
ABSTRACT

SHOWS, JUSTIN HALL. Sparse Estimation and Inference for Censored Median Regression.
(Under the direction of Drs. Wenbin Lu and Hao Helen Zhang).

Censored median regression models have been shown to be useful for analyzing a

variety of censored survival data with the robustness property. We study sparse estimation

and inference of censored median regression. The new method minimizes an inverse censor-

ing probability weighted least absolute deviation subject to the adaptive LASSO penalty.

We show that, with a proper choice of the tuning parameter, the proposed estimator has

nice theoretical properties such as root-n consistency and asymptotic normality. The es-

timator can also identify the underlying sparse model consistently. We propose using a

resampling method to estimate the variance of the proposed estimator. Furthermore, the

new procedure enjoys great advantages in computation, since its entire solution path can

be obtained efficiently. Also, the method can be extended to multivariate survival data,

where there is a natural or artificial clustering structure. The performance of our estimator

is evaluated by extensive simulations and two real data applications.
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Chapter 1

Introduction

1.1 Review on survival models and methods

Survival or time-to-event data analysis is commonly found in various fields of study,

including biomedicine, epidemiology, social science, economics, and engineering. The main

goal in this type of analysis is to study the distribution of the time until a certain event of

interest, usually called a ”failure”, occurs. In actual data collection, however, it is common

that the event times of interest are censored for various reasons. For a more detailed

discussion of censoring, see Kalbfleisch and Prentice (2002) and Klein and Moeschberger

(2003). Due to censoring, only partial information of event times on some subjects may

be observed, which makes analyzing survival data additonally challenging. In this thesis,

we will focus on right censoring, in which something happens prior to the failure time that

prevents it from being observed directly. For example, if we are studying the time to death

of patients with terminal lung cancer, there may be many events which may preclude the

observation of the time of death. An individual may die from another cause or drop out

of the study, or commonly, the study period may end before some individuals die. We will

assume that for every individual, there is a failure time T and a censoring time C. Usually,

it is assumed that the failure time is independent of the censoring time, or at least that they

are independent given certain covariates. While we are interested in studying the properties

and distribution of T , we only observe T̃ = min(T,C) and δ = I(T ≤ C). So for a study

consisting of n individuals from a homogeneous population, we observe (T̃i, δi), i = 1, . . . , n.

Based on the observed data, we need to deduce the distribution of T .
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The distribution of T can be described by the survival function, which is left-

continuous and given by

S(t) = P (T ≥ t) for t ≥ 0

where S(0) = 1 and S(∞) = 0. The distribution can also be described by the hazard rate,

or instantaneous rate of failure, defined as

λ(t) = lim
h→0

h−1P (t ≤ T < t+ h|T ≥ t).

The cumulative hazard function is then Λ(t) =
∫ t

0 λ(s)ds. Any of these may describe the

distribution of T , since S(t) = exp{−Λ(t)}. There are numerous methods of estimating the

distribution of T nonparametrically using the observed data. We will make extensive use

of the Kaplan-Meier estimator (Kaplan and Meier, 1958) of the survival function, which is

given by

Ŝ(t) =
∏
u≤t
{1− J(u)

Y (u)
dN(u)},

where Y (u) =
∑n

i=1 I(T̃i ≥ u) is the total number of subjects at risk at time u, N(u) =∑n
i=1 I(T̃i ≤ u, δi = 1) is the total number of failures observed by time u, and J(u) =

I(Y (u) > 0). In this context, any value of 0
0 is taken to be 0.

In many practical time to event studies, besides the event time information, a

large number of predictors will also be collected. A major objective of these studies is to

investigate the relationship between the event time of interest and the predictors. In the

last forty years, a variety of semiparametric survival models has been proposed and actively

used in literature. One of the most popular models in survival analysis is Cox’s proportional

hazards (PH) model (Cox, 1972). The hazard function is given by

λ(t|Xi) = λ0(t) exp(β′0Xi),

where λ0(t) is a baseline hazard function, Xi is a vector of covariates for the ith subject,

and β0 the true value of a vector of unknown regression coefficients. One of the major

advantages of this model is that a partial likelihood is available (Cox, 1972), given by

L(β) =
n∏
i=1

 eβ
′Xi∑

j∈Ri

eβ
′Xj


δi

,
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where Ri = {j : T̃j ≥ T̃i}. The maximum partial likelihood estimator of β can then be

easily obtained from L(β) (Cox, 1975). Moreover, it has been shown that the resulting

estimator is consistent, asymptotically normal, and semi-parametrically efficient (Tsiatis,

1981; Andersen and Gill, 1982).

In many practical applications, however, the assumption of proportional hazards

is violated. For example, if Xi is simply a treatment indicator

Xi =

 1 if subject is in the treatment group

0 if subject is in the control group

then the proportional hazards assumption requires that the ratio of the hazard function of

the treatment group and that of the control group is constant at all times, i.e., the hazard

functions are parallel at all times. If the hazard functions converge to the same limit, then

the proportional hazards assumption is violated. Under such situations alternative models

may be more suitable.

Another popular model is the proportional odds (PO) model (Bennett, 1983a; Ben-

nett, 1983b; Pettitt, 1984). This model assumes that for S(t|Xi), the conditional survival

function for the ith individual, we have

1− S(t|Xi)
S(t|Xi)

=
1− S0(t)
S0(t)

exp(β′0Xi),

where S0(t) is a completely unspecified baseline survival function, β0 is the true value of

a vector of regression parameters, and Xi is a vector of covariates for the ith individual.

Under this model, it is not necessary for the hazard function to be monotonic, so that

it may be appropriate when the hazard function reaches a peak at some point in time

and then declines (Bennett, 1983b). However, for the PO model, the partial likelihood is

not available. Therefore, the estimation of parameters, including regression coefficients,

becomes more challenging. Various methods have been proposed for the estimation of the

PO model. For example, Pettitt (1984), among others, shows that the estimates for the

regression parameters can be computed by replacing the survival times with their ranks.

In addition, the estimation and inference procedures can be based on a marginal likelihood

(Lam and Leung, 2001), which is also a rank-based method. Recently, the semiparametric

maximum likelihood estimation method has also been studied for the PO model by various

authors (Scharfstein et al, 1998; Zeng and Lin, 2007). Scharfstein et al (1998) construct
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an estimator for β that is consistent and asymptotically normal; further, the estimator is

semiparametric efficient in that it attains the semiparametric variance bound. Zeng and

Lin (2007) develop a unified semi-parametric maximum likelihood estimation method for

a general class of linear transformation models, of which the PO model is a special case.

While the PO model may be more appropriate than the PH model in some situations, as

with the proportional hazards assumption, the assumption of proportional odds may not

be met in some applications.

Another attractive alternative is the accelerated failure time (AFT) model

(Kalbfleisch and Prentice, 1980; Cox and Oakes, 1984), which relates the logarithm of the

failure time linearly to covariates as

log(T ) = β′Z + ε, (1.1)

where T is the failure time of our interest, Z is the p-dimensional vector of covariates and

ε is the error term with a completely unspecified distribution that is independent of Z.

Due to censoring, we only observe T̃ = min(T,C) and δ = I(T ≤ C), where C is the

censoring time that is assumed to be independent of T conditional on Z. Compared to

proportional hazards models, the estimates from AFT models are robust to the presence of

unmeasured covariates, since they are less affected by the choice of probability distribution.

Furthermore, the results of AFT models are easier to interpret (Reid, 1994). Due to these

desired properties, the AFT model has been extensively studied in the literature (Prentice,

1978; Buckley and James, 1979; Ritov, 1990; Tsiatis, 1990; Ying, 1993; Jin et al., 2003;

among others). Buckley and James (1979) modify the normal equations to accommodate

censored observations in order to estimate the regression parameters, while Prentice (1978)

uses generalized ranks for inference about β. The large sample properties of rank estimators

have been rigously studied by Tsiatis (1990) and Ying (1993). Jin et al (2003) show that

the estimators can be obtained via linear programming, and that they are consistent and

asymptotically normal. They further use a resampling technique to estimate the limiting

covariance matrix that does not involve nonparametric density estimation.

A major assumption of the AFT model is that the error terms are i.i.d., which

is often too restrictive in practice (Koenker and Geling, 2001). To handle more compli-

cated problems, say, data with heteroscedastic or heavy-tailed error distributions, censored

quantile regression provides a natural remedy. In the context of survival data analysis,
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Ying et al. (1995), Bang and Tsiatis (2003), and Zhou (2006) consider median regression

with random censoring and derive various inverse censoring probability weighted methods

for parameter estimation; Portnoy (2003) considers general censored quantile regression by

assuming that all conditional quantiles are linear functions of the covariates and develops

recursively re-weighted estimators of regression parameters. In general, quantile regression

is more robust against outliers and may be more effective; the regression quantiles may be

well estimated even if the mean is not.

1.2 Review on variable selection methods

In studying the distribution of the failure time, it is common to collect auxilary

information in the form of measured covariates. One interesting problem is to study the

distribution of the failure time conditional on these covariates. With modern technology, it

is possible to collect information on a large number of potential predictors. For example,

more and more medical studies tend to measure patients’ genomic information and combine

it with traditional risk factors to improve disease diagnosis and make personalized drugs.

Genomic information, often in the form of gene expression patterns, is high dimensional

and typically only a small number of genes contains relevant information, so the underlying

model is naturally sparse. As in standard regression problems, we are often interested in

investigating the relationships between the response (survival time in our case) and a large

number of covariates. We would then select those covariates that are relevant to predicting

the survival distribution and estimate their effects on the survival time. For some of the

covariates, the true value of the corresponding coefficients may be 0, i.e., they do not affect

survival times or prediction of a survival outcome. Simultaneous variable selection and

parameter estimation then becomes important since it can produce a parsimonious model

with better risk assessment and model interpretation. However, how to identify the subset

of relevant predictors with censored data is an important yet challenging question.

1.2.1 Variable selection for uncensored data

Before we discuss variable selection for censored data, we will review some variable

selection methods in the context of uncensored data. Suppose that we have iid observations
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data (Xi, Yi)ni=1 so that

Yi = θ′Xi + εi for i = 1, 2, . . . , n,

where Xi = (1, Xi1, . . . , Xip)′; θ = (α, β1, . . . , βp)′, where θ0 = (α0, β10, . . . , βp0)′ is the true

value of θ; εi iid with E(εi) = 0 and V ar(εi) = σ2. In standard least squares regression,

some of the most popular methods of variable selection are forward selection, backward

elimination, and stepwise regression (Montgomery and Peck, 1991; Hocking, 1976). In these

methods, variables are added or deleted from the model one at a time. In forward selection,

the model begins with only an intercept. The first variable added to the model is the one

with the highest simple correlation with the response variable. At each subsequent step,

the variable is added that causes the largest decrease in the sum of squares error (SSE).

At each step, the partial sums of squares are used to test if the entering variable meets

the prespecified entry significance level αENTER. If not, then the process is stopped. In

backward elimination, the beginning model includes all possible variables. At each step, the

variable whose deletion causes the smallest decrease in SSE is eliminated. At each deletion,

the partial sums of squares are used to test if the variables meets the prespecified significance

level αSTAY to stay in the model. If so, then the process stops. Stepwise regression starts

with one variable and adds variables one by one to the model as in forward selection. At

each step, all the variables in the model are tested to see if they meet the αSTAY criteria

to stay in the model. The process is stopped when all the variables in the model meet the

αSTAY criterion to stay in the model, and the variables not in the model meet the αENTER

criterion. While these methods can be easily carried out in SAS, many authors note that

they are not guaranteed to yield the best model in any sense (Montgomery and Peck, 1991;

Hocking, 1976). There are many criteria available that allow for best subset selection. Some

of them include the adjusted correlation coefficient, Mallow’s Cp statistic (Mallows, 1973),

Akaike information criteria (AIC) (Akaike, 1973), Schwarz-Bayesian information criteria

(BIC) (Schwarz, 1978), and various cross-validation criteria.

Luo et al (2006) note that these methods do not adapt the tuning parameters

of the criteria based on the data. They propose to tune the parameters by adding con-

trolled amounts of random noise to the response variable and performing a variable selection

method with the noise-inflated data. The method discussed is forward selection, but can

be extended to other methods as well. The noise addition model selection (NAMS) method

is based on the fact that underfitting and overfitting the model results in biased estimates
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of the error variance (Luo et al, 2006). In the case of forward selection, if αENTER is too

large, then the selected model will be overfit and the error variance will be underestimated;

conversely, if αENTER is too small, the selected model will be underfit and the error variance

will tend to be overestimated. The noise-inflated responses are given by

Y ∗i = Yi + τ
√
λWi, i = 1, . . . , n,

where τ and λ are known and (Wi)ni=1 are randomly generated i.i.d. standard normal

variables. (Luo et al (2006) recommend using τ =
√
σ̂2
F , where σ̂2

F is the estimate of

σ2 from a fit of the full model.) Then Y ∗i has the same conditional expectation of Yi,

but the error variance is V ar(Y ∗i |Xi) = σ2 + τ2λ. Forward selection is then applied to

the noise-inflated data (Y ∗i , Xi)ni=1. If αENTER is too large, then expexted mean square

error (MSE) of the selected model is less than σ2 + τ2λ, and vice versa. The ideal value

for αENTER will yield a model with expected MSE σ2 + τ2λ, which is linear in λ with

slope τ2. The algorithm for selecting the ideal value of αENTER is given by Luo et al

(2006) as follows. First choose a grid of noise levels 0 < λ1 < λ2 < . . . < λm ≤ 4, and

a grid of αENTER levels 0 < α1 < α2 < . . . < αs < 1 and generate a large number of

i.i.d. N(0, 1) random variables (Wi,k,b, i = 1, . . . , n; k = 1, . . . ,m; b = 1, . . . , B). Then

for each combination of λk, k = 1, . . . and αj , j = 1, . . . , s, there are B i.i.d. remeasured

data sets (Y ∗i,k,b, Xi)ni=1 for b = 1, . . . , B, where Y ∗i,k,b = Yi +
√
λkτWi,k,b. For each of

these remeasured data sets, perform forward selection with αENTER = αj and compute

MSEαj ,b(λk) from the selected model. The average of the MSE’s across the B data sets

is given by ¯MSEαj (λk) = 1
B

∑B
b=1MSEαj ,b(λk). This gives s simple linear regression data

sets (λk, ¯MSEαj (λk))mk=1 for j = 1, 2, . . . , s. Compute the estimated slope of each of these

data sets and choose the one that is closest to τ2. The corresponding αj is chosen as

αENTER.

The variable addition model selection (VAMS) method of Wu et al (2007) chooses

the tuning parameter by adding nonimportant phony variables to the model and performing

a variable selection method on the new model. By keeping track of how many of these

variables are included and excluded by the selection method, Wu et al (2007) can reveal the

underfitting or overfitting tendencies of the method. As with the NAMS method, forward

selection is discussed, but other methods can be used also. The parameter αENTER is tuned

to control the false selection rate (FSR), which is the proportion of nonimportant variables
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included in the selected model. The FSR of the real variables cannot be directly observed

because it is not known which of them are important. When nonimportant pseudovariables

are added to the data, and forward selection is applied to the the data (Yi, Xi, Pi)ni=1, where

Pi is a vector of nonimportant phony variables, then the proportion of falsely selected

phony variables can be observed since it is known that these variables are nonimportant.

Replicating this process allows the FSR of the real variables to be estimated by using the

proportions of phony variables selected. This can be done for a grid of values for the

tuning parameter, and the value of αENTER is chosen so that the estimated FSR of the real

variables is approximately equal to a desired level. Boos et al (2008) modify this method

so that no simulation is required and the computation is more simple. This method uses

the fast FSR tuning method and can be applied even when the number of covariates is

larger than the sample size and is applied to clinical trial data for linear, logistic, and Cox

proportional hazards regression.

Recently, several shrinkage methods that perform simultaneous variable selection

and estimation have been studied. Tibshirani (1996) notes that the ordinary least squares

(OLS) estimators usually have small bias but may have large variances and therefore not

be optimal in terms of prediction accuracy and seeks to develop a method that will perform

variable selection and also yield estimates with adequate prediction accuracy. He proposes

that shrinking some coefficients and setting others to 0 could reduce the variance of pre-

dicted values by allowing more bias. Further, setting coefficients to 0 allows the elimination

of the corresponding variables. He notes that any method of best subset selection is a

discrete process and is not always stable in terms of prediction accuracy. Ridge regression,

a continuous process, is more stable, but it does not perform variable selection. While it

shrinks some coefficients, it cannot set them to 0 and eliminate the corresponding variables.

Tibshirani (1996) proposes a technique called ”least absolute shrinkage and selection oper-

ator (Lasso)”, which seeks to combine the desirable properties of ridge regression and best

subset selection. It has the continuous shrinkage of ridge regression while still performing

variable selection. The lasso procedure, having an L1 penalty, is able to set some coefficient

estimates to 0, hence eliminating the least important variables.

The Lasso estimates are obtained by minimizing

n∑
i=i

(
Yi − θ′Xi

)2 + nλ

p∑
j=1

|βj |,
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where λ is a tuning parameter. The tuning parameter is the penalty on the number of

variables selected, and therefore determines how much shrinkage is applied to the resulting

estimates (Tibshirani 1996).

Zou (2006) notes that in some situations, the Lasso can be inconsistent in variable

selection. He proposes using different weights for different coefficients, thereby placing larger

penalties on the non-important coefficients and smaller penalties on the important ones. If

the weights are data-dependent and chosen properly, Zou (2006) shows that the weighted

Lasso

arg min
θ

n∑
i=i

(
Yi − θ′Xi

)2 + nλ

p∑
j=1

wj |βj |,

where w is a known vector of weights, can asymptotically have the oracle properties as

defined by Fan and Li (2001). These properties are that for an estimator θ̂, a = {j : βj0 6=
0} = {j : β̂j 6= 0} (the true model is identified) with probability tending to one and that
√
n(β̂a−βa0) converges in distribution to Normal with mean vector 0 and covariance matrix

Σ∗, where Σ∗ is the covariance matrix of the true subset model.

Zou (2006) defines the adaptive Lasso estimator as

arg min
θ

n∑
i=i

(
Yi − θ′Xi

)2 + nλ

p∑
j=1

1

|β̂∗j |
|βj |,

where β̂∗ is a root-n consistent estimator for β0. Since it is a consistent estimator, the values

of β̂∗ should reflect the relative importance of the covariates (Zhang and Lu 2007). With a

proper choice of λ, Zou (2006) shows that the adaptive Lasso can have the aforementioned

oracle properties. In particular, if
√
nλ → 0 and nλ → ∞, then the estimator has these

properties.

Fan and Li (2001) propose the smooth clipped absolute deviation (SCAD) estima-

tor, which minimizes
n∑
i=1

(Yi − θ′Xi)2 + n

p∑
j=1

pλ(|βj |),

where pλ(0) = 0, and the first derivative is

p′λ(ϑ) = I(ϑ ≤ λ) +
(aλ− ϑ)+

(a− 1)λ
I(ϑ > λ)

for some a > 2 and ϑ > 0 and (r)+ = rI(r > 0). By minimizing a Bayes risk, Fan and Li

(2001, 2002) suggest using a = 3.7. They show that with the proper choice of regularization

parameters, the SCAD has the aforementioned oracle properties.
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Wang et al (2007) note that the L2 loss function may cause the estimators to be too

sensitive to severe outliers and/or heavy-tailed errors. Their method, the LAD-Lasso, uses

both an L1 loss function along with the L1 penalty of the adaptive Lasso. Since the median

is in general more resistant to outliers and heavy-tailed error distributions, the L1 loss

function enjoys many advantages. The LAD-Lasso estimates are obtained by minimizing
n∑
i=1

|Yi − θ′Xi|+ nλ

p∑
j=1

wj |βj |.

An added advantage of this method is that the L1 loss function allows the solution to be

obtained by linear programming, as the problem is equivalent to minimizing
n+p∑
i=1

|Y ∗i − θ′X∗i |,

where Y ∗i = Yi for i = 1, 2, . . . , n and 0 for i = n + 1, . . . , n + p. Also, X∗i is a (n + p) × p
matrix where the first n rows consist of the matrix X. The remaining p rows consist of

a column vector of p zeroes and a p-dimemsional diagonal matrix with diagonal elements

nλwj for j = 1, . . . , p. We can see then that this is simply an unpenalized LAD fit with the

augmented form of the data.

The major concerns of this method are the tuning procedure and the choice of

weights. As with the adaptive Lasso with L2 loss, with certain conditions on λ and a

proper choice of weights, the resulting estimator has many desirable properties. Suppose

the data are arranged so that for β0 = (βa0, βb0), where βa0 = (β10, . . . , βp′0) represents the

significant coefficients, and βb0 = (β(p′+1)0, . . . , βp0) are the insignificant ones. Of course

then, βa0 6= 0 and βb0 = 0. Just as in the adaptive Lasso case with L2 penalty, it can be

shown that with the proper choice of weights and tuning parameter, the resulting estimator

is sparse and is asymptotically normal. Wang et al (2007) show that if the weights are

chosen so that the inverses are root-n consistent, and λ is chosen so that
√
nλ → 0 and

nλ → ∞ as n → ∞, then the resulting estimator β̂ is root-n consistent, satisfies β̂b = 0

with probability tending to 1 (sparcity), and that (βa0 − β̂a) converges in distribution to a

p′-dimensional normal random vector with mean 0.

