
ABSTRACT

CAI, GANGSHU. Flexible Decision-Making in Sequential Auctions. (Under the direction of As-

sistant Professor Peter R. Wurman).

Because sequential auctions have permeated society more than ever, it is desirable for

participants to have the optimal strategies beforehand. However, finding closed-form solutions to

various sequential auction games is challenging. Current literature provides some answers for spe-

cific cases but not for general cases. A decision support system that can automate optimal bids

for players in different sequential auction games will be useful in solving these complex economic

problems, which requires not only economic but also computational efficiency.

This thesis contributes in several directions. First, thisdissertation derives results related

to the multiplicity of equilibria in first-price, sealed-bid (FPSB) auctions, and sequential FPSB

auctions, with discrete bids under complete information. It also provides theoretical results for

FPSB auctions with discrete bids under incomplete information. These results are applicable to

both two-person and multi-person cases.

Second, this thesis develops a technique to compute strategies in sequential auctions. It

applies Monte Carlo simulation to approximate perfect Bayesian equilibrium for sequential auctions

with discrete bids and incomplete information. It also utilizes the leveraged substructure of the game

tree which can dramatically reduce the memory and computation time required to solve the game.

This approach is applicable to sequences of a wide variety ofauctions.

Finally, this thesis analyzes the impact of information in sequential auctions with contin-

uous bids and incomplete information when bids are revealed. It provides theoretical results espe-

cially the non-existence of pure-strategy symmetric equilibrium in both the symmetric sequential

FPSB and the symmetric sequential Vickrey auctions.
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Chapter 1

Introduction

Auctions have permeated into our society more than ever. More and more companies

utilize auctions as an important channel in marketing theirproducts. Millions of people purchase

commodities from Internet auction sites, such as eBay, Priceline.com, Yahoo Auctions, and Amazon

Auctions. As a glimpse of the size of these auction markets, in 2003 the gross revenue of eBay

reached 15 billion [34].

What is an auction? An auction is a market institution in which prices and resource

allocation are determined by an explicit set of rules on the basis of bids from the market participants

[62].

An auction is a dynamic pricing tool that allows sellers and buyers to reach an agreement

on prices and allocations. Either sellers or buyers or thirdparties can initiate an auction. Sellers

might want to utilize auctions to sell items at a higher priceto some more affordable customers,

and hence to increase the overall revenue; while buyers might enjoy a more flexible market when

participating in auctions and avoid overpaying. Usually inauctions, the market is efficient when the

buyers with the highest valuation win the items.

The research on auctions has burgeoned in the past decades. Many auction mechanisms,

especially the standard auctions like the English, the Dutch, the first-price sealed-bid, and the Vick-

rey auctions [41], have been discussed in great detail in literature (see, for example [41, 51, 62, 72,

73]). The auction mechanisms discussed in this thesis include:

• First-Price Sealed Bid (FPSB) Auction: In the first-price sealed-bid auction, each bidder
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submits a single bid independently, without observing others’ bids, and the winner with the

highest bid pays the price of the highest bid.

• Second-Price Sealed Bid (SPSB orVickrey) Auction: In the Vickrey auction, each bidder

submits a single bid independently, without observing others’ bids, and the winner with the

highest bid pays the price of the second highest bid.

• English Auction: In the English auction, the price is successively increased until only one

bidder remains, and the winner pays the final price.

• Dutch Auction: In the Dutch auction, the auctioneer starts at a high price, and then lowers

the price continuously. The first bidder who calls out wins the object and pays at the current

price.

• Mth-Price Auction: There areM objects for sale in anMth-price auction. InMth-price

auctions, winners pay at the price of the lowest winning bid.The Mth-price is a little bit

different from theuniform auction [106], in which winners pay the highest rejected bidor

(M + 1)th price, like in the Vickery auction.

• Pay-Your-BidAuction: A pay-your-bidauction is a multi-object auction, in which winners

pay the prices they bid.Pay-your-bidauctions are also classified asdiscriminatoryauctions

in some literature [106], because winners pay different prices for identical items.

Wurman, et al. present an auction parametrization which is useful for designing auction

mechanisms [112]. In their work, the parameterization of the auction design space is broad enough

to encompass most of the classic auctions and many others [109]. There are three axes are intro-

duced: bidding rules, clearing policy, and information revelation policy. The elements in each axis

are listed as following.1

1. Bidding Rules

• Restrictions on sellers; buyers; objects; number of auctions; expressiveness; bid refine-

ments; schedule; activity.

2. Clearing Policy

• Clear timing; closing conditions; matching function; tie breaking; auctioneer fees.

1Interested readers please refer to Wurman et al.[112] for more details.
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3. Information Revelation Policy

• Price quotes; quote timing; order book; transaction history.

A sequential auctions is a market scenario that consists of asequence of individual auc-

tions. In both local auction houses and on-line auction sites it is quite common to see identical or

nearly-identical items sold in a sequence. Examples include auctions for electronic devices, art,

wine, fish, flowers, mineral rights, satellite broadcast licenses, government debts, and many oth-

ers [27]. Among those reported in the academic literature are the sequential sale of 120 identical

cases of wine in 1990 at Christie’s of Chicago [63] and the sale of pelts on the Seattle Fur Ex-

change [52]. eBay, the world’s largest electronic auction,can be viewed as an unending series of

auctions for hundreds of thousands of nearly identical items.

The vast number of trading opportunities and the increasingly fluid markets bolsters the

need for automated trading support in the form oftrading agents—software programs that partici-

pate in electronic markets on behalf of a user. Simple bidding tools, like eSnipe2 and AuctionBlitz3

enable bidders to automate submission of last-second bids on eBay. However, these tools lack the

sophistication that bidders require when faced with a plethora of sequential auctions possibly hosted

at multiple auction sites.

The literature on sequential auctions dates back to Vickrey[102], in which he obtains an

equilibrium solution for a sequence of first-price auctionswith bidders whose single-unit-demand

valuations are drawn from a uniform distribution. Since Vickrey’s original work, a great deal of

research has been directed towards understanding sequential auctions. Milgrom and Weber [74]

discuss the equilibrium solutions and price trends under more general assumptions. The following

year, Weber published a sequential auction model [106] thatserved as a foundation for many of the

papers that followed.

The rest of the literature on sequential auctions identifiesa wide variety of research areas.

Bernhardt and Scoones [5] find that a more dispersed valuation distribution on one item may yield

more revenue for the seller. Gale and Stegeman [27] model twocompletely informed and asymmet-

ric buyers bidding forN identical objects fromN sellers sequentially under complete information

by assuming that the value of one object depends on the numberof objects obtained. Branco [8]

models a two-unit sequential English auction when some bidders have superadditive (complemen-

tary) values for the objects. Sørensen [97] finds that, in theory, objects are allocated as a bundle

2http://www.esnipe.com
3http://www.auctionblitz.com
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more often than as independently in sequential auctions forcomplements.

A sequence of prices is amartingaleif prices drift neither up nor down over time [106].

Milgrom and Weber [74, 106] predict a martingale among the price trend in symmetric equilibrium

of single-unit demand sequential auctions. However, experiments often show the price declines,

which is called thedeclining price anomalyor afternoon effect[63, 85]. Beggs and Graddy [4]

report some empirical afternoon effect results from art auctions. Some researches find that the

anomaly is explained by varying the assumptions. For example, Engelbrecht-Wiggans finds that

prices will on average have a downwards trend in a sequence ofauctions for a large enough number

of stochastically equivalent objects with bounded values [17]. McAfee and Vincent explain that

sequential auctions with risk averse bidders will have a decreasing pattern of prices [63]. Gale

and Stegeman [27] claim prices decline weakly along any equilibrium path in a multi-unit demand

model with two asymmetric buyers. Katzman [39] concludes that the price trend may decrease in

expectation in a game of two second price auctions with multiunit demand, symmetric, incomplete

information, when there is a high degree ofex anteasymmetry of bidder beliefs.

Pitchik and Schotter [85] present some laboratory results from an experiment with budget-

constrained, perfectly informed bidders. They conclude that bidders attempt to exploit the con-

straints of others, and in doing so, bidders might bid up the prices in early stages. As a result,

the opponents might deplete their budgets and the later auctions might become less competitive

[41, 85].

It is commonly believed that bidders’ behaviors will changewhen they are forced to pay

an entry fee or when there is a reserve price. von der Fehr [103] shows that prices will typically

decline for later units in a model with participation constraints, e.g., entry fee. McAfee and Vincent

[64] prove revenue equivalence between repeated first priceand second price sequential auctions

with reserve price.

In symmetric, single-unit demand, risk-neutral settings,the revelation of winners and the

winning bids in the previous auctions has no effect on the forthcoming auction [106]. Jeitschoko

[36] points out that it might be due to the continuous properties of valuation distribution. He also

explicitly models an auction where each bidder has only two types, either high valuation or low

valuation. In this model, the winner’s price information revealed in the first auction has significant

influence on the equilibrium bids for both bidders in the second auction. The seminal work by

Ortega-Reichert [86] shows a learning process from the signals revealed in the first stage in a two

stage model. Hausch [32] generalizes Ortega-Reichert’s model and provides necessary conditions

for symmetric equilibrium in sequential second-price and first-price auctions. Engelbrecht-Wiggans
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[20] finds that in two-bidder, multi-unit demand, sequential auctions, an uninformed bidder may

have strictly more expected profit than an informed bidder.

Elmaghraby [15] shows that the order in which heterogeneousitems are auctioned will

influence the outcome. Gale and Hausch [25] show that giving the buyer the right-to-choose her

preferred item from the remaining items induces declining prices. Jeitschko [37] modelsn ≥ 3

single-unit demand bidders in a sequential auction with a stochastic number of identical objects.

Gale, Hausch and Stegeman [26] model two identical suppliers in sequential second price auctions

with subcontracting. Krishna [50] shows that deterring entry at one stage affects the cost of doing

so in later stages in a monopolist model.

Recently, the design of more sophisticated trading agents has attracted the attention of

researchers in artificial intelligence and other related fields [9, 30, 90, 100, 108]. In most of these

studies, the agents are designed for a particular marketplace and lack flexibility to adapt to other

market configurations.

The vast majority of auction research models them as games. An equilibrium strategy is

a stable solution in which no player wants to unilaterally deviate from the strategy profile. Thus,

finding optimal strategies in auctions is naturally transformed to finding the equilibrium strategies

in the auction games.

The literature on sequential auctions provides answers forspecific cases but not for gen-

eral cases. When the strategy space is discrete and finite, however, the cost of doing the computation

increases exponentially in terms of memory and computationtime. When the strategy space is con-

tinuous or infinite, to date, there are few explicit and generic algorithms for solving this kind of

infinite games. A decision-making system in these complex economic settings require not only

economic but also computational efficiency.

There are two research gaps to be bridged. First, as more and more auction mechanisms

are introduced, it is useful to provide closed-form solutions. Second, urged by the need of industrial

application, it is useful to design heuristic algorithms for large-scale problems which have not yet

been solved analytically.

The flexible decision-making system should be designed to generate the optimal strategies

for agents automatically, as illustrated in Figure 1.1.4 To make use of the system, we need to specify

our agent, the environment, and the market model.

• Our agent:Our agent is described by a utility function, a preference structure, and a distribu-

4This figure is a modified version of Figure 1, an architecture for trading agents, in [110].
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Flexible
Decision-Making

System

EnvironmentOur Agent
Market
Model

 Strategies

Figure 1.1: An architecture for a flexible decision-making system.

tion function, etc.

• Environment:The environment might be defined by a set of auction rules.

• Market model:We model other agents explicitly. The system knows about whether the agents

know the strategies of each other and what strategies the other agents use. For example, some

agents may use equilibrium strategies while the others use myopic strategies. A market model

also includes whether the other agent’s preferences and other information are known [110].

This thesis aims to provide answers to several issues. On thetheory side, I provide closed-

form solutions to FPSB auctions and sequential FPSB auctions. I also analyze the non-existence

of equilibrium in two sequential auction models. On the algorithm side, I present a heuristic algo-

rithm as part of a flexible decision-making system to computesolutions for sequential auctions with

discrete bids [10].

In Chapter 2, I review some basic concepts of game theory and provide a brief survey on

Nash equilibrium and its refinements. Chapter 3 provides a review of the state-of-art algorithms for

computing equilibria.

In Chapter 4, I analyze the FPSB auctions, including sequential FPSB auctions, with

discrete bids. An FPSB auction is a special case of sequential FPSB auctions when the number of

items is equal to one. I discuss the existence and multiplicity of equilibria in the FPSB auctions
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with discrete bids under both complete information and incomplete information.

Chapter 5 focuses on a flexible decision-making system for sequential auctions with dis-

crete bids. I present a heuristic approach using Monte-Carlo approximation. This system enables

users to compute solutions for different sequential auction models more efficiently than existing

algorithms.

In Chapter 6, I study the impact of information in sequentialauctions when altering dif-

ferent information revelation policies. I prove the non-existence of pure-strategy symmetric equilib-

rium in both symmetric sequential first-price sealed-bid auctions and symmetric sequential Vickrey

auctions.

Finally, Chapter 7 summarizes the contributions of the thesis and discusses directions for

future work.
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Chapter 2

Strategic Equilibria

In a broad sense, a game may refer to any social situation involving two or more individu-

als [78].1 Individuals are also called players, agents, or decision-makers. Each individual is usually

assumed to berational, which implies that every player always maximizes his utility [28]. Game

theory is the study of the noncooperation and cooperation between these rational players.

An equilibrium is defined as a state of a system that the system tends to move back to the

same state when the system is perturbed from its original state. Equilibrium in a game is also called

strategic equilibrium. Finding strategic equilibrium in games is a major task of game theorists.

2.1 Basic Concepts

For the sake of completeness, a brief review of the relevant definitions is provided.

An eventE is common knowledgeif all players know thatE occurred, and all players

know that all players know thatE occurred, and so on, ad infinitum.

A game is ofcertainty if there is no stochastic events, which are typically characterized

as a move by nature. If there is a move by nature, the game is said to haveuncertainty.

A game is one ofsymmetric informationif an agent’s information state has the same ele-

ments as those of every other agent. Otherwise the game is said to be one ofasymmetric information.

1There are different definitions and understandings of a game. In this thesis, we will use the definition by Myerson
[78]. Thus, a game is a real world noncooperation or cooperation situation. This will also help us understand the
definitions of game models. Under this definition, auctions are games.
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A game is one ofincomplete informationif some or all of players lack full information

about the timing of the game, the set of strategies, or the payoffs of players [28]. For example,

nature moves first and is unobserved by at least one of the agents. Otherwise, the game is one of

complete information.

A game is one ofperfect informationif each agent knows every action of the agents that

moved before him at every point. Otherwise, it is one ofimperfect information.

A strategic form game isfinite if the number of players and the number of strategies is

finite.

There are two kinds of games that have complete information but imperfect information.

In the first scenario, the agents move simultaneously. In thesecond scenario, nature moves without

revealing information immediately to all agents.

2.2 Game Models

A game model is a description of a game. Game models are also called game forms. Different forms

abstract the game from a different perspective. To find a solution for a game, one builds a model of

the game and then solves for an equilibrium of the model [23].Due to variations in game models

and copious equilibrium concepts, it is possible that we might have different answers as well as

different specific solution procedures to the same game.

The two most important game forms are theextensiveform and thenormal (or strategic)

form. In addition to these two forms, there are also theagent normalform and thereduced normal

form. Due to limited space, we discuss only these four game models.2

2.2.1 Strategic Form and the Normal Representation

A strategic form has three elements: a set ofplayers, A, a set of possible(pure) strategies,{Si}i∈A,

and a set ofutility (payoff) functions, {ui}i∈A. Thus, a strategic form gameΓ can be denoted by

Γ = {A, {Si}i∈A, {ui}i∈A}.

We letσ denote astrategy profileof the game. Letσi be a strategy profile of playeri and

σi,s be the choice probability of each pure strategy,s, in playeri’s strategy set,Si. If σi,s ∈ {0, 1},

we callσ a pure strategy profile. Otherwise,σ is amixed strategy profile. For example, in a two-

2For more game models, interested readers may refer to [23, 78] or other game theory literature.
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Bidder 2 (v=2)
1 2

Bidder 1 1 0.75, 0.5 0,0
(v=2.5) 2 0.5, 0 0.25, 0

Table 2.1: A sealed bid auction game.

player game, each player has two actions,{a, b}. For a pure strategy profile in which Player 1 uses

actionb and Player 2 uses actiona, the profile is written asσ = {b, a}. For a mixed strategy profile

in which Player 1 has1/2 probability to use actiona and Player 2 has1/3 probability to use action

a, we haveσ = {(1/2, 1/2), (1/3, 2/3)}.

As an example, a strategic form of a sealed bid auction, with two players and two bid

values for each player, can be expressed as in Table 2.1, which is thenormal representationof the

game. In strategic forms, game theorists assume that players choose their strategies independently

[80]. So, all the strategies in strategic form can be expressed in independent vectors. As a result, a

strategic form game is equivalent to a normal form game.

2.2.2 Extensive Form

The extensive form is more richly structured than the normalform. Normally, we use a tree graph

to depict an extensive form game. The tree consists of a set ofbranches, each of which connects

two nodes. The first node is calledroot, which represents the beginning of the game and the bottom

nodes are calledterminal nodesand represent the end of the tree.

An extensive form game,Γe, includes six elements in which the first three elements are

almost the same as in a strategic form game [23, 114].

1. A set ofplayers, A, each of which has a player label.

2. The strategy spaceSi(ξ) of each player,i, at each information state (also called information

set),ξ. An information stateincludes one player, the nodes at which the player has the same

information, and the strategy space of the player at this information state. An information state

includes two or more nodes if the player cannot distinguish between the situations represented

by these nodes [78]. A node,d, may have several branches, which represent the feasible

actions of the specific player. The feasible actions of the player can vary with position in the

game tree.
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Figure 2.1: The extensive form of Table 2.1.

3. The players’ payoff functions,{ui}i∈A. Normally, we label the payoff values at the terminal

nodes.

4. The order of moves, i.e., who moves when.

5. The information state,ξ, of each player when she will move. We denote the set of information

states asΞ.

6. The stochastic events, which are encoded chance nodes annotated with their probabilities.

An example is shown in Figure 2.1. The first “1” in “1.1” identifies Player 1, where the

second “1” identifies the first information state of Player 1.There are two “2.2”’s in the game which

indicates that there is only one information state for Player 2 because Player 2 cannot observe Player

1’s action. The single “1” and “2” along the branches are the feasible actions a player has in the

information state.

A behavioral strategy profilein extensive forms refers to a probability over the set of

possible strategies for each possible information state ofeach player. A behavioral strategy profile

is very similar to a strategy profile defined in the normal form. The difference is that a behavioral

strategy profile is related with information states. Letσ denote a behavioral strategy profile. Let

σξ,i be a behavioral strategy profile of playeri at information stateξ, andσξ,i,s be the choice

probability of each pure strategy,s, in playeri’s strategy set,Si(ξ), at information stateξ. Thus,

we haveσ = {σξ,i}i∈A = {σξ,i,s}s∈Si(ξ),i∈A. If σξ,i,s equals0 or 1, we callσ a pure behavioral

strategy profile. Otherwise,σ is a mixed behavioral strategy profile. For example, in Figure 2.2,

σ = {2, b, d} is a pure behavioral strategy profile, in which Player 1 selects action 1 at information

state 1, Player 2 selects actionb at information state 2, and Player 2 selects actiond at information

state 3. A mixed behavioral strategy looks like{2, (1/3, 2/3), (1/2, 1/2)}.
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Figure 2.2: An extensive form game with imperfect recall.� � � 	�	 � 	� 	 	 � 
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Figure 2.3: A perfect information game.

In extensive form games,perfect recallimplies that a player will remember all the earlier

information observed during the game, including her own past moves. Not all extensive form games

have perfect recall. In the information state “2.3” of Figure 2.2, Player 2 cannot remember her past

move and earlier information because she cannot recall which branch she just came from. Moreover,

perfect recall is not equivalent to perfect information, inwhich each information state is a singleton.

That is to say, perfect information is a stronger concept. For example, the extensive form game

shown in Figure 2.1 is perfect recall because every player can remember the previous information

and her past moves. However, Figure 2.1 is not a perfect information game because when Player 2

reaches state “2.2” she cannot determine which move player 1made.
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Bidder 2
1,1 1,2 2,1 2,2

Bidder 1 1 0.75, 0.5 0.75, 0.5 0,0 0,0
2 0.5, 0 0.25, 0 0.5, 0 0.25, 0

Table 2.2: The normal form representation of Figure 2.3.� � � ��� � �� �� � � � � � � � � � � � �� � �
Figure 2.4: An extensive form game corresponding to the gamein Table 2.3.

The Strategic Form Representation of Extensive Form Games

The normal form and extensive form are the two most common models for games. Even with these

two models, we might have different results when we solve thesame game.3

An extensive form can give us more information than a normal form game. It is possible to

convert an extensive form game to strategic form, but we may lose information about the sequence

of moves. To express this in normal form, we will assume that aplayer makes a complete contingent

plan in advance [23]. Let those strategies inΓe be the pure strategies inΓ and let payoff functions

be the same. Thus, the strategic form of the game in Figure 2.1can be represented as in Table 2.1.

In Figure 2.3, Player 2 has two information states corresponding to different moves by player 1.

Totally, there are four pure strategy profiles,{1,1},{1,2},{2,1},{2,2}, if represented in normal form.

As a result, the normal form of the extensive form game in Figure 2.3 can be expressed as in

Table 2.2.

It is not surprising that a normal form might have multiple extensive form representations.

Consider Figure 2.4. The normal form representation of thisgame is shown in Table 2.3, which is

very similar to Table 2.1. The only difference lies in that the payoff functions are the same when

3However, some researchers argued that different models of agame should provide the same solution. The reduced-
normal form is a result of this discussion.
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Bidder 2
1 2

Bidder 1 1 0.75, 0.5 0,0
2 0.5, 0 0.5, 0

Table 2.3: A sealed bid auction game corresponding to the game in Figure 2.4.� � � ��� � �� � � � �� �� � � � � � � � � � � � �� � � � �� � �
Figure 2.5: A different extensive form game of Table 2.3.

Player 1 chose “1” in both tables. Now, let us define an extensive form representing from the

normal form game as shown in Table 2.3. From the same normal form game, we may have two

different extensive form games, which are illustrated in Figure 2.4 and Figure 2.5. This interesting

phenomenon confirms that we might lose some information whena normal form is represented from

an extensive form.

Agent Normal Form

Defined by Selten [94], theagent-normal formrepresentation is a modification of the extensive

form, in which each information state in an extensive form game is associated with a different

“temporary” agent. Those temporary agents share the same payoffs with the original agent. Some

literature [23] also calls agent-normal form theagent strategic formor multiagent representation

form. Similar to the relation of the normal form to the extensive form, amultiagent representation

is a game in strategic form representing the corresponding “temporary agent” extensive form game.

To show the difference between the normal representation and the multiagent representa-

tion, consider the game in Figure 2.3. We have already shown the corresponding normal form in

Table 2.2. The multiagent representation of Figure 2.3 is shown in Table 2.4. The set of players in
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Bidder 2
1 2

Bidder 3 Bidder 3
1 2 1 2

Bidder 1 1 0.75,0.75,0.5 0.75,0.75,0.5 0,0,0 0,0,0
2 0.5,0.5,0 0.25,0.25,0 0.5,0.5,0 0.25,0.25,0

Table 2.4: The multiagent representation form of the game inFigure 2.3.

Table 2.2 isA = {1, 2}; the strategy profiles areS1 = {1, 2} andS2 = {(1, 1), (1, 2), (2, 1), (2, 2)};

and the payoff functions are shown in Table 2.2. In comparison, the set of players in Table 2.4 is

A = {1, 2, 3}; the strategy profiles areS1 = {1, 2}, S2 = {1, 2}, andS3 = {1, 2}; and the payoff

functions are shown in the Table 2.4. These two representations may result in different solutions as

shown in a later discussion on perfect equilibrium, in the sense that the multiagent representation

form is to rule out correlation between the “mistakes” of thesame player in different stages of the

game [94].

Reduced Normal Form

A reduced normal form,G, is a strategic form in which all pure strategies of a player that are convex

combinations of other pure strategies of the same player have been deleted [43]. Let us examine

some prerequisite concepts.

Definition 2.2.1. Given any two strategies,ci anddi, in the strategy setSi of playeri, ci anddi are

said to bepayoff equivalentif and only if for alls−i ∈ S−i andj ∈ A

uj(s−i, ci) = uj(s−i, di).

For example, the normal representation of the game in Figure2.6 is shown as in Table 2.5.

From the definition, we know that2a, 2b, and2c are payoff equivalent to each other. When two

strategies are payoff equivalent, a player would be indifferent between them. In other words, we

may replace the set of payoff equivalent strategies with a single strategy. A normal representation, in

which we replace all sets of payoff equivalent strategies with a single strategy in the corresponding

sets is called apurely reduced normal representation. The purely reduced normal representation of

Figure 2.6 is shown in Table 2.6.



16� � � ��� � �  � ! "  # $ " � � "  % � ! "  � & !� � � � '� � '# $� "   " �% � & ! "  � !
Figure 2.6: An extensive form game that can be reduced using reduced normal form.

Bidder 2
1 2

1a 1,0 0,1
1b 0.75,0.5 0.5,0.75

Bidder 1 1c 0,1 1,0
2a 0.5, 0 0.5, 0
2b 0.5, 0 0.5, 0
2c 0.5, 0 0.5, 0

Table 2.5: The normal form representation of Figure 2.6.

