
Abstract

ZHOU, XIANG (SEAN). Joint Optimization in Supply Chain. (Under the direction

of Xiuli Chao and Shu-Cherng Fang).

With increased globalization and competition in the current market, supply chain

has become longer and more complicated than ever before. An effective and efficient

supply chain is crucial and essential to a successful firm. In a supply chain, inventories

are a very important component as the investment in inventories is enormous. Inventory

management is always coupled with other functions, for example purchasing, production

and marketing. In this dissertation, we study inventory management for both single-stage

and multi-echelon systems. Two main streams of research work are summarized. The first

is the joint optimization of pricing and inventory control for continuous/periodic review

single-stage inventory/production systems. We characterize the optimal policies and

further develop efficient computational algorithms to find the optimal control parameters.

We also provide insights on the pricing and inventory relationship. The second is the

analysis of multi-echelon inventory systems, in which we derive the optimal inventory

control policies for several different systems that have not yet been studied in the current

literature. Moreover, simple bounds and heuristics for the optimal policies are developed

for the serial systems with and without expedited shipping so that the implementability

of the optimal policies is improved.
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Chapter 1

Introduction

With information revolution, increased globalization and competition, supply chain has

become longer and more complicated than ever before. These developments bring supply

chain management to the forefront of the management’s attention. Inventories are very

important in a supply chain. The total investment in inventories is enormous, and the

management of inventory is crucial to avoid shortages or delivery delays for the customers

and serious drain on a company’s financial resources.

Traditional production and inventory models assume an exogenous selling price and

focus on effective replenishment strategies. However, with the increased availability of

demand data and new technologies, e.g., electronic data interchange (EDI), electronic

funds transfer (EFT), and point of sale (POS) devices, a number of industries have

begun to adopt dynamic pricing strategies to effectively regulate demand and manage

inventory. For example, Dell sells its products through its website offering promotions

every week and even changing prices daily. Anther telling example is websites for selling

airline tickets, such as expedia.com. Indeed, pricing has become a useful and powerful
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tool to balance customer demand and the firm’s inventory.

These developments raise the need and interest of developing models that integrate

production decisions, inventory control and pricing strategies. In this study, we discuss

several models that combine inventory control or production planning with pricing. We

characterize the optimal inventory/production and pricing strategies and develop compu-

tational algorithms for the optimal policies. Furthermore, we provide some quantitative

and qualitative relationship of the optimal policies and system parameters. After reviwe-

ing the literature related to this dissertation in Chapter 2, in Chapter 3, we analyze joint

optimization of pricing and inventory control for several continuous-review inventory

systems, namely, (Q, r,p) system, batch ordering (R, nQ,p) system and (s, S,p) type

system. In these systems, demand arrival rate depends on the price and our objective is

to maximize the average profit. In contrast to Chapter 3, we discuss two periodic-review

inventory/production models with pricing in Chapter 4. One is production model with

production smoothing cost; the other is inventory model with two transportation modes.

The demand functions in both models are price-dependent and our objective is to maxi-

mize the total discounted profit over finite or infinite planning horizon. We characterize

the optimal policies and provide some structure properties of the policy parameters and

key performance measures.

Supply chains are not always part of a single company. As outcouring becomes a

global trend in current industry, more companies get involved in a supply chain. Before

reaching the customer, a final product goes through several tiers of suppliers, distributors

and retailers. The companies work together to improve the coordination of total material

flow in the supply chain. Multi-echelon inventory system conceptualizes and models the

production and transportation activities of a multi-location supply chain, which requires

joint optimization as well, i.e., jointly optimizing the inventory control for each stage in
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the system. Not only practically but also theoretically, multi-echelon inventory systems

are considered as one of the most important classes of models for supply chains. Multi-

echelon inventory system includes three major building blocks: serial system, assembly

system and distribution systems. Starting from Clark and Scarf (1960)’s seminal paper,

many research works have been conducted in analyzing multi-echelon inventory systems

with different structures and settings. In this dissertation, we mainly analyze serial

system and assembly system.

Delivery time has increasingly become an important measure of service levels for cus-

tomers and companies are all trying to respond customer orders in minimum time. But

usually quicker response means higher cost. There are different classes of customers who

have different delivery time requirements. In Chapter 5, we develop multi-echelon in-

ventory models with multiple classes of demand and guaranteed delivery time and we

show that echelon base-stock policy is optimal. We also present efficient computational

algorithms for determining the optimal control parameters.

In production/distribution systems, material is usually produced/ordered in batches

and inventory replenishment between locations often follows a fixed schedule. Large

retail chains, such as Wal-Mart, replenish its items in several base quantities and deliver

to retailer sites according to a fixed schedule. In Chapter 6, we derive the optimal policy

for a serial system with batch ordering and nested replenishment schedule and develop

computational algorithm for the optimal policies.

The optimal inventory policy for classical serial system is known to be an echelon

base-stock policy, which can be computed through minimizing N nested convex functions

recursively. However, it is not easy to see the dependency of the optimal policy and cost

on the system parameters. In Chapter 7, we develop probabilistic solutions of optimal
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base-stock levels for the classical serial system with both average cost and discounted

cost. Based on these solutions, we derive several newsvendor bounds. Based on these

bounds, a simple heuristic for the optimal policies is developed.

Supply chain models with multiple transportation modes have gained momentum in

recent years due to the increasing popularity of outsourcing. Cost and leadtime are two

important measures of the suppliers for outsourcing. A supplier who provides shorter

leadtime usually has higher price. To balance this tradeoff, companies often adopt mul-

tiple sourcing strategies by sharing its business with multiple suppliers. Consequently,

companies need to strategically determine the ordering quantity from each supplier based

on its inventory status and demand forecast in order to minimize cost. The strategic im-

portance of utilizing multiple suppliers with long and short lead time was first recognized

by the US fashion industry. Many firms in this sector have moved their major man-

ufacturing facilities offshore to take advantage of the lower production cost. However,

some still prefer to maintain costly domestic facilities so that they can better respond to

changes in market demand. The combination of ‘quick-response, or short leadtime’ sup-

pliers with ‘low cost, long leadtime’ suppliers has been viewed by many as an appropriate

strategy to meet fickle customer demand. In Chapter 8, we study the infinite horizon

problem of serial inventory system with two transportation modes between stages. It is

known that the optimal stationary policies of this system can be obtained by solving 2N

nested convex optimization problems recursively. Despite its simple form, however, it is

not easy to see the key determinants of the optimal policy and minimum cost from the

recursion. we develop simple newsvendor bounds and heuristics for the optimal inventory

control policies that can shed light on the effect of system parameters.

In Chapter 9, we conclude the dissertation and present some interesting problems for

future research work.
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Chapter 2

Literature Review

2.1 Combined Inventory Control and Pricing for Single-

Stage Inventory Models

In this section, we first review the single-stage stochastic inventory models that are closely

related to our work. After that, we go over the literature on joint optimization of pricing

and inventory.

(Q, r) policy is one of the most commonly used inventory control methods, where

an order of fixed quantity Q is placed as soon as the inventory position drops to a

fixed reorder point r. The cost function for the (Q, r) system with Poisson demand is

derived by Galliher, Morse and Simond (1959) and Hadley and Whitin (1963). Sivazlian

(1974) extends the results to renewal process demands. Zipkin (1986a) identifies very

general conditions for stochastic leadtimes, under which the cost function can be derived

similarly as the deterministic leadtime case. Zipkin (1986b) proves that for the continuous
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cumulative demand model the steady state inventory position is uniformly distributed

and independent of the leadtime demand and the average number of backorder is a

convex function of Q and r. Zheng (1992) thoroughly discusses the properties of the

(Q, r) system.

Continuous-review (S, s) model is a generalization of (Q, r) system. An (S, s) policy,

brings the level of inventory to some point S once inventory level drops to or below s,

and orders nothing otherwise. Scarf (1960) proves this policy is optimal for a finite-

horizon, periodic-review inventory model with setup cost. He introduces a new class of

functions, K-convex functions. To improve the implementability of (S, s) policy, Zheng

and Federgruen (1991) propose a simple and efficient algorithm to compute the optimal

policy parameters S and s. Feng and Xiao (2000) present a different efficient approach

to compute the optimal (S, s) policy.

The (R, nQ) policies, if the inventory level is less than or equal to R, an integer

multiple of Q is ordered to bring the inventory level into the interval [R+1, R+Q], have

been studied by many researchers. Hadley and Whitin (1961) show that the inventory

position is uniformly distributed between [R +1, R +Q]. Veinott (1965) proves (R , nQ)

policy is optimal when the order quantity is restricted to be integer multiples of a given

base quantity Q for single-stage inventory model. Zheng and Chen (1992) provide an

optimization algorithm and sensitivity analysis.

Production smoothing cost is common in the production systems when the production

rate is changed between two consecutive periods, mostly, hiring and training expenses,

set-up charges for additional equipment when production is increased, firing costs and

overheads for equipments used below normal capacity when production is decreased.

Therefore, there is a natural tendency to smooth production in order to reach an economic
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balance between adjustment, production and inventory cost. Beckman (1961) studies

such a problem in which the cost of changing the production rate, i.e., the smoothing cost,

is proportional to the amount of change, the inventory holding and demand backlog cost

is linear. The objective of the firm is to maximize the short-run or long-run discounted

profit. Sobel (1969) generalizes Beckman’s results under more general assumption of

convex expected inventory holding and shortage cost for finite horizon problem. Sobel

(1971) further extends the result to the infinite horizon case.

In all the inventory models we have reviewed, there is only one delivery mode. The

earliest work on inventory models with two delivery modes can be traced back to Barankin

(1961), who studies a single period problem. Daniel (1963) is regarded as the first

work on a multi-period single-stage model with one regular supplier and one emergency

supplier, with leadtimes being 1 and 0 respectively. Fukuda (1964) extends the work

of Daniel to the case where the leadtimes of the two supply modes are L and L + 1

respectively. Whittmore and Saunders (1977) consider the dual-supplier problem with

arbitrary length of leadtime and demonstrate that the optimal control policy is very

complicated and state-dependent if the difference in leadtimes of different transportation

modes is not 1. Because of the complexity of the optimal policy, Scheller-Wolf et al.

(2003) and Veeraraghavan and Scheller-Wolf (2004) focus on evaluation and optimization

of two classes of policies, i.e., “single index” and “dual index” policies. Other related

work on single-stage inventory systems with multiple transportation modes includes Feng

et al. (2003) and Feng et al. (2004). The combination of ‘quick-response, or short

leadtime’ suppliers with ‘low cost, long leadtime’ suppliers has been viewed by many as

an appropriate strategy to meet fickle customer demand. Some references in this area

are Donohue (2000), Eppen and Iyer (1997), Fisher, et al. (1994), Fisher and Raman

(1996), and Haksoz and Seshadri (2004).
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The traditional inventory models we have reviewed focus on effective replenishment

strategies and assume a commodity’s price is exogenously determined. Recently, many

researchers develop models that jointly optimize the inventory replenishment and pricing.

These models can be divided into two different classes.

The first class of models is Revenue Management which has already been successful

applied in the airline, hotel and fashion goods retail industries. At the beginning of the

planning horizon, the decision maker has a fixed number of initial inventory, such as seats

of the flight, empty rooms in the hotel, etc. He tries to use pricing strategy to maximize

his revenue over the finite planning horizon while he cannot replenish inventory during

the selling season. For a detail review, we refer to the paper by McGill and Ryzin (1999).

The second class of models is in the coordination of inventory replenishment strate-

gies and pricing policies, such that at every decision epoch, the manager needs to decide

how much to order from the supplier and what is the selling price for the commodi-

ties. This topic, starting with the work of Whitin (1955) who analyzes the newsvendor

problem with price-dependent demand, has been the focus of many papers. Federgruen

and Heching (1999) extend Whitin (1955) to a multi-period model and characterize the

optimal inventory and pricing policy as base-stock list price policy.

Building on Federgruen and Heching’s work, Chen and Simchi-Levi (2002 (a) and (b))

include fixed setup cost for ordering into the model. They derive the optimal pricing and

replenishment strategies for both finite and infinite planning horizons. Feng and Chen

(2003) study joint pricing and inventory optimization for a periodic review inventory

system with the criterion of maximizing the long run average profit. Feng and Chen

prove the optimality of (s, S,p) policy and develop an ascent algorithm to compute

the optimal policies. Feng and Chen (2002) consider a continuous review model with
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discrete and prespecified prices set, especially for two prices and establish the optimality

of (s, d,D, S) policy.

2.2 Multi-echelon Inventory Systems

After reviewing single location inventory models, in this section, we switch to multi-

echelon inventory models.

Clark and Scarf (1960) study a serial inventory system with finite planning horizon.

The system incurs linear inventory holding cost and shortage cost. They introduce a

concept of echelon stock and prove the optimality of echelon base-stock policies. Their

proof technique involves a decomposition of multi-stage problem into single-stage prob-

lem. This approach guides most of the subsequent literature on multi-echelon inventory

studies. In particular, Federgruen and Zipkin (1984) extend the result to the infinite

horizon setting. Chen and Zheng (1994) use a lower bound approach to prove the opti-

mality of echelon base-stock policy for the average cost criterion. For assembly system,

Rosling (1989) provides the conditions under which an assembly system can be equiva-

lently converted to a serial system. So under these mild conditions, most results of serial

system can be carried over to assembly system.

Lawson and Porteus (2000) extend Clark-Scarf (1960)’s model by considering dual

transportation modes in each stage. Under two assumptions that the leadtime difference

of regular and expedited supply is one period and linear additive shipping costs, they

characterize the form of optimal inventory control policy as top-down echelon base-stock

policy. The control parameters of each echelon consist of two numbers, one for regular
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shipping and the other for expedited shipping. Muharremoglu and Tsitsiklis (2003) gen-

eralize Lawson and Porteus’ second assumption by introducing “supermodular” shipping

costs structure and show that the optimal policy is extended echelon base-stock type.

There is another related work by Huggins and Olsen (2001), who formulate a two-stage

supply chain in which stage 1’s order is always met by stage 2. Under the linear ordering

cost for regular production and fixed cost for expedited production, they characterize the

optimal policy for both downstream and the whole system.

In Clark and Scarf (1960) model, each stage can order any quantity in every period.

Chen (2000) generalizes the model by introducing the batch ordering constraint into each

stage and establishes the optimality of echelon (R, nQ) policy. For references on echelon-

stock (R, nQ) policies, the reader is referred to De Bodt and Graves (1985), Axsäter and

Rosling (1993), Chen and Zheng (1994, 1998). For this type of policy, every stage can only

place an order which is an integer multiple of the base quantity. And the base quantity

at each stage satisfies and an integer ratio constraint, i.e., except the most downstream

stage, each stage’s base quantity is an integer multiple of its next downstream stage’s

base quantity.

More recently, van Houtum et al. (2003) extend Clark and Scarf (1960) model by con-

sidering a serial system with periodic batching constraints, and they prove that the eche-

lon base-stock policy is optimal for the multi-echelon system and derive newsvendor-type

characteristics for the optimal base-stock levels. For the model with fixed multi-period

replenishment cycles, there are papers that consider different system configurations, such

as assembly and distribution systems or joint replenishment problems (e.g., Atkins and

Iyogun 1988, Eppen and Schrage 1981, Erhun and Tayur 2003, Graves 1996, Hopp and

Kuo 1998, Jackson 1988, McGavin et al. 1993, and Yano and Carlson 1998). In this type

of system, every stage in the system can only place order for every given reorder inter-
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val. The reorder interval of each stage also satisfies an integer ratio constraint, i.e., each

stage’s reorder interval is an integer multiple of its next downstream’s reorder interval.

There is another stream of research work in the multi-echelon system that focuses

on developing simple solutions, bounds, and heuristics for the optimal policies. This is

motivated by the observation that even though the computational algorithms for optimal

policies of the models we have reviewed are known, it is not easy to see the key deter-

minant of the optimal control parameters and cost from the algorithm. Zipkin (2000)

introduces a lower bound for a two-stage system by restricting the possibility of holding

inventory at the upper stream stage. Dong and Lee (2003) develop lower bounds for

optimal policies of serial system with discounted cost criterion, while Shang and Song

(2003) obtain simple newsvendor type of bounds and develop simple heuristics for serial

systems with average cost criterion, using a different approach than that of Dong and

Lee. Another related work on bounds and heuristics for serial systems is Gallego and

Ozalp (2004).
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Chapter 3

Joint Optimization of Pricing and

Inventory Control for Continuous

Review Inventory Systems

In this chapter, we study three continuous-review inventory systems. Besides the inven-

tory replenishment decision, there is pricing decision to be made. In §3.1, an inventory

model with simple Poisson demand and price dependent arrival rate is analyzed. In §3.2,

we study a batch ordering inventory model with compound Poisson demand, in which

the inventory policy is (R, nQ) type of policy. In §3.3, We consider (s, S,p) type model,

in which there is setup cost and the demand process is compound Poisson. Finally, we

summarize this chapter in §3.4.
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3.1 (Q, r,p) Model

This section is organized as follows. In §3.1.1, we introduce the notation and present the

model. After that, in §3.1.2, we characterize the optimal pricing policy and inventory

control strategy. Furthermore, we present efficient computational algorithms to compute

the optimal price and inventory control parameters. In §3.1.3 we discuss a structural

property of the optimal price. In §3.1.4 the optimality of (Q, r,p) policy is validated.

3.1.1 Model Description

Consider a continuous review inventory system for a single item. The demand arrives

according to a Poisson process whose rate λ(p) depends on selling price p. Let u(p) =

1/λ(p) denote the average demand interarrival time. There is a fixed ordering cost K

and unit purchasing cost c. As in Federgruen and Heching (1999), Chen and Simchi-Levi

(2002) (2003), and Feng and Chen (2002) (2003), we assume that the supply leadtime is

0. The objective is to determine the selling price and the inventory replenishment policy

so that the average profit is maximized.

If a demand occurs and there is no on-hand inventory available, it is backlogged. The

holding and shortage cost rate is G(y) when the inventory level is y. A typical form

for G(y) is G(y) = hy+ + by−, where y+ = max{y, 0}, y− = max{−y, 0}, and h and b

are the holding cost and shortage cost per unit of time per item, respectively. Clearly,

the minimum point of G(y) is 0. In the remainder of this chapter, we do not require

that G(y) take this typical form specified above but only that it be a convex function of

inventory level y with minimum point at y = 0.
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We assume that the average interarrival time u(p) is increasing convex in p and that

the revenue rate pλ(p) is concave in p. That u(p) is increasing in p is clear – the higher the

selling price, the longer the average time until the next demand. That u(p) is convex im-

plies that the rate at which the average interarrival time increases is getting higher as the

price increases. We shall further assume, though it is not essential, that limp→0 pλ(p) = 0

and limp→∞ pλ(p) = 0. The last assumption implies that as selling price goes to infinity,

all customers are driven away.

It is known that the optimal policy for this problem is (Q, r,p) (see e.g., Chen and

Simchi-Levi (2003)). In this policy the parameter r denotes the reorder point, Q is the

order quantity, and p = (p(r+1), . . . , p(r+Q)) is a Q-dimensional vector of selling prices

associated with inventory levels r+1, r+2, . . . , r+Q. The (Q, r,p) policy works as follows:

As soon as the inventory level reaches r, the firm places an order of size Q, and when the

inventory level is i, the selling price is set at p(i), i = r + 1, r + 2, . . . , r + Q. Under the

(Q, r,p) policy, the length of time the inventory level stays at i is exponentially distributed

with mean u(p(i)). Thus the inventory level process is a Markov Process. To compute

the average profit we use renewal reward theory. A cycle starts every time an order

is placed. Then the inventory process constitutes a renewal process with average cycle

length
∑r+Q

i=r+1 u(p(i)). The average revenue in each cycle is
∑r+Q

i=r+1 p(i), the purchase cost

is cQ, and the holding and shortage cost per cycle is
∑r+Q

i=r+1 u(p(i))G(i). Let v(Q, r,p)

be the average profit per unit time for the inventory system. It follows from renewal

reward theory that

v(Q, r,p) =
−K +

∑r+Q
i=r+1(p(i) − c − u(p(i))G(i))
∑r+Q

i=r+1 u(p(i))
. (3.1)

Our objective is to find the optimal strategy (Q, r,p) that maximizes the average profit

v(Q, r,p).
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To find the optimal solution for v(Q, r,p), we introduce an auxiliary function. For a

given but arbitrary policy (Q, r,p), we define

ℓγ(Q, r,p) = −K +

r+Q∑

i=r+1

(p(i) − c − u(p(i))G(i)) − γ

r+Q∑

i=r+1

u(p(i))

= −K +

r+Q∑

i=r+1

(p(i) − c − u(p(i))(G(i) + γ)), (3.2)

where γ is called the dummy profit. It is a simple result from fractional programming

(see e.g., Schaible (1995)) that γ is the maximum average profit for the optimization

problem (3.1) if and only if maxQ,r,p ℓγ(Q, r,p) = 0.

For a given γ let

ℓγ = max
Q,r,p

ℓγ(Q, r,p). (3.3)

Since for a given policy (Q, r,p) the auxiliary function ℓγ(Q, r,p) is a decreasing convex

function of γ, so is ℓγ.

To obtain the optimal solution for (3.2) for a given γ, we first compute the optimal

p for given r and r + Q. For i = r + 1, . . . , r + Q, since p(i) − c − u(p(i))(G(i) + γ)

is a concave function of p(i), the optimal p(i) can be obtained by taking derivative and

setting it to 0,

1 − u′(p(i))(G(i) + γ) = 0.

Thus we obtain

p(i) = (u′)−1

(
1

G(i) + γ

)
, i = r + 1, . . . , r + Q, (3.4)

15



where (u′)−1 is the inverse function of u′, which is well-defined since u′ is increasing. Note

that p(i) depends on γ even though we have made the dependency implicit. To find the

optimal r and r + Q, we define a function f(γ, y) as

f(γ, y) = p(y) − c − u(p(y))(G(y) + γ) (3.5)

where p(y) is given by (3.4). Clearly, y can only take integer values in (8.2). However in

what follows we relax this to allow y to take any real value. In the following discussion,

we use f ′
1(γ, y) to denote the derivative of f(γ, y) with respect to γ and f ′

2(γ, y) to denote

the derivative of f(γ, y) with respect to y. Let R be the set of real numbers.

Lemma 3.1.1 (i) For any given γ > 0, f(γ, y) : R → R is a unimodal function of y,

and y0 = 0 is its maximum point.

(ii) For any given y, f(γ, y) is a decreasing concave function of γ.

Proof. We first prove (i). Taking derivative of f(γ, y) with respect to y yields

f ′
2(γ, y) = p′(y) − u′(p(y))p′(y)(G(y) + γ) − u(p(y))G′(y)

= −u(p(y))G′(y)

where the second equality follows from the fact that f ′
2(γ, y) is evaluated at the optimal

price p which satisfies u′(p(y)) = 1/(G(y) + γ). Because u > 0, f ′
2(γ, y) is positive

(negative) whenever G′(y) is negative (positive). Thus it follows from the convexity of

G(y) and lim|y|→∞ G(y) = ∞ that f(γ, y) is unimodal in y, and the maximum point of

f(γ, y) is the minimum point of G(y), which is 0.

We next prove (ii). We denote by p′γ the derivative of p(y) with respect to γ. Note
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Figure 3.1: f(γ, y) and G(y)

that the first two derivatives of f(γ, y) with respect to γ are

f ′
1(γ, y) = p′ − u′(p)p′(G(y) + γ) − u(p)

= −u(p),

f ′′
11(γ, y) = −u′(p)p′γ(y)

=
u′(p)

u′′(p(y))(G(y) + γ)2
,

where the second equality follows from u′(p) = 1/(G(y)+γ) and the last equality follows

from

p′γ(y) =
(
(u′)−1

(
1

G(y) + γ

))′

= −
1

u′′
(
(u′)−1

(
1

G(y)+γ

)) 1

(G(y) + γ)2
.

Thus it follows from the increasing convexity of u(p) that f(γ, y) is decreasing concave

in γ. �

The relationship between f(γ, y) and G(y) are depicted in Figure 1.
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Remark 1. One might expect f(γ, y) to be a concave function of y. We point out that

this is not true in general.

Let

ℓγ(Q, r) = max
p

ℓγ(Q, r,p).

We next characterize the optimal r(γ) and Q(γ) that maximize ℓγ(r,Q) for a given γ.

Lemma 3.1.2 (i) Given γ, the optimal r(γ) and r(γ) + Q(γ) are given by

r(γ) = max{y ≤ 0 and integer : f(γ, y) ≤ 0} (3.6)

r(γ) + Q(γ) = max{y ≥ 0 and integer : f(γ, y)) ≥ 0} (3.7)

(ii) r(γ) is increasing in γ.

(iii) r(γ) + Q(γ) is decreasing in γ.

Proof. Note the relationship

ℓγ(r,Q) = −K +

r+Q∑

i=r+1

f(γ, i). (3.8)

Since f(γ, i) is a unimodal function, the optimal solution for maxr,Q ℓγ(r,Q) should be

the r and Q such that f(γ, r+1), . . . , f(γ, r+Q) are all nonnegative. This proves (i). By

Lemma 3.1.1, f(γ, y) is a decreasing function of γ. Hence it follows from the definition

of r(γ) and r(γ) + Q(γ) that r(γ) is increasing in γ, and r(γ) + Q(γ) is decreasing in γ.

�

The pair of points (r(γ), r(γ) + Q(γ)) and (r(γ′), r(γ′) + Q(γ′)) with γ < γ′ are
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Figure 3.2: r(γ) and r(γ) + Q(γ)

visualized in Figure 2.

We are now ready to present the main result of this section.

Theorem 3.1.1 The optimal inventory and pricing strategy (Q∗, r∗,p∗) is

r∗ = max{y ≤ 0 and integer : f(γ∗, y) ≤ 0} (3.9)

r∗ + Q∗ = max{y ≥ 0 and integer : f(γ∗, y) ≥ 0} (3.10)

and

p∗(i) = (u′)−1

(
1

G(i) + γ∗

)
, i = r∗ + 1, . . . , r∗ + Q∗, (3.11)

where γ∗ is the optimal average profit determined by

r∗+Q∗∑

i=r∗+1

f(γ∗, i) = K. (3.12)

Proof. For any γ, we have obtained the optimal r(γ), Q(γ) and p(γ) in the previous
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analysis. Equation (3.3) can be expressed as

ℓγ = −K +

r(γ)+Q(γ)∑

i=r(γ)+1

f(γ, i).

Since ℓγ is a strictly decreasing convex function of γ, ℓγ = 0 has a unique solution γ∗,

which is given by (3.12). Therefore, from the result of fractional programming (see e.g.,

Schaible (1995)), the proceeding argument guarantees the optimality of the solution. �

One interesting feature of optimal pricing is its dependency on the inventory level.

Federgruen and Heching (1999) prove that for their model the optimal price decreases

as the inventory level increases. This does not hold in our model. The following result

presents the qualitative relationship between pricing and inventory level in our model.

Theorem 3.1.2 The optimal selling price p∗(y) is increasing on r∗ + 1 ≤ y ≤ 0, and

decreasing on 0 ≤ y ≤ r∗ + Q∗.

Proof. For convenience we drop the star on p, r,Q and γ. Again we relax y to allow it

to take any real value. Recall that p(y) satisfies equation

1 − u′(p)(G(y) + γ) = 0.

Taking derivative with respect to y yields

−u′′(p)p′(y)(G(y) + γ) − u′(p)G′(y) = 0

and

p′(y) = −
u′(p)G′(y)

u′′(p)(G(y) + γ)
, r + 1 ≤ y ≤ r + Q.
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Since u(p) is increasing convex, p increases as G(y) decreases, and p decreases as G(y)

increases. Because G(y) is convex with minimum point 0, the result follows. �

This result shows that the higher the inventory level, the lower the optimal selling

price, and the higher the backlog level, the lower the optimal selling price (see Figure

3). An intuitive explanation for this phenomenon is that, when the on-hand inventory

is high, the manager should set the selling price low in order to attract more demand to

sell the product in stock; while when the backlog level is high, the manager should also

set the selling price low but that is for a different reason – to boost demand so that the

reorder point can be reached quickly to incur a low penalty cost.

3.1.2 Algorithms

In Theorem 3.1.1, the parameter γ∗ represents the maximum average profit for the in-

ventory system. Once γ∗ is obtained the optimal strategy follows from (3.9), (3.10) and

(3.11). Since γ∗ is determined by (3.12) which can be written as ℓγ∗=0, we need to search

for γ that satisfies ℓγ = 0.
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For any given γ, the (Q, r,p) that maximizes ℓγ(Q, r,p) is easily computed from (3.4),

(3.6) and (3.7), and the optimal value ℓγ is determined. If ℓγ = 0 then we know that the

current strategy is optimal. Otherwise, if ℓγ > 0 then by the fact that ℓγ is decreasing in

γ we know that the optimal γ∗ > γ, and we should increase γ to search for the optimal

strategy. Similarly, if ℓγ < 0 then the optimal γ∗ < γ, and we should decrease γ to

search for the optimal strategy. This analysis leads to the following bisection algorithm

for computing the optimal strategy.

Algorithm I

Step 1 (Initialization)

Let γ1 = maxp λ(p)(p − c) and γ2 = v(1,−1, p(0)). Then ℓγ1
< 0 and ℓγ2

≥ 0. Let

ǫ > 0 be the tolerance level for γ∗.

Step 2 (Update γ)

Let γ = (γ1 + γ2)/2. Compute the corresponding (Q(γ), r(γ),p(γ)) using (3.4),

(3.6), and (3.7). Compute ℓγ(Q(γ), r(γ),p(γ)).

If ℓγ(Q(γ), r(γ),p(γ)) = 0, then go to Step 3.

If ℓγ(Q(γ), r(γ),p(γ)) < 0, then γ1 = γ;

If ℓγ(Q(γ), (r(γ),p(γ)) > 0, then γ2 = γ.

If γ1 − γ2 ≥ ǫ, go back to Step 2; otherwise, set γ = (γ1 + γ2)/2 and go to Step 3.

Step 3 (Termination)

Stop. γ∗ = γ, r∗ = r(γ), Q∗ = Q(γ), and p∗ = p(γ).

The algorithm starts with two initial inputs: γ1 and γ2; γ1 is the average profit when

the ordering cost K = 0, which cannot be achieved by a feasible policy and is an upper
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bound for the optimal average profit; hence the value of the auxiliary function is negative,

i.e., ℓγ1
< 0; γ2 is the profit for a feasible policy which is a lower bound of the optimal

average profit. So ℓγ2
≥ 0. Moreover, we specify a small positive number ǫ as the

tolerance level of γ∗.

