
Abstract

WANG, SHUCHUN. Atomic Structure, Optical Properties and Electron Transport in

Self-Assembled Monolayers on Surfaces. (Under the direction of Dr. Jerry Bernholc

and Dr. Wenchang Lu.)

Adsorbate-induced modification of semiconductor or metal surfaces creates a nano-

scale quantum structure which offers a rich vein of exotic physical phenomena for

investigation. Human desire to harness these properties for technological or scientific

purposes has led to extensive experimental and theoretical investigations. This disser-

tation focuses on the ab initio simulations of atomic, electronic, optical, and transport

properties of nano-scale systems. The calculated results for indium nanowires on the

Si(111) surface identify their atomic structure and reveal a phase transition at low

temperature. Transport simulations on the self-assembled monolayer of ferrocenyl-

alkanethiolate on Au(111) surface show negative difference resistance, which is in very

good agreement with experimental observations. This opens a new opportunity for

applications in nanoscale molecular devices.

The above large-scale simulations have been carried out within density functional

theory. Pseudopotentials were used to describe the ion-electron interaction. In our

real space multigrid method, the Kohn-Sham equations are solved in real space nu-

merically by using multigrid accelerations. The ultrasoft pseudopotentials are also

implemented. A double grid technique is adopted to perform products of two func-

tions with different smoothnesses. Test on diatomic molecules, bulk gold and bulk

copper show that converged results are obtained by using energy cutoffs of 25 Ry. The



relaxed bond lengths of O2, CO and N2 are in excellent agreement with the exper-

imental results. The calculated ground state properties, i.e., the equilibrium lattice

constant and bulk modulus of bulk gold and copper show very good agreements with

the experimental measurements and equivalent plane-wave calculations.

For the indium nanowire on Si(111) surface, the atomic structures are identified

uniquely from the reflectance anisotropy spectra (RAS) calculations. Our calculated

RAS for (4×1) reconstruction shows a very pronounced optical anisotropy around 2

eV. Meanwhile, the (4×2)/(8×2) reconstructed surface, induced by a slight distor-

tion of the indium chains, is shown to result in a splitting of the 2 eV anisotropy

peak. These results are in excellent agreement with recent polarized reflectance data

acquired during the (4×1)→(4×2)/(8×2) phase transition.

For the self-assembled monolayer of ferrocenyl-alkanethiolate on Au(111) surface,

non-equilibrium Green’s function calculations of the I-V characteristics are performed

self-consistently with the optimized geometry. Our calculated results show a strong

NDR feature at a large bias, which is in good agreement with the experimental re-

sults. The mechanism of NDR has been identified by analyzing the voltage-dependent

transmission, potential profile along the junction, and molecular level alignment un-

der bias. We find that the ferrocene group acts like a quantum dot and that NDR

features are due to resonant tunneling between the HOMO state and the density of

states of the gold lead.
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Chapter 1

Ab Initio Total Energy Methodology

Since the theory of modern quantum mechanics was established in the early 1890s, it

has been proved correct and very successful to provide fundamental understanding for

the phenomena on the atomic scale, such as the energy levels of atoms and the covalent

bonds of molecules. Although a lot of philosophers argue about the interpretation

and the predictions of modern quantum theory, few question the astounding accuracy

with which quantum mechanics describes the world around us. For instance, the

calculated gyromagnetic ratio of the electron by relativistic quantum field theory [1]

agrees with experimental measurement [2] within one in a million. Scientists have

little doubt that most of low-energy physics, chemistry and biology can be explained

and fundamentally understood by applying the quantum theory to electrons and ions.

However, the most challenging work for contemporary physicists is how to set up and

solve the complicated equations of quantum mechanics, which describes the complex

processes happening in real materials.
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Many different theoretical methods have been proposed and developed over the

last century. Among them, the ab initio methods or first-principles methods stand out,

because these methods require nothing but the Schrödinger equation, the values of

the fundamental constants, and the atomic numbers of the atoms present. Unlike the

semi-empirical methods, the ab initio methods do not depend on experimental data.

These methods can be used to design new materials and predict new properties. Of all

the methods, one, the total-energy pseudopotential method [3, 4] stands alone due to

the fact that many ground state physical properties of molecules and solids are related

to total energies or to differences between total energies. With the most efficient

numerical algorithms, this method can simulate systems with thousands of atoms

and opens a wide range of interesting problems to quantum-mechanical calculations.

It not only plays a leading role in the theoretical study of physics, but also benefits

chemists, biologists, geophysicists, and material scientists.

This chapter presents a detailed and comprehensive review of the total-energy

pseudopotential method. The essential concepts and the major theoretical simplifi-

cations and approximations are introduced. In Section 1.1, we describe the Born-

Oppenheimer approximation. This ”adiabatic principle” decouples the electron and

nuclear degrees of freedom and reduces the many-body problem to the solution of

the dynamics of the electrons in some frozen-in configuration of the nuclei. Sec-

tion 1.2 introduces the state-of-the-art density-functional theory, which models the

electron-electron interactions. It allows one, in principle, to map exactly the problem

of strongly interacting electron gas (in the presence of nuclei) onto that of a sin-
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gle particle moving in an effective potential, which include Coulumb and exchange-

correlation potential (described by Kohn-Sham equations). The exchange-correlation

potential can be approximated by Local Density Approximation or Generalized Gra-

dient Approximation. Section 1.3 contains a detailed description of pseudopotential

theory, which models the electron-ion interactions. This theory allows one to replace

the strong electron-ion potential with a much weaker potential–a pseudopotential–

that describes all the salient features of a valence electron moving through the solid,

including relativistic effects. Section 1.4 presents the supercell approximation used to

deal with aperiodic configurations of atoms within the framework of Bloch’s theorem.

One simply constructs a large unit cell containing the configuration in question and

enough vaccum space and repeats it periodically. By studying the properties of the

system for larger and larger unit cells, one can gauge the importance of the induced

periodicity and systematically filter it out. A numerical solution of the Kohn-Sham

equations is based on the choice of an appropriate basis to represent the electronic

wave functions. An overview of some popular basis sets is given in Section 1.5. In

Section 1.6, we provide a brief introduction to our real-space multigrid DFT method

in which the Kohn-Sham equation is solved numerically in a real space uniform grid.

We use this method to calculate the atomic and electronic structure, and the optical

property of surfaces. In Section 1.7 we discuss an O(N) method in a basis of varia-

tionally optimized local orbitals. The Last section summarizes the whole chapter.
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1.1 Born-Oppenheimer Approximation

In condensed matter physics and chemistry, the electronic structure of atoms, mole-

cules and solids is known as a quantum many-body problem due to the coupling

of the electron interactions. The properties of any non-relativistic time-independent

quantum system can be determined by solving the Schrödinger equation,

ĤΨ̃({ri}, {Rα}) = EΨ̃({ri}, {Rα}) , (1.1)

where Ψ̃({ri}, {Rα}) is the many-body wavefunction, which is a function of a set of

electronic position variable {ri} and another set of ionic position variable {Rα}, E is

the system energy, and the Hamiltonian of the system Ĥ is given by (in atomic units)

Ĥ = −1

2

∑
i

∇2
i −

1

ma

∑
α

∇2
α −

∑
i

∑
α

Zα
|ri −Rα|

+
1

2

∑
i

∑

j 6=i

1

|ri − rj| +
1

2

∑
α

∑

α 6=β

ZαZβ
|Rα −Rβ| , (1.2)

in which mα is the ionic mass and Zα is the atomic number. The first two terms

on the right-hand side represent the kinetic energies of the electrons and ions respec-

tively. The subsequent terms describe the electron-nucleus, electron-electron, and

inter-nucleus Coulomb interactions.

The Born-Oppenheimer approximation [5] is the first of several approximations

made when trying to solve Schrödinger equation for complex systems with more than

one or two electrons. It is based on the idea that the mass of ions is much larger

than the mass of electrons and the fact that the forces on the particles due to their

electric charges are of the same order of magnitude. This implies that a velocity
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of an electron is much larger than that of an ion. As a consequence, the electrons

respond essentially instantaneously to the motion of the ions and rapidly relax to

the instantaneous ground-state configuration on the typical time-scale of the ionic

motion. Thus the ion can be treated adiabatically, leading to a separation of electronic

and ionic coordinates in the many-body wavefunction—known as Born-Oppenheimer

approximation:

Ψ̃({ri}, {Rα}) = Ψ({ri})Φ({Rα}) , (1.3)

where Φ({Rα}) is the nuclear wavefunction and Ψ({ri}) is the electronic wavefunc-

tion, which is a wavefunction only of the {ri} and satisfies Schrödinger equation for

the electrons in a static array of nuclei:

[
−1

2

∑
i

∇2
i −

∑
i

∑
α

Zα
|ri −Rα| +

1

2

∑
i

∑

j 6=i

1

|ri − rj|

]
Ψ({ri})

= εe({Rα})Ψ({ri}) . (1.4)

Here the dependence of the eigenvalues εe on the ionic positions is acknowledged.

Substituting the whole wavefunction (Eq. 1.3) to the Schrödinger equation for the

whole system(Eq. 1.1) leads to

H̃Ψ̃({ri}, {Rα}) = H̃Ψ({ri})Φ({Rα}) = EΨ({ri})Φ({Rα})

= Ψ({ri})
[
−∑

β

1
2mβ
∇2
β + εe({Rα}) + 1

2

∑
β

∑
γ 6=β

ZβZγ
|Rβ−Rγ |

]
Φ({Rα})

−O
(∑

β
1
mβ

)
, (1.5)

in which the last term comes from the non-adiabatic part. The size of this term is

proportional to the ratio of the electron and nuclear masses, typically a factor of the

5



order of 10−4 or 10−5, so the contributions from this term can be neglected. Therefore,

above Eq. 1.5 is satisfied if the nuclear wavefunction obeys the Schrödinger equation

of the form

[
−
∑

β

1

2mβ

∇2
β + εe({Rα}) +

1

2

∑

β

∑

β 6=γ

ZβZγ
|Rβ −Rγ|

]
Φ({Rα}) = EΦ({Rα}) . (1.6)

The adiabatic principle is crucial, because it allows one to separate the nuclear and

electronic motions. For most cases, the motion of the nuclei can be ignored and we

only need to treat a system with a fixed nuclear configuration. Thus, the complexity

of the full many-body Schrödinger equation reduces to that of an electron Schrödinger

equation (Eq. 1.4). The dependence of the electronic energy εe and of the electron

wavefunction on the nuclear positions {Rα} will be suppressed.

1.2 Density-Functional Theory

With the Born-Oppenheimer approximation, the many-body problem has been re-

duced to that of a gas of interacting electrons moving in a static external potential

due to the frozen-in nuclei. Solving the electronic Schrödinger Eq. 1.4 is, how-

ever, still a formidable task for most cases since the many-electron wavefunction

contains 3N variables, which for a solid containing N ∼ 1026 electrons is simply an

intractable number of degrees of freedom. Devising accurate schemes to approxi-

mate the many-electron problem has been an important goal since the founding of

quantum mechanics. In 1930, the Hartree-Fock theory [6, 7] was developed, which

is based on the single-particle approximation proposed earlier by Hartree [8], but in

6



addition correctly accounts for the exchange interactions between electrons that are

a consequence of the Pauli principle. The many-electron wavefunction is constructed

by anti-symmetrizing the single-particle functions ψi(riσi)

Ψ({r1σ1}, {r2σ2} . . . {rNσN}) ≈ 1√
N
A [ψ1(r1σ2)ψ2(r2σ2) . . . ψN(rNσN)] ,

where A is an anti-symmetrizing operator. The reduction of the Coulomb energy of

the electronic system due to the antisymmetry of the wavefunction is called the ex-

change energy. The Hartree-Fock method yields very good bond lengths in molecules,

but the binding energies are in general not in good agreement with experimentally

obtained ones. Moreover, the Hartree-Fock method has problems in describing the

band structures of solids, which are of immense importance in solid-state physics.

This is because the energy of the system calculated in the Hartree-Fock method is

not the correct ground state energy, due to the fact that spatial separation of the

electrons with the opposite spins can further reduce the Coulomb energy. The dif-

ference between the many-electron ground state energy of an electronic system and

the energy of the system calculated in the Hartree-Fock approximation is called the

correlation energy.

In order to include correlation effects without using the very costly wavefunction

methods, a remarkable theorem of density functional theory (DFT) was developed

by Hohenberg and Kohn [9] and Kohn and Sham [10]. They proposed a simple

way for describing the effects of exchange and correlation in an electron gas. In

1964 Hohenberg and Kohn proved that the total energy, including exchange and

7



correlation energy of an electron gas, is a unique functional of the electron density,

which is a function of three Cartesian variables, rather than 3N variables as the full

many-body wavefunction is. The minimum value of the total-energy functional is the

ground-state energy of the system, and the density that yields this minimum value

is the exact single-particle ground-state density. In the next year, Kohn and Sham

then showed how it is possible, formally, to replace the many-electron problem by an

exactly equivalent set of self-consistent one-electron equations. After many extremely

successful applications in quantum chemistry and condensed matter physics, DFT has

become the foundation of most ab initio calculations.

1.2.1 Hohenberg-Kohn Theorem

For any system consisting of N electrons moving under the influence of an external

potential Vext(r) due to the static nuclei

Vext(r) = −
∑
α

Zα
|r−Rα| , (1.7)

the electronic Hamiltonian in 1.4 can be written as

Ĥ = T̂ + V̂ee +
N∑
i

Vext(ri) = F̂ + V̂ext , (1.8)

where V̂ext is the operator corresponding to the external potential, and F̂ is the

electronic Hamiltonian consisting of a kinetic energy operator T̂ and an electron-

electron interaction operator V̂ee. The electronic Hamiltonian F̂ is the same for all

N-electron systems. The Hamiltonian Ĥ and the ground state Ψ0(r) are completely

8



determined by N and Vext(r). The ground-state Ψ0(r) for this Hamiltonian gives rise

to a ground-state electronic density n0(r)

n0(r) = 〈Ψ0|n̂|Ψ0〉 = N

∫
|Ψ0 (r, r2, r3 . . . rN) |2 dr2 dr3 . . . drN (1.9)

Thus the ground state |Ψ0〉 and the density n0(r) are both functionals of the number

of electrons N and the external potential Vext(r).

The first Hohenberg-Kohn theorem then states: The external potential Vext(r)

is uniquely determined by the corresponding ground state electronic den-

sity, to within an additive constant .

Proof by reductio ad absurdum: Assume that there are two potentials Vext(r) and

V ′ext(r), which differ by more than an additive constant, and further that these two

potentials lead to the same density, n0(r). The associated Hamiltonians, Ĥ = F̂+V̂ext

and Ĥ ′ = F̂ + V̂ ′ext will therefore have different ground state wavefunctions Ψ0(r) and

Ψ′0(r). The ground state energies are E0 = 〈Ψ0|Ĥ|Ψ0〉 and E ′0 = 〈Ψ′0|Ĥ ′|Ψ′0〉 respec-

tively. Using the variational principle [11], we first take Ψ′0(r) as a trial wavefunction

for Ĥ. It yields

E0 < 〈Ψ′0|Ĥ|Ψ′0〉 = 〈Ψ′0|Ĥ ′|Ψ′0〉+ 〈Ψ′0|
(
Ĥ − Ĥ ′

)
|Ψ′0〉

= E ′0 +

∫
dr n0(r) [Vext(r)− V ′ext(r)] . (1.10)

whereas taking Ψ0 as a trial wave-function for Ĥ ′ gives

E ′0 < 〈Ψ0|Ĥ ′|Ψ0〉 = 〈Ψ0|Ĥ|Ψ0〉+ 〈Ψ0|
(
Ĥ ′ − Ĥ

)
|Ψ0〉

= E0 −
∫

dr n0(r) [Vext(r)− V ′ext(r)] . (1.11)
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Addition of the two inequalities 1.10 and 1.11 leads to the result:

E0 + E ′0 < E0 + E ′0 ,

which is an obvious contradiction, and as the result the ground state density uniquely

determines the external potential Vext(r). It also determines all ground state proper-

ties since the Vext(r) and N completely define the Hamiltonian and the ground state

wavefunction.

