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The motivation for this dissertation came from Franco Obersnel’s dissertation On Compactifi-

cations of the Set of Natural Numbers and the Half Line. In it he proves that any non-degenerate

subcontinuum of the Stone-Čech remainder of the half line will map onto any arbitrary continuum

of weight ≤ ω1. We are able to prove the same property for many (though not all) non-degenerate

subcontinua of the Stone-Čech remainder of the plane, as well as investigating certain algebraic and

topological structures on subsets of the remainder.
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Chapter 1

Background

1.1 The Stone-Čech Compactification

A general knowledge of topology is assumed. A topological space X is said to be compact if every

open cover of X has a finite subcover. Any subspace of a compact Hausdorff space is closed iff it

is compact. A compactification of a topological space X is an ordered pair (K, f) such that K is a

compact Hausdorff space and f : X → K is a dense embedding of X into K.

If A ⊆ X, we will often use A to denote the closure of A in X. One exception will be in cases

where there may be some ambiguity as to what space the closure is being taken in. For example,

if we also have Y ⊆ X, we may write ClY (A) to indicate the closure of A is being taken in the

subspace topology of Y .

It is natural to ask what topological spaces have compactifications. A Tychonoff space is a T1

space X that is completely regular, that is, for any closed F ⊆ X and x /∈ F , there is a continuous

function f : X → I (where I denotes the unit interval [0, 1]) such that f(x) = 0 and f(F ) = 1. In

this case f is said to separate x from F .

A collection {fλ|λ ∈ Λ} of functions fλ : X → Xλ is said to separate points from closed sets if

whenever F ⊆ X is closed and x /∈ X, there exists λ ∈ Λ such that fλ(x) /∈ fλ(F ). A well known

property of such a collection is that we then have an embedding of X into the product space Πλ∈ΛXλ

(given by the evaluation map e : X → Πλ∈ΛXλ defined by [e(x)]λ = fλ(x)).

It follows that any Tychonoff space can be embedded into a cube, i.e., a product of unit intervals.

The following theorem is a well known equivalent of the axiom of choice:

Theorem 1.1.1. (Tychonoff) A nonempty product space is compact iff each factor space is compact.

(Proofs can be found in both [5] and [9]). As a consequence, if X is a Tychonoff space consider

the embedding of X in a cube. The closure of this embedding is a compact space with (an embedded
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Chapter 1. Background 2

copy of) X as a dense subspace, hence it is a compactification of X. Thus any Tychonoff space has

a compactification. The converse is true as well (and can also be found in [9]):

Theorem 1.1.2. A topological space X has a compactification iff X is a Tychonoff space.

The compactification of X described above is well-known as the the Stone-Čech compactification

and is commonly denoted βX. The Stone-Čech remainder of X, βX \X, is commonly denoted by

X∗. The Stone-Čech compactification is the ”largest” compactification of X in the sense that any

bounded, continuous function f : X → R can be continuously extended to all of βX (i.e., X is

C∗-embedded in βX). In fact, any continuous map f : X → K (where K is any compact Hausdorff

space) has a unique continuous extension to all of βX. Such an extension is generally denoted βf ;

it’s restriction to X∗ is sometimes denoted f∗.

If X is also locally compact (every point in X has a neighborhood base consisting of compact

sets), then βX has the additional nice property that X is open in βX. This is implied by the

following proposition taken from [9]:

Proposition 1.1.3. In a locally compact Hausdorff space, the intersection of an open set with

a closed set is locally compact. Conversely, a locally compact subset of a Hausdorff space is the

intersection of an open set and a closed set.

Proof. Let X be locally compact and T2. If X is open in X and a ∈ A, then a has a compact

neighborhood K contained in A, and K is then a compact neighborhood of a in A, so A is locally

compact. If B is closed in X and b ∈ B, then b has a compact neighborhood K in X and K ∩B is a

compact neighborhood of b in B, so B is locally compact. Hence, open subsets and closed subsets of

X are locally compact. But the intersection of two locally compact subsets of X is locally compact

so, in particular, the intersection of an open set with a closed set in X is locally compact.

Conversely, suppose Y is Hausdorff and X is a locally compact subset of Y . It will suffice to

show X is open in ClY (X). Let x ∈ X and find a neighborhood U of x in X such that ClX(U) is

compact, by local compactness. Say U = X ∩ V where V is open in Y . Then

ClY (X ∩ V ) ∩X = ClY (U) ∩X = ClX(U)

and the latter is compact. Thus ClY (X ∩ V ) ∩ X is closed in Y . But it contains X ∩ V and

thus ClY (X ∩ V ); i.e., ClY (X ∩ V ) ∩ X ⊇ ClY (X ∩ V ). But then ClY (X ∩ V ) ⊆ X, and hence

ClY (X)∩ V ⊆ X. Thus ClY (X)∩ V is a neighborhood of x in ClY (X) which is contained in X, so

X is open in ClY (X).

Corollary 1.1.4. A dense subset of a compact Hausdorff space is locally compact iff it is open.
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Proof. Let X be a compact Hausdorff space with a dense subset D. First suppose D is locally

compact. We then know D = G ∩ F for some G open in X and F closed in X. Since F is a closed

set containing D, we must have F = X. Therefore D = G ∩X = G is open.

Now suppose D is open. It is well known that any Hausdorff space is locally compact iff each point

in the space has a compact neighborhood, so given d ∈ D, we must find a compact neighborhood

of d in D. Since X is a normal Hausdorff space, there is a neighborhood U of d in D such that

ClX(U) ⊆ D, and hence ClX(U) is the required neighborhood.

It follows that X is open in βX iff X is locally compact. Because of this nice property, all spaces

will be assumed to be locally compact Hausdorff spaces.

There are many additional unique properties of βX, but first we need some definitions.

Definition 1.1.5. Z ⊆ X is a zero-set if Z = f−1(0) for some continuous real valued function f

on X.

It’s clear that every zero-set is closed. If X is a metric space, then we also have that every closed

set is a zero-set: Suppose F is a closed subset of a metric space X. Define D : X → R by setting

D(x) as the distance from x to F . Then D−1(0) = F .

Definition 1.1.6. A z-filter on X is a filter whose elements are zero-sets of X. A z-ultrafilter

is a maximal z-filter.

Definition 1.1.7. A prime z-filter u is a filter with the property that whenever Z1 and Z2 are

zero-sets such that Z1 ∪ Z2 ∈ u, then either Z1 ∈ u or Z2 ∈ u.

It should be noted that any z-ultrafilter is prime.

Definition 1.1.8. A family F of subsets of X is said to have the finite intersection property if any

finite subcollection of F has nonempty intersection

A well known property of such families of sets is that they can always be extended to ultrafilters.

This follows from a direct application of Zorn’s lemma.

The following theorem is proven in [1] and describes some unique properties of the Stone-Čech

Compactification of X:

Theorem 1.1.9. Suppose X is dense in a compact space K. The following statements are equivalent:

1. Every continuous mapping from X into any compact space Y has an extension to a continuous

mapping from K into Y .

2. X is C∗-embedded in K.

3. Any two disjoint zero-sets in X have disjoint closures in K.
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4. For any two zero-sets Z1 and Z2 in X,

ClK(Z1 ∩ Z2) = ClKZ1 ∩ ClKZ2.

5. Distinct z-ultrafilters on X have distinct limits in K

6. K is homeomorphic to βX.

It will be convenient to have a nice base for βX. For any open U ⊆ X, define Ex U =

βX \ClβX(X \U). It is evident that Ex U is the largest open set in βX whose intersection with X

equals U . The following proposition and proof were inspired by [3]:

Proposition 1.1.10. The set {Ex U |U is open in X} forms a base for βX.

Proof. Let x ∈ βX and let U ⊆ βX be an open neighborhood of x. We need to find V ∈
{Ex U |U is open in X} such that x ∈ V ⊆ U .

Since βX is a normal Hausdorff space, there is an open G ⊆ βX containing x such that

ClβX(G) ⊆ U . Set G′ = G ∩X and let V = Ex G′.

It’s clear that x ∈ V . If y ∈ V = Ex G′ = βX \ClβX(X \G′), then y /∈ ClβX(X \G′). Therefore,

we must have y ∈ ClβX(G′) = ClβX(G ∩X) ⊆ ClβX(G) ⊆ U . Hence x ∈ V ⊆ U .

