ABSTRACT

CAl, GANGSHU. Flexible Decision-Making in Sequential Aiarts. (Under the direction of As-

sistant Professor Peter R. Wurman).

Because sequential auctions have permeated society nareeter, it is desirable for
participants to have the optimal strategies beforehandwveder, finding closed-form solutions to
various sequential auction games is challenging. Curiemature provides some answers for spe-
cific cases but not for general cases. A decision supporesygtat can automate optimal bids
for players in different sequential auction games will befukin solving these complex economic
problems, which requires not only economic but also comjuutal efficiency.

This thesis contributes in several directions. First, tliésertation derives results related
to the multiplicity of equilibria in first-price, sealedebi(FPSB) auctions, and sequential FPSB
auctions, with discrete bids under complete informational$o provides theoretical results for
FPSB auctions with discrete bids under incomplete infoilwnat These results are applicable to
both two-person and multi-person cases.

Second, this thesis develops a technique to compute sestiegsequential auctions. It
applies Monte Carlo simulation to approximate perfect Bameequilibrium for sequential auctions
with discrete bids and incomplete information. It alsoir¢is the leveraged substructure of the game
tree which can dramatically reduce the memory and computditne required to solve the game.
This approach is applicable to sequences of a wide variegycions.

Finally, this thesis analyzes the impact of informationequential auctions with contin-
uous bids and incomplete information when bids are revedtaurovides theoretical results espe-
cially the non-existence of pure-strategy symmetric dgpiiim in both the symmetric sequential

FPSB and the symmetric sequential Vickrey auctions.
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Chapter 1

Introduction

Auctions have permeated into our society more than ever.eNod more companies
utilize auctions as an important channel in marketing tpeiducts. Millions of people purchase
commodities from Internet auction sites, such as eBayehmie.com, Yahoo Auctions, and Amazon
Auctions. As a glimpse of the size of these auction market2003 the gross revenue of eBay
reached 15 billion [34].

What is an auction? An auction is a market institution in vehjrices and resource
allocation are determined by an explicit set of rules on tsdof bids from the market participants
[62].

An auction is a dynamic pricing tool that allows sellers angldrs to reach an agreement
on prices and allocations. Either sellers or buyers or thadies can initiate an auction. Sellers
might want to utilize auctions to sell items at a higher pticessome more affordable customers,
and hence to increase the overall revenue; while buyerstraitjny a more flexible market when
participating in auctions and avoid overpaying. Usuallgirctions, the market is efficient when the
buyers with the highest valuation win the items.

The research on auctions has burgeoned in the past decadag.aMction mechanisms,
especially the standard auctions like the English, the Qute first-price sealed-bid, and the Vick-
rey auctions [41], have been discussed in great detaildrelitire (see, for example [41, 51, 62, 72,
73]). The auction mechanisms discussed in this thesisdeclu

e First-Price Sealed Bid (FPSB) Auction: In the first-pricalse-bid auction, each bidder



submits a single bid independently, without observing i&thigids, and the winner with the
highest bid pays the price of the highest bid.

e Second-Price Sealed Bid (SPSB\ickrey) Auction: In the Vickrey auction, each bidder
submits a single bid independently, without observing i&thigids, and the winner with the

highest bid pays the price of the second highest bid.

e English Auction: In the English auction, the price is susbgdy increased until only one
bidder remains, and the winner pays the final price.

e Dutch Auction: In the Dutch auction, the auctioneer statta high price, and then lowers
the price continuously. The first bidder who calls out wines tiiject and pays at the current
price.

e Mth-Price Auction: There areM objects for sale in amMth-price auction. InMth-price
auctions, winners pay at the price of the lowest winning Bithe Mth-price is a little bit
different from theuniform auction [106], in which winners pay the highest rejected dnid
(M + 1)th price, like in the Vickery auction.

e Pay-Your-BidAuction: A pay-your-bidauction is a multi-object auction, in which winners
pay the prices they bidPay-your-bidauctions are also classified discriminatoryauctions
in some literature [106], because winners pay differerggwifor identical items.

Wurman, et al. present an auction parametrization whiclsé$ul for designing auction
mechanisms [112]. In their work, the parameterization efdhction design space is broad enough
to encompass most of the classic auctions and many othed% [T@ere are three axes are intro-
duced: bidding rules, clearing policy, and informationelation policy. The elements in each axis
are listed as followingd.

1. Bidding Rules

e Restrictions on sellers; buyers; objects; number of anstiexpressiveness; bid refine-
ments; schedule; activity.

2. Clearing Policy

¢ Clear timing; closing conditions; matching function; tieebking; auctioneer fees.

Interested readers please refer to Wurman et al.[112] foe metails.



3. Information Revelation Policy
¢ Price quotes; quote timing; order book; transaction hjstor

A sequential auctions is a market scenario that consistssefjaence of individual auc-
tions. In both local auction houses and on-line auctiorssités quite common to see identical or
nearly-identical items sold in a sequence. Examples imchugctions for electronic devices, art,
wine, fish, flowers, mineral rights, satellite broadcasériges, government debts, and many oth-
ers [27]. Among those reported in the academic literatueetlze sequential sale of 120 identical
cases of wine in 1990 at Christie’s of Chicago [63] and the sdipelts on the Seattle Fur Ex-
change [52]. eBay, the world’s largest electronic auctitan be viewed as an unending series of
auctions for hundreds of thousands of nearly identicalstem

The vast number of trading opportunities and the incredgithgid markets bolsters the
need for automated trading support in the forntratling agents—software programs that partici-
pate in electronic markets on behalf of a user. Simple bglthols, like eSnipgand AuctionBlit?
enable bidders to automate submission of last-second hi@é8ay. However, these tools lack the
sophistication that bidders require when faced with a pletlof sequential auctions possibly hosted
at multiple auction sites.

The literature on sequential auctions dates back to Vickk8g], in which he obtains an
equilibrium solution for a sequence of first-price auctiovith bidders whose single-unit-demand
valuations are drawn from a uniform distribution. Since&y’s original work, a great deal of
research has been directed towards understanding sedjuaintiions. Milgrom and Weber [74]
discuss the equilibrium solutions and price trends undeergeneral assumptions. The following
year, Weber published a sequential auction model [106]sthiated as a foundation for many of the
papers that followed.

The rest of the literature on sequential auctions identifieéde variety of research areas.
Bernhardt and Scoones [5] find that a more dispersed vatudisdribution on one item may yield
more revenue for the seller. Gale and Stegeman [27] modatdwipletely informed and asymmet-
ric buyers bidding forV identical objects fromV sellers sequentially under complete information
by assuming that the value of one object depends on the nunfildrjects obtained. Branco [8]
models a two-unit sequential English auction when somednlave superadditive (complemen-

tary) values for the objects. Sgrensen [97] finds that, ioriheobjects are allocated as a bundle

Znttp: // www. esni pe. com
3http://ww. auctionblitz.com



more often than as independently in sequential auctionsdimplements.

A sequence of prices israartingaleif prices drift neither up nor down over time [106].
Milgrom and Weber [74, 106] predict a martingale among thegairend in symmetric equilibrium
of single-unit demand sequential auctions. However, exymts often show the price declines,
which is called thadeclining price anomalyr afternoon effec{63, 85]. Beggs and Graddy [4]
report some empirical afternoon effect results from arttians. Some researches find that the
anomaly is explained by varying the assumptions. For exeniphgelbrecht-Wiggans finds that
prices will on average have a downwards trend in a sequereectibns for a large enough number
of stochastically equivalent objects with bounded valueg.[ McAfee and Vincent explain that
sequential auctions with risk averse bidders will have aabsing pattern of prices [63]. Gale
and Stegeman [27] claim prices decline weakly along anyliegum path in a multi-unit demand
model with two asymmetric buyers. Katzman [39] concluded the price trend may decrease in
expectation in a game of two second price auctions with omittidemand, symmetric, incomplete
information, when there is a high degreeesfanteasymmetry of bidder beliefs.

Pitchik and Schotter [85] present some laboratory restdta fin experiment with budget-
constrained, perfectly informed bidders. They concluds thidders attempt to exploit the con-
straints of others, and in doing so, bidders might bid up tlieep in early stages. As a result,
the opponents might deplete their budgets and the lateroasciight become less competitive
[41, 85].

It is commonly believed that bidders’ behaviors will changeen they are forced to pay
an entry fee or when there is a reserve price. von der Fehi gl@8vs that prices will typically
decline for later units in a model with participation coastts, e.g., entry fee. McAfee and Vincent
[64] prove revenue equivalence between repeated first pridesecond price sequential auctions
with reserve price.

In symmetric, single-unit demand, risk-neutral settings, revelation of winners and the
winning bids in the previous auctions has no effect on ththémming auction [106]. Jeitschoko
[36] points out that it might be due to the continuous praperof valuation distribution. He also
explicitly models an auction where each bidder has only type$, either high valuation or low
valuation. In this model, the winner’s price informatiowvealed in the first auction has significant
influence on the equilibrium bids for both bidders in the setauction. The seminal work by
Ortega-Reichert [86] shows a learning process from theatggrevealed in the first stage in a two
stage model. Hausch [32] generalizes Ortega-Reichertehrand provides necessary conditions
for symmetric equilibrium in sequential second-price amgtfprice auctions. Engelbrecht-Wiggans



[20] finds that in two-bidder, multi-unit demand, sequen#actions, an uninformed bidder may
have strictly more expected profit than an informed bidder.

Elmaghraby [15] shows that the order in which heterogenéenss are auctioned will
influence the outcome. Gale and Hausch [25] show that giiegouyer the right-to-choose her
preferred item from the remaining items induces declininggs. Jeitschko [37] models > 3
single-unit demand bidders in a sequential auction withoahgtstic number of identical objects.
Gale, Hausch and Stegeman [26] model two identical suggliesequential second price auctions
with subcontracting. Krishna [50] shows that deterringeat one stage affects the cost of doing
S0 in later stages in a monopolist model.

Recently, the design of more sophisticated trading agemdsakttracted the attention of
researchers in artificial intelligence and other relateld$i¢9, 30, 90, 100, 108]. In most of these
studies, the agents are designed for a particular marketgad lack flexibility to adapt to other
market configurations.

The vast majority of auction research models them as game®gailibrium strategy is
a stable solution in which no player wants to unilaterallyidee from the strategy profile. Thus,
finding optimal strategies in auctions is naturally transfed to finding the equilibrium strategies
in the auction games.

The literature on sequential auctions provides answersgecific cases but not for gen-
eral cases. When the strategy space is discrete and finiteybq the cost of doing the computation
increases exponentially in terms of memory and computditioe. When the strategy space is con-
tinuous or infinite, to date, there are few explicit and genafgorithms for solving this kind of
infinite games. A decision-making system in these compl@neaic settings require not only
economic but also computational efficiency.

There are two research gaps to be bridged. First, as more arelanction mechanisms
are introduced, it is useful to provide closed-form soluioSecond, urged by the need of industrial
application, it is useful to design heuristic algorithms farge-scale problems which have not yet
been solved analytically.

The flexible decision-making system should be designedriergge the optimal strategies
for agents automatically, as illustrated in Figure 4 To make use of the system, we need to specify

our agent, the environment, and the market model.

e Our agent:Our agent is described by a utility function, a preferencecstire, and a distribu-

4This figure is a modified version of Figure 1, an architectorerfading agents, in [110].
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Figure 1.1: An architecture for a flexible decision-makiygtem.

tion function, etc.
e Environment:The environment might be defined by a set of auction rules.

e Market model:We model other agents explicitly. The system knows abouthdr¢he agents
know the strategies of each other and what strategies tiee agjents use. For example, some
agents may use equilibrium strategies while the others yspinstrategies. A market model
also includes whether the other agent’s preferences aed ioflormation are known [110].

This thesis aims to provide answers to several issues. Qhebey side, | provide closed-
form solutions to FPSB auctions and sequential FPSB auwctibalso analyze the non-existence
of equilibrium in two sequential auction models. On the &l side, | present a heuristic algo-
rithm as part of a flexible decision-making system to compotations for sequential auctions with
discrete bids [10].

In Chapter 2, | review some basic concepts of game theory envilde a brief survey on
Nash equilibrium and its refinements. Chapter 3 provideviaweof the state-of-art algorithms for
computing equilibria.

In Chapter 4, | analyze the FPSB auctions, including seipleRPSB auctions, with
discrete bids. An FPSB auction is a special case of sequé&ftiaB auctions when the number of

items is equal to one. | discuss the existence and multiplaf equilibria in the FPSB auctions



with discrete bids under both complete information and inpkete information.

Chapter 5 focuses on a flexible decision-making system fquesgtial auctions with dis-
crete bids. | present a heuristic approach using MonteeGapproximation. This system enables
users to compute solutions for different sequential anctimmdels more efficiently than existing
algorithms.

In Chapter 6, | study the impact of information in sequerdiattions when altering dif-
ferent information revelation policies. | prove the nornséence of pure-strategy symmetric equilib-
rium in both symmetric sequential first-price sealed-bidtimns and symmetric sequential Vickrey
auctions.

Finally, Chapter 7 summarizes the contributions of theithasd discusses directions for

future work.



Chapter 2

Strategic Equilibria

In a broad sense, a game may refer to any social situatiotvingadwo or more individu-
als [78]1 Individuals are also called players, agents, or decisiakars. Each individual is usually
assumed to beational, which implies that every player always maximizes his wti[8]. Game
theory is the study of the noncooperation and cooperatitmdmn these rational players.

An equilibriumis defined as a state of a system that the system tends to mok/éothe
same state when the system is perturbed from its origintd. SEajuilibrium in a game is also called

strategic equilibrium Finding strategic equilibrium in games is a major task ahgaheorists.

2.1 Basic Concepts

For the sake of completeness, a brief review of the relevaimitlons is provided.

An eventE is common knowledgi all players know thatE occurred, and all players
know that all players know thdf occurred, and so on, ad infinitum.

A game is ofcertaintyif there is no stochastic events, which are typically chirded
as a move by nature. If there is a move by nature, the gamediscshaveuncertainty

A game is one osymmetric informationf an agent’s information state has the same ele-
ments as those of every other agent. Otherwise the game imda8 one ohsymmetric informatian

There are different definitions and understandings of a gdmthis thesis, we will use the definition by Myerson
[78]. Thus, a game is a real world noncooperation or coomeratituation. This will also help us understand the
definitions of game models. Under this definition, auctiorsgames.



A game is one ofncomplete informatiorif some or all of players lack full information
about the timing of the game, the set of strategies, or theffsapf players [28]. For example,
nature moves first and is unobserved by at least one of thésag@therwise, the game is one of
complete information

A game is one operfect informatiorif each agent knows every action of the agents that
moved before him at every point. Otherwise, it is onéngperfect information

A strategic form game ifinite if the number of players and the number of strategies is
finite.

There are two kinds of games that have complete informatininperfect information.

In the first scenario, the agents move simultaneously. Iiséicend scenario, nature moves without
revealing information immediately to all agents.

2.2 Game Models

A game model is a description of a game. Game models are dled game forms. Different forms
abstract the game from a different perspective. To find aisalfior a game, one builds a model of
the game and then solves for an equilibrium of the model [ER]e to variations in game models
and copious equilibrium concepts, it is possible that wehimftave different answers as well as
different specific solution procedures to the same game.

The two most important game forms are theensivdorm and thenormal (or strategig
form. In addition to these two forms, there are alsoabent normaform and thereduced normal

form. Due to limited space, we discuss only these four gameetsé

2.2.1 Strategic Form and the Normal Representation

A strategic form has three elements: a seplaf/ers A, a set of possiblépure) strategieg.S; }ica,
and a set ofitility (payoff) functions{u;};c4. Thus, a strategic form ganiecan be denoted by
I'={A,{Si}tica, {ui}ica}t.

We leto denote astrategy profileof the game. Let; be a strategy profile of playérand
gi s be the choice probability of each pure strategyin playeri's strategy setS;. If o; ; € {0,1},
we call o a pure strategy profile Otherwiseo is amixed strategy profileFor example, in a two-

2For more game models, interested readers may refer to [28y B8her game theory literature.



10

Bidder 2 (v=2)

1 2
Bidder1 1| 0.75,0.5| 0,0
(v=2.5) 2| 05,0 |0.250

Table 2.1: A sealed bid auction game.

player game, each player has two actiofig,b}. For a pure strategy profile in which Player 1 uses
actiond and Player 2 uses actian the profile is written as = {b, a}. For a mixed strategy profile
in which Player 1 has/2 probability to use action and Player 2 has/3 probability to use action

a, we haver = {(1/2,1/2),(1/3,2/3)}.

As an example, a strategic form of a sealed bid auction, with filayers and two bid
values for each player, can be expressed as in Table 2.1hwghibenormal representatiof the
game. In strategic forms, game theorists assume that plaheose their strategies independently
[80]. So, all the strategies in strategic form can be exgeds independent vectors. As a result, a

strategic form game is equivalent to a normal form game.

2.2.2 Extensive Form

The extensive form is more richly structured than the norfoah. Normally, we use a tree graph
to depict an extensive form game. The tree consists of a dataothes each of which connects
two nodes The first node is calletbot, which represents the beginning of the game and the bottom
nodes are calleterminal nodesind represent the end of the tree.

An extensive form gamd,¢, includes six elements in which the first three elements are

almost the same as in a strategic form game [23, 114].
1. A set ofplayers A, each of which has a player label.

2. The strategy spacg (&) of each player;, at each information state (also called information
set),£. Aninformation statdéncludes one player, the nodes at which the player has the sam
information, and the strategy space of the player at th@imétion state. An information state
includes two or more nodes if the player cannot distinguietivben the situations represented
by these nodes [78]. A nodé, may have several branches, which represent the feasible
actions of the specific player. The feasible actions of tlagei can vary with position in the

game tree.
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[o.750.5] [ 0,0 | [o.50 ] [o0.250]

Figure 2.1: The extensive form of Table 2.1.

3. The players’ payoff functiondu; };c 4. Normally, we label the payoff values at the terminal

nodes.
4. The order of moves, i.e., who moves when.

5. The information state, of each player when she will move. We denote the set of infibion

states a&.
6. The stochastic events, which are encoded chance nodetathwith their probabilities.

An example is shown in Figure 2.1. The first “1” in “1.1” idefies Player 1, where the
second “1” identifies the first information state of Playefhere are two “2.2™’s in the game which
indicates that there is only one information state for Pi&/eecause Player 2 cannot observe Player
1’s action. The single “1” and “2” along the branches are #msible actions a player has in the
information state.

A behavioral strategy profilen extensive forms refers to a probability over the set of
possible strategies for each possible information stagaoh player. A behavioral strategy profile
is very similar to a strategy profile defined in the normal forfime difference is that a behavioral
strategy profile is related with information states. betlenote a behavioral strategy profile. Let
o¢,; be a behavioral strategy profile of playeat information state, ando¢; , be the choice
probability of each pure strategy, in playeri's strategy setS;(¢), at information stat€. Thus,
we haveor = {0¢;}ica = {0¢is}sesi(e)iea- If 0¢is €qualsO or 1, we callo a pure behavioral
strategy profile Otherwise,s is amixed behavioral strategy profile=or example, in Figure 2.2,
o = {2,b,d} is a pure behavioral strategy profile, in which Player 1 gselaction 1 at information
state 1, Player 2 selects actibat information state 2, and Player 2 selects acti@b information
state 3. A mixed behavioral strategy looks lik& (1/3,2/3),(1/2,1/2)}.
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1 2
E 05,0

1 2 1 2

[o.750.5] [ 0,0 | [o.50 ] [o0.250]

Figure 2.3: A perfect information game.

In extensive form gamegperfect recallimplies that a player will remember all the earlier
information observed during the game, including her own pas/es. Not all extensive form games
have perfect recall. In the information state “2.3” of Fig@.2, Player 2 cannot remember her past
move and earlier information because she cannot recalhAdramch she just came from. Moreover,
perfect recall is not equivalent to perfect informationwinich each information state is a singleton.
That is to say, perfect information is a stronger conceptt éxample, the extensive form game
shown in Figure 2.1 is perfect recall because every playereamember the previous information
and her past moves. However, Figure 2.1 is not a perfectrirdtion game because when Player 2

reaches state “2.2” she cannot determine which move plageade.
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Bidder 2
1,1 1,2 2,1 2,2
Bidder1 1] 0.75,0.5| 0.75,0.5| 0,0 0,0
2| 05,0 0.25,0 | 0.5,0| 0.25,0

Table 2.2: The normal form representation of Figure 2.3.

Figure 2.4: An extensive form game corresponding to the gariiable 2.3.

The Strategic Form Representation of Extensive Form Games

The normal form and extensive form are the two most commonetsddr games. Even with these
two models, we might have different results when we solvestimee gamé.

An extensive form can give us more information than a normahfgame. It is possible to
convert an extensive form game to strategic form, but we rosg information about the sequence
of moves. To express this in normal form, we will assume thAager makes a complete contingent
plan in advance [23]. Let those strategied ihbe the pure strategies Thand let payoff functions
be the same. Thus, the strategic form of the game in Figureah be represented as in Table 2.1.
In Figure 2.3, Player 2 has two information states corredpmnto different moves by player 1.
Totally, there are four pure strategy profil€s,1},{1,2},{2,1},{2,2}, if represented in normal form.
As a result, the normal form of the extensive form game in FEgRL3 can be expressed as in
Table 2.2.

It is not surprising that a normal form might have multipleemsive form representations.
Consider Figure 2.4. The normal form representation ofdghime is shown in Table 2.3, which is

very similar to Table 2.1. The only difference lies in thag tpayoff functions are the same when

3However, some researchers argued that different modelgafa should provide the same solution. The reduced-
normal form is a result of this discussion.
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Bidder 2

1 2
Bidder1 1| 0.75,0.5| 0,0
2| 050 |050

Table 2.3: A sealed bid auction game corresponding to theegarfigure 2.4.

Figure 2.5: A different extensive form game of Table 2.3.

Player 1 chose “1” in both tables. Now, let us define an extengrm representing from the
normal form game as shown in Table 2.3. From the same normal game, we may have two
different extensive form games, which are illustrated igufé 2.4 and Figure 2.5. This interesting
phenomenon confirms that we might lose some information valrearmal form is represented from

an extensive form.

Agent Normal Form

Defined by Selten [94], thagent-normal fornrepresentation is a modification of the extensive
form, in which each information state in an extensive fornrmgas associated with a different
“temporary” agent. Those temporary agents share the sapoffpavith the original agent. Some
literature [23] also calls agent-normal form thgent strategic fornor multiagent representation
form. Similar to the relation of the normal form to the extensigenf, amultiagent representation
is a game in strategic form representing the correspondemggorary agent” extensive form game.
To show the difference between the normal representatidrifenmultiagent representa-
tion, consider the game in Figure 2.3. We have already shberrcaorresponding normal form in
Table 2.2. The multiagent representation of Figure 2.3 @wshin Table 2.4. The set of players in



15

Bidder 2
1 2
Bidder 3 Bidder 3
1 2 1 2
Bidder1 1| 0.75,0.75,0.5 0.75,0.75,0.5 0,0,0 0,0,0

2 0.5,0.5,0 0.25,0.25,0 | 0.5,0.5,0| 0.25,0.25,0

Table 2.4: The multiagent representation form of the gantédare 2.3.

Table 2.2isA = {1, 2}, the strategy profiles argy = {1,2} andS; = {(1,1), (1,2),(2,1),(2,2)};
and the payoff functions are shown in Table 2.2. In comparisioe set of players in Table 2.4 is
A = {1,2,3}; the strategy profiles ar§;, = {1,2}, S, = {1,2}, andS; = {1, 2}; and the payoff
functions are shown in the Table 2.4. These two representatnay result in different solutions as
shown in a later discussion on perfect equilibrium, in thessethat the multiagent representation
form is to rule out correlation between the “mistakes” of aene player in different stages of the

game [94].

