)

where εw
k (s, t) is the pure measurement error process which is assumed to be normal

and independent of εk(s, t). The spatial-temporal process ε(s, t) = (ε1(s, t), . . . , ε5(s, t))
T

is assumed to be a Gaussian process with mean zero and a covariance matrix which

changes with space and time.

To ensure that the proportions add to one at each site and time, we extend the

multinomial logit model (McFadden, 1974) to the spatiotemporal setting. Let

θk(s, t) =
exp(δk(s, t))∑5
j=1 exp(δj(s, t))

, for k = 1, . . . , 5, (2.10)
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where δj(s, t) are independent across j. To guarantee that the multinomial logit

model is identifiable, we fix δ5(s, t) = 0 for all s and t. In our study, crustal material

is taken to be the 5th component because it is the most stable component. We use a

dynamic hierarchical framework for δj(s, t) as

δk(s, t) = ηk(t) + γk(s, t), for k = 1, . . . , 4, (2.11)

ηk(t) = fk(t) + eηk
(t), (2.12)

γk(s, t) = δγk
γk(s, t− 1) + eγk

(s, t). (2.13)

The function ηk(t) denotes the overall temporal trend of the kth logit component,

which is expressed by the smoothing function of time fk(t) to explain seasonality of the

kth logit component. The process eηk
is assumed to be a white noise Gaussian process.

We model the process γk(s, t) using an AR(1) with coefficient δγk
and we assume the

process eγk
(·, t) is a Gaussian process with mean zero and a spatial covariance function

to explain the spatial dependency structure. Thus, the process γk(s, t) accounts for

the spatial-temporal structure of the kth logit component not explained by the overall

temporal trend. In this study, based on exploratory analysis, the function fk(t) is

assumed to be a linear combination of one sine and one cosine function with respect

to one-year period. The spatial covariance of eγk
is assumed to be an exponential

covariance σ2
γk

exp (−h1/φγk
). We use a normal prior, N(0,0.1), for δγk

. We use

uniform priors, Unif(0, 100) and Unif(1, 1000), for σγk
and φγk

, respectively.
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Spatial-temporal linear model of coregionalization (STLMC)

We account for spatial-temporal dependency and cross dependency of speciated

PM2.5 in the errors ε(s, t) = (ε1(s, t), . . . , ε5(s, t))
T by introducing a spatial-temporal

linear model of coregionalization (STLMC). The STLMC is an extension of the linear

model of coregionalization (LMC) used in multivariate spatial analysis (Grzebyk and

Wackernagel, 1994; Wackernagel, 1998; Gelfand et al., 2004). The basic idea of the

STLMC is that dependent spatial-temporal processes are expressed as linear combi-

nation of uncorrelated spatial-temporal processes. The STLMC provides a very rich

class of multivariate spatial-temporal processes with simple specification and inter-

pretation. The STLMC like the LMC could be used as a dimension reduction method,

which means that the given multivariate processes are represented as lower dimen-

sional processes. Recently, Schmidt and Gelfand (2003), Banerjee et al. (2004), and

Gelfand et al. (2004) used the LMC approach to construct valid cross-covariance func-

tions in the multivariate spatial modeling. In this study, we also use the STLMC to

construct a valid cross-covariance function of multivariate spatial-temporal processes,

i.e.,

ε(s, t) = Aw(s, t), (2.14)

where wT (s, t) = (w1(s, t), . . . , w5(s, t)), and A is a 5 × 5 weight matrix explaining

the association among the five variables. Without loss of generality, we assume A is a

lower triangular matrix. For computational convenience, we adopt a simple approach

to model the spatial-temporal process w(s, t). We assume that wi(s, t), i = 1, . . . , 5,

are independent Gaussian spatial-temporal processes with mean zero and separable
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spatial-temporal covariance,

Cov(wi(sl, tj), wi(sl′ , tj′)) = C
(1)
i (sl, sl′ ; φi)C

(2)
i (tj, tj′ ; ψi), (2.15)

where C
(1)
i is a spatial covariance with the parameter vector φi, and C

(2)
i is a tem-

poral autocovariance with the parameter vector ψi. The STLMC in (2.14) implies

E(ε(s, t)) = 0 and

Cov(ε(sl, tj), ε(sl′ , tj′)) =
5∑

i=1

C
(1)
i (sl, sl′ ; φi)C

(2)
i (tj, tj′ ; ψi)Ti, (2.16)

where Ti = aia
T
i and ai is the ith column vector of A. Under this model, the

covariance matrix of ε at any site s and time t is T =
∑5

i=1 Ti.

We form ε = (εT
1 , . . . , εT

5 )T and εT
i = (εT

i (t1), . . . , ε
T
i (tT )) for i = 1, . . . , 5, where

εT
i (tj) = (εi(s1, tj), . . . , εi(sNs , tj)) for j = 1, . . . , T . Then, the covariance matrix of ε

is

Σε =
5∑

i=1

Ti ⊗Ui ⊗Ri, (2.17)

where ⊗ denotes the Kronecker product. Each Ri is a Ns ×Ns matrix with (Ri)ll′ =

C
(1)
i (sl, sl′ ; φi), which accounts for spatial associations. Each Ui is a T × T matrix

with (Ui)jj′ = C
(2)
i (tj, tj′ ; ψi), which explains temporal associations. This covariance

matrix, Σε, is nonseparable, except in the special case of the STLMC where C
(1)
i =

C
(1)
i′ = C(1) and C

(2)
i = C

(2)
i′ = C(2) for all i, i′ = 1. . . . , 5. In this case, Σε = T⊗U⊗R

for (R)ll′ = C(1)(sl, sl′ ; φ) and (U)jj′ = C(2)(tj, tj′ ; ψ).

In our study, we use a stationary exponential covariance function C
(1)
i (sl, sl′ ; σ

2
i , φi) =

σ2
i exp (−||sl − sl′||/φi), i = 1, . . . , 5 and the autocovariance function of the AR(1)

C
(2)
i (tj, tj′ ; ψi) = ψ

|tj−tj′ |
i /(1 − ψ2

i ). We use uniform hyperpriors Unif(1,1000) and
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Unif(0,100), for φi and σi, respectively. For the temporal parameter ψi, we use a

normal hyperprior, N(0,0.1) (0.1 is the precision). Since the matrix A is a lower tri-

angular matrix, we assign inverse gamma priors to the diagonal elements and normal

priors to the off-diagonal elements.

Algorithm for Estimation and Prediction

We now discuss estimation and prediction of the speciated PM2.5 using a Bayesian

approach. In order to predict the speciated PM2.5 at location s0 and at time t given

the data V̂ and Z (all available speciated PM2.5 data and estimates for the true sum

of the five components from the first stage, respectively) and an estimate Z(s0, t)

from the first stage, we need the posterior predictive distribution of V(s0, t):

p(V(s0, t)|V̂,Z, Z(s0, t)) ∝
∫

p(V(s0, t)|V̂,Z,Θ, Z(s0, t))p(Θ|V̂,Z)dΘ, (2.18)

where Θ = (Θ1,Θ2) is a collection of all of the unknown parameters in the second

stage. The vector Θ1 includes parameters used to model the vector of the propor-

tions, θ, and the vector Θ2 includes the STLMC parameters. We use a Blocking

Gibbs Sampling algorithm to sample N2 values from the posterior distribution of the

parameter Θ (within the software WinBUGS). Like the previous stage, our Gibbs

sampling algorithm has three steps. We alternate between the proportion parameters

Θ1 given the data (Step 1), the covariance parameters Θ2 given the data and the val-

ues of Θ1 updated (Step 2), and the unobserved true values of V at all sites and time

points (Step 3). We obtain the conditional posterior distribution of the parameters

Θ given the data updated in Step 3.
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The conditional distribution of V at location s0 and time t is

p(V(s0, t)|V̂,Z,Θ, Z(s0, t)) ∼ N(µ(V(s0, t)),T− Σ12ΣV̂
−1(Σ12)

T ), (2.19)

where µ(V(s0, t)) = θ(s0, t)Z(s0, t) + Σ12ΣV̂
−1(V̂ − θZ), Σ12 = Cov(V(s0, t), V̂) is

a 5 × (5TNs) matrix, and ΣV̂ = Cov(V̂, V̂). Using the Rao-Blackwellized estimator

(Gelfand and Smith, 1990), the predictive distribution is approximated by

p(V(s0, t)|V̂,Z, Z(s0, t)) =
1

N2

N2∑
n2=1

p(V(s0, t)|V̂,Z,Θ(n2), Z(s0, t)), (2.20)

where Θ(n2) is the nth
2 draw from the posterior distribution for the parameters.

