
ABSTRACT

DEMIRHAN, EREN. Variable Selection For Multivariate Smoothing Splines With Corre-
lated Random Errors. (Under the direction of Hao Helen Zhang.)

Variable selection in multivariate nonparametric regression is an important but challeng-

ing problem, which becomes even more difficult for correlated data such as time series data,

spatial data, longitudinal data, and repeated measurements. Very little work exists for nonpara-

metric variable selection with correlated data. In the framework of smoothing spline analysis

of variance (SS-ANOVA), we propose some unified approaches to simultaneously select im-

portant variables, estimate the multivariate nonparametric function, and estimate the variance

components. In particular, two methods are proposed: the Correlated COSSO (Cor-COSSO),

which is a generalization of the component selection and smoothing operator (COSSO; Lin

and Zhang 2006) to correlated random errors, and the Adaptive Correlated COSSO, which is

an improvement on Correlated COSSO. We show that, the Cor-COSSO solves the penalized

weighted least squares subject to a soft-thresholding penalty on the functional components,

which encourages sparse estimation while taking the data covariance structure into account

at the same time. The Adaptive Correlated COSSO introduces a set of adaptive weights in

the penalty term, which results in different scales of penalization on different components.

We study the existence of the solution to the proposed regularization problems, and show that

the minimizer possesses the desired finite dimensional representation property as standard

smoothing splines (Kimeldorf and Wahba, 1971). One important issue in the SS-ANOVA

model estimation for correlated data is the selection of smoothing parameters (Wang, 1998b;



Opsomer, Wang, and Yang, 2001). We show that both the Cor-COSSO and the Adaptive

Cor-COSSO nicely handle this difficulty by estimating the smoothing parameters and vari-

ance components at the same time with the generalized maximum likelihood (GML - Wang

1998b) estimation. In addition, we develop efficient computational algorithms, which solve

the proposed methods by iteratively solving a quadratic programming (QP) problem and fitting

a linear mixed effects model. Therefore, the Cor-COSSO and Adaptive Cor-COSSO can be

conveniently implemented by standard software packages. We demonstrate the performance

of these methods through extensive simulations and real examples, and compare them with

other competitive methods in various settings.
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CHAPTER 1

INTRODUCTION

1.1 Linear Models and Variable Selection

The general purpose in regression modelling is to explain the relationship between the re-

sponse variable and some predictor variables using the limited number of observations at hand.

A common representation of the regression model with additive error terms is:

yi = f (xi)+ εi, i = 1, ...,n, (1.1)

where yi’s are dependent observations, xi = (x(1)
i , . . . ,x(p)

i )T is a p-dimensional vector of ex-

planatory variables, and the error terms εi’s are zero mean random variables. The variance-

covariance structure of the error terms is intentionally left undefined at this moment.

A popular approach to find an approximation to the regression function f (x) is parametric

regression modeling, where a specific formulation for f (x) is assumed. In particular, the linear

regression model f (x) = β0 +∑p
j=1 β jx( j) assumes that the relationship between the response

1



and the predictors is linear in parameters (β j’s). The linear regression model is extensively

studied in the literature, and almost coincides with the name regression in introductory statis-

tics textbooks. These models require relatively a small number of data points and they are

easy to fit and interpret. Computation of these models is very fast (Drapper and Smith, 1998).

As one consequence of the information era and with the advances in technology, high-

dimensional data sets become more and more common, especially in genetics, environmental

and medical sciences. In these high dimensional data situations, reducing data is very im-

portant in order to improve both interpretability and prediction accuracy of the model. The

regression model is mostly used to make predictions on future observations, and the analyst

would like to have narrow interval estimates for these predictions. In multivariate regression

settings, some of the explanatory variables might not be affective on prediction, however,

these uninformative variables increase the prediction variance, and hence diminish the pre-

diction accuracy. On the other hand, discovering which variables are beneficial in prediction

itself helps scientists make better interpretations of the model. It is always desirable and more

practical to evaluate a regression model containing a smaller number of variables.

There is a vast literature on variable selection in linear models. Traditional approaches to

variable selection are based on penalizing the number of variables included in the model. Best

subset selection, forward/backward/stepwise selection, Mallow’s Cp, Akaike (AIC - Akaike

1973) and Bayesian Information criteria (BIC - Schwarz 1978) are well known examples

of traditional methods (Miller, 1990). These methods either exclude some of the explanatory

variables from the model, or retain the regression coefficients corresponding to those variables

2



intact. The discrete nature of these methods can suffer from extremely variable results, such

that even small changes in data may result in very different models to be selected (Tibshirani,

1996).

The instability and lack of accuracy of these models are pointed out in Breiman (1995).

A class of shrinkage methods called Bridge regression (Frank and Friedman, 1993) is pro-

posed, and followed by a set of variable selection methods using the shrinkage idea such as

Nonnegative Garrote (Breiman, 1995), LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001),

and Elastic Net (Zou and Hastie, 2005) and etc. These methods apply continuous shrinkage

to regression coefficients. Some of the coefficients are shrunk to 0, and hence corresponding

variables are excluded from the model. The promising properties of these methods - especially

their good performance in prediction accuracy - are presented in corresponding articles, and

they have been used widely in applied statistics.

There is a whole literature on Bayesian variable selection models. These models assign a

hierarchial Bayesian mixture priors, and uses these priors to calculate the posterior probabil-

ities of the candidate models (George and McCulloch, 1993). For models with large number

of explanatory variables to start with, the calculation of the 2p posterior probabilities might

be overwhelming. Some of the methods use the Gibbs sampling algorithm, such as Stochastic

Search Variable Selection (George and McCulloch, 1995, 1993; Chipman, 1996) to calculate

the posterior probabilities. Bayesian model selection methods use these posterior probabil-

ities to select the final model. Some examples for these methods can be found in George

and McCulloch (1997), Geweke (1996), Casella and Moreno (2006) and Berger and Pericchi

3



(2001).

1.2 Nonparametric Regression Models

Although computational and interpretational advantages of linear models are appealing, the

assumption on the form of the relationship between the response and explanatory variables is

restrictive. In other words, the linearity assumption limits the flexibility of regression models.

If the underlying regression function cannot be approximated linearly, the results derived from

the linear model will not be accurate, and will be even misleading sometimes. For details on

the effect of misspecifications in linear models, reader is referred to the discussion in Chapter

1 of Eubank (1988).

To overcome the possible problems arising from the restrictive assumption of the function

forms in parametric models, nonparametric regression techniques can be used. These methods

do not assume any specific form for f (x). Instead, they search for the regression function that

best matches the data in a much larger function space where less restrictions are imposed on

this form. Caution should be given that using nonparametric regression does not mean that

no assumption is made on f (x). However, the restrictions are minimal, and generally limited

with smoothness conditions. For example a cubic spline model assumes f (x) to be smooth

enough to have continuous derivatives up to second order, and the second derivative to be

squared integrable.

Another important feature of the linear regression models is their global nature. The model

4



is defined over an extensive range of the explanatory variables, which allows for extrapolation,

i.e., prediction for future observations which are not included in the range of the original data

set from which the model is fitted. Although this looks like an advantage at the first glance (and

it is for some specific situations), the vulnerability of these models to influential observations

turns the global model structure into a disadvantage. In other words, these models might

become very sensitive to outliers. On the contrary, nonparametric regression methods are local

methods, therefore are more robust, i.e., the outliers will have less effect in nonparametric

methods compared to their linear counterparts.

Less restrictive assumptions of nonparametric regression allow the data to define the func-

tional dependence of the response to explanatory variables. These methods search a larger

function space to find the best estimator for f (x). The price of this flexibility is mostly the

computation time and efficiency loss if the true model is linear. Especially in multivariate

regression settings, nonparametric methods face the challenges in computation time and inter-

pretability, and many suffer from the curse of dimensionality. For a more detailed introduction

to nonparametric regression methods, reader is referred to Eubank (1988) and Green and Sil-

verman (1988).

The curse of dimensionality is a bottleneck for multivariate nonparametric regression

methods. One alternative is to use the popular additive models summarized in Hastie and

Tibshirani (1990). Under the arguably restrictive assumption of additive models, they pro-

posed to approximate p-dimensional surface by a finite sum of p-univariate smoothers. The

backfitting algorithm can be used to fit additive models. This method is very popular and has

5



been widely applied in various disciplines.

Another model building tool for multivariate nonparametric regression is Multivariate

Adaptive Regression Splines (MARS, Friedman 1991). The method works in a regression

spline framework, and can be considered as an extension of additive models. MARS can be

considered as a generalization of both binary partitioning and stepwise linear regression (see

Hastie, Tibshirani, and Friedman 2001). Using so called reflected pairs, the method builds up

a large model with forward selection techniques. After a large model is achieved, pruning is

conducted via backward elimination, and least effective components (reflected pairs) in pre-

diction are eliminated from the model. Some variables lose all their reflected pairs from the

model during pruning, and therefore are excluded entirely. In other words, MARS works as

a variable selection method in nonparametric setting, and it is one of the most famous meth-

ods in this area. For more information on MARS, reader is referred to Friedman (1991) and

Hastie, Tibshirani, and Friedman (2001).

There are two popular approaches in the smoothing spline framework for multivariate

nonparametric regression: thin plate splines and smoothing spline analysis of variance (SS-

ANOVA hereafter). They are both useful for estimation of multidimensional smooth functions.

Our proposal is developed in the SS-ANOVA framework, and we will explain the close rela-

tionship while presenting the algorithm. Therefore, the SS-ANOVA models will be crucial in

the progress of this research, and a quick review of them will be given in the following part.
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1.3 Smoothing Spline ANOVA Models

In this section we will introduce univariate smoothing spline models and their extension to

multivariate smoothing splines analysis of variance models. For now we focus on the inde-

pendent error structure. The models for correlated data will be incorporated in the following

sections.

1.3.1 One-dimensional Smoothing Spline with Independent Data

We first consider the regression problem in (1.1) by assuming the error terms are indepen-

dent and have zero mean and constant variance σ2. We will concentrate on the smoothing

spline method, which is a popular nonparametric regression model with elegant mathematical

framework and theoretical properties.

Smoothing spline is a regularization method, where the model complexity is controlled by

a smoothing parameter. Assume that f (x), x ∈T , lies in some prechosen function space H ,

generally satisfying some smoothness conditions. For this part, we will focus on one dimen-

sional smoothing spline problem, where the design matrix contains only one explanatory vari-

able. Later we will extend the definition to multivariate smoothing splines (and SS-ANOVA

models). For a discussion of model spaces for various index sets, see Wahba (1990) and Gu

(2002).

Here is a very short introduction to reproducing kernel Hilbert spaces. The background

for RKHS spaces can be found in Halmos (1957) and Aronsajn (1950). A shorter introduction
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to RKHS spaces and their uses in smoothing spline framework can be found in Wahba (1990)

and Gu (2002). A functional in a linear space L is a mapping of an element in L to a real

number in real line R. A linear functional L in L satisfies L( f +g) = L f +Lg,L(α f ) = αL f

where f ,g ∈L , and α ∈ R. A bilinear form J(·, ·) : L ×L → R satisfies J(α f + βg,h) =

αJ( f ,h)+βJ(g,h), J( f ,αg+βh) = αJ( f ,g)+βJ( f ,g) where f ,g,h ∈L and α,β ∈ R. A

linear space (also known as a vector space) often is equipped with an inner product, which is

a positive definite bilinear form defined as < ·, · >. This inner product defines a norm in L

such as ‖ f‖ =< f , f >1/2, which also induces a metric to measure the distance between the

elements of L such that D( f ,g) = ‖ f − g‖. This space L equipped with the inner product

< ·, ·>L is called an inner product space.

A Hilbert space (C ) is a complete inner product linear space. An important property

of Hilbert spaces is the Reisz representation theorem, which states that for every continuous

linear functional L in a Hilbert space C , there exists a unique gL ∈ C such that for any f ∈ C ,

L f =< gL, f >. Here, gL is called the representer of the linear functional L.

We use this machinery in order to maximize the penalized weighted least squares func-

tional, which usually involves evaluations at data points. Let H be a Hilbert space of real

valued functions on a domain T , where the evaluation functional is defined as Lx( f ) = f (x).

If Lx( f ) is bounded ∀x ∈ T ,∀ f ∈ H , then the space H is called a reproducing kernel

Hilbert space (RKHS hereafter). In other words, if for each x ∈ T , there exists Mx such that

| f (x)| ≤Mx‖ f‖H , ∀ f ∈H then H is an RKHS.

Although many results for smoothing splines can be obtained without the RKHS assump-
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tion, this assumption both saves one from proving the same theorems over and over again

(Wahba, 1990), and provides a very important link between Bayesian estimation. Without

loss of generality, we will use the domain T of explanatory variable as [0,1]. Any range can

be easily transformed to fit in this domain, therefore, T is very general, and covers any con-

tinuous domain. A common example of RKHS widely used in smoothing spline framework is

the mth-order Sobolev space:

Sm
2 = { f : f (ν) is absolutely continuous, ν = 0,1, . . . ,m−1 and

∫ 1

0
( f (m) (t))2dt < ∞}.

When equipped with the inner product

< f ,g >H =
m−1

∑
ν=0

f (ν)(0)g(ν)(0)+
∫ 1

0
f (m)(t)g(m)(t)dt, (1.2)

the space Sm
2 is an RKHS.

In general, we decompose H = Sm
2 = [1]⊕H1, where [1] contains the constant func-

tions in H , and H1 is the complement subspace of [1]. Define y = (y1, . . . ,yn)T and f =

( f (x1), . . . , f (xn))T. The penalized least squares for estimating f is obtained by solving:

min
f∈H

1
n

n

∑
i=1

(yi− f (xi))2 +λ‖P1 f‖2
H , (1.3)

where λ > 0 is the smoothing parameter, P1 is the projection operator onto H1, and ‖P1 f‖2
H

is the squared norm reflecting the roughness of f . The tuning parameter λ > 0 balances the
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tradeoff between the data fit and the function smoothness. For different specifications of λ , the

smoothing spline fit can range from a linear regression fit to a data interpolation. Therefore,

in order to acquire a good representation from the smoothing spline, an appropriate selection

of the tuning parameter is crucial.

The reproducing kernel (RK) of H1 associated with the inner product (1.2) is given by:

R1 (s, t) =
m−1

∑
ν=0

sν

ν!
tν

ν!
+

∫ 1

0

(s−u)m−1
+

(m−1)!
(t−u)m−1

+
(m−1)!

du, (1.4)

where (x)+ = max{x,0}. Correspondingly, the penalty term in (1.3) becomes:

‖P1 f‖2
H =

m−1

∑
ν=0

[ f (ν)(0)]2 +
∫ 1

0

(
f (m)(t)

)2
dt. (1.5)

The most popular smoothing spline model is the cubic spline with m = 2. It can be seen that

in cubic spline the reproducing kernel R1 (s, t) has a simpler expression as:

R1 (s, t) = st +(s∧ t)2(3(s∨ t)− (s∧ t))/6, (1.6)

where s∧ t = min(s, t) and s∨ t = max(s, t). The minimizer of (1.3) is known as the cubic

smoothing spline; see Green and Silverman (1988), Wahba (1990) and Gu (2002) for more

details.
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1.3.2 Smoothing Spline ANOVA Models

Now let us move on to the problem of multidimensional function estimation, where x =

(x(1), . . . ,x(p))T is a p-dimensional input vector from the p-dimensional index set T = T (1)×

·· ·×T (p). The goal is to estimate a multivariate function f (x) given the data points {xi,yi}, i =

1, · · · ,n. Smoothing spline ANOVA model (SS-ANOVA) provides a general framework for

high dimensional function estimation, and has been successfully applied to many practical

problems. See Wahba (1990), Wahba et al. (1995), and Gu (2002) for details.

The functional ANOVA decomposition of any p-variate function f is:

f (x) = d +
p

∑
j=1

f j(x( j))+
p

∑
j=1

p

∑
k= j+1

f jk(x( j),x(k))+ · · · , (1.7)

where d is a constant, f j’s are the main effects, f jk’s are the two-way interactions, and so

on. The identifiability of the terms in (1.7) is assured by side conditions through averaging

operators.

The main purpose of the functional ANOVA decomposition is to decompose the multi-

variate surface into a sum of univariate functions, and estimate the whole surface using these

univariate functions. This will facilitate the estimation computationally. We assume each com-

ponent ( f j’s) belongs to a univariate function space H ( j) over T ( j); and H ( j) = [1]⊕H
( j)

1

where [1] consists of the constant functions and H
( j)

1 is the complement of the subspace [1]

for each j = 1, . . . , p. Then the full tensor product space H =⊗p
j=1H

( j) has the tensor sum

11



decomposition:

H =⊗p
j=1H

( j) =⊗p
j=1([1]⊕H

( j)
1 ) =⊕S

{
⊗ j∈S H

( j)
1

}
=⊕S HS , (1.8)

where the summation is over all possible subsets S ⊂ {1, . . . , p}. Each term HS , as a sub-

space of H , is also an RKHS. For ease of interpretation, we usually truncate H in (1.8) by

keeping only lower order terms and conduct the estimation in the subspace:

H = [1]⊕q
j=1 H j, (1.9)

where H 1, ...,H q are q orthogonal subspaces of H . Here j is a generic index, and H j has

the inner product < f j,g j >H j and the reproducing kernel R j, where f j is the projection of f

onto H j. According to Wahba (1990) and Gu (2002), we can define the inner product in H

as:

< f ,g >H =
q

∑
j=1

θ−1
j < f j,g j >H j , (1.10)

where θ j’s are non-negative tuning parameters. The reproducing kernel of H in (1.9) is the

weighted sum of kernels in individual spaces. Therefore, the reproducing kernel associated

with (1.9) can be written as:

Rθ (·, ·) =
q

∑
j=1

θ jR j(·, ·), (1.11)
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since

< Rθ (x, ·), f (·) >H =
q

∑
j=1

θ−1
j < θ jR j(x, ·), f j >H j=

q

∑
j=1

f j(x) = f (x).

At this moment, we assume uncorrelated error terms, i.e., ε ∼ N(0,σ2I). The SS-ANOVA

model for data with independent errors aims to find f ∈H which minimizes the following

penalized least squares equation:

min
f∈H

1
n

n

∑
i=1

(yi− f (xi))2 +λ
q

∑
j=1

θ−1
j ‖P j f‖2. (1.12)

Here P j is the projection operator onto H j, ∑q
j=1 θ−1

j ‖P j f‖2 is the squared norm reflecting

the roughness of f , and λ ,θ1, . . .θq > 0 are smoothing parameters. The main purpose of

this dissertation research is to work with correlated error terms, therefore, we will relax this

assumption in following sections.

1.3.3 Computation of SS-ANOVA Models

The computation for SS-ANOVA model with fixed smoothing parameters λ and θ ’s is very

similar to univariate smoothing spline computation. We will only cover the multivariate case

in this section.

Let 1 be the vector of ones with length n. Given the sample points xi, i = 1, . . . ,n, with

some abuse of notation define the n×n Gram matrix Rθ with entries Rθ ,ii′ = Rθ (xi,xi′), where

Rθ (·, ·) is defined in (1.11). The multidimensional space H is an RKHS, and we can calculate
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the reproducing kernel for this space using the univariate RK’s.

The representer theorem of Kimeldorf and Wahba (1971) proves that the SS-ANOVA es-

timate lies in a finite dimensional space, and can be written in the form:

f (x) = d +
n

∑
i=1

ciRθ (x,xi), (1.13)

where d and c = (c1, . . . ,cn)T can be estimated by minimizing

(y−1d−Rθ c)T(y−1d−Rθ c)+nλcTRθ c. (1.14)

It can be shown that the SS-ANOVA estimate f̂ = 1d̂ +Rθ ĉ exists and is unique (Wahba 1990,

Gu 2002). Using some algebra we can show that the solution to (1.14) satisfies:

(Rθ +nλ I) ĉ+1d̂ = y,

1Tĉ = 0.

(1.15)

To facilitate the computation of ĉ and d̂ in (1.15), one can use the QR decomposition of 1

1 = (Q1 Q2)




S

0


 ,

where Q1 is n×1 and Q2 is n× (n−1), Q = [Q1 Q2] is orthogonal and S is upper triangular,
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with 1TQ2 = 0. Using this new formulation, the solution can be rephrased as:

ĉ = Q2 [QT
2(Rθ +nλ I)Q2]

−1 QT
2y,

d̂ = S−1 [QT
1y−QT

1Rθ ĉ] .

The SS-ANOVA estimate f̂ is linear in y, i.e., f̂ = Ay, where A is known as the hat or the

influence matrix. Here A is symmetric and can be written as:

A = I−nλQ2 [QT
2Rθ Q2 +nλ I]−1 QT

2.

As mentioned above, the solution to univariate smoothing spline is very similar to SS-ANOVA.

The only difference is the function space (H ), which will be a univariate RKHS space for

the univariate case. We will replace the reproducing kernel matrix Rθ by R1 with entries

R1,ii′ = R1(xi,xi′), where R1(·, ·) is defined in (1.4). The representer theorem of Kimeldorf

and Wahba (1971) and the machinery of this section will follow.

As can be seen from the formulation (1.12), the SS-ANOVA model has q + 1 smooth-

ing parameters for a q component model. There is an overparameterization, since θ j/λ ’s are

equivalently representing the set; this overparameterization is mainly for computational con-

venience and commonly used in practice. Since for most of the time we do not know what the

smoothing parameters are supposed to be, one main difficulty associated with the high dimen-

sional SS-ANOVA models is to tune these parameters adaptively. A (q+1)-dimensional grid

search is often required for a q-component SS-ANOVA model, which can greatly inflate the
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total computation time for large dimensional regression problems. We will revisit this issue in

the later sections.

1.4 Component Selection for Nonparametric Models

Before introducing the component selection problem in nonparametric regression, we would

like to clarify the difference between a “variable” and a “component”. Any segment in the

functional ANOVA decomposition of (1.7) will be called a component. In other words, each

main effect, first, second or higher-order interaction effect included in the truncated functional

ANOVA definition (1.9) is a component. On the other hand, if we assume an additive model,

each component represents the main effect of the corresponding variable, hence a component

and a variable will become synonymous.

Component (variable) selection is a more challenging task in nonparametric regression.

The primary challenge is that, in nonparametric regression models, the predictive ability of a

component (or a variable) cannot be represented with one parameter alone, such as a regression

coefficient in linear models. For ease of discussion, we now consider an additive regression

model. The extension of the following argument to models including interactions is quite

straightforward.

In linear regression, the variable selection process is easier since the absolute magnitude

of the regression coefficient (β̂ j) measures the importance of the corresponding variable (X j),

and defining β̂ j = 0 will exclude the variable from the model. In contrast, in nonparametric
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regression we need to estimate the whole functional component ( f̂ j), and in order to exclude

the corresponding component from the model, we have to set f̂ j as the zero function.

Because of the more difficult nature of the process in nonparametric regression, there are

not as many variable selection methods available for nonparametric models in the literature as

there are for their linear model counterpart. Gu (1992) proposed a set of cosine diagnostic tools

to detect possible aliasing effects, in search of building a parsimonious SS-ANOVA model.

The strategy is not automated, and it needs rebuilding the model and applying the diagnostics

in an interactive way. A generalization of LASSO to SS-ANOVA for exponential families

is proposed by Zhang et al. (2004). The method uses basis expansion of the nonparametric

components with a large number of basis functions, and applies the L1 penalty to reach a sparse

solution of coefficients for these basis functions. However, the sparsity in basis functions does

not guarantee the sparsity in SS-ANOVA model, since some of the coefficients in the extended

linear space will not be estimated as zero, hence the variable will not entirely disappear from

the model. Therefore a separate model selection has to be applied (Lin and Zhang 2006; Zhang

and Lin 2006).

Multivariate adaptive regression splines (MARS - Friedman 1991) and component se-

lection and smoothing operator (COSSO hereafter - Lin and Zhang 2006, Zhang and Lin

2006) are two popular methods for component selection in nonparametric regression settings.

A short discussion on the component selection using MARS has already been discussed in

Section 1.2. The COSSO (will be referred as original COSSO hereafter) is the base of our

proposal, hence an introduction to this method is provided in the following section.
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1.4.1 COmponent Selection and Smoothing Operator - COSSO

In this section, we shortly review the COSSO, a promising variable selection method in non-

parametric regression by Lin and Zhang (2006). COSSO is a regularization method with

the penalty functional being the sum of RKHS norms. The method applies a soft thresholding

type operation to the function components and therefore executes variable selection and model

fitting simultaneously.

The COSSO procedure proposes to find f ∈H to minimize:

1
n

n

∑
i=1

[yi− f (xi)]
2 +η

q

∑
j=1
‖P j f‖H (1.16)

where η is the smoothing parameter and H = [1]⊕q
j=1 H j is the same truncated functional

ANOVA space as defined for SS-ANOVA model in (1.12). We will make the convention 0/0 =

0 throughout this dissertation. The COSSO is a generalization of the LASSO’s shrinkage idea

into the SS-ANOVA framework. In fact, it is shown by Lin and Zhang (2006) that the LASSO

can be seen as a special case of COSSO.

The COSSO method has several advantages over the traditional SS-ANOVA estimation.

First, the method not only fits a nonparametric regression model to multivariate data, but

it also conducts automatic component selection. The second advantage is that, the method

involves only one smoothing parameter; therefore, it will not deal with the q-dimensional

tuning problem as in the SS-ANOVA. This property of COSSO is very appealing for reducing

the computational time even if component selection is not the main purpose.
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The minimization problem of equation (1.16) is not an easy task though. An algorithm

based on iterations between fitting the SS-ANOVA with fixed smoothing parameters and solv-

ing a quadratic programming (QP) is provided in Lin and Zhang (2006) and Zhang and Lin

(2006). The existence of the COSSO solution was proven in the same papers. The method is

compared to the MARS of Friedman (1991). In terms of both variable selection and prediction

accuracy, the COSSO outperforms the MARS.

The original COSSO method works based on the assumption of independent error terms.

In other words, in situations where the data is correlated (i.e., clustered, repeated measures or

time series data) the performance of the COSSO method is questionable. In this dissertation

research, we propose to generalize COSSO for conducting variable selection and function

estimation jointly for correlated data. To our best knowledge, there is very little work which

handles this type of problems in the literature.

1.5 Regression for Correlated Data

Almost every component selection method we introduced until now assumes independence

between observations. Although this assumption might be valid for some cases, in other sit-

uations such as longitudinal, clustered or time series data sets, the responses are naturally

correlated. As an illustration, we expect correlation between observations from the same sub-

ject in a longitudinal data situation, or observations belonging to the same cluster in a clustered

data. In the time series setting, a common assumption is that observations closer in time have
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a higher correlation than observations taken further away from each other. There are cases

where ignoring a possible correlation among observations will invalidate the model estima-

tion, variable selection and statistical inferences. Although there are exceptions where the

model estimation is not disturbed, even in these situations defining a proper correlation struc-

ture will improve the model efficiency. Therefore, correlation modelling is helpful to improve

the efficiency of any type of estimation or component selection method.

In this research, we will focus on the situation where the error terms of the model (1.1) are

correlated. In particular, we assume that the correlation matrix depends on a parsimonious set

of parameters:

ε = (ε1, ...,εn)T ∼ N(0,σ2W−1
τ ), (1.17)

where W−1
τ has a known correlation structure depending on a set of unknown covariance

parameters τ .

