
Abstract

COOK, JAMES STEVEN. Foundations of Supermathematics with Applications to
N=1 Supersymmetric Field Theory. (Under the direction of Ronald Owen Fulp.)

We use the term ”supermathematics” to encompass all the various extensions of

Alice Roger’s original work on G∞ supermanifolds. Background on how numbers,

functions, linear algebra, matrix calculations, real analysis, complex analysis, manifold

theory and Lie theory generalize to the context of supermathematics is provided. We

use countably many Grassmann generators so this work is within the realm of infinite

dimensional Banach space theory.

We find that Lie’s Third Theorem holds for G∞ super Lie groups. We also prove

that the exponential mapping and other standard constructions in Lie theory apply

equally well in theG∞ setting. Portions of this work are similar to existing research, but

our proofs are distinct and we have focused on the G∞ category with infinitely many

Grassmann generators. Other workers typically either use finitely many Grassmann

generators or focus attention to the superanalytic category.

We provide a supersmooth principle fiber bundle framework for super gauge theory.

Special sections are constructed and provide pure gauge solutions on zero curvature

submanifolds. Quotient spaces and bundles are used to implement certain physical

constraints. We apply these general geometric constructions to recover the superfield



transformation laws of N = 1 super Yang-Mills theory.

We develop a gauged Wess-Zumino model in noncommutative Minkowski super-

space. This is a natural extension of the work of Carlson and Nazaryan, who extended

N = 1/2 supersymmetry over deformed Euclidean superspace to Minkowski super-

space. Noncommutativity is implemented by replacing products with star products.

As in the N = 1/2 theory, a reparameterization of the gauge parameter, vector su-

perfield and chiral superfield are necessary to write standard C-independent gauge

theory. However, our choice of parametrization differs from that used in the N = 1/2

supersymmetry, which leads to some unexpected new terms.
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Chapter 1

Introduction

In the first section we give an account of some of the physical motivations and history

of supersymmetry. We explain how supersymmetry extends current physical law and

predicts the existence of particles which have yet to be observed. Then in the second

section we give a survey of some of the mathematical works which share similar methods

or goals with this dissertation. Finally, we conclude this chapter with a summary of

the dissertation.

1.1 Physical Background

Grassmann variables have wide application throughout modern field theory. For ex-

ample, they are used in path integrals involving fermionic fields and the BRST coho-

mology. The mathematics explored throughout this thesis is generally aimed towards

gaining a concrete understanding of what precisely is a Grassmann or supervariable.

Our interest in this section is quite narrow. We just want to discuss what a superfield

is and how it encodes N=1 supersymmetry. This is interesting because N=1 super-

1



Chapter 1. Introduction

Table 1.1: Predictions of Supersymmetry
SM Particle Spin SUSY superpartner in MSSM Spin

electron 1/2 ⇆ selectron 0
photon 1 ⇆ photino 1/2
quark 1/2 ⇆ squark 0
gluon 1 ⇆ gluino 1/2
Higgs 0 ⇆ Higgino 1/2

symmetry forms the basis of what is known as the Minimal Supersymmetric Standard

Model (MSSM). This model has predictions which differ from the current Standard

Model (SM) of particle physics. It is possible that the Large Hadron Collider (LHC) at

CERN will detect supersymmetry as early as 2010. Of course, if it is not detected the

theorists can always push off its discovery a few more TeV’s ( or in experimental terms

a few decades ). The details of how supersymmetry makes contact with our everyday

existence are rather involved. For example, see [84] for some of the phenomenological

implications of supersymmetry.

A function U of N = 1 rigid superspace is called super field and it has the form,

U = f + θφ+ θ̄X̄ + θθm+ θ̄θ̄n+ θσnθ̄vn + θθθ̄Λ̄ + θ̄θ̄θψ + θθθ̄θ̄d.

Each of the component fields f, φ, X̄ , m, n, vn, λ̄, ψ, d is an ordinary relativistic quantum

field and the θ’s are anticommuting variables. However, there are several inequivalent

representations of the Poincare group that appear here. Scalar fields f,m, n, d (spin

zero), Weyl spinor fields φ, ψ, λ̄, X̄ (spin 1/2), and the vector field vm (spin one). Con-

tained in this single superfield we have all the necessary fields to construct known

2



Chapter 1. Introduction

Table 1.2: Component Field Content of Superfield

particle physics. Assembling them in this one superfield assumes an additional sym-

metry of physics which is called supersymmetry. Supersymmetry requires that there

be a balance between the number of bosons and the number of fermions in a theory. A

representation of supersymmetry then necessarily has that property. As we indicated

above there are 8 bosonic degrees of freedom (4 scalars plus one 4-vector), and there

are 8 fermionic degrees of freedom ( 4 Weyl spinors ). Until we place further constraints

on the system, these are all complex degrees of freedom.

1.1.1 Poincare Algebra

The Poincare algebra is a Lie algebra that is formed by the four generators of spacetime

translations (Pm) and the six generators of the Lorentz transformations (Jmn = −Jnm).

For now we can view the Poincare algebra as an abstract Lie algebra over C defined

by the following relations, note ηij is the Minkowski metric tensor with diag(η) =

{−1, 1, 1, 1}
[Pm, Pn] = 0

[Pm, Jnk] = i(ηmnPk − ηmkPn)

[Jmn, Jlk] = i(ηnlJmk − ηmlJnk + ηmkJnl − ηnkJml).

(1.1)

The indices l, k,m, n = 0, 1, 2, 3. Lorentz transformations include ordinary rotations

in three dimensions as well as boosts. Boosts are transformations to moving frames of

3



Chapter 1. Introduction

reference; they can be viewed as hyperbolic rotations of time and space. In particular,

Jij = ǫijkJk i, j, k = 1, 2, 3 generate rotations

Ji0 = −Ki i = 1, 2, 3 generate boosts.
(1.2)

To be careful, we should emphasize that the operators above are not the transforma-

tions. Instead they are the generators of the transformations. Mathematically, they

form the Lie algebra corresponding to the Lie group of transformations. Later on, we’ll

expand on the relation of the Lie algebra to the Lie group as it relates to the Poincare

algebra and group.

For now we would like to point out that the Poincare algebra has several interesting

subalgebras,

[Ji, Jj ] = ǫijkJk su(2,C)

[Pi, Pj] = 0 Abelian subalgebra
(1.3)

The existence of the su(2,C) subalgebra was particularly striking in the 1950’s and

1960’s when much of the theoretical physics communities efforts were placed in under-

standing the role isospin played in fundamental interactions. Since isospin also has a

su(2,C) algebra structure, it was (and is) tempting to try to identify the su(2,C) of

isospin with the su(2,C) of the Poincare algebra. To be less naive, one might ask if

there is a way to extend the Poincare algebra so that the enlarged version has subal-

gebras from which isospin could be derived. This would be very beautiful in the sense

that it would have placed fundamental nuclear interactions on the same foundation as

momentum or energy (which are associated to Pm). However, this ambitious dream

to enlarge the Poincare algebra was shot down by the famous paper by Coleman and

Mandula (Physical Review 159,1251 (1967)). They proved a very important no-go

4
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theorem which stated that it was not possible to enlarge the Poincare algebra without

violating important symmetries of the S-matrix. The dream of understanding isospin

and other ”external” symmetries in a more intrinsic geometric manner lives on; this

theorem merely shows that it cannot be accomplished in a strictly conventional way.

The standard formalism of relativistic quantum field theory will not admit it. To give

isospin a geometric (in the sense of real spatial origins) meaning will require a change

in fundamental formalism like strings, twistors or perhaps noncommutative geometry.

Interestingly, the no-go theorem of Coleman and Mandula sparked a very different

line of inquiry than one might have expected. Hagg, Lopuszanski and Sohnius (Nuclear

Physics B 88 257 (1975)) noticed that the no-go theorem’s proof assumed that the

additional operators to the Poincare algebra should obey commutator brackets. Why

should that be ? Why can’t there be physical symmetries which are generated by

anticommuting generators? Hagg, Lopuszanski and Sohnius argued that the no-go

theorem was too narrow in its assumptions, that in fact it was possible to extend

the Poincare algebra by adding generators which anticommute. They argued that for

physical reasons (absence of higher spin states for example) that the anticommuting

generators must obey the following algebraic structure,

{QA
α , Q

B
β } = ZAB

{Q̄A
α , Q̄

B
β } = Z̄AB

{QA
α , Q̄

B
β } = 2σm

αβ̇
Pmδ

AB.

(1.4)

Where the anticommutator is defined by {X, Y } = XY + Y X, σm
αβ̇

are the Pauli ma-

trices for m = 1, 2, 3, and A,B = 1, 2, 3, . . .N . Indices like α, β, γ are called ”undotted
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indices” while indices like α̇, β̇, γ̇ are called ”dotted indices”, both types take values 1

or 2 hopefully without danger of confusion. The central charges ZAB commute with

everything and are antisymmetric in A and B. These relations plus the Poincare al-

gebra form the N=1,2,3 or 4 super Poincare algebra. These are the cases of primary

interest in the physical literature.

The case of interest to us is N = 1 for which there are no central charges and the

indices A,B=1 so we omit them. We will call the generators Qα, Q̄α̇ the supercharges.

In total the super Poincare algebra is defined by the relations,

[Pm, Pn] = 0

[Pm, Jnk] = i(ηmnPk − ηmkPn)

[Jmn, Jlk] = i(ηnlJmk − ηmlJnk + ηmkJnl − ηnkJml)

[Qα, Pm] = 0

[Q̄α̇, Pm] = 0

[Jmn, Qα] = −i(σmn) β
α Qβ

[Jmn, Q̄α̇] = −i(σ̄mn) β̇
α̇ Q̄β̇

{Qα, Qβ} = 0

{Q̄α, Q̄β} = 0

{Qα, Q̄β} = 2σm
αβ̇
Pm

(1.5)

The matrices σmn and σ̄mn are formed from antisymmetrized products of the Pauli

matrices, the details need not concern us here ( see Wess and Bagger for many useful

formulas on such objects, generally we follow their conventions)
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1.2 Survey of Supermathematics

In this section we discuss briefly a number of works on the topic of supermathemat-

ics. This survey is woefully incomplete since supermath is ubiquitous in mathematics

connected to superstring theory. We focus on those works which are closer to the view-

point and goals of this dissertation. We were not aware of some of these works until

after the completion of our original work on the subject.

Mathematicians and physicists have been developing the theory of supermanifolds

for over a quarter of a century. From almost the beginning, there have been at least

two distinct approaches to the foundations of the superanalysis underlying the theory.

Chronologically, the first of these is based on techniques reminiscent of ideas from al-

gebraic geometry. We think of this approach as the sheaf theoretic development of

supermathematics even when the theory of sheaves may not explicitly appear in some

specific treatments of the subject. Certainly, Berezin, Leites, and Kostant [13], [76]

were forerunners of this method and for that matter of the entire theory.

A second approach to the formulation of superanalysis and supermanifolds was ini-

tiated separately and differently by Rogers [98], Jadczyk and Pilch [68], and DeWitt

[39]. Their work is more closely related to traditional ideas in manifold theory. Much

work has been done describing both the sheaf theoretic and manifold theoretic descrip-

tions of supermanifolds and how they are related, but we mention only a few whose

work has directly impacted our work here, namely Rogers’ [98], [99], [100], Batchelor’s

[11], and Bruzzo’s [23]. The paper by Boyer and Gitler also deals with Rogers’ G∞

supermanifolds [18].

7
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The body of a supermanifold is the part of the space which has no soul; it is an or-

dinary manifold. The paper [31] Catenacci, Reina and Teofilatto shows that the body

of a supermanifold is well-defined only if certain topological restrictions are satisfied

for a Rogers’ supermanifold. We do not deal with this issue in this dissertation, but it

is probably wise to keep these restrictions in mind if one was to write a more physically

comprehensive mathematical model of supersymetric physics over supermanifolds. It

would be interesting to try to merge the ideas in [53] with our work on super Yang-Mills

theory in Chapter 8 of this dissertation.

Supernumbers are generated with sums and products of Grassmann generators.

Our definitions assume an infinite number of Grassmann generators. However, much

of the literature has been developed for finitely generated supernumbers. For example,

Rabin and Crane worked with finitely generated supernumbers, and it is interesting

to note the similarity to some of our work which was completed independently. Rabin

and Crane’s paper [95] on global topology of supermanifolds also suggested imposing

constraints through a quotient construction. They also found interesting topologically

nontrivial Rogers’ manifolds in [96] where they contrasted the topology invented by

DeWitt to that of Rogers’.

Also, Kostelecky, Nieto, and Truax studied the Baker-Campbell-Hausdorff relations

for the supergroups in [77] and [78]. Bonora, Pasti and Tonin studied gauge theory on

supermanifolds using finitely generated supernumbers [17].

8
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The ”generalized supermanifolds” of Hoyos, Quiros, Mittelbrunn, de Urries, allow

both the finite and infinitely generated supernumbers in their theory (see [56],[57],[58]).

They also studied gauge theory and Fadeev-Popov fields from this viewpoint in [59].

Many supermanifolds can be viewed as a vector bundle over a ordinary manifold

with odd fibers. In that view the topology of the odd fibers is fairly trivial. Rogers’

definition allows for the odd directions of the supermanifold to have nontrivial topol-

ogy. It is not certain that the exotic topology Rogers’ allows in the fermionic directions

is physically meaningful. For example, see [45]. Physical significance aside, there is

a wealth of interesting mathematics to explore. For example, see the discussion of

”body” ”soul” and ”aura” in [30].

We recommend E.A. Ivanov’s overview of the work completed by Ogievetsky’s stu-

dents and collaborators in [65]. Also the text Superspace, or One Thousand and one

lessons in supersymmetry by Gates, Grisaru, Rocek and Siegel has a great wealth of

physics and mathematics. While the references mentioned here are certainly incom-

plete, we hope that one could get a fairly broad picture of geometric supermathematics

if one pursued the references mentioned in this section.

1.3 Summary of Thesis

Chapters 2-5 are mostly background. Chapter 2 defines supernumbers and their prop-

erties. Chapter 3 discusses super linear algebra. Chapter 4 introduces super derivatives

9



Chapter 1. Introduction

and supersmoothness, it is essentially the generalization of Ma 426 at NCSU for su-

permathematics. Chapter 5 tackles the question of conjugate and chiral variables in

superspace. There are some new results mixed throughout, but we have not published

those at this time. Probably, these things are known by experts but not all the details

appear in the literature. In particular, Chapter 5 may form the basis for a later paper

on complex chiral supermanifolds. We believe the idea to treat conjugate variables in

superspace via the methods of Remmert is original.

Chapter 6 discusses supermanifolds and sub super manifolds. Then Chapter 7 dis-

cusses super Lie groups. Lie’s Third Theorem is found for G∞ super Lie groups. A

number of standard theorems and constructions in Lie theory are shown to work in the

G∞ category. Chapters 6 and 7 are based largely on [37] which was a joint work of the

author and R.O Fulp. Some proofs were modified slightly with the help of [68].

The author’s main goal in studying supermath was to understand the geometry

of Super Yang-Mills theory. Chapter 8 provides an explanation that is in fairly close

analogy to the traditional principle fiber bundle formulation of Yang-Mills theory. This

chapter was a joint work with R.O. Fulp, and we plan to publish once a little more

material is added.

Chapter 9 is not original work. The purpose of Chapter 9 is to show the reader

how physicists describe N=1 superspace as a coset space.

Finally, Chapter 10 is closely based on [36]. This chapter is written at the level

10
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of rigor common in the physical literature. It is likely that earlier chapters together

with algebraic geometry could be used to construct a more concrete description of the

mathematics employed throughout Chapter 10, but we make no attempt to do that in

this dissertation.
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Supernumbers

Supernumbers form the conceptual core of geometric supermathematics. Essentially,

in supermathematics one simply replaces numbers with supernumbers. This stands in

contrast to the sheaf theoretic approach where the generalization is made at the level

of the function sheaf. It is likely that these approaches are categorically equivalent, but

we prefer the geometric viewpoint since we would like to think more about point sets

and less about mappings. Alice Rogers has a good discussion of the geometric verses

the algebraic geometric approaches to supermathematics in her recent text Superman-

ifolds, Theory and Applications [102].

We first take care of some technical preliminaries. We define Grassmann generators

and describe how supernumbers are constructed over an arbitrary field K. Then we

consider the general algebraic properties of Λalg
∞ . In particular, commuting and anti-

commuting numbers are defined and the concept of parity is introduced. Typically we

take either K = R or K = C, in either case we have that K is a complete, normed linear

12
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algebra; that is K is a Banach algebra. Following Alice Rogers, we introduce a norm

on Λalg
∞ , the set of all supernumbers for which the norm is finite is denoted Λ(K) or

simply Λ when there is no danger of ambiguity. We offer a proof that Λ(K) is complete.

Next, the issue of superconjugation is addressed. We briefly compare the con-

jugation found in Bryce DeWitt’s Supermanifolds [39] to that of Alice Rogers’ text

Supermanifolds, Theory and Applications [102]. We choose Dewitt’s convention in or-

der to make closer contact to the physics literature. Real, imaginary and complex

supernumbers are defined and related. We should mention that we are also indebted

to Buchbinder and Kuzenko’s Ideas and Methods of Supersymmetry and Supergravity

[29] which we found to be an invaluable resource in our exploration of this topic.

2.1 Multi-index Notation

Define the set of all increasing strings of N-indices of length k to be Ik(N). Introduce

the multi-index I where I ∈ Ik(N) by I = (i1, i2, . . . ik) with 1 ≤ i1 < i2 < · · · < ik ≤

N . For example if N = 4 then I2(4) = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.

Next, define the set of all increasing strings of arbitrarily many (N = ∞) indices

of length k to be Ik. Introduce the multi-index I where I ∈ Ik =⇒ I = (i1, i2, . . . ik)

with 1 ≤ i1 < i2 < · · · < ik < ∞. For convenience define I ∈ I0 to be the null-index

which means we simply put the label ”0” on that element. For example,

zI = zi1,i2,...ik I ∈ Ik k ≥ 1

zI = z0 I ∈ I0

(2.1)

13
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Clearly Ik is an infinite set for k ≥ 1. In contrast to the finite example, notice that

I2 = {(1, 2), (1, 3), (1, 4), . . . (2, 3), (2, 4), . . . (3, 4), (3, 5), . . .}. Finally, let the union of

all Ik for k = 0, 1, 2, . . . be denoted by I(∞).

2.2 Grassmann Generators

We define Grassmann generators ζ i to be anticommuting indeterminates;

ζ iζj = −ζjζ i. (2.2)

Take i = j to see that the square of any Grassmann generator is zero. We also define

the generators to be linearly independent over K;

ciζ
i = 0 =⇒ ci = 0. (2.3)

where the repeated index i is to be summed over. More often we are interested in the

linear independence of products of the Grassmann generators, we also assume these to

be linearly independent,

∞∑

k=0

ci1i2...ikζ
i1ζ i2 . . . ζ ik = 0 =⇒ ci1i2...ik = 0. (2.4)

Repeated indices are summed over all values of ik. The coefficients ci1i2...ik are in K and

are assumed to be completely antisymmetric. If we had a sum over a symmetric coeffi-

cient tensor then all data about that tensor would be lost in that such a tensor vanishes

upon contraction with the completely antisymmetric product of the Grassmann gen-
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erators. Thus it is reasonable to assume that the coefficients are antisymmetric from

the beginning. We leave the proof of the existence of such an algebra and generators

as an exercise for the reader. For I ∈ Ik, define

ζI = ζ (i1,i2,...,ik) = ζ i1ζ i2 . . . ζ ik . (2.5)

In the case I ∈ I0 define ζI = 1. We now compactly express the linear independence

of the Grassmann generators,

∞∑

k=0

∑

I∈Ik

cIζ
I = 0 =⇒ cI = 0 ∀I ∈ I(∞). (2.6)

2.3 ΛN , the Grassmann Polynomials

First we consider the supernumbers that can be built using just the first N Grassmann

generators, ζ1, ζ2, . . . , ζN . A supernumber is formed by taking a K-linear combination

of these generators and their products. The set of all supernumbers built from just N

Grassmann generators is denoted ΛN . If z ∈ ΛN then

z =

N∑

k=0

1

k!
zi1i2...ikζ

i1ζ i2 . . . ζ ik . (2.7)
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For example,

Λ0 = K

Λ1 = {z0 + z1ζ
1}

Λ2 = {z0 + z1ζ
1 + z2ζ

2 + z12ζ
1ζ2}

Λ3 = {z0 + z1ζ
1 + z2ζ

2 + z3ζ
3 + z12ζ

1ζ2 + z13ζ
1ζ3 + z23ζ

2ζ3 + z123ζ
1ζ2ζ3}.

(2.8)

The sums in the above were taken over increasing indices so no 1
k!

factors appeared.

Notice that the dimension of each of the above (as a vector space over K) is simply 2N ,

and the natural basis for ΛN is simply monomials of the first N -Grassmann generators.

Rogers denotes supernumbers generated by L Grassmann generators by BL, also in her

notation β plays the role of our ζ .

2.4 Λalg
∞ , Formal Algebraic Supernumbers

Algebraic supernumbers are formal power series of arbitrarily many Grassmann gener-

ators. They are formal in the sense that we do not suppose any notion of convergence

in the infinite sums below.

Definition 2.4.1. Let z be a supernumber then

z =
∞∑

k=0

1

k!
zi1i2...ikζ

i1ζ i2 . . . ζ ik (2.9)

where z0 ∈ K and zi1i2...ik ∈ K are called the Grassmann coeffients of z. Repeated

indices are summed over all values and these are infinite sums because we are allowing

arbitrarily many Grassmann generators, ζ1, ζ2, . . . . The set of all formal algebraic
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supernumbers is denoted Λalg
∞ .

We assume that zi1i2...ik ∈ K are completely antisymmetric in i1i2 . . . ik. We will drop

the ”alg” in Λalg
∞ a little later when we introduce the norm for supernumbers.

Definition 2.4.2. We define the body zB of the supernumber z by zB = z0, and the

soul zS by

zS =

∞∑

k=1

zi1i2...ikζ
i1ζ i2 . . . ζ ik. (2.10)

Clearly, z = zB + zS.

There are other useful notations for exposing the Grassmann content of a super-

number. Let z ∈ Λalg
∞ as before, then using the multi-index notation we write,

z =
∞∑

p=0

∑

I∈Ip

zIζ
I . (2.11)

This notation has the advantage of reminding us of the doubly infinite nature of the

summation. Also, it emphasizes the decomposition of the supernumber into terms with

p-Grassmann generators. Such terms are said to be homogeneous of degree p. In the

above sum the homogeneous term of degree p is defined by

zp =
∑

I∈Ip

zIζ
I (2.12)

Hence, a supernumber can be written as a sum of homogeneous pieces,

z =
∞∑

p=0

zp. (2.13)
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The concept of degree gives Λalg
∞ a natural Z grading. Still another method of expressing

the summation is possible.

z = z0 + z1ζ
1 + z2ζ

2 + z12ζ
(1,2) + z3ζ

3 + z23ζ
(2,3) + z123ζ

(1,2,3) + . . . (2.14)

We have written the terms up to Λ3. The ordering of the terms are K, Λ1, Λ2, Λ3, and

so on. We can compactly write the sum above by,

z =
∞∑

k=0

zIkζ
Ik. (2.15)

In this summation the manifest indication of degree is lost. However, this notation

could be very useful in dealing with certain analytical questions. Define the mth partial

sum to be z(m),

z(m) =
m∑

k=0

zIkζ
Ik. (2.16)

For each multi-index I = (i1, . . . , ik) let top(I) = ik and let

Nm = max{top(I1), . . . , top(Im)}.

Then z(m) ∈ ΛNn .

2.5 Multiplicative Structure of Λalg
∞

We pause to note some important properties of Λalg
∞ and to introduce some useful

notations for explicit calculations. In some sense the Grassmann generators are just

place holders that help encode a rather intricate multiplication of the Grassman coeffi-
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cients. After all a supernumber is completely equivalent to its Grassmann coefficients.

This follows directly from our assumption of linear independence of the Grassmann

generators,

z = w ⇐⇒ ∑∞
p=0

∑
I∈Ip

zIζ
I =

∑∞
p=0

∑
I∈Ip

wIζ
I

⇐⇒ ∑∞
p=0

∑
I∈Ip

(zI − wI)ζ
I = 0

⇐⇒ zI − wI = 0 ∀I ∈ I(∞).

(2.17)

Next we note that formally z, w ∈ Λalg
∞ =⇒ zw ∈ Λalg

∞ . In particular,

zw = (
∑∞

p=0 zp)(
∑∞

r=0wr)

=
∑∞

p=0

∑∞
r=0 zpwr

=
∑∞

p=0

∑∞
r=0

∑
I∈Ip

∑
J∈Ir

zIwJζ
IζJ

=
∑∞

p=0

∑∞
r=0

∑
I∈Ip

∑
J∈Ir

zIwJǫ(I|J)ζ (I|J)

=
∑∞

q=0

∑
K∈Iq

(zw)Kζ
K

(2.18)

In the last step we reordered the Grassmann generators so that they are in the canonical

order. We define ǫ(I|J) to be zero if I ∩ J 6= ∅ and, otherwise it is the sign of

the permutation that reshuffles (I, J) to be the increasing index (I|J). In terms of

homogeneous elements we note

(zw)q =
∑

p+r=q zpwr

=
∑

p+r=q

∑
I∈Ip

∑
J∈Ir

zIwJζ
IζJ

=
∑

p+r=q

∑
(I|J)∈Iq

ǫ(I|J)zIwJζ
(I|J)

(2.19)
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Finally, at the level of Grassmann coefficients, for K ∈ I(∞),

(zw)K =
∑

I⊔J=K

ǫ(I|J)zIwJ . (2.20)

Where ⊔ denotes the disjoint union of I and J . In total we can summarize our find-

ings; Λalg
∞ is an associative algebra with a unit 1 over K. The operations of addition

and multiplication are closed in the set of algebraic supernumbers. We could say

more about supernumbers without a norm, but we are primarily interested in normed

supernumbers.

2.6 The Norm of a Supernumber

In much of the literature one finds that supernumbers are taken to be either ΛN or

Λalg
∞ . In the case of ΛN , the issue of convergence becomes trivial as there are only

finitely many Grassmann generators in the theory. However, this approach has the

disadvantage that there is a maximum possible polynomial degree and some care must

be taken to avoid the ambiguities that arise in this case ( see Rogers’ notion of the

”z-mapping” ). On the other hand, some individuals prefer to work with Λalg
∞ but

make claims that cannot be verified in this case. In particular, it is often claimed that

(zS)
N = 0 for some N sufficiently large. This is not generally true in Λalg

∞ . However, we

can show that for each z ∈ Λ we find limN→∞(zS)
N = 0, once an appropriate notion of

convergence is introduced. We first define a norm, then we prove Λ is complete with

respect to the norm, and finally we conclude this section by collecting a few technical

results about limits of supernumbers.
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2.6.1 Definition of the Norm

Definition 2.6.1. The norm of a supernumber z is denoted by ||z||; it is induced from

the norm of the Grassmann components zI which we will denote |zI | (if K = C the

norm is the modulus, if K = R the norm is absolute value). Define then,

||z|| =

∞∑

p=0

∑

I∈Ip

|zI | =

∞∑

k=0

|zIk |. (2.21)

The set of all z ∈ Λalg
∞ such that ||z|| <∞ is defined to be Λ.

It is straightforward to prove that || · || is a norm.

Proposition 2.6.2. Let z, w ∈ Λ and α ∈ K, then

1. ||z|| ≥ 0

2. ||z|| = 0 ⇐⇒ z = 0

3. ||z ± w|| ≤ ||z|| + ||w||

4. ||αz|| = |α| ||z||.

Clearly Λ is a normed linear space. Additionally, Λ is complete relative to the norm

||.|| just defined. Hence, Λ is a Banach space. We note that Rogers’ notation for Λ(R)

is B∞, and in Jadczyk and Pilch [68] an abstract general Banach-Grassmann algebra

Q plays the same role. The main distinction between our concept of supernumber and

B∞ is with superconjugation.

Example 2.6.3. We allow the possibility that a supernumber has infinitely many
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nonzero Grassmann coefficients. Notice

b = ζ1 +
1

2
ζ2 +

1

4
ζ3 + · · · =

∞∑

n=0

1

2n
ζn+1

is in Λ since it has finite norm

||b|| = ||
∞∑

n=0

1

2n
ζn+1|| =

∞∑

n=0

|| 1

2n
ζn+1|| =

∞∑

n=0

1

2n
=

1

1 − 1
2

= 2.

The following proposition is used widely throughout our work.

Proposition 2.6.4. Let z, w ∈ Λ then ||zw|| ≤ ||z||||w||. Λ(K) is a Banach algebra

over K.

The proof can be found in [98].

2.6.2 Proof that Λ is Complete

We now supply a proof that Λ is complete. Let {z(n)} be a Cauchy sequence in Λ then

we seek to show that z(n) → z ∈ Λ as n→ ∞. We write,

z(n) =
∞∑

p=0

∑

I∈Ip

zI(n)ζI . (2.22)

Let J ∈ I(∞) and consider,

|zJ(m) − zJ(n)| ≤ ∑∞
p=0

∑
I∈Ip

|zI(m) − zI(n)|

= ||∑∞
p=0

∑
I∈Ip

(zI(m) − zI(n))ζI ||

= ||∑∞
p=0

∑
I∈Ip

zI(m)ζI − ∑∞
p=0

∑
I∈Ip

zI(n)ζI ||

= ||z(m) − z(n)||

(2.23)
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Hence, for any ǫ > 0, we can choose a positive number M such that if m,n > M ,

|zJ(m) − zJ(n)| = ||z(m) − z(n)|| < ǫ/2. (2.24)

Thus, for each multi-index J we find that {zJ(n)} is a Cauchy sequence in K. Recall

that K is complete so Cauchy sequences converge. That is, there exists zJ ∈ K such

that,

lim
n→∞

zJ(n) = zJ . (2.25)

Let us define z

z =
∞∑

p=0

∑

I∈Ip

zIζ
I . (2.26)

We propose to show that 1.) z ∈ Λ and 2.) z(n) → z as n→ ∞.

1.) First, we show that z ∈ Λ. Given ǫ > 0 there exists a positive integer M such

that n,m ≥M we have ||z(m) − z(n)|| < ǫ/2 and

||z(m)|| = ||z(m) − z(M) + z(M)||

≤ ||z(m) − z(M)|| + ||z(M)||

< ǫ/2 + ||z(M)||

< ǫ/2 + ||z(M)|| + ||z(1)|| + · · ·+ ||z(M − 1)||

(2.27)

Next define K to be the finite sum below,

K = ǫ/2 + ||z(M)|| + ||z(1)|| + . . . ||z(M − 1)||. (2.28)
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thus ||z(m)|| ≤ K ∀n ∈ N. Then ∀N ∈ N,

N∑

k=0

|zIk(n)| ≤
∞∑

k=0

|zIk(n)| = ||z(n)|| ≤ K. (2.29)

Also note that,

lim
n→∞

N∑

k=0

|zIk(n)| =
N∑

k=0

lim
n→∞

|zIk(n)| =
N∑

k=0

|zIk | ≤ K. (2.30)

We find that {∑N

k=0 |zIk |} is an increasing sequence of non-negative real number terms

with upper bound K. Therefore, this sequence converges and we deduce,

lim
N→∞

N∑

k=0

|zIk| ≤ K. (2.31)

In other words, ||z|| ≤ K <∞. Hence z ∈ Λ, the proof of 1.) is finished.

2.) We now show that z(n) → z as n→ ∞. Let ǫ > 0 and recall we can choose M

such that m,n > M implies ||z(m) − z(n)|| < ǫ/2. Thus, assuming m,n > M ,

N∑

k=0

|zIk(n) − zIk(m)| ≤
∞∑

k=0

|zIk(n) − zIk(m)| = ||z(m) − z(n)|| < ǫ/2. (2.32)

Let m→ ∞, then zIk(m) → zIk thus,

lim
m→∞

N∑

k=0

|zIk(n) − zIk(m)| =
N∑

k=0

|zIk(n) − zIk | ≤ ǫ/2. (2.33)

Apparently, {∑N

k=0 |zIk(n) − zIk |} is a positive increasing bounded sequence of real
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numbers, thus the limit as N → ∞ exists.

lim
N→∞

N∑

k=0

|zIk(n) − zIk | = ||z(n) − z|| ≤ ǫ/2 < ǫ. (2.34)

Summarizing, n > M implies ||z(n) − z|| < ǫ. That is z(n) → z as n→ ∞. The proof

of 2.) is complete.

2.6.3 Technical Properties of Supernumbers

We find the following properties to be useful for certain delicate questions.

Proposition 2.6.5. Cancellation property: Let z, w ∈ Λ if az = aw for all a ∈ 1Λ

then z = w.

Proof. Let u, w, z ∈ Λ. Notice that the following are equivalent,

1. { az = aw ∀ a ∈ 1Λ =⇒ z = w }

2. { av = 0 ∀ a ∈ 1Λ =⇒ v = 0 }

We will prove (2.). Suppose av = 0 for all a ∈ 1Λ. Observe that for any k = 1, 2, 3, . . .

the Grassmann generator ζk ∈ 1Λ. Furthermore consider,

ζkv = ζk
∞∑

p=0

∑

I∈Ip

vIζ
I =

∞∑

p=0

∑

I∈Ip

vIζ
kζI

Thus ζkv = 0 implies vI = 0 for each I ∈ I(∞) − {k} (meaning all multi-indices

without the index k). Since this holds for arbitrary k we find vI = 0 for any multi-

index I ∈ I(∞). Therefore, using Equation 2.17, v = 0.
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It is worthwhile to pause and see why this proof fails in the finite case. For example, in

Λ2 we have that a(3ζ1ζ2) = a(4ζ1ζ2) for all a ∈ 1Λ2. Indeed, since a ∈ 1Λ2 implies that

a = bζ1 + cζ2, we can observe that a(3ζ1ζ2) = 0 = a(4ζ1ζ2) since either ζ1 or ζ2 will

be repeated. So the cancellation property fails in the finite case. The trouble stems

from the fact that ζ1ζ2 is the ”top-form” in Λ2. In contrast, Λ has no ”top-form”. So

given a particular product of Grassmann generators we can always find an additional

generator which is distinct from the product.

Proposition 2.6.6. Let z ∈ Λ such that zB = 0, then for each 0 < η < 1, there exists

α ≥ 0 such that ||an|| ≤ αηn for n ∈ N.

This is also stated in Proposition 3.1 of [68], and the proof is given by Alice Rogers in

Lemma 2.7b of [98].

Remark 2.6.7. The notation employed within this remark will not cause confusion

since it is used only in this remark and throughout Chapter 8. Consider the set Λ̃ of

all z ∈ Λalg
∞ such that the 2-norm defined by ||z|| =

√∑
I |zI |2 is finite. We previously

believed there was a counter example to the Banach algebra inequality for the 2-norm

on Λ̃. However, the following calculation shows that ||zw|| ≤ ||z|| ||w|| for all z, w ∈ Λ̃

given the 2-norm: ||z|| =
√∑

I |zI |2 and ||w|| =
√∑

J |wJ |2 are finite and | · | denotes

absolute value on R or modulus on C. Recall,

zw =

∞∑

p=0

∞∑

r=0

∑

I∈Ip

∑

J∈Ir

zIwJǫ(I|J)ζ (I|J) (2.35)

where ǫ(I|J) = ±1 and there are many terms which are zero whenever I and J share a

common index (a Grassmann generator is repeated for that component and as such it

is zero). The notation ζ (I|J) indicates a product of Grassmann generators with strictly
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increasing indices if possible and simply zero if there is an index repeated in the multi-

index (I|J). Thus,

||zw|| ≤

√√√√
∞∑

p=0

∞∑

r=0

∑

I∈Ip

∑

J∈Ir

|zIwJ |2 (2.36)

We know that |zIwJ | ≤ |zI ||wJ | for each I, J thus,

||zw|| ≤

√√√√
∞∑

p=0

∞∑

r=0

∑

I∈Ip

∑

J∈Ir

|zI |2|wJ |2. (2.37)

Finally notice that (suppressing the degree notation)

||z|| ||w|| =
√∑

I |zI |2
√∑

J |wJ |2

=
√∑

I |zI |2
∑

J |wJ |2

=
√∑

I

∑
J |zI |2|wJ |2

(2.38)

Therefore, ||zw|| ≤ ||z||||w||. If the Grassmann components are nonoverlapping, then

we will find equality (just as we would for the one-norm) because the inequality in

Equation 2.36 becomes an equality in the case that I and J do not share a common

index.

2.7 Commuting and Anticommuting Supernumbers

Supernumbers have all the usual properties of a number system modulo the more

complicated commutation properties that go with the Grassmann generators. We
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define the parity ǫ(z) of z ∈ Λ as follows:

ǫ(z) = 0 ⇔ ζ iz = zζ i ∀ ζ i

ǫ(z) = 1 ⇔ ζ iz = −zζ i ∀ ζ i
(2.39)

Of course some supernumbers do not have a definite parity, but we can always decom-

pose any supernumber into a commuting part zc, with ǫ(zc) = 0, and an anticommuting

part za, with ǫ(za) = 1,

z = zc + za (2.40)

Commuting (also called even or bosonic) supernumbers are generated by even number

of Grassmann generators,

zc = zB +
∞∑

k even

1

k!
zi1i2...ikζ

i1ζ i2 . . . ζ ik (2.41)

Anticommuting (also called odd or fermionic) supernumbers are generated by an odd

number of Grassmann generators,

za =

∞∑

k odd

1

k!
zi1i2...ikζ

i1ζ i2 . . . ζ ik (2.42)

In view of this decomposition we define,

Definition 2.7.1. Define the set of all commuting or anticommuting complex super-

numbers by,

Cc = {z ∈ Λ(C) | ǫ(z) = 0 } = 0Λ(C)

Ca = {z ∈ Λ(C) | ǫ(z) = 1 } = 1Λ(C).
(2.43)

Notice zero is both even and odd thus Λ(C) = Cc ⊕ Ca. Similar definitions apply for
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other types of supernumbers (we withold details since we have yet to discuss conjuga-

tion).

2.8 The Inverse of a Supernumber

The multiplicative inverse of a supernumber z is denoted z−1. When it exists it satisfies

the equations,

zz−1 = 1 z−1z = 1. (2.44)

Recall the body of a supernumber z = zo + ziζ
i + 1

2
zijζ

iζj + · · · is the part without

a Grassmann generator; that is, we define the body of z to be zB = zo. Define the

mapping b : Λ → K defined by b(z) = zB. The following proposition follows easily

from our previous discussion about the multiplication of supernumbers.

Proposition 2.8.1. b preserves addition and multiplication. That is for z, w ∈ Λ,

b(zw) = b(z)b(w) b(z + w) = b(z) + b(w). (2.45)

Consider then what this tells us about the inverse of z,

1 = b(1) = b(zz−1) = b(z)b(z−1) (2.46)

This shows that if z has an inverse then b(z) 6= 0. One can prove the following

proposition.

Proposition 2.8.2. Let z ∈ Λ, then z is invertible if and only if b(z) 6= 0.

We do not prove this result here but we derive heuristically a formula for the inverse.
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(see [98]). Let z = zB + zS ∈ Λ and suppose that zB 6= 0,

z = zB + zS =⇒ z−1
B z = 1 + z−1

B zS. (2.47)

Now z has an inverse if and only if z−1
B z has an inverse. Let us denote x = z−1

B zS and

recall the geometric series result from calculus,

(1 + x)−1 =
1

1 + x
=
∞∑

k=0

(−1)kxk. (2.48)

This step is rather suspicious in our case, but let us go on and see where it leads us.