In Step 2, we use bisection search method to locate the optimal γ, and update the

corresponding optimal (Q, r,p) using Theorem 1. If the ℓγ < 0, then the optimal γ∗ is

between γ and γ2, so we replace γ1 by γ; otherwise, it is between γ1 and γ and we replace

γ2 by γ. After we update either γ1 or γ2, we repeat Step 2. If we find a γ that satisfies

ℓγ = 0, then we have reached the optimal solution and terminate the algorithm. If the

difference between γ1 and γ2 is less than ǫ, we also terminate the program and obtain an

ǫ-approximate optimal γ. We use this γ to compute the corresponding (Q, r) and p.

Because the problem involves continuous optimization, there exists no algorithm that

is guaranteed to stop at the exact optimal solution in a finite number of iterations, as is

typical in any continuous optimization problem. However, the algorithm terminates at

an ǫ-approximate optimal solution in a finite number of steps.

To develop our second algorithm for determining the optimal policy, we need the

following lemma.

Lemma 3.1.3 If ℓγ(Q, r,p) > 0, then γ1 = v(Q, r,p) > γ.

Proof. By definition we have

ℓγ(Q, r,p) = −K +

r+Q∑

i=r+1

(p(i) − c − u(p(i))G(i)) − γ

r+Q∑

i=r+1

u(p(i)) > 0.
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Thus

v(Q, r,p) − γ =
−K +

∑r+Q
i=r+1(p(i) − c − u(p(i))G(i))
∑r+Q

i=r+1 u(p(i))
− γ > 0.

This shows γ1 > γ and the lemma follows. �

Lemma 3.1.3 states that, if the average profit γ of a policy is not optimal (because

ℓγ > 0), then the average profit of the current policy γ1 is greater than γ. This suggests

that if we start with the profit γ of a feasible strategy that is not optimal, then we can

improve on it. The process can be continued to generate an increasing sequence which

converges. This leads to the following algorithm.

Algorithm II

Step 1 (Initialization)

Let γ0 = v(1,−1, p(0)), which satisfies ℓγ0
≥ 0. Let ǫ > 0 be the tolerance level for

γ∗ and n = 0.

Step 2 (Update γ) Compute (Q(γn), r(γn),p(γn)) based on Lemma 3.1.1, and

compute ℓγn
(Q(γn), r(γn),p(γn)).

If ℓγn
(Q(γn), r(γn),p(γn)) = 0, then go to Step 3.

If ℓγn
(Q(γn), r(γn),p(γn)) > 0, γn+1 = v(Q(γn), r(γn),p(γn)). Set n = n + 1, If

γn − γn−1 ≥ ǫ, go back to Step 2; otherwise, go to step 3.

Step 3 (Termination)

Stop. γ∗ = γn, r∗ = r(γn), Q∗ = Q(γn), and p∗ = p(γn).
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The remaining question is whether the point of convergence of this algorithm is the

maximum average profit. This is guaranteed by the following result.

Proposition 3.1.1 In Algorithm II, γn converges to the optimal γ∗.

Proof. Since {γn} is an increasing sequence bounded from above by maxp λ(p)(p − c),

it converges to some finite number, say, γ. We need to prove γ = γ∗. If this is not true,

then ℓγ > 0. It follows from Lemma 3.1.3 that γ′ = v(Q(γ), r(γ),p(γ)) > γ. Because

v(Q(γ), r(γ),p(γ)) is a continuous function of γ, for any ǫ > 0 such that γ′− ǫ > γ, there

exists a positive integer N , such that when n > N ,

γn+1 = v(Q(γn), r(γn),p(γn)) ≥ v(Q(γ), r(γ),p(γ)) − ǫ = γ′ − ǫ > γ.

This contradicts γn+1 ≤ γ. Therefore γn → γ∗ and ℓγn
→ 0 as n → ∞. �

Remark 2. We point out that our algorithms are different from that of Feng and Chen

(2002) in that we have a continuous optimization problem, while Feng and Chen (2002)

have a discrete optimization problem. This is because Feng and Chen have a finite

number of possibilities for the price, while our price can take any nonnegative value. For

example, for the case with two possible prices, p1 < p2, they show that a (s, d,D, S)

policy is optimal. Their algorithm is mainly the search of optimal control parameters

(s, d,D, S). After the optimal (s, d,D, S) are computed, the optimal price is p1 when

inventory level is between s and d or between D and S, and the optimal price is p2 when

inventory level is between d and D. However, in our problem since p can take any value,

we have to introduce a stopping criterion to find an ǫ-approximate optimal solution.
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3.1.3 Numerical Studies

In this section, we provide several numerical examples to illustrate the properties of the

optimal pricing strategies. Two particular forms of u(p) are considered: u(p) = α + βp2

and u(p) = eθp.

In Table 1, u(p) = α + βp2 with α = 0.05, β = 0.005 and K = 20. We present

the optimal r∗, r∗ + Q∗ and maximum average profit γ∗ in the table for the examples

generated by varying the parameters h, b, and c one at a time from base case values of

h = 1, b = 10, and c = 1. Because the dimension of the optimal price vector changes

as r∗ and Q∗ change, we do not include the optimal price in the table. We list some

examples here: When h = 3, r∗ = −2 and r∗ + Q∗ = 5, the optimal price is p∗(−1, 5) =

(6.50, 18.50, 11.90, 8.80, 6.90, 5.70, 4.90); another example, when b = 4, r∗ = −4 and

r∗+Q∗ = 12, the optimal price is p∗(−3, 12) = (4.40, 5.40, 6.80, 9.40, 8.60, 7.90, 7.30, 6.80,

6.40, 6.00, 5.70, 5.40, 5.10, 4.80, 4.60, 4.40).

Table 3.1: u(p) = α + βp2

h r∗ r∗ + Q∗ γ∗ b r∗ r∗ + Q∗ γ∗ c r∗ r∗ + Q∗ γ∗

1 -2 13 10.047671 2 -6 11 11.496069 1 -2 13 10.047671
2 -2 8 6.964651 4 -4 12 10.627030 2 -2 10 7.171130
3 -2 5 5.412796 6 -3 12 10.295968 3 -1 8 5.515960
4 -2 4 4.523065 8 -2 13 10.151128 4 -1 6 4.482702
5 -2 3 3.964397 10 -2 13 10.047671 5 -1 5 3.775697
6 -2 3 3.612643 12 -2 13 9.964905 6 -1 4 3.272959

In Table 2, u(p) takes the form u(p) = eθp with θ = 0.05 and K = 30. The base

case values for the other parameters are again h = 1, b = 10, and c = 1. And again

we provide the optimal r∗, r∗ + Q∗ and maximum average profit γ∗ as cost parameter

changes. We present the optimal price for several instances: When h = 1, r∗ = −1,

r∗ + Q∗ = 3 and p∗(0, 3) = (36.60, 31.20, 26.90, 23.40); when b = 2, r∗ = −2, r∗ + Q∗ = 3

and p∗(−1, 3) = (26.00, 35.20, 30.10, 26.00, 22.70).
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Table 3.2: u(p) = eθp

h r∗ r∗ + Q∗ γ∗ b r∗ r∗ + Q∗ γ∗ c r∗ r∗ + Q∗ γ∗

1 -1 3 3.211318 2 -2 3 3.442351 1 -1 3 3.442247
2 -1 2 2.367485 4 -1 3 3.211318 2 -1 3 3.211318
3 -1 1 1.986400 6 -1 3 3.211318 3 -1 3 2.998423
4 -1 1 1.725084 8 -1 3 3.211318 4 -1 3 2.791912
5 -1 1 1.518209 10 -1 3 3.211318 5 -1 3 2.596384
6 -1 0 1.485544 12 -1 3 3.211318 6 -1 3 2.415886

From Tables 1 and 2, the following observations can be easily made and verified. First,

the optimal order-up-to level r∗ + Q∗ is decreasing in the unit holding cost rate h and

the linear purchasing cost c, but it is increasing in the unit backlog cost rate b. Second,

the optimal reorder point r∗ is independent of the holding cost rate h, which is because

r∗ < 0, but r∗ is increasing in b. However, since the demand follows a Poisson process and

order leadtime is 0, r∗ is always less than 0. Hence, r∗ remains constant at −1 after some

level of b. Third, the optimal profit decreases as the cost parameters increase. Fourth,

it can be proved analytically that, in these examples the rate of decrease in p∗(y) gets

smaller with positive, increasing values of y, and the rate of increase in p∗(y) gets larger

with negative, increasing values of y. This interesting property, however, does not hold

for general u(p).

3.1.4 Optimality Verification of (Q, r,p) Policy

The policy (Q∗, r∗,p∗) obtained in the previous algorithm (we will omit the ∗ in the

following proof) is optimal among all the feasible policies if this policy and its long-run

average profit R∗ together satisfy the following long-run average profit criterion:

h(x) = sup
y≥x,p∈[c,∞)

{
−Kδ{y > x} −

G(y) + R∗

λ(py)
+ (py − c) + h(y − 1)

}
,
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where h(x) must be a bounded function. So we relax the original problem to the following

problem which is allowed to return some unsold goods:

h(x) = sup
y 6=x,p∈[c,∞)

{
−Kδ{y 6= x} −

G(y) + R∗

λ(py)
+ (py − c) + h(y − 1)

}

where δ(A) = 1 if the A is true, and otherwise it is 0.

As will be shown later in this section, it turns out that the optimal solution to the

relaxed formulation stipulates a (Q, r,p) policy for inventory management and pricing.

Specifically, when the inventory level of goods is above r +Q, the retailer may return the

inventory in order to bring the inventory down to r + Q. As a result of returning goods,

it will never happen more than once since after that the inventory level will always at

or below r + Q. Therefore, for the criterion of long run average profit, if we follow the

same policy for the original problem with no good-returning allowed, the same long run

average profit will be achieved and it must be optimal for the original problem too. This

technique was first employed in Zheng (1991).

Now we need to construct a bounded function h(x) that satisfies the optimality equa-

tion. We will structure the function in relation to the auxiliary function ℓv(Q, r,p). In

the following proof procedure, we will change the notation of ℓv(Q, r,p) to ℓv(r, r +Q,p)

for convenience.

A function h(x) is defined recursively as follows:

h(x) =






−K if x ≤ r,

ℓv(r, x, p(r + 1, x)) if r < x ≤ r + Q,

max{−K, maxp{−
G(x)+v

λ(p)
+ (p − c) + h(x − 1)} if x > r + Q.

First we prove that h(x) is bounded. And we want to show −K ≤ h(x) ≤ 0.

28



Now it is obviously true that −K ≤ h(x) ≤ 0 when x ≤ r. For x > r + Q, h(x) ≥

−K. Consider the case when x ∈ (r, r + Q]. As (Q, r,p) optimizes ℓv(r,Q + r,p), so

ℓv(r, x, p(r, r + x)) < ℓv(r, r + Q,p) = 0 when x > r.

In the following we show h(x) ≥ −K when r < x ≤ r + Q:

h(x) = ℓv(r, x, p) = −K +
x∑

i=r+1

(pi − c − u(pi)(G(i) + v))

≥ −K

Because λ(px−i)(px−i − c) − G(x − i) − v ≥ 0 by the definition of the optimal r and Q.

Now we proceed to the case that x > r + Q, we prove it by induction, start from

x = r + Q + 1, if h(r + Q + 1) = −K, then it is automatically satisfied, otherwise:

h(r + Q + 1) = max
p

{
−

G(r + Q + 1) + v

λ(p)
+ (p − c) + h(r + Q + 1 − 1)

}

≤ max
p

{
−

G(r + Q + 1) + v

λ(p)
+ (p − c)

}

≤ 0

The first inequality follows from the previous results and the second is based on the

definition of r + Q. The induction procedure is simple so we omit it here. So far,

−K ≤ h(x) ≤ 0.

After we show h(x) is bounded, we need to show it satisfies the dynamic programming

equation above. We will discuss several cases separately.

For x ≤ r:

We need to show −K ≥ −G(x)+v
λ(px)

+ (px − c) + h(x − 1), which can be validated by
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definition of r:

G(r) > λ(p)(p − c) − v

so with x − 1 < r and h(x − 1) = −K

−
G(x) + v

λ(px)
+ (px − c) − K ≤ −K

so h(x) = −K satisfies the optimality equation.

For r < x ≤ r + Q, We prove the result by induction, let x = r + 1 then

h(r + 1) = (pr+1 − c) −
G(r + 1) − v

λ(pr+1)
− K

= ℓv(r, r + 1, p(r + 1))

Suppose the this is true for x = i, then for x = i + 1

h(i + 1) = −
G(i + 1) + v

λ(pi+1)
+ (pi+1 − c) + h(i)

= −
G(i + 1) + v

λ(pi)
+ (pi+1 − c) + ℓv(r + 1, i, p(r + 1, i))

= ℓv(r, i + 1, p(r + 1, i + 1))

Therefore, we finish the induction and prove this case.

Finally, we prove the h(x) we constructed is valid for range x > r + Q. We just need

to verify in this range, h(x) is equivalent to:

max

{
−K, max

p
{−

G(x) + v

λ(p)
+ (p − c) + h(x − 1)

}

which can be proved for x = r + Q + 1 since h(r + Q) = 0 and we can easily prove this

case by induction. Hence, we finish the proof for the optimality of (Q, r,p) policy. �
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3.2 Batch Ordering (R, nQ,p) Model

In this section, we consider a continuous-review inventory model, in which demand arrives

according to a batch Poisson process. The demand arrival rate depends on the selling

price while the demand size does not. In addition, the ordering quantity must be an

integer multiple of a base quantity Q. We characterize the optimal inventory and pricing

policies. We also present how to calculate the control parameters and obtain a structural

property for the optimal price.

3.2.1 Model Description

Consider a continuous-review, single-stage inventory system. Demand arrives according

to a batch Poisson process. The demand size is i.i.d. with distribution φ(·) and mean

µ. The interarrival time is exponential distributed with rate λ(p), which depends on

the selling price. The firm needs to make pricing as well as the inventory replenishment

decisions. Assume the supply leadtime is 0 and unsatisfied demand is fully backlogged.

Let x denote the initial inventory level and y denote the inventory level after replenish-

ment. The inventory holding and shortage cost function is G(y), which is a function of

the inventory level after replenishment. The unit purchasing cost is c. When the firm

places an order, the order quantity is an integer multiple of a given base quantity Q.

The time sequence of the events is: First, demand arrives and is satisfied if the inven-

tory is enough, otherwise it is backordered; second, the firm decides whether to place an

order and if so, how much to order to replenish its inventory; third, the firm determines

the selling price for the product; fourth, all costs and revenue are incured.

Assumption 3.2.1 G(·) is a convex function and G(y) → ∞ when |y| → ∞ and let x0
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be the minimum point of G(·);

Assumption 3.2.2 u(p) = 1/λ(p) is a convex function of p and it is strictly increasing

in p.

The objective of the firm is to maximize its long run average profit per unit of time.

We consider the following (R, nQ,p) policy: If inventory level drops to or below R, place

an order which is an integer multiple of Q to raise inventory level to some point between

R + 1 and R + Q; otherwise do not order anything. The optimal price is a function of

inventory level.

We first derive the average profit function for a given (R, nQ,p) policy. Let π(i) denote

the stationary probability for the inventory level to be i if the length of inter arrival time

is exact one unit. Then

π(0) = π(0)
∞∑

k=0

φ(kQ) +

Q−1∑

j=1

π(j)
∞∑

n=1

φ(−j + nQ),

π(i) =
i∑

j=0

π(j)
∞∑

k=0

φ(i − j + kQ) +

Q−1∑

j=i+1

π(j)
∞∑

n=1

φ(i − j + nQ),

where π(Q − 1) =
∑Q−1

j=0 π(j)
∑∞

k=0 φ(Q − 1 − j + kQ).

Display it in the matrix form as:

π = π





∑
∞

k=0
φ(kQ)

∑
∞

n=1
φ(−1 + nQ)

∑
∞

n=1
φ(−2 + nQ) · · ·

∑
∞

n=1
φ(−(Q − 1) + nQ)

∑
∞

k=0
φ(1 + kQ)

∑
∞

k=0
φ(kQ)

∑
∞

n=1
φ(−1 + nQ) · · ·

∑
∞

n=1
φ(1 − (Q − 1) + nQ)

...
... . . .

...
...

∑
∞

k=0
φ(Q − 1 + kQ) · · · · · · · · ·

∑
∞

k=0
φ(kQ)




.
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It can be easily seen that the matrix is doubly stochastic. so

π(i) =
1

Q

Hence it follows from the theory of Semi-Markov process (Ross, 2003) that the stationary

probability of inventory level at i is:

πi =
1/(λ(pi)Q)

∑R+Q
j=R+1(λ(pj)Q)

i = R + 1, . . . , R + Q

where pi is the price when the inventory level is i.

Let v(R,p) be the optimal average profit. Since the base quantity Q is given, we

suppress it in v to simplify the notation. Thus the average profit per unit of time is given

by:

v(R,p) =

R+Q∑

i=R+1

(πi)(λ(pi)(pi − c)µ − G(i))

=

∑R+Q
i=R+1

1
λ(pi)

(λ(pi)(pi − c)µ − G(i))
∑R+Q

j=R+1
1

λ(pj)

(3.13)

We want to maximize the above function, with respect to both R and p. Since this

function is not easy to optimize directly, in the following we again introduce an auxiliary

function as the tool to simplify the optimization procedure.

We define the auxiliary profit function as follows:

ℓγ(R,p) =

R+Q∑

i=R+1

1

λ(pi)
(λ(pi)(pi − c)µ − G(i) − γ) (3.14)

where γ is the dummy profit. This is a fractional programming expression of the average

profit of function (3.13). Again from the result of fractional programming, γ = v∗, where

v∗ is the optimal profit, if and only if ℓγ(R,p) = 0.
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When the dummy profit γ is the long-run average profit of a known policy (R0,p0),

we can interpret above function (3.14) as follows. As γ = v(R0,p0), γ can be regarded as

the reference profit per period which will be earned when policy (R0,p0) is implemented.

As a result, the auxiliary function can be viewed as an indicator of the comparative

performance of policy (R,p).

3.2.2 Optimal (R, nQ,p) Policy

Before we proceed, first we introduce a function f(y):

f(y) = max
p

{
1

λ(p)
(λ(p)(p − c)µ − G(y) − γ)

}
. (3.15)

Lemma 3.2.1 f(y) is a unimodal function of y, so there exists one point y0 which max-

imizes f(y).

Proof. As u(p) = 1/λ(p) and

g(y, p) =
1

λ(p)
(λ(p)(p − c)µ − G(y) − γ)

then the optimal p should satisfy the following first order necessary condition:

g′
p(y, p) = µ − u′(p)(G(y) + γ) = 0

⇒ µ = u′(p)(G(y) + γ).

Take derivative of f(y) with respect to y,

f ′(y) = p′µ − u′(p)p′(G(y) + γ) − u(p)G′(y)

= −u(p)G′(y),

34



where the second equality follows from the fact that f ′(y) is evaluated at the optimal

price p and optimal price p needs to satisfy previous equation. Because G(y) is a convex

function, G′(y) is first negative then positive. In addition, u(p) ≥ 0. So f ′(y) is first pos-

itive then after some point it becomes negative, which means that f(y) is first increasing

then after some point it will decrease. So it is a unimodal by the definition. Therefore,

there exists a maximum point y0. �

Proposition 3.2.1 If u(p) is convex in p, then the optimal price p∗ has such property

that it is increasing when inventory level is less than x0 and decreasing when inventory

level is greater x0, where x0 is the minimum point of G(·).

Proof. Take derivative of µ = u′(p)(G(y) + γ) with respect to y,

u′′(p)p′(G(y) + γ) + u′(p)G′(y) = 0

p′G′(y) = −
u′(p)(G′(y))2

u′′(p)(G(y) + γ)
.

Because λ(p) is strictly decreasing in p, u(p) will increase in p. Therefore, u′(p) > 0. In

addition, since u(p) is convex in p, u′′(p) > 0. So that p′G′(y) < 0, which means that

when G′(y) > 0, p′ < 0, vice versa. �

This property is quite intuitive: When inventory level is positive, the higher the

inventory, the lower the selling price. When inventory level is negative (backlog), the

higher the inventory level, the higher the selling price. Or, the higher the backlog level,

the lower the selling price.

Theorem 3.2.1 Let Rγ denote the optimal R for given γ, then we can locate the optimal
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Rγ as follows:

Rγ = max{x : f(x + Q) ≥ f(x)}

Proof. Suppose the price for inventory level in [R + 1, R + Q − 1] are the same for the

two policies (R,p) and (R− 1,p′). Then the optimal reorder point can be located in the

following way:

ℓγ(R) − ℓγ(R − 1) =
1

λ(pR+Q)
(λ(pR+Q)(pR+Q − c)µ − G(R + Q) − γ)

−
1

(λ(pR)
(λ(pR)(pR − c)µ − G(R) − γ)

= f(R + Q) − f(R) ≥ 0

Because we already showed that f(y) is unimodal, so above inequality is well defined.

Then we can locate the optimal Rγ easily. �

Theorem 3.2.2 Suppose we already pinpoint the R at Rγ for a given γ, then we can

decompose the price optimization procedure of Q prices in to Q one price optimization

problem and we can solve it in real time independently as follows, for y = R+1, . . . , R+Q:

p(y) = u−1

(
µ

G(y) + γ

)

Proof. Note that

pγ(y) = arg max

{
1

λ(p)
(λ(p)(p − c)µ − G(y) − γ)

}
.

By taking derivative of the objective function with respect to p, we can get the desired

result. �
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So now we already know how to optimize the auxiliary function for a given γ, we can

easily obtain the optimal Rγ and prices for inventory level from Rγ + 1 to Rγ + Q. Next

we show how to upgrade the dummy profit and finally get the optimal average profit per

unit of time v∗ , the optimal reorder point R and price vector p.

Clearly, policy (R0,p0) is not optimal if and only if (Rγ,p(Rγ+1, Rγ+Q)) outperforms

it with respect to the objective function ℓγ(Rγ,p). Thus the end of searching an optimal

(Rγ,p) is either a better alternative or a conclusion that current policy we have is optimal.

However, the following lemma shows that a better alternative need not to be optimal.

Lemma 3.2.2 Suppose that ℓγ(R,p) > 0, then,γ1 = v(R,p) > γ.

Proof. The proof is parallel to Lemma 3.1.3, so we omit it. �

Finally, we establish the termination rule for the procedure of searching v∗ and the

corresponding parameters.

37



Lemma 3.2.3 Suppose for some γ, ℓγ(R,p) = 0, then we already find the optimal policy

(R,p), and v∗ = γ.

3.2.3 Algorithm

Since we already know R∗ < maxp{λ(p)(p− c)µ}, so if we let γ1 = maxp{λ(p)(p− c)µ−

G(y)}, and γ2 = c(x0,p). Then,ℓγ1
(Rγ1

,p) < 0 and ℓγ2
(Rγ2

,p) > 0. Therefore we can

use bisection method to search the optimal R∗ because we can locate the corresponding

optimal Rγ and the optimal price easily for any given γ. Let ǫ be the tolerance level.

Algorithm:

• Step 1: Initialization, set γL = γ1 and γU = γ2;

• Step 2: Set γ = (γL + γU)/2, search the corresponding optimal R, continue;

• Step 3: Price optimization: for each i = R + 1, . . . , R + Q:

pi = (u′)−1

(
µ

G(i) + γ

)
.

• Step 4: Calculate

ℓγ =

R+Q∑

i=R+1

((pi − c)µ − u(pi)(G(i) + γ)).

if ℓγ > 0, then γL = γ, otherwise γU = γ. go to step 2. If ℓγ = 0 or γu − γL < ǫ,

go to Step 5;

• Step 5: Stop, γ is the ǫ-optimal average profit, and the R and p are the ǫ-optimal

reorder point and price vector, respectively.
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It is the fact that the bisection search is very efficient, so the algorithm converges very

fast and get the ǫ-optimal solutions.

3.3 (s, S,p) Model

3.3.1 Model Description

In this section, we study a continuous-review inventory system with setup cost for each

order. Again the demand arrives according to a compound Poisson process. The demand

size is i with distribution φ(i) and mean µ. In addition, the demand arrival rate λ depends

on the selling price p, i.e. λ(p). The firm determines the selling price and the inventory

replenishment strategies. Let K denote the setup cost and c denote the unit purchasing

cost. And the inventory holding and shortage cost is G(y). The firm wants to determine

the policy that maximizes the long run average profit.

If the mean of interarrival time is 1 unit, then the stationary probability of inventory

level at S − i is m(i),

m(0) =
1

1 − φ(0)
,

m(i) =
i∑

j=0

m(j)φ(i − j).

For the general case when the arrival rate is λ(pi), the stationary probability of inventory

level at point i, which depends on the selling price will be:

πi =
1/λ(pi)m(i)

∑S−s−1
j=1 1/λ(pj)m(j)

,

where λ(pj) is the arrival rate when the inventory level after ordering is j and the price
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is pj.

The average profit per unit of time is

v(s, S,p) =
−K +

∑S−s−1
i=0

1
λ(pS−i)

m(i)(λ(pS−i)(pS−iµ − cµ) − G(S − i))
∑S−s−1

j=0
1

λ(pS−j)
m(j)

. (3.16)

Again we construct an auxiliary function

ℓγ(s, S,p) = −K +
S−s−1∑

i=0

1

λ(pS−i)
m(i)(λ(pS−i)(pS−iµ − cµ) − G(S − i) − γ)

where γ is the dummy profit. Based on lemma 3.1.1, the optimal profit R∗ = γ if and

only if ℓγ(s, S,p) = 0

3.3.2 Optimal (s, S,p) Policy

In this section, we compute the optimal (sγ, Sγ,p) that minimize lγ(sγ, Sγ,p) for a given

γ by using the auxiliary function.

Theorem 3.3.1 For any given γ, let a = maxp{(p − c)λ(p)}

(a) the optimal reorder point:

sγ = sup{y : G(y) ≥ aµ − γ, y < y0}

(b) the upper bound for the order up to point Sγ:

Sγ = sup{y : G(y) ≤ aµ − γ, y ≥ y0}
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(c) The optimal price, for y = sγ + 1, . . . , Sγ, is given by

py = u′−1

(
µ

G(y) + γ

)

Proof. For (a), given any fixed S, and suppose p(s, S) is the same at s + 1, . . . , S for

the two policies, then optimal s satisfies the following:

ℓγ(s − 1, S,p) − ℓγ(s, S,p) = m(S − s)(λ(ps)(ps − c)µ − G(s) − γ) ≥ 0

which implies

αµ − G(s) − γ ≥ 0,

which follows from the definition of α. The left hand side can be argued, if for some

p, which maximizes λ(p)(p − c) and such that λ(p)(p − c) ≥ G(s) + γ, then setting

p(s, S) = (p, p(s + 1, S)), we should have ℓγ(s − 1, S,p(s, S)) − ℓγ(s, S,p(s + 1, S)) ≥ 0.
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This proves (a).

We prove assertion (b) by contradiction. Note that

ℓγ(s, S, p(s + 1, S)) = −K +
S−s−1∑

i=0

1

λ(pS−i)
m(i)(λ(pS−i)(pS−iµ − cµ) − G(S − i) − γ)

= −G(S) − γ + λ(pS)(pS − c)µ − K(1 −

S−s−1∑

j=0

φ(j))

+
S−s−1∑

j=0

φ(j)ℓγ(s, S − j, p(s + 1, S − j)

≤ αµ − γ − G(S) − K(1 −
S−s−1∑

j=0

φ(j))

+
S−s−1∑

j=0

φ(j)ℓγ(s, S − j, p(s + 1, S − j)

< −K(1 −

S−s−1∑

j=0

φ(j)) +
S−s−1∑

j=0

φ(j)ℓγ(s, S, p(s + 1, S)

The following inequality follows:

ℓγ(s, S, p(s + 1, S) < −K,

as to be shown, an impossible relation. Now, consider a policy (s, s + 1, p) for a given γ,

such that

λ(p)(p − c)µ − G(s + 1) − γ ≥ 0

So this policy will be a lower bound on ℓγ(s, S,p) as:

ℓγ(s, S,p) ≥ ℓγ(s, s + 1, p′) = −K + m(0)
1

λ(p′)
((p′ − c)µ − γ − G(s + 1) ≥ −K

which contradicts with the previous result. Consequently, we invalidate the assumption

and prove the result.
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Assertion(c) is easy to show because m(j), j = 0, . . . , S − s − 1 are independent of

p. We assume that λ(p) is strictly decreasing of p. Therefore, the demand arrival rate λ

and price p is one to one correspondent, for each p, we can find a corresponding λ. Thus

we can take derivative with respect to p of the objective function,

µ − u′(py)(G(y) − γ) = 0

which implies

py = u′−1

(
µ

G(y) + γ

)

Then we can solve for optimal p immediately. �

Theorem 3.3.2 If u(p) is a convex function, the optimal price p(y) increases as y in-

creases when y ≤ y0, and p(y) decreases after y > y0. That is, the path of the function

p(y) is opposite to the one period cost function G(y).

Proof. The proof is similar to the one in the previous section, we skip it here. �

3.3.3 Algorithm

In this algorithm, we assume that a minimizer of G(y), y0 is known and we have calculated

the renewal density m(i) off line. The algorithm starts with a policy (s0, S0,p0). One

choice of (s0, S0,p0) is (y0 − 1, y0, p0), where p0 is the price entailing f(y0). Then γ0 is

the average profit achieved by this policy.

• Step 0 (Initialization)
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Let γ = γ0 = v(y0 − 1, y0, p). Compute f(y0 − 1), f(y0 − 2), . . . until some

f(y0 − n) < γ. Let sγ = y0 − n, y = max{sγ + 1, x0}. Let ǫ be the tolerance level.

Calculate the p(sγ + 1, y) by previous result and the value of auxiliary function ℓ

then go to step 1.1.

• Step 1(Upgrading the dummy profit)

1.1 (Updating the dummy profit) If ℓ < 0, go to step 1.2. If ℓ > 0, let

γ = ℓPS−s−1

i=0
1/λ(pS−i)m(i))

+ γ, go to step 1.3. If ℓPS−s−1

i=0
1/λ(pS−i)m(i))

≤ ǫ, go to

Step 2.

1.2 (Update order up to point) If G(y + 1) > αµ− γ, go to step 2. Otherwise

y = y + 1, then calculate the p(y) and ℓ. Go to step 1.1.

1.3 (Update reorder point)

if G(sγ + 1) > aµ − γ, sγ = sγ + 1 until G(sγ + 1) ≤ aµ − γ. If y ≤ sγ set

y = sγ + 1, again, calculate the optimal price p and ℓ

• Step 2(Termination)

Stop with γ = v∗ and optimal policy (s, S,p).

44



3.3.4 Optimality Verification

In this section, we verify that (s, S,p) policy is optimal among all other policies. Even

though the optimality of the policy has been proved by Chen and Simchi-Levi (2002 a),

we prove it through different approach in this section.