With this formulation, we are automatically making an equal variance assumption in be-

tween the error terms. In other words, we are making the assumption that E[ε2
i ] = σ2,∀i. This

assumption can easily be relaxed by defining an error covariance such as Vτ , where τ includes

both variance and covariance parameters. For ease of notation, we will use (1.17) throughout

this research.

We now present two examples of the W−1
τ matrix. Consider a first-order stationary au-

toregressive AR(1) model for εi, εi = ρεi−1 + ai, where ai ∼ N(0,σ2) are independent, and
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|ρ|< 1. We then have τ = ρ , and the corresponding W−1
ρ matrix is:

W−1
ρ =




1 ρ ρ2 . . . ρn−1

1 ρ . . . ρn−2

1
...

1




, (1.18)

where the observations close in time will have a higher correlation compared to ones apart in

time. We will come back to this covariance structure in the first simulation example.

The second example structure is useful in covariance modelling of longitudinal or clustered

data, where observations belonging to the same subject (or cluster) will have correlation, and

the ones not belonging to different subjects (or clusters) are assumed to be independent. This

will give us a block diagonal structure for W−1:

W−1 =




Σ1 0 0 . . . 0

Σ2 0 . . . 0

Σ3
...

Σm




(1.19)

where Σ j is an n j × n j square matrix, and n j is the number of observations per subject (or

cluster), and m is the total number of subjects (clusters) in the dataset.

A second step of covariance modelling is needed to specify the correlation structure within
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subjects. Although we might still assume an AR(1) structure within Σ j, the assumption might

not be appropriate in a clustered data setting. Alternatively, we can assume a compound

symmetry (CS) within-cluster correlation structure where observations belonging to the same

subject have equal correlation between each other. The corresponding Σ j matrix then becomes:

Σ j = (1−ρ)In j +ρJn j (1.20)

where j = 1, . . . ,m, In j is the identity matrix with size n j, and Jn j is the matrix of ones with

size n j×n j.

In the following section, we will cover a nonparametric regression model, to be spe-

cific, the SS-ANOVA model for correlated data situations. Reader should remark that the

SS-ANOVA model for correlated data does not conduct component selection.

1.5.1 Smoothing Spline ANOVA Model for Correlated Data

In literature, the SS-ANOVA method is based on the assumption that random errors are in-

dependent. In practice, we often encounter the situations where the error terms actually are

correlated. Ignoring the correlation among the error terms may result in poor performance of

smoothing parameter selection and function estimation for SS-ANOVA models (see Altman

1990, Diggle and Hutchinson 1989 and Wang 1998b).

We now consider the p-variate regression problem in equation (1.1) with correlated addi-
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tive error terms:

ε = (ε1, ...,εn)T ∼ N(0,σ2W−1
τ ), (1.21)

where σ2 is unknown, and W−1
τ also depends on some unknown correlation parameters τ .

We continue the discussion from the functional ANOVA decomposition in (1.7) and the

truncated RKHS H in (1.9). Recall that the inner product in H is defined in (1.10), and the

Reproducing Kernel (RK) of the product space is Rθ (·, ·) = ∑q
j=1 θ jR j(·, ·).

The marginal distribution of y is used for estimation purposes. It can easily be seen that:

y∼ N(f,σ2W−1
τ ).

For estimation, it would be natural to consider the penalized log-likelihood of y:

n
2

logσ2− 1
2

log |Wτ |+ 1
2σ2 (y− f)TWτ(y− f)+nλ

q

∑
j=1

θ−1
j ‖P j f‖2

H . (1.22)

Assuming f (x) lies in H , for fixed τ,σ2,λ and θ , the smoothing spline ANOVA estimate of

f is the minimizer of the following penalized weighted least squares problem:

min
f∈H

(y− f)TWτ(y− f)+nλ ∗
q

∑
j=1

θ−1
j ‖P j f‖2

H , (1.23)

with λ ∗ = 2σ2λ . So the representer theorem of Kimeldorf and Wahba (1971) can be applied

to the correlated SS-ANOVA situation as well, when we fix the smoothing and variance esti-
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mators. Therefore, the estimation of the SS-ANOVA model is equivalent to solving ĉ and d̂,

where f̂ = T d̂ +Rθ ĉ, where the n×n matrix Rθ with entries Rθ ,ii′ = Rθ (xi,xi′), and Rθ (·, ·) is

defined in (1.11). Although the calculation of ĉ and d̂ goes parallel to the discussion in Section

1.3.3, slight differences will be observed since W−1
τ is involved in the estimation:

(
Rθ +nλ ∗W−1

τ
)

c+1d = y,

1Tc = 0.

(1.24)

After some algebra, the following matrix operations provide the estimates:

ĉ = Q2
[
QT

2(Rθ +nλ ∗W−1
τ )Q2

]−1 QT
2y,

d̂ = S−1 [
QT

1(y− (Rθ +nλ ∗W−1
τ )c)

]
,

where Q1,Q2 and S are from the QR decomposition of 1 in Section 1.3.3. The corresponding

hat matrix (A) can be calculated as:

A = I−nλ ∗W−1
τ Q2

[
QT

2(Rθ +nλ ∗W−1
τ )Q2

]−1
QT

2.

Note that A is not necessarily symmetric anymore as it was for independent errors scenario.

Careful readers should remark that the computation process given above depends on the

knowledge of τ,σ ,θ and λ ∗. As opposed to the SS-ANOVA model with independent error

terms, these parameters should be either known, or estimated from data simultaneously (Wang,

1998b; Gu and Han, 2004; Opsomer, Wang, and Yang, 2001). Most of the time we do not
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have information either on the variance-covariance parameters (τ,σ ) or on the smoothing

parameters (λ ∗,θ ), and therefore a method to estimate these parameters along with f (x) is

needed. This brings an extra challenge in solving (1.23), and the method in the following

section gives a feasible solution to this issue.

1.5.2 Generalized Maximum Likelihood

It is well known from the smoothing spline literature that ignoring the correlation in error terms

will affect the performance of both function estimation and parameter tuning (Wang, 1998b;

Opsomer, Wang, and Yang, 2001; Gu and Han, 2004). Several methods have been developed

to select smoothing parameters and covariance parameters jointly, among which Wang (1998b)

and Opsomer, Wang, and Yang (2001) extends the Generalized Maximum Likelihood (GML)

approach of Wahba (1985) to perform the joint estimation.

Consider the following Bayesian model as a prior distribution for f :

F(x) = γ +b1/2
q

∑
i=1

θ 1/2
j U j(x), x ∈T , (1.25)

where γ ∼N(0,a), a and b = σ2

nλ ∗ are positive constants. U j(x),x∈T is a zero mean Gaussian

stochastic process independent of γ with the covariance U j(xi)U j(xk) = R j(xi,xk). Define y

with the additive correlated error terms:

yi = F(xi)+ εi, i = 1, . . . ,n,
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where ε = (ε1, . . . ,εn)T ∼N(0,σ2W−1
τ ). The marginal distribution of y is N(0,b(η11T +Rθ +

nλ ∗W−1
τ )) with η = a/b.

It can be shown that, when a approaches to infinity, the posterior mean of the process is

the smoothing spline estimate (Wahba 1990, Opsomer, Wang, and Yang 2001, Wang 1998b),

i.e.,

lim
a→∞

E(F(x)|y) = f̂ (x).

Define the following contrasts of the y vector:




z

w


 =




QT
2

1√η 1T


y,

where Q2 is defined in the QR decomposition of 1 previously in this chapter. Remark that w is

asymptotically uncorrelated with z, and the distribution of w is independent of λ ∗,θ ,σ2 and

τ (see Wang 1998b). The maximum likelihood estimates of these parameters can be based on

the marginal distribution of z,

z∼ N
(
0,bQT

2
(
ηRθ +nλ ∗W−1

τ
)

Q2
)
.

Let B(λ ,θ ,τ) =
(
ηRθ +nλ ∗W−1

τ
)
. Then the Generalized Maximum Likelihood (GML) es-
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timators of λ ∗,θ ,σ2 and τ are based on maximizing the marginal log-likelihood of z:

l(τ,σ2,λ ∗,θ |z) =−1
2

log
∣∣∣ σ2

nλ ∗
QT

2B(λ ∗,θ ,τ)Q2

∣∣∣− nλ ∗

2σ2 zT (QT
2B(λ ∗,θ ,τ)Q2)

−1 z+C

where C is constant. Maximizing the likelihood above with respect to σ2 gives

σ̂2 =
nλ ∗zT (QT

2B(λ ∗,θ ,τ)Q2)
−1 z

n−1
, (1.26)

and the GML estimates of λ ∗,θ and τ are the minimizers of

M(τ,θ ,λ ∗) =
zT (QT

2B(λ ∗,θ ,τ)Q2)
−1 z

[det
(
QT

2B(λ ∗,θ ,τ)Q2
)−1]

1
n−1

=
yTWτ(I−A)y

[det+ (Wτ(I−A))]
1

n−1
, (1.27)

where det+ is the product of the nonzero eigenvalues.

1.5.3 Linear Mixed Models Representation

Recall that in 1.5.2, we estimate the functional components ( f̂ ) by minimizing the penalized

weighted least squares, and use the GML method to estimate covariance parameters (τ,σ ) and

the smoothing parameters (λ ∗,θ ) simultaneously. The main idea of this section is to use the

connection between SS-ANOVA estimates and the linear mixed models, and get benefit from

the well studied theory and computational power of linear mixed models for this estimation.

We would like to introduce the connection between the smoothing spline ANOVA model and
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the linear mixed effects model. The connection was first pointed out by Speed in the discussion

of Robinson (1991), and later studied thoroughly in Wang (1998b).

Define Z = (In, · · · , In), the q copies of the identity matrix of size n, here n is the number

of observations and with some abuse of notation R j = {R j(xi,xi′)}, i, i′ = 1, . . . ,n. Consider

the following linear mixed model:

y = 1d +
q

∑
j=1

u j + ε = 1d +Zu+ ε, (1.28)

where d is the fixed intercept effect, u j’s are random effects u j ∼ N
(
0,σ2θ jR j/(nλ ∗)

)
, ε’s

are error term with ε ∼ N(0,σ2W−1
τ ), and u j’s and ε are mutually independent. Define u =

(uT
1, · · · ,uT

q)
T, and D = diag(θ1R1, · · · ,θqRq). Then Cov(u) = σ2D/nλ ∗. Also define u = Dφ .

In the mixed effects model, the matrix representation to solve for the fixed effect d̂ and the

random effects û can be obtained by using Harville’s generalized equations (Harville, 1977).




1TWτ1 1TWτZD

DZTWτ1 DZTWτZD+nλ ∗D







d̂

φ̂


 =




1TWτy

DZTWτy


 . (1.29)

It is easy to check the equation (1.29) is the same as the equation system (1.24). The estimate

of u is û = Dφ̂ = DZTĉ. Rephrasing the equation gives û j = θ jR jĉ for every j = 1, . . . ,q.

In other words, the solution of SS-ANOVA model f̂ = 1d̂ + Rθ ĉ can be obtained by fitting

the mixed effects model (1.28), and the estimate is a Best Linear Unbiased Predictor (BLUP,

Robinson 1991). Furthermore, the GML estimates of covariance and smoothing parameters
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(here σ2,τ and λ ∗) are also Restricted Maximum Likelihood (REML) estimates, since these

estimates are based on n−1 independent contrasts of y. Reader should remark that the result-

ing variance component estimators do not depend on particular choice of the (n−1) contrasts

(Harville, 1977; Diggle, Liang, and Zeger, 2002; Verbeke and Molenberghs, 2000). The ad-

vantage with the mixed model approach is that the smoothing parameters (λ and θ ’s) are

treated as a variance component and estimated simultaneously with σ2 and τ; therefore, there

will not be any need for q-dimensional tuning, which automatically eliminates the grid search

for this parameter. Also the existing software like SAS can be used to estimate the function

and parameters altogether.

The performance of the linear mixed model approach of SS-ANOVA fit is promising in

low dimensions. However a big caveat about this approach is that, it requires a large number

of random effects to be predicted. Looking at the model (1.28) more carefully, the model

fitting requires the prediction of nq random effects, where n is the number of observations,

and q is the number of components in SS-ANOVA. The number of random effects increases

rapidly as the dimension of the data increases. As an illustration, if we have a data set with

400 observations and 30 explanatory variables, the simplest additive model fit using the mixed

model connection will require a prediction of 12,000 random effects. It easily takes a lot of

computer memory and computation time for optimization in the case of a large number of

random effects. Therefore, the estimation becomes infeasible, or at least very slow for high

dimensional data.

The mixed model connection helps to solve the SS-ANOVA model, but it does not conduct
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component selection. As mentioned earlier, most of the nonparametric component selection

methods (including MARS and original COSSO) assume independent error terms. In this dis-

sertation research, we propose the new method Correlated Component Selection and Smooth-

ing Operator (Cor-COSSO), which intends to apply simultaneous component selection and

model fitting in the SS-ANOVA framework for correlated data. Our new method is formu-

lated in a way that the computation time will not be affected by the number of explanatory

variables. This is an advantage compared to other nonparametric regression methods which

require multidimensional tuning. Therefore, our method can also be considered as an alter-

native approach to tackle the multidimensional smoothing parameter selection problem. In

other words, even if the main purpose of the analysis is not component selection but fitting

high-dimensional nonparametric regression for correlated data, our new method still offers an

alternative estimation approach which does not suffer much from high dimensionality.

1.6 Dissertation Outline

We propose a nonparametric component selection method working with correlated error terms.

The method, Correlated COSSO, is an extension of COSSO to correlated data situations such

as time series, clustered or longitudinal data. Correlated COSSO conducts component selec-

tion, model fitting, variance-covariance parameter estimation and smoothing parameter tuning

simultaneously. For computation, our method takes advantage of the connection between the

smoothing spline ANOVA and linear mixed effects models, and benefits from available com-
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mercial software for mixed models such as SAS Proc Mixed. An efficient algorithm is devel-

oped for optimization, which solves the smoothing spline with correlated data and a quadratic

programming (QP) iteratively. The rest of the dissertation is organized as follows.

Chapter 2 introduces the Correlated COSSO method and develops an efficient algorithm

for optimization. The existence of the solution is proven. The solution is also shown to have a

finite dimensional representation. Smoothing parameter selection issue is raised, and several

alternative methods are discussed.

Chapter 3 proposes an extension of the method, the Adaptive Correlated COSSO, and stud-

ies its properties. The method is announced as a further improvement on Correlated COSSO

method. The computation algorithms and smoothing parameter selection issues are discussed.

The computation issue for large datasets is handled in Chapter 4. We consider a method

called the subset basis algorithm to reduce the computational time of the Correlated COSSO

and the Adaptive Correlated COSSO methods in massive datasets. The algorithm uses a subset

of the dataset to find an approximate set of basis functions. A discussion on different sampling

methods to select the subset is included in this chapter as well.

In Chapter 5, the empirical performance of both Correlated COSSO and Adaptive Corre-

lated COSSO methods are evaluated with extensive simulation studies. The chapter consists

of two parts; the first part contains examples to illustrate different tuning criteria, computa-

tional algorithms and the subset technique, and the second part is designed to compare the two

proposals with other existing methods from the literature.

In Chapter 6 we implemented the Correlated COSSO and Adaptive Correlated COSSO to
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two real data examples. The example data sets are selected to show the wide range of appli-

cation possibilities of both methods. The first example is Ozone data (Breiman and Friedman,

1985) where 8 meteorological variables are used to model the daily maximum ozone readings

in Los Angeles basin. The second example is a Money Demand study where 4 explanatory

variables are used to model the log-log demand, which is measured by the real money stock.

Chapter 7 gives a short conclusion and discusses the future work.
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CHAPTER 2

CORRELATED COMPONENT SELECTION AND
SMOOTHING OPERATOR (COR-COSSO)

2.1 Introduction

In this dissertation research, our main purpose is to propose a nonparametric component se-

lection method suitable for correlated data. In nonparametric regression, it is well known

that the correlation in data affects the performances of tuning methods (Wang 1998b, Gu and

Han 2004). To handle this issue, the joint estimation of variance-covariance parameters and

smoothing parameters is recommended. However, the problem becomes more complicated

when variable selection is also involved. The popular nonparametric component selection

methods such as MARS and COSSO work mainly under the independent error assumption.

To our knowledge, very little work on nonparametric component selection methods which take

the correlation into account exists in the literature.

We propose a generalization of COSSO (Lin and Zhang, 2006; Zhang and Lin, 2006) by

taking the correlation into account. The new method is called the Correlated COSSO (Cor-

COSSO hereafter), which simultaneously conducts model estimation, component selection,
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smoothing and covariance parameters estimation. In particular, the Cor-COSSO solves the

penalized weighted least squares problem, with a soft-thresholding penalty on the functional

components which encourages sparse estimation, while taking data covariance structure into

account. The COSSO penalty functional is the sum of component norms instead of the squared

norms as it is in SS-ANOVA method.

In Section 2.2 of this chapter, we describe the formulation of our method in details. The

existence of the solution to Cor-COSSO minimization problem is proven. In order to facili-

tate the computation of the method, we present an alternative formulation which leads to an

efficient iterative algorithm to solve Correlated COSSO problem.

We propose four algorithms to solve the optimization problem associated with Cor-COSSO

in Section 2.3; three are based on the full iteration (including some variations), and one is

based on the one-step iteration. All algorithms use two stages: ESTIMATION and SELEC-

TION. The full iteration algorithms iterate between these two stages until convergence, while

the one-step algorithm solves both stages only once. A simulation study will be provided in

Section 5.2.2 to compare the effectiveness of these algorithms.

As in many nonparametric regression problems, the selection of the smoothing parameter

is crucial in Cor-COSSO. Section 2.3.2 is devoted to the discussion of smoothing parameter

selection. We cover a variety of tuning methods for the selection of tuning parameters. These

methods will be compared in Section 5.2.1 with a simulation study.
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2.2 Cor-COSSO: Method and Formulation

Consider the p-variate regression problem:

yi = f (xi)+ εi, i = 1, ...,n, (2.1)

with the additive error terms

ε = (ε1, ...,εn)T ∼ N(0,σ2W−1
τ ), (2.2)

where W−1
τ has a known correlation structure depending on a set of correlation parameters τ .

Define f =
(

f (x1), f (x2), . . . , f (xn)
)T

and y =
(

y1,y2, . . . ,yn

)T

. It is natural to consider the

penalized log likelihood of y:

n
2

logσ2− 1
2

log |Wτ |+ 1
2σ2 (y− f)TWτ(y− f)+nλJ( f ), (2.3)

where λ is a smoothing parameter, and Wτ is the inverse of error correlation matrix, and

the J( f ) is the penalty term. In the Correlated COSSO method, we use the penalty term

J( f ) = ∑q
j=1 ‖P j f‖ which is a sum of RKHS norms instead of the squared norms used in

SS-ANOVA.

With fixed σ2,τ,λ , Correlated COSSO method proposes to find f ∈ H by minimizing
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the penalized weighted least squares:

min
f∈H

1
2σ2 (y− f)TWτ(y− f)+nλ

q

∑
j=1
‖P j f‖. (2.4)

With regard to the variance covariance parameters (σ2,τ) and the smoothing parameter

(λ ), we propose to estimate them using Generalized Maximum Likelihood (GML) method.

One important feature of the Correlated COSSO is that, no matter how many components are

included in the model, the Correlated COSSO method has only one smoothing parameter. As

mentioned earlier, high dimensional tuning of smoothing parameters is a bottleneck for the

standard SS-ANOVA models. Here, Cor-COSSO overcomes this difficulty by its formulation.

2.2.1 Existence of Cor-COSSO Estimate

In the following part, we focus on (2.4), which assumes σ2,τ and λ are fixed. The existence

of the Correlated COSSO estimate is guaranteed by the following theorem.

Theorem 2.2.1 Let H be an RKHS of functions over an input space T . Assume that H can

be decomposed as:

H = [1]⊕H1 with H1 =⊕q
j=1H

j.

Then there exists a minimizer of (2.4) in H .

The proof of Theorem 2.2.1 will be included here for the completeness of the section. How-

ever, before going through the proof, we will need some extra notations and definitions.
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Notations and Definitions

Let RH1 be the reproducing kernel of H1 and < ·, · >H1 be the inner product in H1.

Let a =
{

∑n
i=1 RH1(xi,xi)

}1/2
. Define the eigen decomposition of W as W = LOLT where

O = diag
(
d1, . . . ,dn

)
, L : LTL = LLT = I.

Let d̃ = minn
i=1{di}, then d̃ > 0. Let zi = ∑n

j=1 l jiy j for i = 1,2, . . . ,n, where l ji is the jith

element of matrix L, and l̃ = minn
i=1

∣∣∣∑n
j=1 l ji

∣∣∣. Define ς = maxn
i=1

{
diz2

i + |zi|+1
}

.

We need the following two lemmas and a theorem from Tapia and Thompson (1978) in

order to prove Theorem 2.2.1. We will state the lemmas here and include the proofs at the

end of this section. The theorem from Tapia and Thompson (1978) will be included for the

completeness, however, the proof will be omitted.

LEMMA 2.2.1 Define f =
(

f (x1), f (x2), . . . , f (xn)
)T

and y =
(

y1,y2, . . . ,yn

)T

.

Let A( f ) = L(f)+ J( f ) where L(f) = 1
n

(
y− f

)T

W
(

y− f
)

and J( f ) = ∑q
j=1

∥∥P j f
∥∥.

Then A( f ) is convex and continuous.

LEMMA 2.2.2 Define D as following;

If l̃ = 0 then D =
{

f ∈H : f = b+ f1,b ∈ [1], f1 ∈H1,J( f )≤ ς
}

,

If l̃ > 0 then D =
{

f ∈H : f = b+ f1,b ∈ [1], f1 ∈H1,J( f )≤ ς , |b| ≤ 1
l̃
{ ς1/2√

d̃
+(1+

a)ς}
}

.

Then D is closed, bounded and convex.

Theorem 2.2.2 Theorem 4 from Tapia and Thompson (1978)
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Define the problem as:

minimize A( f ), subject to f ∈S

such that the functional A( f ) is convex and continuous, and S is closed, bounded and convex.

Then the problem has at least one minimizer in S .

Now we can proceed with the proof of Theorem 2.2.1.

Proof of Theorem 2.2.1

Let A( f ) = 1
2nσ2

(
y− f

)T

W
(

y− f
)

+λ ∑q
j=1

∥∥P j f
∥∥.

WLOG, let λ = 1 and σ2 = 1
2 . Remark that:

∑q
j=1

∥∥P j f
∥∥2 ≤

{
∑q

j=1

∥∥P j f
∥∥
}2

= J( f )2 ⇒ J( f )≥
∥∥ f

∥∥ ∀ f ∈H .

Let l ji be the jith element of matrix L defined previously in the eigen-decomposition of

W. Using the definition of reproducing kernel:

∣∣∣
n

∑
j=1

f1(x j)l ji

∣∣∣ ≤
∣∣ n

∑
j=1

〈
f1(·),RH1(x j, ·)

〉
H1

l ji
∣∣

≤
√

n

∑
j=1

〈
f1(·),RH1(x j, ·)

〉2
H1

√
n

∑
j=1

l2
ji

≤
∥∥ f1

∥∥
√

n

∑
j=1

RH1(x j,x j)

≤ aJ( f ),
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where a is defined as earlier a =
{

∑n
j=1 RH1(x j,x j)

}1/2
, and

〈·, ·〉
H1

represents the inner

product of H1. In second line of the equation above, we used the fact that ∑n
j=1 l2

ji = 1 since

LLT = I.

Now, define the set D as: if l̃ = 0 then D =
{

f ∈H : f = b+ f1,b ∈ [1], f1 ∈H1,J( f )≤

ς
}

, else if l̃ > 0 then D =
{

f ∈H : f = b + f1,b ∈ [1], f1 ∈H1,J( f ) ≤ ς , |b| ≤ 1
l̃
{ ς1/2√

d̃
+

(1 + a)ς}
}

. From Lemma 2.2.2, in either case D is closed, convex and bounded, and from

Lemma 2.2.1, A( f ) is convex and continuous. Following Theorem 4 of Tapia and Thompson

(1978), there exists a minimizer of A( f ) in D . Lets call this minimizer as f̄ .

Until this point, we have shown that there exists a minimizer of A( f ) in D , however, we

need to show this is the minimizer in H as well. In other words, we still need to show that

A( f̄ ) < A( f ) for any f ∈H −D .

Remark that {0} ∈D . Then A( f̄ )≤ A(0) = 1
n ∑n

i=1 diz2
i < ς .

For any f ∈ H and J( f ) > ς , obviously A( f ) ≥ J( f ) > ς > A( f̄ ). If J( f ) ≤ ς and

|b|> 1
l̃
K, where K = ς1/2√

d̃
+(1+a)ς , then for each i = 1,2, . . . ,n:

√
di

∣∣∣zi−b
( n

∑
j=1

l ji

)
−

n

∑
j=1

l ji f1(x j)
∣∣∣ ≥

√
di

(∣∣∣b
∣∣∣
∣∣∣

n

∑
j=1

l ji

∣∣∣−
∣∣∣zi

∣∣∣−
∣∣∣

n

∑
j=1

l ji f1(x j)
∣∣∣
)

>
√

di

({ς1/2
√

d̃
+(1+a)ς

}
∣∣∣∑n

j=1 l ji

∣∣∣
l̃

− (1+a)ς

)

≥
√

di

(
ς1/2
√

d̃
+(1+a)ς − (1+a)ς

)

=

√
di

d̃
√

ς ≥√ς .
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In the inequalities above, the first line uses
∣∣a−b− c

∣∣≥
∣∣a

∣∣−
∣∣b

∣∣−
∣∣c

∣∣, while going from the

first to second line, we use
∣∣b

∣∣ > K
l̃
,
∣∣zi

∣∣ < ς and
∣∣∣∑n

j=1 l ji f (x j)
∣∣∣≤ aJ( f )≤ aς . The third line

follows from

∣∣∣∑n
j=1 l ji

∣∣∣
l̃

≥ 1, and the fourth line follows from di
d̃
≥ 1.

Consider A( f ) now:

A( f )≥ L(f) =
1
n

(
y− f

)T

W
(

y− f
)

=
1
n

(
y− f

)T

LOLT
(

y− f
)

=
1
n

n

∑
i=1

{
di

(
n

∑
j=1

l jiy j−b
( n

∑
j=1

li j

)
−

n

∑
j=1

li j f1(x j)

)2}

≥
n

min
i=1

{
di

(
zi−b

( n

∑
j=1

li j

)
−

n

∑
j=1

li j f1(x j)

)2}

≥ √
ς2 = ς

> A( f̄ ).

Here we use the W = LOLT decomposition passing from the first line to second and decom-

pose the matrix format for the third line. The forth line uses the fact that the average of positive

numbers will be greater than or equal to the minimum of the same set of numbers. Since every

di > 0, we can write this inequality. The fifth line uses the inequality we just showed above.