Notice that (1 + x)−1 = (1 + z−1
B zS)

−1 = (z−1
B z)−1 = z−1zB hence,

z−1zB =

∞∑

k=0

(−1)k(z−1
B z)

k
. (2.49)

Thus we find,

z−1 =

∞∑

k=0

(−1)k(z−1
B z)

k
z−1
B . (2.50)
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We can verify that this formula is reasonable (assuming the series converges)

zz−1 = zB(1 + z−1
B zS)

∑∞
k=0(−1)k(z−1

B zS)
kz−1
B

= zB(1 + z−1
B zS)(z

−1
B +

∑∞
k=1(−1)k(z−1

B zS)
kz−1
B )

= zBz
−1
B + zB

∑∞
k=1(−1)k(z−1

B zS)
kz−1
B

+zBz
−1
B zSz

−1
B + zBz

−1
B zS

∑∞
k=1(−1)k(z−1

B zS)
kz−1
B

= 1 +
∑∞

k=1(−1)kzB(z−1
B zS)

kz−1
B + zBz

−1
B zSz

−1
B

−∑∞
k=1(−1)k+1zB(z−1

B zS)
k+1z−1

B

= 1 +
∑∞

k=1(−1)kzB(z−1
B zS)

kz−1
B + zBz

−1
B zSz

−1
B

−∑∞
k=2(−1)kzB(z−1

B zS)
kz−1
B

= 1 + (−1)−1zB(z−1
B zS)

1z−1
B + zBz

−1
B zSz

−1
B

= 1

(2.51)

2.9 Exponential Function on Λ

We can define the exponential function on Λ(K) via the usual power series expansion,

Definition 2.9.1. Let x ∈ Λ(K), then we define

ex =
∞∑

k=0

1

k!
xk. (2.52)
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It can be shown that ex ∈ Λ(K) by showing that {∑n

k=0
1
k!
xk}∞

n=1
is a Cauchy sequence

in Λ(K), hence it converges inside Λ(K) which is complete.

Also, for each x ∈ Λ(K) we can prove ex is an invertible supernumber. This follows

from the observation that the b(ex) = exB . Thus, as xB ∈ K we know from ordinary

analysis that exB 6= 0 therefore b(ex) 6= 0 yielding that ex is invertible.

Next, investigate how the product of exponentials behaves. Let x = xc + xa where

xc ∈ Kc and xa ∈ Ka. Notice that since x2
a = 0 we find that exa = 1 + xa. Also if

x ∈ Kc then it follows ex ∈ Kc. The mixed case is more interesting, let x ∈ Λ(K),

ex = exc+xa

= 1 + (xc + xa) + 1
2!

(xc + xa)
2 + 1

3!
(xc + xa)

3 + . . .

= 1 + xc + xa + 1
2!

(x2
c + 2xaxc) + 1

3!
(x3

c + 3xax
2
c) + . . . )

= (1 + xc + 1
2!
x2
c + 1

3!
x3
c + . . . ) + xa(1 + xc + 1

2!
x2
c + 1

3!
x3
c + . . . )

= exc + xae
xc

= exc(1 + xa)

= excexa .

(2.53)

Example 2.9.2. Suppose that z = x + θ where x ∈ Kc and θ ∈ Ka then if we define

F (x, θ) = ex+θ = ex + θex. This is a toy example of a component field expansion. We

say the superfield F has component fields a and b if F = a+θb. For F (x, θ) = ex+θex.

we have component fields a = b = ex. Later on x will play the role of physical space.
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Next take v, w ∈ Λ(K),

evew = evc+vaewc+wa

= evcevaewcewa

= evcewc(1 + va)(1 + wa)

= evc+wc(1 + va + wa + vawa)

= evc+wc(eva+wa + vawa)

= ev+w + vawae
vc+wc

(2.54)

Notice that in the case that either v or w is in Cc the term vawa = 0. Only in the

case where both of the supernumbers have anticommuting components do we find a

departure from the usual behavior of the exponential function. We may recall that the

exponential function provides an isomorphism between the group of numbers under

addition and the group of non-zero numbers under multiplication. It would seem we

will not be able to provide an analogous isomorphism of Λ(K) under addition and non-

zero Λ(K) under multiplication. The unusual nature of the anticommuting numbers will

spoil it for the general case. However, we will be able to argue the same isomorphism

for the commuting supernumbers Kc. As it turns out we will observe that this is a

typical pattern for the exponential mapping. Later when we discuss super Lie groups

and algebras we will find that exponentiation works on the even part of the super Lie

algebra (which is analogous to Kc here)
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2.10 Super Conjugation

Let K = C in this section. We will follow DeWitt [39] and define conjugation as follows:

(ζ i)
∗

= ζ i

(zw)∗ = w∗z∗

(z + w)∗ = z∗ + w∗

(2.55)

The body of a supernumber is commutating so we recover ordinary complex conjugation

on the body. This definition of super conjugation differs from the conventions given

by Alice Rogers in [102]. We discuss this distinction in Section 2.10.2.

Definition 2.10.1. A supernumber z is real if z∗ = z. A supernumber z is imaginary

if z∗ = −z. Generally supernumbers are neither real nor imaginary, but we can always

write

z =
1

2
(z + z∗) +

1

2
(z − z∗)

def
= Re{z} + iIm{z} (2.56)

Notice that because we have defined the Grassmann generators to be real, we arrive

at the interesting identity:

(ζ i1ζ i2 . . . ζ ik)∗ = ζ ik . . . ζ i2ζ i1 = (−1)
1
2
k(k−1)ζ i1ζ i2 . . . ζ ik . (2.57)

Thus if z = zB +
∑∞

k=1
1
k!
zi1i2...ikζ

i1ζ i2 . . . ζ ik then

z∗ = z∗B +
∞∑

k=1

1

k!
z∗i1i2...ik(−1)

1
2
k(k−1)ζ i1ζ i2 . . . ζ ik (2.58)

provided the mapping z 7→ z∗ is continuous so that conjugation is additive over infinite
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sums. Observe that z and z∗ have the same Grassmann coefficients up to a factor of

±1. This observation motivates the proposition that follows.

Proposition 2.10.2. Let z∗ denote the super conjugate of z then

1. if z ∈ Λ(C) then ||z|| = ||z∗|| and,

2. if z ∈ Cc ∪ Ca then ǫ(z∗) = ǫ(z).

In other words, super conjugation does not change the norm or parity of a super

number. So the definitions that follow are unambiguous.

Definition 2.10.3. Define the sets of all commuting or anticommuting real supernum-

bers by,

Rc = Rc(C) = {z ∈ Cc | z∗ = z }

Ra = Ra(C) = {z ∈ Ca | z∗ = z }
(2.59)

where the notations Rc(C), Ra(C) draw our attention to the fact that the Grassmann

coefficients are complex numbers. Also define the set of all real supernumbers

ΛR = {z ∈ Λ(C) | z∗ = z} and the set of all imaginary supernumbers iΛR = {iz | ∈

ΛR}.

Thus, to summarize, Λ = Cc ⊕ Ca = Rc ⊕ iRc ⊕ Ra ⊕ iRa and Λ = ΛR ⊕ iΛR.

Definition 2.10.4. Define Rc(R) = 0Λ(R) and Ra(R) = 1Λ(R).

In this work we insist that if real Grassmann coefficients are used, then the R must

appear explicitly. Thus Rc will always denote Rc(C).
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2.10.1 Why R = K is a Strange Choice

Suppose we try K = R and otherwise follow the same definitions as given in the

preceding section. What then would we find about the components of real or imaginary

supernumbers? Consider that (ζ iζj)∗ = (ζj)∗(ζ i)∗ = ζjζ i = −ζ iζj. Thus if z = z∗ then

z = zo + ziζ
i +

1

2
zijζ

iζj + · · · = z∗o + z∗i ζ
i − 1

2
z∗ijζ

iζj + · · · .

Consequently, z-real implies zo = z∗o , zi = z∗i whereas zij = −z∗ij . Suppose you wanted a

supernumber which was even, real and bodiless. If you worked in BL with L < 4, then

your only choice would be zero. Essentially the quirk is that although the generators

ζ i are real, products of generators ζ i1ζ i2 . . . ζ ik need not be (see Equation 2.57).

Generally, we find that if z = z∗, then z would have certain homogeneous components

real and the rest pure imaginary. A similar comment applies to z = −z∗ so there is a

rather peculiar connection between the reality condition of the supernumber and the

reality conditions for the Grassmann coefficients (see Equation 2.58). Given our choice

in this section of K = R we would find that the pure imaginary Grassmann coefficients

were forced to be zero. We find this an odd restriction on supernumbers.

If we employ an operation of super conjugation, then we will, from this point onward,

take K = C. Now it is still true that there is a somewhat complicated relation between

the reality conditions of the Grassmann components of a supernumber and the real-

ity condition of supernumber itself. However, our concepts of a super real number or

a super imaginary number are rather natural and mesh well with the physics literature.
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2.10.2 Rogers’ Super Conjugation

If one wishes to define super conjugation (different than the one we have already

introduced) so that real super numbers have real Grassmann coefficients, then one is

led to define super conjugation of the Grassmann generators as follows (see [102])

(βj)∗ = iβj. (2.60)

Other than this condition the Rogers-conjugation shares the same algebraic properties

as our super conjugation, most notably (zw)∗ = w∗z∗. However, the definition of a

real supernumber differs significantly from our convention; Rogers says that C is real

iff C∗ = iǫ(C)C.

Notice this definition makes the generators βj real. Also products of two generators

are real under this definition,

(βiβj)∗ = (βj)∗(βi)∗ = i2βjβi = −(−βiβj) = i0βiβj.

It follows that higher products of Rogers’ Grassmann generators are real as well.

Certainly this is an interesting convention, but it is undesirable for our purposes

because the reality conditions for super numbers are parity dependent. This would

result in a fair amount of clutter later on so we content ourselves to use DeWitt’s

super conjugation. We admit our conventions are strange in that there is something

odd about a real super number having real and imaginary Grassmann components.
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Super Linear Algebra

Linear algebra over R or C lies at the heart of much of modern mathematics. In su-

permathematics we find a similar story. We will loosely follow the work of Rogers,

Jadczyk and Pilch, DeWitt and Buchbinder and Kunzenko. The definitions we present

in this chapter are taken in part from all the authors above.

We begin by defining spaces which are analogous to R
n or C

n, namely Λn(K), Λp+q(K),

Sp|q(K), Sp̄|q̄(K) where S = R or C. These are all Banach spaces built from taking var-

ious Cartesian products of Λ(K), Sc(K) and Sa(K). For most applications we take

Grassmann coefficients from K = C in which case we may drop the notation indicating

the field K. We follow the notations in [29] namely R
p|q(C) = R

p|q and C
p|q(C) = C

p|q.

Next we discuss DeWitt’s definition of a super vector space as well as Jadczyk and

Pilch’s more refined ideas about Kc-supervector spaces. In addition Alice Rogers’ var-

ious super modules are defined. Just as in the ordinary case we can construct real or
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complex supervector spaces. What is new is that we can also restrict our attention to

commuting super numbers ( Cc,Rc,
0Λ(R)). Sometimes the commuting supernumbers

are the desirable scalars since multiplication by commuting super numbers does not

change parity.

Another wrinkle in the super case is that there is a distinction between left and right

linear operators. Left linear operators allow us to pull out scalars to the right without

any extra signs. Right linear operators allow us to pull out scalars to the left without

any extra signs. Unfortunately there are exceptions to this language in the literature.

For example, see [70]. Generally, when we pull out scalars from a linear operator we

must take care to generate signs via a Koszul sign convention. We note that just as in

ordinary linear algebra we may represent a linear operator via matrix multiplication

relative to a choice of basis. We explain our conventions concerning matrices in detail.

Multi-linear mappings play an important role in superanalysis since the iterated Frechet

derivative is a symmetric multi-linear mapping. We discuss our definitions from [37]

and relate them to those given in [68].

In the last part of the chapter we show that a left-linear mapping on a (p, q) dimen-

sional supervector space is uniquely defined by its action on the even subspace the

supervector space. We discuss how (p, q) and (p|q) dimensional supervector spaces are

related. In later chapters the left-linear extension of a map from the even subspace to

the total space is a convenient construction. Banach theory typically tells us something

about the even part, then we use the algebra at the end of this chapter to extend the
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map to the total space.

3.1 Algebraic Preliminaries

3.1.1 Z2-Graded Algebraic Concepts

We collect here a few basic definitions which are used broadly beyond the particular

type of supermathematics we consider in this work. We also use these structures, but

typically we have to replace the complex scalars with supernumbers. This is a nontrivial

step in general since it takes us from the realm of finite dimensional mathematics to

that of infinite dimensional Banach spaces. In any case we settle these common ideas

for future reference.

Definition 3.1.1. A Z2-graded vector space U over a field K is a vector space over K

with subspaces U0 and U1 such that U = U0 ⊕ U1. Vectors in U0 are called even and

have parity ǫ(U0) = 0 whereas vectors in U1 are called odd and have parity ǫ(U1) = 1.

Suppose dim(U0) = p and dim(U1) = q, then we say U has graded dimension (p, q).

Algebraists often refer to such spaces as superspaces. However, we will reserve that

term for spaces built over supernumbers. Graded will always refer to Z2-grading in

this chapter.

Definition 3.1.2. A Z2-graded algebra V = V0 ⊕ V1 is a graded vector space with a

multiplication such that 1 ∈ V0 and VrVs ⊂ Vr+s mod 2.

Definition 3.1.3. A graded-commutative algebra W is a Z2-graded algebra such that

for all v ∈Wr and w ∈Ws we have vw = (−1)rswv for r, s = 0, 1.

40



Chapter 3. Super Linear Algebra

3.1.2 Superalgebras and Modules

Let S denote any one of the following:

S ∈ { Λ(C), Cc, ΛR, Rc, Λ(R), 0Λ(R) }

Each of these is closed under multiplication. We are primarily interested in the cases

S = Λ(C),Cc,ΛR and Rc. When 1S = 0 we say that the supernumbers S are commut-

ing.

• If S = Cc or Rc or 0Λ(R) then 1S = 0

• If S = Λ(C) then 1S = 1Λ(C) = Ca.

• If S = ΛR then 1S = Ra.

• If S = Λ(R) then 1S = 1Λ(R) = Ra(R).

The definitions below are mostly due to Alice Rogers in [102].

Definition 3.1.4. A graded left S-module is a graded vector space U = U0 ⊕U1 which

is also a left module which respects the parity structures of U and S; that is 0SUr ⊂ Ur

and 1SUr ⊂ Ur+1 for r ∈ {0, 1} = Z2. Similarly, a graded right S-module is a graded

vector space U = U0 ⊕ U1 which is a right module which respects the parity structures

of U and S; that is Ur
0S ⊂ Ur and Ur

1S ⊂ Ur+1 for r ∈ {0, 1} = Z2. A S-bimodule is

a left-right S-module U that satisfies an intertwining relations (αv)β) = α(vβ) for all

α, β ∈ S, v ∈ U , and γw = (−1)ǫγǫwwγ for all w ∈ U0 ∪ U1 and γ ∈ 0S ∪ 1S.

There is a nice connection between left and right modules over S
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Proposition 3.1.5. Notice that if U is a left S-module, then it is also a right S-module

with action defined in such a manner as to respect the Koszul sign rule. Let α ∈ 0S∪1S

and let X ∈ U0 ∪ U1 then

Xα = (−1)ǫ(α)ǫ(X)αX

defines a right S-module action on U = U0 ⊕ U1. Moreover, U is a S-bimodule with

respect to these left and right actions. Conversely, given a right S-module we can

construct a left action that gives a bimodule structure.

In the discussion above when S = Cc,Rc or 0Λ(R) we have 1S = 0 so many of the rela-

tions are trivially satisfied. In what follows there is an important distinction between

commuting supernumbers S (which have 1S = 0) and mixed supernumbers S (which

have 1S 6= 0).

Definition 3.1.6. Let S ∈ {Λ(C),ΛR(C),Λ(R)}. Let V be a graded left S module and

let m = 1, 2, . . . , p, α = 1, 2, . . . , q and Em ∈ V0, Ẽα ∈ V1, then we call {Em, Ẽα} a

pure basis of super dimension (p, q) if there exist vm, ṽα ∈ S for each v ∈ V such that

v =

p∑

m=1

vmEm +

q∑

α=1

ṽαẼα =

p+q∑

M=1

vMEM

where we also denote {Em, Ẽα} = {EM} with EM = Em for M = m = 1, 2, . . . p and

EM = Ẽα for M = p+α = p+1, p+2, . . . p+ q. For convenience denote ǫ(EM ) by ǫM .
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3.2 Definition of an Abstract Supervector Space

It should be noted that there are several popular uses of the term ”supervector space”.

Among algebraists often when people speak of a super vector space they mean a Z2

graded vector space V over the complex numbers. That is, V is a vector space over

C with subspaces V0 and V1 such that V = V0 ⊕ V1. We will instead refer such as a

graded vector space or a C-supervector space. We reserve the term supervector space

for a slightly more exotic object to be described in the next section. In short, graded

vector spaces have a scalars in K whereas supervector spaces (for us) have scalars in

Λ(K). We follow Jadczyk and Pilch [68] in relaxing DeWitt’s definition [39] to allow

purely commuting super scalars, and we entertain the case of a real supervector space.

Due to the variety of scalars available we will introduce some notation to treat them

simultaneously.

Let S denote one of the following:

S ∈ { Λ(C) = Cc ⊕ Ca, Cc, ΛR(C) = Rc ⊕ Ra, Rc, Λ(R), 0Λ(R) }.

Each of these is closed under multiplication. We are primarily interested in S =

Λ(C),Cc,ΛR and Rc. An abstract vector space built over the supernumbers S is called

a supervector space. When we take S = Λ(C) or S = Cc we will say we have complex

superscalars and a complex supervector space. Likewise when we take S = Rc⊕Ra = ΛR

or S = Rc we will say we are using real superscalars for a real supervector space.

In particular, a supervector space V is a set of vectors with a vector addition
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+ : V × V −→ V which is commutative, associative, and distributive, along with left

and right scalar multiplications which respect the parity and (possibly) conjugation

properties of S. That is,

1. X + Y = Y +X for each X, Y ∈ V ,

2. (α+ β)X = αX + βX and X(α+ β) = Xα+Xβ for each α, β ∈ S and X ∈ V ,

3. α(X + Y ) = αX +αY and (X + Y )α = Xα+ Y α for each α ∈ S and X, Y ∈ V ,

4. (αX)β = α(Xβ) for each α, β ∈ S and X ∈ V ,

5. αcX = Xαc for each αc ∈ 0S and X ∈ V ,

6. V is the direct sum of even and odd subspaces; V = V 0 ⊕ V 1. Moreover, vectors

in these subspaces are called pure; they have definite parity ǫ which is defined as

follows

V 0 = { X ∈ V | ǫ(X) = 0 }

V 1 = { X ∈ V | ǫ(X) = 1 }.
(3.1)

If X ∈ V then we denote X = X0 +X1 where X0 ∈ V 0 and X1 ∈ V 1.

7. When S has anticommuting scalars then we insist that the parities of S interact

with those of S as follows: If X = X0 +X1 then

αaX1 = −X1αa

for all αa ∈ 1S. When 1S = 0 then this requirement is trivially satisfied.

8. When S is complex (S = Λ(C) or S = Cc), then we insist that there is a

conjugation of vectors which interacts with the conjugation of supernumbers at
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follows:

• X∗∗ = X

• (X + Y )∗ = X∗ + Y ∗

• (αX)∗ = X∗α∗

• (Xα)∗ = α∗X∗

A super vector X is real if X∗ = X. A super vector X is imaginary if X∗ = −X.

Generally super vectors are neither real nor imaginary, but we can always write

X =
1

2
(X +X∗) +

1

2
(X −X∗)

def
= Re{X} + iIm{X} (3.2)

Every complex super vector space V has a real subspace defined as follows,

VR = { X ∈ V | X∗ = X } (3.3)

From which we can construct the imaginary subspace,

iVR = { iX | X ∈ VR } (3.4)

Thus, for any complex supervector space, V = VR ⊕ iVR.

9. If we have all the requirements for a complex supervector space except conjuga-

tion then we will say that it is a ”S-bimodule” or a ”supervector space without

conjugation”.

Remark 3.2.1. Suppose S contains complex supernumbers, if we have a Z2-graded

S-bimodule which possesses a conjugation operation that respects the module structure
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then we obtain a supervector space over S. If S contains only real supernumbers, then

a Z2-graded S-bimodule is a supervector space over S.

Proposition 3.2.2. Let X ∈ V then ǫ(X) = ǫ(X∗).

Proof. Assume S = Λ(C), let α ∈ Ca and let X ∈ V be pure, then

αX = (−1)ǫ(X)ǫ(α)Xα. (3.5)

Now conjugate both sides and use that (αX)∗ = X∗α∗

X∗α∗ = ((−1)ǫ(X)ǫ(α)Xα)∗

= α∗X∗((−1)ǫ(X)ǫ(α))∗

= (−1)ǫ(X)ǫ(α∗)α∗X∗

(3.6)

where we used the facts that (±1)∗ = ±1 ∈ Cc, and ǫ(α∗) = ǫ(α) for the last step. The

equations above shows that X∗ and X share the same parity.

Thus, we can make a direct sum decomposition of the supervector space V

V = V 0 ⊕ V 1 = (V 0R ⊕ iV 0R) ⊕ (V 1R ⊕ iV 1R) (3.7)

Now if S = Cc a similar, but easier, argument holds.

3.3 Canonical Supervector Spaces

In this section we define the spaces in our context which are analogous to Rn or Cn in

ordinary linear algebra. Each of the spaces in the table can appear as the target spaces
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Table 3.1: Canonical Supervector Spaces
Type / Dimension (p, q) (p|q) (p̄|q̄)

Complex Supervector Spaces Λ(C)(p, q) Cp|q Cp̄|q̄

Real Supervector Spaces ΛR(C)(p, q) Rp|q Rp̄|q̄

Real Supervector Spaces Λ(R)(p, q) Rp|q(R) Rp̄|q̄(R)

for coordinate maps on an abstract supervector space. As the notation suggests we

have two types of dimension to keep in mind. If we say our space has super dimension

(p, q) that indicates we are working with mixed superscalars. On the other hand,

if we have a space with superdimension (p|q) or (p̄|q̄) then we must use commuting

superscalars in order that we not spoil the grading. In the section that follows this one

we will learn that any abstract finite super-dimensional supervector space is one of the

examples given in this section up to isomorphism.

3.3.1 Canonical Real or Complex Supervector Spaces over K

The field K which provides the Grassmann coefficients is either R or C. If we take

K = R, then we would only find it natural to discuss real supervector spaces. How-

ever, if we take K = C, then we may consider ”real” or ”complex” supervector spaces.

The ”real” or ”complex” refers to the nature of the superscalars which we denoted

generically by S. In this section we give the results which hold for either choice of K

and both real and complex supervector spaces. Throughout this section Λ = Λ(K), we

choose to emphasize the K on certain points.

The Cartesian product of Λ k-times is Λk = Λ × Λ × · · · × Λ. We can readily verify

that Λk is an vector space over K although it has no natural multiplication like Λ.
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Definition 3.3.1. We define a norm on Λk as follows,

||(z1, z2, . . . , zk)|| =

k∑

i=1

||zi||. (3.8)

We leave the proof that this is a norm to the reader. The fact that Λk is complete can

be induced easily from the fact that Λ is complete.

Following our paper [37] we introduce a slight modification of our original notation to

indicate the Grassmann coefficient field we define:

Definition 3.3.2. Suppose K denotes either R or C and S denotes either R or C. Let

Sp|q(K) denote the set of all (p+q)-tuples z = (x1, . . . , xp, θ1, . . . , θq) where xm ∈ Sc(K)

for m = 1, 2, . . . , p and θα ∈ Sa(K) for α = 1, 2, . . . , q. In a more compact notation we

also write z = (zM ) for M = 1, 2, . . . , p+ q. The norm on Sp|q(K) is induced from the

norm on Sc(K) ⊕ Sa(K),

|| z || =

p∑

m=1

||xm|| +
q∑

α=1

||θα|| =

p+q∑

M=1

||zM ||. (3.9)

We define the dimension of Sp|q(K) to be (p|q).

Observe that since Sc(K) and Sa(K) are complete, it follows that Sp|q(K) is complete

and consequently Sp|q(K) is a Banach space. Moreover, following Jadzyck and Pilch

[68] we can give Λ(K)k a grading.

Definition 3.3.3. Let us denote Kp̄|q̄ = 1Λp × 0Λq. If k = p + q, then we define

Λ(p, q) = Λk with the Z2-grading such that 0Λ(p, q) = Kp|q = 0Λp × 1Λq and 1Λ(p, q) =

Kp̄|q̄ = 1Λp × 0Λq.
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Let us pause to examine the details of how Λ(p, q) is identified with C
p|q ⊕ C

p̄|q̄. Let

z = (z1, . . . , zp+q) ∈ Λp+q(C) and further suppose that zM = xM + θM , xM ∈ Cc,

θM ∈ Ca for each M = 1, 2, . . . p+ q then

z = (z1, . . . , zp, zp+1, . . . , zp+q)

= (x1 + θ1, . . . , xp + θp, xp+1 + θp+1, . . . , xp+q + θp+q)

= (x1, . . . , xp, θp+1, . . . , θp+q) + (θ1, . . . , θp, xp+1, . . . , xp+q)

(3.10)

Observation 3.3.4. In [68], the notation for Λ(p, q) would be Λp+q. We have avoided

this subtle notation because in their notation generally Λp+q 6= Λq+p.

If k = p + q, then as point sets Λk = Λ(p, q). For a particular k ∈ N, there are

many possible gradings we could give to split Λk into even and odd parts. For each

possible splitting the norm is given as in 3.3.2. Let M ∈ {1, 2, . . . k}, if zM ∈ Λ(C),

then there exist xM ∈ Cc, θ
M ∈ Ca such that zM = xM + θM . Because the Grassmann

components of even and odd supernumbers are non-overlapping, it follows that ||zM || =

||xM || + ||θM ||. Thus,

|| z || =
∑k

M=1 ||zM ||

=
∑k

M=1( ||xM || + ||θM || )

=
∑k

M=1 ||xM || + ∑k
M=1 ||θM ||

=
∑p

M=1 ||xM || + ∑p

M=1 ||θM || + ∑p+q
M=p+1 ||xM || + ∑p+q

M=p+1 ||θM ||.

(3.11)

The equation above shows that ||z|| is independent of the grading given to Λk. The

comments given above for Λ(C)(p, q) also apply to ΛR(p, q) or Λ(R)(p, q).
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3.3.2 Canonical Complex Supervector Spaces

Logically the definitions that follow are implicit within the last section, but we wish

to make the notation clear.

Definition 3.3.5. The set of even vectors in Λ(C)(p, q) are

Cp|q = { (y1, y2, . . . , yp, θ1, θ1, . . . , θq) | ym ∈ 0Λ(C) and θµ ∈ 1Λ(C) }. (3.12)

The set of odd vectors in Λ(C)(p, q) are denoted by Cp̄|q̄ (see [68]) and

Cp̄|q̄ = { (θ1, θ1, . . . , θp, y1, y2, . . . , yq, ) | ym ∈ 0Λ(C) and θµ ∈ 1Λ(C) }. (3.13)

The parity of a vector v ∈ Λ(C)(p, q) is ǫ(v) where ǫ(Kp|q) = 0 and ǫ(Kp̄|q̄) = 1.

3.3.3 Canonical Real Supervector Spaces over K = C

Conceptually we regard the R that appears in Rp|q to refer to super conjugation. It does

not indicate that we generate supernumbers using R-valued Grassmann coefficients. As

we discussed previously this leads to undesirable peculiarities under our conventions for

super conjugation. We should comment that the notation here differs slightly from [37].

We have replaced Kp|q with the more descriptive Sp|q(K). With this change of notation,

we are now free to consider Rp|q(C) (in [37] we did not study super conjugation so this

was not an issue).

Definition 3.3.6. The set of even real vectors in Λ(C)(p, q) are

Rp|q = { (y1, y2, . . . , yp, θ1, θ1, . . . , θq) | ym ∈ Rc(C) and θµ ∈ Ra(C) }. (3.14)
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The set of odd real vectors in Λ(C)(p, q) are denoted by R
p̄|q̄ and

R
p̄|q̄ = { (θ1, θ1, . . . , θp, y1, y2, . . . , yq, ) | ym ∈ Rc(C) and θµ ∈ Ra(C) }. (3.15)

Let Λ(p, q)
R

= Rp|q⊕Rp̄|q̄ where parity is defined as before, ǫ(Rp|q) = 0 and ǫ(Rp̄|q̄) = 1.

3.3.4 Canonical Supervector Spaces over R

We will not have much occasion to use the objects in this section, but just to draw

attention to the issue let us define real super vectors over the real numbers.

Definition 3.3.7. The set of even real vectors in Λ(R)(p, q) are

R
p|q(R) = { (y1, y2, . . . , yp, θ1, θ1, . . . , θq) | ym ∈ Rc(R) and θµ ∈ Ra(R) }. (3.16)

The set of odd real vectors in Λ(R)(p, q) are denoted Rp̄|q̄(R) ,

Rp̄|q̄(R) = { (θ1, θ1, . . . , θp, y1, y2, . . . , yq, ) | ym ∈ Rc(R) and θµ ∈ Ra(R) }. (3.17)

If we were to work with Λ(R)(p, q), then it would be more natural to adopt the super

conjugation described in [102].
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3.4 Linear Independence, Spanning and Total Di-

mension

In contrast to ordinary linear algebra we need to distinguish between right and left

linear independence.

Definition 3.4.1. Suppose that V is a S-supervector space. Let eA ∈ V for all A ∈ J ,

where J is a possibly infinite indexing set. We define a set of supervectors {eA}A∈J to

be a left-linearly independent set of supervectors if and only if for each finite set J ⊆ J

∑
m∈JemX

m
+ = 0 =⇒ Xm

+ = 0 ∀m ∈ J. (3.18)

Similarly, a set of supervectors {eA}A∈J is said to be a right-linearly independent set

of supervectors if and only if for each finite set J ⊆ J

∑
m∈JX

m
− em = 0 =⇒ Xm

− = 0 ∀m ∈ J. (3.19)

We say the set of supervectors {eA}A∈J is a linearly independent set of supervectors iff

it is both a left and right linearly independent set of supervectors.

Likewise we must make a distinction between right and left spanning sets.

Definition 3.4.2. Suppose that W ⊂ V where V is a S-supervector space. Let eA ∈

V for all A ∈ J , where J is a possibly infinite indexing set. We define a set of

supervectors {eA}A∈J to be a left-spanning set for W iff for each w ∈ W there exist
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finitely many superscalars Xm
+ ∈ S, m ∈ J ⊆ J such that

w =
∑

m∈J
emX

m
+ .

Likewise, {eA}A∈J is said to be a right-spanning set for W iff for each w ∈ W there

exist finitely many superscalars Xm
− ∈ S, m ∈ J ⊆ J such that

w =
∑

m∈J
Xm
− em.

Finally we say that a set of supervectors {eA}A∈J is a spanning set for W iff it is both

a left and right spanning set for W .

We say that a spanning set is minimal iff there is no smaller set which also spans the

space. We say a linearly independent set is maximal iff whenever we enlarge the set it

becomes linearly dependent.

Remark 3.4.3. Suppose S = {eA}A∈J is a set of pure supervectors, then we can show

that S is a left linearly independent iff S is right linearly indpendent. Also S is a left

spanning set for W iff S is a right spanning set. Fortunately, we will find that there

always exists a pure basis for a finite super-dimensional supervector space. Once we

have such a basis it will suffice to consider just left or right spans.

Definition 3.4.4. A basis for a S-supervector space V is a linearly independent span-

ning set. We say that V is finite super-dimensional iff there exists a finite maximal

linearly independent spanning set. Suppose that {eA}dA=1 is a finite maximal linearly

independent spanning set for V . We call that set a basis of V and define the number

of vectors in that basis to be the total dimension ”d” of V . With respect to the basis
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we define the left and right components of the vector X ∈ V ,

X = eMX
M
+ XM

+ = left components of X

X = XM
− eM XM

− = right components of X

The theorem that follows assures us that the dimension is well-defined.

Theorem 3.4.5. If V is a supervector space which has finite basis, then every basis is

finite. Moreover any two bases have the same number of elements.

Proof. Assume that {eM |1 ≤ M ≤ d} is a finite basis of V and that {fA|A ∈ A} is

any basis. We show that A has no more than d elements. Suppose to the contrary

that A1, A2, · · · , Ar, r > d are elements of A where r is large enough so that each of

the elements eM is a linear combination of the {fAa}

eM = F a
M fa. (3.20)

Such an r exists since, for each M , eM is a finite linear combination of the basis {fA|A ∈

A}. To simplify notation, we denote the elements {fAa} simply by fa = fAa , 1 ≤ a ≤ r.

Observe that we also have

fa = G M
a eM (3.21)

Consequently, fa = G M
a F b

Mfb and eM = F a
MG

N
a eN and it follows from linear inde-

pendence that G M
a F b

M = δba and F a
MG

N
a = δNM . Thus as matrices GF = Ir, FG = Id

and b(G)b(F ) = Ir, b(F )b(G) = Id where, as usual b(F ), b(G) denote the bodies of the

matrices F,G. Finally, d = tr(Id) = tr(b(F )b(G)) = tr(b(G)b(F )) = tr(Ir) = r. This

contradiction then implies that r ≤ d. Once we know A is finite with no more than d
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elements we can reverse the roles of the two bases in the proof and doing so implies

that both r ≤ d and d ≤ r. The theorem follows.

3.4.1 Pure Basis

Definition 3.4.6. Suppose that S = 0S ⊕ 1S with 0S 6= 0 and 1S 6= 0, then a basis for

a S-supervector space V = V0 ⊕ V1 is said to be a (p, q) dimensional pure-basis iff it

is an ordered basis of supervectors such that the first p supervectors are in V0 and the

last q supervectors are in V1. We say that V is a (p, q) dimensional supervector space.

We should pause to note that if we have a S-supervector space V where S = 0S, then

unfortunately there may be no basis of V . For example, Cp|q contains no basis. We

refer to such supervector spaces as coordinated supervector spaces, or (p|q)-dimensional

supervector spaces.

Proposition 3.4.7. Suppose that S = 0S ⊕ 1S with 0S 6= 0 and 1S 6= 0. If V is

a S-supervector space of total dimension d then V is a (p, q)-dimensional supervector

space for a unique pair of nonnegative integers p, q such that p + q = d. Moreover,

there is a correspondence between V0 and K
p|q.

Proof. Let {eM} be an arbitrary basis of a d dimensional supervector space V. For

each index M , let

eM = e0M + e1M . (3.22)

where e0M is even and e1M is odd. Since {eM} is a basis there exist super matrices F

and G such that

e0M = eNF
N
M

e1M = eNG
N
M

(3.23)
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hence,

eM = e0M + e1M = eN (FN
M +GN

M) (3.24)

Let F denote the matrix (FN
M) and G the matrix (GN

M). Then F and G are d × d

matrices over Λ such that F + G = Id. Let A = b(F ) and B = b(G) and consider

the linear transformation from C2d to Cd defined by L((x, y))t = [A|B](x, y)t where

(x, y) ∈ C2d and the superscript t means transpose (to convert the row vector to a

column vector). Now L((x, y)) = xA+yB in row notation and L((x, x)) = x(A+B) = x

so L is surjective and the rank of the augmented matrix [A|B] is d. The dimension of

the column space is therefore d, and so there exists d = p+ q columns

b(F )M1, b(F )M2, · · · , b(F )Mp, b(G)N1 , b(G)N2 , · · · , b(G)Nq

of the matrix [b(F )|b(G)] which are linearly independent and the matrix with these as

its columns is invertible.

It follows that the submatrix M of [F |G] defined by

M = [FM1|FM2 | · · · , FMp|GN1 |GN2| · · · , GNq ]

is invertible since its body is. Now FMi
is the i-th column of M, and GNj

is the

(p+ j)-th column of M; we use these to define

ẽ0i = (e1, e2, · · · , ed)FMi
ẽ1j = (e1, e2, · · · , ed)GNj

.

Since ẽ0i = eMF
M
Ni

= e0Mi
, we see that it is even. Similarly ẽ1j = eNG

N
Mj

= e1Nj
is odd.
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Moreover,

(ẽ01, ẽ
0
2, · · · , ẽ0p, ẽ11, ẽ12, · · · , ẽ1q) = (e1, e2, · · · , ep+q)M

where M is invertible. It is not difficult to prove that the vectors

{ẽ01, ẽ02, · · · , ẽ0p, ẽ11, ẽ12, · · · , ẽ1q}

are left and right linearly independent and that they form a left and right spanning

set for the supervector space V. This follows from the fact that M is invertible. The

theorem follows.

Clearly Λ(K)(p, q) is a supervector space of dimension (p, q) over the superscalars Λ(K).

Definition 3.4.8. The canonical basis for Λ(K)(p, q) is the set {eM}p+qM=1 of (p + q)-

tuples

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), ep+q = (0, 0, . . . , 1)

sometimes we will use the notation that eM = em for M = m = 1, 2, . . . p while eM = eα

for M = α+ p for α = 1, 2, . . . q. The type of index indicates the numbering employed.

Capital indices like M,N, . . . typically run over all the indices whereas m,n, . . . run

from 1 to p and α, β, . . . run from 1 to q.

We continue to employ this notation for the arguments that follow in later sections.

Given a supervector space V of dimension (p, q) we chose p even vectors and q = d− p

odd vectors and denote them as follows

Em m = 1, 2, . . . p even vectors ( in V 0)

Eµ µ = 1, 2, . . . q odd vectors ( in V 1)
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these form a pure basis {Em, Eµ} for V. Our convention is that repeated indices are

summed over their values. Latin indices such as m,n, · · · = 1, 2, . . . p while Greek

indices such as α, β, µ, · · · = 1, 2, . . . , q.

Theorem 3.4.9. Assume that V is a supervector space and that

{e01, e02, · · · , e0p, e11, e12, · · · , e1q}

and

{f 0
1 , f

0
2 , · · · , f 0

r , f
1
1 , f

1
2 , · · · , f 1

s }

are pure bases of V. Then p = r and q = s.

Proof. Write each basis in terms of the other as follows:

e0m = f 0
nA

n
m + f 1

βC
β
m

e1α = f 0
kB

k
α + f 1

βD
β
α

(3.25)

f 0
n = e0kX

k
n + e1βZ

β
n

f 1
α = e0kY

k
α + e1βW

β
α

(3.26)

where the coefficients are in Λ. Consider the equation

e0m = f 0
nA

n
m + f 1

βC
β
m.

If the matrices A = (An m) and C = (Cβ
m) are not pure, then write both of them as
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the sum of their even and odd components to obtain

e0m = f 0
n(

0An m) + f 1
β(

1Cβ
m) + f 0

n(
1An m) + f 1

β (
1Cβ

m).

The term f 0
n(

1An m)+f 1
β(

0Cβ
m) is odd, and since e0m is even, it must be zero. It follows

that e0m = f 0
n(

0An m)+f 1
β(

0Cβ
m), and in this way we see that we could have chosen the

matrices A,C at the outset such that all the entries of A are even and all the entries

of C are odd. Similar arguments show that one may choose the matrices D,X,W,Z

such that all the entries of the matrices D = (Dβ
α), X = (Xk

n), and W = (W β
α) are

even while all the entries of the matrices B = (Bk
α), Y = (Y β

α), and Z = (Zβ
n) are

odd. If

M =



A B

C D


 (3.27)

N =



X Y

Z W


 (3.28)

then in an obvious notation

( ~e0, ~e1) = ( ~f 0, ~f 1)M and ( ~f 0, ~f 1) = ( ~e0, ~e1)N. (3.29)

It follows that

( ~e0, ~e1) = ( ~e0, ~e1)NM and ( ~f 0, ~f 1) = ( ~f 0, ~f 1)MN (3.30)
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and consequently that

MN =



Ir 0

0 Is


 and NM =



Ip 0

0 Iq


 . (3.31)

Since the body mapping is a multiplicative homomorphism, we have

b(M)b(N) =



Ir 0

0 Is


 and b(N)b(M) =



Ip 0

0 Iq


 . (3.32)

But

b(M) =



b(A) 0

0 b(D)


 and b(N) =



b(X) 0

0 b(W )


 (3.33)

and consequently

b(M)b(N) =



b(A)b(X) 0

0 b(D)b(W )


 b(N)b(M) =



b(X)b(A) 0

0 b(W )b(D)


 .