The optimal (s∗, S∗,p∗) policy (we will omit the ∗ in the following proof) is optimal

among all the feasible policies if this policy and its long-run average profit v∗ together

satisfy the following long-run average profit criterion:

h(x) = sup
y≥x,p∈[c,∞)

{
−Kδ{y − x > 0} −

G(y) + v∗

λ(py)
+ (py − c)µ + E[h(y − D)]

}
,

where h(x) must be a bounded function. We relax the original problem to the following

problem which is allowing return the inventory:

h(x) = sup
y 6=x,p∈[0,∞)

{
−Kδ{y 6= x} −

G(y) + v∗

λ(py)
+ (py − c)µ + E[h(y − D)]

}
.

If our policy is optimal for the relaxed problem, it must be optimal for the original

problem too. Now what we need is to construct a bounded function h(x) to satisfy the

criterion above. We structure the function in relation to the auxiliary function ℓv∗(s, S,p).

A function h(x) is defined recursively as follows:

h(x) =






−K if x ≤ s,

ℓv(s, x, p(s + 1, x)) if s < x ≤ S

maxp{−
G(x)+v∗

λ(p)
+ (p − c)µ + E[h(x − D)]} if S < x ≤ S,

max{−K, maxp{−
G(x)+v∗

λ(p)
+ (p − c)µ + E[h(x − D)]} if x > S

It is obviously that h(x) ≥ −K when x ≤ s or x > S, we want to show −K ≤ h(x) ≤ 0,

and which is the case for x ≤ s that we can get immediately from above equations.

Consider the case when x ∈ (s, S). As (s, S, p) optimizes ℓv(s, S, p), so ℓv(s, x, p) <
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ℓv(s, S, p) = 0 when x > s. To show h(x) ≥ −K in this range, when s < x ≤ S

h(x) = ℓv(s, x, p) = −K +
x−s−1∑

i=0

1

λ(px−i)
m(i)(λ(px−i)(px−iµ − cµ) − G(x − i) − v∗)

≥ −K,

where λ(px−i)(px−iµ − cµ) − G(x − i) − v∗ ≥ 0 by the definition of the optimal s and S.

Now we proceed to the case when x > S. We prove it by induction starting from

x = S + 1:

h(S + 1) = max
p

{
−

G(S + 1) + v∗

λ(p)
+ (p − c)µ + E[h(S + 1 − D)]

}

≤ max
p

{
−

G(S + 1) + v∗

λ(p)
+ (p − c)µ

}

≤ 0

where the first inequality is based on the previous results and the second is based on the

definition of S. The induction procedure is simple so we omit it here.

After we show h(x) is bounded, we need to show it satisfies the optimality equation

above.

For x ≤ s, we need to show −K ≥ −G(x)+v∗

λ(px)
+ (px − c)µ + E[h(x−D)], which can be

validated by definition of s:

G(s) > max
p

{λ(p)(ps) − c)µ} − v∗.

So when x ≤ s

−
G(x) + v∗

λ(px)
+ (px − c)µ − K ≤ −K

hence h(x) = −K.
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For s < x ≤ S, we again prove it by induction, let x = s + 1 then

h(s + 1) = (ps+1 − c)µ −
G(s + 1) − v∗

λ(ps+1

+ φ(0)h(s + 1) + (1 − φ(0))(−K)

which implies

h(s + 1) = −K + m(0)[(ps+1 − c)µ −
G(s + 1) − v∗

λ(ps+1

]

= ℓv∗(s, s + 1, p(s, s + 1)).

Suppose that this is true for x = j, then for x = j + 1

h(j + 1) = −
G(j + 1) + v∗

λ(pj+1)
+ (pj − c)µ + E[h(j + 1 − D)]

= −
G(j + 1) + v∗

λ(pj+1)
+ (pj+1 − c)µ +

j−s∑

i=1

(φ(i)h(j + 1 − i)) + φ(0)h(j + 1)

+
∞∑

i=j−s+1

φ(i)(−K)

= −
G(j + 1) + v∗

λ(pj+1)
+ (pj+1 − c)µ

+

j−s∑

i=1

(φ(i)ℓv∗(s, j + 1 − i, p)) + φ(0)h(j + 1) +
∞∑

i=j−s+1

φ(i)(−K)

⇒ h(j + 1) = m(0)[
G(j + 1) + v∗

λ(pj+1)
+ (pj+1 − c)µ +

j−s∑

i=1

φ(i)ℓv∗(s, j + 1 − i, p)

+
∞∑

i=j−s+1

φ(i)(−K)]

= ℓv∗(s, j + 1, p(s + 1, j + 1)),

where the last equality can be validated by the following:
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ℓv∗(s, j + 1, p(s + 1, . . . , j + 1)) = −K + m(0)((pj+1 − c)µ −
G(j + 1) + v∗

λ(pj+1)
)

+m(0)

j−s∑

i=1

φ(i)(ℓv∗(s, j + 1 − i, p) + K)

= m(0)((pj+1 − c)µ −
G(j + 1) + v∗

λ(pj+1)
)

+m(0)

j−s∑

i=1

φ(i)(ℓv∗(s, j + 1 − i, p))

+
∞∑

i=j−s+1

φ(i)(−K).

For S < x < S we need to show

−
G(x) + v∗

λ(px)
+ (px − c)µ + E[h(x − D)] ≥ −K

which can be proved by the definition of S:

−
G(x) + v∗

λ(px)
+ (px − c)µ + E[h(x − D)] ≥ −

G(x) + v∗

λ(px)
+ (px − c)µ − K

≥ −K

Finally, we prove the h(x) is valid for range x > S. We just need to verify that in this

range, h(x) is equivalent to:

max

{
−K, max

p
{−

G(x) + v∗

λ(p)
+ (p − c)µ + E[h(x − D)]

}

which can be easily proved since h(S) = 0. �
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3.4 Summary

We have presented three continuous-review inventory models that jointly optimize pricing

and inventory control strategies. We characterize the simple structure of their optimal

policies. Furthermore, we obtain a structural property for the path of the optimal price,

which is that the price decreases when backorder increases and decreases when inventory

on hand increases. We also develop efficient algorithms to calculate the optimal control

parameters, which improve the implementability of the optimal policy.
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Chapter 4

Joint Optimization of Pricing and

Inventory Control for

Periodic-Review Inventory Systems

We study two periodic-review inventory/production models in this chapter. We char-

acterize optimal inventory and pricing policies for both models. In §4.1, we consider

pricing and inventory strategies for a inventory model with dual supply modes. In §4.2,

we combine pricing and production decisions for a production smoothing model.

4.1 Single-Stage Inventory Model with Dual Trans-

portation Modes

In this section, we study a periodic-review inventory model with dual supply options.

The firm has three decisions to make at the beginning of each period: the quantity of
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emergency order, the quantity of regular order and the selling price for the product. The

leadtime difference between the emergency order and regular order is one period. The

objective of the firm is to maximize the total discounted profit over a finite or an infinite

horizon.

Time sequence of events is : First, the firm receives the regular order placed in previous

period and observes the current inventory level; second, he decides the order quantity

by using emergency order and receives it immediately; third, a regular order is placed

if needed and the selling price is set; fourth, demand is realized and excess demand is

backlogged; fifth, all costs and revenue incur.

4.1.1 Finite Horizon Problem

The following are the notation we need:

xn = the initial inventory level at the beginning of period n before any decisions are

made;

yn = the inventory level after placing the emergency order;

un = the inventory position after placing the regular order;

T = the length of the planning horizon;

c0 = the unit purchasing cost for regular order;

c1 = the unit purchasing cost for emergency order, c1 > c0;

pn = the unit selling price, pn ≥ c1;
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Dn(p, ǫ) = the demand in period n and E[Dn(p, ǫ)] = dn(p), where ǫ is the random

perturbation;

G(p, y) = the expected inventory holding and shortage cost, i.e. G(p, y) = E[h[y −

D(p, ǫ)];

pmax, pmin = the lower bound and upper bound of the selling price, respectively;

α = the discount factor, α ≤ 1.

The following assumptions are needed for the deduction of the results:

Assumption 4.1.1 The demand Dt(p, ǫ) is concave and decreasing in p. Thus, E[Dt(p, ǫ)] =

dt(p) is concave and decreasing in p.

Assumption 4.1.2 The expected inventory holding and shortage cost per period Gt(y, p) =

E[ht(y − Dt(p, ǫ))] is jointly convex in y and p.

Assumption 4.1.3 The expected revenue function Rt(p) = pdt(p) is concave in p.

Assumption 4.1.4 limy→∞ Gt(y, p) = limy→∞[(c1−c0)y+c0u+Gt(y, p)] = limy→∞[(c0−

αc1)u + (c1 − c0)c1)y + Gt(y, p)] = ∞ for all p.

The problem can be formulated as,

vn(xn) = max
un≥yn≥xn,pn∈[pmin,pmax]

{−c1(yn − xn) − c0(un − yn) − Gn(yn, pn) + pd(p)

+αE[vn−1(un − Dn(p, ǫ)]}. (4.1)
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Let

fn(yn, un, pn) = −c1yn − c0(un − yn) + R(p) − Gn(yn, pn) + αE[vn−1(un − Dn(p, ǫ)]

(4.2)

and

Vn(xn) = vn(xn) − c1xn

which is equivalent to shift the c1xn to the previous period, and set V0(x) = 0. We can

change (4.1) and (4.2) accordingly,

Vn(xn) = max
yn≥xn,pn,rn

{fn(yn, un, pn)} (4.3)

where

fn(yn, un, pn) = (c0 − c1)yn − c0un + R(pn) − Gn(yn, pn)

+αE[c1(un − Dn(p, ǫ))] + αE[Vn−1(un − Dn(p, ǫ)]

= (c0 − c1)yn + (αc1 − c0)un + R(pn) − Gn(yn, pn) − αc1d(pn)

+αE[Vn−1(un − Dn(p, ǫ)]. (4.4)

4.1.2 Optimal Policies

Theorem 4.1.1 (a) fn(yn, un, pn) is concave with respect to yn, un, pn;

(b) Vn(xn) is concave and nonincreasing in xn.

Proof. We prove it by induction. Because V0(x) = 0, obviously it is true for n = 0.

Supposed Vn−1(x) is concave in x, then let y′ = λy1 + (1 − λ)y2, u′ = λu1 + (1 − λ)u2,
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p′ = λp1 + (1 − λ)p2, λ ∈ [0, 1] and skip the linear term,

fn(y′, u′, p′) = −G(y′, p′) + (p′ − αc1)d(p′) + αE[Vn−1(u
′ − D(p′, ǫ)]

= (p′ − αc1)d(λp1 + (1 − λ)p2) − G(λy1 + (1 − λ)y2, λp1 + (1 − λ)p2)

+αE[Vn−1(λ(u1) + (1 − λ)(u2) − Dn(λp1 + (1 − λ)p2, ǫ)]

≥ λ((p1 − αc1)d(p1) − G(y1, p1) + αE[Vn−1(u1 − D(p1, ǫ)])

+(1 − λ)((p2 − αc1)d(p2) − G(y2, p2) + αE[Vn−1(u2 − D(p2, ǫ)])

= λfn(y1, u1, p1) + (1 − λ)fn(y2, u2, p2),

where the inequality follows from the concavity and monotonicity of D(p, ǫ), convexity

of G(y, p) and the nonincreasingness of V (x). Then by Proposition B4 in Sobel (1984),

Vn(x) is concave.

From the optimality equation, Vn(xn) is nonincreasing in xn because the feasible do-

main of yn becomes smaller as xn increases and we are trying to maximize the objective

function. �

Therefore, the optimal price is

pn(yn, un) = arg maxp∈[pmin,pmax]{fn(yn, un, pn)}. (4.5)

Lemma 4.1.1 (a) fn(yn, un, pn) is a submodular in y and p;

(b)fn(yn, un, pn) is a submodular in u and p;

Proof. Note that the first two terms of (4.3) only depend on one variable, so they are

obviously submodular. For Gn(yn, pn) = E[h(yn − D(pn, ǫ))], let y1 < y2, p1 < p2, let
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s1 = y1 − D(p1, ǫ), s2 = y1 − D(p2, ǫ), s3 = y2 − D(p1, ǫ), s4 = y2 − D(p2, ǫ), then

s1 < s2, s3 < s4

by the monotonicity of D(p, ǫ). Therefore,

h(s1) − h(s3) = h(s3 + (y1 − y2)) − h(s3)

≤ h(s4 + (y1 − y2)) − h(s4)

= h(s2) − h(s4).

So h(·) has isotone difference and is supermodular. Then G(y, p) = E[h(y − D(p, ǫ))] is

supermodular too. For (b), we just need to show the submodularity of Vn(un −Dn(p, ǫ)).

By the concavity of Vn(x), it can be proved by the similar method as we show the

supermodularity of G(·, ·) to prove the submodularity of Vn. �

Proposition 4.1.1 pn(yn, un) is nonincreasing in both yn and un.

Proof. This proposition immediately follows from the submodularity of fn. �

Substitute the optimal price p(y, u) into the value function,

Vn(xn) = max
un≥yn≥xn

{(c0 − c1)yn + (αc1 − c0)un + R(pn(un, yn)) − Gn(yn, pn(un, yn))

−αc1d(pn(un, yn)) + αE[Vn−1(un − Dn(p(un, yn), ǫ)]}.

We optimize yn first, Let

gn(yn, un) = (c0 − c1)yn + R(pn(un, yn)) − Gn(yn, pn(un, yn))

−αc1d(pn(un, yn)) + αE[Vn−1(un − Dn(p(un, yn), ǫ)].
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Because gn(yn, rn) is concave, then there exists un, such that

yn(un) = arg max
yn

{gn(yn, un)}.

The last step is to optimize the regular order-up-to level un. Let

Jn(un) = (c0 − c1)yn(un) + (αc1 − c0)un + (pn(un) − αc1)d(pn(un))

−Gn(yn(un), pn(un) + Γn(un) + αE[Vn−1(un − Dn(p(un), ǫ)].

where

Γn(un) = (c0 − c1)un + R(pn(un, un)) − Gn(yn, pn(un, un))

−αc1d(pn(un, un)) + αE[Vn−1(un − Dn(p(un, un), ǫ)]

−

(
(c0 − c1)yn(un) + R(pn(un, yn(un))) − Gn(yn(un), pn(un, yn(un)))

−αc1d(pn(un, yn(un))) + αE[Vn−1(un − Dn(p(un, yn(un)), ǫ)]

)

if un < yn(un); otherwise Γn(un) = 0.

Because Jn(un) is concave in un then there exists one u∗
n which maximizes Jn(·). Let

y∗
n = yn(u∗

n) and p∗n = pn(y∗
n, u

∗
n).

Theorem 4.1.2 (a) There exists a set of finite maximizers, denoted by (y∗
n, u

∗
n, p∗), of

fn(y, u, p);

(b) The optimal emergency order policy is base-stock policy, which is

yn =





y∗

n if xn < y∗
n,

xn otherwise.
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The optimal regular order policy is also base-stock policy

un =





u∗

n u∗
n > yn,

yn otherwise.

(c) The optimal price p∗n can be determined after computing y∗
n and u∗

n.

Proof. By assumption 4.4 and for p ∈ [pmin, pmax], ft(y, u, p) → −∞ as y → ∞. This

implies that ft(y, u, p) has finite maximizer. And because of the concavity, the result

follows. �

4.1.3 Infinite Horizon Problem

In this section, we extend the problem to the infinite planning horizon case. In analyzing

infinite horizon models, it is often useful to have one period reward that is uniformly of

the same sign. To achieve this, we subtract a constant M = maxpmin≤p≤pmax
pd(p) from

the one period expected profit (M < ∞). We then obtain the shifted value function:

V̄t(x) = V (x) −
M(1 − αt+1)

1 − α

and

f̄t(y, u, p) = f(y, u, p) −
M(1 − αt+1)

1 − α
.

The optimality equation is given by:

V (x) = max
u≥y≥x,p∈[pmin,pmax]

f(y, u, p)
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where

f(y, u, p) = (c0 − c1)y + (αc1 − c0)u + (p − αc1)d(p) − G(y, p) − M

+αE[V (y + u − D(p, ǫ)].

The following theorem describes the structure of an optimal policy in the infinite

horizon model, and its relationship to that of the finite horizon model.

Theorem 4.1.3 1. V̄ (x) = limt→∞ V̄t(x), V (x) = limt→∞ Vt(x), f̄(y, u, p) = limt→∞ f̄t(y, u, p),

f(y, u, p) = limt→∞ ft(y, u, p). and V̄ (x) = V (x) − M
1−α

and f̄(y, u, p) = f(y, u, p) − M
1−α

.

2. V̄ and f̄ (V and f) satisfy the transformed (original) optimality equation.

3. V (x) is concave and decreasing in x and f(y, u, p) is concave in y, u and p and

f(y, u, p) has a finite maximizer (y∗, u∗, p∗).

4. The optimal inventory policy for the infinite horizon model can be characterized as:

For the emergency order:

y =





y∗ if x < y∗,

x otherwise.

For the regular order,

u =





u∗ y < u∗,

y otherwise.

5. The sequence {(y∗
t , u

∗
t , p

∗
t )} has at least one limit point and such limit point is an

optimal policy for the infinite horizon problem.
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Proof. Because after we subtract a finite constant M from the original one period

reward function, it will always be negative. We can apply the results in Negative Markov

Decision Problem to prove the theorem easily. (See Ross(1983))

Since we only subtract a finite constant from the original problem, so the optimal

policy for the transformed problem is also optimal for the original problem. �

4.2 Joint Optimization of Production and Pricing for

Production Smoothing Model

In this section, we study a production system, in which random demand depends on price

and changes in production rate incur a cost. Besides the production decision, again the

firm needs to determine the unit selling price for the product at the beginning of each

period.

4.2.1 Finite Horizon Problem

We consider the effects of smoothing costs, i.e., costs that discourage intertemporal

volatility of production quantities. Let zt denote the production level at period t. Sup-

pose that the smoothing costs in period t are ut(zt − zt−1) if zt ≥ zt−1 and wt(zt−1 − zt)

if zt−1 > zt. Let bt = (ut + wt)/2 and et = (ut − wt)/2, then the smoothing cost can be

restated as

ut(zt − zt−1)
+ + wt(zt−1 − zt)

+ = bt |zt − zt−1| + et(zt − zt−1).
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The unit production cost is ct, and inventory holding and shortage cost is Lt(y). We

denote the unit selling price for the product at period t by pt, which belongs to [pmin, pmax].

The random demand size at period t depends on the price, i.e. Dt(p, ǫt), where ǫ is a

random perturbation. Assume the production leadtime is 0 and unsatisfied demand is

backlogged. The objective of the firm is to maximize its total discounted profit of T

periods. Suppose the salvage value for each unit of the inventory at the beginning of

period T + 1 is cT+1 which means the firm can sell its product at cT+1 if it has inventory

or produce at the same cost to satisfy the backlog.

Let β < 1 be the discounted factor, when the initial inventory is x1 and the preceding

rate of production is z0, the total discounted profit of the firm in T periods is given by:

C =
T∑

t=1

βt−1{ptDt(pt, ǫ) − [bt |zt − zt−1| + et(zt − zt−1) + ctzt + Lt(yt − Dt(pt, ǫ)]}

+βT cT+1xT+1

The expected present profit is:

E(C) = E{

T∑

t=1

βt−1[ptDt(pt, ǫ) − (bt |yt − xt − zt−1| + Gt(yt, p)]}

+[(c1 + e1 − βe2)x1 + e1z0] (4.6)

where et = 0 when t > T and

Gt(y, p) = [ct + et − βct+1 − 2βet+1 + β2et+2]y + E[Lt(y − Dt(p)]

−βdt(p)(−et+1 + βet+2 − ct+1). (4.7)

Because the second line of (4.6) depends on neither price nor production policy, both

of the policies will be optimal if and only if it is optimal for the following problem with
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fT+1(·, ·) ≡ 0 and t = 1, . . . , T :

ft(xt, zt−1) = sup
y≥x,pt∈[pmin,pmax]

{−(bt |yt − xt − zt−1| + Jt(xt, yt, pt)}, (4.8)

where

Jt(xt, yt, pt) = ptd(pt) − G(yt, pt) + βE[ft+1(yt − Dt(pt, ǫ), yt − xt)]. (4.9)

Let pt(x, y) ∈ arg maxpmax≥pt≥pmin
Jt(x, y, p)

Then,

ft(xt, zt−1) = sup
y≥x

{−bt |yt − xt − zt−1| + Jt(xt, yt, pt(xt, yt)}. (4.10)

Before proceed to the next step, we need some important assumptions here:

Assumption 4.2.1 For t=1,2,. . . ,T, Dt(p, ǫ) has the following structure:

Dt(p, ǫ) = Adt(p) + B

where dt(p) = a − bp, A and B are independent random variables with E[A] = 1 and

E[B] = 0.

Assumption 4.2.2 For each t, t = 1, 2, . . . , T , Lt(y) is a convex function of the in-

ventory level y at the end of the period t. E[Lt(y − Dt(p, ǫ)] is jointly convex in y and

p.

Lemma 4.2.1 If Dt(p, ǫ) is linear in p, then Gt(y, p) is jointly convex in y and p

Assumption 4.2.3 (−et+1 + βet+2 − ct+1) ≥ 0
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Theorem 4.2.1 (a) For any t = 1, 2, . . . , T , Jt(xt, yt, pt) is continuous in (x, y, p) and

lim|y|→∞ Jt(xt, yt, pt) = −∞ for any p in [pmin, pmax]. Hence, for any fixed y and x,

Jt(x, y, p) has a finite maximizer, denote by pt(x, y).

(b) For any t = 1, 2, . . . , T , Jt(x, y, p) is concave in x, y and p;

(c) ft(x, z) is jointly concave in x and z.

Proof. By assumption 4.2.1 and 4.2.2, that dt(p) is linear in p and E[Lt(y − Dt(p, ǫ))]

is jointly convex in y and p, we can conclude directly that Gt(y, p) is jointly convex in y

and p based on assumption 4.2.3. For t = T ,

JT (xT , yT , pT ) = pT d(pT ) − G(yT , pT ),

which is independent of xT and jointly concave in y and p. As a result, fT is jointly

concave of x and z by Proposition B4 in Sobel (1983).
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By induction, suppose part (a) and (b) hold for t = n + 1. For any λ ∈ [0, 1],

Jn(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2, λp1 + (1 − λ)p2)

= pd(p) − G(λy1 + (1 − λ)y2, λp1 + (1 − λ)p2)

+βE[fn+1(λy1 + (1 − λ)y2

−D(λp1 + (1 − λ)p2), λy1 + (1 − λ)y2 − λx1 − (1 − λ)x2]

≥ pd(p) − [λG(y1, p1) + (1 − λ)G(y2, p2)]

+βE[fn+1(λ(y1 − D(p1, ǫ))

+(1 − λ)(y2 − D(p2, ǫ)), λ(y1 − x1) + (1 − λ)(y2 − x2)]

≥ λp1d(p1) + (1 − λ)p2d(p2) − λG(y1, p1) − (1 − λ)G(y2, p2)

+λβE[fn+1(y1 − D(p1, ǫ), y1 − x1)] + (1 − λ)βE[fn+1(y2 − D(p2, ǫ), y2 − x2)]

= λJn(x1, y1, p1) + (1 − λ)Jn(x2, y2, p2).

Thus, Jn is concave in x, y and p. Therefore, fn(xn, zn−1) is concave in x and z because

−bn |yn − xn − zn−1| is concave in x and z. �

Lemma 4.2.2 (a) Jt(x, y, p) is a supermodular function in x and y.

(b) Jt(x, y, p) is a submodular function in p and y.

Proof. For part (a),

Jt(x, y, p) = ptD(pt) − G(yt, pt) + βE[ft+1(yt − Dt(pt, ǫ), yt − xt)],

in which the first term is constant, it is trivially supermodular. For the second term,

when we consider the relationship between x and y, it only depends on one variable, thus
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the supermodularity of G is obvious. For the last term, Let y2 ≥ y1, x2 ≥ x1,

f(y2, y2 − x1) − f(y2, y2 − x2) = f(y2, y2 − x2 + (x2 − x1)) − f(y2, y2 − x2)

≤ f(y1, y1 − x2 + (x2 − x1)) − f(y1, y1 − x2)

= f(y1, y1 − x1) − f(y1, y1 − x2),

where the second inequality follows from the concavity of f(·, ·). Therefore, f is a su-

permodular function in x and y based on the definition of supermodularity and so as

E[f ].

For part (b), first term of J only depends on one variable p, it is trivially supermodular.

For second term, we can prove it through the method in our previous chapter. The last

term, suppose y2 > y1, p2 ≥ p1

f(y2 − D(p2, ǫ), y2 − x) − f(y2 − D(p1, ǫ), y2 − x)

= f(y2 − D(p1, ǫ) + (D(p1, ǫ) − D(p2, ǫ), y2 − x) − f(y2 − D(p1, ǫ), y2 − x)

≤ f(y1 − D(p1, ǫ) + (D(p1, ǫ) − D(p2, ǫ), y1 − x) − f(y1 − D(p1, ǫ), y1 − x)

= f(y1 − D(p2, ǫ), y1 − x) − f(y1 − D(p1, ǫ), y1 − x).

So the submodularity is proved. �

Lemma 4.2.3 Jt(x, x + y, p) is a submodular function in x and y.

Proof. First term of J is constant in this case. Let y2 ≥ y1 and x2 ≥ x1,

G(y2 + x2, pt) − G(y2 + x1, pt) = G(y2 + x1 + (x2 − x1, pt)) − G(y2 + x1, pt)

≥ G(y1 + x1 + (x2 − x1, pt)) − G(y1 + x1, pt)

= G(y1 + x2) − G(y1 + x1, pt),
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where the second inequality follows from the convexity of G. Based on the definition,

G(x + y, ·) is supermodular and so −G is submodular. For the last term,

f(y2 + x2, y2) − f(y2 + x1, y2) = f(y2 + x1 + (x2 − x1), y2) − f(y2 + x1, y2)

≤ f(y1 + x1 + (x2 − x1), y1) − f(y1 + x1, y1)

= f(y1 + x2, y1) − f(y1 + x1, y1),

where the second inequality is due to the concavity of f . Again by definition, f is a

submodular function in y and x. �

Let Jit, i = 1, 2, 3, denote the partial derivative with respect to the i-th component of

Jt(x, y, p(x, y)). We discuss the problem under two cases:

Case 1: if y ≥ x + z, then

(−bt |yt − xt − zt−1| + Jt(xt, yt, pt(xt, yt))
′ = −bt + J2t(x, y, p(x, y))

+J3t(x, y, p(x, y))p′y(x, y) = 0.

Case 2: if y < x + z, then

(−bt |yt − xt − zt−1| + Jt(xt, yt, pt(xt, yt))
′ = bt + J2t(x, y, p(x, y))

+J3t(x, y, p(x, y))p′y(x, y) = 0.

Let

ykt(x) = sup{y : J2t(x, y, p(x, y)) + J3t(x, y, p(x, y))p′y(x, y) ≤ (−1)k−1bt}

for k = 1, 2, t = 1, 2, . . . , T and y2t(x) ≥ y1t(x) since Jt is concave in y. We show in the

following theorem that y1t(x) and y2t(x) parameterize an optimal policy.
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Theorem 4.2.2 (a) If Gt(y, p) → ∞ as |y| → ∞, t = 1, 2, . . . , T , then for each x ∈ ℜ,

ykt(x) is finite, and the optimal policy is given by the following:

y∗
t =






y1t(x) if xt + zt−1 < y1t(x),

xt + zt−1 if y1t(x) ≤ xt + zt−1 < y2t(x),

y2t(x) if x ≤ y2t(x) ≤ xt + zt−1,

xt if y2t(x) < xt.

(b) The optimal price depends on initial inventory level at the beginning of each period,

such that, pt = p∗(y∗
t (x)) = p∗(x).

(c) If for some x̄ there are y′ and y′′ such that

J2t(x̄, y′) + J3t(x̄, y′)p′ ≤ −bi ≤ bi < J2t(x̄, y′′) + J3t(x̄, y′′)p′

then

0 ≤ y′
1t(x) ≤ 1, 0 ≤ y′

2t(x) ≤ 1.

Proof. Part (a) can be proved by the concavity of the value function. Part (b) is

immediate. For part (c), the hypothesis yields

−∞ < y1t(x̄) ≤ y2t(x̄) < ∞

hence

|ykt(x)| < ∞ k = 1, 2

the conclusion follows from

(i) ykt(x) is monotone increasing k = 1, 2,
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and

(ii) ykt(x) − x is monotone decreasing k = 1, 2.

a sufficient condition for the statement (i) is Jn(x, y, p) is supermodular function in x

and y; based on the definition of ykt, the statement (ii) is equivalent to

ykt(x) − x

= sup{y : J2t(x, y + x, p(x, y + x)) + J3t(x, y + x, p(x, y + x))p′(x, y + x) ≤ (−1)k−1bt},

which implies a sufficient condition, J2t(x, y+x, p(x, y+x))+J3t(x, y+x, p(x, y+x))p′(y+

x) is monotone decreasing in x for each y. So we need the following two lemmas:

Lemma 4.2.2 and lemma 4.2.3 prove statements (i) and (ii), thus 0 ≤ y1t ≤ 1 and

0 ≤ y2t ≤ 1. �

So we have specified the optimal production policy. For the optimal price pt, we can

get the optimal price p of period t after we obtain optimal yt.

Proposition 4.2.1 p(x, y) is nonincreasing in y for any given x.

Proof. According to the submodularity of J , the result follows. �

Remark 4.2.1 There is no monotonicity relationship between p and x.

4.2.2 Infinite Horizon Problem

In this section, we consider infinite horizon case and the objective is to maximize the

long-run total discounted profit with stationary cost and revenue parameters as well as
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demand distribution. In discussing infinite horizon model, we always try to make the

problem fall into either negative dynamic programming or positive dynamic programming

category. Therefore, it is convenient to have one period reward to be uniformly of the

same sign. To achieve this, we subtract a constant M = maxp∈[pmin,pmax] pd(p) uniformly

from the one period reward function. We thus obtain the shifted value function f̄t and

J̄t:

f̄t = ft −
M(1 − βt+1)

1 − β
and J̄t = Jt −

M(1 − βt+1)

1 − β
.

The infinite horizon optimality equation (for the transformed model) is given by:

f̄(x, z) = sup
y≥x,p∈[pmin,pmax]

{−(b |y − x − z| + J̄(x, y, p)},

where

J̄(x, y, p) = pd(p) − G(y, p) − M + βE[f̄(y − D(p, ǫ), y − x)].

The following theorem describes the structure of an optimal policy in the infinite horizon

model, and its relationship to the finite horizon models

Theorem 4.2.3 (a) f̄ = limt→∞ f̄t, f = limt→∞ ft, J̄ = limt→∞ J̄t, J = limt→∞ Jt and

f̄ = f −M/(1−β), J̄ = J −M/(1−β) and f and f̄ equal the maximum infinite horizon

discounted profit in the original and transformed models, respectively.