An alternate construction of βX using z-ultrafilters is given in [8]. Briefly: Define βX as the set

of all z-ultrafilters on X. A base for the closed sets of βX is then given by the family of sets of the

form W (Z) = {u ∈ βX|Z ∈ u}, where Z is any zero-set in X. We will often consider points in X∗

as z-ultrafilters on X.

A nice property of this construction is that a z-ultrafilter u on X consists exactly of those closed

subsets of X that have u ∈ βX as a limit point.

Definition 1.1.11. A continuous map f : X → Y is a compact map if f−1(y) is compact for

every y ∈ Y . If f is also closed, then f is said to be perfect.

The following theorem and proof come from [8]:

Theorem 1.1.12. If X and Y are Tychonoff spaces, then the following are equivalent for a map

f : X → Y :

1. f is perfect.

2. If u is an ultrafilter on X and if f(u) converges to y in Y , then u converges (necessarily to

some x ∈ f−1(y)).

3. βf takes growth to growth, i.e. βf(X∗) ⊆ Y ∗.
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Proof. 1⇒2: Let f be perfect and u be an ultrafilter on X such that f(u) converges to y ∈ Y .

Because f is continuous, if u converges it must converge to a point of f−1(y). If u fails to converge,

then for all x ∈ f−1(y), there is an open neighborhood Ux of x such that Ux /∈ u. Since f−1(y) is

compact, it is covered by a finite subfamily {Uxi
}. The open set V =

⋃
Uxi

does not belong to u

because u is an ultrafilter. Thus, X \ V ∈ u so that f(X \ V ) ∈ f(u). Because f is a closed map,

Y \ f(x \ V ) is a neighborhood of y which fails to belong to f(u). This contradicts the assumption

that f(u) converges to y. Hence, u must converge.

2⇒1: We first show that f has compact fibers. Let v be an ultrafilter on f−1(y) for some y ∈ Y .

Let u be an ultrafilter on X which contains v. Then f(u) converges to y ∈ Y . Hence, u and therefore

v converge to a point in f−1(y) and f−1(y) is compact because every ultrafilter on f−1(y) converges.

Now we show that f is closed. Let F be a closed subset of X and let v be an ultrafilter on f(F )

converging to a point y ∈ Y . For every V ∈ v, f(f−1(V ) ∩ F ) = V ∩ f(F ) is non-empty. Hence,

the family {f−1 ∩ F |V ∈ v} is contained in an ultrafilter u on X. Then f(u) converges to y, and

therefore u converges to a point x ∈ f−1(y). Since F is closed, x ∈ F . Hence, y = f(x) and f(F ) is

closed.

2⇒3: Let p ∈ βX. Because X is dense in βX, there is an ultrafilter u on X which converges p.

Continuity implies that βf(u) = f(u) converges to a point q ∈ βY . If q ∈ Y , then u converges to a

point in f−1(y). Because βX is Hausdorff, we must have p = x. Thus, the only points of βX which

are mapped to points of Y are the points of X.

3⇒2: Suppose that u is an ultrafilter on X such that f(u) converges to y ∈ Y . Because X is

dense in βX, u converges to a point p ∈ βX. Then continuity implies that βf(u) = f(u) converges

to y ∈ Y and that p ∈ βf−1(y). Since βf sends X∗ into Y ∗, p must belong to X.

Definition 1.1.13. A continuous map f : X → Y is monotone if f−1(y) is connected for all

y ∈ Y .

We will also need the following proposition (borrowed from [3]):

Proposition 1.1.14. Let f : X → Y be a perfect and monotone map. Then the map βf : βX → βY

is also monotone.

Proof. It suffices to show that βf−1(z) is connected for every z ∈ Y ∗. So let z ∈ Y ∗ and write

βf−1(z) as the disjoint union of two closed sets A and B. Using normality of βX find open sets U

and V around A and B respectively, whose closures are disjoint. As the open set U ∪ V contains

βf−1(z) there is an open set O in βY containing z such that βf−1(O) ⊆ U ∪ V ; after shrinking U

and V a bit we may as well assume that βf−1(O) = U ∪ V .

The set (U ∪ V ) ∩ X is saturated with respect to f : it equals f−1(O ∩ Y ). Since f−1(y) is

connected for every y ∈ Y and since U and V are disjoint open sets in βX we see that f−1(y) is
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contained in U or V for every y ∈ O. Therefore U ∩X and V ∩X are saturated with respect to f

as well. We conclude that U ′ = f(U ∩X) and V ′ = f(V ∩X) are disjoint open sets in Y ; moreover

O ∩ Y = U ′ ∪ V ′.

We claim that U ′∩V ′∩O = ∅. To see this consider x ∈ O and assume x ∈ U ′. Let g : βY → [0, 1]

be continuous such that g(x) = 1 and g(βY \O) ⊆ {0}. Using g we define h : Y → [−1, 1] by

h(y) =

g(y) if y ∈ Y \ V ′,

−g(y) if y ∈ Y \ U ′.

Observe that h is continuous and that |h| equals the restriction of g to Y , hence |βh| = g. Now

h(y) = g(y) ≥ 0 for y ∈ U ′ so that βh(x) = g(x) = 1; on the other hand h(y) = −g(y) for y ∈ V ′,

hence βh(y) ≤ 0 for all y ∈ V ′. We see that x /∈ V ′.

Assume for example that z ∈ V ′. Now V ⊆ V ∩X ⊆ βf−1(V ′), because V ∩X = f−1(V ′). But

then B ⊆ V ∩ βf−1(z) = ∅. It follows that βf−1(z) is connected.

A continuum is a compact, connected Hausdorff space. Much of this paper will be regarding con-

tinua. It is well known that continuous images of compact/connected spaces are compact/connected,

respectively. In general, it is not true that continuous images of Hausdorff spaces are Hausdorff.

However, since all spaces to be considered here will be Hausdorff, for our purposes we can assume

continuous images of continua to be continua.

We will also have occasion to use Tietze’s extension theorem:

Theorem 1.1.15. X is normal iff whenever A is a closed subset of X and f : A → R is continuous,

there is an extension of f to all of X.

A proof can be found in [9].

1.2 Hyperreals

The hyperreals are an extension of the real numbers which include both infinitesimals and infinitely

large numbers; they form the foundation for what is known as non-standard analysis. Their first

construction in 1961 by Abraham Robinson (see [7]) resolved a centuries old debate regarding the

application of infinitesimals in analysis. A brief overview of this debate is given in [2].

We will be primarily interested only in the ordering and algebraic properties of the hyperreals,

rather than their applications in non-standard analysis. The following construction of the hyperreals

has been taken from [2]
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We’ll use Rω to denote the set of sequences of real numbers. Let u be a nonprincipal ultrafilter

on ω (=the set of natural numbers). Define an equivalence relation on Rω as follows. If r = {rn}
and s = {sn} are any two sequences of real numbers, we’ll write r ≡ s iff {n|rn = sn} ∈ u.

Proposition 1.2.1. ≡ is an equivalence relation on Rω.

Proof. It’s clear that ≡ is reflexive and symmetric. To see that it’s transitive, suppose r, s, t ∈ Rω

with r ≡ s and s ≡ t. Then {n|rn = tn} ⊇ {n|rn = sn} ∩ {n|sn = tn}. Since {n|rn = sn} ∩ {n|sn =

tn} ∈ u, we have {n|rn = tn} ∈ u, hence r ≡ t.

If r ∈ Rω, we’ll denote the equivalence class of r under ≡ by [r]. We’ll denote the set of

equivalence classes of Rω by ∗R.

Define an order ≤ on ∗R by setting [r] ≤ [s] iff {n|rn ≤ sn} ∈ u. This is well-defined: If

[r] ≤ [s] and r′ ∈ [r], s′ ∈ [s], then {n|r′n ≤ s′n} ⊇ {n|rn = r′n} ∩ {n|sn = s′n} ∩ {n|rn ≤ sn}. Since

{n|rn = r′n} ∩ {n|sn = s′n} ∩ {n|rn ≤ sn} ∈ u, we have {n|r′n ≤ s′n} ∈ u. We’ll write [r] < [s] iff

[r] ≤ [s] and [r] 6= [s] (equivalently, [r] < [s] ⇔ {n|rn < sn} ∈ u).