2.4 Application

We apply our statistical framework to the daily speciated PM2.5 data in the United

States in 2004. In the first stage, we study the spatial-temporal patterns of the

additive bias term of the FRM process. Preliminary exploratory analysis suggests that

the coefficients of the weather covariates are different in different regions. Therefore

we implement our framework for the nine geographic regions as defined by the United

States Census: New England; Middle Atlantic; East North Central; Midwest; South

Atlantic; East South Central; West South Central; Mountain; Pacific. We assume

that the regression parameters β(s, t) vary across regions but are constant (over space)

within these regions and have vague normal priors, N(0, 0.012) (0.012 is the precision).

In the second stage, we study the spatial-temporal association for each component

as well as the associations among the components. Due to computational costs,
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we implement our entire spatial-temporal framework for speciated PM2.5 using only

California data, but we work with our framework over the entire United States at

fixed times (June 14 and December 14) and at fixed locations (Los Angeles, Phoenix,

and New York City).

All MCMC sampling is carried out in the freely-available software WinBUGS

(http://www.mrc-bsu.cam.ac.uk/bugs/). For all MCMC sequences, we conducted

a MCMC convergence diagnosis using the Gelman and Rubin (1992) convergence

diagnostics, autocorrelation functions, and trace plots. All the hyperpriors chosen

here ensure acceptable MCMC convergence.

Figure 2.4 shows boxplots of the posterior mean of the monthly average of the

additive bias term of the FRM, a(s, t), for July 2004 and December 2004 in nine

geographic regions as defined by the U.S. Census Bureau. In July, the bias’ posterior

mean is positive for all nine geographic regions except for in the Pacific region. The

mean is the largest in the South Atlantic region. The negative bias (the mean is

−0.94) in the Pacific region is not surprising because in California during summer

about 60 − 90% of the nitrate is lost due to evaporation in the FRM’s total PM2.5

mass measurement (Frank, 2006). In December, the posterior mean bias is positive in

all regions. Overall, the bias is higher in July than in December because the sulfate

concentrations are high in the summer and the FRM total PM2.5 mass includes a

large amount of water during the summer (Frank, 2006).

Figure 2.5 shows maps of the posterior mean for the sulfate proportion and the

nitrate proportion on June 14 and on December 14. Overall, the sulfate proportion is

high in the eastern United States and the northwestern United States in June. The
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sulfate proportion is higher than the nitrate proportion across the entire United States

in June. The sulfate proportion is higher in June than in December. In contrast, the

nitrate proportion is lower in June than in December.

Figure 2.6 and 2.7 present maps of the estimated concentrations of speciated PM2.5

for the spatial analysis on June 14 and December 14, respectively. Overall, the sulfate

concentration is high in the Eastern U.S. in June, and the nitrate concentration is

high in Southern California in June. The sulfate concentration is higher than the

nitrate concentration in June. However, sulfate concentrations decrease and nitrate

concentrations increase in December. The nitrate concentration is high in the Western

U.S. in December. TCM is the highest component among the components in June

and December.

The time series plots of the estimated concentrations of speciated PM2.5 in Los

Angeles, Phoenix, and New York City are presented in Figure 2.8. These three

cities have markedly different temporal patterns, illustrating the difficulty in modeling

speciated PM2.5 across the entire United States. For all three cities, ammonium and

crustal concentrations are relatively constant over time. In Los Angeles, the most

abundant components are sulfate in the summer and nitrate and TCM in the winter,

and all of the components are high during March. Sulfate is also high in the New

York City in the summer, but unlike Los Angeles the other components are fairly

stable over time. TCM is the dominant component throughout the year in Phoenix.

Many of these patterns are also apparent in Figure 2.9’s map of the estimated

speciated PM2.5 composition by region and by season in 2004. In this figure circle

size corresponds to the sum of the five components, and we can clearly see their
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Table 2.1: Posterior quantiles of the correlations between components, (i.e.,
Tij/

√
TiiTjj) in California in 2004.

Parameters 2.5% Mean 97.5%

Sulfate/Nitrate -0.497 -0.151 -0.058

Sulfate/Ammonium -0.131 0.448 0.607

Sulfate/TCM -0.934 0.042 0.101

Sulfate/Crustal -0.095 0.869 0.943

Nitrate/Ammonium 0.434 0.836 0.994

Nitrate/TCM -0.095 0.038 0.286

Nitrate/Crustal -0.741 -0.223 -0.104

Ammonium/TCM -0.699 -0.558 -0.156

Ammonium/Crustal -0.604 0.024 0.279

TCM/Crustal -0.767 0.674 0.991

spatial-temporal pattern. In the Pacific region, the sum of the five components is

high over all seasons. During the summer (April - September), the sum of the five

components is high in the eastern United States, while during the winter (January -

March), the sum of the five components is high in the western United States.

TCM has the highest proportion among the components over the entire U.S.

Sulfate concentrations are highest during the summer in most of the Eastern U.S.

because increased photochemical reactions in the atmosphere increase sulfate for-

mation (Baumgardner et al., 1999). Nitrate concentrations are highest during the

winter (January - March) because high ammonia availability, low temperature, and
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high relative humidity favor ammonium nitrate condensation. On average, nitrate

concentration during the winter is 2.98µg/m3 over the United States (vs. 1.70µg/m3

for the year 2004). Overall, ammonium concentrations are roughly constant over all

seasons. TCM concentrations are high during the summer and fall because of high

fire-related activities. Crustal material concentrations are high over the entire United

States during the spring and summer because of low soil moisture and high wind

speeds. In particular, the western United States and some of the eastern regions are

also impacted by Asian dust, Saharan dust, and North African dust (Malm et al.,

2004).

Table 2.1 summarizes the posterior correlations between components using the

data from California in 2004. Several 95% posterior intervals do not cover zero. The

strongest correlation (posterior mean 0.836) is between nitrate and ammonium. This

relationship can also be seen in Los Angeles in Figure 2.8 as both of these components

have strong peeks in March and October.

Finally, to illustrate the need for our hierarchical framework, we present model di-

agnostics using our entire spatial-temporal framework using only data from California

in 2004. We use the deviance information criterion (DIC) proposed by Spiegelhalter

et al. (2002) to compare models. Deviance is defined as D(V ) = −2 log(f(V̂ |V )).

The DIC statistic is DIC = D + pD, where D = E(D(V)|V̂ ) measures fit and

pD = D − D(E(V|V̂ )), the effective number of parameters, measures complexity.

Models with smaller DIC are preferred. In addition to DIC, we also compare models

using the root mean square prediction error (RMSPE). In Table 2.2, we compare

three models. Model 1 is the statistical framework proposed in Section 2.3. Model
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Table 2.2: Model comparisons using DIC (Deviance Information Criterion) and RM-
SPE (Root Mean Squared Prediction Error).

Model DIC (pD) RMSPE

Model 1 950 (3444) 0.075

Model 2 8235 (1334) 1.462

Model 3 15219 (10) 6.082

2 ignores the STLMC process Aw(s, t). Model 3 removes both the STLMC and the

hierarchical framework of the proportion parameters, i.e., the proportion parameters

are constant over space and time. The DIC is 950 (pD = 3444) for Model 1, 8235

(pD = 1334) for Model 2, and 15219 (pD = 10) for Model 3. The RMSPE value for

Model 1 is 0.075, for Model 2 it is 1.462, and for Model 3 it is 6.082. Thus, our sta-

tistical framework has the lowest DIC and RMSPE values among the three models.

These results confirm the need for the multivariate spatial-temporal model.