(b) f̄ and J̄(f and J) satisfy the infinite horizon optimality equation in the transformed

(original) model.

(c) J and f are concave functions. In addition, J(x, y, p) is a supermodular function

in x, y, submodular function in p and y.
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Proof. Because for the transformed problem we subtract M from one period reward

function, the problem becomes a negative MDP problem. So the method of successive

approximation works, all the results can follow from the finite horizon problem. �

Theorem 4.2.4 (a) yi(x) = limt→∞ yit(x), i = 1, 2. Also yi(x) is differentiable with

0 ≤ y′
1(x) ≤ 1, 0 ≤ y′

2(x) ≤ 1

(b) The optimal inventory policy has the following structure:

y∗(x) =






y1(x) if x + z < y1(x),

x + z if y1(x) ≤ x + z < y2(x),

y2(x) if x ≤ y2(x) ≤ x + z,

x if y2(x) < x

(c) The stationary optimal price is given by : p(y∗(x))

Proof. The results carry over from finite horizon case. �

4.3 Summary

In this chapter, we study two periodic-review inventory/production models with pricing

decisions. First, we include the pricing decision into the model with two supply modes.

With a general decreasing and concave demand function, we characterize the optimal

inventory policy and pricing strategy which provide some managerial insights on how to

manage dual supply and the pricing at the same time. The optimal inventory policy is

easy to implement since it just depends on two numbers: one for the emergency order
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and one for the regular order. The optimal selling price depends on both emergency

order up to level and regular order up to level.

Second, for the production smoothing model which is a practical problem and was

studied extensively during 1960’s, we again include pricing decision, which makes the

problem become more interesting. Under some mild assumptions, we characterize the

optimal inventory control policy, which is determined by two state dependent parameters.

We present some structural properties of the optimal price and the cost function.
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Chapter 5

Multi-Echelon Inventory Systems

with Guaranteed Demand Delivery

In this chapter, we consider a periodic-review serial inventory system. There are N

stages. Stage 1 orders from stage 2, stage 2 orders from stage 3, . . ., stage N orders from

an outside supplier with ample supply. In each period, N +1 classes of demand originate

at stage 1 simultaneously. Each class of demand has different delivery time requirements.

The system incurs linear shortage cost and inventory holding cost at each stage.

In this chaper, we consider the following scenario: A large supply chain system which

is composed of N − 1 warehouses and one retail store faces N + 1 classes of demand. All

classes of demand come to the retail store. Class i demand is guaranteed to be satisfied

within i − 1 periods, for example, class 1 customer has highest priority and must be

satisfied immediately (0 period). Class 2 customer can be satisfied immediately only if

there is enough inventory left in the system, otherwise, it is backlogged at warehouse N .

But the stage N manager will place an order and satisfy these backlog at the beginning

of next period (leadtime is 1), so class 2 demand is satisfied within 1 periods. Similarly,
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class i demand can be satisfied within i− 1 periods, because the order from stage N − i

manager will arrive no longer than i − 1 periods.

In the above scenario, each class of demand gets time guaranteed delivery based on

its priority and the availability of the inventory. The scenario happens in the real life

every day. To our knowledge, prior research has not considered this type of modelwith

multiple classes of demand and time guaranteed delivery.

5.1 Model I: Single Class Demand with Guaranteed

Delivery

In this section, we consider a special case that there is only one class of demand which

must be satisfied immediately once it realizes. As an example of the current model,

suppose that several warehouses are located serially and each one is the supplier of its

downstream warehouse. The products will typically go through a national warehouse,

a regional warehouse and then the local warehouse, finally sold to the end customers

by a retailer. Then since demand is uncertain and if the retailer runs out of stock,

it may be economically desirable to meet the shortage by a special order from retailer

to its upstream supplier rather than to wait until the shortage can be supplied by the

regular order. Item shipped in this way incurs the transportation cost from warehouse to

warehouse. Within each period, events occur in the following sequence using stage i as

an example: First, the regular shipment from stage i + 1 is received. Second, the order

decision is made at stage i. Third, the customer demand realizes at stage 1 and is filled

immediately. Fourth, all the cost incur at the end of period.

For this case, every period’s demand must be satisfied, if stage 1 does not have enough

on hand inventory, it first satisfies the demand as much as it can and transmits the
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remaining demand to stage 2 without delay, if stage 2 has enough on hand inventory, then

the demand is satisfied there; otherwise, the remaining demand is further transmitted to

stage 3, etc., until the demand is fully filled. Under this setting, the customer demand

can always be satisfied since outside supply is ample.

From the model setting, the inventory level (position) is never negative as there is no

backlog. Thus, the dynamics of the system variables is given by,

ILi(t − (i − 1)) = (IPi(t − i) − D[t − i, t − i + 1])+, i = 1, 2, . . . , N,

IL−
i (t − (i − 1)) = (IPi(t − i) − D[t − i, t − i + 1))+, i = 1, 2, . . . , N

and

IPi(t − i) ≤ IL−
i+1(t − i) i = 1, 2, . . . , N − 1.

For simplicity, write IPi for IPi(t− i), ILi for ILi(t− i + 1), IL−
i for IL−

i (t− i + 1) and

Di for D[t − i, t − i + 1]. The steady state average cost per unit of time for the system

(there is no shortage cost in this case):

N∑

i=1

E[hi(IPi − Di)
+ + bi(IPi − Di)

−] (5.1)

Let

gi(y) = hiE(y − Di)
+ + biE(y − Di)

− i = 1, 2, . . . , N,

where gi(y) is clearly convex.

5.1.1 Optimality and Algorithm

In this section, we first derive the optimal strategy for the system then we present the

algorithm to compute the optimal control parameters.
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As in previous section, define

G1(y) = g1(y)

G1(y) is convex, let s∗1 be the minimum point, then define

G1
1(y) =





G1(s

∗
1) if y ≤ s∗1,

G1(y) otherwise.

Let

G2
1(y) = G1(y) − G1

1(y),

so by lemma 7.1.2, G1
1(y) is nondecreasing convex and G2

1(y) is nonincreasing convex

function. Let

G2(y) = E[g2(y) + G2
1((y − D)+)].

Assume Gj(·) for j = 2, 3, . . . , i − 1 is convex with minimizer sj, then

Gi(y) = E[gi(y) + Gi
i−1((y − D)+)].

Let si be the minimum point of Gi(·). Then we can define

Gi
i(y) =





Gi(si) if y ≤ si,

Gi(y) otherwise

and

Gi+1
i (y) = Gi(y) − Gi

i(y).

Lemma 5.1.1 Gi(y) is convex, for i = 1, . . . , N .

Proof. For i = 2, since G2
1(y) is a decreasing convex function and y+ is increasing
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convex, so G2
1(y

+) is not a convex function anymore. However, we can easily verify that

G2
1(y

+) is a quasi-convex function because it is constant for y < 0 and convex for y ≥ 0.

In addition, g2(y) = h2E(y − D)+ + b2E(y − D)−, which is convex. So for y ≥ 0, take

derivative with respect to y of G2(y),

G′
2(y) =

∫ y

0

h2f(t)dt −

∫ ∞

y

b2f(t)dt +

∫ y

0

G2′

1 (y − t)f(t)dt,

G′′
2(y) = h2f(y) + b2f(y) +

∫ y

0

G2′′

1 (y − t)f(t)dt + G2′

1 (0)f(y)

= (h2 + b2 + G2′

1 (0))f(y) +

∫ y

0

G2′′

1 (y − t)f(t)dt.

As G2′

1 (0) ≥ −b1, G2′′

1 > 0 by the convexity of G2
1(·) and h2 +b2 > b1, then G2(·) is convex

for y > 0. In addition, for y < 0, G′
2(y) = −b2, so G′

2(0
+) = G′

2(0
−). Therefore, G2(·) is

convex.

Suppose the lemma is true for i − 1, then Gi(y) = E[gi(y) + Gi
i−1((y − D)+)], where

Gi
i−1(z

+) is a nonincreasing function and is convex for z ≥ 0. So if we take derivative of

Gi(y):

G′
i(y) =

∫ y

0

hif(t)dt −

∫ ∞

y

bif(t)dt +

∫ y

0

Gi′

i−1(y − t)f(t)dt

G′′
i (y) = (hi + bi + Gi′

i−1(0))f(y) +

∫ y

0

Gi′′

i−1(y − t)f(t)dt

Similarly, Gi′

i−1(0) ≥ −bi−1, so hi + bi +Gi′

i−1(0) > 0 based on assumption. Also, Gi
i−1(y−

D) is convex for y − D ≥ 0, therefore Gi′′

i−1 ≥ 0, so G′′
i (y) > 0 for y ≥ 0, in addition, for

y < 0, Gi(y) is monotone decreasing in y because

Gi(y) = E[bi(D − y) + Gi
i−1(0)]

and G′
i(0

+) = G′
i(0

−) = bi, so the induction is completed and the lemma is verified. �

After having this lemma, the previous definitions of Gi(y) and Gi+1
i (y) are valid.
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Theorem 5.1.1 For the N -stages system, E[
∑N

i=1 gi(IPi)] ≥ E[
∑N−1

i=1 Gi
i(IPi)+GN(IPN)].

Proof. If N = 1, E[g1(IP1)] = G1(IP1) by definition., then if N = 2,

E[
2∑

i=1

gi(IPi)] = E[g2(IP2)] + G1(IP1)]

= E[g2(IP2) + G1
1(IP1) + G2

1(IP1)]

≥ E[g2(IP2) + G1
1(IP1) + G2

1(IL−
2 )]

= E[g2(IP2) + G1
1(IP1) + G2

1((IP2 − D)+)]

= E[G2(IP2) + G1
1(IP1)], (5.2)

where the second inequality follows from the nonincreasingness of G2
1(·). Similarly, we

can prove for N by induction. �

Lemma 5.1.2 Let Ci be the minimum value of the function Gi(·), i = 1, 2 . . . , N , then
∑N

i=1 Ci is the lower bound of the minimum cost of the N -stages serial system.

Proof. It follows from Theorem 5.1.1 that

E[
N∑

i=1

gi(IPi)] ≥
N−1∑

i=1

Ci + GN(IPN).

In other words, given IPN = y, the expected systemwide holding and transportation

costs charged to period t−N under any policy are bounded below by
∑N−1

i=1 Ci +GN(y).

By substituting the latter for the former, the original system collapses to a single stage

system. Because
∑N−1

i=1 Ci is constant, and GN(y) is convex which optimal policy is base

stock policy and the optimal cost for this system is
∑N

i=1 Ci. So this cost will be the

lower bound of the N stages system. �
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Theorem 5.1.2 The echelon base stock policy is optimal for the system, for which the

stage i always tries to order up to si and the minimum cost of the system is
∑N

i=1 Ci.

Proof. Suppose the above policy is used in the N -stage system, we just need to show

that given IPN = y, the expected systemwide cost charge to t − N is exactly equal to
∑N−1

i=1 Ci + GN(y).

Take any i < N . Notice that IPi ≤ IL−
i+1. Since the stage i order up to si, we have

IPi = min{si, IL−
i+1}. Thus Gi

i(IPi) = Ci. Therefore, it is sufficient to show that the

inequality in (5.2) is equality. To see this, we only need to consider si < IL−
i , if so,

Gi+1
i (IPi) = Gi+1

i (IL−
i+1) = 0. �

Remark 5.1.1 : Our model can easily include the setup cost into the last stage of the

system. The optimal policy for the first N − 1 stages is still echelon base stock policy

while for the last stage it is echelon (s, S) policy.

The following algorithm can be used to compute the optimal base stock level for each

stage recursively.

Algorithm:

• Step 1. Set G0(y) = 0, gi(y) = hiE(y − D)+ + biE(y − D)−,i = 1.

• Step 2. Gi(y) = E[gi(y) + Gi−1(si−1 ∧ (y − D)+))]

• Step 3. si = arg min Gi(y), if i < N , go to step 2, otherwise, stop.
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5.2 Model II: Two Classes of Demand

Consider a multi-echelon inventory model with N stages and two classes of demand.

One class of demand is guaranteed to be satisfied immediately and another one can be

backlogged at stage 1. For convenience, let the outside supplier be stage N +1. Suppose

the leadtime is 1 unit, which means the order placed at the beginning of period will arrive

at the end of the period. During each period, once demand occurs, the manager first

satisfies class 1 demand by using the system inventory. The supply policy is described as

follows. The manager transmits the class 1 demand to the stage with positive inventory

position. And start from that stage, if the positive part of the inventory position is not

enough to satisfy the demand, the excess demand is transmitted to upper stage until it

is satisfied. After the class 1 demand is satisfied, the class 2 demand is satisfied if stage

1 has inventory left, otherwise the excess class 2 demand is backlogged.

The system dynamics are,

ILi(t − i) = −IP−
i (t − i) + (IPi(t − i) − D1(t − i))+ − D2(t − i) (5.3)

IL−
i (t − i + 1) = −IP−

i (t − i) + (IPi(t − i) − D1(t − i))+ − D2(t − i) (5.4)

IPi(t − i) ≤ IL−
i+1(t − i) = ILi+1(t − i − 1) (5.5)

We briefly explain the system dynamics above: If IPi < 0 and the second term of (5.3)

becomes zero, which means the echelon inventory position at stage i is negative and the

manager will not use the echelon i inventory to satisfy class 1 demand while transmitting

the demand to upper stage. Hence the ending echelon inventory level at this stage is

the current inventory position minus the class 2 demand. Otherwise, if IPi ≥ 0, the

first term of (5.3) becomes 0. The system manager will use those inventory that are
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not reserved for the backlog of class 2 demand to satisfy class 1 demand if possible.

Therefore, if IPi > D1, the ending inventory level is the inventory position after satisfied

class 1 demand minus class 2 demand. Otherwise, the system inventory position is 0

after satisfying class 1 demand and the manager transmits the excess demand to upper

stage. So the ending inventory level is just the negative of the class 2 demand of the

current period.

Under the system dynamics above, the average cost function is:

N∑

i=1

E[hiILi(t) + bi(IPi(t)
+ − D1(t))−] + (p + H1)B(t)

=
N∑

i=1

E[hi(−(IPi(t)
− + (IPi(t) − D1(t))+ − D2(t)) + bi(IPi(t)

+ − D1(t))−]

+(p + H1)E(−(IP1(t)
− + (IP1(t) − D1(t))+ − D2(t))−

We charge the cost back to t−N . The accounting scheme is reasonable because: ILi(t−

i) = −IP−
i (t−i)+(IPi(t−i)−D1(t−i))+−D2(t−i), we see that ILi(t−i) is statistically

determined by IPi(t−i). Moreover, by definition, IPi(t−i) is constrained by IL−
i+1(t−i).

In turn, IL−
i+1(t−i) is statically determined by IPi+1(t−i−1). A simple induction shows

that IPN(t − N) determines, directly or indirectly, ILi(t − i) for i = 1, . . . , N .

Assumption 5.2.1 The installation holding cost rate, transmission cost rate and backlog

cost rate satisfy: bi ≥ Hi+1 + p.
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5.2.1 Optimization

Let

G1(y) = E[h1(−y− + (y − D1)+ − D2) + b1(y
+ − D1)−

+(p + H1)(−y− + (y − D1)+ − D2)−].

Lemma 5.2.1 G1(y) is a quasi-convex function, specifically ,when y ≥ 0 it is a convex

function and when y < 0 it is a linear decreasing function with slope (−H2 + p).

Proof. For y > 0,

G1(y)

= h1E(y − D1)+ + b1E(y − D1)− + (p + H1)E((y − D1)+ − D2)−

= E

[
h1(y − D1)+ + b1(y − D1)− + (p + H1)((y − D1)+ − D2)+

−(p + H1)((y − D1)+ − D2)

]

= E

[
h1(y − D1)+ + b1(y − D1)− + (p + H1)((y − D1)+ − D2)+

−(p + H1)((y − D1 − D2) − (p + H1)(y − D1)−
]

= E

[
h1(y − D1)+ + (b1 − (p + H1))(y − D1)− + (p + H1)((y − D1)+ − D2)+

−(p + H1)((y − D1 − D2)

]

= E

[
h1(y − D1) + (b1 + h1 − (p + H1))(y − D1)− + (p + H1)(y − D1 − D2)+

−(p + H1)((y − D1 − D2)

]

So if b1 ≥ (p + H2), then G1(y) is convex for y > 0.

80



For y ≤ 0,

G1(y) = E[h1(y − D2) + b1(D1) + (p + H1)(D2 − y)]

which is clearly linear decreasing in y since p + H1 > h1. �

Define

G1
1(y) =





G1(s1) y ≤ s1

G1(y) y > s1

and

G2
1(y) = G1(y) − G1

1(y)

G1
1(y) is convex increasing and G2

1(y) is decreasing in y and linear decreasing for y < 0.

Define

G2(y) = E[h2(−y− + (y − D1)+ − D2) + b2(y
+ − D1)− + G2

1(−y− + (y − D1)+ − D2)]

Suppose Gj(y) is well defined for i = 1, 2, . . . , j − 1, and sj is the minimizer for Gj then

Gi
i(y) =





Gi(si) y ≤ si

Gi(y) y > si

and

Gi+1
i (y) = Gi(y) − Gi

i(y)

Gi+1(y) = E[hi+1(−y− + (y − D1)+ − D2) + bi+1(y
+ − D1)−

+Gi+1
i (−y− + (y − D1)+ − D2)].
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Theorem 5.2.1 Gi(y) is quasi-convex. In particular, it is linear decreasing with slope

−(Hi+1 + p) for y < 0 and convex for y ≥ 0, i = 1, 2, . . . , N .

Proof. The theorem is true for i = 1 as shown in Lemma 1. Suppose it is true for

i = n − 1, then for i = n, for y < 0

Gn(y) = E[hn(y − D2) + bnD1 + Gn
n−1(y − D2)]

We know G
′n
n−1(t) is −(Hn + p) for t < 0, so Gn(y) is linear decreasing with slope

−(Hn+1 + p).

For y ≥ 0,

Gn(y) = E[hn((y − D1)+ − D2) + bn(y − D1)− + Gn
n−1((y − D1)+ − D2)]

Take derivative with respect to y

G′
n(y) = E[hn1(y ≥ D1) − bn1(y < D1) + (Gn

n−1)
′(y − D1 − D2)1(y ≥ D1)]

= hnP (y ≥ D1) − bnP (y < D1) +

∫ ∞

0

∫ y

0

(Gn
n−1)

′(y − t1 − t2)f1(t1)f2(t2)dt1dt2

and the second derivative is

G′′
n(y) = hnf1(y) + bnf1(y) +

∫ ∞

0

∫ y

0

(Gn
n−1)

′′(y − t1 − t2)f1(t1)f2(t2)dt1dt2

+EGn′

n−1(−D2)f1(y)

= E[(bn + hn − (p + Hn))f1(y) + Gn′′

n−1(y − D1 − D2)1(y ≥ D1)

based on induction, Gn′′

n−1(y −D1 −D2) is either 0 or nonnegative. From the assumption

that bi ≥ p + Hi+1, G′′
n(y) ≥ 0 for y ≥ 0. we finish the induction and complete the proof.

�
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Lemma 5.2.2

N∑

i=1

E[hi(−(IPi(t)
− + (IPi(t) − D1(t))+ − D2(t)) + bi(IPi(t)

+ − D1(t))−]

+(p + H1)E(−(IP1(t)
− + (IP1(t) − D1(t))+ − D2(t))−

≥ E[GN(IPN) +
N−1∑

i=1

Gi
i(IPi)].

Proof. For N = 2

2∑

i=1

E[hi((−IP−
i + (IPi − D1)+ − D2) + bi(IP+

i − D1)−]

+(p + H1)E(−(IP−
1 + (IP1 − D1)+ − D2)−

= E[h2(((−IP−
2 + (IP2 − D1)+ − D2) + b2(IP+

2 − D1)−] + G1(IP1)

= E[h2(((−IP−
2 + (IP2 − D1)+ − D2) + b2(IP+

2 − D1)−] + G1
1(IP1) + G2

1(IP1)

≥ E[h2((−(IP−
2 + (IP2 − D1)+ − D2) + b2(IP+

2 − D1)−] + G1
1(IP1) + G2

1(IL−
2 )

= E[h2(((−IP−
2 + (IP2 − D1)+ − D2) + b2(IP+

2 − D1)−] + G1
1(IP1) + G2

1(−IP−
2

+(IP2 − D1)+ − D2)

= G2(IP2) + G1
1(IP1)

By simple induction, it can be proved for any N . �

Lemma 5.2.3 Let Ci = Gi(si), then
∑N

i=1 Ci is the lower bound on the system average

cost.

Theorem 5.2.2 The echelon base stock policy is optimal.

Proof. The proof is similar to the one in the previous section. �

Algorithm:
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• Step 1. Set G1(y) = E[h1(−y−+(y−D1)+−D2)+b1(y
+−D1)−+(p+H1)(−y−+

(y − D1)+ − D2)−], i = 1.

• Step 2. Gi(y) = E[hi((y − D1)+ − D2) + bi(y − D1)− + Gi−1(si−1 ∧ (−y− + (y −

D1)+ − D2)]

• Step 3. si = arg min Gi(y), i = i + 1, if i < N , go to step 2; otherwise, stop.

Through recursive optimization procedure above, the optimal echelon base-stock level si

can be obtained and the optimal average cost is given by C(s).

5.3 The General Model

In this section, we analyze the general multi-echelon inventory model with multiple de-

mand classes and present the results for this general model.

As indicated earlier, there are N stages in the serial system, denoted by i = 1, 2, . . . , N .

There are N + 1 classes of demand, denoted by D1, . . . , DN+1 which are independently

distributed with density fi(·) and distribution Fi(·). Without loss of generality, suppose

class 1 has highest priority and class N + 1 has lowest priority.

The time sequence of events for this model is: First, at the beginning of period t, stage

i places an order from stage i+1. Second, the order placed in previous period is received

and backlog is filled if have any. Third, the N + 1 classes of demand realize and class 1

demand is first satisfied. After that, the system manager uses up stage N ’s left inventory

to satisfy class 2 demand if possible, otherwise the excess class 2 demand is backlogged

at stage N . Sequentially, he uses up stage N − 1’s inventory to satisfy class 3 demand,

otherwise class 3 demand is backlogged at stage N − 1, etc. This procedure continues
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until either class N + 1 demand is satisfied by stage 1’s inventory or backlogged at stage

1.

Without loss of generality, we assume the leadtime of regular order between stages is

one period, the Clark-Scarf model allows for the leadtime to be more than one period.

The more general Clark-Scarf setting can be converted into an equivalent formulation

of our model. The idea is simple and can be illustrated by one example if the leadtime

between stage 1 and 2 are 3 periods, then we insert three psuedostages between them

which will has exactly one unit of leadtime and set their inventory holding cost to be

very high to make sure they will not keep inventory (Heching and Porteus (2000)).

From the model description, if stage i has backlog, then stages 1, 2, . . . , i− 1 must all

have backlogs, too. Furthermore, the backlog at stage i (which is demand class N − i+2)

will be satisfied before the backlog at stage 1, 2, . . . , i − 1 if possible, so the priority rule

still holds even in the backlog. In addition, the inventory reserves in upper streams for

the downstream’s backlogs cannot be used to satisfy the higher priority classes demand

because of the delivery time guaranteed.

Notation:

IPi(t) = echelon i inventory position at the beginning of period t,

ILi(t) = echelon i inventory level at the end of period t,

IL−
i (t) = initial echelon i inventory level at the beginning of period t,

hi = echelon i inventory holding cost rate, i = 1, 2 . . . , N ,

Hi = installation i inventory holding cost rate, i.e. Hi =
∑N

j=i hj,
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bi = unit transmitting cost from stage i to stage i + 1, i = 1, 2, . . . , N ,

pi = echelon class i demand shortage cost rate, i = 2, . . . , N + 1 (no backlog for class

1).

For t1 ≤ t2, let [t1, t2] denote the periods t1, . . . , t2 and [t1, t2) denote the periods

t1, . . . , t2 − 1. Let Di[[t1, t2] and Di[[t1, t2) be the class i demand in [t1, t2] and [t1, t2),

respectively, i = 1, 2, . . . , N + 1.

Based on the model description, the system dynamics is:

ILi(t − i + 1) = −(IPi(t − i))− +

(
IPi(t − i) −

i∑

j=1

Dj[t − i, t − i + 1]

)+

−
N+1∑

j=i+1

Dj[t − i, t − i + 1]

IL−
i (t − i) = ILi(t − i + 1)

and

IL−
i (t) ≤ IPi(t) ≤ IL−

i+1(t) i = 1, 2, . . . , N − 1.

Assumption 5.3.1 For i = 1, 2, . . . , N , bi ≥ Hi+1 + pN−i+2.

For this assumption, it means that the unit transmission cost from stage i to stage i + 1

is greater than or equal to the unit holding cost at stage i + 1 and shortage cost for

class N − i + 2 demand which can be regarded as the backlog cost at stage i. This is

reasonable because it is more economical not to ship the unit demand to stage i + 1 for

class N − i + 2.
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Assumption 5.3.2 For i = 1, 2, . . . , N , bi ≥ bi−1, suppose b0 = 0.

This is a technical assumption, but it is also reasonable because usually the transmission

cost becomes higher as going further upstream in a supply chain.

Let IPi be the steady stage inventory position and Di be the class i demand, the

average cost of the system can be expressed as:

C(IP) = E

[
h1[−IP−

1 + (IP1 − D1)+ − D2−, . . . ,−DN+1]

+h2[−IP−
2 + ((IP2 − D1)+ − D2)+−, . . . ,−DN+1]

+ . . . + hN

[
−IP−

N + (IPN −
N∑

i=1

Di)+ − DN+1

]

+b1(IP+
1 − D1 − D2 − . . . ,−DN )−

+ . . . + bN (IP+
N − D1)− + (H1 + p2)(−IP−

1 + (IP1 − D1)+ − D2−, . . . ,−DN+1)−

+p3(−IP−
2 + (IP2 − D1 − D2)+−, . . . ,−DN+1)− + . . .

+pN+1

(
−IP−

N +

(
IPN −

N∑

j=1

Dj

)+

− DN+1

)−]

=
N∑

i=1

hiE

[
−IP−

i +

(
IPi(t) −

i∑

j=1

Dj

)+

−
N+1∑

j=i+1

Dj

]

+
N∑

i=1

biE

(
IP+

i −
N−i+1∑

j=1

Dj

)−

+
N∑

i=2

pi+1E

(
−IP−

i + (IPi −
i∑

j=1

Dj)+ −
N+1∑

j=i+1

Dj

)−

+(H1 + p2)E

(
−IP−

1 + (IP1 − D1)+ −
N+1∑

j=2

Dj

)−

(5.6)
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Let

g1(y) = h1E

[
−y− + (y − D1)+ −

N+1∑

j=2

Dj

]
+ b1E

(
y+ −

N∑

j=1

Dj

)−

+(H1 + p2)E

(
−y− + (y − D1)+ −

N+1∑

j=2

Dj

)−

.

For i = 2, . . . , N Let

gi(y) = hiE

[
−y− + (y −

i∑

j=1

Dj)+ −

N+1∑

j=i+1

Dj

]
+ biE

(
y+ −

N−i+1∑

j=1

Dj

)−

+pi+1E

(
−y− + (y −

i∑

j=1

Dj)+ −
N+1∑

j=i+1

Dj

)−

.

Before we proceed, the following lemma is presented first since all the following results

count on it.

Lemma 5.3.1 (Karush 1959) (a) If a function f(y) is convex on (−∞,∞) and attains

its minimum at y∗, then

min
a≤y≤b

f(y) = fL(a) + fU(b)

where fL(a) := mina≤yf(y) = f(max(a, y∗)) is convex nondecreasing in a and fU(b) :=

f(b) − minb≤yf(y) = f(b) − f(max(b, y∗)) is convex nonincreasing.

(b)If a function f(y) is quasi-convex on (−∞,∞) and attains its minimum at y∗, then

min
a≤y≤b

f(y) = fL(a) + fU(b)

where fL(a) := mina≤yf(y) = f(max(a, y∗)) is nondecreasing and fU(b) := f(b) −

minb≤yf(y) = f(b) − f(max(b, y∗)) is nonincreasing.
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Let

G1(y) = g1(y).

Define

G1
1(y) =





G1(s1) If y ≤ s1

G1(y) Otherwise

where s1 is the minimum point of G1(y) and

G2
1(y) = G1(y) − G1

1(y).

Let

G2(y) = E

[
g2(y) + G2

1

(
−y− + (y −

2∑

j=1

Dj)+ −

N+1∑

j=3

Dj

)]
.

Assume Gj(y) is defined for j = 1, . . . , i − 1, then

Gi(y) = E

[
gi(y) + Gi

i−1

(
−y− + (y −

i∑

j=1

Dj)+ −

N+1∑

j=i+1

Dj

)]

and let si be the minimum point of Gi(·),

Gi
i(y) =





Gi(si) If y ≤ si

Gi(y) Otherwise

and

Gi+1
i (y) = Gi(y) − Gi

i(y).

Lemma 5.3.2 If assumptions 5.3.1 and 5.3.2 are satisfied, Gi(y) is quasi convex for all

i.

Proof. The case i = 1 has been proved in Lemma 5.2.1. For general i, it can be similarly

proved by induction. So we skip the proof here. �
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Theorem 5.3.1 The echelon base stock policy is optimal, in which echelon i manager

will order up to si, where si is defined recursively as above, i = 1, 2, . . . , N .

Proof. It is similar to the proof in previous section, so we omit them here. �

Algorithm:

• Step 1. Set G1(y) = h1E

[
−y−+(y−D1)+−

∑N+1
j=2 Dj

]
+b1E

(
y+−

∑N
j=1 Dj

)−

+

(H1 + p2)E

(
−y− + (y − D1)+ −

∑N+1
j=2 Dj

)−

, i = 1.

• Step 2. Gi(y) = E[gi(y) + Gi−1(si−1 ∧

(
−y− + (y −

∑i
j=1 Dj)+ −

∑N+1
j=i+1 Dj

)
]

• Step 3. si = arg min Gi(y), i = i + 1, if i < N , go to step 2; otherwise, stop.

5.4 Summary

In this chapter, we have extended Clark-Scarf model to include multiple classes of de-

mand. Each class of demand can be satisfied by the inventory up to some stage in the

system depending on its priority, otherwise, it is backlogged. We first show the echelon

base-stock policy is optimal for two models: single class demand but the demand deliv-

ery is guaranteed and two classes of demand of which one can be backlogged, the other

is guaranteed delivery. Finally, we present the general model with multiple classes of

demand and show the echelon base-stock policy is optimal. For all models, we develop

the computational algorithms for computing the optimal base-stock levels.