Bidder 2
1 2

1a 1,0 0,1
1b 0.75,0.5 0.5,0.75

Bidder 1 1c 0,1 1,0
2. 0.5, 0 0.5, 0

Table 2.6: The purely reduced normal form representation ofFigure 2.6.
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Bidder 2
1 2

1a 1,0 0,1
Bidder 1 1c 0,1 1,0

2. 0.5, 0 0.5, 0

Table 2.7: The fully reduced normal form representation of Figure 2.6.

Definition 2.2.2. A strategyei in Si is randomly redundant if and only if it is a convex combination

of the other pure strategies, where there is a probability distribution σi in ∆(Si), the set of all

randomized strategies for Playeri, such thatσi(ei) = 0 and for all s−i ∈ S−i andj ∈ A

uj(s−i, ei) =
∑

di∈Si

σi(di)uj(s−i, di).

For example, the strategy1b is redundant because its payoff function can be expressed by

a convex combination of strategies1a and1c. A purely reduced normal representation is a fully

reduced normal representation if it deletes all the randomly redundant strategies. The fully reduced

normal representation of Figure 2.6 is shown in Table 2.7. Unless specified otherwise, we regard

the reduced normal representation as the fully reduced normal representation.

2.3 Equilibrium Concepts

A static (simultaneous) gameis one in which players will move simultaneously, without knowledge

of the strategies that are being chosen by other players. A static game can be easily modeled as a

normal form game.

A dynamic gamewill specify the order of moves. Unlike static games, players have at

least some information about the choices made on past moves.The extensive form is usually used

to express a dynamic game.

There are three milestones in the history of equilibrium concepts. The first one is the

development ofNash equilibriumfor static games with complete information. Nash equilibrium

is the most famous and the most important equilibrium concept in game theory. John Nash was

the first person to formally define the equilibrium of a non-cooperative general-sum game [80, 83].
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Player 2
Head Tail

Player 1 Head 1,-1 -1,1
Tail -1,1 1,-1

Table 2.8: A game of matching pennies.

The second milestone was the introduction ofsubgame perfect equilibriumfor dynamic games with

complete information. Selten [94] refines the concept of Nash Equilibrium to subgame perfect

equilibrium which can be applied to dynamic games and is computed using backward induction.

The third milestone is Harsanyi’s Bayesian equilibrium [31] which enables the agents in incomplete

information games to choose strategies conditionally based on the perceptions of what the other

agents are likely to do.

We discuss these three milestone equilibria together with other important equilibria in the

following.

2.3.1 Nash Equilibrium

A Nash equilibriumdescribes a state of a multi-agent system in which no one can benefit by uni-

laterally changing her strategy. For example, in the game ofFigure 2.1, the strategy profiles{1, 1}

and{2, 2} are Nash equilibria.

We may explain the Nash equilibrium in another way. Suppose there is one agreement

that all players promised to comply with prior to the game. This agreement isself-enforcing(or

strategically stable) if no one would prefer to deviate and choose some strategy other than that

specified in the agreement. Thus, to be self-enforcing, it isnecessary that the agreement form a

Nash equilibrium [49].

It is worth noting that, at the beginning of game theory, “more attention was focused on the

cooperative analysis that von Neumann favored” [80]. Together with von Neumann’s “cooperative”

game theory, Nash equilibrium provides a “complete generalmethodology” to analyze all games

[80]. In fact, a cooperative game can be reduced to a non-cooperative games in which “the steps of

negotiation become moves” in the non-cooperative game [83]. Thus, Nash equilibrium applies to

both cooperative games and non-cooperative games.

It was Nash’s main contribution to show thatevery finite game has a Nash equilibrium
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Female
Badminton Movie

Male Badminton 2,1 0,0
Movie 0,0 1,2

Table 2.9: Battle of the Sexes.

[83]. However, not every game has pure strategy Nash equilibrium; some games may have only

mixed strategy equilibria. A classic example is “matching Pennies”, shown in Table 2.8. In this

game, two players simultaneously announce heads or tails. If the announcement matches, Player 1

wins; otherwise, Player 2 wins. There is no pure strategy Nash equilibrium in this game. The only

stable situation is that both players play randomly betweentheir two possible pure strategies with

probabilities(1/2, 1/2).

A game may have more than one Nash equilibrium. This problem often makes it hard

to predict which Nash equilibrium will be played, and may complicate the computation of Nash

equilibrium. We call this problemmultiplicity. To solve this problem, game theorists try to provide

some basis for claiming one equilibrium is better than another.

An allocation isPareto efficientif no agent can be better off without making the others

worse off. One criterion to find “better” equilibria is to look for Pareto efficient outcomes within the

set of Nash equilibrium. If there are any overlaps, we call these overlapping Nash equilibriaPareto

dominant. For example, in the game of Figure 2.1, the strategy profile{1, 1} is Pareto dominant

{2, 2}, and we can argue that it is a better equilibrium. However, this variant is often not conclusive.

Focal-point Effect TheFocal-point effectargues that some of the given multiple Nash

equilibria will be more plausible due to special propertiesthey have. For example, suppose there

are two Nash equilibria in one game, one pure strategy and another one mixed strategy. Some

theorists argue that it is more preferable for the players toplay the pure strategy [78]. Another

focal-point effect example is Battle of the Sexes shown in Table 2.9.{Badminton,Badminton}

and{Movie,Movie} are two Nash equilibria. However, suppose the female has some priority in

the relationship; both players may be able to determine that{Movie,Movie} will likely be the

final result.

A (strongly) dominant strategyis the only optimal strategy for an agent no matter what

strategies the other agents choose. If every agent has a dominant strategy, the set of these dom-
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prisoner 2
Testify Conceal

prisoner 1 Testify -3,-3 0,-5
Conceal -5,0 -1,-1

Table 2.10: A game of prisoner’s dilemma.( ) ( *(* ) *( *+ ) , - . + ) - + . + * ) *( *+ ) , - . + ) - + . +* ) /( * + ) * - . ++ ) - . + * ) /( * + ) * - . ++ ) - . +0 1 2 3 4 5 6 7 8 9 7 0 : 2 3 4 5 6 7 8 9 5 0 ; 2 3 4 5 6 7 8 9 <
Figure 2.7: Subgame illustration of the game in Figure 2.3.

inant strategies is called adominant equilibrium. A dominant equilibrium is a Nash equilibrium.

A famous example is the Prisoner’s Dilemma game. As shown in Table 2.10, if both prisoners

do not testify, they each get−1 rewards; if both testify, they each get−3 rewards. If one tes-

tifies and the other does not, the former one gets0 reward while the latter one gets−5. In the

Prisoner’s Dilemma, each player has a dominant strategy. However, the resulting equilibrium is

Pareto dominated by an alternate outcome in which each player chooses the dominated strategy.

It turns out that{testify, testify} is the dominant strategy. It is worth noting that there is no

Pareto dominance among equilibria in this game because there is only one Nash equilibrium. In

fact,{testify, testify} is the only solution which is not Pareto efficient.

A dominant strategy is a very strict condition of Nash strategy. In most cases, there are

no, or only partially dominant strategies. After eliminating the dominated strategies, the remaining

agents may find that their strategies become dominant in the reduced game. If this process can be

continued until every agent eliminates all but one strategy, the game isdominance solvable. For

example, in the game of Figure 2.1, the strategy profile{1, 1} is a dominance solvable.
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2.3.2 Subgame Perfect Equilibrium

A subgame is a component of a game. Letx be a node of an extensive form game,Γe. Let g(x)

be the set of all nodes and branches that followx, including the nodex itself. The nodex is a

subrootif, given any other node,x
′

, in Γe, which happens at the same time atx or thereafter, either

g(x
′

) ∩ g(x) = ∅ or g(x
′

) ⊆ g(x). We refer tog(x) as a subgame,γe
x, of Γe. Γeis a subgame

itself. For example, the game in Figure 2.3 has three subgame, as shown in Figure 2.7. In another

example shown in Figure 2.1, the only subgame is the game itself. Because the information state of

Player 2 cannot be separated, and the closest root of both nodes of this information state is the root

of information state 1.

A behavioral strategy profile is asubgame perfect equilibriumif it introduces a Nash equi-

librium to every subgame [94]. If there is more than one subgame inΓe, we may find anequilibrium

path, in which, the restriction of the behavioral strategies to each subgame is an equilibrium. Let

us look at the game in Figure 2.7 again. The Nash equilibrium of subgameb is {1}. In subgamec,

either{1} or {2} could be the equilibrium solution for Player 2. Regardless of which one Player

2 picks, or whether she chooses a convex combination in subgamec, Player 1 will choose strategy

{1} in subgamea. Thus, there is only one subgame perfect equilibrium in thisgame, rather than

two Nash equilibria as shown in Figure 2.3.

The concept of subgame perfect equilibrium is stronger thanNash equilibrium. If there is

only one subgame inΓe, each subgame perfect equilibrium is a Nash equilibrium, and vice versa.

However, if there is more than one subgame inΓe, the set of Nash equilibrium is a superset of

subgame perfect equilibrium while every subgame perfect equilibrium is a Nash equilibrium.

Problems in Subgame Perfect Equilibrium Subgame perfect equilibrium is normally computed

by backward induction, in which we solve the subgames at the leaves and work our way up the tree.

The problem with backward induction is that it assumes the predictions of the agents’ behaviors

at the end of a game are credible even at the beginning [78]. Analternative method, introduced

by Fudenberg, Kreps, and Levine [22], isforward induction. Forward induction requires an agent

make decisions based on the information available in the earlier part of the game. For example,

consider the game in Figure 2.8. There are two subgame perfect equilibria in this game,{2, b, d}

and {1, a, c}. However, the strategy profile{2, b, d} will give Player 1 a lower payoff than the

payoff gained by choosing1 before the subgame. Thus, it is reasonable for Player 2 to infer that

the only reason that Player 1 will choose move1 at the first stage is that she expects(0.75, 0.25)
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Figure 2.9: Ann-player game illustrating subgame perfect equilibrium.

to happen in the subgame. As a result, Player 2 should choosec in the subgame, so{1, a, c} is the

only equilibrium in the forward induction.4 Thus, forward induction may provide different solutions

from backward induction. See page 192 in [78] for more examples.

Backward induction is not the only problem in subgame perfect equilibrium. Like Nash

equilibrium, subgame perfect equilibrium assumes that allplayers are perfectly rational. Thus, all

players expect an equilibrium in the whole game and the same equilibrium in every subgame. That

is to say, subgame perfect equilibrium does not allow for imperfect play in the game. Consider the

game in Figure 2.9.{b, b, ..., b} is the only subgame perfect equilibrium and only forward induction

equilibrium. However, there is one credible threat to{b, b, ..., b}. To show why, suppose that the first

player has probability of(1 − P ) to choosea. If all players have the same probability to do so, the

overall probability that all players will playb isPn. If n is large,Pn will be small. So, in this sense,

{b, b, ..., b} will not be a good solution. As a re-examination of his subgame perfect equilibrium

4A similar discussion can also be applied to sequential equilibrium. However, there will be one more equilibrium in
sequential equilibrium,{1, (0.25a + 0.75b), (0.6c + 0.4d)}, which is a mixed strategy profile. But,{1, a, c} is still the
only forward induction equilibrium.
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Bidder 2
Low Valuation High Valuation

c d c d
Bidder 1 a 0.75, 0.5 0,0 0.75, 1 0, 1

b 0.5, 0 0.25, 0 0.5, 0 0.25, 0.5

Table 2.11: An incomplete information sealed bid auction.

concept, Selten [94] introduces a small “mistake” for everypossible move of all players. We will

touch this concept in sequential equilibrium and (trembling hand) perfect equilibrium.

2.3.3 Bayesian Equilibrium

Nash equilibrium assumes complete information. Difficulties arise in games of incomplete infor-

mation in which players do not know each other’s characteristics and hence the payment functions

are no longer common knowledge. We illustrate this problem by discussing a two-person sealed

bid auction, illustrated in Table 2.11. In this game, if bidder 2 has a low valuation of one item,

{low, low} is a weakly dominant Nash equilibrium. However, if bidder 2 has a high valuation,

{high, high} is a weakly dominant Nash equilibrium. So, whether bidder 1 chooses low or high will

depend on whether bidder 2 has low valuation or high valuation.

Harsanyi [31] demonstrates that an incomplete informationgame can be transformed into

a game with imperfect information. This kind of transformation is calledHarsanyi transformation,

in which an incomplete information game is replaced by a gamewhere nature moves first (and

chooses the players’ types). As a result, we may have many complete information games with

probabilities in accordance with the types of the players.

Let Ti be a set of possible types of playeri, andT−i denote all possible combinations

of types for the players other than i. Letti be a typical type inTi, and lett−i be any possible

combination of types for the players other thani. Let pi be a probability function fromTi to

∆(T−i), which is the set of probability distributions overT−i. We definepi(t−i|ti) for playeri as

the probability that the other players havet−i while playeri is in ti. ui denotes the utility function

of playeri. We define aBayesian gameas a profile,

Γb = {A, {Si}i∈A, {Ti}i∈A, {pi}i∈A, {ui}i∈A}.

Thus, a strategy profile{σ1, σ2, σ3, ...} is aBayesian equilibriumif the strategy of each
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player is a best response conditional on expectations of others’ best responses, and no one wants to

move unilaterally.5 Let σ∗i (.|tj) denote the best response strategy profile of playeri given tj. We

have

σ∗i (.|ti) ∈ arg max
si∈Si

∑

t−i∈T−i

pi(t−i|ti)ui(si(ti), s−i(t−i)), (ti, t−i)).

To see how to calculate a Bayesian equilibrium, let us consider the example in Table

2.11. In this game, player 1 has incomplete information while Player 2 has complete information. If

Player 2 has a low valuation, Player 2 will playc becausec is a weakly dominant strategy; otherwise,

she will playd. We have

σ∗1(.|t2 = low) = a,

σ∗1(.|t2 = high) = b,

σ∗2(.|t2 = low) = c,

σ∗2(.|t2 = high) = d.

Suppose that the probability of Player 2’s valuation being low is p. So, for Player 1, the expected

payoff if she playsa is0.75p. If she playsb, the expected payoff is0.5p+0.25(1−p) = 0.25p+0.25.

The critical value ofp is p = 0.5. That is to say, if the probability of Player 2’s valuation being low

is less than0.5, Player 1 will playb. For more examples, refer to page 215 in [23].

2.3.4 Perfect Bayesian Equilibrium

In Bayesian equilibrium, each player has a subjective probability distribution over the possible

types of the other players. We refer to these subjective probability distributions asprior beliefs. The

players do not modify the prior beliefs in the process of the game. However, in multi-stage games,

players have the opportunity to observe the outcome of previous stages, and it is reasonable to think

that players will modify their prior beliefs in accordance with the new information. The updated

belief is called theposterior belief.

Perfect Bayesian equilibrium is an extension of subgame perfect equilibrium to incom-

plete information games. To formally define perfect Bayesian equilibrium, we letaξ
i be the action

of playeri at an information stateξ.6 Let p̃i(t−i|a
ξ
−i) be the posterior probability oft−i given that

5A Bayesian equilibrium is also called aBayes-Nash equilibrium, or expectation equilibrium.
6The difference between action and strategy is trivial and many researchers use these two words interchangeably. To

be precise, an action refers to a strategy that is used by one player and then is observed by the others.



25

playeri observes the other players’ moves leading to the information stateξ. A behavioral strategy

profile is aperfect Bayesian equilibriumif at each information stateξ, we have

1. A player’s strategy conditional onti is a best response to the other players’ best response. For

all i ∈ A andξ ∈ Ξ, we have

σ∗ξ,i(.|ti) ∈ arg max
si∈Si(ξ)

∑

t−i∈T−i

p̃i(t−i|a
ξ
i )ui(si, s−i, ti).

2. p̃i(t−i|a
ξ
−i) is updated fromaξ

i ands−i using Bayes’ rule whenever possible.

Thus, a perfect Bayesian equilibrium is a set of behavioral strategies and beliefs such that

strategies are optimal given the beliefs at any stage of the game. The beliefs are updated from prior

beliefs, equilibrium strategies, and observed actions using Bayes’ rule.

2.3.5 Sequential Equilibrium

In perfect Bayesian equilibrium, there is no explicit definition of posterior probability when the

observation probability is zero. As a result, there is no explicit definition of those strategies off the

equilibrium path [114]. In this sense, perfect Bayesian equilibrium cannot guarantee an equilibrium

solution for every subgame. Selten [94] introduces a concept referred to as “trembling hand per-

fection” to capture the notion that players may make errors with small probabilities. The trembling

hand is a vivid description of “slight mistake” in which a player will do something wrong because

she cannot hold her hand firmly. By introducing trembling, weenable the game to reach every

information state.

This concept is applied in both(trembling hand) perfect equilibriumandsequential equi-

librium. We introduce sequential equilibrium at first, because sequential equilibrium is simpler and

normally easier to compute.

Kreps and Wilson [48] define (σ, µ) as an assessment, whereσ is a behavioral strategy

profile andµ is a set of beliefs at all information states. LetΣ be the set of allσs. σi(ξ) denotes the

strategy profile of playeri at information stateξ andσ−i(ξ) denotes the strategy profile of all players

excepti at information stateξ. ui(ξ) denotes the utility of playeri at ξ. Let µi(ξ) be the posterior

probability distribution set of playeri at the information state,ξ. We useΨ to denote the set of all

(σ, µ). So, a pair (σ, µ) is asequential equilibriumif
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1. (σ, µ) is sequential rational, that is, for every information state ξ,

ui(ξ)(σ|ξ, µ(ξ)) ≥ ui(ξ)((σ
′

i(ξ), σ−i(ξ))|ξ, µ(ξ)),

for all i ∈ A, ξ ∈ Ξ andσ
′

∈ Σ.

2. (σ, µ) is consistent if there exists a sequence of strictly mixed (behavioral) strategy(σ̂k)∞k=1,

and associated beliefs(µk)∞k=1 determined by Bayes’ rule, such that

(σ, µ) = lim
k→∞

(σ̂k, µk).

There are two points worth noting. First, players will adhere to the equilibrium profileσ at

any information state including those off the equilibrium path. This is the same as subgame perfect

equilibrium. Secondly, the behavioral strategiesσ can be pure strategies, where(σ, µ) are limits

of mixed strategies and associated beliefs. For example, consider a simple game in which Player

1 has a two-action strategy space. Suppose thatσ1 = (1, 0) is the only pure strategy sequential

equilibrium for Player 1. As required by the trembling hand property, we letσ̂k
1 = (1 − ǫk, ǫk).

Whenk → ∞, we haveǫk → 0 and(σ̂k
1 , µ

k) → (σ1, µ).

2.3.6 Perfect Equilibrium

First, let us discuss perfect equilibrium in strategic forms. We follow the definition on page 216 in

[78]. Let Γ = (A, (Si)i∈A, (ui)i∈A) denote any finite game in strategic form. Let∆(Si) denote the

set of all probability distributions onSi and∆0(Si) denote the set of all probability distributions on

Si that assign positive probability to every element inSi. A strategy profileσ in ×i∈A∆(Si) is a

perfect equilibriumof Γ if and only if there exists a sequence(σ̂k)∞k=1 such that

1. σ̂k ∈ ×i∈A∆0(Si),

2. σi ∈ arg max
si∈∆(Si)

ui(σ̂
k
−i, si), and

3. lim
k→∞

σ̂k
i (si) = σi(si), for all i ∈ A and for allsi ∈ Si.

The first condition requireŝσk be a strictly mixed strategy profile in that every pure strat-

egy of every player should have strictly positive probability. This is the same to the requirement in

sequential equilibrium. The second condition asserts thatσi is a best response strategy profile given

everyσ̂k
−i. This is stronger than in sequential equilibrium, which requires only thatσ, the limit of
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Player 2
c d

a 0,1 0,1
Player 1 bx -1,2 1, 0

by -1,2 2,3

Table 2.12: A game in strategic form.

σ̂k, is a Nash equilibrium. The third condition tells us that a perfect equilibrium is the converging

limit of a sequence of Nash equilibria. This is a little bit different from sequential equilibrium,

which puts more credit on posterior probability so that we may tell which beliefs are “plausible”

[23].

However, for the purpose of perfectness, the strategic formis not an adequate represen-

tation of the extensive form [94]. In fact, a perfect equilibrium in strategic form may not even be

a subgame perfect equilibrium due to “difficulties which mayarise with respect to unreached parts

of the game ”[94]. To see why, let us look at the example in Table 2.12. In this game,{by, d} is

the only subgame perfect equilibrium. It is easy to understand that{by, d} is also a perfect equi-

librium. However,{a, c} is also a perfect equilibrium. Suppose Player 1 will playa and, with

some small probability,ǫ, tremble tobx andby, Player 2’s expected payoff is1 + 2ǫ if Player 1

playsc and is1 + ǫ if she playsd. Since1 + 2ǫ > 1 + ǫ, {a, c} is a perfect equilibrium. Some

argue that the mistakes happened in different stages of subgame may be correlated [114]. To re-

move such “difficulties”, Selten introduce “agent normal form as a more adequate representation

of games with perfect recall” [94], which requires that an agent behaves independently in different

stages such that an agent in a different stage looks like a different agent. Selten showed that every

perfect equilibrium is always subgame perfect in agent normal form games, but the reverse may not

hold.

2.3.7 Proper Equilibrium in Strategic Form

Proper equilibrium is a stronger equilibrium than perfect equilibrium, which requires a strictly pos-

itive probability for every pure strategy, but any “trembling” strategy is assigned an arbitrarily small

probability. Proper equilibrium furthermore requires that any pure strategy that would be a mis-

take for a player is assigned a much smaller probability thanany other strategy [78]. Myerson [77]
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Player 2
c d

ax 5,5 5,5
Player 1 ay 5,5 5,5

bx 7,7 4,0
by 0,0 3,3

Table 2.13: A normal form game.

defines thatσ is anǫ-proper equilibrium if and only if

1. σ ∈×i∈A∆(Si),

2. For allci, ei ∈ Si,

if µi(σ−i, [ci]) < µi(σ−i, [ei]), thenσi(ci) ≤ ǫσi(ei).

A randomized-strategy profileσ in ×i∈A∆(Si) is a proper equilibrium ofΓ if and only

if there exists a sequence(ǫ(k), σk)∞k=1 such that

1. For allk, σk is anǫ-proper equilibrium,

2. lim
k→∞

ǫ(k) = 0, for all k ∈ {1, 2, 3, ...}, and

3. lim
k→∞

σk
i (si) = σi(si), for all k ∈ {1, 2, 3, ...}, for all i ∈ A and for allsi ∈ Si.

As proved by Myerson [77], every proper equilibrium is a perfect equilibrium, but not

vice versa. Consider the game in Table 2.13, the strategy profile

{(1 − 7ǫ)[ax] + ǫ[ay] + ǫ[bx] + 5ǫ[by], (1 − ǫ)[c] + ǫ[d]}

is anǫ-perfect equilibrium. So,{ax, d} is ǫ-perfect, as long as0 < ǫ < 1/3. However,{ax, d} is

not anǫ-proper equilibrium. The reason is thatby is a worse mistake thanbx for Player 1 because

0ǫ+ 3(1− ǫ) < 6ǫ+ 4(1− ǫ). Theǫ-properness condition requires thatσ1(by)/σ1(bx) must be no

more thanǫ [78]. As a fact of matter,{bx, c} is the unique proper equilibrium in this game as long

asǫ < 2/3. This can be justified by the form

{(1 − 2ǫ− ǫ2)[bx] + ǫ[ax] + ǫ[ay] + ǫ2[by], (1 − ǫ)[c] + ǫ[d]}.
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Player 2
c d

Bidder 3 Player 3
e f e f

Player 1 a 0,0,0 0,0,2 0,2,0 2,0,0
b 0,2,0 2,0,2 2,0,2 0,2,0

Table 2.14: A 3-person game.

2.3.8 Persistent Equilibrium in Strategic Form

In the definitions of perfect equilibrium and proper equilibrium, trembles are forced when some

of the pure strategies have zero probability. Thus, given that no pure strategy has zero probability,

a Nash equilibrium is always perfect and proper [38]. However, this kind of strategy combina-

tion, referred to as aninner combination, is not always immune against trembles, and thus could

be unstable. Recall the “battle of the sexes” game in Table 2.9. {Badminton,Badminton},

{Movie,Movie}, and{(1/2Badminton+ 1/2Movie), (1/2Badminton+ 1/2Movie)} are the

only three Nash equilibria, which are also perfect and proper. However,{(1/2Badminton +

1/2Movie), (1/2Badminton+1/2Movie)} does not have neighborhood stability since any trem-

bles, like{((1/2+ ǫ)Badminton+(1/2− ǫ)Movie), (1/2+ ǫ)Badminton+(1/2− ǫ)Movie)}

will cause it to shift to{Badminton,Badminton}.

Here are some prerequisite definitions. Aretractof the gameΓ is defined as a subsetR of

S if R =×i∈A∆(Ri), with eachRi being a non-empty closed convex subset ofδ(Si). A retractR

is absorbinĝS if BR(σ) ∩R 6= 0 given thatŜ is a set of mixed strategieŝS ⊆ S and everyσ ∈ Ŝ.

That is, for every playeri there is aτi ∈ Ri such thatτi is a best response of playeri to σ ∈ R [38].

A retractR is persistentif it is a minimal absorbing retract. A strategy profileσ is a

persistent equilibrium ifσ is a Nash equilibrium and is a persistent retract [38].

Kalai and Samet prove that any finite game in strategic form has a persistent equilibrium

which is perfect and proper. However, there may exist some persistent strategies which are not

proper [38]. Let us look at an example, as shown in Table 2.14.In this game, every strategy profile

is persistent. However, the strategy{a, c, e} is not perfect.7

7See page 44 in [38] for the proof.
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Game A Game B

1.1 bcd e fg h d e fg h1.2

c 0.5,0.5

1.1

ba

2.2

e f

2.2

e f

c 0.5,0.5

0.75,0.75 0.25,0.250,00.25,0

0.75,0.75 0.25,0.250,00.25,0

Figure 2.10: Two extensive games with the same reduced normal form.