The second Hohenberg-Kohn theorem says: The ground state energy may

be obtained variationally: the density that minimizes the total energy is

the exact ground state density .

Proof: following Jones and Gunnarsson [12], we define a universal functional of the

density n(r) for the operator F̂ as:

F [n(r)] = min
Ψ→n
〈Ψ|F̂ |Ψ〉 , (1.12)

where the minimum is taken over all Ψ(r) that yield the density n(r). Now, if we

introduce Ψn
min(r) for a wavefunction that minimizes Eq.1.12 such that

F [n(r)] = 〈Ψn
min|F̂ |Ψn

min〉 ,

the variational principle results in

E [n(r)] =

∫
Vext(r)n(r)dr + F [n(r)]

= 〈Ψn
min|Vext + F̂ |Ψn

min〉

≥ 〈Ψ0|Vext + F̂ |Ψ0〉 = E0 [n0(r)] .
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Thus the ground-state density n0(r) minimizes the functional E[n(r)] and the mini-

mum value is the ground-state electronic energy.

1.2.2 Kohn-Sham Equations

The key idea of the Kohn-Sham method is to map the problem of the system of inter-

acting electrons onto a fictitious system of non-interacting ”electrons”. Variation of

the total energy functional obtained from Eq.1.8 with respect to the electron density,

subject to the constraint the number of electrons N is conserved, gives us

δ

[
F [n(r)] +

∫
dr Vextn(r)− µ

(∫
dr n(r)−N

)]
= 0 , (1.13)

where µ is the Lagrange multiplier associated with the constraint of constant N . The

corresponding Euler-Lagrange equation is given by

δF [n(r)]

δn(r)
+ Vext(r) = µ . (1.14)

Kohn and Sham separated F [n(r)] into three parts as

F [n(r)] = Ts[n(r)] + EH[n(r)] + EXC [n(r)] ,

where Ts[n(r)] is the kinetic energy of a non-interacting electron gas of density n(r),

EH [n(r)] is the classical electrostatic (Hartree) energy of electrons

EH [n(r)] =
1

2

∫ ∫
n(r)n(r′)
|r− r′| dr dr′ , (1.15)

and EXC is an implicit definition of the exchange-correlation energy, which contains

the difference between the kinetic energies of the interacting and non-interacting
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systems and also the non-classical electrostatic interaction energy. The Euler Eq.

1.14 is rewritten as

δTs[n]

δn(r)
+ VKS(r) = µ . (1.16)

Here VKS(r) is the effective Kohn-Sham potential

VKS(r) =

∫
dr′

n(r′)
|r− r′| + VXC(r) + Vext(r) , (1.17)

in which the first term is the Hartree potential VH, and the exchange-correlation

potential VXC is defined by

VXC(r) =
δEXC[n]

δn(r)
. (1.18)

Now, one can think about the Euler Eq. 1.16 in another way, namely that it describes

a non-interacting system of electrons moving in an external potential VKS. To find the

ground state density, one can alternatively just solve the N one-electron Schrödinger

equations,

[−1
2
∇2 + VKS(r)

]
ψi(r) = εiψi(r) . (1.19)

The density is then constructed from

n(r) =
N∑
i=1

fi |ψi(r)|2 , (1.20)

where fi are occupation numbers, and the non-interacting kinetic energy is given by

Ts[n(r)] = −1

2

N∑
i=1

fi

∫
ψ∗i (r)∇2ψi(r) dr . (1.21)

These equations are known as Kohn-Sham equations.

Since the Kohn-Sham potential VKS(r) depends upon the density n(r), the Kohn-

Sham equations must be solved self-consistently. Beginning with an initial guess
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for the form of the density, the electronic potentials that are used to construct the

Kohn-Sham equations are generated by using this charge density through Eq. 1.17.

After that, the Schrödinger equation 1.19 is solved to obtain a set of electronic states

{ψi(r)}. From the occupied electronic states a new charge density is then formed for

the next iteration (Eq. 1.20). The whole process is repeated until the density gets

converged, i.e., the input and output densities are the same. In practice, the charge

density is directly converged to the ground-state charge density by using efficient

minimization algorithms.

1.2.3 Total-Energy Functional

From the above Kohn-Sham equations, the sum of the one-electron Kohn-Sham eigen-

values can be expressed as

N∑
i=1

εi = Ts[n] +

∫
dr n(r)VKS(r)

= Ts[n] +

∫
dr dr′

n(r)n(r′)
|r− r′| +

∫
dr n(r)VXC(r)

+

∫
dr n(r)Vext(r) , (1.22)

which does not give the total electronic energy because it double counts the Hartree

energy and over estimates the exchange-correlation energy. After the correcting for

these two items in the total electronic energy and accounting for the Coulomb energy

Eion associated with interactions among the nuclei (or ions), the Kohn-Sham total-
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energy functional can be written as

Etot =
N∑
i=1

εi − 1

2

∫
dr dr′

n(r)n(r′)
|r− r′| −

∫
dr n(r)VXC(r) + EXC[n] + Eion , (1.23)

with

Eion =
1

2

∑
α

∑

β 6=α

ZαZβ
|Rα −Rβ| .

The minimized total energy at the ground-state density is just the ground-state energy

of the whole system.

1.2.4 Exchange-Correlation Approximation

So far the Kohn-Sham equations are exact, but the actual form of the exchange-

correlation energy functional EXC[n(r)] is not known exactly. We must introduce

approximate functionals based upon the electron density to describe this term. Many

different approaches have been used to create improved functionals after the Kohn-

Sham paper. Here I describe two popular and almost generally used approximations in

total-energy pseudopotential calculations: the local density approximation (LDA)[12]

and the generalized gradient approximation (GGA) [13].

Local Density Approximation

The local density approximation is the oldest and the simplest approximation. In

LDA, the exchange-correlation energy of an electronic system is constructed by as-

suming that the exchange-correlation energy per electron at a point r in the electron

gas, εXC(r), is equal to the exchange-correlation energy per electron in a homogeneous
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electron gas that has the same density as the electron gas at point r. Thus

ELDA
XC [n(r)] =

∫
εXC(r)n(r) dr (1.24)

and the exchange-correlation potential VXC may be written

V LDA
XC (r) =

δELDA
XC [n(r)]

δn(r)
=
∂ [n(r)εXC(r)]

∂n(r)
(1.25)

with

εXC(r) = εhom
XC [n(r)] . (1.26)

The LDA assumes that the exchange-correlation energy functional is purely local.

The most common parametrization in use for εhom
XC is that of Perdew and Zunger [14],

which is based upon the quantum Monte Carlo calculations of Ceperley and Alder [15]

for homogeneous electron gases at various densities. The parameterizations provide

interpolation formulas linking exact results for the exchange-correlation energy of

high-density electron gases and calculations of the exchange-correlation energy of

inter mediate and low-density electron gases.

The LDA ignores corrections to the exchange-correlation energy due to inhomo-

geneities in the electron density at a point r. It is surprising that the LDA has been

so successful for total-energy calculation, considering its inexact nature of the ap-

proximation. Work by Harris and Jones [16], Gunnarsson and Lundqvist [17], and

Langreth and Perdew [18] showed that this is due to the fact that the LDA gives the

correct sum rule for the exchange-correlation hole.
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Generalized Gradient Approximation

Although the LDA works well for solid systems and has been used in solid state

calculations for many years, it has severe trouble when dealing with molecules because

of its overbinding. Generalized gradient approximation was defined in the early and

mid eighties [19, 20, 21], aiming at incorporating the effects of inhomogeneities by

including the gradient of the electron density. In GGA the exchange-correlation

energy functional can be written as

EGGA
XC [n(r)] =

∫
n(r)εhom

XC [n(r)]FXC[n(r),∇n(r)]dr , (1.27)

where FXC[n(r),∇n(r)] is known as the enhancement factor. Unlike the LDA, there is

no unique form for the GGA, and indeed many different variations are possible as the

enhancement factor [13, 22, 23, 24]. Among them, the PW91 exchange and correlation

functional was constructed by introducing a real-space cut-off of the spurious long-

range part of the density-gradient expansion for the exchange and correlation hole

[25, 26]. The cut-off procedure was designed in such a way that as many as possible of

the known features of the exact exchange and correlation energy were obeyed. It has

later been discovered that there are some unphysical wiggles in the PW91 exchange-

correlation potential for small and large reduced-density gradients. There are also

quite many parameters in the PW91 functional, and it has been found that other

important and exactly known features of the exchange-correlation energy exist, apart

frpm those satisfied by the PW91. To remedy the weaknesses of the PW91 functional,

a modified form was recently devised by Perdew, Burke and Ernzerhof known as PBE
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functional [23, 24], which uses a much simplified exchange enhancement factor of the

form:

FPBE
X (s) = 1 + κ− κ

1 + µs2/κ
,

where s(r) is the dimensionless reduced density gradient

s(r) =
|∇n(r)|

2kF(r)n(r)

with

kF(r) = [3π2n(r)]1/3 ,

µ = 0.21951 and κ = 0.804. The PBE form was designed to give a simpler functional

form by retaining only the most energetically important conditions satisfied by PW91.

Today it has become the most popular GGA functional.

1.3 Pseudopotential Theory

The density functional theory greatly simplifies the electron-electron interaction by

introducing the exchange-correlation functional, but it does not touch upon the ion-

electron interaction. In Kohn-Sham formalism, the electron-ion interaction is de-

scribed by the external potential Vext in Eq. 1.7. These Coulomb potentials, due

to the nuclei, are an important component in ab initio calculations. Because they

are singular near the cores, special care must be taken when solving the Kohn-Sham

equations, particularly when using plane-wave on grid bases. Additionally, the strong

nuclear Coulomb potentials also lead to highly localized core electron wavefunctions
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and highly oscillatory valence electron wavefunction near the cores, which are difficult

to represent computationally. Fortunately, the pseudopotential theory introduced by

Phillips [27] and Cohen and Heine [28] makes it possible to overcome these problems.

The Pseudopotential theory is based upon the fact that the majority of physical

properties of solids depend upon the valence electrons. In contrast, the core electrons

are almost environment independent. Thus, the chemically inert core electrons are

assumed to be frozen with the nuclei. Both of them are considered as a pseudo-ion

core and act much like the nuclear core in generating an external Coulomb potential.

The total external potential of the all-electron atom, including the nuclear core and

the core electrons, is then replaced by a smooth, non-singular pseudopotential that

only acts on the valence electrons. Correspondingly, the valence wavefunctions are

changed to pseudo wavefunctions, where the oscillations in the vicinity of the ions

have been removed.

1.3.1 Operator Representation

For better understanding of the pseudopotential concepts, we follow the cancelation

theorem derived from the orthogonalized plane wave (OPW) formalism by Phillips

and Kleinman [29]. In the OPW approach, considering an atom with Hamiltonian H,

core states {|χn〉} and core energy eigenvalues {En}, the valence state |ψ〉 with energy

eigenvalue E is constructed as the combination of a smooth wavefunction |ψPS〉 and
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a sum over all core states {|χn〉} in the form

|ψ〉 = |ψPS〉+
core∑
n

an|χn〉 . (1.28)

The requirement that the valence state |ψ〉 is orthogonal to the core state |χm〉 yields

0 = 〈χm|ψ〉 = 〈χm|ψPS〉+ am , (1.29)

which fixes the expansion coefficients {an}. Thus

|ψ〉 = |ψPS〉 −
core∑
n

|χn〉〈χn|ψPS〉 . (1.30)

We know that the valence electron satisfies below Schrödinger equation:

H|ψ〉 = (T + VC)|ψ〉 = E|ψ〉 . (1.31)

where VC is the attractive core potential. Substituting Eq. 1.30 leads to

H|ψPS〉 −
core∑
n

En|χn〉〈χn|ψPS〉 = E|ψPS〉 − E
core∑
n

|χn〉〈χn|ψPS〉 , (1.32)

which can be rearranged in the form

[
T + VC +

core∑
n

(E − En)|χn〉〈χn|
]
|ψPS〉 = (T + V PS)|ψPS〉

= E|ψPS〉 . (1.33)

Therefore, the original Kohn-Sham equation for a valence state can be rewritten as

an equation for a smooth pseudo-state |ψPS〉, which obeys a Schrödinger equation

with an energy-dependent pseudopotential

V PS = VC +
core∑
n

(E − En)|χn〉〈χn| . (1.34)

19



Figure 1.1: Schematic illustration of the pseudopotential concept. The solid lines

represent the all-electron potential and wavefunction, while the dashed lines show the

corresponding pseudopotential and pseudo-wavefunction. The radius at which the all-

electron and pseudo quantities match is designated rc.

It has been shown that the second term of V ps is a strongly repulsive potential,

which almost cancels the strongly attractive core potential VC, leaving a weak net

pseudopotential. It is obvious that the pseudopotential simplifies not only the in-

teractions between the valence electron and the ionic core, but makes it easier to

represent the valence wave functions in an efficient manner by the pseudo wavefunc-

tions. Fig.1.1 shows a typical ionic potential, valence wavefunction, the corresponding

pseudopotential and the pseudo-wavefunction.
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1.3.2 Generalization Criteria

So far, many different schemes to create pseudopotentials [30, 31, 32, 33, 34] exist,

but there are some general criteria for the construction of pseudopotentials. They are

listed below:

1. The eigenvalues of the pseudo Hamiltonian are equal to those of the all-electron

Hamiltonian:

εPS = εAE .

2. The pseudopotentials outside a cutoff radius rc agree with the all-electron po-

tentials:

V PS(r > rc) = V AE(r > rc) .

3. The pseudo wavefunctions are identical to the all-electron wavefunctions outside

the cutoff radius rc:

ψPS(r > rc) = ψAE(r > rc) .

4. The charge inside rc of a pseudo wavefunction is equal to that of a all-electron

wavefunction:
∫ rc

0

drr2|ψPS(r)|2 =

∫ rc

0

drr2|ψAE(r)|2 .

The forth constraint is often denoted norm-conservation. This norm-conserving

constraint is not satisfied by the so called ultrasoft pseudopotential developed recently

by Vanderbilt [35]. In these pseudopotentials an augmentation charge is instead

included as a supplement to the pseudo wavefunction. I will discuss this new ultrasoft
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pseudopotential in detail in Chapter 3. The last two constraints guarantee that the

logarithmic derivatives of the all-electron atom’s wavefunctions and the pseudoatom’s

wavefunctions agree to first order beyond the cutoff radius rc. Since the logarithmic

derivative is related to the phase shift of a free electron scattering off a radial potential

[11], this ensures that the scattering properties of the pseudoatom match those of the

all-electron atom. Actually, numerical calculation shows that the scattering properties

of the all-electron potential and the pseudopotential are identical over a wide range of

energies, not just at the eigenenergies. This makes the pseudopotential to have very

good transferability, i.e., it can accurately describe the valence electrons in different

atomic, molecular and solid-state environments.

1.3.3 Kleinman-Bylander Pseudopotential

The phase shifts produced by the ion core are different for each angular momentum

component of the valence wavefunction, and the scattering from the pseudopotential

must therefore be angle-dependent, so it is necessary to use the angle-dependent

non-local pseudopotential. In general, the non-local pseudopotential is expressed in

semi-local [33] form

V PS = Vloc +
∑

l 6=loc,m

|lm〉(Vl − Vloc)〈lm|

= Vloc +
∑

l 6=loc,m

|lm〉δVl〈lm| , (1.35)

in which |lm〉 denotes the spherical harmonic Ylm. The choice of local pseudopotential

Vloc is arbitrary. However, this semi-local form is too costly for using in calculations,
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since the number of matrix elements that need to be calculated scales as the square

of the number of basis states.