90



Chapter 6

Optimal Policy for Multi-Echelon

Inventory System

with Batch Ordering and Nested

Replenishment Schedule

In many production/distribution systems materials flow in fixed lot sizes (e.g., in full

truckloads or full containers) and under regular schedules (e.g., delivery every week). In

this chapter we derive the optimal policies for multi-echelon serial system with batch

ordering and nested replenishment schedule and present an efficient computational al-

gorithm for the optimal control parameters. Furthermore, we show that the optimal

expected system cost is minimized when the ordering times for different stages are syn-

chronized. In contrast to Chen and Zheng (1994), who develop a lower bound for the

average cost of a given period, we develop a lower bound for the average total cost over an

appropriately defined cycle, and then construct a policy which reaches the lower bound.

This note generalizes the recent work of Chen (2000) and van Houtum et al. (2003).
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6.1 The Model

Since each stage can order only after the predetermined reorder interval, when one or-

dering instant of a stage is known, it determines all the ordering instants for that stage.

Suppose the ordering instants of each stage are known.

The time sequence of events is as follows. For any stage i > 1, at the beginning of any

period, the order placed from downstream stage i − 1, if any, is received; an order for

stage i + 1, if stage i is allowed to order in this period, is placed; an in-transit shipment

to stage i is received; and a shipment to stage i − 1 is sent out. For stage 1, order is

placed at the beginning of the period if stage 1 is allowed to order and customer demand

arrives during the period. All costs are charged at the end of the period.

Some notation is defined below. Some of the notation is illustrated in Figure 1. The

subscript i denotes the stage number. Whenever possible, we stick to the notation of

Chen and Zheng (1994).

Dt = customer demand in period t, an integer-valued random variable,

µ = average demand per period, i.e., E[Dt],

IL−
i (t) = echelon inventory level of stage i at the beginning of period t,

IPi(t) = echelon inventory position of stage i at the beginning of period t,

ILi(t) = echelon inventory level of stage i at the end of period t,

B(t) = backorder level at stage 1 at the end of period t,
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Ti = the given reorder interval of stage i and Ti+1/Ti = ri, i.e., Ti =
∏i−1

j=1 rjT1,

Qi = the given base quantity for stage i and Qi+1/Qi = qi, i.e., Qi =
∏i−1

j=1 qjQ1,

li = transportation leadtime between stage i + 1 and stage i,

Li = transportation leadtime from outside supplier to stage i, i.e., Li =
∑N

j=i lj,

ai = non-synchronization factor, it is defined as the number of periods between stage

i + 1 receiving

a shipment and the first period following that at which stage i is allowed to order,

0 ≤ ai < Ti,

Ai =
∑N−1

j=i aj,

hi = echelon inventory holding cost per unit per period,

Hi = installation inventory holding cost per unit per period, i.e., Hi =
∑N

j=i hj,

b = backorder cost per unit per period,

x+ = max{x, 0},

x− = max{−x, 0}.

Let D[t1, t2) denote the total demand in periods t1, . . . , t2 − 1 and D[t1, t2] denote

the total demand in periods t1, . . . , t2. Whenever possible we ignore the actual time of

demand and use D(k) to represent a k-period demand.

If all the ai are equal to 0, then in the period a stage receives an order from its

93



upstream stage, the order can be shipped in the same period to the downstream stage.

If this is the case, the ordering times of the different stages are said to be synchronized.

For convenience, let γi =
∏N−1

j=i rj, with γN = 1.

Figure 1 illustrates a three-stage system with leadtimes l1, l2 and l3 and reorder inter-

vals T3 = 2T2 = 4T1. Time t is an ordering instant of stage 3, thus stage 3 can order in

periods t, t + T3, t + 2T3, . . . . Stage 2 can order in periods t + l3 + a2, t + l3 + a2 + T2,

t + l3 + a2 + 2T2, . . . , and stage 1 can order in periods t + L2 + A1, t + L2 + A1 + T1,

t + L2 + A1 + 2T1, . . . .

Suppose the system starts with a plausible initial state that the initial on-hand inven-

tory at stage i+1 is a nonnegative integer multiple of Qi, i = 1, 2, . . . , N −1. This initial

condition with the integer-ratio constraint implies that for all t we have

IL−
i+1(t) − IPi(t) = mQi, i = 1, 2, . . . , N − 1, (6.1)

where m is a nonnegative integer. The system dynamics are,

IL−
i (t + li) = IPi(t) − D[t, t + li) i = 1, . . . , N, (6.2)

ILi(t + li) = IPi(t) − D[t, t + li] i = 1, . . . , N, (6.3)

IPi(t) ≤ IL−
i+1(t) i = 1, . . . , N − 1. (6.4)

To compute the system cost, we define a cycle of length TN for each stage as follows.

A cycle for stage N is defined as the time between two consecutive periods at which

stage N receives its orders. Suppose at time t stage N places an order which arrives

at t + lN and initiates a cycle in the supply chain (see Figure 1). The first period after

t + lN that stage N − 1 can order is t + lN + aN−1. Therefore, during the cycle between

period t + lN and period t + lN + TN , the feasible ordering times for stage N − 1 are

t + lN + aN−1 + kTN−1, where k = 0, 1, . . . , rN−1 − 1. We define a cycle for stage N − 1
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Stage 3

3lt 33 Tltt

23 alt
22 aLt 222 aLTt 223 aLTt

Stage 2

12 ALt 11 ALt 111 ALTt 113 ALTt

2a
2l 2T 2T

3T

3T

t

1a
1l 1T 1T 1T 1T

3T

Stage 1
t

Figure 6.1: Time line of a three-stage system with T3 = 2T2 = 4T1

as from period t + LN−1 + aN−1, at which stage N − 1 receives the order it placed at

time t + lN + aN−1, to period t + LN−1 + aN−1 + TN , i.e., shifting the cycle of stage N

to the right by lN−1 + aN−1 time periods. Similarly, we define a cycle for stage N − 2 as

starting from period t + LN−2 + AN−2 to period t + LN−2 + AN−2 + TN , and in general,

a cycle of stage i starts from period t + Li + Ai to period t + Li + Ai + TN , which shifts

the cycle of stage N to the right by Li − lN + Ai.

From the definitions above it can be seen that stage N can only order once in a cycle;

stage N − 1 can order ΓN−1 times in a cycle, and in general, stage i (i = 1, 2, . . . , N) can

order γi times in the cycle.

For any feasible policy, we compute the total expected cost over a cycle of length TN by

adding up the cost for each stage during the cycle defined above. With the understanding

that LN+1 = 0 and AN = 0, the total expected cost over a cycle for an arbitrary policy
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is

E

[
TN−1∑

ℓ=0

( N∑

i=1

hiILi(t + Li + Ai + ℓ) + (b + H1)B(t + L1 + A1 + ℓ)
)]

(6.5)

= E

[TN−1∑

ℓ=0

( N∑

i=1

hi(IPi(t + Li+1 + Ai + ℓ) − D[t + Li+1 + Ai + ℓ, t + Li + Ai + ℓ])

+(b + H1)(IP1(t + L2 + A1 + ℓ) − D[t + L2 + A1 + ℓ, t + L1 + A1 + ℓ])−
)]

= E

[ N∑

i=1

γi−1∑

k=0

Ti−1∑

ℓ=0

hi(IPi(t + Li+1 + Ai + kTi + ℓ)

−D[t + Li+1 + Ai + kTi + ℓ, t + Li + Ai + kTi + ℓ])

+(b + H1)

γ1−1∑

k=0

T1−1∑

ℓ=0

(IP1(t + L2 + A1 + kT1 + ℓ)

−D[t + L2 + A1 + kT1 + ℓ, t + L1 + A1 + kT1 + ℓ])−
]

= E

[ N∑

i=1

γi−1∑

k=0

Ti−1∑

ℓ=0

hi(IPi(t + Li+1 + Ai + kTi)

−D[t + Li+1 + Ai + kTi, t + Li + Ai + kTi + ℓ])

+(b + H1)

γ1−1∑

k=0

T1−1∑

ℓ=0

(IP1(t + L2 + A1 + kT1)

−D[t + L2 + A1 + kT1, t + L1 + A1 + kT1 + ℓ])−
]
,

where the first equality follows from the fundamental relationship between echelon

inventory positions and echelon inventory levels (6.2), the second equality follows from

the fact that a cycle for stage i consists of γi ordering decisions, and the third equality

follows from the constraint that stage i cannot order between periods t+Li+1+Ai+kTi+1

and t + Li+1 + Ai + kTi + ℓ (ℓ < Ti), therefore the echelon inventory positions of stage i

in periods t + Li+1 + Ai + kTi and t + Li+1 + Ai + kTi + ℓ satisfy

IPi(t + Li+1 + Ai + kTi + ℓ)

= IPi(t + Li+1 + Ai + kTi) − D[t + Li+1 + Ai + kTi, t + Li+1 + Ai + kTi + ℓ).
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To simplify the notation, in the following we write

IPi(k)
def
= IPi(t + Li+1 + Ai + kTi),

IL−
i+1(k)

def
= IL−

i+1(t + Li+1 + Ai + kTi)

Then, the average cost over a cycle can be rewritten as

E

[ N∑

i=1

γi−1∑

k=0

Ti−1∑

ℓ=0

hi(IPi(k) − D(li + ℓ + 1))

+(H1 + b)

γ1−1∑

k=0

T1−1∑

ℓ=0

(IP1(k) − D(l1 + ℓ + 1))−
]

= E

[ N∑

i=1

γi−1∑

k=0

hiTiIPi(k) + (H1 + b)

γ1−1∑

k=0

T1−1∑

ℓ=0

(IP1(k) − D(l1 + ℓ + 1))−
]

−
N∑

i=1

Ti−1∑

ℓ=0

hiγiE[D(li + ℓ + 1)],

where IPi(k) and D(li +ℓ+1) are independent random variables. Since the last term is a

constant which is independent of inventory strategy, it will be ignored in the subsequent

analysis.

Remark If Ti = 1 for all i, then the model is reduced to the multi-echelon inventory

model with batch ordering studied thoroughly in Chen (2000). If Qi = 1 for every i, the

problem has been analyzed in van Houtum et al. (2003). Moreover, if Ti = 1 and Qi = 1,

then the model collapses down to the classical Clark-Scarf model (Clark and Scarf 1960,

and Chen and Zheng 1994).
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6.2 The Main Result

In this section, we find the optimal ordering policy for each stage based on the cost

function derived in the previous section. First, we need the following result which is due

to Chen (2000). Let Z be the set of integers and R be the set of real numbers.

Lemma 6.2.1 Let G(·) : Z → R be a function and Q a positive integer. Define Ḡ(y) =
∑Q

x=1 G(y + x) and suppose Ḡ(y) is quasiconvex with finite minimum point R.

(a) For any given z, G(z + xQ) is quasiconvex in x ∈ Z. Let xz be the unique integer

so that R +1 ≤ z +xzQ ≤ R +Q, then G(z +xQ) as a function of x is minimized at xz.

(b) For any x, define

O[x] =





x, if x ≤ R + Q

x − nQ if x > R + Q

where n is the largest integer that x−nQ > R. Then
∑Q

x=1 G(O[y +x]) = Ḡ(min{R, y})

which is quasiconvex and nonincreasing in y ∈ Z.

Define a sequence of functions recursively as follows. Let

G1(y) = T1h1y + (H1 + b)

T1−1∑

ℓ=0

E[(y − D(l1 + ℓ + 1))−]. (6.6)

For i = 1, 2, . . . , N , assume that Gi(y) have been defined and Ḡi(y) ≡
∑Qi

x=1 Gi(y + x)

is convex and minimized at y = Ri, a finite integer. Thus, Gi(·) satisfies the condition

in Lemma 6.2.1. Define Oi[y] as in Lemma 6.2.1 after replacing R and Q by Ri and Qi
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respectively. Define

Gi+1(y) = Ti+1hi+1y +

ri−1∑

k=0

E
[
Gi(Oi[y − D(li+1 + kTi + ai)])

]
, i = 1, . . . , N − 1.(6.7)

The assumption used in the definition above is guaranteed by the following lemma.

Lemma 6.2.2 Ḡi(y) is convex and is minimized at a finite point Ri, i = 1, 2, . . . , N .

Proof. We prove Lemma 2 by induction. We first prove convexity. That Ḡ1(y) is convex

follows from its definition. Suppose Ḡi(y) has been shown to be convex and we proceed

to prove i + 1. By definition,

Ḡi+1(y) =

Qi+1∑

x=1

Ti+1hi+1(y + x) +

Qi+1∑

x=1

ri−1∑

k=0

E
[
Gi(Oi[y + x − D(li+1 + kTi + ai)])

]
.

The first term is obviously convex. From (6.12) we have

Qi+1∑

x=1

ri−1∑

k=0

E
[
Gi(Oi[y + x − D(li+1 + kTi + ai)])

]

=

qi−1∑

z=0

ri−1∑

k=0

E
[
Ḡi(min{Ri, y + zQi − D(li+1 + kTi + ai)})

]

which is convex in y because Ri is the minimum of Ḡi(·). Therefore, Ḡi+1(·) is convex.

We next show that Ḡi(y) is minimized at a finite point. We first prove that, Gi(y) ≥

Gd
i (y) for all i where Gd

1(y) = T1h1y + (H1 + b)
∑T1−1

ℓ=0 (y − (l1 + ℓ + 1)µ)−, and for
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i = 2, . . . , N ,

Gd
i (y) =

ri−1−1∑

k=0

Ti−1

(
hi

(
y − (li + kTi−1 + ai−1 + 1)µ

)+

+(b + Hi+1)
(
y − (li + kTi−1 + ai−1)µ

)−)

−
(i−1∏

ℓ=1

rℓT1h2 +
i−1∏

ℓ=2

rℓT2h3 + · · · + ri−1Ti−1hi

)
µ.

Again we prove it by induction. This is clearly true for i = 1 since G1(y) is convex and

G1(y) ≥ Gd
1(y) follows from Jensen’s inequality. Suppose the result has been established

for i, and we prove Gi+1(y) ≥ Gd
i+1(y) for all y. Note that

Gd
i (y) ≥

ri−1−1∑

k=0

Ti(b + Hi+1)
(
y − (li + kTi−1 + ai−1)µ

)−

−
(i−1∏

ℓ=1

rℓT1h2 + · · · + ri−1Ti−1hi

)
µ

≥

ri−1−1∑

k=0

Ti−1(b + Hi+1)(y)− − (
i−1∏

ℓ=1

rℓT1h2 + · · · + ri−1Ti−1hi)µ

= Ti(b + Hi+1)(y)− −
(i−1∏

ℓ=1

rℓT1h2 + · · · + ri−1Ti−1hi

)
µ.

The inductive assumption, the fact that Oi[y] ≤ y and the previous inequality lead to

Gi(Oi[y]) ≥ Gd
i (Oi[y]) ≥ Ti(b + Hi+1)(y)− −

(i−1∏

ℓ=1

rℓT1h2 + · · · + ri−1Ti−1hi

)
µ.
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Based on the definition of Gi+1(y) together with above inequality,

Gi+1(y) = Ti+1hi+1y +

ri−1∑

k=0

E
[
Gi(Oi[y − D(li+1 + kTi + ai)])

]

≥

ri−1∑

k=0

Tihi+1

(
y − (li+1 + kTi + ai)µ − µ

)

+

ri−1∑

k=0

[
Ti(b + Hi+1)E

[(
y − D(li+1 + kTi + ai)

)−]

−
(i−1∏

ℓ=1

rℓT1h2 + · · · +
i−1∏

ℓ=i−1

rℓTi−1hi

)
µ

]

≥

ri−1∑

k=0

Tihi+1(y − (li+1 + kTi + ai)µ)

+

ri−1∑

k=0

Ti(b + Hi+1)
(
y − (li+1 + kTi + ai)µ

)−

−
( i∏

ℓ=1

rℓT1h2 + · · · +
i∏

ℓ=i−1

rℓTi−1hi + riTihi+1

)
µ

=

ri−1∑

k=0

Tihi+1

(
y − (li+1 + kTi + ai)µ

)+

+

ri−1∑

k=0

Ti(b + Hi+2)
(
y − (li+1 + kTi + ai)µ

)−

−
( i∏

ℓ=1

rℓT1h2 + · · · +
i∏

ℓ=i−1

rℓTi−1hi + riTihi+1

)
µ

= Gd
i+1(y),

where the second inequality follows from Jensen’s inequality, and the second equality

follows, for any number x, from x + x− = x+.

Because for any i = 1, 2, . . . , N , lim|y|→∞ Gd
i (y) = ∞, we must have lim|y|→∞ Gi(y) =

∞ and lim|y|→∞ Ḡi(y) = ∞, thus Ḡi(y) is minimized at a finite point Ri. This completes

the proof. �
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The proof of the following lemma mimics that of Lemma 2 in Chen (2000), thus it is

omitted.

Lemma 6.2.3 For any given integer k = 0, 1, . . . , Γi − 1,

Gi(IPi(k)) ≥ Gi(Oi[IL−
i+1(k)]), i = 1, 2, . . . , N − 1. (6.8)

Lemma 6.2.4 For all i, we have

γi−1∑

k=0

Gi(Oi[IL−
i+1(k)]) =

γi+1−1∑

k=0

ri−1∑

ℓ=0

Gi(Oi[IPi+1(k) − D(li+1 + ℓTi + ai)]). (6.9)

Proof. We only prove it for i = 1. The proof for other i is identical. Consider the

summation of k that goes from 0 to Γ1 − 1 on the left hand side of (6.9). That is,

consider

IL−
2 (k) = IL−

2 (t + L2 + A1 + kT1)

as k goes from 0 to Γ1 − 1. First, when k increases from 0 to ℓ with 0 ≤ ℓ < r1, we have

IL−
2 (t+L2 +A1 + ℓT1) = IP2(t+L3 +A1 + ℓT1)−D[t+L3 +A1 + ℓT1, t+L2 +A1 + ℓT1).

However, note that stage 2 cannot order in period t + L3 + A1 + ℓT1. A moment of

reflection shows that the last period before t + L3 + A1 + ℓT1 that stage 2 can order is

t + L3 + A2. This implies that

IP2(t + L3 + A1 + ℓT1) = IP2(t + L3 + A2) − D[t + L3 + A2, t + L3 + A1 + ℓT1).
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Therefore,

IL−
2 (t + L2 + A1 + ℓT1)

= IP2(t + L3 + A2) − D[t + L3 + A2, t + L2 + A1 + ℓT1)

= IP2(0) − D(l2 + ℓT1 + a1).

Then consider k that increases from r1 to r1+ℓ with 0 ≤ ℓ < r1. The last period before

t+L3 +A1 +(r1 +ℓ)T1 that stage 2 can order is t+L3 +A1 +r1T1−a1 = t+L3 +A2 +T2.

Thus

IP2(t + L3 + A1 + (r1 + ℓ)T1) = IP2(t + L3 + A2 + T2)

−D[t + L3 + A2 + T2, t + L3 + A1 + (r1 + ℓ)T1),

and as a result,

IL−
2 (t + L2 + A1 + (r1 + ℓ)T1)

= IP2(t + L3 + A1 + (r1 + ℓ)T1)

−D[t + L3 + A1 + (r1 + ℓ)T1, t + L2 + A1 + (r1 + ℓ)T1)

= IP2(t + L3 + A2 + T2) − D[t + L3 + A2 + T2, t + L2 + A1 + (r1 + ℓ)T1)

= IP2(1) − D(l2 + ℓT1 + a1).

More generally, as k increases from ur1 to ur1 + ℓ, where 0 ≤ u < Γ2 and 0 ≤ ℓ < r1, we

have

IL−
2 (t + L2 + A1 + (ur1 + ℓ)T1) = IP2(u) − D(l2 + ℓT1 + a1).
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Combining the equations above, we obtain, as k increases from 0 to Γ1 − 1, that

γ1−1∑

k=0

G1(O1[IL−
2 (k)]) =

Γ2−1∑

k=0

r1−1∑

ℓ=0

G1(O1[IP2(k)) − D(l2 + ℓT1 + a1)]),

proving Lemma 4. � In what follows we derive a lower bound on the expected total cost

for the system over an ordering cycle. Remember that we ignore the constant terms.

Theorem 6.2.1 Let

C∗ =
ḠN(RN)

QNTN

. (6.10)

Then C∗ is a lower bound for the average cost per period for the serial system with batch

ordering and periodic batching.
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Proof. Let TC be the expected total cost for the system over an ordering cycle, then

TC = E

[ N∑

i=1

γi−1∑

k=0

hiTiIPi(k) + (H1 + b)

γ1−1∑

k=0

T1−1∑

ℓ=0

E[(IP1(k) − D(l1 + ℓ + 1))−]

]

= E

[ N∑

i=2

γi−1∑

k=0

hiTiIPi(k) +

γ1−1∑

k=0

(
h1T1IP1(k) +

T1−1∑

ℓ=0

E[(IP1(k) − D(l1 + ℓ + 1))−
)]

= E

[ N∑

i=2

γi−1∑

k=0

hiTiIPi(k) +

γ1−1∑

k=0

G1(IP1(k))

]

≥ E

[ N∑

i=2

γi−1∑

k=0

hiTiIPi(k) +

γ1−1∑

k=0

G1(O1[IL−
2 (k)])

]

= E

[ N∑

i=2

γi−1∑

k=0

hiTiIPi(k) +

γ2−1∑

k=0

r1−1∑

ℓ=0

E
[
G1(O1[IP2(k) − D(l2 + ℓT1 + a1)])

]]

= E

[ N∑

i=3

γi−1∑

k=0

hiTiIPi(k)

+

γ2−1∑

k=0

(
h2T2IP2(k) +

r1−1∑

ℓ=0

E
[
G1(O1[IP2(k) − D(l2 + ℓT1 + a1)])

])]

= E

[ N∑

i=3

γi−1∑

k=0

hiTiIPi(k) +

γ2−1∑

k=0

G2(IP2(k))

]
(6.11)

where the second equality follows from (6.6), the inequality follows from Lemma 6.2.3,

the third equality follows from Lemma 4, and the last equality follows from (6.7).

By repeating the argument in (6.11), we obtain

TC ≥ E[GN(IPN(t))].

Note that, stage N can order in every TN periods of time and has to order an integer

multiple of QN . Thus, we can interpret IPN(t) as the inventory position of a single-stage

problem with demand distribution being the TN -fold convolution of the original single

period demand. It is well-known that under very mild conditions the optimal inventory

position of the single stage inventory model with batch ordering is uniformly distributed
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on {RN + 1, . . . , RN + QN} (see Veinott 1965 and Chen 2000). Thus, the average cost is

E[GN(IPN(t))] =
1

QN

RN+QN∑

y=RN+1

GN(y) =
ḠN(RN)

QN

.

Because the cycle length is TN , the average cost per period of time is TC/TN . This shows

that the average cost per period of time for the serial system under an arbitrary feasible

policy is bounded from below by C∗. �

The lower bound in Theorem 1 can be achieved. Consider the following policy. For

i = 1, 2, . . . , N , at any period that stage i can order, if the echelon inventory position of

stage i is at or below Ri, stage i orders an integer multiple of Qi to bring the echelon

inventory position into {Ri + 1, . . . , Ri + Qi}; and if the on hand inventory at stage i + 1

is insufficient, then stage i + 1 ships as much as possible. This is the so-called echelon

(Ri, nQi) policy.

Theorem 6.2.2 For each stage i, the echelon (Ri, nQi) policy is optimal for the serial

system with batch ordering and periodic batching. The minimum average cost per period

is C∗.

Proof. It is sufficient to prove that the average system cost under echelon (Ri, nQi)

policy reaches the lower bound C∗. If stage i follows an (Ri, nQi) policy, then IPi(k) =

Oi[IL−
i+1(k)] after sometime for every integer k, i.e., at every period that stage i can

order. Thus, the inequality in Lemma 6.2.3 becomes equality. Hence, from Theorem 1,

the (RN , nQN) policy achieves the lower bound C∗. �

We remark that, for the case Qi = 1 for all i, van Houtum et al. (2003) proved the

optimality of echelon base-stock policy for the system by using a different but rather

complicated method. The extension of Chen and Zheng (1994)’s lower bound approach

not only gives a very simple and straightforward proof for the result of van Houtum et
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al. (2003), but it also generalizes the result to the model with batch ordering.

In the following, we discuss how the optimal policy and the optimal expected system

cost are affected by ai, the non-synchronization factors. To emphasize the dependency

of the optimal average cost on the non-synchronization factors, let C(a1, . . . , aN−1) de-

note the minimum average cost. For simplicity let Ḡ∗
1(y) = Ḡ1(y) and Ḡ∗

i+1(y) be the

Ḡi+1(y) associated with aj = 0 for j = 1, 2, . . . , i, i = 1, . . . , N − 1, and let R∗
i+1 be the

corresponding optimal reorder point, the minimizer of Ḡ∗
i+1(y).

First, note that it follows from Lemma 1(b) and (6.7) that, once Ḡi is known, Ḡi+1

can be computed as follows.

Ḡi+1(y)

=

Qi+1∑

x=1

Gi+1(y + x)

= Ti+1hi+1

Qi+1∑

x=1

(y + x) +

ri−1∑

k=0

E

[qiQi∑

x=1

Gi(Oi[y + x − D(li+1 + kTi + ai)])

]

= Ti+1hi+1

Qi+1∑

x=1

(y + x) +

ri−1∑

k=0

E

[qi−1∑

z=0

Qi∑

x=1

Gi(Oi[y + zQi + x − D(li+1 + kTi + ai)])

]

= Ti+1hi+1

Qi+1∑

x=1

(y + x) +

ri−1∑

k=0

qi−1∑

z=0

E
[
Ḡi(min{Ri, y + zQi − D(li+1 + kTi + ai)})

]
.

(6.12)

The first result shows that, the optimal reorder point of each stage is minimized when

the ordering times of all stages are synchronized.

Proposition 6.2.1 R∗
i ≤ Ri, i = 1, 2, . . . , N .
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Proof. By induction on i. Let ∆ denote the difference operator, i.e., ∆Ḡi(y) = Ḡi(y +

1)−Ḡi(y). We prove ∆Ḡi(y) ≤ ∆Ḡ∗
i (y) for all y and all i, which implies R∗

i ≤ Ri because

of convexity.

The proposition holds true for i = 1 as Ḡ∗
1(y) = Ḡ1(y). Suppose the result is true for

i. Then, it follows from (6.12) that, it suffices to prove

∆(E[Ḡ∗
i (min{R∗

i , y+zQi−D(li+1+kTi)})] ≥ ∆(E[Ḡi(min{Ri, y+zQi−D(li+1+kTi+ai)})].

Let pℓ, ℓ = 0, 1, . . . denote the probability mass function of D(li+1 + kTi + ai). We

know

∆(EḠ∗
i (min{R∗

i , y+zQi−D(li+1+kTi)}) ≥ ∆(EḠ∗
i (min{R∗

i , y+zQi−D(li+1+kTi+ai)})

since Ḡ∗
i (·) is convex and minimized at R∗

i . Then, we can show that, after some algebra,

∆(E[Ḡ∗
i (min{R∗

i , y + zQi − D(li+1 + kTi + ai)})]

−∆(E[Ḡi(min{Ri, y + zQi − D(li+1 + kTi + ai)})]

=
∞∑

ℓ=y+1+zQi−R∗

i

∆Ḡ∗
i (y + 1 + zQi − ℓ)pℓ −

∞∑

ℓ=y+1+zQi−Ri

∆Ḡi(y + 1 + zQi − ℓ)pℓ

=

∞∑

ℓ=y+1+zQi−R∗

i

(
∆Ḡ∗

i (y + 1 + zQi − ℓ) − ∆Ḡi(y + 1 + zQi − ℓ)
)
pℓ

−

y+1+zQi−R∗

i∑

ℓ=y+1+zQi−Ri

∆Ḡi(y + 1 + zQi − ℓ)pℓ

≥ 0,

where the inequality follows from the induction assumption and the fact that ∆Ḡi(y) is

non-positive on y < Ri. Therefore, ∆Ḡi+1(y) ≤ ∆Ḡ∗
i+1(y) and we conclude R∗

i+1 ≤ Ri+1.
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The induction proof is completed. �

The following result states that the average cost of the system is minimized when

the different stages’ ordering times are synchronized, i.e., every stage except the most

upstream stage places order at the instants its upstream stage receives order and at the

equidistant time instants in between. Its proof is provided in the Appendix.

Theorem 6.2.3 The optimal average cost function satisfies

C(0, . . . , 0) ≤ C(a1, . . . , aN−1).

Proof. We first prove by induction that for all y,

Ḡ∗
i (y) ≤ Ḡi(y), i = 1, 2, . . . , N. (6.13)

This is clearly true for i = 1 since Ḡ∗
1(y) = Ḡ1(y). Suppose it has been proved for i ≥ 1,

and we proceed to prove i + 1. By (6.12), it suffices to prove

Ḡ∗
i (min{R∗

i , y + zQi − D(li+1 + kTi)}) ≤ Ḡi(min{Ri, y + zQi − D(li+1 + kTi + ai)})

for any realization of demand. Note that D(li+1 + kTi) ≤ D(li+1 + kTi + ai).

We consider several cases. If y + zQi − D(li+1 + kTi + ai) ≥ Ri, by Proposition 1 we

have y + zQi − D(li+1 + kTi) ≥ R∗
i , then

Ḡ∗
i (R

∗
i ) ≤ Ḡ∗

i (Ri) ≤ Ḡi(Ri),

where the first inequality follows from the optimality of R∗
i for Ḡ∗

i (·) and the second

inequality from induction assumption.
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If Ri ≥ y + zQi − D(li+1 + kTi + ai) and y + zQi − D(li+1 + kTi) ≥ R∗
i , then

Ḡ∗
i (R

∗
i ) ≤ Ḡ∗

i (Ri) ≤ Ḡi(Ri) ≤ Ḡi(y + zQi − D(li+1 + kTi + ai)).

The last inequality follows from the optimality of Ri for Ḡi(·).

If Ri ≥ y+zQi−D(li+1+kTi+ai) and R∗
i ≥ y+zQi−D(li+1+kTi), then by convexity

of Ḡ(·) and induction assumption, we obtain

Ḡ∗
i (y + zQN − D(li+1 + kTi)) ≤ Ḡ∗

i (y + zQi − D(li+1 + kTi) + ai)

≤ Ḡi(y + zQi − D(li+1 + kTi + ai)).

So Ḡ∗
i+1(y) ≤ Ḡi+1(y).