In addition, we did conduct a calibration analysis for the speciated PM2.5 in

Phoenix to test the performance of our framework. We selected Phoenix because it is

one of the locations with most complete data. We randomly selected 30 observations

in 2004, and we obtained 95% prediction intervals for the tth time given the data,

not using data from the tth time we are predicting. Figure 2.10 plots the actual and

predicted values. The percentages of the observed values that are outside the interval

are between 0% and 3.3%. It appears that the model is well-calibrated. We also did

calibration analyses for the other locations and the results were similar.
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2.5 Conclusion

In this chapter we present a flexible hierarchical framework to study speciated

PM2.5. The multivariate spatial-temporal model proposed here allows for spatial-

temporal dependency for each component and cross dependency structures among

the components. A hierarchical framework provides a natural way to investigate

the spatiotemporally varying contribution of each component to the sum. Using our

framework, we can estimate speciated PM2.5 at unobserved locations of interest in

the United States. We also introduce a new statistical framework to incorporate

PM2.5 data from different sources, which takes into account bias over space and time.

Diagnostics verify the performance of our model.

We find that the additive bias term of the FRM network is generally positive.

That is, the FRM’s total PM2.5 mass is higher than the sum of the five main compo-

nents measured by the STN. However, in the Pacific region, we see different results

during the summer season because of nitrate losses. In the eastern United States,

the contribution of sulfate to the sum tends to be higher during the summer. In al-

most all regions, sulfate concentrations are high during the summer. Also, the spatial

differences in the sulfate concentrations are the largest during the summer. Nitrate

concentrations are high during the winter, and they are also high in urban areas be-

cause of high nitrogen oxide (NOx) emissions from automobiles. During the summer,

nitrate concentrations are low over the entire United States. TCM concentrations

explain most of total PM2.5 mass. It is found that TCM concentrations are high in

the summer and fall seasons. During the spring and summer seasons, crustal material



39

concentrations are high over the entire United States. Our results for the speciated

PM2.5 are consistent with previous analyses (Malm et al., 2004).

Our approach has some limitations. The computational burden prohibits a fully-

Bayesian analysis. We employ a two-stage algorithm that first estimates the sum

of the five components and then estimates the individual components. It is not

clear how much uncertainty is ignored by this approach. Also, the spatial-temporal

process for the true sum of the five components Z(s, t) and w(s, t) in the STLMC

could be modeled as a nonstationary and/or nonseparable spatial-temporal process.

However, the computational burden is exacerbated in these cases so we use simple

spatial-temporal models.

The multivariate spatial-temporal model could also be applied in other areas,

such as meteorology, ecological modeling, and exposure analysis. The framework and

results presented here will be essential for the health analysis.



40

1 2 3 4 5 6 7 8 9

−3
−2

−1
0

1
2

3

(a) July

1 2 3 4 5 6 7 8 9

−3
−2

−1
0

1
2

3

(b) December

Figure 2.4: Boxplots of the posterior mean of the monthly average of the additive
bias of the FRM, a(s, t), for (a) July 2004 and (b) December 2004 by geographic
region (as defined by the U.S. Census). Region (1): Northeast (New England); (2):
Northeast (Middle Atlantic); (3): Midwest (East North Central); (4): Midwest (West
North Central); (5): South (South Atlantic); (6): South (East South Central); (7):
South (West South Central); (8): West (Mountain); (9): West (Pacific).
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Figure 2.5: Maps of the posterior mean of the sulfate proportions to the sum of the
five components and the nitrate proportions to the sum on June 14, 2004 and on
December 14, 2004, respectively.
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Figure 2.6: Maps of the posterior mean of speciated PM2.5 (µg/m3) on June 14, 2004.
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Figure 2.7: Maps of the posterior mean of speciated PM2.5 (µg/m3) on December 14,
2004.
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Figure 2.8: Time series plots of the estimated speciated PM2.5 (µg/m3) for three cities (Los Angeles, Phoenix,
and New York City) in 2004.
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Figure 2.9: Maps of the estimated speciated PM2.5 composition by region and by season in 2004.
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Figure 2.10: Model diagnostics for speciated PM2.5 in Phoenix: STN values of each
component versus the means of the predictive posterior distribution of the component
at time t eliminating the tth observation. The dotted lines show the 95% prediction
intervals.
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Chapter 3

Spatial-temporal association

between fine particulate matter

and daily mortality

3.1 Introduction

Many epidemiological studies have investigated the association between PM expo-

sure and adverse human health outcomes (e.g., Dockery et al., 1992; Schwartz, 1994;

American Thoracic Society and Bascom, 1996a,b; Dominici et al., 2000). However,

the work by Smith et al. (2000) on fine particles, PM2.5, provided evidence of lack

of significant association between fine PM and mortality. This seems to suggest that

more studies are needed to understand the effects of PM2.5 on mortality.



48

Most of the previous analyses of PM health effects have been conducted in urban

areas; very little is known about the rural PM-related health effects. One reason

for this is that monitoring data are not only sparse across space but also time since

most stations only measure PM2.5 every third or sixth day. We overcome this limita-

tion by supplementing monitoring data with atmospheric deterministic models (e.g.,

Community Multiscale Air Quality (CMAQ) models). CMAQ predicts air pollution

levels at any given location and time. However, these numerical models could have

a significant bias that needs to be quantified. Also, numerical models provide areal

pollution estimates, rather than spatial point estimates. Thus, we have a change

of support problem (see e.g., Gotway and Young, 2002), since monitoring data and

numerical model output do not have the same spatial resolution. In this chapter, we

develop a multi-stage spatial-temporal modeling approach which allows us to address

these knowledge gaps, the change of support problem, and related uncertainties in

assessing fine PM concentrations and health effects.

Recently, rigorous statistical time series modeling approaches have been used to

better control for potential confounders in the epidemiological analysis of mortality

associated with elevated ambient air pollutant levels. Furthermore, sophisticated an-

alytical techniques have been introduced to adjust for seasonal trends in the data,

culminating in the introduction of the generalized additive models (GAM). Although

temporal trends can be explicitly included in the model, non parametric local smooth-

ing methods (LOESS) based on GAM were widely used to take into account such

trends in the analysis. Dominici et al. (2002b) suggested another approach using

parametric natural cubic splines in the GAM model instead of the LOESS. One of
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the main limitations of this type of time series modelling approach is that it is nec-

essary to choose the time span in the LOESS smoothing process, or the degrees of

freedom of the cubic splines, and the results can be very sensitive to how that is done.

In our framework, we use an alternative approach which does not involve the selection

of the number of basis functions or the degrees of freedom. We estimate the shape of

time-varying confounders by introducing a stochastic search variable selection (SSVS)

method (George and McCulloch, 1993) in a space-time context, while characterizing

the spatial association of the time-varying confounders. SSVS was originally intro-

duced for linear regression models and has been adopted for generalized linear models

(George and McCulloch, 1997), log-linear models (Ntzoufras et al., 1997), and multi-

variate regression models (Brown et al., 1998). Smith and Kohn (1996) used Bayesian

variable selection in a nonparametric regression model. The work presented here is

the first attempt to extend Smith and Kohn’s idea to model spatial-temporal data

by randomly including/excluding basis functions from the model.

As presented in the previous chapter, PM2.5 and its chemistry change with space

and time, so the effects of PM2.5 on mortality could change across space and time.

Dominici et al. (2002a) showed that different cities have different relative risks of

mortality due to PM exposure. Fuentes et al. (2006) smoothed the relative risk

spatially. Lee and Shaddick (2007) smoothed the relative risk temporally. This is the

first study to combine these two approaches. In our framework we allow the relative

risk of mortality due to exposure to PM2.5 to vary across space and time, taking into

account spatial dependencies of the mortality data and the pollution data.