2.3.9 Stable Equilibrium

As we know, a game in normal form could have different equilibrium solutions, when compared

to those in extensive form. Consider the two games in Figure 2.10.8 The reduced normal form

game of these two games are the same; however,{c, f} and{a, e} are the perfect equilibria of

Game A, while{a, e} is the unique perfect equilibrium of game B. At the same time,backwards

induction of the extensive form and the iterated dominance of the normal form do not give us the

same “strategically stable equilibrium” [43]. Consider Game B in Figure 2.10 again. Strategyb of

player 1 is strongly dominated by strategyc. So,{a, e} should be the only equilibrium in iterated

elimination of dominated strategies.

Stable equilibrium is a concept developed by Kohlberg and Mertens [43] to solve the

above discrepancies. A reduced normal form,G, is where all pure strategies that are convex com-

binations of other pure strategies have been deleted [43]. Kohlberg and Mertens point out that a

strategically stable equilibrium should depend only on thereduced normal form of the game. A

strategically stable set of equilibria ofG must contain a strategically stable set of equilibria of any

G
′

, which is obtained fromG by a deletion of any dominated strategy [43].

We defineS as a closed set of Nash equilibrium ofG, if for any ǫ > 0 there exists

some0 < δ0 ≤ 1, such that the perturbed game, where every strategys of playeri is replaced by

(1−δi)s+δiσi, has an equilibriumǫ-close toS, for any completely mixed strategy vectorσ1, ..., σn

(n players) and for anyδ1, ..., δn, (0 < δi < δ0). A set of equilibria is stable in a gameG if it is the

minimal set ofS [43].

8Game A and Game B in Figure 2.10 are similar to the games in Figure 2 and Figure 3 of [43].
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Figure 2.11: An extensive game corresponding to the game in Table 2.15.

Player 2
e f

a 1,-1 -1,1
Player 1 b -1,1 1,-1

c 0.5 0.5

Table 2.15: A normal form game corresponding to the game in Figure 2.11.

Kohlberg and Mertens prove that, in iterated dominance, a stable equilibrium contains

a stable set of any game obtained by eliminating dominated strategies. In forward induction, a

stable equilibrium contains a stable set of any game obtained by a deletion of any strategy which

is an inferior response to the equilibria of the set [43]. However, stable sets might not satisfy

the backwards induction requirement. Consider the game in Table 2.15. There are two stable

equilibria,{c, (1/4, 3/4)} and{c, (3/4, 1/4)}. However, in the corresponding extensive form game

in Figure 2.11, the only sequential equilibrium is{c, (1/2, 1/2)}. The cause of this problem might

be because stable equilibrium uses a different game form other than normal form or extensive form

representations. Similarly, it may not be a subset of properor perfect equilibrium.

2.4 Summary

Using static and dynamic as one axis, and information as another, we classify these well-known

equilibrium concepts in Table 2.16.

We learn that the results of computing different equilibriaalso depend on the game mod-
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Complete Information Incomplete Information
Static Nash Equilibrium Bayesian Equilibrium

Dynamic Subgame Perfect EquilibriumPerfect Bayesian Equilibrium;
Sequential Equilibrium;

Perfect Equilibrium;
Persistent Equilibrium;

Stable Equilibrium;

Table 2.16: Categories of equilibria.

els. Usually, Nash equilibrium, proper equilibrium, and persistent equilibrium are solved in normal

form. Subgame perfect equilibrium and sequential equilibrium are applied to extensive form games.

Perfect equilibrium is discussed in agent normal form. And stable equilibrium is solved in reduced

normal form. The choice of a game model to a specific application should depend on the needs of

the scenario.

To conclude, we may depict a rough relationship picture among some of these equilibria,

as shown in Figure 2.12. Normally, a stricter equilibrium concept is a subset of another equilibrium

concept. The reason that persistent and stable equilibriumare not included in the picture lies in that

they are not strictly a subset of proper or perfect equilibrium and could overlap with other concepts.

Simply, there is not an optimal equilibrium concept. Selection of an equilibrium concept

to a specific game will depend on the properties of the game andthe needs of the modeler. These

refinements of equilibria provide many options, while, at the same time, they introduce different

computational complexity to solving a game.
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Figure 2.12: Relationship among different equilibria.
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Chapter 3

Computing Equilibria

The concepts of Nash equilibrium and its refinements have been widely applied in eco-

nomics, business, and other realms. Naturally, the computation of equilibria has drawn much at-

tention. In general, the computational complexity of solving games is exponential. There are many

papers focus how to solve2-person games, and more recently there are more and more algorithms

aiming to computingn-person games. To date, the solvable size of games has remained small.

However, these algorithms are significant because many large size games can be approximated by

smaller ones.

3.1 The Mathematics of Computing Nash Equilibrium

3.1.1 Nash Equilibrium as a Fixed Point of a Function

Nash used the fixed point theorem to prove the existence of equilibrium for finite, n-person games.

Many algorithms for solvingn-person games follow this idea and first find the fixed points. Scarf’s

algorithm was the first algorithm developed for approximating a fixed point by using algebraic sets

[92]. This work was followed by many simplicial subdivisionalgorithms [99, 101, 113]. Another

approach to approximate fixed point is using simplicial homotopy methods [14, 113]. However, the

computational complexity of these algorithms, in the worstcase, is exponential in the dimension

and the number of digits of accuracy [33].
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3.1.2 Nash Equilibrium as a Solution to Linear Complementary Problem

The Lemke-Howson algorithm was the first linear complementary problem algorithm to solve gen-

eral sum,2-person games [56, 66]. Modified versions of Lemke-Howson algorithm can be used to

solven-person games [88]. However, these algorithms need a non-linear component to deal with the

transformation from the original form to the linear complementary problem. The Lemke-Howson

algorithm has an exponential lower bound [76], and adding a non-linear transformation makes it

even more computationally demanding.

Constant sum games are a special case of the class of2-person games and are easier to

solve. These games can be represented by primal-dual linearprograms, which can be solved in

polynomial time.

3.1.3 Other Mathematical Approaches

Here is a list of other mathematical approaches that can be used to compute equilibria. First, Nash

equilibrium can be approximated as a solution to non-linearcomplementary problem. In comparison

to linear complementary problem for2-person games, non-linear complementary problem can be

used forn-person games [66]. Second, Nash equilibrium is solved as a stationary point problem.

The Kakutani fixed point theorem is implied by the stationarypoint theorem [113]. Third, Nash

equilibrium is mapped to a semi-algebraic set. Fourth, Nashequilibrium is formulated as a minimum

of a function on a polytope [66].

3.2 Computing a Sample Nash Equilibrium in Two-Person Games

3.2.1 Zero Sum Normal Form Games

Zero-sum normal form2-person games are the simplest games in terms of computational complex-

ity. The minimax algorithm is usually used to solve this class of games.

The MiniMax Algorithm

In a zero-sum, normal form game, payoff functions are commonknowledge to both players. When

a player wants to maximize her payoff, it is equivalent for this player to minimize the other player’s
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payoff. In this sense, a minimax strategy is that both players want to minimize their maximum

possible loss [84]. It has been proved that a pair of strategies is a Nash equilibrium if and only if it

is minimax [66, 84]. We can use a linear program to describe the minimax problem for both players,

and the solution to the primal-dual problem of the linear program is a Nash equilibrium.

To demonstrate how to solve the minimax and the primal-dual problem, letUi be the

payoff matrix of playeri. Since the game is zero sum,U1 = −U2. To simplify, let U = Ui.

Consider a mixed strategy, wherePi is the probability density vector among all pure strategiesof

player i, and
∑
i

Pi = 1. Let s and t denote the additional scalar variables. As we will see, the

primal problem is for player1, while the dual problem is for the other player. The primal problem

can be expressed as follows [84].

φ = min
P1,s

s

where

S = {(P1, s)|UP1 ≤ s1n, 1mP1 = 1 andP1 ≥ 0},

S∗ = {(P1, s) ∈ S|φ = s},

and, the dual problem is:

ψ = min
P2,t

t

where

T = {(−P2, s)|P2U ≤ t1m, 1nP2 = 1 andP2 ≥ 0},

T ∗ = {(P2, s) ∈ S|ψ = t}.

Furthermore, letx = P1/s andy = −P2/t, the original primal-dual problem can be

reduced to the primal problem:

φ = min
x∈SG

−1mx

where

SG = {x ≥ 0|Ux ≤ 1n},

S∗
G = {x ∈ SG ∈ S|φG = −1mx}.

(3.1)

and, the dual problem:

ψ = min
y∈SG

−1ny

where

TG = {x ≥ 0| − yU ≤ −1m},

T ∗
G = {y ∈ TG ∈ S|ψG = 1ny}.

(3.2)



37

We define

E(P1, P2) ≡ P2UP1.

A solution{P ∗
1 , P

∗
2 } is a pair of strategiesP ∗

1 andP ∗
2 , such that

E(P ∗
1 , P2) ≤ E(P ∗

1 , P
∗
2 ) ≤ E(P1, P

∗
2 ).

These minimax solutions are saddle points of the functionE [84]. The solution{P ∗
1 , P

∗
2 } is a Nash

equilibrium.

Complexity Results

We can use the dual simplex algorithm to solve this primal-dual problem [84]. The complexity of

dual simplex algorithm is similar to that of the simplex algorithm. The difference lies in that the

dual simplex algorithm uses different criteria to pick the pivoting elements. Current LP-solvers can

solve the linear program problem quickly, especially for sparse matrix LPs; however, in the worst

case, the simplex method requires exponential time [40]. In1984, Karmarkar developed the interior

point method, which can solve the LPs in polynomial time. In summary, the minimax algorithm for

the constant-sum,2-person, normal form game is in the polynomial class.

3.2.2 General Sum Normal Form Games

The first and most well-known algorithm for solving the general sum, two-person normal form game

is the Lemke-Howson algorithm [56], which reduces a normal form game to a linear complemen-

tarity problem.

Linear Complementarity Problem

A linear complementarity problem (LCP) consists of a set of inequalities and equations. The aim of

the linear complementarity problemis to find a vectorz ∈ Rn, such that

z ≥ 0

q +Mz ≥ 0

zT (q +Mz) = 0

(3.3)

given a vectorq ∈ Rn and a matrixM ∈ Rn×n [13]. There are many algorithms for solving linear

complementarity problems.
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The Lemke-Howson Algorithm

From the minimax algorithm, we know that Nash equilibria in atwo-person game are equivalent

to the minimax solutions. However, the minimax property no longer holds in the general sum two-

person game becauseU1 6= −U2. A pair of strategies(P ∗
1 , P

∗
2 ) is a Nash equilibrium if and only if

E(P ∗
1 , P2) ≤ E(P ∗

1 , P
∗
2 ) andE(P1, P

∗
2 ) ≤ E(P ∗

1 , P
∗
2 ). These two equations are equivalent to

P T
1 U1P

∗
2 ≤ (P ∗

1 )TU1P
∗
2 , and

(P ∗
1 )TU2P2 ≤ (P ∗

1 )TU2P
∗
2 .

We cannot reduce these equations to a primal-dual problem because they do not share the

same utility function. However, we may construct two special functions so that we may convert them

to a linear complementarity problem [13]. Without loss of generality, we assume that bothU1 and

U2 are positive matrices. If not, we can add a large scalar to make them positive. This alteration will

not change the solution of the Nash equilibrium. We construct a linear complementarity problem as

follows.
u = −em + U1P2 ≥ 0, P1 ≥ 0, P T

1 u = 0,

v = −en + P T
1 U2 ≥ 0, P2 ≥ 0, P T

2 v = 0,
(3.4)

whereem anden are two vectors whose components are all ones [13]. Let

q =


 −em

−en


 ,M =


 0 P1

P2 0


 , andz =


 u

v


 . (3.5)

3.4 and 3.5 are equivalent to 3.3. Suppose(P
′

1, P
′

2) is a solution to 3.4, the relation between(P
′

1, P
′

2)

and the Nash equilibrium(P ∗
1 , P

∗
2 ) is given by

P ∗
1 = P

′

1/(em)TP
′

1 andP ∗
2 = P

′

2/(en)TP
′

2. (3.6)

Lemke and Howson prove that every solution of a non-degenerate LCP is a solution of

the bimatrix game. The pivoting procedure and lexicographic degeneracy resolution are similar to

those in linear programming.1

Complexity Results

The Linear complementarity problem is NP-hard [12] and thusthere is no polynomial algorithm for

the Lemke-Howson algorithm. Several algorithms for LCP arepresented in [13], but all of them are

computationally costly.
1A detailed description of the Lemke-Howson algorithm is on page 285 of [13]. A more general discussion of LCP,

including degenerate cases, can be found in both [13] and [66].
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3.3 Computing a Sample Nash Equilibrium inn-person Games

The algorithms for computing2-person games cannot be directly extended to solvingn-person

games. A practical approach is to transform a game into a fixedpoint problem. The simplicial

subdivision algorithms, including Scarf’s algorithm, areused to find fixed points of the continu-

ous function. Before we discuss the algorithms in detail, let us introduce some basic concepts in

topology.

Definition 3.3.1. Let x1, ..., xm be vectors inRn given thatRn is an n-dimensional Euclidean

space. We say thatx =
m∑

i=1
λix

i is a linear combinationof x1, ..., xm if λi ∈ R and i ∈ Im, where

Im is anm element natural number finite set.x =
m∑

i=1
λix

i is anaffine combinationif x is a linear

combination and
m∑

i=1
λi = 1. x =

m∑
i=1

λix
i is a convex combinationif x is an affine combination

and λi > 0, for all i. We say thatx1, ..., xm are affinely independentif the unique solution to

m∑
i=1

λix
i = 0 is λi = 0, for all i ∈ Im.

Definition 3.3.2. If x1, ..., xm+1 are affinely independent, the convex hull ofx1, ..., xm+1 is anm-

dimensional simplexor m-simplex. A k-simplexτ(< m) is called ak-face,f , or k-dimensional

faceof anm-simplexσ if all vertices ofτ are vertices ofσ. If a facef consists of a single point, it

is called avertex. If f is a half line or a line segment, it is called anedge. If f has a dimension one

lower than the dimension ofσ, it is called afacetof σ.

Definition 3.3.3. LetS denote am-dimensional convex set inRn. A collectionT ofm-simplices is

said to be atriangulationor simplicial subdivisionof S if

1. S =
⋃
i

σi, for all σi ∈ T

2. σ1 ∩ σ2 = ∅ or σ1 ∩ σ2 = f . There existsf , such thatf is a common face of bothσ1 andσ2,

for all σ1, σ2 ∈ T.
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3. Letδ be a neighborhood ofx, for all x ∈ S. There are only a finite number of simplices,

belonging toT, in δ.

Definition 3.3.4. Letdiam(σ) be thediameterof a simplexσ ∈ T, where

diam(σ) = max{‖ x− y ‖ |x, y ∈ σ}.

Letmesh(T) denote themesh sizeof T, where

mesh(T) = sup{diam(σ)|σ ∈ T}.

Definition 3.3.5. A labeling rulel : T
0 7→ Im is called aproper labeling ruleif xi = 0 ⇒ l(x) 6= i,

for all x ∈ T
0.

A proper labeling is also calledSperner proper labeling. A possible proper labeling rule

can be given by

l(y) = min{i ∈ In|fi(x) ≤ xi > 0, fi(x) ≥ xi+1} (3.7)

wherel(xi) + 1 = 1 if l(xi) = n.

Definition 3.3.6. Given a labeling rulel : T
0 7→ Im, an(m− 1)-simplexσ with verticesx1, ..., xm

is acompletely labelledsimplex if all its vertices are differently labelled such that {l(xi)|i ∈ Im} =

Im. An (m− 1) or (m− 2)-simplexσ is almost completely labelledif its vertices have at least all

labels inIm−1.

Definition 3.3.7. Two ordered set are said to beadjacentif they differ by at most one element. Thus,

an almost completely labelled simplexσ is adjacent to at most two other simplices. A simplex is

called aterminal simplexif there are at most one adjacent simplex. LetP be the set of simplices

can be reached byσ. P is called aloop if there is no terminal simplex, or astring if there are two

terminal simplices, or apoint if there is only one terminal simplex.
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Theorem 3.3.1 (Brouwer Theorem).LetD be a nonempty, compact, and convex subset ofR, and

let f : D 7→ D be a continuous function. Then there exists at least one point x∗ in D such that

f(x∗) = x∗ [113].

Kakutani [1941] proves that a looser requirement can also result in a fixed point.

Theorem 3.3.2 (Kakutani Theorem).LetD be a nonempty, compact, and convex subset ofR, and

let f : D 7→ D be a upper semi-continuous mapping. Then there exists at least one pointx∗ in D

such thatf(x∗) = x∗. A point-to-set mappingf is upper semi-continuous at the pointx∗ inD if for

any convergent sequence{xk|k ∈ N} of points inD, and for any convergent sequence{yk|k ∈ N}

with yk ∈ f(xk) and limitsy∗, it holds thaty∗ ∈ f(x∗) [113].

Nash proved the existence of Nash equilibrium in general games using the Kakutani The-

orem.

Theorem 3.3.3 (Sperner Lemma).LetDi be a closed subset and letSn denote a collection of

closed subsets whereSn =
n⋃

i=1
Di. Let T be a triangulation ofSn. Let l : T

0 7→ In be a proper

labeling function for every vertex ofT
0. Then there exists at least one completely labelled simplex

in T [113].

The Sperner lemma guarantees a completely labelled simplexinside a triangulation using

the Sperner proper labeling. In detail, the Sperner proper labeling rulel : T
0 7→ In in a triangle’s

triangulation has the following requirements [6]:

1. The vertices of the original triangle are labeled with three different labels, which are an ele-

ment ofIn, n = 3.

2. Vertices of the triangulation that lie on a side, e.g. 1,2,should be labelled either 1 or 2.

3. There is no restriction on labeling of the vertices of any subsimplicies.

Using a proper labeling rule, e.g. equation 3.7, we may construct a function such that
n∑

i=1
fi(x) =

n∑
i=1

xi = 1. Since the Sperner lemma guarantees a complete labelled simplex inside the

triangulation, we havefi(x
∗) = x∗, i = 1, ..., n. Hencex∗ is a fixed point off .
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3.3.1 Scarf’s Algorithm

The Brouwer theorem and the Sperner lemma prove the existence of at least one fixed point; how-

ever, they did not provide an approach to find the fixed points.Scarf was the first person to develop

algorithms for this purpose. Scarf presented two algorithms for finding fixed points. One is in the

framework of simplices; while the other one is organized around primitive sets [92, 93]. Labelled

primitive sets in Scarf’s algorithm are an analogue of labelled simplices. Although Scarf used prim-

itive sets to explain the algorithm, simplicial division has become a more popular approach to solve

the fixed point problem. We will mainly discuss the simplicial division algorithm here.

Basically, Scarf’s algorithm starts with a randomly pickedalmost completely labeled (n−

2) simplex and then generates a finite sequence of adjacent almost completely labeled (n − 2)

simplex. It stops at a completely labeled (n− 1) simplex.

The original Scarf’s simplicial division algorithm is based onK2(m)-triangulation, e.g.

as shown in Figure 3.1.

Definition 3.3.8. A triangulation is calledK2(m)-triangulationof Sn with grid sizem−1 if it is a

collection of all (n-1)-simplicesσ(xi, π) with verticesx1, ..., xn in Sn such that

1. each component has equal size.

2. π = (π(1), ..., π(n − 1)) is a permutation of the elements inIn−1.

3. xi+1 = xi +m−1t(π(i)), i ∈ In−1, wheret(π(i)) = e(j + 1) − e(j), j ∈ In−1.

The triangulation for Scarf’s algorithm, as shown in Figure3.2 is a modification of

K2(m)-triangulation. TheK2(m) is completely contained in the original triangulation. In this

example,n = 3 andm = 4. We set the label of the original triangulation as(i + 1) modn. The

similar construction of subsimplices can be applied to the destination simplex if we want a finer

approximation. The Scarf algorithm works as follows [113]:

1. Find a start simplexσ0 such thatσ0 is a unique(n − 1)-simplex in the original triangulation

and hasτ0 as its facet, which is a(n − 2) simplex on the border. Letx+ be the vertex ofσ0

that is not a vertex of ofτ0. Let k = 0.
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Figure 3.1: Illustration ofK2(m)-triangulation.

2. If l(x+) = n, a completely labelled simplexσk has been found and the algorithm stops.

Otherwise,l(x+) is the label of one other vertex ofσk, sayx−. Let τk+1 be the facet ofσk

oppositex−.

3. Find the simplexσk+1 adjacent toσk sharingτk+1. Let x+ be the vertex ofσk+1 that is not

a vertex of ofτk+1. Let k = k + 1 and go to (2).

3.3.2 Transformation from a Game to a Fixed Point Problem

Scarf’s algorithm did not provide the link from a game to a fixed point problem. To enable that, we

need to define a transformation mapping the fixed points to theNash equilibria.

Let sij be thejth pure strategy of playeri. Let pij be the probability oversij, pi be the

probability function of playeri, p−i be the probability of all players except playeri, andp be the

overall probability function. Let∆ = {p|
∑
i

pi = 1, pi > 0} and letf : ∆ 7→ ∆. We define

gij(p) = max[ui(sij, p−i) − ui(p), 0] andfij(p) =
pij + gij(p)

1 +
∑
j

gij(p)
. (3.8)
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Figure 3.2: The Scarf’s triangulation.

We define a proper labeling rule:l : l(p) = sij, where(i, j) is the lexicographic least

index in arg max
i∈N,1≤j≤mi

fij − pij [66, 93]. We apply these transformations to the above algorithm to

compute the Nash equilibria.

3.3.3 Other Algorithms

In addition to Scarf’s algorithms, there are many other algorithms for solving fixed point problems.

In 1968, Kuhn introduced the first simplicial subdivision algorithm. Kuhn’s artificial start algorithm

uses theK2(m)-triangulation without imbedding theK2(m)-triangulation into the original trian-

gulation, but introduced an extra layer below the unit triangulation [113]. It also uses a different

labeling rule

l(x) = min{j ∈ In|xj = max
h

xh}

wherexj is defined as in theK2(m)-triangulation. In the following year, Kuhn introduced his

second fixed point algorithm, which used the unitK2(m)-triangulation, and starts from one of the

vertices of the unit simplex. This algorithm allows the dimension of adjacent simplices to change

in the process of tracing. Some other simplicial subdivision algorithms were developed by Merrill

(1972), Kuhn and MacKinnon (1975), van Der Lann and Talman (1979, 1980, 1982), van der Laan,
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Talman and van der Heyden (1987), and Doup and Talman (1987) [66, 113]. These algorithms are

reported to be more computationally efficient.

Another branch of algorithms for finding fixed points is called simplicial homotopy. There

algorithms were first introduced by Eaves (1972), Eaves and Saigal (1972), and Merrill(1972). This

algorithm is still a triangulation algorithm, but can startat anywhere and automatically refines the

grid size of simplices in the process [113].2

3.3.4 Complexity Results

The simplicial subdivision algorithms approximate Nash equilibria. The computational efficiency

depends on the triangulation expanding method used by the specific algorithm, the grid size of a

single simplex, and the precision required. Although thereis still room for further improvement,

so far, all algorithms are NP-hard. It has been shown by Hirsch that the worst case running time to

compute a Brouwer fixed point is exponential in the size of thetriangulation and the accuracy we

require [33]. Saigal shows that a proper alternation of the mesh size of the simplices can improve

the convergence quicker [91]; however, there is no algorithm can easily solve ann-person Nash

equilibrium mapping from fixed point for a large size game in general.

3.4 Extensive Form Games

The algorithms presented above are for normal form games. Aswe know, games in extensive

form may contain more information than those in normal form.Generally, when we reduce an

extensive form game to normal form games, we lose information about the sequence of moves.

Moreover, there are several schemes that we may use to reducethe extensive form games to normal

form games. The most popular ones are multiplication of behavior strategy, agent normal form,

and reduced normal form. As discussed in Chapter 2, different reductions can lead to different

solutions. Although we may argue that the game in nature is the same, the computation procedure

and the complexity of the computing equilibria will depend on the game form we use. Regardless

of which reduction scheme they choose, in the worst case computation is still exponential in the size

of the behavior strategy in extensive form.

2Besides the researchers mentioned above, there are still many others contributed to this area. Please refer to [113]
and the other references for more details.
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Figure 3.3: Illustration of sequence form.

Nevertheless, do we have to reduce extensive forms to normalform in order to compute

the games? In fact, some papers point out that another game form, sequence form, will enable us to

solve the extensive form game more efficiently [44, 45, 95, 104, 105].

Definition 3.4.1. A representation of an extensive form game is calledsequence formif it is defined

by

1. A empty sequence∅ for each player. Nature will be regarded as Player0.

2. A sequenceis a possible choice for playeri from the root to a specified node. The set of

sequences of Playeri is denoted bySi.

3. The payoff of Playeri is defined as the payoff combination of sequences of Playeri.

4. the probability of sequencesi ∈ Si is defined by arealization play

ri(si) =
∏

c∈si

si(c)

wheresi is the behavior strategy of playeri.

Let us look at an example as shown in Figure 3.3. The sequencesof player1 is a, b, and

∅, the empty sequence. The sequences of player2 areC,D,E,F,G, and∅, the empty sequence.

However, in normal form, the possible strategies for player2 areCE,CF,CG,DE,DF , andDG.

The advantage of sequence form lies in that the size of sequences is linear in the size of extensive
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form, while any other reduction game form might still be exponential in the size of the game tree.