It follows that b(A)b(X) = Ir, b(D)b(W ) = Is and b(X)b(A) = Ip, b(W )b(D) = Iq. Thus

r = tr(b(A)b(X)) = tr(b(X)b(A)) = p and s = tr(b(D)b(W )) = tr(b(W )b(D)) = q.

The theorem follows.

It follows that (p, q) is an invariant of the supervector space V with total dimension

d = p+ q, thus the (p, q) dimensionality of V is well-defined.

Corollary 3.4.10. Suppose that S = 0S ⊕ 1S with 0S 6= 0 and 1S 6= 0. If V is a

S-supervectorspace which is (p, q)-dimensional, then there is a 0S-linear isomorphism

of V0 and Kp|q and an 0S-linear isomorphism of V1 and Kp̄|q̄.
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Proof. We know there exists a pure basis of well defined superdimension (p, q) from

theorem 3.4.9. Let X ∈ V 0 then with respect to the pure basis we find,

X = ymEm + θµEµ (3.34)

where ym ∈ Kc and θµ ∈ Ka since ǫ(αY ) = ǫ(α) + ǫ(Y ). Observe the mapping

ymEm + θµEµ −→ (y1, y2, . . . , yp, θ1, θ1, . . . , θq)

provides the isomorphism V0 = Kp|q. The proof that V1 and Kp̄|q̄ are 0S-linear isomor-

phic is similar.

3.4.2 Pure-Real Basis

Theorem 3.4.11. If V is a super vector space of dimension (p, q), then there exists a

pure basis {Fm, Fµ} of V such that F ∗M = FM for M = m or M = µ. Such a basis will

be called a pure-real basis.

Proof. The proof is analogous to the previous argument for constructing a pure basis.

First recall that there exists a pure basis {Em, Eµ} for V and notice that each pure

basis vector can be broken into a real and imaginary part,

EM = 1
2
(EM + E∗M ) + 1

2
(EM − E∗M) = RM + JM (3.35)

where RM = 1
2
(EM + E∗M) and JM = iIM = 1

2
(EM − E∗M), 1 ≤ M ≤ d. It is straight-

forward to verify that R∗M = RM and J∗M = −Jm, thus I∗M = IM . Let S denote the

set {RM , JM} containing 2d vectors. Note that because RM , JM ∈ V which has basis
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{EM}, there must exist super matrices F and G such that,

RM = F N
M EN

JM = G N
M EN

(3.36)

hence,

EM = F N
M EN +G N

M EN

= (F N
M +G N

M )EN

(3.37)

It should be clear from arguments analogous to those in the proof of the last theorem

that the matrix [b(F )|b(G)] has rank d. As before we can choose d linearly independent

columns from [F |G] to form an invertible d × d matrix B. In particular, denoting the

ith column in F by Fi, we construct B as follows

B = [Fi1 | Fi2 | . . . | Gir+1 | Gir+2 | . . . | Gid]. (3.38)

We can use this matrix to change our basis to a new basis {ẼM} which is partly real

and partly imaginary, keeping the ordering as in our construction of B(B1 = Fi1 and

so on...). Define

ẼM = B N
M EN M = 1, 2, . . . r

ẼM = B N
M EN M = r + 1, r + 2, . . . d

(3.39)

then by the very definitions of the matrices F and G we can verify that the first r

vectors are real and the last d− r vectors above are imaginary,

ẼM = B N
M EN = F N

iM
EN = RiM M = 1, 2, . . . r

ẼM = B N
M EN = G N

iM
EN = JiM M = r + 1, r + 2, . . . d.

(3.40)
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Finally we construct the pure real basis as follows,

FM = ẼM = RiM M = 1, 2, . . . r

FM = iẼM = IiM M = r + 1, r + 2, . . . d
(3.41)

The manner in which we constructed this basis guarantees that it is pure as well as

real. However we may have altered the canonical ordering of the pure basis. We like

to put the p-even basis vectors first, then the q-odd vectors last in the ordering. This

poses no real difficulty because at the end of the proof above we can simply permute

the ordering to the standard order and obtain a canonically ordered pure, real basis.

Notice that our choice of d linearly independent vectors had to respect the dimension

(p, q) of V since we previously proved that any pure basis must have the same number

of even and odd vectors. Thus we have shown that we can always choose a pure basis

which is also real for any finite dimensional super vector space V .

3.4.3 Standard Basis

Pure-real bases are useful,but they have some curious properties. A (p, q)-dimensional

pure-real basis {Em, Eµ} has E∗M = EM and ǫ(EM) = ǫM . We expand X ∈ V 0R with

respect to the basis as follows (sum over m = 1, 2, . . . , p and µ = 1, 2, . . . , q)

X = XmEm +XµEµ (3.42)
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Clearly Xm ∈ Cc and Xµ ∈ Ca as X is even. Observe,

X∗ = (XmEm)∗ + (XµEµ)
∗

= Em(Xm)∗ + Eµ(X
µ)∗

= EmX
m −XµEµ

(3.43)

Suppose X is real, then X∗ = X = XmEm+XµEµ. We find, with respect to a pure-real

basis, the odd components of an even-real supervector are pure imaginary:

(Xm)∗ = Xm (Xµ)∗ = −Xµ. (3.44)

Definition 3.4.12. Given a pure-real basis {Em, Eµ}, introduce a corresponding standard basis

{Em, Eµ} defined by Em = Em and Eµ = iEµ.

3.4.4 Complex Supervector Spaces

Proposition 3.4.13. Let V = V 0⊕V 1 be a supervector space over S = Λ(C) with total

dimension d then there exist bijections that establish the following correspondences,

V 0 7→ C
p|q V 0R 7→ R

p|q VR 7→ ΛR(p, q)

Proof. Our proof makes use of the various special bases we have defined in the preced-

ing sections. Notice we already established that V 0 7→ Cp|q in Corollary 3.4.10.
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Let X ∈ V 0R, then with respect to the standard basis we find,

X = xmEm + θµEµ (3.45)

X is even so we know that xm ∈ Cc and θµ ∈ Ca. Also, note E∗m = E∗m = Em and

E∗µ = (iEµ)
∗ = −iEµ = −Eµ. Consider that

X∗ = (xmEm)∗ + (θµEµ)∗

= (Em)∗(xm)∗ + (Eµ)∗(θµ)∗

= Em(xm)∗ − Eµ(θµ)∗

= (xm)∗Em + (θµ)∗Eµ.

(3.46)

If X∗ = X, then (xm)∗Em + (θµ)∗Eµ = xmEm + θµEµ. We find that all the components

of an even real vector are real with respect to the standard basis; that is xm ∈ Rc and

θµ ∈ Ra. The correspondence is given via the standard basis,

xmEm + θµEµ −→ (x1, x2, . . . , xp, θ1, θ1, . . . , θq).

The proof that VR 7→ ΛR(p, q) = Rp|q ⊕ Rp̄|q̄ follows by almost the same argument.

We now state another useful correspondence for a complex supervector space.

Proposition 3.4.14. Let V be a (p, q)-dimensional complex supervector space, then V

is also a (2p, 2q) dimensional real supervector space over ΛR = Rc ⊕ Ra.

Proof. Theorem 3.4.11 shows there exists a (p, q)-dimensional pure real basis {Em, Eµ}

for V . Let Z ∈ V then there exist Zm, Zµ ∈ Λ(C) such that Z = ZmEm + ZµEµ.

Furthermore, there exist xm, ym, θµ, φµ ∈ ΛR such that Zm = xm + iym and Zµ =
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θµ + iφµ. Observe that

Z = (xm + iym)Em + (θµ + iφµ)Eµ

= xmEm + ymiEm + θµEµ + φµiEµ

(3.47)

Thus the ΛR-span of the supervectors {Em, iEm, Eµ, iEµ} generates V . Moreover, EM

and iEM are linearly independent with respect to ΛR. This shows that V is a real

supervector space. For each m = 1, 2, . . . , p both Em and iEm are even while for each

µ = 1, 2, . . . , q both Eµ and iEµ are odd. Thus as a super-real supervector space we

find V is (2p, 2q)-dimensional.

3.4.5 Super Dimension and Coordinates

When the supervector space V has mixed superscalars S (1S 6= 0) and finite total

dimension d then we can find a pure basis of V so the usual idea of dimension makes

good sense. We defined total dimension d to be the number of vectors in a basis for V .

Moreover, we saw that there exists a pure basis with p-even vectors and q-odd vectors

such that d = p + q. So we say such a supervector space is (p, q)-dimensional. We

define a coordinate map for V to be an S-isomorphism of V and Sp+q.

A common source of trouble is the vexing fact that V = Kp|q has no pure basis. As

a supervector space the grading on K
p|q is somewhat trivial; V = K

p|q with V0 = K
p|q

and V1 = 0. The superscalars for V are Kc so there is no way to obtain vectors such

as (0, . . . , θ1, . . . , θq) from a finite minimal spanning set. We note that it is possible to

have a supervector space with commuting superscalars and a nontrivial odd part, but

we will not make use of such spaces.
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To remedy the missing basis shortcoming [68] chose to define dimension of supervector

spaces in terms of the coordinate maps. If the coordinate maps go to Kp|q then the

dimension is (p|q). If the coordinate maps go to Kp̄|q̄ then the dimension is (p̄|q̄).

Definition 3.4.15. Let V be a S-supervector space with S = 0S then

1. V is (p|q)-dimensional iff there is an 0S-isomorphism from V to (0S)p × (1S)q.

2. V is (p̄|q̄)-dimensional iff there is an 0S-isomorphism from V to (1S)p × (0S)q.

In each case we say that such isomorphisms are coordinate maps and that the supervec-

tor space is either (p|q) or (p̄|q̄) dimensional. Moreover, we insist that all the coordinate

maps for a particular supervector space share the same super dimension.

The distinction between (p|q) and (q̄|p̄) is just one of ordering. We refer to (p̄|q̄)-

dimensional supervector spaces as bizarro supervector spaces since the usual ordering

is backwards.

Definition 3.4.16. Let V be a S-supervector space. Suppose v ∈ V and Ψ is a

coordinate mapping on V , then Ψ(v) are the coordinates of v. In particular,

1. If V is (p|q) dimensional then Ψ(v) = (vm, vα) ∈ Kp|q = (0S)p × (1S)q,

2. If V is (p̄|q̄) dimensional then Ψ(v) = (vα, vm) ∈ Kp̄|q̄ = (1S)p × (0S)q,

3. If V is (p, q) dimensional then Ψ(v) = (v1, . . . , vp+q) ∈ Sp+q.

One should notice that Kp|q is not a left Λ(K)-module, multiplication by Ka distorts

the structure of Kp|q. It is important to distinguish the difference between dimension
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(p, q) and dimension (p|q). It is fairly obvious that we can obtain left Λ modules from

graded vector spaces by simply tensoring with Λ. However not all left Λ-modules have

such structure (see Example 4.2a in [98]). Hence the class of left Λ modules is larger

than that of graded vector spaces.

Proposition 3.4.17. Let S ∈ {Λ(C),ΛR,Λ(R)} and suppose V = V0⊕V1 is a (p, q) di-

mensional S-supervector space. It follows that V0 is a (p|q) dimensional 0S-supervector

space.

Proof. Clearly V0 is closed under 0S superscalar multiplication. Pick a pure basis

{Em, Eα} in V then observe v ∈ V0 has the basis expansion v = Emv
m + Eαv

α with

(vm, vα) ∈ (0S)p × (1S)q thus we define the obvious coordinate map on V0; ψ(v) =

(vm, vα). Thus V0 is a (p|q)-dimensional 0S-supervector space.

On the other hand if we are given a supervector space over commuting supernumbers,

we are free to enlarge it to a supervector space over mixed supernumbers of the same

type.

Proposition 3.4.18. Let 0S ∈ {0Λ(C), 0ΛR,
0Λ(R)} and suppose V0 is a (p|q) dimen-

sional 0S-supervector space. Then there exists a (p, q) dimensional S-supervector space

V = V0 ⊕ V1.

Proof. Let V = V0 ⊕ ((1S)p × (0S)q) where we define V1 = (1S)p × (0S)q. We have by

assumption a coordinate map ψ0 : V0 → (0S)p × (1S)q. Define ψ = ψ0 + id(1S)p×(0S)q .

Then ψ : V → Sp+q. Construct a pure basis of dimension (p, q) via the inverse images

of the canonical basis in Sp+q, {ψ−1(em), ψ−1(eα)}. It follows V is a (p, q)-dimensional

S-supervector space.
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Remark 3.4.19. Throughout this section we denoted the points as row vectors. It will

sometimes be the case that we mean for these spaces to be constructed with column

vectors. The meaning should be clear from the context.

3.5 Linear Operators

In this section we study the basic types of linear operators on supervector spaces. A

linear operator with respect to K which is also a Λ-module morphism is called a left

or right linear operator. Mappings on supervector spaces may preserve or distort the

parity of their inputs. Parity preserving maps are called even while parity changing

maps are called odd. We show how any left-linear map can be written as the sum of

an even and odd linear operator. The parity map P is an involution which is neither

a left nor a right linear operator. Finally, we examine how the endomorphisms of a

supervector space form an associative superalgebra.

3.5.1 Left and Right Linearity

We have observed there is a distinction between left and right linear independence,

spanning and scalar multiplication. Not surprisingly there is also a distinction between

left and right linear operators.

Definition 3.5.1. Given bimodules or supervector spaces V,W over S we say that L

is a left-S-linear operator if L : V −→W satisfies

1. L(X + Y ) = L(X) + L(Y )

2. L(Xα) = L(X)α

69



Chapter 3. Super Linear Algebra

for all X, Y ∈ V and α ∈ S. Likewise, R : V −→ W is a right-S-linear operator if it

satisfies

1. (X + Y )R = (X)R + (Y )R

2. (αX)R = α(X)R

for all X, Y ∈ V and α ∈ S. The notation (X)R may be replaced with R(X) in

which case we have R(αX) = αR(X). The set of all left-S-linear operators from

V to W is denoted by L+(V,W ). Likewise, the set of all right-S-linear operators

from V to W is L−(V,W ). Right and left linear mappings defined above may also

be referred to as S-bimodule homomorphisms. Left endomorphisms on V are denoted

L+(V, V ) = End+(V ) and right endomorphisms are denoted by End−(V ).

Notice that right operators act to the left while left operators act to their right. Also

left linear operators allow S-scalars to pull out on the right without any extra signs,

whereas right linear operators allow S-scalars to pull out on the left without any extra

signs. We are following the notation in [29] where Buchbinder and Kuzenko use ”+”

for left and ”-” for right.

Definition 3.5.2. The usual K-linear operators from V to W will be denoted L(V,W ).

3.5.2 Parity of Linear Mappings

Up to now we have assigned parity to particular super numbers and super vectors. We

now discuss how to assign a parity to particular types of left linear operators. As was

the case for super numbers and vectors we will also find that every left linear operator

can be decomposed into an even and an odd left linear operator.
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Definition 3.5.3. The parity mapping P ∈ L(V, V ) as follows,

P(X) = P(0X + 1X) = 0X − 1X (3.48)

Clearly the parity map is K-linear and it also has the following nice properties, assuming

α ∈ Λ is pure,

P2(X) = X

P(αX) = (−1)ǫ(α)αP(X)

P(Xα) = (−1)ǫ(α)P(X)α

(3.49)

Thus we see that the parity mapping is neither left nor a right mapping.

Let L ∈ L+(V,W ) and observe that (we use the same symbol P for both V and W

)

L = 1
2
(L+ PLP) + 1

2
(L− PLP) (3.50)

Defining,

0L = 1
2
(L+ PLP)

1L = 1
2
(L−PLP)

(3.51)

We claim that 0L preserves the parity of the vectors on which it acts, whereas 1L

changes the parity of the vectors on which it acts; that is,

a.) 0L : 0V −→ 0W

b.) 0L : 1V −→ 1W

c.) 1L : 0V −→ 1W

d.) 1L : 1V −→ 0W

(3.52)
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Let us prove d. Let X ∈ 1V , consider then

1L(X) = 1
2
( L(X) −P(L(P(X))) )

= 1
2
( L(X) −P(L(0X − 1X)) )

= 1
2
( L(1X) + P(L(1X)) )

= 1
2
( L(X) + 0(L(X)) − 1(L(X)) )

= 1
2
( 0(L(X)) + 1(L(X)) + 0(L(X)) − 1(L(X)) )

= 0(L(X))

(3.53)

This establishes that 1L(X) ∈ 0V which is precisely what we set out to prove. The

other cases follow from very similar arguments which we leave to the reader. We thus

define the parity of a linear mapping to be zero if it preserves the parity of pure vectors

or one if it changes even to odd and odd to even. In short ǫ(0L) = 0 while ǫ(1L) = 1

so we can summarize,

Definition 3.5.4. If L ∈ L+(V,W ) and L(Vr) ⊆ Vs then we say L is a pure left linear

operator. The parity of a pure operator L is denoted ǫ(L) and we have that

ǫ(L(X)) = ǫ(L) + ǫ(X) (3.54)

for all pure super vectors X ∈ V 0∪V 1. For future reference, we may also refer to even

as commuting or bosonic and odd as anticommuting or fermionic.

Remark 3.5.5. The parity of a mapping is usually defined according to one of two

rules,

1. Even mappings map even elements to even elements and odd to odd. Odd map-

pings map even elements to odd elements and odd to even. Here we must assume
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that the domain and range have a Z2-grading.

2. Even mappings map all elements to even elements. Odd mappings map all ele-

ments to odd elements. Here we need not assume the domain has any Z2-grading.

Typically this idea is used when the domain is not Z2-graded.

We will encounter the second grading in a later chapter.

3.5.3 Endomorphisms End+(V ) Form a Super Algebra

End+(V ) is itself a super vector space. We define addition and scalar multiplication

pointwise, let L,L1, L2 ∈ End+(V )

a. (L1 + L2)(X) = L1(X) + L2(X) ∀ X ∈ V

b. (αL)(X) = αL(X) ∀ X ∈ V, α ∈ Λ

c. (Lα)(X) = L(αX) ∀ X ∈ V, α ∈ Λ

(3.55)

Clearly, the definitions above insure that L1 +L2, αL, Lα ∈ End+(V ). Next we define

a multiplication on End+(V ) by composition, let L1, L2 ∈ End+(V ),

(L1L2)(X) = L1(L2(X)) ∀ X ∈ V (3.56)

A vector space with a multiplication is an algebra, a super vector space with a Z2-

graded multiplication is a super algebra. The parity of the composite follows the rule

ǫ(L1 ◦ L2) = ǫ(L1) + ǫ(L2).
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Hence, End+(V ) is a superalgebra. By similar arguments the right endomorphisms

End−(V ) form a superalgebra.

3.6 Matrix Calculations for Supervector Spaces

Matrix calculations are an essential tool in super linear algebra. We begin by briefly

reminding the reader of the block matrix construction of gl(p, q,C) which is a Z2-

graded algebra over C. Next gl(m × n,Λ) is defined to be matrices of supernumbers.

These allow a different Z2-grading which is independent of the block structure of the

matrix. We discuss matrix multiplication, addition, superscalar multiplication and

super conjugation for gl(m× n,Λ). We find that the traditional definitions naturally

endow gl(m×n,Λ) with the structure of a supervector space over Λ. The generalization

of gl(p, q,C) is gl(p, q,Λ). As point sets gl(p, q,Λ) = gl(p × q,Λ), however they have

distinct Z2-gradings so we must take care to distinguish them. We give definitions

of superscalar multiplication and conjugation which give gl(p, q,Λ) the structure of

a supervector space. Moreover, we find that the matrices in gl(p, q,Λ) are naturally

induced from left linear operators with respect to a pure basis on a (p, q)-dimensional Λ-

supervector space. Nonsingular supermatrices are studied. We find that a supermatrix

is invertible iff it has an invertible body. Finally we discuss how even supermatrices in

gl(p, q,Λ) induce 0Λ-linear mappings on (p|q) dimensional supervector spaces. In short,

all the various types of linear mappings have matrix representations. This is interesting

given that the (p|q)-dimensional supervector spaces have no basis. Fortunately, (p|q)-

dimensional supervector spaces do possess coordinate maps, and we make use of those

to bypass the basis concept.
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3.6.1 Graded complex matrices, gl(p, q,C)

As a set gl(p, q,C) is simply all (p + q) × (p + q) matrices with complex entries. We

give gl(p, q,C) a Z2-grading as follows: let M ∈ gl(p, q,C) then

M =



A B

C D


 0M =



A 0

0 D


 1M =




0 B

C 0


 (3.57)

Where A ∈ gl(p2,C), B ∈ gl(p × q,C), C ∈ gl(q × p,C), D ∈ gl(q2,C). Clearly, for

each M ∈ gl(p, q,C) we have M = 0M + 1M . This is enough to show that the vector

space gl(p, q,C) is a graded vector space. Define gl(p, q,C)0 to be all even matrices in

gl(p, q,C) and gl(p, q,C)1 to be all odd matrices in gl(p, q,C). A short calculation will

reveal,

gl(p, q,C)rgl(p, q,C)s ⊂ gl(p, q,C)r+s mod(2). (3.58)

Consequently, gl(p, q,C) is an associative graded algebra over C. It is not hard to en-

dow these matrices with a non-associative multiplication analogous to the commutator

bracket.

[M,N ] = MN − (−1)ǫ(M)ǫ(N)NM. (3.59)

This gives an anticommutator when both matrices are odd (ǫ(M) = ǫ(N) = 1), or it

gives a commutator when either of the matrices is even (ǫ(M) = 0 or ǫ(N) = 0). Again

a short calculation will demonstrate,

[gl(p, q,C)r, gl(p, q,C)s] ⊂ gl(p, q,C)r+s mod(2). (3.60)
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Often such an algebra with such a Z2-graded bracket over C is called a Lie superalgebra.

All the finite dimensional semisimple Lie superalgebras in this sense have been classified

( see [69] or [43] ). We prefer to call these algebras Z2-graded Lie algebras over C,

or simply graded Lie algebras, since we will use the term Lie superalgebra to mean

something quite different from this concept.

3.6.2 Super Matrices, gl(m× n,Λ)

We will denote the set of all m × n arrays of supernumbers by gl(m× n,Λ). The set

of all n × n square super matrices will be denoted by gl(n,Λ). Addition and scalar

multiplication of super matrices in gl(m× n,Λ) are defined as in the usual case,

1.) (A+B)ij = Aij +Bij

2.) (αA)ij = αAij.

3.) (Aα)ij = Aijα.

(3.61)

In the case that m = n we define the product AB as usual by

(AB)ij = AikBkj sum over k (3.62)

A matrix A ∈ gl(n,Λ) is pure if and only if all of its entries are pure and share the

same parity, in which case the parity of a pure supermatrix A in gl(n,Λ) is defined by,

ǫ(A) = ǫ(Aij). (3.63)
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Notice that every super matrix can be split into an even and odd part by splitting

the components into anticommuting and commuting pieces, A = 0A + 1A where if

Aij = (Aij)c + (Aij)a with (Aij)c ∈ 0Λ and (Aij)a ∈ 1Λ for all i, j, then

(0A)ij = (Aij)c and (1A)ij = (Aij)a. (3.64)

Conjugation is also defined in a natural way for gl(n,Λ); (A∗)ij = (Aij)
∗. Notice that,

(zA)∗ij = ((zA)ij)
∗

= (zAij)
∗

= (Aij)
∗z∗

= (A∗)ijz∗

= (A∗z∗)ij =⇒ (zA)∗ = A∗z∗ (anti− involution).

(3.65)

It is not difficult to show that gl(m×n,Λ) is a supervector space. In fact gl(m×n,Λ)

is isomorphic to Λmn as a Λ-bimodule under the mapping φ defined by,

φ(A) = (A11, A12, . . . , A1n, A21, · · · , A2n, · · · , Amn). (3.66)

Indeed, φ(λAµ) = (λA11µ, λA12µ, . . . , λAmnµ) = λ(A11, A12, . . . , Amn)µ = λφ(A)µ,

for A ∈ gl(m × n,Λ) and λ, µ ∈ Λ. Moreover, φ(A)∗ = φ(A∗) and in view of the

isomorphism a norm may be induced on gl(m× n,Λ) via the equation,

||A|| = ||φ(A)||. (3.67)
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With this definition of the norm of a supermatrix we can easily deduce that gl(m×n,Λ)

is a Banach space. In fact, when A ∈ gl(m× p,Λ) and B ∈ gl(p× n,Λ) we can prove

||AB|| ≤ ||A|| ||B||. (3.68)

Notice that in the special case that m = n we denote gl(m× n,Λ) by simply gl(n,Λ)

and in this case, gl(n,Λ) is an associative graded algebra, i.e.,

gl(n,Λ)rgl(n,Λ)s ⊂ gl(n,Λ)r+s mod(2). (3.69)

where addition of r, s is modulo Z2. It is also a Lie superalgebra in the sense that

[gl(n,Λ)r, gl(n,Λ)s] ⊂ gl(n,Λ)r+s mod(2). (3.70)

Notational Warnings

Warning 1: Scalar multiplication is not always done as in 3.) of Eqn. 3.61; there is

another notion of scalar multiplication which is tailored to match up with the matrix

of a left-linear operator. We will use juxtaposition to indicate the standard scalar

multiplication, and later on we will introduce · to alert the reader when the other type

of scalar multiplication is used. Also the notion of parity employed in gl(n,Λ) is not

the only one possible; we will use the notation gl(p, q|Λ) to draw attention to the (p, q)

type matrix parity. The matrices in gl(p, q|Λ) have a different operation of conjugation

as well.

Warning 2: The grading defined on gl(m × n,Λ) has the property that a matrix is
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even iff every entry in the matrix is even, and a matrix is odd iff every entry in the

matrix is odd. In the next subsection we define another grading distinct from this.

To distinguish between the two, the set of p × q matrices over Λ will be denoted by

gl(p, q,Λ) when this new grading is used. If A is a matrix, one will have to know

whether A belongs to gl(m × n,Λ) or whether it belongs to gl(p, q,Λ) in order to

determine the meaning of 0A and 1A as the notions of even and odd in the two spaces

are different. On the other hand, when we write Ac we will ALWAYS mean by this

notation the matrix A whose entries are all even supernumbers, and when we write

Aa we will ALWAYS mean by this notation the matrix A whose entries are all odd

supernumbers. In the supervector space gl(m× n,Λ), 0A = Ac and 1A = Aa but this

is not true in the supervector space gl(p, q,Λ) described below.

3.6.3 (p,q) Graded Super Matrices, gl(p, q,Λ)

As a set gl(p, q,Λ) is simply all (p+ q)× (p+ q) matrices with supernumbers as entries.

We give gl(p, q,Λ) a Z2-grading as follows: let M ∈ gl(p, q,Λ), then

M =



A B

C D


 0M =



Ac Ba

Ca Dc


 1M =



Aa Bc

Cc Da


 (3.71)

Where A ∈ gl(p2,Λ), B ∈ gl(p × q,Λ), C ∈ gl(q × p,Λ), D ∈ gl(q2,Λ). Clearly, for

each M ∈ gl(p, q,Λ) we have M = 0M + 1M . This is enough to show that gl(p, q,Λ)

forms a graded vector space. Define gl(p, q,Λ)0 to be all even matrices in gl(p, q,Λ),

and gl(p, q,Λ)1 to be all odd matrices in gl(p, q,Λ). A short calculation will reveal,

gl(p, q,Λ)rgl(p, q,Λ)s ⊂ gl(p, q,Λ)r+s mod(2). (3.72)
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This makes gl(p, q,Λ) an associative graded algebra over C. It is not hard to en-

dow these matrices with a non-associative multiplication analogous to the commutator

bracket.

[M,N ] = MN − (−1)ǫ(M)ǫ(N)NM. (3.73)

This gives an anticommutator when both matrices are odd, i.e., when ǫ(M) = ǫ(N) = 1.

It gives a commutator when either of the matrices is even, i.e., when ǫ(M) = 0 or

ǫ(N) = 0. A short calculation will demonstrate,

[gl(p, q,Λ)r, gl(p, q,Λ)s] ⊂ gl(p, q,Λ)r+s mod(2). (3.74)

In fact, this is supervector space if we define the scalar multiplication by supernumbers

in the appropriate manner. These definitions may look obtuse, but the reader should

note that these definitions are made to insure that later these are the matrices of certain

linear transformations. Let

M =



A B

C D


 (3.75)

denote an arbitrary matrix in gl(p, q,Λ). We define a scalar multiplication and a con-

jugation of M. First define left scalar multiplication of z ∈ Cc∪Ca and M ∈ gl(p, q,Λ)

by

z ·M =




zA zB

(−1)ǫ(z)zC (−1)ǫ(z)zD.


 (3.76)
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Next, define right scalar multiplication of z ∈ Cc ∪ Ca and M ∈ gl(p, q,Λ) by

M · z =



Az (−1)ǫ(z)Bz

Cz (−1)ǫ(z)Dz.


 (3.77)

It is sufficient to give these definitions for pure supernumbers since we may extend

the definition to the general case by requiring that for any super number z, z ·M =

zc ·M + za ·M and M · z = M · zc +M · za. Since z(Aw) = (zA)w for supernumbers

z, w and appropriate matrices A, it follows that z · (M · w) = (z ·M) · w.

Finally, define super conjugation for a pure super matrix M ,

Ms∗ =




A∗ (−1)ǫ(M)+1B∗

(−1)ǫ(M)C∗ D∗.


 (3.78)

Again we extend this definition linearly for general M = 0M + 1M . There is some

work to do to verify that gl(p, q,Λ), with scalar multiplication and superconjugation

defined above, is a supervector space. In particular, let M be a pure super matrix and

let z be a pure supernumber, we show Ms∗ · z∗ = (z ·M)s∗. Consider the l.h.s,

Ms∗ · z∗ =




A∗ (−1)ǫ(M)+1B∗

(−1)ǫ(M)C∗ D∗


 · z∗

=




A∗z∗ (−1)ǫ(M)+1+ǫ(z)B∗z∗

(−1)ǫ(M)C∗z∗ (−1)ǫ(z)D∗z∗




(3.79)
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Where we have used the fact ǫ(z∗) = ǫ(z). Next, consider the r.h.s,

(z ·M)s∗ =




zA zB

(−1)ǫ(z)zC (−1)ǫ(z)zD




s∗

=




(zA)∗ (−1)ǫ(z·M)+1(zB)∗

(−1)ǫ(z)+ǫ(z·M)(zC)∗ (−1)ǫ(z)(zD)∗




=




A∗z∗ (−1)ǫ(M)+1+ǫ(z)B∗z∗

(−1)ǫ(M)C∗z∗ (−1)ǫ(z)D∗z∗


.

(3.80)

In the last step we used that ǫ(z · M) = ǫ(z) + ǫ(M). Thus we have shown that

Ms∗ · z∗ = (z ·M)s∗. We leave it as an exercise to the reader to finish the verification

that gl(p, q,Λ) is indeed a supervector space.

The scalar multiplication and superconjugation introduced for (p,q)-graded super-

matrices is not the only one possible. Our construction here will give us matrices

which correspond to left-linear operators relative to a pure basis. Alternatively, one

can define another kind of conjugation and scalar multiplication that give matrices

correspondant to right-linear operators relative to a pure basis. We content ourselves

to focus on left-linear operators. These correspond more naturally to our traditional

ideas about differentiation.

3.6.4 Invertible Supermatrices, GL(n,Λ)

The set of all invertible n × n matrices of supernumbers is denoted GL(n,Λ). It is

in fact a multiplicative super group. The body of a supermatrix is the matrix of the
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bodies, for A ∈ gl(n,Λ)

(b(A))ij = b(Aij) (3.81)

Then it follows that

(b(AC))ij = b((AC)ij) = b(AikCkj) = (b(A))ik(b(C))kj = (b(A)b(C))ij (3.82)

in matrix notation, b(AC) = b(A)b(C). We often find it convenient to denote the body

of A by AB. Let X ∈ GL(n,Λ) then there exists X−1 such that XX−1 = 1 = X−1X.

Note,

b(XX−1) = b(X)b(X−1) = b(1) = 1. (3.83)

Therefore, if X ∈ GL(n,Λ), then b(X) ∈ GL(n,C). The converse is also true. Given

b(X) ∈ GL(n,C) we can construct X ∈ GL(n,Λ) such its body is b(X). Towards that

construction, note that FS is formed by taking the soul of each element in F. Then,

F = FB + FS. (3.84)

Following the intuition of Section 2.8, construct the inverse of F as follows (assuming

that F−1
B exists),

F−1 = F−1
B +

∞∑

k=1

(−1)k(F−1
B FS)

kF−1
B (3.85)
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Now notice that F = FB + FS = FB(1 + F−1
B FS) hence,

FF−1 = FB(1 + F−1
B FS)(F

−1
B +

∑∞
k=1(−1)k(F−1

B FS)
kF−1

B )

= FBF
−1
B + FB

∑∞
k=1(−1)k(F−1

B FS)
kF−1

B

+FBF
−1
B FSF

−1
b + FBF

−1
B FS

∑∞
k=1(−1)k(F−1

B FS)
kF−1

B

= 1 +
∑∞

k=1(−1)kFB(F−1
B FS)

kF−1
B + FBF

−1
B FSF

−1
b

−∑∞
k=1(−1)k+1FB(F−1

B FS)
k+1F−1

B

= 1 +
∑∞

k=1(−1)kFB(F−1
B FS)

kF−1
B + FBF

−1
B FSF

−1
b

−∑∞
k=2(−1)kFB(F−1

B FS)
kF−1

B

= 1 + (−1)−1FB(F−1
B FS)

1F−1
b + FBF

−1
B FSF

−1
b

= 1.

(3.86)

The question arises; does the calculation above make sense? In particular, does the

series above converge to a supermatrix with finite norm? Notice that gl(n,Λ) has

implicit within its definition the requirement that the norms of the supermatrices are

finite. We need this restriction to insure that we have an honest Banach space. The

proof of convergence follows from purely Banach theoretic arguments (see [82]). Bruzzo

and Cianci also give an interesting proof in [24] pages 215-216.
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3.6.5 The Matrix of a Left Linear Operator

Given a pure basis {eM} = {em, eµ} for V , we can capture the action of any left linear

operator on V by multiplication of some supermatrix. That is given L ∈ End+(V ) we

can find a supermatrix F such that,

L(eN ) = eMF
M
N

(3.87)

We make no particular restriction on the components of the supermatrix. However we

do introduce notation for the blocks of the matrix which respects the parity of the pure

basis in use,

FM
N =



Amn Bm

ν

Cµ
n Dµ

ν


 (3.88)

The set of all such matrices is gl(p, q,Λ). Let X = eMX
M
+ ∈ V and L ∈ End+(V )

L(X) = L(eNX
N
+ )

= L(eN )XN
+

= eMF
M
NX

N
+

(3.89)

Letting X ′ = L(X) we can read off the left components of X ′ from the above,

X ′M+ = FM
NX

N
+

(3.90)
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3.6.6 Matrices of Left Linear Operators are in gl(p, q,Λ)

The matrix of L1+L2 is found as follows. Suppose that F is the matrix of L1 ∈ End+(V )

and G is the matrix of L2 ∈ End+(V ), then consider,

(L1 + L2)(eN) = L1(eN ) + L2(eN)

= eMF
M
N + eMG

M
N

= eM(FM
N +GM

N )

(3.91)

Therefore, F +G is the matrix of L1 + L2.

The matrix of zL and Lz are found as follows. Suppose that L ∈ End+(V ) and let

z be a pure supernumber,

(zL)(eN ) = zL(eN )

= zeMF
M
N

= eM(−1)ǫ(z)ǫM zFM
N

(3.92)

Where we have introduced the shorthand ǫM = ǫ(eM ). Thus, assuming that F has the

same block decomposition as before in eq. 3.88

(zL)MN =




zAmn zBm
ν

(−1)ǫ(z)zCµ
n (−1)ǫ(z)zDµ

ν


 = z · (FM

N) (3.93)

where z · (L)MN refers to the left multiplication in gl(p, q,Λ). Notice for an impure

supernumber we simply break it up into its pure parts and apply the formula above

to each part and add those together. Now we consider how the right multiplication

86



Chapter 3. Super Linear Algebra

works. Again suppose that L ∈ End+(V ) and let z be a pure supernumber,

(Lz)(eN ) = L(zeN )

= L((−1)ǫ(z)ǫN eNz)

= L(eN )(−1)ǫ(z)ǫNz

= eMF
M
N (−1)ǫ(z)ǫNz

= eM(−1)ǫ(z)ǫNFM
Nz

(3.94)

Thus, again assuming F has the same block decomposition as before in eq. 3.88,

(Lz)MN =



Amnz (−1)ǫ(z)Bm

νz

Cµ
nz (−1)ǫ(z)Dµ

νz


 = (FM

N) · z (3.95)

We then define right multiplication in gl(p, q,Λ) by the formula above.

3.6.7 Matrix of a Pure Left Linear Operator on V

We now consider what additional conditions are placed on the matrix of a linear op-

erator if it is pure. Let L ∈ End+(V ) and choose a pure basis {Em, Eµ} then there

exists a supermatrix F defined by L(EN ) = EMF
M
N which has block structure as given

below,

FM
N =



Amn Bm

ν

Cµ
n Dµ

ν


 (3.96)

Now if the operator L is pure, it follows that the parity of F must obey,

ǫ(FM
N) = ǫ(L) + ǫ(M) + ǫ(N) (3.97)
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The formula above can be verified case by case without much difficulty. Let us examine

how this works together with the other parities we have discussed; let L be a pure

operator and X a pure vector,

ǫ(L(X)) = ǫ(EMF
M
NX

N
+ )

= ǫ(EM) + ǫ(FM
N) + ǫ(XN

+ )

= ǫ(EM) + ǫ(L) + ǫ(M) + ǫ(N) + ǫ(XN
+ )

= ǫ(L) + ǫ(N) + ǫ(XN
+ )

= ǫ(L) + ǫ(X)

(3.98)

Notice this is in good accord with eq. 3.54.

3.6.8 Matrix Calculations on (p|q) Dimensional Supervector

Spaces

To begin we describe matrix calculations on Kp|q. Let L be a 0Λ-linear mapping

L : Kp|q → Kp|q then there exists M ∈ gl(p, q|Λ)0 such that

L(x, θ) = (x, θ)M.

for all (x, θ) ∈ Kp|q. In particular, A ∈ gl(p × p,Λ)0, D ∈ gl(q × q,Λ)0 while B ∈

gl(p× q,Λ)1, C ∈ gl(q × p,Λ)1 and

L(x, θ) = (x, θ)M =

(
x θ

)


A B

C D


 =

(
xA + θC xB + θD

)
.
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The calculation makes good sense as xA and θC are length p even entried row vectors

whereas xB and θD are length q odd entried row vectors.

Suppose that V = Kp|q is the canonical (p|q)-dimensional with coordinate map Ψ : V →

Kp|q. Let L : V → V be a 0Λ-linear map, then there exists a matrix M ∈ gl(p, q|Λ)0

such that

L(v) = Ψ−1(Ψ(v)M).