Another alternative construction by Kleinman and Bylander [31] (KB) introduces

a fully separable form of the pseudopotential, in which the double sum is split into a

product of two single sums,

VKB = Vloc +
∑

l,m

|ψlmδVl〉〈δVlψlm|
〈ψlm|δVl|φlm〉 , (1.36)

where ψlm are the pseudo-atom wavefunctions. This operator acts on the reference

state in an identical manner to the original semi-local one, but the full separation

allows the calculation to scale linearly with the size of the basis set.

The Kleinman and Bylander approach has been widely used in pseudopotential

constructions because it is computationally efficient. However, in transforming a semi-

local pseudopential to the corresponding KB one can lead to unphysical ghost states

[36] at energies below or near those of the physical valence states. Such spurious states

can occur for specific choices of the underlying semilocal and local pseudopotentials.

They are the artifacts of the KB-form nonlocality by which the nodeless pseudo

wavefunctions need not be the lowest possible eigenstate, unlike in the semi-local

form. In practice, transferable ghost-free KB pseudopotentials are readily obtained

by a proper choice of the local component (Vloc) and/or the core cutoff radius (rlc) of

the pseudopotential.
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1.4 Supercell Approximation

So far, the density functional and pseudopotential theories substantialy simplify the

calculation of solid properties by reducing the many-body interacting problem to the

motion of non-interacting electrons in a static effective potential

V (r) = V PS(r) + VH(r) + VXC(r).

However, handling a of bulk crystal still remains formidable due to the huge number

of electrons and nuclei. Fortunately, most of the systems are periodic, so it is possible

to reduce this problem to a finite system by only considering electrons within the

unit cell. This marvelous approach is not only suitable for periodic solids, but also

turns out to be the easiest way to study nonperiodic systems by imposing some

false periodicity, such as molecules, defects and surfaces. The nonperiodic system

is contained within a supercell that is replicated periodically throughout the whole

space. Fig.1.2 shows the supercell for a silicon indium surface that we studied, which

contains a crystal slab and a vacuum region. It is essential that the vacuum region is

large enough so that the faces of adjacent crystal slabs, which in reality are isolated,

do not signigicantly interact across the vacuum region.

1.4.1 Bloch’s Theorem

In a perfect crystal, the nuclei are arranged in a periodic array described by a set

of Bravais lattice vectors {R}. The effective static potential V (r) is periodic and
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Figure 1.2: Schematic illustration of the supercell geometry of the Indium-Silicon(111)

4× 1 surface.

invariant under translation by any of the lattice vectors

T̂RV (r) = V (r + R) = V (r) , (1.37)

where T̂R are the translation operators. The Hamiltonian is also periodic Ĥ(r+R) =

Ĥ(r) and commutes with the translation operators:

T̂RĤ(r)ψ(r) = Ĥ(r + R)ψ(r + R) = Ĥ(r)T̂Rψ(r) . (1.38)

Therefore, there must be a set of eigenstates of the Hamiltonian that are simultane-

ous eigenstates of all the translation operators, marked by a good quantum number

corresponding to each lattice vector R.

Bloch’s theorem [37] states that the wavefunction of an electron ψn,k, for a periodic

potential, is a product of a cell-periodic part un,k(r) and a wavelike part eik·r,

ψn,k(r) = un,k(r) exp(ik · r) , (1.39)

where the subscript n labels different eigenstates of the Hamiltonian and k is a quan-

tum wavevector, related to the translational symmetry. Since un(r) possesses the
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same periodicity as the potential (un,k(r + R) = un,k(r)), it can always be expanded

in terms of a Fourier series i.e.

un,k(r) =
∑
G

cn,k(G) exp(iG · r) , (1.40)

where G are reciprocal lattice vectors defined by G·R = 2πm, where m is an arbitrary

integer, and cn,k(G) are plane wave expansion coefficients. Plugging Eq. 1.40 into Eq

.1.39, we see that the electron wavefunction may be expressed as a linear combination

of plane waves:

ψn,k(r) =
∑
G

cn,k+G exp[i(k + G) · r] . (1.41)

The Bloch theorem changes the problem of calculating an infinite number of elec-

tronic wavefunctions to one of calculating a finite number of electronic wavefunctions

within a single (super) cell at an infinite number of k points. In order to reduce the

allowed k points, it is necessary to impose some boundary conditions on the bulk

solid.

1.4.2 k-point Sampling

Here, we apply periodic or generalized Born-von Karman boundary condition to the

wavefunction. Such choice of boundary condition does not affect the bulk properties

of the system and is expressed mathematically as

ψn,k(r +Niai) = ψn,k(r), i = 1, 2, 3 , (1.42)
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where Ni is the number of primitive cells along the ai direction. Applying Bloch’s

theorem (Eq.1.39) yields

ψn,k(r +Niai) = exp(iNik · ai)ψn,l(r) , (1.43)

so that the values of k are restricted and must satisfy

exp(iNik · ai) = 1, i = 1, 2, 3 . (1.44)

Such restriction directly results in the general form for the allowed Bloch wavevectors

k such that

k =
3∑
i=1

li
Ni

gi, (1.45)

where the {li} are integers and the {gi} are the primitive reciprocal lattice vectors

satisfying gi ·aj = 2πδij. We can see that there is still an infinite number of allowed k

points if Ni →∞, but they are now members of a countably infinite set. Furthermore,

we can prove that k-vectors that differ only by a reciprocal lattice vector are in

fact equivalent. Considering two such wavevectors related by k′ = k + G, then the

corresponding Bloch states are also related by

ψn,k′(r) = exp(ik′ · r)un,k′(r) = exp(ik · r) [unk′(r) exp(iG · r)]

= exp(ik · r)ũ(r) = ψn′k(r). (1.46)

Since the expression in square brackets on the first line is a cell-periodic function, the

whole expression is a valid Bloch wavefunction with wavevector k but different band

index n′. Thus we can pay our attention only to those k points that lie within the

first Brillouin zone.
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In order to construct the charge density and get an accurate electronic potential,

we have to calculate the occupied eigenstates at each allowed k point within the first

Brillouim zone. However, we do not need to consider all of these k points since the

wavefunctions vary smoothly over Brillouin zone [38]. Practically, only a finite set of k

points sampling the Brillouin zone is chosen to determine the total energy of the solid.

For very large systems, the Brillouin zone volume becomes very small and only the

Γ-point (k = 0) can be choosen without significant loss of accuracy. Many methods

for making efficient choices have been developed since 1970 [39, 40, 41, 42, 43, 44].

Using these methods, one can obtain an accurate approximation for the electronic

potential and the total energy of an insulator or a semiconductor by calculating the

electronic states at a very small number of k points. For a metallic system, it is

more difficult to calculate them because a dense set of k points is required to define

the Fermi surface precisely. From the calculation of the wavefunctions on a much

coarser grid of k points, k · p perturbation theory [45, 46] can be used to generate

the wavefunctions on the dense set of k points. This method greatly reduces the

computational cost for a metallic system.

1.5 Basis Sets

To solve the Kohn-Sham equations numerically, one has to employ a set of basis

functions in order to efficiently represent the electronic wavefunctions. Generally,

two categories of basis set are used: analytical base and numerical base. Several
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factors are required to consider before choosing a basis for a calculation, such as

speed, accuracy, ease of implementation, and the geometry of the studied system.

1.5.1 Analytical Basis Sets

As an example of an analytical basis set, I briefly outline here the plane-wave basis.

This basis set has the advantage of being mathematically simple, and is in principle

complete, that is, it completely spans the Hilbert space, which makes it more accurate

to represent the electronic wavefunctions. In principle, the plane-wave basis used to

expand the wavefunctions in Eq.1.41 should be infinite. Fortunately, the plane-waves

with small kinetic energy have a more important role than those with a very high

kinetic energy, so one can introduce a kinetic energy cutoff energy Ecut to truncate

the basis set to a finite size. It is defined through

Ecut =
~2

2m
|k + G|2 . (1.47)

This kinetic energy cut-off will lead to an error in the total energy of the system, but

it is possible to make this error arbitrarily small by increasing the size of the basis set

by allowing a larger energy cut-off. For these reasons, plane-wave based calculation

are common and popular in solid physics.

With the plane-wave basis, the Kohn-Sham equations can be expressed in a par-

ticularly simple form. Substitution of Eq.1.41 into the Kohn-Sham equation 1.19,
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gives

∑

G′

[
1

2
|k + G|2 δGG′ + Vext(G−G′) + VXC(G−G′) + VH(G−G′)

]
cn,k+G′ = εncn,k+G.

(1.48)

In this form, the reciprocal space presentation of the kinetic energy is diagonal and

the various potentials are described in terms of their Fourier components. The usual

methods of solving the plane-wave expansion of the Kohn-Sham equations is by di-

agonalization of the Hamiltonian matrix whose elements Hk+G,k+G′ are given by the

terms in the square bracket. The size of the Hamiltonian matrix is determined by the

number of plane waves, i.e., the energy cut-off Ecut.

Plane-wave based methods have been used to perform electronic structure cal-

culations on a wide range of physical systems over last several decades. The Car-

Parrinello [47] iterative method has enabled for systems containing several hundred

systems. An excellent review of plane-wave calculations is given by Payne etal . [48].

Although highly successful, the traditional plane wave methods encounter consider-

able difficulties when they are applied to physical system with large length scales,

or containing first-row or transition metal atoms. Special techniques have been de-

veloped to partially eliminated these difficulties including preconditioned conjugate

gradient techniques [49, 50, 51], optimized pseudopotentials [35, 34], augmented-wave

methods [52], and plane waves in adaptive coordinates [53, 54, 55]. However, these

methods are still constrained by the plane-wave-basis set, which requires periodic

boundary conditions for every system and performing fast Fourier transforms (FFT’s)
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between the real and reciprocal spaces. FFT’s involve nonlocal operations and re-

strict their efficient implementation in massively parallel computer architectures, due

to the requirement of long-range communications.

1.5.2 Real-Space Basis Sets

Recently, real space methods have enjoyed considerable popularity because the ba-

sis functions are localized in real space and do not lead to a large communication

overhead. The construction of the Hamiltonian may thus be achieved in O(Nbasis)

operations. Additionally, boundary conditions are not constrained to be periodic,

and clusters and surfaces with nonperiodic boundary conditions can be handled ef-

ficiently. More importantly, the use of a real-space basis opens up the possibility of

using multigrid iterative techniques to obtain solutions of the Kohn-Sham equations.

These techniques provide automatic preconditioning on all length scales and thus

greatly decrease the number of iterations needed to converge the electronic wavefunc-

tions. Within variety of real-space basis sets, there are two general classes: orbital

based and non-orbital based.

In orbital-independent methods, the wavefunction is expanded on a mesh of points

in real space. These methods include finite-element [56], grids [57, 58, 59, 60], wavelet

[61, 62], and multigrids [63, 64]. The first three methods were developed to study a sin-

gle atom, diatomics, and small molecular systems. The real-space multigrid method

devised by our group is suitable for large-scale calculations (hundreds of atoms). I
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will describe this method in detail in the next section. In the orbital-independent

methods, just like in the plane-wave method, the size of the basis set is much larger

than the number of electrons (Nbasis � Ne). The accuracy of these methods can be

increased in a systematic way and one generally expects these methods to be more

accurate than the orbital based methods.

The orbital basis is derived from the basic knowledge that the angular momentum

eigenstates of a single atom closely approximate the eigenstates of the electron in

the presence of several atoms. These methods help naturally understand concepts

such as chemical bonds and hybridized orbitals, which are also classified by angular

momentum. For orbital-based methods, the number of basis functions is roughly of

the order of the number of electron (Nbasis ∼ Ne). In general, the systems they can

handle are much bigger than those the orbital-independent methods do, due to the

fact that the critical parts of computational work scales linearly with the number of

atoms [65]. However, the bottleneck in large calculations is diagonalization, which

scales as O(N3), unless special techniques are employed. The choices of basis set

include Gaussian, optimized nonorthogonal atomic orbitals [66], the Fireball orbital

[67, 68], and many semi-empirical basis sets. Comparing with the non-orbital-based

methods; their accuracy cannot generally be increased in a systematic way, due to

the incompleteness of the basis sets. However this does not constrain their ability to

describe a wide range of phenomena.

In Chapter 4, when we investigate the transport properties of the molecular de-

vices, it is necessary to construct the charge density for an open system from the
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Green’s function and not from the wavefunctions. At present, it is impractical to

calculate the Green’s function for any of the non-orbital based methods, because of

enormous time and memory requirements. We employ the optimized nonorthogonal

atomic orbital method to accommplish this task. It will be discussed in detail in

section 1.7.

1.6 Real-Space Grid-Based Multigrid DFT Method

The real-space grid-based multigrid DFT method, which is developed by Briggs, Sul-

livan, and Bernholc [64], uses a real-space grid as a basis and the multigrid technique

to provide effective convergence acceleration and preconditioning on all length scales.

It is not only suitable for large-scale ab initio calculations, but it is also capable to

conduct efficient calculations for ill-conditioned systems with long length scales or

high-energy cutoffs.

In this method, the wavefunctions, the density, and all potentials are directly

represented on a uniform three-dimensional real-space grid with linear spacing hgrid

and number of mesh points Ngrid. The physical coordinates of each point are denoted

by

r(i, j, k) = (ihgrid, jhgrid, khgrid) , (1.49)

i = 1, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nz .

Since the set of grid points to map the above quantities is discrete, it can introduce

spurious dependence of the Kohn-Sham eigenvalues, the total energy, and the ionic
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forces on the positions of ions with respect to the real-space grid. A set of techniques

has been developed in order to overcome these difficulties and accurately calculate

the properties of large physical systems.

1.6.1 Mehrstellen Discretization of the Kohn-Sham Equa-

tions

The first task to solve the Kohn-Sham equation in real space is to discretize it on the

grid structure described by Eq. 1.49. Usually, the standard central finite-difference

method is used to approximate the differential operator in the Hamiltonian. it is

found that a higher-order central finite-difference expression (typically O(h8
grid)) is

indispensable in order to achieve high accuracy [69]. As a result, it requires a large

communication overhead in parallel computation, which makes it very costly for a

large-scale calculations.

Here, a generalized eigenvalue formulation is introduced to discretize the Kohn-

Sham equations. It is expressed by

HMehr[ψn] =
1

2
AMehr[ψn] + BMehr[Veffψn] = εnBMehr[ψn]. (1.50)

where AMehr and BMehr are components of the Mehrstellen discretization [70], which is

based on Hermite’s generalization of Taylor’s theorem. The fourth-order Mehrstellen

34



Table 1.1: Discretization weights for the fourth-order orthorhombic Mehrstellen op-

erators for the central, nearest-neighbor, and next nearest-neighbor grid points. The

cubic-grid operator corresponds to hi = hgrid

a bn cn,m

AMehr

∑
i

4
3h2
i

− 5
6h2
n

+
∑
i

1
6h2
i

− 1
12h2

n
− 1

12h2
m

BMehr
1
2

1
12

0

discretization samples the Hamiltonian and the wavefunction at 19 points such that:

AMehr = af(x) +
3∑

n=1

bnf(x± hnx̂n)

+
∑
n<m

cn,mf(x± hnx̂n ± hmx̂m) ,

BMehr = a′f(x) +
3∑

n=1

b′nf(x± hnx̂n) .