In this work we introduce an innovative hierarchical framework for spatial-temporal
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Figure 3.1: Hierarchical Bayesian framework to study the spatial and temporal asso-
ciation between fine particulate matter and mortality.

prediction and modelling of fine PM integrating atmospheric numerical model out-

put with monitoring data, and we investigate the adverse health outcomes associated

with population exposure to fine particulate matter (see Figure 3.1). We charac-

terize geographic differences in the PM2.5 health effects across the state of North

Carolina for the year 2001. In the first stage we incorporate multi-source and multi-

level information and knowledge (monitoring network [FRM, IMPROVE], air quality

numerical model, meteorological data) about ambient environment into a flexible

Bayesian space-time modeling framework for estimating ambient fine PM concentra-

tions. These refined exposure indices of PM2.5 mass from stage 1 are incorporated

in a likelihood-based version of Poisson regression models (stage 2) to estimate the

relative risks and to characterize the population susceptibility for PM2.5 associated in-
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creases in mortality. The hierarchical framework introduced here to combine different

sources of spatial-temporal data, while characterizing uncertainty and bias associated

to them, is adopted to obtain more reliable estimates of air pollution levels and to

reduce the variability of the relative risk parameter, which explains the association be-

tween pollution and mortality. To the best of our knowledge, this is the first study to

use numerical model output in studying the association between PM2.5 and mortality.

However, this framework is flexible enough that can be adopted and implemented in

many other situations where we have spatial (or spatial-temporal) information from

different sources.

This chapter is organized as follows. In Section 3.2, we describe the different

sources of data used in this study. In Section 3.3, we present a statistical framework

to study the spatial-temporal association between PM2.5 and mortality. We also

describe a spatial-temporal model for PM2.5. In Section 3.4, we present the results of

this study. Finally, we provide a general discussion in Section 3.5.

3.2 Data Description

In this study we use the available PM2.5 data in North Carolina for the year

2001. The data were provided by the U.S. EPA. The first source of PM2.5 data has

been obtained from the Federal Reference Method (FRM) monitoring network, which

includes rural and urban sites and collects PM2.5 samples either every day, every

third day, or every sixth day. The second source of information for PM2.5 is from

the Interagency Monitoring of Protected Visual Environments (IMPROVE) network.
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Figure 3.2: Yearly average of total PM2.5 mass (µg/m3) from (a) FRM network and
IMPROVE network and (b) CMAQ model for 2001.
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The IMPROVE network stations are located at national parks and wilderness areas,

and they collect PM2.5 samples either every day, every third day, or every sixth day.

Figure 3.2 (a) presents the yearly average of total PM2.5 mass (µg/m3) at the 38 FRM

monitoring stations and 3 IMPROVE monitoring stations in North Carolina for the

year 2001.

Another important source of PM2.5 over large areas can be obtained from three-

dimensional (3-D) regional scale air quality models such as the U.S. EPA CMAQ

modeling system (Binkowski and Roselle, 2003; Byun and Schere, 2006). CMAQ

simulations over an airshed of interest provide gridded hourly concentrations and

dry/wet deposition fluxes of major air pollutants such as PM2.5. In this study we use

CMAQ output from the surface layer. Figure 3.2 (b) presents the yearly average of

CMAQ’s total gridded PM2.5 mass (µg/m3) for the year 2001. The CMAQ resolution

used in this study is 36km × 36km, and each CMAQ value represents the averaged

pollution levels within each grid cell.

Ozone measurements (O3) are monitored (on the hourly basis) through the State

and Local Air Monitoring Stations (SLAMS), National Air Monitoring Stations (NAMS),

and Clean Air Status and Trends Network (CASTNET). We have access to the

SLAMS/NAMS measurements (http://www.epa.gov/oar/oaqps/qa/monprog.html) and

CASTNET measurements (http://www.epa.gov/castnet/), and we use them to study

the influence of the ozone as possible causative factor of adverse health effects. We

determine the effects of ozone measurements and fine particles jointly.

Daily meteorological data in North Carolina have been obtained from the U.S.

National Climate Data Center. We use the following weather variables: minimum
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temperature (�), maximum temperature (�), dew point temperature (�), wind

speed (m/s), and pressure (hPa).

We obtained daily mortality data in North Carolina from the Odum Institute at

the University of North Carolina (http://www.irss.unc.edu). These data include

daily deaths from natural and cardiovascular causes by county in North Carolina for

the year 2001. Figure 3.3 shows total counts of natural deaths and cardiovascular

deaths over the entire state of North Carolina for 2001.

3.3 Statistical Models

Our hierarchical framework has two main stages (see flowchart in Figure 3.1).

In the first stage we model and estimate the PM2.5 concentrations, that are used in

the health model proposed in stage 2. Fitting this complex hierarchical framework

is done stage-by-stage, and we take the PM2.5 estimates from the first stage as the

inputs for the next stage. Within each stage we use a fully Bayesian approach to

get the posterior distributions. As the implementation is based on the sequential

version of the Bayesian theorem, the corresponding model uncertainties are captured

at the final stage of our hierarchical model. Gelman (2004) has described the benefits

of this type of directional Bayesian approach. This approach does not only offer

computational benefits, but also in some settings, like the one presented here, the

lack of an iteration between stages 1 and 2 might be desired. For example, we would

not want the health data (Stage 2) help us to explain the pollution variables (Stage

1).
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(b) Total counts of cardiovascular deaths

Figure 3.3: (a) Total counts of natural deaths in North Carolina for 2001 (b) Total
counts of cardiovascular deaths in North Carolina for 2001.
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3.3.1 Stage 1: Model for fine particulate matter

We introduce a spatial-temporal model for PM2.5 using both observed data and

numerical model output; this is an extension of the approach presented by Fuentes and

Raftery (2005) in a purely spatial setting. We do not consider FRM measurements

to be the “true” values because they are measured with error. Thus, we denote the

observed total PM2.5 mass at location s ∈ D1 on day t ∈ D2 from the FRM network

by ẐF (s, t), where D1 = {s : s1, . . . , sNs} ⊂ R2 and D2 = {t : 1, . . . , T} ⊂ R, and it is

modeled as

ẐF (s, t) = Z(s, t) + eF (s, t), (3.1)

where Z(s, t) is the unobserved “true” underlying spatial-temporal process at location

s on day t. The measurement error eF (s, t) ∼ N(0, σ2
F ) is assumed to be independent

of the true underlying process.

We use a similar representation for the observed PM2.5 measurements from the

IMPROVE network, which is denoted by ẐI . We have

ẐI(s, t) = Z(s, t) + eI(s, t), (3.2)

where eI(s, t) ∼ N(0, σ2
I ) is the measurement error and assumed to be independent

of the processes Z(s, t) and eF (s, t).

Since the CMAQ values are averages over grid squares, not point measurements,

we model the PM2.5 CMAQ values, Z̃(Bb, t), where subregions B1, . . . , BB cover the

spatial domain B, as follows:

Z̃(Bb, t) = a(Bb) +
1

|Bb|
∫

Bb

Z(s, t)ds + eN(Bb, t), (3.3)
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where a(Bb) is the additive bias of the CMAQ output in subregion Bb and assumed

to be a polynomial function of the centroid of the subregion, sb, with a vector of

coefficients, a0. The process eN(Bb, t) ∼ N(0, σ2
N) accounts for the random deviation

with respect to the underlying true process and is independent of eF (s, t), eI(s, t),

and Z(s, t).

The true underlying process Z is modeled as a function of the weather covariates:

Z(s, t) = MT (s, t)ζ + ez(s, t), (3.4)

where M(s, t) is a vector of meteorological variables (minimum temperature, maxi-

mum temperature, dew point temperature, wind speed, and pressure) with a coeffi-

cient vector ζ. The weather information is obtained from weather stations, but they

are not necessarily located at the same locations at which we have air pollution data,

thus we have a spatial misalignment problem. To deal with this problem, we add in

our hierarchical framework another level, stage 0, in which we use a spatial model

for the weather variables for each day and predict these variables at the locations of

interest for stages 1 and 2.

In order to predict Z(s0, t0), the true PM2.5 value at space s0 and time t0, given

the data, Ẑ = (ẐF , ẐI , Z̃) and M, we need the posterior predictive distribution of

Z(s0, t0),

p(Z(s0, t0)|Ẑ,M) ∝
∫

p(Z(s0, t0)|Ẑ,M,ΘZ)p(ΘZ |Ẑ,M)dΘZ , (3.5)

where ΘZ is a collection of all parameters considered in this stage. The posterior pre-

dictive distribution (3.5) given the data is approximated using Markov Chain Monte
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Carlo (MCMC) algorithms. We use a blocking Gibbs sampling algorithm to simu-

late values from the posterior distribution of the parameters ΘZ (using WinBUGS).