Reduced Normal Form

A reduced normal form(7, is a strategic form in which all pure strategies of a plahet ire convex
combinations of other pure strategies of the same playex haen deleted [43]. Let us examine

some prerequisite concepts.

Definition 2.2.1. Given any two strategies; andd;, in the strategy se$; of playeri, ¢c; andd; are

said to bepayoff equivalentf and only if foralls_; € S_; andj € A

’LLj(S_Z', Ci) = uj(s_i, dl)

For example, the normal representation of the game in F@éres shown as in Table 2.5.
From the definition, we know tha&la, 2b, and2c¢ are payoff equivalent to each other. When two
strategies are payoff equivalent, a player would be ingifie between them. In other words, we
may replace the set of payoff equivalent strategies withglsistrategy. A normal representation, in
which we replace all sets of payoff equivalent strategidh wisingle strategy in the corresponding
sets is called aurely reduced normal representatiofhe purely reduced normal representation of

Figure 2.6 is shown in Table 2.6.
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[Lo] prsog[o1] [o1]fo.s07s[ o]

Figure 2.6: An extensive form game that can be reduced usihgced normal form.

Bidder 2
1 2

la 1,0 0,1

1b | 0.75,0.5| 0.5,0.75
Bidder1 1c 0,1 1,0

2a| 05,0 05,0

2b| 05,0 05,0

2c| 05,0 05,0

Table 2.5: The normal form representation of Figure 2.6.

Bidder 2
1 2
la 1,0 0,1
1b | 0.75,0.5| 0.5,0.75
Bidder1 1c 0,1 1,0
2.1 05,0 05,0

Table 2.6: The purely reduced normal form representatidrigiire 2.6.
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Bidder 2

1 2

la| 1,0 0,1

Bidder1 1c| 0,1 1,0
2.105,0/05,0

Table 2.7: The fully reduced normal form representationigtiFe 2.6.

Definition 2.2.2. A strategye; in \S; is randomly redundant if and only if it is a convex combinatio
of the other pure strategies, where there is a probabilitstribution o; in A(S;), the set of all

randomized strategies for Playérsuch thaio;(e;) = 0 and foralls_; € S_; andj € A

uj(5—s,€) = Z oi(di)uj(s—s,d;).
d;€5S;
For example, the strategy is redundant because its payoff function can be expressed by
a convex combination of strategiéa and1lc. A purely reduced normal representation is a fully
reduced normal representation if it deletes all the rangiaedundant strategies. The fully reduced
normal representation of Figure 2.6 is shown in Table 2.7lesinspecified otherwise, we regard

the reduced normal representation as the fully reduced aloepresentation.

2.3 Equilibrium Concepts

A static (simultaneous) ganigone in which players will move simultaneously, withoubkriedge
of the strategies that are being chosen by other playersati gtame can be easily modeled as a
normal form game.

A dynamic gamewill specify the order of moves. Unlike static games, playlkave at
least some information about the choices made on past mdwesextensive form is usually used
to express a dynamic game.

There are three milestones in the history of equilibriumoegts. The first one is the
development ofNash equilibriumfor static games with complete information. Nash equilibri
is the most famous and the most important equilibrium conoegame theory. John Nash was
the first person to formally define the equilibrium of a nomperative general-sum game [80, 83].
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Player 2

Head Tail

Player1 Head 1,-1 |-1,1
Tal | -1,1 | 1,-1

Table 2.8: A game of matching pennies.

The second milestone was the introductiorsatbgame perfect equilibriufior dynamic games with
complete information. Selten [94] refines the concept ofNRguilibrium to subgame perfect
equilibrium which can be applied to dynamic games and is edatpusing backward induction.
The third milestone is Harsanyi's Bayesian equilibrium][@&hich enables the agents in incomplete
information games to choose strategies conditionally dasethe perceptions of what the other
agents are likely to do.

We discuss these three milestone equilibria together witeramportant equilibria in the
following.

2.3.1 Nash Equilibrium

A Nash equilibriumdescribes a state of a multi-agent system in which no one eaefih by uni-
laterally changing her strategy. For example, in the ganfé@idre 2.1, the strategy profilds, 1}
and{2,2} are Nash equilibria.

We may explain the Nash equilibrium in another way. Supphbsectis one agreement
that all players promised to comply with prior to the game.isTdgreement iself-enforcing(or
strategically stable) if no one would prefer to deviate ahdose some strategy other than that
specified in the agreement. Thus, to be self-enforcing, fieisessary that the agreement form a
Nash equilibrium [49].

Itis worth noting that, at the beginning of game theory, “mattention was focused on the
cooperative analysis that von Neumann favored” [80]. Togetvith von Neumann’s “cooperative”
game theory, Nash equilibrium provides a “complete genmrethodology” to analyze all games
[80]. In fact, a cooperative game can be reduced to a nonecatipe games in which “the steps of
negotiation become moves” in the non-cooperative game [BBlis, Nash equilibrium applies to
both cooperative games and non-cooperative games.

It was Nash’s main contribution to show thetery finite game has a Nash equilibrium
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Female
Badminton Movie
Male Badminton 2,1 0,0
Movie 0,0 1,2

Table 2.9: Battle of the Sexes.

[83]. However, not every game has pure strategy Nash equililp some games may have only
mixed strategy equilibria. A classic example is “matchirgnRies”, shown in Table 2.8. In this
game, two players simultaneously announce heads or thitee hBnnouncement matches, Player 1
wins; otherwise, Player 2 wins. There is no pure strategyhNagiilibrium in this game. The only
stable situation is that both players play randomly betwtbeir two possible pure strategies with
probabilities(1/2,1/2).

A game may have more than one Nash equilibrium. This problfien anakes it hard
to predict which Nash equilibrium will be played, and may gdicate the computation of Nash
equilibrium. We call this problermultiplicity. To solve this problem, game theorists try to provide
some basis for claiming one equilibrium is better than agoth

An allocation isPareto efficienif no agent can be better off without making the others
worse off. One criterion to find “better” equilibria is to lkdor Pareto efficient outcomes within the
set of Nash equilibrium. If there are any overlaps, we cabthoverlapping Nash equilibrizareto
dominant For example, in the game of Figure 2.1, the strategy préfild } is Pareto dominant
{2,2}, and we can argue that it is a better equilibrium. Howevés,ariant is often not conclusive.

Focal-point Effect The Focal-point effectargues that some of the given multiple Nash
equilibria will be more plausible due to special propertiesy have. For example, suppose there
are two Nash equilibria in one game, one pure strategy antha@anone mixed strategy. Some
theorists argue that it is more preferable for the playerplay the pure strategy [78]. Another
focal-point effect example is Battle of the Sexes shown ibld&.9. { Badminton, Badminton}
and{Movie, Movie} are two Nash equilibria. However, suppose the female hag gwiority in
the relationship; both players may be able to determine {th&bvie, Movie} will likely be the
final result.

A (strongly) dominant strategis the only optimal strategy for an agent no matter what
strategies the other agents choose. If every agent has anaainstrategy, the set of these dom-
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prisoner 2
Testify Conceal

prisoner 1  Testify| -3,-3 0,-5
Conceal| -5,0 -1,-1

Table 2.10: A game of prisoner’s dilemma.

g 9

1 2 1 2 1 2 1 2

[0.750.5] [ 0,0 ] [0.50 ] [0.250] [0.750.5] [ 0,0 | [0.50 | [0.250]

(1) Subgame a (2) Subgame b (3) Subgame ¢

Figure 2.7: Subgame illustration of the game in Figure 2.3.

inant strategies is calleddominant equilibrium A dominant equilibrium is a Nash equilibrium.
A famous example is the Prisoner's Dilemma game. As showralpleT2.10, if both prisoners
do not testify, they each getl rewards; if both testify, they each get3 rewards. If one tes-
tifies and the other does not, the former one @etsward while the latter one gets5. In the
Prisoner’s Dilemma, each player has a dominant strategyveMer, the resulting equilibrium is
Pareto dominated by an alternate outcome in which each ptdngoses the dominated strategy.
It turns out that{testify,testify} is the dominant strategy. It is worth noting that there is no
Pareto dominance among equilibria in this game because themly one Nash equilibrium. In
fact, {testify, testify} is the only solution which is not Pareto efficient.

A dominant strategy is a very strict condition of Nash styggteln most cases, there are
no, or only partially dominant strategies. After elimimagithe dominated strategies, the remaining
agents may find that their strategies become dominant irethéced game. If this process can be
continued until every agent eliminates all but one stratégy game islominance solvableFor

example, in the game of Figure 2.1, the strategy prdfild } is a dominance solvable.
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2.3.2 Subgame Perfect Equilibrium

A subgame is a component of a game. kdie a node of an extensive form ganhé, Let g(x)
be the set of all nodes and branches that follawincluding the node: itself. The noder is a
subrootif, given any other nodez;', in "¢, which happens at the same timecatr thereafter, either
g(z')Ng(z) = Borg(z') C g(z). We refer tog(z) as a subgamey’, of I'*. Tis a subgame
itself. For example, the game in Figure 2.3 has three subgasnghown in Figure 2.7. In another
example shown in Figure 2.1, the only subgame is the ganit Berause the information state of
Player 2 cannot be separated, and the closest root of bo#smddhis information state is the root
of information state 1.

A behavioral strategy profile issubgame perfect equilibriuifit introduces a Nash equi-
librium to every subgame [94]. If there is more than one sofmm ¢, we may find arequilibrium
path in which, the restriction of the behavioral strategies aslesubgame is an equilibrium. Let
us look at the game in Figure 2.7 again. The Nash equilibriisubgame is {1}. In subgame:,
either {1} or {2} could be the equilibrium solution for Player 2. Regardlebwloich one Player
2 picks, or whether she chooses a convex combination in subgaPlayer 1 will choose strategy
{1} in subgame:. Thus, there is only one subgame perfect equilibrium in daisie, rather than
two Nash equilibria as shown in Figure 2.3.

The concept of subgame perfect equilibrium is stronger Nesh equilibrium. If there is
only one subgame ¢, each subgame perfect equilibrium is a Nash equilibriund, \dace versa.
However, if there is more than one subgamd'ih the set of Nash equilibrium is a superset of
subgame perfect equilibrium while every subgame perfegilibgjum is a Nash equilibrium.

Problems in Subgame Perfect Equilibrium Subgame perfect equilibrium is normally computed
by backward inductionin which we solve the subgames at the leaves and work our pétyeLtree.
The problem with backward induction is that it assumes tlegliptions of the agents’ behaviors
at the end of a game are credible even at the beginning [78]al#nnative method, introduced
by Fudenberg, Kreps, and Levine [22]fegsward induction Forward induction requires an agent
make decisions based on the information available in thieeegart of the game. For example,
consider the game in Figure 2.8. There are two subgame pededibria in this game{2, b, d}
and{1,a,c}. However, the strategy profil€2,b,d} will give Player 1 a lower payoff than the
payoff gained by choosing before the subgame. Thus, it is reasonable for Player 2 ¢ thht
the only reason that Player 1 will choose mavat the first stage is that she expe@sr5, 0.25)
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a b
-------
SN KA
[0.750.5] [ 0,0 ] [ o0 ]}.250.74

Figure 2.8: A game of forward induction.

O+ OO
a a a

a
!

L |
|<1,...,1>| |<1/g ..... 1/2)| (i/n,.... 1/n)

Figure 2.9: Amn-player game illustrating subgame perfect equilibrium.

to happen in the subgame. As a result, Player 2 should chaosthe subgame, sfl, a, ¢} is the
only equilibrium in the forward inductiof.Thus, forward induction may provide different solutions
from backward induction. See page 192 in [78] for more exaspl

Backward induction is not the only problem in subgame peémeailibrium. Like Nash
equilibrium, subgame perfect equilibrium assumes thagplalfers are perfectly rational. Thus, all
players expect an equilibrium in the whole game and the sajyuiitgium in every subgame. That
is to say, subgame perfect equilibrium does not allow forarfgrt play in the game. Consider the
game in Figure 2.9{b, b, ..., b} is the only subgame perfect equilibrium and only forwarduictebn
equilibrium. However, there is one credible threafob, ..., b}. To show why, suppose that the first
player has probability ofl — P) to choosez. If all players have the same probability to do so, the
overall probability that all players will plagis P™. If nis large,P™ will be small. So, in this sense,

{b,b,...,b} will not be a good solution. As a re-examination of his subgagmarfect equilibrium

4A similar discussion can also be applied to sequential émjuim. However, there will be one more equilibrium in
sequential equilibrium{1, (0.25a + 0.75b), (0.6¢ + 0.4d) }, which is a mixed strategy profile. Butl, a, c} is still the
only forward induction equilibrium.
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Bidder 2
Low Valuation High Valuation
c d c d
Bidder1 a| 0.75,0.5| 0,0 0.75,1| 0,1
b| 05,0 |0.250| 050]0.2505

Table 2.11: An incomplete information sealed bid auction.

concept, Selten [94] introduces a small “mistake” for evaeogsible move of all players. We will

touch this concept in sequential equilibrium and (trentbland) perfect equilibrium.

2.3.3 Bayesian Equilibrium

Nash equilibrium assumes complete information. Diffi@gdtarise in games of incomplete infor-
mation in which players do not know each other’s charadtesisnd hence the payment functions
are no longer common knowledge. We illustrate this problgnaibcussing a two-person sealed
bid auction, illustrated in Table 2.11. In this game, if lBd® has a low valuation of one item,
{low, low} is a weakly dominant Nash equilibrium. However, if bidder &ha high valuation,
{high, high} is a weakly dominant Nash equilibrium. So, whether biddendoses low or high will
depend on whether bidder 2 has low valuation or high valnatio

Harsanyi [31] demonstrates that an incomplete informagimme can be transformed into
a game with imperfect information. This kind of transforioatis calledHarsanyi transformation
in which an incomplete information game is replaced by a garhere nature moves first (and
chooses the players’ types). As a result, we may have manpleteninformation games with
probabilities in accordance with the types of the players.

Let T; be a set of possible types of playgrandT_; denote all possible combinations
of types for the players other than i. Lgtbe a typical type ifl;, and lett_; be any possible
combination of types for the players other thanLet p; be a probability function froni; to
A(T-;), which is the set of probability distributions ovér ;. We definep;(¢_;|t;) for playeri as
the probability that the other players haig while playeri is in ¢;. u; denotes the utility function

of playeri. We define 88ayesian gamas a profile,
T = {4, {Si}ica, {Ti}iea, {pi}iea, {wi}ica}.

Thus, a strategy profil€os, 09, 03, ...} is aBayesian equilibriunif the strategy of each
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player is a best response conditional on expectations efgthest responses, and no one wants to
move unilaterally. Let o} (.|t;) denote the best response strategy profile of plaggvent;. We
have

o; (.|t:) € argmax Z pi(t—ilti)ui(si(ti), s—i(t—)), (tist—:)).
$i€5i t_,€T_;

To see how to calculate a Bayesian equilibrium, let us cemdside example in Table
2.11. In this game, player 1 has incomplete information evRiayer 2 has complete information. If
Player 2 has a low valuation, Player 2 will plapecause is a weakly dominant strategy; otherwise,
she will playd. We have

o1 (|ta = low) = a,

o7 (.[ta = high

) =0,
o5(.|ta = low) = ¢,
)=d

o3 (|t2 = high

Suppose that the probability of Player 2’s valuation beimg is p. So, for Player 1, the expected
payoff if she plays: is 0.75p. If she play9, the expected payoff &5p+0.25(1—p) = 0.25p+0.25.
The critical value ofp is p = 0.5. That is to say, if the probability of Player 2’s valuatiorirzgglow

is less thard.5, Player 1 will playb. For more examples, refer to page 215 in [23].

2.3.4 Perfect Bayesian Equilibrium

In Bayesian equilibrium, each player has a subjective phitiba distribution over the possible
types of the other players. We refer to these subjectiveglitity distributions aprior beliefs The
players do not modify the prior beliefs in the process of tamg. However, in multi-stage games,
players have the opportunity to observe the outcome of pus\stages, and it is reasonable to think
that players will modify their prior beliefs in accordancétiwthe new information. The updated
belief is called theposterior belief

Perfect Bayesian equilibrium is an extension of subgam&gieequilibrium to incom-
plete information games. To formally define perfect Bayesiguilibrium, we Ietaf be the action
of playeri at an information stat¢.® Let ﬁi(t,l-|a§_i) be the posterior probability af ; given that

5A Bayesian equilibrium is also calledBayes-Nash equilibriupor expectation equilibrium
5The difference between action and strategy is trivial andymasearchers use these two words interchangeably. To
be precise, an action refers to a strategy that is used bylaper@nd then is observed by the others.
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playeri observes the other players’ moves leading to the informatiateS. A behavioral strategy
profile is aperfect Bayesian equilibriunfiat each information statg, we have

1. A player’s strategy conditional anis a best response to the other players’ best response. For
alli € Aand¢ € =, we have

J§7i(.|ti) € arg max Z ﬁi(t,i|a§)ui(si,s,i,ti).
SiESi(f) t_,eT_;

2. ﬁi(t,l-|a5_i) is updated fromzf ands_; using Bayes’ rule whenever possible.

Thus, a perfect Bayesian equilibrium is a set of behavidrategies and beliefs such that
strategies are optimal given the beliefs at any stage ofdlhmeg The beliefs are updated from prior

beliefs, equilibrium strategies, and observed actionsguBiayes’ rule.

2.3.5 Sequential Equilibrium

In perfect Bayesian equilibrium, there is no explicit ddfom of posterior probability when the
observation probability is zero. As a result, there is ndieitglefinition of those strategies off the
equilibrium path [114]. In this sense, perfect Bayesianlégium cannot guarantee an equilibrium
solution for every subgame. Selten [94] introduces a canedprred to as “trembling hand per-
fection” to capture the notion that players may make erratis gmall probabilities. The trembling
hand is a vivid description of “slight mistake” in which a pé& will do something wrong because
she cannot hold her hand firmly. By introducing trembling, ev&ble the game to reach every
information state.

This concept is applied in boftrembling hand) perfect equilibriurandsequential equi-
librium. We introduce sequential equilibrium at first, because eetigl equilibrium is simpler and
normally easier to compute.

Kreps and Wilson [48] defines( 1) as an assessment, wherés a behavioral strategy
profile andy is a set of beliefs at all information states. Bebe the set of alb's. o;(¢) denotes the
strategy profile of playerat information stat¢ ando_; <) denotes the strategy profile of all players
except; at information statg. wu;¢) denotes the utility of playerat&. Let u;(£) be the posterior
probability distribution set of playerat the information state,. We useV to denote the set of all

(o, 1). So, a pair §, 1) is asequential equilibriunif
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1. (o, p) is sequential rational, that is, for every informationtstg

uie) (o€, u(€)) = Ui(g)((ff;(g),04(5))|€,M(€)),
forallic A, £ e Zando € X.

2. (0, p) is consistent if there exists a sequence of strictly mixethavioral) strategy&’“)zoz 1
and associated beliefs*)? , determined by Bayes' rule, such that

(o,p) = lim (a-k’:uk)'

k—o0

There are two points worth noting. First, players will aghterthe equilibrium profiler at
any information state including those off the equilibriurthp This is the same as subgame perfect
equilibrium. Secondly, the behavioral strategiesan be pure strategies, wheke, 1) are limits
of mixed strategies and associated beliefs. For examptesider a simple game in which Player
1 has a two-action strategy space. Supposedhat (1,0) is the only pure strategy sequential
equilibrium for Player 1. As required by the trembling handgerty, we lets¥ = (1 — ¢, e).
Whenk — oo, we haver, — 0 and (6%, u*) — (o1, 1.

2.3.6 Perfect Equilibrium

First, let us discuss perfect equilibrium in strategic ferrkVe follow the definition on page 216 in
[78]. LetT’ = (A, (S;)ica, (ui)ica) denote any finite game in strategic form. 12etS;) denote the
set of all probability distributions of; andA%(S;) denote the set of all probability distributions on
S; that assign positive probability to every elementSin A strategy profiles in x;c4A(S;) is a

perfect equilibriumof I if and only if there exists a sequent#®)? ; such that
1. 6k € XZEAAO(SZ‘),

2.0, € argmaxui(&’ji,si), and
S¢EA(S¢)

3. lim 6%(s;) = o4(s;), foralli € A and for alls; € S;.

[ %

The first condition requireé”* be a strictly mixed strategy profile in that every pure strat-
egy of every player should have strictly positive prob&pilThis is the same to the requirement in
sequential equilibrium. The second condition assertsathiata best response strategy profile given
every&’ji. This is stronger than in sequential equilibrium, whichuiegs only thatr, the limit of



27

Player 2

c d

a| 01|01
Player1 bx| -1,2| 1,0
by |-12] 2,3

Table 2.12: A game in strategic form.

&%, is a Nash equilibrium. The third condition tells us that af@et equilibrium is the converging
limit of a sequence of Nash equilibria. This is a little biffdient from sequential equilibrium,
which puts more credit on posterior probability so that we/rtel which beliefs are “plausible”
[23].

However, for the purpose of perfectness, the strategic fernot an adequate represen-
tation of the extensive form [94]. In fact, a perfect equiliin in strategic form may not even be
a subgame perfect equilibrium due to “difficulties which nzaige with respect to unreached parts
of the game "[94]. To see why, let us look at the example in &@&bl2. In this gamefby, d} is
the only subgame perfect equilibrium. It is easy to undedsthat{by, d} is also a perfect equi-
librium. However,{a,c} is also a perfect equilibrium. Suppose Player 1 will ptagnd, with
some small probabilitye, tremble tobx andby, Player 2's expected payoff is+ 2¢ if Player 1
playsc and is1 + ¢ if she playsd. Sincel + 2¢ > 1 + ¢, {a,c} is a perfect equilibrium. Some
argue that the mistakes happened in different stages obsubgnay be correlated [114]. To re-
move such “difficulties”, Selten introduce “agent normalnfioas a more adequate representation
of games with perfect recall” [94], which requires that aemtgoehaves independently in different
stages such that an agent in a different stage looks likdfexelitt agent. Selten showed that every
perfect equilibrium is always subgame perfect in agent mbform games, but the reverse may not
hold.

2.3.7 Proper Equilibrium in Strategic Form

Proper equilibrium is a stronger equilibrium than perfeqigbrium, which requires a strictly pos-
itive probability for every pure strategy, but any “tremmigi’ strategy is assigned an arbitrarily small
probability. Proper equilibrium furthermore requirestthay pure strategy that would be a mis-
take for a player is assigned a much smaller probability Hranother strategy [78]. Myerson [77]
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Player 2

C d

ax| 55|55
Player1 ay| 55| 5,5
bx | 7,7|4,0

by | 0,0| 3,3

Table 2.13: A normal form game.

defines thatr is ane-proper equilibrium if and only if
2. Foralle;,e; € S;,

if /LZ'(J_Z', [Cz]) < ,U,Z‘(J_Z', [ei]),thenai(ci) < 60@(61‘).

A randomized-strategy profile in X;c4A(S;) is a proper equilibrium of" if and only

if there exists a sequence(k), o%)%, such that
1. For allk, o* is ane-proper equilibrium,

2. lim e(k) =0, forallk € {1,2,3,...}, and

k—o0

3. lim o¥(s;) = 04(s;), forall k € {1,2,3,...}, foralli € A and for alls; € ;.

k—o0

As proved by Myerson [77], every proper equilibrium is a petfequilibrium, but not

vice versa. Consider the game in Table 2.13, the stratediepro
{(1 = 7e)[ax] + elay] + €[bx] + 5e[by], (1 — €)[c] + €[d]}

is ane-perfect equilibrium. So{ax, d} is e-perfect, as long a8 < € < 1/3. However,{az, d} is
not ane-proper equilibrium. The reason is that is a worse mistake thai: for Player 1 because
Oc +3(1 — €) < 6e +4(1 — €). Thee-properness condition requires thatby)/o; (bz) must be no
more thare [78]. As a fact of matter{bz, c} is the unique proper equilibrium in this game as long

ase < 2/3. This can be justified by the form

{(1 = 2¢ — )[ba] + elaa] + elay] + by, (1 — O[] + [d]}.
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Player 2
c d
Bidder 3 Player 3
e f e f

Player1 al 0,0,0| 0,0,2| 0,2,0| 2,0,0
b|020]|202|202|0,20

Table 2.14: A 3-person game.