Clearly we can just as well make these calculations for column vectors or for other

types of 0Λ-linear mappings with domain a (p|q)-dimensional supervector and range

an (r|s) dimensional or (r, s) dimensional supervector space. We point these facts out

since it may concern the reader that one might not be able to make such calculations

as there is no basis for (p|q) dimensional supervector spaces. Fortunately this is no

problem since we still have coordinates for (p|q) dimensional supervector spaces, and

that is enough to perform matrix calculations.

3.7 Extensions of Linear Operators

Our goal in this section is to show that if we have an operator defined on the even part

of some supervector space with superscalars S such that 1S 6= 0, then there exists a

unique extension to the whole supervector space.

Proposition 3.7.1. A left-S-linear operator on a (p, q) dimensional S-supervector

space is determined by its action on pure basis. Let V a (p, q) dimensional vector space

over S with pure basis {Em, Eα} = {EM} and suppose L1, L2 are left-S-linear operators

on V . If L1(EM) = L2(EM) for all M , then L1 = L2.
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Proof. Observe, L1(EM) = L2(EM) implies L1(EM)vM = L2(EM)vM thus L1(EMv
M) =

L2(EMv
M). We find L1(v) = L2(v) for all v ∈ V . Therefore L1 = L2.

Proposition 3.7.2. Let V a (p, q) dimensional vector space over S with pure basis

{Em, Eα} = {EM} and suppose W is a S-supervector space. Given a set of p + q

supervectors {wN}p+qN=1 in W we can define a unique left S-linear operator L : V →W

such that L(EN) = wN . In other words, if L is defined on a pure basis of V , then there

exists a unique left-S-linear extension of L to all of V . We will refer to this process as

”left-S-linearly extending L”.

Proof. The formula below suffices to define L on all of V , let X = EMX
M ∈ V ,

L(X) = wMX
M = L(EM)XM .

Let X, Y ∈ V and let c ∈ S,

L(X + Y ) = L(EM(XM + Y M))

= L(EM)(XM + Y M)

= L(EM)XM + L(EM )Y M

= L(X) + L(Y )

(3.99)

Let X ∈ V and let c ∈ S,

L(Xc) = L(EM (Xc)M)

= L(EM )(Xc)M

= L(EM )(X)Mc

= L(X)c.

(3.100)
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Finally, Proposition 3.7.1 gives us uniqueness of this extension.

Let us recall an important fact from Chapter 2.

Proposition 3.7.3. Cancellation property for S with 1S 6= 0: Suppose that xζ = yζ

for all ζ ∈ 1S then x = y.

This generalizes to supervector spaces which have a pure basis.

Proposition 3.7.4. Cancellation property for V a (p, q) dimensional vector space over

S: Let v, w ∈ V if vζ = wζ for all ζ ∈ 1S then v = w.

Proof. Since V is (p, q) dimensional, there exists a pure basis {EM}p+qM=1. Thus there

exist supernumbers vM , wM ∈ S such that v = EMv
M and w = EMw

M . Let ζ ∈ 1S

and note that

vζ = wζ =⇒ EMv
Mζ = EMw

Mζ

and deduce from the linear independence of the pure basis that for each M vMζ = wMζ

and for all ζ ∈ 1S. Thus by the cancellation property for supernumbers vM = wM for

each M . The proposition follows.

Proposition 3.7.5. Let V0 be the even part of a canonical supervector space V of

dimension (p, q) and suppose L : V0 → W is a 0S-linear mapping from V0 to a (r, s)-

dimensional supervector space W . There exists a left-S-linear mapping L̂ from V =

V0 ⊕ V1 to W such that L̂|(V0) = L.

Proof. It suffices to define L̂ on the canonical basis {em, eα}. Since em ∈ V0 for each

1 ≤ m ≤ p we simply define L̂(em) = L(em). The definition of L̂ on the odd-sector is

91



Chapter 3. Super Linear Algebra

more subtle. We argue that the equation below will motivate a definition for L̂(eα) for

each 1 ≤ α ≤ q. For each ζ ∈ 1S let L̂(eα) be the supervector in W such that,

L̂(eα)ζ = L(eαζ).

Notice the r.h.s is well-defined since eαζ ∈ V0. Suppose towards the purpose of con-

structing L̂ that it is an operator and let us express L̂ and L above in terms of the

pure basis {fN}r+sN=1 for W , there should exist supermatrices T and S such that

L̂(eα) = fNT
N
α L(eαζ) = fNS

N
M(eαζ)

M = fNS
N
αζ

The operator equation L̂(eα)ζ = L(eαζ) becomes the following matrix equation with

respect to the pure basis {fN}r+sN=1 for W ,

TNαζ = SNαζ

We insist this equation holds for each 1 ≤ N ≤ r + s and for all ζ ∈ 1S. Thus by the

cancellation property for supernumbers we find that the supermatrix T must satisfy

TNα = SNα

for all N = 1, 2, . . . , r + s and α = 1, 2, . . . , q. Notice that the supermatrix S is given

by assumption. Now that we have collected a few observations we give the proof.

Let SNM be the matrix of L with respect to the canonical basis {em, eα} and the pure
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basis {fN}r+sN=1 for W ; L(X) = L(eMX
M) = fNS

N
MX

M for all (XM) ∈ K
p|q. The

linear operator L̂ on V is constructed as follows,

L̂(eM) = fNS
N
M

then we extend left S-linearly, and the proposition follows.

Proposition 3.7.6. Let V be a (p, q) dimensional supervector space over S. If L1 and

L2 are left-S-linear mappings from V to V such that L1(v) = L2(v) for all v ∈ V0, then

L1 = L2.

Proof. V is a (p, q) dimensional supervector space so there exists a pure basis {Em, Eα}.

Let ζα be odd superscalars for α = 1, 2, . . . , q. Notice that ζαEα is an even supervector

(we intend a summation over α = 1, 2, . . . , q). Since L1 and L2 agree on even vectors,

we have

L1(Eαζ
α) = L2(Eαζ

α)

and by left S-linearity

L1(Eα)ζ
α = L2(Eα)ζ

α.

It is instructive to consider the case ζα = 0 for all α except ζβ = ζ 6= 0 for a fixed β

with 1 ≤ β ≤ q. Hence,

L1(Eβ)ζ = L2(Eβ)ζ.

The equation above holds for all ζ thus L1(Eβ) = L2(Eβ) by Proposition 3.7.4. Finally

since β was arbitrary we have that L1(EM) = L2(EM) for all basis vectors EM thus by

Proposition 3.7.1 we have L1 = L2.
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3.8 Multi-linear Operators and Graded Symmetry

In our paper [37] we gave the following definition of multi-linearity.

Definition 3.8.1. Let g be a supervector space with basis {eB} and let β : gk → Λ.

We say that β is multi-linear over g0 iff for some pure basis {eB} of g,

β(v1, v2, · · · , vk) = vA1
1 v2

A2 · · · vAk

k β(eAk
, · · · , eA2 , eA1)

for v1, v2, · · · , vk ∈ g0.

The primary goal of this section is to discover how the above arises as a special case

within the definitions given in [68]. We should mention that [68] gives these definitions

for arbitrary graded Banach spaces and an abstract Banach Grassmann algebra Q. We

replace Q with S and consider bimodules or supervector spaces with S-superscalars.

This is not much of a restriction since to our knowledge the supernumbers listed in

our usual choices for S are the only infinitely generated Banach Grassmann algebras

popular in the literature (with the exception of Pestov’s creative nonstandard analysis

examples [94]).

Definition 3.8.2. Let V,W be S-bimodules or supervector spaces. A p-linear map f :

V ×· · ·×V 7→ W is graded symmetric or graded antisymmetric iff for all vki ∈ V 0∪V 1,

1 ≤ i ≤ p

f(v1, . . . , vk, vk+1, . . . , vp) = (−1)ǫ(v
k)ǫ(vk+1)+ǫ(f)f(v1, . . . , vk+1, vk, . . . , vp)

where, by definition, ǫ(f) = 0 for f graded-symmetric and ǫ(f) = 1 for f graded-

antisymmetric.
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Finally we may find the following generalization of left-linearity to multi-linear maps

useful

Definition 3.8.3. Let V 1, V 2, . . . , V p,W be S-bimodules or supervector spaces. Sup-

pose that f : V 1×V 2×· · ·×V p 7→W is a p-linear map, then f is called left-p-S-linear

iff for all vki ∈ V 0 ∪ V 1, 1 ≤ i ≤ p and α ∈ 0S ∪ 1S

f(v1, . . . , αvk, . . . , vp) = (−1)(ǫ(v1)+ǫ(v2)+···+ǫ(vk−1))ǫ(α)αf(v1, . . . , vk, . . . , vp).

This definition (borrowed from [68]) follows our definition for left-linear maps. If we

pull out pure scalars to the left, we must generate signs by the Koszul sign conventions.

Observation 3.8.4. A short calculation will reveal that our ”p-multi-linear map over

g0” is, in the language of [68], a graded symmetric left p-Λ-linear mapping on

gp. That is, if β : g × g × · · · × g is p-multi-linear then β ∈ LL(g, g, . . . , g; Λ) (using

notation of [68]).

Remark 3.8.5. The space of p-linear maps can be given the structure of a S-bimodule.

Moreover, p-linear maps on the Cartesian product become linear mappings on the cor-

responding tensor product, and p-left-linear maps become left-linear maps. We refer

the interested reader to [68] for details.

The definitions given for left mappings can likewise be given for right mappings. How-

ever, if we consider supervector spaces or bi-modules over commuting superscalars

S = 0S, then the distinction between left and right linearity is removed and we simply

speak of 0S-linear or 0Λ-linear mappings. For example, we will find that supersmooth

functions possess 0Λ-linear Frechet differentials.
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3.9 Super Lie Algebras

Lie algebras play an important role in manifold theory. We will find that super Lie

algebras play a similar role. We establish some foundational algebraic results for super

Lie algebras in this section.

Definition 3.9.1. A graded Lie algebra is a graded vector space U = U0 ⊕ U1 over K

with a bilinear bracket [ , ] : U ×U → U which is graded [Ur, Us] ⊂ Ur+s for r, s = 0, 1,

and for all a, b, c ∈ U0 ∪ U1 with parities ǫa, ǫb, ǫc satisfies the graded Jacobi indentity

(−1)ǫaǫc [a, [b, c]] + (−1)ǫbǫa[b, [c, a]] + (−1)ǫcǫb [c, [a, b]] = 0

and the graded skewsymmetry condition,

[a, b] = −(−1)ǫaǫb[b, a].

Algebraists often refer to such graded Lie algebras as superalgebras. However we will

reserve that term for algebras built over Λ. An associative graded algebra can be given

the structure of a graded Lie algebra by defining the bracket to be

[a, b] = ab− (−1)ǫaǫbba.

This is the supercommutator which functions both as a commutator and an anticom-

mutator depending on the inputs. A graded commutative algebra has a trivial super-

commutator and will be called a graded-Abelian Lie algebra. Many things are known

about graded Lie algebras over C, see [69] for the classification of all finite dimensional
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semisimple graded Lie algebras and a rehashing of much of classical Lie theory in the

graded case.

Definition 3.9.2. A graded Lie left Λ-module is a graded Lie algebra W over K which

is a left Λ-module such that

[αX, Y ] = α[X, Y ]

for all α ∈ Λ and X, Y ∈ W .

Definition 3.9.3. A graded Lie right Λ-module is a graded Lie algebra W over K which

is a right Λ-module such that

[X, Y α] = [X, Y ]α

for all α ∈ Λ and X, Y ∈ W .

Proposition 3.9.4. Given a left Λ-module V we can construct a right Λ-module ac-

cording to the rule

Xα ≡ (−1)ǫ(X)ǫ(α)αX. (3.101)

for all X ∈ V0 ∪ V1 and α ∈ 0Λ ∪ 1Λ. Likewise, a graded Lie left Λ-module W is given

a natural graded right Lie Λ-module under the same rule.

It is trivial to verify that V has a right Λ-module structure as defined in the proposition

(see Proposition 3.1.5 ). Consider the following to see that if W is a left Lie Λ-module,
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then it is a right Lie Λ-module,

[X, Y α] = (−1)ǫ(X)ǫ(Y α)+1[Y α,X]

= (−1)ǫ(X)(ǫ(Y )+ǫ(α))+1[(−1)ǫ(Y )ǫ(α)αY,X]

= (−1)ǫ(X)ǫ(Y )+ǫ(α)(ǫ(X)+ǫ(Y ))+1α[Y,X]

= (−1)ǫ(X)ǫ(Y )+ǫ(α)(ǫ(X)+ǫ(Y ))+1(−1)ǫ(α)ǫ([Y,X])[Y,X]α

= (−1)ǫ(X)ǫ(Y )+ǫ(α)(ǫ(X)+ǫ(Y ))+1(−1)ǫ(α)(ǫ(Y )+ǫ(X))(−1)ǫ(X)ǫ(Y )+1[X, Y ]α

= [X, Y ]α

(3.102)

we have employed the useful relations ǫ(Y α) = ǫ(Y )+ǫ(α) and ǫ([Y,X]) = ǫ(Y )+ǫ(X)

for all pure X, Y ∈W and pure α ∈ Λ to make the needed cancellations. This calcula-

tion shows that we can always induce a right Lie-Λ-module structure on W given that

W is a left Lie-Λ-module.

Definition 3.9.5. A S-supervector space which is also a left Lie S-module is called a

super Lie algebra.

As we discussed previously when S are complex superscalars, we assume that the su-

pervector space possesses a conjugation. Let us recall the definition of a pure basis

Definition 3.9.6. Let V be a graded left Λ module and let m = 1, 2, . . . p, α = 1, 2, . . . q

and Em ∈ V0, Ẽα ∈ V1 then we call {Em, Ẽα} a pure basis of graded dimension (p, q)

if there exist vm, ṽα ∈ Λ for each v ∈ V such that

v =

p∑

m=1

vmEm +

q∑

α=1

ṽαẼα =

p+q∑

M=1

vMEM
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where we also denote {Em, Ẽα} = {EM} with EM = Em for M = m = 1, 2, . . . p and

EM = Ẽα for M = p+α = p+1, p+2, . . . p+ q. For convenience denote ǫ(EM ) by ǫM .

Definition 3.9.7. Given a Lie left Λ-module V of graded dimension (p, q) with pure

basis {EM}, M = 1, 2, . . . , p + q, there exist structure constants fKMN ∈ Λ such that

[EM , EN ] =
∑p+q

K=1 f
K
MNEK for all M,N = 1, 2, . . . , p + q. If V possesses a pure basis

for which s(fKMN) = 0 for all M,N,K, then we say that V is a conventional Lie left

Λ-module, otherwise we say V is unconventional.

In fact, conventional Lie left Λ-modules correspond to graded Lie algebras. Our treat-

ment of super Lie groups in Chapter 7 will include unconventional Lie left Λ-modules

which to our knowledge are not fully classified at this time.
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Super Differentiation

4.1 Multivariate Grassmann Analysis

Our goal in this Chapter is to introduce the notion of superdifferentiation. The su-

perderivative of a function is the best linear approximation of the function which re-

spects the Z2-grading of the superspace. If we ignore the Z2-grading, then we would

have the Frechet derivative. Every superdifferentiable function is also differentiable.

However, the converse is not true. There are C∞ functions which are not G∞.

The properties proven here are often taken as the starting point for many students of

theoretical physics. One could view these properties as formal definitions, just posit-

ing that Grassmann variables can be differentiated as explained in detail below. This

viewpoint is not without merit as it allows the student to pursue more exotic questions

in a shorter time of preparation. However, one should ask if the formal approach can

be replaced with a more traditional one. The answer is, in fact, yes. We can view
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superderivatives as arising from a limiting process.

We should comment briefly how our work here relates to earlier treatments. We follow

Rogers’ construction of the so called G∞ or supersmooth functions. Unlike Rogers’ orig-

inal treatment we will work over Grassmann variables built over the complex numbers.

Much of the discussion from Rogers’ will transfer over to our case here. However some

features will be new. For example, we will examine how Jadyzck and Pilch simplified

the concept of supersmoothness [68].

Generally, the discussion in this chapter will mirror the standard discussion of how to

do calculus on Rn. It should be noted that this is surprising given that we are working

with an infinite dimensional Banach space. The fact that the supernumbers also form

a Banach algebra with || ab || ≤ ||a|| ||b|| allows us to borrow many proofs directly

from the standard case. The existence of the p-even and q-odd coordinates give the

theory the resemblance of the finite dimensional theory.

Lastly, the analysis and calculus developed in this chapter will provide us the back-

ground to define a supermanifold. A supermanifold will be endowed with precisely the

structure needed to allow us to take superderivatives locally much as we do in this

chapter. Thus, it is important to build a firm understanding of calculus on Kp|q so it

can be lifted up to the supermanifold in Chapter 6.
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4.2 Superdifferentiable and Supersmooth Functions

on K
p|q

In Section 3.3 we defined a norm on Kp|q. We define a function to be continuous on

a subset U ⊆ Kp|q iff it is continuous with respect to the topology generated by that

norm. The following definition is due to Alice Rogers in [98].

Definition 4.2.1. Let U be open in K
p|q and let f : U → Λ. Then

1. f is said to be G0 on U if f is continuous on U.

2. f is said to be G1 on U if there exist p+q continuous functions GMf : U → Λ,

M = 1, 2, . . . , p+q and a function η : Kp|q → Λ such that, if (a, b), (a+h, b+k) ∈

U

f(a+h, b+k) = f(a, b)+

p∑

m=1

hm(Gmf)(a, b)+

q∑

α=1

kα(Gp+αf)(a, b)+||(h, k)||η(h, k)

where ||η(h, k)|| → 0 as ||(h, k)|| → 0. We say f is superdifferentiable in this

case.

3. for each positive integer s, f is said to be Gs on U if f is G1 on U, and it is

possible to choose GMf : U → Λ, M = 1, 2, . . . , p+ q which satisfy 2. and which

are Gs−1 on U.

4. f is said to be G∞ on U if f is Gs for every positive integer s. We say f is

supersmooth in this case.

5. for each positive integer s, let g : U → Λs, where Λs is the Cartesian product

of s-copies of Λ, and let ΠM : Λs → Λ be the projection onto the M-th factor (
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ΠM(c1, c2, . . . , cp+q) = cM ). Then g is said to be Gs or G∞ if and only if each

component function gM = ΠM ◦ g, 1 ≤M ≤ p+ q is Gs or G∞.

We also denote GMf = ∂Mf = ∂f/∂zM .

There are ambiguities that arise in choosing the functions GMf in the case that the

underlying Grassmann algebra has only finitely many generators. That ambiguity has

been dealt with in various ways by different authors. To deal with this difficulty, Rogers

introduced the ”z-mapping” in [98] and later the GH∞ functions [101]; additionally

Rothstein [106] suggested another solution, and Bruzzo [23] introduced the notion of

a G-function. All of these are similar in spirit to Rogers’ original definition which is

of course inspired by classical analysis. We avoid the ambiguity by focusing on the

case of infinitely many Grassmann generators. In the infinite case the ambiguity is not

present. As a consequence we are forced to use infinite dimensional Banach manifolds

in our treatment.

Definition 4.2.2. Let U be an open subset of K
p|q and let f : U → Λ, then f is

(Frechet) differentiable at z ∈ U if there exists a continuous K-linear function dzf :

Kp|q → Λ such that

lim
H→0

f(z +H) − f(z) − dzf(H)

|| H || = 0. (4.1)

If f is differentiable at each z ∈ U and if the mapping z 7→ dzf is continuous (with

respect to the sup norm on L(Kp|q,Λ)), then we say f ∈ C1(U,Λ). If the mapping

z 7→ dzf is continuously differentiable for each z ∈ U , then we say f ∈ C2(U,Λ). The

definitions of Ck(U,Λ) and C∞(U,Λ) are made iteratively, and we refer the reader to

Serge Lang’s text [80] for details.

103



Chapter 4. Super Differentiation

This is the usual definition of the Frechet derivative for functions on finite dimen-

sional normed linear spaces, and it is also a good definition here. The main difference

between Frechet differentiation on a Banach space and superdifferentiation is that in

Frechet differentiation there is no consideration of the grading of the space. The Frechet

derivative is insensitive to the parity properties of superspace.

Example 4.2.3. The Frechet derivative of a linear function is simply the function

itself. With that in mind we can define the following function. Let f : Λ(C) → Λ(C)

be defined by

f(x) = xo + x1ζ
1

for each x = x0 + xiζ
i + xijζ

iζj + · · · . Let c ∈ C, then note

f(cx) = f(cx0 + cx1ζ
1 + · · · ) = cx0 + cx1ζ

1 = cf(x)

so we have C-linearity, and in fact it is clear that f is smooth. In contrast consider

α = ζ1ζ2 ∈ Ka,

f(αx) = f(ζ1ζ2(x0 + xiζ
i + xijζ

iζj + · · · )) = f(x0ζ
1ζ2 + 0 + 0 + x3ζ

1ζ2ζ3 + · · · ) = 0.

We observe that f is not Cc-linear. Thus the Frechet differential is not Cc-linear. Once

this example is understood it is easy to find many other examples of functions which

are smooth but not supersmooth. See Example 5.4.3 for another way a smooth function

can fail to be supersmooth.

Proposition 4.2.4. If U is open in K
p|q and f ∈ G∞(U), then f ∈ C∞(U,Λ) the space

of all C∞ maps of U into Λ. In particular, for s = 1, 2, . . . , the s-th total derivative of

104



Chapter 4. Super Differentiation

f is a continuous multi-linear transformation from (Kp|q)s to Λ such that,

dscf(H1, . . . , Hs) = [dsf(c)][H1, . . . , Hs] =
∑p+q

M1,...,Ms=1
HM1

1 · · ·HMs
s (GMs · · ·GM1f)(c)

for all c ∈ U , (H1, . . . , Hs) ∈ (Kp|q)s and GMs · · ·GM1f continuous on U .

This is Proposition 2.8 of [98]. The ds is an iterated Frechet derivative and is explained

in [80] for the infinite dimensional case.

Observation 4.2.5. If the following equation for dscf holds

dscf(H1, . . . , Hs) = [dsf(c)][H1, . . . , Hs] =
∑p+q

M1,...,Ms=1
HM1

1 · · ·HMs
s (GMs · · ·GM1f)(c)

then it is clear that dscf is 0Λ-linear in each of its s inputs; dscf(H1, . . . , αHk, . . . ) =

αdscf(H1, . . . , Hk, . . . ) for all α ∈ 0Λ and (H1, . . . , Hs) ∈ (Kp|q)s. Thus in the situation

considered in Proposition 4.2.4 we find dscf ∈ L((Kp|q)s,Λ) the set of continuous 0Λ-s-

linear mappings on the Cartesian product of Kp|q s-times.

Remark 4.2.6. The proof of Proposition 2.8 in [98] is appropriate for the various

choices for S we have considered. Alice Rogers’ proof was given for Λ(R) and the

associated Rp|q(R), but it applies equally well to Λ(C) and our associated Rp|q. The

underlying Banach theory for Rp|q is not one of genuine complex derivatives since

at the Grassmann level we actually have either pure imaginary or real Grassmann

coefficient functions. A more interesting question from our perspective is how complex

super derivatives are connected to real super derivatives. We will explore this question

in Chapter 5.
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Proposition 4.2.7. The converse of Proposition 4.2.4 is true. If f ∈ C∞(U,Λ) is

such that the iterated Frechet differential satisfies

dscf(H1, . . . , Hs) = [dsf(c)][H1, . . . , Hs] =
∑p+q

M1,...,Ms=1
HM1

1 · · ·HMs

s (BMs...M1)(c)

for all c ∈ U , (H1, . . . , Hs) ∈ (Kp|q)s where BMs...M1 are continuous functions on U then

f ∈ G∞(U) and the super partial derivatives of f are given by the BMs...M1 functions,

BM1 = GM1f

BM1M2 = GM1(GM2f)

BM1...Ms = GM1 · · ·GMsf.

(4.2)

Proof. We are given that there exist coefficients (BMs...M1)(c) such that

dscf(H1, . . . , Hs) = [dsf(c)][H1, . . . , Hs] =
∑p+q

M1,...,Ms=1
HM1

1 · · ·HMs

s (BMs...M1)(c).

for each c ∈ U . We choose the obvious candidate for the superdifferentials of f,

GMs · · ·GM1f = BMs...M1.

Continuity is given and the required limiting condition follows from the assumption

that f is smooth as well as the given equation for the iterated Frechet derivative.

Finally, Proposition 5.2 in [68] shows that the superdifferentials satisfy the needed

iterative conditions,

GMs · · ·GMk+1
GMk

· · ·GM1f = (−1)ǫk+1ǫkGMs · · ·GMk
GMk+1

· · ·GM1f
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Remark 4.2.8. We assumed that GMs · · ·GM1f were continuous on U . It may be the

case that if f ∈ C∞(U,Λ), then the continuity of GMs · · ·GM1f follows by virtue of the

continuity of dsf , and in fact [68] claim this to be true.

The following proposition summarizes most of this chapter.

Proposition 4.2.9. Let U be open in Kp|q, f, g ∈ G∞(U), a ∈ 0Λ ∪ 1Λ, and λ ∈ K.

Then

1. f + g ∈ G∞(U) and GM(f + g) = GMf +GMg for 1 ≤ M ≤ p+ q

2. λf ∈ G∞(U) and GM(λf) = λGMf for 1 ≤M ≤ p+ q

3. If Πc and Πa represent projection maps of Λ onto 0Λ and 1Λ, respectively, then

Πc ◦ f and Πa ◦ f are in G∞(U). Moreover G∞(U) is a graded vector space with

G∞(U)0 = {f ∈ G∞(U) | Πc ◦ f = f} G∞(U)1 = {f ∈ G∞(U) | Πa ◦ f = f}

We define ǫ(G∞(U)r) = r for r = 0, 1 as usual.

4. f ∈ G∞(U)0 ∪G∞(U)1 then af ∈ G∞(U) with GM(af) = (−1)ǫ(a)ǫMaGMf

5. f, g ∈ G∞(U)0∪G∞(U)1 then fg ∈ G∞(U) with GM(fg) = (GMf)g+(−1)ǫ(f)ǫMfGMg.

6. V open in Kr|s and h ∈ G∞(V,Kp|q) then f ◦ h ∈ G∞[h−1(U) ∩ V ] with

GM(f ◦ h)(a) =
∑p+q

N=1
(GMH

K)(a)(GKf)[h(a)]
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for HM = ΠM ◦ H for 1 ≤ M ≤ p + q and for all a ∈ h−1(U) ∩ V , K =

1, 2, . . . , r + s.

7. If the interval I is open in R and h̃ ∈ C∞(I,Kp|q) then f◦h̃ ∈ C∞[h̃−1(U)∩I,Kp|q]

and

∂

∂t
(f ◦ h̃) =

∑p+q

M=1

∂h̃M (t)

∂t
(GMf)[h̃(t)]

for t ∈ I.

This is Proposition 2.12 of [98]. Parts (4.) and (5.) of the proposition above are easily

extended by linearity to objects which are not pure. We supply our own proofs in this

chapter.

4.3 Superdifferentiability Implies Frechet Differen-

tiability

Theorem 4.3.1. If f : U → Λ is superdifferentiable on the open subset U ∈ Kp|q,

then it is also continuously differentiable (in the Frechet sense). Moreover, the Frechet

derivative is given in terms of the derivatives of f with respect to supercoordinates

∂f

∂zM = ∂Mf which are continuous functions on U . That is, for each (a, b) ∈ U and

H = (h, k) ∈ Kp|q,

d(a,b)f(h, k) =

p∑

m=1

hm∂mf(a, b) +

q∑

α=1

kα∂αf(a, b). (4.3)

where ∂mf and ∂αf , the superpartial derivatives of f , are continuous functions on U .

Proof. Since f is G1 on U we know that there exist η and continuous partials ∂f

∂zM such
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that

f(a+ h, b+ k) = f(a, b) +

p∑

m=1

hm∂mf(a, b) +

q∑

α=1

kα∂αf(a, b) + ||(h, k)||η(h, k).

Let us define our candidate for the Frechet derivative,

d(a,b)f(h, k) =

p∑

m=1

hm∂mf(a, b) +

q∑

α=1

kα∂αf(a, b). (4.4)

Note that d(a,b)f(h, k) is K-linear in the (h, k) argument. Thus, d(a,b)f : K
p|q → Λ is

K-linear. Then consider, as our notation is that H = (h, k) and z = (a, b),

limH→0
f(z+H)−f(z)−dzf(H)

|| H || = limH→0
||(h,k)||η(h,k)
|| H ||

= limH→0 η(h, k)

= 0.

(4.5)

Thus d(a,b)f constructed as above is indeed the Frechet derivative.

We seek to show that the mapping z 7→ dzf is continuous. Note dzf is an operator so

its norm is defined as follows. Recall that if L : V 7→W is a mapping on normed spaces

V,W , then the norm of the operator L is given by ||L|| = sup{||L(H)|| | ||H|| = 1}.

Let ǫ > 0, then by the (assumed in definition of G1) continuity of partial super deriva-

tives at zo, there exists δN > 0 such that for ||z − zo|| < δN we have ||∂Nf(z) −

∂Nf(zo)|| < ǫ/(p+q). Let δ = min{δN |1 ≤ N ≤ p+q} and suppose that ||z−zo|| < δ.
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Observe that

||dzf − dzof || = sup{||(dzf − dzo)(h)|| | ||h|| = 1}

≤ sup{∑p+q
N=1 ||hN || ||∂Nf(z) − ∂Nf(zo)|| | ||h|| = 1}

≤ sup{∑p+q
N=1 ||∂Nf(z) − ∂Nf(zo)|| | ||h|| = 1}

≤ sup{∑p+q
N=1 ǫ/(p+ q) | ||h|| = 1}

≤ ǫ.

(4.6)

Thus the mapping z 7→ dzf is continuous.

Next we offer a converse to the preceding theorem. We explain now what additional

conditions beyond differentiability will insure superdifferentiability.

Theorem 4.3.2. Let f : U → Λ where U is open in Kp|q. If f is differentiable on U

and if there exist continuous functions BM on U for M = 1, 2, . . . p + q such that for

each H ∈ Kp|q and z ∈ U

dzf(H) =

p+q∑

M=1

HMBM(z) (4.7)

then f is superdifferentiable on U and we can choose ∂f

∂zM = BM .

Proof. By assumption of differentiability on U , for each z ∈ U , we find,

lim
H→0

f(z +H) − f(z) − dzf(H)

|| H || = 0. (4.8)

This suggests that we define the nonlinear part of f according to the formula

η(H) =
f(z +H) − f(z) − dzf(H)

|| H || . (4.9)
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Clearly, η(H) → 0 as H → 0. Moreover,

f(z +H) = f(z) + dzf(H) + η(H)||H||

= f(z) +
∑p+q

M=1H
MPM + η(H)||H||.

(4.10)

Therefore, f is superdifferentiable at z. We identify the partial derivatives of f with the

continuous functions BM on U , that is ∂mf = Bm for m = 1, 2, . . . p and ∂αf = Bp+α

for α = 1, 2, . . . q.

Theorems 4.3.2 and 4.3.1 show how C1(U,Λ) and G1(U) are related. The theorem

that follows was unknown to us until the completion of [37]. Essentially it says that if

we have a function which is in both C∞(U,Λ) and G1(U), then the function is also in

G2(U). Moreover it is also in G3(U), G4(U), . . . without any additional assumptions.

This theorem motivates the definition for supersmoothness used in [68].

Theorem 4.3.3. Let f : U → Λ where U is open in Kp|q. If f is smooth on U and

if there exist continuous functions BM on U for M = 1, 2, . . . p + q such that for each

H ∈ K
p|q and z ∈ U ,

dzf(H) =

p+q∑

M=1

HMBM(z) (4.11)

then f is supersmooth on U and we can choose BM = ∂f

∂zM . In other words if a function

is in G1(U) and C∞(U,Λ) then it is in G∞(U). Conversely, if a function is in G∞(U)

then it is automatically in C∞(U,Λ).

Proof. The converse is follows immediately from Proposition 4.2.4.

Suppose that f : U → Λ where U is open in Kp|q and f ∈ C∞(U,Λ) such that there
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exist continuous functions BM on U such that

dzf(H) =

p+q∑

M=1

HMBM(z). (4.12)

for each H ∈ K
p|q and z ∈ U . The following proof is based on the proof in [68] pages

380-381 (See Proposition 5.1 of [68]). This proposition claims that the p-th Frechet

differential is in fact a p-0Λ-linear mapping. Moreover, the p-th Frechet differential is a

symmetric multi-linear mapping. Theorem 4.3.2 shows that the p = 1 case holds true.

Assume inductively that f ∈ Gk(U) for some k ≥ 1. Consider the (k + 1)-th Frechet

differential of f satisfies the iterative condition,

dk+1
z f = dz(d

k
zf).

Because dk+1
z f is a symmetric 0Λ-multi-linear mapping, we find that dz(αd

k
zf) =

αdz(d
k
zf). Hence by Theorem 4.3.2 dkzf is G1 for each z ∈ U . Therefore, f ∈ Gk+1(U)

and by induction the theorem follows.

4.4 G∞(U) is a Almost a Supervector Space

Recall that a differentiable function f has a continuous Frechet differential df which is

K-linear and is the best linear approximation of f as described by Equation 4.1.

Proposition 4.4.1. Let f, g : Kp|q → Λ.

1. If f, g are differentiable, then so are f ± g. Moreover, the Frechet differential of

the sum f + g is simply the sum of the Frechet differentials; d(f + g) = df + dg.
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2. If c ∈ Λ and f is differentiable, then cf is differentiable. Moreover, the Frechet

differential of cf is the product of c and with the Frechet differential; d(cf) = cdf

Observation 4.4.2. Notice c is a supernumber in 2.). In ordinary abstract Banach

theory we would only be able to state 2.) for c ∈ K. We have assumed that our functions

have their range in Λ so multiplication by supernumbers is sensible.

Proof. Let us begin the proof of 1.). Let U be open in Kp|q and let f : U → Λ and

g : U → Λ be differentiable on U , then we claim that dz(f + g) = dzf + dzg. Define,

ηf(H) =
f(z +H) − f(z) − dzf(H)

|| H || . (4.13)

And likewise,

ηg(H) =
g(z +H) − g(z) − dzg(H)

|| H || . (4.14)

By assumption of differentiability we know ηg and ηf tend to zero as H → 0. Note,

f(z +H) = f(z) + dzf(H) + ηf(H)||H||

g(z +H) = g(z) + dzg(H) + ηg(H)||H||.
(4.15)

Define ηf+g = ηf + ηg and consider,

(f + g)(z +H) = f(z +H) + g(z +H)

= f(z) + dzf(H) + ηf(H)||H||+ g(z) + dzg(H) + ηg(H)||H||

= (f + g)(z) + (dzf + dzg)(H) + ηf+g||H||.

By assumption of differentiability of f and g we also know that dzf and dzg are K-linear

maps on Kp|q hence dzf + dzg is linear on Kp|q. To summarize, f + g is differentiable
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at z, and the Frechet derivative is dz(f + g) = dzf + dzg. Observe that the mapping

z 7→ dzf + dzg is continuous since it is the sum of continuous mappings. The proof of

1.) follows.

Now we prove 2.). We show that if f : U → Λ is differentiable, then for c ∈ Λ the

function cf : U → Λ, defined pointwise by (cf)(z) = cf(z), is differentiable. Since f is

differentiable, it follows,

f(z +H) = f(z) + dzf(H) + ηf (H)||H|| (4.16)

with ηf tending to zero as H → 0. We propose that dzcf = cdzf and ηcf(H) = cηf (H).

Multiplying Equation 4.16 by c yields,

(cf)(z +H) = cf(z +H) = cf(z) + cdzf(H) + cηf(H)||H||

= (cf)(z) + dzcf(H) + ηcf(H)||H||
(4.17)

and clearly ηcf ≡ cηf tends to zero as required and dz(cf) is K-linear. One might

worry that we would have to commute the supernumber c somewhere introducing some

signs. However, that is not the case. Finally observe that z 7→ cdzf is the product of

continuous mappings hence z 7→ dz(cf) is continuous, and the proof of 2.) follows.

Let U ⊆ Kp|q be open. We have shown that if f, g ∈ G∞(U) and c ∈ Λ, then f+g, cf ∈

G∞(U). It follows that G∞(U) is a Λ-bimodule. We cannot quite call it a supervector

space because there is not always a natural idea of conjugation. See Chapter 5 for

details as to why G∞(U) lacks a conjugation for U ⊆ Cp|q.
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4.5 Linearity of Superderivatives on K
p|q

Let U be open in K
p|q and suppose that f, g ∈ G1(U), then by Theorem 4.3.1

dzf(H) =

p+q∑

M=1

HM∂Mf(z) and dzg(H) =

p+q∑

M=1

HM∂Mg(z) (4.18)

for each z ∈ U and H ∈ Kp|q. Now apply Proposition 4.4.1,

dz(f + g)(H) = dzf(H) + dzg(H)

=
∑p+q

M=1H
M∂Mf(z) +

∑p+q
M=1H

M∂Mg(z)

=
∑p+q

M=1H
m∂M (f + g)(z)

Therefore, by Theorem 4.3.1, we find that f+g is superdifferentiable with superderiva-

tives ∂M(f + g) = ∂Mf + ∂Mg, M = 1, 2, . . . p+ q. Explicitly, in terms of even(xm) and

odd(θα) coordinates,

∂

∂xm
(f + g) =

∂f

∂xm
+

∂g

∂xm
∂

∂θα
(f + g) =

∂f

∂θα
+

∂g

∂θα
(4.19)

Notice that this amount of detail is superfluous. There is no distinction with respect

to parity here.

In contrast, parity will be important in the determination of the superderivative of cf .

Let c be a pure supernumber, that is c ∈ Kc ∪ Ka. Now assume that U is open and
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that f is superdifferentiable at z ∈ U . By Proposition 4.4.1,

dz(cf)(h, k) = c(dzf)(h, k)

= c(
∑p

m=1 h
m∂mf(z) +

∑q

α=1 k
α∂αf(z))

=
∑p

m=1 ch
m∂mf(z) +

∑q
α=1 ck

α∂αf(z).

=
∑p

m=1 h
mc∂mf(z) +

∑q
α=1 k

α(−1)ǫ(c)c∂αf(z).

(4.20)

Hence, using Theorem 4.3.1, we find that cf is superdifferentiable with superderiva-

tives,

∂

∂xm
(cf) = c

∂f

∂xm
∂

∂θα
(cf) = (−1)ǫ(c)

(
c
∂f

∂θα

)
. (4.21)

Let b ∈ Λ ( not necessarily pure ) then b = bc + ba and using the result above and

linearity of the superderivatives,

∂

∂xm
(bf) = b

∂f

∂xm
∂

∂θα
(bf) = bc

∂f

∂θα
− ba

∂f

∂θα
. (4.22)

4.6 Graded Leibniz Rule for Superderivatives

Borrowing arguments from the standard case it can be shown that if U is open in Kp|q

and f, g ∈ C1(U,Λ), then the Leibniz rule holds for Frechet derivatives,

dz(fg)(H) = f(z)dzg(H) + dzf(H)g(z). (4.23)
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Recall that we can write any function with range Λ as the sum of an even and odd

function. Let f : Kp|q → Λ, then for each z ∈ Kp|q

f(z) = 0f(z) + 1f(z) (4.24)

where 0f(z) ∈ Kc and 1f(z) ∈ Ka. Assume that f is a pure function, so either

f = 0f or f = 1f with ǫf = 0 or ǫf = 1, respectively. Next, assume that f and

g are superdifferentiable so that continuous superderivatives of f and g exist and,

(suppressing the explicit z-dependence)

d(fg)(H) = fdg(H) + df(H)g

= f
∑p+q

N=1H
N∂Ng + (

∑p+q
N=1H

N∂Nf)g

=
∑p+q

N=1H
N((−1)ǫf ǫNf∂Ng + (∂Nf)g).