Therefore, f̄ is the minimizer of A( f ) in H , hence the proof holds.
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2.2.2 Finite Dimensional Representation of Cor-COSSO Estimate

Theorem 2.2.1 guarantees that there exists a solution to (2.4). Now we would like to show that

the solution can be estimated in a finite dimensional space, i.e., there exists a finite dimensional

representation of the solution. The following theorem proves that, for any fixed σ2,τ,λ , the

solution to (2.4) lies in a finite dimensional space. This result is parallel to the representer

theorem from smoothing splines (Kimeldorf and Wahba, 1971).

Theorem 2.2.3 For any fixed τ,σ2 and λ , let the minimizer of (2.4) be f̂ = d̂ +∑q
j=1 f̂ j, with

f̂ j ∈ H j. Then f̂ j ∈ span{R j(xi, ·), i = 1, ...,n}, where R j(·, ·) is the reproducing kernel of

H j.

Proof of Theorem 2.2.3 Define the reparameterized objective function of (2.4) as A( f ) =

1
n(y− f)TWτ(y− f) + λ ∗∑q

j=1 ‖P j f‖ with λ ∗ = 2σ2λ . For any f ∈ H , we can write f =

d +∑q
j=1 f j with f j ∈H j. Let the projection of f j onto span

{
R j

(
xi, ·

)
, i = 1, ...,n

}
⊂H j be

denoted by g j, and the orthogonal complement by h j. Then:

f j = g j +h j, and
∥∥ f j

∥∥2 =
∥∥g j

∥∥2 +
∥∥h j

∥∥2
, j = 1 . . . ,q.
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Define the inner product in H as
〈·, ·〉

H
. Remark that the reproducing kernel for H is

R(·, ·) = 1+∑q
j=1 R j(·, ·), and:

f
(
xi

)
=

〈
R
(
xi, ·), f (·)〉 =

〈
1+

q

∑
j=1

R j,d +
q

∑
j=1

f j
〉
H

=
〈
1+

q

∑
j=1

R j,d +
q

∑
j=1

{
g j +h j

}〉
H

=
〈
1,d

〉
H

+
q

∑
j=1

〈
1,

{
g j +h j

}〉
H

+
q

∑
j=1

〈
R j

(
xi, ·

)
,d

〉
H

+
q

∑
j=1

q

∑
k=1

〈
R j

(
xi, ·

)
,gk

〉
H

+
q

∑
j=1

q

∑
k=1

〈
R j

(
xi, ·

)
,hk

〉
H

= d +0+0+
q

∑
j=1

〈
R j

(
xi, ·

)
,g j

〉
H

+0

= d +
q

∑
j=1

〈
R j

(
xi, ·),g j

〉
H

Therefore, we can re-express the objective function A( f ) as:

1
n

(
y−d1−

q

∑
j=1

〈
R j

(
xi, ·

)
,g j

〉
H

)T

Wτ

(
y−d1−

q

∑
j=1

〈
R j

(
xi, ·

)
,g j

〉
H

)
+λ ∗

q

∑
j=1

{∥∥g j
∥∥2+‖h j‖2

}1/2
.

The right part of the equation is strictly positive, and the h j is not included in the left part.

Hence, any minimizing f satisfies h j = 0∀ j = 1, . . . ,q, and the proof follows.

2.2.3 Equivalent Formulation

We have shown with Theorem 2.2.1 that the solution to Cor-COSSO exists, and with Theorem

2.2.3 that the solution has a finite dimensional representation. It is possible to directly compute
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the solution to (2.4) using this theorem. However, the optimization in this formulation is a hard

minimization problem. Next, we present an equivalent formulation of (2.4), which will lead

to an iterative algorithm.

Define θ = (θ1, ...,θq)T and let 0 be the vector of zeros. Consider the penalized weighted

least squares objective function with the new penalty term:

1
2σ2 (y− f)TWτ(y− f)+nλ0

q

∑
j=1

θ−1
j ‖P j f‖2 +nλ1

q

∑
j=1

θ j, (2.5)

where λ0 > 0 is a constant and λ1 is a smoothing parameter. The following lemma shows that

(2.4) and (2.5) are two equivalent formulations for the Correlated COSSO.

LEMMA 2.2.3 Set λ = 2
√

λ0λ1. If f̂ minimizes (2.4), set θ̂ j =
√

λ0
λ1
‖P j f̂‖, and then (θ̂ , f̂ )

minimizes (2.5). On the other hand, if (θ̂ , f̂ ) minimizes (2.5), then f̂ minimizes (2.4). There-

fore, solving (2.4) and solving (2.5) are equivalent.

Proof of Lemma 2.2.3

Denote the functional in (2.4) as D( f ) = 1
2σ2 (y− f)TWτ(y− f)+ nλ ∑q

j=1 ‖P j f‖, and the

functional in (2.5) as B( f ,θ) = 1
2σ2 (y− f)TWτ(y− f) + nλ0 ∑q

j=1 θ−1
j ‖P j f‖2 + nλ1 ∑q

j=1 θ j.

We need to show that:

λ
q

∑
j=1
‖P j f‖= λ0

q

∑
j=1

θ−1
j ‖P j f‖2 +λ1

q

∑
j=1

θ j

to complete the proof.
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We will use the inequality a+b≥ 2
√

ab for any a,b≥ 0, and equality holds if and only if

a = b in this proof. Hence, in our case, set a = λ0 ∑q
j=1 θ−1

j ‖P j f‖2, and b = λ1 ∑q
j=1 θ j. Then,

a+b = λ ∑q
j=1 ‖P j f‖= 2

√
λ0 ∑q

j=1 θ−1
j ‖P j f‖2

√
λ1 ∑q

j=1 θ j. For each j = 1, . . . ,q:

λ‖P j f‖ = 2
√

λ0θ−1
j ‖P j f‖2

√
λ1θ j

= 2
√

λ0λ1θ−1
j θ j‖P j f‖2

= 2
√

λ0λ1‖P j f‖.

Set λ = 2
√

λ0λ1. We need to set the θ j’s such that the inequality a = b will hold. In other

words, we need λ0 ∑q
j=1 θ−1

j ‖P j f‖2 = λ1 ∑q
j=1 θ j. For each j = 1, . . . ,q:

λ0θ−1
j ‖P j f‖2 = λ1θ j

θ 2
j =

λ0

λ1
‖P j f‖2

⇒ θ j =

√
λ0

λ1
‖P j f‖.

Set each θ j =
√

λ0
λ1
‖P j f‖, then the proof of lemma follows.

We would like to emphasize an important issue about the θ ’s at this step. The main pur-

pose of these θ j’s in smoothing spline ANOVA models are to scale the penalization of each

component in the model. They are called smoothing parameters, and a careful selection of

these parameters is crucial in order to provide a good SS-ANOVA estimate. As mentioned

earlier in the introduction chapter, the selection of these parameters is a primary bottleneck in
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front of these methods. A good amount of literature is devoted to this issue. Some methods

suffer from large dimensional grid search, while others recommend estimation of these pa-

rameters simultaneously. Especially in correlated data situations, estimation of the smoothing

parameters and the covariance parameters simultaneously is recommended. One approach to

overcome this issue is to use the linear mixed effects model representation which is discussed

in Section 1.5.3; however, these methods have the disadvantage of curse of dimensionality.

The main problem with the latter methods is the large number of random effects to be fitted

which depends on how many components are included in the model.

In Correlated COSSO method, these θ j parameters are important for both scaling the

roughness penalties for different components and controlling the selection of components.

One should remark that the form of (2.5) looks similar to a SS-ANOVA model with multi-

ple smoothing parameters except that θ ’s are fixed rates to be estimated rather than a set of

smoothing parameters. A clever algorithm will be provided in the next section to find the so-

lution to (2.5). The algorithm estimates the set of θ parameters directly, hence no tuning will

be necessary for these fixed rates. In addition, the formulation includes an extra penalty term

for the set of θ parameters. This extra penalization shrinks these parameters towards zero, and

hence provides sparse solution. The model sparsity follows the sparsity of these parameters,

since for any j, if θ̂ j = 0 then the corresponding component will disappear from the model.

We also remark that λ0 is a constant, which can be fixed at any positive value. The reason

for λ0 being included in the formulation is that it helps to apply a natural scale to the smoothing

parameter (λ1), hence stabilizes the computation. The only smoothing parameter in the Cor-
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COSSO is λ1. The methods to be used to tune this parameter will be discussed in Section

2.3.2.

2.3 Computation of Cor-COSSO

In the previous two sections of this chapter, we formalize the Correlated COSSO method by

defining the objective function explicitly and its equivalent formulation. In this section we

propose the iterative algorithms for the computation of Correlated COSSO.

For fixed θ ,τ,λ0,λ1, Theorem 2.2.3 states that the minimizer of (2.5) has the form:

f (x) = d +
n

∑
i=1

ciRθ (xi,x),

where Rθ (·, ·) = ∑q
j=1 θ jR j(·, ·) and R j(·, ·) is the reproducing kernel of H j as defined pre-

viously. With some abuse of notation, we use R j for the matrix {R j(xi,xi′)}n
i,i′=1. Let c =

(c1, ...,cn)T, f j =
(

f j(x
( j)
1 ), ..., f j(x

( j)
n ))

)T

, and f = ( f (x1), ..., f (xn))T. Let 1 be the vector of

ones of length n. Then we have:

f j = θ jR jc, f = 1d +
q

∑
j=1

f j = 1d +Rθ c,

and the penalty term
q

∑
j=1

θ−1
j ‖P j f‖2 =

q

∑
j=1

θ jcTR jc = cTRθ c.

46



Therefore the Correlated COSSO problem in (2.5) becomes:

1
2σ2 (y−1d−Rθ c)TWτ(y−1d−Rθ c)+nλ0cTRθ c+nλ11T

qθ . (2.6)

2.3.1 Cor-COSSO Algorithms with Fixed Tuning Parameters

The objective function of Cor-COSSO (2.6) can be minimized with respect to all the parame-

ters c,d,θ ,σ2 and τ jointly. However, we propose an iterative approach by taking advantage

of existing software packages. For this moment, assume the tuning parameter λ1 is fixed.

We propose to minimize (2.6) with the two following stages:

1. ESTIMATION Stage: With θ fixed, solve (d,c,τ,σ2) using the following procedure.

With (σ2,τ,λ0) fixed, we solve penalized weighted least squares problem:

min
d,c,

1
2σ2 (y−1d−Rθ c)T Wτ (y−1d−Rθ c)+nλ0cTRθ c.

We treat (σ2,τ,λ0) as variance components, and estimate them using Generalized Max-

imum Likelihood method. Simultaneous estimation of these parameters is done with

linear mixed model connection.

Define the solution as (d̂, ĉ, τ̂, σ̂2).

2. SELECTION Stage: Let λ ∗0 = 2λ0σ2. With (d,c,τ,σ2) fixed at (d̂, ĉ, τ̂ , σ̂2), the solu-
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tions from ESTIMATION stage, solve the optimization problem for θ :

min
θ

(
y−1d̂−Rθ ĉ

)T Wτ̂
(
y−1d̂−Rθ ĉ

)
+nλ ∗0 ĉTRθ ĉ

subject to ∑q
j=1 θ j ≤M, θ j ≥ 0, j = 1, . . . ,q.

Here M ≥ 0 is the tuning parameter, which is one-to-one corresponding to λ1. Let us take a

closer look at both stages.

ESTIMATION Stage:

In the ESTIMATION stage, we fix θ , therefore the third quantity in (2.6) becomes irrelevant.

Absorbing σ2 to the smoothing parameter when σ2 and τ are fixed, the Correlated COSSO

minimization problem (2.6) becomes:

min
d,c

(y−1d−Rθ c)T Wτ (y−1d−Rθ c)+nλ ∗0 cTRθ c, (2.7)

where λ ∗0 = 2λ0σ2.

A closer look at this equation will reveal that this is not different from a traditional smooth-

ing spline ANOVA formulation. Besides, since the θ j’s are fixed, we only have one smooth-

ing parameter (λ ∗0 ) in the formulation. This will automatically reduce the multidimensional

smoothing parameter selection problem to a one dimensional problem.

Now we should make an important remark about λ ∗0 . In the original formulation of Cor-
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COSSO, it is stated that this parameter can be fixed at any positive constant. On the other

hand, we would like to select this positive constant properly in order to find a consistent range

of λ1 for tuning. Therefore, in practice, we recommend to adaptively choose the λ ∗0 in the

ESTIMATION stage. This parameter will be treated as a variance component at this stage,

and will be estimated using a linear mixed model representation, which will be covered next.

We use the penalized weighted least squares approach to estimate the functional com-

ponents in SS-ANOVA problem. The representer theorem of Kimeldorf and Wahba (1971)

guarantees that the SS-ANOVA solution f̂ = 1d̂ + Rθ ĉ has a finite dimensional representa-

tion. Taking the derivatives of (2.7) with respect to d and c and equating them to 0 give the

following equation system to find d̂ and ĉ:

1TWτRθ c+1TWτ1d = 1TWτy,

(
RT

θ WτRθ +nλ ∗0 Rθ
)

c+RT
θ Wτ1d = RT

θ Wτy.

(2.8)

In order to estimate the variance-covariance parameters (σ2,τ) and the smoothing parameter

(λ ∗0 ) simultaneously, we recommend using the GML approach, which is presented in Section

1.5.2.

Consider the following linear mixed effects model:

y = 1d +u+ ε, (2.9)

where u∼N
(
0,σ2Rθ/(nλ ∗0 )

)
and ε ∼N

(
0,σ2W−1

τ
)
. Fixed and random effects of the model
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(2.9) is estimated using Equation (3.3) of Harville (1977). The so called mixed model normal

equations gives the following matrix solution:




1TWτ1 1TWτRθ

Rθ Wτ1 Rθ WτRθ +nλ ∗0 Rθ







d

c


 =




1TWτy

Rθ Wτy


 . (2.10)

The equation system above is identical to that in (2.8). In other words, the fixed effect esti-

mates for d̂ are the same, while the random effects predictions (û) can be used to calculate ĉ;

i.e., ĉ = R−1
θ û. Therefore, the SS-ANOVA estimate f̂ = 1d̂ +Rθ ĉ is the Best Linear Unbiased

Predictions (BLUPs) from the linear mixed effects model. Following the discussion on the

connection between the Generalized Maximum Likelihood (GML) method and the Restricted

Maximum Likelihood (REML) estimate of the mixed model representation, the covariance

parameters (λ ∗0 ,σ2,τ) in (2.9) are estimated with the REML method.

In summary, we use the linear mixed effects model to solve the induced smoothing spline

ANOVA problem when θ j’s are fixed in Correlated COSSO model. The purpose of using

the linear mixed effects model representation is to benefit from the advanced theory and the

computational power of these models. For example, this representation lets us use the standard

commercial statistical software (such as SAS, S-Plus etc.) to solve the minimization problem

in ESTIMATION stage. We implement a SAS macro which uses the SAS Proc Mixed software

in our numerical analysis.

Another advantage of using the mixed model representation is that the variance compo-
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nents (τ,σ2 and λ ∗0 ) can be estimated by REstricted Maximum Likelihood (REML) method

(Wang, 1998b; Opsomer, Wang, and Yang, 2001). This variance component estimation pro-

vides the main motivation for Generalized Maximum Likelihood (GML) as a selection crite-

rion for parameters. GML is shown to have superior performance compared to Unbiased Risk

(UBR), Generalized Cross Validation (GCV), L method with numerous simulation results by

Wang (1998b). We will follow the recommendations from these simulation examples, and

use GML for estimating λ ∗0 . A more detailed explanation of smoothing parameter selection

methods in correlated data situations will be discussed in Section 1.5.2.

There are n random effects to be estimated in the mixed model in the ESTIMATION stage.

The important point is that, the number of random effects does not depend on the number of

components in the model, which is a substantial improvement compared to the SS-ANOVA

recommended in Wang (1998b). Note in the traditional SS-ANOVA formulation, there are

totally nq random effects, n being the sample size and q being the number of components in

the model. This number can increase quickly in a large dimensional dataset, and it also inflates

the computational time. By contrast, the computation time of the Cor-COSSO is not affected

as much by the number of explanatory variables. This is a desired property especially for high

dimensional regression and variable selection problems. Even though the primary objective of

the analysis is not variable selection, the Correlated COSSO method can be applied to solve

the multi-dimensional tuning issue without estimating a large number of random effects as in

smoothing spline estimation.

51



SELECTION Stage:

In this step, the function estimate d̂, ĉ and the variance-covariance parameters are fixed at their

current values, and the minimization takes place over θ parameters. Let λ ∗0 = 2λ0σ2. When

(d̂, ĉ, τ̂, σ̂2) are fixed at the solutions of the ESTIMATION stage, the equivalent formulation

to Correlated COSSO becomes:

min
θ

(
y−1d̂−Rθ ĉ

)T Wτ̂
(
y−1d̂−Rθ ĉ

)
+nλ ∗0 ĉTRθ ĉ (2.11)

subject to ∑q
j=1 θ j ≤M,θ j ≥ 0, j = 1, . . . ,q.

Denote g j = R jĉ for j = 1, . . . ,q, G as an n×q matrix with jth column being g j, equation

(2.11) can be written as:

min
θ

1
2

θ T
[
GTWτ̂G

]
θ −

[(
y−1d̂

)T Wτ̂ −nλ ∗0 /2ĉT
]
Gθ ,

subject to
q

∑
j=1

θ j ≤M, θ j ≥ 0, j = 1, . . . ,q. (2.12)

The objective function in minimization problem in (2.12) is quadratic in θ , and the optimiza-

tion is made under linear constraints and can be rephrased as:

min
θ

1
2

θ THθ +aTθ , subject to 1Tθ ≤M, θ j ≥ 0, j = 1, . . . ,q, (2.13)

where, H = GTWτ̂G, and a = GT
[
(nλ ∗0 /2)ĉ−Wτ̂(y− 1d̂)

]
. This is the Quadratic Program-
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ming (QP) problem, and many algorithms can provide efficient solutions. In practice, we used

a SAS Proc IML routine qp to solve the SELECTION stage.

In the remaining part of this section, we provide several algorithms to compute Correlated

COSSO solutions. The two stages (ESTIMATION and SELECTION) is implemented in all

of these algorithms iteratively. Careful readers will notice that the smoothing parameter λ1 is

reparameterized into another smoothing parameter M. They are actually equivalent, and we

will discuss this issue in Section 2.3.2.

2.3.1.1 Full Iteration Algorithm

The main idea in Full Iteration Cor-COSSO algorithm is to iterate between ESTIMATION

and SELECTION stages until convergence. At the initial step, we will start from a very basic

model, where all θ j’s are fixed at 1. The iteration will be continued until the convergence is

achieved. The convergence criteria is based on the sum of squared θ j differences in successive

steps. Namely:

Stop at iteration ”k” if
q

∑
j=1

∣∣∣θ̂ (k)
j − θ̂ (k−1)

j

∣∣∣ < δ , (2.14)

where δ > 0 is a prechosen small positive number, and θ̂ (k)
j is the value of θ j at the kth iteration.

The convergence criterion can be adjusted using δ .

For a fixed M, the full iteration Cor-COSSO algorithm is following:

1. Fix θ̂ j = 1, for j = 1, . . . ,q.
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2. Solve (2.7) for c,d,τ,σ and λ ∗0 using the ESTIMATION stage.

3. With fixed ĉ, d̂, τ̂, σ̂ and λ ∗0 in step 2, solve for θ̂ using (2.12).

4. Iterate between steps 2 and 3 until convergence.

In practice we have encountered some problems with the full iteration Correlated COSSO

algorithm. First of all, the first iteration already provides very good results, and the difference

between the iterations is observed to be slow after this first step. We believe the main reason is

that, we start with a good estimate, the smoothing spline solution, which makes the first update

to be a good solution. Motivated by this, one alternative algorithm, the one-step algorithm is

presented in Section 2.3.1.4.

Another computational problem we empirically observed is that, the final solution is not

sparse for the full iteration algorithm. Starting from the second iteration, the estimates for

some θ j’s are tiny, but not exactly zero. Although the corresponding components have minimal

effect on the model estimation, these components can not be completely excluded from the

model. We therefore propose the following two algorithms, which can further “sparsify” the

solution from the full iteration Correlated COSSO algorithm.

2.3.1.2 Full Iteration Algorithm with Truncation

We note that the parameter θ j controls the sparsity of each component f j in the Correlated

COSSO. The minimization problem (2.6) applies a shrinkage penalty ∑q
j=1 θ j, which shrinks

them towards zero. If for some j, θ̂ j = 0, then the corresponding component ( f̂ j) disappears
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from the model. However, in simulation studies on full iteration algorithm, we noticed that

some θ̂ j parameters are estimated very close to zero, although not exact zeros due to numerical

reasons. We recommend using truncation at the end of the full iteration Correlated COSSO

algorithm. The full iteration algorithm with truncation goes through steps 1-4 of the full

iteration algorithm, and uses a threshold to truncate small θ j’s to exact zeros. The steps of this

algorithm are following:

1. Go through Step1 to Step 4 in full iteration Correlated COSSO algorithm.

2. If θ̂ j < δ0 ⇒ Set θ̂ j = 0.

δ0 can be selected as any small positive number. We use δ0 = 0.001 throughout this

dissertation research.

2.3.1.3 Step-Down Algorithm

An alternative approach to resolve the non-sparsity issue of the full iteration algorithm is the

Step-Down algorithm. We have observed that, most of the small θ j parameters are actually

exact zeros in the earlier iterations. So at each step, we may remove the components whose

corresponding θ j is estimated as exactly 0. The full description of the algorithm is following:

1. Fix θ̂ j = 1, for j = 1, . . . ,q.

2. Solve (2.7) for c,d,τ,σ and λ ∗0 using the ESTIMATION stage.
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3. With fixed ĉ, d̂, τ̂, σ̂ and λ ∗0 in step 2, solve for θ̂ using (2.12). If some θ̂ j = 0, then

remove the corresponding component from the model.

4. Iterate between steps 2 and 3 until convergence.

In practice, both truncated full iteration and step-down algorithms offer sparse solutions,

hence they are practical alternatives to the full iteration algorithm. All three algorithms men-

tioned iterate between ESTIMATION and SELECTION stages until convergence, hence might

take a long time for the Correlated COSSO model to be estimated. The following section of-

fers an approximate algorithm which can decrease the computation time considerably.

2.3.1.4 One-Step Update Algorithm

As mentioned above, although the convergence for the variations of full iteration algorithm

can be achieved in several iteration steps, the computation time might be an issue. In simu-

lation studies, we empirically observed that the objective function of (2.6) drops drastically

in the first iteration, but after this step, the solution change is not very substantial. A similar

observation was made by Lin and Zhang (2006) and Zhang and Lin (2006) in the original

COSSO work as well. Based on this, we propose the following one-step update algorithm as

an alternative:

1. Fix θ̂ j = 1, for j = 1, . . . ,q.

2. Solve (2.7) for c,d,τ,σ and λ ∗0 using the ESTIMATION stage.
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3. With fixed ĉ, d̂, τ̂, σ̂ and λ ∗0 in step 2, solve for θ̂ using (2.12).

4. With the new θ̂ , solve for the correlated SS-ANOVA using the ESTIMATION stage

optimization.

Since the non-sparsity issue of the full iteration Correlated COSSO algorithm usually oc-

curs after the second step, the one-step update algorithm does not have the non-sparsity issue.

The four algorithm mentioned above will be compared in a simulation study in Section

5.2.2. Based on the discussion in this simulation study, we recommend using the One-Step

Update algorithm because of its advantages in computation time and sparsity, with comparably

good performance with the full iteration algorithms.

All four algorithms mentioned above assume a fixed M. The smoothing parameter M

controls the number of variables appearing in the final model, so it should be tuned carefully

to achieve a parsimonious but sufficient model. Inside the algorithm, another parameter λ ∗0

is fixed at a positive constant. However, we recommend to estimate this parameter using

Restricted Maximum Likelihood estimation. This corresponds to the GML method (see Wang

1998b). Selection of parameters λ ∗0 and M is discussed in the next section.

2.3.2 Smoothing Parameter Selection

The prediction performance of any nonparametric regression estimate depends heavily on the

choice of smoothing parameters. As an example, the smoothing spline fit might range from

an interpolation to a fully parametric fit based on the choice of the tuning parameter. In the
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Correlated COSSO, the optimal choice of smoothing parameters is important to assure a good

model fit and component selection performance.

In nonparametric regression literature, several tuning criteria have been proposed and

widely used, including Cross Validation (CV), Generalized Cross Validation (GCV, Craven

and Wahba 1979), Unbiased Risk (UBR). However, these methods break down in the pres-

ence of correlation between errors (Altman, 1990; Diggle and Hutchinson, 1989; Opsomer,

Wang, and Yang, 2001; Gu and Han, 2004). An alternative L method is recommended by Dig-

gle and Hutchinson (1989). Extensions of GCV and UBR were proposed in Wang (1998b).

An extension of Generalized Maximum Likelihood (GML) criterion of Wahba (1985) to cor-

related data is studied by both Wang (1998b) and Opsomer, Wang, and Yang (2001). Treating

the smoothing parameter as a variance component and estimating them via Restricted Max-

imum Likelihood (REML) from the mixed model estimation makes the GML an appealing

procedure (Wang, 1998b).

Two parameters to be selected in Correlated COSSO method are λ ∗0 and M. In theory, λ ∗0

can be fixed at any positive constant, however, for computational purposes, we estimate this

parameter in the ESTIMATION stage. The parameter M plays the most important role for

both model estimation and variable selection. We recommend using a grid-search for M in the

range of 0 to q, where q is the number of components in the full model.
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2.3.2.1 Selection of Parameter for Model Smoothing

At the ESTIMATION stage of the Correlated COSSO algorithm, we essentially fit a SS-

ANOVA model (with fixed values of θ ’s). In this formulation, λ ∗0 is the only smoothing

parameter to be selected. We recommend to treat λ ∗0 as a variance component and estimate

it with other variance-covariance parameters altogether (Wang, 1998b; Opsomer, Wang, and

Yang, 2001).

Throughout this dissertation research, we use GML for selecting λ ∗0 . The GML method

is suggested by Wang (1998b) and Opsomer, Wang, and Yang (2001). One advantage of the

GML method is that it treats λ ∗0 as a variance component and automatically estimates it in

the mixed model framework. Based on Section 1.5.2, the GML estimators of the variance

components τ and λ ∗0 for the ESTIMATION step (2.7) are the minimizers of:

M(τ,λ ∗0 ) =
yTWτ (I−A)y

[det+ (Wτ (I−A))]
1

n−1
, (2.15)

where det+ is the product of nonzero eigenvalues, and A is the hat or influence matrix of

SS-ANOVA model defined as:

A = I−nλ ∗0 W−1
τ Q2

[
QT

2(Rθ +nλ ∗0 W−1
τ )Q2

]−1
QT

2.

Other tuning criteria such as GCV, UBR or L-method can also be used to tune λ ∗0 in SS-

ANOVA model. However, these methods require knowledge of σ2 and τ , hence they do not
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estimate these parameters simultaneously with λ ∗0 . Moreover, a grid search on λ ∗0 is needed

for the other methods. Wang (1998b) conducted a simulation study to compare these methods

with GML for tuning λ ∗0 and found that GML outperformed all other methods. Therefore, we

follow the recommendations from Wang (1998b), and use GML method to estimate λ ∗0 .