Like the algorithm in Section 2.3.1, our Gibbs sampling algorithm has three steps.

We alternate between the coefficients for the weather covariates and the covariance

parameters of the spatial-temporal process ez(s, t) (Step 1), the parameters for the

measurement errors and bias components of the PM2.5 data (Step 2), and the values

of Z at all monitoring sites (Step 3). The predictive distribution is obtained using

the Rao-Blackwellized estimator (Gelfand and Smith, 1990)

p(Z(s0, t0)|Ẑ,M) =
1

N1

N1∑
n1=1

p(Z(s0, t0)|Ẑ,M,Θ
(n1)
Z ), (3.6)

where Θ
(n1)
Z is the nth

1 draw from the posterior distribution.

The quantities of interest are the true total PM2.5 mass averaged over a spatial

domain Cj within county j on day t denoted by Zj(t),

Zj(t) =
1

|Cj|
∫

Cj

Z(s, t)ds. (3.7)

The estimate of Zj(t) is obtained by averaging estimates of true PM2.5 values at

several locations randomly chosen within county j on day t. These estimates are

used in the second stage.

Spatial priors

We use uniform priors, Unif(0,5), for σF and σI . We set these priors based on the

information provided by EPA (U.S. EPA, 1997, http://vista.cira.colostate.edu/

improve/) regarding the precision of the instrumentation used in these networks.

Based on analysis of other similar datasets, we impose a uniform prior, Unif(0,5), for
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σN . Based on exploratory analysis, ez(·, t) = (ez(s1, t), . . . , ez(sNs , t)) is normal with

mean ψzez(·, t− 1) and exponential covariance σ2
z exp (−h1/φz), where h1 = ||s− s′||

(in km). We use a normal prior, N(0,0.1) (0.1 is the precision), for ψz and uniform

priors, Unif(1,500) and Unif(0,100), for φz and σz, respectively.

3.3.2 Stage 2: Environmental Health Model

There are various statistical methods for modeling mortality data in the literature

(e.g., Dominici et al., 2002a). The commonly-used model to study the association

between air pollution and human health outcomes is a standard Poisson regression

model with the independence assumption for the counts. However, an assumption of

the Poisson model is that the mean and variance of the response variable are equal

for each observation. This may be too restrictive. For example, the variance of the

count data can be either smaller (under-dispersion) or larger (over-dispersion) than

the mean. As described in Section 3.2, many counties in NC have very few counts

at each day so a standard Poisson regression model might not be reasonable in this

case.

We use a generalized Poisson regression model (Famoye, 1993; Fuentes et al., 2006)

to characterize the potential over-dispersion or under-dispersion of the mortality data.

Let Yj(t) be the number of natural deaths of county j for day t, for j = 1, . . . , J and

t = 1, . . . , T . We assume that Yj(t) follows a generalized Poisson distribution. The



60

probability function of a generalized Poisson distribution is defined by

f(yj(t)) = Pr[Yj(t) = yj(t)] =
( µj(t)

1 + αµj(t)

)yj(t){1 + αyj(t)}yj(t)−1

yj(t)!

× exp
{
− µj(t)(1 + αyj(t))

1 + αµj(t)

}
, (3.8)

where yj(t) = 0, 1, . . . , α−, and α− = −αI(α < 0) = −min(α, 0). This distribu-

tion is denoted as Yj(t) ∼ GPoi(α, µj(t)), where α is a dispersion parameter, and

µj(t) ≥ 0 is a mean parameter. The mean and variance are E[Yj(t)] = µj(t) and

V ar[Yj(t)] = µj(t){1+αµj(t)}2, respectively. If α > 0, then the model represents the

over-dispersion (V ar[Yj(t)] > E[Yj(t)]), and if α < 0, then it represents the under-

dispersion (V ar[Yj(t)] < E[Yj(t)]). If α = 0, then it becomes a standard Poisson

distribution. Based on a generalized Poisson distribution for mortality, we develop a

hierarchical regression model for estimating the spatial-temporal association between

PM2.5 and mortality.

As discussed in Chapter 1, one of important issues when investigating the asso-

ciation between PM2.5 and daily mortality is “harvesting hypothesis” (or mortality

displacement). We introduce a space-time model to estimate the association between

PM2.5 and mortality that is resistant to short-term harvesting. The method is a

spatial adaption of the approach by Dominici et al. (2003) in a purely temporal con-

text, and it is based on the assumption that harvesting alone creates associations

only at shorter time scales. We use a spectral approach for the log-linear regression

to decompose the information about the pollution-mortality association into distinct

time scales taking into account the spatial dependency structure of the mortality and

pollution data, and our relative risk estimates are harvesting-resistant because we ex-
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clude the short-term information that is affected by harvesting. Thus, we decompose

the daily time series of PM2.5 estimates for county j, Zj(t), into L orthogonal different

timescales components, Zj1(t), . . . , ZjL(t), using a discrete Fourier transform method

(see Appendix A).

The effect of each orthogonal decomposition of the PM2.5 time series is allowed to

vary by county and by season. The index k refers to the seasons; we set k = 1 for

the winter season (January-March), k = 2 for the spring season (April-June), k = 3

for the summer season (July-September), and k = 4 for the fall season (October-

December). The parameter βjlk represents the effect of air pollution for county j on

timescale l for season k; the log relative risk (RR) parameter is defined as βjlk ∗ 103.

We assume

Yj(t) ∼ GPoi(α, µj(t)),

log (µj(t)) = γj +
L∑

l=1

βjlkZjl(t) + fj(t) + Oj(t)γo (3.9)

+S1(tempj(t), df1) + S2(dewj(t), df2) + S3(windj(t), df3).

The function fj(t) adjusts for the seasonality of mortality, which varies with county

j. In addition to the orthogonal PM2.5 predictions, we also consider the co-pollutant

Oj(t), the daily ozone concentration for county j and day t, imputed using a similar

spatial-temporal model as in Section 3.3.1 (see Appendix B). The Si’s are smooth

functions of the weather covariates (temperature, dew point temperature, and wind

speed) with the degrees of freedom (df) per year (dfi’s). These weather variables are

important to affect health outcomes.

Confounders
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We consider the following confounders: age, gender, race, and hispanic/non-hispanic.

Each confounder is treated as a categorical variable in our health model. We study the

potential impact of these confounders on the RR by allowing an interaction between

our estimated PM2.5 component and the different confounders. In this study the

groups for each confounder are:

• Age: 0− 14 years old (children), 15− 64 (adults), ≥ 65 (senior adults).

• Gender: male, female.

• Race: white, black, American Indian, Other.

• Hispanic: Non-hispanic, hispanic.

Spatial priors

Since the number of deaths for each county may depend on its population size, we

assume that the intercept parameter γj is a spatial random effect, representing the

baseline log relative risk of mortality for each county j. We use a conditional autore-

gressive (CAR) prior (Besag et al., 1991) for γ = (γ1, . . . , γJ)T ,

γ ∼ N(µγ , σ2
γ(B+ − ρB)−1), (3.10)

where σ2
γ is the overall variance parameter and ρ is the spatial association parameter.

The matrix B = (Bjj′) includes the neighboring information, where Bjj′ = 1 if

county j is adjacent to county j′, and Bjj′ = 0 otherwise. The matrix B+ is a

J × J diagonal matrix with elements mj =
∑

j′ Bjj′ , j = 1, . . . , J . Thus, mj is the

number of “neighbors”(adjacent counties) of county j. The mean parameter µγ has
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a normal prior, N(0, 0.01) (0.01 is the precision). The parameter σ2
γ has an inverse

gamma prior, IG(0.5,0.0005), as recommended by Kelsall and Wakefield (1999), and

the parameter ρ has a uniform prior with bounds which are determined in order to

guarantee that the variance matrix of γ is symmetric positive definite (Banerjee et

al., 2004).