However, like every coin has two sides, the definition of a realization plan is in sequence form less

intuitive than behavior strategy probability [104].

3.5 Finding All Equilibria

The multiplicity of Nash equilibria not only hinders the forecasting capability, but also complicates

the computability. The algorithms for computing one Nash equilibrium cannot guarantee that the

result has salient features. For example, the identified equilibrium might be Pareto dominated. Thus,

finding a single equilibrium may not always satisfy us.

However, it is very expensive and sometimes impossible to compute all equilibria for a

game. McLennan [70, 71] derived several results on computing the expected number of equilibria.

In general, however, it is very difficult to predict the exactnumber of equilibria for a game, and in

some cases, the number of equilibria of a game is infinite.

One new approach that sounds promising is semi-algebraic set algorithms. The Nash

equilibrium can be expressed as a conjunction of polynomialequations and weak inequalities [66].

Finding all equilibria is equivalent to finding all roots of the equations and inequalities.

3.6 Summary

Computing equilibria is still a fertile research area although there are many algorithms already devel-

oped. Table 3.1 is a summary of algorithms for finding a singleNash equilibrium or its refinements.

Table 3.2 summarizes the algorithms for computing all equilibria.

Unfortunately, current algorithms can solve only small sized games. The following is a

summary of current research on computing equilibria.

1. Algorithms for computing2-person games. Although this category of games is the easiest

one, many important results are based on2-person games, including the minimax theorem

and the Lemke-Howson algorithm. Moreover, algorithms for2-person games are easier to

understand intuitively. There are still many researchers active in this area.

2. Algorithms for computingn-person games. These approaches normally seek a mapping from

a Nash equilibrium to a mathematical problem, such as fixed point problem, stationary point
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Equilibrium
2-person
normal form
games

2-person
extensive
form games

n-person
normal form
games

n-person
extensive
form games

Nash

Lemke-
Howson
Algorithm
(LH 64)

LH Variant
(Wilson 72),
LH Vari-
ant (Koller,
etc. 94,
Knowledge
Representa-
tion)

Simplicial Sub-
division (Scarf
67,73);LH Vari-
ant (Rosenm̈uller
71,Wilson 71);
Nonlinear Comple-
mentarity Problem
(Mathiesen 87);
Minimum Method
(McKelvey 92);
Global Newton
Method (Govin-
dan&Wilson 98)

Bayesian

Subgame Perfect

Perfect Bayesian
Lex-Order
LH Variant
(Eaves 71)

Homotopy
Method
(von Sten-
gel,etc,2002)

Sequential

Homotopy
Based Al-
gorithm
(McKelvey &
Palfrey 94);B-
labeling(Azar.
etc. 2000)

Persistent

Proper

Homotopy
Method(Yamamoto
93); Simpli-
cial Subdi-
vision (Tal-
man&Yang
94)

Stable
Lex-Order
LH (Wilson
92)

Exhaustive
Triangulation
(Mertens 88,
an idea only)

Table 3.1: Algorithms to find a single equilibrium.
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Equilibrium 2-person normal 2-person extensive n-person normal n-person extensive

Nash
LcpSolve
(Gambit) [67]

Koller and
Megiddo 94

PolEnumSolve
(Gambit) [68];
QreSolve, McK-
elvey and Palfrey
95 [68]4

Lyapunov func-
tion method,
McKelvey 91
[65]4

Correlated von Stengel
2001

Bayesian

Subgame Perfect

Perfect Bayesian

Sequential

QreSolve,
McKelvey
and Palfrey
98 [69]

Proper

Persistent

Stable
Lex-Order
LH (Wilson
92)

Table 3.2: Algorithms to compute all equilibria.

problem, etc. The mathematics literature focuses on solving the math problem and thus pro-

vides a relevant algorithm for computing equilibria.

3. Algorithms for computing a special class of games, such asauction games. For some sub-

classes of games, the computational cost can be reduced dramatically since we can take ad-

vantage of special structure in the problem. An example is the task to compute the equilibrium

of FPSB auctions in the following chapter.

4This algorithm can find multiple equilibria for both normal form and extensive form games; however, it is not
guaranteed to find all equilibria [67].
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Chapter 4

Equilibrium Strategies in First-Price

Sealed-Bid Auctions with Discrete Bids

4.1 Introduction

In a first-price sealed-bid (FPSB) auction, each agent submits a single bid without observing oth-

ers’ bids, and the agent with the highest bid pays the value ofits bid. In terms of information and

bidding space, FPSB auctions can be categorized into four subclasses: FPSB auctions with incom-

plete information and continuous bids; FPSB auctions with incomplete information and discrete

bids; FPSB auctions with complete information and continuous bids; FPSB auctions with complete

information and discrete bids.

In the past decades, a voluminous theoretical literature has been developed on FPSB auc-

tions. A class of typical models assume that agents are symmetric and risk neutral [62, 73, 79, 87,

102]. More recently, researchers have studied models with asymmetric information [16, 18, 54, 59,

60], affiliated values1[11, 61], single-crossing2[2], or other restrictions [51, 55, 57, 58]. Most of

the literature assumes incomplete information and continuous bids. With agents having complete

information and continuous bids, equilibrium does not exist due to the discontinuity of the payoff

1A condition isaffiliated if higher values of some variables make higher values of the others more likely [73, 106].
2Thesingle crossing conditionholds when agents with higher types will choose higher strategies [2].
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function [53]. To enable the existence of equilibrium in this situation, Lebrun [53] suggests an “aug-

mented” first price auction to break the tie so that the agent having higher valuation wins the item

by submitting a “message” marking its higher value. Maskin and Riley [60] propose using a sec-

ond round Vickrey auction to break the tie if any. In a model ofincomplete information, Athey [2]

concludes the existence of pure strategy equilibrium in FPSB with finite strategies, when the sin-

gle crossing condition holds. However, the properties of existence and multiplicity of equilibria

in FPSB auctions with discrete bids, especially the relationship of multiplicity of equilibria to the

size of bid increment, are not well studied. Discrete valuedbidding is relatively common in online

auctions with fixed ending times such that they degenerate toFPSB auctions.3

When the number of discrete bids is finite or bound, the existence of equilibrium in FPSB

auctions with complete information can be easily proven using the Nash theorem [81, 83]. In this

chapter, we discuss the existence of equilibrium from a different perspective and focus on the mul-

tiplicity of equilibria in FPSB auctions with complete information. We also discuss the equilibria

in FPSB auctions with incomplete information. The remainder of this chapter is organized as fol-

lows. In Section 4.2, we present a model of the FPSB auction. In Section 4.3, we discuss the

multiplicity of equilibria in two-agent FPSB auctions and multi-person FPSB auctions, including

sequential FPSB auctions, with complete information. In Section 4.4, we provide equilibrium solu-

tions for both two-person and multi-person FPSB auctions with incomplete information. We offer

some concluding remarks in Section 4.5.

4.2 The Model

Assume that there is an item for sale in an FPSB auction. Therearen agents competing for this

item. The set of agents is denotedA. In this chapter, we discuss two different scenarios: one is

n = 2; another one isn > 2.

We assume that these agents are risk-neutral and the payoff of each agent is equal to its

monetary surplus. We adopt a random tie-breaking rule in which each agent has1/#(tie) proba-

bility to win the item, an assumption that is common in research. Letui denote the utility of agent

i.

In this chapter, we explore both FPSB auctions with completeinformation and FPSB

auctions with incomplete information. Complete information means that the payoff functions are

3The minimum bidding unit is one cent in most online auctions.
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visible to all agents. Letvi be the true valuation of agenti. To simplify the discussion, we assume

v1 ≤ ... ≤ vi ≤ vi+1 ≤ ... ≤ vn. In incomplete information cases, we continue to letvi be the true

valuation of agenti. Each agent knows the value of the object to itself, and the valuation of different

bidders are independent observations of a nonnegative random variable,Y, from a commonly known

continuous distribution,F, and its associated probability density function,f. Let Yj denote the

valuation variable of agentj. Without loss of generality, letYj be the(n − j + 1)-st order statistic

of {Y1, ..., Yn−1}. Thus, we haveY1 ≤ Y2 ≤ ... ≤ Yn−1.

We assume that agents have the same discrete strategy (bidding) space, denoted byB. Let

δ be a minimum possible bid increment in the auction, which is the smallest value between any two

bids and is positive and fixed. The difference between bids can be as small in the real world as, for

example, one cent. Letbk be thekth element inB andb0 denote the lowest bid value inB. Without

loss of generality, letB be ordered such thatbk + δ = bk+1.

In complete information cases, letsi, si ∈ B, denote the strategy that agenti uses in this

auction. In incomplete information cases, letβ(vi) denote the strategy function of agenti given

agenti has true valuationvi. We assume thatsi ≤ vi andβ(vi) ≤ vi , which means that agents will

not bid higher than their own valuations.

We define⌊vi⌋ ≡ [(vi − b0) mod δ] ∗ δ + b0. It is easy to see that⌊vi⌋ is the highest

possible bid value for agenti because agenti will get negative surplus if it bids⌊vi⌋ + δ and wins.

Whetherb = ⌊vi⌋ is an equilibrium strategy for agenti depends on the situation. In a two-agent

FPSB auction, for example, ifv2 is larger thanv1, sayv2 = v1 + 10δ, {⌊v1⌋, ⌊v1⌋ + δ} is an

equilibrium. In contrast, ifv2 = v1, {⌊v1⌋ − δ, ⌊v1⌋ − δ} is an equilibrium. Thus, to bid at⌊v1⌋ is

not the only equilibrium strategy for agent1. The agents need to judge whether or not to tie when a

tied strategy could be a Nash equilibrium.

We call a strategy profile anidentical bid profileif all agents bid at the same price. If an

identical bid profile is an equilibrium, we call it anidentical bid equilibrium. As it turns out, it is

helpful to discuss the equilibrium in the FPSB auction in terms of identical bid profiles.
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4.3 FPSB Auctions with Complete Information

4.3.1 A Two-Person FPSB Auction

We start from a two-person FPSB auction. The utility function for agent1 is

u1 =





v1 − s1, if s1 > s2

1
2(v1 − s1), if s1 = s2

0, if s1 < s2.

(4.1)

The utility function for agent2 is

u2 =





v2 − s2, if s2 > s1

1
2(v2 − s2), if s2 = s1

0, if s2 < s1.

(4.2)

Suppose that both agents use an identical bid. If no agent canbenefit from deviating

unilaterally, this identical bid profile is a Nash equilibrium. If some agent would be better off by

deviating unilaterally, the only possibly positive deviation is to bid higher. Thus, an identical bid

profile{b, b} is a Nash equilibrium if and only if

s1 = s2 = b, b ∈ B,

1
2(vi − b) ≥ vi − b − δ, i = 1, 2,

b ≤ min
i
{vi},

(4.3)

where the second condition implies that no agent can be better off by deviating unilaterally. The

third condition requires no agent bids higher than its true valuation, which is rational for agents.

Lemma 4.3.1.For all b ∈ B, {b, b} is a pure strategy equilibrium in a2-person FPSB auction with

complete information and a discrete bidding space if and only if

max
i

{vi} − 2δ ≤ b ≤ min
i
{vi}, i = 1, 2.
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Proof: From the second condition in equation (4.3), we haveb ≥ (vi − 2δ), for i = 1, 2.

Because it is true for all agents,b ≥ max
i

{vi}−2δ. When we combine this with the third constraint

in equation (4.3), we havemax
i

{vi} − 2δ ≤ b ≤ min
i
{vi}. 3

Lemma 4.3.1 suggests that we need to check the conditions in equation (4.3) for everyb.

In fact, we do not have to check every element in the strategy space. We can constrain the range of

possible equilibria by finding the lowest bid valuebc such that{bc, bc} is a Nash equilibrium. From

Lemma 4.3.1, we havemax
i

{vi}− 2δ ≤ bc ≤ min
i
{vi}. Becausebc is the lowest value in the above

range, it requiresbc − (max
i

{vi} − 2δ) < δ. Combining these two equations, we have

0 < bc − (max
i

{vi} − 2δ) < δ.

We call{bc, bc} a critical identical bid equilibrium, if it exists. It is easy to prove that{bc, bc} is a

weakly Pareto dominant equilibrium when there are more identical bid equilibria.

Lemma 4.3.2. In a two-person FPSB auction with complete information and adiscrete bidding

spaceB, if there exists a critical identical bid equilibrium{bc, bc}, then{s, s} is also a pure strategy

equilibrium, if and only if for alls ∈ B

bc < s ≤ min
i
{vi}, i = 1, 2.

Proof: From the definition of the critical equilibrium, it isobvious that no agent can

unilaterally bid lower thanbc and be better off. So, the only possibility is that some agentwould have

an incentive to bid higher. To be an identical equilibrium,s ≤ min
i
{vi}. Combiningmax

i
{vi} −

2δ ≤ bc andbc < s, we havemax
i

{vi} − 2δ ≤ s. Thus,

max
i

{vi} − 2δ ≤ s ≤ min
i
{vi}, i = 1, 2.

By Lemma 4.3.1, we know that{s, s} is a pure strategy equilibrium.3

Both Lemma 4.3.1 and Lemma 4.3.2 are supported by Example 4.3.1.

Example 4.3.1.Letv1 = 6.5 andv2 = 7. Suppose thatδ = 1 andb0 = 0. There are two equilibria

in pure strategies. One is{6, 6}. Another one is{5, 5}.
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Combined, Lemmas 4.3.1 and 4.3.2 give us a partial picture ofthe properties of identical

bid equilibria in a two-person FPSB auction. We now establish the conditions under which non-

identical bid equilibria exist. We letbk = δ × ((min
i
{vi} − b0) mod δ) + b0, andbk+1 = bk + δ;

bk, bk+1 ∈ B. The condition of existence of a non-identical bid equilibrium can be obtained by the

following.

Lemma 4.3.3. In a two-person FPSB auction with complete information and adiscrete bidding

space, a non-identical bid profile{bk, bk+1} is a Nash equilibrium if and only if

δ <
1

2
(max

i
{vi} − bk).

Whenbk < min
i
{vi} < bk+1, {bk, bk+1} is also unique.

Proof: The definition ofbk = δ × ((min
i
{vi} − b0) mod δ) + b0 tells us thatbk is

the highest possible bid with non-negative surplus for the lower type agent. From equation (4.3),

an identical bid profile{bk, bk} could be an equilibrium if and only ifδ ≥ 1
2(vi − bk), i = 1, 2.

δ < 1
2 (max

i
{vi} − bk), however, implies that the higher type agent will be better off if it deviates

from an identical bid profile{bk, bk}. Because

v2 − bk+1 = v2 − (bk + δ)

= v2 − bk − δ

> v2 − bk −
1

2
(v2 − bk)

=
1

2
(v2 − bk).

When the higher type agent deviates tobk+1, it is an equilibrium strategy for the lower type agent

to bid bk, because it cannot be better off by bidding less or more thanbk sincebk is its highest

affordable bid. Meanwhile, it would be irrational for the higher type agent to bidbk+2 or even

higher, if it can win withbk+1. Thus,{bk, bk+1} must be an equilibrium because no agent wants to

deviate.

From Lemma 4.3.2, we know that if{bk, bk} is not an equilibrium, no other identical bid

profile can be an equilibrium.

On the other hand, a strategy profile cannot be an equilibriumif the lower type agent

bid lower thanbk. Because the higher type agent will be better off by deviating from bk+1 to bk;
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however, the lower type agent will switch back tobk with an attempt to tie with the higher type

agent to gain a positive surplus whenbk < min
i
{vi} < bk+1. Thus, ifδ < 1

2(max
i

{vi} − bk) and

bk < min
i
{vi} < bk+1, {bk, bk+1} will be unique.3

However, if the conditionδ < 1
2(max

i
{vi} − bk) does not hold,{bk, bk+1} is not guaran-

teed to be an equilibrium. The following lemma provides a relationship between the identical bid

equilibrium and the non-identical bid equilibrium.

Lemma 4.3.4. In a two-person FPSB auction with complete information and adiscrete bidding

space, if{bk, bk+1} is not an equilibrium, then{bk, bk} must be an equilibrium.

Proof: bk = δ × ((min
i
{vi} − b0) mod δ) + b0 is the highest bid the lower valuation

agent can play; otherwise it will get negative payoff. The agent with the higher valuation does not

want to deviate tobk+n, n ≥ 2, if it can win atbk+1. Thus, the reason that the higher type agent

does not want to playbk+1 is that it can be better off by bidding lower. So, the higher type agent

will deviate frombk+1 to bk. At {bk, bk}, the higher type agent will not bid lower because it will

obtain nothing if it bids lower thanbk. For the lower type agent, it will not bid lower or higher than

bk because it cannot be better off by doing so. As a result, neither agent wants to deviate unilaterally

from {bk, bk}. So,{bk, bk} must be an equilibrium if{bk, bk+1} is not an equilibrium.3

Theorem 4.3.5. In a two-person FPSB auction with complete information and adiscrete bidding

space, there exists at least one equilibrium.

Proof: If δ < 1
2(max

i
{vi} − bk), from Lemma 4.3.3, we know that there is one unique

equilibrium {bk, bk+1}. Otherwise, from Lemma 4.3.1, 4.3.2, and 4.3.4, we know thatthere is at

least one identical bid equilibrium.3

So far, we have not addressed the issue of how many equilibriaexist in a two-person FPSB

auction with complete information and a discrete bidding space. Sincebk = δ × ((min
i
{vi} − b0)

mod δ) + b0, we havebk ≤ min
i
{vi} < bk+1. This condition holds in the following discussion

unless otherwise mentioned. From the above results, we may categorize all possible equilibrium

results into eleven situations, as shown in Figure 4.1. Specifically, we have:

1. Situation A: Whenbk < max
i

{vi} − 2δ andbk < min
i
{vi} < bk+1, {bk, bk+1} is the unique

equilibrium.
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Figure 4.1: Eleven possible equilibrium situations, giventhatv1 = min
i
{vi} andv2 = max

i
{vi}.
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2. Situation B: Whenbk = max
i

{vi} − 2δ andbk < min
i
{vi} < bk+1, {bk, bk} and{bk, bk+1}

are the only two equilibria.

3. Situation C: Whenmax
i

{vi}− 2δ < bk < max
i

{vi}− δ andbk < min
i
{vi} < bk+1, {bk, bk}

is the unique equilibrium.

4. Situation D: Whenbk−1 = max
i

{vi}− 2δ or bk = max
i

{vi}− δ, andbk < min
i
{vi} < bk+1,

{bk−1, bk−1} and{bk, bk} are the only two equilibria.

5. Situation E: Whenmax
i

{vi}−2δ < bk−1 < max
i

{vi}−δ or max
i

{vi}−δ < bk < max
i

{vi},

andbk < min
i
{vi} < bk+1, {bk−1, bk−1} and{bk, bk} are the only two equilibria.

6. Situation F: Whenbk−2 = max
i

{vi} − 2δ = min
i
{vi} − 2δ or bk = max

i
{vi} = min

i
{vi},

{bk−2, bk−2}, {bk−1, bk−1}, and{bk, bk} are the only three equilibria.

7. Situation G: Whenbk < max
i

{vi} − 2δ andbk = min
i
{vi}, {bk−1, bk} and{bk, bk+1} are

the only two equilibria.

8. Situation H: Whenbk = max
i

{vi} − 2δ andbk = min
i
{vi}, {bk−1, bk} and{bk, bk} and

{bk, bk+1} are the only three equilibria.

9. Situation I : Whenmax
i

{vi} − 2δ < bk < max
i

{vi} − δ andbk = min
i
{vi}, {bk−1, bk} and

{bk, bk} are the only two equilibria.

10. Situation J: When bk−1 = max
i

{vi} − 2δ or bk = max
i

{vi} − δ, and bk = min
i
{vi},

{bk−1, bk}, {bk−1, bk−1} and{bk, bk} are the only three equilibria.

11. Situation K : Whenmax
i

{vi}−2δ < bk−1 < max
i

{vi}−δ or max
i

{vi}−δ < bk < max
i

{vi},

andbk = min
i
{vi}, {bk−1, bk−1} and{bk, bk} are the only two equilibria.

From Situation A to Situation K, notice that the distance between bk and v2 changes

from larger than2δ to 0 whenbk ≤ min
i
{vi} < bk+1, which implies that these eleven situations

are exhaustive and include all possible equilibrium situations in a two-person FPSB auction with

complete information and a discrete bidding space.

Theorem 4.3.6. In a two-person FPSB auction with complete information and adiscrete bidding

space, there are at least one and at most three equilibria. The concrete situations are given from

Situation A to Situation K.
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4.3.2 Ann-person FPSB Auction

The results for two-person auctions can be extended ton-person auctions. Again, we start from the

identical bid equilibrium. In FPSB auction, a strategy profile is ak-identical bid profileif the top

highestk, 2 ≤ k ≤ n, type agents bid at the same price while others bid at⌊vi⌋. If a k-identical

bid profile is an equilibrium candidate, the topk agents should be willing to tie at a price higher

thanvn−k. Normally, an agent with a higher valuation will have more power in the negotiation.

If there is any agent that can be better off by deviating unilaterally, the agent with the highest

valuation should be the first one to do that. However, if the highest type agent cannot be better off

by bidding higher, no other agent can be better off by biddinghigher. Thus, ak-identical bid profile

{⌊v1⌋, ..., ⌊vn−k+1⌋, b, ..., b} is a Nash equilibrium if and only if for allj = n− k+ 1, ..., n, for all

l = 1, ..., n − k and for all2 ≤ k ≤ n

sj = b, b ∈ B,

sl = ⌊vl⌋ < b,

1

k
(vj − b) ≥ vj − b− δ,

bj ≤ min
j

{vj}. (4.4)

The first two conditions state the strategies agents use in the profile. ⌊vl⌋ < b in the

second condition requiresb larger than the true valuations of all lower type agents. Thethird con-

dition requires that no agent can be better off by bidding higher. The fourth condition requires an

agent bid no higher than its true valuation. Because we can express and solve this problem using

linear programming, the complexity of computing an equilibrium of this auction is polynomial. The

definition ofk-identical bid profile in equation (4.4) leads to the following conclusion.

Lemma 4.3.7. In an n-person FPSB auction with complete information and a discrete bidding

space, ak-identical bid profile{⌊v1⌋, ..., ⌊vn−k+1⌋, b, ..., b} is an equilibrium if and only if there

exists ab such that for allj = n− k + 1, ..., n

max
j

{vj} −
k

k − 1
δ ≤ b ≤ min

j
{vj}.
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Proof: The right hand side of the equation is directly given by the fourth condition of

equation (4.4). From the third condition of equation (4.4),we havevj −
k

k−1δ ≤ b. Given that the

highest type agent does not want to deviate unilaterally, wehavemax
j

{vj} −
k

k−1δ ≤ b. 3

Lemma 4.3.8. In an n-person FPSB auction with complete information and a discrete bidding

space, if there is not ak-identical bid equilibrium, for allk ≥ 2, {⌊v1⌋, ..., ⌊vn−2⌋, ⌊vn−1⌋, ⌊vn−1⌋+

δ} must be a non-identical bid equilibrium.

Proof: If there is not ak-identical bid equilibrium, it implies that there does not exist

a b ∈ B that satisfies all the constraints in equation (4.4). In other words, there is no agent that

wants to tie with other agents. In particular, the agent withthe highest valuation does not want to

tie with any lower type agents. Since there is nok-identical bid equilibrium, for allk ≥ 2, the

strategy profile{⌊v1⌋, ..., ⌊vn−1⌋, ⌊vn−1⌋+ δ} is a potential equilibrium. In this strategy profile, no

agent will deviate to a lower bid. At the same time, we know that all agents, except the agent with

the highest valuation, have already chosen their highest acceptable strategies. The only possibility

is that the agent with the highest valuation deviates to a higher bid and we obtain a new strategy

profile; however, the agent with the highest valuation wouldnot bid any higher because it can win

the auction with⌊vn−1⌋ + δ. As a result, no agent can be better off by deviating unilaterally. Thus,

{⌊v1⌋, ..., ⌊vn−1⌋, ⌊vn−1⌋ + δ} is an equilibrium.3

Like analysis of the two-agent case, it is worth noting that the equilibria in Lemmas 4.3.7

and 4.3.8 are not unique. In an FPSB auction with complete information, the results are determined

by whether the top type agent would like to tie with the others. For ak-identical bid equilibrium in

Lemma 4.3.7, it is optional for the bottomn−k agents to bid any bids≤ ⌊vi⌋, i ≤ n−k. Similarly,

with the bottomn − 2 agents bidding any bids≤ ⌊vi⌋, i ≤ n − 2, and top two agents bidding

at ⌊vn−1⌋ + δ and⌊vn−1⌋ respectively, the new strategy profile still constructs an equilibrium in

Lemma 4.3.8.

Through similar reasoning as in a2-person FPSB auction, we conclude:

Theorem 4.3.9. In an n-person FPSB auction with complete information and a discrete bidding

space, there exists at least one equilibrium.
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4.3.3 Equilibrium in Sequential FPSB Auctions

In this section, we extend the discussion from one individual FPSB auction to sequential FPSB

auctions, in which there areK items for sale inK individual FPSB auctions.

It is easy to understand that an agent with a higher valuationwill have more power in

negotiation and competition. For example, if agenti achieves surplusx from the sequential auctions,

agenti + 1 can also get at leastx from the same game by simply taking the same strategy as

agenti becausevi ≤ vi+1. Hence, we may expect that in sequential FPSB auctions with complete

information, an agent with higher valuation will yield no less surplus than a lower type agent.