2.3.2.2 Selection of Parameter for Model Sparsity

The smoothing parameter M is fixed when we describe the computational algorithms in the

previous section. M is a positive constant controlling the number of components included in

the model. Therefore, the proper selection of this parameter is crucial for both model accuracy

and variable selection performance. Now we propose various tuning criteria including the

UBR, GCV and WMSE (Wang, 1998b), and L method from Diggle and Hutchinson (1989) to

tune M. These methods will be compared with a simulation study in Section 5.2.1.

The weighted mean squared errors (WMSE) is defined as:

Tk =
1
n
(f̂− f)TWk

τ(f̂− f) =
1
n
‖Wk/2

τ (f̂− f)‖, k = 0,1,2,

where k can be considered as the parameter to control the contribution of the covariance struc-

ture to model tuning. Remark that if k = 0, then we treat the data as independent.

One important caveat of WMSE methods is that, its calculation requires the knowledge of

the regression function ( f ). This information is however seldom available for real data sets. In

simulation studies, since we know the real data generating process, we can calculate WMSE.
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This motivates us to find an unbiased estimate of Tk.

Plugging f̂ = Ay, the expected value of the WMSE can be computed as:

ETk =
1
n

fT(I−AT)Wk
τ(I−A)f+

σ2

n
Tr(ATWk

τAW−1
τ ), k = 0,1,2.

An unbiased estimate of ETk is then given by:

Uk =
1
n

yT(I−AT)Wk
τ(I−A)y− σ2

n
Tr(Wk−1

τ )+2
σ2

n
Tr(Wk−1

τ A), k = 0,1,2. (2.16)

Here Uk’s are called the Unbiased Risk (UBR) scores, and can be used as an alternative criteria

to choose the smoothing parameter M.

Another popular method to tune M is the Generalized Cross Validation (GCV, Craven and

Wahba 1979). In particular, define:

GCVk =
1
n‖Wk/2

τ (I−A)y‖2

[1
nTr(Wk−1

τ (I−A))]2
, k = 0,1,2. (2.17)

The estimate of M which minimizes GCVk is called the GCV estimate.

The last method for tuning M is from Diggle and Hutchinson (1989) and will be referred

to as the L method. This method requires the minimization of the following L function:

L = n log [yT(I−AT)Wτ(I−A)y]+ log |W−1
τ |+ log(n)TrA. (2.18)
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As a summary, in this section we mention about four tuning criteria (GML, UBR, WMSE

and L). Except the L method, all three criterion have variations which adjust for the correla-

tion structure in the dataset. In other words, the criteria WMSE, UBR and GCV have three

versions (k = 0,1,2). The WMSE criteria requires the knowledge of the regression function

that generates the data, which makes this criteria unavailable for practice. Also UBR requires

the knowledge of σ2, which can be estimated using the residuals.

In order to compare the performances of these criteria, we present several simulation stud-

ies in Section 5.2.1. Our results show that L method works the best in most cases. We suggest

using this criteria for tuning M in practice.

2.3.3 Complete Algorithm for Cor-COSSO

The following is the complete algorithm for the Correlated COSSO method. Users have the

flexibility to select from four computation algorithms (Full Iteration w/o truncation, step-

down, one-step update), and from four types of tuning criteria (WMSEk, GCVk, UBRk and

L) for M.

1. Fix θ̂ j = 1, for j = 1, . . . ,q.

2. Solve (2.7) for ĉ, d̂, τ̂, σ̂ and λ ∗0 using the ESTIMATION stage. Fix λ ∗0 for the rest of

the algorithm.

3. For each value in a reasonable grid of M, fix this parameter.
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4. Use the algorithms above (full iteration, full iteration with truncation, step-down, one-

step update) to fit Cor-COSSO model.

5. Calculate the tuning score of the selected tuning criterion.

6. Repeat steps 4 and 5 for the whole tuning grid of M.

7. Find the minimal tuning score. The corresponding solution is the Correlated COSSO

estimate.

One important decision in this algorithm is how to select the range and grid of M for

tuning. The estimation of λ ∗0 parameter is important especially for this point. The adaptive

selection of this parameter in ESTIMATION stage provides an easily definable range for M.

We recommend tuning M in the range from 0 to q, where q is the number of components in

the full model. We use the positive integers within this range as the grid for tuning.
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APPENDIX

64



Proof of Lemma 2.2.1

a. Continuity: We define the convergence as convergence by the norm i.e., fn → f means

‖ fn → f‖→ 0.

Let fn, f ∈H and fn → f as n→ ∞. Then we need to show
∣∣∣A( fn)−A( f )

∣∣∣→ 0.

Consider L(·);

∣∣∣L( fn)−L( f )
∣∣∣ =

∣∣∣∣∣
1
n

(
y− fn

)T

W
(

y− fn

)
− 1

n

(
y− f

)T

W
(

y− f
)∣∣∣∣∣

=

∣∣∣∣∣
1
n

(
f− fn

)T

W
(

f− fn

)∣∣∣∣∣→ 0

as fn → f. Now consider J( f );

∣∣∣∣∣
q

∑
j=1

∥∥P j fn
∥∥−

q

∑
j=1

∥∥P j f
∥∥
∣∣∣∣∣ =

∣∣∣∣∣
q

∑
j=1

(∥∥P j fn
∥∥−

∥∥P j f
∥∥
)∣∣∣∣∣

≤
∣∣∣∣∣

q

∑
j=1

(∥∥P j fn−P j f
∥∥
)∣∣∣∣∣

=

∣∣∣∣∣
q

∑
j=1

(∥∥P j( fn− f )
∥∥
)∣∣∣∣∣→ 0

as fn → f .

Therefore
∣∣∣A( f )−A( fn)

∣∣∣ =
∣∣∣L(f)+ J( f )−L(fn)− J( fn)

∣∣∣→ 0, hence A( f ) is continuous.
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b. Convexity: L(f) is convex because, ∂ 2L(f)
∂ f2 = 2

nW is positive definite. In order to prove

the convexity of A( f ), we need to show that

J
(

α f +(1−α)g
)
≤ αJ( f )+(1−α)J(g)

for any 0≤ α ≤ 1.

q

∑
j=1

∥∥∥P j{α f +(1−α)g
}∥∥∥ =

q

∑
j=1

∥∥∥αP j( f )+(1−α)P j(g)
∥∥∥

≤
q

∑
j=1

{
α

∥∥P j f
∥∥+(1−α)

∥∥P jg
∥∥
}

= α
q

∑
j=1

∥∥P j f
∥∥+(1−α)

q

∑
j=1

∥∥P jg
∥∥

= αJ( f )+(1−α)J(g).

Therefore, A( f ) = L(f) + J( f ) is convex, and following a and b completes the proof of

Lemma 2.2.1.

Proof of Lemma 2.2.2 a. Convexity: Let f ,g ∈D , 0≤ α ≤ 1. Show that h = α f +(1−

α)g ∈D .

First, lets show the convexity of H . Let f ,g∈H , then f = b+ f1, g = b̃+g1whereb, b̃∈

[1], and f1,g1 ∈H1. Then h can be defined as h = c + h1,wherec = αb +(1−α)b̃,andh1 =

α f1 +(1−α)g1. It is obvious that c ∈ [1], and we only need to show that h1 ∈H1.
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Remark that H1 =⊕q
j=1H

j where H j’s are Sobolev Spaces.

f1,g1 ∈H1 ⇒ f1 =
q

∑
j=1

f ( j)
1 ,g1 =

q

∑
j=1

g( j)
1 such that f ( j)

1 ,g( j)
1 ∈H j,∀ j = 1, . . . ,q

⇒ h1 = α f1 +(1−α)g1

= α
q

∑
j=1

f ( j)
1 +(1−α)

q

∑
j=1

g( j)
1

=
q

∑
j=1

{
α f ( j)

1 +(1−α)g( j)
1

}

=
q

∑
j=1

h( j)
1 ,

where h( j)
1 = α f ( j)

1 +(1−α)g( j)
1 for j = 1, . . . ,q.

However, H j’s are linear spaces, therefore h( j)
1 ∈H j ∀ j = 1, . . . ,q, which follows h1 =

∑q
j=1 h( j)

1 ∈H1, hence H is convex.

If l̃ = 0, in order to show D is convex, we need to show that J(h)≤ ς .

J(h) =
q

∑
j=1

∥∥P jh
∥∥

=
q

∑
j=1

∥∥∥P j{α f +(1−α)g
}∥∥∥

≤ α
q

∑
j=1

∥∥P j f
∥∥+(1−α)

q

∑
j=1

∥∥P jg
∥∥

= αJ( f )+(1−α)J(g)

≤ ας +(1−α)ς

= ς ,
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hence, D is convex.

To show that D is convex in case of l̃ > 0, we also need to show |c| ≤ 1
l̃
K, where K =

ς1/2√
d̃

+(1+a)ς .

l̃
∣∣c

∣∣ = l̃
∣∣∣αb+(1−α)b̃

∣∣∣

≤ α l̃
∣∣b

∣∣+(1−α)l̃
∣∣b̃

∣∣

≤ αK +(1−α)K

= K.

While passing from second to third line, we used the fact that since f ,g ∈D , by the definition

of the set, |b| ≤ 1
l̃
K and |b̃| ≤ 1

l̃
K. Hence, D is convex.

b. Boundedness: Show that ∀ f ∈D ,∃M such that
∥∥ f

∥∥≤M.

We know
∥∥ f

∥∥ ≤ J( f ) ≤ ς ∀ f ∈ D . Then let M = ς + 1 ⇒
∥∥ f

∥∥ ≤ M ∀ f ∈ D , hence,

D is bounded.

c. Closedness: Let
{

f (m)} ∈ D , and
{

f (m)}→ f . We need to show that f ∈ D to prove

that D is closed.

From the definition of H :

∀m; f (m) = b(m) + f (m)
1 such that b(m) ∈ [1] and f (m)

1 ∈H1.

f (m) → f , so f = b+ f1 such that b(m) → b and f (m)
1 → f1. It is obvious that b ∈ [1]. Now

we need to show that f1 ∈H1.
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Consider f (m)
1 :

f (m)
1 = f (m,1)

1 + f (m,2)
1 + . . .+ f (m,q)

1 such that f (m, j)
1 ∈H j for j = 1, . . . ,q.

f (m) → f ⇒ f (m, j)
1 → f j

1 as m→ ∞ for j = 1, . . . ,q.

However, H j’s are Sobolev spaces (hence closed). Therefore f j
1 ∈H j for j = 1, . . . ,q.

⇒ f1 = ∑q
j=1 f j

1 where ∀ j = 1, . . . ,q, f j
1 ∈H j, i.e., f1 ∈H1.

Therefore, by the definition of H , f = b+ f1 ∈H , hence H is closed.

If l̃ = 0, in order to show D is closed, it is enough to show that J( f ) < ς . We have already

shown that J( f ) is continuous. By definition of continuity:

f (m) → f ⇒ J
(

f (m))→ J( f ) as m→ ∞,

which follows:

∀ε > 0,∃n such that ∀i≥ n,
∣∣∣J

(
f (i))− J

(
f
)∣∣∣ < ε .

Assume J( f ) > ς and let ε = 1
2

(
J( f )− ς

)
.

∣∣∣J
(

f
)− J

(
f (i))∣∣∣ = J

(
f
)− J

(
f (i))

≥ J
(

f
)− ς

= 2ε,

which is a contradiction. Therefore J( f )≤ ς , hence D is closed.

To show that D is closed in case of l̃ > 0, in addition, we need to show that
∣∣b

∣∣ ≤ 1
l̃
K.

Similarly, b(m) → b⇒∀ε > 0,∃n such that ∀i≥ n,
∣∣b(m)−b

∣∣ < ε .
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Assume l̃
∣∣b

∣∣ > K and let ε = 1
2

(
l̃
∣∣b

∣∣−K
)

.

l̃
∣∣∣b−b(i)

∣∣∣ = l̃
(∣∣b

∣∣−
∣∣b(i)∣∣

)

= l̃
∣∣b∣∣− l̃

∣∣b(i)∣∣

≥ l̃
∣∣b

∣∣−K

= 2ε,

which is a contradiction. Therefore
∣∣b∣∣≤ 1

l̃
K, hence, D is closed.

Following a, b and c, D is closed, bounded and convex sets.
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CHAPTER 3

ADAPTIVE CORRELATED COSSO METHOD

3.1 Introduction

The Correlated COSSO method of Chapter 2 is shown to achieve sparse solution; however, it

penalizes each component equally. Hence, in order to achieve sparse solution, the important

components suffer from large bias. Therefore, the method results in oversmooth estimates for

the nonzero components.

In this chapter, we present an improvement on the Correlated COSSO method by intro-

ducing a set of adaptive weights in the penalty term. Adaptive Correlated COSSO applies

different scales of penalization to different components: unimportant variables receive larger

penalties than important variables, and are therefore more likely to be removed from the final

model. The amount of penalization is controlled by adaptively chosen weights. The name

adaptive implies that the weights will be chosen by the data itself.

The motivation behind the weighted penalization is the Adaptive LASSO idea of Zou

(2006) and Zhang and Lu (2007). This idea is also implemented successfully into the original

COSSO by Storlie et al. (2007). In order to explain the implications of adaptive weights, we
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first present a short review of the Adaptive LASSO and Adaptive COSSO methods in Section

3.2.

We then present our formulation for the Adaptive Correlated COSSO in Section 3.3. One

important question arising in the Adaptive Correlated COSSO is how to define the weights

properly, so that heavier penalties are imposed on uninformative functional components while

smaller penalties on the informative ones. These different penalty scales can be achieved

by using a set of fixed positive weights, such that larger weights are associated with heavier

penalties, and weights closer to 0 are associated with smaller penalties. A smaller penalty

is equivalent to less shrinkage to the functional components, and a larger penalty forces the

function component to shrink towards zero faster. Therefore, if the weights are selected ef-

fectively, the final model will exclude unimportant components more forcefully and produce

smaller bias on the important components.

In order to define appropriate weights, a good initial estimate for f is needed. We propose

using the traditional smoothing spline ANOVA fit for correlated data (1.23), where θ j = 1 for

each j = 1, . . . ,q, and λ0 is estimated using GML approach. The weights are selected as the

inverse of the L2 norms of corresponding components, and details are given in Section 3.3.1.

An important issue, the existence of the Adaptive Cor-COSSO solution, will be discussed

in Section 3.3.2. We discuss the similarities of the Adaptive Cor-COSSO and the Correlated

COSSO, and remark that this resemblance leads to the same algorithms to find the solution

for Adaptive Cor-COSSO method. An equivalent formulation of Adaptive Cor-COSSO will

be provided in Section 3.3.3.
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The computation of Adaptive Cor-COSSO is quite parallel to that of Correlated COSSO,

hence also having two main stages: ESTIMATION and SELECTION. Various algorithms are

given in Section 3.4.

The smoothing parameter selection criteria are exactly the same as the Correlated COSSO

criteria, hence we will not repeat them in this chapter. Extra simulation studies which are not

presented in this dissertation, show that the L method works very well for Adaptive Correlated

COSSO as well. Hence, we recommend using this smoothing parameter selection criteria.

3.2 Reviews on Adaptive LASSO and Adaptive COSSO

In this section, we shortly review some recent adaptive methods for model selection in the

literature, including the Adaptive LASSO (Zou, 2006) and the Adaptive (Original) COSSO

(Storlie et al., 2007).

3.2.1 LASSO and Adaptive LASSO

Recently, the shrinkage methods which simultaneously estimate model and perform variable

selection are becoming popular in the literature. One of the earliest, and arguably the most

famous shrinkage method for linear models is the Least Absolute Shrinkage and Selection
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Operator (LASSO, Tibshirani 1996). The method is defined as:

β̂LASSO = argminβ‖y−
p

∑
j=1

x jβ j‖2 +λ
p

∑
j=1
|β j|, (3.1)

where λ is a positive regularization parameter. The method applies shrinkage to the least

squares estimates, and λ controls the level of shrinkage. For smaller λ , the shrinkage effect is

less, therefore, the estimates are close to ordinary least squares estimates. On the other hand,

if λ is increased to a large enough number, then β̂ estimates are shrunk more towards zeros

and some variables are eventually excluded from the model.

Using the regularization parameter λ , the LASSO method applies a continuous shrink-

age to the least squares estimates. This continuous shrinkage results in a much more stable

estimate of β , and this is the main advantage of LASSO and LASSO type methods. Every

coefficient in the model is shrunk to zero at some degree. Some components are shrunk to

exactly zero and hence excluded from the model. The remaining coefficients are still nonzero,

yet smaller (in absolute value) than the original least squares estimates. However, shrinkage

of the important variables causes bias, and may seriously affect the large coefficients. Also,

the LASSO method does not possess the desirable oracle properties (Fan and Li, 2001).

The main reason for the LASSO method to produce substantial bias in the estimates is

that, the method applies the same amount of shrinkage to all variables. Zou (2006) proposed

the Adaptive LASSO method, which uses adaptive weights to apply different scales of penal-
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ization to each coefficient. In particular, we have

β̂ALASSO = argminβ‖y−
p

∑
j=1

x jβ j‖2 +λ
p

∑
j=1

w j|β j|, (3.2)

where w = (w1, . . . ,wp)T ≥ 0 is a weight vector. Higher weights correspond to heavier penal-

ties, and hence more shrinkage. Naturally the weights should be chosen inversely proportional

to the importance of the coefficients.

Zou (2006) shows that, if the weights are chosen properly, the formulation above provides

good properties in terms of both variable selection and prediction accuracy. In particular, Zou

(2006) recommends using ŵ j = 1/|β̂ j|γ , where β̂ j is an initial root-n-consistent estimate of β j.

The Adaptive LASSO name comes from the fact that the weights are adaptively chosen from

the data. It is recommended to choose initial β̂ j using ordinary least squares estimates unless

there is a concern of collinearity in the data. If collinearity is expected, a more stable method

such as ridge regression can be used to estimate the initial weights.

Zou (2006) also shows the oracle properties of the Adaptive LASSO estimate. In other

words, the Adaptive LASSO performs as well as if the true underlying model were given in

advance.

3.2.2 Adaptive COSSO Method

Component Selection and Smoothing Operator (Lin and Zhang, 2006) can be considered as the

generalization of LASSO in the smoothing spline ANOVA framework. It performs component
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selection and model fitting via continuous shrinkage of the functional components in the SS-

ANOVA model. As described previously, the COSSO penalizes the sum of norms of the

functional components and achieves a sparse model by shrinking some of the components to

zero functions. The number of components and their penalization is controlled by a smoothing

parameter λ .

The style that COSSO works is parallel to LASSO. Therefore, the COSSO method may

suffer from too much shrinkage of nonzero functions as well. The main reason behind this

drawback is the fact that it forces the components to be equally penalized by its nature.

Storlie et al. (2007) proposes the Adaptive COSSO method, which aims to alleviate the

tendency of oversmoothing in the COSSO using adaptive weights. The extension of COSSO

to Adaptive COSSO is very similar to Zou (2006)’s Adaptive LASSO idea. The Adaptive

COSSO procedure proposes to find f ∈H to minimize:

1
n

n

∑
i=1

[yi− f (xi)]
2 +λ

q

∑
j=1

w j‖P j f‖, (3.3)

where w j’s are the fixed adaptive weights, which are estimated from an initial estimate of

functional components, and λ is the smoothing parameter.

The selection of adaptive weights is very important and should be based on a consistent es-

timate. Storlie et al. (2007) recommends using a smoothing spline ANOVA, with the smooth-

ing parameter chosen by Generalize Cross Validation (Craven and Wahba, 1979), to find the

initial estimate f̂ . The weights are inversely proportional to the quantity of importance of each
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component. Storlie et al. (2007) showed that the Adaptive COSSO outperforms the original

COSSO in various simulation studies. In the same work, they also prove that the Adaptive

COSSO method possesses nonparametric oracle properties as opposed to the original COSSO

method.

3.3 Adaptive Correlated COSSO Method

Consider the p-variate regression problem of (2.1) with the additive correlated errors in (2.2).

In the Adaptive Correlated COSSO method, we consider the following penalized weighted

least squares problem. With σ2,τ,λ fixed, the Adaptive Correlated COSSO estimate f ∈H

minimizes:

min
f∈H

1
2σ2 (y− f)TWτ(y− f)+nλ

q

∑
j=1

w j‖P j f‖, (3.4)

where w j > 0’s are the fixed adaptive weights that are chosen using an initial estimate of f .

We call this initial estimate as f̃ . λ is a smoothing parameter, and Wτ is the error correlation

matrix, where τ represents the correlation parameters.

Careful reader should note that the w j’s are not tuning parameters, rather they are weights

to be estimated from the data. They are constructed using the initial estimate f̃ , and hence

they will not be changed during the Adaptive Correlated COSSO algorithm. The only smooth-

ing parameter in the Adaptive Cor-COSSO formulation is λ . As discussed in the Correlated

COSSO chapter, having only one smoothing parameter is an important advantage of the Adap-
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tive Cor-COSSO method. This property of the Adaptive Cor-COSSO prevents the computa-

tional burden from multi-dimensional tuning.

One important issue is to select the initial function estimate f̃ . Any consistent estimate for

f can be used as the initial estimate. We recommend using a traditional correlated SS-ANOVA

model of (1.23) with θ j = 1 for all j, and λ0 is chosen by GML. Alternatively, the Correlated

COSSO estimate of f could be used. We will discuss how to choose weights from the data, or

namely the initial estimate f̃ in the following section.

3.3.1 Adaptive Choices of Weights

We propose to choose the weights for the Adaptive Correlated COSSO formulation using the

data at hand. Ideally, smaller weights should be given to prominent components to penalize

them less, while larger weights to unimportant components. Therefore, the weights should

be selected inversely proportional to a measure of importance for each component. Denote

the initial estimates of f by f̃ . We use the L2 norm of P j f̃ to measure the importance of the

components in the initial estimate, which was also suggested by Storlie et al. (2007) as:

w j = ‖P j f̂‖−γ
L2

,

where ‖.‖L2 represents the L2 norm of the functional component. Here γ > 0 can be regarded

as a second tuning parameter, which can be adaptively chosen as well. We use γ = 1 in our

examples and simulations.
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3.3.2 Existence of Adaptive Cor-COSSO Solution

The existence of the Adaptive Correlated COSSO estimate is guaranteed by the following

theorem.

Theorem 3.3.1 Let H be an RKHS of functions over an input space T . Assume that H can

be decomposed as;

H = [1]⊕H1 with H1 =⊕q
j=1H

j.

Then there exists a minimizer of (3.4) in H .

The proof of the existence theorem for Adaptive Correlated COSSO is given here. The

structure of this proof is also important because it reveals the connection between the Adaptive

Cor-COSSO and Cor-COSSO methods. In other words, the proof actually shows that Adaptive

Cor-COSSO can be considered as Cor-COSSO with an adaptive reproducing kernel Hilbert

space.

Proof of Theorem 3.3.1

Define the H̃ as the RKHS with reproducing kernel:

RH̃ = 1+
q

∑
j=1

w−2
j R j(s, t),
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where w j’s are the adaptive weights, and R j(·, ·) is the reproducing kernel of H j. Note that

the norm of H̃ is:

‖ f‖2
H̃

= ‖P0 f‖2
H +

q

∑
j=1

w2
j‖P j f‖2

H ,

where the P0 f is the projection of f onto {1}, and P j f ’s are the projections on H j spaces

defined earlier. In the RKHS space H̃ with the norm above, when we define the Cor-COSSO

as in (2.4), this results in the Adaptive Correlated COSSO minimization problem. Therefore,

the existence theorem of the previous chapter (Theorem 2.2.1) can be used to prove that the

Adaptive Correlated COSSO estimate of (3.4) exists.

With the previous theorem, the existence of the Adaptive Cor-COSSO solution is guaran-

teed. The following theorem can also be proven using a parallel logic. Therefore, we skipped

this proof, yet for completeness, we state the finite dimensional representation theorem.

Theorem 3.3.2 For any fixed τ , λ and w j for j = 1, . . . ,q, let the minimizer of (3.4) be f̂ = d̂ +

∑q
j=1 f̂ j, with f̂ j ∈H j. Then f̂ j ∈ span{R j(xi, ·), i = 1, ...,n}, where R j(·, ·) is the reproducing

kernel of H j.

3.3.3 An Equivalent Formulation

The proof of Theorem 3.3.1 is constructive in the sense that it reveals the equivalence of

an Adaptive Correlated COSSO in (3.4) to the Correlated COSSO in (2.4) with an adaptive

RKHS. The computation of the methods goes parallel as well. In other words, we will follow

a similar strategy to find a solution for Adaptive Cor-COSSO method.
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In this part, we will introduce an equivalent formulation of (3.4) that leads naturally to

an iterative algorithm. The main purpose of this equivalent formulation is to facilitate the

computation of the Adaptive Cor-COSSO estimate. We will use this equivalent formulation

to solve the Adaptive Correlated COSSO.

Define θ = (θ1, ...,θq)T and let 0 be the vector of zeros. For fixed τ,σ2 and w j’s, consider:

min
f∈H ,θ

1
2σ2 (y− f)TWτ(y− f)+nλ0

p

∑
j=1

θ−1
j w2−ν

j ‖P j f‖2 +nλ1

p

∑
j=1

wν
j θ j, (3.5)

where ∀ j,θ j ≥ 0, 0 ≤ ν ≤ 2, λ0 > 0 is a constant and λ1 > 0 is a smoothing parameter.

The following lemma shows that the two formulations for Adaptive Correlated COSSO have

equivalent solutions.

LEMMA 3.3.1 Set λ = 2
√

λ0λ1. If f̂ minimizes (3.4), set θ̂ j =
√

λ0
λ1

w1−ν
j ‖P j f̂‖, and then

(θ̂ , f̂ ) minimizes (3.5). On the other hand, if (θ̂ , f̂ ) minimizes (3.5), then f̂ minimizes (3.4).

Therefore, solving (3.4) and solving (3.5) are equivalent.

Proof of Lemma 3.3.1 Denote the functional in (3.4) as

D( f ) =
1

2σ2 (y− f)TWτ(y− f)+nλ
q

∑
j=1

w j‖P j f‖,

and the functional in (3.5) as

B( f ,θ) =
1

2σ2 (y− f)TWτ(y− f)+nλ0

q

∑
j=1

θ−1
j w2−ν

j ‖P j f‖2 +nλ1

q

∑
j=1

wν
j θ j.
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We need to show that for any 0≤ ν ≤ 2:

λ
q

∑
j=1

w j‖P j f‖= λ0

q

∑
j=1

θ−1
j w2−ν

j ‖P j f‖2 +λ1

q

∑
j=1

wν
j θ j

to complete the proof.

We will use the inequality a+b≥ 2
√

ab for a,b≥ 0, and equality holds if and only if a = b

in this proof. Hence, in our case, set a = λ0 ∑q
j=1 θ−1

j w2−ν
j ‖P j f‖2, and b = λ1 ∑q

j=1 wν
j θ j.

Then, a+b = λ ∑q
j=1 w j‖P j f‖= 2

√
λ0 ∑q

j=1 θ−1
j w2−ν

j ‖P j f‖2
√

λ1 ∑q
j=1 wν

j θ j.

For each j = 1, . . . ,q:

w j‖P j f‖λ = 2
√

λ0θ−1
j w2−ν

j ‖P j f‖2
√

λ1wν
j θ j

= 2
√

λ0λ1θ−1
j θ jw2−ν

j wν
j ‖P j f‖2

= w j‖P j f‖2
√

λ0λ1.