Wang et al (2007) derive an appropriate way to select tuning parameters and

weights so that the previously mentioned conditions are met. They suggest tuning param-

eter estimates λ̂ = log(n)
n and ŵj = 1

|β̃j |
where β̃ is the estimate from an unpenalized LAD

fit. These values meet both of the conditions on the weights and λ.
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1.2.2 Variable selection for censored data

In the last section, we discussed some variable selection methods for uncensored

data. From now on, we will consider failure time data that is possibly right-censored. In

a study of n subjects, then, each subject has failure time Ti and censoring time Ci with a

p-dimensional vector of covariates Zi. The observed data consists of (T̃i, δi, Zi), i = 1, . . . , n,

where T̃i = min(Ti, Ci) and δi = I(Ti ≤ Ci). The Cox proportional hazards model (Cox

1972) assumes that the hazard function for a subject is given by

λ(t|Zi) = λ0(t) exp{β′Zi},

where λ0(t) is a completely unspecified baseline hazard function. This model is one of

the most well-studied in the field of survival analysis, including shrinkage methods. There

is a rich literature for variable selection in standard linear regression and survival data

analysis based on the PH model. Traditional procedures include backward deletion, forward

addition and stepwise selection. However, these procedures may suffer from high variability

(Breiman, 1996). Recently some shrinkage methods have been proposed based on the

penalized likelihood or partial likelihood estimation, including the LASSO (Tibshirani, 1996,

1997), the SCAD (Fan and Li, 2001, 2002) and the adaptive LASSO (Zou 2006, 2008; Zhang

and Lu, 2007). Boos et al (2008) applied the fast FSR VAMS method to this model along

with foward selection to a data set in order to tune the parameter αENTER.

Recently, there has been much work done in applying shrinkage methods to cen-

sored survival data under the Cox model. Several authors, including Tibshirani (1997), Fan

and Li (2002), Zhang and Lu (2007), and Zou (2008), have proposed minimizing the penal-

ized log partial likelihood function based on the Cox model, where the log partial likelihood

is given by

`n(β) =
n∑
i=1

δi

β′Zi − log


n∑
j=1

I(T̃j ≥ T̃i) exp(β′Zj)


 .

Tibshirani proposes using the Lasso penalty along with the log partial likelihood. The

estimates are obtained by minimizing

−`n(β) + nλ

p∑
j=1

|βj |.

While simulation studies indicated that the Lasso can be more accurate than stepwise selec-

tion (Tibshirani 1997), the estimator does not have the oracle properties defined previously



12

(Zhang and Lu 2007). As is the case in the classical regression setting, having only one

tuning parameter may not produce solutions that are sparse enough. Fan and Li (2002)

propose the SCAD penalty, where estimators minimize

−`n(β) + n

p∑
j=1

pλ(|βj |),

where pλ(0) = 0, and the first derivative is

p′λ(ϑ) = I(ϑ ≤ λ) +
(aλ− ϑ)+

(a− 1)λ
I(ϑ > λ)

for some a > 2 and ϑ > 0 and (r)+ = rI(r > 0). By minimizing a Bayes risk, Fan and

Li (2001, 2002) suggest using a = 3.7. As is the case with uncensored data, they show

that with the proper choice of regularization parameters, the SCAD performs as well as an

oracle estimator.

However, Zhang and Lu (2007) note that numerical difficulties arise due to the

nonconvex form of the penalty. They propose an adaptive Lasso method based on a pe-

nalized partial likelihood with adaptively weighted L1 penalties. Since the penalty has a

convex form, the problem can be solved more efficiently. The estimator minimizes

−`n(β) + nλ

p∑
j=1

wj |βj |,

where the positive weights are data dependent. They suggest using wj = 1
|β̃j |

, where β̃ is

the maximizer of `n(β), but note that any consistent estimator of β can be used. Zhang and

Lu (2007) show that if
√
nλ→ 0 the adaptive Lasso estimator is root-n consistent, and that

in addition, if nλ → ∞, then the estimator exhibits sparcity and asymptotic normality of

the non-zero coefficients. Zou (2008) proposes an efficient and adaptive shrinkage method

that uses the adaptive Lasso penalty. Instead of using the partial likelihood `(β), he uses an

efficient quadratic approximation that permits more efficient computations without losing

the information about β that is contained in `(β). Zou (2008) shows that if
√
nλ → 0

and nλ → ∞, then the resulting estimators are sparse and asymptotically normal. As

mentioned before, however, the assumptions of the proportional hazards model may not be

met in many practical applications and other models may be appropriate.

Lu and Zhang (2007) study variable selection for the PO model by maximizing

the marginal likelihood subject to both the Lasso and Adaptive Lasso penalties. They
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provide an efficient computation algorithm for these methods, and their numerical results

indicate that they can produce accurate models, noting that the adaptive Lasso tends to

work better than the Lasso. However, since the marginal likelihood has no closed form, it

must be computed numerically; therefore, is hard to establish the theoretical properties of

the estimator.

For the AFT and other semiparametric linear models with i.i.d. errors, Johnson

(2008) examines two procedures for variable selection. The first uses shrinkage estimators

with different penalties, including the SCAD and Lasso, using both the rank estimation of

Prentice (1978) and the Buckley-James estimator (Buckley and James, 1979). The second

method uses the VAMS method of Wu et al (2007) by adding phony variables to the data

and controlling the false selection rate (FSR) to adapt the tuning parameter αENTER.

With a proper choice of tuning parameters, he shows that the resulting estimators are

root-n consistent, exhibit sparcity, and are asymptotically normal. Johnson et al (2008)

develop asymptotic theory for a broad class of penalized estimating functions that may

not pertain to the derivatives of any objective functions. Under certain conditions placed

on the estimating functions and penalty parameters, the resulting estimates are shown

to be consistent, sparse, and asymptotically normal. In addition, Johnson et al (2008)

develop both an algorithm for implementing the estimators and a resampling technique for

estimating the variances of the estimates. The resampling technique can be used when the

asymptotic variances cannot be evaluated directly. Cai et al (2008) propose a regularized

rank-based estimation procedure with a Lasso-type penalty for estimation and variable

selection under the AFT model. This procedure only requires that the censoring time is

conditionally independent of the failure time given the covariates. They further show that

their estimator is a solution to a linear optimization procedure and the method is fairly

robust against model misspecification. While robust procedures for the AFT model exist,

as mentioned before, however, the assumption of i.i.d. errors may be too restrictive. In this

case, and in the case of heteroscedatic/heavy-tailed error distributions, censored median

regression may be more appropriate.
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1.3 Plan of work

To the best of our knowledge, the sparse estimation of censored quantile regres-

sion has not been studied in the literature. When there is no censoring, Wang et al. (2007)

considered the LAD-LASSO estimation for variable selection in median regression. In this

paper, we focus on the sparse estimation of censored median regression. However, the

proposed method can be easily extended to arbitrary quantile regression with random cen-

soring. Here we use the inverse censoring probability weighted least absolute deviation

estimation method of Zhou (2006) for censored median regression and incorporate adaptive

LASSO penalty for consistent variable selection. The entire solution path will be shown

to be piecewise linear, and the estimator is evaluated in extensive simulation studies and

applied to two data sets. The method will also be extended for use with multivariate or

clustered survival data.
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Chapter 2

Sparse Censored Median

Regression

2.1 The Sparse Censored Median Regression estimator

As discussed before, the assumptions of the proportional hazards, proportional

odds, and AFT models are often violated in practice, which leads to the use of other

models. Censored quantile regression is attractive due to its robustness against outliers

and heteroscedastic or heavy-tailed error distributions. The method developed in this sec-

tion will use the inverse censoring probability weighted LAD estimation proposed by Zhou

(2006) with the adaptive Lasso penalty. Consider a study of n subjects. Let {Ti, Ci, Zi, i =

1, · · · , n} denote n i.i.d. triplets of failure times, censoring times, and p-dimensional covari-

ates of interest. Conditional on Zi, the median regression model assumes

log(Ti) = θ′0Xi + εi, i = 1, · · · , n, (2.1)

where Xi = (1, Z ′i)
′, θ0 = (α0, β

′
0)′ is a (p+ 1)-dimensional vector of regression parameters

and εi’s are assumed to have a conditional median of 0. Note that the log transformation in

(2.1) can be replaced by any specified monotonic transformation. Define T̃i = min(Ti, Ci)

and δi = I(Ti ≤ Ci), then the observed data consist of (T̃i, δi, Zi, i = 1, · · · , n). As in

Ying et al. (1995) and Zhou (2006), we assume that the censoring time C is independent

of T and Z. Let G(·) denote the survival function of censoring times. In the absence of

censoring, Ying et al (1995) note that the LAD estimates for θ0 are obtained by minimizing
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∑n
i=1 | log(Ti)− θ′Xi|. If we take the derivative of this quantity, we obtain

d
dθ

∑n
i=1 | log(Ti)− θ′Xi| = −

∑n
i=1Xisign(log(Ti)− θ′Xi)

= −
∑n

i=1Xi {I(log(Ti)− θ′Xi ≥ 0)− I(log(Ti)− θ′Xi ≤ 0)}
= −

∑n
i=1Xi {2I(log(Ti)− θ′Xi ≥ 0)− 1}

= −2
∑n

i=1Xi

{
I(log(Ti)− θ′Xi ≥ 0)− 1

2

}
.

Although this derivative is not continuous in θ, Ying et al (1995) propose the estimating

equation

Un(θ) =
n∑
i=1

Xi

{
I(log(Ti)− θ′Xi ≥ 0)− 1

2

}
= 0

motivated by the fact that the expected value (conditional on Z) of Un(θ0) is 0. With

censored data, the expected value of I(log(T̃i)− θ′0Xi ≥ 0) is 1
2G(θ′0Xi). Therefore, in order

to estimate the parameters θ0, Ying et al. (1995) propose to solve

n∑
i=1

Xi

[
I{log(T̃i)− θ′Xi ≥ 0}

Ĝ(θ′Xi)
− 1

2

]
= 0,

where Ĝ(·) is the Kaplan-Meier estimator of G(·) based on the data (T̃i, 1−δi), i = 1, · · · , n.

Note that the above equation is neither continuous nor monotone in θ and thus is difficult

to solve especially when the dimension of θ is high. Bang and Tsiatis (2002) note that at

T̃i, the probability that the ith individual is not censored is G(T̃i). They show that the

weighted estimating equation using only the observed failure times, given by

n∑
i=1

δi

G(T̃i)
Xi

[
I{log(T̃i)− θ′Xi ≥ 0} − 1

2

]
= 0,

is unbiased. The alternative inverse censoring probability weighted estimating equation as

proposed by Bang and Tsiatis (2002) is as follows:

n∑
i=1

δi

Ĝ(T̃i)
Xi

[
I{log(T̃i)− θ′Xi ≥ 0} − 1

2

]
= 0.

As pointed out by Zhou (2006), the solution of the above equation is also a minimizer of

n∑
i=1

δi

Ĝ(T̃i)
| log(T̃i)− θ′Xi|, (2.2)

which is convex in θ and can be easily solved using an efficient linear programming algorithm

of Koenker and D’Orey (1987). In addition, Zhou (2006) shows that the above inverse
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censoring probability weighted least absolute deviation estimator has better finite sample

performance than that of Ying et al. (1995).

Let θ̃ ≡ (α̃, β̃′)′ denote the minimizer of (2.2). To conduct variable selection for

censored median regression, we propose to minimize

n∑
i=1

δi

Ĝ(T̃i)
| log(T̃i)− θ′Xi|+ nλ

p∑
j=1

|βj |
|β̃j |

, (2.3)

where λ > 0 is the tuning parameter and β̃ = (β̃1, · · · , β̃p)′. Here we use the adaptive

LASSO penalty (Zou, 2006; Zhang and Lu, 2007; Wang et al., 2007; among others) for

variable selection. It has been well studied that if the tuning parameter is properly chosen,

the adaptive LASSO procedure can produce consistent variable selection. We have already

shown that this is the case for uncensored data and under the Cox proportional hazards

model. In the next section, we will show that this is also true for our estimator.

2.2 Theoretical properties

Suppose that β0 = (β′a0, β
′
b0)′ and is arranged so that βa0 = (β10, · · ·βq0)′ 6= 0

and βb0 = (β(q+1)0, . . . , βp0)′ = 0. Correspondingly, denote the minimizer of (2.3) by θ̂ =

(α̂, β̂′a, β̂
′
b)
′. Define βa′0 = (α0, β

′
a0)′ and β̂a′ = (α̂, β̂′a)

′. Under the regularity conditions

given in the Appendix, we have the following two theorems.

Theorem 1 (
√
n-Consistency) If

√
nλ = Op(1), then

√
n||θ̂ − θ0|| = Op(1).

Theorem 2 If
√
nλ→ 0 and nλ→∞, then as n→∞

(i) (Selection-Consistency) P
(
β̂b = 0

)
→ 1.

(ii) (Asymptotic Normality)
√
n(β̂a′ − βa′0) converges in distribution to a normal random

vector with mean 0 and variance-covariance matrix Σ−1
a′ Va′Σ

−1
a′ .

The definitions of Σa′ and Va′ , and the proofs of Theorems 1 and 2 are given in

Appendix A.
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2.3 Computational Algorithm

2.3.1 Augmentation method

To compute the SCMR estimator defined by the minimizer of (2.3), we first rep-

resent it as a least absolute deviation problem. To be specific, define

(X∗)′ =



δ1
Ĝ(T̃1)

δ1
Ĝ(T̃1)

X11 · · · δ1
Ĝ(T̃1)

X1p

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
δn

Ĝ(T̃n)
δn

Ĝ(T̃n)
Xn1 · · · δn

Ĝ(T̃n)
Xnp

0 nλ

|̃β1|
· · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · nλ
|β̃p|


(n+p)×(p+1)

and

Y ∗ =

(
δ1

Ĝ(T̃1)
log(T̃1), · · · , δn

Ĝ(T̃n)
log(T̃n), 0, · · · , 0

)′
(n+p)×1

.

Then, for any given λ, minimizing (2.3) is equivalent to minimizing
∑n

i=1 |Y ∗−θ′X∗i |, which

can be easily computed using any statistical software for linear programming, for example,

the rq function in R. The estimates are obtained by the line of code rq(Y ∗ ∼ X∗)$coeff .

We obtained solutions for each value of λ on a grid incremented by .001. The solutions given

by this code may not be exactly zero for unimportant coefficients, so we set a threshhold

value of 10−6; that is, if the absolute value of an estimated coefficient is less than 10−6,

then we take the solution to be zero. This numerical problem is resolved in the following

solution path algorithm.

2.3.2 Solution path algorithm

Recently, Li and Zhu (2008) derived the solution path packages for sparse quantile

regression with uncensored data. It turns out the problem (2.3) can nicely fit in their frame-

work and therefore, its solution path can be easily obtained by modifying their algorithm

to incorporate the inverse-censoring-probability weights in the penalized median regression.

Suppose that the observed failure times are given by T(1), . . . , T(m) with corresponding co-

variate vectors Z(1), . . . , Z(m), so that the corresponding censoring indicators δ(i) are all 1
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for i = 1, . . . ,m. Then for each value of λ, our problem is equivalent to minimizing

m∑
i=1

b(i)| log(T(i))− α−
p∑
j=1

β′∗j Z(i)j |+ nλ

p∑
j=1

|β∗j |,

where b(i) = 1
Ĝ(T(i))

and β∗j = βj

|β̃j |
. It has been pointed out by numerous authors, in-

cluding Tibshirani (1996), that this is equivalent to minimizing
∑m

i=1 b(i)| log(T(i)) − α −∑p
j=1 β

∗
jZ(i)j | subject to

∑p
j=1 |β∗j | ≤ s, and since there is a one-to-one correspondence be-

tween λ and s, the solutions are identical. Li and Zhu (2008) show that for any given s,

the solution β̂∗(s) is a piecewise linear function of s, and they give an efficient algorithm

for computing the entire solution path {β̂∗(s), 0 ≤ s < ∞}. For simplicity, we will specif-

ically consider median regression and the case when m is odd and give a description of

the algorithm in this case. Since the absolute value function is convex, we can rewrite the

constrained optimization problem as minimizing

1
2

m∑
i=1

(ξi + ζi)

subject to
∑p

j=1 |β∗j | ≤ s, where −ζi ≤ b(i){log(T(i)) − f(Z(i))} ≤ ξi for ζi, ξi ≥ 0, i =

1, . . . ,m, and f(Z(i)) = α +
∑p

j=1 β
∗
jZ(i)j . For the non-negative Lagrange multipliers

λ∗, ωi, γi, κi, and ηi, this is equivalent to minimizing the Lagrangian function

Lp = 1
2

∑m
i=1(ξi + ζi) + λ∗

(∑p
j=1 |β∗j | − s

)
+
∑m

i=1 ωi[b(i){log(T(i))− f(Z(i))} − ξi]

−
∑m

i=1 γi[b(i){log(T(i))− f(Z(i))}+ ζi]−
∑m

i=1 κiξi −
∑m

i=1 ηiζi.

Setting the partial derivatives with respect to β∗, α, ξi, and ζi equal to zero, we have

∂
∂β∗ : λ∗ · sign(β∗j ) =

∑m
i=1 b(i)(ωi − γi)Z(i)j , for all j withβj 6= 0

∂
∂α :

∑m
i=1 b(i)(ωi − γi) = 0

∂
∂ξi

: ωi + κi = 1
2

∂
∂ζi

: γi + ηi = 1
2

In order for the solution to be unique, the Karush-Kuhn-Tucker (KKT) conditions

ωi[b(i){log(T(i))− f(Z(i))} − ξi] = 0

γi[b(i){log(T(i))− f(Z(i))}+ ζi] = 0

κiξi = 0

ηiζi = 0
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must be met for all i. Based on these equations and conditions, Li and Zhu (2008) conclude

that

b(i){log(T(i))− f(Z(i))} > 0 → ωi = 1
2 , ξi > 0, γi = 0, ζi = 0;

b(i){log(T(i))− f(Z(i))} < 0 → ωi = 0, ξi = 0, γi = 1
2 , ζi > 0;

b(i){log(T(i))− f(Z(i))} = 0 → ωi ∈ [0, 1
2 ], ξi = 0, γi ∈ [0, 1

2 ], ζi = 0.

The equations based on the partial derivatives with respect to β and α depend on ωi and

γi only through µi = b(i)(ωi − γi). Using this, they define the sets

ε = {i : b(i){log(T(i))− f(Z(i))} = 0,−1
2 ≤ µi ≤

1
2}(elbow)

L = {i : b(i){log(T(i))− f(Z(i))} < 0, µi = −1
2}(left of the elbow)

R = {i : b(i){log(T(i))− f(Z(i))} > 0, µi = 1
2}(right of the elbow)

υ =
{
j : β̂∗j 6= 0

}
(active set)

Li and Zhu (2008) examine how the KKT conditions change as s increases in order to

compute the solution path β∗(s). As s increases, they define an event to be

1. Type I event: A data point reaches (or leaves) the elbow set (a residual b(i){log(T(i))−
f(Z(i))} changes from nonzero to zero or vice versa)

2. Type II event: A variable leaves (or enters) the model (a coefficient estimate changes

from nonzero to zero or vice versa)

The time that a Type I event occurs corresponds to a nonsmooth point of
∑m

i=1 b(i)| log(T(i))−
f(Z(i))|, and the time that a Type II event occurs corresponds to a nonsmooth point of∑p

j=1 |β∗j |. Li and Zhu (2008) note that the sets ε, L,R, and υ will not change unless an

event occurs. Equivalently, the KKT conditions will not change unless an event happens.

For any residual b(i){log(T(i))−f(Z(i))} that is not in the elbow set, the corresponding µi is

known, while µi is not known if the residual is in the elbow set, so there are only |ε| values

of µi that are unknown. So if the KKT conditions do not change, there are |ε| unknowns (λ∗

and µi for i ∈ ε). Since λ∗ · sign(β∗j ) =
∑m

i=1 µiZ(i)j , for all j withβ∗j 6= 0 and
∑m

i=1 µi = 0,

there are |υ|+ 1 equations. Therefore, for the KKT conditions to be met (and the solution

to be therefore unique), it must be true that |ε| = |υ|. That is, the number of residual

points in the elbow must be equal to the number of variables in the active set. Li and Zhu
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(2008) also note that as s increases, unless a Type I or Type II event occurs, a residual in

the elbow will stay there. This means that

b(i){log(T(i))− (α+
∑
j∈υ

βjZ(i)j)} = 0

for all i in the elbow set. There are |ε| equations in this set, with |υ|+ 1 unknowns. Since

|ε| = |υ|, there is only one free unknown, and therefore the solution for β changes linearly

in s (until an event occurs). Li and Zhu (2008) begin with s = 0 and keep track of the

location of residuals relative to the elbow as s increases. For a point in R to pass through

ε, its value for µi must change from 1
2 to −1

2 , and vice versa for points in L. Li and Zhu

(2008) note that by continuity, points in the elbow will linger there, and the set will stay

stable until an event occurs.

For s = 0, it is necessary that β∗ = 0, and only α is included in the model.

The initial estimate α̂ = bi∗1 log(Ti∗1) is the weighted sample median (we will consider the

case where it is a data point, i.e., m is odd). In this case, (Zi∗1 , Yi∗1) is in the elbow set.