Thus we find that fg is superdifferentiable with superderivatives,

∂

∂zN
(fg) =

∂f

∂zN
g + (−1)ǫf ǫNf

∂g

∂zN
. (4.25)

Explicitly since ǫm = 0 and ǫα = 1,

∂

∂xn
(fg) =

∂f

∂xn
g + f

∂g

∂xn
∂

∂θα
(fg) =

∂f

∂θα
g + (−1)ǫff

∂g

∂θα
. (4.26)

4.7 Chain Rule for Superderivatives

A vector-valued function is differentiable when all of its components are differentiable.

A similar definition is given for superderivatives of supervector-valued functions.
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Definition 4.7.1. Let U be open in K
p|q and let V be open in K

r|s. Then consider

the function f : U → V . We define f to be superdifferentiable (G1) if and only if

each of the component functions of f is superdifferentiable (G1). That is the Frechet

derivative can be expanded in terms of the superderivatives of the component functions

fN , N = 1, 2, . . . r + s,

dzf
N(H) =

p+q∑

M=1

HM ∂f
N

∂zM
(z). (4.27)

When r = s = 1 we have f ∈ G1(U), otherwise we denote f ∈ G1(U, V ). Likewise

we define f : U → V to be Gl or G∞ iff each of its component functions is Gl or G∞

respective.

Let U be open in Kp|q and let V be open in Cr|s. Then consider functions f : U → V

and g : V → Λ. If f is differentiable at z ∈ U and g is differentiable at f(z) ∈ V , then

dz(g ◦ f) = df(z)g ◦ dzf. (4.28)

The proof of this fact is just as straightforward as the standard argument for finite

dimensional Banach spaces. Next, suppose that f is superdifferentiable at z ∈ U and

g is superdifferentiable at f(z) ∈ V . Then denoting wM for the variables on Cr|s,

dz(g ◦ f)(H) = df(z)g(dzf(H))

=
∑r+s

N=1 dzf
N(H) ∂g

∂wN (f(z))

=
∑r+s

N=1

∑p+q
M=1H

M ∂fN

∂zM (z) ∂g

∂wN (f(z))

=
∑p+q

M=1H
M

∑r+s
N=1

∂fN

∂zM (z) ∂g

∂wN (f(z)).

(4.29)
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Thus the composite g ◦ f is superdifferentiable with superderivatives,

∂

∂zN
(g ◦ f) =

r+s∑

N=1

∂fN

∂zM
∂g

∂wN
. (4.30)

Where we have suppressed the explicit z dependence.
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Conjugate Variables

It is often claimed that one can replace a pair of real variables with a pair of complex

conjugate variables. The idea that z and z̄ are independent is difficult to reconcile

with the simple observation for z a complex supernumber z∗ = z̄. However, conjugate

variables are both meaningful and useful. Our goal in this chapter is to expose a true

explicit meaning for conjugate variables in the super case. This is especially important

to physical applications since the fermionic coordinates are usually ”parametrized” by

conjugate variables. We explain how conjugate variables and their derivatives are sim-

ply an efficient notation for a more basic real formalism. We also define the derivatives

with respect to chiral coordinates in a similar fashion; a derivative with respect to a

chiral coordinate is a notation for a complex linear combination of real super deriva-

tives. This chapter is in large part a generalization of the work of Reinhold Remmert

[97] to our G∞ category.
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5.1 Conjugation and Superdifferentiation

Definition 5.1.1. Suppose U ⊆ R2p|2q or U ⊆ Cp|q and let f be a function f : U → Λ.

We define the conjugate function f ∗ by the rule f ∗(z) = (f(z))∗ for each z ∈ U .

The conjugate of f is real superdifferentiable if f is real superdifferentiable.

Proposition 5.1.2. Let U ⊂ R2p|2q, then we claim that if f : U → Λ is superdifferen-

tiable at on U then f ∗ is superdifferentiable on U .

Proof. Suppose f : U → Λ is superdifferentiable at z ∈ U is pure (ǫ(f) = 0, 1) then,

f ∗(z +H) = (f(z +H))∗

= (f(z) +
∑p+q

N=1H
N(∂Nf)(z) + ||H||η(H))∗

= (f(z))∗ +
∑p+q

N=1((∂Nf)(z))∗(HN)∗ + ||H||(η(H))∗

= f ∗(z) +
∑p+q

N=1H
N((−1)(ǫf +ǫN )ǫN (∂Nf)(z))∗ + ||H||η∗(H).

Here H ∈ Rp|q hence (HM)∗ = HM for M = 1, 2, . . . p + q, also we have used that

ǫ(HM) = ǫM . Since f is superdifferentiable we know that η(H) → 0 as H → 0

from which it follows that η∗(H) → 0 as H → 0. Thus we have shown that f ∗ is

superdifferentiable at z and we can identify the superderivatives of f ∗ are

∂Nf
∗ = (−1)(ǫf +ǫN )ǫN (∂Nf)∗. (5.1)

Moreover, these are continuous functions on U since they are related to the superderiva-

tives of f by continuous operations thus f ∗ is superdifferentiable on U . The superderiva-
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tives of f ∗ break down as follows if we split into even and odd cases,

∂

∂xm

(
f ∗

)
=

( ∂f

∂xm

)∗ ∂

∂θα

(
f ∗

)
= (−1)ǫf +1

( ∂f

∂θα

)∗
. (5.2)

Finally, since we proved the claim for pure functions we may extend the result linearly

to treat an arbitrary function which is a sum of even and odd functions.

A few comments about the case U ⊂ Cp|q are in order. If f : U ⊂ Cp|q → Λ is

superdifferentiable, we say that it is complex superdifferentiable. When f is complex

superdifferentiable, we find that f ∗ is not complex superdifferentiable. The reason is

that it was crucial that H∗ = H , and for an arbitrary H ∈ Cp|q we cannot make such

a claim. Consider the following calculation

f ∗(z +H) = (f(z +H))∗

= (f(z) +
∑p+q

N=1H
N(∂Nf)(z) + ||H||η(H))∗

= (f(z))∗ +
∑p+q

N=1((∂Nf)(z))∗(HN)∗ + ||H||(η(H))∗

= f ∗(z) +
∑p+q

N=1(H
N)∗((−1)(ǫf +ǫN )ǫN (∂Nf)(z))∗ + ||H||η∗(H).

This is almost what we want, if we could just replace (HN)∗ with HN . However,

we cannot. This is not surprising. In ordinary complex variables we learn that if f

is complex differentiable on U ⊂ C and f = f(z), then f ∗ = f ∗(z̄) is not complex

differentiable. In this chapter we seek to visit some of the most elementary questions

of this type in the supercase. We found that the treatment of elementary complex

variables by Reinhold Remmert [97] to be an algebraically lucid and useful work which

naturally fit our general prejudices. We follow his general logic throughout this chapter.
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5.2 Complex Verses Real Linearity

In this section we work through a number of lemmas which expose important con-

nections between real linearity of complex maps and complex linearity of induced real

mappings. This algebra forms the logical core of the Cauchy Riemann equations which

we will discuss in Section 5.3.

5.2.1 Lemma I (Remmert)

Definition 5.2.1. Let Λ = Λ(C). A mapping T : 0Λ → Λ is Rc-linear iff T (z + w) =

T (z) + T (w) and T (za) = T (z)a for all a ∈ Rc and z, w ∈ 0Λ.

Lemma 5.2.2. We denote z = (x + iy) ∈ 0Λ and z̄ = (x − iy) ∈ 0Λ with x, y ∈ Rc

throughout this lemma. Given mapping T : 0Λ → Λ, then the following are equivalent:

1. T is Rc-linear

2. T (x+ iy) = T (1)x+ T (i)y.

3. If we define λ ≡ 1
2
(T (1) − iT (i)) and µ ≡ 1

2
(T (1) + iT (i)) then T (z) = λz + µz̄

Proof. (1.) iff (2.): Recall that by definition T is Rc-linear iff T (z +w) = T (z) + T (w)

for all z, w ∈ 0Λ and T (za) = T (z)a for all z ∈ 0Λ and a ∈ Rc. Let z = x + iy as in

the lemma,

T (z) = T (x+ iy) = T (1x) + T (iy) = T (1)x+ T (i)y.

Given T as in the lemma, the following equation is identically true.

λz + µz̄ = 1
2
(T (1) − iT (i))(x+ iy) + 1

2
(T (1) + iT (i))(x− iy)

= T (1)x+ T (i)y
(5.3)
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Observe λz + µz̄ = T (z) iff T (1)x+ T (i)y = T (z) thus (2.) is equivalent to (3.).

Remark 5.2.3. It would be nice to extend this lemma directly for T : 1Λ → Λ, but

then we face the usual dilemma of 1Λ lacking a basis, in particular T (1) and T (i) are

nonsense in this case. However, not all is lost. We intend to apply these results to the

differential and as we have previously shown that even though f may be defined on C
p|q

it is more appropriate to consider the extension of df to Λ(p, q) as the primary object

of interest.

We extend the results just given for 0Λ to Λ.

Definition 5.2.4. Let Λ = Λ(C). A mapping T : Λ → Λ is left-ΛR-linear iff T (z+w) =

T (z) + T (w) and T (az) = T (z)a for all a ∈ ΛR and z, w ∈ Λ.

Lemma 5.2.5. We denote z = (x + iy) ∈ Λ and z̄ = (x − iy) ∈ Λ with x, y ∈ ΛR

throughout this lemma. Given mapping T : Λ → Λ then the following are equivalent:

1. T is left-ΛR-linear

2. T (x+ iy) = T (1)x+ T (i)y.

3. If we define λ ≡ 1
2
(T (1) − iT (i)) and µ ≡ 1

2
(T (1) + iT (i)) then T (z) = λz + µz̄

Proof. Recall that by definition T is left-ΛR-linear iff T (z + w) = T (z) + T (w) for all

z, w ∈ 0Λ and T (za) = T (z)a for all z ∈ Λ and a ∈ ΛR. Let z = x+ iy as in the lemma,

T (z) = T (x+ iy) = T (1x) + T (iy) = T (1)x+ T (i)y.

124



Chapter 5. Conjugate Variables

Next we show (3.) is equivalent to (2.)

λz + µz̄ = 1
2
(T (1) − iT (i))(x+ iy) + 1

2
(T (1) + iT (i))(x− iy)

= T (1)x+ T (i)y

= T (z).

(5.4)

5.2.2 Lemma II (Remmert)

Definition 5.2.6. Let Λ = Λ(C). A mapping T : 0Λ → Λ is 0Λ-linear iff T (z + w) =

T (z) + T (w) and T (zw) = T (z)w for all z, w ∈ 0Λ.

Every 0Λ-linear map is also Rc-linear. The converse is not true, but we can give a

condition which will insure that a Rc linear mapping is also a 0Λ-linear mapping.

Lemma 5.2.7. Given T : 0Λ → Λ is Rc-linear then the following are equivalent:

1. T (i) = iT (1)

2. T (z) = T (1)z for all z ∈ 0Λ

3. T is 0Λ-linear

Proof. Suppose T is as the lemma states and (1.) is true. Let z ∈ 0Λ so there exist
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x, y ∈ Rc such that z = x+ iy,

T (z) = T (x+ iy)

= T (x) + T (iy)

= T (1)x+ T (i)y

= T (1)x+ T (1)iy

= T (1)(x+ iy)

= T (1)z.

(5.5)

Thus (1.) =⇒ (2.). But (2.) =⇒ (1.) is obvious. Now suppose (2.) is true. Let

z, w ∈ 0Λ,

T (zw) = (T (1))zw

= (T (1)z)w

= T (z)w.

(5.6)

Thus (2.) =⇒ (3.) and (3.) =⇒ (1.) is obvious.

Again the definition and lemma generalize nicely to the Λ-case.

Definition 5.2.8. Let Λ = Λ(C). A mapping T : Λ → Λ is left-Λ-linear iff T (z+w) =

T (z) + T (w) and T (zw) = T (z)w for all z, w ∈ Λ.

Every left-Λ-linear map is also left-ΛR-linear. The converse is not true, but we can

give a condition which will insure that a left-ΛR linear mapping is also a left-Λ-linear

mapping.

Lemma 5.2.9. Given T : Λ → Λ is left-ΛR-linear then the following are equivalent:

1. T (i) = T (1)i
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2. T (z) = T (1)z for all z ∈ Λ

3. T is left-Λ-linear

Proof. Suppose T is as the lemma states and (1.) is true. Let z ∈ Λ so there exist

x, y ∈ ΛR such that z = x+ iy,

T (z) = T (x+ iy)

= T (x) + T (iy)

= T (1)x+ T (i)y

= T (1)x+ T (1)iy

= T (1)(x+ iy)

= T (1)z.

(5.7)

Thus (1.) =⇒ (2.). To see (2.) =⇒ (1.) simply take z = i to obtain T (z) = T (i) =

T (1)i. Now suppose (2.) is true. Let z, w ∈ Λ,

T (zw) = (T (1))zw

= (T (1)z)w

= T (z)w.

(5.8)

Thus (2.) =⇒ (3.). To see that (3.) =⇒ (2.) take z = 1 thus T (zw) = T (w) = T (1)w.

The lemma follows.

5.2.3 Lemma III (Remmert)

It is a well-known and useful fact that C and R
2 can be identified as vector spaces over

R through the correspondence x+ iy 7→ (x, y). Let us discuss natural extensions of this
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correspondence to the super case. Here we find that Λ = Cc ⊕ Ca,
0Λ = Cc,

1Λ = Ca

correspond naturally to Λ2
R
, R2|0 and R0|2 respectively.

Proposition 5.2.10. The following mappings are Banach space isometries if we give

C and Λ2
R

the 1-norm:

1. Ψ : Λ → Λ2
R

defined by Ψ(x+ iy) = (x, y)T

2. Ψc : Cc → R2|0 defined by Ψc(x+ iy) = (x, y)T

3. Ψa : Ca → R0|2 defined by Ψa(x+ iy) = (x, y)T

where ”T” is for transpose to get column vectors.

Proof. While generally ||z + w|| ≤ ||z|| + ||w|| when the Grassmann components of z

and w are non-overlapping we find that ||z+w|| = ||z||+ ||w||. The proof is formulated

at the level of Grassmann components. The 1-norm on C is defined so that if z ∈ C

then |z| = |x+ iy| = |x| + |iy| = |x| + |y| where x, y ∈ R and |x| denotes the absolute

value of x. Consider z ∈ Λ(C) then in terms of the Grassmann generators

z =

∞∑

p=0

∑

I∈Ip

zIζ
I .

Notice the Grassmann coefficients zI ∈ C can be written in terms of their real and

imaginary components; zI = xI + iyI with xI , yI ∈ R for each multi-index I. Thus

z =
∞∑

p=0

∑

I∈Ip

(xI + iyI)ζ
I =

∞∑

p=0

∑

I∈Ip

xIζ
I +

∞∑

p=0

∑

I∈Ip

iyIζ
I
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Consequently,

||z|| = ||
∞∑

p=0

∑

I∈Ip

xIζ
I +

∞∑

p=0

∑

I∈Ip

iyIζ
I || =

∞∑

p=0

∑

I∈Ip

|xI | +
∞∑

p=0

∑

I∈Ip

|iyI |

Let (x, y) ∈ Λ2
R
, observe that the 1-norm of (x, y) is denoted ||(x, y)|| and is induced

from the norm on Λ which is also denoted || · ||, ||(x, y)|| = ||x||+ ||y||. Real supernum-

bers x, y have Grassmann expansions,

x =
∞∑

p=0

∑

I∈Ip

xIζ
I . y =

∞∑

p=0

∑

I∈Ip

yIζ
I .

Hence,

||x|| =
∞∑

p=0

∑

I∈Ip

|xI |. ||y|| =
∞∑

p=0

∑

I∈Ip

|yI |.

and as |iyI | = |yI | for each I we find the identity,

||x+ iy|| = ||x|| + ||y|| = ||(x, y)||

where the norm on the left is for Λ(C), and the norm on the right is for Λ2
R
. Notice

||Ψ(x + iy)|| = ||(x, y)|| = ||x + iy|| = ||x|| + ||y||. thus Ψ is an isometry. Similar

arguments hold for Ψc and Ψa.

Matrix multiplication for matrices of supernumbers follows the same pattern as with

ordinary real or complex entried matrices, with the caveat that we must maintain

the multiplicative ordering of the supernumbers. Following Section 3.6.3 we define

gl(p× q,ΛR) to be p× q matrices with entries in ΛR.

Definition 5.2.11. Let v ∈ Λ2 and suppose A ∈ gl(2× 2,ΛR) then LA and RA are left
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and right multiplications by A on Λ2 defined by

LA(v) = Av and RA(v) = vA

Lemma 5.2.12. Suppose that A ∈ gl(2 × 2,ΛR) then

A =



a b

c d




induces a Rc-linear mapping T : Cc → Λ defined by T (z) = (Ψ−1 ◦ LA ◦ Ψc)(z) for all

z ∈ Cc.

Proof. Let z ∈ Cc then there exist x, y ∈ Rc such that z = x+ iy. Observe,

T (z) = Ψ−1(AΨc(x+ iy))

= Ψ−1

(


a b

c d






x

y




)

= Ψ−1

(


ax+ by

cx+ dy




)

= (ax+ by) + i(cx+ dy).

(5.9)
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Now calculate T (1),

T (1) = Ψ−1(AΨc(1 + i0))

= Ψ−1

(


a b

c d







1

0




)

= Ψ−1

(


a

c




)

= a+ ic.

(5.10)

Next we calculate T (i),

T (i) = Ψ−1(AΨc(0 + i))

= Ψ−1

(


a b

c d







0

1




)

= Ψ−1

(


b

d




)

= b+ id.

(5.11)

Notice T (z) = (ax + by) + i(cx + dy) = (a + ic)x + (b + id)y = T (1)x+ T (i)y. Thus

by Lemma 5.2.2 we find that T is Rc-linear.

The lemma above was for Cc = 0Λ whereas the following lemma is for Λ = Cc ⊕ Ca.

Because multiplicative ordering is not modified in the proof above, we can prove the

following lemma by nearly the same calculation.
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Lemma 5.2.13. Suppose that A ∈ gl(2 × 2,ΛR), then

A =



a b

c d




induces a left-ΛR-linear mapping T : Λ → Λ defined by T (z) = (Ψ−1 ◦ LA ◦ Ψ)(z) for

all z ∈ Λ.

5.2.4 Lemma IV (Remmert)

This lemma will reveal the Cauchy Riemann equations for a commuting super variable.

Lemma 5.2.14. Suppose we are given a matrix A ∈ gl(2 × 2,ΛR) such that

A =



a b

c d


 .

Then the following are equivalent:

1. The induced mapping T = Ψ−1 ◦ LA ◦ Ψc is Cc-linear.

2. The entries of A satisfy c = −b and d = a.

Proof. Let us begin with the formula for the induced mapping we found in the proof

for lemma 5.2.12,

T (x+ iy) = (ax+ by) + i(cx+ dy)

Next assume (1.) is true and make use of part (2.) of Lemma 5.2.7 and the formula for
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T (1) from Lemma 5.2.12

T (x+ iy) = T (1)(x+ iy) = (a+ ic)(x+ iy) = ax− cy + i(ay + cx)

Thus, equating real and imaginary parts of T (x + iy) we find ax − cy = ax + by and

cx + dy = ay + cx. We conclude that b = −y and d = a since the equations held for

all x, y ∈ Rc.

This lemma will reveal the Cauchy Riemann equations for super variables.

Lemma 5.2.15. Suppose we are given a matrix A ∈ gl(2 × 2,ΛR) such that

A =



a b

c d


 .

Then the following are equivalent:

1. The induced mapping T = Ψ−1 ◦ LA ◦ Ψ is left-Λ-linear.

2. The entries of A satisfy c = −b and d = a.

Proof. Simply follow the same calculation as was used in Lemma 5.2.14. We never

had to change the multiplicative ordering of the supernumbers so the calculation still

holds.

5.2.5 Right Linearity Matches Frechet Derivative

We have given the definition of G1 for functions of open subsets of Kp|q. Our goal

here is to connect the derivatives of functions defined on Cp|q with those defined on
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R
2p|2q. Let us begin by making an observation about the Frechet derivatives in each

case, suppose that f is superdifferentiable,

1. df is Cc = 0Λ-linear for f : C
p|q → Λ

2. d(f ◦ Ψ−1
c ) is Rc-linear for f : R2p|2q → Λ.

Moreover, we can express df in terms of the Jacobian matrix, we denote f = u + iv

where both u and v are ΛR-valued functions.

If we extend df to the total tangent spaces Λ(p, q) and ΛR(2p, 2q) = R2p|2q⊕R2̄p|2̄q, then

the differentials are right-Λ and right-ΛR linear mappings. The right-linearity follows

from dxf(H) = Xx(f) =
∑p+q

A=1H
A ∂f

∂zA (x) since

dxf(bH) =
∑p+q

A=1(bH)A ∂f

∂zA (x)

= b
∑p+q

A=1H
A ∂f

∂zA (x)

= bdxf(H)

(5.12)

demonstrates we can pull super scalars to the left. The Jacobian matrix of f is Jf ,

and in row notation we define Jf via dxf(H) = ~HJf . Right linear mappings allow us

to extract superscalars to the left without any extra signs. We observe it is natural to

use row vectors for this task. All the lemmas we just found for left-linear maps have

close analogies for right-linear mappings. Moreover, the definitions for right linearity

are analogous to those for left-linearity.

Lemma 5.2.16. We denote z = (x + iy) ∈ Λ and z̄ = (x − iy) ∈ Λ with x, y ∈ ΛR

throughout this lemma. Given mapping T : Λ → Λ, then the following are equivalent:

1. T is right-ΛR-linear
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2. T (x+ iy) = xT (1) + yT (i).

3. If we define λ ≡ 1
2
(T (1) − iT (i)) and µ ≡ 1

2
(T (1) + iT (i)) then T (z) = zλ + z̄µ

Lemma 5.2.17. Given T : Λ → Λ is right-ΛR-linear, then the following are equivalent:

1. T (i) = iT (1)

2. T (z) = zT (1) for all z ∈ Λ

3. T is right-Λ-linear

Lemma 5.2.18. A matrix A ∈ gl(2 × 2,ΛR)

A =



a b

c d




induces a right-ΛR-linear mapping T : Λ → Λ defined by T (z) = (Ψ−1 ◦RA ◦ Ψ)(z) for

all z ∈ Λ. ( we use Ψc to mean the mapping to row vectors in this context)

Lemma 5.2.19. Suppose we are given a matrix A ∈ gl(2 × 2,ΛR) such that

A =



a b

c d


 .

Then the following are equivalent:

1. The induced mapping T = Ψ−1 ◦RA ◦ Ψ is Λ-linear.

2. The entries of A satisfy c = −b and d = a.
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Theorem 5.2.20. Introduce the notation

Ψp|q = Ψc × · · · × Ψc × Ψa × · · · × Ψa : C
p|q → R

2p|2q.

If f : Cp|q → Λ is complex-super-differentiable on U , then f ◦Ψ−1
p|q : Ψp|q(U) ⊆ R2p|2q →

Λ is real-super-differentiable on Ψp|q(U) and denoting f = u+iv where Re(f ◦Ψ−1
p|q) = u

and Im(f ◦ Ψ−1
p|q) = v then we find the Cauchy Riemann equations

∂u

∂xM
=

∂v

∂yM
∂v

∂xM
= − ∂u

∂yM

hold for each M = 1, 2, . . . , p+ q and zM = xM + iyM where (zM ) ∈ U .

Proof. The proof follows from the lemmas we have discussed. We give a detailed proof

in the case of one supervariable in the section that follows.

5.3 Cauchy Riemann Equations for One Super Com-

plex Variable

We consider the simplest interesting cases in this discussion. There are two cases:

1. f : Cc → Λ is (complex) superdifferentiable.

2. f : Ca → Λ is (complex) superdifferentiable.

Both of these cases differ from the classic non-super case since df acts on the total

tangent space which happens to be Λ for both cases. Our goal is to see what we can

say about these functions once reinterpreted as functions of two real super variables.
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In particular, what can we say about the (real) superdifferentiability of f ◦ Ψ−1
c and

f ◦ Ψ−1
a ?

Let us begin with case (1.). Suppose f : Cc → Λ is (complex) superdifferentiable.

Notice that TCc = Λ and since f ∈ G1(Cc), we can easily deduce df satisfies df(bX) =

bdf(X) for all b ∈ Λ and X ∈ TCc = Λ. Thus df : Λ → Λ is a right-Λ-linear mapping.

The induced mapping Ψ◦df ◦Ψ−1 : Λ2
R
→ Λ2

R
is linear. Therefore, there exists a matrix

representative with respect to the canonical basis Ψ(1) = (1, 0) and Ψ(i) = (0, 1),

(Ψ ◦ df ◦ Ψ−1)(x, y) =

(
x y

)


a b

c d


 = vA

for all v = (x, y) ∈ Λ2
R

and a, b, c, d ∈ ΛR. Solving (Ψ ◦ df ◦ Ψ−1)(v) = vA = RA(v) for

df yields df = Ψ−1 ◦RA ◦Ψ. We have exactly the situation described in Lemma 5.2.19.

df is a right-Λ-linear map which is induced from the 2x2 matrix A. Hence the matrix

A has the form,

A =



a b

−b a


 .

In fact, the matrix A is the Jacobian matrix for the function f in real notation.

Let us pause to discuss the Jacobian in this context. Generally if g : R2|0 → Λ2
R

then

superdifferentiability gives us the existence of partial derivatives of all the component

functions. Denoting g = (g1, g2),

dg1(h1, h2) = h1∂g
1

∂x
+ h2∂g

1

∂y
and dg2(h1, h2) = h1∂g

2

∂x
+ h2∂g

2

∂y
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so in row notation, using h = (h1, h2)

dg(h) =

(
h1∂g

1

∂x
+ h2∂g

1

∂y
, h1∂g

2

∂x
+ h2∂g

2

∂y

)
=

(
h1 h2

)


∂g1/∂x ∂g2/∂x

∂g1/∂y ∂g2/∂y


 = hJg

where we have introduced the Jacobian matrix Jg.

Let us apply the notation above to the case g = Ψ ◦ f ◦ Ψ−1
c = (u, v) where u, v are

functions from R2|0 to ΛR then,

JΨ◦f◦Ψ−1
c

=



ux vx

uy vy


 .

where we have used the notations

ux =
∂u

∂x
, uy =

∂u

∂y
, vx =

∂v

∂x
, vy =

∂v

∂y

for the various (real) super derivatives.

Theorem 5.3.1. If f : U ⊆ Cc → Λ is complex superdifferentiable on U then the

induced mapping f ◦ Ψ−1
c = u + iv : Ψc(U) ⊆ R2|0 → Λ is real superdifferentiable on

Ψc(U) and the super Cauchy Riemann equations hold on Ψc(U);

ux = vy and uy = −vx.
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Moreover, suppressing the Ψ notations,

f ′(z) = ux + ivx = vy − iuy

Proof. Complex superdifferentiability of f : U ⊆ Cc → Λ implies

dzf(h) = h
∂f

∂z

thus dzf : Λ → Λ is a right-Λ linear map. Use Lemma 5.2.18 to see there exists

Jf(z) ∈ gl(2 × 2,ΛR) such that it induces dzf as follows,

dzf(h) = (Ψ−1 ◦RJf (z) ◦ Ψ)(h)

Real differentiability and the Cauchy Riemann equations follow from the algebra given

above the theorem and Lemma 5.2.19.

Let us discuss case (2.). Suppose f : Ca → Λ is (complex) superdifferentiable. If

we examine the arguments that established Theorem 5.3.1, then we will note that

the algebra involved did not require us to commute elements anywhere. Thus the

arguments will hold again in this context, and we can state an analogous theorem for

a function of one odd complex variable θ = φ1 + iφ2 (denoting odd real variables by φ1

and φ2).

Theorem 5.3.2. If f : Ca → Λ is (complex) superdifferentiable, then the induced

mapping f ◦Ψ−1
a = u+ iv : R0|2 → Λ is (real) superdifferentiable and the super Cauchy
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Riemann equations hold;

∂u

∂φ1
=

∂v

∂φ2
and

∂u

∂φ2
= − ∂v

∂φ1
.

Moreover, suppressing the Ψ notations,

f ′(θ) =
∂u

∂φ1
+ i

∂v

∂φ1
=

∂v

∂φ2
− i

∂u

∂φ2

5.4 Formal Derivatives of Conjugate Variables

In this section we define partial derivatives with respect to complex supercoordinates

zM in terms of partial derivatives with respect to real super coordinates xM and ym

where zM = xM + iyM . These are formal derivatives since they are not generally

understood in terms of a limiting process. In this section we will suppress the Ψ

notation; we identify x+ iy and (x, y) hopefully without danger of confusion.

Definition 5.4.1. Let (zM ) be complex coordinates in Cp|q and suppose (xM ), (yM) are

real coordinates in Rp|q such that zM = xM + iyM for each M = m = 1, 2, . . . , p and

M = α = 1, 2, . . . , q, then we define the formal symbols

∂

∂zM
=

1

2

(
∂

∂xM
− i

∂

∂yM

)
∂

∂z̄M
=

1

2

(
∂

∂xM
+ i

∂

∂yM

)

These act on Λ(C)-valued functions whose domain resides in Rp|q. They are simply a

notation to encode a complex-linear combination of real super derivatives.
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5.4.1 Cauchy Riemann Equations and the ∂/∂z-Notation

We will see how the formal derivatives of the last section match complex derivatives

in the appropriate context. Observe, if the Cauchy Riemann equations ux = vy and

uy = −vx hold, then

∂
∂z

(f) = 1
2
( ∂
∂x

− i ∂
∂y

)(u+ iv)

= 1
2
[ux − iuy + ivx − i2vy]

= ux + ivx

(5.13)

Similarly, just changing the last step we find that ∂
∂z

(f) = uy− ivy. However, from the

very definition of super derivatives in the last section we showed that f ′(z) = ux + ivx.

In constrast, the total derivative of f(z) with respect to z̄ is not well-defined since the

differential of f is not right-complex-linear in z̄. We can say that ∂
∂z̄

is a well-defined

operation on functions of z alone; we simply require that ∂f/∂z̄ = 1
2
(fx − ify) with

the understanding that f(z) should be replaced with f(x,y) to make the differentiations

sensible.

Remark 5.4.2. Total derivatives of z and z̄ only make sense for functions of just z or

just z̄. Partial derivatives with respect to z and z̄ are just a notations for differentiations

on the associated functions of two real variables. While the notation appears complex,

it is in fact just notation for a theory of real variables. These remarks apply equally

well to even or odd variables.

Example 5.4.3. A good example to illustrate the difference between real and complex

differentiability is f(z) = z̄ = x−iy where z = x+iy ∈ rΛ. This function is not complex

super differentiable since df is not right-Λ-linear. This is also seen by examining the

failure of the Cauchy Riemann equations. We have that u = x and v = −y thus
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ux 6= vy. However, f(x, y) = x− iy is clearly real super differentiable since df is right-

ΛR-linear. In summary, f is not in G1(rΛ). However f is in G1(R2|0) for r = 0 or in

G1(R0|2) for r = 1. In both cases f is smooth since it is a polynomial at the level of

Grassmann coefficients.

5.4.2 Properties of Formal Derivatives

Suppose that z = x+iy ∈ Cc and z̄ = x−iy ∈ Cc such that x, y ∈ Rc or z = x+iy ∈ Ca

and z̄ = x − iy ∈ Ca with x, y ∈ Ra, then we obtain the following properties for the

formal derivatives with respect to z and z̄:

1. ∂z(f + g) = ∂z(f) + ∂z(g)

2. ∂z̄(f + g) = ∂z̄(f) + ∂z̄(g)

3. ∂z(fc) = ∂z(f)c and ∂z(cf) = (−1)ǫ(z)ǫ(c)c∂z(f)

4. ∂z̄(fc) = ∂z̄(f)c and ∂z̄(cf) = (−1)ǫ(z̄)ǫ(c)c∂z̄(f)

5. ∂z
∂z

= 1 and ∂z̄
∂z̄

= 1

6. ∂z
∂z̄

= 0 and ∂z̄
∂z

= 0

7. ∂z(fg) = (∂zf)g + (−1)ǫ(f)ǫ(z)f(∂zg)

8. ∂z̄(fg) = (∂z̄f)g + (−1)ǫ(f)ǫ(z)f(∂z̄g)

Here f, g are functions of the real supervariables x, y, c ∈ Λ, and where appropriate we

assume the functions or numbers are pure. These properties that reflect the fact that
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∂z and ∂z̄ are derivations on functions of two supervariables. The following equation is

an interesting heuristic since x = 1
2
(z + z̄) and y = i

2
(z̄ − z)

∂

∂z
=
∂x

∂z

∂

∂x
+
∂y

∂z

∂

∂y
=

1

2

(
∂

∂x
− i

∂

∂y

)
.

where z could be a commuting or an anticommuting variable. A similar equation holds

for z̄. It is tempting to think of this as the chain rule corresponding to a coordinate

change on the real superplane, but neither z nor z̄ are real supervariables.

5.5 Algebra of Conjugate Variables for R
4|4

Because we would like to use θ to refer to the reparametrized odd-coordinates of R4|4

we begin by denoting a typical point in R4|4 by (xm, φk). These coordinates on R4|4

are natural from a mathematical view point; they satisfy the simple reality conditions

(xm)∗ = xm and (φk)∗ = φk. Unfortunately, it is not immediately obvious how to

generalize a Lorentz covariance for the odd-coordinates. However, if we reparametrize

the odd coordinates so that they form Weyl spinors over Minkowski space, then it is

known how to transform such coordinates under a Lorentz transformation ( or more

accurately a corresponding SL(2,C) transformation ). To that end, we define,

θ1 = φ1 + iφ2

θ̄1 = φ1 − iφ2

θ2 = φ3 + iφ4

θ̄2 = φ3 − iφ4.

(5.14)
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Notice that (θ1)∗ = θ̄1 and (θ2)∗ = θ̄2. This interdependence of θ and θ̄ is required for

Weyl spinors over Minkowski space; we must have (θα)∗ = θ̄α̇. For future reference we

note that the inverse transformations are easily computed,

φ1 = 1
2
(θ1 + θ̄1)

φ2 = 1
2i

(θ1 − θ̄1)

φ3 = 1
2
(θ2 + θ̄2)

φ4 = 1
2i

(θ2 − θ̄2).

(5.15)

5.5.1 Index Suppressing Conventions

In the physics literature there are certain canonical expressions of θ, θ̄ and their prod-

ucts. It is customary to suppress the indices α and α̇ when possible, but that requires

some care. To begin, we define how to lower indices,

θβ = ǫβαθ
α θ̄β̇ = ǫβ̇α̇θ̄α̇ (5.16)

where our convention is,

(ǫαβ) =




0 −1

1 0


 = (ǫα̇β̇) (ǫαβ) =




0 1

−1 0


 = (ǫα̇β̇). (5.17)

We adopt the following convention for suppressed indices (up-down),

θθ = θαθα = ǫαβθ
αθβ = −θ1θ2 + θ2θ1 = −2θ1θ2. (5.18)
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Sometimes the latter is written as θθ = θ2, and at first glance it seems that such a

quantity should be zero. After all it looks like the square of an odd variable. However,

it is really just notation for a sort of fermionic dot product where instead of summing

over a metric tensor we sum over the antisymmetric symbol.

Next we adopt a convention for suppressing dotted indices ( down-up ),

θ̄θ̄ = θ̄α̇θ̄
α̇ = ǫα̇β̇ θ̄

β̇ θ̄α̇ = θ̄1θ̄2 − θ̄2θ̄1 = 2θ̄1θ̄2. (5.19)

Notice that it is important to distinguish between θ̄α̇θ̄
α̇ = θ̄θ̄ and θ̄α̇θ̄α̇ = −θ̄θ̄, Grass-

mann spinor indices require some care.

Next, define σm = (I, σi) and σ̄m = (I,−σi). Here we use I to denote the 2x2 identity

matrix and the σi are the Pauli matrices,

σ1 =




0 1

1 0


 σ2 =




0 −i

i 0


 σ3 =




1 0

0 −1


. (5.20)

The Pauli matrices possess dotted and undotted indices, σm = (σmαα̇). Consistent with

our previous conventions concerning the suppression of indices we introduce,

θσmθ̄ = θασmαα̇θ̄
α̇. (5.21)

Finally we comment that the (up-down) convention applies to suppressing the sums

of other undotted index carrying objects, and the (down-up) convention applies to
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suppressing the sums of other dotted index carrying objects. For example,

θφ = θαφα θ̄X̄ = θ̄α̇X α̇ (5.22)

Our conventions for dotted and undotted Weyl spinors on R4|4 match those of [116].

5.5.2 More on the Conjugate Variable Reparametrization of

R
4|4

In this section we explain how products involving (θ1, θ2, θ̄1, θ̄2) relate to the products

of (φ1, φ2, φ3, φ4). These are straightforward to compute; we leave these as an exercise

for the reader,

θθ = −2(φ1φ3 + iφ1φ4 + iφ2φ3 − φ2φ4)

θ̄θ̄ = 2(φ1φ3 − iφ1φ4 − iφ2φ3 − φ2φ4)

θσ0θ̄ = −2i(φ1φ2 + φ3φ4)

θσ1θ̄ = −2i(φ1φ4 − φ2φ3)

θσ2θ̄ = −2i(φ1φ3 + φ2φ4)

θσ3θ̄ = −2i(φ1φ2 + φ3φ4).

(5.23)

In view of the above identities we easily calculate,

θθ + θ̄θ̄ = 4i(φ1φ4 + φ2φ3)

θθ − θ̄θ̄ = −4(φ1φ3 + φ2φ4).
(5.24)
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It is then clear how to compute the inverse transformations,

φ1φ2 = 1
4i

(θσ0θ̄ + θσ3θ̄)

φ3φ4 = −1
4i

(θσ0θ̄ − θσ3θ̄)

φ2φ3 = 1
8i

(θθ + θ̄θ̄ + 2θσ1θ̄)

φ1φ4 = 1
8i

(θθ + θ̄θ̄ − 2θσ1θ̄)

φ2φ4 = 1
8
(θθ − θ̄θ̄ + 2iθσ2θ̄)

φ1φ3 = −1
8

(θθ − θ̄θ̄ − 2iθσ2θ̄).

(5.25)

The products of three Grassmanns are related as follows,

θθθ̄1 = 4(φ1φ2φ4 − iφ1φ2φ3)

θθθ̄2 = 4(iφ1φ3φ4 − φ2φ3φ4)

θ̄θ̄θ1 = −4(φ1φ2φ4 + iφ1φ2φ3)

θ̄θ̄θ2 = 4(φ2φ3φ4 + iφ1φ3φ4).

(5.26)

The inverse relations are,

φ1φ2φ3 = −1
8i

(θθθ̄1 + θ̄θ̄θ1)

φ1φ2φ4 = 1
8
(θθθ̄1 − θ̄θ̄θ1)

φ1φ3φ4 = 1
8i

(θθθ̄2 + θ̄θ̄θ2)

φ2φ3φ4 = −1
8

(θθθ̄2 − θ̄θ̄θ2).

(5.27)

Lastly, we relate the product of four Grassmans,

φ1φ2φ3φ4 =
−1

16
θθθ̄θ̄. (5.28)
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With all of these relations in hand it becomes a straight forward, but tedious, exercise

to relate the component field expansion,

F = f + θφ+ θ̄X̄ + θθm + θ̄θ̄n+ θσmθ̄vm + θθθ̄λ̄+ θ̄θ̄θψ + θθθ̄θ̄d. (5.29)

to the fermionic Taylor series expansion (relative to the φk, k = 1, 2, 3, 4 coordinates)

F = F0 + Fiφ
i +

1

2
Fijφ

iφj +
1

6
Fijkφ

iφjφk +
1

24
Fijklφ

iφjφkφl. (5.30)

For example, θφ+ θ̄X̄ = Fiφ
i implies,

φ1 = −1
2

(F1 − iF2)

φ2 = −1
2

(F3 − iF4)

X̄1 = 1
2
(F1 + iF2)

X̄2 = 1
2
(F3 + iF4).