It follows from Theorem 1 and Theorem 2 that

C(a1, . . . , aN−1) =
ḠN(RN)

QNTN

, (6.14)

C(0, . . . , 0) =
Ḡ∗

N(R∗
N)

QNTN

. (6.15)

Since

Ḡ∗
N(R∗

N) ≤ Ḡ∗
N(RN) ≤ ḠN(RN),

where the first inequality follows from that R∗
N is the minimizer of Ḡ∗

N(y), and the second

inequality follows from (6.13). Thus, by (6.14) and (6.15), Theorem 3 is proved. � We

conclude this section with an efficient computational algorithm for the optimal reorder

points Ri, which is the minimum point of the convex function Ḡi(·), i = 1, 2, . . . , N . The

procedure is bottom-up. We first compute R1 that is used to compute G2(·) and Ḡ2(·);

then compute R2, and so on so forth until RN is computed. Since Ḡi is convex, the search

for Ri in Step 2 can be done by evaluating ∆Ḡi(y).
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Computational Algorithm for Optimal Policy:

Step 1. Let i = 1, Ḡ1(y) =
∑Q1

x=1[T1h1(y + x) +
∑T1−1

ℓ=0 (H1 + b)E(y + x − D(l1 +

ℓ + 1))−].

Step 2. Ri = arg miny∈Z Ḡi(y).

Step 3. If i < N , compute Ḡi+1(y) using (6.12), i = i + 1 and go to Step 2;

otherwise, stop.

6.3 Numerical Studies

We consider a three-stage system with basic parameters: T1 = 2, T2 = 8, T3 = 16,

Q1 = 2, Q2 = 8, Q3 = 16 b = 30 h1 = 2, h2 = 1, h3 = 1, a1 = 0, a2 = 0. By alternating

some parameter, we generate numerical examples summarized in the table.

T1 R1 R2 R3 c∗ Q1 R1 R2 R3 c∗ a2 R1 R2 R3 c∗

1 11 41 71 85.72 1 15 41 71 89.05 1 15 41 75 93.51
2 15 41 71 89.14 2 15 41 71 89.14 2 15 41 80 97.87
4 22 40 71 95.63 4 14 41 71 89.50 3 15 41 84 102.21
8 37 37 69 106.90 8 13 41 71 90.88 4 15 41 88 106.54

Table 6.1: Three-stage model with batch ordering and fixed replenishment schedule

6.4 Summary

In this chapter we study a periodic-review multi-echelon inventory system with batch

ordering and periodic batching and derive its optimal control policy. We show that the

system achieves minimum expected average cost when the ordering times for all stages
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are synchronized, the optimal reorder point for each stage is also the smallest as all

stages are synchronized. This work generalizes the recent results of Chen (2000) and van

Houtum et al. (2003).

Our results can be extended to an assembly system described as follows. There are N

distinct items: the components, subassemblies, and the end item. The assembly system

has a tree structure where the root is the end item and the leaves are the components,

and each item except the end item has only one successor. The customer demand is only

for the end item. Assume that the suppliers for the components have ample supply and

the supply leadtime is fixed. The production leadtime for other items is also fixed. We

rearrange these N items of the assembly system according to their total leadtimes that is

the sum of the leadtimes of the item and all its successor items. Thus the end item is item

1 and the item with longest leadtime is item N . We consider this assembly system as an

N -stage serial system in which stage i is associated with item i for all i. If both the base

quantities Qi and reorder interval Ti for the items satisfy the integer-ratio relationships,

then we can apply the approach discussed in this note to prove the optimality of echelon

(Ri, nQi) policies for this assembly system. Refer to Rosling (1989) and Chen (2000) on

transforming an assembly system to a serial system.

We remark that when Qi = 1 for all i, stage N can include a setup cost. In that

case, the optimal policy for each downstream stage is still echelon base-stock policy, but

the optimal policy for stage N becomes echelon (s, S) policy. We can also impose a

finite capacity constraint at stage N , and in that case the optimal policy at stage N

becomes modified echelon base-stock policy, that is, at the beginning of each period raise

the echelon inventory position to the base-stock level if possible, and otherwise raise the

echelon inventory position to as close to the echelon base-stock level as possible.
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Chapter 7

Probabilistic Solution and Bounds

for Classical Serial Inventory

Systems

In this chapter, we consider the infinite horizon multi-echelon inventory model of Clark-

Scarf with both average cost and discounted cost criteria. The optimal echelon base-stock

levels are obtained in terms of only probabilistic distributions of leadtime demand. The

results offer insights on the key determinants of the optimal policy and provide a unified

approach for developing bounds and simple heuristics. In addition to deriving the known

bounds, we develop an upper bound for average cost case and two upper bounds for the

discounted cost case. Simple heuristic is developed based on these bounds and numerical

examples show that the heuristic performs very well.
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7.1 Probabilistic Solution

Consider a single item serial inventory system with N stages. Compound Poisson demand

arrives at stage 1, which orders from stage 2, stage 2 orders from stage 3, etc., and stage

N orders from the outside with ample supply. There are constant transportation time

between stages, and unsatisfied demand is fully backlogged at stage 1.

The following notation will be used for stage i = 1, 2, . . . , N :

Li = the leadtime between stage i to stage i + 1.

Di = the leadtime demand during Li units of leadtime.

Fi(.) = the distribution function of Di.

yi = echelon inventory position at stage i after ordering.

hi = echelon i inventory holding cost rate.

Hi = installation i inventory holding cost rate, i.e., Hi =
∑N

j=i hj.

IPi = echelon inventory position of stage i.

b = backorder cost rate at stage 1.

For convenience we let Li,j represent the leadtime between stage i and stage j +1, i.e.,

Li,j =
∑j

k=i Lk, let Di,j represent the demand during leadtime Li,j, i.e., Di,j =
∑j

k=i Dk,

let Fi,j be the distribution function of Di,j, and F̄i,j = 1 − Fi,j. Clearly, Li,i = Li, Di,i =

Di, Fi,i = Fi and they will be used interchangeably, and Li,j = 0, Di,j = 0 for j < i.
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Echelon base-stock policy is optimal for this system for both average cost and dis-

counted total cost criteria (see Federgruen and Zipkin (1984) and Chen and Zheng

(1994)).

We then turn to the case of minimizing total discounted cost with discount factor α,

the algorithm for computing the optimal base-stock levels is: Let G1
0(x) = (H1 + b)x−.

For j = 1, 2, . . . , N , compute

Gi(x) = αLihiE(x − Di) + αLiE[Gi
i−1(x − Di)], (7.1)

s∗i = arg min Gi(x), (7.2)

Gi+1
i (x) = Gi(x ∧ s∗i ). (7.3)

And the optimum total discounted cost is given by C∗ = GN(s∗N).

The following result gives the optimal base-stock levels for discounted cost criterion in

terms of the leadtime demand distributions. To the best of our knowledge, no recursive

equations have ever been reported in the literature for Clark-Scarf model with discounted

cost criterion.

Proposition 7.1.1 Assuming s∗1, . . . , s
∗
i−1, the optimal echelon base-stock level for stage

i, s∗i , for i = 1, 2, . . . , N , is the solution of

hi +
i−1∑

j=1

αLj,i−1hjP (Dj+1,i ≥ y − s∗j , Dj+2,i ≥ y − s∗j+1, . . . , Di,i ≥ y − s∗i−1)

−αL1,i−1(H1 + b)P (D1,i ≥ y,D2,i ≥ y − s∗1, . . . , Di,i ≥ y − s∗i−1) = 0.

The left hand side of the equation is increasing in y.
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Thus, for stage 1, the optimal base-stock level s∗i is the solution of

h1 − (H1 + b)P (D1 > y) = 0. (7.4)

After s∗1 is computed, the optimal base-stock level for stage 2, s∗2, is determined by

h2 + αL1h1P (D2 > y − s∗1) − αL1(H1 + b)P (D2 ≥ y − s∗1, D1 + D2 > y) = 0.

And finally, the optimal base-stock level for stage N , s∗N , is the solution of

hN +
N−1∑

j=1

αLj,N−1hjP (Dj+1,N ≥ y − s∗j , . . . , DN ≥ y − s∗N−1)

−αL1,N−1(H1 + b)P (D1,N ≥ y,D2,N ≥ y − s∗1, . . . , DN ≥ y − s∗N−1) = 0.

Proof of Proposition 7.1.1. We prove by induction that for i = 1, . . . , N , we have

G′
i(y)

= E
[
αLihi

+αLi

i−1∑

j=1

αLj,i−1hj1[Dj+1,i ≥ y − s∗j , Dj+2,i ≥ y − s∗j+1, . . . , Di ≥ y − s∗i−1]

−αL1,i(H1 + b)1[D1,i ≥ y,D2,i ≥ y − s∗1, . . . , Di ≥ y − s∗i−1]
]
.

Since s∗i is the solution of G′
i(y) = 0, the result of Proposition 2 then follows.

First, consider i = 1. The optimal base-stock level s∗1 is the minimizer of

G1(y) = αL1h1E(y − D1) + αL1(H1 + b)E[(y − D1)
−].

This is a convex function, taking derivative and set it to 0 we obtain (7.4).
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Suppose the result has been proved for i and we proceed to prove i + 1. It follows

from equation (7.1) that

Gi+1(y) = αLi+1hi+1y + αLi+1E[Gi+1
i (y − Di+1)]

= αLi+1hi+1y + αLi+1E[Gi((y − Di+1) ∧ s∗i )]

= αLi+1E
[
hi+1y + Gi(y − Di+1)1[y − Di+1 ≤ s∗i ] + Gi(s

∗
i )1[y − Di+1 > s∗i ]

]
.

We have identities

(Gi(y − Di+1)1[y − Di+1 ≤ s∗i ])
′

= G′
i(y − Di+1)1[y − Di+1 ≤ s∗i ] − Gi(y − Di+1)δ(y − Di+1 + s∗i ),

and

(Gi(s
∗
i )1[y − Di+1 > s∗i ])

′ = Gi(s
∗
i )δ(y − Di+1 − s∗i ).

Taking derivative of Gi+1(y) and substituting the two identities above yield, after can-

celing common terms,

G′
i+1(y)

= αLi+1E
[
hi+1 + G′

i(y − Di+1)1[y − Di+1 ≤ s∗i ]
]

= αLi+1E
[
hi+1 + αLihi1[Di+1 ≥ y − s∗i ]

+
i−1∑

j=1

αLj,ihj1[Dj+1,i ≥ y − Di+1 − s∗j , . . . , Di ≥ y − Di+1 − s∗i−1]1[Di+1 ≥ y − s∗i ]

−αL1,i(H1 + b)1[D1,i ≥ y − Di+1, . . . , Di ≥ y − Di+1 − s∗i−1]1[Di+1 ≥ y − s∗i ]
]

= αLi+1E
[
hi+1 +

i∑

j=1

αLj,ihj1[Dj+1,i+1 ≥ y − s∗j , . . . , Di,i+1 ≥ y − s∗i−1, Di+1 ≥ y − s∗i )]

−αL1,i(H1 + b)1[D1,i+1 ≥ y, . . . , Di,i+1 ≥ y − s∗i−1, Di+1 ≥ y − s∗i ]
]
,

where the second equality follows from the induction hypothesis. This completes the

proof of Proposition 7.1.1. �
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Proposition 7.1.1 presents explicit form dependency of the optimal inventory control

strategies on its determinants. In the next section we will see how these results can be

applied to develop simple upper and lower bounds for the optimal control parameters.

7.2 Bounds

The explicit results of optimal echelon base-stock levels given in the last section can be

used to derive simple bounds for optimal control parameters. The idea is simple: If we

approximate the left hand side of (??) by another function which yields a simple solution,

then the solution serves as an approximation for s∗i . Furthermore, since the left hand

side of (??) is increasing in y, if we approximate the left hand side by a smaller function,

say g(y), then g(y) = 0 will give an upper bound for s∗i ; while if we approximate the left

hand side of (??) by a larger function g(y), then g(y) = 0 will give a lower bound for s∗i .

We illustrate this by considering i = 2 for the average cost case since the result for

i = 1 is exact. For i = 2, the optimal base-stock level s∗2 is determined by

h2 + h1P (D2 ≥ y − s∗1) − (H1 + b)P (D1 + D2 ≥ y,D2 ≥ y − s∗1) = 0. (7.5)

Because

P (D2 ≥ y − s∗1) ≥ P (D1 + D2 ≥ y,D2 ≥ y − s∗1),

P (D1 + D2 ≥ y) ≥ P (D1 + D2 ≥ y,D2 ≥ y − s∗1),
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it follows that

h2 + h1P (D2 ≥ y − s∗1) − (H1 + b)P (D1 + D2 ≥ y,D2 ≥ y − s∗1)

≥ h2 + h1P (D1 + D2 ≥ y,D2 ≥ y − s∗1) − (H1 + b)P (D1 + D2 ≥ y,D2 ≥ y − s∗1)

= h2 − (H2 + b)P (D1 + D2 ≥ y,D2 ≥ y − s∗1)

≥ h2 − (H2 + b)P (D1 + D2 ≥ y).

Hence h2 − (H2 + b)P (D1 + D2 ≥ y) is a lower bound for the left hand side of (7.5), and

the solution of

h2 − (H2 + b)P (D1 + D2 ≥ y) = 0,

or

su
2 = F̄−1

1,2

(
h2

H2 + b

)
(7.6)

gives an upper bound for s∗2. This is exactly the upper bound obtained by Shang and

Song (2003).

Another upper bound for s∗2 can be obtained as follows. Since

h2 + h1P (D2 ≥ y − s∗1) − (H1 + b)P (D1 + D2 ≥ y,D2 ≥ y − s∗1)

≥ h2 + h1P (D2 ≥ y − s∗1) − (H1 + b)P (D2 ≥ y − s∗1)

= h2 − (H2 + b)(D2 ≥ y − s∗1),

we conclude that another upper bound for s∗2 is determined by

h2 − (H2 + b)P (D2 ≥ y − s∗1) = 0,
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yielding

ŝu
2 = s∗1 + F̄−1

2

(
h2

H2 + b

)
= F̄−1

1

(
h1

H1 + b

)
+ F̄−1

2

(
h2

H2 + b

)
. (7.7)

Note that this upper bound presents an expression on the additional installation inventory

level that stage 2 should maintain, since it gives the level for stage 2 beyond the base-stock

level for stage 1, s∗1.

Remark

The following example demonstrates that the two upper bounds, i.e. (7.6) and (7.7),

do not have a dominating relationship, hence anyone can be a better bound, depending

on the instance.

We next present the lower and upper bounds for the serial system with discounted

cost criterion.

Proposition 7.2.1 An upper bound for the optimal echelon base-stock level of Clark-

Scarf model with total discounted cost criterion is, if

αL1,i−1(H1 + b) −
i−1∑

j=1

αLj,i−1hj > hi, (7.8)

su
i = F̄−1

1,i

(
hi

αL1,i−1(H1 + b) −
∑i−1

j=1 αLj,i−1hj

)
, i = 1, . . . , N, (7.9)

and otherwise

su
i = 0, i = 1, . . . , N.
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Another upper bound for the discounted cost case is, if (7.8) is satisfied then

ŝu
i = s∗i + F̄−1

i

(
hi

αL1,i−1(H1 + b) −
∑i−1

j=1 αLj,i−1hj

)
, i = 1, . . . , N, (7.10)

and (7.8) is not satisfied then ŝu
i = 0. Inductively we obtain upper bound,

s̃u
i =

i∑

j=1

F̄−1
j

(
hj

αL1,j−1(H1 + b) −
∑j−1

k=1 αLk,j−1hk

)
, i = 1, . . . , N,

where F̄−1
j (x), j = 1, . . . , i, is understood as 0 if either x ≥ 1 or x ≤ 0. And a lower

bound for the optimal echelon base-stock level is

sl
i = F̄−1

1,i

(∑i
j=1 α−L1,j−1hj

H1 + b

)
, i = 1, . . . , N. (7.11)

Proof. We first prove upper bounds. Assuming (7.8) and applying (??) we obtain

hi +
i−1∑

j=1

αLj,i−1hjP (Dj+1,i ≥ y − s∗j , Dj+2,i ≥ y − s∗j+1, . . . , Di,i ≥ y − s∗i−1)

−αL1,i−1(H1 + b)P (D1,i ≥ y,D2,i ≥ y − s∗1, . . . , Di,i ≥ y − s∗i−1)

≥ hi −
(
αL1,i−1(H1 + b) −

i−1∑

j=1

αLj,i−1hj

)
P (D1,i ≥ y, . . . , Di,i ≥ y − s∗i−1)

≥ hi −
(
αL1,i−1(H1 + b) −

i−1∑

j=1

αLj,i−1hj

)
P (D1,i ≥ y),

where the second inequality follows from the fact that αL1,i−1(H1 + b) −
∑i−1

j=1 αLj,i−1hj
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due to assumption (7.8). Thus the first upper bound (7.9) follows. Same argument shows

hi +
i−1∑

j=1

αLj,i−1hjP (Dj+1,i ≥ y − s∗j , Dj+2,i ≥ y − s∗j+1, . . . , Di,i ≥ y − s∗i−1)

−αL1,i−1(H1 + b)P (D1,i ≥ y,D2,i ≥ y − s∗1, . . . , Di,i ≥ y − s∗i−1)

≥ hi −
(
αL1,i−1(H1 + b) −

i−1∑

j=1

αLj,i−1hj

)
P (Di,i ≥ y − s∗i−1),

yielding the second upper bound (7.10).

Suppose (7.8) is not satisfied. That is,

αL1,i−1(H1 + b) −
i−1∑

j=1

αLj,i−1hj ≤ hi. (7.12)

Since the optimal echelon base-stock level s∗i is determined by (??), and that the left

hand side of (??) is increasing in y. Setting y = 0 to the left hand side of (??) yields

hi +
i−1∑

j=1

αLj,i−1hjP (Dj+1,i ≥ −s∗j , Dj+2,i ≥ y − s∗j+1, . . . , Di,i ≥ −s∗i−1)

−αL1,i−1(H1 + b)P (D1,i ≥, D2,i ≥ −s∗1, . . . , Di,i ≥ −s∗i−1)

= hi +
i−1∑

j=1

αLj,i−1hj − αL1,i−1(H1 + b)

≥ 0,

where the inequality follows from (7.12). This shows that the left hand side of (??) is

positive for all y ≥ 0 hence s∗i ≤ 0 and su
i = 0 is an upper bound for s∗i .

We prove the lower bound by induction. We show that, for all i the following inequality
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is satisfied:

hi +
i−1∑

j=1

αLj,i−1hjP (Dj+1,i ≥ y − s∗j , . . . , Di ≥ y − s∗i−1)

−αL1,i−1(H1 + b)P (D1,i ≥ y, . . . , Di ≥ y − s∗i−1)

≤
i∑

j=1

αLj,i−1hj − αL1,i−1(H1 + b)P (D1,i ≥ y).

This is exact for i = 1. Suppose that it has been proved for i and we proceed to prove

i + 1:

hi+1 +
i∑

j=1

αLj,ihjP (Dj+1,i+1 ≥ y − s∗j , . . . , Di+1 ≥ y − s∗i )

−αL1,i(H1 + b)P (D1,i+1 ≥ y, . . . , Di+1 ≥ y − s∗i )

= hi+1 + αLi

∫ ∞

y−s∗i

{
hi +

i−1∑

j=1

αLj,i−1hjP (Dj+1,i + t ≥ y − s∗j , . . . , Di + t ≥ y − s∗i−1)

−αL1,i−1(H1 + b)P (D1,i + t ≥ y, . . . , Di + t ≥ y − s∗i−1)
}

dFi+1(t)

≤ hi+1 + αLi

∫ ∞

y−s∗i

{ i∑

j=1

αLj,i−1hj − αL1,i−1(H1 + b)P (D1,i + t ≥ y)
}

dFi+1(t)

≤ hi+1 +

∫ ∞

0

{ i∑

j=1

αLj,ihj − αL1,i(H1 + b)P (D1,i + t ≥ y)
}

dFi+1(t)

=
i+1∑

j=1

αLj,ihj − αL1,i(H1 + b)P (D1,i+1 ≥ y),

where the first inequality follows from induction hypothesis, and the second inequality

follows the same argument as that in proving Proposition 1. Thus we complete the

induction proof for the lower bound. �

We note that the lower bound for the discounted cost case has been obtained by Dong

and Lee (2003). The upper bound is, to the best of our knowledge, new.
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For average cost case, we can extend the results by let α = 1 and we just summarize

the results and omit the proof.

Proposition 7.2.2 (Shang and Song (2003)) An upper bound for the optimal echelon

base-stock level of Clark-Scarf model with average cost criterion is

su
i = F̄−1

1,i

(
hi∑N

j=i hj + b

)
, i = 1, . . . , N, (7.13)

and a lower bound for the optimal echelon base-stock level is

sl
i = F̄−1

1,i

( ∑i
j=1 hj

∑N
j=1 hj + b

)
, i = 1, . . . , N. (7.14)

Proposition 7.2.3 An upper bound for s∗i is

ŝu
i = s∗i−1 + F̄−1

i

(
hi∑N

j=i hj + b

)
, i = 1, . . . , N. (7.15)

Inductively we obtain another simple upper bound for s∗i

s̃u
i =

i∑

j=1

F̄−1
j

(
hj∑N

k=j hk + b

)
, i = 1, . . . , N. (7.16)

Remark 7.2.1 One might also wish to obtain a lower bound for s∗i in the form of

s∗i−1 plus a nonnegative number. We argue that this is not possible. It is known that

the solution obtained from the computational algorithm (7.1), (7.2) and (7.3) may not

satisfy relationship s∗1 ≤ s∗2 ≤ · · · ≤ s∗N , see for example Gallego and Ozer (2004). Hence

in case s∗i < s∗i−1 then s∗i−1 is already an upper bound for s∗i thus it is not possible to give

a lower bound of s∗i in the form s∗i−1 plus a nonnegative number. It is also well-known

that, in that case, we can define s̄∗i = min{s∗i , s
∗
i+1, . . . , s

∗
N} to give an optimal policy that

satisfies s̄∗1 ≤ s̄∗2 ≤ · · · ≤ s̄∗N .
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Remark 7.2.2 It is easily seen from the proof of Proposition 2 that, for any 1 ≤ k ≤ i,

we have

hi +
i−1∑

j=1

hjP (Dj+1,i ≥ y − s∗j , Dj+2,i ≥ y − s∗j+1, . . . , Di ≥ y − s∗i−1)

−(H1 + b)P (D1,i ≥ y,D2,i ≥ y − s∗1, . . . , Di ≥ y − s∗i−1)

≥ hi −
( N∑

j=i

hj + b
)
P (D1,k ≥ y − s∗k−1).

Therefore we have a sequence of upper bounds for s∗i : For k = 1, . . . , i,

ŝu
i = s∗k−1 + F̄−1

1,k

(
hi∑N

j=i hj + b

)
, i = 1, . . . , N,

where s∗0 is understood as 0.

7.3 Numerical Results

In this section we present some numerical examples. Since for the average cost case

numerical studies have been done extensively in Shang and Song (2003) and Gallego and

Ozer (2004), in this study we only numerically compare the two upper bounds for the

average cost case. For the discounted cost case, we compare the optimal solutions with

both the lower and upper bounds. We also develop a simple heuristic for the discounted

cost case using the lower and upper bounds and demonstrate the performance of the

heuristic.

Table 1 compares the optimal base stock levels, the upper bound of Shang and Song

(2003) and the upper bound we develop for a four-stage system with L2 = L3 = L4 = 0.25,

h2 = h3 = h4 = 0.25, b = 9 and Poisson demand with rate λ = 16. The echelon holding
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cost takes values 5 and 35. The transportation leadtime of stage 1 increases at the

increments of 0.5, it goes from 0.5 to 3. As we observed earlier, none of these two bounds

dominate the other. In all these examples our upper bound for optimal policy of stage

2 is better than that of Shang and Song (2003). Furthermore, it appears that our upper

bound is getting tighter than Shang and Song (2003) as transportation leadtime/holding

cost of stage 1 increases.

Table 7.1: Optimal and Two Upper Bound Policies: Average Cost

h1 L1 s∗1 s∗2 s∗3 s∗4 su
1 su

2 su
3 su

4 ŝu
1 ŝu

2 ŝu
3 ŝu

4 s̃u
1 s̃u

2 s̃u
3 s̃u

4

5 0.5 9 16 20 25 9 19 24 29 9 17 24 28 9 17 25 33
1 18 24 28 33 18 30 34 39 18 27 33 37 18 27 34 42

1.5 26 32 36 41 26 38 43 48 26 34 40 44 26 34 41 49
2 34 40 44 49 34 48 52 57 34 42 48 52 34 42 50 58

2.5 42 48 52 56 42 57 61 66 42 50 56 60 42 50 58 66
3 51 56 60 65 51 66 70 75 51 60 65 69 51 60 68 75

35 0.5 6 13 19 24 6 19 24 29 6 14 21 27 6 14 21 29
1 13 20 25 29 13 29 33 38 13 21 28 33 13 21 29 36

1.5 20 27 32 36 20 38 43 48 20 28 35 40 20 28 36 44
2 28 34 39 43 28 48 52 57 28 36 42 47 28 36 43 51

2.5 35 42 46 51 35 57 61 66 35 43 50 54 35 42 50 58
3 43 49 54 58 43 66 70 75 43 51 57 62 43 51 58 66

In Table 2, we provide the lower and upper bounds for the discounted cost case for a

four-stage system with λ = 16, α = 0.9, L1 = L2 = L3 = L4 = 0.25. The upper bound

showed in the table is the smaller one of two upper bounds we construct, i.e. min{su
i , s̃

u
i }.

The shortage cost takes two values, 9 and 99 respectively, and the echelon holding costs

take values between 1 and 5.

Several heuristics can be constructed for the optimal base-stock levels, using the ap-

proaches of Shang and Song (2003) and Gallego and Ozer (2004). For example, any

convex combination of sl
i and su

i ,

asl
i + (1 − a)su

i 0 ≤ a ≤ 1

126



Table 7.2: Lower and Upper Bound/Optimal Policies: Discounted Cost

b h1 h2 h3 h4 s∗1 s∗2 s∗3 s∗4 sl
1 sl

2 sl
3 sl

4 su
1 su

2 su
3 su

4

9 1 1 1 1 7 11 15 19 7 10 14 18 7 12 16 21
1 1 1 5 7 12 16 16 7 11 15 16 7 12 17 16
1 1 5 1 7 12 13 17 7 11 12 16 7 12 13 20
1 1 5 5 8 12 13 15 8 11 13 15 8 12 13 16
1 5 1 1 7 9 14 18 7 9 12 16 7 9 16 20
1 5 1 5 8 9 15 15 8 9 13 15 8 9 17 16
1 5 5 1 8 9 12 16 8 9 11 15 8 9 13 20
1 5 5 5 8 10 12 14 8 9 12 14 8 10 13 16
5 1 1 1 5 10 14 18 5 8 12 16 5 10 16 20
5 1 1 5 5 11 15 16 5 9 13 15 5 12 17 16
5 1 5 1 5 11 12 17 5 9 11 15 5 12 13 20
5 1 5 5 6 11 13 15 6 9 12 14 6 12 13 16
5 5 1 1 5 8 13 17 5 8 11 15 5 9 15 20
5 5 1 5 6 9 14 15 5 8 12 14 6 9 17 16
5 5 5 1 6 9 11 16 5 8 11 14 6 9 13 20
5 5 5 5 6 9 12 14 5 9 11 14 6 10 13 16

99 1 1 1 1 9 15 20 24 9 14 19 23 9 15 20 25
1 1 1 5 9 15 20 22 9 14 19 22 9 15 20 22
1 1 5 1 9 15 17 23 9 14 17 22 9 15 17 25
1 1 5 5 9 15 18 21 9 14 17 21 9 15 18 22
1 5 1 1 9 13 19 24 9 12 17 22 9 13 20 25
1 5 1 5 9 13 19 22 9 12 17 21 9 13 20 22
1 5 5 1 9 13 17 23 9 12 16 21 9 13 17 25
1 5 5 5 9 13 17 21 9 12 16 20 9 13 18 22
5 1 1 1 8 14 19 24 8 12 17 22 6 15 20 25
5 1 1 5 8 14 19 22 8 12 17 21 8 15 20 22
5 1 5 1 8 14 17 23 8 12 16 21 8 15 17 25
5 1 5 5 8 14 17 21 8 12 16 20 8 15 18 22
5 5 1 1 8 12 19 24 8 11 16 21 8 13 20 25
5 5 1 5 8 12 19 21 8 12 16 20 8 13 20 22
5 5 5 1 8 12 17 23 8 12 16 20 8 13 17 25
5 5 5 5 8 12 17 21 8 12 16 19 8 13 18 22

can be used to approximate s∗i . In Table 3, we show the effective of the heuristic for

the discounted cost case with a 4-stage system with L1 = L2 = L3 = L4 = 1, λ = 16,

α = 0.9. The initial inventory level for each stage is 0. Again the shortage cost value

is either 9 or 99, and the echelon holding costs range from 1 to 5. We use the simple
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average

sh
i =

su
i + sl

i

2
,

where su
i is again the smaller one of the two upper bounds. If the average is not an

integer, we can either round up or round down the value to obtain the nearest integer

value for sh
i . In our numerical examples, we round down the noninteger value. The

relative error is defined as

Error =
C(sh) − C(s∗)

C(s∗)
.

From the results in Table 3, the largest relative error among 32 examples is 0.4%, and

for the majority of the cases the relative error is 0.1% or less. Thus the heuristic policy

performs extremely well and it appears to be quite robust to the system parameters.

7.4 Summary

In this chapter we present an explicit form solution for the optimal echelon base-stock

policy of Clark-Scarf model for both average cost and discounted cost criteria. These

simple expressions clearly identify the key determinants of the optimal optimal policy,

and they provide a unified framework to construct simple bounds and approximations

of the optimal solutions. We illustrate the lower bound of Dong and Lee (2003) for

the discounted cost and the lower and upper bounds of Shang and Song (2003) for the

average cost. We also present new upper bounds for both average cost and discounted

cost criteria. Some simple heuristics are developed using the lower and upper bounds,

and our numerical examples show that the heuristic performs extremely well.