2.3.8 Persistent Equilibrium in Strategic Form

In the definitions of perfect equilibrium and proper equililm, trembles are forced when some
of the pure strategies have zero probability. Thus, givah i pure strategy has zero probability,
a Nash equilibrium is always perfect and proper [38]. Howethds kind of strategy combina-
tion, referred to as aimner combinationis not always immune against trembles, and thus could
be unstable. Recall the “battle of the sexes” game in Talle 2Badminton, Badminton},
{Movie, Movie}, and{(1/2Badminton + 1/2Movie), (1/2Badminton + 1/2Movie)} are the
only three Nash equilibria, which are also perfect and progdowever, {(1/2Badminton +
1/2Movie), (1/2Badminton+1/2Movie)} does not have neighborhood stability since any trem-
bles, like{((1/2+ ¢)Badminton + (1/2 — €)M ovie), (1/2+ €) Badminton + (1/2 — €)M ovie) }

will cause it to shift to{ Badminton, Badminton}.

Here are some prerequisite definitionsrefract of the gamd” is defined as a subs&tof
Sif R = X,;caA(R;), with eachR; being a non-empty closed convex subsei(d;). A retractR
is absorhingS if BR(c) N R # 0 given thatS is a set of mixed strategies C S and every € S.
That is, for every playetthere is ar; € R; such thatr; is a best response of play&to o € R [38].

A retract R is persistentif it is a minimal absorbing retract. A strategy profibeis a
persistent equilibrium i& is a Nash equilibrium and is a persistent retract [38].

Kalai and Samet prove that any finite game in strategic formeahpersistent equilibrium
which is perfect and proper. However, there may exist somsigtent strategies which are not
proper [38]. Let us look at an example, as shown in Table 2rithis game, every strategy profile
is persistent. However, the stratefy, ¢, ¢} is not perfect.

"See page 44 in [38] for the proof.
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[0.750.75] [ 0250 | | 00 ] [0.25025] & f f
[075075] [ 0250 | [ 00 ] [o25025]
Game A Game B

Figure 2.10: Two extensive games with the same reduced héoma

2.3.9 Stable Equilibrium

As we know, a game in normal form could have different eqtiilim solutions, when compared
to those in extensive form. Consider the two games in Figut®8® The reduced normal form
game of these two games are the same; howdver;} and{a,e} are the perfect equilibria of
Game A, while{a, e} is the unique perfect equilibrium of game B. At the same tibeckwards
induction of the extensive form and the iterated dominarfafe@ normal form do not give us the
same “strategically stable equilibrium” [43]. Considerrn@aB in Figure 2.10 again. Strategyof
player 1 is strongly dominated by strategySo,{a, e} should be the only equilibrium in iterated
elimination of dominated strategies.

Stable equilibrium is a concept developed by Kohlberg andtéts [43] to solve the
above discrepancies. A reduced normal foé s where all pure strategies that are convex com-
binations of other pure strategies have been deleted [48hlderg and Mertens point out that a
strategically stable equilibrium should depend only onréduced normal form of the game. A
strategically stable set of equilibria 6f must contain a strategically stable set of equilibria of any
G, which is obtained front7 by a deletion of any dominated strategy [43].

We defineS as a closed set of Nash equilibrium &f if for any e > 0 there exists
somel < dy < 1, such that the perturbed game, where every strategfyplayeri is replaced by
(1—46;)s+ 04, has an equilibriuna-close toS, for any completely mixed strategy vectsy, ..., o,

(n players) and for anyy, ..., 6,,, (0 < §; < dg). A set of equilibria is stable in a gandeif it is the
minimal set ofS [43].

8Game A and Game B in Figure 2.10 are similar to the games in€&@jand Figure 3 of [43].
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Figure 2.11: An extensive game corresponding to the gamabieT.15.

Player 2

e f
all1-1|-11
Playerl1 b|-1,1]1,-1
c| 05| 05

Table 2.15: A normal form game corresponding to the gamednrgi2.11.

Kohlberg and Mertens prove that, in iterated dominanceahbletequilibrium contains
a stable set of any game obtained by eliminating dominatedegies. In forward induction, a
stable equilibrium contains a stable set of any game olddnyea deletion of any strategy which
is an inferior response to the equilibria of the set [43]. Idwer, stable sets might not satisfy
the backwards induction requirement. Consider the gameabieT2.15. There are two stable
equilibria,{c, (1/4,3/4)} and{c, (3/4,1/4)}. However, in the corresponding extensive form game
in Figure 2.11, the only sequential equilibrium{is (1/2,1/2)}. The cause of this problem might
be because stable equilibrium uses a different game forar tthn normal form or extensive form

representations. Similarly, it may not be a subset of propgerfect equilibrium.

2.4 Summary

Using static and dynamic as one axis, and information ashanotve classify these well-known
equilibrium concepts in Table 2.16.

We learn that the results of computing different equilitaiso depend on the game mod-



Complete Information

Incomplete Information

Static

Nash Equilibrium

Bayesian Equilibrium

Dynamic

Subgame Perfect Equilibriun

Sequential Equilibrium;
Perfect Equilibrium;
Persistent Equilibrium;

n Perfect Bayesian Equilibrium;

Stable Equilibrium;

Table 2.16: Categories of equilibria.
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els. Usually, Nash equilibrium, proper equilibrium, andgigtent equilibrium are solved in normal

form. Subgame perfect equilibrium and sequential equilirare applied to extensive form games.

Perfect equilibrium is discussed in agent normal form. Atathle equilibrium is solved in reduced

normal form. The choice of a game model to a specific apptinaghould depend on the needs of

the scenario.

To conclude, we may depict a rough relationship picture aygrsmme of these equilibria,

as shown in Figure 2.12. Normally, a stricter equilibriunmcept is a subset of another equilibrium

concept. The reason that persistent and stable equilitairemnot included in the picture lies in that

they are not strictly a subset of proper or perfect equiliriand could overlap with other concepts.

Simply, there is not an optimal equilibrium concept. Setatbf an equilibrium concept

to a specific game will depend on the properties of the gamdtendeeds of the modeler. These

refinements of equilibria provide many options, while, a #ame time, they introduce different

computational complexity to solving a game.



Nash Equilibrium

Subgame Perfect
EquiTlibrium

Perfect Bayesian
EquiTlibrium
T
Sequential
Equilibrium

Perfect Equilibrium
(Agent-Normal Form)

Figure 2.12: Relationship among different equilibria.
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Chapter 3

Computing Equilibria

The concepts of Nash equilibrium and its refinements have hegely applied in eco-
nomics, business, and other realms. Naturally, the cortipataf equilibria has drawn much at-
tention. In general, the computational complexity of saygames is exponential. There are many
papers focus how to sohEperson games, and more recently there are more and morétaigo
aiming to computingr-person games. To date, the solvable size of games has esinsimall.
However, these algorithms are significant because mang Erg games can be approximated by

smaller ones.

3.1 The Mathematics of Computing Nash Equilibrium

3.1.1 Nash Equilibrium as a Fixed Point of a Function

Nash used the fixed point theorem to prove the existence dftegum for finite, n-person games.
Many algorithms for solving:-person games follow this idea and first find the fixed pointars
algorithm was the first algorithm developed for approximgta fixed point by using algebraic sets
[92]. This work was followed by many simplicial subdivisiahgorithms [99, 101, 113]. Another
approach to approximate fixed point is using simplicial htopyg methods [14, 113]. However, the
computational complexity of these algorithms, in the waste, is exponential in the dimension

and the number of digits of accuracy [33].
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3.1.2 Nash Equilibrium as a Solution to Linear Complementay Problem

The Lemke-Howson algorithm was the first linear complenmgmpaoblem algorithm to solve gen-
eral sum2-person games [56, 66]. Modified versions of Lemke-Howsgoréthm can be used to
solven-person games [88]. However, these algorithms need a neaflcomponent to deal with the
transformation from the original form to the linear compttary problem. The Lemke-Howson
algorithm has an exponential lower bound [76], and addingralimear transformation makes it
even more computationally demanding.
Constant sum games are a special case of the clasp@fson games and are easier to

solve. These games can be represented by primal-dual lpnegrams, which can be solved in

polynomial time.

3.1.3 Other Mathematical Approaches

Here is a list of other mathematical approaches that candmtoscompute equilibria. First, Nash
equilibrium can be approximated as a solution to non-liceanplementary problem. In comparison
to linear complementary problem f@rperson games, non-linear complementary problem can be
used forn-person games [66]. Second, Nash equilibrium is solved aatiarsary point problem.
The Kakutani fixed point theorem is implied by the stationpont theorem [113]. Third, Nash
equilibrium is mapped to a semi-algebraic set. Fourth, Mastiibrium is formulated as a minimum

of a function on a polytope [66].

3.2 Computing a Sample Nash Equilibrium in Two-Person Games

3.2.1 Zero Sum Normal Form Games

Zero-sum normal form2-person games are the simplest games in terms of computhtiomplex-

ity. The minimax algorithm is usually used to solve this slag games.

The MiniMax Algorithm

In a zero-sum, normal form game, payoff functions are comkmmwledge to both players. When

a player wants to maximize her payoff, it is equivalent fas filayer to minimize the other player’s
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payoff. In this sense, a minimax strategy is that both pyeant to minimize their maximum
possible loss [84]. It has been proved that a pair of straseigia Nash equilibrium if and only if it
is minimax [66, 84]. We can use a linear program to describerttnimax problem for both players,
and the solution to the primal-dual problem of the lineargpam is a Nash equilibrium.

To demonstrate how to solve the minimax and the primal-duablpm, letU; be the
payoff matrix of playeri. Since the game is zero sutl; = —U,. To simplify, letU = U;.
Consider a mixed strategy, whef® is the probability density vector among all pure strategies
playeri, and> P, = 1. Lets andt¢ denote the additional scalar variables. As we will see, the
primal problerZﬁ is for playet, while the dual problem is for the other player. The primallgpem

can be expressed as follows [84].

= mins
¢ Pi,s
where

S = {(Pl,S)’Upl <s1"1mpP; =1 andP, > 0},
S* ={(P,s) € S|¢ = s},

and, the dual problem is:

= mint
w Pot
where

T ={(—P,s)|RU < t1™ 1"P, = 1 and P, > 0},
T = {(PQ,S) S S"Lﬂ = t}.

Furthermore, let: = P;/s andy = —P,/t, the original primal-dual problem can be

reduced to the primal problem:

¢ = min —1"z

TESG
where 3.1)
Sg ={x >0/Ux < 1™},
St ={x € Sg € S|pg = —1Mz}.
and, the dual problem:
where 3.2)

Tg ={x>0] —yU < —1"},
T} ={y € Tg € S|Ye = 1"y}
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We define
E(Pl, PQ) = P2UP1.

A solution{ P}, P;'} is a pair of strategie®; and P;, such that
E(P,P,) < E(P{,Py) < E(P, Py).

These minimax solutions are saddle points of the funcBdB4]. The solutior{ P;*, P5 } is a Nash

equilibrium.

Complexity Results

We can use the dual simplex algorithm to solve this primatguoblem [84]. The complexity of
dual simplex algorithm is similar to that of the simplex aitfum. The difference lies in that the
dual simplex algorithm uses different criteria to pick theoting elements. Current LP-solvers can
solve the linear program problem quickly, especially foarsg matrix LPs; however, in the worst
case, the simplex method requires exponential time [4019B%, Karmarkar developed the interior
point method, which can solve the LPs in polynomial time.Umsnary, the minimax algorithm for

the constant-sun®-person, normal form game is in the polynomial class.

3.2.2 General Sum Normal Form Games

The first and most well-known algorithm for solving the gexrieum, two-person normal form game
is the Lemke-Howson algorithm [56], which reduces a norroainfgame to a linear complemen-

tarity problem.

Linear Complementarity Problem

A linear complementarity problem (LCP) consists of a sehefjualities and equations. The aim of

thelinear complementarity problens to find a vector: € R™, such that

z>0
q+Mz>0 (3.3)
2T(qg+Mz)=0

given a vectoy € R™ and a matrix\/ € R™*™ [13]. There are many algorithms for solving linear

complementarity problems.
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The Lemke-Howson Algorithm

From the minimax algorithm, we know that Nash equilibria itwe-person game are equivalent
to the minimax solutions. However, the minimax property orager holds in the general sum two-
person game becausg # —U,. A pair of strategies P;*, P5) is a Nash equilibrium if and only if
E(Pf, Py) < E(Pf, Py)andE(Py, Py) < E(Pf, Py). These two equations are equivalent to
PPy < (PH)TULP;, and
(PHTUP, < (P)TULP;.

We cannot reduce these equations to a primal-dual probleaube they do not share the
same utility function. However, we may construct two spicdactions so that we may convert them
to a linear complementarity problem [13]. Without loss ohgrality, we assume that both and
U, are positive matrices. If not, we can add a large scalar teerttekm positive. This alteration will
not change the solution of the Nash equilibrium. We constadimear complementarity problem as

follows.
U= —en+UPy>0P >0 Plu=0, (3.4
v=—en+PTU,>0,P, >0,Pl'v=0, '
wheree,, ande,, are two vectors whose components are all ones [13]. Let
—e 0 P U
g=| | M= "l and: = : (3.5)
—en P, 0 v

3.4 and 3.5 are equivalent to 3.3. SuppbBg P,) is a solution to 3.4, the relation betwegh , P,)
and the Nash equilibriurP;, P5) is given by
P =P, /(ey)" P, and P} = P, /(e,)" P. (3.6)
Lemke and Howson prove that every solution of a non-degemdr@P is a solution of

the bimatrix game. The pivoting procedure and lexicograpl@igeneracy resolution are similar to
those in linear programming.

Complexity Results

The Linear complementarity problem is NP-hard [12] and these is no polynomial algorithm for
the Lemke-Howson algorithm. Several algorithms for LCPmesented in [13], but all of them are

computationally costly.

LA detailed description of the Lemke-Howson algorithm is e 285 of [13]. A more general discussion of LCP,
including degenerate cases, can be found in both [13] arid [66
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3.3 Computing a Sample Nash Equilibrium inn-person Games

The algorithms for computin@-person games cannot be directly extended to solwiferson
games. A practical approach is to transform a game into a fdadak problem. The simplicial
subdivision algorithms, including Scarf’s algorithm, areed to find fixed points of the continu-
ous function. Before we discuss the algorithms in detailuteintroduce some basic concepts in
topology.

Definition 3.3.1. Let 2!, ..., 2™ be vectors inR" given thatR" is an n-dimensional Euclidean
m .
space. We say that= Y \;2’ is alinear combinatiorof z!, ..., 2™ if \; € R andi € I,,,, where

=1

m N . . . . . .
I,,, is anm element natural number finite sat.= >_ \;z" is anaffine combinationf z is a linear

=1
m m

combination andd_ \; = 1. = = _ A2’ is aconvex combinatiorif = is an affine combination
=1 i=1
and \; > 0, for all i. We say that:', ..., 2™ are affinely independenif the unique solution to

m .
YNzt =0is\; =0, forall i € I,,.
=1

Definition 3.3.2. If !, ..., 2™ *! are affinely independent, the convex hulkdf ..., 2+ is anm-
dimensional simplexr m-simplex A k-simplexr(< m) is called ak-face, f, or k-dimensional
faceof anm-simplexo if all vertices ofr are vertices ob. If a face f consists of a single point, it
is called avertex If f is a half line or a line segment, it is called &alge If f has a dimension one

lower than the dimension af, it is called afacetof o.

Definition 3.3.3. Let.S denote am-dimensional convex set R™. A collectionT of m-simplices is

said to be driangulationor simplicial subdivisiorof S if
1. S=Uo, forallo; €T
i

2. o1 Nogy =0oro;Noy = f. There existy, such thatf is a common face of both, andos,

forall 1,09 € T.
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3. Letd be a neighborhood aof, for all z € S. There are only a finite number of simplices,

belonging taT, in 6.

Definition 3.3.4. Letdiam (o) be thediameterof a simplexo € T, where

diam(o) = max{||xz —y || |z,y € o}.

Letmesh(T) denote thenesh sizeof T, where

mesh(T) = sup{diam(c)|c € T}.

Definition 3.3.5. A labeling rulel : T° — I,,, is called aproper labeling ruléf z; = 0 = I(z) # i,
for all = € T.

A proper labeling is also calleBperner proper labelingA possible proper labeling rule
can be given by
l(y) = min{i € I,|fi(x) < x; >0, fi(z) > i1} (3.7)

wherel(z;) + 1 = 1if i(z;) = n.

Definition 3.3.6. Given a labeling ruld : T® — I,,,, an (m — 1)-simplexo with verticesz!, ..., 2™
is acompletely labellegimplex if all its vertices are differently labelled suchathi(z%)|i € I,,,} =
I,. An(m — 1) or (m — 2)-simplexo is almost completely labelled its vertices have at least alll

labels ini,,_1.

Definition 3.3.7. Two ordered set are said to lagljacenif they differ by at most one element. Thus,
an almost completely labelled simplexs adjacent to at most two other simplices. A simplex is
called aterminal simplexf there are at most one adjacent simplex. [Eebe the set of simplices
can be reached by. P is called aloop if there is no terminal simplex, or string if there are two

terminal simplices, or @ointif there is only one terminal simplex.
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Theorem 3.3.1 (Brouwer Theorem).Let D be a nonempty, compact, and convex subsit aihd
let f : D — D be a continuous function. Then there exists at least onet poiim D such that

f(zx) = 2* [113].

Kakutani [1941] proves that a looser requirement can alsaltrén a fixed point.

Theorem 3.3.2 (Kakutani Theorem). Let D be a nonempty, compact, and convex subskit ahd
let f : D — D be a upper semi-continuous mapping. Then there exists st ¢&& pointz™ in D
such thatf (z*) = =*. A point-to-set mapping is upper semi-continuous at the poiritin D if for
any convergent sequenée”|k € N} of points inD, and for any convergent sequeng’|k € N}

with y* € f(2*) and limitsy*, it holds thaty* € f(x*) [113].

Nash proved the existence of Nash equilibrium in generalegamsing the Kakutani The-

orem.

Theorem 3.3.3 (Sperner Lemma).Let D’ be a closed subset and 18" denote a collection of

n

closed subsets whet® = |J D’. LetT be a triangulation ofS™. Let! : T° — I,, be a proper
i=1

labeling function for every vertex @°. Then there exists at least one completely labelled simplex

in T [113].

The Sperner lemma guarantees a completely labelled sirir@ide a triangulation using
the Sperner proper labeling. In detail, the Sperner pragieeling rulel : T — I, in a triangle’s

triangulation has the following requirements [6]:

1. The vertices of the original triangle are labeled withethdifferent labels, which are an ele-

ment of[,,,n = 3.
2. \ertices of the triangulation that lie on a side, e.g. &t®uld be labelled either 1 or 2.

3. There is no restriction on labeling of the vertices of amyssmplicies.

Using a proper labeling rule, e.g. equation 3.7, we may cocist function such that
n n
> filz) = > x; = 1. Since the Sperner lemma guarantees a complete labellptegimside the
=1 ;

=1
triangulation, we havg;(z*) = z*,i = 1, ...,n. Hencez* is a fixed point off.
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3.3.1 Scarf's Algorithm

The Brouwer theorem and the Sperner lemma prove the exéstdrat least one fixed point; how-
ever, they did not provide an approach to find the fixed pofatsirf was the first person to develop
algorithms for this purpose. Scarf presented two algostiion finding fixed points. One is in the
framework of simplices; while the other one is organizeduatbprimitive sets [92, 93]. Labelled
primitive sets in Scarf’s algorithm are an analogue of llgesimplices. Although Scarf used prim-
itive sets to explain the algorithm, simplicial divisionshlaecome a more popular approach to solve
the fixed point problem. We will mainly discuss the simplidasision algorithm here.

Basically, Scarf’s algorithm starts with a randomly picledchost completely labeleadh (-
2) simplex and then generates a finite sequence of adjacewistltompletely labeledn(— 2)
simplex. It stops at a completely labeled-€ 1) simplex.

The original Scarf’s simplicial division algorithm is baken K, (m)-triangulation, e.g.

as shown in Figure 3.1.

Definition 3.3.8. A triangulation is calledK(m)-triangulationof S™ with grid sizem~! if it is a

collection of all (n-1)-simplices (z?, ) with verticesz!, ..., 2™ in S™ such that
1. each component has equal size.
2. 7= (n(1),...,m(n — 1)) is a permutation of the elementsip_;.

3. 2 =zt + m~(w(4)),i € I,_1, wheret(n(i)) = e(j + 1) —e(j),j € In_1.

The triangulation for Scarf's algorithm, as shown in Fig@®€ is a modification of
Ks(m)-triangulation. TheK,(m) is completely contained in the original triangulation. st
example,n = 3 andm = 4. We set the label of the original triangulation @s+ 1) modn. The
similar construction of subsimplices can be applied to testidation simplex if we want a finer

approximation. The Scarf algorithm works as follows [113]:

1. Find a start simplex” such thav" is a unique(n. — 1)-simplex in the original triangulation
and has as its facet, which is & — 2) simplex on the border. Let" be the vertex of°

that is not a vertex of of?. Letk = 0.
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e(3)

e(l) e(2)

Figure 3.1: lllustration of<’s(m)-triangulation.

2. If I(z*) = n, a completely labelled simplex* has been found and the algorithm stops.
Otherwise/(z*) is the label of one other vertex of’, sayz~. Let7%*! be the facet of*

oppositex—.

3. Find the simplex’**! adjacent tar* sharingr**!. Letz T be the vertex o&**! that is not

a vertex of ofr*+1. Letk = k + 1 and go to (2).

3.3.2 Transformation from a Game to a Fixed Point Problem

Scarf’s algorithm did not provide the link from a game to adixmint problem. To enable that, we
need to define a transformation mapping the fixed points tdldsdh equilibria.

Let s;; be thej'" pure strategy of playeir Letp;; be the probability oves;;, p; be the
probability function of playet, p_; be the probability of all players except playierandp be the
overall probability function. Lef\ = {p| Zpl- =1,p; >0} andletf : A — A. We define

9ij(p) = max[u;(sij, p—i) — ui(p), 0] and fi;(p) = % (3.8)
J
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Figure 3.2: The Scarf’s triangulation.

We define a proper labeling rulé:: [(p) = s;;, where(i, j) is the lexicographic least
index in argmax f;; — p;; [66, 93]. We apply these transformations to the above alyorto
iEN,1<j<m;
compute the Nash equilibria.

3.3.3 Other Algorithms

In addition to Scarf’s algorithms, there are many other @dligms for solving fixed point problems.
In 1968, Kuhn introduced the first simplicial subdivisiogalithm. Kuhn'’s artificial start algorithm
uses theXy(m)-triangulation without imbedding th&’ (m)-triangulation into the original trian-
gulation, but introduced an extra layer below the unit giaation [113]. It also uses a different
labeling rule

l(z) = min{j € I,|z; = m}zlixxh}

wherez; is defined as in thd(,(m)-triangulation. In the following year, Kuhn introduced his
second fixed point algorithm, which used the ukiit(m)-triangulation, and starts from one of the
vertices of the unit simplex. This algorithm allows the dimi®n of adjacent simplices to change
in the process of tracing. Some other simplicial subdivisitgorithms were developed by Merrill

(1972), Kuhn and MacKinnon (1975), van Der Lann and Taim&79] 1980, 1982), van der Laan,
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Talman and van der Heyden (1987), and Doup and Talman (1887)1[L3]. These algorithms are
reported to be more computationally efficient.