For the KKT conditions to be met, we must have that |ε| = |υ|. For s > 0, |ε| = 1

and |υ| = 0, so a variable must be added to the model. This variable is β∗j?
1
, where j?1 =

arg maxj |
∑n

i=1 µiZ(i)j |, where µi = 1
2 if b(i){log(T(i))− f(Z(i))} is to the left of the elbow,

−1
2 if it is to the right, and 0 if the point is in the elbow. Because of the initial restriction∑p
j=1 |β∗j | ≤ s, we have that |β̂∗j?

1
| = s. Since sign(β∗j ) = sign(

∑m
i=1 µiZ(i)j), this implies

that β̂∗j?
1
(s) = s · sign(

∑m
i=1 µiZ(i)j) and β̂?j (s) = 0 for j 6= j?1 . For a small enough s, the

sets will not change, so we have

f̂(Z) = α̂(s) + s · sign(
m∑
i=1

µiZ(i)j?)Zj?

where

α̂(s) = bi∗1 log(Ti∗1)− s · sign

(
m∑
i=1

µiZ(i)j?

)
Zi∗1j? .

The solution will continue to change linearly in s and the sets will remain the same

until an event occurs. Suppose that the `th event occurs immediately before s`, and that

the superscript ` indexes the sets, function, and parameter values immediately after the

event occurs. For s` < s < s`+1, β̂∗(s) changes linearly in s. The time that the next event

occurs, s`+1, can be calculated in the following way: Since

v0 +
∑
j∈υ`

vjb(i)Z(i)j = 0, for i ∈ ε`
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and ∑
j∈υ`

vj · sign(β∗`j ) = 1

where v0 = (α−α`)/(s− s`) and vj = (β∗j − β∗`j )/(s− s`) these equations can be solved for

v and these values can be used to calculate s`+1. An event occurs either when

β∗j = β∗`j + (s− s`)vj = 0 for all j ∈ υ`

or

b(i)f(Z(i)) = (s− s`)(v0 +
∑
j∈υ`

vjZj) + b(i)f
`(Z(i)) = b(i) log(T(i)) for all i /∈ υ`.

It is not possible for β̂∗j = 0 if j ∈ υ`, so we are concerned when a point enters the elbow.

When this happens, either one point must be taken out of the elbow or another variable

must be added to the model in order to maintain the KKT conditions. The decision is made

by finding the smallest (negative) ∆ loss
∆ s , which is given by

∆ loss
∆ s =

∑
i b(i)| log(T(i))−f(Z(i))|−

∑
i b(i)| log(T(i))−f`(Z(i))|

s−sl

= 1
2

∑
i∈L

(
v0 +

∑
j∈υ b(i)vjZ(i)j

)
− 1

2

∑
i∈R

(
v0 +

∑
j∈υ b(i)vjZ(i)j

)
.

The algorithm ends when all the ∆ loss
∆ s are non-negative. For each value of s, the solution

given by the algorithm is β̂∗j (s), and we obtain our estimate as β̂j(s) = |β̃j |β̂∗j (s).

2.4 Parameter Tuning

Our estimator makes use of the adaptive Lasso penalty, i.e., a penalty of the

form λ
∑p

j=1
|βj |
|β̃j |

, where β̃ is the unpenalized LAD estimator. We propose to tune the

parameter λ based on a BIC-type criteria. Note that if there is no censoring, the least

absolute deviation loss is closely related to linear regression with double exponential error.

To derive the BIC tuning procedure, we first assume that the error term εi’s are i.i.d.

double exponential variables with the scale parameter σ. When there is no censoring, up

to a constant the negative log likelihood function can be written as
∑n

i=1 | log(Ti)− θ′Xi|/σ
and the maximum likelihood estimator of σ is given by

∑n
i=1 | log(Ti) − θ̃′Xi|/n with θ̃

being the LAD estimator. Motivated by this observation, we propose the following tuning
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procedure for sparse censored median regression:

BIC(λ) =
2
σ̃

n∑
i=1

δi

Ĝ(T̃i)
| log(T̃i)−X ′i θ̂(λ)|+ log(n) · r,

where σ̃ = 1
n

∑n
i=1

δi
Ĝ(T̃i)

| log(T̃i) −X ′i θ̃| and r is the number of non-zero elements in β̂(λ).

Then we minimize the above criteria over a range of values of λ for choosing the best

tuning parameter. Let λ̂A denote the resulting selected value. In the section for numerical

studies, we will compare the performance of λ̂A and λ̂L in terms of variable selection and

parameter estimation, where λ̂L is the selected value when the standard Lasso penalty

(nλ
∑p

j=1 |βj |) is used along with the BIC tuning procedure. Initial simulation studies

showed that the performance of the BIC-type tuning procedure was superior to that of an

AIC-type procedure and a theoretical parameter estimate λ = log(n)
n given by Wang et al

(2007).

2.5 Variance Estimation

Next, we propose a bootstrap method to estimate the variance of our estimator.

We first take a random sample of size n (with replacement) from the observed data to obtain

(T̃ (1)
i , δ

(1)
i , X

(1)
i )ni=1. Then we compute the Kaplan-Meier estimate Ĝ(1)(·) based on (T̃ (1)

i , 1−
δ

(1)
i )ni=1, and the inverse censoring probability weighted estimator θ̃(1) by minimizing

n∑
i=1

δ
(1)
i

Ĝ(1)(T̃ (1)
i )
| log(T̃ (1)

i )− θ′X(1)
i |.

The first bootstrapped estimate is computing by minimizing

n∑
i=1

δ
(1)
i

Ĝ(1)(T̃ (1)
i )
| log(T̃ (1)

i )− θ′X(1)
i |+ nλ

p∑
j=1

|βj |
|β̃(1)
j |

.

Here for saving the computation cost, we fix λ at the optimal value chosen by the tuning

method based on the original data. This procedure is repeated to obtain θ̂(b), for b =

2, . . . , B where B is a large number. The bootstrap variance estimate for β̂j is given by

1
B − 1

B∑
b=1

(β̂(b)
j −

¯̂
βj)2,

where ¯̂
βj = 1

B

∑B
b=1 β̂

(b)
j .
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Chapter 3

SCMR for Multivariate Failure

Time Data

3.1 Multivariate failure time data

Until now, we have assumed that all underlying failure times are independent and

uncorrelated. In many practical applications, however, it is common to observe correlated

failure time data, as subject can potentially experience multiple events or failures or the

event times may be naturally or artificially clustered (Lu, 2005). In either case, there is

an underlying dependence structure within each cluster. Lin (1994) gives an example of a

situation of recurrent failure time data. This randomized trial, described in more detail by

Fleming and Harrington (1991), involved patients with a group of inherited disorders that

are characterized by possibly fatal recurrent infections. The event of interest then is the

time until an infection develops, so that a patient may experience multiple infections. It

is natural to assume that the times to an infection for a given patient are correlated. Yin

and Cai (2005) give an example of clustered failure time data from a clinical trial described

by Le and Lindgren (1996) involving children with inflammation of the middle ear, otisis

media (OM). Bacteria and viruses can enter the middle ear through the Eustachian tube,

which is a small tunnel between the middle ear and the eardrum. As a result, fluid may

fill the middle ear, which can result in loss of hearing. This can have disastrous effects on

speech and language development in young children. One of the most common remedies is

to insert a ventilating tube into the infected ears. As long as the tubes stay in place and are
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working, they have been shown to reduce OM and therefore improve hearing. In the clinical

trial, the effect of a medical treatment on the life of the ventilating tubes is examined. In

this case, there is a natural clustering structure in that the paired observations from the

two ears of each child are not independent. When there is dependence within clusters of

failure time data, as in the univariate case, we can collect information on a large number

of covariates, some of which may not have an effect on the underlying survival time. It is

then important to select the variables that are most meaningful and discard the rest. With

multivariate failure time data, there are also the dependence structures within the clusters

along with other parameters. The additional challenge is then developing techniques that

allow for these dependencies.

3.2 Estimation for multivariate survival time data

In the case of multivariate or clustered failure time data, consider a study of n

clusters with Ki observations in the ith cluster for i = 1, . . . , n, so that there are a to-

tal of N =
∑n

i=1Ki observations. Let Tik and Cik for i = 1, . . . , n; k = 1, . . . ,Ki be

the latent failure and censoring times, respectively, for the kth subject in the ith clus-

ter, and Zik be a p-dimensional vector of covariates. As in Yin and Cai (2005), assume

that Cik is independent of both Tik and Zik, and that the censoring times have common

survival function G(·). Within each cluster, {(Tik, Cik, Zik), k = 1, . . . ,Ki} may not be

independent, but for Ti = (Ti1, . . . , TiKi)
′, Ci = (Ci1, . . . , CiKi)

′, and Zi = (Zi1, . . . , ZiKi)
′,

{(Ti, Ci, Zi), i = 1, . . . , n} are independent and identically distributed. In other words,

the observations within a cluster may be dependent, but the clusters themselves are i.i.d.

While the dependence of observations in a cluster violates the mutual independence as-

sumption of the Cox proportional hazards model and other models, several authors have

studied hazard-based regression and shown that estimating equations based the working

independence model can yield estimators with desired asymptotic properties. Under the

Cox proportional hazards model, the hazard function for Tik is given by

λik(t) = λ0(t) exp{β′0Zik}, t > 0,

where λ0(t) is unspecified baseline hazard function and β′0 is the true value of the regression

ceofficients. If it is assumed that the observations within each cluster are independent, the
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log of the partial likelihood is

`(β) =
∑n

i=1

∑Ki
k=1 δikβ

′Zik

−
∑n

i=1

∑Ki
m=1 δim log

{∑n
j=1

∑Ki
k=1 I(T̃jk ≥ T̃im) exp(β′Zjk)

}
.

Let β̂ be the maximizer of `(β). Lee, Wei, and Amato (1992) show that under some mild

conditions, β̂ is consistent for β0 even if the observations within a cluster are correlated.

Cai, Wei, and Wilcox (2000) note that the Cox models may not fit the data well, and

study a class of linear transformation models (of which the proportional hazards model is

a special case). Under the Cox model, we have that log[− log{S(t|Zik)}] = λ0(t) + β′0Zik,

where S(·|Zik) is the conditional survival function of Tik. Cai et al (2000) generalize this

model by assuming the conditional survival function has the form

S(t|Zik) = g{λ0(t) + β′0Zik},

where g(·) is a known, continuous, and strictly decreasing function. They derive estimating

equations based on the working independence model assumption that allow for simultaneous

estimation of β0 and λ0(·). Lee, Wei, and Ying (1993) also use the working independence

model assumption in their application of the AFT model to clustered censored data. Under

the AFT model,

log(Tik) = β′0Zik + εik,

where εi = (εi1, . . . , εiKi)
′ are i.i.d. for i = 1, . . . , n, while the dependence structure of

the ε’s within each cluster is completely unspecified. Lee et al (1993) construct estimating

equations based on the assumption that all observations are independent, and show that

the resulting estimators can be consistent for β0.

3.3 SCMR estimator for multivariate failure time data

Censored median regression is attractive for multivariate failure time data for the

same reasons as it is for independent data, in that it is robust against outliers and heavy-

tailed or heteroscedastic error distributions. In the context of multivariate failure time data,

the median regression model, conditional on Zik, is given by

log(Tik) = θ′0Xik + εik, i = 1, . . . , n; k = 1, . . . ,Ki,
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where Xik = (1, Z ′ik)
′, θ0 = (α0, β

′
0)′, and the conditional median of εik is 0. Define T̃ik =

min(Tik, Cik) and δik = I(Tik ≤ Cik) so that the observed data consists of {(T̃ik, δik, Zik), i =

1, . . . , n; k = 1, . . . ,Ki}. Also suppose that there are a total of N =
∑n

i=1Ki observations.

We will also use the working independence assumption to derive estimating equations. As

in the independent case, we consider the estimating equation of Bang and Tsiatis (2002)

and Zhou (2006), the solution of which is the minimizer of

n∑
i=1

Ki∑
k=1

δik

Ĝ(T̃ik)
| log(T̃ik)− θ′Xik|,

where Ĝ(·) is the Kaplan-Meier estimator based on {(T̃ik, 1 − δik), k = 1, . . . ,Ki; i =

1, . . . , n}. In the case of independent survival data, it is well known that the Kaplan-Meier

estimator is consistent and asymptotically normal. Under some mild conditions, Ying and

Wei (1994) show that the Kaplan-Meier estimator is also consistent in the case of dependent

data. Denote the solution as θ̃ = (α̃, β̃′)′. For variable selection, we will use the adaptive

Lasso penalty by minimizing

n∑
i=1

Ki∑
k=1

δik

Ĝ(T̃ik)
| log(T̃ik)− θ′Xik|+Nλ

p∑
j=1

|βj |
|β̃j |

,

where λ > 0 is the tuning parameter and β̃ = (β̃1, . . . , β̃p)′. Denote the solution for any

given λ as θ̂(λ).

3.4 Computational algorithms

The solution is obtained in the same way as in the dependent case, with a total of

N observations, using an augmented form of the data. For any λ, the solutions are obtained
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by minimizing
∑n

i=1

∑Ki
k=1 |Y ∗i − θ′X∗i |, where

(X∗)′ =



δ11
Ĝ(T̃11)

δ11
Ĝ(T̃11)

X111 · · · δ11
Ĝ(T̃11)

X11p

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
δ1k1

Ĝ(T̃1k1
)

δ1k1

Ĝ(T̃1k1
)
X1k11 · · · δ1k1

Ĝ(T̃1k1
)
X1k1p

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
δn1

Ĝ(T̃n1)

δn1

Ĝ(T̃n1)
Xn11 · · · δn1

Ĝ(T̃n1)
X1np

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
δ1kn

Ĝ(T̃1kn )

δ1kn

Ĝ(T̃1kn )
X1kn1 · · · δ1kn

Ĝ(T̃1kn )
X1knp

0 Nλ

|̃β1|
· · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · Nλ
|β̃p|


(N+p)×(p+1)

and

Y ∗ =

(
δ11

Ĝ(T̃11)
log(T̃11), · · · , δnkn

Ĝ(T̃nkn)
log(T̃nkn), 0, · · · , 0

)′
is a vector of length N + p. We can also obtain the solution path using the algorithm of Li

and Zhu (2008) by letting β∗j = βj

|β̃j |
. Suppose the observed failure times across all clusters

are given by T(1), . . . , T(m) with corresponding covariate vectors (Z(1), . . . , Z(m)), so that

corresponding censoring indicators δ(i) are all 1 for i = 1, . . . ,m. We can than obtain the

solution path by minimizing

m∑
i=1

b(i)| log(T(i))− α−
p∑
j=1

β∗jZ(i)j |

subject to
∑p

j=1 |β∗j | ≤ s, where b(i) = 1
Ĝ(T(i))

. For each value of s, the solution given by the

algorithm is β̂∗j (s), and we obtain our estimate as β̂(s) = |β̃j |β̂∗j (s).

3.5 Parameter tuning

For parameter tuning, we again use the BIC-type criteria based on uncensored

data with i.i.d. double exponential error. For a given λ, define

BIC(λ) =
2
σ̃

n∑
i=1

Ki∑
k=1

δik

Ĝ(T̃ik)
| log(T̃ik)−X ′ikθ̂(λ)|+ log(N) · r,
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where σ̃ = 1
N

∑n
i=1

∑Ki
k=1

δik
Ĝ(T̃ik)

| log(T̃ik)−X ′ikθ̃| and r is the number of non-zero elements

in β̂(λ). Then we minimize the above criteria over a range of values of λ for choosing

the best tuning parameter. Let λ̂A denote the resulting selected value. In the section

for numerical studies, we will compare the performance of λ̂A and λ̂L in terms of variable

selection and parameter estimation, where λ̂L is the selected value when the standard Lasso

penalty (nλ
∑p

j=1 |βj |) is used along with the BIC tuning procedure. Initial simulation

studies showed that the performance of the BIC-type tuning procedure was superior to that

of an AIC-type procedure and a theoretical parameter estimate λ = log(N)
N given by Wang

et al (2007).

3.6 Variance estimation

Next, we propose a bootstrap method to estimate the variance of our estima-

tor by a bootstrap resampling method. Instead of resampling individual responses, we

resample entire clusters. Since the clusters are assumed to be independent, we will pre-

serve the dependence structure by taking all the observations within a selected cluster.

We first take a random sample (with replacement) of clusters of size n from the observed

data and use all the observations in each of the selected clusters. We then have clusters

(T̃ (1)
i , δ

(1)
i , X

(1)
i ; i = 1, . . . , n), where T̃ (1)

i = (T̃ (1)
i1 , . . . , T̃

(1)

iK
(1)
i

)′, δ(1)
i = (δ(1)

i1 , . . . , δ
(1)

iK
(1)
i

)′, and

X
(1)
i = (X(1)

i1 , . . . , X
(1)

iK
(1)
i

)′ for i = 1, . . . , n. Then we compute the Kaplan-Meier estimate

Ĝ(1)(·) based on (T̃ (1)
ik , 1 − δ

(1)
ik , i = 1, . . . , n; k = 1, . . . ,K(1)

i ) and the inverse censoring

probability weighted estimator θ̃(1) by minimizing

n∑
i=1

K
(1)
i∑

k=1

δ(1)

Ĝ(1)(T̃ (1)
ik )
| log(T̃ (1)

ik )− θ′X(1)
ik |.

The first bootstrapped estimate θ̂(1) is computing by minimizing

n∑
i=1

K
(1)
i∑

k=1

δ
(1)
ik

Ĝ(1)(T̃ (1)
ik )
| log(T̃ (1)

ik )− θ′X(1)
ik |+N (1)λ

p∑
j=1

|βj |
|β̃(1)
j |

,

where N (1) =
∑n

i=1K
(1)
i . Here for saving the computation cost, we fix λ at the optimal

value chosen by the tuning method based on the original data. This procedure is repeated
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to obtain θ̂(b), for b = 2, . . . , B where B is a large number. The bootstrap variance estimate

for β̂j is given by

1
B − 1

B∑
b=1

(β̂(b)
j −

¯̂
βj)2,

where ¯̂
βj = 1

B

∑B
b=1 β̂

(b)
j .
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Chapter 4

Simulation Studies

4.1 Introduction

In this chapter, we examine the finite sample performance of the proposed SCMR

estimator in terms of variable selection and model estimation. In addition, we conduct a

series of sensitivity analyses to check the performance of our estimator when the random

censoring assumption is violated. Also a case is examined where the error terms have

heterogeneous variances. Finally, a series of simulations of multivariate data is conducted.

In the univariate case, the failure times are generated from the median regression model

log(Ti) = θ′0Xi + εi, i = 1, · · · , n.

4.2 IID error distributions

For the first scenario, we consider four error distributions: t(5) distribution, double

exponential distribution with scale parameter 1, standard extreme value distribution, and

standard logistic distribution. Since the standard extreme value distribution has median

log(log(2)) rather than 0, we subtract its median. We consider eight covariates, which are

i.i.d. standard normal random variables. The regression parameter vector θ0 = (α0, β0)

is chosen as β0 = (0.5, 1, 1.5, 2, 0, 0, 0, 0) with intercept α0 = 1. The censoring times are

generated from a uniform distribution on (0, c), where c is a constant to obtain the desired

censoring level. We consider two censoring rates: 20% and 40%. For each censoring rate,

we consider samples of sizes 50, 100, and 200. For each setting, we conduct 100 runs of
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simulations.

We compare four estimators, namely the full model estimator β̃ (called “Full” in

the Tables), our SCMR estimators with the adaptive Lasso penalty (“ALasso”) and with

the Lasso penalty (“Lasso”), and the oracle estimator assuming the true model is known

(“Oracle”), with regard to their overall mean absolute deviation for model error MAD ME,

point estimation accuracy, and the variable selection performance. Here the MAD ME of

an estimator θ̂ is given by

MADME =
1
n

n∑
i=1

|θ̂′Xi − θ′0Xi|.

The tuning for the ALasso and Lasso estimates is done by minimizing the BIC-type criteria

described in Section 2.5.

The estimation results of the first three non-zero coefficients are summarized in

Tables B.1, B.3, B.5, and B.7. The first column for each coefficient reports the average bias,

which is given by the average, across 100 runs, of the estimates minus the true parameter

value. The second column gives the sample standard deviation (SD) of the 100 estimates.

The third column reports the average of 100 bootstrap standard errors. On each run, 500

bootstrap resamples are taken and the standard deviation of the 500 resulting estimators

are calculated. The average of these values across 100 runs gives the standard error (SE)

in the third column. The estimated standard errors averaged over all rows of the table

(Avg. SE) are given in the bottom row of each table. For each average bias, the estimated

standard error is given by SD/
√

100. Since the estimators are asymptotically normal, the

standard error of each SD can be estimated by SD/
√

2 · 100. For each SE, the standard

error is the sample standard deviation of the 100 bootstrap standard errors divided by
√

100. Based on the results in these tables, the biases of all estimates are relatively small

particularly when the sample size is large and the censoring proportion is low. In addition,

the estimated standard errors obtained using the proposed bootstrap method are reasonably

close to the sample standard deviations in all scenarios. The variable selection results of

the different estimators are summarized in Tables B.2, B.4, B.6, and B.8. We compare the

MAD ME, the selection frequency of each of the first six variables, the frequency of selecting

the exact true model, and the mean number of incorrect and correct zeros selected over 100

simulation runs. The standard error averaged over all rows of the table for MAD ME is

given in the bottom row in each table. Since each MAD ME is an average across 100 runs,
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the standard error is the sample standard deviation of the 100 values divided by
√

100.