Similar results can be obtained for assembly systems by following the approach of
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Table 7.3: Optimal and Heuristic Policies: Discounted Cost

b h1 h2 h3 h4 s∗1 s∗2 s∗3 s∗4 sh
1 sh

2 sh
3 sh

4 C(s∗) C(sh) Error
9 1 1 1 1 22 38 54 68 22 38 54 70 1828.201 1833.528 0.003

1 1 1 5 22 39 55 62 22 39 55 64 4390.518 4401.756 0.003
1 1 5 1 22 39 48 64 22 39 49 66 5819.664 5826.200 0.001
1 1 5 5 23 40 50 59 22 40 50 63 9534.493 9573.647 0.004
1 5 1 1 22 34 51 66 22 34 52 67 9541.899 9551.240 0.001
1 5 1 5 23 35 52 60 23 35 54 63 13350.400 13383.102 0.002
1 5 5 1 23 35 46 63 23 35 48 64 15995.961 16019.823 0.001
1 5 5 5 23 36 48 58 23 36 49 62 20946.339 21018.448 0.003
5 1 1 1 18 36 52 67 18 36 52 68 19159.780 19187.441 0.001
5 1 1 5 19 38 54 61 19 37 54 63 22060.981 22099.775 0.002
5 1 5 1 19 38 47 63 19 37 48 64 23807.288 23843.264 0.002
5 1 5 5 19 38 49 59 19 38 49 61 27873.758 27922.995 0.002
5 5 1 1 19 32 50 65 18 32 49 66 28156.790 28198.230 0.001
5 5 1 5 19 33 51 60 19 34 51 62 32272.309 32327.803 0.002
5 5 5 1 19 33 45 62 19 34 47 63 35204.752 35254.394 0.001
5 5 5 5 20 34 47 58 20 34 49 60 40475.164 40556.118 0.002

99 1 1 1 1 26 45 63 80 26 44 62 80 2290.485 2293.122 0.001
1 1 1 5 26 45 63 75 26 44 63 76 5399.932 5410.304 0.002
1 1 5 1 26 45 58 78 26 44 59 79 7251.390 7263.704 0.002
1 1 5 5 26 45 58 73 26 44 59 75 11748.364 11773.185 0.002
1 5 1 1 26 41 61 79 26 41 61 79 11984.222 11997.709 0.001
1 5 1 5 26 41 61 74 26 41 61 75 16698.802 16717.228 0.001
1 5 5 1 26 41 57 77 26 41 58 78 20137.901 20158.278 0.001
1 5 5 5 26 41 57 73 26 41 58 74 26210.046 26240.049 0.001
5 1 1 1 23 44 62 79 23 43 61 79 24391.987 24416.964 0.001
5 1 1 5 23 44 62 74 23 43 61 75 28190.038 28220.166 0.001
5 1 5 1 23 44 58 77 23 43 58 78 30721.910 30755.374 0.001
5 1 5 5 23 44 58 73 23 43 58 74 35892.483 35933.339 0.001
5 5 1 1 23 40 61 78 23 40 60 78 36794.493 36830.219 0.001
5 5 1 5 23 40 61 74 23 40 60 74 42159.527 42195.904 0.001
5 5 5 1 23 40 57 76 23 40 57 77 46243.995 46280.688 0.001
5 5 5 5 23 41 57 72 23 40 57 74 52955.831 53007.861 0.001

Rosling (1989) to convert assembly system to serial systems.

We point out that the results in this chapter apply to periodic-review systems with

i.i.d. demand. However, we need to change F̄1,i to F̄(1,i)+1. This is because, for periodic
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review systems we make ordering decision at the beginning of a period and charge holding

and backlog cost at the end of the period.
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Chapter 8

Newsvendor Bounds and Heuristics

for Optimal Policy of Serial

Inventory System with Regular and

Expedited Shippings

In this chapter, we consider an N -stage serial production/distribution system with sta-

tionary demand. There are two transportation modes between stages: the regular and

expedited shippings. The optimal inventory policy for this system is known to be ech-

elon base-stock policy, which can be computed through minimizing 2N nested convex

functions recursively. To identity the key determinants of the optimal policy, we develop

simple newsvendor type of lower and upper bounds for the control parameters, as well

as simple near optimal heuristics. Extensive numerical results show that the heuristic

performs well. The bounds and heuristic enhance the accessibility and implementability

of the optimal policies in supply chains with multiple transportation modes.
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8.1 Probabilistic Solution

Consider an infinite-horizon periodic-review serial inventory system with dual transporta-

tion modes. There are N stages, denoted by 1, 2, . . . , N , stage i orders from stage i + 1

(i = 1, . . . , N − 1), and stage N orders from an external supplier with unlimited stock.

Intuitively, we can imagine that there are two managers at each stage: The expedited

order manager is responsible for the expedited ordering and the regular order manager is

responsible for the regular ordering. Demand occurs only at stage 1, and excess demand

is fully backlogged at stage 1. The regular order has leadtime 1, and the expedited order

has leadtime 0. The demands in different periods are i.i.d. random variables. At the

beginning of each period, the firm decides the ordering quantities for two supply options

at each stage. The objective is to minimize the total discounted cost over an infinite

planning horizon.

The events sequence is as follows: First at the beginning of the period, each stage

receives the regular order placed in the previous period; second, emergency order is

placed from its upstream stage which is delivered immediately; third, regular order is

placed from the upstream which will be delivered at the beginning of next period; finally,

demand is realized at stage 1 and all costs are calculated.

For i = 1, 2, . . . , N , define:

xi = initial echelon inventory level at stage i;

yE
i = echelon inventory level at stage i after placing the expedited order;

yR
i = echelon inventory position at stage i after placing the regular order;

c̄E
i = unit expedited shipping cost from stage i + 1 to stage i;
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c̄R
i = unit regular shipping cost from stage i + 1 to stage i, i.e., c̄R

i < c̄E
i ;

hi = unit echelon i inventory holding cost per period;

Hi = unit installation i inventory holding cost per period, s.t., Hi =
∑N

j=i hj.

b = unit demand backlog cost per period;

Dj = demand in period j, j = 1, 2, . . .;

D = generic one-period demand;

F (.) = cumulative distribution function of D;

F̄ (.) = 1 − F (.);

D(j) = j-period demand, j = 1, 2, . . .;

Fj(.) = cumulative distribution function of D(j), j = 1, 2, . . .;

F̄j(.) = 1 − Fj(.), j = 1, 2, . . ..

As explained in Lawson and Porteus (2000), xi denotes the sum of on-hand stock at

stages 1 and i, less the backlog at stage 1; yE
i is the echelon stock level of stage i after

all expediting at stage i and upstream stages, but before expediting into stage stage

i − 1, have taken place. Similarly, yR
i is the echelon inventory level of stage i after both

expedited order and regular order from stage i + 1. Clearly, yR
i − yE

i ≥ 0 represents the

number of regular units placed into the regular flow from stage i + 1, while yE
i − xi ≥ 0

represents the number of units expedited to stage i from stage i + 1. Since a product

can be expedited to stage i in no time through expedition between stages, yE
i − xi has
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no upper limit. Also, note that D(1) = D and F1 = F . The state of the system at the

beginning of a period, before any decision is made, is x = (x1, . . . , xN).

The following result is easily verified, and it is originally due to Karush (1958).

Lemma 8.1.1 Let g(x) be a convex function with a minimizer s, then for any x ≤ y,

min
x≤z≤y

g(z) = g(x ∨ s) + g(y ∧ s) − g(s).

Note that g(x∨R) is an increasing convex function of x while g(y∧R) is a decreasing

convex function of y.

Let f(x) be the minimum expected total discounted cost given initial echelon inventory

level x = (x1, x2, . . . , xN). Let L1(x) = h1E[x − D] + (H1 + b)E[(x − D)−] and Li(x) =

hi[x − D] for i > 1. The optimality equation is

f(x) = min
xi≤yE

i ≤yR
i ≤yE

i+1

{
N∑

i=1

(c̄E
i (yE

i − xi) + c̄R
i (yR

i − yE
i ) + Li(y

E
i )) + αE[f(yR − D)]

}
,(8.1)

where yR = (yR
1 , . . . , yR

N) and yR − D = (yR
1 − D, . . . , yR

N − D). For ease of exposition,

we shift the cost −c̄E
i x to the previous period and after some simple algebra, we obtain

f(x) = min
xi≤yE

i ≤yR
i ≤yE

i+1

{
N∑

i=1

((c̄E
i − c̄R

i )yE
i + αcE

i E[D] + (c̄R
i − αc̄E

i )yR
i + hiE[(yE

i − D)])

+L(yE
1 ) + αE[f(yR − D)]

}
.

Let cE
i = c̄E

i − c̄R
i + hi > 0 and cR

i = αc̄E
i − c̄R

i > 0, the reason for cR
i > 0 is that

otherwise the regular order will never be used and the model collapse to the model with

single supply mode which is not the interest of this chapter. We call cE
i the relative unit

expedited ordering cost and cR
i the relative unit regular ordering cost.
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By suppressing the terms that do not affect the optimization, we can finally rewrite

the optimality equation as,

f(x) = min
xi≤yE

i ≤yR
i ≤yE

i+1

{
N∑

i=1

(cE
i yE

i − cR
i yR

i ) + (b + H1)E[(yE
1 − D)−]

+αE[f(yR − D)]

}
(8.2)

It can be shown that f(x) is additively convex,

f(x) =
N∑

i=1

fi(xi), (8.3)

where each fi(xi) is a convex function (see Lawson and Porteus (2000)). Let GE
1 (y) =

cE
1 y+(H1+b)E[(y−D)−], which is a convex function with minimizer sE

1 , a finite number.

Applying Lemma 1 to (8.2) yields f1(x1) = GE
1 (x1 ∨ sE

1 ). Let

G1,1(y) = GE
1 (y ∧ sE

1 ) − GE
1 (sE

1 ) + αE[GE
1 ((y − D) ∨ sE

1 )],

referred to as the induced penalty cost, and

GR
1 (y) = GE

1,1(y) − cR
1 y.

Let sR
1 be the minimizer of convex function GR

1 (.). Substituting (8.3) into (8.2) and

applying Lemma 1 yields,

min
x1≤yE

1
≤yR

1
≤yE

2

{GE
1 (yE

1 ) − cR
1 yR

1 + αE[f1(y
R
1 − D)]}

= GE
1 (x1 ∨ sE

1 ) + min
yR
1
≤yE

2

{−cR
1 yR

1 + GE
1,1(y

R
1 )}

= GE
1 (x1 ∨ sE

1 ) + min
yR
1
≤yE

2

GR
1 (yR

1 )

= GE
1 (x1 ∨ sE

1 ) + GR
1 (yR

1 ∧ sR
1 ).
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Let G1,2(y) = GR
1 (yR

1 ∧ sR
1 ), also called reduced cost, and

GE
2 (y) = cE

2 y + GR
1,2(y).

Let sE
2 be the minimizer of convex function GE

2 (.). This process can be continued and

we obtain, in general for i ≥ 1, after GE
i is defined with minimizer sE

i , that

Gi,i(y) = GE
i (y ∧ sE

i ) − GE
i (sE

i ) + αE[GE
i ((y − D) ∨ sE

i )], (8.4)

GR
i (y) = Gi,i(y) − cR

i y, (8.5)

Gi,i+1(y) = GR
i (y ∧ sR

i ), (8.6)

GE
i+1(y) = cE

i+1y + Gi,i+1(y). (8.7)

And that, for all i ≥ 1,

fi(xi) = GE
i (xi ∨ sE

i ).

Note that all these functions are convex, and in particular, Gi,i+1 is decreasing convex

and fi is increasing convex.

The optimal policy for this system is top-down echelon base-stock policies (Lawson

and Porteus (2000)). The top-down base-stock policy works as follows. Each stage

tries to raise its echelon inventory position to the expedited order-up-to level SE
i and

regular order-up-to level SR
i , taking upstream decisions as fixed and ignoring downstream

decisions. More formally, a policy with 2N base-stock levels is a top-down base-stock

policy if the actual decisions can be constructed from the base-stock levels as follows.

yR
N = sR

N ∨ xN ,

yE
i = sE

i ∨ xi ∧ yR
i i = 1, 2, . . . , N,

yR
i = sR

i ∨ xi ∧ yE
i+1 i = 1, 2, . . . , N − 1.
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Lemma 8.1.2 (1) sE
i ≤ sR

i−1, for i = 2, . . . , N .

(2) sE
i ≤ sR

i , for i = 1, . . . , N .

Proof. As sE
i is determined by

cE
i + G′

i−1,i(y) = 0, (8.8)

it follows from G′
i−1,i(y) = 0 on y ≥ sR

i−1 and the increasingness of the left hand side of

(8.8) that sE
i ≤ sR

i−1.

Similarly, sR
i is the solution of

−cR
i + G′

i,i(y) = 0. (8.9)

It can be seen that EG′
i,i(y − D) ≤ 0 on y ≤ sE

i , thus −cR
i + G′

i,i(y) < 0, implying

sR
i ≥ sE

i . �

We can develop probabilistic solutions for the optimal base-stock levels sE
i and sR

i .

From equations (8.4)-(8.7), the optimal control parameters sE
i and sR

i are, respectively,

the solution of (GE
i (y))′ = 0 and (GR

i (y))′ = 0. Let D1, D2, . . . demands in periods be

1, 2, . . .. For stage 1, taking derivative of GE
1 (y) with respect to y yields

cE
1 − (H1 + b)P (D1 > y) = 0,

hence the optimal expedited base-stock level for stage 1 is

sE
1 = F̄−1

(
cE
1

H1 + b

)
. (8.10)

Note that if cE
1 ≥ H1 + b, then sE

1 = −∞ and expedited shipping is never used at stage 1.

To solve for sR
1 , it follows from Lemma 8.1.2 that we only need to consider the solution
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of (GE
1 (y))′ = 0 on y ≥ sE

1 . It follows from (8.4) that sR
1 is the solution of

−cR
1 + αcE

1 P (D2 ≤ y − sE
1 ) − α(H1 + b)P (D2 ≤ y − sE

1 , D1 + D2 > y) = 0. (8.11)

Some further algebraic derivations yield that sE
2 is the solution of

cE
2 − cR

1 + cE
1 1[y < sE

1 ] + αcE
1 P (D ≤ y − sE

1 )

−(H1 + b)P (D > y)1[y < sE
1 ] − α(H1 + b)P (D ≤ y − sE

1 , D(2) > y)

= 0,

that sR
2 is the solution of

−cR
2 + αcE

2 P (D ≤ y − sE
2 ) − αcR

1 (D ≤ y − sE
2 , D > y − sR

1 )

+αcE
1 P (D ≤ y − sE

2 , D > y − sR
1 , D > y − sE

1 )

+α2cE
1 P (D ≤ y − sE

2 , D > y − sR
1 , D(2) ≤ y − sE

1 )

−α(H1 + b)P (D ≤ y − sE
2 , D > y − sE

1 , D > y − sR
1 , D(2) > y))

−α2(H1 + b)P (D ≤ y − sE
2 , D > y − sR

1 , D(2) ≤ y − sE
1 , D(3) > y)

= 0,
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and that sE
3 is the solution of

cE
3 − cR

2 + (cE
2 − cR

1 )1[y < sE
2 ] + cE

1 1[y < sE
1 , y < sE

2 ] + αcE
1 P (D ≤ y − sE

1 )1[y < sE
2 ]

+αcE
2 P (D ≤ y − sE

2 ) − αcR
1 (D ≤ y − sE

2 , D > y − sR
1 )

+αcE
1 P (D ≤ y − sE

2 , D > y − sR
1 , D > y − sE

1 )

+α2cE
1 P (D ≤ y − sE

2 , D > y − sR
1 , D(2) ≤ y − sE

1 )

−(H1 + b)P (D > y)1[y < sE
1 , y < sE

2 ]

−α(H1 + b)P (D ≤ y − sE
1 , D(2) > y)1[y < sE

2 ]

−α(H1 + b)P (D ≤ y − sE
2 , D > y − sR

1 , D > y − sE
1 , D(2) > y))

−α2(H1 + b)P (D ≤ y − sE
2 , D > y − sR

1 , D(2) ≤ y − sE
1 , D(3) > y)

= 0.

This process can be continued to give a probability solution for sE
i and sR

i for any i.

As can be expected, the expression becomes extremely complicated as i increases. The

detailed derivation of these equations are in the appendix.

The following lemma presents the dependency of policy parameters on system para-

meters.

Lemma 8.1.3 (1) sE
i is decreasing in cE

j for j ≤ i, independent of cE
j for j > i, increas-

ing in cR
j for j < i, independent of cR

j for j ≥ i and increasing in b.

(2) sR
i is decreasing in cE

j for j ≤ i,independent of cE
j for j > i, increasing in cR

j for

j ≤ i, independent of cR
j for j > i and b.

Proof. From equations (8.8) and (8.9) and the convexity of GE
i and GR

i , it is easy to see

that sE
i is decreasing in cE

i and sR
i is increasing in cR

i . To prove sR
i is decreasing in cE

i , it

suffices to prove that the left hand side of (8.9) is increasing in cE
i . To see this, let (8.9)
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be written as g(y, cE
i ) = 0, and let sR

i (cE
i ) its solution. Recall that g(y, cE

i ) is increasing

in y. Suppose cE
i ≤ c̄E

i . If g(y, cE
i ) is increasing in cE

i , then

g(sR
i (c̄E

i ), cE
i ) ≤ g(sR

i (c̄E
i ), c̄E

i ) = 0.

Hence it follows from g(y, cE
i ) is increasing in y that, sR

i (cE
i ), determined by g(y, cE

i ) = 0,

satisfies sR
i (cE

i ) ≥ sR
i (c̄E

i ). This shows that sR
i is decreasing in cE

i .

The left hand side of (8.9) is

g(y, cE
i ) = (GE

i )′(y)1[y ≤ sE
i ] + α

∫ y−sE
i

0

(GE
i )′(y − t)dF (t).

Noting (GE
i )

′′

y,cE
i

= 1, we obtain

g′
cE
i
(y, cE

i ) = 1[y < sE
i ] + (GE

i )′(y)

(
1(y < sE

i )

)′

cE
i

1(y < sE
i )

+αF (y − sE
i ) − α(GE

i )′(sE
i )f(y − sE

i )(sE
i )′cE

i

= 1[y < sE
i ] + (GE

i )′(y)

(
1[y < sE

i ]

)′

cE
i

1[y < sE
i ] + αF (y − sE

i )

≥ 0,

where the last inequality follows from sE
i being the minimizer of GE

i , and the last in-

equality follows from

(GE
i )′(y) ≤ 0 when y < sE

i , and

(
1[y < sE

i ]

)′

cE
i

≤ 0,

since sE
i is decreasing in cE

i . We next show that both sE
i abd sR

i are decreasing in cE
j

for j < i. Suppose (GE
i (y))′′

y,cE
j

≥ 0 for i, then for i + 1, first take derivative of GR
i with
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respect to y,

(GR
i (y))′ = −cR

i + α

∫ y−sE
i

0

(GE
i (y − ξ))′df(ξ)

and

(GR
i (y))′′y,cE

j
= α

∫ y−sE
i

0

(GE
i (y − ξ))′′y,cE

j
df(ξ) ≥ 0

which imply that sR
i is decreasing in cE

j for j < i. For sE
i+1, which is the solution of

(GE
i+1(y))′ = cE

i+1 + (GR
i (y)))′ = 0

and from previous result, it is clear that

(GE
i+1(y))′′y,cE

j
= (GR

i (y)))′′y,cE
j
≥ 0

which implies that sE
i+1 is decreasing in cE

j for j < i.

As sE
1 is independent of cR

1 , we first show sE
2 is increasing in cR

1 . From (??),

(GE
2 (y))′′y,cR

1

= −1 < 0

which implies that sE
2 is increasing in cR

1 . Now suppose (GE
i (y))′′

y,cR
j

< 0 for j < i, then

for sR
i ,

(GR
i (y))′y,cR

j
= α

∫ y−sE
i

0

(GE
i (y − ξ))′′y,cR

j
df(ξ) < 0

and

(GE
i+1(y))′y,cR

j
= (GR

i (y))′′y,cR
j

< 0.
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Therefore, both both sE
i and sR

i are increasing in cR
j for j < i.

Next, we show both sE
i and sR

i are increasing in b by induction. It is clear that sE
1 is

increasing in b from (8.10). To show sR
1 is increasing in b, it suffices to show that the left

hand side of (8.11) is decreasing in b. Let

g(y, b) = cE
1 P (D ≤ y − sE

1 ) − (H1 + b)P (D ≤ y − sE
1 , D(2) ≥ y)

and it suffices to prove g′
b(y, b) ≤ 0. Taking derivative with respect to b yields

g′
b(y, b) =

(∫ y−sE
1

0

(cE
1 − (H1 + b)F̄ (y − t)dF (t)

)′

= (y − sE
1 )′(cE

1 − (H1 + b)F̄ (sE
1 ))F ′(y − sE

1 )

−

∫ y−sE
1

0

F̄ (y − t)dF (t)

= −

∫ y−sE
1

0

F̄ (y − t)dF (t)

≤ 0.

Suppose we have proved (GE
i (y))′ and GR

i (y))′ have been proved to be increasing in b,

thus sE
i and sR

i are increasing in b. We need to show that (GE
i+1)

′ and (GR
i+1(y) are also

decreasing in b. We have

(GE
i+1(y))′b = cE

i+1 + G′
i,i+1(y) = cE

i+1 + (GR
i )′(y)1[y < sR

i ].

Take derivative with respect to b,

(GE
i+1(y))′′y,b =

(
GR

i (y)

)′′

y,b

1(y < sR
i ) + (GR

i )′(y)

(
1[y < sR

i ]

)′

b

1[y < sR
i ],

≤ 0

where the inequality follows from the inductive assumption, GR′

i (y) ≤ 0 when y ≤ sR
i ,
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and (
1[y < sR

i ]

)′

b

≥ 0

because sR
i is increasing in b. Thus, sE

i+1 is decreasing in b.

Similarly, we have

(GR
i+1(y))′y = −cR

i+1 + G′
i+1,i+1(y)

= −cR
i+1 + (GE

i+1)
′(y)1[y < sE

i+1] + αE
[
(GE

i+1)
′((y − D))1[y − D > sE

i+1]
]
.

Taking derivative with respect to b yields

(
GE

i+1(y)

)′′

y,b

1[y < sE
i+1] + (GE

i+1)
′(y)

(
1[y < sE

i+1]

)′

b

+α

[∫ y−sE
i+1

0

(
GE

i+1((y − t))

)′′

y,b

dF (t) − (GE
i+1)

′(sE
i+1)f(y − sE

i+1)(s
E
i+1)

′
b

]

=

(
GE

i+1(y)

)′′

y,b

1[y < sE
i+1] + (GE

i+1)
′(y)

(
1[y < sE

i+1]

)′

b

+αE

[(
GE

i+1((y − D))

)′′

y,b

1[y − D > sE
i+1]

]

≤ 0

where the equality follows from the optimality of sE
i+1 and the inequality follows from

the similar analysis as in the previous discussion. Thus, we complete the induction proof

that sE
i and sR

i are increasing in b. �

Thus, for each stage, if the expedition cost gets higher, then less expedition will be used

and the base-stock level for expedited order becomes lower. If the expedition cost of any

downstream stage gets higher, then less expedition will be used in that stage and so the

expedited base-stock level of current stage becomes lower. But if the regular shipping cost
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gets higher, then the regular echelon base stock level becomes higher. The explanation

for the latter is the same as that of a single-stage infinite horizon inventory model with

periodic review and one ordering opportunity in each period, for which it is well-known

that the base-stock level is increasing in purchasing cost. As a result, if downstream

stage’s regular shipping cost becomes higher, then the downstream stage tends to order

more so both the expedited and regular order of current stage becomes higher. That sR
i

is also decreasing in cE
j can be explained as follows: As we can consider the expedited

manager is the downstream of the regular order manager, when the expedition cost is

higher, less expedited are placed and consequently, the echelon base-stock level for regular

shipping will also become lower. Finally, both sE
i and sR

i are increasing in b is intuitively

clear: with higher shortage cost, then each stage should keep higher (echelon) inventory

to reduce shortage cost.

Lemma 8.1.4 For i = 2, . . . , N , if cR
i−1 > cE

i , sE
i ≥ sE

i−1; otherwise sE
i ≤ sE

i−1.

Proof. Recall that sE
i is the solution of

cE
i − cR

i−1 + (GE
i−1(y))′1(y < sE

i−1) + αE[(GE
i−1(y − D))′1(y − D > sE

i−1)] = 0.

If cR
i−1 > cE

i and sE
i < sE

i−1,

cE
i − cR

i−1 + (GE
i−1(y))′ < 0

which implies that sE
i = ∞, which is a contradiction. So sE

i ≥ sE
i−1.

If cR
i−1 ≤ cE

i and sE
i > sE

i−1, then

cE
i − cR

i−1 + αE[(GE
i−1(y − D))′1(y − D > sE

i−1)] ≥ 0

which implies sE
i = −∞, again a contradiction. So sE

i ≤ sE
i−1. �

144



Lemma 8.1.5 For i = 2, . . . , N , sR
i ≥ sR

i−1, if sR
i−1 − sE

i ≤ F−1
(

cR
i

αcE
i

)
.

Proof. Recall that sR
i is the solution of

−cR
i + αE[(cE

i + (GR
i−1(y − D))′1(y − D < sR

i−1)1(y − D > sE
i )] = 0.

So it is sufficient to show that

−cR
i + αE[(cE

i + (GR
i−1(s

R
i−1 − D)))′1(sR

i−1 − D > sE
i )] ≤ 0,

which is true if −cR
i + αcE

i P (sR
i−1 − D > sE

i ) ≤ 0. Thus, if

P (sR
i−1 − D > sE

i ) ≤
cR
i

αcE
i

,

then sR
i ≥ sR

i−1. �

8.2 Bounds

In this section, we develop several sets of newsvendor lower bounds and upper bounds

for the optimal echelon base stock levels. All the proofs are provided in the Appendix.

The basic ideas used in developing upper and lower bounds are as follows: The optimal

base-stock level for emergency shipping sE
i is determined by (GE

i (y))′ = 0. Since (GE
i (y))′

is an increasing function of y, if we can find a function g such that GE
i (y))′ ≤ g(y), then

the solution of g(y) = 0 is a lower bound for sE
i . Similarly, if we can find a function g

such that GE
i (y))′ ≥ g(y), then the solution of g(y) = 0 is an upper bound for sE

i . The

same argument applies to sR
i which is determined by (GR

i (y))′ = 0.
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Theorem 8.2.1 For i = 1, . . . , N , the lower bounds for sE
i and sR

i are, respectively,

sE1
i = max

{
F̄−1

(∑i
j=1(c

E
j − cR

j−1)

H1 + b

)
, F̄−1

(∑i
j=1 αi−j(cE

j − cR
j−1)

αi−1(H1 + b)

)}
, (8.12)

and

sR1
i = max

{
F̄−1

(
−cR

i +
∑i

j=1(c
E
j − cR

j−1)

H1 + b

)
, F̄−1

(
−cR

i +
∑i

j=1 αi−j+1(cE
j − cR

j−1)

αi(H1 + b)

)}
.(8.13)

Proof. It is sufficient to show that for any i,

(GE
i (y))′ ≤

i∑

j=1

(cE
j − cR

j−1) − (H1 + b)P (D > y), (8.14)

(GR
i (y))′ ≤ −cR

i +
i∑

j=1

(cE
j − cR

j−1) − (H1 + b)P (D > y), (8.15)

and

(GE
i (y))′ ≤

i∑

j=1

αi−j(cE
j − cR

j−1) − αi−1(H1 + b)P (D > y), (8.16)

(GR
i (y))′ ≤ −cR

i +
i∑

j=1

αi−j+1(cE
j − cR

j−1) − αi(H1 + b)P (D > y). (8.17)
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We prove these inequalities by induction. It is clear true for sE
1 . For (8.15), we have,

−cR
1 + (cE

1 − (H1 + b)P (D2 > y))1(y < sE
1 )

+αcE
1 P (D1 < y − sE

1 ) − α(H1 + b)P (D1 < y − sE
1 , D(2) > y)

≤ −cR
1 + (cE

1 − (H1 + b)P (D2 > y))1(y < sE
1 )

+cE
1 P (D1 < y − sE

1 ) − (H1 + b)P (D1 < y − sE
1 , D(2) > y)

≤ −cR
1 + E[cE

1 − (H1 + b)P (D2 > y))1(y − D1 < sE
1 )]

+cE
1 P (D1 < y − sE

1 ) − (H1 + b)P (D1 < y − sE
1 , D(2) > y)

≤ −cR
1 + cE

1 − H1 + b)P (D2 > y))1(y − D1 < sE
1 ))

−(H1 + b)P (D1 < y − sE
1 , D2 > y)

≤ −cR
1 + cE

1 − (H1 + b)P (D > y).

Assume (8.14) and (8.15) holds for i, and we prove that it holds for i+1. It follows from

(8.4) to (8.7) that

(GE
i+1(y))′

= cE
i+1 + (GR

i (y ∧ sR
i ))′

≤ cE
i+1 + (GR

i (y))′

≤ cE
i+1 − cR

i +
i∑

j=1

(cE
j − cR

j−1) − (H1 + b)P (D > y)

=
i+1∑

j=1

(cE
j − cR

j−1) − (H1 + b)P (D > y),

where the first inequality follows from that G′
i,i+1 is 0 on y ≤ sR

i and increasing on y ≥ sR
i ,

the second inequality follows from inductive assumption.
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We then prove (8.15) for i + 1. Note that

(GR
i+1(y))′

= −cR
i+1 + G′

i+1,i+1(y)

= −cR
i+1 + (GE

i+1)
′(y)1(y < sE

i+1) + αE[(GE
i+1)

′(y − D)1(y − D > sE
i+1)]

≤ −cR
i+1 + E(GE

i+1)
′(y)1(y − D < sE

i+1) + E[(GE
i+1)

′(y − D)1(y − D > sE
i+1)]

≤ −cR
i+1 +

i+1∑

j=1

(cE
j − cR

j−1)P (y − Di < sE
i+1) − (H1 + b)P (Di+1 > y, y − Di < sE

i+1)

+

( i+1∑

j=1

(cE
j − cR

j−1))P (y − Di > sE
i+1) − (H1 + b)P (Di+1 + Di > y, y − Di > sE

i+1)

)

≤ −cR
i+1 +

(
i+1∑

j=1

(cE
j − cR

j−1)

)
− (H1 + b)P (D > y),

where the first inequality follows from E[(GE
i+1)

′(y − D)1(y − D > sE
i+1) ≥ 0 and the

second inequalities follows the same lines of the previous arguments.

For (8.16) and (8.17), it is also clearly true for sE
1 , then for sR

1

−cR
1 + (cE

1 − (H1 + b)P (D2 > y))1(y < sE
1 )

+αcE
1 P (D1 < y − sE

1 ) − α(H1 + b)P (D1 < y − sE
1 , D(2) > y)

≤ −cR
1 + αE[cE

1 − (H1 + b)P (D2 > y))1(y − D1 < sE
1 )]

+αcE
1 P (D1 < y − sE

1 ) − α(H1 + b)P (D1 < y − sE
1 , D(2) > y)

≤ −cR
1 + αcE

1 − α(H1 + b)P (D2 > y))1(y − D1 < sE
1 ))

−α(H1 + b)P (D1 < y − sE
1 , D2 > y)

≤ −cR
1 + αcE

1 − α(H1 + b)P (D > y).

Assume the (8.16) and (8.17)hold for i, and we prove that they hold for i + 1. It follows
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from (8.4) to (8.7) that

(GE
i+1(y))′

= cE
i+1 + (GR

i (y ∧ sR
i ))′

≤ cE
i+1 + (GR

i (y))′

≤ cE
i+1 − cR

i +
i∑

j=1

αi−j+1(cE
j − cR

j−1) − αi(H1 + b)P (D > y)

=
i+1∑

j=1

αi−j+1(cE
j − cR

j−1) − αi(H1 + b)P (D > y),

where the first inequality follows from that G′
i,i+1 is 0 on y ≤ sR

i and increasing on y ≥ sR
i ,

the second inequality follows from inductive assumption.