It can be shown that the small h expansions of the AMehr and BMehr satisfy AMehr =

BMehr(−∇2)+O(h4). Mehrstellen discretization differs from the central finite-difference

discretization in that it uses more local information (next-nearest and second-next

neighbors) and a weighted sum of the wavefunction and potential values to improve

the accuracy of discretization of the entire differential equation, not just the kinetic-

energy operator. Those improvements make the accuracy of Mehrstellen discretization

one order higher than the corresponding central finite-difference one, but this accu-

racy is fully realized only at convergence. Table 1.1 lists the fourth-order Mehrstellen

operators specified by their discretization weights, which pertain to both cubic and

orthorhombic grids.

This representation of the Kohn-Sham Hamiltonian is short ranged in real space
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in the sense that the operator can be applied to any orbital in O(Ngrid) operations.

Specifically, the application of the AMehr operator at a point involves a sum over 19

orbital values, while the application of the BMehr operator requires a sum over seven

points. The local potential multiplies the orbital pointwise, and the short-ranged

nonlocal projectors require one integration over a fixed volume around each ion and

a pointwise multiplication. This sparseness permits the use of iterative diagonaliza-

tion techniques, and the short-ranged representation of the Hamiltonian leads to an

efficient implementation on massively parallel computers.

1.6.2 Fourier Filtering of Pseudopotentials

The calculation of total energy (Eq.1.23) involves a lot of integral operations. All of

them are performed by using the three-dimensional trapezoidal rule

∫
drf(r)

.
= h3

grid

∑

ijk

f(r(i, j, k)) . (1.51)

For high accuracy, it is essential that the integrand f(r) should be band limited,

that is, its Fourier transform should have minimal magnitude in the frequency range

G > Gmax ≡ π/hgrid. Otherwise, the high-frequency components can manifest them-

selves on the grid and introduce unphysical variation in the total energy or the electron

charge density, especially when the ions, and hence their pseudopotentials, shift rel-

ative to the grid points. This is explicit in the plane-wave method since the basis

is truncated by the energy cutoff Ecut. The discrete real-space grid also defines a

kinetic energy cutoff of approximately G2
max/2. The variation of the total energy can

36



be decreased by explicitly eliminating the high-frequency components beyond Gcut in

the pseudopotentials by Fourier filtering.

Initially, the unfiltered potentials or projectors, after their Coulomb tails have

been subtracted out, are defined on a real-space radial grid and short-ranged, be-

ing confined to a ”core” radius around each atom. They are then transformed to

momentum space, where the high-frequency components are filtered out through

Vl,filtered(G) = Ffilter(G/Gcut)

∫
Vl(r)jl(Gr)r

2dr, (1.52)

where the cutoff function Ffilter(G/Gcut) is defined by

Ffilter(G/Gcut) =





1 if G < Gcut

e−β1(G/Gcut−1)2
if G ≥ Gcut

, (1.53)

which smoothly attenuates the radial Fourier components beyond Gcut, the cutoff

wave vector determined by the grid spacing: Gcut = απ/hgrid. After momentum-

space filtering, the backtransformed potentials and projectors will extend beyond

the original core radius. In order to keep the short-range of the original nonlocal

pseudopotentials, a second real-space filtering is applied to reduce the large-radius

oscillations beyond a cutoff radius rcut:

Vl,filtered(r) = ffilter(r/rcut)

∫
Vl,filtered(G)jl(Gr)G

2dG. (1.54)

The second filtering function ffilter(r/rcut) is unity below rcut and equals e−β2(r/rcut−1)2

above it. The parameters α, β1, β2, and rcut are empirical and depend on the atomic

species.
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1.6.3 Multigrid Techniques

When solving Kohn-Sham equations and Poisson’s equation −∇2VH = 4πρ on real

space grids, the convergence rates of general iterative relaxation schemes such as the

Jacobi, Gauss-Seidel, successive overrelaxation, or the alternating direction implicit

method [71] are too low for the grid sizes required in electronic structure calculation,

because these methods only considerably reduce the high-frequency components of

the error (the ones with wavelengths comparable to the grid spacing), but do not

affect the lowest-frequency components (the ones with wavelength large relative to

the grid spacing) by much. The multigrid iteration technique can accelerate conver-

gence by employing a sequence of grids of varying resolutions. The essence of the

multigrid approach is the fact that the individual frequency components of the error

are best reduced on a grid where the resolution is of the same order of magnitude

as the wavelength of the error component. It thus treats the lower-frequency compo-

nents on a sequence of auxiliary grids with progressively larger grid spacings. This

technique provides excellent preconditioning for all length scales and leads to very

rapid convergence rates.

In order to illustrate this method, I describe the multigrid algorithm to solve

the Poisson’s equation with two uniform grids; a fine grid of spacing h and a coarser

auxiliary one of spacing H. More generally, the Poisson’s equation can be represented

by a set of linear algebraic equations

Ax = b, (1.55)
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where x and b represent the discretized forms of VH and 4πρ, respectively, and A

is the finite-difference representation of −∇2. In the Jacobi iterative method, the

residual r of the current approximate solution x is expressed by

r = b−Ax. (1.56)

An improved x is generated as

xnew = x + ∆tKr, (1.57)

where ∆t is a pseudo-time-step and K is the inverse of the diagonal component of A.

First, the high-frequency components of the solution error with wavelength ≈ h are

reduced by one or two Jacobi iterations. Then the fine grid residual rh is calculated

by Eq. 1.56, and is transferred to the coarse grid by volume-weight restriction. Next,

the Poisson’s equation on the coarse grid with the residual as a source term is solved

by using the same iterative procedure as in Eq. 1.57. Similarly, the Jacobi iteration

on this level removes error components with wavelength ≈ H. Finally, the coarse-grid

solution is transferred back to the fine grid by simple trilinear interpolation [72] and

is added to the fine-grid solution. As we know, the final accuracy of the solution

is determined only by the finite-difference representation of −∇2 on the fine grid

level. Thus the Mehrstellen operator is used on the fine grids, while a seven-point

central finite-difference operator (O(H4)) is used on the coarse grids, due to stability

problems.

An extension of multigrid implementation to the solution of the Kohn-Sham equa-

tion introduces several complications since the nonlocal pseudopotential is used and
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the Kohn-Sham equations are not linear any more. Instead of Eq. 1.56, the residual

to the eigenvalue problem is generalized as

rh = εnBMehr[ψn]−HMehr[ψn], (1.58)

where εn is an estimate of the eigenvalue calculated from the Rayleigh quotient of the

generalized eigenvalue Eq. 1.50,

εn =
< ψn|HMehr[ψn] >

< ψn|BMehr[ψn] >
. (1.59)

To obtain high accuracy and rapid convergence rate, additional techniques have been

developed to deal with the orthonormality constraints, subspace diagonalization and

so on. For more details, one can refer to the literature [64].

1.7 Optimized Nonorthogonal Orbital Order-N DFT

Method

This real-space optimized nonorthogonal orbital DFT method was proposed by Fat-

tebert and Bernholc [66]. The localized nonorthogonal atomic obitals are optimized

variationally. In our implementation, it uses a multigrid preconditioner and allows

for unoccupied or partially occupied orbitals to be included in the basis set, which

substantially accelerates convergence. The critical computational operations achieve

roughly linear scaling with the total number of atoms, allowing for ab initio calcula-

tions well beyond a thousand atoms. The local orbital description is also very useful

and helpful in quantum transport calculations [73, 74].
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1.7.1 Basis-Invariant Matrix Formulation

Here we follow the basis-invariant matrix formulation derived by Fattebert and Bern-

holc [66]. Begining with a trial basis of normalized functions {φ1, · · · , φN}, the basis

will be optimized by iterative updates, and it will accurately describe the true Kohn-

Sham ground state of the system at convergence. In matrix notation, a matrix Φ is

written as

Φ = (φ1, · · · , φN).

The eigenfunctions of the system can be expanded as

Ψ = (ψ1, · · · , ψN) = ΦC, (1.60)

where C is an N ×N transformation matrix. This matrix satisfies

CCT = S−1

where S = ΦTΦ is the overlap matrix.

In the following, for an operator A we will use the notation

A(Ψ) = ΨTAΨ, A(Φ) = ΦTAΦ.

we then have the relation A(Ψ) = CTA(Φ)C.

The transformation matrix C can be obtained by solving the generalized symmet-

ric eigenvalue problem

H(Φ)C = SCΛ, (1.61)

where Λij = εiδij with εi being the eigenvalues.
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In the basis Ψ, the steepest descent (SD) directions, along which the energy func-

tional decreases at the fastest rate, are easy to compute. They are given by the

negative residuals of the Kohn-Sham equations, with the current potential kept fixed,

and can be expressed as the N ×M matrix

D(Ψ) = ΨΛ−HΨ, (1.62)

which satisfies the relation ΨTD(Ψ) = 0. In the nonorthogonal orbitals Φ, the SD

directions can differ substantially from the derivative with respect to φj(r), especially

when the basis Φ is highly nonorthogonal. The simplest way to obtain it is to use the

matrix D(Ψ) and C through

D(Φ) = D(Ψ)C−1 = (ΨΛ−HΨ)C−1

= ΦΘ−HΦ, (1.63)

where

Θ = S−1H(φ). (1.64)

The preconditioned steepest descent (PSD) direction in the nonorthogonal basis is

thus

δΦ = KD(Ψ)C−1

= K(ΦΘ−HΦ), (1.65)

and the basis Φ is updated by Pulay mixing [75].

In actual calculations, the basis functions Φ are corrected at each iteration using

the PSD directions (Eq. 1.65). A new electronic density ρ(r) is then generated
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according to

ρ(r) = 2
N∑

j,k=1

(S−1)jkΦj(r)Φk(r).

Hartree and exchange-correlation potentials are then updated with a linear mixing.

1.7.2 Computations with Unoccupied Orbitals

The inclusion of unoccupied or partially occupied orbitals can substantially enhance

the convergence rate. The PSD algorithm (Eq. 1.65) can be used to improve the trial

subspace of N computed orbitals, regardless whether they are occupied or empty. In

the computation of the electron density and the total energy, however, one needs to

account for the occupations. Thus, new density-matrix formalism in the nonorthog-

onal basis needs to be introduced.

For a chemical potential µ, define the N ×N matrix Υ by its matrix elements

Υij = δijf [(εi − µ)/kBT ],

where f is the Fermi-Dirac distribution. The density operator ρ̂ is then given by

ρ̂ = ΨΥΨT = ΦCΥCTΦT .

In our notation, one can represent ρ̂ in the basis Φ

ρ(Φ) = ΦT ρ̂Φ = C−TΥCT .

We introduce the matrix ρ̄(Φ)

ρ̄(Φ) = S−1ρ(Φ)S−1 = CΥCT . (1.66)
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This matrix can be used to obtain the expectation value Ā of an operator A repre-

sented in the basis Φ

Ā = 2Tr(ΥA(Φ)) = 2Tr(ρ̄(Φ)A(Φ)).

In particular, the total number of electrons in the system is given by

Ne = 2Tr(ρ̄(Φ)S).

In a practical implementation, the solution C is generalized from the symmetric

eigenvalue problem (Eq. 1.61). Next, one can compute the matrix ρ̄(Φ) using Eq.

1.66. The electronic density is then given by

ρ(r) = 2
N∑

j,k=1

(ρ̄(Φ))jkφj(r)φk(r). (1.67)

The band-structure energy can be rewriten as

2
N∑
j=1

εjf [(εj − µ)/kBT ] = 2Tr(Λρ(Ψ)) (1.68)

= 2Tr(H(Φ)ρ̄(Φ)).

This method also uses Mehrstellen finite difference discretization to improve the

accuracy and multrigrid techniques to enhance the convergence rate. The details are

in Ref. [66]. In Chapter. 4, we use this new method to carry out quantum trans-

port calculations. This Order-N method can handle a very large system, includeing

transition metal atoms. It does show nearly linear behavior.
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1.8 Summary

The set of approximations introduced in this chapter form the core of the ab initio

total energy calculation method, which is widely used by condensed matter physicists.

Detailed explanations were presented for the Born-Oppenheimer, DFT, LDA and

GGA, and pseudopential concepts: Born-Oppenheimer approximation separates the

nuclear and electronic motion (Sec. 1.1); DFT reduces the many body system to

a single-partical system with an effective nonlocal potential, and the LDA and the

GGA provide remarkable approximations to their potential (Sec.1.2); Finally the

pseudopotential theory allows one to separate valence and core electrons, replacing

the strong electron-ion potential with a much weaker pseudopotential (Sec. 1.3). The

above approximations allow the total-energy calculations to be performed accurately

and efficiently. In order to extend this method to the study of nonperiodic systems, the

periodic supercell approximation was introduced in Sec. 1.4. Popular and commonly

used basis sets, like plane-wave basis and real-space basis were reviewed (Sec. 1.5).

Finally, two real-space methods extensively involved in this thesis: the multigrid

DFT method and the optimized nonorthogonal orbital order-N DFT method, were

discussed in Sec.1.6 and Sec.1.7, respectively.
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Chapter 2

Implementation of Ultrasoft

pseudopotentials in Real-Space

Method

There has been a rapid growth in the calculations of solid-state properties within

density functional theory since the development of first-principles norm-conserving

pseudopotentials [30, 31, 33] in the last three decades. As we mentioned in Chapter.1.3.2,

the condition of norm-conservation (fourth constraint) ensures that the charge inside

a cutoff radius rc of the pseudo wavefunction is equal to that of the all-electron

wavefunction. However, this condition, in certain cases, e.g., O 2p or Ni 3d orbitals

[35], becomes an obstacle to construct a pseudo wavefunction significantly smoother

than the all-electron wavefunction. The high localization of the valence p orbitals
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of electronegative first row atoms such as F [76], and the valence d orbitals of the

transition-metal atoms, causes the same problems. In the early 1990s, a new method

to generate the ultrasoft pseudopotentials (UPPs) was introduced by Vanderbilt [35].

In his scheme, the norm-conserving condition is relaxed, and the pseudo wavefunc-

tions are allowed to be as soft as possible within the core region, yielding a dramatic

reduction of the cutoff energy required to describe them. The UPPs have already

been used in plane-wave based methods and their successful applications open the

door to electronic structure calculations for systems containing first-row elements

[77, 78, 79] or transition metals [80]. However, these pseudopotentials have not yet

been implemented in the real-space methods, which limits the capability of the real-

space method to deal with such systems. I implemented the Vanderbilt UPPs in

our real-space multigrid method and in the nonorthogonal orbital order-N method.

This implementation enables efficient calculations of the atomic structure and elec-

tron transport properties of self-assembled monolayers on Au(111) surface, described

in the following chapter.

This chapter is organized as follows. In Section 2, we present a detailed intro-

duction to the Vanderbilt UPP, showing its general properties and describing the

differences with respect to the conventional norm-conserving schemes. In Section 3,

we implement this new pseudopotential in our real-space code; we identify problems

that arise and illustrate how these problems are overcome. Section 4 shows our test

results for diatomics and transition atoms.
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2.1 Introduction to Vanderbilt Ultrasoft Pseudopo-

tentials

2.1.1 Generalized Kohn-Sham Equations

The Vanderbilt UPP is a generalization of the Kleinman-Bylander pseudopotentials.

In the Vanderbilt scheme, the norm-conservation constraint is relaxed, i.e.,

∫ rc

0

ψ∗n(r)ψm(r)−
∫ rc

0

φ∗n(r)φm(r) 6= 0 ,

where ψn(r) are the all-electron wavefunctions and φm(r) are the constructed ultrasoft

pseudo wavefunctions. Such relaxation offers substantial flexibility in the construc-

tion of the pseudo wavefunctions that are smooth inside the core region (defined by

r < rc) and modifies the conventional approach significantly. Consequently, new

augmentation functions QI
n,m(r) are defined as

QI
nm(r) = Qnm(r−RI) = ψ∗n(r)ψm(r)− φ∗n(r)φm(r) ,

which describe the difference between true and pseudo valence orbitals. It is apparent

that QI
n,m(r) are strictly localized in the core region since they coincide beyond rc. In

order to recover the full electronic charge, the electron density given by the squared

moduli of the wavefunctions is augmented in the core region as

n(r) =
∑
i

[
|φi(r)|2 +

∑
nm

QI
nm(r) < φi|βIn >< βIm|φi >

]
. (2.1)

Here βIn = βn(r−RI) are projector functions that are centered on the ionic positions

and vanish outside the core region. For UPP, often two projectors are required for
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each angular momentum channel. Therefore the total number of projectors Nβ is gen-

erally twice as large as that for a corresponding Kleinman-Bylander norm-conserving

pseudopotential.