(5.31)

5.6 Chiral Coordinate Derivatives of R
4|4

Throughout supersymmetric physics one finds chiral and antichiral coordinates are em-

ployed to facilitate an elegant solution to the chiral and antichiral field constraints. We

introduce the reader to chiral superfields and show how chiral coordinates provide a

natural solution to the chiral constraint equation.

To begin, we give an interpretation of derivatives with respect to ”chiral coordinates”

(they are not real so technically they do not take values in R4|4, although there is a

bijective correspondence, see [29] for details on how to view R4|4 as a particular subset
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of C
4|2). Let (x, θ, θ̄) be coordinates on R

4|4 where θ and θ̄ are conjugate as described

in the preceding sections. Introduce ”chiral coordinates” (y, β, β̄) as follows,

ym = xm + iθσmθ̄ βα = θα β̄α̇ = θ̄α̇

We define that the derivatives with respect to (y, β, β̄) as follows,

∂
∂ym = ∂

∂xm
∂
∂βα = ∂

∂θα − iσnαα̇θ̄
α̇ ∂
∂xn

∂
∂β̄α̇ = ∂

∂θ̄α̇ + iθασnαα̇
∂
∂xn

The motivation for these definitions is revealed in the heuristic calculations below. Let

f be a function on R4|4 and let g denote the same function in terms of chiral variables,

f(x, θ, θ̄) = g(y, β, β̄), then since g(y, β, β̄) = f(y − iβσβ̄, β, β̄) the calculations below

follow from a formal chain rule.

∂g

∂ym = ∂
∂ym [f(y − iβσβ̄, β, β̄)]

= ∂f

∂xn
∂

∂ym [yn − iβσnβ̄] + ∂f

∂θα
∂

∂ym [βα] + ∂f

∂θ̄α̇
∂

∂ym [β̄α̇]

= ∂f

∂xm .

(5.32)

We observe that ∂
∂ym = ∂

∂xm . Note that

∂g

∂βα = ∂
∂βα [f(y − iβσβ̄, β, β̄)]

= ∂f

∂xn
∂
∂βα [yn − iβσnβ̄] + ∂f

∂θδ
∂
∂βα [βδ] + ∂f

∂θ̄α̇
∂
∂βα [β̄α̇]

= ∂f

∂xn (−iσnαα̇β̄α̇) + ∂f

∂θα

= [ ∂
∂θα − iσnαα̇β̄

α̇ ∂
∂xn ](f).

(5.33)
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Thus ∂
∂βα = ∂

∂θα − iσnαα̇θ̄
α̇ ∂
∂xn . Next consider,

∂g

∂β̄α̇ = ∂
∂β̄α̇ [f(y − iβσβ̄, β, β̄)]

= ∂f

∂xn
∂
∂β̄α̇ [yn − iβσnβ̄] + ∂f

∂θα
∂
∂β̄α̇ [βα] + ∂f

∂θ̄γ̇
∂
∂β̄α̇ [β̄ γ̇]

= ∂f

∂xn (iβασnαα̇) + ∂f

∂θ̄α̇

= [ ∂
∂θ̄α̇ + iβασnαα̇

∂
∂xn ](f).

(5.34)

Thus ∂
∂β̄α̇ = ∂

∂θ̄α̇ + iθασnαα̇
∂
∂xn .

The supersymmetric or ”susy” covariant derivatives are defined in terms of the (x, θ, θ̄)

coordinates on R4|4 as follows (see [116] for physical motivations)

Dα =
∂

∂θα
+ iσmαα̇θ̄

α̇ ∂

∂xm
D̄α̇ = − ∂

∂θ̄α̇
− iθασmαα̇

∂

∂xm
.

Observe that we may rewrite the susy covariant derivatives in terms of the formal

derivatives with respect to (y, β, β̄),

Dα =
∂

∂θα
+ iσmαα̇θ̄

α̇ ∂

∂xm
=

∂

∂βα
+ 2iσnαα̇β̄

α̇ ∂

∂yn

and,

D̄α̇ = − ∂

∂θ̄α̇
− iθασmαα̇

∂

∂xm
= − ∂

∂β̄α̇
.

A superfield Φ is a function on R4|4. A chiral superfield is a function on R4|4 that

satisfies the constraint D̄α̇Φ = 0 for α̇ = 1, 2. We see that in chiral coordinates this

condition is simply stated as,

− ∂Φ

∂β̄α̇
= 0.
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Evidentally the solution must be constant in β̄ thus,

Φ = A + βαΨα + ββF

where A,Ψα, F are functions of y alone. Wess and Bagger describe this calculation

on page 30 in [116]. In their notation there is no β; they use θ for chiral coordinates

and the real coordinates (in truth they are conjugate variables as we described in the

previous sections so perhaps ”real” is a misleading label for θ). One can also define

antichiral coordinates and similar comments apply.

In chapter 10 we mention the concept of ”partial derivative with respect to θ with x

held fixed” and also ”partial derivative with respect to θ with y held fixed”. We denote

them by ∂
∂θα |x and ∂

∂θα |y respectively. In the notation of this section we can interpret

these statements as ∂
∂θα |x = ∂

∂θα and ∂
∂θα |y = ∂

∂βα .
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Supermanifolds

A supermanifold is typically a curved space which is locally approximated by Kp|q.

Naturally, Kp|q is a special example of a supermanifold in that it possesses a global

coordinate chart. Generally we have to insist that the transition functions between

overlapping charts are supersmooth.

Mathematicians and physicists have been developing the theory of supermanifolds

for over a quarter of a century. From almost the beginning, there have been at least

two distinct approaches to the foundations of the superanalysis underlying the theory.

Chronologically, the first of these is based on techniques reminiscent of ideas from

algebraic geometry. We think of this approach as the sheaf theoretic development of

supermathematics even when the theory of sheaves may not explicitly appear in some

specific treatments of the subject. Certainly, Berezin, Leites, and Kostant [13], [76]

were forerunners of this method and for that matter of the entire theory.
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A second approach to the formulation of superanalysis and supermanifolds was ini-

tiated separately and differently by Rogers [98], Jadczyk and Pilch [68], and DeWitt

[39]. Their work is more closely related to traditional ideas in manifold theory. Much

work has been done describing both the sheaf theoretic and manifold theoretic descrip-

tions of supermanifolds and how they are related, but we mention only a few whose

work has directly impacted our work here, namely Rogers [98],[99],[100], Batchelor [11],

and Bruzzo [23].

6.1 Definition of Supermanifold

This definition is due to Alice Rogers in [98].

Definition 6.1.1. Let M be a Hausdorff topological space.

1. An (p|q) open chart on M over Λ is a pair (U, ψ) with U open in M and ψ a

homeomorphism of U onto an open subset of Kp|q.

2. An (p|q) Gs structure on M over Λ is a collection {(Uα, ψα) | α ∈ I} of open

charts on M such that (i) M = ∪α∈IUα, (ii) for Uα ∩ Uβ 6= ∅ the mapping

ψβ◦ψ−1
α is a G∞ mapping of ψα(Uα∩Uβ) onto ψβ(Uα∩Uβ), and (iii) the collection

{(Uα, ψα) | α ∈ I} is a maximal collection of open charts for which (i) and (ii)

hold. A collection for which (i) and (ii) hold but is not necessarily maximal is

called a (p|q) Gs subatlas on M over Λ.

3. An (p|q) dimensional Gs supermanifold over Kp|q, is a Hausdorff topological

space M with an (p|q) Gs structure on M over Λ.
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4. Each Uα is called a coordinate neighborhood, and each ψα is a coordinate map.

For each α ∈ I, p+ q local coordinate functions are defined by,

um = Πm ◦ ψα vβ = Πp+β ◦ ψα or by uM = ΠM ◦ ψα

where m = 1, 2, . . . , p, β = 1, 2, . . . , q, and M = 1, 2, . . . , p+q. We use lower case

Latin indices for the commuting coordinates, Greek indices for the anticommuting

coordinates, and upper case Latin indices for both.

5. Setting r = ∞ defines the structure of a G∞ supermanifold.

There are other definitions used in the literature for supermanifold. For example,

graded manifolds of Kostant [76], or the DeWitt [39] or H∞-manifold, and the defi-

nition due to Berezin and Leites [13]. All of these are included under the category of

G∞-manifold as is discussed in [98]. The G∞ supermanifolds allow a richer class of

topologies than the other definitions.

6.2 Supersmooth Functions on a Supermanifold

In traditional geometry the class of smooth C∞-functions on a manifold are defined to

be those whose local coordinate representatives are smooth. We define supersmooth

G∞-functions in a similar fashion.

Definition 6.2.1. Let M be G∞ supermanifold and {(Uα, ψα) | α ∈ I} a subatlas of

M. If U is open in M we define G∞ functions on U by

G∞(U) = {f | f : U → Λ, with f ◦ ψ−1
α ∈ G∞[ψα(U ∩ Uα)], ∀α ∈ J }.
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Then G∞(p), the germ of G∞ functions at a point p ∈ M, is likewise defined by

G∞(p) = {f | ∃ an open neighborhood N of p such that f ∈ G∞(N)}

We say two functions in G∞(p) are equivalent iff they agree on some open set about

p. Consequently it would be more rigorous to say that G∞(p) is the set of equivalence

classes of functions defined near p.

Notice that we take the class of functions with values in Λ as the object of primary

interest. This is a necessary step since we wish to deal with commuting and anticom-

muting fields to represent bosons and fermions in physics. Such fields parity is decided

by their range so we must use Λ which includes both commuting and anticommuting

superscalars.

Proposition 6.2.2. Given U open in M, then

1. G∞(U) is a graded commutative algebra over K with,

G∞(U)0 = {f ∈ G∞(U) | f(U) ⊂ 0Λ}

G∞(U)1 = {f ∈ G∞(U) | f(U) ⊂ 1Λ}
(6.1)

2. G∞(U) is a graded left Λ module with parity defined as in (1.).

The parity of functions is given by the parity of their range.

6.3 Derivations of Supersmooth Functions

Definition 6.3.1. Let End+[G∞(U)] denote the set of all left vector space endomor-

phisms of G∞(U), i.e. L ∈ End+[G∞(U)] iff it is an endomorphism over K in the
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traditional sense and

L(fa) = L(f)a

for all a ∈ Λ and all f ∈ G∞(U).

We note that the super partial derivatives GM are in End+[G∞(U)]. Other authors

prefer to use right endomorphisms, for example [55]. Our notation is a synthesis of [29]

and [98].

Proposition 6.3.2. Let U be open in M then

1. End+[G∞(U)] is a graded associative algebra over K with, composition as the

multiplication and with,

End+[G∞(U)]0 = {L ∈ End+[G∞(U)] | ǫ(Lf) = ǫ(f) }

End+[G∞(U)]1 = {L ∈ End+[G∞(U)] | ǫ(Lf) = ǫ(f) + 1 }.

If L ∈ End+[G∞(U)]0 ∪ End+[G∞(U)]1 and f ∈ G∞(U)0 ∪G∞(U)1 then

ǫ(Lf) = ǫ(L) + ǫ(f)

2. End+[G∞(U)] is a graded left Λ module with parity defined as in (1.).

A similar proposition is true regarding End−[G∞(U)].

Definition 6.3.3. Let U be open in M. A G∞ vector field on U is an element X of

End+[G∞(U)] such that

1. X(fg) = (Xf)g + (−1)ǫ(f)ǫ(X)fXg for all f, g ∈ G∞(U)0 ∪G∞(U)1
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2. X(af) = (−1)ǫ(a)ǫ(X)aXf for all f ∈ G∞(U)0 ∪G∞(U)1 and a ∈ 0Λ ∪ 1Λ

The set of all G∞ vector fields is denoted D1(U).

Although our definition is given for pure elements it should be clear how to extend

linearly to impure functions and supernumbers.

Remark 6.3.4. We have affixed the qualifier G∞ to distinguish these vector fields from

the ordinary C∞ vector fields which stem from the Banach space structure of M. We

will see in the next few sections that odd G∞-vector fields cannot arise as the tangent to

a curve whereas even G∞-vector fields are in correspondence with tangents to curves.

Proposition 6.3.5. Let U be open in M then D1(U) is a graded Lie left Λ module

with bracket

[X, Y ] = XY − (−1)ǫ(X)ǫ(Y )Y X

Since G∞ vector fields are in End+[G∞(U)] we already know how to grade them. This

is Proposition 5.5 of [98].

Definition 6.3.6. Let (U, ψ) be a chart on a G∞ supermanifold M where

ψ = (u1, . . . , up, v1, . . . , vq). For m = 1, 2, . . . , p, define

∂

∂um
: G∞(U) → G∞(U), where

∂f

∂um
≡ [Gm(f ◦ ψ−1)] ◦ ψ

for all f ∈ G∞(U). Also, for α = 1, 2, . . . , q define

∂

∂vα
: G∞(U) → G∞(U), where

∂f

∂vα
≡ [Gp+α(f ◦ ψ−1)] ◦ ψ

for all f ∈ G∞(U). These are the coordinate derivatives.
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Proposition 6.3.7. Let (U, ψ) be a chart on a G∞ supermanifold M of supermanifold

dimension (p|q). The coordinate derivatives are pure G∞ vector fields on U. In partic-

ular, for m = 1, 2, . . . , p ∂/∂um ∈ D1(U)0, and for α = 1, 2, . . . , q ∂/∂vα ∈ D1(U)1. In

short, ∂/∂uM ∈ D1(U)ǫM for M = 1, 2, . . . , p+ q.

Definition 6.3.8. We say a supervector space W is graded left G∞(U) module over

and open set U ⊆ Kp|q iff G∞(U)rWs ⊆Wr+s for r, s ∈ Z2.

Proposition 6.3.9. Let (U, ψ) be a chart on a G∞ supermanifold M where

ψ = (u1, . . . , up, v1, . . . , vq),

1. D1(U) is a graded left G∞(U) module.

2. D1(U) is a free left G∞(U) module with basis {∂/∂uM} for M = 1, 2, . . . p+ q.

6.4 Supermanifolds and the Banach Space Corre-

spondence

Let M be a supermanifold. Then one has a maximal G∞-atlas AM on M such that

for φ, ψ ∈ AM, φ ◦ ψ−1 : ψ(U ∩ V ) → φ(U ∩ V ) is a G∞ mapping from an open subset

ψ(U ∩ V ) of Kp|q of Kp|q onto another open subset φ(U ∩ V ) . By Proposition 2.8 of

[98] φ ◦ ψ−1 is also a C∞ map.

Proposition 6.4.1. If M is a supermanifold with G∞-atlas AM, then M is also a

Banach manifold relative to the unique maximal C∞-atlas, containing AM. We denote

this Banach manifold by (BM,ABM) where, as sets BM = M and where ABM is the

maximal C∞-atlas containing AM.
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We will use BM when we wish to emphasize the Banach manifold structure of M.

In practice we will work with the subatlas AM of the maximal atlas of the Banach

manfold BM since it has the additional G∞ structure.

6.5 Vector Fields and the Banach Space Correspon-

dence

Recall that one definition of what it means to say v is tangent to a Banach manifold

is the one which follows (see [80])

Definition 6.5.1. Let M be a Banach manifold modeled on a Banach space B. We

say that v is tangent to M at x ∈ M and write v ∈ TxM iff v is a mapping from the

set of all C∞ charts of M at x into B such that if (U, ψ) and (V, φ) are C∞ charts of

M at x then

v(ψ) = dφ(x)(ψ ◦ φ−1)(v(φ)).

Remark 6.5.2. A tangent vector v is uniquely determined by the latter transfomation

law and its values on an atlas of M . So to define a tangent vector v to M at x it

suffices to define v at all those charts of some atlas of M which contain x in their

domain.

We find the following slight modification of Rogers’ definition in [98] to be useful in

our context.

Definition 6.5.3. Let M be a supermanifold and x ∈ M. We say that v is a tangent

to M at x and write v ∈ TxM iff v is a mapping from G∞(x) to Λ such that for some
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open set U ⊆ M such that x ∈ U and for some G∞ vector field X ∈ D1(U),

v(f) = X(f)(x)

for all f ∈ G∞(U). We say that v is even and write v ∈ T 0
xM iff v(G∞(x)ǫ) ⊆ ǫΛ

for ǫ = 0, 1. Likewise, v is odd and write v ∈ T 1
xM iff v(G∞(x)ǫ) ⊂ ǫ+1Λ for ǫ = 0, 1.

Note that TxM is a graded vector space with TxM = T 0
xM ⊕ T 1

xM. Moreover

TxM is a left Λ-module which is called the tangent module at x ∈ M. If we suppose

that M is a (p|q)-dimensional supermanifold then in the language of [68] we could give

TxM the structure of a (p, q)-dimensional supervector space. We also note that T 0
xM

is a (p|q)-dimensional supervector space while T 1
xM is a (p̄|q̄)-dimensional supervector

space. It should be noted that T 0
xM is a trivial (p|q)-dimensional supermanifold.

Likewise, T 1
xM is a trivial (p̄|q̄)-dimensional supermanifold.

Definition 6.5.4. Let M and N be supermanifolds and g : M → N a class G1

function we define dxg : TxM → Tg(x)N by,

dxg(Xx)(f) ≡ Xx(f ◦ g) (6.2)

for all f ∈ G∞g(x) and Xx ∈ TxM.

We pause to note that the differential on a supermanifold was just defined for the total

tangent space. In contrast, in the preceding chapter we defined the total differential

for Kp|q which generalizes to T 0
xM in our current context. There is no inconsistency

since they match on the even sector and moreover due to Proposition 3.7.6 we know

that this is the only possible consistent left-linear extension to the total space.
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Proposition 6.5.5. Let M and N be supermanifolds and g : M → N then dxg :

TxM → Tg(x)N is a parity preserving (even) right linear transformation, that is dxg ∈

L−(TxM, Tg(x)N ).

This follows from the fact that the parity of a composite function is determined as

follows,

f ◦ g ∈ G∞(U)ǫ ⇐⇒ f ∈ G∞ǫ . (6.3)

Thus, the parity of g does not determine the parity of f ◦ g : M → Λ. This means

that dxg is always parity preserving; for y = g(x)

dxg(T
ǫ
xM) ⊆ T ǫyN . (6.4)

If (U, ψ) is a chart at x of AM with ψ = (x1, . . . , xp, θ1, . . . , θq) and U ⊂ g−1(V ) for

some chart (V, φ) ∈ AN with φ = (y1, . . . , yr, β1, . . . , βs) then the matrix of dxg is,

[dxg]φ,ψ =




(dx(y
j ◦ g)( ∂

∂xi ) (dx(y
j ◦ g)( ∂

∂θα )

(dx(β
γ ◦ g)( ∂

∂xi ) (dx(β
γ ◦ g)( ∂

∂θα )




where we note that the local coordinate representative of the Frechet derivative is a

Grassmann valued matrix. Also notice that the matrix has the usual block decompo-

sition 

A B

C D




where A,D have entries from 0Λ and B,C have entries from 1Λ.

Observation 6.5.6. There are several supermanifold structures on Λ. Denote the
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projections onto 0Λ and 1Λ by Πc and Πa respective where if (x + θ) ∈ Λ with x ∈ 0Λ

and θ ∈ 1Λ then Πc(x + θ) = x and Πa(x + θ) = θ. Notice that ψ = Πc × Πa is a

coordinate chart which makes Λ a (1|1) dimensional supermanifold. On the other hand

ψ̄ = Πa × Πc makes Λ a (1̄, 1̄) dimensional supermanifold. Furthermore, both 0Λ and

1Λ can be given a variety of supermanifold structures: (0|1), (1|0), (0̄, 1̄) or (1̄, 0̄). This

is largely a matter of book-keeping.

For convenience we will assume that Λ is a (1|1) dimensional supermanifold while 0Λ

is a (1|0) dimensional supermanifold and 1Λ is a (0|1) dimensional supermanifold.

Just to be clear let us write the standard coordinate charts for future reference: Let

z = x+ θ ∈ Λ where x ∈ 0Λ and θ ∈ 1Λ then,

ψ(z) = (x, θ)

so ψ : Λ → K1|1. The identity map on 0Λ makes 0Λ a (1|0) dimensional supermanifold.

The identity map on 1Λ makes 1Λ a (0|1) dimensional supermanifold.

Finally since the tangent module is twice as large as the parameter space we find that

the following identifications are natural: Tx(
0Λ) = Λ, Tθ(

1Λ) = Λ, TzΛ = K
2|2.

Obviously our definition of a tangent vector v ∈ TxM depends on the vector field X

used in the definition. We examine this dependence in more detail. Assume that U, V

are open in M, that x ∈ U ∩ V , that X is a vector field on U , that Y is a vector field

on V , and that

v(f) = X(f)(x), v(g) = Y (g)(x)
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for all f ∈ G∞(U), g ∈ G∞(V ). Then

X(f)(x) = Y (f)(x)

for all f ∈ G∞(U ∩ V ). Moreover if (O, ψ) is a chart of M at x then, on O ∩ U ∩ V ,

X =

p+q∑

A=1

XA
ψ

∂

∂zA
, Y =

p+q∑

A=1

Y A
ψ

∂

∂zA

where ψ = (z1, z2, . . . , zp+q) and where XA
ψ , Y

A
ψ are G∞ maps from O ∩ U ∩ V into Λ.

Moreover

p+q∑

A=1

XA
ψ (x)

∂f

∂zA
(x) = X(f)(x) = Y (f)(x) =

p+q∑

A=1

Y A
ψ (x)

∂f

∂zA
(x)

for all f ∈ G∞(O ∩ U ∩ V ). If we choose f = zB , 1 ≤ B ≤ p+ q, we see that

XB
ψ (x) = Y B

ψ (x)

for all B.

Notice that if M is a supermanifold then TM = ∪p∈MTpM may be given a super-

manifold structure just as in the case for ordinary manifolds. This follows using the

G∞ transformation laws relating two sets of components of tangent vectors to M.

Observe that there exists a well-defined mapping βx : T 0
xM → TxBM ⊆ TxM defined

by

βx(v)(ψ) = (X1
ψ(x), X2

ψ(x), · · · , Xp+q
ψ (x))

for v ∈ T 0
xM and ψ a chart of M. Notice that we have defined βx(v) only on charts
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of M at x but if we show that the appropriate transformation law holds then βx(v)

has a unique extension to all charts of BM at x ( see Remark 6.5.2) and thus uniquely

defines an element of TxBM. With this in mind let (U, ψ), (V, φ) be charts of BM at

x, and observe that

βx(v)(ψ) = (X1
ψ(x), X2

ψ(x), · · · , Xp+q
ψ (x))

= dφ(x)(ψ ◦ φ−1)(X1
φ(x), X

2
φ(x), · · · , Xp+q

φ (x))

= dφ(x)(ψ ◦ φ−1)βx(v)(φ).

Proposition 6.5.7. If M is a supermanifold and x ∈ M then βx is a 0Λ-linear vector

space isomorphism from T 0
xM onto TxBM.

Proof. It is clear that βx is a 0Λ-linear vector space homomorphism. We show that βx

is injective. Assume that v ∈ T 0
xM such that βx(v) = 0. Then there is an open set

U ⊆ M and a vector field X on U such that x ∈ U , v(f) = X(f)(x) for f ∈ G∞(U)

and 0 = βx(v)(ψ) = (X1
ψ(x), X

2
ψ(x), · · · , Xp+q

ψ (x)) for all charts ψ of M at x. Thus

X = 0 and v(f) = 0 for all f ∈ G∞(U). It follows that v is zero on the germ G∞(x)

and βx is injective.

We now show that βx is surjective. Let Xx ∈ TxBM and recall thatXx is a mapping

from the set of all charts of BM into B = Kp|q. We want to find v ∈ T 0
xM such that

βx(v) = Xx. First we need to find a vector field defined on an open subset of M about

x which agrees with Xx on charts of M. Choose any chart (U, ψ) of M at x. Then
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Xx(ψ) ∈ B = K
p|q and we can define a constant vector field Y on U by

Y =

p+q∑

A=1

XA
x (ψ)

∂

∂zA

where ψ = (z1, z2, . . . , zp+q). Thus the functions Y A
ψ : U → Λ are the constant functions

Y A
ψ (u) ≡ XA

x (ψ) for all u ∈ U . Notice that Y ∈ D1(U)0. Define v : G∞(x) → Λ by

v(f) = Y (f)(x) =

p+q∑

A=1

XA
x (ψ)

∂f

∂zA
(x).

Then for any chart (V, φ) of M at x

βx(v)(φ) = (Y 1
φ (x), Y 2

φ (x), · · · , Y p+q
φ (x))

= dψ(x)(φ ◦ ψ−1)(Y 1
ψ (x), Y 2

ψ (x), · · · , Y p+q
ψ (x))

= dψ(x)(φ ◦ ψ−1)(X1
x(ψ), X2

x(ψ), · · · , Xp+q
x (ψ))

= dψ(x)(φ ◦ ψ−1)(Xx(ψ))

= Xx(φ).

Thus βx(v)(φ) = Xx(φ) for all charts of M, but since the charts of M form a subatlas

of the manifold structure of BM, βx(v) can be uniquely extended to agree with Xx at

every chart of BM. Thus βx is surjective. The proposition follows.

The mapping βx induces a mapping of vector fields as follows. Recall that a vector

field on a Banach manifold M is uniquely determined by defining a function Y from

charts (U, ψ) of M into C∞-maps from U into the Banach space B on which M is

modeled. Of course if (U, ψ) and (V, φ) are charts of M such that U ∩ V 6= ∅ the usual
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transformation holds,

Y (ψ)(x) = dφ(x)(ψ ◦ φ−1)(Y (φ)(x))

for all x ∈ U ∩ V .

Note that if O ⊆ M is open and X ∈ D1(O), then for each x ∈ O we may define

Xx ∈ TxM by

Xx(f) = X(f)(x)

for all f ∈ G∞(W ) where W is open and x ∈ W ⊆ O. Thus if (U, ψ) is a chart of M

at x,

βx(Xx)(ψ) = (X1
ψ(x), X2

ψ(x), · · · , Xp+q
ψ (x))

and the mapping β(X)(ψ) given by x 7→ βx(Xx)(ψ) is a G∞ function from V into

B = Kp|q. Since G∞ maps are necessarily C∞ maps we see that β(X) is a vector

field on BM since as a maps of charts of M it transforms correctly and thus can be

extended to all charts of BM.

Thus we can write v =
∑p+q

A=1X
A
ψ (x)∂/∂zA where (X1

x(x), X
2
x(x), . . . , X

p+q
x (x)) ∈

Kp|q. If φ is another chart G∞ related to ψ and φ = (w1, w2, . . . , wp+q) then we can

also write v =
∑p+q

B=1X
B
φ (x)∂/∂wA. Moreover as in the classical case,

(X1
ψ(x), X

2
ψ(x), . . . , Xp+q

ψ (x)) = dφ(x)(ψ ◦ φ−1)(X1
φ(x), X

2
φ(x), . . . , X

p+q
φ (x)).

Because the Banach space B = Kp|q is a Λ0 module, vector fields on BM have a
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0Λ-module structure.

Corollary 6.5.8. If O ⊆ M is an open subset of a supermanifold M then β is a

0Λ-linear vector space injection of the 0Λ-module of all EVEN vector fields D1(O)0 on

O into the 0Λ-module of C∞-vector fields of the Banach manifold O ⊂ BM.

The mapping β is not surjective since for X ∈ D1(O)0 and for each chart (U, ψ) of M,

β(X)(ψ) : U → Kp|q is a G∞-mapping and not every C∞-vector field on O ⊂ BM has

this property.

6.6 Higher Derivatives Banach Space Correspon-

dence

We begin this section by working out things from basic principles. We find a useful

technical characterization of a G∞ function on supermanifolds in Theorem 6.6.3. Then

we extend the differential to act on odd vectors (uniqueness follows from Proposition

3.7.6 or with proper interpretation in our context Proposition 4.2 of [68]). To conclude

this section we give the most convenient characterizations that follows naturally from

Theorem 4.3.3.

Recall that if U ⊆ Kp|q = B is open and f̃ : U → Λ is a class Ck mapping, then its

p-fold Frechet derivative is a mapping from U into symmetric multi-linear maps from

Bk = B × B × · · · × B into Λ. Thus for x ∈ U

dpxf̃ : B × B × · · · × B → Λ
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is symmetric. It is obtained by iterating the Frechet derivatives, for example,

d2
xf̃(v, w) = dx(y → (dyf̃)(w))(v).

Definition 6.6.1. Let M and N be supermanifolds and f : M → N a class Cp-

mapping from BM into BN . Define a mapping dpxf by

dpxf : TxBM× TxBM× · · · × TxBM → Tf(x)N

where

dpxf(v1, v2, . . . , vp) = (dφ(f(x))φ
−1)

(
dp
ψ(p)(φ ◦ f ◦ ψ−1)(dxψ(v1), dxψ(v1), . . . , dxψ(vp))

)

and where (U, ψ) is any chart of M and (V, φ) is any chart of N such that f−1(V ) ⊆ U .

Note that it is sufficient to define dpxf using charts of M since such charts are a subatlas

of the atlas of BM. Since T 0
xM ⊆ TxBM for each x, notice that there is an induced

mapping

dpxf : T 0
xM× T 0

xM× · · · × T 0
xM → Tf(x)N .

The definition of supersmoothness for Λ-valued functions was given in Section 6.5. We

now give the definition of supersmoothness of functions whose domain and range reside

in a supermanifold.

Definition 6.6.2. Let M and N be supermanifolds then f : M → N is a class

Gl-mapping iff its local coordinate representatives are all Gl-mappings from Kp|q to

Kr|s. Likewise a function f : M → N a class G∞-mapping iff its local coordinate

representatives are all G∞-mappings from Kp|q to Kr|s.
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Recall that the definition of G∞ for functions from K
p|q to K

r|s was given in Definition

4.7.1.

Theorem 6.6.3. Let M and N be supermanifolds of dimension (p|q) and (r|s) respec-

tively and let f : BM → BN be a C∞ function. The function f : M → N is a class

Gl function iff for every chart (U, ψ) of M and (V, φ) of N such that f−1(V ) ⊂ U

there exist functions bψJA1...Ak
with 1 ≤ A1 . . . Ak ≤ p+ q, 1 ≤ J ≤ r + s and 1 < k ≤ l,

such that

(1) each function bψJA1...Ak
is in G0(U), and

(2) for x ∈ U and X1, X2, . . . , Xk ∈ T 0
xM,

dkx(φ
J ◦ f)(X1, . . . , Xk) =

∑p+q
A1=1 · · ·

∑p+q
Ak=1X

A1
1 · · ·XAk

k bψ
J

A1...Ak
(x).

Proof. If f is of class Gk for k ≤ l then for charts ψ, φ of M,N respectively φ◦f ◦ψ−1

is of class Gk. By Proposition 2.8 of [98], where the partials are of class G0,

dkψ(x)(φ
J ◦ f ◦ ψ−1)(v1, . . . , vk) =

p+q∑

A1..Ak=1

vA1 · · · vAk
∂k(φJ ◦ f ◦ ψ−1)

∂uAk · · ·∂uA1
(ψ(x))

for 1 ≤ J ≤ r + s and v1, v2, . . . , vk ∈ Kp|q. We identify vi with dxψ(Xi) for arbitrary

given X1, X2, . . . , Xk ∈ T 0
xM so that

dkx(φ
J ◦ f)(X1, . . . , Xk) =

p+q∑

A1..Ak=1

XA1 · · ·XAk
∂k(φJ ◦ f)

∂zAk · · ·∂zA1
(x)

where zA ≡ ΠA ◦ψ (recall that ΠA is the projection of Kp|q onto its A-th factor). Thus

we note that,

bψJA1...Ak
(x) =

∂k(φJ ◦ f)

∂zAk · · ·∂zA1
(x) for x ∈ U.
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and (1) and (2) hold.

Conversely, assume the existence of the functions bψ
J

A1...Ak
: U → Λ with k ≤ l that

satisfy conditions (1) and (2) above. We show f is of class Gk for all k ≤ l.

Begin with the case k = 1. Let ψ, φ of M,N respectively and choose U open in

M small enough so that φ ◦ f ◦ ψ−1 is defined on the open set ψ(U). By hypothesis

we have for X ∈ T 0
xM and x ∈ U ,

dx(φ
J ◦ f)(X) =

p+q∑

A=1

XAbψJA (x) (6.5)

where bψJA (x) ∈ G0(U). Thus there are supernumbers bψJA (x) that encode the Frechet

derivative of (φJ ◦ f) at x. Moreover, if we identify H with dxψ(X) we find from

eq.(6.5),

dψ(x)(φ
J ◦ f ◦ ψ−1)(H) =

p+q∑

A=1

HAbψJA (ψ(x)). (6.6)

This identity implies that φJ ◦ f ◦ ψ−1 is of class G1 on ψ(U) for each J and that

bψJA (x) = GA(φJ ◦ f ◦ ψ−1)(ψ(x)) in the notation of [98]. Hence φ ◦ f ◦ ψ−1 is of class

G1 on ψ(U) and therefore, f is of class G1 on U . The case k = 1 is proved.

Next we prove the case k = 2. Consider the mapping F from ψ(U) to Λ defined by

F : y 7→ dy(φ
J ◦f ◦ψ−1)(V2) where V2 ∈ K

p|q is given by V2 = dxψ(X2) for an arbitrary,

but fixed, X2 ∈ T 0
xM. Then by construction, V2 is an arbitrary element of the Banach

space B = Kp|q which does not change as y changes. Consider the Frechet derivative
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of F at u = ψ(x). We Have for X1 ∈ T 0
xM and V1 = dxψ(X1) and,

duF (V1) = du(d(φ
J ◦ f ◦ ψ−1)(V2))(V1)

= d2
u(φ

J ◦ f ◦ ψ−1)(V1, V2)

= d2
ψ(x)(φ

J ◦ f ◦ ψ−1)(dxψ(X1), dxψ(X2))

= d2
x(φ

J ◦ f)(X1, X2)

=
∑p+q

A1=1

∑p+q
A2=1X

A1
1 XA2

2 bψJA1A2
(x)

=
∑p+q

A1=1

∑p+q
A2=1 V

A1
1 V A2

2 bψJA1A2
(x).

(6.7)

Since we have already shown that f is of class G1 on U we have that dy(φ
J ◦ f ◦

ψ−1)(V2) =
∑p+q

A2=1 V
A2
2

(
∂(φJ◦f◦ψ−1)

∂uA2

)
(y). From the definition of F we note

F (y) =

p+q∑

A2=1

V A2
2

(
∂(φJ ◦ f ◦ ψ−1)

∂uA2

)
(y). (6.8)

Thus for fixed V2, we have

duF (V1) =

p+q∑

A2=1

(−1)ǫA2
ǫ(V1)V A2

2 du

(
∂(φJ ◦ f ◦ ψ−1)

∂uA2

)
(V1). (6.9)

And so, comparing eq.(6.7) and eq.(6.9) we find,

p+q∑

A2=1

(−1)ǫA2
ǫ(V1)V A2

2 du

(
∂(φJ ◦ f ◦ ψ−1)

∂uA2

)
(V1) =

p+q∑

A1=1

p+q∑

A2=1

V A1
1 V A2

2 bψJA1A2
(x). (6.10)
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Thus,

p+q∑

A2=1

(−1)ǫA2
ǫ(V1)V A2

2 du

(
∂(φJ ◦ f ◦ ψ−1)

∂uA2

)
(V1) =

p+q∑

A2=1

V A2
2

p+q∑

A1=1

(−1)ǫA1
ǫA2V A1

1 bψJA1A2
(x).

(6.11)

This holds for all V2 so,

du

(
∂(φJ ◦ f ◦ ψ−1)

∂uA2

)
(V1) =

p+q∑

A1=1

(−1)ǫA1
ǫA2

+ǫA2
ǫ(V1)V A1

1 bψJA1A2
(x). (6.12)

It follows that

(
∂(φJ◦f◦ψ−1)

∂uA2

)
is of class G1 on ψ(U) ⊆ K

p|q, and for u ∈ ψ(U). Since

∂(φJ◦f◦ψ−1)

∂uA2
is of class G1 for each A, φJ ◦ f ◦ ψ−1 is of class G2 on ψ(U) for each J .

Thus f is of class G2 on U . An inductive argument using similar computations will

show that f is of class Gk for all k ≤ l

Remark 6.6.4. Given a C∞-mapping f : M → N as in the theorem above we have

conditions under which f is of class G∞. One begins with maps

dkxf : TxBM× · · · × TxBM → Tf(x)N . (6.13)

Then since T 0
xM × · · · × T 0

xM ⊆ TxBM × · · · × TxBM one has a mapping on even

vectors X1, X2, . . .Xk ∈ T 0
xM. Moreover, one obtains the formula for even vectors

dkxf(X1, X2, . . . , Xk) =

p+q∑

A1..Ak=1

(XA1
1 XA2

2 · · ·XAk

k )

(
∂kf

∂zAk · · ·∂zA2∂zA1

)
(x). (6.14)

It now follows that this mapping can be extended to a mapping from TxM × TxM ×

· · ·×TxM to Tf(x)N where the components of pure tangent vectors X1, X2, . . . , Xk may
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be in K
p|q or possibly in (1Λ)p× (0Λ)q. If the vectors X1, X2, . . . , Xk are not of definite

parity then the components (XA1
1 , XA2

2 , . . . , XAk

k ) will reside in Λk in general. As an

example, consider the case k=1. Observe that

dxf(X) = Xx(f) =

p+q∑

A=1

XA ∂f

∂zA
(x) (6.15)

makes sense for even and odd vectors Xx ∈ TxM. It is interesting that the operation

of dxf on T 0
xM defines its operation on the other half of TxM namely T 1

xM.

In other words, a supermanifold M is modeled on Kp|q but the G∞-tangent module

”doubles the dimension”. Even vectors are summed over ALL of the even and odd

coordinate vector fields (expanded against even and odd components in order that the

vector field be even); so to have the derivative of some map preserve this property

for even vector fields it is convenient to require that the derivative be defined on the

coordinate vector field basis of the tangent module. This is why we extend the derivative

to act on both even and odd vector fields. Even vector fields have the (p|q) data hidden

in them, the tangent module at a point is the direct sum of the Banach space K
p|q on

which M is modeled and the Banach space Kp̄|q̄.

The next theorem is the natural generalization of Theorem 4.3.3.

Theorem 6.6.5. Let M and N be supermanifolds of dimension (p|q) and (r|s) respec-

tively and let f : BM → BN be a C∞ function. The function f : M → N is a class

G∞ function iff for every chart (U, ψ) of M and (V, φ) of N such that f−1(V ) ⊂ U

there exist functions bψJA1
with 1 ≤ A1 ≤ p + q, 1 ≤ J ≤ r + s such that

1. each function bψJA1
is in G0(U), and
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2. for x ∈ U and X1 ∈ T 0
xM

dx(φ
J ◦ f)(X1) =

p+q∑

A1=1

XA1
1 bψ

J

A1
(x).

To summarize, a function f : M → N is smooth and G1 iff it is supersmooth.

Proof. To begin assume that there exist functions bψJA1
with 1 ≤ A1 ≤ p+q, 1 ≤ J ≤ r+s

satisfying (1.) and (2.) for a smooth function f : M → N then by Theorem 6.6.3 we

have that f is G1. Note then that each of the local coordinate representatives of f are

G1 and also by assumption they are smooth. We apply Theorem 4.3.3 to see that each

coordinate representative of f is G∞. Thus f is G∞. The converse follows immediately

from Theorem 6.6.3.