To account for the spatial and temporal similarity of the effect of PM2.5 for

each timescale l, the multivariate CAR prior for βl = (β1l, . . . , βJl)
T with βjl =

(βjl1, . . . , βjl4)
T would be proper. Jin et al. (2007) introduced a general approach

for multivariate spatial modelling, offering different alternatives to model the prior

process for βl. In this study, we use a particular case of a multivariate CAR, called

a multivariate intrinsic autoregressive (MIAR) prior (Gelfand and Vounatsou, 2002),

that corresponds to a relatively smooth spatial process (ρ = 1),

βjl|βj′l j′ 6=j,∼ N
( 1

mj

∑

j′ 6=j

Bjj′βj′l,
1

mj

Σβl

)
, (3.11)

where the positive definite 4×4 matrix Σβl
accounts for the conditional variability as

well as cross-covariance relationships between the different seasons given the neigh-

boring sites for each time scale l. Even though the MIAR is improper, the posterior

will be proper under some regulatory conditions (see e.g., Sun et al., 1999). To guar-

antee that this prior is identified, we include 4 centering constraints
∑

j βjlk = 0 for

k = 1, . . . , 4 to identify separate intercept terms in the model. We use a Wishart

prior for the 4× 4 precision matrix of the MIAR, Wishart((0.01I4)
−1, 4), where I4 is

the identity matrix of size 4.

Seasonality of mortality
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Selecting the number of basis functions for adjusting for the seasonal trend of mor-

tality is always problematic. Here, we propose an approach that avoids fixing the

number of basis functions. We write the seasonal trend for county j, fj(t), using a

Fourier basis (same for all counties), Cq(t), q = 1, . . . , Q,

fj(t) =

Q∑
q=1

cjqCq(t), (3.12)

where Q is the number of basis functions and cjq’s are unknown regression parameters

that control the shape of the seasonal trend at each county j. Instead of selecting the

number of basis functions, we assume that Q is large enough to capture the true model,

and we use a Bayesian variable selection technique to stochastically include/exclude

terms from the seasonal trend. We introduce a binary variable, wjq, and a continuous

spatial variable, rjq, and express cjq as

cjq|wjq, rjq = wjqrjq,

wjq ∼ Bernoulli(0.5),

where the vectors of coefficients rq = (r1q, . . . , rJq), for q = 1, . . . , Q, follow indepen-

dent CAR priors. If wjq = 0, then cjq = 0, and the corresponding basis function is

not included in the model. If wjq = 1, then cjq = rjq, and cjq is non-zero, thus, the

corresponding basis function is included in the model. We summarize the model com-

plexity using the posterior of Wj =
∑Q

q=1 wjq, which is the number of basis functions

included in the model for county j.
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3.4 Application

We apply our statistical framework to data in North Carolina for the year 2001 to

study the spatial-temporal association between exposure to PM2.5 and daily natural

and cardiovascular deaths. We compare seasonal patterns in the effects of PM2.5 and

its different timescales on mortality. We study the effects of ozone on mortality. Here,

we decompose the daily time series of PM2.5 into five orthogonal components: < 3.5

days, 3.5− 6 days, 7− 13 days, 14− 29 days, and ≥ 30 days (Dominici et al., 2003).

The prior distributions of the spatial models in stages 1 and 2 are described in

Sections 3.3.1 and 3.3.2. In the mortality model, we use natural cubic splines for the

smooth functions Si’s with B-spline basis functions (Eilers and Marx, 1996). To select

the degrees of freedom (dfi’s), we considered up to 10 df per year for each smooth

function. This value seemed to be large enough based on preliminary analysis. We

found that 6 df per year for temperature and 3 df per year for dew point temperature

and wind speed seemed appropriate using the deviance information criterion (DIC)

of Spiegelhalter et al. (2002). Since we use 1-year data, we set the number of basis

functions Q = 30. We use normal distribution, N(0,0.01), for the hyperpriors of the

polynomial coefficients. We obtain the results using WinBUGS (http://www.mrc-bsu.

cam.ac.uk/bugs) and R (http://www.r-project.org/). For all MCMC sequences,

we conducted a MCMC convergence diagnosis using the Gelman and Rubin (1992)

convergence diagnostics, autocorrelation functions, and trace plots.

Figure 3.4 maps the posterior mean of the monthly average of the PM2.5 concen-

trations for January 2001 and August 2001. The estimated PM2.5 values in January
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and August were the highest in the central part of NC. Overall, the estimated PM2.5

concentrations in January were lower than in August. On average, the PM2.5 concen-

tration was 13.76µg/m3 for January and 16.26µg/m3 for August.

Figure 3.5 (a) presents the time series of the estimated PM2.5 and its different

timescales for Wake County. As expected, the plots of the short-term timescales vary

rapidly from day to day, while the time series plots for the long-term timescales are

fairly smooth. The PM2.5 value for each day is the same as the value obtained by

adding the values of the five timescales for that day. Figure 3.5 (b) shows the daily

time series of mortality (total and cardiovascular disease), ozone, temperature, dew

point temperature, and wind speed for Wake County.

The estimated RRs at different timescales for 4 counties are presented in Figure

3.6. We found that the estimated RR values at longer timescale variations (>= 14

days) are larger than those at shorter timescale variations (< 14 days) in winter and

summer, with few exceptions. The standard deviation (SD) of the RR is the highest

for the longest timescale (>= 30 days), due to the potential correlation with the

seasonal trend term. We also obtained estimated RR values of current day mortality

using nondecomposed PM2.5 time series. The effects of PM2.5 on mortality in the

winter and the summer seem to be similar. The RR values of mortality by season

for Wake County are summarized in Table 3.1. For all seasons, the RR at timescales

greater than 1 month was larger than those at timescales less than 3.5 days. The

effect of PM2.5 on current day mortality in the spring was the smallest among all

seasons, while the effect in the winter was the largest.

We also studied the RR parameter of cardiovascular mortality by season. Table 3.2
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Table 3.1: Posterior mean (SD) of log relative rates of mortality (percent increase
in mortality per increase of 10µg/m3 of PM2.5 concentrations) for Wake County by
season.

Winter Spring Summer Fall

≥ 30 18.0 (15.3) 6.5 (21.1) 33.8 (14.1) 9.9 (13.7)

14− 29 17.8 (13.9) 0.9 (12.2) 6.9 (9.8) -13.3 (7.7)

7− 13 1.0 (7.4) -2.7 (8.0) 6.3 (10.3) 10.1 (7.6)

3.5− 6 1.6 (6.6) 1.2 (8.5) 8.0 (8.7) -7.4 (7.6)

< 3.5 4.4 (6.5) -3.2 (7.8) 3.3 (11.4) -3.1 (8.2)

overall 6.5 (5.5) 0.3 (6.1) 5.1 (3.5) 3.5 (5.4)

presents the estimated RRs of cardiovascular mortality by season for Wake County.

We found a similar pattern for all seasons, greater effects at timescales greater than

1 month than at timescales less than 3.5 days. The spatial pattern of the RR for

cardiovascular mortality due to PM2.5 exposure was similar to that of the RR for

natural mortality.

We studied the impact of ozone on the association between PM2.5 and mortal-

ity. Figure 3.7 shows the differences in the RR parameter in the winter and the

summer when ozone is included in the model and when ozone is not included. The

differences in the RR in the summer seemed to be higher than those in the winter.

However, the differences were small relative to the SD of the RR parameter so ozone

did not have a significant effect. The 95% posterior interval for the parameter γo was

(−0.0009, 0.0061).
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Table 3.2: Posterior mean (SD) of log relative rates of cardiovascular mortality (per-
cent increase in mortality per increase of 10µg/m3 of PM2.5 concentrations) for Wake
County by season.

Winter Spring Summer Fall

≥ 30 9.6 (20.9) 2.6 (11.0) 12.3 (13.6) 8.4 (17.8)

14− 29 0.7 (20.1) 3.0 (19.0) 3.1 (12.0) -2.9 (13.1)

7− 13 -2.3 (12.0) 1.4 (3.2) 7.6 (12.0) 27.3 (15.9)

3.5− 6 0.9 (8.0) 0.6 (12.7) -2.5 (13.2) -3.1 (14.0)

< 3.5 -0.6 (5.9) 1.2 (13.6) -3.4 (10.8) -4.5 (14.0)

overall 0.7 (4.9) -0.2 (5.8) 4.9 (6.3) 8.3 (9.5)

We examined the model complexity using the estimated Wj for each county j.