Proposition 1.2.2. ≤ is a linear order on ∗R.

Proof. The proof that ≤ is transitive is routine and similar to the proofs already presented.

To see that ≤ is linear, pick any [r], [s] ∈∗ R. Note that {n|rn ≤ sn}∪{n|sn ≤ rn} = ω ∈ u. Since

u is prime, either {n|rn ≤ sn} ∈ u or {n|sn ≤ rn} u, i.e., either [r] ≤ [s] or [s] ≤ [r], respectively.

If we have [r] ≤ [s] and [s] ≤ [r], then {n|rn ≤ sn} ∩ {n|sn ≤ rn} = {n|rn = sn} ∈ u, hence

[r] = [s].

Define two binary operations + and × on ∗R as follows. For any [r], [s] ∈∗ R, set [r]+[s] = [r+s],

where r + s is the sequence (r + s)n = rn + sn ∀n ∈ ω. Set [r]× [s] = [rs], where rs is the sequence

(rs)n = rnsn ∀n ∈ ω.

+ is well-defined: If r′ ∈ [r], s′ ∈ [s], then {n|r′n + s′n = rn + sn} ⊇ {n|r′n = rn} ∩ {n|s′n = sn}.
Since {n|r′n = rn}∩{n|s′n = sn} ∈ u, we must have {n|r′n+s′n = rn+sn} ∈ u, hence [r+s] = [r′+s′].

A similar argument demonstrates that × is well-defined.

Let [0] and [1] denote the sequences that are constantly 0 and 1, respectively.

Theorem 1.2.3. The structure (∗R,+,×, <) is an ordered field with zero [0] and unity [1].

The following sketch of a proof is taken from [2].

Proof. The proof that ∗R is a integral domain with zero [0] and unity [1] is routine and similar to

arguments already presented.
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If [r] ∈ ∗R, it’s easy to check that the additive inverse of [r] is −[r] = [−r] (where, of course,

(−r)n = −rn ∀n ∈ ω).

The multiplicative inverse of [r] ∈ ∗R ([r] 6= [0]) is the sequence [s] ∈ ∗R defined by

sn =


1
rn

if rn 6= 0,

0 if rn = 0

Since {n|rn 6= 0} ∈ u, we have {n|rnsn = 1} ∈ u, hence [r]× [s] = [1].

We’ve shown that ∗R is a field. To show that ∗R is an ordered field, set P = {[r] ∈ ∗R | [r] > [0]}.
We need to show that for any [r], [s] ∈ P :

1. [r] + [s] ∈ P

2. [r]× [s] ∈ P

3. −[r] /∈ P

We’ll prove 2 (the others are similar).

We have {n|rnsn > 0} ⊇ {n|rn > 0} ∩ {n|sn > 0}. Since {n|rn > 0} ∩ {n|sn > 0} ∈ u, we have

{n|rnsn > 0} ∈ u, and hence [r]× [s] ∈ P .

R is embedded in ∗R: Each a ∈ R corresponds directly with the equivalence class of the constant

sequence {an}, an = a ∀n ∈ ω. It’s easy to check that the order and algebraic structure on this

embedded copy of R are isomorphic to the usual structure on R.

Define an absolute value on R by setting |[r]| = [|r|], where |r| is the sequence defined by

|r|n = |rn|.

Proposition 1.2.4. (Triangle Inequality) For any [r], [s] ∈ ∗R, we have |[r] + [s]| ≤ |[r]|+ |[s]|.

Proof. This follows directly from the fact that |rn + sn| ≤ |rn|+ |sn| for all n ∈ ω.

Definition 1.2.5. [r] ∈ ∗R is said to be an infinitesimal if |[r]| < a for all positive real numbers

a.

It’s clear that 0 is an infinitesimal. To see that there is a nontrivial infinitesimal, consider the

sequence ε = {εn} defined by ε0 = 1 and εn = 1
n for n = 1, 2, 3, ..... If a is any positive real number,

then the set {n|εn < a} is an element of u since it is cofinite. It follows that 0 < [ε] < a for all

positive real a, and therefore [ε] is a non-real infinitesimal.

Definition 1.2.6. [r] ∈ ∗R is said to be an unlimited if a < |[r]| for all real numbers a.

[Ω] ∈ ∗R defined by Ωn = n for all n ∈ ω is unlimited: If a is any real number, the set {n|Ωn > a}
is cofinite, hence it is an element of u. It follows that [Ω] > a for all real numbers a.
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Denote the finite (i.e., not unlimited) elements of ∗R by fin(∗R). fin(∗R) is a subgroup of ∗R
under addition: If [r], [s] ∈ fin(∗R) with |[r]| < ar and |[s]| < as, then |[r]+[s]| ≤ |[r]|+|[s]| < ar +as,

so [r] + [s] ∈ fin(∗R) (it’s also clear that | − [r]| = |[r]| < ar, and so −[r] ∈ fin(∗R)).

Consider the subgroup (under addition) of fin(∗R) generated by {2π}, i.e., the subgroup consisting

exactly of the integral multiples of 2π. Denote this subgroup by (2π) and the corresponding quotient

group by fin(∗R)/(2π). If r and s are sequences in the same equivalence class of fin(∗R)/(2π), we’ll

write r ≡ s (mod 2π).

Now denote the set of sequences on the real number interval [0, 2π) by [0, 2π)ω, and denote the

set of equivalence classes of those sequences under ≡ by ∗[0, 2π).

Proposition 1.2.7. There is a bijection between fin(∗R)/(2π) and ∗[0, 2π):

Proof. Let r = {rn} be a sequence from some equivalence class in fin(∗R)/(2π). Because [r] is a finite

hyperreal, r is bounded on some F ∈ u, i.e., there is a real number a such that F = {n| |rn| < a} ∈ u.

By primality of u, there is some integer k such that Fk = {n|2πk ≤ rn < 2π(k + 1)} ∈ u. Define

r′ ∈ [0, 2π)ω by

r′n =

rn − 2πk if n ∈ Fk,

0 if n /∈ Fk

It’s clear that r ≡ r′ (mod 2π). We identify the equivalence class of r in fin(∗R)/(2π) with the

equivalence class of r′ in ∗[0, 2π).

This identification is well-defined: If s ≡ r (mod 2π), analogous to the above there is an integer

i and a set Gi = {n|2πi ≤ sn < 2π(i + 1)} ∈ u. Define s′ ∈ [0, 2π)ω by

s′n =

sn − 2πi if n ∈ Gi,

0 if n /∈ Gi

Since r′ ≡ s′ (mod 2π), we have {n|r′n − s′n = 0} ∈ u; in other words, r′ ≡ s′ (and thus r′ and s′

are in the same equivalence class of ∗[0, 2π)), hence this identification from fin(∗R)/(2π) to ∗[0, 2π)

is well-defined.

We now check that this identification is a bijection. We’ll keep the same notation as above (using

r and s to represent sequences from (not necessarily equal) equivalence classes in fin(∗R)/(2π) and

using r′, s′ to denote their respective corresponding sequences from equivalence classes of ∗[0, 2π)).

The identification is one-to-one. Suppose r′ and s′ are in the same equivalence class of ∗[0, 2π).

Then r′ ≡ s′, and therefore r ≡ r′ ≡ s′ ≡ s (mod 2π), so the identification is one-to-one.

The identification is onto: This is trivial: The equivalence class of r′ in ∗[0, 2π) is mapped onto

by the equivalence class in fin(∗R)/(2π) containing r′.
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Thus ∗[0, 2π) inherits the group structure of fin(∗R)/(2π). It is easy to check that this addition

inherited by ∗[0, 2π) is the usual addition mod 2π; i.e., if [r], [s] ∈ ∗[0, 2π), then [r] + [s] is the

equivalence class in ∗[0, 2π) of the sequence {rn + sn (mod 2π)}.
We’ll have occasion to refer to this group again later on.

On a final note regarding the hyperreals, one might ask whether the order or algebraic structure

of ∗R depend on the choice of the ultrafilter u. To (partially) answer this question, we must first

mention the continuum hypothesis:

Definition 1.2.8. The Continuum Hypothesis (CH) is the assumption that 2ω = ω1, where

ω1 denotes the smallest uncountable cardinal and 2ω denotes the cardinality of the set of binary

sequences (or, equivalently, the cardinality of R).