Theorem 4.3.10. In sequential FPSB auctions with complete information and adiscrete bidding

space, ifvn−K+1 > ⌊vn−K⌋ + 2δ, then{⌊v1⌋, ..., ⌊vn−K⌋, ⌊vn−K⌋ + δ, ..., ⌊vn−K⌋ + δ} is an

equilibrium for all agents in every single FPSB auction.

Proof: Let us consider the last auction. Suppose in the firstK − 1 auctions,K − 1 of the

highestK valuation agents win and leave. From Lemma 4.3.3 and 4.3.7, agentn −K + 1 can be

better off by deviating from an identical bid profile in whichshe has the same bid as agentn −K,

if condition vn−K+1 > ⌊vn−K⌋ + 2δ is true. Thus⌊vn−K⌋ + δ is an equilibrium strategy for agent

n−K + 1 in the last auction.

Now let us discuss the firstK−1 auctions. In a complete information sequential auctions,

an agent with higher valuation will yield no less surplus than an agent with lower valuation. Thus,

in the (K − 1)st auction, no agent wants to bid higher than⌊vn−K⌋ + δ, because, if it lost in the

K − 1 auction, it could bid⌊vn−K⌋+ δ to win the last auction. By induction, no agent wants to bid

more than⌊vn−K⌋ + δ in the whole game.3

The above equilibrium is not unique in sequential FPSB auctions with complete informa-

tion and a discrete bidding space, given thatvn−K+1 ≤ ⌊vn−K⌋ + 2δ. For example, in the final

auction, if agentn − K + 1 can benefit from an identical bid withn − K agents or more agents,

then agentn − K + 1 might use ak-identical bid profile while the topK − 1 type agents bid at

⌊vn−K⌋ + δ in the firstK − 1 auctions.
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4.3.4 Equilibrium in Multi-unit Sequential Auctions

It is not surprising that some of the above conclusions for the FPSB sequential auctions will hold

for sequential multi-object auctions, in which a single auction consists of multiple units, but agents

demand a single-unit demand. Given some single auctions arepay-your-bid auctions, the results

will be the same as in the FPSB sequential single-object auctions. Because agents pay what they

bid, no agent wants to bid more than⌊vn−K⌋+ δ if the conditionvn−K+1 > ⌊vn−K⌋+ 2δ holds. If

vn−K+1 ≤ ⌊vn−K⌋+ 2δ, the solution will also be exactly the same as in sequential FPSB auctions.

Similarly, in sequentialMth price auctions, no agent wants to bid more than⌊vn−K⌋+ δ, given that

vn−K+1 > ⌊vn−K⌋ + 2δ is true.

4.4 FPSB Auctions with Incomplete Information

We now turn our attention to the case where the bidders do not know the valuations of the other

bidders.

4.4.1 A Two-Person FPSB Auction

Again, we start from a two-person FPSB auction. In this auction, each agent knows its own valua-

tion; however, she does not know the other agents’ valuations. We assume that agents’ valuations

are independent observations of a commonly know continuouscumulative distribution function,F.

In this symmetric FPSB auction, we assume that there exists asymmetric equilibrium. To simplify

the discussion, we first assume that each agent has only two possible strategies{b1, b2}. Suppose

that there is a critical value,z, which is a value inside the domain ofF. Specifically, we assume that

an agent uses strategyb1, when its valuation is lower thanz; otherwise, it usesb2. Thus, we have

the following strategy function for agenti.

β(vi) =





b1, vi ≤ z

b2, otherwise.

(4.5)

Theorem 4.4.1. In a two-person symmetric FPSB auction with discrete bids and incomplete in-

formation, there exists a symmetric equilibrium as featured by equation (4.5), where thez value is



63

given by

z = b2 + F(z)(b2 − b1). (4.6)

Proof: We letui(vi, z, b1) be the utility of agenti when it bidsb1 and letui(vi, z|b2) be

the utility of agenti when it bidsb2. Without loss of generality, we consider agent1 only. Since

there is only one other agent,Y1 is the highest valuation of the other agents. When agent1 bids

b1, and the other agent also bidsb1, resulting in a tie atb1, the probability that it wins the item is

Pr(Y1 ≤ z). Thus,

u1(v1, z, b1) = Pr(Y1 ≤ z)1
2 (v1 − b1)

= 1
2F(z)(v1 − b1).

When agent1 bids b2, there are two possibilities that agent1 can win the item. First, ifY1 ≤ z,

agent1 has probabilityPr(Y1 ≤ z) to win the item. Secondly, ifY1 > z, agent1 has probability

Pr(Y1 > z) tie with agent2. The utilities can be written as

u1(v1, z, b2) = Pr(Y1 ≤ z)(v1 − b2) + Pr(Y1 > z)1
2 (v1 − b2)

= F(z)(v1 − b2) + 1
2 [1 − F(z)](v1 − b2)

= 1
2(v1 − b2) + 1

2F(z)(v1 − b2).

Agent 1 will bid b1 if u1(v1, z, b1) ≥ u1(v1, z, b2); otherwise, it bidsb2. Subtracting

u1(v1, z, b2) from u1(v1, z, b1), we obtain

u1(v1, z, b1) − u1(v1, z, b2) =
1

2
F(z)(v1 − b1) − [

1

2
(v1 − b2) +

1

2
F(z)(v1 − b2)]

=
1

2
F(z)(b2 − b1) −

1

2
(v1 − b2)

=
1

2
[F(z)(b2 − b1) − (v1 − b2)].

The condition that agent1 prefersb1 requires that12 [F(z)(b2 − b1) − (v1 − b2)] ≥ 0, which yields

v1 ≤ b2 + F(z)(b2 − b1). (4.7)

Combining equation (4.7) and equation (4.5) wheni = 1, we obtain equation (4.6),z = b2 +

F(z)(b2 − b1). 3

The entire process does not requireF be differential in the agent’s valuation. Thus, this

result is applicable to all possible cumulative distribution functions, although it may be difficult to
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computez using equation (4.6) for some distributions. More importantly, there might be a multi-

plicity of z, which results in a multiplicity of symmetric equilibria. We provide a simple example

in Example 4.4.1 whenF is uniformly distributed.

Example 4.4.1.WhenF is uniformly distributed among{c, d}, we define

F(v) =





0, v < c

v−c
d−c

, c ≤ v ≤ d

1, d < v.

First, let us consider the case whenc ≤ z ≤ d. By incorporatingF into equation (4.6), we obtain

the following:

z = b2 +
z − c

d− c
(b2 − b1),

which results in

z =
b2 −

(
b2−b1
d−c

× c
)

1 − b2−b1
d−c

.

The value ofz is feasible as long as the result is less thand and larger thanc. Now we look at the

case wherez > d, we have

z = b2 + (b2 − b1),

which gives us

z = 2b2 − b1.

This z value is feasible as long as it is larger thand. The third case occurs whenz < c. This

situation gives usz = b2, which requiresb2 < c.

4.4.2 A Multi-Person FPSB Auction

The above result can be extended to multi-person FPSB auctions. We will continue to assume that

that each agent has only two possible strategies{b1, b2}.
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Theorem 4.4.2. In a multi-person symmetric FPSB auction with discrete bidsand incomplete in-

formation, there exists a symmetric equilibrium as featured by equation (4.5), where thez value is

given by

z =

Pr(Yn−1 ≤ z)(b2 −
b1
n

) + Pr(z ≤ Y1)
b2
n

+
n−2∑
i=1

Pr(Yn−i−1 < z < Yn−i)
b2

i+1

Pr(Yn−1 ≤ z)n−1
n

+ Pr(z ≤ Y1)
1
n

+
n−2∑
i=1

Pr(Yn−i−1 < z < Yn−i)
1

i+1

. (4.8)

Proof: Similar to the two-person cases, the utility functions, when agent1 bids b1, can

be written as

u1(v1, z, b1) = Pr(Yn−1 ≤ z)
1

n
(v1 − b1).

When agent1 bids b2, there are two cases in which agent1 wins the item. First, if all agents’

valuations are less thanz, agent1 has probabilityPr(Yn−1 ≤ z) to win the item. Second, if

Yn−i−1 < z < Yn−i, agent1 has probabilityPr(Yn−i−1 < z < Yn−i) to tie with i+ 1 agents. The

utilities can be written as

u1(v1, z, b2) = Pr(Yn−1 ≤ z)(v1 − b2) + Pr(z ≤ Y1)
v1 − b2
n

+
n−2∑

i=1

Pr(Yn−i−1 < z < Yn−i)
v1 − b2
i+ 1

.

Agent 1 will bid b1 if u1(v1, z, b1) ≥ u1(v1, z, b2); otherwise, it bidsb2. Subtracting

u1(v1, z, b2) from u1(v1, z, b1), we obtain

u1(v1, z, b1) − u1(v1, z, b2) = Pr(Yn−1 ≤ z)
1

n
(v1 − b1)

−Pr(Yn−1 ≤ z)(v1 − b2) − Pr(z ≤ Y1)
v1 − b2
n

−
n−2∑

i=1

Pr(Yn−i−1 < z < Yn−i)
v1 − b2
i+ 1

.

Solving forv1,

v1 ≤

Pr(Yn−1 ≤ z)(b2 −
b1
n

) + Pr(z ≤ Y1)
b2
n

+
n−2∑
i=1

Pr(Yn−i−1 < z < Yn−i)
b2

i+1

Pr(Yn−1 ≤ z)n−1
n

+ Pr(z ≤ Y1)
1
n

+
n−2∑
i=1

Pr(Yn−i−1 < z < Yn−i)
1

i+1

. (4.9)
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Combining equation (4.9) and equation (4.5), we obtain equation (4.8),

z =

Pr(Yn−1 ≤ z)(b2 −
b1
n

) + Pr(z ≤ Y1)
b2
n

+
n−2∑
i=1

Pr(Yn−i−1 < z < Yn−i)
b2

i+1

Pr(Yn−1 ≤ z)n−1
n

+ Pr(z ≤ Y1)
1
n

+
n−2∑
i=1

Pr(Yn−i−1 < z < Yn−i)
1

i+1

.

Thus, thez constructs an equilibrium strategy for an agent in a multi-person symmetric FPSB

auction with discrete bids and incomplete information.3

4.5 Conclusions

In this chapter, we discuss the existence and multiplicity of equilibria in FPSB auctions when bids

are discrete. We point out that there are eleven different situations which lead to at most three

equilibria and at least one equilibrium in2-person FPSB auctions with complete information. InN -

person FPSB auctions, we also show the existence of equilibrium and provide equilibrium solutions.

We also discuss variations with sequential auctions. When the FPSB auctions have incomplete

information, we provide equilibrium solutions for both two-person and multi-person FPSB auctions.

In the incomplete information cases, we assume that agents have only two possible strategies. We

expect that the computation procedure is similar to the cases when agents have more than two

possible strategies. In those cases, nevertheless, we needto compute multiple different piecewisez

values. And, the computational complexity will increase significantly.

Clearly, the random tie-breaking rule plays an important role in the refinement of the

results. If we adopt different tie breaking rules, we may derive different results. This work uses a

common tie-breaking rule, in which all tied bidders are equally likely to win. A possible alternative

is to use Vickery auction to break ties, as Maskin and Riley [60] introduced to solve equilibria

in FPSB auctions with continuous bids. It remains an area forfuture work to compare different

tie-breaking rules in these models.
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Chapter 5

Monte Carlo Approximation for Solving

Sequential Auctions

In this chapter, we develop a more general approach to constructing trading agents based

on game theory, and explore its computational limitations.We develop our technique in the context

of a sequence of (possibly multi-unit) auctions with a smallset of identified, risk-neutral partici-

pants, each of whom wants one unit of the item for which they have an independent, private value.

We assume that our agent knows the distribution of the other agents’ valuations, but not their actual

values. This is meant to model common procurement scenarios, and may fit some markets on eBay

in which it is apparently common for a small community of expert traders to recognize each other.

In both situations, the relatively small number of significant opponents creates the opportunity to

directly model one’s competitors.

We cast the problem as an incomplete, imperfect informationgame. However, the straight-

forward expansion of a sequence of auctions creates a game that is intractable even for very small

problems, and it is beyond the capability of current game solution software to solve for the Bayes-

Nash equilibria. Thus, we construct a bidding policy through Monte Carlo sampling. In particular,

we sample the opponents’ valuations, assume they play perfectly, and solve the resulting imper-

fect information game. We accumulate the results of the sampling into a heuristic strategy for the

incomplete information game.
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The resulting strategy implicitly captures the belief updating associated with observing

the opponents’ bids in earlier auctions. Underlying this work is the assumption that information we

gain about the other bidders can be used to improve play in later stages of the game. In particular, our

observations of a bidder’s actions in previous auctions should affect our belief about her valuation.

For example, if we notice that Sue has placed bids at high values in previous auctions but not yet

won anything, we are more likely to believe that Sue has a highvaluation, which may influence how

we should bid in future auctions.

The primary motivation of this line of work is to explore the potential benefits and the

practical limitations of this approach. We find that the straightforward expansion of the imperfect

information game cannot be solved directly by current game solvers (e.g., GAMBIT 1). Thus, we

develop methods to take advantage of the sequential structure that greatly reduces the space required

to represent the game. Though this decomposition enables usto solve larger games, GAMBIT ’s

ability to solve the decomposed games remains a bottleneck.

In Section 5.1 we formalize our model of the sequential auction scenario and set up the

game theoretic analysis. Section 5.2 describes how we leverage the substructure to significantly

decrease the amount of computation necessary to solve the game. In Section 5.3 we use Monte Carlo

sampling to generate a heuristic bidding policy for our agent. Section 5.4 presents our empirical

results, including comparisons between our heuristic policy and perfect play in markets that contain

both single-unit and multi-unit auctions. Section 5.5 develops the relationship between our approach

and the mathematics underlying sequential equilibria. We present related work in Section 5.6 and

then conclude.

5.1 Model

Consider an agent,i, that has the task of purchasing one item from a sequence of auctions,K. Let

c be the number of auctions, andk an individual auction. We refer to the collection of auctions as

the marketplace. Individual auctions may offer multiple units and differ inthe manner in which

they form prices. The specification of the order and rules of the collection of auctions is themarket

configuration.

Let q(k) be the number of units offered in auctionk, and the total number of objects be

1The GAMBIT toolset is a software program and set of libraries that support the con-
struction and analysis of finite extensive form and normal form multi-player games. See
http://www.hss.caltech.edu/gambit/Gambit.html.
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q =
∑

k q(k). The auctions close in a fixed, known order, and in this model,all are treated as sealed

bid auctions. The sealed bid assumption may not be as restrictive as it seems. In fact, the sniping

strategy used by many bidders on eBay [89, 96] reduces the open-outcry auction to the equivalent

of a sealed bid auction.

Let J denote the other bidders in the market, andA = J ∪ i. The total number of bidders,

including i, is n = |J | + 1. In a particular auction, a subset,A ⊆ A, of the agents will place bids.

Let the bid of bidderj in auctionk be denotedbkj .

Naturally, the rules of the auctions will affect the bidders’ choices of actions. A multi-unit

auction must have a policy for setting prices.2 In this study, we consider only two such policies. The

M th-price policy sets the price paid by all winners to the value of the lowest winning bid (this is

the policy used in eBay’s Dutch Auction format). Under thepay-your-bidpolicy, each winner pays

the price she offered. Pay-your-bid is the policy used on Yahoo’s multi-unit auctions. In the case of

a single unit for sale, the two policies are equivalent.

Given a sequence of sealed-bid auctions, the agent must select a bid to place in each

auction. LetBk be the set of bid choices that are acceptable in auctionk. Typically, we assume

thatBk is the set of integers in some range and is identical across all of the auctions. However, the

techniques we develop admit different bid choices in each auction. The number of bid choices is

m = |Bk|. We assume that ties are broken randomly.

Our agent has a valuevi(k) for an item ink, and bidderj ∈ J , has valuationvj(k). In this

study, we assume that the items available inK are identical and that all participants are interested

in only a single unit. We anticipate that the techniques we develop in this chapter can be extended

to auctions of heterogeneous items if an agent’s valuationsfor the items are correlated, that is, if

learning about an agent’s valuation of one item helps predict its valuation of another item.

Agenti does not know bidderj’s true value for the items, but knows that it is drawn from

a distribution,Dj. In this model, we assume that valuations are independent and private, but we

do not make any particular assumptions about the functionalform of the distributions, nor do we

assume that the distributions are identical for all of the bidders. We will make various assumptions

about whether the bidders inJ know each other’s valuations or agenti’s valuation.

We assume that each participant is present for the first auction, and continues to participate

in each auction until either she wins or the sequence ends. Thus, a buyer that does not win in auction

k will participate in auctionk + 1. We assume that the auctioneer makes public a list of all of the

2See [111] for a survey of some pricing policies.
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bids once the auction is complete. This is consistent, for instance, with eBay’s policy. Lethk
j

be the sequence of bids that agentj placed in the auctions up to, but not including,k. That is,

hk
j = {b1j , . . . , b

k−1
j }. We callhk

j bidderj’s history up to auctionk. The history of allJ bidders

leading to auctionk is denotedHk
J .

5.1.1 Sequential Game Representation

We model the sequential auction scenario as an extensive form game,Γ(A, VA, B
K ,K), where

A = J∪i andBK denotes the bid choices for all of the auctions. Asubgamehas the same structure,

except that part of the game has already been played. For example, the subgame that results when

bidderj wins the first item isΓ(A′, VA′ , BK ′

,K ′) whereA′ = i ∪ J \ j andK ′ = K \ {1}.

It is also useful to identify the game structure of individual auctions. Denote acomponent

auction gameγ(A, V k
A , B

k), in which agentsA, with valuationsV k
A for the items in auctionk,

choose bids from the domainBk. Note that a game (or subgame) is a sequence of component games.

In game theoretic terms,γ is the game in whichA is the set of players,Bk are the actions, and the

payoff is vj(k) − bkj for the bidder with the highest bid, and zero for everyone else. Because the

auction is sealed bid, all of the bidders’ actions are simultaneous, and the game involves imperfect

information.

A simple example with three agents, two items, and two bid levels is shown in Figure 5.1.

The circles are labeled with the ID of the agent, and the arcs with the bid value ({1, 2}). The game

consists of two stages, the first of which corresponds to the first auction involving all three agents.

The second stage involves the two agents who did not win the first item, and for conciseness, we

have substituted labeled triangles for subgames on the leaves of the first auction. There are fifteen

subgames, labeledγ1 . . . γ15, but only three possible unique structures, labeled A, B, and C.

Dotted lines connect decision nodes in the same informationstate. The small squares at

the leaves of the subgames represent terminal states that would be labeled with the payoffs to the

agents. The actual value of the payoffs would depend upon each agent’s actual value for the item,

the path taken, and the auction’s policy for setting prices.The diamonds denote the random move

by nature to break ties among the bids (with the probabilities indicated in parenthesis). This type

of move by nature can be handled relatively easily because itdoes not introduce any asymmetric

information. Moreover, it is amenable to the decompositions we introduce in the next section.

It is obvious from Figure 5.1 that a particular component game,γ, can appear many times

in the overall gameΓ. Each second level component game appears on five different paths of the top
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Figure 5.1: A sequence of two sealed-bid auctions with threeagents, one item for sale in each
auction, and two bid levels.

level game. When necessary, we will distinguish a componentgame using its history as a subscript:

γHk
J
. The history information is sufficient to uniquely identifyeach component game instance.

In addition to the imperfect information generated by the sealed bids, the agent also faces

incomplete information because it does not know the other bidders’ true values, and therefore does

not know the other bidders’ payoffs. Harsanyi (1967-68) demonstrated that incomplete information

games can be modeled by introducing an unobservable move by nature at the beginning of the game

which establishes the unknown values. This approach transforms the incomplete information game

into a game with imperfect information.

Unfortunately, the move-by-nature approach is computationally problematic. The number

of possible moves available to nature ismn, wherem is the size of the domain ofvj(k), andn is the

number of agents. Our model permits a continuous range for valuation functions, so the number of

choices is not enumerable. In some special cases, analytic solutions can be found to auction games

with continuous types [24]. However this analysis is complex and typically requires restrictive

assumptions about the distributions of values. Moreover, whether valuations are drawn from discrete

or continuous domains, each different market configurationrequires a separate analysis.

For these reasons, we investigate the use of Monte Carlo sampling to generate heuristic

bidding policies for the incomplete information game. Our approach to the problem can be summa-
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rized as follows:

1. Create a sample complete-information game by drawing a set of valuations for other bidders.

2. Solve for a Nash equilibrium of the sample game.

3. Update the agent’s bidding policy.

The first step is straightforward Monte Carlo sampling. The second and third steps are the

subject of the next two sections.

5.2 Leveraging Substructure in the Complete Information Game

We built our agent on top of the GAMBIT Toolset. Although GAMBIT includes algorithms that can

solve multi-player games with imperfect information, it cannot solve the straightforward expansion

of even very small instances of the complete-information, sequential auction game in a reasonable

amount of time.

To see why, consider the size of the extensive form of a complete information sequential

auction game with ties broken randomly. The assumption thatbidders want only one item means

that the winners of a particular auction will not participate in future auctions. Thus, auctionk+1 has

q(k) fewer participants than auctionk. In general, the number of agents participating in component

gamek is z(k) = n−
∑k−1

x=1 q(x). The number of nodes in the extensive form representation ofthis

game withc auctions is

mn − 1

m− 1
+

c∑

k=2


m

z(k) − 1

m− 1
×

k−1∏

j=1

(
mz(j) + EXT [z(j),m, q(j)]

)

 .

The core of the equation captures the number of nodes in the tree without tie breaking, and the EXT

term represents the number of additional terminal nodes added to each component game due to tie

breaking. The EXT term expands as

EXT [z(j),m, q(j)]

=

m∑

v=1

z(j)∑

i=q(j)+1

(
z(j)

i

)
(v − 1)z(j)−i

[(
i

q(j)

)
− 1

]

+

m∑

v=1

z(j)−1∑

i=2

(
z(j)

i

) H(j,i)∑

h=L(j,i)

(
z(j) − i

h

)
(m− v)h(v − 1)z(j)−i−h

[(
i

q(j) − h

)
− 1

]
,
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where

H(j, i) = min(q(j) − 1, z(j) − i), and

L(j, i) = max(q(j) − i+ 1, 1).

A five agent, four item sequential auction with five bid choices and random tie breaking

has 4.5 billion decision nodes and is unsolvable with GAMBIT on current workstations. However,

as Figure 5.1 suggests, there is structure in the problem that we can leverage to improve our repre-

sentation of the game.

The computational aspects of game theory have been studied by economists and computer

scientists in the past few years [44, 45, 46, 66, 105]. A very promising thread of work is focused

on representations of games that capture their inherent structure and facilitate solution computation.

Koller and Pfeffer’s GALA language (1997) can be used to represent games insequenceform, and

the authors have developed solution techniques for two-player, zero-sum games represented in this

format. The success of GALA is based on the intuition that significant computational savings can

be achieved by taking advantage of a game’s substructure. This intuition holds for the sequential

auction model, and we have employed it to improve upon GAMBIT ’s default approach.

The default representation of this game in GAMBIT is to expand each of the leaves with

an appropriate subgame. Given that the bidders have complete information, all subgames with the

same players remaining have the same solution(s). Thus, a single-unit, sealed-bid (component)

auction withn agents has at mostn uniquesubgames—one for each possible set of non-winners.

The three component games—A, B, and C—are illustrated in Figure 5.1.

Our agent’s approach is to create all possible component games and solve them using

GAMBIT ’s C++ libraries. The process is essentially dynamic programming, and equivalent to stan-

dard backward induction with caching. The expected payoffsfrom the solution to a component

gameγ involving biddersJ are used as the payoffs for the respective agents on the leaves of any

component games inΓ which immediately precedeγ. The agent solves all possible smallest com-

ponent games (i.e., wherek = c), and recursively constructs higher-order subgames untilit solves

the root game (i.e.,k = 1).

The number of decision nodes required to express a game in itscomponent form is
c∑

k=1

(
n

z(k)

)
mz(k) − 1

m− 1
.

The component form representation is exponential in the number of agents and the number

of bidding choices. However, the total number of nodes required to express the game is exponen-
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tially less than in the full expansion. For example, the five agent, four item sequential single-unit

auctions with five bid choices and random tie-breaking requires only 1931 nodes to encode in its

component form, compared to the 4.5 billion required for thenaive expansion.

It should be noted that the solutions that we are using in the above analysis are Nash

equilibria found by GAMBIT for each particular subgame. These solutions may involve either pure

or mixed strategies. It is well known [82], that at least one mixed strategy equilibrium always exists,

however it is also often true that more than one Nash equilibria exist. In this study, we simply

take the first equilibria found by GAMBIT , and leave the question of how, and even whether, to

incorporate multiple equilibria to future research. We recognize that our results may be influenced

by the order in which GAMBIT finds solutions, but also consider it a concern inherent in using

off-the-shelf solution technology.

It should also be noted that the procedure described above isconsistent with the definition

of subgame perfect equilibrium (SPE), a well-known specialization of Nash equilibria. A profile

of strategies is subgame perfect if it entails a Nash equilibrium in every subgame of the overall

game [94]. All subgame perfect equilibria are Nash, but the reverse is not necessarily true.

While the decomposition provides an exponential improvement in the number of nodes

needed to represent (and hence solve) the game, the computational cost of finding equilibria for the

component games remains a severely limiting factor. Indeed, though the number of bid choices is

the base, not the exponent, of the complexity of the extensive form game, we will see in Section 5.4

that GAMBIT is unable to solve subgames if we increase the number of bid choices beyond a small

number.

5.3 Monte Carlo Approximation

In order to participate in this environment, the agent must construct apolicy, Π, that specifies what

action it should take in any state of the game that it might reach. There are many conceivable

policies available to our agent.