This index is based on the adjustment for the seasonal trend of mortality. As shown

in Figure 3.8 the posterior mean of the number of basis functions varied considerably

by county. On average, the estimated number of basis functions included in the model

across all counties was 10, and its SD was 2.3.

The estimated values for the intercept in the model are presented in Figure 3.9.

As expected, higher estimated values for the intercept γj were obtained in counties

with larger population sizes.

None of the confounders appeared to have a significant impact on the RR. The in-

teraction term between the estimated PM2.5 for the 5 timescales and the confounders

was not significant across space. We conducted another study to examine the signifi-

cance of the interaction term between same-day PM2.5 exposure and the confounders,
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Table 3.3: Model comparisons using DIC (Deviance Information Criterion) and RM-
SPE (Root Mean Squared Prediction Error).

Model DIC (pD) RMSPE

Model 1 96327 (1038) 2.749

Model 2 96974 (1009) 2.781

Model 3 6.998

and it was not significant either.

CMAQ

In order to examine the contribution of CMAQ to the relative risk, we repeated

the analysis without the CMAQ output for PM2.5. The posterior means of the RR

parameter when the CMAQ output was not used in our model were similar to those

from the full model (Figure 3.10 (a)). However, Figure 3.10 (b) shows that including

the CMAQ output substantially reduces the posterior SDs of the RR. Thus, it seems

that including the numerical model output improves our estimate of the effect of

PM2.5 on mortality.

Model Diagnostics and Calibration

In our generalized Poisson model, the posterior mean of the dispersion parameter

α was 0.049, and the 95% posterior interval was (0.040, 0.057). This provides some

evidence that the data might overdispersed and that a generalized Poisson model

is needed in this application. Table 3.3 compares three different statistical models

using the DIC and the root mean squared prediction error (RMSPE). The RMSPE
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is defined as
√

1
N

∑N
1 (Oi − Pi)2, where Oi are the observed mortality values for each

county, and Pi are the predicted mortality values (using the mean of the predictive

posterior distribution). The DIC for our full model (Model 1) was 96327 (pD = 1038)

and the DIC for the model with a constant RR across space (Model 2) was 96974

(pD = 1009). The RMSPE value was also smaller for the full model (2.749) compared

to the model with a constant RR across space (2.781). This justifies the need of a

model that allows for spatial temporal variation in the RR, even within the relatively

small geographic domain of this study. In addition, we considered a generalized linear

model (GLM) in order to assess the need for our more complex Bayesian space-time

framework. We fit a traditional GLM with a Poisson model for the number of deaths

(Model 3) and allowed the regression coefficients to be independent over space and

time. The RMSPE value of this model was 6.998. The fact that the RMSPE was

almost 3 times the value obtained using our space-time model justifies the importance

and relevance of taking into consideration the spatial-temporal structure of the data

and uncertainties associated to them.

In addition, we did calibration analysis. In Figure 3.11, we present at a couple of

randomly selected counties (Catawba and Durham) calibration plots for the mortality

analysis during the summer and the fall seasons. The percentage of the observed

values that are outside the interval is 10% for the summer and 6% for the fall. Similar

results were obtained at other locations. We conclude our model is well calibrated.

We conducted sensitivity analysis to study the sensitivity of the estimated RR

with respect to degrees of freedom used to explain the role of the weather variables.

We fit several models using 3 and 9 dfs per year for temperature and using 6 and 9
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Table 3.4: DIC (Deviance Information Criterion) for the selection of the degrees of
freedom (dfi’s) in the smooth functions of the weather variables (temperature (temp),
dew point temperature (dew), and wind speed (wind)).

df for wind

df for temp df for dew 3 6 9

3 96694 (1037) 96399 (1039) 96622 (1043)

3 6 96802 (1040) 96723 (1045) 96793 (1051)

9 96631 (1049) 96867 (1055) 96865 (1059)

3 96327 (1038) 96723 (1041) 96613 (1042)

6 6 96471 (1043) 96606 (1047) 96820 (1056)

9 96345 (1045) 96714 (1053) 96694 (1054)

3 96740 (1050) 96876 (1052) 96748 (1057)

9 6 96632 (1058) 96642 (1053) 96766 (1058)

9 96820 (1061) 96696 (1057) 96892 (1068)
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dfs per year for the dew point temperature and wind speed. When we fit each model,

we used the same functions for the other weather variables. Figure 3.12 shows the

sensitivity of the RR by using different degrees of freedom per year in the smooth

functions of the weather variables for Wake County in winter. The effects at the

shorter timescales were similar in all cases, while the effects at the longer timescales

were slightly different. Overall, there was not a significant impact on the RR by using

different dfs per year. In table 3.4, we present the DIC for models with different

degrees of freedom per year in the smooth functions of the weather variables, and

our final model, with 6 df per year for temperature and 3 df per year for dew point

temperature and wind speed, is the one with the smallest DIC. Thus, the selection of

degrees of freedom in the smooth functions of the weather variables in our model is

reasonable.

3.5 Discussion

This chapter presents a Bayesian framework to investigate the spatial-temporal

association between PM2.5 exposure and daily mortality. We introduce a spatial-

temporal model for PM2.5 to obtain daily PM2.5 concentrations by combining observed

PM2.5 data and numerical model output for PM2.5. We estimate the association

between daily mortality and different timescales of PM2.5 to investigate the harvesting

effect. Our approach to adjust for time-varying confounders does not require the

selection of the number of basis functions. Our hierarchical framework takes into

account the spatial and temporal dependency in the pollution and mortality data,
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and different sources of uncertainty about them.

The PM2.5 and mortality association in NC is inconsistent with the harvesting-

only hypothesis, and our harvesting resistant estimates of the relative risk are actually

larger, not smaller, than the ordinary estimates. Our results are consistent with some

other harvesting analyses (Zeger et al., 1999; Schwartz, 2000; Dominici et al., 2003).

We found a similar association between different timescales and mortality for all

seasons in NC. However, the association of PM2.5 and the current day mortality in

the winter is higher than in the spring in NC.

In this study, we used sparse monitoring PM2.5 data (across space and time) and

the CMAQ output for PM2.5. Our results show that adding the CMAQ output reduces

the amount of uncertainty in our estimated relative risk parameter.

The framework introduced here is the first step to illustrate the benefits of com-

bining different sources of information using a hierarchical framework that allows for

a space-time varying risk assessment. This approach could easily be implemented for

other geographic domains, including data for the conterminous United States and for

longer time windows.
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9.5 ~ 11.65
11.65 ~ 13.57
13.57 ~ 14.42
14.42 ~ 15.36
15.36 ~ 17.05

(a) January 2001

10.99 ~ 14.06
14.06 ~ 15.91
15.91 ~ 17.06
17.06 ~ 18.56
18.56 ~ 20.56

(b) August 2001

Figure 3.4: Maps of the estimated monthly average of the PM2.5 concentrations for
(a) January 2001 and (b) August 2001.
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Figure 3.5: (a) Orthogonal decomposition of the PM2.5 time series and (b) time series
of total natural deaths (total), cardiovascular deaths (cardio), ozone, temperature
(temp), dew point (dew), and wind speed (wind) for Wake County in the year 2001.
Horizontal lines show the mean value. For Wake County, the mean of the estimated
PM2.5 is 14.3µg/m3 and the mean of each timescale is 2.9µg/m3.
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Figure 3.6: Map shows the location of 4 counties in NC. Mean of the posterior
distribution and 95% prediction intervals for the log relative rates of mortality at
different timescales (percent increase in mortality per increase of 10µg/m3 of PM2.5

concentrations) in winter and summer. The values presented at “overall” are the
estimates of log relative rates of mortality due to same-day PM2.5 exposure.
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Figure 3.7: Impact of ozone. Change in the log relative risk of mortality by adding
ozone (a) in the winter and (b) in the summer (RR when ozone is not in the model
minus RR when ozone is in the model).
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Figure 3.8: Bayesian estimates (mean of posterior distribution) of the number of basis
functions included in the model, Wj.
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Figure 3.9: Bayesian estimates (mean of posterior distribution) of the intercept, γj.
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Figure 3.10: (a) Estimated RR values on the shortest timescale in the winter with
and without using CMAQ output in our model and (b) Standard deviations of the
estimated RR in the winter when the CMAQ output was used in the model and when
the CMAQ output were not used. The solid line in (a) shows y = x.
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Figure 3.11: Model diagnostics for mortality (a) during the summer and (b) during
the fall: The dotted lines show the 95% prediction intervals.
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Figure 3.12: Sensitivity analysis using different numbers of degrees of freedom (df)
for (a) temperature, (b) dew point temperature, and (c) wind speed but the same
functions for the other weather variables. The estimates of log relative rates of mor-
tality are plotted at different timescales for Wake County in winter (percent increase
in mortality per increase of 10µg/m3 of PM2.5 concentrations). The dashed lines in-
dicate 95% prediction intervals for the estimates when we used (a) 6 df per year for
temperature, (b) 3 df per year for dew point temperature, and (c) 3 df per year for
wind speed.
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Chapter 4

Conclusion

In this thesis we developed statistical models for speciated PM2.5 and the effects

of PM2.5 on mortality. This chapter presents a general discussion of the results in

this study and the future work.