It is well-known that CH is independent of the standard Zermelo-Fraenkel-Choice axioms of set

theory. Under CH, the choice of the ultrafilter u is irrelevant; all constructions of ∗R are isomorphic

as ordered fields regardless of the choice of u. Without CH the situation is undetermined (see [2]).

1.3 Dedekind Completions

Let L be a set linearly ordered by ≤. We begin with a few definitions:

Definition 1.3.1. D ⊆ L is said to be dense in L if for all a, b ∈ L with a < b, there exists d ∈ D

such that a ≤ d ≤ b.

Definition 1.3.2. L is said to be complete if every nonempty subset of L bounded above has a

least upper bound. If M is a set linearly ordered by ≺ and N is a dense subset of M , M is said to

be the completion of N if for any m ∈ M there are n1, n2 ∈ N such that n1 � m � n2.

Definition 1.3.3. A Dedekind cut in L is a pair < A,B > of nonempty, disjoint subsets of L

such that A∪B = L and for all a ∈ A and b ∈ B, we have a < b. A Dedekind cut is a gap if A has

no largest element and B has no smallest element.

Dedekind cuts are a natural way of completing linearly ordered sets. A typical example is the

standard construction of R as the Dedekind completion of the rational numbers Q. We’ll show that

any linearly ordered set L has exactly one completion (up to isomorphism). First we need a lemma:

Lemma 1.3.4. L has at most one completion (up to isomorphism).

Proof. Suppose M and N are two completions of L.

We’ll define a partial function h : M → N by setting h(l) = l for all l ∈ L
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Let X be the set of gaps in L. Define f : M \L → X and g : N \L → X by f(m) =< Am, Bm >

and g(n) =< An, Bn >, where Am = {l ∈ L|l < m}, Bm = {l ∈ L|m < l}, An = {l ∈ L|l < n}, and

Bn = {l ∈ L|n < l}. All four of these sets are nonempty (by the definition of completion).

We’ll show that the map f is a bijection. Suppose m,m′ ∈ M \L with m 6= m′. Without loss of

generality, m < m′. Since L is dense in M , there is l ∈ L such that m < l < m′. Then Am 6= Am′

and Bm 6= Bm′ , implying f(m) 6= f(m′), and hence f is one-to-one.

Now let < A,B >∈ X. A is a nonempty set bounded above (by any element of B), so it has a

least upper bound m ∈ M . Since A does not have a largest element, m /∈ A and so we have a < m

for all a ∈ A. Since every element of B is an upper bound for A, we have m ≤ b for all b ∈ B.

Since B does not have a smallest element, we have m < b for all b ∈ B. It follows that m /∈ L and

f(m) =< A,B >. Therefore, f is onto.

Similarly, g is a bijection.

Extend h to all of M by setting h = g−1 ◦ f on M \ L. We know h is a bijection; we need to

show it preserves the orders <M and <N on M and N , respectively.

h is the identity on L, so it preserves the order on L. If l ∈ L and m ∈ M \ L with l < m, then

l ∈ Am = Ah(m), and so h(l) = l < h(m). Similarly, if we had l > m then h(l) > h(m).

Finally, suppose m,m′ ∈ M \ L with m < m′. By density, there is l ∈ L such that m < l < m′.

We then have h(m) < h(l) < h(m′), and we’re done.

Theorem 1.3.5. Any set L linearly ordered by ≤ has a completion.

The following proof is taken directly from [4].

Proof. For a ∈ L, let â = {b ∈ L|b < a}. The Dedekind cut < â, L \ â > will be denoted by Sa. Let

X be the set of all gaps in L. Finally, let C = {Sa|a ∈ L} ∪X. Thus C contains all Dedekind cuts

< A, B > such that A does not have a largest element or B does have a smallest element.

If < A0, B0 > and < A1, B1 > are Dedekind cuts such that A1 is not a subset of A0, then

A0 is an initial segment of A1. Thus we can define a linear order relation ≤C on C as follows:

< A0, B0 > ≤C < A1, B1 > iff A0 ⊆ A1.

The function i : L → C defined by i(a) = Sa is an embedding of L into C, and it is easy to see

that i(L) is dense in C.

Now we show that the linearly ordered set (C,≤C) is complete. Consider a Dedekind cut <

X, Y > in C, where X = {< Ai, Bi > |i ∈ I} and Y = {< Dj , Ej > |j ∈ J}. Let

A′ =
⋃
i∈I

Ai, B′ =
⋂
i∈I

Bi.

Then < A′, B′ >∈ C and X ≤C < A′, B′ > ≤C Y . Thus (C,≤C is complete. It is not hard to

see that C has a minimum iff L does, and that a minimum element of C will necessarily be in the
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range of i. The same is true for maxima. This proves that ∀a ∈ C ∃b, c ∈ L such that i(b) ≤C a and

a ≤C i(c).

This completion of L is known as the Dedekind completion of L.



Chapter 2

The Stone-Čech Compactification of the Plane

2.1 Hypercircles in Π∗

Let Π denote the plane, H the closed half line of nonnegative reals, ω the natural numbers, and C

the circle R mod 2π, all with the usual topologies. Points in Π will typically be denoted in polar

coordinates: Π = {(r, θ)|r ≥ 0, θ ∈ C}. Identify H as a subset of Π by H = {(r, θ)|r ≥ 0, θ = 0}.
We will denote the Stone-Čech compactification of a Tychonoff space X by βX and its remainder

by X∗. Similarly, if X is a Tychonoff space, K a compact Hausdorff space, and f : X → K is

continuous, we will denote the Stone-Čech extension of f by βf : βX → K.

π : Π → H will denote the standard norm map. If X ⊆ Π, we will denote the restriction of π to

X by πX .

Definition 2.1.1. Any f ⊆ Π such that πf : f → H is a homeomorphism will be said to be a line.

If f is a line and r ∈ H \ {0}, then π−1
f (r) = (r, θ) ∈ Π for some unique 0 ≤ θ < 2π; we set

f(r) = θ. If we also set f(0) = 0, we can consider f as a function, f : H → C. Conversely, any

function f : H → C can be considered as a subset of Π, since f = {(r, f(r))|r ∈ H} ⊆ Π (considering

(r, f(r)) as the polar representation of a point in the plane).

Proposition 2.1.2. Let f : H → C. As just mentioned, we can consider f ⊆ Π. Then f is a line

if and only if f : H → C is continuous everywhere except possibly at zero.

Proof. First, suppose f is a line, that is, πf : f → H is a homeomorphism. Pick x ∈ H \ {0} and

let {xn} ⊆ H be a sequence converging to x. Note that π−1
f (r) = (r, f(r)) for all r ∈ H. Since

π−1
f is continuous, the sequence {π−1

f (xn)} converges to π−1
f (x). By the previous note, this implies

the sequence {f(xn)} converges to f(x), implying f is continuous at x. Since x was arbitrary, f is

continuous on H \ {0}.

13
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Now suppose f : H → C is continuous (except possibly at zero). That πf is a bijection follows

from f being a function on H. πf inherits continuity from π, so we need to show π−1
f is continuous.

Pick x ∈ H \ {0} and let {xn} ⊆ H be a sequence converging to x. Since f is continuous at x,

{f(xn)} converges to f(x). It follows that the sequence {π−1
f (xn)} = {(xn, f(xn))} converges to

(x, f(x)) = π−1
f (x), and therefore π−1

f is continuous at all nonzero x.

Finally, to show that π−1
f is continuous at 0, let {xn} ⊆ H be a sequence converging to 0. Then

the sequence {π−1
f (xn)} = {(xn, f(xn))} converges to the origin (since the first coordinate converges

to 0).

Therefore, π−1
f is continuous on H, and hence πf is a homeomorphism.

L will be used to denote the set of lines.

We now fix u ∈ H∗ and (since we can consider u as a z-ultrafilter on H) define an equivalence

relation =u on L relative to u as follows: If f, g ∈ L, we say f =u g if and only if {r ∈ H|f(r) =

g(r)} ∈ u.

Proposition 2.1.3. =u is an equivalence relation on L.

Proof. It’s clear that =u is reflexive and symmetric.