Another branch of algorithms for finding fixed points is cdl&mplicial homotopy. There
algorithms were first introduced by Eaves (1972), Eaves aigh$(1972), and Merrill(1972). This
algorithm is still a triangulation algorithm, but can stattanywhere and automatically refines the
grid size of simplices in the process [113].

3.3.4 Complexity Results

The simplicial subdivision algorithms approximate Nashikdoria. The computational efficiency
depends on the triangulation expanding method used by #wfigpalgorithm, the grid size of a
single simplex, and the precision required. Although therstill room for further improvement,
so far, all algorithms are NP-hard. It has been shown by Hitsat the worst case running time to
compute a Brouwer fixed point is exponential in the size ofttlagulation and the accuracy we
require [33]. Saigal shows that a proper alternation of tlesmsize of the simplices can improve
the convergence quicker [91]; however, there is no algorittan easily solve an-person Nash

equilibrium mapping from fixed point for a large size game @émegral.

3.4 Extensive Form Games

The algorithms presented above are for normal form gamesweé\&now, games in extensive
form may contain more information than those in normal for@enerally, when we reduce an
extensive form game to normal form games, we lose informagibout the sequence of moves.
Moreover, there are several schemes that we may use to rdduegtensive form games to normal
form games. The most popular ones are multiplication of Wiehatrategy, agent normal form,
and reduced normal form. As discussed in Chapter 2, differedgtuctions can lead to different
solutions. Although we may argue that the game in natureeiséime, the computation procedure
and the complexity of the computing equilibria will depermutbe game form we use. Regardless
of which reduction scheme they choose, in the worst case etatipn is still exponential in the size
of the behavior strategy in extensive form.

“Besides the researchers mentioned above, there are stijl atlhers contributed to this area. Please refer to [113]
and the other references for more details.
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Figure 3.3: lllustration of sequence form.

Nevertheless, do we have to reduce extensive forms to ndamalin order to compute
the games? In fact, some papers point out that another gamesequence forpwill enable us to
solve the extensive form game more efficiently [44, 45, 98, 105].

Definition 3.4.1. A representation of an extensive form game is caleguence forrif it is defined
by

1. A empty sequendkfor each player. Nature will be regarded as Player

2. Asequencds a possible choice for playerfrom the root to a specified node. The set of

sequences of Playéiis denoted bys;.
3. The payoff of Playeris defined as the payoff combination of sequences of Player

4. the probability of sequencg € S; is defined by aealization play

ri(si) = [ si(c)

cES;
wheres; is the behavior strategy of player

Let us look at an example as shown in Figure 3.3. The sequefqdayerl is a, b, and
(), the empty sequence. The sequences of playeC, D, E, F, G, and(), the empty sequence.
However, in normal form, the possible strategies for pl&yareCE, CF,CG,DE, DF, andDG.
The advantage of sequence form lies in that the size of segaés linear in the size of extensive
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form, while any other reduction game form might still be emential in the size of the game tree.
However, like every coin has two sides, the definition of dization plan is in sequence form less

intuitive than behavior strategy probability [104].

3.5 Finding All Equilibria

The multiplicity of Nash equilibria not only hinders the émasting capability, but also complicates
the computability. The algorithms for computing one Nashildafium cannot guarantee that the
result has salient features. For example, the identifiediledqum might be Pareto dominated. Thus,
finding a single equilibrium may not always satisfy us.

However, it is very expensive and sometimes impossible topede all equilibria for a
game. McLennan [70, 71] derived several results on comgukia expected number of equilibria.
In general, however, it is very difficult to predict the exacmber of equilibria for a game, and in
some cases, the number of equilibria of a game is infinite.

One new approach that sounds promising is semi-algebraialgerithms. The Nash
equilibrium can be expressed as a conjunction of polynoagahktions and weak inequalities [66].
Finding all equilibria is equivalent to finding all roots dfg equations and inequalities.

3.6 Summary

Computing equilibria is still a fertile research area alttjo there are many algorithms already devel-
oped. Table 3.1 is a summary of algorithms for finding a sitNgsh equilibrium or its refinements.
Table 3.2 summarizes the algorithms for computing all éoyial.

Unfortunately, current algorithms can solve only smalkdijames. The following is a

summary of current research on computing equilibria.

1. Algorithms for computin@-person games. Although this category of games is the ¢asies
one, many important results are based2gperson games, including the minimax theorem
and the Lemke-Howson algorithm. Moreover, algorithmsXqrerson games are easier to

understand intuitively. There are still many researchetis@in this area.

2. Algorithms for computinge-person games. These approaches normally seek a mappimg fro
a Nash equilibrium to a mathematical problem, such as fixéut pooblem, stationary point



2-person 2-person T-person T-person
Equilibrium | normal form| extensive normal form extensive
games form games | games form games
Simplicial Sub-
division (Scarf
LH  Variant 67,73);LH Vari-
(Wilson  72) ant (Rosenriiller
11 71,Wilson 71);
Lemke- LH Vari- .
Nonlinear Comple-
Howson ant (Koller, .
Nash Algorithm atc 94 mentarity  Problem
) "I (Mathiesen 87);
(LH 64) ggogggg;_ Minimum  Method
tior?) (McKelvey 92);
Global Newton
Method (Govin-
dan&Wilson 98)
Bayesian
Subgame Perfect
Lex-Order Homotopy
. . Method
Perfect Bayesian LH  Variant
(Eaves71) | (Von  Sten-
gel,etc,2002)
Homotopy
Based Al-
gorithm
Sequential (McKelvey &
Palfrey 94);B-
labeling(Azar.
etc. 2000)
Persistent
Homotopy
Method(Yamamoto
93); Simpli-
Proper cial  Subdi-
vision (Tal-
man&Yang
Exh
xhaustive
92) (Mertens 88,

an idea only)

Table 3.1: Algorithms to find a single equilibrium.
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Equilibrium | 2-person normal 2-person extensive n-person normal | n-person extensive
PolEnumSolve Lyapunov func-
Nash LcpSolve Koller and gi:g:l'\?e I\[/|6c8|1;- tion  method,
(Gambit) [67] Megiddo 94 ' McKelvey 91
elvey and Palfrey [65]"
- I 95 [68]
von enge
Correlated 2001
Bayesian
Subgame Perfeqt
Perfect Bayesiar
QreSolve,
) McKelvey
Sequential and Palfrey
98 [69]
Proper
Persistent
Lex-Order
Stable LH (Wilson
92)

Table 3.2: Algorithms to compute all equilibria.

problem, etc. The mathematics literature focuses on splitvia math problem and thus pro-
vides a relevant algorithm for computing equilibria.

3. Algorithms for computing a special class of games, suchuation games. For some sub-
classes of games, the computational cost can be reducedtitrally since we can take ad-
vantage of special structure in the problem. An examplegisabk to compute the equilibrium
of FPSB auctions in the following chapter.

4This algorithm can find multiple equilibria for both normairin and extensive form games; however, it is not
guaranteed to find all equilibria [67].
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Chapter 4

Equilibrium Strategies in First-Price

Sealed-Bid Auctions with Discrete Bids

4.1 Introduction

In afirst-price sealed-bid (FPSB) auctippach agent submits a single bid without observing oth-
ers’ bids, and the agent with the highest bid pays the valuts @fid. In terms of information and
bidding space, FPSB auctions can be categorized into fdunlasses: FPSB auctions with incom-
plete information and continuous bids; FPSB auctions witoimplete information and discrete
bids; FPSB auctions with complete information and contirsubids; FPSB auctions with complete
information and discrete bids.

In the past decades, a voluminous theoretical literatusebban developed on FPSB auc-
tions. A class of typical models assume that agents are synieraed risk neutral [62, 73, 79, 87,
102]. More recently, researchers have studied models wjtmeetric information [16, 18, 54, 59,
60], affiliated values[11, 61], single-crossirfg2], or other restrictions [51, 55, 57, 58]. Most of
the literature assumes incomplete information and coatiawbids. With agents having complete
information and continuous bids, equilibrium does not edige to the discontinuity of the payoff

LA condition isaffiliatedif higher values of some variables make higher values of there more likely [73, 106].
2Thesingle crossing conditioholds when agents with higher types will choose higher etjias [2].
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function [53]. To enable the existence of equilibrium irsthituation, Lebrun [53] suggests an “aug-
mented” first price auction to break the tie so that the agawiniy higher valuation wins the item
by submitting a “message” marking its higher value. Maskid &iley [60] propose using a sec-
ond round Vickrey auction to break the tie if any. In a modeinabmplete information, Athey [2]
concludes the existence of pure strategy equilibrium inB-R&h finite strategies, when the sin-
gle crossing condition holds. However, the properties @$terce and multiplicity of equilibria
in FPSB auctions with discrete bids, especially the retetigp of multiplicity of equilibria to the
size of bid increment, are not well studied. Discrete valbigidiing is relatively common in online
auctions with fixed ending times such that they degeneraf®&B auctions.

When the number of discrete bids is finite or bound, the exigtef equilibrium in FPSB
auctions with complete information can be easily provemgishe Nash theorem [81, 83]. In this
chapter, we discuss the existence of equilibrium from aeckffit perspective and focus on the mul-
tiplicity of equilibria in FPSB auctions with complete imfoation. We also discuss the equilibria
in FPSB auctions with incomplete information. The remainafethis chapter is organized as fol-
lows. In Section 4.2, we present a model of the FPSB auctionSdction 4.3, we discuss the
multiplicity of equilibria in two-agent FPSB auctions andulitperson FPSB auctions, including
sequential FPSB auctions, with complete information. Iatisa 4.4, we provide equilibrium solu-
tions for both two-person and multi-person FPSB auctiorth imcomplete information. We offer

some concluding remarks in Section 4.5.

4.2 The Model

Assume that there is an item for sale in an FPSB auction. Témere agents competing for this
item. The set of agents is denotéd In this chapter, we discuss two different scenarios: one is
n = 2; another one is > 2.

We assume that these agents are risk-neutral and the pdyazthb agent is equal to its
monetary surplus. We adopt a random tie-breaking rule irchveach agent hals/#(tie) proba-
bility to win the item, an assumption that is common in reskat_etu; denote the utility of agent
1.

In this chapter, we explore both FPSB auctions with compiefiermation and FPSB

auctions with incomplete information. Complete inforratimeans that the payoff functions are

3The minimum bidding unit is one cent in most online auctions.
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visible to all agents. Let; be the true valuation of ageit To simplify the discussion, we assume
v < ... < <wipq < .o < wy,. Inincomplete information cases, we continue tovlgbe the true
valuation of agent. Each agent knows the value of the object to itself, and theatian of different
bidders are independent observations of a nonnegativemamdriable Y, from a commonly known
continuous distributionF, and its associated probability density functigh, Let Y; denote the
valuation variable of agent Without loss of generality, Iet; be the(n — j + 1)-st order statistic
of {Y1,...,Y,—1}. Thus,we havd; <Y, < .. <Y, ;.

We assume that agents have the same discrete strategyn@)iddace, denoted Hy. Let
0 be a minimum possible bid increment in the auction, whichésgmallest value between any two
bids and is positive and fixed. The difference between bidsesas small in the real world as, for
example, one cent. Léf, be thek!” element inB andb, denote the lowest bid value . Without
loss of generality, leB be ordered such thét + 6 = b 1.

In complete information cases, lgt s; € B, denote the strategy that agéntses in this
auction. In incomplete information cases, [Kt;) denote the strategy function of agengiven
agenti has true valuatiom;. We assume that < v; and3(v;) < v; , which means that agents will
not bid higher than their own valuations.

We define|v;| = [(v; — bp) mod 0] *x § + by. It is easy to see thdw; | is the highest
possible bid value for agentbecause agentwill get negative surplus if it bid$v; | + ¢ and wins.
Whetherb = |v;] is an equilibrium strategy for agentdepends on the situation. In a two-agent
FPSB auction, for example, ify is larger thanv, sayve = v1 + 100, {|v1], [v1] + d} is an
equilibrium. In contrast, iy = vy, {|v1] — 9, |v1] — &} is an equilibrium. Thus, to bid at, | is
not the only equilibrium strategy for ageht The agents need to judge whether or not to tie when a
tied strategy could be a Nash equilibrium.

We call a strategy profile aidentical bid profileif all agents bid at the same price. If an
identical bid profile is an equilibrium, we call it ddentical bid equilibrium As it turns out, it is

helpful to discuss the equilibrium in the FPSB auction imteiof identical bid profiles.
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4.3 FPSB Auctions with Complete Information

4.3.1 A Two-Person FPSB Auction

We start from a two-person FPSB auction. The utility functior agentl is

v — 81, If 81 > 89

Uy = %(Ul — 81), if S1 = 82 (41)

0, if 51 < s9.

The utility function for ageng is

vg — 89, If 89 > 51

Uz = %(UQ — s9), if s =59 (4.2)

0, if s9 < s1.
Suppose that both agents use an identical bid. If no agenbeaefit from deviating
unilaterally, this identical bid profile is a Nash equililm. If some agent would be better off by

deviating unilaterally, the only possibly positive deidat is to bid higher. Thus, an identical bid
profile {b, b} is a Nash equilibrium if and only if

s1=8y=>b,b € B,
Twi—b)>v—b—4i=1,2, (4.3)

b < min{v;},

where the second condition implies that no agent can berlafftby deviating unilaterally. The
third condition requires no agent bids higher than its tral@ation, which is rational for agents.

Lemma4.3.1.Forall b € B, {b,b} is a pure strategy equilibrium in 2person FPSB auction with

complete information and a discrete bidding space if ang @l

max{v;} —20 <b < min{v;},i =1,2.
3 3
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Proof: From the second condition in equation (4.3), we have(v; — 26), fori = 1, 2.
Because it is true for all agents > max{v; } — 26. When we combine this with the third constraint
in equation (4.3), we havaax{v; } —125 < b < min{v;}. ¢

Lemma 4.3.1 sug;gests that we need 'Eo check the conditiorgpuatien (4.3) for every.

In fact, we do not have to check every element in the stratpgges We can constrain the range of
possible equilibria by finding the lowest bid valtlesuch that{b,, b. } is a Nash equilibrium. From
Lemma 4.3.1, we haveax{v; } — 2§ < b. < min{v;}. Becauseé, is the lowest value in the above
range, it requires, — (mllax{vi} —26) <. Cozmbining these two equations, we have

0 < b. — (max{v;} —20) < 4.
7
We call{b., b.} acritical identical bid equilibrium if it exists. It is easy to prove thdb.,b.} is a
weakly Pareto dominant equilibrium when there are moretidainbid equilibria.
Lemma 4.3.2. In a two-person FPSB auction with complete information andiszrete bidding
spaceB, if there exists a critical identical bid equilibriudb,., b. }, then{s, s} is also a pure strategy

equilibrium, if and only if for alls € B

be < s <min{v;},i=1,2.
7

Proof: From the definition of the critical equilibrium, it vious that no agent can
unilaterally bid lower tham,. and be better off. So, the only possibility is that some agentid have
an incentive to bid higher. To be an identical equilibrismn< min{v;}. Combiningmax{v;} —
26 < b, andb,. < s, we havem?x{vi} — 2§ < s. Thus, Z Z

max{v;} —20 < s <min{v;},i =1,2.
K3 3

By Lemma 4.3.1, we know thdlts, s} is a pure strategy equilibriun®>
Both Lemma 4.3.1 and Lemma 4.3.2 are supported by Examplé. 4.3

Example 4.3.1.Letv; = 6.5 andwv, = 7. Suppose that = 1 andby = 0. There are two equilibria

in pure strategies. One i85, 6}. Another one i5,5}.
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Combined, Lemmas 4.3.1 and 4.3.2 give us a partial pictutikeoproperties of identical
bid equilibria in a two-person FPSB auction. We now esthbiige conditions under which non-
identical bid equilibria exist. We lét, = ¢ x ((min{v;} — bp) mod 0) + by, andby1 = by, + 0;
bk, bx+1 € B. The condition of existence of a nzon-identical bid equiliom can be obtained by the
following.

Lemma 4.3.3. In a two-person FPSB auction with complete information andistzrete bidding

space, a non-identical bid profilg, bx+1 } is a Nash equilibrium if and only if
1
o< §(max{vi} —bg).

Whenby, < min{v;} < bgi1, {bk, bp+1} IS also unique.

Proof: The definition ob, = § x ((min{v;} — by) mod §) + by tells us thathy is
the highest possible bid with non-negative surpzlus for twveel type agent. From equation (4.3),
an identical bid profile{by, b;} could be an equilibrium if and only i§ > %(vi —bg),i = 1,2.
0 < %(max{vi} — by), however, implies that the higher type agent will be bettéifat deviates
from an ildentical bid profil€ by, b }. Because

vg — b1 = wvo— (b +9)
= Ug—bk—5
1
> U2—bk_§(v2—bk)
1
= 5(02—51&

When the higher type agent deviates{q 1, it is an equilibrium strategy for the lower type agent
to bid b, because it cannot be better off by bidding less or more thasinceb;, is its highest
affordable bid. Meanwhile, it would be irrational for thegher type agent to bidy o or even
higher, if it can win withb,_ ;. Thus,{bx, bx11} must be an equilibrium because no agent wants to
deviate.

From Lemma 4.3.2, we know that{by, b } is not an equilibrium, no other identical bid
profile can be an equilibrium.

On the other hand, a strategy profile cannot be an equilibifutime lower type agent
bid lower thanb,. Because the higher type agent will be better off by dewviatiom by, 1 to by;
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however, the lower type agent will switch backig with an attempt to tie with the higher type
agent to gain a positive surplus whign < min{v;} < by41. Thus, if§ < J(max{v;} — b;) and
by, < min{v;} < b1, {bk, b1} Will be uni(;ue.<> Z

Z However, if the conditiod < 1 (max{v;} — b;) does not hold{by, by.1} is not guaran-
teed to be an equilibrium. The following Ilemma provides atiehship between the identical bid

equilibrium and the non-identical bid equilibrium.

Lemma 4.3.4. In a two-person FPSB auction with complete information andistzrete bidding
space, if{by, bx+1} is not an equilibrium, theqby, b, } must be an equilibrium.

Proof: by = ¢ x ((min{v;} — by) mod ) + by is the highest bid the lower valuation
agent can play; otherwise it vaiII get negative payoff. Theragvith the higher valuation does not
want to deviate tdy,,,n > 2, if it can win atbg;. Thus, the reason that the higher type agent
does not want to play,; is that it can be better off by bidding lower. So, the highgretygent
will deviate fromby 1 to by. At {by, by}, the higher type agent will not bid lower because it will
obtain nothing if it bids lower thab,,. For the lower type agent, it will not bid lower or higher than
b, because it cannot be better off by doing so. As a result, @reéthent wants to deviate unilaterally
from {b, by }. S0,{bx, bx,} must be an equilibrium by, bx11} is not an equilibrium<$

Theorem 4.3.5.In a two-person FPSB auction with complete information ardisarete bidding
space, there exists at least one equilibrium.

Proof: If§ < %(max{v;} — by), from Lemma 4.3.3, we know that there is one unique
equilibrium {by, bx11}. Othezrwise, from Lemma 4.3.1, 4.3.2, and 4.3.4, we know tithaxte is at
least one identical bid equilibriunt>

So far, we have not addressed the issue of how many equitikisain a two-person FPSB
auction with complete information and a discrete biddingcgp Sincéy, = § x ((min{wv;} — bg)
mod J) + by, we haveb, < min{v;} < bgy1. This condition holds in the foIIOV\;ing discussion
unless otherwise mentioned.Z From the above results, we atagarize all possible equilibrium

results into eleven situations, as shown in Figure 4.1. Bpaity, we have:

1. Situation A: Whenby, < max{v;} — 26 andby,, < min{v;} < bxy1, {bk, bx+1} is the unique

equilibrium.
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Figure 4.1: Eleven possible equilibrium situations, gitestv; = min{v;} andve = max{v;}.
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. Situation B: Whenb, = max{v;} — 2§ andb;, < min{v;} < bg41, {bx, bx} and{bg, b1}

are the only two equilibria.

. Situation C: Whenmax{v;} — 20 < by, < max{v;} —d andb; < min{v;} < bg41, {bk, bx}

is the unique equilibrium.

Situation D: Whenby,_; = max{v; } — 26 or by, = max{v;} — 9, andb; < min{v;} < bg41,

{bk—1,br—1} and{by, by } are the only two equilibria.

. Situation E: Whenmax{v;} —20 < by—1 < max{v;} —0 ormax{v;} —9 < by < max{v;},

andby, < min{v;} < b1, {bx—1,bx—1} and{by, by} are the only two equilibria.

. Situation F: Whenb;_o = max{v;} — 20 = min{v;} — 26 or by, = max{v;} = min{v;},

{bk—2,bk—2}, {br—1,bx—1}, and{by, by, } are the only three equilibria.

. Situation G: Whenby, < max{v;} — 20 andby, = min{v;}, {bx_1,br} and{by,by4+1} are

the only two equilibria.

. Situation H: When b, = max{vi} — 26 and b, = mjn{vi}, {bkfhbk} and {bk,bk} and

{bk, bp+1} are the only three equilibria.

. Situation I: Whenmax{v;} — 2§ < by, < max{v;} — ¢ andby = min{v;}, {bx_1,bx} and

{b, by, } are the only two equilibria.

Situation J: Whenb,_; = max{v;} — 20 or by = max{v;} — J, andby, = min{v;},

{bk—1,br}, {br—1,bx—1} and{by, by} are the only three equilibria.

Situation K: Whenmax{v; } —20 < by—1 < max{v;} —d ormax{v;} —d0 < by < max{v;},

andb, = min{v;}, {bx_1,br—1} and{by, by } are the only two equilibria.

From Situation A to Situation K, notice that the distancewsstn b, and v, changes

from larger thar2é to 0 whenb;, < min{v;} < bx1, Which implies that these eleven situations
3

are exhaustive and include all possible equilibrium situnst in a two-person FPSB auction with

complete information and a discrete bidding space.

Theorem 4.3.6.In a two-person FPSB auction with complete information ardisarete bidding

space, there are at least one and at most three equilibriee ddncrete situations are given from

Situation A to Situation K.
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4.3.2 Ann-person FPSB Auction

The results for two-person auctions can be extendedgerson auctions. Again, we start from the
identical bid equilibrium. In FPSB auction, a strategy peofs ak-identical bid profileif the top
highestk, 2 < k < n, type agents bid at the same price while others bigbgt If a k-identical
bid profile is an equilibrium candidate, the tépagents should be willing to tie at a price higher
thanwv,,_x. Normally, an agent with a higher valuation will have morevpo in the negotiation.

If there is any agent that can be better off by deviating tmitdly, the agent with the highest
valuation should be the first one to do that. However, if tlghbst type agent cannot be better off
by bidding higher, no other agent can be better off by biddligper. Thus, &-identical bid profile
{lv1], s |Vn—k+1], b, ...,b} is @ Nash equilibrium if and only if foraf = n — k+1,...,n, for all
Il=1,...,n—kandforall2 <k <n

Sj:b,bGB,

s1=|ul <b,
1
E(Uj_b)zvj_b_é’

bj < min{u; }. (4.4)
J
The first two conditions state the strategies agents useeiptbfile. |v;| < b in the
second condition requirdslarger than the true valuations of all lower type agents. thire con-
dition requires that no agent can be better off by biddindhéig The fourth condition requires an
agent bid no higher than its true valuation. Because we cpresg and solve this problem using

linear programming, the complexity of computing an equiilin of this auction is polynomial. The
definition of k-identical bid profile in equation (4.4) leads to the follogiconclusion.