Overall, the MAD ME of the Alasso is smaller than those of the Lasso and the Full in all

the settings, and is also close to the oracle when the sample size is large and the censoring

proportion is low. With regard to variable selection, compared with the Full and the Lasso,

the Alasso produces more sparse models and selects the exact true model more frequently.

For example, when n = 200, censoring rate is 20% and the error distribution is t(5), the

frequencies of selecting true model (SF) are: Oracle (100), Alasso (65), Lasso (19), Full (0);

the mean numbers of correct/incorrect zeros selected (Cor./Inc.) are: Oracle (4/0), Alasso

(3.62/0.01), Lasso (2.52/0.01), Full (0/0).

4.3 Sensivity analyses

Next, we conduct a series of sensitivity analyses to check the performance of our

estimator when the random censoring assumption is violated. More specifically, the censor-

ing times are now generated as Ci = eγX1iC∗i , i = 1, · · · , n, where C∗i ’s are from a uniform

distribution on (0, c) as before. We consider two values of γ: γ = 0.1 or 0.2, two censoring

rates: 20% and 40%, and three sample sizes: n = 50, 100, or 200. The error terms are

i.i.d. from a t(5) distribution. Other settings remain the same as before. The estimation

and variable selection results are summarized in Tables B.9-B.12. Based on these results,

we observe similar findings as before. The Alasso shows much better performance in terms

of variable selection compared with the Lasso and the Full, although all the methods may

produce certain biases in point estimation as expected. The estimation and selection results

are very similar for both values of γ. These findings suggest that our method may be robust

against the random censoring assumption violation.

4.4 Heteroscedastic errors

We now examine the case of heteroscedastic errors. Now the responses are gener-

ated from the model

log(Ti) = α0 + β′0Zi + eγZ4iεi.

where the ε’s are i.i.d. from a t(5) distribution. We consider two values for γ: γ = 0.1 or

0.2, two censoring rates: 20% and 40%, and three sample sizes: n = 50, 100, or 200. The
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censoring times are generated from a uniform distribution on (0, c), where c is a constant to

obtain the desired censoring level. Other settings remain the same as before. The results

for estimation are summarized in Tables B.13-B.16. We observe the same patterns as in

the i.i.d. case and sensitivity analyses. The biases are relatively small, especially for large

sample sizes. While the bootstrap standard error estimates are larger than the sample

standard deviations, these differences become smaller as n increases. One difference is that

while the MAD ME for the ALasso is almost always smaller than that of the Lasso, it

is slightly larger than the Full model MAD ME when the censoring proportion is 40%.

However, it becomes closer to the MAD ME of the Oracle estimator as the sample size gets

larger. The ALasso selects the true model more frequently than the Lasso and produces

more sparse models. The selection results are similar for both γ = 0.1 and 0.2.

4.5 Multivariate data

Next, we examine the case of multivariate, or clustered, failure time data. The

failure times are generated by the model log(Tik) = α0 + β′0Xik + εik, for i = 1, . . . , n and

k = 1, . . .K, where α0 = 1, β0 = (.5, 1, 1.5, 2, 0, 0, 0, 0). Essentially, there are n clusters each

of size K, for a total of N = nK failure times. Within cluster i, for i = 1, . . . , n, the errors

εi = (εi1, . . . , εiK)′ are generated from a K-variate normal distribution with mean vector 0

and variance-covariance matrix

Σ =


1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1

 .

The error vectors for each cluster are generated independently. The covariates Xik for

each failure time are multivariate standard normal. The N censoring times are i.i.d.

Uniform(0, c), where c is chosen to achieve the desired censoring proportion. Cluster sizes

K = 2 and 5 are considered, along with 20% and 40% censoring, ρ = .2 and .5, and sample

sizes n = 50, 100, and 200. For each combination, there are 100 runs, with 500 bootstrap

resamples for each run. Resampling is done on the clusters, so that all observations in a
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resampled cluster are used. The mean absolute deviation for model error is given by

MADME =
1
N

n∑
i=1

K∑
k=1

|θ̂′Xik − θ′0Xik|.

In order to tune λ for the ALasso and Lasso estimates, we minimize the BIC-type criteria

given in Section 3.5. The estimation results of the first three non-zero coefficients are

summarized in Tables B.17, B.19, B.21, and B.23. The first column for each coefficient

reports the average bias, which is given by the average, across 100 runs, of the estimates

minus the true parameter value. The second column gives the sample standard deviation

(SD) of the 100 estimates. The third column reports the average of 100 bootstrap standard

errors. On each run, 500 bootstrap resamples are taken and the standard deviation of

the 500 resulting estimators are calculated. The average of these values across 100 runs

gives the standard error (SE) in the third column. The estimated standard errors averaged

over all rows of the table (Avg. SE) are given in the bottom row of each table. For each

average bias, the estimated standard error is given by SD/
√

100. Since the estimators are

asymptotically normal, the standard error of each SD can be estimated by SD/
√

2 · 100.

For each SE, the standard error is the sample standard deviation of the 100 bootstrap

standard errors divided by
√

100. The variable selection results of different estimates are

summarized in Tables B.18, B.20, B.22, and B.24. We compare the MAD ME, the selection

frequency of each of the first six variables, the frequency of selecting the exact true model,

and the mean number of incorrect and correct zeros selected over 100 simulation runs. The

standard error averaged over all rows of the table for MAD ME is given in the bottom row

in each table. Since each MAD ME is an average across 100 runs, the standard error is

the sample standard deviation of the 100 values divided by
√

100. Overall, the findings are

similar to that of the univariate (independent) cases. The ALasso outperforms the Lasso

in terms of estimation accuracy and variable selection, and its performance becomes more

similar to that of the Oracle as the sample size increases.

Being that our estimating equations and tuning procedure are developed under the

assumption of independence, it is of major interest to compare the results for different values

of the intracluster variance ρ = 0.2 and ρ = 0.5. The biases for the non-zero coefficients

seem to be very similar for both values of ρ when the sample size, cluster size, and censoring

proportion are the same. The same holds true for the MAD ME as well as the selection

frequency.
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Chapter 5

Data Analyses

5.1 PBC data

The primary biliary cirrhosis (PBC) data was collected at the Mayo clinic between

1974 and 1984. This data is given in Therneau and Grambsch (2000). In this study, 312

patients from a total of 424 patients who agreed to participate in the randomized trial are

eligible for the analysis. Of those, 125 patients died before the end of follow-up. We study

the dependence of the survival time on the following selected covariates: (1) continuous

variables: age (in years), alb (albumin in g/dl), alk (alkaline phosphatase in U/liter), bil

(serum bilirunbin in mg/dl), chol (serum cholesterol in mg/dl), cop (urine copper in µg/day),

plat (platelets per cubic ml/1000), prot (prothrombin time in seconds), sgot (liver enzyme

in U/ml), trig (triglycerides in mg/dl); (2) categorical variables: asc (0, absence of ascites; 1,

presence of ascites), ede (0 no edema; 0.5 untreated or successfully treated; 1 unsuccessfully

treated edema), hep (0, absence of hepatomegaly; 1, presence of hepatomegaly), sex (0

male; 1 female), spid (0, absence of spiders; 1, presence of spiders), stage (histological stage

of disease, graded 1, 2, 3 or 4), trt (1 control, 2 treatment).

The PBC data has been previously analyzed by a number of authors using various

estimation and variable selection methods. For example, Tibshirani (1997) fitted the pro-

portional hazards model with the stepwise selection and with the LASSO penalty. Zhang

and Lu (2007) further studied the PBC data using the penalized partial likelihood estima-

tion method with the SCAD and the adaptive Lasso penalty. Here, we apply the proposed

SCMR method to the PBC data. As in Tibshirani (1997) and Zhang and Lu (2007), we



37

restrict our attention to the 276 observations without missing values. Among these 276 pa-

tients, there are 111 deaths, about 60% of censoring. Table 5.1 summarizes the estimated

coefficients and the standard errors based on 2000 bootstrap resamples for the Full, the

Lasso and the Alasso. We found that the Alasso selects 9 variables: age, asc, oed, bil, alb,

cop, alk, plat and prot and the Lasso selects 13 variables which contain the 9 variables se-

lected by the Alasso. Moreover, the 9 variables selected using the proposed Alasso method

in censored median regression shared 6 variables out of 8 selected by the penalized partial

likelihood estimation method with the adaptive Lasso penalty of Zhang and Lu (2007) in

the proportional hazards model. We also plot the solution path of our SCMR estimator

with the adaptive Lasso penalty in Figure 5.1 based on a modified algorithm of Li and Zhu

(2008).

5.2 DLBCL microarray data

We also apply the SCMR method to the high dimensional microarray gene expres-

sion data of Rosenwald et al. (2002). The data consists of survival times of 240 diffuse large

B-cell lymphoma (DLBCL) patients, and the expressions of 7, 399 genes for each patient.

Among them, 138 patients died during the follow-up method. The main goals of the study

are to identify the important genes that can predict patients’s survival and to study their

effects on survival. This data was analyzed by Li and Luan (2005). To handle such high

dimensional data, a common practice is to first conduct a preliminary gene filtering based

on some univariate analysis, and then apply a more sophisticated model-based analysis.

Following Li and Luan (2005), we concentrate on the top 50 genes selected using the uni-

variate log-rank test. To evaluate the performance of the proposed SCMR method, the data

are randomly divided into two sets: the training set (160 patients) and the testing set (80

patients).

The SCMR estimator with the adaptive Lasso penalty is then computed based on

the training data and the proposed BIC method is used for parameter tuning. Our SCMR

method selects totally 25 genes. To evaluate the prediction performance of the resulting

SCMR estimator built with the training set, we plot, in Figure 5.2, the Kaplan-Meier es-

timates of survival functions for the high-risk and low-risk groups of patients, defined by

the estimated conditional medians of failure times. The cut-off value was determined by
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the median failure time of the baseline group from the training set, and the same cutoff

was applied to the testing data. It is seen that the separation of the two-risk groups is

reasonably good in both the training and the testing data, suggesting a satisfactory predic-

tion performance of the fitted survival model. The log-rank test of differences between two

survival curves gives p-values of 0 and 0.031 for the training and testing data, respectively.
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Table 5.1: Estimation and variable selection for PBC data with censored median regression.

Full ALasso Lasso
Intercept 7.62 (0.44) 7.72 (0.40) 7.83 (0.45)

trt 0.04 (0.14) 0 (-) 0 (-)
age -3.29 (1.50) -2.77 (1.36) -0.93 (0.94)
sex 0.03 (0.28) 0 (-) 0.04 (0.24)
asc -0.57 (0.83) -0.31 (0.83) -0.31 (0.81)
hep -0.05 (0.17) 0 (-) 0.02 (0.17)
spid -0.09 (0.20) 0 (-) 0 (-)
oed -0.75 (0.63) -0.70 (0.61) -0.70 (0.65)
bil -1.71 (3.24) -2.09 (3.25) -1.56 (2.43)

chol -0.87 (3.50) 0 (-) -0.64 (1.23)
alb 2.96 (1.33) 3.16 (1.28) 3.54 (1.17)
cop -4.00 (1.97) -3.89 (1.87) -2.61 (1.57)
alk 2.16 (1.02) 2.19 (0.97) 2.11 (0.87)
sgot -0.20 (1.84) 0 (-) 0 (-)
trig 1.16 (2.11) 0 (-) 0 (-)
plat -1.61 (1.11) -1.25 (0.90) -1.12 (0.67)
prot 2.58 (2.31) 1.62 (2.23) 0.93 (1.85)
stage 0.03 (0.10) 0 (-) -0.05 (0.09)

Standard errors given in parentheses are based on 2000 bootstrap resamples.
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Figure 5.1: The solution path of our SCMR estimator with the adaptive Lasso penalty for
PBC data. The solid vertical line denotes the resulting estimator tuned with the proposed
BIC criterion.
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Figure 5.2: Kaplan-Meier estimates of survival curves for high-risk and low-risk groups of
patients using the selected genes by the SCMR.
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Appendix A: Proofs of theorems

To prove the asymptotic results established in Theorems 1 and 2, we need the

following regularity conditions:

1. The error term ε has a continuous conditional density function f(·|Z = z) such that

f(0|Z = z) ≥ b0 > 0, |ḟ(0|Z = z)| ≤ B0 and sups f(s|Z = z) ≤ B0 for all possible

values z of Z, where (b0, B0) are two positive constants and ḟ is the derivative of f .

2. The covariate vector Z are of compact support and the parameter β0 belongs to the

interior of a known compact set B0.

3. P (t ≤ T ≤ C) ≥ ζ0 > 0 for any t ∈ [0, τ ], where τ is the maximum follow-up and ζ0

is a positive constant.

Proof of Theorem 1: To establish the result given in Theorem 1, it is equivalent to

show that for any η > 0, there is a constant M such that P (
√
n||θ̂ − θ|| ≤ M) ≥ 1 − η.

Let u = (u0, u1, . . . , up)′ ∈ <p+1, and AM = {θ0 + u√
n

: ||u|| ≤ M} be the ball in <p+1

centered at θ0 with radius M√
n

. If, for any η > 0, we can choose M large enough so that

P (θ̂ ∈ AM ) ≥ 1− η, then the result is proved. Define

Q(G, θ) =
n∑
i=1

δi

Ĝ(T̃i)
| log(T̃i)− θ′Xi|+ nλ

p∑
j=1

|βj |
|β̃j |

.

Q(·) is a convex function in θ, so M satisfying

P

{
inf||u||=MQ(Ĝ, θ0 +

u√
n

) > Q(Ĝ, θ0)
}
≥ 1− η

will be sufficient to show that θ̂ is
√
n-consistent. This condition implies that

P

{
inf||u||≥MQ(Ĝ, θ0 +

u√
n

) > Q(Ĝ, θ̂)
}
≥ 1− η,
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which in turn implies that P (θ̂ ∈ AM ) ≥ 1 − η. This is because θ̂ minimizes Q(·), so

Q(Ĝ, θ̂) ≤ Q(Ĝ, w) for any w ∈ <p+1. Since Q(·) is convex, Q(Ĝ, w) → ∞ as ||w|| → ∞.

This leads to

P
{
inf||u||=MQ(Ĝ, θ0 + u√

n
) > Q(Ĝ, θ0)

}
= P

{
inf||u||≥MQ(Ĝ, θ0 + u√

n
) > Q(Ĝ, θ0)

}
sinceQ(·) is convex

≤ P
{
inf||u||≥MQ(Ĝ, θ0 + u√

n
) > Q(Ĝ, θ̂)

}
sinceQ(θ̂) ≤ Q(θ0).

So if

P

{
inf||u||=MQ(Ĝ, θ0 +

u√
n

) > Q(Ĝ, θ0)
}
≥ 1− η,

then

P

{
inf||u||≥MQ(Ĝ, θ0 +

u√
n

) > Q(Ĝ, θ̂)
}
≥ 1− η.

Let Dn(u) = Q(Ĝ, θ0 + u√
n

)−Q(Ĝ, θ0), which can be written as

Dn(u) = {Q(G0, θ0 + u√
n

)−Q (G0, θ0)}

+ {Q(Ĝ, θ0 + u√
n

)−Q(G0, θ0 + u√
n

)}

− {Q(Ĝ, θ0)−Q(G0, θ0)},

where G0(·) is the true survival function of the censoring time.
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For the first term in Dn(u), we have that

Q(G0, θ0 + u√
n

)−Q (G0, θ0) =
∑n

i=1
δi

G0(T̃i)

(
|εi −X ′i u√

n
| − |εi|

)
+ nλ

∑p
j=1

|βj0+uj/
√
n|−|βj0|

|β̃j |

=
∑n

i=1
δi

G0(T̃i)

(
|εi −X ′i u√

n
| − |εi|

)
+ nλ

∑q
j=1

|βj0+uj/
√
n|−|βj0|

|β̃j |
+ nλ

∑p
j=q+1

|uj/
√
n|

|β̃j |

sinceβj = 0 for j > q.

≥
∑n

i=1
δi

G0(T̃i)

(
εi −X ′i u√

n
| − |εi|

)
+ nλ

∑q
j=1

|βj0+uj/
√
n|−|βj0|

|β̃j |

sincenλ
∑p

j=q+1
|uj/
√
n|

|β̃j |
≥ 0.

≥
∑n

i=1
δi

G0(T̃i)

(
|εi −X ′i u√

n
| − |εi|

)
− nλ

∑q
j=1

|uj |/
√
n

|β̃j |

=
∑n

i=1
δi

G0(T̃i)

(
|εi −X ′i u√

n
| − |εi|

)
−
√
nλ
∑q

j=1
|uj |
|β̃j |

= Ln(u)−
√
nλ
∑q

j=1
|uj |
|β̃j |

≥ Ln(u)− κ1Op(||u||),

where κ1 is a positive finite constant. The last inequality in the above expression is because
√
nλ = Op(1), and β̃j , j = 1, . . . , q, converges to βj0 that is bounded away from zero.

By making use of the result from Knight (1998), that for |x| 6= 0,

|x− y| − |x| = −y [I(x > 0)− I(x < 0)] + 2
∫ y

0
[I(x ≤ s)− I(x ≤ 0)] ds,

we let x = εi and y = u′Xi√
n

, to obtain

Ln(u) = u′√
n

∑n
i=1

δi
G0(T̃i)

Xi {I(εi > 0)− I(εi < 0)}

+ 2
∑n

i=1
δi

G0(T̃i)

∫ u′Xi/
√
n

0 [I(εi ≤ s)− I(εi ≤ 0)] ds

= u′√
n

∑n
i=1

δi
G0(T̃i)

Xi sign(εi) + 2
∑n

i=1
δi

G0(T̃i)

∫ u′Xi/
√
n

0 [I(εi ≤ s)− I(εi ≤ 0)] ds
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We will show that u′√
n

∑n
i=1

δi
G0(T̃i)

Xi sign(εi) converges in distribution, and that

2
∑n

i=1
δi

G0(T̃i)

∫ u′Xi/
√
n

0 [I(εi ≤ s)− I(εi ≤ 0)] ds converges to a constant. To begin, we have

E
[

δi
G0(T̃i)

Xi sign(εi)
]

= EX,T

[
E
{

δi
G0(T̃i)

Xi sign(εi)
}
|Xi, Ti

]
= EX,T

[
Xi

G0(T̃i)
E {δi sign(εi)|Xi, Ti}

]
= E

[
Xi

G0(T̃i)
E {δi|Xi, Ti}E {sign(εi)|Xi, Ti}

]
since δi and εi are independent givenXi, Ti

= EX,T

[
Xi

G0(T̃i)
E{δi|Xi, Ti} · 0

]
= 0,

since εi has median 0. So we know that E
[
u′√
n

∑n
i=1

δi
G0(T̃i)

Xi sign(εi)
]

= 0. To find its

variance, we get

V ar
[

δi
G0(T̃i)

Xi sign(εi)
]

= E
[

δ2i
G2

0(T̃i)
XiX

′
i {sign(εi)}2

]
− 0

= E
[
XiX

′
i

G2
0(T̃i)

E {δi|Xi, Ti}
]

= E
[
XiX

′
i

G0(T̃i)

]
.

By the Central Limit Theorem, u′√
n

∑n
i=1

δi
G0(T̃i)

Xi sign(εi) converges in distribution to u′W1,

where W1 is a (p+1)-dimensional Normal with mean 0 and covariance matrix Σ1 =
[
X1X′1
G0(T̃i)

]
.

It implies that the first term in Ln(u) can be written as Op(||u||).
For the second term in Ln(u), letAni(u) = δi

G0(T̃i)

∫ u′Xi/
√
n

0 [I(εi ≤ s)− I(εi ≤ 0)] ds.

We will show that
∑n

i=1Ani(u) converges in probability to a quadratic function of u. More

specifically, for any ψ > 0, write

A2
ni(u) = A2

ni(u)I
(
|u′Xi|√

n
≥ ψ

)
+A2

ni(u)I
(
|u′Xi|√

n
< ψ

)
.