To show that =u is transitive, let f, g, h ∈ L with f =u g and g =u h. Then {r ∈ H|f(r) =

g(r)} ∈ u and {r ∈ H|g(r) = h(r)} ∈ u, and so the intersection of these two sets is in u. The

set {r ∈ H|f(r) = h(r)} is a closed superset of that intersection (it is closed because it is the set

(f − h)−1(0)). It follows that {r ∈ H|f(r) = h(r)} ∈ u implying that f =u h, hence =u is transitive

and therefore an equivalence relation.

Denote the set of equivalences classes of L under =u by L/u. If f ∈ L, denote its equivalence

class by [f ]u.

We now let L− = {f ∈ L|f(r) 6= 0 ∀r > 0}. If f ∈ L−, then 0 < f(r) < 2π,∀r > 0. This will

allow us to order equivalence classes of L− as follows:

As before, denote the set of equivalence classes of L− under =u by L−/u. This set of equivalence

classes admits a natural linear order ≤u relative to u: If f, g ∈ L−, we say [f ]u ≤u [g]u if and only

if {r ∈ H|f(r) ≤ g(r)} ∈ u.

Proposition 2.1.4. ≤u is a linear order on L−/u.

Proof. We must first show that ≤u is well defined. Suppose f, g ∈ L−; [f ]u ≤u [g]u, and pick

f ′ ∈ [f ]u, g′ ∈ [g]u. We need to show {r ∈ H|f ′(r) ≤ g′(r)} ∈ u:

By definitions, the three sets {r ∈ H|f(r) = f ′(r)}, {r ∈ H|g(r) = g′(r)}, and {r ∈ H|f(r) ≤
g(r)} are all in u, and so their intersection is in u. The set {r ∈ H|f ′(r) ≤ g′(r)} is a closed superset
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of this intersection (closed because {r ∈ H|f ′(r) ≤ g′(r)} = (g′ − f ′)−1(H)), and is therefore also in

u. This shows ≤u is well defined.

≤u is transitive: Let f, g, h ∈ L− with [f ]u ≤u [g]u and [g]u ≤u [h]u. The set {r ∈ H|f(r) ≤
h(r)} ∈ u, since it’s a closed superset of {r ∈ H|f(r) ≤ g(r)} ∩ {r ∈ H|g(r) ≤ h(r)} ∈ u. This shows

that [f ]u ≤u [h]u.

≤u is anti-symmetric: Let f, g ∈ L− with [f ]u ≤u [g]u and [g]u ≤u [f ]u. The set {r ∈ H|f(r) =

g(r)} ∈ u, since it’s a closed superset of {r ∈ H|f(r) ≤ g(r)} ∩ {r ∈ H|g(r) ≤ f(r)} ∈ u. Therefore,

[f ]u =u [g]u.

≤u is linear: Let f, g ∈ L−. Write H as a union of three closed sets: H = {r ∈ H|f(r) ≤
g(r)} ∪ {r ∈ H|f(r) = g(r)} ∪ {r ∈ H|g(r) ≤ f(r)}. H ∈ u, and so by primality of u, one of these

three sets must be in u, implying [f ]u ≤u [g]u, [f ]u =u [g]u, or [g]u ≤u [f ]u, respectively.

In the case that [f ]u ≤u [g]u and [f ]u 6= [g]u, we will write [f ]u <u [g]u.

We now turn our attention to Π∗ (and various subsets thereof). By Prop. 1.1.14, βπ−1(u) is a

subcontinuum of Π∗.

Definition 2.1.5. For any u ∈ H∗, the continuum βπ−1(u) will be denoted Cu and referred to as a

hypercircle. We will also set C−
u = Cu \ {u}.

By Prop. 1.1.12, Π∗ is the disjoint union of all such hypercircles.

If f ∈ L, we know πf : f → H is a homeomorphism; it follows that βπf : βf → βH is also a

homeomorphism. In particular, βf ∩ Cu is a single point; denote this point by f(u).

Proposition 2.1.6. Suppose u ∈ H∗ and x ∈ Cu. Then if F is any closed subset of H with F ∈ u,

we have π−1(F ) ∈ x. In particular, it follows that x is a limit point of π−1(F ).

Proof. Considering x and u as ultrafilters on Π and H, respectively, we have π(x) = u. If F ∈ u, it

follows that π−1(F ) ∈ x.

Definition 2.1.7. If f is any line and u ∈ H∗, f(u) will be called a linear point of Cu. The set

of linear points will be denoted as Lu. If x ∈ Cu \ Lu, x will be called a nonlinear point. Since u

itself is a linear point (f(u) = u when f is identically zero on H), set L−u = Lu \ {u}.

Proposition 2.1.8. For a fixed u ∈ H∗, the map which sends the equivalence class [f ]u ∈ L/u to

the linear point f(u) ∈ Lu is one-to-one.

Proof. If [f ]u ∈ L/u, we already know f(u) is a single point in Lu. We need to show this map is

well defined, i.e., if f ′ ∈ [f ]u, we need to show f(u) = f ′(u):
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Since {r ∈ H|f(r) = f ′(r)} ∈ u, there is a net {xλ} ⊆ {r ∈ H|f(r) = f ′(r)} converging to

u. The nets {(xλ, f(xλ))} and {(xλ, f ′(xλ))} converge to f(u) and f ′(u), respectively. However,

{(xλ, f(xλ))} = {(xλ, f ′(xλ))}, and so f(u) = f ′(u).

Now suppose f, g ∈ L with f(u) = g(u). We need to show [f ]u = [g]u:

f(u) ∈ ClβΠ(f) ∩ ClβΠ(g) = ClβΠ(f ∩ g), and hence there is a net {xλ} ⊆ f ∩ g converging

to f(u). The net {π(xλ)} ⊆ π(f ∩ g) converges to π(f(u)) = u. Note that π(f ∩ g) is the closed

set {r ∈ H|f(r) = g(r)}; since there is a net inside of this closed set converging to u, we have

{r ∈ H|f(r) = g(r)} ∈ u, and therefore [f ]u = [g]u, completing the proof.

Corollary 2.1.9. The same map establishes a one-to-one correspondence between L−u and L−/u.

Proof. Suppose x ∈ L−u . We need to show there is a g ∈ L− such that g(u) = x.

Let f ∈ L with f(u) = x. We know f−1(0) /∈ u (otherwise, f(u) = u, a contradiction), so ∃Z ∈ u

such that f−1(0) ∩ Z = ∅. Define gZ : Z → (0, 2π) by gZ(r) = f(r) ∀r ∈ Z.

Since Z is a closed subset of the (normal) space H \ {0}, and since (0, 2π) is homeomorphic to R,

we can use Tietze’s extension theorem to extend gZ continuously to g′ : H \ {0} → (0, 2π). Finally,

extend g′ to g : H → C by setting g(0) = 0. Then g ∈ L− and g(u) = x since g and f agree on

Z ∈ u.

Because of this one-to-one correspondence, L−u inherits the linear order from L−/u; we will

continue to use ≤u for this inherited linear order on L−u : For any f(u), g(u) ∈ L−u , we have f(u) ≤u

g(u) if and only if [f ]u ≤u [g]u.

This linear order on L−u defines a topology on L−u which we will denote by τ<u . For the moment

we will denote the basic open intervals of L−u by using standard interval notation: (a, b) = {x ∈
L−u |a <u x <u b}.

We will now show that the topology τ<u
on L−u is the same as the topology that L−u inherits

from βΠ. First we need a definition, lemma, and corollary:

Definition 2.1.10. For any interval I ⊆ H and 0 < ε < π, the polar rectangle {(r, θ)|r ∈ I, −ε <

θ < ε} ⊆ Π will be denoted by R(I; ε).

Lemma 2.1.11. Let U ⊆ Π be open with U ∩H 6= ∅. If (a, b) is a component of U ∩H, then there

is a continuous function f : H → [0, π/2) such that

1. (r, f(r)) ∈ U ∀r ∈ (a, b),

2. f(r) > 0 ∀r ∈ (a, b), and

3. f(r) = 0 elsewhere.
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Proof. Let I0 = [a0, b0] = [(2a + b)/3, (a + 2b)/3] (the closed middle third of (a, b)), and, more

generally, for n ∈ ω set In = [an, bn] = [a + b−a
n+3 , b− b−a

n+3 ]. Note that
⋃

n∈ω In = (a, b) and that for

all n ∈ ω we have In ⊆ In+1.