Set λ = 2
√

λ0λ1. We need to set the θ j’s such that the inequality a = b will hold. In other

words, we need λ0 ∑q
j=1 θ−1

j w2−ν
j ‖P j f‖2 = λ1 ∑q

j=1 wν
j θ j. For each j = 1, . . . ,q:

λ0θ−1
j w2−ν

j ‖P j f‖2 = λ1wν
j θ j

θ 2
j =

λ0

λ1
w2(1−ν)

j ‖P j f‖2

⇒ θ j =

√
λ0

λ1
w1−ν

j ‖P j f‖.

82



Set each θ j =
√

λ0
λ1

w1−ν
j ‖P j f‖, then the proof of lemma follows.

We would like to clarify the distinction between θ j’s and w j’s. In Adaptive Correlated

COSSO, parameter θ j’s have the same roles with those in Correlated COSSO. They are used

for scaling the roughness penalties for different components. They are related with the com-

ponent selection, since θ̂ j = 0 implies that the corresponding component f̂ j will be excluded

from the model. These parameters are estimated by the Adaptive Cor-COSSO method.

On the other hand, the w j’s are fixed weights. They are not involved in the Adaptive

Correlated COSSO estimation. They are kept untouched during any algorithm. In other words,

prior to Adaptive Cor-COSSO algorithm, we use an initial fit to compute w j’s. As opposed to

θ j’s, they do not have a direct effect on which component will be selected in the model.

Careful readers should remark that the parameter ν is not specified in the equivalent for-

mulation proof. Hence for any constant satisfying 0 ≤ ν ≤ 2, the equivalent form can be

used.

3.4 Computation of Adaptive Cor-COSSO

We already show the connection between Adaptive Correlated COSSO and Correlated COSSO.

So, the algorithms we propose in this section will be parallel to the ones in Cor-COSSO

method. In the previous section it is shown that (3.5) can be used to find a solution to Adap-

tive Cor-COSSO for any ν ∈ [0,2]. For simplicity, we will use ν = 0. In this case, the Adaptive
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Cor-COSSO becomes a Cor-COSSO with an adaptive RKHS, which is stated in the proof of

Theorem 3.3.1.

Let w = (w1, . . . ,wq)T. For fixed θ ,τ,σ2,λ0,λ1, and w, Theorem 3.3.2 states that the

minimizer of (3.4) has the form:

f (x) = d +
n

∑
i=1

ciKw,θ (xi,x),

where Kw,θ (·, ·) = ∑q
j=1 θ jw−2

j R j(·, ·) and R j(·, ·) is the reproducing kernel of H j as defined

previously. With some abuse of notation, we use R j for the matrix {R j(xi,xi′)}n
i,i′=1. Let

c = (c1, ...,cn)T, f j =
(

f j(x
( j)
1 ), ..., f j(x

( j)
n ))

)T

, and f = ( f (x1), ..., f (xn))T. Let 1 be the vector

of ones of length n. Then we have

f j = θ jw−2
j R jc, f = 1d +

q

∑
j=1

f j = 1d +Kw,θ c,

and the penalty term

q

∑
j=1

θ−1
j w2

j‖P j f‖2 =
q

∑
j=1

θ jw−2
j cTR jc = cTKw,θ c.

Therefore (3.5) becomes:

min
d,c,θ≥0

1
2σ2 (y−1d−Kw,θ c)TWτ(y−1d−Kw,θ c)+nλ0cTKw,θ c+nλ11T

qθ . (3.6)
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3.4.1 Adaptive Cor-COSSO Algorithms with Fixed Tuning Parameters

Similar to Cor-COSSO, we recommend minimizing (3.6) by iterating between ESTIMATION

and SELECTION stages, which will be redefined for Adaptive Correlated COSSO method.

Most of the procedure is quite similar to Cor-COSSO algorithm, so we will not cover these

two stages in details. We will state only the parts which are different from the Cor-COSSO

method.

1. ESTIMATION Stage: With θ fixed, the third quantity in (3.6) disappears. With fixed

τ,σ2,λ0 and absorbing σ2 into the smoothing parameter, (3.6) becomes:

min
d,c

(
y−1d−Kw,θ c

)T Wτ
(
y−1d−Kw,θ c

)
+nλ ∗0 cTKw,θ c. (3.7)

where λ ∗0 = 2σ2λ0 is the new form of the smoothing parameter. This is the classical

smoothing spline ANOVA problem with correlated data (see Wang 1998b). We treat

τ,σ2,λ0 as variance components, and these parameters are simultaneously estimated by

the Generalized Maximum Likelihood (GML) method.

As it can be observed quickly, the only difference of this stage from the ESTIMATION

stage of Cor-COSSO is the reproducing kernel. Correspondingly, we use the Kw,θ in-

stead of Rθ as the RK of the adaptive space.

We use the penalized weighted least squares approach to estimate the functional com-

ponents in the SS-ANOVA problem above. The representer theorem of Kimeldorf and
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Wahba (1971) guarantees that the SS-ANOVA solution f̂ = 1d̂ + Kw,θ ĉ has a finite di-

mensional representation. Taking the derivatives of (3.7) with respect to d and c and

equating them to 0 give the following equation system to find d̂ and ĉ:

1TWτKw,θ c+1TWτ1d = 1TWτy,

(
KT

w,θ WτKw,θ +nλ ∗0 Kw,θ

)
c+KT

w,θ Wτ1d = KT
w,θ Wτy.

(3.8)

We also would like to estimate the variance-covariance parameters (σ2,τ) and the smooth-

ing parameter (λ ∗0 ) simultaneously. We recommend using the GML approach, which is

presented in Section 1.5.2. For Adaptive Correlated COSSO algorithm, ESTIMATION

stage, we also use the linear mixed model representation.

Consider the following linear mixed effects model:

y = 1d +u+ ε, (3.9)

where u ∼ N
(
0,σ2Kw,θ/(nλ ∗0 )

)
and ε ∼ N

(
0,σ2W−1

τ
)
. The estimation of fixed and

random effects of model (3.9) using Equation (3.3) of Harville (1977) gives the follow-

ing matrix solution:




1TWτ1 1TWτKw,θ

Kw,θ Wτ1 Kw,θ WτKw,θ +nλ ∗0 Kw,θ







d

c


 =




1TWτy

Kw,θ Wτy


 . (3.10)
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The equation system above is identical to that in (3.8). In other words, the fixed effect

estimates for d̂ are the same, while the random effect predictions (û) can be used to

calculate ĉ, i.e., ĉ = R−1
θ û. Therefore, the SS-ANOVA estimate f̂ = 1d̂ + Kw,θ ĉ is the

Best Linear Unbiased Prediction (BLUP) estimate of the linear mixed effects model.

Following the discussion on the connection between the Generalized Maximum Likeli-

hood (GML) method and the Restricted Maximum Likelihood (REML) estimate of the

linear mixed model representation, the variance components of σ2,τ,λ ∗0 are estimated

by REML. Careful readers should remark that λ ∗0 is treated as a variance component in

this representation, and is estimated with REML method along with the other variance

components σ2 and τ .

As it can be seen above, the ESTIMATION stage of Adaptive Cor-COSSO method is

quite similar to the ESTIMATION stage of Cor-COSSO. The only difference is the

reproducing kernel matrix Rθ is replaced by Kw,θ in every step of the computation. The

Adaptive Cor-COSSO method enjoys the advantages of the linear mixed effects model

connection such as the powerful theory and computational tools of mixed models.

Define the solution from the ESTIMATION stage as (d̂, ĉ, τ̂, σ̂2).

2. SELECTION Stage: With (d̂, ĉ, τ̂, σ̂2,λ ∗0 ) fixed at the solutions of the ESTIMATION

stage, solve the optimization problem for θ :

min
θ

(
y−1d̂−Kw,θ ĉ

)T Wτ̂
(
y−1d̂−Kw,θ ĉ

)
+nλ ∗0 ĉTKw,θ ĉ (3.11)
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subject to ∑q
j=1 θ j ≤M,θ j ≥ 0, j = 1, . . . ,q.

Denote g j = w−2
j R jĉ for j = 1, . . . ,q, G as an n× q matrix with jth column being g j.

Following the discussion in Cor-COSSO chapter, the equation (3.11) can be written as

a quadratic programming problem;

min
θ

1
2

θ THθ +aTθ , subject to 1Tθ ≤M, θ j ≥ 0 j = 1, . . . ,q (3.12)

where, H = GTWτ̂G, and a = GT
[
(nλ ∗0 /2)ĉ−Wτ̂(y−1d̂)

]
. Reader should remark that

the only difference in between (3.12) of A-Cor-COSSO and (2.13) of Cor-COSSO is

the definition of G.

In the remaining part of this chapter, we will present various algorithms for the Adaptive

Correlated COSSO method. All algorithms will use the ESTIMATION and SELECTION

stages as building blocks. We provide four algorithms in the previous chapter for solving the

Correlated COSSO problem. All four algorithms can be readily applicable to the Adaptive

Correlated COSSO problem. Therefore, we will not cover these algorithms in this chapter.

Just to give a reminder about these four algorithms, the full iteration algorithm iterates in

between the ESTIMATION and SELECTION stages until convergence. However, we observe

some of θ j’s provide very small numbers instead of zeros. Therefore, the full iteration with

truncation algorithm is displayed, which truncates small θ j values to exact zeros to achieve

sparse solutions. Another alternative step-down algorithm removes the variable if the corre-

sponding θ̂ j reaches zero at any step. The fourth algorithm is the one-step update algorithm,
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which uses the ESTIMATION and SELECTION stage only once, and do not pursue for the

convergence. The performance of these four algorithms is compared in a simulation study in

Section 5.2.2. Please refer to Section 2.3.1 for details on the algorithms.

3.4.2 Complete Algorithm for Adaptive Correlated COSSO

Compared to the Correlated COSSO, the complete Adaptive Correlated COSSO algorithm

requires one more step to estimate the weights using an initial estimates of the functional

components. The complete algorithm is following:

1. Fit an the initial model (a correlated SS-ANOVA model is recommended) and calculate

the weights (w j’s) from the L2 norms of each component.

2. Fix θ̂ j = 1, j = 1, . . . ,q.

3. Solve (3.7) for c,d,τ,σ and λ ∗0 using the ESTIMATION stage. Fix λ ∗0 for the rest of

the algorithm.

4. For each value in a reasonable grid of M, fix this parameter.

5. Use the algorithms above (full iteration, full iteration with truncation, step-down, one-

step update) to fit Adaptive Correlated COSSO model.

6. Calculate the score of the selected tuning method.

7. Repeat steps 5 and 6 within the whole pre-selected tuning grid of M.
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8. Find the minimal tuning score. The corresponding solution is the Adaptive Correlated

COSSO estimate.
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CHAPTER 4

COMPUTATIONAL ISSUES ON LARGE DATASETS

4.1 Challenges in Computation for Large Datasets

In general, nonparametric regression methods are computationally more intensive compared to

their linear counterparts. Especially when the dimension of the dataset gets larger, the compu-

tation time is often dramatically increased due to the curse of dimensionality. We have already

mentioned about the computational difficulties for the correlated SS-ANOVA models when

the number of explanatory variables increases, mainly due to multi-dimensional smoothing

parameter selection. As shown in previous two chapters, both methods we proposed in this

dissertation (Correlated COSSO and Adaptive Correlated COSSO) overcome this issue since

they include only one smoothing parameter in their formulations.

In practice, we use a grid search to select the single smoothing parameter. For each value in

the grid, the proposed computational algorithms of Section 2.3.1 (or Section 3.4.1 for Adaptive

Cor-COSSO) namely full iteration, full iteration with truncation, Step-Down and One-Step

Update algorithms can be implemented. Any of these four algorithms use ESTIMATION and

SELECTION stages either only once, or multiple times. The SELECTION stage solves a q-
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dimensional quadratic programming problem, where q is the number of components in the full

model. On the other hand, the ESTIMATION stage needs solution of the SS-ANOVA which

takes more time when the number of observations increases. Therefore, the computation time

for the SELECTION stage is negligible compared to the time spent by the ESTIMATION

stage, and the ESTIMATION stage is contributing the main part to the computational time.

The main reason for this is that we need to fit a linear mixed effects model at the ESTIMATION

stage, which requires the estimation of n random effects, where n is the number of observations

in the dataset. This actually is a big improvement compared to the correlated SS-ANOVA

estimation of Wang (1998b), since the linear mixed model in their formulation contains n×

q random effects. Both Correlated COSSO and Adaptive Correlated COSSO decrease the

computation time considerably compared to SS-ANOVA when the number of components

is large. However, when the number of observations is large, the computation will still be

expensive.

In this chapter, we propose an alternative algorithm: Subset Basis Algorithm to further

decrease the computational time in these two methods especially when the sample size is

large. The main idea of this algorithm is to reduce the dimensionality of the basis functions

to be used for function estimation. The number of random effects to be estimated in the

ESTIMATION stage will be automatically decreased with this new algorithm.

Parsimonious basis approach has been used in nonparametric regression literature (Xiang

and Wahba, 2006; Ruppert and Carroll, 2000; Yau, Kohn, and Wood, 2002). These methods

use a subset of the observations at hand. The idea of the subset basis algorithm is to minimize
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the objective function in Correlated COSSO problem (2.5) in a subspace of H spanned by

a smaller number of basis functions. In the full basis algorithm, all n observations are used

to create one set of basis functions. However, in subset basis algorithm, N basis functions

(usually N < n) are used. When N is smaller, the computation time decreases more; on the

other hand, the approximation is expected to be better when we use a larger number of basis

functions. We would like N to be as small as possible, yet still provide a good approximation.

We try to find a practical answer to this question with a simulation study.

One question raised in the literature about the subset basis algorithms is how to select the

subset from observations to form a set of basis. Simple random sampling of data points is in

common use. Alternatively, Xiang and Wahba (2006) recommended using a cluster algorithm

to sample the subset. Details on the sampling methods are given in Section 4.2.3. We use both

simple random and cluster sampling methods, and compare their performances in a simulation

study. The results from this simulation study can be found in Section 5.2.3.

Zhang and Lin (2006) applied the subset basis algorithm to original COSSO method,

which has successfully decreased the computation time for COSSO in exponential families.

Extensive simulation examples in their paper suggest that the subset basis algorithm performs

almost as good as the full basis algorithm. We would like to follow a similar approach for

Correlated COSSO.

The rest of the chapter is organized as follows. In Section 4.2.1, we provide the formula-

tion of the subset basis algorithm. We use the Correlated COSSO method when presenting the

algorithm, yet, the algorithm can also be applied to the Adaptive Correlated COSSO method
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with some minor changes. The algorithm for a fixed M is illustrated in Section 4.2.2. The

differences of subset basis algorithm from the full basis algorithm will be clearly stated in

both SELECTION and ESTIMATION stages. To be more specific, the linear mixed model

used will be completely altered, which will lead to a different model from that in the full basis

algorithm. Section 4.2.3 covers the details of two sampling methods: simple random sampling

and cluster sampling. All methods require the influence matrix, and the computation of this

matrix is different for the subset basis algorithm. We address this issue in Section 4.2.4. In

Section 4.3 we provide the complete subset basis algorithm for solving the Correlated COSSO

problem.

4.2 Subset Basis Algorithm

4.2.1 Subset Basis Formulation

In this section, we present the formulation of the subset basis algorithm for both Correlated

COSSO and Adaptive Correlated COSSO. The algorithm is based on choosing a subset of

observations and creating a set of basis functions using this subset.

With a given sampling scheme, we randomly select N points from n observations of the

dataset, denoted as {x1∗, . . . ,xN∗}, and use these observations to generate N basis functions.

We will find the minimizer of Cor-COSSO (or Adaptive Cor-COSSO) solution using the basis

functions constructed from the subset. In other words, we assume the minimizer of (2.5) of
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Cor-COSSO with the following form:

f (x) = d +
N

∑
i=1

ciRθ (xi∗,x) = d +
N

∑
i=1

ci

q

∑
j=1

θ jR j(xi∗,x), (4.1)

where R j(·, ·) is defined in earlier chapters as the reproducing kernel of H j. We should point

out that, since there are N basis functions in this new solution, ĉ is a N-dimensional vector

instead of n-vector as in the full basis algorithm. Remark that N ≤ n, and the subset basis

algorithm will be useful if the subset size is smaller than the sample size.

Let c = (c1, . . . ,cN)T, and 1n is an n-dimensional vector with each entry being 1. Let

R∗j be an n×N matrix with the entries {R j(xi,xk∗)}, i = 1, . . . ,n,k = 1, . . . ,N. With some

abuse of notation, we also define R∗θ = ∑q
j=1 θ jR∗j . Remark that the dimension of R∗θ is also

n×N. Furthermore, let R∗∗j be an N×N matrix with the entries {R j(xi∗,xk∗)}, i = 1, . . . ,N,k =

1, . . . ,N, and define R∗∗θ = ∑q
j=1 θ jR∗∗j .

The solution (4.1) can then be written in matrix format:

f j = θ jR∗jc, j = 1, . . . ,q, f = 1d +
q

∑
j=1

f j = 1d +R∗θ c,

and the penalty term in the equivalent form becomes:

q

∑
j=1

θ−1
j ‖P j f‖2 =

q

∑
j=1

θ jcTR∗∗j c = cTR∗∗θ c.
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The Correlated COSSO optimization problem (2.6) becomes:

min
d,c,θ≥0

1
2σ2 (y−1nd−R∗θ c)TWτ(y−1nd−R∗θ c)+nλ0cTR∗∗θ c+nλ11T

qθ . (4.2)

4.2.2 Computation with Subset Basis Algorithm

The minimizer of (4.2) can be calculated using an iterative approach. At this moment, we

assume λ1 to be fixed. Tuning of λ1 will be necessary, and this will be covered in Section

4.2.4.

The computational algorithm will use the following two stages as the building blocks:

1. ESTIMATION Stage: With θ fixed, solve (d,c,τ,σ2) using the following procedure.

With (σ2,τ,λ0) fixed, we solve penalized weighted least squares problem:

min
d,c,

1
2σ2 (y−1nd−R∗θ c)T Wτ (y−1nd−R∗θ c)+nλ0cTR∗∗θ c.

We treat (σ2,τ,λ0) as variance components, and estimate them using Generalized Max-

imum Likelihood method. Simultaneous estimation of these parameters is done with

linear mixed model connection.

Define the solution as (d̂, ĉ, τ̂, σ̂2).

2. SELECTION Stage: Let λ ∗0 = 2λ0σ2. With (d,c,τ,σ2) fixed at (d̂, ĉ, τ̂ , σ̂2), the solu-
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tions from ESTIMATION stage, solve the optimization problem for θ :

min
θ

(
y−1nd̂−R∗θ ĉ

)T Wτ̂
(
y−1nd̂−R∗θ ĉ

)
+nλ ∗0 ĉTR∗∗θ ĉ

subject to ∑q
j=1 θ j ≤M, θ j ≥ 0, j = 1, . . . ,q.

Here M ≥ 0 is the tuning parameter, which is one-to-one corresponding to λ1. Details on two

stages are following.

ESTIMATION Stage:

In the ESTIMATION stage, we fix θ , and then the last quantity in (4.2) disappears. Also

taking τ,σ2 and λ0 as fixed, the problem becomes finding a minimizer for

min
d,c

(y−1nd−R∗θ c)T Wτ (y−1nd−R∗θ c)+nλ ∗0 cTR∗∗θ c. (4.3)

where λ ∗0 = 2σ2λ0. This is the same as the SS-ANOVA formulation with subset basis. We

would like to find a solution in the form f̂ = 1nd̂ + R∗θ ĉ. Taking the derivative of (4.3) with

respect to d and c and equating them to zero will result in the following equation system:

1T
nWτR∗θ c+1T

nWτ1nd = 1T
nWτy,

(
R∗T

θ WτR∗θ +nλ ∗0 R∗∗θ
)

c+R∗T
θ Wτ1d = R∗T

θ Wτy.

(4.4)
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The main difference between this stage and the ESTIMATION stage of the full basis algo-

rithms (see Section 2.3.1) is that, the reproducing kernel matrix Rθ in Equation (2.7) is re-

placed by two different matrices: by R∗θ in the first part of the equation controlling the bias

of the fit, and by R∗∗θ in the penalty term. This brings extra difficulty in implementing the

Correlated COSSO (and Adaptive Cor-COSSO) method. The linear mixed effects model (2.9)

cannot be modified to provide the matrix representation in (4.4). Instead, consider the follow-

ing linear mixed model:

y = 1nd +R∗θ u+ ε, (4.5)

where u ∼ N
(

0, σ2

nλ ∗0
(R∗∗θ )+

)
and ε ∼ N

(
0,σ2W−1

τ
)
. Here (R∗∗θ )+ is the Moore Penrose in-

verse of R∗∗θ . Reader should remark that u is an N dimensional vector, which means the

number of random effects contained in this model is decreased from n to N. The estimate of u

is û = ĉ, and the smoothing spline estimate is f̂ = 1nd̂ + R∗θ ĉ = 1nd̂ + R∗θ û. Equation (3.3) of

Harville (1977) provides the following normal equations for the mixed model:




1T
nWτ1n 1T

nWτR∗θ

R∗θ Wτ1n R∗T
θ WτR∗θ +nλ ∗0 R∗∗θ







d

c


 =




1T
nWτy

R∗T
θ Wτy


 . (4.6)

The equation system above is identical to that in (4.4). Smoothing parameter λ ∗0 , and variance

covariance parameters σ2 and τ are REML estimates as already discussed in Chapter 2.

As stated above, there are N random effects to be estimated in the mixed model in ES-

TIMATION stage. We would like to remind the reader that the mixed effects model fit is
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the most time consuming part in the Correlated COSSO (and the Adaptive Cor-COSSO) al-

gorithm. Decreasing the number of random effects will dramatically reduce the computation

time at the ESTIMATION stage, hence the whole algorithm. In a massive dataset with lots

of observations, the estimation of Correlated COSSO with the full basis algorithm might be

very slow. Yet, with the subset basis algorithm, we can take a pre-specified smaller number of

observations to create the basis subset, which will decrease the computation time considerably.

One difficulty we faced in the practical implementation of ESTIMATION stage with the

subset basis algorithm is the Moore Penrose inverse of R∗∗θ matrix. In theory, the reproducing

kernel is a positive definite matrix, and the inversion of this matrix should not be a problem.

However, from time to time we observe the R∗∗θ matrix to be very close to singularity, which

results in very small eigenvalues. The presence of these tiny eigenvalues can cause the inver-

sion to be numerically unstable. A practical solution we propose in this case is to add a small

positive diagonal matrix to R∗∗θ to make it better conditioned. In other words, we essentially

calculate R∗∗θ +αI, where α is a small positive constant (for example, α = 0.0001) is used in

our simulation study.

We point out that the Adaptive Correlated COSSO solution can be achieved using basis

subset algorithm as well. In particular, we need to re-arrange the R∗θ and R∗∗θ matrices in order

to calculate the adaptive kernel matrices. To be specific, define K∗
w,θ = ∑q

j=1 θ jw−2
j R∗j be an

n×N matrix, and K∗∗
w,θ = ∑q

j=1 θ jw−2
j R∗∗j be an N×N matrix. The only thing to change for

Adaptive Cor-COSSO method is to replace R∗θ by K∗
w,θ and R∗∗θ by K∗∗

w,θ in the formulation

above.
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SELECTION Stage:

In this stage, the function estimate and the variance-covariance parameters are fixed at their

current values, and the minimization takes place over θ parameters. When (d̂, ĉ, τ̂, σ̂2,λ ∗0 ) are

fixed, then the equivalent formulation to Correlated COSSO becomes:

min
θ

(
y−1nd̂−R∗θ ĉ

)T Wτ̂
(
y−1nd̂−R∗θ ĉ

)
+nλ ∗0 ĉTR∗∗θ ĉ (4.7)

subject to ∑q
j=1 θ j ≤M, θ j ≥ 0, j = 1, . . . ,q.

Denote g∗j = R∗j ĉ for j = 1, . . . ,q, and G∗ as an n× q matrix with jth column being g∗j .

Let g∗∗j = R∗∗j ĉ for j = 1, . . . ,q, and G∗∗ as an N×q matrix with jth column being g∗∗j . Also

let H = G∗TWτ̂G∗, and a = (nλ ∗0 /2)G∗∗Tĉ−G∗TWτ̂(y− 1nd̂). A similar argument to Cor-

COSSO SELECTION stage shows that (4.7) is equivalent to:

min
θ

1
2

θ THθ +aTθ , subject to 1T
qθ ≤M, θ j ≥ 0 j = 1, . . . ,q (4.8)

which is a Quadratic Programming (QP) problem.

For Adaptive Correlated COSSO, the matrices G∗ and G∗∗ need to be redefined. Let g∗j =

w−2
j K∗

w,θ ĉ for j = 1, . . . ,q, and G∗ as an n×q matrix with jth column being g∗j , g∗∗j = w−2
j K∗∗

w,θ ĉ

for j = 1, . . . ,q, and G∗∗ as an N× q matrix with jth column being g∗∗j . The remaining part

for the SELECTION stage is the same as above.

100



4.2.3 Sampling Methods for Basis Selection

The main idea of subset basis algorithm is to use a subset of the design points to create a

set of basis functions for model estimation. In other words, we would like this subset to be

representative of the dataset. One important issue is to find a good sampling scheme to select

these points automatically from the whole data. In this section, we consider two sampling

methods, which will be used to choose N data points from the total n observations.

The first method is the simple random sampling (SRS hereafter). In SRS each individual

has the same probability of being selected in the subset. The motivation behind is that we

assume the data has a uniform distribution in the design space, therefore the random sampling

of the observations will provide a good representation of the whole design space. We use

SRS without replacement, hence any observation can be selected to the subset only once. The

most appealing reason for using SRS in subset basis algorithm is its ease of implementation.

It has already been applied in some parsimonious basis algorithms (see Ruppert and Carroll

2000, Yau, Kohn, and Wood 2002, Zhang and Lin 2006). The implementation of the method

is straightforward.

Simple random sampling randomly selects data points without taking any information

about their distance from each other. Therefore, there might be observations in the subset

which are very close to each other. One alternative to take this distance into account is to

group the design points into N separate classes and from each of these classes select one

observation to the subset.
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The method just mentioned can be implemented using the idea of clustering. In the sub-

set basis algorithm with clustering, we recommend separating the data set into N clusters,

and then randomly selecting one observation from each cluster. There are several available

algorithms for clustering. We use k-means clustering method with the Euclidean distance as

the distance measure. We use the SAS software as our computational tool for the Cor-COSSO

and Adaptive Cor-COSSO. For cluster sampling, we choose a fast clustering algorithm (FAST-

CLUS, SAS/STAT User’s Guide, SAS Institute Inc.) available in this software package. The

advantage of the FASTCLUS algorithm is that it implements the clustering to large datasets

in a very short time. The clustering-based subset basis algorithm works in the following four

steps:

1. Select N points as cluster seeds.

2. Assign all design points to some cluster based on their nearest seed, and replace the

cluster seed by the cluster mean. Repeat this step until change is smaller than a pre-

define convergence limit.