Lemma 4.3.7. In an n-person FPSB auction with complete information and a digsct@dding
space, ak-identical bid profile{|v1 ], ..., |[vn—k+1],D,...,b} is an equilibrium if and only if there

exists ab such thatforallj =n—k+1,...,n

max{v;} — %5 < b < min{v;}.
J J
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Proof: The right hand side of the equation is directly giverthe fourth condition of
equation (4.4). From the third condition of equation (4w, havev; — %5 < b. Given that the

highest type agent does not want to deviate unilaterallyhawemax{v;} — %5 <b. O
J

Lemma 4.3.8. In an n-person FPSB auction with complete information and a digct@dding
space, if there is not &-identical bid equilibrium, foralk > 2, {|v1 |, ..., [vn—2], [Un-1], |[Un—1]+
d} must be a non-identical bid equilibrium.

Proof: If there is not &-identical bid equilibrium, it implies that there does naist
ab € B that satisfies all the constraints in equation (4.4). In otherds, there is no agent that
wants to tie with other agents. In particular, the agent with highest valuation does not want to
tie with any lower type agents. Since there is/malentical bid equilibrium, for allk > 2, the
strategy profile{|v1 |, ..., |[vn—1], |[vn—1] + d} is a potential equilibrium. In this strategy profile, no
agent will deviate to a lower bid. At the same time, we know tdbagents, except the agent with
the highest valuation, have already chosen their highestipable strategies. The only possibility
is that the agent with the highest valuation deviates to herigpid and we obtain a new strategy
profile; however, the agent with the highest valuation wawdtl bid any higher because it can win
the auction with|v,,—_1 | + 6. As a result, no agent can be better off by deviating unieiierThus,
{lv1], - [vn=1], |vn—1] + 0} is an equilibrium.<&

Like analysis of the two-agent case, it is worth noting thatequilibria in Lemmas 4.3.7
and 4.3.8 are not unique. In an FPSB auction with completenmédtion, the results are determined
by whether the top type agent would like to tie with the oth&ier ak-identical bid equilibrium in
Lemma 4.3.7, it is optional for the bottom— k agents to bid any bids [v;|,i < n— k. Similarly,
with the bottomn — 2 agents bidding any bids. |v;],i < n — 2, and top two agents bidding
at |v,—1] + 0 and|v,_1] respectively, the new strategy profile still constructs quilérium in
Lemma 4.3.8.

Through similar reasoning as irkgperson FPSB auction, we conclude:

Theorem 4.3.9.1n an n-person FPSB auction with complete information and a disckedding

space, there exists at least one equilibrium.
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4.3.3 Equilibrium in Sequential FPSB Auctions

In this section, we extend the discussion from one indiMidtRSB auction to sequential FPSB
auctions, in which there ar® items for sale inK individual FPSB auctions.

It is easy to understand that an agent with a higher valuatidirhave more power in
negotiation and competition. For example, if ageathieves surplus from the sequential auctions,
agent: + 1 can also get at least from the same game by simply taking the same strategy as
agent; because); < v;;1. Hence, we may expect that in sequential FPSB auctions witiptete
information, an agent with higher valuation will yield ns$esurplus than a lower type agent.

Theorem 4.3.10.1In sequential FPSB auctions with complete information ardisarete bidding
space, ifu,— ki1 > |vn—k] + 24, then{|vi |, ..., |vn—K ]|, |Un—K | + 0, ..., [Un—Kk | + 0} IS a@n
equilibrium for all agents in every single FPSB auction.

Proof: Let us consider the last auction. Suppose in thefirst1 auctions, K — 1 of the
highestK valuation agents win and leave. From Lemma 4.3.3 and 4.8§éhta — K + 1 can be
better off by deviating from an identical bid profile in whishe has the same bid as agent K,
if condition v,,— g +1 > |vn—k | + 20 is true. Thug v, | + ¢ is an equilibrium strategy for agent
n — K + 1 in the last auction.

Now let us discuss the firgt — 1 auctions. In a complete information sequential auctions,
an agent with higher valuation will yield no less surplusrtlaa agent with lower valuation. Thus,
in the (K" — 1)st auction, no agent wants to bid higher than,_x | + ¢, because, if it lost in the
K — 1 auction, it could bid v,,— i | + 0 to win the last auction. By induction, no agent wants to bid
more than|v,,_x | + ¢ in the whole game$>

The above equilibrium is not unique in sequential FPSB auostivith complete informa-
tion and a discrete bidding space, given that k1 < |v,—x ]| + 20. For example, in the final
auction, if agent: — K + 1 can benefit from an identical bid with — K agents or more agents,
then agent, — K + 1 might use a-identical bid profile while the tog — 1 type agents bid at
|vn—k | + 0 in the first K — 1 auctions.
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4.3.4 Equilibrium in Multi-unit Sequential Auctions

It is not surprising that some of the above conclusions ferRRSB sequential auctions will hold
for sequential multi-object auctions, in which a singletarcconsists of multiple units, but agents
demand a single-unit demand. Given some single auctionpargour-bid auctions, the results
will be the same as in the FPSB sequential single-objecicngct Because agents pay what they
bid, no agent wants to bid more than,_ | + § if the conditionv,,_x 1 > |v,—x | + 20 holds. If
Un—k+1 < |vn—K | + 26, the solution will also be exactly the same as in sequenR&B-auctions.
Similarly, in sequentiaMth price auctions, no agent wants to bid more than x | + 4, given that

Un—K+1 > |Un—k ] + 20 is true.

4.4 FPSB Auctions with Incomplete Information

We now turn our attention to the case where the bidders do mow khe valuations of the other
bidders.

4.4.1 A Two-Person FPSB Auction

Again, we start from a two-person FPSB auction. In this ancteach agent knows its own valua-
tion; however, she does not know the other agents’ valusitidvie assume that agents’ valuations
are independent observations of a commonly know contincomaulative distribution functionf”.

In this symmetric FPSB auction, we assume that there exsmaetric equilibrium. To simplify
the discussion, we first assume that each agent has only tsgibf strategie$b;, b2 }. Suppose
that there is a critical value, which is a value inside the domain Bf Specifically, we assume that
an agent uses strate¢ly, when its valuation is lower thag; otherwise, it usess. Thus, we have
the following strategy function for aget

Blvi) = (4.5)

by, otherwise.

Theorem 4.4.1.In a two-person symmetric FPSB auction with discrete bid$ imeomplete in-

formation, there exists a symmetric equilibrium as featurg equation (4.5), where thevalue is
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given by
z=1>by + F(Z)(bg — bl). (46)

Proof: We letu;(v;, z, by ) be the utility of agent when it bidsb; and letu;(v;, z|b2) be
the utility of agenti when it bidsb,. Without loss of generality, we consider agénbnly. Since
there is only one other agerit; is the highest valuation of the other agents. When agéitls
b1, and the other agent also bitlg resulting in a tie ab;, the probability that it wins the item is
Pr(Y; < z). Thus,

ui(vy,z,b1) = Pr(Y; < z)%(vl —by)

= %F(z)(vl —by).
When agentl bids b,, there are two possibilities that ageintan win the item. First, it; < z,
agentl has probabilityPr(Y; < z) to win the item. Secondly, i¥; > z, agentl has probability
Pr(Y;1 > z) tie with agent2. The utilities can be written as

ur(vi,z,bs) = Pr(Yi < 2)(vi —ba) + Pr(Yy > 2)5(v1 — bo)
= F(z)(v1 = b2) + 5[1 = F(2)](v1 = b2)

= Lor = be) + LF(=) (01 — bo).

Agent 1 will bid by if uy(v1,2,b1) > wui(v1,2,be); otherwise, it bidshe. Subtracting

uy(v1, 2, be) fromwy (vy, z,b1), we obtain

ui(v1,2,b1) —ui(vi,2,b0) = %F(Z)(Ul —b1) - [%(Ul —ba)+ %F(Z)(Ul = ba)]
= %F(Z)(bg—bl)—%(vl_bQ)
_ %[F(z)(bg —b1) — (v1 — ba)].

The condition that agenit prefersb; requires thag [F(z)(ba — b1) — (v1 — b2)] > 0, which yields
v < by + F(2)(b2 — by). (4.7)

Combining equation (4.7) and equation (4.5) whies 1, we obtain equation (4.6 = by +
F(2)(bg — b1). ©

The entire process does not requifde differential in the agent’s valuation. Thus, this
result is applicable to all possible cumulative distribatfunctions, although it may be difficult to
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computez using equation (4.6) for some distributions. More impdittarthere might be a multi-
plicity of z, which results in a multiplicity of symmetric equilibria. &\provide a simple example
in Example 4.4.1 whe#' is uniformly distributed.

Example 4.4.1. WhenF'is uniformly distributed amongc, d}, we define

;

0, v<c
Flo)=q u=¢ c<wv<d
1, d<w.

First, let us consider the case wher< z < d. By incorporatingF’ into equation (4.6), we obtain

the following:

zZ—C

=b
z 2+d

(b2 - bl)a

— C
which results in
bo—b
by — (%=t x ¢)

_ b=ty
1 d—c

Zz =

The value of: is feasible as long as the result is less thaand larger thanc. Now we look at the
case where: > d, we have
2z =by + (ba — b1),
which gives us
z = 2by — by.
This z value is feasible as long as it is larger thah The third case occurs when < ¢. This

situation gives ug = bs, which requiresh, < c.

4.4.2 A Multi-Person FPSB Auction

The above result can be extended to multi-person FPSB asctive will continue to assume that
that each agent has only two possible strate¢pesbs }.
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Theorem 4.4.2.In a multi-person symmetric FPSB auction with discrete lsidd incomplete in-
formation, there exists a symmetric equilibrium as featurg equation (4.5), where thevalue is

given by

n—2
Pr(Y,_1 < 2)(bs = L) +Pr(z < Y1)2 + 3 Pr(Yn_i1 < 2 < V)&
=1
z = . (4.8)
n—2
Pr(Y,—1 <2)22 +Pr(z <Yi)2 + Y Pr(Yo_io1 < 2 < Y,)

i=1

1
i1
Proof: Similar to the two-person cases, the utility funeipwhen agent bids b, can

be written as
1
uy(vi,2,b1) = Pr(Y,—1 < z)g(vl —by).

When agentl bids b,, there are two cases in which agdntvins the item. First, if all agents’
valuations are less than agentl has probabilityPr(Y,,—; < z) to win the item. Second, if
Y,—i—1 < z < Y,_;, agentl has probabilityPr(Y,,_;_1 < z < Y,,_;) to tie withi 4+ 1 agents. The
utilities can be written as

—b

ui(vy, 2,be) = Pr(Yn,l§z)(vl—b2)—|—Pr(z§Y1)Ln 2
n—2 v —b
Pr(Y, i1 <z<Y, ;)—2.
+;r(nzlz nl)l+1

Agent 1 will bid by if ui(v1,2,b1) > wi(v1,z,be); otherwise, it bidsh,. Subtracting

uy(v1, 2, be) fromuy (v1, 2, b1 ), we obtain

1
uy(vi, 2,b1) —ui(vi, 2,02) = Pr(Y,—1 < Z)E(Ul —b)
CPr(Yy 1 < 2)(v1 — by) — Pr(z < ¥3) L2
n
n—2 v — b
= Pr(Yoi- Yooi)——.
Z r( 1< z2z< ) i1

i=1

Solving forvy,

n—2
Pr(Yo—1 < 2)(ba — 2)+Pr(z < V)2 + Y Pr(Veis1 <2 < Yny)%
i=1

n—2
Pr(Y,—1 <2)=L 4+ Pr(z <V1)2 + Y Pr(Yoio1 <2 < Yny)
i=1

v <

(4.9)

L
it+1
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Combining equation (4.9) and equation (4.5), we obtain tou4.8),

n—2
Pr(Yo_1 <2)(bs = 2) +Pr(z < Y1)2 + 3 Pr(V_io1 < 2 < Y,_;) 2%
i=1
Zz =

n—2
Pr(Y,—1 <2)22 +Pr(z <Yi)2 4+ ¥ Pr(Yo_io1 < 2 < Y,)
=1

1

i1

Thus, thez constructs an equilibrium strategy for an agent in a mudtispn symmetric FPSB
auction with discrete bids and incomplete informatién.

4.5 Conclusions

In this chapter, we discuss the existence and multiplicitgquilibria in FPSB auctions when bids
are discrete. We point out that there are eleven differdnatbns which lead to at most three
equilibria and at least one equilibrium 2aperson FPSB auctions with complete informationMn
person FPSB auctions, we also show the existence of equifitand provide equilibrium solutions.
We also discuss variations with sequential auctions. WhenHPSB auctions have incomplete
information, we provide equilibrium solutions for both typerson and multi-person FPSB auctions.
In the incomplete information cases, we assume that agemtsdnly two possible strategies. We
expect that the computation procedure is similar to the cageen agents have more than two
possible strategies. In those cases, nevertheless, wameechpute multiple different piecewige
values. And, the computational complexity will increasgngficantly.

Clearly, the random tie-breaking rule plays an importah io the refinement of the
results. If we adopt different tie breaking rules, we mayivdedifferent results. This work uses a
common tie-breaking rule, in which all tied bidders are diguiely to win. A possible alternative
is to use Vickery auction to break ties, as Maskin and Rile€d] [[Btroduced to solve equilibria
in FPSB auctions with continuous bids. It remains an areduture work to compare different
tie-breaking rules in these models.
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Chapter 5

Monte Carlo Approximation for Solving

Sequential Auctions

In this chapter, we develop a more general approach to cmtisig trading agents based
on game theory, and explore its computational limitatidie.develop our technique in the context
of a sequence of (possibly multi-unit) auctions with a smsall of identified, risk-neutral partici-
pants, each of whom wants one unit of the item for which theyefemn independent, private value.
We assume that our agent knows the distribution of the otpemta’ valuations, but not their actual
values. This is meant to model common procurement scenarolsmay fit some markets on eBay
in which it is apparently common for a small community of estgeaders to recognize each other.
In both situations, the relatively small number of significapponents creates the opportunity to
directly model one’s competitors.

We cast the problem as an incomplete, imperfect informag@ne. However, the straight-
forward expansion of a sequence of auctions creates a gamhis ithtractable even for very small
problems, and it is beyond the capability of current gamatsm software to solve for the Bayes-
Nash equilibria. Thus, we construct a bidding policy thtoddonte Carlo sampling. In particular,
we sample the opponents’ valuations, assume they playgbgrfand solve the resulting imper-
fect information game. We accumulate the results of the §agmto a heuristic strategy for the

incomplete information game.
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The resulting strategy implicitly captures the belief ujita associated with observing
the opponents’ bids in earlier auctions. Underlying thiskiie the assumption that information we
gain about the other bidders can be used to improve playendtages of the game. In particular, our
observations of a bidder’s actions in previous auctionsihaffect our belief about her valuation.
For example, if we notice that Sue has placed bids at highesalu previous auctions but not yet
won anything, we are more likely to believe that Sue has a Vadgmtion, which may influence how
we should bid in future auctions.

The primary motivation of this line of work is to explore thetpntial benefits and the
practical limitations of this approach. We find that the iginforward expansion of the imperfect
information game cannot be solved directly by current gaoteess (e.g., @mBIT!). Thus, we
develop methods to take advantage of the sequential stettttat greatly reduces the space required
to represent the game. Though this decomposition enablés smve larger games, AMBIT’S
ability to solve the decomposed games remains a bottleneck.

In Section 5.1 we formalize our model of the sequential ancticenario and set up the
game theoretic analysis. Section 5.2 describes how wedggethe substructure to significantly
decrease the amount of computation necessary to solvere dla Section 5.3 we use Monte Carlo
sampling to generate a heuristic bidding policy for our age&ection 5.4 presents our empirical
results, including comparisons between our heuristicg@nd perfect play in markets that contain
both single-unit and multi-unit auctions. Section 5.5 deps the relationship between our approach
and the mathematics underlying sequential equilibria. Yésent related work in Section 5.6 and
then conclude.

5.1 Model

Consider an agent, that has the task of purchasing one item from a sequencectibas, . Let

c be the number of auctions, aidan individual auction. We refer to the collection of auctics
the marketplace Individual auctions may offer multiple units and differ the manner in which
they form prices. The specification of the order and ruleefdollection of auctions is thearket
configuration

Let ¢(k) be the number of units offered in aucti@nhand the total number of objects be

The GamBIT toolset is a software program and set of libraries that sdppthe con-
struction and analysis of finite extensive form and normalrmfo multi-player games. See
http://ww. hss. cal t ech. edu/ ganbi t/ Ganbit. htnl .
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q = Y ;. q(k). The auctions close in a fixed, known order, and in this madidre treated as sealed
bid auctions. The sealed bid assumption may not be as tegras it seems. In fact, the sniping
strategy used by many bidders on eBay [89, 96] reduces theayttery auction to the equivalent
of a sealed bid auction.

Let J denote the other bidders in the market, ahe: J U <. The total number of bidders,
includingi, isn = |J| + 1. In a particular auction, a subset, C A, of the agents will place bids.
Let the bid of bidderj in auctionk be denoted;é?.

Naturally, the rules of the auctions will affect the biddefsoices of actions. A multi-unit
auction must have a policy for setting pricem this study, we consider only two such policies. The
Mth-price policy sets the price paid by all winners to the value of thedst winning bid (this is
the policy used in eBay’s Dutch Auction format). Under tfe/-your-bidpolicy, each winner pays
the price she offered. Pay-your-bid is the policy used orog&Ehmulti-unit auctions. In the case of
a single unit for sale, the two policies are equivalent.

Given a sequence of sealed-bid auctions, the agent must selsd to place in each
auction. LetB* be the set of bid choices that are acceptable in audtiofypically, we assume
that B” is the set of integers in some range and is identical acrbs$ thie auctions. However, the
techniques we develop admit different bid choices in eadti@u The number of bid choices is
m = | B¥|. We assume that ties are broken randomly.

Our agent has a valug(k) for an item ink, and bidderj € J, has valuation; (k). In this
study, we assume that the items availabldirare identical and that all participants are interested
in only a single unit. We anticipate that the techniques weslig in this chapter can be extended
to auctions of heterogeneous items if an agent’s valuafionthe items are correlated, that is, if
learning about an agent’s valuation of one item helps ptéizaluation of another item.

Agenti does not know biddej’s true value for the items, but knows that it is drawn from
a distribution, D;. In this model, we assume that valuations are independehpavate, but we
do not make any particular assumptions about the functifumad of the distributions, nor do we
assume that the distributions are identical for all of trdelbrs. We will make various assumptions
about whether the bidders ihknow each other’s valuations or agéistvaluation.

We assume that each participant is present for the firstayeind continues to participate
in each auction until either she wins or the sequence endss, Btbuyer that does not win in auction

k will participate in auctiork + 1. We assume that the auctioneer makes public a list of allef th

2See [111] for a survey of some pricing policies.
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bids once the auction is complete. This is consistent, feraimce, with eBay’s policy. Leﬂzﬁ?
be the sequence of bids that aggmlaced in the auctions up to, but not includirig, That is,
hf = {bjl., . ,bf‘l}. We callhf bidder j's history up to auctionk. The history of allJ bidders

leading to auctiork is denoted .

5.1.1 Sequential Game Representation

We model the sequential auction scenario as an extensiue game,I'(A, V4, BX, K), where
A = JuiandB¥ denotes the bid choices for all of the auctionssubgaménas the same structure,
except that part of the game has already been played. Foméxaiie subgame that results when
bidder; wins the firstitem i (A’, Vi, BX', K') where A’ = iU J \ jandK’ = K \ {1}.

Itis also useful to identify the game structure of indivitlaactions. Denote eomponent
auction gamey (A, VA"?,B’“), in which agentsA4, with vaIuationsVAk for the items in auctiork,
choose bids from the domais*. Note that a game (or subgame) is a sequence of componensgame
In game theoretic terms, is the game in whichd is the set of players3* are the actions, and the
payoff isv;(k) — bj? for the bidder with the highest bid, and zero for everyone.eBecause the
auction is sealed bid, all of the bidders’ actions are siamdbus, and the game involves imperfect
information.

A simple example with three agents, two items, and two bidlkeis shown in Figure 5.1.
The circles are labeled with the ID of the agent, and the aittsthe bid value {1, 2}). The game
consists of two stages, the first of which corresponds to thediction involving all three agents.
The second stage involves the two agents who did not win theitém, and for conciseness, we
have substituted labeled triangles for subgames on thedeaivthe first auction. There are fifteen
subgames, labeled ... ~v15, but only three possible unique structures, labeled A, B,@n

Dotted lines connect decision nodes in the same informatiate. The small squares at
the leaves of the subgames represent terminal states thdd e labeled with the payoffs to the
agents. The actual value of the payoffs would depend updm agent’s actual value for the item,
the path taken, and the auction’s policy for setting pricese diamonds denote the random move
by nature to break ties among the bids (with the probalslitielicated in parenthesis). This type
of move by nature can be handled relatively easily becaudeeis not introduce any asymmetric
information. Moreover, it is amenable to the decompos#tiae introduce in the next section.

Itis obvious from Figure 5.1 that a particular component gamcan appear many times

in the overall gamé'. Each second level component game appears on five diffeatimg pf the top
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Subgames A B C

—»‘

>0
BC)
RC)

‘vodd dhds dbdd
Figure 5.1: A sequence of two sealed-bid auctions with tlagents, one item for sale in each
auction, and two bid levels.

Z uonany

level game. When necessary, we will distinguish a compogamte using its history as a subscript:
V- The history information is sufficient to uniquely identi&ach component game instance.

In addition to the imperfect information generated by thede bids, the agent also faces
incomplete information because it does not know the ottaatdais’ true values, and therefore does
not know the other bidders’ payoffs. Harsanyi (1967-68) destrated that incomplete information
games can be modeled by introducing an unobservable movatbrerat the beginning of the game
which establishes the unknown values. This approach temsfthe incomplete information game
into a game with imperfect information.

Unfortunately, the move-by-nature approach is computatlg problematic. The number
of possible moves available to naturen$, wherem is the size of the domain ef;(k), andn is the
number of agents. Our model permits a continuous range foatian functions, so the number of
choices is not enumerable. In some special cases, anaduigons can be found to auction games
with continuous types [24]. However this analysis is comm@ad typically requires restrictive
assumptions about the distributions of values. Moreovkether valuations are drawn from discrete
or continuous domains, each different market configuratguires a separate analysis.

For these reasons, we investigate the use of Monte Carlolisgntp generate heuristic

bidding policies for the incomplete information game. Oppach to the problem can be summa-
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rized as follows:
1. Create a sample complete-information game by drawing @f seluations for other bidders.
2. Solve for a Nash equilibrium of the sample game.
3. Update the agent’s bidding policy.

The first step is straightforward Monte Carlo sampling. Téeosid and third steps are the
subject of the next two sections.

5.2 Leveraging Substructure in the Complete Information Gane

We built our agent on top of the &1BIT Toolset. Although @mBIT includes algorithms that can
solve multi-player games with imperfect information, ihcat solve the straightforward expansion
of even very small instances of the complete-informati@gugntial auction game in a reasonable
amount of time.

To see why, consider the size of the extensive form of a campiéormation sequential
auction game with ties broken randomly. The assumptionhititers want only one item means
that the winners of a particular auction will not participat future auctions. Thus, auctién-1 has
q(k) fewer participants than auctidn In general, the number of agents participating in compbnen
gamekisz(k) =n— Zx 1 q(x). The number of nodes in the extensive form representatidiisf

game withc auctions is

k)_l k-1

H( “0) 4 EXT [2(j), m, (7))

e

The core of the equation captures the number of nodes ingbeniithout tie breaking, and the EXT

term represents the number of additional terminal nodesdtieach component game due to tie

breaking. The EXT term expands as

v=1i=q(j)+
m ()~ G oy ;
b G A R e (RINEL |



73

where

H(j,4) = min(q(j) — 1, 2(j) — 1), and
L(j,1) = max(q(j) — i+ 1,1).

A five agent, four item sequential auction with five bid chgi@md random tie breaking
has 4.5 billion decision nodes and is unsolvable witkMBI1T on current workstations. However,
as Figure 5.1 suggests, there is structure in the problenwihaan leverage to improve our repre-
sentation of the game.