For each x ∈ I1, pick an open interval Jx ⊆ H and an open polar rectangle Rx = R(Jx; εx) such

that x ∈ Rx ⊆ U . {Rx|x ∈ I1} is an open cover of the compact set I1, so we can take a finite

subcover Rx1 , ..., Rxn
. Set φ0 = [min{εx1 , ..., εxn

}]. Note that I1 ⊆ R([a1, b1];φ0) ⊆ U ; label this

polar rectangle R1.

Proceed by induction: Having constructed φn so that 0 < φn < π/2 and In+1 ⊆ R([an+1, bn+1];φn) ⊆
U , construct φn+1 as follows:

As before, cover In+2 with open polar rectangles: for each x ∈ In+2, take an open interval

Jx ⊆ H and Rx = R(Jx; εx) so that x ∈ Rx ⊆ U . Since In+2 is compact, we can take a finite

subcover Rx1 , ..., Rxm
. Now set φn+1 = [min{φn/2, εx1 , ..., εxm

}]. As before, note that In+2 ⊆
R([an+2, bn+2];φn+1) ⊆ U ; label this rectangle Rn+2.

Note that the sequence {φn} is decreasing and bounded below by zero, so it converges to some

φω ∈ H.

Now define g0 : I0 → (0, π/2) by g0(r) = φ0/2 ∀r ∈ I0, which is clearly continuous.

Again, proceed by induction: Having constructed gn : In → (0, π/2), we will construct a contin-

uous function gn+1 : In+1 → (0, π/2) so that gn+1 extends gn:

gn+1(r) =


gn(r) if r ∈ In,

φn+1/2 if r ∈ [an+1, a
′] ∪ [b′, bn+1],

connected linearly elsewhere.

(where a′, b′ are fixed arbitrary points in (an+1, an), (bn, bn+1), respectively).

Now define g : (a, b) → (0, π/2) by setting g =
⋃

n∈ω gn. g is continuous on (a, b), and since

limr→a+ g(r) = limr→b− g(r) = φω/2, we can continuously extend g to the closed interval [a, b] by

setting g(a) = g(b) = φω/2.

Finally, define f : H → [0, π/2) by

f(r) =

g(r)− φω/2 if r ∈ [a, b],

0 elsewhere.

f is clearly continuous. Since the sequence {φn} is strictly decreasing, for all r ∈ (a, b) we have

f(r) = g(r)− φω/2 > 0; elsewhere f(r)=0.

Finally, if r ∈ (a, b), pick the smallest n ∈ ω \ {0} such that r ∈ In. Then 0 < f(r) ≤ gn(r) ≤
φn−1/2 < φn−1, therefore (r, f(r)) ∈ Rn ⊆ U , completing the proof.
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Corollary 2.1.12. Let U ⊆ Π be open with U ∩ H 6= ∅. Then there is a continuous function

f : H → [0, π/2) such that

1. If r ∈ U ∩H, then (r, f(r)) ∈ U and f(r) > 0.

2. f(r) = 0 elsewhere.

Proof. U intersects H in at most countably many disjoint intervals; order these intervals by ω:

{In}n∈ω.

For each In, apply Lemma 2.1.11 to construct fn : H → [0, π/2) such that:

1. (r, fn(r)) ∈ U ∀r ∈ In,

2. fn(r) > 0 ∀r ∈ In, and

3. fn(r) = 0 elsewhere

Define f ′ : H → [0, π/2) by f ′(r) = Σn∈ωfn(r) ∀r ∈ H (this is clearly convergent since for any

r ∈ H, we have that fn(r) 6= 0 for at most one n ∈ ω).

For any r ∈ H, let d(r) denote the distance from r to the set H \ U ; it’s clear that this is a

continuous function on H. Now define f : H → [0, π/2) by f(r) = min{f ′(r), d(r)} ∀r ∈ H.

It’s clear that f satisfies properties 1. and 2. stated in the Corollary. It’s also clear that f

continuous on U ∩H (since both f ′ and d are continuous on U ∩H and ∀r ∈ H, f(r) = f ′(r)+d(r)
2 −

|f ′(r)−d(r)|
2 ).

We need to show that f is continuous on H \ U , so pick an arbitrary r0 ∈ H \ U . Given ε > 0,

pick δ = ε. Then if |r − r0| < δ, we have |f(r) − f(r0)| = |f(r)| ≤ |d(r)| ≤ |r − r0| < δ = ε, and

we’re done.

Proposition 2.1.13. The topology τ<u
on L−u is the same as the topology that L−u inherits from

βΠ.

Proof. Denote the usual topology on βΠ by τ . For any X ⊆ Π, denote the closure of X in Π by X.

Suppose (a, b) ∈ τ<u
. We will construct U such that U ∩ L−u = (a, b):

Let fa, fb ∈ L− such that fa(u) = a and fb(u) = b. Set U ′ = {(r, θ) ∈ Π|fa(r) < θ < fb(r)}
(without loss of generality, assume fa(0) = fb(0) = 0, so that the origin is not in U ′), and define

U = Ex U ′ = βΠ \ ClβΠ(Π \ U ′).

Let c ∈ (a, b). Pick fc ∈ L− such that fc(u) = c. Then A = {r ∈ H : fa(r) ≤ fc(r) ≤ fb(r)} ∈ u,

so there is a net {xλ} ⊆ A converging to u. Note that the net {π−1
fc

(xλ)} ⊆ U ′ converges to c, hence

c is a limit point of U ′.

Now suppose c is also a limit point of Π\U ′, so of course c is a limit point of Π \ U ′ as well. Since

U ′ and Π \ U ′ are both zero-sets in Π, we have c ∈ ClβΠ[U ′] ∩ ClβΠ[Π \ U ′] = ClβΠ[U ′ ∩ Π \ U ′],

and so c is a limit point of U ′ ∩Π \ U ′. But U ′ ∩Π \ U ′ is the boundary of U ′, which is contained in
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fa ∪ fb. Therefore, c is a limit point of fa ∪ fb. However, the only limit points of fa ∪ fb contained

in L−u are a and b, which contradicts the fact that c is strictly between a and b.

Therefore, c is not a limit point of Π \ U ′, and so c ∈ U = βΠ \ ClβΠ(Π \ U ′).

Conversely, suppose c ∈ U ∩ L−u . Again, pick fc ∈ L− such that fc(u) = c.

Suppose c /∈ (a, b). Then {r ∈ H : fa(r) ≤ fc(r) ≤ fb(r)} /∈ u, so either {r ∈ H : fa(r) ≤ fc(r)} /∈
u or {r ∈ H : fc(r) ≤ fb(r)} /∈ u. We will consider the latter case (the former case is similar).

Since u is a prime z-filter, {r ∈ H : fc(r) ≤ fb(r)} /∈ u implies B = {r ∈ H : fb(r) ≤ fc(r)} ∈ u.

Therefore, there is a net {xλ} ⊆ B converging to u. Note that the net {π−1
fc

(xλ)} ⊆ Π\U ′ converges

to c, hence c is a limit point of Π \ U ′. Therefore, c /∈ βΠ \ ClβΠ(Π \ U ′) = U , a contradiction.

Therefore c ∈ (a, b).

Therefore, U ∩ L−u = (a, b), and hence τ<u ⊆ τ .

Now let U ∈ τ and fix x ∈ U ∩L−u (without loss of generality, assume u /∈ U). We will construct

(a, b) ∈ τ<u
such that x ∈ (a, b) ⊆ U ∩ L−u .

Since {Ex U ′|U ′ ⊆ Π is open} is a base for τ (by Proposition 1.1.10), without loss of generality

we can assume U = Ex U ′ for some open U ′ ⊆ Π.

Let fx ∈ L− such that fx(u) = x. Considering fx ⊆ Π (as in Proposition 2.1.2), we know

fx ∩ U ′ 6= ∅ (since x is a limit point of fx).

Consider the homeomorphism F : Π → Π defined by F (r, θ) = (r, θ− fx(r)). Clearly the images

F (fx) = H and F (U ′) ∩H 6= ∅.
By Corollary 2.1.12 (and by symmetry), there are functions f∗ : H → [0, π/2) and f∗ : H →

(−π/2, 0] such that:

1. If r ∈ F (U ′) ∩H, then (r, f∗(r)), (r, f∗(r)) ∈ F (U ′), f∗(r) > 0, and f∗(r) < 0,

2. f∗(r) = f∗(r) = 0 elsewhere.