In addition, the orthonormality condition for the wavefunctions takes on a gener-

alized form due to the relaxation of the norm-conserving condition,

〈φi|S({RI})|φj〉 = δij , (2.2)

where the Hermitian overlap operator S(RI) depends on the ionic positions through

the |βIn > and is defined by

S = 1 +
∑
nm,I

qnm|βIn〉〈βIm| , (2.3)

with

qnm =

∫
Qnm(r) dr . (2.4)

In Vanderbilt’s UPP scheme, the total energy functional is given by

Etot[{φi}, {RI}] =
∑
i

< φi| − 1

2
∇2 + VNL|φi > +

1

2

∫ ∫
drdr′

n(r)n(r′)
|r− r′|

+Exc[n] +

∫
drV ion

loc n(r) + Eion({RI}) , (2.5)

with

VNL =
∑
nm,I

D(0)
nm|βIn >< βIm| , (2.6)

where D
(0)
nm are just parameters which characterize the UPP. Vanderbilt has proved

that the minimization of this total energy functional subject to the new constraint

(Eq. 2.2) directly leads to a generalized eigenvalue problem

H|φi >= εiS|φi > , (2.7)
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where

H = −1

2
∇2 + Veff +

∑
nm,I

DI
nm|βIn >< βIm| . (2.8)

Here Veff(r) is the screened effective local potential

Veff(r) = V ion
loc (r) + VH + VXC , (2.9)

and the coefficients DI
nm of the non-local part of UPP are given by

DI
nm = D(0)

nm +

∫
Veff(r)QI

nm(r) dr . (2.10)

As we can see, the UPPs also have a fully separable form of the non-local pseudopo-

tential, while the coefficients depend on the wavefunctions through Veff , Eq. 2.10,

and have to be updated at each self-consistent step. Due to this involvement of the

non-local pseudopotential in the self-consistent screening process, UPPs improve the

transferability with respect to changes in charge configuration. However, the total

energy Etot still can be obtained from Eq. 1.23 after the eigenvalues are computed

from the generalized eigenvalue Eq. 2.7 .

The ultrasoft pseudopotential is thus fully determined by the quantities V ion
loc , D

(0)
nm,

Qnm(r), and βn(r). The detailed algorithm used to generate these quantities is de-

scribed in Ref.[35]. Comparing with the KB pseudopotential, the relaxation of the

norm-conserving condition results in the introduction of the S overlap operator, the

generalization of eigenvalue equation, the wavefunction dependence of the coefficients

DI
nm, and the increase of the number Nβ of βIn functions, but it makes the wave-

functions much smoother inside the core region and thence allows for lower cutoff
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energies to represent them. Typically, the cutoff energy is about half that of conven-

tional norm-conserving pseudopotentials when using ultrasoft pseudopotentials. Such

advantage puts the UPPs on the list of the most widely used pseudopotentials in the

modern condensed matter calculations.

2.1.2 Ionic Forces

Following the Car-Parrinello method [47], the electronic wavefunctions and the ionic

coordinates evolve according to a classical Lagrangian

L = µ
∑
i

∫
dr|φ̇i(r)|2 +

1

2

∑
i

MIṘ
2
I − Etot({φi,RI}) ,

subject to a set of constrains

Nij({φi,RI}) =< φi|S({RI})|φj > −δij = 0 . (2.11)

Here µ is a fictitious mass parameter for the electronic degrees of freedom and MI is

the mass of the atoms. Thus, the Euler equations of motion are derived as

µφ̈i = −δEtot

δφ∗i
+
∑
j

ΛijSφj , (2.12)

FI = MIR̈I = −∂Etot

∂RI

+
∑
ij

Λij < φi| ∂S
∂RI

|φj > . (2.13)

Here Λij are the Lagrange multipliers associated with the constraints (Eq. 2.11), and

are given by

Λij =< φi|H|φj >= εiδij , (2.14)

where the screened H is given in Eq. 2.8. It is explicit that the second term on the

right-hand side of Eq. 2.13 is new with respect to the conventional norm-conserving
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schemes. It corresponds to the contribution from the change in the orthonormality

constrains due to the RI dependence of the overlap operator S({RI}. Furthermore,

in the first term on the right-hand side of Eq. 2.13, the electron density also depends

on RI through the QI
nm and βIn. Defining the following two quantities

ρInm =
∑
i

< φi|βIn >< βIm|φi > , (2.15)

ωInm =
∑
ij

Λij < φj|βIn >< βIm|φi > , (2.16)

their derivatives with respect to RI

∂ρInm
∂RI

=
∑
i

[
< φi| ∂β

I
n

∂RI

>< βIm|φi > + < φi|βIn ><
∂βIm
∂RI

|φi >
]
, (2.17)

∂ωInm
∂RI

=
∑
ij

Λij

[
< φj| ∂β

I
n

∂RI

>< βIm|φi > + < φj|βIn ><
∂βIm
∂RI

|φi >
]
, (2.18)

and noting that

∂n(r)

∂RI

=
∑
nm

[
QI
nm(r)

∂ρInm
∂RI

+
dQI

nm(r)

dRI

ρInm

]
, (2.19)

the forces on the atoms can be expressed by

FI = −dEion
dRI

−
∫

dr
dV ion

loc

dRI

n(r)−
∫

drVeff(r)
∑
nm

dQI
nm(r)

dRI

ρInm

−
∑
nm

DI
nm

∂ρInm
∂RI

+
∑
nm

∂ωInm
∂RI

, (2.20)

where DI
nm and Veff have been defined in Eqs. 2.9 and 2.10.
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2.2 Implementation of UPP into our Real-Space

Methods

2.2.1 Implementation of Two Uniform Global Grids

No doubt, the UPP provides optimally smooth pseudo wavefunctions, but at the

same time it also causes the augmentation functions Qnm(r) to be hard in the core

regions, typically for the tightly bound d-electron states of transition metals. As a

result, the total valence electron density n(r) expressed in Eq. 2.1 is partitioned into

a soft delocalized contribution given by the squared moduli of the wave functions,

and a hard contribution localized at the cores. In our real-space methods with KB

pseudopotential, the wavefunction and electron density are mapped onto the same

uniform grid. This partition does not work efficiently for the case of UPP anymore.

The soft part of the density can be accurately expanded on the grid for the wavefunc-

tions, which is generally coarser than the corresponding one used for the conventional

pseudopotentials, because UPP allows for optimally soft wavefunctions. However,

a much dense grid is required to represent the augmentation electron density (the

second part on the right-hand side of Eq. 2.1). In order to apply the UPP in our

real space method efficiently, two different uniform global grids are used. One is the

coarse grid for wavefunctions on which the generalized Kohn-Sham Eq. 2.7 is solved.

The other is the fine grid for the augmentation charge density. Typically, the fine

grid is twice denser than the coarse one.
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In the actual calculation of n(r), the augmentation charge related to Qnm(r) is

evaluated on the fine grid. The coarse grid is used to calculate the soft part of

the electron density. Then, it is transformed to the fine grid by performing proper

interpolation from the values on the coarse-grid points and added to the augmentation

charge to get the whole electron density n(r). In our case the cubic interpolation is

employed. Here we provide the interpolation formula in the one-dimensional case,

fnI+s = −(xnI+s −XI)(xnI+s −XI+1)(xnI+s −XI+2)

6h3
c

FI−1

+
(xnI+s −XI−1)(xnI+s −XI+1)(xnI+s −XI+2)

2h3
c

FI

−(xnI+s −XI−1)(xnI+s −XI)(xnI+s −XI+2)

2h3
c

FI+1

+
(xnI+s −XI−1)(xnI+s −XI)(xnI+s −XI+1)

6h3
c

FI+2 , (2.21)

with

n = hc/hd and s = 1, 2, · · · , n− 1 ,

where hd and hc are the grid spacings of dense-grid points and coarse-grid points

respectively, fnI+s are the values of the function on dense-grid points xnI+s, and FI

is the values on coarse-grid points XI . The Hartree potential is obtained by solving

the Poisson’s equation −∇2VH = 4πn(r). The exchange-correlation potential VXC is

also evaluated on the fine grid with LDA or GGA. The number of operations needed

for the above procedures does not depend on the number of states in the system,

but only on the grid size. This cost is relatively small when compared to that of the

eigenfunctions, especially for large systems consisting of hundreds of atoms.

The potential Veff , Eq. 2.9, is now known on the fine grid and used to calculate all
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quantities, including DI
nm and the third part of the ionic force on the right side of Eq.

2.13. However, both of the integrals are localized in the core region due to QI
nm and

the overall cost of these operations is negligible. The Veff is also needed on the coarse

grid, to calculate Veffφi when solving the generalized Kohn-Sham equations, Eq. 2.7.

Therefore, Veff needs to be transferred to the coarse grid. The simplest way is just

picking up the values corresponding to the coarse-grid points from its expansion on

the dense grid. We find that this extracting method works well in our real-space

total-energy calculation.

2.2.2 Double-Grid Technique for Nonlocal Projectors

In Vanderbilt’s UPP scheme, all the computational procedures, including solving the

Kohn-Sham equations, orthonormalizing the wavefunctions, constructing the electron

density and finding the ionic forces, require performing inner products between the

wavefunctions and the nonlocal projectors, or their derivatives with the ionic posi-

tions. The accuracy of these inner products significantly affects the accuracy and

the stability of the method. The UPPs offer much smoother wavefunctions, which

can be represented well on a coarse grid. However, the nonlocal projectors inside the

core regions vary rapidly. This means that the grid size suitable for the wavefunction

expansion is not fine enough to map the nonlocal part of pseudopotentials correctly.

In order to perform these inner products efficiently, a double grid technique [81] can

be used, because of the following facts. First, the projectors need to be on a fine grid.
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Figure 2.1: Presentation of pseudo-wavefunction (black line) and the nonlocal projector

(green line) with l = 1 for diamond. XJ (xj) represent coarse (dense)-grid points with

j = nJ + s(0 ≤ s < n), and so XJ = xnj.

Second, they do not change during SCF interation. Third, the wavefunctions on the

fine grid can be obtained by interpolating from the values on the coarse grid. We will

discuss the double grid technique in the next paragraphs.

The double grid employed to handle this problem consists of two types of uniform

and equi-distant grids. The coarse grid is just the global grid for the wavefunctions,

and the dense grid used to represent the non-local projectors and is localized in

a cubic box (with side L) in the core region of an atom. The procedure is best

illustrated with help of Fig.2.1. The black and green solid lines show a wavefunction

and a nonlocal projector for diamond calculations. Their corresponding values on

coarse- and dense-grid points are marked with big blue and small red solid circles,

respectively. We see that the wavefunction is much smoother than the projector and
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it could be easily approximated with interpolation. The projector, on the other hand,

should be calculated using the fine grid points.

Assuming that the inner product can be accurately approximated by a discrete

sum over dense-grid points,

< βI |φ >=

∮

cubic box

βI(x)φ(x)dx ≈
n3Ncore∑
j=0

βIjφj4Vdens , n =
hcoar

hdens

, (2.22)

where hdens(hcoar) is the grid spacings of dense (coarse) grid points, 4Vdens (4Vcoar)

is the dense (coarse) grid volume element, and n3Ncore (Ncore) is the number of dense

(coarse) grid points in the core region. We will denote the values of wavefunction on

the dense grid by φj and on the coarse grid with ΦJ . Now we proceed as follows

n3Ncore∑
j=0

βIjφj4Vdens =
n3Ncore∑
j=0

(
Ncore∑
J=0

FjJΦJ

)
βIj4Vdens

=
Ncore∑
J=0

ΦJ

n3Ncore∑
j=0

FjJβ
I
j4Vdens , (2.23)

where FjJ is the interpolation function. As a first step, we have approximated the

wavefunction φj on the dense grid by its known coarse grid values ΦJ . There are

several interpolation methods for this task. We apply the Fourier interpolation, i.e.,

φj =
Ncore∑

k=0

Φ̃(Gk)e
iGk·xj , (2.24)

with

Φ̃(Gk) =
1

L3

Ncore∑
J=0

ΦJe
−iGk·XJ4Vcoar . (2.25)

The Fourier interpolation function FjJ can be expressed by

FjJ = FJ(xj) =
1

L3

Ncore∑

k=0

eiGk·(xj−XJ )4Vcoar . (2.26)
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We still refine Eq. 2.23 as

Ncore∑
J=0

ΦJ

n3Ncore∑
j=0

FjJβ
I
j4Vdens =

Ncore∑
J=0

ΦJ

(
n3Ncore∑
j=0

FjJβ
I
j

4Vdens

4Vcoar

)
4Vcoar

=
Ncore∑
J=0

ΦJω
I
J4Vcoar . (2.27)

We can observe that the inner products (Eq. 2.22) still can be approximated with the

summation over coarse-grid points inside the core region, but the original nonlocal

projectors βIJ are simply substituted by the following weight factors:

ωIJ =
n3Ncore∑
j=0

FjJβ
I
j

(4Vdens

4Vcoar

)
. (2.28)

In our case of Fourier interpolation, the weightfactors are

ωIJ =
Ncore∑

k=0

ω̃ke
iGk·XJe−iGk·RI , (2.29)

with

ω̃k =
1

L3

n3Ncore∑
j=0

βje
−iGk·xj4Vdens . (2.30)

Here βj = β(xj), assuming that the atom is at the origin in Cartesian coordinates.

An advantage of the Fourier interpolation is that the term representing the position

of the atom can be factorized in the expression of ωIJ as the structural phase factor

exp[−iGk · RI ]. Thus the calculation of making a table of ω̃k in Eq. 2.30 for each

atomic species has to be carried out only once at the entire job.

It is explicit that the weight factors are independent of the wavefunctions and de-

pend only on the known values of nonlocal projectors on dense-grid points. Typically,

the ratio of hcoar to hdens is fixed at 3 or 4. The calculation of ωIJ has to be repeated
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each time the ions are moved. The gradients of the projectors needed in the force

term of Eq. 2.13 are similarly replaced by the interpolation weights. However, we do

not have to recalculate them through the self-consistent iteration steps.

2.2.3 Six-Order Mehrstellen Discretization

Generally, the cutoff energy is about 30 Ry or less when the UPP is used. The

corresponding coarse grid spacing is as large as 0.21 Å, which is much bigger than that

of KB pseudopotentials. When we discretize the generalized Kohn-Sham equations

on such coarse grid, i.e.,

HMehr[φn] =
1

2
AMehr[φn] + BMehr[Veffφn] = εnBMehr[Sφn] , (2.31)

the fourth-order Mehrstellen discretization (O(h4)) method is not accurate enough to

approximate the differential operator in the Hamiltonian. Here we use a sixth-order

Mehrstellen discretization, which uses one more neighbor than the fourth-order one.

The sixth-order Mehrstellen discretization samples the Hamiltonian and the wave-

59



Table 2.1: Discretization weights for the sixth-order orthorhombic Mehrstellen opera-

tors for the central, first, second, third, fourth, and fifth nearest-neighbor grid points.