The term
∑n

i=1Ani(u) will therefore dominate u′√
n

∑n
i=1

δi
G0(T̃i)

Xi sign(εi) and
√
nλ
∑q

j=1
|uj |
|β̃j |

uniformly in M , since both are only linear functions of u. We must first show that

V ar

[
n∑
i=1

Ani(u)

]
=

n∑
i=1

V ar[Ani(u)] ≤ nE[A2
ni(u)]→ 0,

so that
n∑
i=1

[Ani(u)− E{Ani(u)}] = op(1).
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First, we have that

nE
{
A2
ni(u) · I (|u′Xi| ≥ ψ

√
n)
}

= nE

{
δi

G0(T̃i)

∫ u′Xi√
n

0 [I(εi ≤ s)− I(ε ≤ 0)] ds · I (|u′Xi| ≥ ψ
√
n)

}2

= E

 δi
G2

0(T̃i)

(∫ u′Xi√
n

0 [I(εi ≤ s)− I(ε ≤ 0)] ds

)2

· I (|u′Xi| ≥ ψ
√
n)


≤ nEX,T

{
δi

G2
0(T̃i)

(∫ u′Xi/
√
n

0 2 ds
)2
· I (|u′Xi| ≥ ψ

√
n)
}

= 4nEX,T

{
δi

G2
0(T̃i)

(
|u′Xi|√

n

)2
· I (|u′Xi| ≥ ψ

√
n)
}

= 4EX,T
{
|u′Xi|2
G2

0(T̃i)
E [δi|Xi, Ti] · I (|u′Xi| ≥ ψ

√
n)
}

= 4EX,T
{
|u′Xi|2
G0(T̃i)

· I (|u′Xi| ≥ ψ
√
n)
}

= 4
ζ0
E
{
|u′Xi|2I(|u′Xi| ≥ ψ

√
n)
}
→ 0, asn→∞

since I(|u′Xi| ≥ ψ
√
n)→ 0 as n→∞. So then we have that nE

{
A2
ni(u) · I(|u′Xi| ≥ ψ

√
n)
}
→

0 in probability.
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Next, we show that nE
{
A2
ni(u) · I(|u′Xi| < ψ

√
n)
}

converges to a quadratic form

of u. We have that

nE
{
A2
ni(u) · I(|u′Xi| < ψ

√
n)
}

= nE

{
δi

G2
0(T̃i)

(∫ uTXi/
√
n

0 (I(εi ≤ s)− I(εi ≤ 0)]ds
)2
· I(|u′Xi| < ψ

√
n)
}

≤ nE
{

δi
G2

0(T̃i)
2
∫ |u′Xi|/

√
n

0 ds ·
∫ |u′Xi|/

√
n

0 [I(εi ≤ s)− I(εi ≤ 0)] ds · I(|u′Xi| < ψ
√
n)
}

≤ nE
{

δi
G2

0(T̃i)
2
∫ ψ

0 ds ·
∫ |u′Xi|/

√
n

0 [I(εi ≤ s)− I(εi ≤ 0)] ds · I(|u′Xi| < ψ
√
n)
}

since |u
′Xi|√
n

< ψmust be satisfied for the integral to be non-zero

= 2nψE
{

δi
G2

0(T̃i)

∫ |u′Xi|/
√
n

0 [I(εi ≤ s)− I(εi ≤ 0)] ds · I(|u′Xi| < ψ
√
n)
}

= 2nψE
{
E
(

δi
G2

0(T̃i)

∫ |u′Xi|/
√
n

0 [I(εi ≤ s)− I(εi ≤ 0)] ds|Xi, Ti, εi

)
· I(|u′Xi| < ψ

√
n)
}

= 2nψE
{

1
G2

0(T̃i)

∫ |u′Xi|/
√
n

0 [I(ε ≤ s)− I(εi ≤ 0)] ds · E [δi|Xi, Ti, εi] · I(|u′Xi| < ψ
√
n)
}

= 2nψE
{

1
G0(T̃i)

∫ |u′Xi|/
√
n

0 [I(εi ≤ s)− I(εi ≤ 0)] ds · I(|u′Xi| < ψ
√
n)
}

= 2nψEZ
{

1
G0(T̃i)

∫ |u′Xi|/
√
n

0 Eε [I(εi ≤ s)− I(εi ≤ 0)] ds · I(|u′Xi| < ψ
√
n)
}

= 2nψEZ
{

1
G0(T̃i)

∫ |u′Xi|/
√
n

0 [F (s|Z)− F (0|Z)] ds · I(|u′Xi| < ψ
√
n)
}

= 2nψEZ
{

1
G0(T̃i)

∫ |u′Xi|/
√
n

0 f(s∗|Z)s ds · I(|u′Xi| < ψ
√
n)
}

for some 0 < s∗ < sby the Mean Value Theorem

≤ 2nφB0EZ

{
1

G0(T̃i)

∫ |u′Xi|/
√
n

0 s ds · I(|u′Xi| < ψ
√
n)
}

since sups f(s|Z = z) ≤ B0

= ψB0EZ

{
|u′Xi|2
G0(T̃i)

· I(|u′Xi| < ψ
√
n)
}

≤ ψB0

ζ0
EZ
{
|u′Xi|2 · I(|u′Xi| < ψ

√
n)
}

≤ ψB0

ζ0
EZ
(
|u′Xi|2

)
Since EZ

(
|u′Xi|2

)
is bounded, and ψ can be made arbitrarily small, it follows that

ψB0

ζ0
EZ
(
|u′Xi|2

)
→ 0 as ψ → 0. Therefore, we have that, as n→∞,

V ar

{
n∑
i=1

Ani(u)

}
=

n∑
i=1

V ar{Ani(u)} ≤ nE{A2
ni(u)} → 0,

which implies that
∑n

i=1[Ani(u)− E{Ani(u)}] = op(1). Further, we have that
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E {
∑n

i=1Ani(u)} = nE{An1(u)}
= nE

[
δ1

G0(T̃1)

∫ u′X1/
√
n

0 {I(ε1 ≤ s)− I(ε1 ≤ 0)} ds
]

= nE
[

1
G0(T̃1)

∫ u′X1/
√
n

0 {I(ε1 ≤ s)− I(ε1 ≤ 0)} ds · E {δ1|X1, T1}
]

= nEZ

[∫ u′X1/
√
n

0 {I(ε1 ≤ s)− I(ε1 ≤ 0)} ds
]

= nEZ

[∫ u′X1/
√
n

0 {F (s|Z)− F (0|Z)} ds
]

= nEZ

{∫ u′X1/
√
n

0 sf(0|Z) ds
}

+ op(1)

= 1
2u
′Σu+ op(1),

where Σ = EZ {f(0|X)XX ′} is positive and finite. Thus, we have that

Q(G0, θ0 +
u√
n

)−Q(G0, θ0) ≥ 1
2
u′Σu+ u′W1 − κ1Op(||u||) + op(1).

For the other terms in Dn(u), by the Taylor expansion, we have

√
n{ 1

Ĝ(T̃i)
− 1

G0(T̃i)
} = −

√
n{Ĝ(T̃i)−G0(T̃i)

G2
0(T̃i)

+ op(1)

= 1
G0(T̃i)

1√
n

∑n
j=1

∫ τ
0 I(T̃i ≥ s)

dMC
j (s)

y(s) + op(1),

where y(s) = limn→∞(1/n)
∑n

i=1 I(T̃i ≥ s), MC
i (t) = (1−δi)I(T̃i ≤ t)−

∫ t
0 I(T̃i ≥ s)dΛC(s),

and ΛC(·) is the cumulative hazard function of the censoring time C. This leads to

Q
(
Ĝ, θ0 + u√

n

)
−Q

(
G0, θ0 + u√

n

)
=

∑n
i=1

δi
Ĝ(T̃i)

|εi −X ′i u√
n
|+ nλ

∑p
j=1

|βj0+uj/
√
n|

|β̃j |

−
(∑n

i=1
δi

G0(T̃i)
|εi −X ′i u√

n
|+ nλ

∑p
j=1

|βj0+uj/
√
n|

|β̃j |

)

=
∑n

i=1 δi|εi −X ′i
u√
n
|
(

1
Ĝ(T̃i)

− 1
G0(T̃i)

)

= 1
n

∑n
i=1

δi
G0(T̃i)

|εi −X ′i u√
n
|
∑n

j=1

∫ τ
0
I(T̃i≥s)
y(s) dMC

j (s)

+ op(1)

.

Similarly,

Q(Ĝ, θ0)−Q(G0, θ0) =
1
n

n∑
i=1

δi

G0(T̃i)
|εi|

n∑
j=1

∫ τ

0

I(T̃i ≥ s)
y(s)

dMC
j (s) + op(1).
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Therefore,

Q(Ĝ, θ0 + u√
n

)−Q(G0, θ0 + u√
n

)− {Q(Ĝ, θ0)−Q(G0, θ0)}

= 1
n

∑n
i=1

δi
G0(T̃i)

(|εi −X ′i u√
n
| − |εi|)

∫ τ
0

∑n
j=1

I(T̃i≥s)
y(s) dMC

j (s) + op(1).

= 1
n

∑n
j=1

∫ τ
0 L
∗
n(u)

dMC
j (s)

y(s) + op(1),

where L∗n(u) =
∑n

i=1 I(T̃i ≥ s) δi
G0(T̃i)

(
|εi −X ′i u√

n
| − |εi|

)
. Following the method used for

Ln(u), we get

L∗n(u) = − u′√
n

n∑
i=1

δi

G0(T̃i)
XiI(T̃i ≥ s)sign(εi) + 2

n∑
i=1

A∗ni(u),

where A∗ni(u) = δi
G0(T̃i)

I(T̃i ≥ s)
∫ u′Xi/

√
n

0 [I(εi ≤ t)− I(εi ≤ 0)] dt. For the first term in

L∗n(u), we have that

u′√
n

∑n
j=1

(∫ τ
0

1
n

∑n
i=1

[
δi

G0(T̃i)
XiI(T̃i ≥ s)sign(εi)

]
dMC

j (s)

y(s)

)
= u′√

n

∑n
j=1

∫ τ
0 h(s)

dMC
j (s)

y(s)

+ op(1),

by the Law of Large Numbers, where h(s) = limn→∞
1
n

∑n
i=1

δiI(T̃i≥s)
G0(T̃i)

Xisign(εi) is a bounded

function on [0, τ ]. Then by the Martingale Central Limit Theorem, we have that
u′√
n

∑n
j=1

∫ τ
0 h(s)

dMC
j (s)

y(s) converges in distribution to u′W2, where W2 is (p+ 1)-dimensional

Normal with mean 0 and covariance matrix Σ2 =
∫ τ

0
h2(s)
y(s) dΛC(s).

For 2
∑n

i=1A
∗
ni(u), notice that {A∗ni(u))2 ≤ A2

ni(u), so that

V ar [
∑n

i=1A
∗
ni(u)] = n · V ar[A∗n1(u)]

≤ n · E [A∗n1(u)]2

≤ n · E
[
Z2
n1(u)

]
which converges to 0. Therefore,

∑n
i=1A

∗
ni(u) converges to n · E [Z∗n1(u)], where

n · E [A∗n1(u)] = n · E
{
I(T̃1 ≥ s) δi

G0(T̃1)

∫ u′X1/
√
n

0 [I(ε1 ≤ t)− I(ε1 ≤ 0)] dt
]

= n · E
{
I(T̃i≥s)
G0(T̃1)

∫ u′X1/
√
n

0 [I(ε1 ≤ t)− I(ε1 ≤ 0)] dt · E [δ1|X1, Ti, ε1]
}

= n · E
{
I(T̃1 ≥ s)

∫ u′X1/
√
n

0 [I(ε1 ≤ t)− I(ε1 ≤ 0)] dt
}

= n · E
{
I(T̃1 ≥ s) · E

(∫ u′X1/
√
n

0 [I(ε1 ≤ t)− I(ε1 ≤ 0)) dt|T1

)}
= n · E

{
I(T̃1 ≥ s)

∫ u′X1/
√
n

0

(
Fε1|T1

(t)− Fε1|T1
(0)
)
dt
}

= n · E
{
I(T̃1 ≥ s)

∫ u′X1/
√
n

0 t fε1|T1
(0)dt

}
+ op(1)

= n · E
{
I(T̃1 ≥ s)fε1|T1

(0)1
2
u′X1X′1u

n

}
+ op(1)

= 1
2u
′ [q(s)]u+ op(1),
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where q(s) = E
[
I(T̃1 ≥ s)fε1|T1

(0)XiX
′
i

]
is a bounded function. This results in

1
n

n∑
j=1

[∫ τ

0

(
2

n∑
i=1

A∗ni(u)

)
dMC

j (s)
y(s)

]
= u′

 1
n

n∑
j=1

(∫ τ

0
q(s)

dMC
j (s)
y(s)

)u+ op(1),

which is op(1) by the Law of Large Numbers, since 1
n

∑n
j=1

(∫ τ
0 q(s)

dMC
j (s)

y(s)

)
converges to

0.

In summary, we showed that

Dn(u) ≥ 1
2
u′Σu+ u′(W1 +W2)− κ1Op(||u||) + op(1).

For the right-hand side in the above expression, the first term dominates the remain terms

if M = ||u|| is large enough. So for any η > 0, as n gets large, we have

P

{
inf
||u||=M

Dn(u) > 0
}
≥ 1− η,

which implies that θ̂ is
√
n-consistent. �

Proof of Theorem 2: (i) Proof of selection-consistency. We will first take the derivative

of Q(Ĝ, θ) with respect to βj for j = q+1, · · · , p, at any differentiable point θ = (α, β′a, β
′
b)
′.

Then we will show that for
√
n||α − α0|| ≤ M ,

√
n||βa − βa0|| ≤ M , and ||βb − βb0|| =

||βb|| ≤ M√
n
≡ εn, when n is large, 1√

n
δ
δβj
Q(Ĝ, θ), for j = q + 1, · · · , p, is negative if

−εn < βj < 0 and positive if 0 < βj < εn. Since Q(Ĝ, θ) is a piecewise linear function

of θ, it achieve its minimum at some breaking point. Moreover, based on Theorem 1, the

minimizer θ̂ = (α̂, β̂′a, β̂
′
b)
′ of Q(Ĝ, θ) is

√
n-consistent. Thus, each component of β̂b must be

contained in the interval (−εn, εn) for all large n. Then as n→∞, P (β̂b = 0)→ 1.

To do this, we have, for j = q + 1, · · · , p,
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1√
n

∂
∂βj

Q(Ĝ, θ) = − 1√
n

∑n
i=1

δi
Ĝ(T̃i)

Zij sign(log(T̃i)−X ′iθ) + nλ sign(βj)

|β̃j |
.

= − 1√
n

∑n
i=1

δi
G(T̃i)

Zijsign
(

log(T̃i)−X ′iθ
)

+ 1
n

∑n
i=1

δi
G2

0(T̃i)

√
n
[
Ĝ(T̃i)−G0(T̃i)

]
Zijsign

(
log(T̃i)−X ′iθ

)
+
√
nλ

sign(β
)
j

|β̃j |
+ op

(
1
n

)
= − 1√

n

∑n
i=1

δi
G0(T̃i)

Zijsign(log(T̃i)−X ′iθ)

− 1√
n

∑n
k=1

∫ τ
0

[
1
n

∑n
i=1

δi
G0(T̃i)

I(T̃i ≥ s)Zijsign(log(T̃i)−X ′iθ)
]
dMC

k (s)

y(s)

+
√
nλ

sign(βj)

|β̃j |
+ op(1).

using the Taylor expansion of 1
Ĝ(T̃i)

around G0(T̃i).

Let ∆ =
√
n(θ − θ0) and define

Vn(∆) =
1√
n

n∑
i=1

Xi
δi

G0(T̃i)
sign(εi −X ′i∆/

√
n).

Write Vn(∆) = {Vn,0(∆), Vn,1(∆), · · · , Vn,p(∆)}′. Then the first term at the right-hand side

of 1√
n

∂
∂βj

Q(Ĝ, θ) can be rewritten as Vn,j(∆). As shown in Theorem 1, Vn(0) converges in

distribution to a (p + 1)-dimensional normal with mean 0 and variance-covariance matrix

Σ1. Since
√
nλ → 0, we know that

√
n(βa − βa0) = Op(1) from Theorem 1, we can bound

√
n||βa − βa0||. Then using the result from Koenker and Zhao (1996), we get

Vn(∆)− Vn(0) + Σ1∆ = 1√
n

∑n
i=1

δi
G0(T̃i)

Xi sign(log(T̃i)−X ′iθ)

− 1√
n

∑n
i=1

δi
G0(T̃i)

Xi sign(εi) + Σ1∆

≤ sup||∆||≤M ||Vn(∆)− Vn(0) + Σ1∆|| = op(1).

Result from Koenker and Zhao (1996): Suppose ui is such that (E [|ui|ru ])1/ru < ∞ for

some 1 ≤ ru < ∞, and ui are IID with distribution function F , and gi are such that

(E [|gi|rg ])1/rg < ∞ for some 1 ≤ rg < ∞. Also, Hi is a p-dimensional random vector such

that E [||Hi||]2+δ ≤ S < ∞, gi andHi are independent of ui, and 1
n

∑n
i=1 giH

T
i → G in

probability. Then

V (∆) =
1√
n

n∑
i=1

giψτ

(
ui − F−1(τ)− 1√

n
HT
i ∆
)
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satisfies

sup||∆||≤M |V (∆)− V (0) + f(F−1(τ))G∆| = op(1).

We let ui = εi with ru = 1, so that E[|εi|] < ∞. Let gi = δi
G0(T̃i)

Xi, with rg = 2, so that(
E
[

δi
G2

0(T̃i)
XiX

′
i

])1/2
< ∞ since Σ1 is finite. Let Hi = Xi, so that E[||Xi||2+δ] is bounded

since Σ1 is finite. Also, Xi is independent of εi. Let G = Σ1, since 1
n

∑n
i=1

δi
G0(T̃i)

XiX
′
i

converges in probability to Σ1. Let τ = 1
2 and ψτ (z) = sign(z). Then

Vn(∆) =
1√
n

n∑
i=1

δi

G0(T̃i)
Xi sign(εi −

1√
n
X ′i∆)

satisfies

sup||∆||≤M |Vn(∆)− Vn(0) + Σ1∆| = op(1).

So we have that Vn(∆)−Vn(0)+Σ1∆ = op(1). We have already shown that Vn(0) converges

in distribution to a normal vector. By assumption, Σ1 is finite, and the conditions placed

on α, βa, andβb ensure that ∆ is bounded. This implies that Vn,j(∆) = Op(1).

Next, since
√
n||θ − θ0|| is bounded, by the law of large numbers, we have that

1
n

∑n
i=1 Zij

δi
G0(T̃i)

I(T̃i ≥ s)sign{log(T̃i)−X ′iθ} converges to

bj(s, θ) ≡ E
{
Zij

δi
G0(T̃i)

I(T̃i ≥ s)sign(εi)
}

. Thus, the second term at the right-hand side of
1√
n

∂
∂βj

Q(Ĝ, θ) can be written as

1√
n

n∑
k=1

∫ τ

0

bj(s, θ)
y(s)

dMC
k (s) + op(1).

By a Taylor expansion of bj(s, θ) around θ0, we get

bj(s, θ) = bj(s, θ0) + b′j(s, θ0)||θ − θ0||+ op(1),

leading to

1√
n

n∑
k=1

∫ τ

0
b′j(s, θ0)||θ − θ0||

dMC
k (s)
y(s)

=
√
n||θ − θ0||

1
n

n∑
k=1

∫ τ

0
b′j(s, θ0) = op(1),

since
√
n||θ− θ0|| = Op(1) by assumption and 1

n

∑n
k=1

∫ τ
0 b
′
j(s, θ0)dM

C
k (s)

y(s) = op(1) by the law

of large numbers.

So then we have that

1√
n

n∑
k=1

∫ τ

0
bj(s, θ)

dMC
k (s)
y(s)

=
1√
n

n∑
k=1

∫ τ

0
bj(s, θ0)

dMC
k (s)
y(s)

+ op(1),
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which is Op(1) since, by the Martingale Central Limit Theorem, 1√
n

∑n
k=1

∫ τ
0 bj(s, θ0)dM

C
k (s)

y(s)

converges to a normal variable with mean 0.

Thus, for j = q + 1, . . . , p,

1√
n

∂

∂βj
Q(Ĝ, θ) = Op(1) +

nλsign(βj)√
n|β̃j |

.

Since the LAD estimator θ̃ is
√
n-consistent, we have, for j = q + 1, . . . , p,

√
n|β̃j | = Op(1).

Then based on the assumption nλ → ∞, when n is large, the sign of 1√
n

∂
∂βj

Q(Ĝ, θ) is

determined by the sign of βj . So as n gets large, 1√
n

δ
δβj
Q(Ĝ, θ), for j = q + 1, · · · , p, is

negative if −εn < βj < 0 and positive if 0 < βj < εn, which implies P (β̂b = 0) → 1 as

n→∞. �

(ii) Proof of asymptotic normality. Based on the results established in Theorem 1

and (i) of Theorem 2, we have the minimizer θ̂ is
√
n-consistent and P (β̂b = 0)→ 1 as n→

∞. Thus to derive the asymptotic distribution for the estimators of non-zero coefficients,

we only need to establish the asymptotic representation for the following function:

Sn(Ĝ, v) = Q{Ĝ, (β′a′0 + v′/
√
n, 0′)′} −Q{Ĝ, (β′a′0, 0′)′},

where βa′0 = (α0, β
′
a0)′ and v is a (q + 1)-dimensional vector with bounded norm. Define

Xa′i = (1, Zi1, · · · , Ziq)′, i = 1, · · · , n. Following the similar derivations as those in the

proof of Theorem 1, we can show that

Sn(Ĝ, v) =
1
2
v′Σa′v +

v′√
n

n∑
i=1

δi

G0(T̃i)
Xa′i{I(εi < 0)− I(εi > 0)}

+
v′√
n

n∑
i=1

∫ τ

0

ha′(s)
y(s)

dMC
i (s) + op(1), (A.1)

where Σa′ = E{f(0|X)Xa′X
′
a′} and ha′(s) = limn→∞

1
n

∑n
i=1

δiI(T̃i≥s)
G0(T̃i)

Xa′i{I(εi < 0)−I(εi >

0)}. Define

si =
δi

G0(T̃i)
Xa′i{I(εi < 0)− I(εi > 0)}+

∫ τ

0

ha′(s)
y(s)

dMC
i (s).

Then by the central limit theorem, (1/
√
n)
∑n

i=1 si converges in distribution to a (q + 1)-

dimensional normal vector Wa′ with mean 0 and variance-covariance matrix Va′ = E(s1s
′
1).

By the lemma given in Davis et al. (1992),
√
n(β̂a′ − βa′0) converges to v0 in distribution

as n → ∞. The lemma given in Davis et al. (1992) is as follows: Suppose Vn(·) → V on
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C (<p), εn minimizes Vn(·), and ε minimizes V (·). If Vn(·) is convex for each n and ε is

unique with probability 1, then εn converges to ε in distribution.