One simple strategy is to compute the equilibrium strategy in each component game, and

to bid accordingly. For example, the equilibrium strategy of a single first-price, sealed-bid auction in

which the other bidders’ valuations are drawn uniformly from [0, 1] is to bidbki = (1 − 1/n)vi(k),

wheren is the number of bidders [62]. We defineΠmyopic to be the strategy in which the agent

bids according to the equilibrium of each individual sealed-bid auction. Thus, the strategy has one
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element for each potential game size,Πmyopic = {πz} wherez is the size, in number of bidders, of

the component game.

In a sequence of sealed-bid, single-unit auctions, a Bayes-Nash equilibrium strategy is for

a bidder to bid the expected price of the(q + 1)st valuation under the assumption that her bid is

among the topq (see [106] for details). We denote this policyΠ(q+1)st and use it as a benchmark

in our empirical evaluation.

If the distributions from which the bidders draw values are not identical, then it would

behoove our agent to have a policy that accounted for which other bidders were in the subgame.

Thus,Πnot−id = {πJ⊆J}. That is, the actions in the policy depend upon which subset,J , of

agents remain.

All three policies mentioned thus far are memoryless; they ignore the bids the remaining

opponents made in previous auctions. On the other extreme isa policy that uses all possible history

information.Πhistory = {πJ ,Hk
J
} encodes the entire tree because the decision at each decision node

is a function of the entire history.

The policy that our agent learned in this study isΠagg−hist = {πJ ,Hk
J
} whereHk

J =

{hk
j∈J }, the histories of all other agents still in the game. This differs fromΠhistory in that policies

are classified by the histories of only those bidders that remain active (J ), rather than by the previous

actions of all bidders inJ . It is based on the assumption that bidders who are no longer active in the

sequential auction (because they have won an item) are irrelevant. Therefore, all component games

that have the same opponents and identical previous actionsby those agents, are aggregated into a

class of component games,γJ ,Hk
J

.

In the example in Figure 5.1, suppose Player 1 is our agent. All paths that lead to subgame

A can be ignored because our agent won the item in the first auction. Of the remaining subgames,

the set{γ2, γ4, γ10} have identical histories—bidder 2 bid $1 in all of them. Similarly, the sets

{γ6, γ14}, {γ3, γ5, γ12}, and{γ7, γ15} can be formed by their common histories.

The agent constructs the policy by sampling the distributions of the other bidders and

solving the resulting complete information game. LetL be the collection of sample games con-

structed, andl a single instance. Denote the solution returned by GAMBIT to instancel asΩl. Ωl

is a profile of (possibly mixed) strategies—one for each player—that constitute an equilibrium for

this game instance. Let,Ωl
i specify the policy for agenti, andωl

i(γ) is the policy for subgameγ.

Note that some decision nodes may not be reachable if the actions that lead to them are played with

zero probability. To simplify the notation, we include these unreachable nodes in the following even

though they have no effect on the solution.
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To compute the policyπJ ,Hk
J

for a decision in gameγJ ,Hk
J

we take the weighted sum of

the equilibrium solutions across all sample games. Let

w(bki |πJ ,Hk
J
) =

∑

l∈L

∑

γ∈γ
Hk

J

Pr(γ|Ωl) Pr(bki |ω
l
i(γ)) (5.1)

be the weight assigned to actionbki in the class of games identified byγHk
J

. Here,Pr(γ|Ωl) is

the probability that the game would reach subgameγ given that everyone is playingΩl (i.e., the

product of the probabilities in the mixed strategies on the path leading toγ, andPr(bki |ω
l
i(γ)) is the

probability associated with bidbki in solutionωl
i(γ).

Zhu and Wurman examine a version of the update function with abias towards actions

that generate a higher utility for our agent [115]. The inclusion of utility in the equation biases

the agent toward maximizing its expected utility—a useful heuristic, perhaps, but one that is not

necessarily consistent with equilibrium behavior. In thiswork, we compare the effect of using the

biased update function rather than the unbiased equation (5.1). The biased updated function has the

form:

w(bki |πJ ,Hk
J
) =

∑

l∈L

∑

γ∈γ
Hk

J

Pr(γ|Ωl)ui(γ,Ω
l) Pr(bki |ω

l
i(γ)), (5.2)

whereui(γ,Ω
l) is our agent’s expected utility of the subgame rooted atγ.

Finally, we normalize the computed weights to derive the probabilities,

Pr(bki |πJ ,Hk
J
) =

w(bki |πJ ,Hk
J
)

∑
b∈Bk w(b|πJ ,Hk

J
)
. (5.3)

The result of this process is a policy that specifies a (possibly mixed) strategy for each unique class of

component games. We refer to a policy constructed in this manner as aMonte Carlo Approximation

(MCA) policy.

5.4 Empirical Results

To evaluate the efficacy of the approach, we simulated several market configurations in which we

varied the functional form of the valuation distributions,the form of the update equation, and the

strategies of the other bidders. Each of these experimentalvariables are described in more detail be-

low. The experimental design is similar to the previous workby Zhu and Wurman [115]. However,

in the results reported herein, we have added random tie-breaking rule and multi-unit auctions.
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• Market Configuration: The market configuration includes the number of agents, the do-

main of the bid messages, and the number and types of auctions. We used the following

configurations:

– {5,5,s-s-s} contains five agents, five bid levels, and a sequence of three single-item

auctions.

– {5,5,s-2M th} contains five agents, five bid levels, and an auction sequencein which a

single-unit auction is followed by aM th-price auction for two units.

– {5,5,s-2PYB} contains five agents, five bid levels, and an auction sequencein which a

single-unit auction is followed by a two-unit auction in which the winners pay their bid

values.

– {5,4,s-s-s-s} contains five agents, four bid levels, and a sequence of four single-item

auctions.

• Valuation Distribution: we used three types of distributions: uniform, left-skewedBeta,

right-skewed Beta. With the exception of{5,4,s-s-s-s}, the valuations of the other agents

were drawn from [1, 6], while our agent’s valuation is alwaysfixed at 3.5. In the left-skewed

distribution, our agent is likely to have a valuation significantly above average, while in the

right-skewed distribution it will be significantly below average. In experiments with{5,4,s-s-

s-s}, the valuations of the other agents drawn from [1,5] while our agent’s valuation is fixed

at 3; this combination was chosen to draw comparisons with anearlier work by Zhu and

Wurman [115].

• Update Equation: we examined the difference between using equation (5.1) andusing equa-

tion (5.2), which biases the policy aggregation by the agent’s expected utility.

• Bidder Strategies: we studied the effects of various combinations of bidder strategies.

– All SPE:as a benchmark scenario, we assume that all agents have complete information

for a test case and all of them play the subgame perfect equilibrium computed using our

structural decomposition technique with the GAMBIT engine.

– MCA/n-SPE:we assume the other agents had complete information, while our agent

has incomplete information. Our agent implements the strategy learned from the Monte

Carlo policy construction, while the other agents implement their SPE strategies. Since
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our agent is not playing perfectly, there is no guarantee that the other agents’ SPE strate-

gies are equilibrium responses to our imperfect play.3 To generate the MCA strategy,

the agent trained with 200 samples.

– All MCA: In this scenario all agents construct and play strategies generated with Monte

Carlo policy construction. Note that for these simulations, each opponent must be re-

trained with each new draw of its valuation.

– (q + 1)-Equilibrium: Another benchmark for the sequence of single-unit auctions, in

the(q+ 1)-equilibrium strategy all agents play the sequential auction equilibrium strat-

egy [106]. Each agent bids the expected price of the(q + 1)st valuation under the

assumption that its bid is among the topq.

In the experiments, we measure the utility for our agent (computed as the difference be-

tween its value and the price it pays if it wins), the social welfare (the aggregate value of all of the

winning agents), and the revenue achieved by the seller. Theexperiments were run on a Beowulf

cluster of eight Linux computers.

In some cases, our agent may find that the game has progressed down a path for which

it learned no policy. In such cases, our agent picks the most similar subgame for which it does

have a policy. The similarity measure favors subgames with the same bidding pattern, but possibly

different agents, over subgames with the same agent but different bidding patterns.

Figure 5.2 shows our agent’s utility on thirty randomly selected problem instances from

the{5,4,s-s-s-s} market scenario with other agents’ valuations drawn from the uniform distribution.

For each problem instance, the four strategy combinations were tested, and update equation (5.2)

is used. The performance of the Monte Carlo strategy is quiteclose to that of the subgame perfect

equilibrium both when the other agents play perfectly and when they construct their own Monte

Carlo strategies. From this result we conclude that the approximation technique generates policies

that perform quite well in this environment.

The(q + 1)-equilibrium strategy is included in Figure 5.2, though it is important to note

that it represents a slightly different game than the other three. Agents must be allowed to place

real-valued bids in the(q + 1)-equilibrium strategy, while in the other three we are restricting

bids to integer values. This distinction explains, for instance, why our agent achieves zero utility

in Figure 5.2 under the(q + 1)-equilibrium strategy when it has the lowest value among thefive

3In theory, it would be possible to determine the opponents’ best responses to our heuristic strategy by marginalizing
our agent and computing a reduced game in which the other agents’ payoffs are impacted by our fixed behavior.



79

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 6 11 16 21 26

Test Case #

O
ur

 A
ge

nt
's

 E
xp

ec
te

d 
P

ay
of

f

All SPE MCA/4-SPE All MCA (q+1) Equilibrium

Figure 5.2: Our agent’s expected payoff in the{5,4,s-s-s-s} market scenario with the other agents’
valuations drawn from a uniform distribution and equation (5.2) is used to update policies.

agents. When bid values are restricted, it is more likely that our agent will end up in a tie and

therefore achieve a positive surplus with some probability. Nevertheless, the pattern of the payoffs

for the(q + 1)-equilibrium strategy is quite similar to our empirical results.

One aspect that we want to examine is the effect of the utilityterm in equation (5.2). Fig-

ure 5.3 shows our agent’s expected utility on the same 30 testcases when trained with the same

training data and equation (5.1). Although Figures 5.2 and 5.3 look nearly identical, close inspec-

tion shows that equation (5.2) performs slightly better than equation (5.1), in the sense that it more

closely approximates the subgame perfect outcomes. For this reason, we continue to use equa-

tion (5.2) in the rest of the empirical tests.

Figures 5.4 and 5.5 show similar correspondence between thestrategies when the other

agents’ valuations are drawn from right-skewed and left-skewed Beta distributions, respectively.

Notice that the in the left-skewed distribution our agent achieves higher payoffs, while in the right-

skewed case our agent receives lower payoffs. This result isexpected given that the expected average

valuation will be lower when the opponents are drawn from a left-skewed distribution, and higher
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Figure 5.3: Our agent’s expected payoff in the{5,4,s-s-s-s} market scenario with the other agents’
valuations drawn from a uniform distribution and equation (5.1) is used to update policies.

when drawn from a right-skewed distribution.

The next set of experiments involved five-agent, three-itemscenarios. We compared two

multi-unit auction scenarios,{5,5,s-2M th} and{5,5,s-2PYB}, against a sequence of three single

unit auctions,{5,5,s-s-s}, over the same thirty uniform-distribution sample instances tested above.

Figures 5.6 and 5.7 show how closely the performance of the MCA strategy tracks that of the

subgame perfect strategy for{5,5,s-2M th} and{5,5,s-2PYB}, respectively. Figure 5.8 contrasts

our agent’s payoff for the three scenarios. The results from{5,5,s-2M th} and{5,5,s-2PYB} are

nearly identical (and may appear to be a single line), while significant variation exists in results from

{5,5,s-s-s}. Notice that our agent performed significantly better in both {5,5,s-2M th} and{5,5,s-

2PYB} than in{5,5,s-s-s}. It is clear that, overall, the agents are bidding lower in the multi-unit

scenarios, and our agent is playing a mixed strategy that is more successful. However, it remains to

be seen whether there is a game theoretic explanation for this outcome, or whether it is a byproduct

of our technique or the manner in which GAMBIT returns solutions.
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Figure 5.4: Our agent’s expected payoff in the{5,4,s-s-s-s} market scenario with the other agents’
valuations drawn from a right-skewed Beta distribution.

Figure 5.9 shows the social welfare achieved in all three scenarios. The welfare achieved

in scenario{5,5,s-s-s} is slightly better than the two multi-unit cases, whose graphs are again nearly

coincident. This is consistent with the observation that the agents are behaving more collaboratively

in the multi-unit auction by bidding lower and letting the tie-breaking determine the winner. When

the agent with the highest value allows the allocation to be determined by tie-breaking rather than

by placing a better bid, it is more likely that a less than optimal allocation will result.

Figure 5.10 shows the effect of the different auction scenarios on the sellers’ revenue.

Again, because buyers are acting more competitively in the single-unit auctions, the sellers achieve

greater revenue than in the multi-unit auction scenarios.

5.5 Convergence of MCA Policies

A perfect Bayesian equilibrium is defined in terms of beliefsat decision points in the game, and

requires that an equilibrium policy be consistent with those beliefs. In this section, we show that
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Figure 5.5: Our agent’s expected payoff in the{5,4,s-s-s-s} market scenario with the other agents’
valuations drawn from a left-skewed Beta distribution.

the MCA policy at a node implicitly captures the agent’s beliefs about which opponent valuations

would explain the fact that the agent arrived at a particulardecision point in the game tree.

Theorem 5.5.1.MCA converges to the average policy of perfect Bayesian equilibrium.

Proof: LetΩV be a perfect Bayesian equilibrium profile of the game when agents have

valuation profileV . Let Φ be our agent’s belief function, andΦ(V ) be our agent’s belief that

the other agents have valuation profileV . Let ϑ be an element ofV . We havePr(Ωϑ) = Φ(ϑ)

andPr(ΩV ) = Φ(V ) for one specializationϑ of V . Similarly, for a component game, we have

Pr(ωl
i(γ)) = Pr(γ). Let Pr(Hk

J |Ω
V ) be the probability that the policies selected byΩV follow

historyHk
J . Given historyHk

J , the probability that the other agents have profileV , is given by

Pr(V |Hk
J) =

Pr(Hk
J |Ω

V )Φ(V )∫
ϑ

Pr(Hk
J |Ω

ϑ)Φ(ϑ)dϑ
.

A perfect Bayesian equilibrium will define a policy for a subgame that is consistent with

the beliefs. Here we simply let the policy be theaverage policy, that is, the policy constructed by
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Figure 5.6: Our agent’s expected payoff in the{5,5,s-2M th} scenario with the other agents’ valua-
tions drawn from a uniform distribution.

taking an average over all action profiles, weighted by the likelihood of seeingV given that we have

reached the subgame. In other words, the probability that our agent playsbki in subgameγHk
J

is

Pr(bki |H
k
J) =

∫

ϑ

Pr(bki |ϑ) Pr(ϑ|Hk
J )dϑ.

substitutingPr(ϑ|Hk
J ) with Pr(V |Hk

J ) into the above equation, we have

Pr(bki |H
k
J ) =

∫

ϑ

Pr(bki |ϑ)
Pr(Hk

J |Ω
ϑ)Φ(ϑ)∫

ϑ
Pr(Hk

J |Ω
ϑ)Φ(ϑ)dϑ

dϑ

=

∫
ϑ

Pr(bki |ϑ) Pr(Hk
J |Ω

ϑ)Φ(ϑ)dϑ∫
ϑ

Pr(Hk
J |Ω

ϑ)Φ(ϑ)dϑ

=

∫
ϑ

Pr(bki |ϑ) Pr(Hk
J |Ω

ϑ)Φ(ϑ)dϑ

Pr(Hk
J )

. (5.4)

Let us consider MCA strategies. In MCA, we compute the policyby taking the weighted

sum of the subgame perfect equilibrium solutions across allsample games. Letl be a sample in

the collection of samplesL. We know that eachl maps to aV . So,Pr(l) = Pr(V ). ωl
i(γ) is the
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Figure 5.7: Our agent’s expected payoff in the{5,5,s-2PYB} scenario with the other agents’ valua-
tion are drawn from a uniform distribution.

solution toγ. So,Pr(bki |ω
l
i(γ)) = Pr(bki |γ). Like equation (5.1), we have

w(bki |H
k
J ) =

∑

l∈L

∑

γ∈γ
Hk

J

Pr(γ|Ωl) Pr(bki |γ). (5.5)

Using the multiplication and Bayesian rules, we have

w(bki |H
k
J ) =

∑

l∈L

∑

γ∈γ
Hk

J

Pr(bki |γ) Pr(γ|Ωl)

=
∑

l∈L

∑

γ∈γ
Hk

J

Pr(bki |H
k
J) Pr(Hk

J |γ) Pr(γ|Ωl)

=
∑

l∈L

Pr(bki |H
k
J ) Pr(Hk

J |Ω
l)

= Pr(bki |H
k
J)

∑

l∈L

Pr(Hk
J |Ω

l). (5.6)
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Figure 5.8: Comparison of our agent’s expected payoff amongdifferent types of auctions by using
MCA strategy while the other agents’ valuation are drawn from a uniform distribution.

In MCA, Pr(bki |H
k
J) is an equation described in numerical format as follows

Pr(bki |H
k
J )

∑

l∈L

Pr(Hk
J |Ω

l) =
Pr(Hk

J |b
k
i ) Pr(bki )

Pr(Hk
J )

∑

l∈L

Pr(Hk
J |Ω

l)

=

∑
l∈L

Pr(Hk
J |Ω

l) Pr(Ωl|bki ) Pr(bki )

Pr(Hk
J )

∑

l∈L

Pr(Hk
J |Ω

l)

=

∑
l∈L

Pr(Hk
J |Ω

l) Pr(bki |Ω
l) Pr(Ωl)

Pr(Hk
J )

∑

l∈L

Pr(Hk
J |Ω

l). (5.7)

ReplaceΩl with a value sampleϑ, combine equations (5.5),(5.6), (5.7), and let the number

of samples go to infinity, we have
∑
l∈L

Pr(Hk
J |Ω

l) = 1 and

w(bki |H
k
J ) = Pr(bki |H

k
J ) =

∫
ϑ

Pr(bki |ϑ) Pr(Hk
J |Ω

ϑ)Φ(ϑ)dϑ

Pr(Hk
J )

. (5.8)

Equation (5.8) is the same as the average policy of perfect Bayesian equilibrium in equation (5.4).
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Figure 5.9: Comparison of the expected social welfare amongdifferent auction scenarios when our
agent plays its MCA strategy and the other agents’ valuationare drawn from a uniform distribution.

Thus, we conclude that MCA converges to the average policy ofperfect Bayesian equilibrium when

the number of samples goes to infinity.3

5.6 Related Work

This work continues the study begun by Zhu and Wurman [115], which studied single unit sequential

auctions with deterministic tie-breaking. In this work, weadmit multi-unit auctions, random tie-

breaking rules, and slightly larger problem sizes. Moreover, we connect the MCA approach directly

to belief updating and sequential equilibria.

Our main focus is to study the feasibility of using game theory as a solution tool in a

computational agent adaptable to various electronic market configurations. The copious research

on auctions and game theory provides a backdrop for our effort. See Klemperer [42] for a broad

review of auction literature, including a discussion of sequential auctions for homogeneous objects.

Weber [106] shows that the equilibrium strategies for the bidders when the objects are sold in
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Figure 5.10: Comparison of the expected revenue among different auction scenarios when our agent
plays its MCA strategy and the other agents’ valuation are drawn from a uniform distribution.

sequential first-price, sealed-bid auctions is to bid the expected price of the object in each auction.

This result is developed under the assumption that only the clearing price is revealed in previous

auctions. In many current online auction environments, theactual bids and their associated bidders

are revealed. In addition, we are not aware of any research onsequences of auctions with different

rules.

Monte Carlo sampling has been previously used in conjunction with games of incomplete

information. Frank et al. [21] describes an empirical studyof the use of the Monte Carlo sampling

method on a simple complete binary game tree. They draw the discouraging conclusion that the

error rate quickly approaches 100% as the depth of the game increases. However, perhaps because

Frank et al. consider only pure strategy equilibrium in a two-person, zero-sum game, these negative

results did not evidence themselves in our study.

Howard James Bampton [3] investigated the use of Monte Carlosampling to create a

heuristic policy for the (imperfect information) game of Bridge. In Bampton’s paper, he simply

collected the player’s decision in every sampled game and accumulated the chance-minimax values
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for each alternative at each decision node. Our method of accumulating sampled data is quite

different from Bampton’s approach, again because our game is not a two-player zero-sum game.

Researchers in artificial intelligence have recently been studying trading agents. A signif-

icant amount of work has gone into agents for the Trading Agent Competition (TAC) [29, 98, 107].

The TAC environment is significantly more complex than the simple scenarios presented here, and

to date, none of the implemented agents model opponent behavior in a significant way.

Anthony, et al. [1] investigate agents that can participatein multiple online auctions. The

authors posit a set of “tactics” and then empirically compare the performance of these tactics in a

simulated market that consists of simultaneous and sequential English, Dutch, and Vickrey auctions.

While the bidding strategies seem to resonate with particular aspects of human behavior (e.g., the

“desperateness” strategy), they do not seem to have a foundation in any theory.

Boutilier et al. [7] develop a sequential auction model in which the agent values combi-

nations of resources while all other participants value only a single item. Unlike our model, the

Boutilier formulation does not explicitly model the opponents, though like our model it benefits

from a dynamic programming approach to solving the decisionproblem.

Hon-Snir et al., [35] propose an iterative learning approach to solve repeated first-price

auctions. They develop a repeated auction model which converges to an equilibrium strategy for a

one-shot auction after many rounds of repeated auctions. Inaddition to the differences in overall

structure of the marketplace, their work differs from ours in that they treat the other bidders as

naive players. Specifically, they assume the opponents’ next bid vectors are distributed according a

weighted empirical distribution of their past bid vectors.

5.7 Conclusions

This study represents a first step in exploring the implementation of computational game theory in a

simple trading agent. We show how Monte Carlo sampling can beused to construct a bidding policy

that performs comparably to the subgame perfect equilibrium. This strategy takes advantage of

information revealed in prior auctions in the sequence to improve play in later auctions. Importantly,

the architecture is flexible, in that it can handle a variety of simple auction types, and different types

of other bidders. Equally important, the approach is computationally limited by our ability to solve

the component games, which suggests that algorithms for solving component games, particularly

ones with well-structured payoff and action spaces, is an important area for further research.
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We plan to continue this work and integrate more auction types, and to explore scenarios

in which the agent’s and other bidders’ preferences are morecomplex, including scenarios in which

the buyers may want more than one item. We would also like to add an aggregate buyer to the model

to represent the large number of unmodeled opponents often found in public markets. Finally, we

plan to explore auction sequences in which the bidders’ valuations are correlated across the items,

but not necessarily identical.
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Chapter 6

The Non-Existence of Equilibrium in

Sequential Auctions when Bids are

Revealed

6.1 Introduction

A participant in a sequential auction must construct a strategy that is optimal for the sequence as

a whole, and not just for an individual auction [19]. A natural approach is to model the sequential

auctions as an extensive form game and solve for the equilibria. The outcome of this type of analysis

depends upon critical assumptions in the model being studied.

Weber surveyed the research on sequential auctions and concluded that, with symmet-

ric, risk-neutral bidders and identical items, the equilibrium price in a single-unit demand, first-

price, sealed-bid sequential auction is a martingale. Weber’s model examines two different price

announcement schemes that enable the remaining bidders to infer the winning bidders’ true valua-

tion. The critical difference between Weber’s model and ours is that we look at the case in which

the auctioneer reveals all of the bids, not just the winner, at the end of the auction. Revealing all

bids in an auction is popular on current public marketplacessuch as eBay. As far as we know, none
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of the theoretical results have addressed the model with complete bid revelation.

Another model closely related to ours is that studied by Ortega-Reichert [86], in which

two bidders bid on two items sold in a sequence of first-price,sealed-bid auctions. Ortega-Reichert

derived equilibrium results for his model, and showed the signaling effects of the first bid on the

second auction. However, his model differs from ours in a significant way that impacts the ability

to derive a pure-strategy equilibrium. In the Ortega-Reichert model, the bidders have valuations

for the two objects that are derived from a common distribution with an unknown parameter. The

information revealed in the first auction affects each bidder’s estimate of the value of the unknown

parameter, and therefore their belief about their ability to win the second good. In our model, we

consider a sequence of identical goods for which the biddershave a constant valuation. We show that

a strategy that would reveal the bidders’ valuations after the first auction would turn the remaining

auctions into games of complete information.

Hausch [32] derived the necessary conditions for a symmetric equilibrium in Milgrom and

Weber’s general symmetric model by applying the signal gameidea from Ortega-Reichert’s model.

Krishna [51] noted that in Weber’s model the price quotes of the first period have no effect on the

equilibrium bids in the second period. McAfee and Vincent [63] found a declining price pattern in

symmetric sequential auctions when bidders have non-decreasing risk aversion. In another paper,

the same authors [64] examined the equilibrium when a sellercan post a reserve price in sequential

auctions. Elmaghraby [15] studied the sequential second-price auction of heterogeneous items and

concludes that the ordering of items effects the efficiency of the auction. Many other papers have

addressed other variations of sequential auction models (e.g., [27, 36, 39]).

The remainder of the chapter proceeds as follows. In Section6.2, we present a model of

sequential auctions and point out the difference between Weber’s model and our model. In Section

6.3 we discuss the symmetric equilibrium in Weber’s model and show that Weber’s equilibrium is

not a solution to our model. In Section 6.3.3, we prove the non-existence of a symmetric pure-

strategy equilibrium in the model for both first-price and second-price auctions. We also discuss the

non-existence of asymmetric equilibrium in Section 6.4. Weoffer some conclusions in Section 6.5

6.2 The Model

There areK identical items for sale in a sequence of first-price, sealed-bid auctions. Exactly one

item is sold in each auction. For convenience, we also useK to represent the set of items. There
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areN risk-neutral bidders,N > K, competing for theK items. LetA be the set of bidders.