The cubic-grid operator corresponds to hi = hgrid

a bn cn,m dn,m,l en fn,m

AMehr

∑
i

116
90h2

i
− 49

60h2
n

+
∑
i

31
80h2

i
− 1

10h2
n
− 1

10h2
m

+
∑
i

1
72h2

i
−∑

i

1
140h2

i

1
120h2

n
−∑

i

1
120h2

i

1
240h2

n

BMehr
61
120

13
180

1
144

0 − 1
240

0

functions at 57 points for both orthorhombic and cubic grids:

AMehr = af(x) +
3∑

n=1

bnf(x± hnx̂n) +
∑
n<m

cn,mf(x± hnx̂n ± hmx̂m)

+
∑

n<m<l

dn,m,lf(x± hnx̂n ± hmx̂m ± hlx̂l) +
3∑

n=1

enf(x± 2hnx̂n)

+
∑
n<m

fn,mf(x± hnx̂n ± 2hmx̂m) ,

BMehr = a′f(x) +
3∑

n=1

b′nf(x± hnx̂n) +
∑
n<m

c′n,mf(x± hnx̂n ± hmx̂m)

+
3∑

n=1

e′nf(x± 2hnx̂n) .

Such expansions of AMehr and BMehr show −∇2 = B−1
MehrAMehr + O(h6). Table.2.1

lists the corresponding weights of the sixth-order Mehrstellen operators used in our

present code.

Here we want to point out that the fourth-order Mehrstellen operators are still

used to discretize the Poisson equation, since both Hartree potential and electronic

charge density are represented on the dense grid.
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2.3 Test Results

In this section we examine the performance of UPPs in our real-space codes through

calculations of several properties of molecules and bulk crystals. To facilitate com-

parisons with plane-wave calculations, an equivalent coarse-grid energy cutoff Ecoar
cut =

π2/2h2 is defined, which is equal to that of a plane-wave calculation that uses a FFT

grid with the same grid spacing. For these tests, the size of the global dense grid for

the potentials and the electronic charge density is eight times as big as that of the

coarse grid, and for the calculation of the weight factors of nonlocal projectors the

ratio n = 4 is fixed.

2.3.1 Bond Lengths of Diatomic molecules

The first test application is the bond length of diatomic molecules. The simulation

supercell is a cube of length 15 a.u. and the grid spacing is 0.421 a.u., corresponding to

an energy cutoff of 25 Ry. The k-space sampling was restricted to the Γ point. After

the converging the electronic system, the ions are relaxed using the same relaxation

scheme as before. The relaxed bond lengths of N2, O2, and CO are listed in Table.2.2.

For comparison, it also lists the experimental values and the plane-wave calculated

values. Our calculated bond lengths agree with the experimental data and the plane-

wave calculations very well.
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Table 2.2: Bond lengths of diatomic molecules. The experimental data are from [82].

The theoretical results are from our present calculation and from plane-wave calculation

[79, 83] with ultrasoft pseudopotentials.

N2 O2 CO

Experiment 2.07 2.28 2.13

This work 2.08 2.32 2.16

Plane-wave calculation – 2.33 2.132

2.3.2 Ground state of bulk gold

To illustrate the ability of our codes to handle the transition metals, test calculations

are performed on a 16-atom Au tetragonal supercell. 64 special k-points are included

in k-space sampling. The ultrasoft pseudopotential for Au uses GGA [10] in the PBE

form [23] for the exchange and correlation term. Partial core correction is added in

order to account for nonlinear effects [32].

We calculated the total energy as a function of volume and then fitted the Mur-

naghan equation of state [84]

E(V ) =
B0V

B′0(B′0 − 1)

[
B′0

(
1− V0

V

)
+

(
V0

V

)B′0
− 1

]
+ E(V0) (2.32)

to our calculated points to extract the equilibrium volume V0, the equilibrium bulk

modulus B0, and the derivative of the bulk modulus with pressure B′0. The equi-

librium lattice constant can be easily obtained from V0, since the bulk gold has the

fcc structure. In Fig.2.2, we display the calculated energy versus volume equation of

state with an energy cutoff of 20 Ry. The fit to the Murnaghan equation of state is

excellent. Table.2.3 lists the extracted lattice constant and the bulk modulus with
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Figure 2.2: Equation of state for bulk gold in fcc structure. The continuous curve is the

Murnaghan equation of state; the points are the calculated energies at the indicated

volume.

different energy cutoffs. Our results are in good agreement with those of experiments

and the plane-wave methods.

Table 2.3: Ground-state properties of bulk gold from a fit to the Murnaghan equation of

state. The experimental data [85] and the results from a plane-wave calculation within

density-functional perturbation theory (DFPT) [83] are also listed for comparison.

Energy cutoff Lattice constant Bulk modulus

(Ry) (a.u) (Kbar)

Experiment – 7.67 1720

Present work 20 7.66 1919

Present work 30 7.67 1797

Plane-wave method 20 7.66 1823
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Figure 2.3: Bulk copper DFT-LDA band structure calculated with ultrasoft pseudopo-

tential.

2.3.3 Ground state and band structure of bulk copper

The second test application for transition metals is the band structure of bulk copper.

Generally, for a norm-conserving pseudopotential, an energy cutoff of 300 Ry [86] is

necessary to handle copper due to its highly localized 3d wavefunctions. Recently,

several smooth pseudopotentials have been generated for copper, which allows one to

use energy cutoffs ranging from 60 Ry to 72 Ry. Within the ultrasoft scheme, the

energy cutoff can be reduced to 25 Ry in our real-space calculation.

First, a band structure calculation is performed within the local-density approx-

imation (LDA) for the exchange and correlation energy. The calculated band struc-

tures along Γ−L and Γ−X are plotted in Fig. 2.3. In Table. 2.4, we list our calculated
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Table 2.4: Comparison of Cu bandwidths at high-symmetry points with the values

from experiment measurement [87] and the plane-wave method calculation [88] with

norm-conserving pseudopotential (NCPP). All energies are in eV.

Present work Plane-wave method Experiment

(with UPP) (with NCPP)

Γ12 − Γ25′ 0.901 0.91 0.81

X5 −X3 3.187 3.23 2.79

Widths of d bands X5 −X1 3.672 3.70 3.17

L3 − L3 1.562 1.58 1.37

L3 − L1 3.728 3.72 2.91

L-gap L1 − L2′ 5.168 4.21 5.20

bandwidths at high symmetry points. All of them are in very good agreement with

recent plane-wave calculations using norm-conserving pseudopotential with energy

cutoffs of over 60 Ry. The experimental values are listed in the right most column

for reference.

In Table. 2.5, we report the fcc lattice constant and bulk modulus of bulk copper

Table 2.5: Calculated lattice constant and bulk modulus of bulk copper from a fit to

the Murnaghan equation of state. The experimental data [89] and the results from the

plane-wave calculation within DFPT [83] are also listed for comparison.

Energy cutoff Lattice constant Bulk modulus

(Ry) (a.u) (Kbar)

Experiment – 6.81 1380

Present work 25 6.76 1572

Plane-wave method 20 6.72 1659
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obtained from a fit with the Murnaghan equation of state for the total energy as a

function of volume. The same supercell and k-points sampling as for bulk gold are

used. They are in good agreement with plane-wave calculations and experimental

data.

2.4 Summary

In this chapter, the new and novel ultrasoft pseudopotential scheme proposed by Van-

derbilt was briefly introduced. The UPPs provide much smoother pseudo-wavefunctions

through relaxing the norm-conserving condition. With respect to the conventional

pseudopotentials, the major difference resides in the presence of the overlap operator

S, the augmented electronic charge density n(r), the wavefunction dependence of the

DI
nm, and the substantially modified ionic forces FI . These differences require addi-

tional care and effort when implementing the UPPs in our real-space methods. First,

in order to accurately represent the augmentation functions, an additional global

dense grid is introduced, besides the one for the wavefunctions. Second, a double-

grid technique is employed to perform the inner products between the rapidly varying

nonlocal projectors of the pseudopotentials and the relatively smooth wavefunctions.

The memory requirements and the computational cost are drastically reduced. Fi-

nally, sixth-order Mehrstellen operators are used to discretize the generalized Kohn-

Sham equations. Our test applications on properties of diatomic molecules, bulk

gold and bulk copper show very good agreements with the experimental data and
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the plane-wave calculations. The advantage of a low energy cutoff allows us to per-

form calculations for large systems containing transition metal atoms, such as large

supercells containing organic molecules adsorbed on a Au(111) surface.
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Chapter 3

Nanowire-induced optical

anisotropy of the Si(111)-In surface

Ab initio calculations of the reflectance anisotropy of Si(111)-In surfaces are presented.

A very pronounced optical anisotropy around 2 eV is predicted for the structural

model proposed by Bunk et al. [Phys. Rev. B 59, 12228 (1999)] for the (4×1)

reconstructed surface. The (4×2)/(8×2) reconstructed surface, induced by a slight

distortion of the indium chains, is shown to result in a splitting of the 2 eV peak. The

calculated results are in excellent agreement with recent polarized reflectance data

acquired during the (4×1) −→ (4×2)/(8×2) phase transition.
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3.1 Introduction

Indium may self-assemble on Si(111) in a (4×1) pattern that is formed by long rows

of In atoms. The study of this reconstruction goes back to the sixties [90], but it

has intensified recently. On one hand, the chains formed by the In atoms may be

the smallest known atomic wires in existence [91, 92], which makes them interesting

in the technological context of downsizing the microelectronics into the nanoscale

regime. On the other hand, one-dimensional electronic systems are expected to show

interesting electronic features, such as spin-charge separation in a Luttinger liquid

or Peierls instabilities (see, e.g., Ref. [93]). Indeed, the metallic (4×1) phase of

the In chains was found to undergo a reversible Peierls-like transition below room-

temperature, where the period along the chain is doubled, forming (4×2) and finally

(8×2) reconstructions [94, 95].

On the basis of surface x-ray diffraction (SXRD) data [96] a detailed structural

model for the Si(111)(4×1)-In surface has been developed, which also accounts for

previous experimental findings. Its main features are zigzag chains of Si atoms al-

ternating with zigzag rows of In atoms on top of an essentially bulk-like Si lattice

(see Fig. 3.1 (a) and (b)). The Si chain is thus similar to the π-bonded chain of the

Si(111)(2×1) reconstruction. Strong support for this structural model comes from a

series of first-principles calculations [97, 98, 99]. The calculations not only confirmed

the experimentally determined surface geometry, but also reproduced the dispersion

of the measured surface electronic states [91] and the experimentally detected image
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Figure 3.1: Optimized atomic structures of the zigzag-chain model of the Si(111)-In

surface: (a) top and (b) side view of the (4×1) reconstruction, (c) and (d) are the

top views of (4×2) and (8×2) reconstructions, respectively. The solid/open circles are

In/Si atoms. Surface unit cells are indicated. Arrows in (c) and (d) show the slight

distortions of the outer indium atoms with respect to the (4×1) reconstruction.

state anisotropy [100]. SXRD has also been used to study the low-temperature (LT)

Si(111)-In surface [101]. It was proposed that the periodicity along the In chains

doubles, due to trimer formation of the outer indium atoms. In addition, a glide

line occurs, causing a doubling of the unit cell in the direction perpendicular to the

chains. The resulting (8×2) reconstructed surface structure is somewhat in contrast to

the atomic configuration changes upon cooling inferred from LT photoemission data

[102]: Yeom and co-workers concluded that the inner In rows are mainly affected by

the (4×1) −→ (4×2)/(8×2) phase transition. However, this is not in agreement with
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ab-initio calculations. Cho et al. [98] find that the outer indium chain atoms are

displaced to form pairs, which are arranged in (4×2) or (8×2) symmetries as shown

in Fig. 3.1 (c) and (d), respectively. The calculated structures for the (4×2)/(8×2)

reconstruction agree in many but not all respects with the interpretation of the SXRD

data in Ref. [101]. Discrepancies also exist regarding the electronic structure of the

LT phase of the Si(111)-In surface. While some experimental studies find this phase

to be insulating [94, 92], others see only a reduced density of states at the Fermi level

[102, 103] or remain inconclusive [104]. First-principles calculations by the Kleinman

group [98] find no gap opening at the Fermi level as a result of the (4×1) −→ (4×2)

phase transition. It is not clear, however, if this is indeed a correct finding or an

artifact of the calculation, due to either the band gap underestimation in density-

functional calculations [105], or an assumption of a wrong atomic structure for the

LT phase of the Si(111)-In system.

Reflectance anisotropy spectroscopy (RAS) at the Si(111)(4×1)-In surface [106,

107, 108] shows an optical anisotropy in the energy region of 2 eV, which is signifi-

cantly larger than previously reported for any semiconductor system. Very recently,

it has been found that this anisotropy splits into two peaks, at 1.9 and 2.2 eV, upon

formation of the LT phase of the Si(111)-In surface [109]. In this paper we present

first-principles calculations for the nanowire-induced optical anisotropy of the Si(111)-

In surface. It will be shown that the atomic structure proposed from SXRD data in

Ref. [96] for the In induced (4×1) symmetry explains very well the optical anisotropy

measured for the room-temperature phase of the Si(111)-In surface. Our total-energy
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Figure 3.2: The experimental observed RAS spectrum of the Si(111)-In 4×1 and

4×2/8×2 phases.

and RAS calculations strongly support Kleinman’s model [98] for the (4×2)/(8×2)

reconstructed Si(111)-In surface.

3.2 Methodology

The calculations employ a massively parallel real-space multigrid implementation

[64] of the density functional theory (DFT) within the local density approximation

(LDA) [14]. The electron-ion interactions are described by non-local, norm-conserving

pseudopotentials [31, 110, 111]. A partial core correction to the In pseudopotential

was added in order to take into account a nonlinear effect for the exchange-correlation

term [32]. The spacing of the grid used to map the wave functions, the potentials and
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the charge density is 0.166 Å, corresponding to an energy cutoff of about 47 Ry in

plane-wave calculations. The Si(111)-In surface is simulated by a periodic supercell

that contains ten Si layers, one adsorbate layer, and a vacuum region corresponding

in thickness to eight Si layers. Hydrogen atoms are employed to saturate the dangling

bonds of the silicon atoms in the bottom layer. We use the calculated equilibrium lat-

tice constant of 5.43 Å for silicon. Sets of special k points corresponding to 32 points

in the full (1×1) surface Brillouin zone were used for the self-consistent electronic

structure calculations.

The atomic surface structure gives rise to corrections ∆R in the Fresnel reflectivity

R0, which can be calculated from the diagonal slab polarizability components αii and

the bulk dielectric function εb by

∆R(ω)

R0(ω)
=

16πdω

c
Im

[
αxx(ω)− αyy(ω)

εb(ω)− 1

]
,

where d is the slab thickness, ω is the frequency, and c the speed of light [112, 113].

Here x and y are the directions parallel and perpendicular to the indium chain, respec-

tively, i.e., the [1̄10] and [112̄] directions. The surface dielectric function calculations

were performed with uniformly distributed k points corresponding to a density of

960 sampling points in the full (1×1) surface Brillouin zone. A linear cutoff func-

tion was used to eliminate spurious optical anisotropies from the bottom layer of the

slab [114]. The dielectric function of metallic systems contains contributions from

interband and intraband transitions [115]. The interband transitions dominate the

spectra in the energy range usually investigated with RAS. Therefore, and because
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Figure 3.3: The optimized atomic structure of the π-bonded chain stacking-fault model

for Si(111)4×1-In reconstruction. Solid circles are In atoms and open circles are Si

atoms. The (4×1) unit cell is indicated.

the intraband contributions are hardly accessible to ab-initio calculations for systems

of the size studied here, we consider only the interband part. It is calculated in the

independent-particle approximation, i.e., neglecting excitonic and local-field effects.

A scissors operator approach has been used to account for the band-gap underestima-

tion of 0.5 eV for bulk Si due to the neglect of self-energy effects within DFT-LDA.

Calculations for smaller systems [116, 117] have shown that many-body effects al-

ter RAS spectra quantitatively rather than qualitatively, because RAS spectra are

difference spectra, which are furthermore normalized to the bulk dielectric function.