3. Form the final clusters based on the last iteration

4. Randomly select one design point from each cluster. This set of points will create the

subset to fit the Cor-COSSO model.
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4.2.4 Tuning in Subset Basis Algorithm

In the subset basis algorithm, we can use any of the four tuning criteria described in Section

2.3.2, namely: the WMSE, UBR GCV and the L methods. These criteria are formulated

using the influence or hat matrix (A), which was calculated using the QR decomposition of 1n

shown in Section 1.3.3. However, the hat matrix does not have the same form in the subset

basis algorithm, and therefore, the calculation of the tuning scores will be different than that

in full basis algorithm. In other words, we can still use the tuning criteria mentioned above,

but we still need to figure out the matrix formulation of the A.

The subset basis algorithm minimization problem of (4.3) can be rephrased in the matrix

format as:


y−

(
R∗θ 1n

)



c

d







T

Wτ


y−

(
R∗θ 1n

)



c

d





+nλ ∗0

(
c d

)



R∗∗θ 0

0 0







c

d




(4.9)

Taking derivatives of (4.9) with respect to c and d:

(
R∗θ 1n

)T

Wτ


y−

(
R∗θ 1n

)



c

d





−nλ ∗0




R∗∗θ 0

0 0







c

d


 = 0N+1

Now, let T =
(

R∗θ 1n

)T

Wτ

(
R∗θ 1n

)
+nλ ∗0




R∗∗θ 0

0 0


. Then the estimates of ĉ and
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d̂ can be written as: 


ĉ

d̂


 = T−1

(
R∗θ 1n

)T

Wτy

Hence, the hat matrix A is;

A =
(

R∗θ 1n

)
T−1

(
R∗θ 1n

)T

Wτ (4.10)

In the following section, we present the complete algorithm with subset basis approach for

the Correlated COSSO method. The algorithm will be similar for the Adaptive Correlated

COSSO.

4.3 Complete Algorithm for Subset Basis Approach

In this section we present the basis subset algorithm for the Correlated COSSO. We use the

One-Step Update algorithm for each value of M on a pre-defined tuning grid. User has the

option to use the other three alternative algorithms (i.e., full iteration, full iteration with trun-

cation and Step-Down). Moreover, for tuning M, we recommend the use of L method. The

alternative tuning methods such as GCV, UBR and WMSE can be also used.

The complete subset basis algorithm for the Correlated COSSO is following:

1. Select a subset of N observations randomly from the data. Create the subset basis by the

reproducing kernels R j(·, ·) for j = 1, . . . ,q.
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2. Fix θ̂ j = 1, j = 1, . . . ,q.

3. Solve (4.3) for c,d,τ,σ and λ ∗0 using the ESTIMATION stage. Fix λ ∗0 for the rest of

the algorithm.

4. For each value in a reasonable grid of M, fix this parameter.

5. Use one-step update algorithm of Section 2.3 to fit Cor-COSSO model.

6. Calculate the L method score.

7. Repeat steps 5 and 6 within the grid of M.

8. Find the minimal L score. The corresponding solution is the Correlated COSSO esti-

mate.

The algorithm can easily be adapted to the Adaptive Correlated COSSO method. The

implementation of this method will be provided with a simulation study in Section 5.2.3.
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CHAPTER 5

SIMULATION STUDY

5.1 Introduction

In this chapter, we outline the simulation designs and summarize our findings. This chap-

ter consists of two parts. The first part is designed to compare various tuning methods for

both Cor-COSSO and Adaptive Cor-COSSO. We also compare the proposed algorithms for

fixed tuning parameter, sampling schemes and the subset basis versus full basis approaches.

The second part compares Correlated COSSO and Adaptive Correlated COSSO with existing

methods in the literature.

The empirical performance of the Correlated COSSO and the Adaptive Correlated COSSO

methods are studied and demonstrated in this section using extensive simulations. We present

simulations in the following settings:

• error covariance structure: AR(1) and Compound Symmetry (CS),

• sample size: n = 100,200,400,1000,

• dimension of covariates: p = 10,28,30,
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• different error standard deviations: σ = 0.5,1,2,4,

• different signal to noise ratio (SNR): 0.9−7.2.

Our numerical examples also cover scenarios where the explanatory variables are inde-

pendent or correlated, highly correlated data situations, a large dimensional variable selection

example, and a model including interaction terms.

We use the original COSSO as the benchmark method to compare with our proposals.

Lin and Zhang (2006) and Zhang and Lin (2006) shows that the original COSSO method

outperforms MARS (Friedman, 1991) in their simulation study, which is one of the most

popular component selection methods in nonparametric regression. Although the original

COSSO does not take the error covariance into account, it is still a good method to compare

with for our proposals.

The following four functions are used as building blocks in our simulation study:

g1(t) = t, g2(t) = (2t−1)2, g3(t) =
sin(2πt)

2− sin(2πt)
,

g4(t) = 0.1sin(2πt)+0.2cos(2πt)+0.3sin(2πt)2 +0.4cos(2πt)2 +0.5sin(2πt)3.

These four functions are used to generate the relationship in between the explanatory variables

and the response.

Throughout the simulation study, in order to calculate the Signal-to-Noise Ratio (SNR)
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defined as:

SNR =

√
Var[ f (x)]
|V |1/n

We generate Monte Carlo samples to estimate the variances of f and noise term separately. In

particular, we generate 10,000 observations to estimate Var[ f (x)], and the covariance matrix

V = Cov(ε). There are two possible approaches to estimate the magnitude of noise: the first

one is based on the trace, and the second is based on the determinant of the covariance matrix

V . Since the trace-based method ignores the correlation between observations, we choose to

use the determinant-based method.

We measure the empirical performance of proposed methods in terms of their estimation

accuracy and model selection. The Integrated Squared Error (ISE) is used as the measure of

prediction accuracy. In order to calculate this quantity, a test set of size 10,000 is generated

from the same regression function from which the data was generated. Using Monte Carlo

integration, the ISE is estimated for each replication. Average and standard error estimates of

ISE are reported.

We use three quantities to measure the model selection performance. The first quantity

is the correct model selection percentage (πc), which is the percentage of the correct model

being identified by the method over 100 simulations. The other two quantities are the Number

of correct 0’s, (CORR) which is the number of uninformative variables which are successfully

removed from the model, and the Number of incorrect 0’s, (INC) which is the number of

important variables left out of the model by mistake. Ideally, the last quantity should be close
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to 0. The averages and standard errors of these quantities from 100 simulated datasets are

tabulated for each method. Abstract outlines of each simulation study is following.

Section 5.2.1 compares the smoothing parameter selection methods covered in Section

2.3.2. The methods include Weighted Mean Squared Error (WMSE), Generalized Cross Val-

idation (GCV), Unbiased Risk (UBR) and L method. The details of these methods can be

found in Section 2.3.2.

We proposed four different algorithms to find a solution to Cor-COSSO (or Adaptive Cor-

COSSO) in Section 2.3.1. These algorithms are the full iteration, full iteration with truncation,

step-down and one-step update algorithms. Section 5.2.2 compares these algorithms to rec-

ommend one of them in future fitting of Cor-COSSO and Adaptive Cor-COSSO.

We investigate the subset basis algorithm in Section 5.2.3. Two sampling methods, namely

simple random sampling and cluster sampling, are compared and the selection of the basis size

is also discussed based on the simulation results. The subset basis algorithms are compared to

the full basis algorithm. We compare Cor-COSSO and Adaptive Cor-COSSO methods with

the original COSSO in Section 5.3 using three simulation examples.

5.2 Comparison of Algorithms and Tuning Criteria

This section compares several tuning criteria and algorithms previously proposed in Chapters 2

- 4. We consider three examples. The first example covers the comparison of the tuning criteria

described in Section 2.3.2. The second example is designed to compare four algorithms (full
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iteration, full iteration with truncation, step-down, one-step update). The third section is on

the Subset Basis Algorithm (hereafter SBA) described in Chapter 4.

5.2.1 Comparison of Smoothing Parameter Selection Methods

We now compare the performance of various types of smoothing parameter selection scores

described in Section 2.3.2. The tuning criteria under comparison are UBR’s, GCV’s, WMSE’s

and L method.

We consider a ten-dimensional additive model. The underlying data generating process

is f (x) = 5g1(x(1)) + 3g2(x(2)) + 4g3(x(3)) + 6g4(x(4)), where g1, . . . ,g4 are defined in the

previous section. As can be seen from the process, x(5), . . . ,x(10) do not carry any information

on the response, therefore they are noise variables. Let the sample size (n) be 200 and we

generate the data by y = f (x) + ε , where ε’s have mean 0 and constant standard deviation:

σ = 1 and σ = 2. Furthermore, these error terms have a first-order Auto Regressive (AR-1)

correlation structure, with the correlation parameter ρ = 0.3 (see W−1
τ matrix in Equation

1.18). A time series data is a motivation for this kind of a correlation structure. The signal-to-

noise ratio (SNR) for this example is 1.86 when σ = 2 and 3.74 when σ = 1.

We fit the Additive Correlated COSSO to 100 simulated data sets and the results are re-

ported. For one simulated dataset with σ2 = 1, the magnitudes of the estimated components

are plotted with the tuning parameter M (see Figure 5.1). These magnitudes are measured by

L1 norms, defined as 1
n ∑n

i=1 ‖ f̂ j(x
( j)
i )‖ for j = 1,2, . . . ,q. For each tuning criteria, λ ∗0 is es-
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Figure 5.1: The empirical L1 norm of the estimated components as plotted against the tuning
parameter M.

timated in ESTIMATION stage using GML. The tuning of M is conducted on integers between

1 to 10. For this example we observe that the UBR0, UBR1, GCV0, L, and WMSE0 selected

M = 3, which includes all four informative variables, and no noise variables. Furthermore,

the GCV1, GCV2 and WMSE1 methods selected M = 4, and the UBR2 and WMSE2 selected

M = 5, both including extra noise variables in the final model.
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Tables 5.1 and 5.2 summarize the performance of different tuning methods in two scenar-

ios: σ = 1 and σ = 2. Tables include variance estimates, ISEs, variable selection performance

measures and their standard errors. The row TRUE corresponds to the SS-ANOVA fit when

the true model is assumed to be known. The solution is obtained using the linear mixed model

connection recommended by Wang (1998b). This fit serves as a gold standard for comparison

among various methods. However, it is unavailable in real examples, since the true model is

generally unknown.

Table 5.1: Tuning Criteria Comparison (σ = 1).

Method ρ̂(se) σ̂(se) ISE(se) πc CORR(se) INC(se)
TRUE .33(.08) 0.99(.06) .13(.03) 100 6.00(.00) .00(.00)

L .33(.08) 1.00(.05) .14(.04) 99 5.96(.40) .00(.00)
UBR0 .36(.16) 1.12(.54) .14(.04) 100 6.00(.00) .00(.00)
UBR1 .33(.08) 1.00(.06) .15(.09) 99 6.00(.00) .01(.10)
UBR2 .19(.11) 1.21(.23) .71(.64) 43 6.00(.00) .61(.57)
GCV0 .33(.08) 0.99(.06) .17(.06) 70 5.46(1.03) .00(.00)
GCV1 .33(.08) 0.99(.06) .16(.05) 78 5.67(.74) .00(.00)
GCV2 .34(.08) 0.99(.06) .16(.06) 74 5.56(.90) .00(.00)

WMSE0 .34(.13) 1.08(.45) .14(.04) 98 5.98(.14) .00(.00)
WMSE1 .29(.08) 1.02(.09) .24(.17) 55 3.95(2.69) .03(.17)
WMSE2 .18(.08) 1.20(.23) .75(.59) 14 4.32(2.61) .57(.57)

Notes: This table corresponds to the results from the simulation with n = 200, ρ = 0.3 and σ = 1. Corresponding SNR is 3.74. The columns

are estimates provided with standard errors (in parenthesis) from 100 Monte Carlo samples. Integrated Squared Error (ISE), correct model

selection percentages (πc), average number of correct zeros (CORR) and incorrect zeros (INC) are explained in introduction section for this

chapter.

In Table 5.1, the UBR0, UBR1, WMSE0 and L method perform equally well. Their ISE

values are close to the TRUE fit, and the fit given by the L method is overall the closest to

the true fit. Also these four methods have correct model selection percentages over 95%, and
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most of them do not miss any important variables.

However, as Table 5.2 shows, when the variable selection problem becomes more chal-

lenging (with smaller SNR), the performances of both UBR and GCV methods get worse,

while the L method, WMSE0 and WMSE1 are more robust to smaller SNR. Since the WMSE

methods are not applicable in practice when we do not know the underlying data generating

process, we recommend the L method as the default tuning method for M, and use it in the

later examples.

Table 5.2: Tuning Criteria Comparison (σ = 2).

Method ρ̂(se) σ̂(se) ISE(se) πc CORR(se) INC(se)
TRUE .32(.08) 1.99(.11) .42(.12) 100 6.00(.00) .00(.00)

L .32(.07) 2.02(.11) .47(.18) 95 5.98(.14) .03(.17)
UBR0 .30(.09) 2.09(.17) .86(.74) 61 6.00(.00) .43(.59)
UBR1 .24(.08) 2.28(.29) 1.79(1.21) 20 6.00(.00) 1.13(.72)
UBR2 .23(.07) 2.37(.28) 2.15(1.16) 07 6.00(.00) 1.35(.61)
GCV0 .32(.08) 2.00(.12) .53(.19) 68 5.44(.98) .00(.00)
GCV1 .32(.08) 2.00(.12) .53(.19) 70 5.47(.97) .00(.00)
GCV2 .33(.08) 2.00(.11) .54(.19) 69 5.42(1.05) .00(.00)

WMSE0 .32(.07) 2.02(.11) .46(.12) 97 5.92(.61) .00(.00)
WMSE1 .31(.07) 2.02(.11) .47(.13) 90 5.74(.94) .00(.00)
WMSE2 .27(.08) 2.08(.15) .82(.52) 45 4.75(2.13) .26(.48)

Notes: This table corresponds to the results from the simulation with n = 200, ρ = 0.3 and σ = 2. Corresponding SNR is 1.86.

Similar conclusions can be derived in other simulation examples, which are not presented

here. UBR0 method is one of the best methods when the SNR value is high. However, its

performance is poor in higher variance situations. The L method performs consistently well

in terms of both variable selection and model prediction.
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5.2.2 Comparison of Algorithms

Both Correlated COSSO and Adaptive Correlated COSSO methods have one smoothing pa-

rameter (λ ) in their formulations. In Sections 2.3.1 and 3.4.1, we propose four computational

algorithms for both Cor-COSSO and Adaptive Cor-COSSO with fixed tuning parameter. Now

we compare these algorithms for fitting Cor-COSSO (and Adaptive Cor-COSSO) in terms of

their computation times and solution properties.

We consider a similar model with the previous example. The regression function to gener-

ate the relationship is f (x) = 5g1(x(1))+3g2(x(2))+4g3(x(3))+6g4(x(4)), where g1, . . . ,g4 are

defined in introduction section of this chapter. For diversity, we generate the error terms with

compound symmetry correlation structure. Each subject has five equally correlated observa-

tions, and the data set includes observations from 20 subjects (n = 100). The within-subject

correlation ρ is 0.3. The error standard deviation is taken as σ = 2, which corresponds to a

SNR value of 1.76.

The four algorithms mentioned in Chapter 2 are respectively full iteration, truncated full

iteration, step-down and one-step update algorithms. The first three iterate between the ES-

TIMATION and SELECTION stages until convergence, therefore, they are computationally

more expensive. Since the computational time of the one-step update algorithm is shorter than

the other three, and if it also gives compatible performance based on variable selection and

estimation accuracy, we will recommend using the one-step update algorithm.

Table 5.3 provides the results for four algorithms based on 100 simulated datasets. We did
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Table 5.3: Computation Time and Solution Property of Cor-COSSO Algorithms.

Algorithm Duration (MM:SS) ISE(se) πc CORR(se) INC(se)
One Step Upd 00:32 1.20(.47) 69 5.87(.54) .19(.39)

Full 01:59 1.40(.46) 0 0.39(.83) .01(.10)
Full - Trun 02:00 1.19(.45) 70 5.82(.46) .17(.38)
Step-Down 01:59 1.18(.54) 70 5.83(.45) .18(.39)

Notes: This table corresponds to the results from the Correlated COSSO algorithm comparison simulation with n = 100, ρ = 0.3 and σ = 2.

Corresponding SNR is 1.76. Here, duration is in minutes and seconds format, and is time for the algorithm to conclude.

not provide the variance component estimates since these estimates are all close to the true

parameter values. It can be easily seen from the table that the computation time for the one-

step update algorithm is much shorter than the other three methods. The reason for this is, on

average, the convergence is achieved in four to five iterations, which means going through the

ESTIMATION stage 30 to 40 times more for each fit. Furthermore, the estimation accuracy

and the variable selection performances of the one-step update algorithm are almost as good as

the other three. Therefore, we recommend using the one-step update algorithm as the default

algorithm to solve the Correlated COSSO methods.

In Section 2.3.1 we have already mentioned about the numerical problem that causes the

non-sparse solution for the full iteration algorithm, which is confirmed by our numerical re-

sults in Table 5.3. When we take a closer look at the final results, we discover that, the method

gives tiny θ j estimates which do not affect the ISE values too much, yet those noise vari-

able are not excluded. Therefore, most of the time, the full iteration algorithm estimates a

final model with 9 or all 10 variables included. We could not pinpoint the numerical issue

which causes this problem, yet when we truncate small θ j’s to 0, (see truncated full iteration
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algorithm results), we see the gain in the variable selection performance.

Table 5.4: Computation Time and Solution Property of Adaptive Cor-COSSO Algorithms.

Algorithm Duration (MM:SS) ISE(se) πc CORR(se) INC(se)
One Step Upd 00:41 1.09(.45) 76 5.85(.41) .12(.33)

Full 02:20 1.24(.46) 0 1.17(1.00) .00(.00)
Full - Trun 02:21 1.10(.44) 69 5.73(.57) .10(.30)
Step-Down 02:23 1.09(.43) 76 5.85(.39) .10(.30)

Notes: This table corresponds to the results from the Adaptive Correlated COSSO algorithm comparison simulation with n = 100, ρ = 0.3

and σ = 2. Corresponding SNR is 1.76. Here, duration is in minutes and seconds format, and is time for the algorithm to conclude.

In Table 5.4, results from the comparison of Adaptive Correlated COSSO algorithms can

be found. Again the one-step update algorithm finds the solution in a shorter time with the

results quite close to the truncated full and step-down algorithms. The sparsity issue of the

full iteration algorithm is also noticed, and therefore the full iteration algorithm is not recom-

mended for use in Adaptive Cor-COSSO.

5.2.3 Massive Data Example with Subset Basis Algorithm

The major drawback in the Correlated COSSO and Adaptive Correlated COSSO methods is

their computational burden, when the number of observations (n) is large. This issue mainly

arises from the fact that in ESTIMATION stage of the algorithms, where we need to estimate n

random effects, which becomes computationally challenging when the sample size increases.

In Chapter 4 we propose to use the Subset Basis Algorithm (hereafter SBA) for large

datasets. The method uses a subset of samples to create a basis set, and uses this set to approx-

imate the Correlated COSSO (or Adaptive Correlated COSSO) solution. In this section, we
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Table 5.5: Subset Basis Algorithm with n = 200 Observations (σ = 2).

Method Basis ρ̂(se) σ̂(se) ISE(se) πc CORR INC Time
SBA-SRS 25 .27(.08) 2.03(.13) .73(.28) 84 5.96 .20 0:00:07
SBA-CL 25 .26(.09) 2.08(.13) .95(.36) 54 5.86 .33 0:00:07

SBA-SRS 50 .27(.08) 2.01(.12) .63(.23) 90 5.92 .05 0:00:09
SBA-CL 50 .27(.09) 2.02(.12) .66(.27) 86 5.94 .09 0:00:09

SBA-SRS 100 .27(.09) 2.04(.11) .65(.27) 85 5.93 .09 0:00:18
SBA-CL 100 .26(.10) 2.04(.11) .65(.27) 84 5.91 .09 0:00:19

Full 200 .29(.09) 1.98(.13) .58(.26) 89 5.95 .08 0:00:57

Notes: This table corresponds to the results from the simulation with n = 200, ρ = 0.3 and σ = 2. SBA-SRS stands for the Subset Basis

Algorithm with Simple Random Sampling, while SBA-CS is with Cluster Sampling. Full method provides the results from One-Step Update

algorithm for the Cor-COSSO with mixed model formulation in (2.9). Corresponding SNR is 1.80.

investigate the empirical performance of SBA. Although the method is applicable to Adaptive

Cor-COSSO as well, we present results from only Cor-COSSO method.

Table 5.6: Subset Basis Algorithm with n = 200 Observations (σ = 4).

Method Basis ρ̂(se) σ̂(se) ISE(se) πc CORR INC Time
SBA-SRS 25 .27(.08) 4.06(.26) 2.62(1.06) 16 5.91 .89 0:00:07
SBA-CL 25 .28(.08) 4.06(.25) 2.62(1.07) 12 5.88 .94 0:00:06

SBA-SRS 50 .28(.08) 4.03(.26) 2.29(.96) 21 5.90 .79 0:00:09
SBA-CL 50 .28(.08) 4.05(.25) 2.42(.94) 20 5.94 .83 0:00:09

SBA-SRS 100 .28(.08) 4.03(.26) 2.42(1.18) 23 5.81 .79 0:00:19
SBA-CL 100 .28(.08) 4.03(.25) 2.44(1.18) 24 5.80 .78 0:00:18

Full 200 .28(.08) 4.03(.26) 2.41(1.23) 20 5.94 .88 0:01:06

Notes: This table corresponds to the results from the simulation with n = 200, ρ = 0.3 and σ = 4. Corresponding SNR is 0.90.

Recall that we introduced two sampling methods, namely Simple Random Sampling (SRS)

and Cluster Sampling (CL). Both methods are used to fit the Cor-COSSO with SBA. We com-

pare the performance of SBA algorithm with varying basis size in several simulation settings.

In these settings, we use different sample sizes (n = 200,400 and 1000), and error standard
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deviations (σ = 2,4). We generate data using the regression function:

f (x) = 5g1(x(1))+3g2(x(2))+4g3(x(3))+6g4(x(4))

with additive error terms with a compound symmetry correlation structure. In this example

we assume 5 observation per subject and all observations from the same subject is equally

correlated pairwise. The within-subject correlation is ρ = 0.3. The datasets also have six

noise variables (x(5), . . . ,x(10)). The variable selection and prediction accuracy performance of

the SBA settings along with the average computation time can be found in Tables 5.5 - 5.10.

We provide results from both sampling methods and basis sizes N = 25,50,100,200,n, where

n is the sample size.

Table 5.7: Subset Basis Algorithm with n = 400 Observations (σ = 2).

Method Basis ρ̂(se) σ̂(se) ISE(se) πc CORR INC Time
SBA-SRS 25 .29(.06) 2.03(.08) .35(.08) 100 6.00 .00 0:00:10
SBA-CL 25 .28(.06) 2.06(.08) .49(.13) 97 5.95 .01 0:00:11

SBA-SRS 50 .28(.07) 2.02(.08) .32(.08) 99 5.97 .00 0:00:13
SBA-CL 50 .30(.06) 2.01(.08) .32(.08) 100 6.00 .00 0:00:13

SBA-SRS 100 .30(.06) 2.00(.08) .28(.08) 100 6.00 .00 0:00:26
SBA-CL 100 .30(.06) 2.01(.08) .30(.08) 98 5.97 .00 0:00:26

SBA-SRS 200 .29(.06) 2.00(.08) .27(.08) 100 6.00 .00 0:01:09
SBA-CL 200 .29(.06) 2.00(.08) .28(.08) 100 6.00 .00 0:01:09

Full 400 .30(.06) 1.98(.08) .26(.07) 99 5.99 .00 0:05:34

Notes: This table corresponds to the results from the simulation with n = 400, ρ = 0.3 and σ = 2. Corresponding SNR is 1.87.

It can be seen from Table 5.5, the results of SBA are comparable with the full basis algo-

rithm, especially when the basis size is 50 or above. ISE values are within small differences

118



Table 5.8: Subset Basis Algorithm with n = 400 Observations (σ = 4).

Method Basis ρ̂(se) σ̂(se) ISE(se) πc CORR INC Time
SBA-SRS 25 .29(.06) 4.05(.17) 1.38(.42) 52 5.86 .39 0:00:10
SBA-CL 25 .29(.06) 4.04(.17) 1.22(.35) 66 5.97 .32 0:00:10

SBA-SRS 50 .29(.06) 4.06(.17) 1.37(.41) 61 5.94 .33 0:00:13
SBA-CL 50 .29(.06) 4.02(.16) 1.14(.38) 64 5.96 .32 0:00:14

SBA-SRS 100 .30(.06) 4.02(.17) 1.15(.39) 62 5.85 .27 0:00:25
SBA-CL 100 .30(.06) 4.02(.17) 1.13(.36) 61 5.90 .31 0:00:25

SBA-SRS 200 .30(.06) 4.02(.17) 1.15(.48) 60 5.90 .32 0:01:08
SBA-CL 200 .30(.06) 4.02(.16) 1.10(.39) 66 5.91 .28 0:01:09

Full 400 .30(.06) 4.00(.17) 1.08(.43) 60 5.94 .37 0:06:02

Notes: This table corresponds to the results from the simulation with n = 400, ρ = 0.3 and σ = 4. Corresponding SNR is 0.94.

from the original model, and variable selection performance is similar. On the other hand, the

SBA with basis size 25 shows instable results.

In Figure 5.2, the estimated functional components are plotted along with the true func-

tional component, the curves are from subset basis algorithm fits with basis sizes 25, 50, 100,

and the full basis algorithm. Notice the components are centered according to the ANOVA

decompositions. Overall, all four components SBA fits and the full basis algorithm fit are

quite close to the real functional component. The function estimates from SBA with N = 25

shows the largest divergence from the true fit as expected. The best fit is provided by the full

basis algorithm, yet the SBA fits with N = 50 and N = 100 give good approximations to this

fit.

In Table 5.6 the error standard deviation is increased to 4, hence the problem becomes

more challenging. We can see that except for basis size 25, the results from SBA are close to

the full basis algorithm. Error standard deviation (σ̂ ) and correlation (ρ̂) estimates are close
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Figure 5.2: Estimated functional components for four explanatory variables in SBA Example.
Notes: This figure shows the component estimates for basis sizes 25, 50, 100 and the full basis Correlated COSSO method along with the

TRUE functional components. The plots show the estimates from an additive model applied to the subset basis algorithm for one dataset in

SBA simulation, where error standard deviation is σ = 2 and the sample size is n = 200. These four explanatory variables are included in

the final model by all four algorithms. For all other variables, the true and estimated functional components are zero.
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to the true parameter values. The correct model selection probabilities are in the range of

20−24%, and the ISE values are ranging between 2.29−2.44. So the subset basis algorithm

results are close to the full basis algorithm results. This can tell us that the SBA approximates

the full basis algorithm consistently well even for a harder component selection problem.

Table 5.9: Subset Basis Algorithm with n = 1000 Observations (σ = 2).