This last theorem is the most efficient method of ascertaining if a function on super-

manifolds is supersmooth. From the point of view of [68] this Theorem 6.6.5 might

well become the definition for supersmoothness since it supercedes the definition in

practice. We did not make use of this theorem in our paper [37] so we have chosen to

treat Alice Rogers’ definitions as primary and this theorem as a logical consequence.

This dissertation differs from [37] in that the labor saving techniques of [68] will be

applied to shorten certain proofs found in [37].

6.7 Differentiation on Banach Supervector Spaces

Definition 6.7.1. Let M be a supermanifold and v a Banach supervector space. Pro-

vide v0 with the supermanifold structure obtained by defining the obvious single global
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chart obtained from a basis of v. Let f denote a smooth function from M into v0 and

let {fB} denote its components relative to a pure basis of v. We define the higher

derivatives of fB at w ∈ M inductively as follows. Define dwf
B : TwM → Λ by

dwf
B(X) = X(fB) for X ∈ TwM. Define dk+1

w fB : TwM× TwM× · · ·TwM → Λ by

dk+1
w fB(X1, X2, · · · , Xk+1) = dw[dkfB(X2, X3, · · · , Xk+1)](X1) for X1, X2, · · · , Xk+1 ∈

TwM. Here dkfB(X2, X3, · · · , Xk+1) denotes the function from M into Λ defined by

x→ dkxf
B(X2, X3, · · · , Xk+1).

We now consider an important special case of these ideas which we find useful in the

last section of the chapter. Let g and v denote Banach super vector spaces. Consider

g0 as a supermanifold with a single global chart ψ : g0 → Kp|q whose components are

defined by ψ(x) = (u1(x), u2(x), · · · , up+q(x)), x ∈ g0. For each x ∈ g0, Txg
0 may be

identified with g by identifying the basis {uB} of Txg
0 with a given fixed basis {eB}

of g. Similarly, choose a single coordinate chart on v0. Moreover if f is a function

from g0 to v0, then denote its components relative to the chart on v0 by the functions

fB : g0 → Λ. Recall that if f is of class C∞, then it is also of class G∞ iff each

component function fB is of class G∞. Notice that the components f 1, f 2, · · · f p are

all even while f p+1, f p+2, · · · , f p+q are all odd. Also notice that the derivatives dkwf
B

of each component function are maps from gk = g × · · · × g to Λ at each w ∈ g0 due

to the identification of g with Twg0.

Definition 6.7.2. Let g be a supervector space with basis {eB} and let β : gk → Λ.

We say that β is multi-linear over g0 iff for some pure basis {eB} of g,

β(v1, v2, · · · , vk) = vA1
1 v2

A2 · · · vAk

k β(eAk
, · · · , eA2 , eA1)
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for v1, v2, · · · , vk ∈ g0.

Notice that one must require that β be defined on all of gk rather than (g0)k, since it

must be possible to evaluate β at arbitrary elements of a basis of g. This is also the

case for higher derivatives such as dkfB as defined above. This shows up explicitly in

the proof of the following proposition.

Proposition 6.7.3. Let g and v denote Banach super vector spaces and f : g0 → v0

a C∞ function. Then f is of class G∞ iff for each x ∈ g0 and each positive integer

k, dkxf
B : gk → Λ is multi-linear over g0 for each component fB of f.

We give two proofs. The first proof shows how to do detailed calculations on a super-

vector space while second proof shortcuts much of this work via Theorem 6.6.5.

Proof. Assume first that f : g0 → v0 is of class G∞ and that fB is a component of f.

Choose a pure basis {eB} of g and define uB on g0 by uB(
∑
aKeK) = aB. Regard the

(uB) as coordinates on g0. We first show for x ∈ g0 and v1, v2, · · · vk ∈ g0, that

dkxf
B(v1, v2, · · · , vk) = vA1

1 vA2
2 · · · vAk

k

∂kf

∂uAk · · ·∂uA2∂uA1
(x).

The proof proceeds by induction. First observe that dxf
B(v) = v(fB) = vA ∂f

B

∂uA so the

result is true for k = 1 Now assume the result for arbitrary k and we show that

dk+1
x fB(v1, v2, · · · , vk+1) = vA1

1 vA2
2 · · · vAk+1

k+1

∂k+1f

∂uAk+1 · · ·∂uA2∂uA1
(x).
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By definition

dk+1
x fB(v1, v2, · · · , vk+1) = dx[d

kfB(v2, v3, · · · , vk+1)](v1)

= dx[v
A2
2 vA3

3 · · · vAk+1

k+1
∂kf

∂u
Ak+1 ···∂uA3∂uA2

](v1)

= vA1
1

∂
∂uA1

[vA2
2 vA3

3 · · · vAk+1

k+1
∂kf

∂u
Ak+1 ···∂uA3∂uA2

].

(6.16)

Now the partial derivative ∂
∂uA1

can be pushed through the term vA2
2 vA3

3 · · · vAk+1

k+1 but in

doing so it produces a sign change ε = (−1)ε(A1)ε(A2)(−1)ε(A1)ε(A3) · · · (−1)ε(A1)ε(Ak+1).

Thus one obtains

dk+1
x fB(v1, v2, · · · , vk+1) = ε[vA1vA2

2 vA3
3 · · · vAk+1

k+1

∂kf

∂uA1∂uAk+1 · · ·∂uA3∂uA2
].

Now one must permute the order of the partials but one finds that

∂kf

∂uA1∂uAk+1 · · ·∂uA3∂uA2
= ε[

∂kf

∂uAk+1 · · ·∂uA3∂uA2∂uA1
].

The two signs cancel to give the desired result

dk+1
x fB(v1, v2, · · · , vk+1) = vA1

1 vA2
2 · · · vAk+1

k+1

∂k+1f

∂uAk+1 · · ·∂uA2∂uA1
(x).

This finishes the first part of the proof.

To complete the proof we must show that for each positive integer k,

dkxf
B(

∂

∂uA1
,

∂

∂uA2
, · · · ∂

∂uAk
) =

∂kf

∂uA1∂uA2 · · ·∂uAk
(x).

This proof also proceeds by induction. The result is obvious when k = 1, since
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dxf
B( ∂

∂uA ) = ∂fB

∂uA . Assume, inductively, that for some positive k,

dkxf
B(

∂

∂uA2
,

∂

∂uA3
, · · · ∂

∂uAk+1
) =

∂kf

∂uA2∂uA3 · · ·∂uAk+1
(x).

By the definition of dk+1
x fB we have

dk+1
x fB(

∂

∂uA1
,

∂

∂uA2
, · · · ∂

∂uAk+1
) = dx[d

kfB(
∂

∂uA2
,

∂

∂uA3
, · · · , ∂

∂uAk+1
))(

∂

∂uA1
)]

= dx(
∂kf

∂uA2∂uA3 · · ·∂uAk+1
)(

∂

∂uA1
) =

∂k+1f

∂uA1∂uA2 · · ·∂uAk+1
(x)

and the result follows. From these two results, we have that for for all k and for

v1, v2, · · · vk ∈ g0

dkxf
B(v1, v2, · · · , vk) = vA1

1 vA2
2 · · · vAk

k

∂kf

∂uAk · · ·∂uA2∂uA1
(x)

= (vA1
1 vA2

2 · · · vAk+1

k )dkxf
B(

∂

∂uAk
, · · · , ∂

∂uA2
,

∂

∂uA1
).

Thus dkxf
B is k-multi-linear and consequently if f is of class G∞, then all the derivatives

of the components of f are multi-linear over g0.

Conversely, assume that all the derivatives of the components of f are multi-linear

over g0. We show that f is of class G∞. In fact the result is an immediate consequence

of Theorem 6.6.3 since we have that

dkxf
B(v1, v2, · · · , vk) = (vA1

1 vA2
2 · · · vAk

k )dkxf
B(

∂

∂uAk
, · · · , ∂

∂uA2
,

∂

∂uA1
)

= vA1
1 vA2

2 · · · vAk

k

∂kf

∂uAk · · ·∂uA2∂uA1
(x)
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and the hypothesis of Theorem 6.6.3 holds with bJA1A2···Ak
= ∂kf

∂uAk ···∂uA2∂uA1
. The propo-

sition follows.

There is an easier alternate proof of the converse.

Proof. Let f : g0 → v0 be a C∞ function where g0 and v0 are supervector spaces which

clearly have natural supermanifold structures. Suppose that for each x ∈ g0 and each

positive integer k, dkxf
B : gk → Λ is multi-linear over g0 for each component function

fB of f. Then in particular the assumption holds for k = 1; thus dxf
B : g → Λ is multi-

linear over g0 for each component fB of f.. But, this means that (recall Observation

3.8.4)

dxf
B(vAeA) = vAdxf

B(eA)

for each B with respect to a pure basis {eA} of g. Note then dfB(cV ) = cdfB(V )

thus dfB is Λ-linear and thus fB is G1. We also know that fB is smooth hence

fB is supersmooth. Since this holds for each B and there is only one coordinate

representative we find that f is supersmooth by Theorem 6.6.5.

The second converse proof suggests we can refine the proposition as follows:

Proposition 6.7.4. Let g and v denote Banach super vector spaces and f : g0 → v0 a

C∞ function. Then f is of class G∞ iff for each x ∈ g0, dxf
B : g → Λ is 0Λ-linear for

each component fB of f .

6.8 Submanifolds of Supermanifolds

We find in this section that supermanifolds share many of the same submanifold con-

structions as in traditional finite dimensional manifold theory. The essential technical
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difficulty is to verify supersmoothness of the newly constructed sub supermanifolds or

immersed sub supermanifolds, but this does not present too much difficulty thanks to

the fact that supermanifolds are also Banach manifolds.

Definition 6.8.1. Let M be a (p|q) supermanifold and S ⊆ M. A chart of (U, ψ) of

M is called an (r|s)-submanifold chart of M relative to S iff

ψ(U ∩ S) = ψ(U) ∩ (Kr|s × {(0, 0)})

where (0, 0) ∈ K(p−r|q−s). We say that S is a (r|s) submanifold of M iff for each x ∈ S

there exists a (r|s)-submanifold chart (U, ψ) of M relative to S such that x ∈ U . There

is a subtle point to be made here and that is that the definition depends on a specific

splitting Kp|q = Kr|s × K(p−r|q−s). In general many such splittings are possible. In our

definition we choose one specific splitting and all submanifold charts are required to

respect this particular splitting.

Remark 6.8.2. If S is a (r|s)-submanifold of M let AS denote the set of all pairs

(U ∩S, ψS) such that there exists an (r|s)-submanifold chart (ψ, U) of M relative to S

such that S∩U 6= ∅ and ψS : U ∩S → K
r|s is defined in terms of ψ by requiring that ψS

be the restriction of ψ to U ∩S composed with the obvious projection of Kr|s×{(0, 0)}

to Kr|s which discards the {(0, 0)} ∈ K(p−r|q−s). It is obvious and well-known that if

(U, ψ) and (V, φ) are such charts with U ∩ V ∩ S 6= ∅ then

φS ◦ ψ−1
S : ψS(U ∩ V ∩ S) → ψS(U ∩ V ∩ S)

is a C∞ mapping. Thus S inherits a C∞-manifold structure from BM which we denote
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by BS when we wish to emphasize that it is a Banach manifold. Moreover φS ◦ ψ−1
S is

essentially the restriction of φ◦ψ−1 : ψ(U∩V ) → φ(U∩V ) to ψ(U∩V )∩(Kr|s×{(0, 0)})

which maps this set to φ(U ∩ V ) ∩ (Kr|s × {(0, 0)}) and consequently it is easy to see

that φS ◦ ψ−1
S is a G∞- mapping. Indeed the inclusion mapping

i : K
r|s →֒ K

r|s × {(0, 0)} →֒ K
p|q

is a G∞-mapping as is also its restriction iQ to the open set Q = ψS(U ∩V ∩S) ⊆ Kr|s.

For 1 ≤ i ≤ r and 1 ≤ α ≤ s

φS
i ◦ ψ−1

S = φi ◦ ψ−1 ◦ iQ and φS
r+α ◦ ψ−1

S = φr+α ◦ ψ−1 ◦ iQ.

Consequently the components of φS ◦ ψ−1
S are G∞ maps and thus so is φS ◦ ψ−1

S . This

proves the next proposition.

Proposition 6.8.3. If S is a (r|s)-submanifold of a (p|q)-supermanifold M then S is

a (r|s)-supermanifold.

Corollary 6.8.4. If S is a (r|s)-submanifold of a (p|q)-supermanifold M then the

inclusion i : S →֒ M is a G∞-mapping.

Proof. Let (U, ψ) be a (r|s) submanifold chart of M relative to S. We must show that

ψ ◦ i ◦ψ−1
S is a G∞-mapping. But ψ−1

S = ψ−1 ◦ iQ where Q = ψS(U ∩S) ⊆ Kr|s and iQ

is the inclusion Q →֒ Q× {(0, 0)} →֒ K
p|q. Thus ψ ◦ i ◦ ψ−1

S = ψ ◦ ψ−1 ◦ iQ = iQ which

is a G∞-mapping.

Definition 6.8.5. Let M be a supermanifold of dimension (p|q) with S ⊆ M. A chart
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(U, ψ) ∈ AM is called an initial submanifold chart relative to S centered at x ∈ U iff

ψ(Cx(U ∩ S)) = ψ(U) ∩ (Kr|s × {(0, 0)}) (6.17)

relative to a specific splitting

K
p|q = K

r|s × K
(p−r|q−s) (6.18)

and Cx(U ∩ S) denotes the set of all y ∈ U ∩ S such that there is a smooth curve in

M from x to y lying in U ∩ S. We say S is an initial super submanifold of M of

dimension (r|s) iff for each x ∈ S there exists an initial submanifold chart relative to

S centered at x whose image is contained in Kr|s ⊆ Kp|q. See [73] for details regarding

initial submanifolds of an ordinary manifold.

The author is grateful to Ratiu for the last reference and for clarifying the status of

these concepts for Banach manifolds.

Theorem 6.8.6. Let M be a supermanifold and S ⊆ M an initial super submanifold

of M of dimension (r|s). Then there exists a unique C∞-manifold structure on S such

that the injection i : BS →֒ BM is an injective immersion. Moreover, S is in fact a

supermanifold and i is a G∞-mapping.

Proof. Given that S is an initial super submanifold of M it is clear that as a subset

of BM, BS is an initial submanifold of BM. It is known that an initial submanifold

of a Banach manifold, such as BM, possesses a unique C∞-structure relative to which

i : BS →֒ BM is smooth. Thus given an atlas AM of M and ABM = AM we have
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that the set of pairs

(Cx(U ∩ S), ψ|Cx(U ∩ S))

such that x ∈ U, (U, ψ) ∈ AM, and U ∩ S is nonempty is an atlas of S. Moreover S is

a Banach manifold relative to this atlas and i : S →֒ BM is smooth. To see that it

is a supermanifold we must show that for two overlapping charts (U, ψ), (V, φ) in AM
which are used to define charts on S we have that

φ̄ ◦ ψ̄−1 : ψ̄(Ūx ∩ V̄x) → φ̄(Ūx ∩ V̄x) (6.19)

is of class G∞ where Ūx = Cx(U ∩ S), V̄x = Cx(V ∩ S) and ψ̄ = ψ|Ūx, φ̄ = φ|V̄x. Let

φJ denote the J-th component of φ and observe that for u ∈ ψ(U ∩ V )

dku(φ
J ◦ ψ−1)(V1, V2, . . . , Vk) =

p+q∑

A1..Ak=1

V A1
1 V A2

2 · · ·V Ak

k

(
∂k(φJ ◦ ψ−1)

∂zAk · · ·∂zA2∂zA1

)
(u).

(6.20)

for V1, V2, . . . , Vk ∈ Kp|q. Eq.(6.20) holds by the definition of supermanifold which

implies that the transition maps φJ ◦ψ−1 are G∞. If we restrict to u ∈ ψ(Ūx ∩ V̄x) and

V1, V2, . . . , Vk ∈ Kr|s where we identify Kr|s with Kr|s × {(0, 0)} ⊆ Kp|q, then

dku(φ̄
J ◦ ψ̄−1)(V1, V2, . . . , Vk) = dku(φ

J ◦ ψ−1)(V1, V2, . . . , Vk) (6.21)

Thus,

dku(φ̄
J ◦ ψ̄−1)(V1, V2, . . . , Vk) =

p+q∑

A1..Ak=1

V A1
1 V A2

2 · · ·V Ak

k

(
∂k(φJ ◦ ψ−1)

∂zAk · · ·∂zA2∂zA1

)
(u).

(6.22)
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Therefore, φ̄J ◦ ψ̄−1 is G∞ on ψ(Ūx ∩ V̄x) by Theorem 6.6.3. We simply take f = ψ̄−1

and N = Kp|q which is of course a trivial supermanifold.

To see that i : S →֒ M is G∞ note that, using the same notation as above, ψ◦i◦ψ̄−1

is the inclusion of ψ̄(Ūx) into ψ(U). To be more explicit, it is the inclusion

ψ(U) ∩ (Kr|s × {(0, 0)}) →֒ ψ(U) ⊆ K
p|q

which is clearly class G∞ because the inclusion

K
r|s h→֒ K

p|q

is G∞ since its components hI are.

Corollary 6.8.7. Assume M is a supermanifold of dimension (p|q) and that S is a

leaf of a foliation of the Banach manifold BM such that, for each x ∈ TxS is a subspace

of TxM of dimension (r, s). Then S is an initial super submanifold of M of dimension

(r|s) and consequently S is a supermanifold whose inclusion of S into M is a G∞

mapping.

Proof. It is known that each leaf of a foliation of a Banach manifold BM is an initial

submanifold of BM and consequently if S is such a leaf then it follows from the theorem

that S is an initial super submanifold of M. The corollary follows.

Proposition 6.8.8. Assume that M,N are supermanifolds, that P is a supermanifold

of dimension (r|s), that ψ : M → N is a G∞ mapping, and that i : P → N is a class

G∞ injective immersion onto an initial submanifold i(P) of N of dimension (r|s). If

ψxo : M → P is the unique mapping such that i ◦ ψxo = ψ, then it is of class G∞.
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Proof. First assume that i(P) is an initial submanifold of N of dimension (r|s) and that

the inclusion i : P → N is a class G∞ injective immersion. Notice that BP is an initial

submanifold of the Banach manifold BN and that ψ : BM → BN is a C∞ mapping.

It is known [73] that for Banach manifolds the unique mapping ψo : BM → BP such

that i ◦ ψo = ψ is necessarily continuous and is in fact of class C∞.

To finish the proof, it suffices to show that each point p ∈ P is in the domain U of a

chart (U, y) of P such that y ◦ψo|ψ−1
o (U) is of class G∞ (observe that ψ−1

o (U) is open in

M). Let p ∈ P and let (V, x) be a chart of N at i(p). There exists j1 < j2 < · · · < jt

such that xj1 ◦ i, xj2 ◦ i, . . . , xjt ◦ i are components of a chart on a neighborhood Up of

U = i−1(V ) ⊆ P. If y = (xj1 ◦ i, xj2 ◦ i, . . . , xjt ◦ i) then for q ∈ ψ−1
o (Up), 1 ≤ k ≤ t,

(yk ◦ ψo)(q) = (xjk ◦ i ◦ ψo)(q) = (xjk ◦ ψ)(q)

and yk ◦ ψo = xjk ◦ ψ which is a class G∞ mapping. Since y ◦ ψo is of class G∞, it

follows that ψo is a class G∞ mapping.
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Super Lie Groups

7.1 Introduction

Although mathematicians and physicists have been developing the theory of super Lie

groups for over a quarter of a century, there remains a gap in one of the formulations

of this theory. The gap which we perceive to exist has to do with the treatment of

super Lie groups due to Rogers [100]. She, in fact, has laid out the basic theory of

supermanifolds based on a space Λ of supernumbers which is in fact a Banach algebra

generated by either a finite or a countably infinite number of Grassmann generators.

Her supermanifolds are locally modeled on Banach spaces Kp|q = (Λ0)p × (Λ1)q where

either Λ = ΛN has N generators or Λ = Λ∞ has an infinite number of such generators.

In her paper on super Lie groups [100] she derives basic theorems about super Lie

groups, but the deeper results are obtained only when Λ = ΛN . In this case it turns

out that, with considerable effort, one can reduce the deeper theorems to correspond-

ing theorems for ordinary finite dimensional Lie groups. It is asserted that it would
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be interesting to develop these ideas in case Λ = Λ∞ and that there are explicit areas

of quantum field theory where such results would be useful. This same conclusion is

asserted in the book by Freund [43].

It is our purpose to fill this gap in the Rogers approach to super Lie groups. In-

finitely generated Grassmann algebras are both more and less complicated than in the

finitely generated case. Since there is no generator of maximal order, there are no

ambiguities in the top dimension. In the finitely generated case, the highest order

derivatives of a function are not unique; this ambiguity sporadically surfaces and can

be a source of difficulty which continually requires consideration. On the other hand,

in the infinitely generated case, we are not able to appeal to corresponding theory of

finite dimensional Lie groups. We are able to utilize the theory of Banach Lie groups

at various points of our development, but even when we are able to do so, we often

must develop the machinery needed to assure that we remain in the “supersmooth

category”. It came to our attention after the completion of this work that many of

our results have been obtained in the superanalytic category [25], [94], but these results

have little impact on our work here. Our notation throughout the thesis is an amalgam

of that of Rogers [98] and Buchbinder and Kuzenko [29].

We determine when a sub-super Lie algebra h of the super Lie algebra L(G) of

a super Lie group G is in fact the super Lie algebra of a sub-super Lie group of G.

We also find conditions under which the even part of an abstract Banach super Lie

algebra is the even part of the super Lie algebra of some super Lie group G. Given a

super Lie algebra g we show that there exists a super Lie group whose G∞ structure is
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determined by the even part of g. Moreover, the super Lie structure on g is recovered

from the super Lie group G. Along the way we also show that if H is a closed sub-super

Lie group of a super Lie group G, then G → G/H is a principal fiber bundle. We

emphasize that all of this work assumes an infinite number of Grassmann generators

of our space of supernumbers.

Finally, in the last section of the chapter, we show how to apply our results to those

types of super Lie groups prevalent in the physics literature. In that context super Lie

groups often arise by beginning with a super Lie algebra which is used to construct

a super Lie group using the exponential mapping and the Baker-Campbell-Hausdorff

formula. This is an effective procedure but does not address the issue of finding a

super smooth atlas for the group. In particular, one also has no way of determining

the topology of the super Lie group. Our theory settles these issues when the underlying

module structures utilize infinitely generated supernumbers as scalars; we emphasize

that the finitely generated case was dealt with by Rogers [100]. In this last section we

show how our results relate to procedures utilized in the physics literature especially

for super Lie groups and super Lie algebras of matrices with supernumbers as entries.

Additionally, we show that for every graded Lie algebra g over C, there exists a super

Lie group G whose super Lie algebra is the Grassmann shell ĝLie of the Lie algebra g.

The author is grateful to T. Ratiu who provided him with information and references

regarding the theory of Banach Lie groups. He is, of course, in no way responsible for

any misunderstanding or misuse of these ideas in this dissertation.
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7.2 Left Invariant Vector Fields as a Banach Lie

Algebra

Definition 7.2.1. A supermanifold G which is also an abstract group is called a super

Lie group if the group operations are G∞ with respect to the supermanifold structure

on G.

When the supermanifold G is given the Banach manifold structure implicit in its defi-

nition the resulting Banach manifold is denoted by BG.

Definition 7.2.2. A Banach manifold B which is also an abstract group is called a

Banach Lie group if the group operations are C∞ with respect to the manifold structure

on B.

Remark 7.2.3. Since G∞ functions are always class C∞ functions, it follows that the

Banach manifold BG corresponding to a super Lie group G is necessarily a Banach Lie

group.

Left invariant vector fields are defined just as in the classical case,

Definition 7.2.4. Let G be a super Lie group with left translation map lx(g) = xg.

Then a vector field X on G is said to be left invariant if for g, x ∈ G

X(gx) = dxlg(X(x)).

For each v ∈ TeG the vector field Xv defined by

Xv(x) = delx(v)
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for all x ∈ G is left invariant and for every left invariant vector field X there exists a

v ∈ TeG such that X = Xv. We denote the set of all left invariant vector fields on G by

L(G). Moreover L(G)0 denotes the set of even left invariant vector fields while L(G)1

denotes those which are odd.

The first assertion of the following theorem is Theorem 3.4 in [100].

Theorem 7.2.5. Let G be an (p|q)-dimensional super Lie group, then L(G) is an (p|q)-

dimensional graded Lie left Λ module subject to the bracket operation [ , ] : L(G) ×

L(G) → L(G) defined by

[X, Y ] = XY − (−1)ǫ(X)ǫ(Y )Y X

for all X, Y ∈ L(G). Moreover, there is a norm || · || on L(G) such that it is a Banach

space and

(1) L(G)0 and L(G)1 are closed subspaces of L(G),

(2) L(G) is a Banach super Lie algebra in the sense that there exists M > 0 such

that ||[X, Y ]|| ≤ M ||X|| ||Y || for all X, Y ∈ L(G),

(3) the Banach Lie algebra of the Banach Lie group BG is L(G)0.

Proof. The first assertion is proved in [100]. To obtain a norm on L(G) we first define

a norm on g = TeG. Choose a chart ψ = (u1, u2, · · · , up+q) at the identity e of G. For

X ∈ TeG, let

Xψ = (X1
ψ, X

2
ψ, · · · , Xp+q

ψ ) ∈ Λp+q

where X =
∑

AX
A
ψ eA and the basis {eA} of g = TeG is that defined by eA =

∂
∂uA . Now define ||X|| = ||(X1

ψ, X
2
ψ, · · · , Xp+q

ψ )|| =
∑

A ||XA
ψ || which is the norm of

190



Chapter 7. Super Lie Groups

(X1
ψ, X

2
ψ, · · · , Xp+q

ψ ) in Λp+q. Clearly, g is a Banach space with respect to this norm. It

is equally clear that g0 = L(G)0 and g1 = L(G)1 are closed subspaces of g.

We show that the norm satisfies condition (2) of the Theorem. In this part of

the proof we abandon the notation used in the first paragraph choosing to represent

elements of g as the value Xe of some left invariant vector field X ∈ L(G). Using this

notation we define a norm on L(G) by ||X|| = ||Xe|| where ||Xe|| is the norm of Xe as

defined in the first paragraph. Let (ẽA)x = delx(eA), x ∈ G, denote the left invariant

vector field defined by an element eA of the basis of g. For Z ∈ L(G) note that, because

delx is even for x ∈ G, Zx = delx(Ze) =
∑

A delx(Z
AeA) =

∑
A ZA(ẽA)x, for ZA ∈ Λ.

Define structure constants fCAB ∈ Λ by [ẽA, ẽB] =
∑

C f
C
AB ẽC and let M > 0 be a

number such that ||fCAB|| ≤M for all A,B,C. We have for appropriate ǫ(A,B) ∈ Z2,

||[X, Y ]|| = ||
∑

A

∑

B

(−1)ǫ(A,B)XAY B[ẽA, ẽB]|| ≤
∑

A,B,C

||XA||||Y B||||fCABẽC ||

≤M(p + q)
∑

A

||XA||
∑

B

||Y B|| = M(p + q)||X||||Y ||

and (2) follows. Part (3) follows from the fact that as Banach spaces L(G)0 is isometric

and isomorphic to g0 = T 0
e G which can be identified with the tangent space to BG.

Remark 7.2.6. Notice that the norm defined on L(G) above depends on the chart

chosen at the identity e and that, relative to this norm, L(G) is isometric to the Banach

space Kp|q ⊕ Kp̄|q̄. Another chart produces a different norm on L(G) but also provides

an isometry from L(G) onto Kp|q ⊕Kp̄|q̄. It follows that L(G) relative to the first norm

is isometric to L(G) with the second norm, but the two spaces are not identical. Thus

the topology on L(G) is chart independent and so a subspace of L(G) is closed relative
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to one norm iff it is relative to the other. This becomes important in our next theorem.

We refer to a norm which is defined by some chart at the identity as an admissible

norm.

Definition 7.2.7. Assume that g is a super Lie algebra of graded dimension (p, q). We

say that it is a Banach super Lie algebra if there is a norm on g such that

1. g is a Banach space relative to the norm such that both g0 and g1 are closed

subspaces of g, and

2. there exists a number M > 0 such that ||[X, Y ]|| ≤M ||X||||Y || for all X, Y ∈ g.

7.3 Inducing Sub Super Lie Groups from Sub Su-

per Lie Algebras

We prepare to determine when a sub-super Lie algebra of L(G) is L(H) for some super

Lie group H. If h is a sub-super Lie algebra of L(G), then we say that it is closed and

split in L(G) iff it is closed with respect to some admissible norm on L(G) and there

is a closed complementary subspace m of h in L(G). More precisely, we require that

L(G) = h ⊕ m as graded normed linear spaces. Notice that if h is closed and split in

L(G) such that L(G) = h⊕m then since L(G)0 = h0 ⊕m0 we see that h0 is closed and

split in L(G)0.

Definition 7.3.1. Suppose M,N are supermanifolds and that φ is a G∞ mapping

from M into N . If X is a vector field on M and Y is a vector field on N , then we

say X is φ-related to Y if and only if dxφ(Xx) = Yφ(x) for each x ∈ M.
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Remark 7.3.2. For ordinary manifolds, M,N it is well-known that if X1, X2 are

vector fields on M and Y1, Y2 are vector fields on N such that Xi is φ-related to Yi for

i = 1, 2, then [X1, X2] is φ-related to [Y1, Y2]. This also holds in the present case for

supermanifolds M,N when φ is a G∞ mapping. The proof is identical to the classical

proof and is left to the reader. This fact is needed in the proof of the next theorem.

Theorem 7.3.3. Let G denote a type (p|q) dimensional super Lie group and g = L(G)

its super Lie algebra of left invariant vector fields. Let h ⊆ g be a (r, s) dimensional

sub-super Lie algebra of g which is closed and split in L(G). Then there is a type (r|s)

super Lie group H which is a subgroup of G such that L(H) = h and the inclusion

i : H → G is a G∞ injective immersion.

Proof. Let G be a super Lie group of type (p|q) and g its Banach super Lie algebra of

left invariant vector fields. Let h ⊆ g be a sub-super Lie algebra of type (r, s) which

is closed and split. Then h0 ⊆ g0 is a closed and split sub-Lie algebra of the Banach

Lie algebra g0. Moreover g0 is the Lie algebra of the Banach Lie group BG. Since h0

is closed and split in g0 it is known (see [80]) that there is a Banach Lie subgroup H

of BG with Lie algebra h0.

Moreover H can be obtained as the maximal integral submanifold through the

identity of BG of the subbundle E → BG of the tangent bundle TBG → BG defined

by Ex = delx(h
0
e) for each x ∈ BG where he = {Xe|X ∈ h} and ge = {Xe|X ∈ g}.

Here h0
e is identified as a closed split subspace of g0

e which is identified with TeBG. It

is known that a leaf of a foliation is an initial submanifold (see the book by Kolar,

Michor, and Slovak [73]). Moreover it is known that the inclusion i : H →֒ BG is a
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smooth injective immersion. It follows from Corollary 6.8.7 that H can be given a

supermanifold structure and if we call H with this structure H, then the corollary also

assures that the inclusion i : H →֒ G is a G∞ mapping. Note that Ex has dimension

(r|s) for each x ∈ G, and Ee = h0
e. So TeH = h0

e and charts take their values in the

appropriate subspace Kr|s of Kp|q. Since the charts of H take their values in Kr|s, H

has dimension (r|s).

Let µ : G ×G → G denote the group multiplication on G. It follows that µ ◦ (i× i) :

H×H → G is a G∞ mapping. Since H is an initial submanifold of G and µ(H×H) ⊆ H

it follows from Proposition 6.8.4 that the mapping µH : H × H → H such that

i ◦ µH = µ ◦ (i × i) is a class G∞ mapping. A similar application of Proposition

6.8.4 shows that invH(x) = x−1 is also a class G∞ mapping. Thus H is a super Lie

group and i : H → G is a G∞-immersion.

Finally, since H is a super Lie group, lx : H → H is a G∞-mapping for each x ∈ H

and dylx maps TyH into TxyH for all x, y ∈ H. In particular dylx also maps T 0
yH into

T 0
xyH so that for each x ∈ H, delx(T 0

eH) = T 0
xH and h0

e = TeBH = T 0
eH. Thus T 0

eH

may be identified with h0. It is perhaps, not as obvious that T 1
eH can be identified

with h1.

We show that h is isomorphic to L(H) as super Lie algebras in a succession of steps.

To do this first observe that L(G) can be identified with TeG by identifying v ∈ TeG

with Xv
G ∈ L(G) where Xv

G(x) = delx(v) for all x ∈ G. Notice that since h is a sub-super

Lie algebra of L(G), h is identified with he ≡ {Xe|X ∈ h ⊆ L(G)} ( notice the change

in notation, he here and below is a subset of L(G) not L(H)). Both he and TeG are
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given a super Lie algebra structure by defining [v, w]G for v, w ∈ TeG via

X
[v,w]G
G = [Xv

G, X
w
G ]. (7.1)

Thus h ∼= he which is a sub-super Lie algebra of TeG.

We now show that TeH can also be identified as a sub-super Lie algebra of TeG to

be followed later by a proof that he = TeH. To do this recall that ι : H → G is an

immersed initial submanifold of G and consequently that deι : TeH → TeG is a right

Λ-linear injection of TeH into TeG. For v ∈ TeH let Xv
H denote the left invariant vector

field on H defined by Xv
H(y) = dely(v), y ∈ TeH. For v, w ∈ TeH define [v, w]H by

X
[v,w]H
H = [Xv

H, X
w
H].

Notice that for every v ∈ TeH, the vector field Xv
H is ι-related to X

deι(v)
G . It follows

from Remark 7.3.2 that for v, w ∈ TeH,

X
[v,w]H
H = [Xv

H, X
w
H] and X

[deι(v),deι(w)]G
G = [X

deι(v)
G , X

deι(w)
G ]

are ι-related. Consequently deι[v, w]H = [deι(v), deι(w)]G, and (TeH, [, ]H) may be iden-

tified as a sub-super Lie algebra of (TeG, [, ]G).

It remains only to show that he and TeH are equal as subsets of TeG. To see this

notice that a pure basis of he can be extended to a pure basis of TeG. It follows that

there exists a pure basis {eA|1 ≤ A ≤ p + q} of TeG such that {eA|A ∈ A},A =

{1, 2, · · · , r, p+ 1, p+ 2, · · · , p+ s} is a pure basis of he. Choose a chart ψ : U → T 0
e G

of G at e ∈ U. Then ψ ◦ ι : ι−1(U) → h0
e is a chart of H at e ∈ ι−1(U). If we
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define coordinate functions (uA) of ψ by ψ(x) =
∑p+q

A=1 u
A(x)eA, x ∈ U, then we have

coordinate functions defined on H by (ψ ◦ ι)(y) =
∑

A∈A u
A(ι(y))eA, y ∈ ι−1(U). Thus

{ ∂
∂uA |A ∈ A} in TeH is identified with {eA|A ∈ A} in he and

TeH = {
∑

A∈A
λAeA |λA ∈ Λ} = he. (7.2)

Consequently, we have that as super Lie algebras

h = he = TeH = L(H), (7.3)

from which the theorem follows.

Definition 7.3.4. Let G be a super Lie group and g its tangent module TeG at the

identity e of G. For each v ∈ g0 we define a left invariant vector field Xv on BG by

Xv(x) = delx(v) ∈ T 0
xG = TxBG

for x ∈ BG. Let φv : R×BG → BG denote the flow of the vector field Xv on BG. Thus

d

dt
φv(t, x) = Xv(φv(t, x)) where φv(0, x) = x. (7.4)

Definition 7.3.5. exp is the mapping from g0 into BG defined by exp(v) ≡ φv(1, e).

Note that exp is C∞ mapping which is also a local diffeomorphism. Also, we can regard

exp as a mapping from g0 into G since as sets BG = G. In fact it can be shown that

exp : g0 → G is a G∞-mapping. We now establish several lemmas towards that goal.
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We fix the notation from this point up through the proof of Theorem 4.15.

Let G denote an arbitrary super Lie group and g its tangent module TeG at

the identity. Even vectors are denoted g0. We have a fixed pure basis {ea}

of g which can be taken to be the partials relative to a chart at e.

Definition 7.3.6. The adjoint mapping defined on g is the mapping ad : g → End(g)

where, for x, y ∈ g,

ad(x)(y) = adx(y) = [x, y]

Observe that adαx = αadx for all α ∈ Λ; the adjoint ad on g is right-Λ-linear, thus

ad ∈ L−(g, End(g)). However, for a particular x ∈ g, we note that adx(yα) = adx(y)α

for all α ∈ Λ, thus adx ∈ End+(g).

Lemma 7.3.7. Let (End+g)0 denote the linear space of all even left endomorphisms

of g. Once for all, identity these linear mappings with their matrices relative to our

fixed basis of g. For each matrix M (representing such a linear mapping), define,

|| M || =

p∑

i=1

q∑

j=1

|| Mij ||.

Let R > 0 and assume that {ak}∞k=0 are numbers in K such that
∑∞

k=0 |ak| ||M ||k

converges for all M ∈ (End+g)0 such that ||M || ≤ R. Let BR(0) be the open ball at

zero in (End+g)0, then f : BR(0) → (End+g)0 defined by f(M) =
∑∞

k=0 akM
k is of

class G∞.

Remark 7.3.8. Having chosen a basis {ei, ẽα} of g the even endomorphisms of g are
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identified with matrices with a (p,q) block-form,

M ∈ (End+g)0 =⇒ M =



A B

C D


 (7.5)

where Amn, Dα,β ∈ 0Λ and Bmβ , Cα,n ∈ 1Λ. Notice that as a module over 0Λ, (End+g)0

may be identified with K(p2+q2|2pq).

We now prove the lemma.

Proof. Note that for ||M || < R,

f(M +H) = f(M) +
∞∑

k=1

ak

k∑

i=0

(Mk−i−1HM i) +O(H2).

Thus,

dMf(H) =

∞∑

k=1

ak

k∑

i=0

(Mk−i−1HM i).

The components of this matrix are

dMfbc(H) =

∞∑

k=1

ak

k∑

i=0

∑

m,n

(Mk−i−1)bm(H)mn(M
i)nc =

∑

m,n

HmnΛ
mn
bc (M) (7.6)

where, for some ǫbmn ∈ Z2

Λmn
bc (M) =

∞∑

k=1

ak

k∑

i=0

(−1)ǫbmn(Mk−i−1)bm(M i)nc.

Thus ∂fbc

∂zmn
exists and is equal to Λmn

bc ; moreover the components fbc of f are of class

G1 on BR(0). Thus f is of class G1 on BR(0). By construction f is analytic on BR(0)

198



Chapter 7. Super Lie Groups

hence it is C∞ on BR(0). So f is C∞ and G1 on BR(0) thus by Theorem 6.6.5 we

conclude that f is G∞ on BR(0).

Corollary 7.3.9. Let g be any super Lie algebra such as the one defined above and let

g0 be its even elements. Define a mapping f from g0 into (End+g)0 by

X
f7−→

∫ 1

0

e−s adXds.

Then f is of class G∞.

Proof. First note that if X ∈ g0 and adX(Y ) = [X, Y ] then since X is even and

ǫ([X, Y ]) = ǫ(X) + ǫ(Y ) = ǫ(Y ) we find that adX is an even left endomorphism of g.

The composite of even endomorphisms is even, thus the series

e−s adX =
∞∑

k=0

1

k!
(−s)k (adX)k

is an even left endomorphism of g. This series is absolutely and uniformly convergent

on every ball about zero relative to the matrix norm defined in the lemma. It follows

from the lemma that the mapping from (End+g)0 to itself defined by

M 7−→ e−s M

is a G∞ mapping.