Therefore, calculations within the independent-particle approximation reliably repro-

duce experimental data for a wide range of semiconductors [118, 119].
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3.3 Results and Discussion

The first reported RAS measurement of the Si(111)-In surface [106] was interpreted

in terms of a π-bonded chain stacking-fault (π-SF) model of the (4×1) reconstruction.

This model, shown in Fig. 3.3, was proposed on the basis of Auger spectroscopy, low-

energy electron diffraction, and scanning tunneling microscopy [120]. The substrate

Si atoms form 7656 rings, i.e., two six-fold, one seven-fold and one five-fold rings per

unit cell. The In atoms on top form ridges contain three rows of In atoms. The edge

In atoms saturate the dangling bonds of the underlying Si atoms and the central In

row forms metallic bonds with the In atoms of the edge rows. We calculate an In-Si

bond length of 2.66 Å. The minimum distance between In atoms amounts to 2.98 Å.

The calculated optical anisotropy of the π-SF model is shown in Fig. 3.4. The RAS

spectrum is negative for the complete energy range considered, i.e., from 1.0 to 5.5

eV. While the sign and the magnitude of the calculated optical anisotropy agree with

experiments [106, 107, 108, 109], there is no agreement concerning the line shape and

the energy positions of the RAS peaks. Experimentally, one very pronounced optical

anisotropy dip at around 2 eV is observed. In contrast, the π-bonded chain stacking-

fault model yields a series of features with the main peak at around 3.6 eV. From the

calculated RAS spectrum we can thus exclude the π-SF model as the structure for

In-induced (4×1) reconstructions of Si(111).

We therefore focus on the zigzag-chain model developed for interpretation of

SXRD data of the Si(111)(4×1)-In surface [96]. Here, four indium atoms and two
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Figure 3.4: RAS spectrum calculated for the π-SF model of the (4×1)-In reconstruction

shown in Fig. 3.3.

Si atoms per (4×1) unit cell are adsorbed on an essentially bulk-like (111) substrate

surface, forming chains along the [1̄10] direction. Starting from the experimentally

determined coordinates, total-energy minimization yields the structure shown in Fig.

3.1 (a) and (b). The relaxed geometry is in good agreement with the experimental

data [96] and previous calculations [97, 98, 99]. The In-In bond lengths within the

chains amount to 2.98 Å and 3.00 Å. This is slightly larger than the sum of In cova-

lent radii of 2.88 Å, but shorter than the 3.25 Å In-In distance in tetragonal bulk In,

indicating the predominantly covalent character of bonding within the In chains. The

distance between indium atoms in neighboring chains is 3.16 Å and the In-Si bond

lengths are 2.68 Å. The calculated electronic structure of the Si(111)(4×1)-In surface

confirms earlier experimental [91, 121] and theoretical results [97, 98, 99]. There are
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Figure 3.5: RAS spectra calculated for the zigzag-chain models of the Si(111)-In surface

reconstructions shown in Fig. 3.1. The curves are shifted vertically for clarity, with

the zero position indicated on the right. The scale is shown in the inset.

three metallic bands crossing the Fermi level along the direction parallel to the atomic

chains, which show only a weak dispersion perpendicular to the In chains.

The anisotropy of the surface electronic structure is reflected in the calculated

optical anisotropy, shown in Fig. 3.5. Similarly to the results obtained for the π-

SF structure, we find the RAS to be negative for nearly the complete energy range

considered. In the case of the zigzag-chain model, however, a very strong anisotropy

peak of 2.2 % is calculated for a photon energy of 2 eV. This is in excellent agreement

with the experimental findings [106, 107, 108, 109] of a very pronounced anisotropy of

1.2 – 2.0 % at 2 eV. The fact that the calculated optical anisotropy is slightly larger
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than measured is expected. Our results refer to a single-domain Si(111)-In surface

free of steps and other defects. Defects in the In chains and signals from minority

domains reduce the peak at 2 eV, whereas surface steps give rise to additional features

at the bulk critical points of Si, i.e., at 3.5 and 4.3 eV [122]. The optical anisotropy at

2 eV is unambiguously attributed to surface states, because this energy region is far

below the direct optical gap of Si. However, it is not directly related to the metallicity

of the nanowires, which at low frequencies is expected to result in a stronger optical

coupling for light polarized in the chain direction rather than perpendicularly to the

chains. Therefore, the quasi one-dimensional metallicity of the In chains should lead

to positive optical anisotropies, which are indeed observed for photon energies below

1 eV [108]. Our calculations cannot safely be extended to that energy region, because

of the neglect of intraband transitions.

In order to calculate the structure of the LT phase of the Si(111)-In surface,

we start from symmetry-distorted geometries with (4×2) and (8×2) translational

periodicities. The resulting (4×2) and (8×2) structures, shown in Fig. 3.1(c) and (d),

are mainly characterized by a pairing of the outer In chain atoms. Their distance is

reduced from 3.84 Å in the (4×1) structure to 3.55 Å. This reconstruction mechanism

agrees with the findings of the Kleinman group [98], who predict a corresponding

reduction from 3.87 to 3.59 Å. The pairing leads to an alternating relaxation of

the inner chain atoms towards or away from the center of the neighboring indium

chain. However, the pairing-induced In-In and In-Si bond length changes are hardly

discernible, i.e., below 0.02 Å. The calculated band structures for the (4×2) and
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(8×2) have no gap at the Fermi level. This may partially be related to the band

gap underestimation typical of DFT-LDA calculations [105]. It appears likely that

self-energy effects open a small gap for the lowest lying metallic band (cf. S3 in Fig.

2 in Ref. [98]), because this band nearly bisects the (4×1) surface Brillouin zone.

Therefore, the corresponding Fermi surface has the possibility of nesting, potentially

driving the opening of a Peierls gap. This mechanism is hardly plausible, however,

because of the remaining metallic surface states. Our calculations, which are in

agreement with the first-principles results of Cho et al. [98], thus support the view

that the doubling of the surface unit cell results in a reduction of the density of states

at the Fermi level, but not in the opening of a fundamental gap. This is in agreement

with some but not all of the recent experimental studies [102, 103].

In order to verify the calculated structural models for the (4×2)/(8×2) phase, we

calculated their reflectance anisotropy, cf. Fig. 3.5. The spectra are similar to the one

calculated for the (4×1) phase. However, for the (4×2) reconstruction a shoulder at

2.2 eV emerges, which is even more pronounced for the (8×2) surface. It corresponds

exactly to the optical signature of the (4×1) −→ (4×2)/(8×2) phase transition found

in a recent experimental study [109]. In addition to the appearance of the 2.2 eV

shoulder, the calculated minimum of the RAS shows a slight redshift by about 0.1

eV. Again, nearly quantitative agreement with the experimentally observed shift from

1.96 to 1.90 eV is obtained. Fleischer et al. [109] argue that the measured changes in

the optical anisotropy cannot be explained as a temperature-induced sharpening of

the original 2 eV peak, since the overall width of the structure is much larger for the
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LT phase. The changes of the RAS spectra can thus only be explained by electronic

and structural modifications of the Si(111)-In surface accompanying the (4×1) −→

(4×2)/(8×2) phase transition. The excellent reproduction of these changes in the

calculated surface optical properties is a very strong indication for the correctness

of the underlying surface structural model, i.e., the geometry originally proposed by

Kumpf and co-workers [101] and modified by Cho et al. [98].

3.4 Summary and conclusions

The optical anisotropies for different models used to explain the formation of In

nanowires at the Si(111) surface have been calculated from first principles. A com-

parison with measured data strongly supports the zigzag-chain model for the room-

temperature (4×1) reconstructed phase of the Si(111)-In surface. An energetically

favored pairing of In atoms gives rise to a doubling of the periodicity along the chain

direction. The energy can be further lowered by arranging neighboring chains in a

(8×2) superstructure. These structural changes are accompanied by changes in the

calculated optical anisotropy, which are in excellent agreement with data acquired

during the formation of the low-temperature phase of the Si(111)-In surface. Our re-

sults for the surface electronic structure are compatible with the view that a reduction

of the density of states at the Fermi level occurs upon the (4×1) −→ (4×2)/(8×2)

phase transition. However, there is no indication of gap opening.
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Chapter 4

Resonant Coupling and Negative

Differential Resistance in

Metal/Ferrocenyl-

Alkanethiolate/STM

structures

Recent experimental studies have demonstrated that self-assembled molecules sand-

wiched between metallic contacts can perform logic functions based on negative dif-

ferential resistance (NDR). To understand the mechanism of NDR, the electronic

structure and transport properties of one such junction, ferrocenyl-alkanethiolate at-
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tached to a gold surface and probed with a scanning tunneling microscope (STM) tip,

have been investigated by large scale ab initio calculations. The I-V characteristics

show strong NDR features at both positive and negative biases, in good agreement

with the experimental data. The voltage-dependent transmission, potential drop pro-

file, and molecular level alignment under bias suggest that the ferrocenyl group acts

like a quantum dot and that the NDR features are due to resonant coupling between

the HOMO and the density of states of gold leads. The strength of the individual

NDR peaks can be tuned by changing the tunneling distance or using suitable spacer

layers.

4.1 Introduction

Since the concept of using individual molecules as functional electronic devices was

first proposed in 1970’s [123], having individual molecules perform the basic functions

of conventional electronic components became the goal of molecular electronics. Re-

cently, this field has experienced a dramatic increase in activity, due to the emerging

need for alternate routes toward smaller, faster and cheaper integrated circuits. Key

electronic components, such as wires, diodes, and transistors have been successfully

demonstrated, all based on single or self-assembled molecules sandwiched between

electrodes. For self-assembled molecules on a single-crystal surface, the substrate

serves as one of the electrodes. A variety of methods have been used to form the

contact with the other electrode, such as a scanning tunneling microscope (STM) tip
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[124, 125, 126, 127, 128] and atomic-scale break junctions [129, 130]. A number of

novel and promising characteristics for these types of molecular devices have been

reported. For example, negative differential resistance (NDR) [125, 131] and molecu-

lar memory effects [132, 133] have been demonstrated on a system of phenyl-ethylene

oligomers functionalized with different side groups. Recently, a ferrocene-based mole-

cular wire with near-perfect conductance has been reported by Getty and co-workers

[134]. The ballistic conductance thus reaches the criteria for real applications of

molecular electronic devices. The phenomenon of NDR has also been observed for

ferrocenyl-undecanethiolate self-assembled monolayers (Fc-C11S-SAM) on Au(111)

surface [135, 136].

Self-assembled molecular systems with NDR are promising molecular devices due

to their utility in fast switching logic and simplicity in integration. Therefore, theoret-

ical understanding of their electron transport properties and of the underlying NDR

mechanisms is critical for the design of molecular devices. However, in many cases the

NDR mechanisms have not been unraveled either from experiments or from theory.

The redox effect, i.e., a change of the charge state with bias, has been suggested to

explain the NDR for ferrocenyl-alkanethiolate SAM on Au(111) surface [135]. How-

ever, resonant tunneling may also play an important role in NDR. Another possibility

is some level of bond breaking under current[137], i.e., the structure of the molecule

itself or of the molecule-substrate interface changes dramatically when a large bias is

applied to the system.

In this chapter, we study the electronic and transport properties of the ferrocenyl-
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pentanethiolate SAM on Au(111) surface. The atomic structures of Fc-C5S and

C5S on the Au(111) surface and their saturation coverages are determined by total

energy calculations. Our self-consistent quantum transport calculations for geometry-

optimized structures show NDR features at both negative and positive biases, in good

agreement with the experimental data. The mechanism responsible for the NDR is

uncovered by analyzing the molecular level alignment, transmission spectra under

bias, and charge transfer between the molecule and STM tip.

4.2 Electronic Structure Calculation

The calculations use a massively parallel real-space multigrid implementation [64] of

density functional theory (DFT) [10]. Due to the relatively large sizes of the super-

cells, the k-space sampling is restricted to the Γ point. The exchange and correlation

terms are represented by the generalized gradient approximation (GGA) in PBE form

[23]. The electron-ion interactions are described by nonlocal, ultrasoft pseudopoten-

tials [35]. A partial core correction is added to the Au and Fe pseudopotentials

in order to account for the nonlinearity in the exchange-correlation term [32]. The

wave functions and localized orbitals are described on a grid with spacing of 0.20

Å. A double grid technique [81] is employed to evaluate the inner products between

the non-local potentials and the wave functions, thereby substantially reducing the

computational cost and memory requirement without losing accuracy.

First, the equilibrium structures of the adsorbed molecules on the Au(111) surface
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Au S Fe C H

Figure 4.1: Atomic structures of (a) C5S-Au(111) (
√

3×√3)R30◦, (b) Fc-C5S-Au(111)

(
√

3×√3)R30◦, and (c) Fc-C5S-Au(111) (
√

21×√7).

are investigated by total energy calculations. For each of the structures, the molecule

is anchored with a sulfur atom to the Au(111) surface and all of the atoms are

relaxed using total energy calculations and first-principles forces. For the adsorption

of alkanethiolate on the Au(111) surface, two structural models have been reported.

One is the (
√

3 × √3)R30◦ reconstruction with low molecular coverage [138]. The

other is the c(4×2) reconstruction with high molecular coverage [139]. Since the

molecular coverage for the c(4×2) structure is too high when ferrocenyl heads are

present, we only consider the (
√

3×√3)R30◦, see Fig. 4.1(a). Our calculations show

that the fcc hollow site is favorable and that the molecular axes are tilted by 27◦ with

respect to the surface normal. These results are in agreement with recent theoretical

work [140, 141] and experiments [138].

In the case of Fc-C5S on Au(111), our calculations for the (
√

3 × √3)R30◦ Fc
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superlattice (Fig. 4.1(b)) show that the repulsive interaction between the neighboring

ferrocenyls is very strong, resulting in a positive adsorption energy. To determine

the saturation coverage, we calculated adsorption energies for a number of different

structures and coverages. Among the structures that were considered, two molecules

per (
√

21 ×√7) unit cell is the maximum coverage for which the adsorption energy

is still negative (-0.3 eV per molecule in this case). For this coverage, the optimized

tilt angle of the molecular axis is 15◦. Clearly, the ferrocenyl head greatly decreases

the molecular packing density on the Au(111) substrate.

4.3 Quantum Transport Calculation

The non-linear I-V characteristics are evaluated using the non-equilibrium Green’s

function (NEGF) methodology [142, 143] in a basis of optimal localized orbitals

[66, 73]. The atom-centered orbitals are optimized variationally in the equilibrium

geometry. Four orbitals for hydrogen, six for carbon, eight for sulfur and ten for iron

and gold atoms are used, all with the radius of 4.50 Å. The Hartree potential is ob-

tained by solving the Poisson equation with fixed boundary conditions to match the

left and right leads, i.e., the two semi-infinite gold leads in our case. A self-consistent

calculation is carried out for each bias, which is critical in order to obtain correct I-V

characteristics at large bias [144]. Due to the efficiency of our O(N) methodology

[66, 73], we are able to include 372 atoms and a total of nearly 4000 electrons in the

calculations.
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Figure 4.2: Schematic views of the Au-SC5S-Fc-Au system, where d is the distance

between the molecule and the STM tip, and of isosurfaces of the HOMO and LUMO

orbitals at zero bias. Both the HOMO and the LUMO are localized on the ferrocenyl

head.

Fig. 4.2 shows a schematic view of the system, together with the highest occupied

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). As

described above, the ferrocenyl-pentanethiolate is anchored with a sulfur atom to the

Au(111) surface (left part in Fig. 4.2). In our calculations, we model the STM tip

as another Au(111) surface (right part in Fig. 4.2). In experiments, the distance d

between the molecule and the STM tip is determined by the setpoint current. The

lower current, the larger the distance, since the magnitude of the tunneling current
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depends exponentially on d.