Now define the lines fa and fb by fa(r) = f∗(r) + fx(r) = F−1(f∗) and fb(r) = f∗(r) + fx(r) =

F−1(f∗). It is then easy to check that fa and fb satisfy:

1. If (r, fx(r)) ∈ U ′ ∩ fx, then (r, fa(r)), (r, fb(r)) ∈ U ′, fb(r) > fx(r), and fa(r) < fx(r),

2. fa(r) = fb(r) = fx(r) elsewhere.

Set V = {(r, θ) ∈ Π|fa(r) < θ < fb(r)}. Clearly V ⊆ U ′, and hence Ex V ⊆ Ex U ′ = U .

Let a = fa(u) and b = fb(u). Then x ∈ (a, b) = Ex V ∩ L−u ⊆ U ∩ L−u , and we are done.

2.2 Hyperreals in Π∗

In this section we will investigate the structure of the hypercircles further and demonstrate a rela-

tionship in certain cases between the linear points Lu and the hyperreals.



Chapter 2. The Stone-Čech Compactification of the Plane 20

We now consider C−
u . If x ∈ C−

u is a nonlinear point and f is a line, then by primality of the

z-ultrafilter x, either {(r, θ) ∈ Π|0 ≤ θ ≤ f(r)} ∈ x or {(r, θ) ∈ Π|f(r) ≤ θ ≤ 2π} ∈ x (but not both,

by nonlinearity of x). In the former case, we’ll say ”x lies below f”; in the latter, ”x lies above f”.

This allows us to define an equivalence relation ∼u on C−
u in the following manner. If a ∈ L−u , its

equivalence class is the singleton set {a}. If x, y ∈ C−
u are nonlinear points, define x ∼u y if and only

if {f ∈ L|x lies above f} = {f ∈ L|y lies above f}. It’s clear that this establishes an equivalence

relation on C−
u . If x ∈ C−

u , denote its equivalence class by [x]∼u .

We will now define a linear order on these equivalence classes. This order will be identical to <u

on (the singleton set equivalence classes of) Lu; since we are then actually extending <u, we will

continue to use the same notation.

If [x]∼u is an equivalence class of nonlinear points, a ∈ Lu with corresponding line fa, define

a <u [x]∼u
if and only if x lies above fa; [x]∼u

<u a if and only if x lies below fa.

This is well defined since if a <u [x]∼u and g is another line limiting on a, we have {(r, θ) ∈
Π|g(r) ≤ θ ≤ 2π} ⊇ {(r, θ)|fa(r) = g(r)} ∩ {(r, θ) ∈ Π|g(r) ≤ θ ≤ 2π} = {(r, θ)|fa(r) = g(r)} ∩
{(r, θ) ∈ Π|fa(r) ≤ θ ≤ 2π} ∈ x, and so x lies above g. (The other order, [x]∼u

<u a, is similarly

well defined).

From the argument in the previous paragraph, it is also clear that this definition of <u is

consistent with the original definition; if a, b ∈ L−u with a <u b under the previous definition, we

still have a <u b in the current definition (i.e., b lies above fa, where fa is any line limiting on a).

Extend <u transitively: If [x]∼u , [y]∼u are two distinct equivalence classes of nonlinear points

and a ∈ L−u , then [x]∼u
<u a, a <u [y]∼u

together imply [x]∼u
<u [y]∼u

.

This (and similar arguments) establish:

Proposition 2.2.1. This extension of <u is a linear order on the equivalence classes of C−
u under

∼u.

Proposition 2.2.2. These equivalence classes of C−
u form the Dedekind completion of L−u .

Proof. It’s clear that each equivalence class of nonlinear points corresponds to a unique gap of linear

points: Each equivalence class partitions the linear points into two sets–those linear points larger

than the equivalence class, and those smaller.

We’ll now show that each gap corresponds to a unique equivalence class of nonlinear points. As

usual, given a ∈ L−u , fa will be used to denote an arbitrary line corresponding to a. If f, g are lines

with f <u g, we will use [f, g] denote the closed region of the plane defined by {(r, θ)|f(r) ≤ θ ≤
g(r)}.

Let < A,B > be a gap in L−u . Note that the family of closed sets {[fa, fb] ∩ π−1(F )|a ∈
A, b ∈ B,F ∈ u} has the finite intersection property, so it extends to a z-ultrafilter. Any such
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z-ultrafilter will be greater than all linear points in A, less than all linear points in B, and contained

in C−
u . Conversely, any z-ultrafilter satisfying these three properties extends this family of closed

sets. Therefore, this gap corresponds to the unique equivalence class of z-ultrafilters in C−
u above

the linear points in A and below the linear points in B.

Proposition 2.2.3. If u ∈ H∗ is in the closure of a countable, discrete subset of H, then Lu is

dense in Cu.

Proof. Let D denote the countable discrete subset of H. Pick x ∈ C−
u and an open neighborhood

U ⊂ βΠ of x. Without loss of generality, assume U = Ex U ′ for some open U ′ ⊆ Π.

U ′ ∩ π−1(D) 6= ∅, so the set D′ = {r ∈ D|U ′ ∩ π−1(r) 6= ∅} is nonempty; in fact, D′ ∈ u.

Construct a line f : H → C as follows: For all r ∈ D′, arbitrarily define f(r) so that (r, f(r)) ∈ U ′.

Extend f continuously to all of H in any arbitrary manner (this is possible since D′ is discrete).

Clearly f(u) /∈ ClβΠ(Π \U ′), and so f(u) ∈ βΠ \ClβΠ(Π \U ′) = Ex U ′ = U , hence Lu is dense

in Cu.

We can define a binary operation on Lu as follows: For any a, b ∈ Lu (with corresponding lines

fa and fb, respectively), define a + b = (fa + fb)(u).

Proposition 2.2.4. This addition is well-defined and Lu is an abelian group under +.

Proof. Pick a, b ∈ Lu and corresponding lines fa, fb, respectively. Suppose f ′a ∈ [fa]u, f ′b ∈ [fb]u.

We know {r ∈ H|f ′a(r) + f ′b(r) = fa(r) + fb(r)} ∈ u since it is a closed superset of {r ∈ H|f ′a(r) =

fa(r)} ∩ {r ∈ H|f ′b(r) = fb(r)} ∈ u. Therefore, f ′a + f ′b ∈ [fa + fb]u and hence our binary operation

is well-defined.

Clearly a + u = u + a = a for any a ∈ Lu (pick f : H → C identically zero for the line

corresponding to u), so u is the additive identity.

If a ∈ Lu, set −a = −fa(u). It is then clear that a + (−a) = (−a) + a = u (since fa + (−fa) is

identically zero on H).

Finally, if a, b ∈ Lu, then a + b = b + a (since fa + fb = fb + fa).

Proposition 2.2.5. Lu is homogeneous.

Proof. Pick arbitrary a, b ∈ Lu. We will construct a homeomorphism of Lu onto itself taking a to b.

Let fa and fb be lines such that fa(u) = a, fb(u) = b. Define F : Π → Π by F (r, θ) =

(r, θ − fa(r) + fb(r)). F is clearly a homeomorphism, and so its extension βF : βΠ → βΠ is also a

homeomorphism.

Let c ∈ Lu with corresponding line fc, and let {(rλ, fc(rλ))} ⊆ fc be a net converging to c.

The net {F (rλ, fc(rλ))} = {(rλ, fc(rλ) − fa(rλ) + fb(rλ))} converges to βF (c) = βF (fc(u)) =
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(fc − fa + fb)(u) = c − a + b ∈ Lu, and so βF maps Lu to Lu. We need to show the restriction

βF ′ : Lu → Lu is a bijection:

If x ∈ Lu, then βF ′(x + a− b) = (x + a− b)− a + b = x, and so βF ′ is onto.

If x, y ∈ Lu with βF ′(x) = βF ′(y), then x− a + b = y− a + b. It follows that x = y, and so βF ′

is one-to-one.

Finally, βF ′(a) = a− a + b = b, completing the proof

Theorem 2.2.6. If u ∈ H∗ is in the closure of a countable discrete subset of H, then Lu and

fin(∗R)/(2π) (i.e., the circle of finite hyperreals mod 2π) are isomorphic as groups (for some appro-

priate ultrafilter u′ on ω).