The computational aspects of game theory have been stuglstbhomists and computer
scientists in the past few years [44, 45, 46, 66, 105]. A veonysing thread of work is focused
on representations of games that capture their inheremtste and facilitate solution computation.
Koller and Pfeffer's GALA language (1997) can be used toe@spnt games isequencdéorm, and
the authors have developed solution techniques for twyeplaero-sum games represented in this
format. The success of GALA is based on the intuition thatificant computational savings can
be achieved by taking advantage of a game’s substructuris. iftbition holds for the sequential
auction model, and we have employed it to improve upem@iT’s default approach.

The default representation of this game iRNBIT is to expand each of the leaves with
an appropriate subgame. Given that the bidders have caripfermation, all subgames with the
same players remaining have the same solution(s). Thusgéesinit, sealed-bid (component)
auction withn agents has at most uniquesubgames—one for each possible set of non-winners.
The three component games—A, B, and C—are illustrated iarEi§.1.

Our agent’s approach is to create all possible componenegiand solve them using
GAMBIT’s C++ libraries. The process is essentially dynamic pnogning, and equivalent to stan-
dard backward induction with caching. The expected payfoff the solution to a component
game~ involving bidders7 are used as the payoffs for the respective agents on theslehemy
component games ifi which immediately precede. The agent solves all possible smallest com-
ponent games (i.e., wheke= c), and recursively constructs higher-order subgames itistilves
the root game (i.ek = 1).

The number of decision nodes required to express a gamedoritponent form is

- n \m*k) —1
> (o)

The component form representation is exponential in thebeurof agents and the number

of bidding choices. However, the total number of nodes reguio express the game is exponen-
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tially less than in the full expansion. For example, the figera, four item sequential single-unit
auctions with five bid choices and random tie-breaking neguonly 1931 nodes to encode in its
component form, compared to the 4.5 billion required forria&ve expansion.

It should be noted that the solutions that we are using in bove analysis are Nash
equilibria found by @mBIT for each particular subgame. These solutions may involreepure
or mixed strategies. It is well known [82], that at least orired strategy equilibrium always exists,
however it is also often true that more than one Nash eqiailixist. In this study, we simply
take the first equilibria found by @vBIT, and leave the question of how, and even whether, to
incorporate multiple equilibria to future research. Weoguze that our results may be influenced
by the order in which @GmBIT finds solutions, but also consider it a concern inherent ingus
off-the-shelf solution technology.

It should also be noted that the procedure described abaomsistent with the definition
of subgame perfect equilibrium (SRE) well-known specialization of Nash equilibria. A profile
of strategies is subgame perfect if it entails a Nash eqiilib in every subgame of the overall
game [94]. All subgame perfect equilibria are Nash, but #verse is not necessarily true.

While the decomposition provides an exponential improvanie the number of nodes
needed to represent (and hence solve) the game, the compatkabst of finding equilibria for the
component games remains a severely limiting factor. Indéedigh the number of bid choices is
the base, not the exponent, of the complexity of the exterferm game, we will see in Section 5.4
that GAMBIT is unable to solve subgames if we increase the number of lideh beyond a small

number.

5.3 Monte Carlo Approximation

In order to participate in this environment, the agent mosstruct goolicy, I1, that specifies what
action it should take in any state of the game that it mightlmeaThere are many conceivable
policies available to our agent.

One simple strategy is to compute the equilibrium strategyaich component game, and
to bid accordingly. For example, the equilibrium stratefg single first-price, sealed-bid auction in
which the other bidders’ valuations are drawn uniformlynirf®), 1] is to bidb? = (1 — 1/n)v;(k),
wheren is the number of bidders [62]. We defihg,,.pic o be the strategy in which the agent

bids according to the equilibrium of each individual sedbétl auction. Thus, the strategy has one
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element for each potential game sitB,yopic = {7} wWherez is the size, in number of bidders, of
the component game.

In a sequence of sealed-bid, single-unit auctions, a Bhlgastr equilibrium strategy is for
a bidder to bid the expected price of the+ 1)st valuation under the assumption that her bid is
among the tog (see [106] for details). We denote this polily,)s; and use it as a benchmark
in our empirical evaluation.

If the distributions from which the bidders draw values ao¢ identical, then it would
behoove our agent to have a policy that accounted for whisbrdtidders were in the subgame.
Thus,II,ot—iq = {mycs}. Thatis, the actions in the policy depend upon which suh$etof
agents remain.

All three policies mentioned thus far are memoryless; tigeypie the bids the remaining
opponents made in previous auctions. On the other extrempad$icy that uses all possible history
information. Iyistory = {7 7, Hﬁ} encodes the entire tree because the decision at each deauisle
is a function of the entire history.

The policy that our agent learned in this studyliig,; nist = {nijé} where H% =
{hé?e 7}, the histories of all other agents still in the game. Thigedd fromIy;.ry in that policies
are classified by the histories of only those bidders thaameactive (7), rather than by the previous
actions of all bidders i/. It is based on the assumption that bidders who are no lorgjgean the
sequential auction (because they have won an item) arevamr. Therefore, all component games
that have the same opponents and identical previous adiiptivose agents, are aggregated into a
class of component gamesy p -

In the example in Figure 5.1, suppose Player 1 is our agehpafts that lead to subgame
A can be ignored because our agent won the item in the firsioauddf the remaining subgames,
the set{~2,74,710} have identical histories—bidder 2 bid $1 in all of them. Samy, the sets
{76,714}, {73, 75,712}, and{~7,v15} can be formed by their common histories.

The agent constructs the policy by sampling the distrilmgtiof the other bidders and
solving the resulting complete information game. ILebe the collection of sample games con-
structed, and a single instance. Denote the solution returned Bw&IT to instance asQ!. O
is a profile of (possibly mixed) strategies—one for each @laythat constitute an equilibrium for
this game instance. LeQ! specify the policy for agent, andw!(«) is the policy for subgame.
Note that some decision nodes may not be reachable if trmnadtat lead to them are played with
zero probability. To simplify the notation, we include teagireachable nodes in the following even
though they have no effect on the solution.
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To compute the poIicyraH? for a decision in game 7 ;1 we take the weighted sum of
the equilibrium solutions across all sample games. Let

w(bY (017 7,17 =>" ) Pr(yQ) Pr(bf|wi(y)) (5.1)

IEL YEY 4k
Hy

be the weight assigned to actiofi in the class of games identified bbﬁg. Here, Pr(v|Q!) is
the probability that the game would reach subgapmiven that everyone is playing’ (i.e., the
product of the probabilities in the mixed strategies on thih feading toy, andPr(bF|w! (7)) is the
probability associated with bibf in solutionw! (7).

Zhu and Wurman examine a version of the update function wiaa towards actions
that generate a higher utility for our agent [115]. The isaa of utility in the equation biases
the agent toward maximizing its expected utility—a usefelitistic, perhaps, but one that is not
necessarily consistent with equilibrium behavior. In thizrk, we compare the effect of using the
biased update function rather than the unbiased equatibh {Ehe biased updated function has the

form:

wbflrg ) =D Y PrOI)ui(y, Q) Pr(bflei(7)), (5.2)

whereu; (v, Q) is our agent’s expected utility of the subgame rootegl. at
Finally, we normalize the computed weights to derive théophilities,

w(bﬂWJ,Hf;)
ZbeBk w(b|7TJ,H§)

Pr(bﬂWJ,Hf;) = (5.3)

The result of this process is a policy that specifies a (pbssitxed) strategy for each unique class of
component games. We refer to a policy constructed in thisheraas dMonte Carlo Approximation
(MCA) policy.

5.4 Empirical Results

To evaluate the efficacy of the approach, we simulated sewerket configurations in which we
varied the functional form of the valuation distributiortee form of the update equation, and the
strategies of the other bidders. Each of these experimeautables are described in more detail be-
low. The experimental design is similar to the previous waykZhu and Wurman [115]. However,
in the results reported herein, we have added random takimg rule and multi-unit auctions.
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e Market Configuration: The market configuration includes the number of agents, the d
main of the bid messages, and the number and types of auctidesused the following

configurations:

— {5,5,s-s-$ contains five agents, five bid levels, and a sequence of tlingtestem

auctions.

— {5,5,s-2\/th} contains five agents, five bid levels, and an auction sequenebich a
single-unit auction is followed by &/th-price auction for two units.

- {5,5,5-2PYB contains five agents, five bid levels, and an auction sequenetich a
single-unit auction is followed by a two-unit auction in whithe winners pay their bid

values.

- {5,4,s-s-s-5 contains five agents, four bid levels, and a sequence of fogtesitem

auctions.

¢ Valuation Distribution: we used three types of distributions: uniform, left-skevigeta,
right-skewed Beta. With the exception §5,4,s-s-s-5, the valuations of the other agents
were drawn from [1, 6], while our agent’s valuation is alwéixed at 3.5. In the left-skewed
distribution, our agent is likely to have a valuation sigrafitly above average, while in the
right-skewed distribution it will be significantly below erage. In experiments witfb,4,s-s-
s-s}, the valuations of the other agents drawn from [1,5] while agent’s valuation is fixed
at 3; this combination was chosen to draw comparisons witkatfier work by Zhu and
Wurman [115].

e Update Equation: we examined the difference between using equation (5.1usind equa-
tion (5.2), which biases the policy aggregation by the dgaxpected utility.

e Bidder Strategies: we studied the effects of various combinations of biddextsgies.

— All SPE:as a benchmark scenario, we assume that all agents havesterimpbrmation
for atest case and all of them play the subgame perfect bruiti computed using our
structural decomposition technique with thei®sIT engine.

— MCAMh-SPE:we assume the other agents had complete information, whilegent
has incomplete information. Our agent implements theesisakearned from the Monte

Carlo policy construction, while the other agents implenhtbair SPE strategies. Since
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our agent is not playing perfectly, there is no guarantetttigeother agents’ SPE strate-
gies are equilibrium responses to our imperfect plalo generate the MCA strategy,

the agent trained with 200 samples.

— Al MCA: In this scenario all agents construct and play strategieergéed with Monte
Carlo policy construction. Note that for these simulatioeach opponent must be re-
trained with each new draw of its valuation.

— (g + 1)-Equilibrium: Another benchmark for the sequence of single-unit auctions
the (¢ + 1)-equilibrium strategy all agents play the sequential amcéiquilibrium strat-
egy [106]. Each agent bids the expected price of (e 1)st valuation under the
assumption that its bid is among the t@ap

In the experiments, we measure the utility for our agent (mated as the difference be-
tween its value and the price it pays if it wins), the socialfare (the aggregate value of all of the
winning agents), and the revenue achieved by the seller.eXperiments were run on a Beowulf
cluster of eight Linux computers.

In some cases, our agent may find that the game has progressedacpath for which
it learned no policy. In such cases, our agent picks the moslas subgame for which it does
have a policy. The similarity measure favors subgames Wwitsame bidding pattern, but possibly
different agents, over subgames with the same agent batetiff bidding patterns.

Figure 5.2 shows our agent’s utility on thirty randomly s¢del problem instances from
the {5,4,s-s-s-5 market scenario with other agents’ valuations drawn froeruhiform distribution.
For each problem instance, the four strategy combinatiogre wested, and update equation (5.2)
is used. The performance of the Monte Carlo strategy is @litge to that of the subgame perfect
equilibrium both when the other agents play perfectly anémthey construct their own Monte
Carlo strategies. From this result we conclude that thecqiiation technique generates policies
that perform quite well in this environment.

The (¢ + 1)-equilibrium strategy is included in Figure 5.2, thougtsifrhportant to note
that it represents a slightly different game than the othexe. Agents must be allowed to place
real-valued bids in théq + 1)-equilibrium strategy, while in the other three we are iesirg
bids to integer values. This distinction explains, for amte, why our agent achieves zero utility

in Figure 5.2 under théqg + 1)-equilibrium strategy when it has the lowest value amondfithee

3In theory, it would be possible to determine the opponergst besponses to our heuristic strategy by marginalizing
our agent and computing a reduced game in which the othetaigryoffs are impacted by our fixed behavior.
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Figure 5.2: Our agent’s expected payoff in #4,s-s-s-5 market scenario with the other agents’
valuations drawn from a uniform distribution and equatibr2] is used to update policies.

agents. When bid values are restricted, it is more likely tha agent will end up in a tie and
therefore achieve a positive surplus with some probabiltgvertheless, the pattern of the payoffs
for the (¢ + 1)-equilibrium strategy is quite similar to our empirical ués.

One aspect that we want to examine is the effect of the utéity in equation (5.2). Fig-
ure 5.3 shows our agent’'s expected utility on the same 3c&ssts when trained with the same
training data and equation (5.1). Although Figures 5.2 aBddok nearly identical, close inspec-
tion shows that equation (5.2) performs slightly bettentbguation (5.1), in the sense that it more
closely approximates the subgame perfect outcomes. Forehson, we continue to use equa-
tion (5.2) in the rest of the empirical tests.

Figures 5.4 and 5.5 show similar correspondence betweestridiiegies when the other
agents’ valuations are drawn from right-skewed and leffagdd Beta distributions, respectively.
Notice that the in the left-skewed distribution our agertieees higher payoffs, while in the right-
skewed case our agent receives lower payoffs. This resxpiscted given that the expected average

valuation will be lower when the opponents are drawn fromfladieewed distribution, and higher
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Figure 5.3: Our agent’s expected payoff in #4,s-s-s-5 market scenario with the other agents’
valuations drawn from a uniform distribution and equatibrij is used to update policies.

when drawn from a right-skewed distribution.

The next set of experiments involved five-agent, three-geanarios. We compared two
multi-unit auction scenarios,5,5,s-2V/th} and {5,5,s-2PYB, against a sequence of three single
unit auctions{5,5,s-s-$, over the same thirty uniform-distribution sample insestested above.
Figures 5.6 and 5.7 show how closely the performance of théAMtategy tracks that of the
subgame perfect strategy f§b,5,s-2V/th} and {5,5,s-2PYB, respectively. Figure 5.8 contrasts
our agent’s payoff for the three scenarios. The results f{&b,s-2//th} and{5,5,s-2PYB are
nearly identical (and may appear to be a single line), wiijricant variation exists in results from
{5,5,s-s-$. Notice that our agent performed significantly better irhb,5,s-2V/th} and{5,5,s-
2PYB} than in{5,5,s-s-$. It is clear that, overall, the agents are bidding lower & thulti-unit
scenarios, and our agent is playing a mixed strategy thadis successful. However, it remains to
be seen whether there is a game theoretic explanation footib¢ome, or whether it is a byproduct
of our technique or the manner in whiclm@BsIT returns solutions.
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Figure 5.4: Our agent’s expected payoff in #4,s-s-s-5 market scenario with the other agents’
valuations drawn from a right-skewed Beta distribution.

Figure 5.9 shows the social welfare achieved in all threaates. The welfare achieved
in scenario{5,5,s-s-$ is slightly better than the two multi-unit cases, whose bsagre again nearly
coincident. This is consistent with the observation thatafents are behaving more collaboratively
in the multi-unit auction by bidding lower and letting the-tireaking determine the winner. When
the agent with the highest value allows the allocation todterminined by tie-breaking rather than
by placing a better bid, it is more likely that a less than myati allocation will result.

Figure 5.10 shows the effect of the different auction sdesamn the sellers’ revenue.
Again, because buyers are acting more competitively initigdesunit auctions, the sellers achieve
greater revenue than in the multi-unit auction scenarios.

5.5 Convergence of MCA Policies

A perfect Bayesian equilibrium is defined in terms of beliafdecision points in the game, and
requires that an equilibrium policy be consistent with thbgliefs. In this section, we show that
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Figure 5.5: Our agent’s expected payoff in ##4,s-s-s-5 market scenario with the other agents’
valuations drawn from a left-skewed Beta distribution.

the MCA policy at a node implicitly captures the agent’s éfiabout which opponent valuations
would explain the fact that the agent arrived at a particdéision point in the game tree.

Theorem 5.5.1. MCA converges to the average policy of perfect Bayesiaribquim.

Proof: LetQ2" be a perfect Bayesian equilibrium profile of the game whemsgeave
valuation profileV. Let ® be our agent’s belief function, anfi(V') be our agent’s belief that
the other agents have valuation profile Let be an element of’. We havePr(Q?) = &(¥9)
andPr(QY) = ®(V) for one specialization) of V. Similarly, for a component game, we have
Pr(w!(y)) = Pr(v). Let Pr(H¥|QV) be the probability that the policies selected ®Y follow
historyHﬁ. Given historyH*, the probability that the other agents have prdfilds given by
Pr(H5IQV)®(V)

Pr(V|H}) = I, Pr(HEQ?) (D) dd”

A perfect Bayesian equilibrium will define a policy for a salpge that is consistent with
the beliefs. Here we simply let the policy be theerage policythat is, the policy constructed by
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Figure 5.6: Our agent’s expected payoff in §%5,s-2V/th} scenario with the other agents’ valua-
tions drawn from a uniform distribution.

taking an average over all action profiles, weighted by #kedihiood of seeing’ given that we have
reached the subgame. In other words, the probability thahgent playﬁ)f in subgameny; is

Pr(bf|HY) :/Pr(bfw) Pr(0|H%)dy.
%)

substitutingPr (9| H%) with Pr(V|H%) into the above equation, we have

k|OY
Pty = [ et o
Jo Pr(bf|0) Pr(HY|QP)®(9)dY

Js Pr(HY1Q9)®(9)dv
[ Pr(b¥|9) Pr(HY Q%)@ (9)dv
Pr(175) |

dy

(5.4)

Let us consider MCA strategies. In MCA, we compute the pdiigytaking the weighted
sum of the subgame perfect equilibrium solutions acrossaatiple games. Lédtbe a sample in
the collection of sampleg. We know that each maps to &/. So,Pr(l) = Pr(V). wi(y) is the
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Figure 5.7: Our agent’s expected payoff in §#5,s-2PYB scenario with the other agents’ valua-
tion are drawn from a uniform distribution.

solution toy. So,Pr(b¥|w!(v)) = Pr(bF|y). Like equation (5.1), we have

wbf|HE) =Y > Pr(yQ) Pr(bf]y). (5.5)

Using the multiplication and Bayesian rules, we have

wOf[HY) = Y > Pr(bily) Pr(y|2)

leL WEWH§

= > Y Pr(bf|H)) Pr(H]y) Pr(v|2)
ZEL’YE’YHk
= > Pr(of|HS) Pr(HEIQ
leL
= Pr(of|HE) Y Pr(HEIQ). (5.6)
leL
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Figure 5.8: Comparison of our agent’s expected payoff antbiffigrent types of auctions by using
MCA strategy while the other agents’ valuation are drawmfi@uniform distribution.

In MCA, Pr(b¥|H?%) is an equation described in numerical format as follows

Pr(HY|bF) Pr(bF)
Pr(bf|H5) > Pr(HEIQ) = = 5 LS Pt
leL leL

> Pr(HE|QN) Pr(QHbE) Pr(b))
leL k1Ol
= PY(HJ\Q )
Pr(H%) ;

S Pr(HA|Q) Pr(s|Qh) Pr(@)

— L Pr(H*|Q). (5.7
PI‘(H?) ZEZL ( J‘ ) ( )

Replace?’ with a value samplé, combine equations (5.5),(5.6), (5.7), and let the number

of samples go to infinity, we havg Pr(H%|!) = 1 and
leL

[y Pr(bF[9) Pr(HY Q)@ (0)dY

w(bh|H5) = Pr(f|Hf) = e
J

(5.8)

Equation (5.8) is the same as the average policy of perfepe8an equilibrium in equation (5.4).
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Figure 5.9: Comparison of the expected social welfare andiffeyent auction scenarios when our
agent plays its MCA strategy and the other agents’ valuatierdrawn from a uniform distribution.

Thus, we conclude that MCA converges to the average polipgdéct Bayesian equilibrium when
the number of samples goes to infindty.

5.6 Related Work

This work continues the study begun by Zhu and Wurman [11Bi¢ckstudied single unit sequential
auctions with deterministic tie-breaking. In this work, wemit multi-unit auctions, random tie-
breaking rules, and slightly larger problem sizes. Moreowe connect the MCA approach directly
to belief updating and sequential equilibria.

Our main focus is to study the feasibility of using game tlyeas a solution tool in a
computational agent adaptable to various electronic nhaxdkefigurations. The copious research
on auctions and game theory provides a backdrop for ourtefge Klemperer [42] for a broad
review of auction literature, including a discussion ofweeatial auctions for homogeneous objects.
Weber [106] shows that the equilibrium strategies for theédbis when the objects are sold in
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Figure 5.10: Comparison of the expected revenue amongeliff@auction scenarios when our agent
plays its MCA strategy and the other agents’ valuation aagvdrfrom a uniform distribution.

sequential first-price, sealed-bid auctions is to bid theeted price of the object in each auction.
This result is developed under the assumption that only eriag price is revealed in previous
auctions. In many current online auction environments atttaal bids and their associated bidders
are revealed. In addition, we are not aware of any researcequences of auctions with different
rules.

Monte Carlo sampling has been previously used in conjunatith games of incomplete
information. Frank et al. [21] describes an empirical stoflthe use of the Monte Carlo sampling
method on a simple complete binary game tree. They draw gSgliaging conclusion that the
error rate quickly approaches 100% as the depth of the gacrnesises. However, perhaps because
Frank et al. consider only pure strategy equilibrium in a-fyeoson, zero-sum game, these negative
results did not evidence themselves in our study.

Howard James Bampton [3] investigated the use of Monte Gamtopling to create a
heuristic policy for the (imperfect information) game ofi@ye. In Bampton’s paper, he simply
collected the player’s decision in every sampled game aodnaglated the chance-minimax values
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for each alternative at each decision node. Our method afnaglating sampled data is quite
different from Bampton’s approach, again because our gametia two-player zero-sum game.

Researchers in artificial intelligence have recently béedysng trading agents. A signif-
icant amount of work has gone into agents for the Trading AGempetition (TAC) [29, 98, 107].
The TAC environment is significantly more complex than thee scenarios presented here, and
to date, none of the implemented agents model opponent ioeliaa significant way.

Anthony, et al. [1] investigate agents that can participateultiple online auctions. The
authors posit a set of “tactics” and then empirically corepiéie performance of these tactics in a
simulated market that consists of simultaneous and seiquEniglish, Dutch, and Vickrey auctions.
While the bidding strategies seem to resonate with padicaspects of human behavior (e.g., the
“desperateness” strategy), they do not seem to have a fianda any theory.

Boutilier et al. [7] develop a sequential auction model inighithe agent values combi-
nations of resources while all other participants valuey @ankingle item. Unlike our model, the
Boutilier formulation does not explicitly model the oppong though like our model it benefits
from a dynamic programming approach to solving the decipiablem.

Hon-Snir et al., [35] propose an iterative learning apphocsolve repeated first-price
auctions. They develop a repeated auction model which cgesdo an equilibrium strategy for a
one-shot auction after many rounds of repeated auctionaddition to the differences in overall
structure of the marketplace, their work differs from ounsthiat they treat the other bidders as
naive players. Specifically, they assume the opponentd’bidwectors are distributed according a

weighted empirical distribution of their past bid vectors.