The transmission of the molecular junction is mainly determined by molecular

orbital(s) whose energy levels lie near the Fermi level of metal lead in contact with

the molecule. These orbitals are usually either the HOMO or the LUMO. Their

isosurfaces are plotted in Fig. 4.2. Clearly, both the HOMO and the LUMO are

localized on the ferrocenyl head.

After the potential profile is self-consistently determined, the transmission spec-

trum under the external applied bias V can be calculated by

T (E, V ) =
2e2

h
Tr[ΓL(E)G+

C(E)ΓR(E)G−C(E)],

where G±C are the advanced and retarded Green’s functions of the conductor, and

ΓL,R are its coupling functions to the left and right leads, respectively.

The calculated transmission spectra T (E, V ) are shown in Fig. 4.3, with the Fermi

level of the gold substrate at zero bias chosen as the energy zero. The two white lines

show the chemical potentials of the left and right leads, with µL − µR = V being the

effective applied bias. We note that the transmission peak from the HOMO resonance

is always near the lower chemical potential for both positive and negative biases.

This is because the bias-induced potential drop across the molecular junction is very

different for positive and negative biases. At negative bias, the largest potential drop

occurs across the vacuum between the molecule and the right electrode (STM tip).

This indicates that the electrons on the left side of the junction (the Au substrate)
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Figure 4.3: Calculated transmission spectra T (E, V ) for the Au(111)-SC5S-Fc-Au(111)

junction with d = 3.39 Å. The two white lines are the chemical potentials of the two

leads, µL = EF + eV/2 and (µR = EF − eV/2), as functions of the applied bias voltage.

can move freely in the molecule to effectively screen the applied field. However, at

positive bias, we find that the potential drops mainly in the carbon chain region of

the molecule. As a result, the average potential around the ferrocenyl head is always

aligned with the lower chemical potential and the HOMO, which is localized on the

ferrocenyl, and is thus pinned by the lower chemical potential.

The current through the molecular junction is given by

I(V ) =

∫ ∞
−∞

T (E, V )[nF (E − µL)− nF (E − µR)]dE,

where nF is the Fermi-Dirac distribution and T (E, V ) is the transmission coefficient

89



-2 -1 0 1 2
Bias (V)

-5

-4

-3

-2

-1

0

1

2

3

4

5

C
ur

re
nt

 (
nA

)

Figure 4.4: Current-voltage characteristics of the Au(111)-SC5S-Fc-Au(111) junction

with d = 3.39 ÅCurrent-voltage characteristics of the Au(111)-SC5S-Fc-Au(111) junc-

tion with d = 3.39 Å.

at bias V .

The I-V curve calculated with the STM-molecule distance of d = 3.39 Å is shown

in Fig. 4.4. The NDR features are at -1.6, -0.4, 0.2, and 1.2 V , compared with the

experimentally observed NDR at -1.6 and 1.6 V . Tunneling through the ferrocenyl

head is responsible for these features, since the calculated I-V curve without the

ferrocenyl, i.e., for pentanethiolate on Au(111), does not show NDR behavior. This

is in good agreement with experiments [135, 136].

All of the NDR features can be understood in terms of resonant tunneling between

the two top occupied levels and the gold density of states. In the density of states

90



DOS
-4

-3

-2

-1

0

1

2

3

4

5

E
ne

rg
y 

(e
V

)

-4

-2

0

2

4

V
av

g (
eV

)

DOS
-4

-3

-2

-1

0

1

2

3

4

5

E
ne

rg
y 

(e
V

)

µ
L

µ
RHOMO

V = 1.2 V

Figure 4.5: The NDR mechanism for the Au(111)-SC5S-Fc-Au(111) junction at 1.2 V .

The left and right panels are densities of states (DOS) of bulk gold. The horizontal

dashed lines in the DOS plot mark the left and right chemical potentials. The middle

panel shows the average potential in the molecular junction. The horizontal solid lines

in the middle plot mark the energies of the HOMO and the level just below the HOMO,

because these orbitals dominate the transmission.

(DOS) of bulk gold, the first peak below the Fermi energy is at around -0.2 eV and

the second one is at -1.2 eV. When the HOMO level is aligned with one of these peaks,

the current reaches its maximum and NDR appears. Fig. 4.5 illustrates the NDR

mechanism at 1.2 V by plotting the DOS of the gold leads, the average potential, and

the energy positions of the top two occupied orbitals. These orbitals are localized on

the ferrocenyl by potential barriers. One barrier is around the Au-molecule interface,

while the other is in the vacuum region between the ferrocenyl and the STM tip.
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Therefore, the ferrocenyl acts like a quantum dot. As shown in Fig. 4.5, at bias

of 1.2 V , the HOMO level is aligned with the peak in the DOS of left lead. As a

result, a current maximum appears. For negative bias, the NDR can be understood

in a similar way, except that the resonant coupling is between the HOMO and the

right lead. Charge transfer between the molecule and the right lead also plays an

important role in determining the position of the NDR. At a negative bias, charge

transfer leads to an internal electric field that cancels out part of the applied external

bias. As a result, the NDR appears at a higher voltage for negative bias than for the

positive one, because there is no charge transfer for positive bias.

The calculated value of the current in Fig. 4.4 is about 50 times bigger than that

of the STM measurement. This is mainly due to the unknown distance d between

the STM tip and the molecule. In order to investigate the effect of this distance on

electron transport, we carried out calculations for different values of d.

Fig. 4.6 shows the I-V curves for positive bias at distances of 2.01, 3.39 and 4.34

Å, respectively. Their overall shapes are very similar for the three different distances

and the NDR positions are at about same biases. However, the absolute value of the

current decreases exponentially with the increase of the distance. For example, at

the bias of 0.6 V , we can fit the current by I(d) = I0e
−βd with the decay constant

β = 0.90. Another effect of the distance is in the shape of the NDR region, or its

“strength.” The NDR at 1.2 V is enhanced with an increase in the vacuum distance.

This indicates that a low current setpoint in the STM experiment is important for

the observation of NDR at a large bias. However, an increase of the distance has the
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Figure 4.6: Current-voltage characteristics of the Au(111)-SC5S-Fc-Au(111) junction

as a function of the STM-molecule distance.

opposite effect on NDR at low bias; the peak at 0.2 V is attenuated with increasing

d. This result can explain why the low bias NDR is not seen in the experiment,

because a high current setpoint in the STM measurement would be necessary for its

observation. This “NDR tuning” effect can be utilized in the design of molecular

devices, for example by introducing spacer layers, which would adjust the strength of

the NDR and the working current for optimal device performance.

Obviously, the length of the alkane chain in the molecule plays a major role

in determining the magnitude of the current. For computational reasons, our cal-
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culations were performed on ferrocenyl-pentanethiolate, while the experiment used

ferrocenyl-undecanethiolate. However, we performed a few calculations for ferrocenyl-

undecanethiolate, from which we learned that a current of the same magnitude as in

the experiment would be obtained at the STM distance of 3.01 Å. Nevertheless, the

shape and the major features of the distance-dependent I-V curves remain similar to

those of ferrocenyl-pentanethiolate.

Apart from the distance and length effects, the unknown molecule/gold contact

geometry and chemistry could also partially explain the remaining discrepancies be-

tween the theory and experiment. For example, if the molecule is attached to an

atomic protrusion rather than an atomically flat surface, the magnitude of the cur-

rent would be substantially lower [145, 146]. In addition, other variables, such as the

temperature or local disorder in the metal near the contact can alter the value of

current measured in experiment.

4.4 Summary and Conclusions

In summary, we investigated theoretically the geometry, electronic structure, and

quantum transport properties of ferrocenyl-alkanethiolate self-assembled monolayers

on Au(111) by large-scale first-principles calculations. The calculated NDR features

at large biases are in good agreement with experiment. By carefully analyzing the

transmission, charge transfer, and the alignment of molecular levels, we find that

the HOMO is always localized at the ferrocenyl head and is pinned by the lowest
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chemical potential of the electrodes. Resonant tunneling through the top two occupied

orbitals dominates the I-V characteristics, with NDR effects being due to features in

the density of states of the gold surface. The magnitude of the current and of the

strength of the NDR are dramatically affected by the distance between the molecule

and the STM tip. In practical devices, spacer layers will have a similar effect and can

be used to tune the performance of the device.

95



Bibliography

[1] T. Kinoshita and W. B. Lindquist. Eighth-order anomalous magnetic moment

of the electron. Phys. Rev. Lett., 47(22):1573, November 1981.

[2] R. S. Van Dyck Jr., P. B. Schwinberg, and H. G. Dehmelt. New high-precision

comparison of electron and positron g factors. Phys. Rev. Lett., 59(1):26, July

1987.

[3] J. Ihm, A. Zunger, and M. L Cohen. Momentum-space formalism for the total

energy of solids. J. Phys. C, 12:4409, 1979.

[4] P. J. H. Deteneer and W van Haeringen. The pseudopotential-density-functional

method in momentum space: details and test cases. J. Phys. C, 18:4127, 1985.

[5] M. Born and R. Oppenheimer. Zur quantentheorie der molekeln. Ann. Phys.

(Leipzig), 84(20):457, 1927.

[6] V. Fock. Z. Phys., 61:126, 1930.

[7] J. C. Slater. A simplification of the hartree-fock method. Phys. Rev., 81:385,

1951.

96



[8] D. R. Hartree. Proc. R. Soc. London, A113:621, 1928.

[9] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864,

1964.

[10] W. Kohn and L. J. Sham. Self-consistent equations including exchange and

correlation effects. Phys. Rev., 140:A1133, 1965.

[11] L. I. Schiff. Quantum Mechanics. McGraw-Hill, 1986.

[12] R. O. Jones and O. Gunnarsson. The density functional formalism, its applica-

tions and prospects. Rev. Mod. Phys., 61:689, 1989.

[13] J. P. Perdew and Y. Wang. Phys. Rev. B, 46:12947, 1992.

[14] J. P. Perdew and A. Zunger. Self-interaction correction to density-functional

approximations for many-electron systems. Phys. Rev. B, 23(10):5048, 1981.

[15] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochastic

method. Phys. Rev. Lett., 45(7):566, 1980.

[16] J. Harris and R. O. Jones. The surface energy of a bounded electron gas. J.

Phys. F, 4:1170, 1974.

[17] O. Gunnarsson and B. I. Lundqvist. Phys. Rev. B, 13:4174, 1976.

[18] D. C. Langreth and J. P. Perdew. Phys. Rev. B, 15:2884, 1977.

97



[19] D. C. Langreth and J. P. Perdew. Theory of nonuniform electronic systems. i.

analysis of the gradient approximation and a generalization that works. Phys.

Rev. B, 21(12):5469, 1980.

[20] J. P. Perdew and Wang Y. Accurate and simple density functional for the

electronic exchange energy: Generalized gradient approximation. Phys. Rev. B,

33(12):8800, 1986.

[21] J. P. Perdew. Density-functional approximation for the correlation energy of

the inhomogeneous electron electron gas. Phys. Rev. B, 33(12):8822, 1986.

[22] A. D. Becke. Density-functional exchange-energy approximation with correct

asymptotic behaviour. Phys. Rev. A, 38:3098, 1988.

[23] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation

made simple. Phys. Rev. Lett., 77:3865, 1996.

[24] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation

made simple. Phys. Rev. Lett., 78:1396, 1997.

[25] J. P. Perdew. Unified theory of exchange and correlation beyond the local

density approximation. Electronic Structure of Solids ’91, edited by P. Ziesche

and H. Eschrig, pages 11–20, 1991.

[26] K. Burke, J. P. Perdew, and Y. Wang. Derivation of a generalized gradient

approximation: The pw91 density functional. Electronic Density Functional

98



Theory: Recent Progress and New Directions, edited by J. F. Dobson, G. Vignale

and M. P. Das, pages 81–121, 1997.

[27] J. C. Phillips. Energy-band interpolation scheme based on a pseudopotential.

Phys. Rev., 112:685, 1958.

[28] M. L. Cohen and V. Heine. Solid State Physics, Vol.24:p.37, 1970.

[29] J. C. Phillips and L. Kleinman. New method for calculating wave functions in

crystals and molecules. Phys. Rev., 116:287, 1959.

[30] D. R. Hamann, M. Schlter, and C. Chiang. Norm-conserving pseudopotential.

Phys. Rev. Lett., 43:1494, 1979.

[31] L. Kleinman and D. M. Bylander. Efficacious form for model pseudopotentials.

Phys. Rev. Lett., 48:1425, 1982.

[32] S. G. Louie, S. Froyen, and M. L. Cohen. Nonlinear ionic pseudopotentials in

spin-density-functional calculations. Phys. Rev. B, 26:1738, 1982.

[33] G. B. Bachelet, D. R. Hamann, and M. Schlter. Pseudopotentials that work:

From H to Pu. Phys. Rev. B, 26:4199, 1982.

[34] A. M. Rappe, Karin M. Rabe, E. Kaxiras, and J. D. Joannopoulos. Optimized

pseudopotentials. Phys. Rev. B, 41:1227, 1990.

[35] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue

formalism. Phys. Rev. B, 41:7892, 1990.

99



[36] X. Gonze, P. Kckell, and M. Scheffler. Ghost states for separable, norm-

conserving, ab initiop pseudopotentials. Phys. Rev. B, 41:12264, 1990.

[37] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Saunders College,

Philadelphia, 1976.

[38] L. P. Bouckaert, R. Smoluchowski, and E. Wigner. Theory of Brillouin zones

and symmetry properties of wave functions in crystals. Phys. Rev., 50:58, 1936.

[39] A. Baldereschi. Mean-value point in the Brillouin zone. Phys. Rev. B,

7(12):5212, 1973.

[40] D. J. Chadi and M. L. Cohen. Special points in the Brillouin zone. Phys. Rev.

B, 8(12):5747, 1973.

[41] H. J. Monkhorst and J. D. Pack. Special points for Brillouin-zone integrations.

Phys. Rev. B, 13(12):5188, 1976.

[42] D. J. Chadi. Special points for Brillouin-zone integrations. Phys. Rev. B,

16(4):1746, 1977.

[43] R. A. Evarestov and V. P. Smirnov. Special points of the Brillouin zone and

their use in the solid state theory. Phys. Status Solidi, 119:9, 1983.

[44] S. Froyen. Brillouin-zone integration by fourier quadrature: Special points for

superlattice and supercell calculations. Phys. Rev. B, 39(5):3168, 1989.

100



[45] I. J. Robertson and M. C. Payne. k-point sampling and the k · p method in

pseudopotential total energy calculations. J. Phys.: Condens. Matter, 2:9837,

1990.

[46] I. J. Robertson and M. C. Payne. The k · p method in pseudopotential total

energy calculations: error reduction and absolute energies. J. Phys.: Condens.

Matter, 3:8841, 1991.

[47] R. Car and M. Parrinello. Unified approach for molecular dynamics and density-

functional theory. Phys. Rev. Lett., 55:2471, 1985.

[48] M. C. Payne, D. C. Allan, M. P. Teter, T. A. Arias, and J. D. Joannopoulos. It-

erative minimization techniques for ab initio total-energy calculation: molecular

dynamics and conjugate gradients. Rev. Mod. Phys., 64:1045, 1992.

[49] M. P. Teter, M. C. Payne, and D. C. Allan. Solution of schringer’s equation for

large systems. Phys. Rev. B, 40:12255, 1989.

[50] T. A. Arias, M. C. Payne, and J. D. Joannopoulos. Ab initio molecular dy-

namics: Analytically continued energy functionals and insights into iterative

solutions. Phys. Rev. Lett., 69:1077, 1992.

[51] T. A. Arias, M. C. Payne, and J. D. Joannopoulos. Ab initio molecular-dynamics

techniques extended to large-length-scale systems. Phys. Rev. B, 45:1538, 1992.
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