Each bidder has single-unit demand and will withdraw from the game once she wins one item.

The bidders’ valuations are independent observations of a nonnegative random variable,V , with

a commonly known continuous cumulative distribution function, F, and its associated probability

density function,f. We assume thatF is continuous and differentiable in the domain of the valuation

variables. Each bidder knows the value of the object to herself (the private values assumption), but

not that of the other bidders.

Without loss of generality, we designate bidder 0 as the bidder whose strategy we are

analyzing. Letn = N − 1, and let the other bidders be indexed from1 to n. Letx be the true value

of bidder0’s valuation and letyi be the true value of bidderi’s valuation,i ∈ {1, ..., n}. Without

loss of generality, letYj be the(n−j+1)-st order statistic of{Y1, ..., Yn}. Thus, we haveY1 ≤ Y2 ≤

... ≤ Yn. LetFYj
be the cdf of variableYj and letfYj

be the pdf ofYj. F k is the multiplication ofF

k times. Because bidders have identical information about each other’s valuations at the beginning

of the sequential auction, we refer to the model as thesymmetric sequential auction model.

The key difference between our model and Weber’s model [106]is the information re-

vealed by the auctioneer. There are two different price quotes in Weber’s model: the first announces

only that an object has been sold, while the second announcesalso the sale price,p. Weber con-

cludes that both price quotes yield the same equilibrium solution. We demonstrate that Weber’s

results do not hold if the auctioneer revealsall bids after the auction terminates.

Let βk,i(x) denote bidderi’s bid function, which, given her valuation,x, the bidder can

use to compute her bid,bi, in auctionk. As is common, we assume that these strategy functions are

continuous, monotone and strictly increasing in the valuation. We also assumeβk(x) is invertible,

which means that a bidder’s valuation can be inferred with certainty from the bid she makes [51,

106]. We assumeβ(0) = 0.

A symmetric equilibriumis an outcome in which all players adopt the same strategy. In

our sequential auction model, a joint outcome is symmetric if βk,i = βk,j for all biddersi andj. It

is a symmetric equilibrium if no bidder can unilaterally increase her payoff by deviating from the

symmetric strategy.

It has been shown that equilibrium does not exist in first price auction with continuous

strategy space with complete information due to the discontinuity of the payoff function [53]. We

address this technical issue using the technique proposed by Maskin and Riley [60]: a second round

Vickrey auction is used to break the tie, if any. With the introduction of a second round Vickrey

auction tie breaking rule, there exists a pure strategy equilibrium in which the highest type bidder
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bids a price equal to the second highest type bidder’s valuation, and the other bidders bid at their

true valuation. The introduction of this tie breaking is primarily a theoretical technicality because

the probability of ties is zero when the strategy space is continuous.

6.3 Symmetric Equilibria in Sequential Auctions

6.3.1 Weber’s Equilibrium

Weber derives a unique symmetric equilibrium for his model in which each bidder bids the expected

value of the(K + 1)th highest bidder assuming her own bid was thekth highest bid.1 That is,

βk(x) = E[YN−K |YN−k < x < YN−k+1]. (6.1)

It is natural to question whether the price announcement in the first auction will influ-

ence the bidders’ behaviors in the second auction. However,since the winner leaves the game, the

remaining bidders have the same information about the rest of the game. A proof in [51] shows

that the later period strategy is independent of the previous price announcement. As a result, for

each bidder, the beliefs about the other bidder’s valuationdistributions remain unchanged. Weber

explains that the type independence and symmetry assumptions make the equilibrium strategies

independent of the two different price quotes [106].

However, when the auctioneer reveals all of the bids after each auction in the sequence,

the above strategy is no longer an equilibrium strategy. Thenext section presents an example to

demonstrate an individual bidder’s incentive to deviate, and the following section proves the general

case.

6.3.2 A Counter Example when Bids are Revealed

Consider a sequence of two auctions with bidders that followthe symmetric strategy in equation

(6.1). That is, bidderi bidsbi = β1,i(vi). Becauseβ is invertible, after seeing the bids, every bidder

can computevi = β−1
1 (bi), for all bidders remaining in the auction. As a result, the second auction

becomes a game of complete information.

It is straightforward to show that a bidder can be better off by unilaterally deviating from

equation (6.1) in the first auction.

1Interested readers may refer to [51], Section 15, for the proof.
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Example 6.3.1. Suppose there areN = 10 bidders in a sequence of two, first-price, sealed-bid

auctions. If bidder0 uses the strategy suggested by Weber, she will bidβ1(x) in the first auction.

Similarly, bidderi will bid β1(yi). After the first auction, the second auction becomes a complete

information auction. The second highest bidder wins the second item at the price of the third highest

valuation. We have the following cases:

1. If x > Y9, bidder0 wins the first item and paysE[Y8|x > Y9].

2. If Y9 > x > Y8, bidder0 loses the first item, but will win the second auction with an expected

payment ofE[Y8|Y9 > x > Y8]. The payoff is an expectation because bidder0 will not obtain

the true information abouty8 until the first auction completes.

3. If Y8 > x, bidder0 loses both the first and the second auctions.

Now, suppose bidder0 deviates fromβ1(x) to β
′

1(x) = 0, while the other bidders stick to

Weber’s strategy. After the first auction, the other biddersinfer that bidder0’s valuation is0, and

is therefore not a factor in their decisions. Although Bidder 0 will always lose the first auction, she

can benefit from this deception, as evidenced by the following four exhaustive cases.

1. If x > Y9, Y9 wins the first item. In the second auction, all of the other bidders will believe

that Y8 has the highest valuation andY7 is the second highest. Thus, bidder8 will bid y7.

On average, bidder0 will be able to win the second item at priceE[Y7|x > Y9]. Since

E[Y8|x > Y9] ≥ E[Y7|x > Y9], x− E[Y7|x > Y9] ≥ x− E[Y8|x > Y9]. Thus, bidder0 will

be better off by deviating in this case.

2. If Y9 > x > Y8, bidder0 will again win the second auction atE[Y7|Y9 > x > Y8].



95

Utility When Using
Weber’s Strategy

Utility When Deviating to
Strategyz = 0

Increase in
Utility When
Deviating

x > Y9 x−E[Y8|x > Y9] x− E[Y7|x > Y9] > 0

Y9 > x > Y8 x−E[Y8|Y9 > x > Y8] x− E[Y7|Y9 > x > Y8] > 0

Y8 > x > Y7 0 x− E[Y7|Y8 > x > Y7] − ǫ > 0

Y7 > x 0 0 = 0

Table 6.1: The expected utility of bidder0 in the sequential FPSB auctions.

3. If Y8 > x > Y7, bidder8 will believe that the second highest valuation in the secondauction

is Y7, and will bid aty7. Again, bidder0 can bid aty7 + ǫ and win the second item, where

the ǫ term is included to avoid the tie withY8. Thus, bidder0 will expect to payE[Y7|Y8 >

x > Y7] − ǫ.

4. If Y7 > x, bidder0 will lose both items.

Thus, bidder0 will have a greater expected payoff by unilaterally deviating in the first

auction. A comparison of the cases is shown in Table 6.1.

Example 6.3.1 demonstrates that a bidder would be better offby unilaterally deviating

from Weber’s strategy when the other bidders use Weber’s strategies in the first auction. Thus,

Weber’s equilibrium strategies cannot be an equilibrium inthis new model of sequential auctions.

We now address the question of whether any pure strategy, symmetric equilibrium exists in this

game.

6.3.3 Non-Existence of Symmetric Equilibrium in Sequential First-Price Auctions

We now address the general question of the existence of symmetric equilibrium in the sequential

auction with bid revelation. We continue to consider a sequence of two auctions. Assume that

there exists a symmetric pure strategy equilibrium, such that every bidder uses the same strategic

function,β, in the first auction. With this assumption, and the previousassumption thatβ is strictly

monotonically increasing and invertible, every bidder caninfer every other bidder’s true valuation
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after the first auction. As a result, the second and future auctions become complete information

games.

Thus, we restrict our analysis to the first auction, in which the bidders have incomplete

information. The definition of a symmetric equilibrium requires that a bidder cannot be better off

by unilaterally deviating fromβ when all other bidders are playingβ. Let u(x) denote the payoff

to a bidder if she bidsβ(x). Letu(x, z|z ≥ x) denote the payoff of this bidder if she deviates from

β(x) to a higher bidβ(z). Similarly, we letu(x, z|z ≤ x) denotes the payoff of this bidder if she

deviates fromβ(x) to a lower bidβ(z).

Whenz ≥ x, bidder0 will win the first item if z is larger than the highest valuation of

the other bidders. Otherwise, she will win the second item ifx is larger than the second highest

valuation of the other bidders. Bidder0’s payoff function can be written as2

u(x, z|z ≥ x) = Pr(Yn < z)[x− β(z)] (6.2)

+ Pr(Yn−1 < x ≤ z < Yn) ×

[x− E[Yn−1|Yn−1 < x ≤ z < Yn]].

The first term results from the eventYn < z in which bidder0 wins the first auction. The

second term captures the case that bidder0 loses the first auction and wins the second by bidding

the revealed value of the third highest bidder.

We now consider the case wherez ≤ x. If z is larger than the highest valuation of the

other bidders, bidder0 will win the first item. Otherwise, bidder0 may still be able to win the

second item, depending upon the revealed valuations of the other bidders. In the following analysis,

bidder 0 may bid against a bidder who has a type greater than bidder 0’s. In such a case, bidder

0 would lose the tie-breaker unless she bids slightly above the expected bid of the bidder with the

higher type. We introduce the small value,ǫ, which bidder0 uses to avoid a tie with a higher type

bidder.

There are four variations of non-zero outcomes:

• Case 1:Yn−1 < z < Yn. Bidder0 loses the first item; however, bothz andx are larger than

the second highest valuation of the other bidders such that bidder0 will win the second item

and expect to payE[Yn−1|Yn−1 < z < Yn].

2When the strategy space and the probability function are continuous, the probability that two bidders tie at the same
valuation or strategy is zero. Because of this, we will ignore edge equalities in the following equations.
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• Case 2:Yn−2 < z < Yn−1. In this case, bidder0 still loses the first item. However, the bidder

with the second highest valuation infers from the first auction that the third highest valuation

is z. As a result, he will bidz in the second auction. Bidder0 can bidz + ǫ to outbid the

bidder with rankYn−1.

• Case 3:z < Yn−2 < x < Yn−1. In this case, the bidder with the second highest valuation

will bid what appears to be the third highest value:E[Yn−2|z < Yn−2 < x < Yn−1]. Bidder

0 needs to bidE[Yn−2|z < Yn−2 < x < Yn−1] + ǫ to outbid the bidder with the second

highest type.

• Case 4:z < Yn−2 < Yn−1 < x. This case is the same as the above case with the exception

that bidder 0 will win the tie breaker and so does not need to add ǫ to her bid to win the second

item.

Thus, whenz ≤ x, the payoff function can be written as

u(x, z, ǫ|z ≤ x) = Pr(Yn < z)[x− β(z)]

+ Pr(Yn−1 < z < Yn)[x− E[Yn−1|Yn−1 < z < Yn]]

+ Pr(Yn−2 < z < Yn−1)[x− (z + ǫ)]

+ Pr(z < Yn−2 < x < Yn−1) ×

[x− (E[Yn−2|z < Yn−2 < x < Yn−1] + ǫ)]

+ Pr(z < Yn−2 < Yn−1 < x) ×

[x− E[Yn−2|z < Yn−2 < Yn−1 < x]].

In the above equation, the first term represents the case whenbidder 0 wins the first

auction. The next four terms represent the cases 1–4 above.

As ǫ goes to zero,u(x, z, ǫ|z ≤ x) asymptotically goes to

u(x, z|z ≤ x) = Pr(Yn < z)[x− β(z)] (6.3)

+ Pr(Yn−1 < z < Yn)[x− E[Yn−1|Yn−1 < z < Yn]]

+ Pr(Yn−2 < z < Yn−1)[x− z]

+ Pr(z < Yn−2 < x)[x− E[Yn−2|z < Yn−2 < x]].
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Forβ(x) to be bidder 0’s best response to the other bidders playingβ, it must be true that

u(x, z|z ≥ x) ≤ u(x), andu(x, z, ǫ|z ≤ x) ≤ u(x). As ǫ goes to zero, the symmetric equilibrium

requires

u(x, z|z ≥ x) ≤ u(x),and (6.4)

u(x, z|z ≤ x) ≤ u(x).

It follows from equations (6.2) and (6.3) thatu(x, z|z ≤ x) andu(x, z|z ≥ x) are con-

tinuous and differentiable because the probability functions are continuous and differentiable. Also,

we knowu(x, z|z ≤ x) = u(x, z|z ≥ x) = u(x) whenz = x. We now present our main result.

Theorem 6.3.1. In the symmetric sequential auction model with full bid revelation, there does not

exist a symmetric pure-strategy equilibrium.

Proof: We prove the result by contradiction. We first assume that in the symmetric sequen-

tial auction model in which all bids are revealed, there exists a symmetric pure-strategy equilibrium,

β.

Whenz ≥ x, we refer to it as a right hand side (RHS) deviation. Similarly, z ≤ x is a left

hand side (LHS) deviation. In the following discussion, we replaceβ with βRHS in u(x, z|z ≥ x)

and replaceβ with βLHS in u(x, z|z ≤ x). Our target is to solveβRHS andβLHS respectively

from equations (6.2) and (6.3). From the assumption thatβ is a symmetric pure strategy that is

continuous, monotonically increasing, and invertible, itfollows thatβRHS(x) = βLHS(x).

We can rewrite equation (6.4) as

u(x, z|z ≥ x) − u(x)

z − x
≤ 0, for all z ≥ x, and

u(x, z|z ≤ x) − u(x)

z − x
≥ 0, for all z ≤ x.

As a result, there must exist a small enough deviation|z − x| such that taking the first

order condition on both sides ofx gives

∂u(x, z|z ≥ x)

∂z
≤ 0, for all z ≥ x, and (6.5)

∂u(x, z|z ≤ x)

∂z
≥ 0, for all z ≤ x. (6.6)

Equation (6.5) can be derived from equation (6.2). Whenz ≥ x, we have
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u(x, z|z ≥ x)

= FYn(z)[x− βRHS(z)]

+n(1 − F(z))Fn−1(x) ×

[x−

∫ x

−∞

∫ +∞

z
yn−1fyn−1,yn(yn−1, yn)dyndyn−1

n(1 − F(z))Fn−1(x)
]

= FYn(z)[x− βRHS(z)] + n(1 − F(z))Fn−1(x)x

−

∫ x

−∞

∫ +∞

z

yn−1n(n− 1)f(yn−1)f(yn)Fn−2(yn−1)dyndyn−1

= FYn(z)[x− βRHS(z)] + n(1 − F(z))Fn−1(x)x

−

∫ x

−∞

yn−1n(n− 1)f(yn−1)F
n−2(yn−1)dyn−1[1 − F(z)].

Solving the first order condition, we obtain

∂u(x, z|z ≥ x)

∂z
= fYn(z)[x− βRHS(z)] − FYn(z)β′RHS(z) − nf(z)Fn−1(x)x

+

∫ x

−∞

yn−1n(n− 1)f(yn−1)F
n−2(yn−1)dyn−1f(z)

≤ 0.

From the definition of equilibrium, we know thatu(x, z|z ≥ x) is maximized atz = x.

BecauseFn(x) = Fn(x) andfYn(x) = nf(x)Fn−1(x), settingz = x allows us to reduce the

above equation to

∂u(x, z|z ≥ x)

∂z
|z=x = −[FYn(x)βRHS(x)]

′

+

∫ x

−∞

yn−1n(n− 1)f(yn−1)F
n−2(yn−1)dyn−1f(x)

= 0.

As a result,

[FYn(x)βRHS(x)]
′ =

∫ x

−∞

n(n− 1)yn−1f(yn−1)F
n−2(yn−1)dyn−1f(x). (6.7)
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Now, let us consider the case wherez ≤ x. Equation (6.3) can be rewritten as

u(x, z|z ≤ x)

= FYn(z)[x− βLHS(z)] + n(1 − F(z))Fn−1(z)x

−

∫ z

−∞

∫ +∞

z

yn−1n(n− 1)f(yn)f(yn−1)F
n−2(yn−1)dyndyn−1

+

∫ z

−∞

∫ +∞

z

n(n− 1)(n − 2)F(yn−2)
n−3f(yn−2)f(yn−1) ×

[1 − F(yn−1)]dyn−1dyn−2[x− z]

+x

∫ x

z

fYn−2
(yn−2)dyn−2 −

∫ x

z

yn−2fYn−2
(yn−2)dyn−2

= FYn(z)[x− βLHS(z)] + n(1 − F(z))Fn−1(z)x

−

∫ z

−∞

n(n− 1)yn−1f(yn−1)F
n−2(yn−1)dyn−1[1 − F(z)]

+n(n− 1)(n − 2)

∫ z

−∞

F(yn−2)
n−3f(yn−2)dyn−2 ×

∫ +∞

z

f(yn−1)[1 − F(yn−1)]dyn−1[x− z]

+x

∫ x

z

fYn−2
(yn−2)dyn−2 −

∫ x

z

yn−2fYn−2
(yn−2)dyn−2

= FYn(z)[x− βLHS(z)] + n(1 − F(z))Fn−1(z)x

−

∫ z

−∞

n(n− 1)yn−1f(yn−1)F
n−2(yn−1)dyn−1[1 − F(z)]

+
n(n− 1)

2
Fn−2(z)[1 − F(z)]2[x− z]

+x

∫ x

z

fYn−2
(yn−2)dyn−2 −

∫ x

z

yn−2fYn−2
(yn−2)dyn−2.
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The first order condition is

∂u(x, z|z ≤ x)

∂z
= fYn(z)[x− βLHS(z)] − FYn(z)β′LHS(z)

+n(n− 1)Fn−2(z)f(z)[1 − F(z)]x − nFn−1(z)f(z)x

−n(n− 1)zf(z)Fn−2(z)[1 − F(z)]

+

∫ z

−∞

n(n− 1)yn−1f(yn−1)F
n−2(yn−1)dyn−1f(z)

+
n(n− 1)(n − 2)

2
Fn−3(z)f(z)[1 − F(z)]2[x− z]

−n(n− 1)Fn−2(z)[1 − F(z)]f(z)[x − z]

−
n(n− 1)

2
Fn−2(z)[1 − F(z)]2

−fYn−2
(z)x+ zfYn−2

(z)

≥ 0.

At z = x,

∂u(x, z|z ≤ x)

∂z
|z=x

= fYn(x)[x− βLHS(x)] − FYn(x)β′LHS(x) − nFn−1(x)f(x)x

+

∫ x

−∞

n(n− 1)yn−1f(yn−1)F
n−2(yn−1)dyn−1f(x)

−
n(n− 1)

2
Fn−2(x)[1 − F(x)]2

= −[FYn(x)βLHS(x)]′

+

∫ x

−∞

n(n− 1)yn−1f(yn−1)F
n−2(yn−1)dyn−1f(x)

−
n(n− 1)

2
Fn−2(x)[1 − F(x)]2

≥ 0.

Thus, we have

[FYn(x)βLHS(x)]′ ≤

∫ x

−∞

n(n− 1)yn−1f(yn−1)F
n−2(yn−1)dyn−1f(x)

−
n(n− 1)

2
Fn−2(x)[1 − F(x)]2. (6.8)

We have now obtained a closed form solution for computing both βRHS(x) andβLHS(x).
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Combining equations (6.7) and (6.8), and noting thatn(n−1)
2 Fn−2(x)[1 − F(x)]2 > 0, we see that

[FYn(x)βLHS(x)]′ =

∫ x

−∞

n(n− 1)yn−1f(yn−1)F
n−2(yn−1)dyn−1f(x)

−
n(n− 1)

2
Fn−2(x)[1 − F(x)]2

<

∫ x

−∞

n(n− 1)yn−1f(yn−1)F
n−2(yn−1)dyn−1f(x)

= [FYn(x)βRHS(x)]
′.

BecauseβRHS(0) = βLHS(0) = β(0) = 0, FYn(0)βRHS(0) = FYn(0)βLHS(0) = 0 . By

integrating both sides of the above equation, we obtain for all x

βLHS(x) < βRHS(x), (6.9)

which implies thatβ does not exist for anyx. This result contradicts the assumption thatβ is

monotonically increasing and continuous, havingβLHS(x) = βRHS(x). Thus, in the symmetric,

sequential auction model with all bids revealed, there doesnot exist a symmetric pure-strategy

equilibrium.3

It is worth noting thatβLHS(x) < βRHS(x) does not imply that there exist two different

equilibrium strategy functions. The whole proof process shows that there does not exist a definition

for β at any specified pointx because the asymptotic limits from either side are not equal.

6.3.4 Non-Existence of Symmetric Equilibrium in Sequential Vickrey Auctions

Weber characterized the equilibrium in the sequential, Vickrey auction scenario with only the win-

ner’s bid revealed as for allk < K

βk(x) = E[YN−K |YN−k−1 < x < YN−k]. (6.10)

In the last auction, wherek = K, each bidder bids her true valuation. In the auctions prior to the

last, each bidder bids her expectation of the (K + 1)-th highest bidder assuming that she is at or

aboveK.

To analyze the sequential Vickrey model with all bids revealed, we again assume that

there exists a symmetric, pure-strategy equilibrium such that every bidder uses the same strictly

monotone increasing and invertible bidding function,β, in the first auction. Thus, every bidder can

infer every other bidder’s true valuation after the first auction, and the second and future auctions

become complete information games.
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Utility when Using Utility Deviating Increase in Utility
Weber’s Strategy to z = 0 when Deviating

x > Y3 x− E[Y2|Y3 > x > Y2] x > 0

Y3 > x > Y2 x− E[Y2|Y2 > x > Y1] x > 0

Y2 > x > Y1 x− E[Y1|Y2 > x > Y1] x > 0

Y1 > x 0 x > 0

Table 6.2: The expected utility of bidder0 in the sequential Vickrey auctions.

In a sequence ofK − 1 Vickrey auctions with complete information, it is a Nash equilib-

rium for the topK − 1 players to bid at theK-th highest remaining valuation, while all others bid

their true valuation. This conclusion, however, leads to the observation that Weber’s strategy is not

an equilibrium in the first auction when the bids of all bidders are revealed. As in Section 6.3.3, a

3-item, 4-bidder sequence of Vickrey auctions illustrateshow one bidder can improve her expected

utility by misrepresenting her valuation in the first auction. The four conditions and their expected

payoffs are shown in Table 6.2.

We now examine a sequence of three3 Vickrey auctions with an arbitrary number of bid-

ders. We concentrate our analysis on the first auction, in which the bidders have incomplete infor-

mation, and show that a symmetric, pure-strategy equilibrium does not exist.

When all bidders playβ and Bidder 0 selectsz ≥ x, she will win the first item ifz is

larger than the highest valuation of the other bidders, and will pay the second highest bid,βYn .

Otherwise, she will win the second item ifx is larger than the second highest valuation of the other

bidders. Bidder0’s payoff function can be written as

u(x, z|z ≥ x) (6.11)

= Pr(Yn < z)[x− E[β(Yn)|Yn < z]]

+ Pr(Yn−2 < x ≤ z < Yn)[x− E[Yn−2|Yn−2 < x ≤ z < Yn]].

The first term results from the eventYn < z in which bidder0 wins the first auction.

The second term captures the case in which bidder0 loses the first auction and wins the second by

bidding the revealed value of the fourth highest bidder.

We now consider the case where bidder 0 choosesz ≤ x. If z is larger than the highest

valuation of the other bidders, bidder0 will win the first item. Otherwise, bidder0 may still be able

3The extension to an arbitrary number of auctions follows easily from the three auction case.
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to win the second or third item, depending upon the revealed valuations of the other bidders.

There are four non-zero outcomes:

• Case 1:Yn−2 < z < Yn. Bidder0 loses the first item; however, bothz andx are larger than

the third highest valuation among the other bidders and bidder 0 will be able to win one of

the next two auctions and expect to payE[Yn−2|Yn−2 < z < Yn].

• Case 2:Yn−3 < z < Yn−2. In this case, bidder0 still loses the first item. However, the

bidders with the second and third highest valuations infer from the first auction that the fourth

highest valuation isz and, as a result, will bidz in the second auction. This allows bidder0

to outbid bidderYn−2 by biddingz+ ǫ, thus stealing an item when she is not one of the three

highest valuing bidders.

• Case 3:z < Yn−3 < x. In this case, the bidder with the third highest valuation will bid

what appears to be the fourth highest value. There are two sub-cases. The first sub-case is

x < Yn−2, so Bidder0 needs to bidE[Yn−2|z < Yn−3 < x < Yn−2] + ǫ to outbid the bidder

with the third highest type. The second sub-case isz < Yn−3 < Yn−2 < x, so Bidder0 does

not need to addǫ to her bid to win the second/third item.

As ǫ goes to zero, asymptotically, the payoff function can be written as

u(x, z|z ≤ x) = Pr(Yn < z)[x− E[β(Yn)|Yn < z]] (6.12)

+ Pr(Yn−2 < z < Yn)[x− E[Yn−2|Yn−2 < z < Yn]]

+ Pr(Yn−3 < z < Yn−2)[x− z]

+ Pr(z < Yn−3 < x)[x− E[Yn−3|z < Yn−3 < x]].

As a condition of symmetric equilibrium, equation 6.4 is also true for sequential Vickrey

auctions. We now present our second main result.

Theorem 6.3.2.In a sequence of symmetric Vickrey auctions with full bid revelation, there does not

exist a symmetric, pure-strategy equilibrium.