We take Vn(v) = Sn(Ĝ, v), which is convex since Q
(
Ĝ, βa′0 + v√

n
, 0′
)

is convex

in v, and Q(Ĝ, β0) is constant with respect to v. The minimizer of Q(·) is (β̂a′ , β̂b), where

β̂b → 0 in probability, so the minimum with respect to v is attained for v =
√
n
(
β̂a′ − βa′0

)
.

So, we let εn =
√
n
(
β̂a′ − βa′0

)
. Then V = 1

2v
′Σa′v+v′Wa′ . To find ε, we take the derivative

of V with respect to v and set it equal to 0. We then get

dV

dv
= Σa′v

′ +Wa′ = 0,

which implies that the minimizer of V is then v0 = −Σ−1
a′ Wa′ . So then we get E(v′0) =

−Σ−1
a′ E(Wa′) = 0, and V ar(v′0) = Σ−1

a′ Va′Σ
−1
a′ . Therefore we have that

√
n(β̂a′ − βa′0)

converges in distribution to (q + 1)-dimensional normal vector with mean 0 and variance-

covariance matrix Σ−1
a′ Va′Σ

−1
a′ . �
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Appendix B: Simulation tables
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Table B.1: Estimation of non-zero coefficients for t(5) error distribution

β1 = 0.5 β2 = 1 β3 = 1.5
Prop. n Methods Bias SD SE Bias SD SE Bias SD SE
20% 50 Full -0.02 0.22 0.36 -0.04 0.26 0.37 -0.09 0.27 0.37

ALasso -0.13 0.25 0.32 -0.10 0.27 0.35 -0.12 0.27 0.36
Lasso -0.12 0.23 0.30 -0.12 0.25 0.35 -0.19 0.27 0.37
Oracle -0.01 0.21 0.31 -0.04 0.25 0.32 -0.06 0.26 0.32

100 Full -0.00 0.16 0.23 -0.07 0.17 0.22 -0.12 0.19 0.22
ALasso -0.08 0.20 0.22 -0.10 0.17 0.23 -0.15 0.17 0.22
Lasso -0.09 0.20 0.20 -0.17 0.18 0.24 -0.21 0.19 0.23
Oracle -0.00 0.17 0.21 -0.07 0.16 0.21 -0.12 0.18 0.21

200 Full -0.03 0.12 0.14 -0.05 0.13 0.14 -0.10 0.12 0.15
ALasso -0.05 0.13 0.15 -0.07 0.13 0.15 -0.11 0.11 0.15
Lasso -0.08 0.13 0.15 -0.12 0.13 0.16 -0.17 0.12 0.15
Oracle -0.02 0.12 0.13 -0.04 0.12 0.14 -0.09 0.10 0.14

40% 50 Full -0.07 0.29 0.45 -0.16 0.30 0.47 -0.17 0.30 0.47
ALasso -0.18 0.29 0.37 -0.26 0.33 0.41 -0.25 0.31 0.44
Lasso -0.17 0.27 0.35 -0.33 0.34 0.39 -0.34 0.37 0.44
Oracle -0.08 0.25 0.37 -0.16 0.32 0.39 -0.15 0.29 0.41

100 Full -0.04 0.22 0.29 -0.14 0.19 0.29 -0.18 0.25 0.30
ALasso -0.13 0.26 0.26 -0.19 0.21 0.28 -0.23 0.26 0.30
Lasso -0.11 0.24 0.23 -0.23 0.22 0.28 -0.31 0.28 0.30
Oracle -0.05 0.22 0.27 -0.14 0.19 0.27 -0.21 0.25 0.28

200 Full -0.05 0.13 0.18 -0.13 0.15 0.19 -0.18 0.14 0.20
ALasso -0.10 0.16 0.17 -0.16 0.15 0.19 -0.21 0.14 0.20
Lasso -0.11 0.13 0.16 -0.21 0.16 0.20 -0.27 0.16 0.21
Oracle -0.05 0.13 0.18 -0.12 0.15 0.18 -0.18 0.14 0.19

Avg. SE 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.01

Prop.: censoring proportion; Bias: average bias over 100 runs; SD: sample standard devia-

tion of estimates; SE: mean of estimated standard errors computed based on 500 bootstraps

per run; Avg. SE: estimated standard error averaged over all rows of table.
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Table B.2: Variable selection results for t(5) error distribution

No. of times selected in 100 runs
MAD

Prop. n Methods ME β1 β2 β3 β4 β5 β6 SF Inc. Cor.
20% 50 Full 0.57 100 100 100 100 100 100 0 0 0

ALasso 0.52 78 98 100 100 24 24 29 0.24 3.17
Lasso 0.58 90 99 100 100 51 51 8 0.11 2.14
Oracle 0.44 100 100 100 100 0 0 100 0 4

100 Full 0.42 100 100 100 100 100 100 0 0 0
ALasso 0.38 93 100 100 100 8 16 59 0.07 3.47
Lasso 0.47 95 100 100 100 39 37 16 0.05 2.37
Oracle 0.32 100 100 100 100 0 0 100 0 4

200 Full 0.31 100 100 100 100 100 100 0 0 0
ALasso 0.29 99 100 100 100 10 7 65 0.01 3.62
Lasso 0.36 99 100 100 100 35 35 19 0.01 2.52
Oracle 0.25 100 100 100 100 0 0 100 0 4

40% 50 Full 0.73 100 100 100 100 100 100 0 0 0
ALasso 0.73 66 92 100 100 28 24 16 0.42 2.86
Lasso 0.84 74 89 98 99 51 53 7 0.40 1.92
Oracle 0.57 100 100 100 100 0 0 100 0 4

100 Full 0.61 100 100 100 100 100 100 0 0 0
ALasso 0.62 78 99 100 100 17 15 34 0.23 3.25
Lasso 0.69 87 99 100 100 42 49 4 0.14 2.07
Oracle 0.53 100 100 100 100 0 0 100 0 4

200 Full 0.48 100 100 100 100 100 100 0 0 0
ALasso 0.50 94 100 100 100 13 11 55 0.06 3.45
Lasso 0.57 99 100 100 100 43 42 13 0.01 2.29
Oracle 0.44 100 100 100 100 0 0 100 0 4
Avg. SE 0.02

Prop.: censoring proportion; MAD ME: average of mean absolute deviation of model error

across 100 runs; SF: number of times the true model is chosen among 100 runs; Inc. and

Cor.: mean number of incorrect and correct 0’s selected, respectively; Avg. SE: estimated

standard error averaged over all rows of table.
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Table B.3: Estimation of non-zero coefficients for double exponential error distribution

β1 = 0.5 β2 = 1 β3 = 1.5
Prop. n Methods Bias SD SE Bias SD SE Bias SD SE
20% 50 Full -0.01 0.26 0.40 -0.08 0.26 0.40 -0.06 0.30 0.39

ALasso -0.10 0.30 0.34 -0.16 0.32 0.38 -0.10 0.30 0.39
Lasso -0.10 0.27 0.31 -0.21 0.29 0.38 -0.15 0.30 0.39
Oracle 0.01 0.24 0.32 -0.07 0.27 0.33 -0.04 0.26 0.33

100 Full -0.03 0.15 0.22 -0.07 0.17 0.23 -0.11 0.17 0.23
ALasso -0.08 0.19 0.21 -0.09 0.17 0.23 -0.12 0.18 0.23
Lasso -0.10 0.16 0.20 -0.15 0.18 0.24 -0.20 0.19 0.24
Oracle -0.02 0.16 0.20 -0.06 0.16 0.20 -0.10 0.16 0.21

200 Full -0.06 0.12 0.14 -0.06 0.11 0.14 -0.08 0.12 0.15
ALasso -0.08 0.12 0.15 -0.07 0.10 0.14 -0.09 0.12 0.15
Lasso -0.10 0.12 0.15 -0.12 0.11 0.16 -0.14 0.12 0.15
Oracle -0.04 0.11 0.13 -0.06 0.10 0.14 -0.07 0.12 0.14

40% 50 Full -0.08 0.30 0.44 -0.17 0.30 0.44 -0.24 0.28 0.44
ALasso -0.19 0.29 0.37 -0.26 0.32 0.40 -0.31 0.30 0.41
Lasso -0.16 0.26 0.34 -0.27 0.31 0.38 -0.38 0.33 0.41
Oracle -0.07 0.28 0.37 -0.13 0.24 0.37 -0.21 0.27 0.36

100 Full -0.05 0.20 0.29 -0.12 0.20 0.29 -0.20 0.24 0.30
ALasso -0.15 0.24 0.25 -0.19 0.21 0.28 -0.25 0.24 0.31
Lasso -0.14 0.22 0.23 -0.23 0.21 0.29 -0.32 0.24 0.31
Oracle -0.06 0.19 0.27 -0.12 0.19 0.27 -0.19 0.22 0.28

200 Full -0.04 0.14 0.18 -0.13 0.16 0.19 -0.15 0.15 0.20
ALasso -0.09 0.16 0.18 -0.16 0.15 0.19 -0.17 0.15 0.20
Lasso -0.10 0.14 0.16 -0.22 0.16 0.20 -0.25 0.17 0.21
Oracle -0.03 0.16 0.18 -0.13 0.17 0.18 -0.16 0.15 0.19

Avg. SE 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01

Prop.: censoring proportion; Bias: average bias over 100 runs; SD: sample standard devia-

tion of estimates; SE: mean of estimated standard errors computed based on 500 bootstraps

per run; Avg. SE: estimated standard error averaged over all rows of table.
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Table B.4: Variable selection results for double exponential error distribution

No. of times selected in 100 runs
MAD

Prop. n Methods ME β1 β2 β3 β4 β5 β6 SF Inc. Cor.
20% 50 Full 0.57 100 100 100 100 100 100 0 0 0

ALasso 0.54 75 98 100 100 17 21 35 0.27 3.21
Lasso 0.58 85 98 100 100 50 50 11 0.17 2.18
Oracle 0.42 100 100 100 100 0 0 100 0 4

100 Full 0.40 100 100 100 100 100 100 0 0 0
ALasso 0.36 92 100 100 100 10 11 53 0.08 3.50
Lasso 0.44 96 100 100 100 42 39 17 0.04 2.40
Oracle 0.30 100 100 100 100 0 0 100 0 4

200 Full 0.29 100 100 100 100 100 100 0 0 0
ALasso 0.26 99 100 100 100 10 5 76 0.01 3.69
Lasso 0.33 98 100 100 100 39 42 18 0.02 2.30
Oracle 0.22 100 100 100 100 0 0 100 0 4

40% 50 Full 0.76 100 100 100 100 100 100 0 0 0
ALasso 0.77 69 94 100 100 21 26 26 0.37 3.08
Lasso 0.84 84 96 98 100 43 48 4 0.22 2.05
Oracle 0.59 100 100 100 100 0 0 100 0 4

100 Full 0.61 100 100 100 100 100 100 0 0 0
ALasso 0.62 75 100 100 100 18 18 33 0.25 3.32
Lasso 0.71 85 100 100 100 55 48 4 0.15 2.00
Oracle 0.48 100 100 100 100 0 0 100 0 4

200 Full 0.48 100 100 100 100 100 100 0 0 0
ALasso 0.47 96 100 100 100 10 13 64 0.04 3.51
Lasso 0.58 99 100 100 100 42 46 16 0.01 2.29
Oracle 0.42 100 100 100 100 0 0 100 0 4
Avg. SE 0.02

Prop.: censoring proportion; MAD ME: average of mean absolute deviation of model error

across 100 runs; SF: number of times the true model is chosen among 100 runs; Inc. and

Cor.: mean number of incorrect and correct 0’s selected, respectively; Avg. SE: estimated

standard error averaged over all rows of table.



65

Table B.5: Estimation of non-zero coefficients for logistic error distribution

β1 = 0.5 β2 = 1 β3 = 1.5
Prop. n Methods Bias SD SE Bias SD SE Bias SD SE
20% 50 Full -0.07 0.37 0.51 -0.04 0.42 0.52 -0.11 0.41 0.50

ALasso -0.23 0.32 0.43 -0.19 0.44 0.48 -0.18 0.42 0.48
Lasso -0.20 0.32 0.39 -0.26 0.42 0.46 -0.29 0.38 0.48
Oracle -0.06 0.35 0.43 -0.07 0.38 0.44 -0.11 0.35 0.42

100 Full -0.05 0.25 0.29 -0.08 0.26 0.30 -0.19 0.24 0.29
ALasso -0.17 0.29 0.26 -0.15 0.26 0.30 -0.24 0.25 0.29
Lasso -0.16 0.26 0.24 -0.21 0.27 0.31 -0.31 0.25 0.30
Oracle -0.04 0.25 0.27 -0.07 0.25 0.27 -0.17 0.24 0.27

200 Full -0.05 0.16 0.18 -0.12 0.16 0.18 -0.17 0.19 0.19
ALasso -0.13 0.19 0.19 -0.16 0.17 0.19 -0.20 0.19 0.19
Lasso -0.13 0.16 0.18 -0.20 0.16 0.20 -0.26 0.19 0.20
Oracle -0.05 0.15 0.18 -0.13 0.15 0.17 -0.17 0.19 0.18

40% 50 Full -0.17 0.41 0.49 -0.28 0.34 0.50 -0.36 0.43 0.49
ALasso -0.27 0.38 0.40 -0.43 0.39 0.43 -0.46 0.46 0.45
Lasso -0.26 0.33 0.35 -0.47 0.37 0.40 -0.55 0.44 0.43
Oracle -0.18 0.42 0.40 -0.28 0.35 0.42 -0.35 0.38 0.41

100 Full -0.07 0.31 0.33 -0.21 0.27 0.34 -0.38 0.29 0.34
ALasso -0.19 0.32 0.27 -0.30 0.33 0.31 -0.47 0.31 0.34
Lasso -0.20 0.28 0.25 -0.35 0.30 0.30 -0.54 0.29 0.34
Oracle -0.08 0.28 0.30 -0.19 0.27 0.32 -0.37 0.30 0.32

200 Full -0.10 0.17 0.21 -0.23 0.22 0.21 -0.31 0.23 0.22
ALasso -0.20 0.21 0.19 -0.29 0.22 0.22 -0.35 0.22 0.23
Lasso -0.19 0.19 0.17 -0.33 0.22 0.22 -0.43 0.26 0.23
Oracle -0.09 0.17 0.20 -0.22 0.19 0.21 -0.30 0.21 0.21

Avg. SE 0.03 0.02 0.01 0.03 0.02 0.01 0.03 0.02 0.01

Prop.: censoring proportion; Bias: average bias over 100 runs; SD: sample standard devia-

tion of estimates; SE: mean of estimated standard errors computed based on 500 bootstraps

per run; Avg. SE: estimated standard error averaged over all rows of table.
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Table B.6: Variable selection results for logistic error distribution

No. of times selected in 100 runs
MAD

Prop. n Methods ME β1 β2 β3 β4 β5 β6 SF Inc. Cor.
20% 50 Full 0.86 100 100 100 100 100 100 0 0 0

ALasso 0.82 48 90 99 99 22 23 15 0.64 3.13
Lasso 0.88 60 90 99 99 34 42 8 0.52 2.41
Oracle 0.67 100 100 100 100 0 0 100 0 4

100 Full 0.63 100 100 100 100 100 100 0 0 0
ALasso 0.63 67 98 100 100 14 9 34 0.35 3.38
Lasso 0.70 80 98 100 100 39 35 11 0.22 2.40
Oracle 0.51 100 100 100 100 0 0 100 0 4

200 Full 0.48 100 100 100 100 100 100 0 0 0
ALasso 0.48 88 100 100 100 6 10 55 0.12 3.51
Lasso 0.54 99 100 100 100 38 29 27 0.01 2.50
Oracle 0.41 100 100 100 100 0 0 100 0 4

40% 50 Full 1.13 100 100 100 100 100 100 0 0 0
ALasso 1.18 49 81 97 100 20 29 12 0.73 2.98
Lasso 1.26 64 80 94 98 41 50 3 0.64 2.13
Oracle 0.97 100 100 100 100 0 0 100 0 4

100 Full 0.96 100 100 100 100 100 100 0 0 0
ALasso 1.03 58 93 99 99 16 14 27 0.51 3.28
Lasso 1.13 74 93 99 100 36 32 9 0.34 2.39
Oracle 0.85 100 100 100 100 0 0 100 0 4

200 Full 0.80 100 100 100 100 100 100 0 0 0
ALasso 0.83 77 99 100 100 16 17 36 0.24 3.32
Lasso 0.92 87 100 100 100 41 42 14 0.13 2.28
Oracle 0.72 100 100 100 100 0 0 100 0 4
Avg. SE 0.02

Prop.: censoring proportion; MAD ME: average of mean absolute deviation of model error

across 100 runs; SF: number of times the true model is chosen among 100 runs; Inc. and

Cor.: mean number of incorrect and correct 0’s selected, respectively; Avg. SE: estimated

standard error averaged over all rows of table.



67

Table B.7: Estimation of non-zero coefficients for extreme value error distribution

β1 = 0.5 β2 = 1 β3 = 1.5
Prop. n Methods Bias SD SE Bias SD SE Bias SD SE
20% 50 Full -0.02 0.31 0.39 0.00 0.30 0.39 -0.07 0.30 0.38

ALasso -0.13 0.30 0.33 -0.10 0.30 0.38 -0.13 0.30 0.37
Lasso -0.11 0.29 0.31 -0.15 0.29 0.38 -0.22 0.30 0.38
Oracle -0.03 0.32 0.33 -0.06 0.28 0.33 -0.07 0.28 0.33

100 Full -0.05 0.19 0.22 -0.07 0.21 0.23 -0.10 0.19 0.23
ALasso -0.12 0.22 0.21 -0.10 0.20 0.23 -0.13 0.19 0.23
Lasso -0.13 0.21 0.19 -0.15 0.20 0.24 -0.19 0.19 0.23
Oracle -0.02 0.19 0.21 -0.05 0.20 0.21 -0.08 0.20 0.21

200 Full -0.03 0.12 0.14 -0.08 0.13 0.15 -0.10 0.13 0.15
ALasso -0.08 0.14 0.15 -0.11 0.13 0.15 -0.13 0.13 0.15
Lasso -0.09 0.12 0.16 -0.15 0.13 0.16 -0.18 0.13 0.15
Oracle -0.04 0.12 0.14 -0.09 0.12 0.14 -0.11 0.13 0.14

40% 50 Full -0.10 0.30 0.42 -0.19 0.28 0.44 -0.26 0.34 0.43
ALasso -0.22 0.29 0.34 -0.29 0.33 0.39 -0.33 0.39 0.40
Lasso -0.21 0.28 0.31 -0.33 0.29 0.37 -0.42 0.36 0.40
Oracle -0.12 0.31 0.36 -0.16 0.29 0.37 -0.22 0.34 0.37

100 Full -0.05 0.23 0.28 -0.10 0.23 0.29 -0.26 0.24 0.29
ALasso -0.17 0.27 0.24 -0.17 0.24 0.28 -0.30 0.24 0.29
Lasso -0.16 0.23 0.22 -0.22 0.23 0.27 -0.38 0.25 0.29
Oracle -0.04 0.22 0.26 -0.10 0.24 0.26 -0.24 0.21 0.27

200 Full -0.10 0.16 0.18 -0.16 0.14 0.18 -0.21 0.17 0.19
ALasso -0.17 0.18 0.17 -0.20 0.16 0.19 -0.25 0.17 0.19
Lasso -0.16 0.16 0.16 -0.25 0.17 0.20 -0.30 0.18 0.20
Oracle -0.09 0.16 0.18 -0.17 0.15 0.18 -0.20 0.17 0.18

Avg. SE 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Prop.: censoring proportion; Bias: average bias over 100 runs; SD: sample standard devia-

tion of estimates; SE: mean of estimated standard errors computed based on 500 bootstraps

per run; Avg. SE: estimated standard error averaged over all rows of table.
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Table B.8: Variable selection results for extreme value error distribution

No. of times selected in 100 runs
MAD

Prop. n Methods ME β1 β2 β3 β4 β5 β6 SF Inc. Cor.
20% 50 Full 0.67 100 100 100 100 100 100 0 0 0

ALasso 0.62 71 100 99 100 14 26 32 0.30 3.19
Lasso 0.69 80 100 99 100 43 52 6 0.21 2.13
Oracle 0.52 100 100 100 100 0 0 100 0 4

100 Full 0.47 100 100 100 100 100 100 0 0 0
ALasso 0.45 86 100 100 100 15 12 40 0.14 3.34
Lasso 0.50 89 100 100 100 39 37 11 0.11 2.36
Oracle 0.35 100 100 100 100 0 0 100 0 4

200 Full 0.34 100 100 100 100 100 100 0 0 0
ALasso 0.33 99 100 100 100 9 8 72 0.01 3.62
Lasso 0.39 100 100 100 100 35 32 28 0 2.61
Oracle 0.29 100 100 100 100 0 0 100 0 4

40% 50 Full 0.84 100 100 100 100 100 100 0 0 0
ALasso 0.87 59 92 98 100 25 21 16 0.51 3.09
Lasso 0.95 68 95 97 100 55 57 6 0.40 1.98
Oracle 0.68 100 100 100 100 0 0 100 0 4