Method Basis ρ̂(se) σ̂(se) ISE(se) πc CORR INC Time
SBA-SRS 25 .28(.06) 2.03(.05) .16(.04) 100 6.00 .00 0:01:02
SBA-CL 25 .29(.04) 2.04(.05) .20(.05) 100 6.00 .00 0:01:04

SBA-SRS 50 .30(.04) 2.02(.05) .12(.03) 100 6.00 .00 0:01:05
SBA-CL 50 .29(.04) 2.02(.05) .15(.04) 100 6.00 .00 0:01:06

SBA-SRS 100 .30(.04) 2.02(.05) .12(.03) 100 6.00 .00 0:01:52
SBA-CL 100 .30(.04) 2.02(.05) .13(.03) 100 6.00 .00 0:01:52

SBA-SRS 200 .30(.04) 2.02(.05) .12(.03) 100 6.00 .00 0:02:54
SBA-CL 200 .30(.04) 2.01(.05) .12(.03) 100 6.00 .00 0:02:54

Full* 1000 .31(.04) 2.05(.10) .12(.02) 100 6.00 .00 23:16:54

Notes: This table corresponds to the results from the simulation with n = 1000, ρ = 0.3 and σ = 2. The row with * is estimated from only

three Monte Carlo simulations because of the extensive computation time. Corresponding SNR is 1.94.

In Tables 5.7 and 5.8 we observe the performance of SBA on simulated datasets with

sample size 400. The results from the full basis algorithm and the SBA (especially with basis

size 100 or above) are close to each other. For example, the average ISE values with basis

size 100 (0.28 for simple random sampling SBA, and 0.30 for cluster SBA) are very close to

the average ISE from the full basis algorithm (0.26). The correct model selection probabilities

are almost the same. Another important aspect can be gained comparing this table with Table

5.5, which provides the results with the same setting and sample size 200. We observe the

improvement of the results in model estimation, variance-covariance parameter estimation
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and variable selection clearly for both full and subset basis algorithms. This simulation also

shows the performance improvement for both the subset and full basis algorithms with the

increasing sample size. The same conclusion is reached when the sample size is increased to

1000 in Table 5.9. We would like to remark that all SBA’s with any number of basis sizes

performed a perfect variable selection performance in this table. In Table 5.10 with the error

standard deviation σ = 4, this performance is again very close to perfect, and the improvement

is obvious compared to smaller sample sizes.

The main advantage of the SBA can be observed when the sample size gets larger. We

increase the sample size to 400 in Tables 5.7 and 5.8, and to 1000 in Tables 5.9 and 5.10. The

gain in computational time is obvious with this larger sample size scenarios. The total com-

putation is approximately 1/10 of the full basis algorithm for a SBA with basis size 100 for

a dataset with 400 observations. The gain is even more for datasets with 1000 observations.

The computation time reaches almost a day for a full basis method estimation when the sample

size is 1000, yet the SBA with 100 basis size finds an estimate in less than two minutes. This

computational burden affects our simulation study, and we only use three Monte Carlo simu-

lations for full basis algorithm when n = 1000. This sample size may still not be considered

as massive considering the datasets with tens of thousands of observations. For this type of a

massive dataset, the full basis algorithm becomes impractical, and even impossible to fit with

today’s computational resources. Therefore, the SBA is the only feasible algorithm to achieve

the approximate Cor-COSSO estimate for massive datasets.

As a short summary of the findings from this simulation example, we observe that the SBA
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Table 5.10: Subset Basis Algorithm with n = 1000 Observations (σ = 4).

Method Basis ρ̂(se) σ̂(se) ISE(se) πc CORR INC Time
SBA-SRS 25 .29(.04) 4.04(.11) .60(.18) 93 5.99 .06 0:01:12
SBA-CL 25 .30(.03) 4.03(.11) .52(.17) 94 5.96 .03 0:01:15

SBA-SRS 50 .30(.04) 4.04(.11) .56(.16) 98 6.00 .02 0:01:06
SBA-CL 50 .30(.04) 4.04(.11) .52(.16) 97 6.00 .03 0:01:07

SBA-SRS 100 .30(.03) 4.02(.11) .44(.16) 97 5.99 .02 0:01:54
SBA-CL 100 .30(.03) 4.03(.11) .46(.14) 96 5.96 .01 0:01:53

SBA-SRS 200 .30(.04) 4.03(.11) .50(.14) 99 6.00 .01 0:02:54
SBA-CL 200 .30(.04) 4.04(.11) .52(.17) 96 6.00 .04 0:02:54

Full* 1000 .31(.04) 4.10(.21) .42(.07) 100 6.00 .00 23:06:09

Notes: This table corresponds to the results from the simulation with n = 400, ρ = 0.3 and σ = 4. The row with * is estimated from only

three Monte Carlo simulations because of the extensive computation time. Corresponding SNR is 0.97.

method provides a good approximation to the full basis algorithm especially when the sample

size gets very large. The comparison of the computational time for these two algorithms

reveals the gain of using such an approximation. For very large datasets, the SBA might

be the only algorithm which is feasible to find the Cor-COSSO (or Adaptive Cor-COSSO)

solution. The prediction accuracy and the variable selection performance results from SBA

and the full basis algorithm are comparable. One important issue in SBA is to decide on the

basis size to be used. In our experience, we conclude that the basis size of 25 is definitely too

small since it did not result in consistent estimates. The performance of SBA with 50 basis

functions is also questionable. We recommend using a basis size of at least 100 especially for

massive data situations. The approximation with this basis size is satisfactory in our examples,

and the computation is not too expensive.

Another aspect of this simulation study is to compare the results from SBA with two
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sampling methods: Simple Random Sampling (SRS) and Cluster Sampling (CL). From all of

six tables, the results from SBA algorithm using SRS and CL sampling methods do not show

any significant difference. The expected benefit from using cluster sampling is not achieved.

The comparison of both sampling schemes in a higher dimensional problem, where we have

a larger number of explanatory variables might be an interesting area of further research. We

did not include this kind of a comparison in this dissertation.

5.3 Method Comparisons

We now compare our new proposals: Correlated COSSO and Adaptive Correlated COSSO

with an existing method in the literature (original COSSO - Lin and Zhang 2006). The rec-

ommendations from the previous chapter is used, i.e., we use L score to tune the smoothing

parameter M, and the one-step update algorithm throughout this section. Four simulation

examples, featured with different component selection and model estimation scenarios are

presented.

The first simulation example compares the methods in a problem containing 10 variables,

4 of which have important effects on the response. We consider n = 100,150 and 200, and

scenarios where the explanatory variables are either independent or correlated. The method

performance with a stronger correlation among observations is also investigated.

The second example is a larger dimensional problem with 30 explanatory variables, only

8 of which are important. In the third example, we investigated the case, where significant
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interaction effects are also present in the data generating process.

5.3.1 Example 1: Main Effects Model

To our knowledge, there are very few variable selection methods working with correlated ran-

dom errors in nonparametric regression literature. In this simulation example, we compare the

Correlated COSSO and the Adaptive Correlated COSSO methods with the original COSSO,

which ignores the possible correlation among error terms. In Lin and Zhang (2006), it has been

shown that the original COSSO method has better variable selection and prediction accuracy

performance compared to the popular MARS algorithm (Friedman, 1991).

Table 5.11: Method Comparison in Main Effects - Example 1 (n = 100).

Method ρ̂(se) σ̂(se) ISE(se) πc CORR INC
Orig-COSSO - ( - ) 2.06(.22) 1.62(.57) 31 5.80(.49) .56(.50)
Corr-COSSO .29(.12) 2.00(.20) 1.20(.47) 69 5.87(.54) .19(.39)
A-C-COSSO .29(.12) 1.98(.19) 1.09(.45) 76 5.85(.41) .12(.33)

Notes: This table corresponds to the results from comparison of three methods. The simulated datasets corresponds to the scenario with

n = 100, ρ = 0.3 and σ = 2. Corresponding SNR is 1.76.

The simulation setting is following. The regression function to generate the relationship

is f (x) = 5g1(x(1))+3g2(x(2))+4g3(x(3))+6g4(x(4)), where g1, . . . ,g4 are defined in Section

5.1. A within-subject compound symmetry (CS) covariance structure is assumed. The corre-

lation matrix corresponding to this simulation study is in the form of W−1
τ in equation (1.19).

The within-subject correlation is ρ = 0.3 and error standard deviation is σ = 2. We also allow

the number of subjects to increase to show the asymptotic improvement of the results with
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increasing sample size. Respectively, 20, 30 and 40 subjects are used, which corresponds to

sample sizes of 100, 150 and 200 observations per dataset. The SNR corresponding to this

example is estimated as 1.76,1.77 and 1.80 respectively.

Table 5.12: Method Comparison in Main Effects - Example 1 (n = 150).

Method ρ̂(se) σ̂(se) ISE(se) πc CORR(se) INC(se)
Orig-COSSO - ( - ) 2.02(.15) .96(.41) 76 5.95(.22) .19(.39)
Corr-COSSO .28(.09) 2.02(.15) .82(.34) 79 5.93(.26) .14(.35)
A-C-COSSO .28(.09) 1.99(.14) .71(.25) 85 5.86(.43) .04(.20)

Notes: This table corresponds to the results from comparison of three methods. The simulated datasets corresponds to the scenario with

n = 150, ρ = 0.3 and σ = 2. Corresponding SNR is 1.77.

Tables 5.11, 5.12 and 5.13 summarize the performance of three methods in three sample

size settings. It can be seen that both proposed methods outperform the Original COSSO.

Both Adaptive Correlated COSSO and Correlated COSSO methods achieve more accurate

predictions (i.e lower ISE’s), and better model selection performances (higher correct model

selection percentages).

Looking at each of three tables more carefully, we would see that the Adaptive Cor-

COSSO performs the best among three methods in terms of both variable selection perfor-

mance and model estimation accuracy. In all three tables, the smallest ISE’s are provided

by the Adaptive Cor-COSSO followed by Cor-COSSO. With regard to variable selection,

the Adaptive Cor-COSSO also provides the smallest number of incorrect 0’s, meaning, this

method misses the least number of important variables among the three.

The variance-covariance parameter estimates are overall accurate for both Correlated COSSO
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Table 5.13: Method Comparison in Main Effects - Example 1 (n = 200).

Method ρ̂(se) σ̂(se) ISE(se) πc CORR(se) INC(se)
Orig-COSSO - ( - ) 1.98(.12) .70(.33) 81 5.91(.35) .12(.33)
Corr-COSSO .28(.09) 1.98(.12) .57(.24) 91 5.96(.20) .05(.22)
A-C-COSSO .28(.09) 1.97(.12) .51(.17) 93 5.93(.29) .01(.10)

Notes: This table corresponds to the results from comparison of three methods. The simulated datasets corresponds to the scenario with

n = 200, ρ = 0.3 and σ = 2. Corresponding SNR is 1.80.

and Adaptive Correlated COSSO methods in all three settings. The accuracy of these esti-

mates not only provide information about variance-covariance structure of the data, but they

also help improving the model estimation performance.

The three tables (Tables 5.11, 5.12 and 5.13) together represent the well known phe-

nomenon of nonparametric regression that, increasing the sample size will result in better

estimates. For all three methods (Original, Correlated, and Adaptive-Correlated COSSO), the

better performance of prediction accuracy, variable selection and variance-covariance param-

eter estimation accuracy can be observed with increasing sample size. For n = 200, even

the misspecified original COSSO method shows an improved variable selection performance

(Table 5.13, πc = 81%). Yet, methods taking the correlation into consideration still works

better in variable selection performance (πc = 91% for Correlated COSSO and πc = 93% for

Adaptive Correlated COSSO). These two methods constantly give smaller ISE values as well.

In Figure 5.3, the estimated functional components are plotted along with the true func-

tional component: Correlated COSSO, Adaptive Correlated COSSO and the original COSSO

methods. Notice the components are centered according to the ANOVA decompositions.
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Figure 5.3: Estimated functional components for four explanatory variables in Example 1.
Notes: This figure shows the component estimates from Correlated COSSO, Adaptive Correlated COSSO and original COSSO methods

along with the TRUE fit. The plots show the estimates from an additive model applied to the methods in one dataset from simulation

Example 1, where error standard deviation is σ = 2 and the sample size is n = 200. These four explanatory variables are included in the

final model by all three methods. For all other variables, the true and estimated functional components are zero.
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Overall, all three methods provide good functional component approximations. Although

it is not easy to compare the fits just by looking at the plots, the Adaptive Correlated COSSO

and the Correlated COSSO methods give a very close fit to each other, while the fir from orig-

inal COSSO shows some divergence for X1−X3. On the contrary, for X4, all three methods

provide close fits. The proposed methods estimate the functional components closely to the

true functional component especially for X1 and X2.

The example above assumes the explanatory variables are independent from each other.

Yet, this is rarely true for real data. Therefore, the accuracy and variable selection performance

of the proposed methods on correlated explanatory variables is also an important aspect. In

the following part of this simulation example, we investigate the scenario with correlated

explanatory variables.

Tables 5.14 and 5.15 provide results from the simulation study with correlated explanatory

variables. Everything about the regression function and errors are the same, but the following

method is used to generate the explanatory variables:

• Generate w1, . . . ,w10 and u independently from Uniform(0,1)

• Define x( j) = (w j + tu)/(1+ t) f or j = 1, . . . ,10, for some t ≥ 0.

Then the generated variables have corr(x( j),x(k)) = t2/(1 + t2). We used t = 0,1 and 2,

where 0 corresponds to the independent x( j)’s are already provided above, and t = 1 gives a

pairwise 0.5 correlation (see Table 5.14) and t = 2 gives 0.8 correlation (see Table 5.15).

In both Tables 5.14 and 5.15 it can be seen that the ordering of the methods by means
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Table 5.14: Method Comparison in Main Effects - Correlated Explanatory Variables (t = 1).

Method ρ̂(se) σ̂(se) ISE(se) πc CORR(se) INC(se)
Orig-COSSO - ( - ) 2.00(.12) .77(.35) 48 5.85(.39) .53(.64)
Corr-COSSO .28(.08) 2.00(.13) .67(.31) 48 5.87(.48) .48(.59)
A-C-COSSO .28(.08) 1.98(.12) .58(.22) 58 5.81(.26) .26(.44)

Notes: This table corresponds to the results from comparison of three methods. The simulated datasets corresponds to the scenario with

t = 1, n = 200, ρ = 0.3 and σ = 2. There is a 0.5 correlation in between each pair of explanatory variables. Corresponding SNR value is

1.71.

Table 5.15: Method Comparison in Main Effects - Correlated Explanatory Variables (t = 2).

Method ρ̂(se) σ̂(se) ISE(se) πc CORR(se) INC(se)
Orig-COSSO - ( - ) 2.02(.14) .80(.25) 19 5.68(.51) 1.04(.72)
Corr-COSSO .28(.09) 2.02(.14) .73(.29) 26 5.75(.46) .96(.75)
A-C-COSSO .28(.09) 2.01(.12) .66(.24) 28 5.62(.56) .73(.62)

Notes: This table corresponds to the results from comparison of three methods. The simulated datasets corresponds to the scenario with

t = 2, n = 200, ρ = 0.3 and σ = 2. There is a 0.8 correlation in between each pair of explanatory variables.Corresponding SNR value is

1.72.

of variable selection and prediction accuracy performance does not change with the corre-

lated explanatory variables. Both Cor-COSSO and Adaptive Cor-COSSO work better than

the original COSSO, and the Adaptive Cor-COSSO method performs the best. The pairwise

correlation in between explanatory variables makes the component selection problem harder,

and this can be seen from these two tables when compared to Table 5.13. Correct model se-

lection percentages decrease to 26% (or 28% for Adaptive Cor-COSSO) when the pairwise

correlation is 0.8. Even in this challenging variable selection example, the Correlated COSSO

methods perform better than original COSSO.

In this simulation example, we also would like to see the changes in the performance of

Cor-COSSO and Adaptive Cor-COSSO methods when the correlation among the error terms
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are stronger. Two main ideas in this study is to see the limits of the methods by means of

how strong a correlation the methods can handle, and to observe how the prediction accuracy

and variable selection performance are affected by increased correlation. The within-subject

correlation parameter (ρ) is varying. We use ρ = 0.5,0.7,0.8 and 0.9 for this example.

Table 5.16: Method Comparison in Main Effects - High Correlation Example (ρ = 0.5).

Method ρ̂(se) σ̂(se) ISE(se) πc CORR(se) INC(se)
Orig-COSSO - ( - ) 1.98(.15) .72(.36) 78 5.93(.26) .15(.36)
Corr-COSSO .48(.08) 1.97(.14) .45(.16) 98 5.99(.14) .01(.10)
A-C-COSSO .49(.08) 1.96(.14) .41(.15) 97 5.95(.30) .00(.00)

Notes: This table corresponds to the results from comparison of three methods: Original COSSO, Correlated COSSO and Adaptive Corre-

lated COSSO. The simulated datasets corresponds to the scenario with n = 200, ρ = 0.5 and σ = 2. Corresponding SNR is 1.99.

As the correlation within each subject is increased, we expect the Correlated COSSO and

Adaptive Correlated COSSO methods to show better performance, since these methods gain

information from this correlation. We expect to see smaller ISE values and larger correct

model selection performances. On the other hand, the model estimation might be disturbed

when the correlation gets closer to 1 in absolute value. We would like to see how large a

correlation can the proposed methods handle with this simulation example.

Table 5.17: Method Comparison in Main Effects - High Correlation Example (ρ = 0.7).

Method ρ̂(se) σ̂(se) ISE(se) πc CORR(se) INC(se)
Orig-COSSO - ( - ) 1.97(.19) .72(.36) 81 5.95(.23) .14(.35)
Corr-COSSO .69(.06) 1.96(.18) .33(.13) 100 6.00(.00) .00(.00)
A-C-COSSO .70(.06) 1.96(.18) .31(.13) 99 5.98(.20) .00(.00)

Notes: This table corresponds to the results from comparison of three methods: Original COSSO, Correlated COSSO and Adaptive Corre-

lated COSSO. The simulated datasets corresponds to the scenario with n = 200, ρ = 0.7 and σ = 2. Corresponding SNR is 2.38.
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Tables 5.16 - 5.19 summarizes the results from the simulation study with several correla-

tion parameters (ρ = 0.5,0.7,0.8 and 0.9 respectively). The increasing signal-to-noise ratio

with increasing correlation parameter (ρ) shows that there are more available information in

data which the methods taking the correlation into account can use. The larger the correlation,

the better the performance of the Cor-COSSO and Adaptive Cor-COSSO methods. Smaller

ISE and larger correct model performance can be observed. On the other hand, since the

original COSSO method ignores the correlation, no improvement can be observed with in-

creased correlation in terms of ISE. In other words, the gap in between the performances of

Cor-COSSO (or Adaptive Cor-COSSO) and original COSSO widens with larger correlation.

Table 5.18: Method Comparison in Main Effects - High Correlation Example (ρ = 0.8).

Method ρ̂(se) σ̂(se) ISE(se) πc CORR(se) INC(se)
Orig-COSSO - ( - ) 1.96(.21) .72(.37) 82 5.95(.22) .13(.34)
Corr-COSSO .79(.05) 1.96(.19) .27(.13) 99 5.99(.10) .00(.00)
A-C-COSSO .79(.05) 1.96(.19) .26(.13) 99 5.99(.10) .00(.00)

Notes: This table corresponds to the results from comparison of three methods: Original COSSO, Correlated COSSO and Adaptive Corre-

lated COSSO. The simulated datasets corresponds to the scenario with n = 200, ρ = 0.8 and σ = 2. Corresponding SNR is 2.77.

The ordering of the method performances are similar. Both Cor-COSSO and Adaptive

Cor-COSSO methods outperform the original COSSO, especially with higher correlation. For

example, it can be seen in Table 5.19 that with ρ = 0.9, both Cor-COSSO and Adaptive Cor-

COSSO selects the correct model almost perfectly (99% of the time) while for the original

COSSO, the correct model selection probability is only 80%. From the same table, the ISE

values are .19 and .20 for Cor-COSSO and Adaptive Cor-COSSO respectively, while this value
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is .70 for the original COSSO. The main reason is the information gained from the correlation

in both Cor-COSSO and Adaptive Cor-COSSO. As long as the correlation gets stronger, the

amount of information being used increases, hence the prediction accuracy of the methods

gets better. On the other hand, the original COSSO ignores this correlation, therefore does not

use this additional information. This results in less efficient results. It can be observed that

with increased correlation, ISE values do not decrease for the original COSSO, but the gain is

obvious for the methods using the correlation among observations.

Table 5.19: Method Comparison in Main Effects - High Correlation Example (ρ = 0.9).

Method ρ̂(se) σ̂(se) ISE(se) πc CORR(se) INC(se)
Orig-COSSO - ( - ) 1.96(.23) .73(.40) 80 5.94(.24) .14(.35)
Corr-COSSO .90(.02) 1.95(.21) .20(.14) 99 5.99(.10) .00(.00)
A-C-COSSO .89(.02) 1.96(.21) .19(.14) 99 5.99(.10) .00(.00)

Notes: This table corresponds to the results from comparison of three methods: Original COSSO, Correlated COSSO and Adaptive Corre-

lated COSSO. The simulated datasets corresponds to the scenario with n = 200, ρ = 0.9 and σ = 2. Corresponding SNR is 3.62.

In order to see the limits of the Cor-COSSO and Adaptive Cor-COSSO methods, we used

even higher correlation in data generation. The convergence was not an issue in either Cor-

COSSO or Adaptive Cor-COSSO until the correlation parameter is ρ = 0.97. The Correlated

COSSO method provide 80% convergence rate at this value of ρ , while Adaptive Correlated

COSSO method still provide a 100% convergence. When the correlation is ρ = 0.99, the

Cor-COSSO convergence rate goes down to 50%, while this rate is still 95% for Adaptive Cor-

COSSO. The convergence rates are still quite high for the methods even though the correlation

parameter is very high. Especially for the Adaptive Correlated COSSO method, there is almost
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no convergence issue, even when the within-subject correlation is almost 1.

5.3.2 Example 2: Main Effects Model in Large Dimensions

We consider a larger additive model with 30 variables in this example. The underlying regres-

sion function is:

f (x) = g1(x(1))+g2(x(2))+g3(x(3))+g4(x(4))+2g1(x(5))+2g2(x(6))+2g3(x(7))+2g4(x(8)).

There are 22 uninformative variables, which makes the example a more sparse variable

selection problem. We implement the same compound symmetry correlation structure of Sec-

tion 5.3.1 with σ = 0.5 and within-subject correlation ρ = 0.3. We used 40 subjects with 5

observations per subject, a total of 200 observations. The estimated signal-to-noise ratio for

this example is 7.20 for σ = 0.5 and 3.60 for σ = 1.

Table 5.20: Method Comparison in Large Dimensional Variable Selection (σ = 0.5).

Method ρ̂(se) σ̂(se) ISE(se) πc CORR(se) INC(se)
Orig-COSSO - ( - ) .63(.08) .31(.13) .02 19.16(1.39) 1.30(.61)
Corr-COSSO .30(.09) .50(.04) .09(.03) .54 21.41(.86) .07(.26)
A-C-COSSO .29(.09) .50(.03) .08(.02) .84 21.84(.37) .00(.00)

Notes: This table corresponds to the results from the 30 dimensional variable selection example, where only 8 of them provide information

on response. The simulated datasets corresponds to the scenario with n = 200, ρ = 0.3 and σ = 0.5. Corresponding SNR is 7.20.

This simulation example is intentionally made more challenging in order to see the lim-

its of the two proposed methods. We compare the original COSSO, the Correlated COSSO

and the Adaptive Correlated COSSO methods in Table 5.20. We can see the good covari-
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ance parameter estimation performance of the Correlated COSSO and the Adaptive Correlated

COSSO. The underlying covariance parameters are in the confidence intervals set by the GML

estimates.

The Adaptive Correlated COSSO fit gives the smallest ISE values among the three meth-

ods. The reason is that, in order for both Correlated COSSO and original COSSO methods

to shrink the uninformative functional component estimates towards zero, these methods use

higher penalties on each term, which results in large bias for important variables. In contrast,

the Adaptive Correlated COSSO applies different magnitudes of penalization to different vari-

ables. Based on an initial estimate (we use a non-weighted SS-ANOVA fit as an initial esti-

mate, Craven and Wahba 1979), the important variables are penalized less compared to unim-

portant variables. Therefore, the important variables are shrunk less, which provide closer

fit to underlying data generating function. On the other hand, the uninformative variables

are penalized more, and they are shrunk to zero faster. This is the main reason why higher

correct model selection percentages (πc) and higher average correct 0’s are achieved by the

Adaptive Correlated COSSO in Table 5.20. The variable selection performance of Adaptive

Correlated COSSO is given in Table 5.20 as well. Higher correct model selection percentages

(πc), higher average Correct 0’s (CORR’s) and the smaller Incorrect 0’s (INC) are the signs of

better performance in variable selection.

One important point that should be clear from these three tables is that both the Correlated

COSSO and the Adaptive Correlated COSSO methods are powerful enough not to miss too

many important variables. The Incorrect 0’s (INC’s) column is either zero or close to zero in
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Table 5.21: Appearance Frequencies of Important Variables in Example 2 (σ = 1).

Method x1 x2 x3 x4 x5 x6 x7 x8 INC(se)
Orig-COSSO 42 8 24 99 94 39 100 100 2.94(1.41)
Corr-COSSO 41 14 20 96 99 53 100 100 2.77(1.42)
A-C-COSSO 64 34 62 97 98 61 100 100 1.84(1.19)

Notes: This table corresponds to the results from the 30 dimensional variable selection example, where only 8 of them provide information

on response. The simulated datasets corresponds to the scenario with n = 200, ρ = 0.3 and σ = 1. Corresponding SNR is 3.60. Table

includes the frequency of appearance for the informative variables in the model.

Table 5.20. This property of the Correlated COSSO is crucial in practice.

Table 5.22: Appearance Frequencies of Unimportant Variables in Example 2 (σ = 1).

Method x9 x10 x12 x14 x21 x25 x29 CORR(se)
Orig-COSSO 13 11 11 21 34 61 14 20.03(1.94)
Corr-COSSO 0 5 8 15 15 41 14 20.73(1.73)
A-C-COSSO 2 2 1 1 13 11 19 21.05(1.60)

Notes: This table corresponds to the results from the 30 dimensional variable selection example, where only 8 of them provide information

on response. The simulated datasets corresponds to the scenario with n = 200, ρ = 0.3 and σ = 1. Corresponding SNR is 3.60. Table

includes the frequency of appearance for the most frequent uninformative variables in the model. The whole list is not provided because of

space concerns.

To explore the properties of Correlated COSSO methods on even more challenging prob-

lems, we increase the error standard deviation σ to 1. This model corresponds to an estimated

SNR of 3.60. We keep the regression function and error covariance structure intact. Because

of the very hard nature of this problem, none of the methods was able to select the correct

model above 3% of the time. We instead present in Table 5.21 and Table 5.22 the total fre-

quencies of informative and uninformative variables respectively to be selected in the model

in 100 runs. Reader should be aware that variables x(1)− x(8) are informative, and therefore a

good model selection method should have a higher frequency of these variables compared to
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the remaining 22 variables.

Table 5.21 provides the frequencies for informative variables, along with the average num-

ber of incorrect 0’s. The Adaptive Correlated COSSO method includes almost all impor-

tant variables with the highest frequency. Compared to original COSSO, Correlated COSSO

method performs better for variables x(2),x(5) and x(6), however the improvement gained by

this method is not very substantial. The smallest average number of incorrectly excluded vari-

ables (1.84) also show that the Adaptive Correlated COSSO is the best method among the

three for not losing too many important variables from the model.