We then prove (8.17) for i + 1. Note that

(GR
i+1(y))′

= −cR
i+1 + G′

i+1,i+1(y)

= −cR
i+1 + (GE

i+1)
′(y)1(y < sE

i+1) + αE[(GE
i+1)

′(y − D)1(y − D > sE
i+1)]

≤ −cR
i+1 + α(GE

i+1)
′(y)1(y < sE

i+1) + αE[(GE
i+1)

′(y − D)1(y − D > sE
i+1)]

≤ −cR
i+1 + αE(GE

i+1)
′(y)1(y − D < sE

i+1) + αE[(GE
i+1)

′(y − D)1(y − D > sE
i+1)]

≤ −cR
i+1 +

i+1∑

j=1

αi−j+2(cE
j − cR

j−1)P (y − Di < sE
i+1)

−αi+1(H1 + b)P (Di+1 > y, y − Di < sE
i+1)

+

( i+1∑

j=1

αi−j+2(cE
j − cR

j−1))P (y − Di > sE
i+1)

−αi+1(H1 + b)P (Di+1 + Di > y, y − Di > sE
i+1)

)

≤ −cR
i+1 +

(
i+1∑

j=1

αi−j+2(cE
j − cR

j−1)

)
− αi+1(H1 + b)P (D > y),

where the inequalities follow from the same lines of the previous arguments. This com-
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pletes the proof of Theorem 8.2.1. �

For notational convenience, for i = 1, . . . , N, j = 1, . . . , i, let

Ai,i = 0

Bi,j = cR
i + αA+

i,j,

Ai,j = −cE
i + Bi−1,j.

In the next theorem, we give other sets of lower bounds for sE
i and sR

i .

Theorem 8.2.2 For i = 1, 2, . . . , N , if
∑i

j=1 αi−j(cE
j − cR

j−1)) ≤ αi−1(H1 + b), then the

lower bounds for sE
i and sR

i are,

sE2
i = max

{
F−1

k

(
Ai,i−k+1∑i−k+1

l=1 αi−l(cE
l − cR

l−1)

)
, k = 2, . . . , i

}
, (8.18)

sR2
i = max

{
F−1

k+1

(
Bi,i−k+1∑i−k+1

l=1 αi−l+1(cE
l − cR

l−1)

)
, k = 1, . . . , i

}
. (8.19)

Proof. For (8.19), we need to show for i = 2, . . . , N

(GE
i (y))′ ≤ −Ai,i−k+1 +

i−k+1∑

ℓ=1

αi−l(cE
l − cR

l−1)P (D(k) ≤ y), k = 2, . . . , i − 1
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and i = 1, . . . , N

(GR
i (y))′ ≤ −Bi,i−k+1 +

i∑

j=1

αi−l+1(cE
j − cR

j−1)P (D(k + 1) ≤ y), k = 1, . . . , i − 1.

From Theorem 8.2.1, for i = 1, . . . , N ,

(GR
i (y))′ = −cR

i + (GE
i (y))′1(y < sE

i ) + αE[(GE
i )′(y − D)1(y − D > sE

i )]

≤ −cR
i + αE[(GE

i )′(y − D)1(y − D > sE
i )]

≤ −cR
i + αE

[ i∑

l=1

αi−l(cE
l − cR

l−1)P (y − D > sE
i )

−αi−1(H1 + b)P (D(2) > y, y − D > sE
i )
]

≤ −cR
i + αE

[ i∑

l=1

αi−j(cE
l − cR

l−1)P (y − D > sE
i )

−
i∑

j=1

αi−l(cE
l − cR

l−1)P (D(2) > y, y − D > sE
i )
]

= −cR
i + αE

[ i∑

l=l

αi−l(cE
l − cR

l−1)P (y − D > sE
i , D(2) ≤ y)

]

≤ −cR
i +

i∑

l=1

αi−l(cE
l − cR

l−1)P (D(2) ≤ y)

= −Bi,i +
i∑

l=1

αi−l(cE
l − cR

l−1)P (D(2) ≤ y),

where the third inequality follows from that
∑i

l=1 αi−l(cE
l − cR

l−1) ≤ αi−1(H1 + b). This

validates the case k = 1 for GR
i . The lower bound (8.18) can be easily obtain from above
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derivation as

(GE
i+1(y))′ = cE

i+1 + (GR
i (y))′1(y < sR

i )

≤ cE
i+1 + (GR

i (y))′

≤ cE
i+1 − cR

i +
i∑

l=1

αi−l(cE
j − cR

j−1)P (D(2) ≤ y)

≤ −Ai+1,i +
i∑

l=1

αi−l(cE
j − cR

j−1)P (D(2) ≤ y).

This shows the case for k = 2 of GE
i .

Based on these, suppose it is true for some k = j for GE
i (·), so

(GR
i (y))′ ≤ −cR

i + αE[(GE
i )′(y − D)1(y − D > sE

i )]

≤ −cR
i + αE

[
Ai,i−j+1P (y − D > sE

i )

+

i−j+1∑

l=1

αi−l(cE
l − cR

l−1)P (D(j + 1) ≤ y, y − D > sE
i )

]

≤ −Bi,i−j+1 +

i−j+1∑

l=1

αi−l+1(cE
l − cR

l−1)P (D(j + 1) ≤ y)

and

(GE
i+1(y))′ = cE

i+1 + (GR
i (y))′1(y < sR

i )

≤ cE
i+1 + (GR

i (y))′

≤ cE
i+1 − cR

i + αA+
i,i−j+1 +

i∑

l=1

αi−l+1(cE
l − cR

l−1)P (D(j + 1) ≤ y)

= Ai+1,i−j+1 +

i−j+1∑

l=1

αi−l+1(cE
l − cR

l−1)P (D(j + 1) ≤ y).

which implies that (GE
i (y))′ ≤ Ai,i−j +

∑i−j
l=1 αi−l(cE

l − cR
l−1)(H1 + b)P (D(j + 1) ≤ y).
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Then we use this for GR
i ,

(GR
i (y))′ ≤ −cR

i + αE[(GE
i )′(y − D)1(y − D > sE

i )]

≤ −cR
i + αE

[
Ai,i−jP (y − D > sE

i )

+
i−1∑

l=1

αi−l(cE
l − cR

l−1)P (D(j + 2) ≤ y, y − D > sE
i )

]

≤ −cR
i + αA+

i,i−j +

i−j∑

l=1

αi−l+1(cE
l − cR

l−1)(H1 + b)P (D(j + 2) ≤ y)

= Bi,i−j +

i−j∑

l=1

αi−l+1(cE
l − cR

l−1)(H1 + b)P (D(j + 2) ≤ y).

Hence, it is true for k = j + 1. So we complete the proof. �

Theorem 8.2.3 For i = 2, . . . , N

sE3
i = sE

i−1 + max

{
F−1

(
cR
i−1 − cE

i∑i−1
j=1 αi−j(cE

j − cR
j−1)

)
, F−1

(
cR
i−1 − cE

i

αcE
i−1

)}
(8.20)

if cR
i−1 − cE

i >= 0. And i = 1, . . . , N

sR3
i = sE

i + min

{
F−1

(
cR
i∑i

j=1 αi−j+1(cE
j − cR

j−1)

)
, F−1

(
cR
i

αcE
i

)}
. (8.21)

Proof.
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For (8.21), it suffices to show that for i = 1, 2, . . . , N,

(GE
i (y))′ ≤ cE

i − cR
i−1 + αcE

i−1P (D < y − sE
i−1), (8.22)

(GR
i (y))′ ≤ −cR

i + αcE
i P (D < y − sE

i ), (8.23)

and

(GR
i (y))′ ≤ −cR

i +
i∑

j=1

αi−j+1(cE
j − cR

j−1)P (D < y − sE
i ). (8.24)

For (8.22), note that

(GE
i (y))′ = cE

i + (GR
i−1(y))′1(y < sR

i )

≤ cE
i + (GR

i−1(y))′

≤ cE
i + (−cR

i−1 + αE[(GE
i−1(y − D))′1(y − D > sE

i−1)]

≤ cE
i − cR

i−1 + αcE
i−1P (y − D > sE

i−1)

where the last inequality follows from that (GE
i−1(y))′ ≤ cE

i . For (8.23)

(GR
i (y))′ ≤ −cR

i + αE[(GE
i (y − D))′1(y − D ≥ sE

i )]

≤ −cR
i + αcE

i P (y − D ≥ sE
i ).

We prove (8.24) by induction. For i = 1, sE
1 = sE

1 and for sR
1 , it follows from

−cR
1 + αcE

1 P (D < y − sE
1 ) − α(H1 + b)P (D < y − sE

1 , D(2) ≥ y)

≤ −cR
1 + αcE

1 P (D < y − sE
1 ).
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Again follow from Theorem 8.2.1, for any i = 1, 2 . . . , N

(GR
i (y))′

= −cR
i + G′

i,i(y)

= −cR
i + (GE

i (y))′1[y ≤ sE
i ] + αE[(GE

i (y − Di))
′1[y − Di ≥ sE

i ]

≤ −cR
i + αE

[
(GE

i (y − Di))
′1[y − Di ≥ sE

i ]
]

≤ −cR
i + α

( i∑

j=1

αi−j(cE
j − cR

j−1)P (Di ≤ y − sE
i )

−αi−1(H1 + b)P (D + Di > y,Di ≤ y − sE
i )
)

≤ −cR
i +

i∑

j=1

αi−j+1(cE
j − cR

j−1)P (Di ≤ y − sE
i ),

where the first inequality follows from that GE
i+1 is nonnegative on y ≥ sE

i+1. For (8.20),

from the result of GR
i (y),

(GE
i+1)

′(y) = cE
i+1 + (GR

i (y))′1(y < sR
i )

≤ cE
i + (GR

i (y))′

≤ cE
i+1 − cR

i +
i∑

j=1

αi−j+1(cE
j − cR

j−1)P (Di ≤ y − sE
i ).

So we complete the proof. �

From this lower bound, note that if the relative unit regular order cost of downstream

stage is greater than the relative unit expedited cost of current stage, i.e., cR
i−1 > cE

i , then

the expedited order-up-to level of the current stage is higher than that of its downstream

stage.

Note that some of the lower bounds for the optimal expedited order-up-to level are

equal to the lower bound of the optimal expedited order-up-to level of its downstream plus
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a number, which can be either positive or negative infinity; some of the lower bounds for

optimal regular order-up-to level are equal to the lower bound of the optimal expedited

order-up-to level plus a nonnegative number. Furthermore, we remark that the lower

bounds derived above do not have a dominating relationship. That is, any lower bound

can be a better, depending on the problem instance.

We next develop three upper bounds for the optimal echelon base-stock levels of each

stage.

Proposition 8.2.1 (1) If cE
i +

∑i−1
j=1(αcE

j − cR
j ) > H1 + b, sE

j = −∞ for j ≥ i. (2) If
∑i

j=1(αcE
j − cR

j ) > H1 + b, sR
j = −∞ for j ≥ i.

Proof. The proposition can be easily seen from the proof of Theorem 8.2.4. �

Theorem 8.2.4 For i = 1, . . . , N , the upper bound for sE
i and sR

i is

s̄E1
i = F̄−1

i




cE
i − cR

i−1 + αcE
i−1

H1 + b −

(∑i−2
j=1(αcE

j − cR
j )

)



 , (8.25)

if cE
i +

∑i−1
j=1(αcE

j − cR
j ) ≤ H1 + b; otherwise s̄E1

i = −∞; and

s̄R1
i = F̄−1

i+1




αcE

i − cR
i

α

(
H1 + b −

(∑i−1
j=1(αcE

j − cR
j )

))




, (8.26)

if
∑i

j=1(αcE
j − cR

j ) ≤ H1 + b; otherwise, sR
i = −∞.
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Proof. To prove the theorem, it suffices to show

(GE
i (y))′ ≥ cE

i −

(
H1 + b −

( i−1∑

j=1

(αcE
j − cR

j )

))
P (D(i) ≥ y), (8.27)

E
[
GE

i (y − D))′1[y − D ≥ sE
i ]
]

≥ cE
i −

(
H1 + b −

( i−1∑

j=1

(αcE
j − cR

j )

))
P (D(i + 1) ≥ y).

(8.28)

The first inequality (8.27) clearly implies (8.25). If (8.27) and (8.28) are satisfied, then

(GR
i (y))′

= −cR
i + G′

i,i(y)

= −cR
i + (GE

i (y))′1[y ≤ sE
i ] + αE[(GE

i (y − Di))
′1[y − Di+1 > sE

i ]

≥ −cR
i + E[GE

i (y − Di+1))
′1[y − Di+1 ≤ sE

i ] + αE[(GE
i (y − Di))

′1[y − Di+1 > sE
i ]]

= −cR
i + cE

i P [y − Di+1 ≤ sE
i ]

−

(
H1 + b −

( i−1∑

j=1

(αcE
j − cR

j )

))
P (D(i + 1) ≥ y, y − Di+1 ≤ sE

i ]

+αcE
i P (y − Di+1 > sE

i )

−α

(
H1 + b −

( i−1∑

j=1

(αcE
j − cR

j )

))
P (D(i + 1) ≥ y, y − Di+1 > sE

i )

≥ −cR
i + αcE

i −

(
H1 + b −

( i−1∑

j=1

(αcE
j − cR

j )

))
P (D(i + 1) ≥ y)

= −cR
i + αcE

i −

(
H1 + b −

( i−1∑

j=1

(αcE
j − cR

j )

))
P (D(i + 1) ≥ y),

where the first inequality follows from the fact that (GE
i (y))′1[y ≤ sE

i ] ≥ E[GE
i (y −

Di+1))
′1[y − Di+1 ≤ sE

i ]].

Moreover, as sR
i ≥ sE

i , (GE
i (y))′1[y ≤ sE

i ] = 0 when we derive the upper bound for sR
i .
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Hence, by (8.28),

−cR
i + αE[(GE

i (y − Di))
′1[y − Di+1 > sE

i ]

≥ −cR
i + αcE

i − α

(
H1 + b −

( i−1∑

j=1

(αcE
j − cR

j )

))
P (D(i + 1) ≥ y),

which implies (8.31).

We prove (8.27) and (8.28) by induction. First, for i = 1, (8.27) is equality. For sR
1 ,

we have

−cR
1 + (cE

1 − (H1 + b)P (D2 > y))1(y < sE
1 )

+αcE
1 P (D < y − sE

1 ) − α(H1 + b)P (D1 < y − sE
1 , D1 + D2 ≥ y)

≥ −cR
1 + (cE

1 P (y − D1 < sE
1 ) − (H1 + b)P (D1 + D2 > y, y − D1 < sE

1 ))

+αcE
1 P (D < y − sE) − α(H1 + b)P (D1 < y − sE

1 , D1 + D2 > y)

≥ −cR
1 + αcE

1 − (H1 + b)P (D1 + D2 > y)

= −cR
1 + αcE

1 − (H1 + b)P (D(2) ≥ y).
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Moreover, as sR
1 ≥ sE

1 ,

−cR
1 + αcE

1 P (D < y − sE
1 ) − α(H1 + b)P (D1 < y − sE

1 , D1 + D2 ≥ y)

= −cR
1 + αcE

1 (1 − P (D1 > y − sE)) − α(H1 + b)(P (D1 + D2 ≥ y)

−P (D1 > y − sE
1 , D(2) ≥ y)

= −cR
1 + αcE

1 − α(H1 + b)P (D1 + D2 ≥ y) − αcE
1 P (D1 > y − sE

1 )

+α(H1 + b)P (D1 > y − sE
1 , D1 + D2 ≥ y)

= −cR
1 + αcE

1 − α(H1 + b)P (D1 + D2 ≥ y) − α(H1 + b)P (D2 > sE)P (D1 > y − sE)

+α(H1 + b)P (D1 > y − sE, D1 + D2 ≥ y)

= −cR
1 + αcE

1 − α(H1 + b)P (D1 + D2 ≥ y) − α(H1 + b)
(
P (D2 > sE, D1 > y − sE)

−P (D1 > y − sE, D1 + D2 ≥ y)
)

≥ −cR
1 + αcE

1 − α(H1 + b)P (D(2) ≥ y)

which implies the result holds for sR
1 .

Suppose the result is true for i. For i + 1, note that

(GE
i+1(y))′

= cE
i+1 + (G′

i,i(y) − cR
i )1(y < sR

i )

≥ cE
i+1 +

[
−cR

i + αcE
i −

(
H1 + b −

( i−1∑

j=1

(αcE
j − cR

j )

))
P (D(i + 1) ≥ y)

]
1(y < sR

i )

≥ cE
i+1 −

(
H1 + b −

( i∑

j=1

(αcE
j − cR

j )

))
P (D(i + 1) ≥ y)

where the first inequality follows from the inductive assumption and the second inequality

follows from that [−cR
i + αcE

i ≥ 0. Thus, as sE
i+1 ≤ sR

i , the solution of

cE
i+1 +

[
−cR

i + αcE
i −

(
H1 + b −

( i−1∑

j=1

(αcE
j − cR

j )

))
P (D(i + 1) ≥ y)

]
= 0
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is an upper bound of sE
i+1, i.e.,

s̄E
i+1 = F̄−1

i+1




cE
i+1 − cR

i + αcE
i

H1 + b −

(∑i−1
j=1(αcE

j − cR
j )

)



 ≥ sE
i+1.

We then prove (8.28) for i + 1:

(E[GE
i+1(y − D)])′

= cE
i+1 + E[(G′

i,i+1(y − D))′]

= cE
i+1 + E[(GR

i (y − D))′1[y − D ≤ sR
i ]

≥ cE
i+1 + E

[(
−cR

i + αcE
i −

(
H1 + b −

( i−1∑

j=1

(αcE
j − cR

j )

))
1(D(i + 2) ≥ y)

)

×1[y − D ≤ sR
i ]

]

≥ cE
i+1 −

(
H1 + b −

( i∑

j=1

(αcE
j − cR

j )

))
P (D(i + 2) ≥ y), (8.29)

where the second inequality follows from αcE
i − cR

i ≥ 0 and

P (D(i + 2) ≥ y,D ≤ y − sR
i ) ≤ P (D(i + 2) ≥ y).

�

The second set of upper bounds is, i = 1, . . . , N ,

Theorem 8.2.5 The upper bound for sE
i and sR

i is

s̄E2
i = s̄R

i−1, (8.30)
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and

s̄R2
i = sR

i−1 + min






F̄−1




αcE

i − cR
i

α

(
H1 + b −

(∑i−1
j=1(αcE

j − cR
j )

))




, F−1

(
cR
i

αcE
i

)






, (8.31)

Proof. The (8.30) is valid from Lemma 2. For (8.26), from (8.29), note that

(E[GE
i (y − D)])′

≥ cE
i + E

[(
−cR

i−1 + αcE
i−1 −

(
H1 + b −

( i−2∑

j=1

(αcE
j − cR

j )

))
1(D(i + 1) ≥ y)

)

×1[y − D ≤ sR
i−1]

]

≥ cE
i −

(
H1 + b −

( i−1∑

j=1

(αcE
j − cR

j )

))
P (D ≤ y − sR

i−1).

Moreover, as sR
i > sE

i and for y > sE
i ,

(GR
i (y))′

= −cR
i + G′

i,i(y)

= −cR
i + αE[(GE

i (y − Di))
′1[y − Di+1 > sE

i ]

≥ −cR
i + αE[(GE

i (y − Di))
′]

≥ −cR
i + αcE

i − α

(
H1 + b −

( i−1∑

j=1

(αcE
j − cR

j )

))
P (D ≤ y − sR

i−1)

which implies the first term in the bracket of (8.26). For the second term, note that for
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y > sE
i

(GR
i (y))′

= −cR
i + αE[(GE

i (y − Di))
′1[y − Di+1 > sE

i ]

≥ −cR
i + αE[(GE

i (y − Di))
′1[y − Di+1 > sR

i−1]

≥ −cR
i + αcE

i P (y − Di+1 > sR
i−1).

Therefore, (8.26) is valid. �

In the following we develop another set of newsvendor upper bounds for the optimal

base-stock levels. Let

C0 = 0

Ci = cE
i − cR

i−1 − C−
i−1, i = 1, . . . , N.

Theorem 8.2.6 The third set of upper bounds is

s̄E3
i = min

{
F̄−1

(
Ci

H1 + b

)
, F̄−1

2

(
Ci + αC+

i−1

H1 + b

)}
, i = 1, . . . , N, (8.32)

and

s̄R3
i = F̄−1

2

(
−cR

i + αCi

α(H1 + b)

)
, i = 1, . . . , N. (8.33)

Proof. It suffices to verify, for i = 1, . . . , N ,

(GE
i (y))′ ≥ Ci − (H1 + b)P (D > y). (8.34)
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If (8.34) is satisfied, then

(GR
i (y))′

= −cR
i + G′

i,i(y)

= −cR
i + (GE

i (y))′1[y ≤ sE
i ] + αE[(GE

i (y − Di))
′1[y − D ≥ sE

i ]

≥ −cR
i + E(GE

i (y − D))′1[y − D ≤ sE
i ] + αE[(GE

i (y − Di))
′1[y − D ≥ sE

i ]]

≥ −cR
i + CiP (y − D ≤ sE

i ) − (H1 + b)P (D(2) > y, y − D ≤ sE
i )

+αCiP (y − D ≥ sE
i ) − α(H1 + b)P (D(2) > y, y − D ≥ sE

i )

≥ −cR
i + min{αCi, Ci} − (H1 + b)P (D(2) > y).

Moreover, as sR
i ≥ sE

i ,

(GR
i (y))′

= −cR
i + G′

i,i(y)

= −cR
i + (GE

i (y))′1[y ≤ sE
i ] + αE[(GE

i (y − Di))
′1[y − D ≥ sE

i ]

= −cR
i + αE[(GE

i (y − Di))
′1[y − D ≥ sE

i ]]

≥ −cR
i + αE[(GE

i (y − Di))
′]

≥ −cR
i + αCi − α(H1 + b)P (D(2) > y)

which implies (8.33).

We prove (8.34) by induction. The case of i = 1 is similar to that of Theorem 3.
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Suppose it is true for i, and we proceed to prove i + 1.

(GE
i+1(y))′

= cE
i+1 + (G′

i,i(y) − cR
i )1[y ≤ sR

i ]

= cE
i+1 + (GE

i (y))′1[y ≤ sE
i ]1[y ≤ sR

i ]

+
(
−cR

i + αE
[
GE

i (y − D))1[y − D ≥ sE
i ]
])

1[y ≤ sR
i ]

≥ cE
i+1 + (Ci − (H1 + b)P (D > y)

)
1[y ≤ sE

i ] − cR
i

≥ cE
i+1 − cR

i − C−
i − (H1 + b)P (D > y)

= Ci+1 − (H1 + b)P (D > y)

where the first inequality follows from the inductive assumption and GE
i (y−D))1[y−D ≥

sE
i ] ≥ 0. Moreover, as sE

i+1 ≤ sR
i , we can obtain another upper bound which is the solution

of,

cE
i+1 − cR

i + min{αCi, Ci} − (H1 + b)P (D(2) > y) = 0

Thus, we complete the proof. �

We remark that none of these upper bounds dominate the other. That is, any of these

upper bounds can be sharper, depending on the problem instance.

8.3 Heuristics and Numerical Results

In this section, we develop a simple heuristic based on the newsvendor lower and upper

bounds for the echelon base-stock levels for each stage. We also present numerical studies

to demonstrate the effectiveness of the heuristic method.
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For i = 1, 2, . . . , N and 0 ≤ β ≤ 1, let

sie E = max{sEj
i , j = 1, 2, 3}, sie R = max{sRj

i , j = 1, 2, 3};

s̃E
i = min{s̄Ej

i , j = 1, 2, 3}, s̃Ru
i = min{s̄Rj

i , j = 1, 2, 3},

Note that from Lemma 8.1.4, if cR
i−1 > cE

i , sE
i ≤ sE

i−1. Thus, we can set s̃E
i = s̃E

i−1, if

s̃E
i > s̃E

i−1.

and

sEh
i =

[
βsie E + (1 − β)s̃E

i

]
, (8.35)

sRh
i =

[
βsie R + (1 − β)s̃R

i

]
, (8.36)

in which [ ] is the round off operator. We choose β = 0.5 as the heuristic policy. The

heuristic policy works in exactly the same manner as the original top-down echelon base-

stock policy but using sEh
i and sRh

i as the echelon base-stock levels for stage i.

In the following we present two groups of numerical examples classified by the demand

distribution to illustrate the effectiveness of this heuristic.

We use the percentage error on the optimal system cost as the measure for effectiveness

of the heuristic. Let f̂(x) denote the cost of heuristic policy, the percentage error of the

heuristic is defined as

Error% =
f̂(x) − f(x)

f(x)
× 100%.

In Group 1, we use Poisson demand with arrival rate λ = 5, 10, 50. We compare the

optimal and heuristic policies for a three-stage system. The parameters for the examples
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Poisson Demand
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are b = 30, 60, hi = 0.1, 1, cE
i = 4, 10, cR

i = 2, 6, for i = 1, 2, 3 and α = 0.95, T = 100. By

restricting cE
i > cR

i , we generate 432 instances for each demand arrival rate. The average

percentage error among 432 instances for λ = 5 is 0.57% with the maximum 3.06%, for

λ = 10 is 0.52% with the maximum 4.28% and for λ = 50 is 0.33% with the maximum

1.70%. The average error for all 1296 instances is 0.47%.

To show that the heuristic is robust under larger demand variance comparing to mean,

in Group 2, we use Negative Binomial demand with four sets of mean and variance (30,

120), (30, 40), (6, 24), and (6, 8) while keep other parameters the same as Group 1.

These demand parameters generate 4 set of numerical examples and each set includes

432 instances. The average percentage error among 432 instances for the first set is 0.42%

with the maximum 3.62%, for the second is 0.37% with the maximum 2.65% and for the

third is 0.49% with the maximum 2.64% and for the fourth is 0.48% with the maximum

2.88%. The average error for all 1728 instances is 0.44%. The numerical results indeed

show that the effectiveness of our heuristic under larger demand variance.

From our numerical studies, we find that it is more cost efficient to reduce the hold-

ing cost at upstream stages and the expedited ordering cost at downstream stages. In

addition, the downstream’s optimal echelon base-stock levels are independent of up-
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Negative Binomial Demand
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stream’s cost parameters and upstream’s optimal echelon base stock levels are increasing

as downstream’s ordering costs increase and decreasing when downstream’s holding cost

increases. Moreover, the increase of backlog cost rate has larger impact on the order-up-

to level of expedited shipment (regular shipment) when the unit expedited shipping cost

is relatively small (large).

8.4 Summary

In this chapter, we derive newsvendor-type lower bounds and upper bounds for infinite

horizon, periodic review, serial inventory system with expedited and regular supply, and

based on which we develop a simple and effective heuristic. We use numerical examples

to show the effectiveness of the heuristics.

The leadtimes for regular and expedited ordering are 1 and 0 respectively. By inserting

stages to stand for leadtime, we can obtain models where leadtimes between stages i + 1

and i is li, and the firm is allowed by expedite shipping between any two stages. Through

expedition, the firm can shipping the product from stage i + 1 to i in ℓ units of time for
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any ℓ = 0, 1, . . . , li − 1. The cost for such expedition will have to satisfy the relationship

entailed by the model. Indeed, this is exactly the model studied by Muharremoglu and

Tsitsilkis (2003) in which the authors obtain the form of optimal inventory control policy.

In particular, the result for the case where the leadtimes for stage i+1 and i are li+1 and

li can be presented in similar fashion to those in the chapter. This is a natural expansion

of the Fukuda model (1964) to serial supply chains. In that case the recursive algorithms

for computing the optimal echelon base-stock levels are as follows. For convenience, let

D(l) be the leadtime over l periods. Let GE
1 (y) = cE

1 y + (H1 + b)E[(y −D(l1))
−], and let

sE
1 be the minimizer of GE

1 , for i ≥ 1, compute:

Gi,i(y) = GE
i ((y − D(li) ∧ sE

i ) − GE
i (sE

i ) + αE[GE
i ((y − D(li + 1)) ∨ sE

i )],

GR
i (y) = Gi,i(y) − cR

i y,

Gi,i+1(y) = GR
i (y ∧ sR

i ),

GE
i+1(y) = cE

i+1y + Gi,i+1(y).

The bounds developed need to be accordingly revised to reflect the arbitrary leadtimes.

For instance, the Fi and Fi+1 in Theorems 2 and 3 should represent the leadtime demand

distributions over
∑i

j=1 lj and
∑i+1

j=1 lj periods, respectively.

The results reported in this chapter can also be extended to the case where, for some

stages, there is only one transportation mode, while the others have two transportation

modes. In that case there is one echelon base-stock level for those stations with only

one transportation mode, and two echelon base-stock levels for those stages with two

transportation modes.
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Chapter 9

Conclusion

In this dissertation, we make several contributions to the literature of supply chain man-

agement. More specifically, this work develops and analyzes several single-stage inven-

tory/production models with pricing decisions, extends some existing results in multi-

echelon inventory systems and provides a unified approach to develop bounds and simple

heuristics for multi-echelon inventory systems with and without expedited shipping.

First, we include the optimal pricing into several classical, continuous-review inventory

models, characterize the optimal policies and present efficient algorithms to solve the

optimization problem. We show that optimal price has a unimodal structure of the

inventory level. Then, for two periodic review inventory models, one with two supply

modes and the other one with smoothing production cost, we again include the pricing

optimization and analyze the optimal strategies.

Our second contribution is the analysis of optimal policies for the serial system with

demand guaranteed delivery and multi-echelon system with batch ordering and nested

replenishment schedule. We show that the echelon base-stock policy is optimal for the
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serial system with demand guaranteed delivery. With given base order quantity and

replenishment cycles for each stage, we show that echelon (R, nQ) policy is optimal,

which generalizes results of Chen (2000) and van Houtum et. al. (2003). In addition, we

provide the computational algorithm for the optimal reorder points.

The last contribution is that we provide a unified approach to develop lower bounds

and upper bounds for optimal policies of the classical serial system. Based on the bounds,

we further develop a simple heuristic for the optimal echelon base-stock levels. Indeed,

this approach can also be applied in the serial system with dual supply modes. Extensive

numerical studies show that our bounds are tight and the heuristics generate near-optimal

solutions.

Distribution system is a very important class of multi-echelon models. Any progress

made in the analysis or development of optimal policies or heuristics for the distribution

systems will have practical and theoretical values. I hope that the methodologies and

results in this dissertation can pave the way for my future research in this direction.
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