5.7 Conclusions

This study represents a first step in exploring the impleatent of computational game theory in a
simple trading agent. We show how Monte Carlo sampling caiskd to construct a bidding policy
that performs comparably to the subgame perfect equitiridrhis strategy takes advantage of
information revealed in prior auctions in the sequence farave play in later auctions. Importantly,
the architecture is flexible, in that it can handle a varidtgimple auction types, and different types
of other bidders. Equally important, the approach is comianally limited by our ability to solve
the component games, which suggests that algorithms feingotomponent games, particularly

ones with well-structured payoff and action spaces, is gronmant area for further research.
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We plan to continue this work and integrate more auctiongyped to explore scenarios
in which the agent’s and other bidders’ preferences are mmrglex, including scenarios in which
the buyers may want more than one item. We would also likedaaadaggregate buyer to the model
to represent the large number of unmodeled opponents ajfterdfin public markets. Finally, we
plan to explore auction sequences in which the bidders’atilns are correlated across the items,

but not necessarily identical.
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Chapter 6

The Non-Existence of Equilibrium in
Sequential Auctions when Bids are

Revealed

6.1 Introduction

A participant in a sequential auction must construct aetrathat is optimal for the sequence as
a whole, and not just for an individual auction [19]. A natuxpproach is to model the sequential
auctions as an extensive form game and solve for the eqailibhe outcome of this type of analysis
depends upon critical assumptions in the model being studie

Weber surveyed the research on sequential auctions antudedcthat, with symmet-
ric, risk-neutral bidders and identical items, the equilin price in a single-unit demand, first-
price, sealed-bid sequential auction is a martingale. Websodel examines two different price
announcement schemes that enable the remaining bidderfetahe winning bidders’ true valua-
tion. The critical difference between Weber's model andsaarthat we look at the case in which
the auctioneer reveals all of the bids, not just the winnethe end of the auction. Revealing all

bids in an auction is popular on current public marketplaeesh as eBay. As far as we know, none
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of the theoretical results have addressed the model witlplatenbid revelation.

Another model closely related to ours is that studied by gatReichert [86], in which
two bidders bid on two items sold in a sequence of first-pseajed-bid auctions. Ortega-Reichert
derived equilibrium results for his model, and showed tlymaiing effects of the first bid on the
second auction. However, his model differs from ours in aifitant way that impacts the ability
to derive a pure-strategy equilibrium. In the Ortega-Reitimodel, the bidders have valuations
for the two objects that are derived from a common distributivith an unknown parameter. The
information revealed in the first auction affects each hiddestimate of the value of the unknown
parameter, and therefore their belief about their abitityvtn the second good. In our model, we
consider a sequence of identical goods for which the bidukers a constant valuation. We show that
a strategy that would reveal the bidders’ valuations afterfirst auction would turn the remaining
auctions into games of complete information.

Hausch [32] derived the necessary conditions for a symoneduiilibrium in Milgrom and
Weber's general symmetric model by applying the signal gal®a from Ortega-Reichert's model.
Krishna [51] noted that in Weber's model the price quotesheffirst period have no effect on the
equilibrium bids in the second period. McAfee and Vincerg8][®und a declining price pattern in
symmetric sequential auctions when bidders have non-deiag risk aversion. In another paper,
the same authors [64] examined the equilibrium when a sediepost a reserve price in sequential
auctions. Elmaghraby [15] studied the sequential secoitg-puction of heterogeneous items and
concludes that the ordering of items effects the efficierfapi® auction. Many other papers have
addressed other variations of sequential auction modejs [B7, 36, 39]).

The remainder of the chapter proceeds as follows. In Seétdnwe present a model of
sequential auctions and point out the difference betwedmevidemodel and our model. In Section
6.3 we discuss the symmetric equilibrium in Weber's model simow that Weber’s equilibrium is
not a solution to our model. In Section 6.3.3, we prove the-exigtence of a symmetric pure-
strategy equilibrium in the model for both first-price and@®d-price auctions. We also discuss the

non-existence of asymmetric equilibrium in Section 6.4.affer some conclusions in Section 6.5

6.2 The Model

There areK identical items for sale in a sequence of first-price, seblddauctions. Exactly one

item is sold in each auction. For convenience, we alsoHige represent the set of items. There
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are N risk-neutral bidders)N > K, competing for theK items. LetA be the set of bidders.
Each bidder has single-unit demand and will withdraw from ¢fame once she wins one item.
The bidders’ valuations are independent observations anaegative random variabl®], with

a commonly known continuous cumulative distribution fumet F, and its associated probability
density function,f. We assume thdt is continuous and differentiable in the domain of the vaturat
variables. Each bidder knows the value of the object to Hdtbe private values assumption), but
not that of the other bidders.

Without loss of generality, we designate bidder 0 as thedsidehose strategy we are
analyzing. Letn = N — 1, and let the other bidders be indexed frario n. Letz be the true value
of bidder0’s valuation and let; be the true value of biddeis valuation,i € {1,...,n}. Without
loss of generality, leY; be the(n— j+1)-st order statistic ofY7, ..., Y, }. Thus, we havé; < Y5 <
... <Y,. LetFy, be the cdf of variabl&’; and letfy, be the pdf ofY;. F* is the multiplication off’

k times. Because bidders have identical information abath ether’s valuations at the beginning
of the sequential auction, we refer to the model assthrametric sequential auction model

The key difference between our model and Weber's model [iD@je information re-
vealed by the auctioneer. There are two different priceegiiot Weber's model: the first announces
only that an object has been sold, while the second annowaiseshe sale priceg. Weber con-
cludes that both price quotes yield the same equilibriumtsnsi. We demonstrate that Weber’s
results do not hold if the auctioneer revealkbids after the auction terminates.

Let 35 ;(x) denote bidde#’s bid function, which, given her valuation;, the bidder can
use to compute her bid;, in auctionk. As is common, we assume that these strategy functions are
continuous, monotone and strictly increasing in the vadnatWe also assume, (z) is invertible,
which means that a bidder’s valuation can be inferred wittaggty from the bid she makes [51,
106]. We assumg(0) = 0.

A symmetric equilibriunis an outcome in which all players adopt the same strategy. In
our sequential auction model, a joint outcome is symmettrit | = 3y, ; for all biddersi andj. It
is a symmetric equilibrium if no bidder can unilaterally iease her payoff by deviating from the
symmetric strategy.

It has been shown that equilibrium does not exist in firstgpaaction with continuous
strategy space with complete information due to the discoity of the payoff function [53]. We
address this technical issue using the technique propgskthbkin and Riley [60]: a second round
Vickrey auction is used to break the tie, if any. With the @oluction of a second round Vickrey
auction tie breaking rule, there exists a pure strategylibum in which the highest type bidder
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bids a price equal to the second highest type bidder’s valuaand the other bidders bid at their
true valuation. The introduction of this tie breaking isnpairily a theoretical technicality because

the probability of ties is zero when the strategy space isicoous.

6.3 Symmetric Equilibria in Sequential Auctions

6.3.1 Weber’'s Equilibrium

Weber derives a unique symmetric equilibrium for his modevhich each bidder bids the expected
value of the( K + 1)th highest bidder assuming her own bid was ttiehighest bid: That is,

ﬁk(w) = E[YN_K‘Y']\[,]g <rxr < YN,kJrl]. (61)

It is natural to question whether the price announcemenhenfitst auction will influ-
ence the bidders’ behaviors in the second auction. Howsirare the winner leaves the game, the
remaining bidders have the same information about the fasteogame. A proof in [51] shows
that the later period strategy is independent of the prevjmice announcement. As a result, for
each bidder, the beliefs about the other bidder’s valuadistributions remain unchanged. Weber
explains that the type independence and symmetry assumapti@ke the equilibrium strategies
independent of the two different price quotes [106].

However, when the auctioneer reveals all of the bids afteh eaction in the sequence,
the above strategy is no longer an equilibrium strategy. fidy section presents an example to
demonstrate an individual bidder’s incentive to deviaiel the following section proves the general

case.

6.3.2 A Counter Example when Bids are Revealed

Consider a sequence of two auctions with bidders that fotlmsvsymmetric strategy in equation
(6.1). That s, biddet bidsb; = 1 ;(v;). Becauses is invertible, after seeing the bids, every bidder
can computey; = ﬁl‘l(bi), for all bidders remaining in the auction. As a result, theosel auction
becomes a game of complete information.

It is straightforward to show that a bidder can be better pftibilaterally deviating from
equation (6.1) in the first auction.

linterested readers may refer to [51], Section 15, for thefpro
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Example 6.3.1. Suppose there ar&/ = 10 bidders in a sequence of two, first-price, sealed-bid
auctions. If bidder0 uses the strategy suggested by Weber, she wilBbid) in the first auction.
Similarly, bidder: will bid ;(y;). After the first auction, the second auction becomes a cdenple
information auction. The second highest bidder wins themsg@em at the price of the third highest

valuation. We have the following cases:

1. If x > Yy, bidder0 wins the first item and pays|[Ys|z > Yy).

2. IfYy > x > Yg, bidder0 loses the first item, but will win the second auction with goeeted
payment of2[Ys|Yy > x > Yg|. The payoff is an expectation because bidulesill not obtain

the true information abougg until the first auction completes.

3. If Yz > z, bidder0 loses both the first and the second auctions.

Now, suppose biddér deviates fromp; () to 3, (x) = 0, while the other bidders stick to
Weber's strategy. After the first auction, the other biddafsr that bidder(0’s valuation is0, and
is therefore not a factor in their decisions. Although Biddewill always lose the first auction, she

can benefit from this deception, as evidenced by the follp¥ainr exhaustive cases.

1. If x > Yy, Yy wins the first item. In the second auction, all of the othedbid will believe
that Y3 has the highest valuation and; is the second highest. Thus, biddewill bid y.
On average, biddef will be able to win the second item at pridé[Y7|z > Yy|. Since
EYg|x > Yy] > E[Y7|z > Yy|, z — E[Y7|z > Yy| > © — E[Ys|z > Yy]. Thus, biddeo will

be better off by deviating in this case.

2. If Yy > x > Y, bidder0 will again win the second auction &[Y7|Yy > = > Yg].
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Utility When Using | Utility When Deviating to Inc_:r_ease n
Weber’s Strategy Strategyz = 0 Ut|||t_y W hen
Deviating
x> Yy x — E[Ys|x > Y] x — E[Y7]|z > Y] >0
Yo>uz>VYs | x— E[Y3]Yy > x> Y] | © — E[Y7]Yy > 2 > Y5] >0
Ys>z>Y; |0 x—FEY;|Ys>x>Ys|—€| >0
Yr >z 0 0 =0

Table 6.1: The expected utility of bidderin the sequential FPSB auctions.

3. If Yy > z > Y7, bidder8 will believe that the second highest valuation in the secaunttion
is Y7, and will bid aty;. Again, bidder0 can bid aty; + ¢ and win the second item, where
the e term is included to avoid the tie wittg. Thus, bidde will expect to payF[Y7|Ys >

x>Y7]—e.

4. If Y7 > x, bidder0 will lose both items.

Thus, bidder0 will have a greater expected payoff by unilaterally devigtin the first
auction. A comparison of the cases is shown in Table 6.1.

Example 6.3.1 demonstrates that a bidder would be bettdsyotfilaterally deviating
from Weber's strategy when the other bidders use Webegesfies in the first auction. Thus,
Weber'’s equilibrium strategies cannot be an equilibriunthis new model of sequential auctions.
We now address the question of whether any pure strategynsetmic equilibrium exists in this

game.

6.3.3 Non-Existence of Symmetric Equilibrium in SequentiéFirst-Price Auctions

We now address the general question of the existence of sgimmaquilibrium in the sequential
auction with bid revelation. We continue to consider a sagaeof two auctions. Assume that
there exists a symmetric pure strategy equilibrium, sueh ekrery bidder uses the same strategic
function, 3, in the first auction. With this assumption, and the previassumption thaf is strictly

monotonically increasing and invertible, every bidder o#ar every other bidder’s true valuation
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after the first auction. As a result, the second and futuréianec become complete information
games.

Thus, we restrict our analysis to the first auction, in whicé bidders have incomplete
information. The definition of a symmetric equilibrium réigs that a bidder cannot be better off
by unilaterally deviating from when all other bidders are playing Letu(z) denote the payoff
to a bidder if she bidg(x). Letu(z, z|z > z) denote the payoff of this bidder if she deviates from
(B(x) to a higher bid3(z). Similarly, we letu(x, z|z < x) denotes the payoff of this bidder if she
deviates from3(z) to a lower bidj3(z).

Whenz > z, bidder0 will win the first item if z is larger than the highest valuation of
the other bidders. Otherwise, she will win the second item i larger than the second highest
valuation of the other bidders. Biddes payoff function can be written &s

u(z,zlz >x) = Pr(Y, < z)[x— 6(2)] (6.2)
+Pr(Y1 <z <2<Y,) X

[z — E[Y,_1|Yn1 <z <2z <Y,

The first term results from the eveh}, < z in which bidder0 wins the first auction. The
second term captures the case that bidderises the first auction and wins the second by bidding
the revealed value of the third highest bidder.

We now consider the case where< z. If z is larger than the highest valuation of the
other bidders, bidded will win the first item. Otherwise, bidded may still be able to win the
second item, depending upon the revealed valuations ofttiee bidders. In the following analysis,
bidder 0 may bid against a bidder who has a type greater titatebD’s. In such a case, bidder
0 would lose the tie-breaker unless she bids slightly abbgeskpected bid of the bidder with the
higher type. We introduce the small valuewhich bidder0 uses to avoid a tie with a higher type
bidder.

There are four variations of non-zero outcomes:

e Case 1Y, 1 < z < Y,. Bidder0 loses the first item; however, bothandz are larger than
the second highest valuation of the other bidders such tddeb0 will win the second item
and expect to pay[Y,—1|Yn-1 < z < Y,].

2When the strategy space and the probability function aréimasus, the probability that two bidders tie at the same
valuation or strategy is zero. Because of this, we will ignedge equalities in the following equations.
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e Case 2Y, - < z < Y,_1. Inthis case, biddej still loses the first item. However, the bidder
with the second highest valuation infers from the first aurcthat the third highest valuation
is z. As a result, he will bidz in the second auction. Biddé@rcan bidz + ¢ to outbid the
bidder with rankY;,_1.

e Case 3.z < Y, 9 < z < Y,_1. Inthis case, the bidder with the second highest valuation
will bid what appears to be the third highest valug]y,, 2|z < Y,,—2 < z < Y,,_1]. Bidder
0 needs to bidE[Y, 2|z < Y,—2 < = < Y,_1] + € to outbid the bidder with the second
highest type.

e Casedz <Y, 5 <Y, 1<z This case is the same as the above case with the exception
that bidder 0 will win the tie breaker and so does not need da &ol her bid to win the second
item.

Thus, when: < z, the payoff function can be written as

u(z,z,elz <z) = Pr(Y, < z)x—p5(2)]
+Pr(Yo-1 <z<Y,)[zx—E[Y,-1|Yn-1 < 2 <Y,]]
+Pr(Y,2<z< Yy 1)x—(2+¢€)]
+Pr(z<Y, 2o<z<Y, 1) X
[z — (E[Yn—2|z < Yn_2o <z <Y,_1]+¢€)]
+Pr(z <Y, 2 <Y, 1 <z)X

[ — E[Y,—2|z < Yo < Y,_1 <z]]

In the above equation, the first term represents the case hideer 0 wins the first
auction. The next four terms represent the cases 1-4 above.

As € goes to zeroy(z, z, €|z < x) asymptotically goes to

u(z,zlz <z) = Pr(Y, < z)z— [(2)] (6.3)
+Pr(Yo-1 <z<Y,)[zx—E[Y,-1|Yn-1 < 2 <Y,]]
+Pr(Y,—2 < z<Y,_1)x—7]

+Pr(z <Y,—2 <)z — E[Y,—2|z < Y2 < z]].
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For 3(x) to be bidder O’s best response to the other bidders playjtgnust be true that
u(z, z|z > ) < u(z), andu(z, z,e|z < x) < u(x). Ase goes to zero, the symmetric equilibrium

requires

u(z, zlz > x) < wu(x),and (6.4)

It follows from equations (6.2) and (6.3) thatz, z|z < x) andu(x, z|z > x) are con-
tinuous and differentiable because the probability fuumgiare continuous and differentiable. Also,

we knowu(z, z|z < x) = u(x, z|z > =) = u(z) whenz = z. We now present our main result.

Theorem 6.3.1.1n the symmetric sequential auction model with full bid tatien, there does not
exist a symmetric pure-strategy equilibrium.

Proof: We prove the result by contradiction. We first assumagit the symmetric sequen-
tial auction model in which all bids are revealed, theretexdssymmetric pure-strategy equilibrium,
8.

Whenz > z, we refer to it as a right hand side (RHS) deviation. Simflarl< x is a left
hand side (LHS) deviation. In the following discussion, wplaces with Srus in u(z, z|z > x)
and replaces with G ns in u(x, z|z < x). Our target is to solveSrys and S ns respectively
from equations (6.2) and (6.3). From the assumption thiat a symmetric pure strategy that is
continuous, monotonically increasing, and invertibldoitows thatSrps(z) = GLus(z).

We can rewrite equation (6.4) as

u(z, z|z > x) — u(x)

<o0,forall z >z, and
z—X

u(z, z|z < x) — u(x)

>0, forall z < x.
zZ—X

As a result, there must exist a small enough deviation z| such that taking the first
order condition on both sides ofgives

ou(zx,z|z > x)

P <0, forall z > z,and (6.5)
<
w > 0.forall » < z. (6.6)
z

Equation (6.5) can be derived from equation (6.2). When x, we have
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u(z, z|z > x)
= Fy, (2)[z — Brus(2)]
+n(l — F(2))F" 1 (z) x
. L2 S Y1 Fy g U, yn)dyndynfl]
n(l— F(z))F"*(z)
= Fy, (2)[z — fris(2)] +n(1 — F(2)) F" " (z)z

/ /+Oo Yn— 1” n— 1 (yn 1)f(yn)Fn_2(ynfl)dyndynfl
= Fy, (2)[z — Brus(2)] + n(1 — F(2))F" ! (z)x
[ pantn = D) P o)yl - P

Solving the first order condition, we obtain

W = fru(2)lx = Brus(2)] — Fy, (2)Bras(2) — nf(2) F" ! (z)x

+ / (= D)) (g )y s f(2)
0.

IN

From the definition of equilibrium, we know that(z, z|z > z) is maximized at = z.
BecauseF,(z) = F"(z) and fy, (z) = nf(x)F" !(z), settingz = z allows us to reduce the
above equation to

ou(x, z|z > x)

92 o=z = _[FYn(CC)ﬁRHS(CC)]/

+ / Yoo1n(n — 1) F (gn1) ™ (g1 )dyn_1 (@)
= 0.
As aresult,

[Fy, () frus(a)] = / "= Dt ) "2 (g )y S, (67)



Now, let us consider the case wherel x. Equation (6.3) can be rewritten as

u(z, z|z < x)

= Iy, (2)[z — Buus(2)] + n(l = F(2)) F" ! (2)x

z —+o0
/ / Y1 (n — 1) FWn) F Yn-1)F" 2 (Yn—-1)dYndyn—1
z —+o0
+f ) / (= 1)(n — 2)F(g—2)" (o) f 1) X
1

F(yn 1)]dyn 1dyn 2[37_2]
+.’L'/ fYnfg yn—2)dyn—2 _/ yn—ZfYn72(yn—2)dyn—2

— Fy, (o)l — funs(2)] +n(1 — F)F™ (2)a
= [ = D fgn ) F o)1 - F)

+mn—1Xn—2>/%m@kgn3f@m4m%k2x
+o0
/ F 1)L = Flyn—1)ldyn1[z —
+x /CE v, o (Yn—2)dyn—o — /z Yn—21Vn_o(Yn—2)dyn—2
= By, (2)[x — funs(2)] + (1 — F(2))F" 1 (2)a

= [ = e o) )1~ FE)

n(n—1
2

—i—.%'/ fYnQ(yn—2)dyn—2_/ yn—2fYn72(yn—2)dyn—2-

207D pre2() 1 - RGP -

100
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The first order condition is

ou(zx,z|z < x)

5 = fyv.(2)[z — Bns(2)] — Fy, (2)BLus(2)

+n(n — 1) F"2(2) f(2)[1 = F(2)]e — nF" " (2) f(2)a
n( ~ Dzf(z)F"*(2)[1 - F(2)]

+ | n(n = 1)yn—1f(Yn-1)F" "> (Yn-1)dyn—1f(2)
2= D022 s ) )11 - R - 2
(0~ DF2(){1 - F)] (e — 2
_ﬂ%;EFn%@u—F@W

Vv
o

At z =z,
ou(zx, z|z < x)’

0z =

= fv,(@)[x — BLus(2)] — Fy, (z)Blns(x) — nF" () f()z
+ - TL(TL - 1)yn71f(ynfl)Fn_2(yn*1)dynflf(x)
=D ez - p)?

= —[Fy, (z)6Lns(x))
[ = D1 S P )1 S 0)

oD ez - p)?

> 0.

Thus, we have

[Fy, (z)Bns(z)] < /x n(n = Dyn1fUn-1)F""(Yn-1)dyn-1f(x)

—ﬂ%;EF"%@H—F@W. (6.8)

We have now obtained a closed form solution for computindy biatis(z) and G ps(x).
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Combining equations (6.7) and (6.8), and noting ﬁﬁ%ﬁF"*Q(x)[l — F(x)]? > 0, we see that

[Fy,, (x)fins(x)] = /x n(n — 1)yn-1fUn-1)F"" 2 (Yn-1)dYn—1f(x)

—00

S0 e - Fa)?
< [ nln = D) P 150
= [Fy, (z)Brus(®)]'.

Becauseirus(0) = Ons(0) = B(0) = 0, Fy, (0)Grus(0) = Fy, (0)GLrs(0) = 0. By
integrating both sides of the above equation, we obtainlfar a

Brus(r) < Brus(), (6.9)

which implies thatg does not exist for any. This result contradicts the assumption tivats
monotonically increasing and continuous, havihg;s(z) = Brrs(z). Thus, in the symmetric,
sequential auction model with all bids revealed, there dumsexist a symmetric pure-strategy
equilibrium. &

It is worth noting that3. s (z) < Brus(x) does not imply that there exist two different
equilibrium strategy functions. The whole proof processnhthat there does not exist a definition

for 8 at any specified point because the asymptotic limits from either side are not equal

6.3.4 Non-Existence of Symmetric Equilibrium in Sequenti&Vickrey Auctions

Weber characterized the equilibrium in the sequentialkig auction scenario with only the win-
ner’s bid revealed as for all < K

Br(x) = ElYN-k|YN-k-1 <2 < Yn_g]. (6.10)

In the last auction, wherk = K, each bidder bids her true valuation. In the auctions padhée
last, each bidder bids her expectation of thé{ 1)-th highest bidder assuming that she is at or
abovekK.

To analyze the sequential Vickrey model with all bids regdalwe again assume that
there exists a symmetric, pure-strategy equilibrium sinet €very bidder uses the same strictly
monotone increasing and invertible bidding functignin the first auction. Thus, every bidder can
infer every other bidder’s true valuation after the firsttaarg and the second and future auctions

become complete information games.
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Utility when Using Utility Deviating | Increase in Utility
Weber’s Strategy toz=0 when Deviating
x>Y;3 r—EYsYs>z>Ys] | @ >0
Ys>ax>Ye |z —EYso|Yo>ax>Y1] |z >0
Yo>ax>Y, |z—EVi[Ya>xz>Y] |z >0
Yi >z 0 T >0

Table 6.2: The expected utility of bidderin the sequential Vickrey auctions.

In a sequence ak — 1 Vickrey auctions with complete information, it is a Nash iigu
rium for the topK — 1 players to bid at thé(-th highest remaining valuation, while all others bid
their true valuation. This conclusion, however, leads &dhservation that Weber’s strategy is not
an equilibrium in the first auction when the bids of all bidslare revealed. As in Section 6.3.3, a
3-item, 4-bidder sequence of Vickrey auctions illustrates one bidder can improve her expected
utility by misrepresenting her valuation in the first auntid he four conditions and their expected
payoffs are shown in Table 6.2.

We now examine a sequence of tht&éckrey auctions with an arbitrary number of bid-
ders. We concentrate our analysis on the first auction, iclwthie bidders have incomplete infor-
mation, and show that a symmetric, pure-strategy equilibriloes not exist.