Proof: We prove the result by contradiction following the same strategy as in the FPSB

model. We first assume that there exists a symmetric pure-strategy equilibrium,β.

Again, we refer to the case where the bidder selectsz ≥ x as a right hand side (RHS)

deviation. Similarly,z ≤ x is a left hand side (LHS) deviation. In the following discussion,
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we replaceβ with βRHS when u(x, z|z ≥ x), and replaceβ with βLHS when u(x, z|z ≤ x).

Furthermore, we replaceE[β(Yn)|Yn < z] with ΘRHS in u(x, z|z ≥ x) and replaceE[β(Yn)|Yn <

z] with βLHS in u(x, z|z ≤ x). Our target is to solveβRHS andβLHS respectively from equations

(6.11) and (6.12). Because we assume thatβ is continuous, monotonically increasing, and invertible,

we should find thatβRHS(x) = βLHS(x) andΘRHS(x) = ΘLHS(x).

We can rewrite equation (6.11) as follows.

u(x, z|z ≥ x)

= FYn(z)[x− ΘRHS(z)]

+

∫ x

−∞

∫ +∞

z

fyn−2,yn(yn−2, yn)dyndyn−2 ×

[
x−

∫ x

−∞

∫ +∞

z
yn−2fyn−1,yn(yn−2, yn)dyndyn−2∫ x

−∞

∫ +∞

z
fyn−2,yn(yn−2, yn)dyndyn−2

]

= FYn(z)[x− ΘRHS(z)]

+

∫ x

−∞

∫ +∞

z

[n(n− 1)(n− 2)f(yn−2)f(yn) ×

Fn−3(yn−2)[F(yn) − F(yn−2)]]dyndyn−2x

−

∫ x

−∞

∫ +∞

z

[n(n− 1)(n− 2)yn−2f(yn−2)f(yn) ×

Fn−3(yn−2)[F(yn) − F(yn−2)]]dyndyn−2

= FYn(z)[x− ΘRHS(z)]

+n(n− 1)(n − 2)Fn−2(x)[1 − F(z)]
[1 + F(z)

2(n − 2)
−
F(x)

n− 1

]
x

−

∫ x

−∞

n(n− 1)(n − 2)yn−2f(yn−2)F
n−3(yn−2)dyn−2

1 − F 2(z)

2

+

∫ x

−∞

n(n− 1)(n − 2)yn−2f(yn−2)F
n−2(yn−2)dyn−2[1 − F(z)].
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Solving the first order condition, we obtain

∂u(x, z|z ≥ x)

∂z

= fYn(z)[x− ΘRHS(z)] − FYn(z)Θ
′

RHS(z)

+n(n− 1)(n − 2)Fn−2(x)
[−2F(z)f(z)

2(n − 2)
+
F(x)f(z)

n− 1

]
x

−

∫ x

−∞

n(n− 1)(n − 2)yn−2f(yn−2)F
n−3(yn−2)dyn−2 ×

[−2F(z)f(z)]

2

+

∫ x

−∞

n(n− 1)(n − 2)yn−2f(yn−2)F
n−2(yn−2)dyn−2 ×

[−f(z)].

= −[FYn(z)ΘRHS(z)]
′

+ nf(z)Fn−1(z)x

+n(n− 1)(n − 2)Fn−2(x)
[−2F(z)f(z)

2(n − 2)
+
F(x)f(z)

n− 1

]
x

+F(z)f(z)

∫ x

−∞

n(n− 1)(n − 2)yn−2f(yn−2)F
n−3(yn−2)dyn−2

−f(z)

∫ x

−∞

n(n− 1)(n − 2)yn−2f(yn−2)F
n−2(yn−2)dyn−2

= −[FYn(z)ΘRHS(z)]
′

+ nf(z)Fn−1(z)x

−n(n− 1)(n − 2)Fn−2(x)
[ F(z)

n− 2
−
F(x)

n− 1

]
f(z)x

+

∫ x

−∞

[n(n− 1)(n − 2)yn−2f(yn−2)F
n−3(yn−2) ×

[F(z) − F(yn−2)]]dyn−2f(z)

≤ 0.

From the definition of equilibrium, we know thatu(x, z|z ≥ x) reaches its optimal point

whenz = x. By settingz = x, the above equation reduces to

∂u(x, z|z ≥ x)

∂z
|z=x

= −[FYn(x)ΘRHS(x)]
′

+

∫ x

−∞

n(n− 1)(n − 2)yn−2f(yn−2) ×

Fn−3(yn−2)[F(x) − F(yn−2)]dyn−2f(x)

= 0.
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As a result,

FYn(x)ΘRHS(x)]
′ (6.13)

=

∫ x

−∞

n(n− 1)(n− 2)yn−2f(yn−2)F
n−3(yn−2) ×

[F(x) − F(yn−2)]dyn−2f(x).

Now, let us consider the case wherez ≤ x. Equation (6.12) can be rewritten as

u(x, z|z ≤ x)

= FYn(z)[x − ΘLHS(z)]

+

∫ z

−∞

∫ +∞

z

fyn−2,yn(yn−2, yn)dyndyn−2 ×

[
x−

∫ z

−∞

∫ +∞

z
yn−2fyn−1,yn(yn−2, yn)dyndyn−2∫ x

−∞

∫ +∞

z
fyn−2,yn(yn−2, yn)dyndyn−2

]

+

∫ z

−∞

∫ +∞

z

n!

(n− 4)!2!
f(yn−3)f(yn−2)F

n−4(yn−3) ×

[1 − F(yn−2)]
2dyn−3dyn−2(x− z)

+

∫ x

z

n!

(n− 4)!3!
f(yn−3)F

n−4(yn−3)[1 − F(yn−2)]
3dyn−3x

−

∫ x

z

n!

(n− 4)!3!
yn−3f(yn−3)F

n−4(yn−3)[1 − F(yn−2)]
3dyn−3.



108

u(x, z|z ≤ x)

= FYn(z)[x− ΘLHS(z)]

+

∫ z

−∞

∫ +∞

z

n(n− 1)(n − 2)f(yn−2)f(yn)Fn−3(yn−2) ×

[F(yn) − F(yn−2)]dyndyn−2x

−

∫ z

−∞

∫ +∞

z

n(n− 1)(n − 2)yn−2f(yn−2)f(yn) ×

Fn−3(yn−2)[F(yn) − F(yn−2)]dyndyn−2

+
n!

(n− 4)!2!

∫ z

−∞

f(yn−3)F
n−4(yn−3)dyn−3 ×

∫ +∞

z

f(yn−2)[1 − F(yn−2)]
2dyn−2(x− z)

+
n!

(n− 4)!3!

∫ x

z

[
Fn−4(yn−3) − 3Fn−3(yn−3) ×

+3Fn−2(yn−3) − Fn−1(yn−3)
]
dF(yn−3)x

−

∫ x

z

n!

(n− 4)!3!
yn−3f(yn−3)F

n−4(yn−3)[1 − F(yn−2)]
3dyn−3

= FYn(z)[x− ΘLHS(z)]

+n(n− 1)(n − 2)Fn−2(z)[1 − F(z)]
[1 + F(z)

2(n − 2)
−
F(z)

n− 1

]
x

−

∫ z

−∞

n(n− 1)(n − 2)yn−2f(yn−2)F
n−3(yn−2)dyn−2

1 − F 2(z)

2

+

∫ z

−∞

n(n− 1)(n − 2)yn−2f(yn−2)F
n−2(yn−2)dyn−2[1 − F(z)]

+
n!

(n− 3)!3!
Fn−3(z)[1 − F(z)]3(x− z)

+
n!

(n− 4)!3!

[Fn−3(x) − Fn−3(z)

n− 3
−

3[Fn−2(x) − Fn−2(z)]

n− 2
+

3[Fn−1(x) − Fn−1(z)]

n− 1
−
Fn(x) − Fn(z)

n

]
x

−

∫ x

z

n!

(n− 4)!3!
yn−3f(yn−3)F

n−4(yn−3)[1 − F(yn−2)]
3dyn−3.
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The first order condition is

∂u(x, z|z ≤ x)

∂z

= −[FYn(z)ΘLHS(z)]
′

+ nf(z)Fn−1(z)x

+n(n− 1)(n − 2)2Fn−3(z)
[1 + F(z)

2(n − 2)
−
F(z)

n− 1

]
[1 − F(z)]f(z)x

+n(n− 1)(n − 2)Fn−2(z) ×
[−2F(z)f(z)

2(n − 2)
−
f(z)[1 − F(z)] − F(z)f(z)

n− 1

]
f(z)x

+n(n− 1)(n − 2)zf(z)Fn−2(z)[1 − F(z)]

−n(n− 1)(n − 2)zf(z)Fn−3(z)
1 − F 2(z)

2

−
−2F(z)f(z)

2

∫ z

−∞

n(n− 1)(n − 2)yn−2f(yn−2)F
n−3(yn−2)dyn−2

−f(z)

∫ z

−∞

n(n− 1)(n − 2)yn−2f(yn−2)F
n−2(yn−2)dyn−2

+
n!

(n− 3)!3!
Fn−4f(z)[1 − F(z)]3(x− z)

−
n!

(n− 3)!3!
Fn−3(z)3[1 − F(z)]2f(z)(x− z)

−
n!

(n− 3)!3!
Fn−3(z)[1 − F(z)]3

+
n!

(n− 4)!3!
Fn−4(z)[−1 + 3F(z) − 3F 2(z) + F 3(z)]f(z)x

+
n!

(n− 4)!3!
Fn−4(z)[1 − F(z)]3f(z)z

= −[FYn(z)ΘLHS(z)]
′

+ nf(z)Fn−1(z)x

−n(n− 1)(n − 2)Fn−2(z)
[F(z)f(z)

n− 2
−
F(z)f(z)

n− 1

]
f(z)x

+n(n− 1)(n − 2)Fn−3(z) ×

[1 − F(z)2

2
−

(n− 2)F(z)[1 − F(z)]

n− 1
−
F(z)[1 − F(z)]

n− 1

]
f(z)x

+n(n− 1)(n − 2)zf(z)Fn−3(z)[F(z)(1 − F(z)) −
1 − F 2(z)

2
]

+

∫ z

−∞

n(n− 1)(n − 2)yn−2f(yn−2)F
n−3(yn−2) ×

[F(z) − F(yn−2)]dyn−2f(z)

+
n!

(n− 3)!3!
Fn−4(z)[1 − F(z)]2

[
(n− 3)(x− z)f(z) −

(n− 3)(x − z)f(z)F(z) − 3(x− z)f(z)F(z) − F(z)(1 − F(z))
]

−
n!

(n− 4)!3!
Fn−4(z)[1 − F(z)]3f(z)x

+
n!

(n− 4)!3!
Fn−4(z)[1 − F(z)]3f(z)x].
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∂u(x, z|z ≤ x)

∂z

= −[FYn(z)ΘLHS(z)]
′

+ nf(z)Fn−1(z)x− nf(z)Fn−1(z)x

+n(n− 1)(n − 2)Fn−3(z)
[1 − F(z)]2

2
f(z)x

−n(n− 1)(n − 2)Fn−3(z)
[1 − F(z)]2

2
f(z)z

+

∫ z

−∞

n(n− 1)(n − 2)yn−2f(yn−2)F
n−3(yn−2) ×

[F(z) − F(yn−2)]dyn−2f(z)

+
n!

(n− 3)!3!
Fn−4(z)[1 − F(z)]2 ×

[
(n− 3)(x − z)f(z) − n(x− z)f(z)F(z) − F(z)(1 − F(z))

]

+
n!

(n− 4)!3!
Fn−4(z)[1 − F(z)]3f(z)(z − x)

≥ 0.

At z = x, the above reduces to

∂u(x, z|z ≤ x)

∂z
|z=x

= −[FYn(x)ΘLHS(x)]
′

+

∫ x

−∞

n(n− 1)(n − 2)yn−2f(yn−2)F
n−3(yn−2) ×

[F(x) − F(yn−2)]dyn−2f(x)

−
n!

(n− 3)!3!
Fn−3(x)[1 − F(x)]3

= 0.

Thus, we have

[FYn(x)ΘLHS(x)]′ (6.14)

=

∫ x

−∞

n(n− 1)(n− 2)yn−2f(yn−2)F
n−3(yn−2) ×

[F(z) − F(yn−2)]dyn−2f(x)

−
n!

(n− 3)!3!
Fn−3(x)[1 − F(x)]3.

We have now obtained a closed form solution for computing both ΘRHS(x) andΘLHS(x).

Combining equations (6.13) and (6.14), and noting thatn!
(n−3)!3!F

n−3(x)[1 − F(x)]3 > 0, we see
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that

[FYn(x)ΘLHS(x)]′ =

∫ x

−∞

n(n− 1)(n − 2)yn−2f(yn−2)F
n−3(yn−2) ×

[F(z) − F(yn−2)]dyn−2f(x)

−
n!

(n− 3)!3!
Fn−3(x)[1 − F(x)]3

<

∫ x

−∞

n(n− 1)(n − 2)yn−2f(yn−2)F
n−3(yn−2) ×

[F(z) − F(yn−2)]dyn−2f(x)

= [FYn(x)ΘRHS(x)]
′.

BecauseβRHS(0) = βLHS(0) = β(0) = 0, FYn(0)ΘRHS(0) = FYn(0)ΘLHS(0) = 0.

Thus, integrating both side of the above equation, we obtainfor all x

ΘLHS(x) < ΘRHS(x),

and thus for allx

βLHS(x) < βRHS(x),

which implies thatβ does not exist for anyx. This result contradicts the assumption thatβ is

monotonically increasing and continuous withβLHS(x) = βRHS(x). Thus, in the symmetric,

sequential Vickrey auctions with all bids revealed, there does not exist a symmetric pure-strategy

equilibrium.3

6.4 Non-Existence of Asymmetric Equilibrium

Having shown that symmetric equilibrium do not exist in our sequential auction model, we now

turn our attention to the existence of asymmetric equilibria. In anasymmetric equilibrium, bidders

are not restricted to using identical strategy functions. We present an example that shows that

asymmetric equilibrium are not guaranteed to exist in the sequential FPSB auction model, while

leaving unproven the question of whether they ever exist.

Lemma 6.4.1. In the symmetric sequential FPSB auction model with bid revelation, if an asymmet-

ric, pure-strategy equilibrium exists, it may not be unique.
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Using{β1, β2, β3} Deviate toz = 0

Increase
in Utility
When
Deviat-
ing

x > Y2 U1 x− ǫ > 0

Y2 > x > Y1 U2 x− ǫ > 0

Y1 > x 0 0 = 0

Overall > 0; better off

Table 6.3: The overall utilities of bidder0 in the sequential auctions.

Proof: The proof is trivial. Suppose there are three biddersand there exists an asymmetric

equilibrium {β1, β2, β3}. Given that these three strategy functions are different from one another,

immediately, we have five other asymmetric equilibria:{β1, β3, β2}, {β2, β1, β3}, {β2, β3, β1},

{β3, β1, β2}, {β3, β2, β1}. 3

Theorem 6.4.2. The symmetric sequential auction model with bid revelationmay not have any

asymmetric pure-strategy equilibrium generically, when all bidders stick to the same asymmetric

strategy profile throughout the game.

Proof: We prove the theorem by contradiction. Assume that inthe symmetric sequential

auction model with bid revelation there exists an asymmetric pure-strategy equilibrium. Now con-

sider the following special case. Suppose there are three bidders and there exists an asymmetric

equilibrium{β1, β2, β3}. We show that there exists a strategy that is better than{β1, β2, β3} or any

of its variations implied by Lemma 6.4.1.

We again assume that the bidder under consideration is bidder 0, which has a true valu-

ationx. Without loss of generality, we assumeβ1(x) < β2(x) < β3(x). This assumption allows

these three strategy functions cross each other; however, these three strategy functions should be

monotonically increasing. Similar to Example 6.3.1, we show that bidder0 can be better off by

unilaterally deviating from the asymmetric equilibrium{β1, β2, β3}, as demonstrated in Table 6.3.

In Table 6.3,U1 is the utility that bidder0 gains in the whole game whenx > Y2. U2 is

the utility that bidder0 gains in the whole game whenY2 > x > Y1. In detail,

U1,2 = Pr(wins 1)
[
x− β1(x)

]
+ Pr(loses 1; wins 2)

[
x− E[YLose|loses 1; wins 2] − ǫ

]
,
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whereYLose is the highest valuation of the other bidders who lose in the first auction. Because

Pr(wins 1)+Pr(loses 1; wins 2) < 1, we may show thatU1 < x−ǫ as long asE[YLose|loses 1; wins 2]

is positive andǫ goes to infinitesimal. Similarly,U2 < x− ǫ as long asE[YLose|loses 1; wins 2] is

positive andǫ goes to infinitesimal. WhenY1 > x, bidder0 will not be better off by unilaterally

deviating.

Overall, bidder0 will be better when unilaterally deviating to0 in the first auction. This

conflicts the definition of equilibrium that no bidder can be better off by unilaterally deviating. Thus,

in our symmetric model, there does not generally exist an asymmetric equilibrium.3

Since we use a special case to disprove the existence of an asymmetric equilibrium in the

general symmetric model, it does not rule out that there exists an asymmetric equilibrium in some

special case of this symmetric model. It does not rule out that there might exist an equilibrium that

is neither symmetric equilibrium nor asymmetric equilibrium either.

6.5 Conclusions

In this chapter, we consider a variation of the classic symmetric, sequential-auction model in which

all bids are revealed after each auction, a market structurethat is quite common in public market-

places such as eBay. We show that there does not exist a pure-strategy equilibrium in either first- or

second-price auctions. We also discuss the non-existence of asymmetric equilibrium in the sequen-

tial first-price sealed bid auctions. These results do not rule out mixed-strategy equilibria. Although

the majority of existing literature is focused on sequential auction models that do have equilibria,

we show in this chapter that the existence of a pure-strategyequilibrium is not guaranteed in some

important classes of sequential auctions.

We recognize that the assumption that strategy functions becontinuous, monotone, strictly

increasing, and invertible, though commonly used in sequential auction models, is quite restrictive.

Relaxing the assumptions may lead to different results. Also, changing other assumption might

also affect the outcomes. For example, if the second auctionin a two-stage sequential auction

were a Vickrey auction, it is easy to prove that there exists asymmetric equilibrium despite the

reveal-all-bid price quote. This result holds because, in the second auction, bidders will bid at

their true valuations whether they have complete or incomplete information about the other bidders’

valuations. Similar solutions can be found in much of the literature on second-price sequential

auctions, see for example [15].



114

Chapter 7

Summary and Future Work

7.1 Summary of Contributions

With the bolstering of e-business, auctions have played an even more important role in trading in

both business-to-business and public marketplaces. Many auction mechanisms have been intro-

duced to cater to the demands of commerce. Bidders, naturally, demand tools to aid their strategic

decision making in these auction games. This thesis aims to provide strategies for buyers/bidders in

single item and sequential auction models.

Finding closed-form solutions to some auction games is challenging. Sequential auctions

introduce more computational complexity by adding multi-stages. Decision-making tools in this

multi-agent, multi-stage environment requires not only economic, but computational efficiency as

well.

The existing rich volume of literature on sequential auctions provides answers to a variety

of scenarios. This thesis contributes to this trend. However, theoretic results often cannot be easily

applied to general sequential auction games. Although we prefer closed-form solutions, when they

are not forthcoming, we seek sound heuristic approaches. Thus, we aim to design a flexible decision-

making system for solving a broad class of auction games, with either discrete or continuous bids.

My contributions include the analysis of some typical individual auctions. More specif-

ically, I study the multiplicity of equilibria in first-price sealed-bid (FPSB) auctions with discrete

bids and complete information. I show that there are at most three equilibria and at least one equilib-
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rium in two-agent FPSB auctions. I also discuss the equilibrium in sequential FPSB auctions with

discrete bids. Further, I provide solutions to the FPSB auctions with discrete bids and incomplete

information. We expect that a different tie-breaking rule might play a role in the final results.

While there are still plenty of unsolved sequential auctiongames, it is natural to design

computational tools to solve a broader number of sequentialauction models. In this thesis, I pre-

sented a Monte Carlo simulation method in approximating solutions for a group of diverse sequen-

tial auction games. I show how Monte Carlo sampling can be deployed to construct a bidding

policy that performs comparably to the subgame perfect equilibrium. This method takes advantage

of information revealed in previous auctions in the sequence to improve play in later auctions. The

leveraged structure of the extensive form game, as a representation of the sequential auctions with

discrete bids, is used to save computation memory and computation time dramatically. For exam-

ple, an original extensive form game with 4.5 billion decision nodes can be reduced to a leveraged

structure with only 1931 decision nodes. Importantly, the architecture is flexible, in that it can com-

prise a variety of auction models, and different types of bidders. I also prove that this Monte Carlo

approximation approach converges to the average policy of perfect Bayesian equilibrium.

Information naturally plays an important role in finding optimal solutions to auction

games. In sequential auctions, information revealed in theprevious rounds might be used to help

decision-making for the next ones. This becomes obvious in my model of symmetric sequential

auction, in which all bidders and their bids are revealed after each auction. Revealing bids after

an auction is quite common in public marketplaces, such as eBay and other online auction sites.

Although the majority of existing literature is focused on sequential auction models that have equi-

libria, I prove that there does not exist a pure-strategy symmetric equilibrium in both sequential,

first-price, sealed-bid auctions and sequential Vickrey auctions. I also discuss the non-existence of

pure-strategy asymmetric equilibrium in the symmetric first-price sealed-bid auctions. This work

provides a road map for future study in sequential auctions with continuous bids when bids are

revealed.

7.2 Future Work

The literature on sequential auctions often relies on some strict assumptions. In real marketplaces,

we often find that the number of agents, the number of items forsale, and the order of the auctions

are stochastic, rather than static. I plan to study the impact of these stochastic factors in finding
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strategic equilibria. Meanwhile, it would be interesting to study the impact of other parameters,

such as the reserve price, budget constraints, buy-it-now features, and other options in sequential

auctions.

While concluding the non-existence of pure-strategy, symmetric equilibrium when bids

are revealed, the existence of equilibrium in the model remains unanswered. Since the strategy

space is infinite and the information is incomplete, Nash’s theorem cannot be applied to this model

directly. It remains to be seen whether some mixed strategy equilibria exist for these classes of

sequential auction games.

A sequential auctions with incomplete information is a special case of sequential games

under uncertainty. It might be possible to extend the approaches in this thesis to sequential games

with uncertainty. Meanwhile, partially observable Markovdecision processes (POMDP) have been

widely adopted for these types of problems. I intend to studywhether we might use POMDP for

solving sequential auctions.

Finally, the majority of research in sequential auctions isfocused on finding closed-form

solutions theoretically. As sequential auctions become more and more popular, the attention of

researchers will shift to more empirical study. The interdisciplinary study between auctions and

other areas, such as supply chain management, is also promising.
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Appendix A

Mathematics Prerequisites

Bayesian Rule

Theorem A.1 (Multiplication rule). Given thatA1 andA2 are events, we have

P [A1 ∩A2] = P [A2|A1]P [A1] = P [A1|A2]P [A2]. (A.1)

Theorem A.2 (Bayes’ theorem [75]).Given thatAi, i = 1, ..., n, are a collection of events which

partitionA, andB is an event such thatP [B] 6= 0. Then, for anyj ∈ {1, ..., n}, we have

P [Aj |B] =
P [B|Aj ]P [Aj ]
n∑

i=1
P [B|Ai]P [Ai]

. (A.2)

Order Statistics

Consider order statisticsY1 ≤ Y2 ≤ ...Yr ≤ Ys ≤ ... ≤ Yn from a same cumulated distribu-

tion function (CDF)F and the corresponding probability density function (pdf)f. The probability

distribution function ofYr is given by

fYr(yr) = n!f(yr)
[1 − F(yr)]

n−r

(n− r)!

[F(yr)]
r−1

(r − 1)!
.
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The joint pdf ofYr andYs is given by

fYr,Ys(yr, ys) = n!f(yr)f(ys)
[F(yr)]

r−1

(r − 1)!

[F(ys) − F(yr)]
s−r−1

(s− r − 1)!

[1 − F(ys)]
n−s

(n− s)!
.

Typically, we have

fYn(yn) = nF(yn)n−1f(yn),

and its associated CDF is

FYn(yn) = F(yn)n.

The joint pdf ofYn andYn−1 is

fYn−1,Yn(yn−1, yn) = n(n− 1)f(yn)f(yn−1)F(yn−1)
n−2.

The joint pdf ofYn−1 andYn−2 is given by

fYn−2,Yn−1
(yn−2, yn−1) = n(n− 1)(n − 2)F(yn−2)

n−3f(yn−2)f(yn−1)[1 − F(yn−1)].
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Appendix B

Notation

A A set of all agents.

bij a specificjth bid by agenti.

Bi Bidding space of agenti.

C A constant value.

f(x) A function of variablex.

fi Probability density function of agenti.

Fi Accumulated density function of agenti.

J A set of other agents.

hi
k Bidding history of agenti atkth auction.

HJ
k Bidding history of other agentsJ atkth auction.

I Set of information.

J A subset of other agents.

l An instance of samples.

L A set of experiment samples.

Pr(x) A probability conditional onx.

s A strategy.

x The value of a variableX.

Xi A variable for agenti.

yi The concrete value ofYi.

Yi Theith order statistics.
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ui The utility function of agenti.

vi A specific valuation of agenti.

βi The bidding function of agenti.

γ A component game representation.

Γ A game representation.

ξ An information state.

Π A strategy set.

σ A strategy profile.

σ̂ A mixed strategy profile.

Σ A set of strategy profiles.

φi The reversed bidding function of agenti.

ωl
i(γ) The policy for agenti at subgameγ in instancel.

Ωl
i The policy for agenti in instancel.
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