In Table 5.22, we present the variable selection frequencies of uninformative variables,

and the average number of noise variables kept in the model. Because of the space con-

straints, we could not provide the frequencies of all 22 noise variables, instead we provide

only the most frequently selected ones. The uninformative variable included most frequently

by Adaptive Correlated COSSO method is x(29) (with frequency of 19). On the other hand,

original COSSO included x(14),x(21) and x(25) with very high frequencies. More than half of

the time, the model selected by original COSSO method includes variable x(25), which does

not carry any information on the regression process at all. This is an important sign to show

that misleading results may be obtained when ignoring the correlation in data. Correlated

COSSO method works better than original COSSO in excluding noise variables. However,

Adaptive Correlated COSSO is the best method with the highest average number of correctly

excluded noise variables (21.06). The main reason for Adaptive Correlated COSSO to per-

form the best is its nature of adaptive penalization according to the relative importance of the
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components.

5.3.3 Example 3: Main and Interaction Effects Model

One important feature of both Correlated COSSO and Adaptive Correlated COSSO methods

is their ability to estimate non-additive models as well. As mentioned in Section 1.3.2, the

functional ANOVA decomposition can be built to include interaction components. This fea-

ture is an advantage of these methods compared to those methods working only with additive

structure only.

In this simulation example, we investigate the performance of Cor-COSSO and Adaptive

Cor-COSSO methods by including interaction terms in the model. The regression function

used to generate the simulated dataset is:

f (x) = 6g1(x(1))+4g2(x(2))+3g3(x(3))+3g1(x(1)x(2))+4g2(
x(1) + x(3)

2
).

The functions g1,g2 and g3 are already defined in the introduction section. The dataset

includes 7 exploratory variables: x(1), . . . ,x(7), which have a Uniform(0,1) distribution. We

considered four scenarios in this example, where in two of them the explanatory variables

are independent, and in the remaining two, these variables are pairwise correlated with 0.5

correlation. The correlated explanatory variables are generated using the method described in

Section 5.3.1. Each scenario is considered with error standard deviation σ = 0.5 and σ = 1.

The error terms are also assumed to have a within-subject compound symmetry (CS) correla-
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tion structure with the correlation parameter ρ = 0.3. Each subject has five observations, and

totally there are 300 observations. The correlation matrix corresponding to this simulation

study is in the form of W−1
τ matrix of equation (1.19). Please refer to Section 1.5 for details

about this correlation structure.

We start component selection from the full model which includes all main effects and first

order interaction terms. This full model has 7 main and 21 first order interaction terms. Only 5

of these components carry information on response, hence a total of 23 components are noise.

Table 5.23: Method Comparison with Interaction Effects (σ = 0.5).

Method ρ̂(se) σ̂(se) ISE(se) πc CORR INC
Orig-COSSO - ( - ) .49(.02) .039(.013) 68 22.96(.24) .29(.46)
Corr-COSSO .32(.07) .49(.02) .033(.010) 70 22.98(.14) .28(.45)
A-C-COSSO .32(.07) .49(.02) .026(.007) 90 22.90(.29) .02(.24)

Notes: This table corresponds to the results from comparison of three methods: Original COSSO, Correlated COSSO and Adaptive Corre-

lated COSSO when there are interaction effects in the data. The simulated datasets corresponds to the scenario with n = 300, ρ = 0.3 and

σ = 0.5 with independent explanatory variables. Corresponding SNR value is 6.09.

Table 5.23 summarizes the results from the setting with σ = 0.5 and t = 0 (independent

explanatory variables). Similar results with the large dimensional variable selection problem

of Section 5.3.2 can be observed. Since most of the components are noise in this example, the

improvement gained by the Adaptive Correlated COSSO method is substantial. Although the

Correlated COSSO performs better than the original COSSO, the Adaptive Correlated COSSO

outperforms both methods, showing 90% correct model selection percentage and an ISE value

of 0.26. The ISE values for the other methods are higher compared to Adaptive Cor-COSSO

(.32 for Cor-COSSO and .49 for original COSSO).

139



Table 5.24: Method Comparison with Interaction Effects (σ = 1).

Method ρ̂(se) σ̂(se) ISE(se) πc CORR INC
Orig-COSSO - ( - ) .99(.04) .117(.035) 54 22.91(.32) .38(.49)
Corr-COSSO .31(.07) .99(.05) .101(.032) 52 22.99(.10) .48(.48)
A-C-COSSO .32(.07) .99(.05) .089(.032) 64 22.93(.26) .34(.50)

Notes: This table corresponds to the results from comparison of three methods: Original COSSO, Correlated COSSO and Adaptive Corre-

lated COSSO when there are interaction effects in the data. The simulated datasets corresponds to the scenario with n = 300, ρ = 0.3 and

σ = 1 with independent explanatory variables. Corresponding SNR value is 3.04.

We observe a similar pattern when the error standard deviation is increased to σ = 1 (Table

5.24). The Adaptive Cor-COSSO method is the best among three by means of prediction

accuracy (ISE = 0.089) and component selection (πc = 62%) performance. Although the

correct model selection percentage of original COSSO is slightly better compared to Cor-

COSSO, the ISE values reveal that the estimation accuracy is better for the latter method.

Table 5.25: Method Comparison with Interaction Effects - Correlated Explanatory Variables
(σ = 0.5).

Method ρ̂(se) σ̂(se) ISE(se) πc CORR INC
Orig-COSSO - ( - ) .50(.02) .028(.009) 3 23.00(.00) 1.51(.56)
Corr-COSSO .31(.07) .50(.03) .024(.006) 7 23.00(.00) 1.54(.63)
A-C-COSSO .31(.07) .50(.02) .020(.006) 12 22.98(.14) 1.14(.60)

Notes: This table corresponds to the results from comparison of three methods: Original COSSO, Correlated COSSO and Adaptive Corre-

lated COSSO when there are interaction effects in the data. The simulated datasets corresponds to the scenario with n = 300, ρ = 0.3 and

σ = 0.5 with 0.5 pairwise correlation between explanatory variables. Corresponding SNR value is 3.98.

When we introduce the pairwise correlation between explanatory variables, the problem

becomes much harder, so the component selection performances of all the methods deterio-

rated significantly. Even the best method Adaptive Cor-COSSO could select the correct model

only 12% of the time (see Table 5.25). When the error standard deviation is σ = 1, this per-
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centage goes further down to 9% for the Adaptive Cor-COSSO (see Table 5.26).

Table 5.26: Method Comparison with Interaction Effects - Correlated Explanatory Variables
(σ = 1).

Method ρ̂(se) σ̂(se) ISE(se) πc CORR INC
Orig-COSSO - ( - ) 1.00(.05) .090(.033) 1 22.96(.20) 1.67(.49)
Corr-COSSO .31(.07) 1.00(.05) .077(.029) 4 22.95(.26) 1.46(.58)
A-C-COSSO .31(.07) .99(.05) .067(.024) 9 22.93(.26) 1.37(.65)

Notes: This table corresponds to the results from comparison of three methods: Original COSSO, Correlated COSSO and Adaptive Corre-

lated COSSO when there are interaction effects in the data. The simulated datasets corresponds to the scenario with n = 300, ρ = 0.3 and

σ = 1 with 0.5 pairwise correlation between explanatory variables. Corresponding SNR value is 1.99.

Parallel conclusions can be drawn from Tables 5.25 and 5.26 as well. In this challenging

component selection problem, the Correlated COSSO method works slightly better than origi-

nal COSSO, yet the method using adaptive weights clearly outperforms the other two. Similar

conclusions are drawn in the large dimensional variable selection problem. We conclude that

especially when most of the components in the model are noise, the Adaptive Correlated

COSSO method is a better choice for component selection and model estimation.
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CHAPTER 6

REAL EXAMPLES

6.1 Introduction

The main purpose of this section is to illustrate the implementation of Cor-COSSO and Adap-

tive Cor-COSSO methods to real datasets. We apply both Correlated COSSO and Adaptive

Correlated COSSO methods to two real datasets. To show the diverse areas of application,

we consider datasets from two separate disciplines, an environmental study data and a dataset

which is related to economy. Two datasets are the Ozone data (Breiman and Friedman, 1985;

Buja, Hastie, and Tibshirani, 1989; Breiman, 1995; Lin and Zhang, 2006), and the Money

Demand data (from SAS/ETS User Guide).

6.2 Real Example 1: Ozone Data

The first example we use to illustrate the Correlated COSSO and Adaptive Correlated COSSO

methods is the Ozone Data (Breiman and Friedman, 1985; Buja, Hastie, and Tibshirani, 1989;

Breiman, 1995; Lin and Zhang, 2006). The data consists of daily maximum ozone readings
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and 8 meteorological variables recorded in Los Angeles basin for 330 consecutive days. The

response variable (OZONE) is the daily maximum one-hour-average ozone readings. The 8

explanatory variables are TEMP - Temperature (degrees F) measured at El Monte CA, INVHT

- Inversion base height (feet) at LAX, PRES - 500 millibar pressure height (m) measured at

Vandenberg AFB, VIS - Visibility (miles) measured at LAX, HGT - Pressure gradient (mm

Hg) from LAX to Daggett CA, HUM - Humidity (%) at LAX, INVTMP - Inversion base

temperature (degrees F) at LAX and WIND - Wind speed (mph) at Los Angeles International

Airport (LAX). For more information on the dataset, please refer to Breiman and Friedman

(1985).

The Ozone dataset is a time series dataset, where every observation is taken in consecutive

days. When we plot the data, we observe a possible AR(1) type of relationship. Based on

the Durbin-Watson test, the AR(1) correlation structure is appropriate for the dataset, and

we decide to use this correlation structure in the analysis of both Cor-COSSO and Adaptive

Cor-COSSO. One-Step Update algorithm is used to fit both methods.

We analyze the Ozone data with the additive model. In other words, we started our anal-

ysis with the assumption that there are no interaction effects in the data. The magnitudes of

the functional components are measured by their empirical L1 norms. Empirical L1 norm is

defined as 1/n∑n
i=1 | f̂ j(x

( j)
i )| for j = 1, . . . ,8, and each j corresponding to one of the eight

explanatory variables. In Figure 6.1, we plotted the L1 norms of these component estimates

against the tuning parameter. Both Correlated COSSO and Adaptive Correlated COSSO meth-

ods select M = 3 by L method. The vertical lines in both figures show the resulting L1 norms.
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The variables TEMP, HUM and INVTMP are included in the final model based on this crite-

rion.

Figure 6.1: The empirical L1 norm of the estimated components as plotted against the tuning
parameter M for Ozone data.
Notes: This figure shows the tuning plots for both Correlated COSSO and Adaptive Correlated COSSO methods applied to the Ozone data.

The left panel corresponds to the tuning plot for Cor-COSSO while the right panel corresponds to the Adaptive Cor-COSSO. Both methods

select M = 3 using the L method.

As mentioned above, both Cor-COSSO and Adaptive Cor-COSSO methods include three

variables in the final model. On the other hand, when we apply original COSSO to this dataset,

we observed that the method included two more variables in addition to TEMP, HUM and

INVTMP. Table 6.1 provides the estimated L1 norms for the final estimates of three methods.

The variance covariance parameter estimates from the three methods are provided in Table

6.2. Since the original COSSO assumes the observations are independent, this method does

not estimate an AR(1) correlation parameter.
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Table 6.1: Empirical L1 Norms of the Estimated Components in Ozone Data.

Method TEMP INVHT PRES VIS HGT HUM INVTMP WIND
Orig-COSSO 3.41 1.02 0.18 0 0 1.30 1.18 0
Corr-COSSO 2.92 0 0 0 0 1.23 2.34 0
A-C-COSSO 3.10 0 0 0 0 1.17 2.21 0

Notes: This table presents the empirical L1 norms of the estimated components as a measure of magnitude of importance for the corresponding

component. The results contain output from three methods: Original COSSO, Correlated COSSO and Adaptive Correlated COSSO.

Table 6.2: Variance Component Estimates for Ozone Data.

Method σ̂ ρ̂
Orig-COSSO 4.23 -
Corr-COSSO 4.31 .29
A-C-COSSO 4.31 .29

Notes: This table presents the variance-covariance parameter estimates from Original COSSO, Correlated COSSO and Adaptive Correlated

COSSO fits for the Ozone Data Example.

Figure 6.2 contains the estimated functional components for the Ozone dataset. The plot

shows the estimates for variables Temperature (TEMP), Humidity (HUM) and INVTMP, since

all other five components are excluded from the final model. The estimated components from

Cor-COSSO and Adaptive Cor-COSSO methods are plotted along with the original COSSO

estimates of these components.

In order to compare the estimates form Cor-COSSO, Adaptive Cor-COSSO and original

COSSO, we estimate the Prediction Squared Error (hereafter PSE) using the following ap-

proach. We use two different cross validation sets. First, we use the last 33 observations

(one-tenth of the sample size) as the test set (PSE-1), and use the remaining as the training

set. Second, the first 33 observations are used as the test set (PSE-2). The reason for this
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Figure 6.2: Estimated functional components for significant explanatory variables in the
Ozone Data Example.
Notes: This figure shows the component estimates for Correlated COSSO, Adaptive Correlated COSSO and original COSSO methods. The

plots show the estimates from an additive model applied to the Ozone data. Three components TEMP, HUM and INVTMP are included in

the final model by both Cor-COSSO and Adaptive Cor-COSSO methods.
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approach is that, if we randomly sample one-tenth of the observations to create the test set,

the correlation structure in the dataset would be disturbed. Therefore, we used the consecutive

297 observations in order to maintain the time series structure. The PSE estimates from both

cross-validation sets is provided in Table 6.3.

Table 6.3: Predicted Squared Error (PSE) Estimates for Ozone Data.

Method PSE-1 PSE-2
Orig-COSSO 11.94 11.65
Corr-COSSO 11.77 11.25
A-C-COSSO 11.63 10.81

Notes: This table presents the PSE estimates from Original COSSO, Correlated COSSO and Adaptive Correlated COSSO fits. The smallest

PSE estimates are provided by the Adaptive Correlated COSSO method. The PSE-1 is estimated using the last 33 observations, while the

PSE-2 is estimated using the first 33.

From Table 6.3, the Adaptive Cor-COSSO method has the smallest PSE values. Although

we do not have the standard error estimates for the PSE’s, and therefore cannot make a valid

comparison, the two proposed methods show better results by means of the prediction accu-

racy.

6.3 Real Example 2: Money Demand Data

In this section, we apply the proposed Correlated COSSO and Adaptive Correlated COSSO

methods to another time series dataset. The analysis is intended to illustrate our methods rather

than providing a formal analysis to the dataset at hand. We used Money Demand dataset which

is already analyzed in SAS/ETS User’s Guide. The purpose is to model the log-log demand
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with four explanatory variables. The response is real money stock (M). Explanatory variables

are lagged response divided by current Gross Domestic Product (M1CP), real Gross National

Product (Y), yield on corporate bounds (INTR) and rate of prices changes (INFR). All vari-

ables are log transformed prior to the analysis. Although we do not need transformations in

nonparametric regression, in order to show the model misspecifications in linear model, we

used the transformed variables that are already used in analyzing this dataset. Data contains

observations from 1968-second quarter to 1983-fourth quarter. There are 63 observations in

the dataset. Please refer to Balke and Gordon (1986) for more details on the dataset.

A linear model is applied to the Money Demand data in SAS/ETS user guide example. The

model shows that an first-order Autoregressive (AR-1) error covariance structure is suitable

for the dataset. This conclusion is reached after comparison with a Durbin-Watson test. In

the final model, all four variables are assumed to have a linear relationship with the response

(M1).

6.3.1 Additive Model for Demand Data

First, we consider an additive model which assumes no interaction effects exists in the dataset.

We applied both Correlated COSSO and Adaptive Correlated methods using this additive

model as the full model. One-Step Update algorithm is used to fit both methods. The L

method includes all four variables into the final model for both Cor-COSSO and Adaptive

Cor-COSSO. Therefore, none of the components are excluded.
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The Correlated COSSO method estimated the error standard deviation (σ ) as 0.02, and

a positive auto-correlation as ρ = 0.96. The variance covariance parameter estimates from

the Adaptive Correlated COSSO estimates are the same with Cor-COSSO. The estimated

functional components for these two methods and the original COSSO fit are plotted against

the explanatory variables in Figure 6.3.

As it can be seen from the Figure 6.3, although for some of the variables the linearity

assumption can be made, especially for INFR variable, the relationship is far from being linear.

The form of the relationship in between this variable and the response (M1) can be misleading,

and even may be lost with the linearity assumption in a variable selection problem. Due to the

nonparametric estimation, the Correlated COSSO method does not assume any specific form

for this relationship, hence the method captures nonlinear information as well.

6.3.2 Interaction Model for Demand Data

Now, we consider a model which takes the two-way interaction terms into account for the

Money Demand dataset. We apply both Correlated COSSO and Adaptive Correlated methods

to the two-way interaction model. One-Step Update algorithm is used to fit both methods.

Figure 6.4 shows how the magnitudes of the estimated components change with M. The

left panel shows the tuning plot for Cor-COSSO while right panel is the same plot for the

Adaptive Cor-COSSO. These magnitudes are measured by their empirical L1 norms, defined

by 1/n∑n
i=1 | f̂ j(x

( j)
i )| for j = 1, . . . ,10, and each j corresponding to one of the four explanatory
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Figure 6.3: Estimated functional components for each of four explanatory variables in additive
Money Demand Model.
Notes: This figure shows the component estimates for Correlated COSSO, Adaptive Correlated COSSO and original COSSO methods. The

plots show the estimates from an additive model applied to the Money Demand data. All four components (explanatory variables) are

included in the final model by all three methods.
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variables. L method (Diggle and Hutchinson 1989) is used for tuning M as recommended by

the simulation studies. Both methods choose M = 4 for this data set.

Figure 6.4: The empirical L1 norm of the estimated components as plotted against the tuning
parameter M for Money Demand data with two-way interaction model.

Notes: This figure shows the tuning plots for both Correlated COSSO and Adaptive Correlated COSSO methods applied to the Money

Demand data with the two-way interaction model. The left panel corresponds to the tuning plot for Cor-COSSO while the right panel

corresponds to the Adaptive Cor-COSSO. Both methods select M = 4 using the L method.

The estimated functional components for these two methods and the original COSSO fit

are plotted against the explanatory variables in Figure 6.5. In this figure, we include only

significant main effect terms found by Cor-COSSO and Adaptive Cor-COSSO methods which

are Gross Domestic Product (M1CP), real Gross National Product (Y) and yield on corporate

bounds (INTR).

There are four components included into the final model for both Cor-COSSO and Adap-

tive Cor-COSSO. These components are the main effects of M1CP, Y, INTR and the interac-
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Figure 6.5: Estimated functional components for significant main effects in the two-way in-
teraction Money Demand model.

Notes: This figure shows the component estimates for Correlated COSSO, Adaptive Correlated COSSO and original COSSO methods

applied to the Money Demand data with the two-way interaction model. Only significant main effects are plotted. These explanatory

variables are M1CP, Y and INTR.
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tion term between INTR and the rate of prices changes (INFR). Table 6.4 presents the mag-

nitudes of the estimated functional components for Cor-COSSO, Adaptive Cor-COSSO and

original COSSO models.

Table 6.4: Empirical L1 Norms of the Estimated Components in Money Demand Data with
Two-way Interaction Model.

Component Orig-COSSO Cor-COSSO A-C-COSSO
M1CP 2.10 1.10 1.10

Y 1.29 1.19 1.19
INTR 0.76 1.68 1.69
INFR 0.52 0 0

M1CP*Y 0.53 0 0
M1CP*INTR 0 0 0
M1CP*INFR 0.33 0 0

Y*INTR 0.26 0 0
Y*INFR 0 0 0

INTR*INFR 0.74 0.38 0.35

Notes: This table presents the empirical L1 norms of the estimated components as a measure of magnitude of importance for the corresponding

component. The results contain output from three methods: Original COSSO, Correlated COSSO and Adaptive Correlated COSSO. The

results are in 10−2 scale.

As it can be seen from Table 6.4, the original COSSO method includes several additional

main effects and interaction terms to the final model. The comparison of the methods are

done based on the Prediction Squared Error estimates which are estimated using the last 10

observation (PSE-1) and the first 10 observations (PSE-2) as the test set. The results can be

found in Table 6.5.

One should keep in mind that the Money Demand dataset originally has 63 observations.

When we use 10 observations as the test set, the total number of observations left for the

training set is only 53, which is quite small for a large non-additive nonparametric model with

153



Table 6.5: Predicted Squared Error (PSE) Estimates for Money Demand Data with Two-way
Interaction Model.

Method PSE-1 PSE-2
Orig-COSSO 6.14 18.70
Corr-COSSO 5.15 19.12
A-C-COSSO 3.20 20.80

Notes: This table presents the PSE estimates from Original COSSO, Correlated COSSO and Adaptive Correlated COSSO fits. The PSE-1 is

estimated using the last 10 observations, while the PSE-2 is estimated using the first 10. All PSE values are in 10−4 scale.

10 components. Therefore, the PSE results are not too stable, and show high variations as can

be seen from the table. Although no clear conclusions can be reached by looking at the limited

results from PSE’s, we still believe that in a time series dataset such as Money Demand data,

this strong correlation in between the consecutive observations should not be neglected.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this dissertation research, we consider the multivariate regression and the associated vari-

able selection problem for correlated data. The variable selection methods for both linear and

nonparametric regression models for independent data are reviewed. We have demonstrated

the importance of modelling the correlation among data, which is often ignored in variable

selection procedures.

Variable selection in nonparametric regression is a difficult task, which becomes even more

challenging for correlated data such as clustered, longitudinal data or repeated measurements.

Little work has been done on variable selection for nonparametric models with correlated ran-

dom errors. In the framework of smoothing spline Analysis of Variance (SS-ANOVA), we

propose some unified approaches for simultaneously selecting variables and estimating model

parameters and covariance structures. The first new method, as a generalization of the Com-

ponent Selection and Smoothing Operator (COSSO - Lin and Zhang 2006), imposes a soft-

thresholding penalty on functional components for sparse estimation and takes the covariance

structure into account at the same time, hence the name Correlated COSSO. The existence of

the Cor-COSSO solution is proven and it is shown that the solution has a finite dimensional
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representation.

In addition, an improvement on the Correlated COSSO method is proposed. The so-called

Adaptive-Correlated COSSO method conducts weighted penalization to functional compo-

nents, achieving improved variable selection and prediction accuracy performances. The

weights are assigned to each component in a way that important components are penalized

less while uninformative components are penalized more to be shrunk faster to zero. An ini-

tial estimate based on the data at hand is necessary to calculate the weights in advance. We

propose using a non-weighted smoothing spline ANOVA model as this initial estimate.

We then propose several algorithms to calculate both the Correlated COSSO and the Adap-

tive Correlated COSSO estimates. These algorithms iterate between a smoothing spline with

correlated errors and a quadratic programming. Another important feature of the algorithms

is that they allow the use of the available commercial software, such as SAS Proc Mixed and

Proc IML.

The selection of smoothing parameters is very important as it is for any nonparametric

regression method. Parameter λ0 is estimated using the Generalized Maximum Likelihood

(GML) approach (Wang, 1998b; Opsomer, Wang, and Yang, 2001). The tuning parameter M,

which controls the number of variables to be included in the final model, is crucial for variable

selection purposes. Several criteria for choosing M are compared with extensive simulation

studies, and the L method (Diggle and Hutchinson, 1989) has shown the best performance.

In spite of the good practical performance, the computation of the Correlated COSSO

methods can be timely when the sample size (n) is large. The most time consuming part is
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the estimation of smoothing spline models with correlated data. A linear mixed effects model

representation is used to solve the multivariate smoothing spline problem, which requires the

estimation of n random effects in every iteration step of the algorithm. We therefore sug-

gest an alternative subset basis approach for feasible implementation in massive data, which

can decrease the number of random effects to be estimated. Our extensive simulation shows

that the subset basis algorithm is a good approximation to the full basis algorithm, and the

computation time is drastically decreased for large datasets.

The empirical performance of the Correlated COSSO and the Adaptive Correlated COSSO

methods are studied and demonstrated using extensive simulations. Our simulation study con-

sists of two parts. The first part is designed to compare different tuning criteria and algorithms

for both Cor-COSSO and Adaptive Cor-COSSO. Based on the first set of simulations, we

recommend using L method for smoothing parameter (M) selection, and the one-step update

algorithm to estimate Cor-COSSO (or Adaptive Cor-COSSO). Moreover, we have investigated

the performance of the subset basis algorithm, and conclude the algorithm provides good ap-

proximation to the full basis Cor-COSSO when a basis size 100 or more is used. We also

compare sampling methods to select the basis functions. Simple random and cluster sampling

methods show compatible performance with each other.

The second part of our simulation study gives the comparison of proposed methods, Cor-

related COSSO and Adaptive Correlated COSSO with the original COSSO as the benchmark

method. The comparisons are conducted under a variety of scenarios: correlated and uncor-

related explanatory variables, highly correlated data, a large dimensional variable selection
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example, and an example containing interaction terms. In these simulation studies we have

found that both Correlated COSSO and Adaptive Correlated COSSO methods outperform

the original COSSO when there exists correlation in data. Adaptive Correlated COSSO per-

forms superior to the Correlated COSSO especially in larger dimensional variable selection

problems. We also observed that both methods’ performance are satisfactory when there are

interaction effects in the model.

We then apply the proposed methods to two real datasets: the Ozone data (Breiman and

Friedman, 1985) and the Money Demand data (from SAS/ETS User Guide). The performance

of the methods are compared based on the Predicted Squared Errors (PSE) estimates. Both

Cor-COSSO and Adaptive Cor-COSSO methods performed at least as good as the original

COSSO in both examples. In Ozone data, the Adaptive Correlated COSSO method provides

the smallest PSE results.

We are planning to investigate the asymptotic properties of both Correlated COSSO and

Adaptive Correlated COSSO methods. We would like to investigate the theory behind these

methods, and study the consistency of these methods in following three aspects: functional

component estimation, variance components and covariance parameter estimation, and vari-

able selection.

Models for analysis of repeated measures or longitudinal data most of the time suffer from

difficulties with modelling the general covariance structure. Especially, when the data is highly

unbalanced, we might need random effects to model the correlation structure (Laird and Ware,

1982). We plan to consider the nonparametric mixed effects models with parametric random
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effects and nonparametric fixed effects. These kind of models can be useful especially in the

situations where the correlation structure is not easy to define. Consider the following model

yi = f (xi)+ zT
i b+ εi, i = 1, ...,n, (7.1)

where regression function f (x) is assumed to be a smooth function modelling the fixed effects

of x, and zT
i b are random effects with b ∼ N(0,B), and εi ∼ N(0,σ2) i = 1, . . . ,n are inde-

pendent of b and each other. Examples of these kind of models can be found in Wang (1998a);

Gu and Ma (2005). We believe these models will give us more power in modelling the covari-

ance structure. Moreover, the parametric random effects can be implemented in mixed model

representation that we use in connection with SS-ANOVA fitting. As a future research area,

we would like to investigate the variable selection problem using nonparametric mixed effects

models.
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