100 Full 0.71 100 100 100 100 100 100 0 0 0
ALasso 0.74 71 100 100 100 14 18 32 0.29 3.31
Lasso 0.82 85 100 100 100 41 39 7 0.15 2.16
Oracle 0.61 100 100 100 100 0 0 100 0 4

200 Full 0.59 100 100 100 100 100 100 0 0 0
ALasso 0.62 87 100 100 100 18 16 45 0.13 3.29
Lasso 0.69 93 100 100 100 58 53 8 0.07 1.96
Oracle 0.53 100 100 100 100 0 0 100 0 4
Avg. SE 0.02

Prop.: censoring proportion; MAD ME: average of mean absolute deviation of model error

across 100 runs; SF: number of times the true model is chosen among 100 runs; Inc. and

Cor.: mean number of incorrect and correct 0’s selected, respectively; Avg. SE: estimated

standard error averaged over all rows of table.
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Table B.9: Estimation of non-zero coefficients for sensitivity analysis, γ = 0.1

β1 = 0.5 β2 = 1 β3 = 1.5
Prop. n Methods Bias SD SE Bias SD SE Bias SD SE
20% 50 Full 0.01 0.22 0.36 -0.05 0.26 0.37 -0.09 0.29 0.37

ALasso -0.11 0.27 0.32 -0.11 0.27 0.35 -0.12 0.28 0.36
Lasso -0.09 0.23 0.31 -0.14 0.25 0.35 -0.19 0.28 0.37
Oracle 0.01 0.22 0.31 -0.04 0.24 0.31 -0.06 0.26 0.32

100 Full 0.02 0.17 0.22 -0.07 0.17 0.22 -0.11 0.20 0.22
ALasso -0.05 0.20 0.22 -0.11 0.17 0.23 -0.13 0.19 0.22
Lasso -0.08 0.19 0.20 -0.17 0.18 0.24 -0.21 0.20 0.23
Oracle 0.02 0.18 0.20 -0.07 0.17 0.20 -0.11 0.20 0.21

200 Full 0.01 0.14 0.14 -0.06 0.12 0.15 -0.11 0.12 0.15
ALasso -0.02 0.14 0.14 -0.08 0.11 0.15 -0.12 0.12 0.15
Lasso -0.05 0.14 0.15 -0.13 0.12 0.16 -0.18 0.13 0.15
Oracle 0.01 0.14 0.13 -0.05 0.11 0.14 -0.11 0.12 0.14

40% 50 Full -0.04 0.27 0.39 -0.12 0.27 0.39 -0.19 0.30 0.40
ALasso -0.17 0.30 0.33 -0.19 0.29 0.35 -0.26 0.29 0.39
Lasso -0.13 0.26 0.32 -0.23 0.30 0.34 -0.32 0.32 0.39
Oracle -0.08 0.24 0.33 -0.11 0.27 0.34 -0.15 0.25 0.36

100 Full 0.00 0.23 0.28 -0.15 0.22 0.28 -0.20 0.24 0.29
ALasso -0.06 0.28 0.26 -0.20 0.24 0.27 -0.25 0.25 0.29
Lasso -0.06 0.26 0.24 -0.23 0.23 0.27 -0.32 0.25 0.29
Oracle 0.01 0.25 0.26 -0.14 0.20 0.26 -0.21 0.24 0.27

200 Full -0.02 0.14 0.17 -0.12 0.15 0.18 -0.17 0.14 0.19
ALasso -0.06 0.17 0.18 -0.16 0.15 0.19 -0.20 0.13 0.20
Lasso -0.07 0.15 0.18 -0.20 0.16 0.19 -0.27 0.15 0.20
Oracle -0.01 0.14 0.17 -0.13 0.15 0.18 -0.18 0.13 0.19

Avg. SE 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01

Prop.: censoring proportion; Bias: average bias over 100 runs; SD: sample standard devia-

tion of estimates; SE: mean of estimated standard errors computed based on 500 bootstraps

per run; Avg. SE: estimated standard error averaged over all rows of table.
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Table B.10: Variable selection results for sensitivity analysis, γ = 0.1

No. of times selected in 100 runs
MAD

Prop. n Methods ME β1 β2 β3 β4 β5 β6 SF Inc. Cor.
20% 50 Full 0.57 100 100 100 100 100 100 0 0 0

ALasso 0.53 79 97 100 100 22 25 31 0.24 3.18
Lasso 0.58 92 99 100 100 47 48 11 0.09 2.18
Oracle 0.44 100 100 100 100 0 0 100 0 4

100 Full 0.42 100 100 100 100 100 100 0 0 0
ALasso 0.38 96 100 100 100 9 13 65 0.04 3.51
Lasso 0.46 97 100 100 100 34 35 18 0.03 2.47
Oracle 0.33 100 100 100 100 0 0 100 0 4

200 Full 0.32 100 100 100 100 100 100 0 0 0
ALasso 0.30 100 100 100 100 11 10 65 0 3.53
Lasso 0.36 100 100 100 100 34 35 24 0 2.55
Oracle 0.26 100 100 100 100 0 0 100 0 4

40% 50 Full 0.71 100 100 100 100 100 100 0 0 0
ALasso 0.70 65 98 99 100 25 22 17 0.38 3.06
Lasso 0.78 83 96 99 100 55 52 7 0.22 1.89
Oracle 0.57 100 100 100 100 0 0 100 0 4

100 Full 0.62 100 100 100 100 100 100 0 0 0
ALasso 0.62 86 98 100 100 22 14 37 0.16 3.28
Lasso 0.69 90 98 100 100 40 43 6 0.12 2.15
Oracle 0.54 100 100 100 100 0 0 100 0 4

200 Full 0.48 100 100 100 100 100 100 0 0 0
ALasso 0.49 96 100 100 100 11 7 58 0.04 3.51
Lasso 0.57 99 100 100 100 42 42 13 0.01 2.32
Oracle 0.44 100 100 100 100 0 0 100 0 4
Avg. SE 0.02

Prop.: censoring proportion; MAD ME: average of mean absolute deviation of model error

across 100 runs; SF: number of times the true model is chosen among 100 runs; Inc. and

Cor.: mean number of incorrect and correct 0’s selected, respectively; Avg. SE: estimated

standard error averaged over all rows of table.
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Table B.11: Estimation of non-zero coefficients for sensitivity analysis, γ = 0.2

β1 = 0.5 β2 = 1 β3 = 1.5
Prop. n Methods Bias SD SE Bias SD SE Bias SD SE
20% 50 Full 0.01 0.23 0.36 -0.06 0.27 0.37 -0.11 0.27 0.37

ALasso -0.09 0.27 0.33 -0.11 0.28 0.35 -0.14 0.27 0.36
Lasso -0.08 0.23 0.31 -0.14 0.25 0.35 -0.20 0.27 0.36
Oracle 0.01 0.21 0.31 -0.05 0.24 0.31 -0.08 0.24 0.32

100 Full 0.04 0.17 0.22 -0.06 0.17 0.22 -0.11 0.21 0.22
ALasso -0.03 0.20 0.22 -0.10 0.17 0.23 -0.14 0.20 0.22
Lasso -0.04 0.20 0.21 -0.15 0.18 0.24 -0.20 0.21 0.23
Oracle 0.05 0.18 0.21 -0.06 0.16 0.21 -0.10 0.20 0.21

200 Full 0.02 0.12 0.14 -0.06 0.12 0.14 -0.10 0.12 0.15
ALasso -0.02 0.13 0.14 -0.08 0.12 0.15 -0.11 0.12 0.14
Lasso -0.03 0.12 0.15 -0.12 0.13 0.16 -0.16 0.13 0.15
Oracle 0.02 0.12 0.13 -0.06 0.12 0.14 -0.11 0.12 0.14

40% 50 Full -0.04 0.28 0.38 -0.11 0.26 0.39 -0.22 0.31 0.40
ALasso -0.13 0.30 0.33 -0.19 0.28 0.35 -0.26 0.30 0.39
Lasso -0.10 0.28 0.32 -0.23 0.28 0.34 -0.33 0.34 0.39
Oracle -0.05 0.26 0.33 -0.11 0.25 0.34 -0.17 0.26 0.36

100 Full 0.02 0.22 0.29 -0.14 0.21 0.28 -0.21 0.23 0.29
ALasso -0.05 0.26 0.27 -0.19 0.22 0.28 -0.25 0.23 0.29
Lasso -0.04 0.23 0.26 -0.24 0.22 0.27 -0.32 0.25 0.29
Oracle 0.03 0.21 0.26 -0.14 0.20 0.26 -0.21 0.22 0.27

200 Full 0.01 0.13 0.17 -0.12 0.14 0.18 -0.18 0.14 0.19
ALasso -0.02 0.15 0.18 -0.15 0.14 0.19 -0.21 0.14 0.20
Lasso -0.03 0.14 0.18 -0.20 0.14 0.19 -0.27 0.16 0.21
Oracle 0.02 0.14 0.17 -0.12 0.14 0.18 -0.19 0.13 0.19

Avg. SE 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01

Prop.: censoring proportion; Bias: average bias over 100 runs; SD: sample standard devia-

tion of estimates; SE: mean of estimated standard errors computed based on 500 bootstraps

per run; Avg. SE: estimated standard error averaged over all rows of table.
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Table B.12: Variable selection results for sensitivity analysis, γ = 0.2

No. of times selected in 100 runs
MAD

Prop. n Methods ME β1 β2 β3 β4 β5 β6 SF Inc. Cor.
20% 50 Full 0.57 100 100 100 100 100 100 0 0 0

ALasso 0.53 82 97 100 100 21 30 29 0.21 3.14
Lasso 0.58 94 99 100 100 47 48 10 0.07 2.17
Oracle 0.44 100 100 100 100 0 0 100 0 4

100 Full 0.42 100 100 100 100 100 100 0 0 0
ALasso 0.37 96 100 100 100 10 13 64 0.04 3.52
Lasso 0.45 97 100 100 100 36 38 17 0.03 2.38
Oracle 0.32 100 100 100 100 0 0 100 0 4

200 Full 0.32 100 100 100 100 100 100 0 0 0
ALasso 0.30 100 100 100 100 9 10 60 0 3.54
Lasso 0.35 100 100 100 100 37 37 15 0 2.35
Oracle 0.26 100 100 100 100 0 0 100 0 4

40% 50 Full 0.71 100 100 100 100 100 100 0 0 0
ALasso 0.71 71 98 99 100 29 22 20 0.32 3.04
Lasso 0.78 85 97 99 100 57 57 4 0.19 1.80
Oracle 0.58 100 100 100 100 0 0 100 0 4

100 Full 0.63 100 100 100 100 100 100 0 0 0
ALasso 0.62 86 99 100 100 19 18 38 0.15 3.23
Lasso 0.69 94 98 100 100 39 48 8 0.08 2.18
Oracle 0.53 100 100 100 100 0 0 100 0 4

200 Full 0.49 100 100 100 100 100 100 0 0 0
ALasso 0.49 99 100 100 100 15 10 58 0.01 3.43
Lasso 0.57 100 100 100 100 42 38 13 0 2.40
Oracle 0.45 100 100 100 100 0 0 100 0 4
Avg. SE 0.02

Prop.: censoring proportion; MAD ME: average of mean absolute deviation of model error

across 100 runs; SF: number of times the true model is chosen among 100 runs; Inc. and

Cor.: mean number of incorrect and correct 0’s selected, respectively; Avg. SE: estimated

standard error averaged over all rows of table.
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Table B.13: Estimation of non-zero coefficients for heteroscedastic errors, γ = 0.1

β1 = 0.5 β2 = 1 β3 = 1.5
Prop. n Methods Bias SD SE Bias SD SE Bias SD SE
20% 50 Full -0.03 0.22 0.36 -0.03 0.26 0.37 -0.09 0.26 0.36

ALasso -0.14 0.26 0.32 -0.08 0.27 0.35 -0.12 0.27 0.35
Lasso -0.13 0.22 0.29 -0.11 0.24 0.35 -0.19 0.28 0.36
Oracle -0.01 0.21 0.31 -0.02 0.25 0.31 -0.05 0.26 0.31

100 Full -0.01 0.16 0.22 -0.07 0.16 0.22 -0.11 0.18 0.22
ALasso -0.08 0.20 0.21 -0.10 0.17 0.22 -0.13 0.18 0.22
Lasso -0.09 0.19 0.20 -0.16 0.20 0.23 -0.20 0.19 0.23
Oracle 0.00 0.18 0.20 -0.07 0.16 0.21 -0.11 0.17 0.20

200 Full -0.03 0.11 0.14 -0.06 0.11 0.14 -0.10 0.11 0.15
ALasso -0.05 0.12 0.14 -0.08 0.12 0.15 -0.11 0.11 0.15
Lasso -0.08 0.12 0.15 -0.13 0.12 0.16 -0.17 0.13 0.15
Oracle -0.02 0.11 0.13 -0.06 0.10 0.14 -0.10 0.10 0.14

40% 50 Full -0.10 0.30 0.41 -0.15 0.31 0.42 -0.19 0.32 0.42
ALasso -0.19 0.29 0.35 -0.24 0.33 0.38 -0.24 0.32 0.39
Lasso -0.20 0.28 0.31 -0.24 0.32 0.36 -0.33 0.35 0.39
Oracle -0.07 0.24 0.35 -0.15 0.28 0.36 -0.19 0.28 0.36

100 Full -0.05 0.22 0.29 -0.15 0.21 0.29 -0.18 0.24 0.30
ALasso -0.11 0.25 0.26 -0.20 0.24 0.28 -0.21 0.24 0.30
Lasso -0.12 0.24 0.23 -0.23 0.23 0.28 -0.28 0.25 0.30
Oracle -0.05 0.21 0.27 -0.15 0.20 0.26 -0.19 0.23 0.28

200 Full -0.05 0.12 0.18 -0.11 0.14 0.19 -0.17 0.14 0.19
ALasso -0.09 0.15 0.17 -0.14 0.14 0.19 -0.19 0.14 0.20
Lasso -0.11 0.13 0.16 -0.19 0.17 0.20 -0.26 0.16 0.21
Oracle -0.04 0.12 0.18 -0.12 0.14 0.18 -0.17 0.13 0.19

Avg. SE 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01

Prop.: censoring proportion; Bias: average bias over 100 runs; SD: sample standard devia-

tion of estimates; SE: mean of estimated standard errors computed based on 500 bootstraps

per run; Avg. SE: estimated standard error averaged over all rows of table.
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Table B.14: Variable selection results for heteroscedastic errors, γ = 0.1

No. of times selected in 100 runs
MAD

Prop. n Methods ME β1 β2 β3 β4 β5 β6 SF Inc. Cor.
20% 50 Full 0.57 100 100 100 100 100 100 0 0 0

ALasso 0.54 77 98 100 100 22 28 31 0.25 3.17
Lasso 0.58 91 99 100 100 48 48 12 0.10 2.24
Oracle 0.45 100 100 100 100 0 0 100 0 4

100 Full 0.43 100 100 100 100 100 100 0 0 0
ALasso 0.39 90 100 100 100 13 19 58 0.10 3.42
Lasso 0.48 93 100 100 100 37 39 16 0.07 2.39
Oracle 0.33 100 100 100 100 0 0 100 0 4

200 Full 0.32 100 100 100 100 100 100 0 0 0
ALasso 0.30 100 100 100 100 8 7 67 0 3.60
Lasso 0.37 100 100 100 100 31 26 27 0 2.64
Oracle 0.26 100 100 100 100 0 0 100 0 4

40% 50 Full 0.72 100 100 100 100 100 100 0 0 0
ALasso 0.73 67 94 100 100 20 21 25 0.39 3.07
Lasso 0.81 72 95 99 100 51 53 3 0.34 1.98
Oracle 0.60 100 100 100 100 0 0 100 0 4

100 Full 0.62 100 100 100 100 100 100 0 0 0
ALasso 0.63 81 98 100 100 22 15 35 0.21 3.23
Lasso 0.69 87 100 100 100 47 50 7 0.13 2.06
Oracle 0.53 100 100 100 100 0 0 100 0 4

200 Full 0.48 100 100 100 100 100 100 0 0 0
ALasso 0.49 95 100 100 100 11 10 60 0.05 3.46
Lasso 0.58 99 100 100 100 44 37 15 0.01 2.32
Oracle 0.43 100 100 100 100 0 0 100 0 4
Avg. SE 0.02

Prop.: censoring proportion; MAD ME: average of mean absolute deviation of model error

across 100 runs; SF: number of times the true model is chosen among 100 runs; Inc. and

Cor.: mean number of incorrect and correct 0’s selected, respectively; Avg. SE: estimated

standard error averaged over all rows of table.



75

Table B.15: Estimation of non-zero coefficients for heteroscedastic errors, γ = 0.2

β1 = 0.5 β2 = 1 β3 = 1.5
Prop. n Methods Bias SD SE Bias SD SE Bias SD SE
20% 50 Full -0.04 0.20 0.36 -0.04 0.24 0.36 -0.09 0.26 0.36

ALasso -0.15 0.25 0.32 -0.07 0.25 0.35 -0.13 0.29 0.35
Lasso -0.13 0.23 0.29 -0.11 0.25 0.34 -0.19 0.28 0.36
Oracle -0.02 0.21 0.31 -0.03 0.25 0.31 -0.06 0.27 0.31

100 Full -0.01 0.16 0.22 -0.06 0.17 0.22 -0.09 0.18 0.22
ALasso -0.08 0.19 0.22 -0.10 0.17 0.22 -0.12 0.17 0.22
Lasso -0.09 0.18 0.20 -0.15 0.19 0.23 -0.19 0.18 0.23
Oracle -0.01 0.17 0.20 -0.07 0.15 0.21 -0.10 0.17 0.20

200 Full -0.03 0.11 0.13 -0.06 0.11 0.14 -0.09 0.11 0.15
ALasso -0.05 0.13 0.14 -0.07 0.11 0.15 -0.10 0.11 0.15
Lasso -0.07 0.12 0.15 -0.11 0.12 0.16 -0.15 0.13 0.15
Oracle -0.02 0.12 0.13 -0.05 0.11 0.14 -0.09 0.10 0.14

40% 50 Full -0.09 0.23 0.38 -0.11 0.24 0.38 -0.16 0.26 0.39
ALasso -0.21 0.27 0.32 -0.19 0.25 0.35 -0.24 0.27 0.38
Lasso -0.16 0.23 0.30 -0.23 0.26 0.34 -0.31 0.30 0.38
Oracle -0.12 0.20 0.33 -0.10 0.23 0.33 -0.17 0.21 0.35

100 Full -0.04 0.22 0.28 -0.12 0.20 0.28 -0.16 0.23 0.30
ALasso -0.11 0.24 0.25 -0.19 0.23 0.28 -0.21 0.22 0.30
Lasso -0.11 0.22 0.23 -0.23 0.22 0.27 -0.27 0.23 0.30
Oracle -0.04 0.19 0.26 -0.15 0.19 0.26 -0.18 0.21 0.28

200 Full -0.06 0.12 0.18 -0.12 0.13 0.18 -0.17 0.14 0.19
ALasso -0.10 0.14 0.17 -0.16 0.13 0.19 -0.20 0.13 0.20
Lasso -0.12 0.12 0.16 -0.20 0.15 0.20 -0.26 0.15 0.21
Oracle -0.05 0.12 0.17 -0.12 0.13 0.18 -0.17 0.13 0.19

Avg. SE 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01

Prop.: censoring proportion; Bias: average bias over 100 runs; SD: sample standard devia-

tion of estimates; SE: mean of estimated standard errors computed based on 500 bootstraps

per run; Avg. SE: estimated standard error averaged over all rows of table.
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Table B.16: Variable selection results for heteroscedastic errors, γ = 0.2

No. of times selected in 100 runs
MAD

Prop. n Methods ME β1 β2 β3 β4 β5 β6 SF Inc. Cor.
20% 50 Full 0.58 100 100 100 100 100 100 0 0 0

ALasso 0.56 79 100 100 100 15 25 37 0.21 3.30
Lasso 0.60 89 100 100 100 47 45 10 0.11 2.20
Oracle 0.46 100 100 100 100 0 0 100 0 4

100 Full 0.42 100 100 100 100 100 100 0 0 0
ALasso 0.39 91 100 100 100 12 17 59 0.09 3.42
Lasso 0.47 96 100 100 100 35 41 15 0.04 2.33
Oracle 0.33 100 100 100 100 0 0 100 0 4

200 Full 0.32 100 100 100 100 100 100 0 0 0
ALasso 0.30 99 100 100 100 5 8 67 0.01 3.64
Lasso 0.36 100 100 100 100 41 38 17 0 2.39
Oracle 0.26 100 100 100 100 0 0 100 0 4

40% 50 Full 0.70 100 100 100 100 100 100 0 0 0
ALasso 0.72 64 100 100 100 22 16 26 0.36 3.17
Lasso 0.81 82 98 99 100 47 43 7 0.21 2.03
Oracle 0.60 100 100 100 100 0 0 100 0 4

100 Full 0.62 100 100 100 100 100 100 0 0 0
ALasso 0.64 84 98 100 100 18 22 39 0.18 3.27
Lasso 0.71 89 100 100 100 45 48 11 0.11 2.13
Oracle 0.57 100 100 100 100 0 0 100 0 4

200 Full 0.51 100 100 100 100 100 100 0 0 0
ALasso 0.53 98 100 100 100 10 13 64 0.02 3.49
Lasso 0.62 100 100 100 100 40 35 22 0 2.49
Oracle 0.47 100 100 100 100 0 0 100 0 4
Avg. SE 0.02