When all bidders play; and Bidder 0 selects > z, she will win the first item ifz is
larger than the highest valuation of the other bidders, aifidpay the second highest bidiy;, .
Otherwise, she will win the second itenuifis larger than the second highest valuation of the other

bidders. Biddeb’s payoff function can be written as

u(x, z|z > x) (6.11)
= Pr(Y, < 2)[x — E[B(Yy)|Yn < 2]]
+Pr(Y, o <z<z<Y,))x—E[Y,2oYno<z<z<Y,].

The first term results from the evelt, < z in which bidder0 wins the first auction.
The second term captures the case in which biddeses the first auction and wins the second by
bidding the revealed value of the fourth highest bidder.

We now consider the case where bidder 0 choasegsz. If z is larger than the highest
valuation of the other bidders, biddewill win the first item. Otherwise, bidddr may still be able

3The extension to an arbitrary number of auctions followslg&®m the three auction case.
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to win the second or third item, depending upon the reveadshtions of the other bidders.

There are four non-zero outcomes:

e Case 1Y, 5 < z < Y,. Bidder0 loses the first item; however, bothandx are larger than
the third highest valuation among the other bidders anddpiddvill be able to win one of

the next two auctions and expect to pag,,_2|Y,—2 < z < Y,,].

e Case 2.Y,,_3 < z < Y,_o. Inthis case, bidde® still loses the first item. However, the
bidders with the second and third highest valuations infanfthe first auction that the fourth
highest valuation is and, as a result, will bid in the second auction. This allows bidder
to outbid bidderY,, > by biddingz + ¢, thus stealing an item when she is not one of the three

highest valuing bidders.

e Case 3.z < Y,,_3 < z. In this case, the bidder with the third highest valuatiofi tid
what appears to be the fourth highest value. There are twaasds. The first sub-case is
x < Y,_9, SO Bidder0 needs to bidE[Y,,_2|z < Y,,—3 < z < Y,,_o] + € to outbid the bidder
with the third highest type. The second sub-case<sY,,_3 < Y,,_s < x, so Bidder0 does

not need to add to her bid to win the second/third item.

As € goes to zero, asymptotically, the payoff function can betemias

u(z,z|lz <z) = Pr(Y, <z)z—E[B(Y,)|Y, <] (6.12)
+Pr(Yo—2 <z<Y,)|x—E[Y,—2|Yn_2<z<Y,]]
+Pr(Y,—3 <z <Y, 9)xr— 2]
+Pr(z <Y, 3 <)z — E[Y,_3|z < Y,_3 <z]].

As a condition of symmetric equilibrium, equation 6.4 isoaigue for sequential Vickrey

auctions. We now present our second main result.

Theorem 6.3.2.1n a sequence of symmetric Vickrey auctions with full bielevon, there does not

exist a symmetric, pure-strategy equilibrium.

Proof: We prove the result by contradiction following thengastrategy as in the FPSB
model. We first assume that there exists a symmetric puaeegir equilibrium .

Again, we refer to the case where the bidder selects = as a right hand side (RHS)
deviation. Similarly,z < z is a left hand side (LHS) deviation. In the following discioss
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we replace with Sruys Whenu(zx, z|z > x), and replace3 with fipus whenu(x, z|z < z).
Furthermore, we replacB[3(Y,)|Y, < z] with Orusin u(z, z|z > x) and replaceE[3(Y,)|Y, <
z] with BLps In u(z, z|z < x). Our target is to solvélrys and S ys respectively from equations
(6.11) and (6.12). Because we assume thiatcontinuous, monotonically increasing, and invertible,
we should find thabrps(z) = BLns(z) andOrps(z) = OLps(z).

We can rewrite equation (6.11) as follows.

u(x, zlz > x)
= Fy, (2)[r — Orns(2)]
T —+o00
+/ / fyn_Q,yn(ynf%yn)dyndyan X

+
[w B ffoo fz > yn72fyn_1,yn(ynf2ayn)dyndyan

fx f+oo fyn 2,Yn (yn 2 yn)dyndyn 2
= Fy, (2)[x — Orns(2)]

+oo
[ = 00 = 2 )
F"~ 3 yn 2 F ) - F(yn 2)]]dyndyn 2X

[ b= 0= 22t
F' 3 (yn—2)[F(yn) — F(yn—2))ldyndyn—2
= Fy, (2)[z — Orns(2)]
+n(n—1)(n = 2)F"*(2)[1 = F(2)][

14+ F(z) F(x)]x
2n—-2) n-1

T
/ n(n —1)(n = 2)yn—2f(yn— 2)Fn_3(yn—2)dyn—2i()

2

+ n(n —1)(n — 2)yn—2f(Yn— 2)Fn72(yn—2)dyn—2[1 — F(2)].

—0o0
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Solving the first order condition, we obtain

Oulo. 1z > )
0z /
= fy, (2)[z — Orus(2)] — Fy, (2)Orus(2)
+n(n —1)(n — 2)F" 2@)[_352_)];(;) +Ff)_f e

/ n(n —1)(n = 2)yYn—2fUn—2)F™ > (Yn—2)dyn—2 x
[-2F(2) f(2)]

2F(2)f(2)]

+/ n(n —1)(n — 2)yn—2 f(yn—2) F"~ (yn—2)dyn—2 X
[

= —[FYn(Z)@RHs(Z)] +nf(2) " (2)x

nln i 2 Oy,

+FEG) | " n(n = )0 = 2o f (2" (go_z)dyn_s

) / " — 10— 2yl (2)F"(—2)dyn—o
— [Py, (2)Orns(2)] + nf(z)F" (o)

—n(n—1)(n —2)F"%(x) [5(_2)2 - :(_x)l]f(z)x

+ [ =000 = 2272 -2)

[F(2) = F(yn—2)lldyn—2/(2)
<0.

From the definition of equilibrium, we know tha{zx, z|z > z) reaches its optimal point
whenz = x. By settingz = z, the above equation reduces to

ou(x, z|z > x) |
0z =
~[Fy, (x)Orns(x)]

4 / " nn = D)0 — 2ynaf (g_2) x
Fn_3(ynf2)[F(:C) - F(ynf2)]dynf2f(x)
=0.
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As aresult,

Fy, (2)Orns(z)] (6.13)
= [ nn—1)(n—2yn2f(Yn2)F" > (yn—2) X

[F 'T) - F(ynf2)]dynf2f(x)'

Now, let us consider the case wherel z. Equation (6.12) can be rewritten as

u(zx, zlz < x)
= Fy, (2)[r — OLus(2)]
z —+o00
+/ / fyn72,yn(yn—2ayn)dyndyn—Z X

+
o S L7 Yn—2 g1y (Y2, Yn) dyndyn—2
+
I . Oofyn 2 yn (Yn—25 Un) QY dYn—2

/ /+°° (n—4 l2| Fn=3)F(yn—2)F""*(yn—3) %

F(yn 2)] dyn 3dyn 2(%—2’)

+ /:c (’rl—nill)'?ﬂf(yniS)FnZl(yniS)[l - F(yn*Q)] dyn—3

- / m m+iwyn3f<yn3>F”‘4<yns>[1 = Flyn—2) dyn—s.



u(z, z|z < x)
= Fy, (2)[z — Orus(2)]
/Z /+OO (n=1)(n = 2) f(Yn—2) f(yn) F" > (yn—2) %
F(yn—2)]dyndyn—2
/ /+°° (0= 1)1 = D2/ (Ga—2) () ¥

" 3(yn 2)[F(?/n) _F(yn 2)]dyndyn 2

+W/ fyn B)Fn 4(yn B)dyn 3 X

/ " )L = Flyns) Pdyna(x — 2)

), ) 3 )
+3F" 2 (y,_3) — Fnil(yn%S)]dF(yn,g)x
/j (n n') 3|yn—3f(yn—3)Fn_4(yn_3)[1 _ F(yn_Q)den_g
= Fy, (2)[x — OLns(2)]

n(n —1)(n = 2)F"2(2)[1 - F(2)][

1+ F(z)  F(z) E

2(n—-2) n-1

1— F%(2)
2

_.|_

nn—1)(n —2)yp—of(Yn— 2)Fn73(yn72)dyn72

z

+ nn—1)(n —2)yp—of(Yn— z)Fn_Q(yn—z)dyn—z[l — F(2)]

o
.

e 3),3,F" ‘()1 = F2)P(x - 2)
n! Fr=3(z) — F"3(2)  3[F"%(z) — F"2(2)]
+(n—4)!3![ n—3 a n—2 *

BF"Hz) — FH(2)]  FM(x) — F"(2)

n—1 n ]x

‘/ x (nilwy —3f(Yn—3)F" " (yn—3)[1 = Flyn—2)]’dyn—s.
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The first order condition is
ou(z, z|z < x)

0z

= —[Fy, (2)OLns(2)]
+n(n—1)(n—2)*

+n(n—1)(n —2)F""

f)F"(2)a

1—|—Fz)

( )[ (n—2)
?(2) x

[—2F(Z)f(2) f(2)[1 — F(z)] — F(2)f(2)
2( n—1
+n(n—1)(n —2)zf(2)F"2(2)[1 — F(2)]
1—F2(2)

—n(n—1)(n —2)z2f(2)F"3(2)
_2F(2)f(2)

) /_ " n(n = 1)(n = 2)yn_a f(yn_2) F"(g_o)dyn_s

-

"o
-
-

+

(n—
= —[Fy, (2 )@LHS(Z
—n(n—1)(n —

2

/_Z n(n - 1)(” - 2)yn72f(yn72)Fn_3(yn72)dyn72

— F()P(x — 2)

P (2311 = F(2)) f(2) (@ — 2)
P = F(2))
P21+ 3 (2) = 3F2(2) + FP(2))f(2)2

— F(2)P f(2)2

s nf(z)F”_l(z)x

(= 1)(n - 2)2(2) 3 (2)[F()(1 - F(z) -
[ = 10— 2 2 P -2)
) — Flyn)ldyn 2£()
FrA(a)[1 = FE)R (0 - 3)(x — 2)f(2) —

(n— 8)(x — ) f(:)F(=) — 3z — 2)f(:)F(=) — F(2)(1 — F(2))]
AL - PR ()

[F (= )—

-

-
-

)L = P f(2)al.
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ou(zx,z|z < x)
0z

= ~[F,(2)Buns(2)] + nf(z) "} (z)a — nf(z) F" " (2)z

[1— Fz)P

+n(n —1)(n —2)F"3(2) 5 f(z)x
— F(2)]?
~n(n - )(n - 2P IO ),

+ /_Z n(n - 1)(” - 2)yn—2f(yn—2)Fn_3(yn—2) X

[F(2) = F(yn—2)ldyn—2f(2)
n!
+mFTL—4(z)[1 — F(Z)]2 X

[(n = 3)(z — 2)f(2) — n(z — 2)f(2) F(2) — F(2)(1 - F(2))]

n _nil)!S!F”_4(z)[1 —FR)Pf(2)(z —z)
0.

+
>

At z = z, the above reduces to

Oula,slz <)
0z o
= —[Fy, (2)Orus(x)]

"’/_ n(n —1)(n — 2)yn—2f(Yn—2) " 3(yn_2) X

[F(x) - F(yn—Q)]dyn—Qf(x)
n!
e gE @ - R

=0.

Thus, we have

[Fy, (2)OLns(z)] (6.14)
= / n(n - 1)(” - 2)yn—2f(yn—2)Fn73(yn—2) X

[F(2) = F(yn—2)|dyn—2f(x)
n!
“ogml @@

We have now obtained a closed form solution for computingy Bis(x) andO pys(z).

Combining equations (6.13) and (6.14), and noting %%F”*(m)[l — F(2)]? > 0, we see
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that
Fr@eus@] = [ nln =)0 - D2l P a2)
[F(=) — Flyn2)ldyn /()
el - Fa)
< [ = 0= 2 a2 ) %
[F(2) — Flgn)ldyn_2f(2)
= [Fy, (z)Orus()]’.

Because@RHs(O) = ﬂLHs(O) = ﬁ(O) =0, Fyn(O)@RHs(O) = Fyn(O)@LHs(O) = 0.
Thus, integrating both side of the above equation, we olftaiall =

Orus(x) < Orus(z),

and thus for allz

Brus(r) < Brus(x),

which implies thatg does not exist for any. This result contradicts the assumption tivats
monotonically increasing and continuous withs(z) = SBrus(x). Thus, in the symmetric,
sequential Vickrey auctions with all bids revealed, theveginot exist a symmetric pure-strategy
equilibrium. &

6.4 Non-Existence of Asymmetric Equilibrium

Having shown that symmetric equilibrium do not exist in oeggential auction model, we now
turn our attention to the existence of asymmetric equdibih anasymmetric equilibriumbidders
are not restricted to using identical strategy functionse pkesent an example that shows that
asymmetric equilibrium are not guaranteed to exist in tlguestial FPSB auction model, while

leaving unproven the question of whether they ever exist.

Lemma 6.4.1.In the symmetric sequential FPSB auction model with bidlatem, if an asymmet-

ric, pure-strategy equilibrium exists, it may not be unigue
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Increase

in Utility
Using{p1, B2, 43} | Deviate toz = 0 | When

Deviat-

ing

x>Y Uy Tr—e€ >0
Yo>z>Y | Uy T — € >0

Overall > 0; better off

Table 6.3: The overall utilities of biddérin the sequential auctions.

Proof: The proof is trivial. Suppose there are three biddatsthere exists an asymmetric
equilibrium {31, 52, B3 }. Given that these three strategy functions are differemhfone another,
immediately, we have five other asymmetric equilibrigd,, 03, B2}, {52, 01,05}, {52, 03,01},
{Bs3, B1, Ba}, {83, B2, B }. ©

Theorem 6.4.2. The symmetric sequential auction model with bid revelatitay not have any
asymmetric pure-strategy equilibrium generically, whdinbadders stick to the same asymmetric
strategy profile throughout the game.

Proof: We prove the theorem by contradiction. Assume th#ténsymmetric sequential
auction model with bid revelation there exists an asymmeire-strategy equilibrium. Now con-
sider the following special case. Suppose there are thdsets and there exists an asymmetric
equilibrium {5, B2, B3 }. We show that there exists a strategy that is better {l¥ans,, 55} or any
of its variations implied by Lemma 6.4.1.

We again assume that the bidder under consideration isidaehich has a true valu-
ationz. Without loss of generality, we assumig(z) < fa2(x) < f3(z). This assumption allows
these three strategy functions cross each other; howdese tthree strategy functions should be
monotonically increasing. Similar to Example 6.3.1, wewghibat bidder0 can be better off by
unilaterally deviating from the asymmetric equilibriufi;, 52, 53}, as demonstrated in Table 6.3.

In Table 6.3,U; is the utility that bidde© gains in the whole game when> Ys. Us is
the utility that biddei0 gains in the whole game whén > = > Y;. In detall,

Up,2 = Pr(wins 1) [z — B (z)] + Pr(loses 1; wins 2[z — E[Y7,c|loses 1; wins P— €],
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whereYr.s. is the highest valuation of the other bidders who lose in tret fuction. Because
Pr(wins 1)+Pr(loses 1; wins 2 < 1, we may show thal’; < x—eas long af’[Yr.sc|loses 1; wins P
is positive andt goes to infinitesimal. Similarlyl/; < x — € as long as=[Yrsc|l0ses 1; wins Ris
positive ande goes to infinitesimal. Whelr; > z, bidder0 will not be better off by unilaterally
deviating.

Overall, biddero will be better when unilaterally deviating tbin the first auction. This
conflicts the definition of equilibrium that no bidder can ketter off by unilaterally deviating. Thus,
in our symmetric model, there does not generally exist amasgtric equilibrium.&

Since we use a special case to disprove the existence of amretyic equilibrium in the
general symmetric model, it does not rule out that there®xris asymmetric equilibrium in some
special case of this symmetric model. It does not rule outttiere might exist an equilibrium that

is neither symmetric equilibrium nor asymmetric equililm either.

6.5 Conclusions

In this chapter, we consider a variation of the classic sytrimeequential-auction model in which
all bids are revealed after each auction, a market strutiiateis quite common in public market-
places such as eBay. We show that there does not exist atpategyg equilibrium in either first- or
second-price auctions. We also discuss the non-existdrasymmetric equilibrium in the sequen-
tial first-price sealed bid auctions. These results do rletaut mixed-strategy equilibria. Although
the majority of existing literature is focused on sequérgisction models that do have equilibria,
we show in this chapter that the existence of a pure-stragggilibrium is not guaranteed in some
important classes of sequential auctions.

We recognize that the assumption that strategy functioesiinuous, monotone, strictly
increasing, and invertible, though commonly used in setigleauction models, is quite restrictive.
Relaxing the assumptions may lead to different results.o Adhanging other assumption might
also affect the outcomes. For example, if the second auatiantwo-stage sequential auction
were a Vickrey auction, it is easy to prove that there exissyrametric equilibrium despite the
reveal-all-bid price quote. This result holds because hangecond auction, bidders will bid at
their true valuations whether they have complete or inceteghformation about the other bidders’
valuations. Similar solutions can be found in much of theréiture on second-price sequential

auctions, see for example [15].
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Chapter 7

Summary and Future Work

7.1 Summary of Contributions

With the bolstering of e-business, auctions have playedvan eore important role in trading in
both business-to-business and public marketplaces. Macijoa mechanisms have been intro-
duced to cater to the demands of commerce. Bidders, nagtulalinand tools to aid their strategic
decision making in these auction games. This thesis aimotade strategies for buyers/bidders in
single item and sequential auction models.

Finding closed-form solutions to some auction games idetging. Sequential auctions
introduce more computational complexity by adding muttiges. Decision-making tools in this
multi-agent, multi-stage environment requires not onlgrexmic, but computational efficiency as
well.

The existing rich volume of literature on sequential autiprovides answers to a variety
of scenarios. This thesis contributes to this trend. Howetieoretic results often cannot be easily
applied to general sequential auction games. Although wefepclosed-form solutions, when they
are not forthcoming, we seek sound heuristic approachass, Tie aim to design a flexible decision-
making system for solving a broad class of auction games, gifher discrete or continuous bids.

My contributions include the analysis of some typical indixal auctions. More specif-
ically, 1 study the multiplicity of equilibria in first-prie sealed-bid (FPSB) auctions with discrete

bids and complete information. | show that there are at nmweetequilibria and at least one equilib-
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rium in two-agent FPSB auctions. | also discuss the eqiilibiin sequential FPSB auctions with
discrete bids. Further, | provide solutions to the FPSBianstwith discrete bids and incomplete
information. We expect that a different tie-breaking ruligint play a role in the final results.

While there are still plenty of unsolved sequential auctiames, it is natural to design
computational tools to solve a broader number of sequeatieion models. In this thesis, | pre-
sented a Monte Carlo simulation method in approximatingtsmis for a group of diverse sequen-
tial auction games. | show how Monte Carlo sampling can bdogled to construct a bidding
policy that performs comparably to the subgame perfectlibguim. This method takes advantage
of information revealed in previous auctions in the seqadndmprove play in later auctions. The
leveraged structure of the extensive form game, as a regeatem of the sequential auctions with
discrete bids, is used to save computation memory and catigrutime dramatically. For exam-
ple, an original extensive form game with 4.5 billion desishodes can be reduced to a leveraged
structure with only 1931 decision nodes. Importantly, trehiiecture is flexible, in that it can com-
prise a variety of auction models, and different types oflbid. | also prove that this Monte Carlo
approximation approach converges to the average policerdégt Bayesian equilibrium.

Information naturally plays an important role in finding iopal solutions to auction
games. In sequential auctions, information revealed irptegious rounds might be used to help
decision-making for the next ones. This becomes obviousyimmadel of symmetric sequential
auction, in which all bidders and their bids are revealedraffach auction. Revealing bids after
an auction is quite common in public marketplaces, such @y eldd other online auction sites.
Although the majority of existing literature is focused @gsential auction models that have equi-
libria, 1 prove that there does not exist a pure-strategyragiric equilibrium in both sequential,
first-price, sealed-bid auctions and sequential Vickregtians. | also discuss the non-existence of
pure-strategy asymmetric equilibrium in the symmetrictdfinéce sealed-bid auctions. This work
provides a road map for future study in sequential auctioitl @ontinuous bids when bids are

revealed.

7.2 Future Work

The literature on sequential auctions often relies on sanw assumptions. In real marketplaces,
we often find that the number of agents, the number of itemsdla, and the order of the auctions

are stochastic, rather than static. | plan to study the inpathese stochastic factors in finding
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strategic equilibria. Meanwhile, it would be interestimpstudy the impact of other parameters,
such as the reserve price, budget constraints, buy-it-eatufes, and other options in sequential
auctions.

While concluding the non-existence of pure-strategy, swytnio equilibrium when bids
are revealed, the existence of equilibrium in the model lesnananswered. Since the strategy
space is infinite and the information is incomplete, Nadotem cannot be applied to this model
directly. It remains to be seen whether some mixed strategylileria exist for these classes of
sequential auction games.

A sequential auctions with incomplete information is a splecase of sequential games
under uncertainty. It might be possible to extend the apgres in this thesis to sequential games
with uncertainty. Meanwhile, partially observable Marlarcision processes (POMDP) have been
widely adopted for these types of problems. | intend to stwtigther we might use POMDP for
solving sequential auctions.

Finally, the majority of research in sequential auctionfo@ised on finding closed-form
solutions theoretically. As sequential auctions becomeenamd more popular, the attention of
researchers will shift to more empirical study. The intscglinary study between auctions and
other areas, such as supply chain management, is also prgmis
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Appendix A

Mathematics Prerequisites

Bayesian Rule

Theorem A.1 (Multiplication rule). Given that4, and A, are events, we have

Theorem A.2 (Bayes’ theorem [75]).Given thatA;, ¢ = 1, ...,n, are a collection of events which
partition A, and B is an event such tha®[B] # 0. Then, for anyj € {1, ...,n}, we have

P[B|A;|P[A;]

P[A4;|B] = — :
Z;l P[B|A;]P[A;]

(A.2)

Order Statistics

Consider order statisticg; < Y, < .Y, <Y, < ... <Y, from a same cumulated distribu-
tion function (CDF)F and the corresponding probability density function (pfif)The probability
distribution function ofY. is given by

[ — Fly)" ™" [Fly))

Jvolgr) =nbd ) = =S =
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The joint pdf ofY, andY; is given by

[E(y)) " [Fys) — Fyo)]" "1 L= Flys)]"*
(r—1)! (s —r—1)! (n—s)!

fYT,YS (yra ys) = n'f(yr)f(ys)

Typically, we have
Falyn) = nF(yn)" " f(yn),
and its associated CDF is
Fy, (yn) = Flyn)"-
The joint pdf ofY,, andY,,_; is
Fn 1 Yo Wn—1,9n) = n(n = 1) f(yn) f(yn—1) Fyn-1)" ">
The joint pdf ofY,,_; andY,,_, is given by

Fyno ¥ (Un—2:Yn—1) = n(n — 1)(n — 2) F(yn—2)""> f(yn—2) f(Yn—1)[1 — F(yn-1)].
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Appendix B

Notation

A A set of all agents.

v’ a specificjth bid by agent.

B; Bidding space of agerit

C A constant value.

f(x) Afunction of variablez.

fi Probability density function of ageit

F; Accumulated density function of agent
J A set of other agents.

h§g Bidding history of agent at kth auction.
H,f Bidding history of other agent§ at kth auction.
I Set of information.

J A subset of other agents.

I Aninstance of samples.

L A set of experiment samples.

P.(z) A probability conditional one.

s A strategy.

x The value of a variablé&.

X, Avariable for agent.

y; The concrete value df;.

Y; Theith order statistics.
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u; The utility function of agent.

v; A specific valuation of agenit

G; The bidding function of agenit

~ A component game representation.

I’ A game representation.

¢ Aninformation state.

II A strategy set.

o A strategy profile.

& A mixed strategy profile.

Y. A set of strategy profiles.

¢; The reversed bidding function of agent
wl(v) The policy for agent at subgame; in instance.
Qﬁ The policy for agent in instancel.
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