We developed a multivariate spatial-temporal model for speciated PM2.5 using all

available sources of data about speciated PM2.5 in order to investigate the spatial-

temporal patterns of speciated PM2.5 and predict speciated PM2.5. A linear model of

coregionalization was extended to the spatiotemporal setting to account for spatial-

temporal dependency structures for each component and the associations among the

components. We also introduced a statistical framework to combine different sources

of PM2.5 data, while accounting for potential bias over space and time. Our statistical

framework was applied to data in the United States for the year 2004. We found that

sulfate concentrations were high during the summer while nitrate concentrations were

high during the winter. Total carbonaceous mass concentrations were high during the
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summer and fall seasons. We also found some spatial patterns of speciated PM2.5.

Sulfate concentrations were high in the eastern United States during the summer.

Nitrate concentrations were high in urban areas, and crustal material concentrations

were high in the eastern United State during the spring.

In the second part of the thesis, we explored the spatial-temporal association

between exposure to PM2.5 and daily mortality because PM2.5 and its chemical com-

ponents change with space and season and the effects of PM2.5 on mortality may vary

across space and season. However, observed PM2.5 data are sparse across space and

time so we combined both observed PM2.5 data and the CMAQ output for PM2.5 by

introducing a spatial-temporal model which predicts PM2.5 concentrations. We intro-

duced a Bayesian hierarchical regression model to examine the association between

mortality and different timescales of PM2.5 across space and season. We also pro-

posed an approach to adjust for time-varying confounders using a stochastic search

variable selection approach, which did not need the selection of the number of basis

functions. The hierarchical framework takes into account the spatial and temporal

dependency in the mortality data and the pollution data. By adding the CMAQ

output, we improved estimates of the relative risk for PM2.5.

As part of our further research, we could investigate the association between

speciated PM2.5 and mortality over the entire United States. Some of the toxicology

studies indicated that some chemical components of PM2.5 were more closely linked

with health problems than other components. However, there are few studies on the

association between speciated PM2.5 and mortality because of the lack of availability

of data. Fuentes et al. (2006) studied the health effects of speciated PM2.5 over space
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using monthly data, but they did not consider a temporal association. We could

estimate speciated PM2.5 at all locations and times of interest using the statistical

framework introduced in Chapter 2, which would be used as the inputs in the health

model. Our health model for PM2.5 presented in Chapter 3 could be extended to the

speciated PM2.5 to take into account the effects of speciated PM2.5 on mortality over

space and time.
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Appendix A

Discrete Fourier Transformation

The daily time series of PM2.5 for county j, Zj(t), t = 0, . . . . , T − 1, is de-

composed into L orthogonal timescale components, Zj1(t), Zj2(t), . . . , ZjL(t), where

∑L
l=1 Zjl(t) = Zj(t). For each county j, the discrete Fourier transform is defined as

dj(ωm) =
1

T

T−1∑
t=0

Zj(t) exp (−iωmt),

where 1 ≤ m ≤ T−1, i is the imaginary unit (i2 = −1), and T is the length of the time

series Zj(t). The mth Fourier frequency is ωm = 2πm/T , where 0 ≤ ωm ≤ 2π, and it

has m cycles in the length of the data. Note that for m ≥ T/2, dj(ωT−m) = dj(ωm),

where dj(ωm) is the complex conjugate of dj(ωm).

The inverse discrete Fourier transform is given by

Zj(t) =
T−1∑
m=0

dj(ωm) exp (iωmt).

Let [0 = ω0, ω1, . . . , ωl, . . . , ωL, π] be a partition of the interval [0, π], and we set
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Il = (ωl−1, ωl] ∪ [ωT−l, ωT−l+1). Then, the previous equation is represented as

Zj(t) =
L∑

l=1

{ ∑
ωm∈Il

dj(ωm) exp (iωmt)
}

=
L∑

l=1

Zjl(t).

Thus, Zj(t) can be decomposed into Zjl’s using the following algorithm, for l =

1, . . . , L,

(i) Compute the discrete Fourier transform of Zj(t) and obtain dj(ωm).

(ii) Let d∗j(ωm) = dj(ωm), if ωm ∈ Il, and d∗j(ωm) = 0, if ωm /∈ Il.

(iii) Obtain Zjl by the inverse of the discrete Fourier transform using d∗j(ωm), m =

1, . . . , T/2.
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Appendix B

Ozone Model

We introduce a spatial-temporal model for ozone to obtain daily predicted values

of ozone concentrations for all counties, that are used as inputs in the health model

in Section 3.3.2. Let Ô(s, t) be the observed ozone concentration at location s on day

t. We denote “true” ozone concentration at location s on day t by O(s, t). The model

for ozone is

Ô(s, t) = O(s, t) + eô(s, t),

where eô(s, t) ∼ N(0, σ2
ô) is the measurement error at location s on day t, which is

independent of the true underlying process. Following the guidance for the precision

provided by the U.S. EPA (1998), we assign an informative uniform prior, Unif(0,5),

for σô.

Since ozone is affected by weather covariates and has seasonal trends, the true

ozone concentration, O(s, t), is modeled as

O(s, t) = MT (s, t)ζo + So(t) + eo(s, t),
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where ζo is a coefficient vector corresponding to the weather variables M (mini-

mum temperature, maximum temperature, dew point temperature, wind speed, and

pressure). The function So(t) explains the seasonal trend in ozone. The error pro-

cess eo(s, t) is assumed to be normal with mean zero and a spatial-temporal co-

variance function. In the application, from the results of the periodogram analy-

sis, we assume that So(t) is a linear combination of two sine and two cosine func-

tions with respect to 3-month and 12-month periods. Based on exploratory analysis,

eo(·, t) = (eo(s1, t), . . . , eo(sNs , t)) is normal with mean ψoeo(·, t− 1) and exponential

covariance σ2
o exp (−h1/φo), where h1 = ||s − s′|| (in km). We use a normal prior,

N(0,0.1) (0.1 is the precision), for ψo and we use uniform priors, Unif(1,500) and

Unif(0,100), for φo and σo, respectively.

We predict O(s0, t0), the true ozone value at space s0 and time t0, given the data,

Ô and M. The posterior predictive distribution of O(s0, t0) given Ô and M is

p(O(s0, t0)|Ô,M) ∝
∫

p(O(s0, t0)|Ô,M,ΘO)p(ΘO|Ô,M)dΘO,

where ΘO is a collection of all parameters considered in the ozone model. After simu-

lating N3 values from the posterior distribution of the parameters ΘO, the estimator

for the predictive distribution is

p(O(s0, t0)|Ô,M) =
1

N3

N3∑
n3=1

p(O(s0, t0)|Ô,M,Θ
(n3)
O ),

where Θ
(n3)
O is the nth

3 draw from the posterior distribution.

To obtain daily ozone values for each county, the underlying ozone value for county

j on day t, Oj(t), averages true ozone values over a spatial domain Cj within county
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j on day t

Oj(t) =
1

|Cj|
∫

Cj

O(s, t)ds.

The ozone estimate Oj(t) is obtained by averaging estimates of true values at several

locations randomly selected within county j on day t. We use these estimates as

inputs in the health model in Section 3.3.2.
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