Prop.: censoring proportion; MAD ME: average of mean absolute deviation of model error

across 100 runs; SF: number of times the true model is chosen among 100 runs; Inc. and

Cor.: mean number of incorrect and correct 0’s selected, respectively; Avg. SE: estimated

standard error averaged over all rows of table.
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Table B.17: Estimation of non-zero coefficients for 20% Censoring and cluster size K = 2

β1 = 0.5 β2 = 1 β3 = 1.5
ρ n Methods Bias SD SE Bias SD SE Bias SD SE
.2 50 Full -0.01 0.16 0.20 -0.10 0.16 0.20 -0.09 0.16 0.21

ALasso -0.06 0.17 0.20 -0.12 0.17 0.21 -0.11 0.16 0.21
Lasso -0.09 0.17 0.18 -0.17 0.17 0.20 -0.18 0.17 0.21
Oracle -0.01 0.15 0.19 -0.09 0.16 0.19 -0.09 0.16 0.20

100 Full -0.03 0.11 0.13 -0.05 0.11 0.13 -0.06 0.12 0.14
ALasso -0.06 0.12 0.14 -0.07 0.12 0.13 -0.08 0.12 0.14
Lasso -0.08 0.12 0.13 -0.10 0.12 0.13 -0.13 0.13 0.14
Oracle -0.03 0.10 0.13 -0.05 0.12 0.13 -0.06 0.11 0.13

200 Full -0.03 0.07 0.09 -0.06 0.08 0.09 -0.07 0.07 0.09
ALasso -0.05 0.07 0.09 -0.08 0.08 0.09 -0.07 0.08 0.09
Lasso -0.07 0.07 0.09 -0.11 0.09 0.09 -0.12 0.08 0.10
Oracle -0.03 0.07 0.09 -0.06 0.08 0.09 -0.07 0.07 0.09

.5 50 Full -0.01 0.17 0.20 -0.10 0.15 0.20 -0.08 0.15 0.21
ALasso -0.06 0.18 0.20 -0.13 0.15 0.20 -0.11 0.15 0.20
Lasso -0.08 0.17 0.19 -0.16 0.15 0.20 -0.16 0.16 0.20
Oracle -0.02 0.16 0.19 -0.10 0.16 0.19 -0.08 0.14 0.19

100 Full -0.02 0.11 0.13 -0.05 0.11 0.13 -0.07 0.10 0.14
ALasso -0.05 0.12 0.13 -0.07 0.11 0.13 -0.07 0.10 0.13
Lasso -0.07 0.11 0.13 -0.11 0.11 0.13 -0.13 0.12 0.13
Oracle -0.03 0.11 0.12 -0.06 0.11 0.13 -0.06 0.10 0.13

200 Full -0.03 0.08 0.09 -0.06 0.08 0.09 -0.07 0.08 0.09
ALasso -0.05 0.08 0.09 -0.07 0.08 0.09 -0.07 0.09 0.09
Lasso -0.07 0.08 0.09 -0.11 0.08 0.09 -0.12 0.09 0.09
Oracle -0.02 0.08 0.08 -0.06 0.08 0.09 -0.06 0.09 0.09

Avg. SE 0.01 0.01 <.005 0.01 0.01 <.005 0.01 0.01 <.005

ρ: intracluster covariance; Bias: average bias over 100 runs; SD: sample standard deviation

of estimates; SE: mean of estimated standard errors computed based on 500 bootstraps per

run; Avg. SE: estimated standard error averaged over all rows of table.
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Table B.18: Variable selection results for 20% Censoring and cluster size K = 2

No. of times selected in 100 runs
MAD

ρ n Methods ME β1 β2 β3 β4 β5 β6 SF Inc. Cor.
.2 50 Full 0.38 100 100 100 100 100 100 0 0 0

ALasso 0.35 96 100 100 100 19 18 56 0.04 3.41
Lasso 0.43 97 100 100 100 39 42 13 0.03 2.37
Oracle 0.30 100 100 100 100 0 0 100 0 4

100 Full 0.30 100 100 100 100 100 100 0 0 0
ALasso 0.28 99 100 100 100 14 16 61 0.01 3.48
Lasso 0.33 100 100 100 100 43 40 15 0 2.35
Oracle 0.24 100 100 100 100 0 0 100 0 4

200 Full 0.23 100 100 100 100 100 100 0 0 0
ALasso 0.22 100 100 100 100 6 10 77 0 3.66
Lasso 0.26 100 100 100 100 47 45 9 0 2.28
Oracle 0.20 100 100 100 100 0 0 100 0 4

.5 50 Full 0.38 100 100 100 100 100 100 0 0 0
ALasso 0.35 96 100 100 100 18 15 58 0.04 3.41
Lasso 0.41 96 100 100 100 42 41 18 0.04 2.36
Oracle 0.31 100 100 100 100 0 0 100 0 4

100 Full 0.29 100 100 100 100 100 100 0 0 0
ALasso 0.26 100 100 100 100 10 15 68 0 3.57
Lasso 0.32 100 100 100 100 31 38 14 0 2.44
Oracle 0.24 100 100 100 100 0 0 100 0 4

200 Full 0.22 100 100 100 100 100 100 0 0 0
ALasso 0.21 100 100 100 100 5 11 72 0 3.65
Lasso 0.26 100 100 100 100 42 39 25 0 2.49
Oracle 0.19 100 100 100 100 0 0 100 0 4
Avg. SE 0.02

ρ: intracluster covariance; MAD ME: average of mean absolute deviation of model error

across 100 runs; SF: number of times the true model is chosen among 100 runs; Inc. and

Cor.: mean number of incorrect and correct 0’s selected, respectively; Avg. SE: estimated

standard error averaged over all rows of table.
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Table B.19: Estimation of non-zero coefficients for 40% Censoring and cluster size K = 2

β1 = 0.5 β2 = 1 β3 = 1.5
ρ n Methods Bias SD SE Bias SD SE Bias SD SE
.2 50 Full -0.05 0.20 0.28 -0.13 0.20 0.28 -0.18 0.19 0.29

ALasso -0.11 0.21 0.25 -0.19 0.19 0.27 -0.21 0.20 0.29
Lasso -0.13 0.21 0.23 -0.22 0.18 0.25 -0.29 0.22 0.28
Oracle -0.05 0.18 0.26 -0.15 0.18 0.25 -0.18 0.19 0.27

100 Full -0.06 0.12 0.17 -0.10 0.14 0.17 -0.13 0.15 0.18
ALasso -0.10 0.14 0.16 -0.13 0.13 0.18 -0.15 0.15 0.18
Lasso -0.11 0.12 0.15 -0.16 0.13 0.17 -0.20 0.14 0.18
Oracle -0.06 0.13 0.17 -0.11 0.12 0.17 -0.13 0.16 0.18

200 Full -0.06 0.09 0.12 -0.11 0.08 0.12 -0.15 0.10 0.13
ALasso -0.08 0.09 0.12 -0.13 0.09 0.13 -0.17 0.10 0.13
Lasso -0.10 0.09 0.11 -0.16 0.09 0.12 -0.22 0.11 0.13
Oracle -0.06 0.09 0.12 -0.11 0.08 0.12 -0.15 0.10 0.13

.5 50 Full -0.03 0.18 0.27 -0.15 0.18 0.28 -0.16 0.20 0.29
ALasso -0.12 0.21 0.24 -0.19 0.19 0.27 -0.19 0.20 0.29
Lasso -0.12 0.20 0.23 -0.22 0.19 0.25 -0.25 0.23 0.27
Oracle -0.04 0.18 0.26 -0.14 0.18 0.25 -0.16 0.18 0.27

100 Full -0.06 0.13 0.17 -0.12 0.13 0.17 -0.13 0.16 0.19
ALasso -0.10 0.14 0.17 -0.14 0.13 0.18 -0.14 0.16 0.19
Lasso -0.12 0.13 0.16 -0.19 0.14 0.17 -0.22 0.16 0.18
Oracle -0.06 0.12 0.16 -0.13 0.12 0.17 -0.13 0.16 0.18

200 Full -0.05 0.09 0.12 -0.12 0.09 0.13 -0.14 0.10 0.13
ALasso -0.07 0.10 0.12 -0.13 0.09 0.13 -0.15 0.10 0.13
Lasso -0.09 0.09 0.11 -0.17 0.09 0.13 -0.21 0.11 0.13
Oracle -0.05 0.09 0.11 -0.11 0.09 0.13 -0.14 0.09 0.13

Avg. SE 0.01 0.01 <.005 0.01 0.01 <.005 0.02 0.01 <.005

ρ: intracluster covariance; Bias: average bias over 100 runs; SD: sample standard deviation

of estimates; SE: mean of estimated standard errors computed based on 500 bootstraps per

run; Avg. SE: estimated standard error averaged over all rows of table.
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Table B.20: Variable selection results for 40% Censoring and cluster size K = 2

No. of times selected in 100 runs
MAD

ρ n Methods ME β1 β2 β3 β4 β5 β6 SF Inc. Cor.
.2 50 Full 0.52 100 100 100 100 100 100 0 0 0

ALasso 0.54 88 99 100 100 27 14 39 0.13 3.28
Lasso 0.62 91 99 100 100 55 48 4 0.10 2.09
Oracle 0.46 100 100 100 100 0 0 100 0 4

100 Full 0.44 100 100 100 100 100 100 0 0 0
ALasso 0.44 96 100 100 100 17 19 51 0.04 3.37
Lasso 0.50 99 100 100 100 50 50 14 0.01 2.09
Oracle 0.40 100 100 100 100 0 0 100 0 4

200 Full 0.40 100 100 100 100 100 100 0 0 0
ALasso 0.41 100 100 100 100 10 10 69 0 3.62
Lasso 0.47 100 100 100 100 44 48 19 0 2.26
Oracle 0.38 100 100 100 100 0 0 100 0 4

.5 50 Full 0.53 100 100 100 100 100 100 0 0 0
ALasso 0.53 89 99 100 100 17 12 48 0.12 3.46
Lasso 0.61 90 99 100 100 47 53 10 0.11 2.10
Oracle 0.45 100 100 100 100 0 0 100 0 4

100 Full 0.45 100 100 100 100 100 100 0 0 0
ALasso 0.45 97 100 100 100 17 19 52 0.03 3.37
Lasso 0.54 99 100 100 100 43 47 15 0.01 2.24
Oracle 0.41 100 100 100 100 0 0 100 0 4

200 Full 0.38 100 100 100 100 100 100 0 0 0
ALasso 0.38 100 100 100 100 10 11 69 0 3.56
Lasso 0.46 100 100 100 100 43 50 18 0 2.19
Oracle 0.35 100 100 100 100 0 0 100 0 4
Avg. SE 0.01

ρ: intracluster covariance; MAD ME: average of mean absolute deviation of model error

across 100 runs; SF: number of times the true model is chosen among 100 runs; Inc. and

Cor.: mean number of incorrect and correct 0’s selected, respectively; Avg. SE: estimated

standard error averaged over all rows of table.
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Table B.21: Estimation of non-zero coefficients for 20% Censoring and cluster size K = 5

β1 = 0.5 β2 = 1 β3 = 1.5
ρ n Methods Bias SD SE Bias SD SE Bias SD SE
.2 50 Full -0.03 0.11 0.11 -0.04 0.11 0.12 -0.10 0.11 0.12

ALasso -0.06 0.12 0.12 -0.06 0.11 0.12 -0.10 0.11 0.12
Lasso -0.07 0.11 0.11 -0.10 0.11 0.11 -0.15 0.12 0.12
Oracle -0.03 0.11 0.11 -0.04 0.10 0.11 -0.09 0.11 0.11

100 Full -0.02 0.06 0.08 -0.05 0.06 0.08 -0.07 0.08 0.08
ALasso -0.04 0.07 0.08 -0.06 0.07 0.08 -0.08 0.08 0.08
Lasso -0.06 0.07 0.08 -0.09 0.07 0.08 -0.11 0.08 0.08
Oracle -0.03 0.07 0.08 -0.05 0.07 0.08 -0.07 0.08 0.08

200 Full -0.03 0.05 0.05 -0.06 0.05 0.06 -0.08 0.05 0.06
ALasso -0.04 0.05 0.06 -0.06 0.05 0.06 -0.09 0.05 0.06
Lasso -0.06 0.05 0.05 -0.09 0.06 0.06 -0.11 0.06 0.06
Oracle -0.03 0.05 0.05 -0.06 0.05 0.05 -0.08 0.05 0.06

.5 50 Full -0.03 0.11 0.11 -0.04 0.10 0.12 -0.09 0.11 0.12
ALasso -0.06 0.12 0.12 -0.05 0.10 0.12 -0.10 0.11 0.12
Lasso -0.08 0.12 0.11 -0.09 0.11 0.11 -0.15 0.12 0.12
Oracle -0.04 0.12 0.11 -0.03 0.10 0.11 -0.09 0.10 0.11

100 Full -0.03 0.07 0.08 -0.06 0.07 0.08 -0.07 0.09 0.08
ALasso -0.04 0.07 0.08 -0.07 0.07 0.08 -0.08 0.09 0.08
Lasso -0.07 0.07 0.08 -0.10 0.07 0.08 -0.12 0.09 0.08
Oracle -0.03 0.06 0.08 -0.06 0.07 0.08 -0.08 0.08 0.08

200 Full -0.03 0.05 0.05 -0.06 0.05 0.06 -0.08 0.05 0.06
ALasso -0.04 0.05 0.05 -0.07 0.05 0.06 -0.09 0.05 0.06
Lasso -0.05 0.05 0.05 -0.09 0.05 0.06 -0.12 0.05 0.06
Oracle -0.03 0.05 0.05 -0.06 0.05 0.05 -0.08 0.05 0.06

Avg. SE 0.01 0.01 <.005 0.01 0.01 <.005 0.01 0.01 <.005

ρ: intracluster covariance; Bias: average bias over 100 runs; SD: sample standard deviation

of estimates; SE: mean of estimated standard errors computed based on 500 bootstraps per

run; Avg. SE: estimated standard error averaged over all rows of table.
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Table B.22: Variable selection results for 20% Censoring and cluster size K = 5

No. of times selected in 100 runs
MAD

ρ n Methods ME β1 β2 β3 β4 β5 β6 SF Inc. Cor.
.2 50 Full 0.27 100 100 100 100 100 100 0 0 0

ALasso 0.25 100 100 100 100 12 11 69 0 3.59
Lasso 0.30 100 100 100 100 49 34 19 0 2.41
Oracle 0.22 100 100 100 100 0 0 100 0 4

100 Full 0.21 100 100 100 100 100 100 0 0 0
ALasso 0.20 100 100 100 100 3 5 86 0 3.82
Lasso 0.24 100 100 100 100 39 41 23 0 2.41
Oracle 0.18 100 100 100 100 0 0 100 0 4

200 Full 0.19 100 100 100 100 100 100 0 0 0
ALasso 0.18 100 100 100 100 7 3 83 0 3.80
Lasso 0.22 100 100 100 100 44 34 23 0 2.51
Oracle 0.17 100 100 100 100 0 0 100 0 4

.5 50 Full 0.27 100 100 100 100 100 100 0 0 0
ALasso 0.25 100 100 100 100 10 10 70 0 3.62
Lasso 0.30 100 100 100 100 48 42 15 0 2.31
Oracle 0.22 100 100 100 100 0 0 100 0 4

100 Full 0.22 100 100 100 100 100 100 0 0 0
ALasso 0.21 100 100 100 100 4 9 79 0 3.75
Lasso 0.26 100 100 100 100 24 36 29 0 2.76
Oracle 0.20 100 100 100 100 0 0 100 0 4

200 Full 0.19 100 100 100 100 100 100 0 0 0
ALasso 0.18 100 100 100 100 4 3 87 0 3.85
Lasso 0.22 100 100 100 100 32 31 28 0 2.74
Oracle 0.17 100 100 100 100 0 0 100 0 4
Avg. SE 0.02

ρ: intracluster covariance; MAD ME: average of mean absolute deviation of model error

across 100 runs; SF: number of times the true model is chosen among 100 runs; Inc. and

Cor.: mean number of incorrect and correct 0’s selected, respectively; Avg. SE: estimated

standard error averaged over all rows of table.
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Table B.23: Estimation of non-zero coefficients for 40% Censoring and cluster size K = 5

β1 = 0.5 β2 = 1 β3 = 1.5
ρ n Methods Bias SD SE Bias SD SE Bias SD SE
.2 50 Full -0.05 0.12 0.15 -0.09 0.10 0.15 -0.18 0.13 0.16

ALasso -0.09 0.14 0.15 -0.12 0.11 0.16 -0.20 0.14 0.17
Lasso -0.10 0.12 0.14 -0.15 0.11 0.15 -0.25 0.14 0.16
Oracle -0.05 0.13 0.15 -0.09 0.11 0.15 -0.19 0.13 0.16

100 Full -0.07 0.08 0.11 -0.10 0.09 0.11 -0.15 0.09 0.12
ALasso -0.09 0.09 0.11 -0.12 0.09 0.11 -0.16 0.09 0.12
Lasso -0.11 0.08 0.10 -0.16 0.10 0.11 -0.21 0.10 0.11
Oracle -0.06 0.08 0.11 -0.11 0.09 0.11 -0.15 0.09 0.12

200 Full -0.06 0.05 0.07 -0.11 0.06 0.08 -0.16 0.07 0.08
ALasso -0.07 0.06 0.08 -0.12 0.06 0.08 -0.16 0.07 0.08
Lasso -0.09 0.05 0.07 -0.15 0.06 0.08 -0.20 0.07 0.08
Oracle -0.06 0.06 0.07 -0.12 0.06 0.08 -0.15 0.07 0.08

.5 50 Full -0.06 0.11 0.15 -0.10 0.12 0.15 -0.18 0.12 0.17
ALasso -0.10 0.13 0.15 -0.12 0.13 0.16 -0.21 0.13 0.17
Lasso -0.12 0.12 0.14 -0.16 0.13 0.15 -0.26 0.14 0.17
Oracle -0.06 0.11 0.15 -0.10 0.13 0.15 -0.19 0.12 0.16

100 Full -0.05 0.08 0.11 -0.11 0.09 0.11 -0.14 0.09 0.12
ALasso -0.08 0.08 0.11 -0.12 0.08 0.12 -0.16 0.09 0.12
Lasso -0.10 0.08 0.11 -0.16 0.09 0.11 -0.20 0.10 0.12
Oracle -0.06 0.08 0.11 -0.11 0.08 0.11 -0.15 0.09 0.12

200 Full -0.06 0.05 0.07 -0.12 0.06 0.08 -0.17 0.06 0.08
ALasso -0.07 0.06 0.08 -0.13 0.06 0.08 -0.17 0.06 0.08
Lasso -0.09 0.06 0.07 -0.16 0.07 0.08 -0.21 0.07 0.08
Oracle -0.06 0.06 0.07 -0.12 0.05 0.08 -0.16 0.07 0.08

Avg. SE 0.01 0.01 <.005 0.01 0.01 <.005 0.01 0.01 <.005

ρ: intracluster covariance; Bias: average bias over 100 runs; SD: sample standard deviation

of estimates; SE: mean of estimated standard errors computed based on 500 bootstraps per

run; Avg. SE: estimated standard error averaged over all rows of table.
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Table B.24: Variable selection results for 40% Censoring and cluster size K = 5

No. of times selected in 100 runs
MAD

ρ n Methods ME β1 β2 β3 β4 β5 β6 SF Inc. Cor.
.2 50 Full 0.41 100 100 100 100 100 100 0 0 0

ALasso 0.42 96 100 100 100 16 11 63 0.04 3.54
Lasso 0.48 98 100 100 100 52 45 9 0.02 2.12
Oracle 0.38 100 100 100 100 0 0 100 0 4

100 Full 0.38 100 100 100 100 100 100 0 0 0
ALasso 0.38 100 100 100 100 10 13 67 0 3.62
Lasso 0.45 100 100 100 100 43 46 16 0 2.32
Oracle 0.36 100 100 100 100 0 0 100 0 4

200 Full 0.36 100 100 100 100 100 100 0 0 0
ALasso 0.36 100 100 100 100 7 5 73 0 3.64
Lasso 0.42 100 100 100 100 45 45 14 0 2.19
Oracle 0.35 100 100 100 100 0 0 100 0 4

.5 50 Full 0.42 100 100 100 100 100 100 0 0 0
ALasso 0.43 99 100 100 100 12 14 63 0.01 3.45
Lasso 0.50 100 100 100 100 47 48 12 0 2.13
Oracle 0.37 100 100 100 100 0 0 100 0 4

100 Full 0.38 100 100 100 100 100 100 0 0 0
ALasso 0.39 100 100 100 100 13 10 72 0 3.56
Lasso 0.44 100 100 100 100 44 39 16 0 2.29
Oracle 0.37 100 100 100 100 0 0 100 0 4

200 Full 0.38 100 100 100 100 100 100 0 0 0
ALasso 0.38 100 100 100 100 9 9 71 0 3.63
Lasso 0.43 100 100 100 100 35 50 13 0 2.22
Oracle 0.36 100 100 100 100 0 0 100 0 4
Avg. SE 0.01

ρ: intracluster covariance; MAD ME: average of mean absolute deviation of model error

across 100 runs; SF: number of times the true model is chosen among 100 runs; Inc. and

Cor.: mean number of incorrect and correct 0’s selected, respectively; Avg. SE: estimated

standard error averaged over all rows of table.