Proof. Let D denote the countable discrete subset of H. It’s easy to check that the collection of sets

uD = {F ∩D|F ∈ u} is an ultrafilter on D.

Let f : D → ω be the natural order preserving bijection. Set u′ = f(uD). Then the construction

of ∗[0, 2π) using the ultrafilter u′ is clearly equivalent to the construction of Lu: The sequences in

[0, 2π)ω correspond directly to the lines in L with their domain restricted to D ∈ u. Since ∗[0, 2π)

and fin(∗R)/(2π) are isomorphic (by Prop. 1.2.7), we have that fin(∗R)/(2π) is isomorphic to Lu.

2.3 A Mapping Property of Certain Subcontinua of Π∗

We need two final results before proving that many subcontinua of Π∗ map onto any arbitrary

continuum of weight ≤ ω1.

Proposition 2.3.1. Let fπ be the line defined by fπ(r) = π for all r ∈ H. For any a, b ∈ Lu, there

is a homeomorphism G∗ : Π∗ → Π∗ such that G∗(a) = u and G∗(b) = fπ(u).

Proof. From the proof of Prop. 2.2.5, there is a homeomorphism βF : βΠ → βΠ fixing Lu such that

βF (a) = u, so without loss of generality, we can assume a = u.

We need a homeomorphism of βΠ that fixes u and sends b to fπ(u). Define the line f0 by

f0(r) = 0 for all r ∈ H (so that f0(u) = u). From the proof of Corollary 2.1.9, there is a line fb such

that fb(u) = b and 0 < fb(r) < 2π ∀r ∈ H.

Define G : Π → Π by

G(r, θ) =

(r, π
fb(r)

θ) if 0 ≤ θ < fb(r),

(r, π(θ−2π)
2π−fb(r)

+ 2π) if fb(r) < θ < 2π

It’s routine to check that G is a homeomorphism, the important thing to note is that G

stretches/shrinks the plane (around the origin) so that the line f0 is fixed, while the line fb is

taken to the line fπ.
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Since G preserves distances of points from the origin, if {xλ} ⊆ fb is a net converging to fb(u) = b,

then the net {G(xλ)} ⊆ fπ converges to fπ(u), and so the extension βG(b) = G∗(b) = fπ(u).

G∗(u) = u as well, and we are done.

Proposition 2.3.2. If a and b are any two distinct linear points of the hypercircle Cu, then Cu\{a, b}
is disconnected.

Proof. Note that the map in Prop. 2.2.5 preserves distance from the origin on Π, therefore it maps

Cu homeomorphically to itself. Hence, without loss of generality, we can assume a = u.

Define f0 and fb as before in the proof of Prop. 2.3.1. Using the notation previously defined in

Prop. 2.2.2, consider the regions of the plane A = [f0, fb] and B = [fb, f0]. Clearly A ∪ B = Π and

A ∩B = f0 ∪ fb.

Note that the set F = βf0 ∪ βfb is closed, hence the sets U = (βA) \ F and V = (βB) \ F are

both open. It’s clear that each of these open sets have nonempty intersection with Cu. But then

(U ∩ Cu) ∪ (V ∩ Cu) = Cu \ {a, b}, and so we have disconnected Cu \ {a, b}.

Theorem 2.3.3. Let K ⊆ Π∗ be a non-degenerate subcontinuum. If:

1. K intersects two distinct hypercircles, or

2. K contains two distinct linear points within the same hypercircle, or

3. K ⊆ Cu where u ∈ βH is in the closure of a countable, discrete subset of H,

then K maps onto any continuum of weight ≤ ω1.

Proof. In his PhD thesis, Franco Obersnel showed that any non-degenerate subcontinuum of H∗

maps onto any continuum of weight ≤ ω1, so it is sufficient to map K onto a non-degenerate

subcontinuum of H∗.

If K intersects two distinct hypercircles, this is trivial since in that case βπ(K) itself is a non-

degenerate subcontinuum of H∗.

Suppose K contains two distinct linear points within the same hypercircle Cu. By Prop. 2.3.1,

without loss of generality we can assume the two points are u and fπ(u).

Define M,N ⊆ H by M =
⋃∞

j=0[2
2j , 22j+1], N =

⋃∞
j=0[2

2j+1, 22j+2]. By primality of u, either

M ∈ u or N ∈ u. Without loss of generality, suppose N ∈ u (the other case is similar).

Define a homeomorphism h : Π → Π by:

h(r, θ) =

( θ+π
2π r, θ) if 0 ≤ θ ≤ π,

( 3π−θ
2π r, θ) if π < θ < 2π

Again, it is routine to check that this is homeomorphism.

Extend h to βh : βΠ → βΠ. Note that h is the identity on fπ (and hence βh(fπ(u)) = fπ(u)),

while on f0, h maps N onto M .
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Either βh(u) = u or βh(u) 6= u. In the latter case, we still have βh(u) ∈ ClβΠ(f0) (since the

image of f0 under βh is still f0), implying u and βh(u) lie on different hypercircles, and therefore

we are done (βh(K) is now a subcontinuum of Π∗ that intersects two distinct hypercircles).

Suppose βh(u) = u. Since (along f0) h maps N onto M , this implies both M,N ∈ u. Therefore,

M ∩N = {2j |j = 1, 2, 3, ...} ∈ u.

By primality of u, either E = {2j |j is an even positive integer} or O = {2j |j is an odd positive integer}
is in u. Without loss of generality, assume E ∈ u (the other case is similar).

Since βh(u) = u and h(E) = O, we have O ∈ u. Therefore, E ∩ O = ∅ ∈ u. This is impossible,

hence we must have βh(u) 6= u, and we are done with case 2.

Finally, suppose K ⊆ Cu where u ∈ βH is in the closure of a countable, discrete D ⊆ H.

K contains at most one linear point (otherwise we’re back in case 2), so without loss of generality,

assume u /∈ K. (This will allow us to use the linear order <u on (equivalence classes of) C−
u ).

Pick any linear point b ∈ C−
u \ K. Then for all x ∈ K, the equivalence class [x]∼u <u b (or

∀x ∈ K, [x]∼u
>u b, but without loss of generality we’ll assume the former). Otherwise K is

disconnected by b and u (by Prop. 2.3.2).

Again, define f0 and fb as in Prop. 2.3.1; also, [f0, fb] is defined as in Prop. 2.2.2.

For all r ∈ D, define Ar = Cr ∩ [f0, fb] (i.e., each Ar is the arc of the circle Cr starting at the

line f0 and going counter clockwise to fb).

Label the points of D by rn (n ∈ ω) in the natural way so that r0 < r1 < r2 < ... (we can do

this since D is countable and discrete).

Trace out a homeomorphic copy of H as follows. We’ll connect the arcs Ar by pieces of the lines

f0 and fb:

For any closed interval [m,n] in H and any line f , let f [m,n] denote the closed segment of f

starting a distance of m from the origin and ending a distance of n from the origin.

Our copy of H will now be X = [
⋃

r∈D Ar] ∪ {f0[r2n, r2n+1]|n ∈ ω} ∪ {fb[r2n+1, r2n+2]|n ∈ ω}.
Since K lies between u and b, we have K ⊆ X∗. Since X∗ is homeomorphic to H∗, K maps onto

any arbitrary continuum of weight ≤ ω1.

2.4 Open Questions

Question 2.4.1. Can the remaining non-degenerate subcontinua of Π∗ not covered in Theorem 2.3.3

map onto any arbitrary continuum of weight ≤ ω1?

Question 2.4.2. If u, u′ ∈ H∗, under what conditions will Cu be homeomorphic to Cu′?

Question 2.4.3. Is Cu homogeneous for any/all u ∈ H∗?
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Question 2.4.4. Is Lu dense in Cu if u is not in the closure of any countable discrete subset of H?

Question 2.4.5. Can the group structure on Lu be extended to all of Cu?



List of References

[1] L. Gillman and M. Jerison. Rings of Continuous Functions. D. Van Nostrand Co., Inc.,

Princeton, New Jersey, 1960.

[2] R. Goldblatt Lectures on the Hyperreals: An Introduction to Nonstandard Analysis.

Springer-Verlag, New York, New York, 1998.
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