To finish the proof we must show that ad : X → adX is a class G∞ mapping. The

mapping ad : g0 → (End+g)0 is linear over K as is clear from adX(Y ) = [X, Y ] and

the definition of the Lie bracket. Hence the best linear approximation to the adjoint

mapping is itself; dX(ad) = ad. Thus the mapping X 7→ dX(ad) is constant, its higher
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derivatives are zero. To see that ad is class G∞ we have only to show that it is of class

G1, so we must show that for X ∈ g0, H ∈ g0, dX(adca)(H) is linear in the components

of H where the adca : g0 → Λ are the component mappings of ad defined by representing

adX as a matrix .

Since adX is right linear its matrix is defined by adX(ea) = [X, ea] =
∑
Xb[eb, ea] =

∑
Xbf cbaec so that adca(X) =

∑
Xbf cba. Now observe that dXad

c
a(H) = adca(H) =

∑
Hbf cba which is linear in the components of H. It follows from Proposition 6.7.3 that

ad is a class G∞ mapping, hence X 7→ e−s adX is the composite of G∞ maps and is

consequently G∞ for each s ∈ R. Finally integrate to obtain the desired result.

Notice that the proof that ad : g → End(g) is a class G∞ mapping is completely

analogous to this proof since it is also linear over K and possesses the required proper-

ties with respect to the module operations over Λ. Moreover the mapping ad regarded

as a mapping from g0 to (End+g0) is also a class G∞ mapping. Its components adca

are obtained as before even though the basis is not a basis of g0.

Theorem 7.3.10. exp : g0 → G is a class G∞ mapping.

Proof. We need to compute the Frechet derivative of exp at X ∈ g0. Since BG is a

Banach Lie group we have the following formula for the Frechet derivative (see [40]),

dX(exp)(H) = delexp(X)

(∫ 1

0

e−s adX (H)ds

)
. (7.7)
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Define a function F : g0 → (End+g)0 by

F (X)(H) =

∫ 1

0

e−s adX (H)ds. (7.8)

It follows from Corollary 7.3.9 that F is a classG∞ mapping. Notice that dX(exp)(H) =

delexp(X)(F (X)(H)) even though, in this formula, not only is H restricted to g0, but it

is also the case that F (X)(H) ∈ g0. We have insisted, however, that F (X) be defined

on all of g since we need the identity F (X)(H) = H iF (X)(ei) + H α̃F (X)(eα̃) which

requires that F (X) be defined on odd elements of g. On the other hand this very

formula shows that the mapping from g0 to (End+g0)0 defined by X → F (X)|g0 is

also a class G∞ mapping. We will occasionally abuse notation by failing to distinguish

between the two mappings. Let µ : G × G → G be the class G∞ group multiplication

of the supergroup G. We have that,

dX(exp)(H) = delexp(X)

(
F (X)(H)

)

= de
[
µ(exp(X), ·)

]
(F (X)(H))

= (d2µ)(exp(X), e)(F (X)(H)).

(7.9)

Where d2µ denotes the Frechet derivative with respect to the second slot of µ. If

H =
∑p

i=1H
iei +

∑q

α=1 H̃
αẽα with respect to the pure basis {ei, ẽα} of g then

dX(exp)(H) = (d2µ)(exp(X), e)(F (X)(
∑p

i=1H
iei +

∑q

α=1 H̃
αẽα))

=
∑p

i=1H
i(d2µ)(exp(X), e)(F (X)(ei))

+
∑q

α=1 H̃
α(d2µ)(exp(X), e)(F (X)(ẽα))

=
∑p

i=1H
idX(exp)(ei) +

∑q
α=1 H̃

αdX(exp)(ẽα).
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To pull the “scalars” out of d2µ in the above we used the following observation. Since

µ : G × G → G is G∞ so is the mapping with one argument fixed, that is (µa)(x) ≡

µ(a, x) is G∞. Therefore deµa is a mapping from the full tangent module TeG = g into

TaG such that

(deµa)(H) =

p∑

i=1

H i(deµa)(ei) +

q∑

α=1

H̃α(deµa)(ẽα).

We have shown that dX(exp) is linear over the components H i, H̃α and hence that exp

is superdifferentiable at X for each X ∈ g0. It follows that exp is of class G1. It is

known from the theory of Banach Lie groups that exp is C∞ on BG = g0 hence by

Theorem 6.6.5 we find that exp is G∞ on g0.

Remark 7.3.11. The proof given here replaces a lengthy proof in our paper [37]. It is

easy to see the wisdom of [68] in elevating Theorem 6.6.5 to be the definition of G∞.

Theorem 7.3.12. Let G be a (p|q)-super Lie group and S a subgroup which is also an

initial (r|s)-submanifold of G. Then S is a (r|s)-super Lie group.

Proof. Let i : S →֒ G denote the inclusion mapping and µS , µG the group ”multiplica-

tions” on S and G respectively, then by Theorem 4.5 µG ◦ (i× i) is the composite of G∞

mappings and so is of class G∞. Since S is an initial submanifold, it follows from Propo-

sition 4.7 6.8.4 that the unique mapping µS : S×S → S such that i◦µS = µG ◦(i×i) is

of class G∞. A similar argument shows that invS is a class G∞ mapping. The theorem

follows.

Definition 7.3.13. If G is a (p|q) super Lie group and S ⊆ G is a subgroup which is

also a (r|s)-submanifold of G then we say S is a sub-super Lie group of G.
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Remark 7.3.14. If S is a closed sub-super Lie group of a super Lie group of G then

BS is a closed sub-Lie group of BG as Banach Lie groups. Moreover the coset space

BG/BS is known to be a Banach manifold and BG → BG/BS is a principal fiber bundle

with structure group BS.

Theorem 7.3.15. If G is a (p|q) super Lie group and S is a closed (r|s) sub-super

Lie group of G then G/S is a (p − r|q − s) supermanifold. Moreover G → G/S is a

G∞-mapping and is a principal fiber bundle with structure group the super Lie group

S. All local trivializing maps are G∞-maps.

Proof. One only needs to check that the mappings which define the bundle structure

of BG → BG/BS are in fact G∞-maps so there is little to prove. We sketch the main

features of the proof for the convenience of the reader but in fact the argument is

borrowed from Bröcker and Dieck [22]

First notice that since i : S →֒ G is G∞ the mapping dei : T 0
e S →֒ T 0

e G is injective.

Choose a pure basis {ei, ẽα} , 1 ≤ i ≤ r and 1 ≤ α ≤ s of TeS, and extend it to a pure

basis {ei, ẽα} , 1 ≤ i ≤ p and 1 ≤ α ≤ q of TeG. Thus,

T 0
e S ∼= K

r|s →֒ K
r|s × K

(p−r|q−s) ∼= T 0
e G

and one may factor T 0
e G = T 0

e S ×Me as Banach spaces where

v ∈ Me ⇐⇒ v =

p∑

j=r+1

vjej +

q∑

α=s+1

ṽαẽα

where vj, ṽα ∈ 0Λ. The Banach structure is given by the norm on T 0
e G which is defined
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by,

||
p∑

i=1

H iei +

q∑

α=1

H̃αẽα || =

p∑

i=1

|H i|Λ +

q∑

α=1

|H̃α|Λ

for H i ∈ 0Λ and H̃α ∈ 1Λ and | · |Λ is the norm on the Banach algebra of supernumbers

Λ. The definition for the norm on subspaces of T 0
e G is obvious.

Now define Mǫ
e = {X ∈ Me | ||X|| < ǫ} for ǫ > 0 and let Dǫ = exp(Me). Recall

that exp : T 0
e G → G is both a local C∞ diffeomorphism and a G∞-mapping. Consider

µ : Dǫ×S → G defined by µ(g, s) = gs in G. We claim that for ǫ small enough µ is an

embedding. To see this first note that (dµ)(e,e)|(T 0
eDǫ × {0}) and (dµ)(e,e)|({0} × T 0

e S)

are identity maps on T 0
eDǫ and T 0

e S respectively. So (dµ)(e,e)(v, w) = v + w and if

(dµ)(e,e)(v, w) = 0 then v = −w ∈ T 0
eDǫ ∩ T 0

e S = {0} and ker(dµ)(e,e) = {(0, 0)}. By

the inverse function theorem for Banach manifolds there exists an open set U about e

in S and ǫ > 0 small enough

so that µ : Dǫ ×U → DǫU is a C∞ diffeomorphism. It is also a G∞-mapping since the

group operation on G is a G∞-mapping and since the inclusions Dǫ × U →֒ Dǫ × S →֒

G × S →֒ G × G are all G∞-mappings. Note that for s ∈ S the right multiplication

map Rs : G → G defined by Rs(x) = xs is a G∞-mapping and so is

µ|(Dǫ × (Us)) = Rs ◦ [µ|(Dǫ × S)] ◦ [idDǫ × Rs−1 ].

Moreover µ|(Dǫ × (Us)) is a C∞ diffeomorphism from Dǫ × (Us) onto DǫUs for each

s ∈ S and µ|(Dǫ × S) is a local C∞-diffeomorphism and a G∞-mapping. We claim

that for small enough ǫ, µ|(Dǫ × S) is injective. Indeed if one chooses V ⊆ G open
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about e such that (V −1V ) ∩ S ⊆ U then for each ǫ′ < ǫ , ǫ′ > 0 such that Dǫ′ ⊆ V one

can show that µ|(Dǫ′ × S) is injective. Thus we have the existence of ǫ > 0 such that

µ : Dǫ × S → DǫS is an embedding.

We now show how to obtain a G∞ structure on the coset space G/S. Let η : G → G/S

denote the mapping which sends x ∈ G to the coset η(x) ∈ G/S. For g ∈ G let

Ug = gDǫS and notice that Ug = µ(Dǫ × S) is open in G. Since Ug is the union of

cosets η(Ug), it is open in the quotient topology on G/S. Let ψ−1
g denote the inverse

of a chart where ψ−1
g : Dǫ → η(Ug) is defined by

Dǫ −→ Dǫ × {e} → Dǫ × S µ−→ DǫS
lg−→ gDǫS = Ug

η−→ η(Ug).

For g, h ∈ G such that the relevant maps are well defined,

(ψh ◦ ψ−1
g )(x) = ψh(ψ

−1
g (x))

= ψh(η(lg(µ(x, e))))

= ψh(η(lh(lh−1lg)(µ(x, e))))

= ψh(η(lh(µ(h−1gx, e))))

= ψh(ψ
−1
h (h−1gx, e))

= lh−1g(x).

Thus ψh ◦ψ−1
g is a G∞-mapping and consequently {(η(Ug), ψg) | g ∈ G} is a G∞ struc-

ture on G/S.

We now produce a G∞ local trivialization of G as a bundle over G/S. For g ∈ G let
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φ−1
g : η(Ug)×S → Ug ⊆ G be the inverse of our proposed trivialization mapping where

φ−1
g is defined by

η(Ug) × S ψg×id−→ Dǫ × S µ−→ DǫS
lg−→ gDǫS = Ug

meaning,

(x, s) 7→ (ψg(x), s) 7→ µ(ψg(x), s) 7→ lg(µ(ψg(x), s)).

For appropriate g, h ∈ G

(φh ◦ φ−1
g )(x, s) = φh(lg(µ(ψg(x), s)))

= φh(lh((h
−1g)µ(ψg(x), s)))

= φh(lh((h
−1g)ψg(x)s))

= φh(lh((ψh ◦ ψ−1
g )(ψg(x)s)))

= φh(lh(ψh(x)s))

= φh(lh(µ(ψh(x), s)))

= φh(φ
−1
h (x, s))

= (x, s).

Thus two ”adjacent” local trivializing maps agree and one has a principal bundle

structure on G → G/S.

7.4 A Super Version of Lie’s Third Theorem

We have seen that a super Lie group induces a super Lie algebra of left invariant vector

fields. A natural question to ask is if we are given an abstract super Lie algebra can we
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find a super Lie group which induces an isomorphic copy of the give super Lie algebra

in its left invariant vector fields ? The answer to this question in the non-super case

is affirmative and the result is known as Lie’s Third Theorem. In the super case other

authors have addressed this question, but their proofs and assumptions differ from

those given in this section which is based on [37].

We begin with a few technical preliminaries concerning the supersmoothness of flows

of vector fields then in the second part of the section we state and prove Lie’s Third

Theorem for the G∞ category.

7.4.1 Technical Preliminaries

Our next result requires us to show that if one has a supersmooth (G∞) vector field

on the even part of a super Lie algebra and if this vector field depends supersmoothly

on a parameter then the solution depends supersmoothly on both the parameter and

the initial condition.

Consider then a Banach super Lie algebra g and a function F : g0 × g0 → g0 which we

interpret as a parametrized vector field on g0.What does it mean to say F is a G∞ func-

tion? We choose a basis of g and identify g0 with Kp|q via the obvious globally defined

chart. We actually choose two copies of the same chart but denote the components

of the first by (u1, u2, · · · , up+q) and its copy by (v1, v2, · · · , vp+q). So coordinates on

g0×g0 will be denoted by (u1, u2, · · · , up+q, v1, v2, · · · , vp+q) although strictly speaking

these should be reordered so that all even coordinates come first in the 2(p+ q)-tuple

and the odd coordinates last so that the chart has its values in K
2p|2q. Throughout this
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section, E will denote the Banach space g0 × g0 with the norm defined below. Thus

E is a G∞ manifold with a single global chart. Now F is a G∞ function iff all its

component functions are. In that which follows we will assume F is of class G∞ in

which case it is necessarily of class C∞ on the Banach space E.

If g denotes such a Banach super Lie algebra let E = g0 × g0 denote the Banach space

with norm defined by ||(X, Y )||E = max{||X||g0, ||Y ||g0} for (X, Y ) ∈ E. We write

Br(0) to denote {X ∈ g0| ||X||g0 < r} and BE
r (0) for {(X, Y ) ∈ E| ||(X, Y )|| < r}.

We also drop the subscripts on both || · ||E and || · ||g0 below since it should be obvious

from the context which norm is intended.

Lemma 7.4.1. Let F : g0 × g0 → g0 be a class G∞ mapping such that F (0, 0) = 0,

and such that for some positive number M and each positive number r, ||(d2F )u|| ≤

rMerM for all u ∈ BE
r (0). Then, for some r > 0, there exists a unique mapping

f : [0, 1] ×BE
r (0) → g0 such that

1. for each t ∈ [0, 1] the mapping from E into g0 defined by u → f(t, u) is a class

G∞ mapping and

2. df

dt
(t, X, Y ) = F (X, f(t, X, Y )) and f(0, X, Y ) = Y for all (X, Y ) ∈ BE

r (0).

Proof. First we show that there exists a C∞ mapping f which satisfies condition (2) of

the lemma. For this purpose consider the mapping F̃ : E → E defined by F̃ (X, Y ) =

(0, F (X, Y )). Then F̃ is a smooth vector field on E such that F̃ (0, 0) = 0 and by

Corollary 4.1.25 of [2] there exists r > 0 such that whenever u ∈ E and ||u|| < r there

exists an integral curve of F̃ through u which is defined on [−1, 1]. Since there exists

a flow box of F̃ at (0, 0) on E it follows that, for some r > 0, there exists a smooth
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function f̃ : [−1, 1] × BE
r (0) → E such that for (t, u) ∈ [−1, 1] × BE

r (0)

df̃

dt
(t, u) = F̃ (f̃(t, u)) f̃(0, u) = u.

Since, for u = (X, Y ) ∈ BE
r (0), F̃ (f̃(t, u)) = (0, F (f̃(t, u))) and df̃

dt
= (df̃1

dt
, df̃2
dt

) it

follows that df̃1
dt

= 0 and df̃2
dt

= F (f̃(t, u)) = F (X, df̃2
dt

(t, u)). Consequently, f ≡ f̃2 is a

smooth mapping from [0, 1] ×BE
r (0) into g0 such that

df

dt
(t, X, Y ) = F (X, f(t, X, Y )) and f(0, X, Y ) = Y

for all (X, Y ) ∈ BE
r (0).

We must now show that (1) of the lemma holds. To do this we require an explicit

formula which shows how the derivatives of the function (X, Y ) → f(t, X, Y ) depend

on X and Y for each fixed t ∈ [0, 1].

Let F denote the Banach space of all continuous maps g from I = [0, 1] into g0 equipped

with the sup-norm:

|| g || = lubt∈I |g(t)|.

It is our intent to show that the mapping h : BE
r (0) → F defined by h(u)(t) = f(t, u)

for u ∈ BE
r (0), t ∈ [0, 1] is of class G∞, that is, we will show that the mapping from

BE
r (0) to g0 defined by u → h(u)(t) is of class G∞ for each t ∈ [0, 1]. It will then

follow that the solution of our differential equation is a G∞ function of (X, Y ) where

X ∈ g0 is a parameter and Y is an initial condition of the differential equation. To
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avoid excessive language we simply say h is of class G∞ in this situation.

Notice that g× g is a Banach super vector space such that (g× g)0 = g0 × g0 = E and

(g × g)1 = g1 × g1. A function such as h : BE
r (0) → F is of class G∞ iff the function

ht : E → g0 defined by ht(w) = h(w)(t) is of class G∞ for each t and by Proposition

6.7.4 this is true iff it is of class C∞ and the derivatives dwh
B
t of the components hBt are

Λ-linear. Here dwh
B
t is a mapping from TwE = E into Λ. Since this is a condition on

the components hBt of ht we may write dwht = dwh
B
t eB and think of it as a g0-valued

function. Indeed, ht = hBt eB where {eB} is a basis of g (not g0) and so h1
t , h

2
t , · · ·hpt

are even functions while hp+1
t , hp+2

t , · · · , hp+qt are odd. Thus dwh
B
t maps into Λ0 for

1 ≤ B ≤ p and maps into Λ1 for p + 1 ≤ B ≤ p + q from which it follows that

dwht = dwh
B
t eB is g0-valued.

Define K : E × F → F by

K((X, Y ), g)(t) = Y +

∫ t

0

F (X, g(s))ds

for (X, Y ) ∈ E. Notice that K((X, Y ), g) = g iff

dg

dt
= F (X, g(t)) and g(0) = K((X, Y ), g)(0) = Y.

If f is the smooth solution of the vector field F obtained above and h : BE
r (0) → F is

defined by h(u)(t) = f(t, u) for t ∈ [0, 1], u ∈ BE
r (0), then h is smooth (since solutions

depend smoothly on parameters and initial conditions) and

K(u, h(u)) = h(u) ∀ u ∈ BE
r (0) ⊂ E
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Thus if H(u, f) ≡ f −K(u, f), then

H(u, h(u)) ≡ 0

and for λ→ uλ a curve through u in BE
r (0) and δ = d

dλ
(uλ)|λ=0 such that

H(uλ, h(uλ)) = 0

we have

(d1H)(u,h(u))(δ) + (d2H)(u,H(u))((dh)u(δ)) = 0.

If we can show that r > 0 can be chosen small enough so that (d2H)(u,h(u)) : F → F

has an inverse for all (u, h(u)), then it will follow that

(d2H)((dh)u(δ)) = −(d1H)(δ)

and that

(dh)u(δ) = −(d2H)−1
(u,h(u))((d1H)(u,h(u))(δ). (7.10)

This explicit formula for dh will enable us to show that h is of class G1 and hence by

Theorem 6.6.5 that it is of class G∞. In order to obtain the required r > 0 first notice

that d2H can be written in terms of d2K which, in turn, can be written in terms of

d2F. Indeed, if λ→ fλ is a curve in F through f ∈ F , then

(d2H)(u,f)

(
d
dλ

(fλ)|λ=0

)
= d

dλ
(H(u, fλ))|λ=0

= d
dλ

(fλ −K(u, fλ))|λ=0

= d
dλ

(fλ)|λ=0 − (d2K)(u,f)(
d
dλ

(fλ)|λ=0)
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and denoting δf ≡ d
dλ

(fλ)|λ=0, we have

(d2H)(u,f)(δf) = δf − (d2K)(u,f)(δf) (7.11)

It follows that (d2H)(u,f) = IF − (d2K)(u,f) as operators and so if the operator norm of

(d2K)(u,f) is smaller than 1, then (d2H)(u,f) will be invertible. But we also know that

K((X, Y ), fλ)(t) = Y +
∫ t

0
F (X, fλ(s))ds so that

(d2K)((X,Y ),f)(δf)(t) = d
dλ

(K((X, Y ), fλ)(t))

=
∫ t

0
d
dλ

(F (X, fλ(s))ds

=
∫ t

0
(d2F )(X,f(s))(δf(s))ds.

Note that,

||(d2K)(u,f)(δf )|| ≤
∫ 1

0

||(d2F )(X,f(s))|| ||δf(s)||ds ≤ rMerM ||δf ||

and ||(d2K)(u,f)|| ≤ rMerM < 1 for appropriately chosen r > 0. Now let wλ =

(Xλ, Yλ) ∈ BE
r (0) be a curve through w = (X, Y ) and δ = d

dλ
(wλ)|λ=0 = (δ1, δ2) ∈

E = g0 × g0, then

H(wλ, f)(t) = f(t) −K(wλ, f)(t) = f(t) − Yλ −
∫ t

0

F (Xλ, f(s))ds

and (d1H)(w,f)(δ)(t) = −δ2 −
∫ t

0
(d1F )(X,f(s))(δ1)ds. Let δ̂(t) = (d1H)(w,h(w))(δ)(t), then

δ̂(t) = −δB2
∂

∂vB
− δA1

∫ t

0

(d1F )(X,h(w)(s))(
∂

∂uB
)ds.
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It follows that eqn.[7.10] becomes (dh)w(δ) =

= −(d2H)−1((d1H)(w,h(w))(δ))

= (d2H)−1(δ̂)

= [IF − (d2K)(w,h(w))]
−1(δ̂) by eqn.[7.11]

= [IF + (d2K)(w,h(w)) + (d2K)(w,h(w)) ◦ (d2K)(w,h(w)) + · · · ](δ̂)

= δ̂ + (d2K)(w,h(w))(δ̂) + (d2K)(w,h(w))(d2K(w,h(w))(δ̂)) + · · ·+ (d2K)l(w,h(w))(δ̂) + · · ·
(7.12)

We now show that h is of class G1. For δ̂ as defined above,

(d2K)(w,h(w))(δ̂)(t) =
∫ t

0
(d2F )(w,h(w)(s))(−δB2 ∂

∂vB − δA1
∫ s

0
(d1F )(X,h(w)(r))(

∂
∂uB )dr)ds

= δB2 γ
v
B(w)(t) + δA1 γ

u
A(w)(t)

(7.13)

where

γuA(w)(t) = −
∫ t

0

(d2F )(w,h(w)(s))(

∫ s

0

(d1F )(X,h(r))(
∂

∂uB
)dr)ds (7.14)

and

γvB(w)(t) = −
∫ t

0

(d2F )(w,h(w)(s))(
∂

∂vB
)ds. (7.15)

Write (d2K)(w,h(w))(δ̂)(t) =
∑

C δ
CγC(w)(t) where the components δC include all the

components of both δ1 and δ2 and the γC include both types of indexed functions γuA

and γvB. We have

[(d2K)(w,h(w))]
l(δ̂) = [(d2K)(w,h(w))]

l−1(
∑

B δ
CγC(w))

=
∑

C δ
C [(d2K)(w,h(w))]

l−1(γC(w))

=
∑

C δ
C b̂lC(w)

(7.16)
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for some set of continuous functions b̂lC from BE
r (0) to F . It follows that if w ∈ BE

r (0)

and δ = (δ1, δ2) ∈ E = g0 × g0 then,

dwht(δ) = (dh)w(δ)(t) =
∑

C

δC
∞∑

l=0

b̂lvB(w)(t) (7.17)

and by Theorem 6.6.3, h is of class G1. Moreover since h is C∞ by construction, by

Theorem 6.6.5 it is G∞.

Corollary 7.4.2. Let F : g0 × g0 → g0 be defined by

F (X,Z) = X +
∞∑

k=1

Bk

k!
adkZ(X)

where B0, B1, B2, · · · are the Bernoulli numbers. Then there exists a positive number r

and a function W : [0, 1] × BE
r (0) → g0 such that

1. for each t ∈ [0, 1] the mapping from BE
r (0) into g0 defined by u → W (t, u) is a

class G∞ mapping and

2. dW
dt

(t, X, Y ) = F (X,W (t, X, Y )) and W (0, X, Y ) = Y for all (X, Y ) ∈ BE
r (0).

Proof. Given F as defined above, observe that it follows from Lemma 7.3.7 and the

second half of the proof of Corollary 7.3.9 that F is of class G∞ since

F (X,Z) =

∞∑

k=1

Fk(X,Z) (7.18)

where

Fk(X,Z) = adkZ(X) (7.19)
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is Λ-linear in X and is the diagonal of a Λ-multi-linear mapping in Z up to signs.

(Here (z1, z2, . . . , zk) 7→ [z1, [z2, [· · · , [zk, X], · · · ] is multi-linear up to signs in the zi over

Λ for each i = 1, 2, . . . k and adkZ(X) is the diagonal of this map in the z variables.)

Also, notice that for X,Z ∈ Br(0),

||(d2F )(X,Z)(H)|| ≤ ∑∞
k=1 k

|Bk|
k!
Mk||Z||k−1||X||||H||

≤ rM
∑∞

k=1
1

(k−1)!
(rM)k−1||H||

= rMerM ||H||.

(7.20)

Since F (0, 0) = 0 it follows from Lemma 7.4.1that there exists a function W : [0, 1] ×

Br(0) ×Br(0) → g0 which satisfies (1) and (2) of Lemma 7.4.1. The corollary follows.

7.4.2 Statement and Proof of Lie’s Third Theorem

We mention that the question of enlargeability has been studied by Teofilatto for the

superanalytic category in [114].

Theorem 7.4.3. Assume that g is a Banach super Lie algebra of finite graded dimen-

sion such that

1. g0 is enlargible with Lie group the Banach Lie group G, and

2. for all g ∈ G, Adg : g0 → g0 is 0Λ-linear.

Then there exists a G∞-atlas on G such that the corresponding supermanifold G is a su-

per Lie group with respect to the group operation on G. Moreover the even factor L(G)0

of the super Lie algebra of left-invariant vector fields on G is Lie algebra isomorphic to

g0 and consequently the super Lie algebra L(G) is isomorphic to g.
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Proof. Using our lemma and corollary, the proof follows that of Duistermaat and Kolk

[40]. Let

g0
e = {X ∈ g0 | e

adX − I

adX
=

∞∑

k=0

1

(k + 1)!
adkX has an inverse }

If η : g0
e → g0 is defined by η(X) = eadX−I

adX
then the inverse of η(X) is given by ζ(X)

where ζ is the mapping from g0
e to g0 defined by

ζ(X) =
adX

eadX − I
=

∞∑

k=0

Bk

k!
adkX

where B0, B1, B2, . . . are the Bernoulli numbers (see [40]). We know that X 7→ adX is

a G∞ mapping from g0 to End(g0), moreover we also know that the mappings from

End(g0) to End(g0) defined by

A 7→
∞∑

k=0

1

(k + 1)!
Ak and A 7→

∞∑

k=0

Bk

k!
Ak

are G∞-mappings (by Lemma 7.3.7 and the proof of the second half of Corollary 7.3.9

Define a mapping F : g0
e × g0

e → g0 by

F (X,Z) = ζ(Z)(X) =
∞∑

k=0

Bk

k!
adkZ(X).

It follows from the last corollary that there exists a functionW : [0, 1]×Br(0)×Br(0) →

g0 such that

1. for each t ∈ [0, 1] the mapping from Br(0) × Br(0) into g0 defined by (X, Y ) →

W (t, X, Y ) is a class G∞ mapping and
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2. dW
dt

(t, X, Y ) = F (X,W (t, X, Y )) and W (0, X, Y ) = Y for all (X, Y ) ∈ BE
r (0).

Thus if we define µ : g0 ×Br(0) → g0 by

µ(X, Y ) = W (1, X, Y ),

then µ is a class G∞-mapping. It follows from the argument of the proof of Theorem

1.6.1 of Duistermaat and Kolk [40] that

exp(µ(X, Y )) = exp(X)exp(Y )

for all X, Y ∈ Br(0) ⊂ g0
e. Now we know exp : g0 → G is a C∞-diffeomorphism on a

small ball about 0 ∈ g0 (here G is the Banach Lie group having g0 as its Lie algebra).

For each x ∈ G define κx(y) = log(lx−1(y)) where log = exp−1. Then κx is a local

C∞ diffeomorphism. Duistermaat and Kolk show that for x, y such that κy ◦ (κx)−1 is

defined it follows that

(κy ◦ (κx)−1)(X) = Y ⇐⇒ Y = µ(µ(Yo,−Xo), X)

for a choice of Xo, Yo in dom(κx) ∩ dom(κy). Thus

(κy ◦ (κx)−1)(X) = µ(µ(Yo,−Xo), X)

and consequently, κy ◦ (κx)−1 is a G∞ mapping. It follows that the family of maps

{κx} is a G∞-atlas on G and we denote the resulting supermanifold by G. Following

Duistermaat and Kolk once more, let m : G × G → G be defined by m(x, y) = xy−1
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where m is just the group operations on G. We show m is of class G∞. We have

(
κxy

−1 ◦m ◦ [(κx)−1 × (κy)−1]
)
(X, Y ) = κxy

−1(
m((κx)−1(X), (κy)−1(Y ))

)

= κxy
−1(

(κx)−1(X)(κy)−1(Y ))−1
)

= ady(µ(X,−Y ))

since

xexp(X)(yexp(Y ))−1 = xexp(X)exp(−Y )y−1

= xy−1yexp(µ(X,−Y ))y−1

= xy−1exp(ady(µ(X,−Y ))).

Since ady : g0 → g0 is a G∞-mapping for all y ∈ G we see that

κxy
−1 ◦m ◦ [(κx)−1 × (κy)−1]

is a G∞ mapping since it is just the map

(X, Y ) 7→ ady(µ(X,−Y )).

Thus G is a super Lie group. Finally notice that L(G) can be identified as a super Lie

algebra with TeG and consequently L(G)0 = T 0
e G = TeBG = g0 as Lie algebras.

Notice, however, that if h is a supervector space of dimension (m,n) which supports

two brackets [·, ·] and [·, ·]∗ such that h is a super Lie algebra with respect to both

brackets and if the brackets agree on even vectors then they necessarily agree on odd

vectors as well. This observation can be proven by choosing a pure basis {ei, ẽα} of

h and observing that since the brackets agree on even vectors one has that for fixed
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Figure 7.1: Subgroups Induce Subalgebras

indices i, α, [ei, λẽα] − [ei, λẽα]
∗ = 0 for all odd supernumbers λ. It is easy to show, in

the case one has infinitely many generators of Λ (as we do), that [ei, ẽα]− [ei, ẽα]
∗ = 0.

Similarly, for fixed indices α, β, [λeβ, µẽα]− [λeβ, µẽα]
∗ = 0 for all odd supernumbers λ

and µ from which it follows that [eβ, ẽα] − [eβ , ẽα]
∗ = 0. Consequently, [v, w] = [v, w]∗

for all v, w ∈ h. It follows from this observation that L(G) = TeG as super Lie algebras

and the theorem follows.

Remark 7.4.4. If G and H are super Lie groups and φ : G → H is a class G∞

homomorphism then the mapping deφ is a homomorphism from the super Lie algebra

TeG to the super Lie algebra TeH ( using their obvious identifications with the super

Lie algebras of left invariant vector fields). Moreover the diagram

is commutative. The proof of this result is almost identical to the proof in the usual Lie

group case and is left to the reader. The point is that since deφ is Λ left-linear it is also

a class G∞ mapping so the entire diagram is in the G∞ category. In particular notice

that if φ is an injective immersion then this shows that the exponential mapping on H

is simply the restriction of the exponential mapping on G to φ(H). This fact makes it

possible to make contact with the physicist usual technique for identifying the super Lie

groups of matrices of given super Lie algebras of matrices.
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7.5 Formal Supergroups

The physics literature sometimes defines supergroups in terms of a formal multiplica-

tion. The rules for multiplying group elements are obtained from the Baker-Campbell-

Hausdorff formula (see [29]). We examine the formal group calculations in Chapter

9. Apparently this is related to the approach taken by Berezin and Leites [13], Kac

[69], and Kostant [76] which are analogous to the formal groups in ordinary Lie theory

(see [113] for example). The formal approach assumes a certain algebraic structure

as the starting point. We, in contrast, have shown that the exponential function is a

G∞ mapping and can use our geometric results to prove that the relevant algebraic

structure is correct.

Let W = W0 ⊕ W1 denote a graded left Λ-module which is finitely and freely

generated over Λ. Once for all, select a fixed pure basis of W of type (p, q) and recall

that pure left Λ endomorphisms of W may be represented by matrices.

M =



A B

C D


 (7.21)

where A,B,C,D are respectively, p×p, p×q, q×p, q×q matrices over Λ which respect

the grading. Also recall that M is even iff both A and D have only even entries while

B and C have only odd entries. Similarly M is odd iff both A and D have only odd

entries while B and C have only even entries.

We denote the set of all matrices M defined above by gl(W) = gl(p, q,Λ) and observe
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that it is a super Lie algebra with respect to the bracket

[M,N ] = MN − (−1)ǫ(M)ǫ(N)NM. (7.22)

Moreover it is a Banach super Lie algebra relative to the norm ||M || =
∑p+q

i,j=1 ||Mij||Λ.

Clearly the subspace of even elements gl0(W) is a Banach Lie algebra whose Lie bracket

is induced by the multiplication of the associative Banach algebra structure on gl0(W).

It is well-known that the group of units Gl(W) of this associative Banach algebra is

open in the associative algebra. Moreover it is a Banach Lie group whose Lie algebra

is precisely the Lie algebra structure on gl0(W) induced by the associative structure

(see [88]).

Clearly gl0(W) is an enlargible super Banach Lie algebra with Banach Lie group

Gl(W) and the adjoint mapping is 0Λ linear. Therefore, Lie’s Third Theorem of G∞

supergroups tells us that there exists a G∞ atlas of charts on Gl(W) having values in

the even part of the super Lie algebra gl(W). We denote the resulting supermanifold

by Gls(W). The proof that follows the proposition is more direct.

Proposition 7.5.1. The super Lie algebra of left invariant vector fields L(Gls(W)) of

Gls(W) is isomorphic to the super Lie algebra gl(W).

Proof. We omit most of the details as they closely follow the usual proof that the

Lie algebra of Gl(n,R) is gl(n,R). One shows that if B in gl0(W) is identified with

the vector tangent to Gls(W) at the identity e, then the left invariant vector field on

Gls(W) is given by

XB(A) = delA(B) =
∑

i,j

(AB)ij
∂

∂xij
|A (7.23)

for A ∈ Gls(W). Here xij is a chart on Gls(W) where xij(M) denotes the ij-component
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of the matrix M ; thus xij is a Λ-valued function on Gls(W). Notice that xij is even

for 1 ≤ i, j ≤ p and for p + 1 ≤ i, j ≤ p + q but otherwise is odd. Using the fact that

XB =
∑

i,j,k xikBkj
∂

∂xij
one can now show that X [M,N ] = [XM , XN ] as in the usual case.

The tedious details require careful, but straightforward, considerations of parities; they

are left to the reader.

It should now be clear that the various supergroups of matrices which occur in the

physics literature are indeed super Lie groups relative to Rogers’ definition of a su-

permanifold when the supernumbers are infinitely generated. The usual physics treat-

ments of the subject begin with a super Lie algebra of matrices and then define the

corresponding super Lie group by a formula which is sometimes tacitly assumed to

describe a supermanifold. The Baker-Campbell-Hausdorff formula is then used to link

the super Lie algebra to its super Lie group. We have developed the machinery neces-

sary to understand the supermanifold structure of the underlying super Lie group and

have shown that the exponential mapping is indeed a G∞ mapping. These results then

justify the physicist’s intuition and also show how the super Lie group structure in the

matrix case arises from more geometric principles.

Definition 7.5.2. If gLie is a graded Lie algebra over C, then its Grassmann shell is

the super Lie algebra ĝLie = Λ ⊗ gLie defined by [λX, µY ] = λµ(−1)ǫ(µ)ǫ(X)[X, Y ]gLie

for λ, µ ∈ Λ and X, Y ∈ gLie. More generally, one says that a super Lie algebra g is a

conventional Berezin superalgebra of dimension (p, q) if and only if it possesses a pure

basis for which the structure constants have no soul (see Definition 2.4.2).

Notice that if we choose a basis {Em, Ẽα}, m = 1, 2, . . . p and α = 1, 2, . . . q of a graded

Lie algebra gLie over C where we define Em to be even and Ẽα to be odd, then it is also
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a pure basis of the Grassmann shell of ĝLie and the corresponding structure constants

relative to this basis are complex numbers. Thus the Grassmann shell of a graded Lie

algebra over C is a special type of conventional Berezin superalgebra.

Theorem 7.5.3. Let gLie = g0
Lie⊕g1

Lie denote a (p, q) graded Lie algebra over C. Then

there exists a super Lie group H whose super Lie algebra of left invariant vector fields

is isomorphic to the Grassmann shell ĝLie of gLie.

Proof. First apply Ado’s Theorem for the case of graded Lie algebras over C (see [69]

page 79). This theorem assures us that there exists an even injective homomorphism

φ : gLie →֒ gl(r, s,C). We choose gl(r, s,Λ) to be the set of all left endomorphisms on a

(r, s) supervector space V and identify these endomorphisms with their corresponding

(r + s) × (r + s) Λ-valued matrices. Now identify gLie with its image in gl(r, s,Λ) and

choose a basis {Em, Ẽα}, 1 ≤ m ≤ p, 1 ≤ α ≤ q of gLie. Finally, extend this (p, q) basis

to a basis {Em, Ẽα}, m = 1, 2, . . . (r + s)2, α = 1, 2, . . . (r + s)2 of gl(r, s,C). The

Grassmann shell of gl(r, s,C) is

gl(r, s,Λ) ≡ {
r∑

m=1

ξmEm +

s∑

α=1

ξαẼα | ξm, ξα ∈ Λ}.

Likewise the Grassmann shell of gLie , denoted ĝLie, is constructed by replacing com-

plex scalars by Grassmann scalars. Notice that the injective homomorphism naturally

extends to the Grassmann shell, thus we injectively embed the Grassmann shell of the

graded Lie algebra into matrices having Grassmann supernumbers as entries:

φ : ĝLie →֒ gl(r, s,Λ).
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gLie −−−→ gl(r, s,C)y
y

ĝLie −−−→ gl(r, s,Λ)

Figure 7.2: Grassmann Shell

Now we know that gl(r, s,Λ) = gl(V) is the Lie super algebra of the super Lie group

Gs(V) and that ĝLie is a sub-super Lie algebra of gl(V). It follows from Theorem 7.3.3

that there is a super Lie group H which is a sub-super Lie group of Gls(V) having ĝLie

as its super Lie algebra of left invariant vector fields. Thus we have the commutative

diagram.

Remark 7.5.4. While [37] was under review we discovered a number of papers related

to our work. For the most part, these are peripheral to our present endeavor but two

of these, [25] and [94], are concerned with a “super” version of Lie’s third theorem.

It turns out that both of these papers are formulated in the category of superanalytic

manifolds and superanalytic morphisms while our results are formulated in the category

of G∞ supermanifolds with G∞ morphisms. A cursory examination of this chapter

or [37] will reveal that practically all our proofs are concerned with assuring that the

various mappings we consider are of class G∞ and that these proofs are not minor

modifications of their superanalytic counterparts.

In addition in [94] it is shown that there is a gap in the proof of [25] regarding the

normed structure defined on a certain enveloping algebra. A counterexample is provided

which to show that such a norm is not always possible.

Both [25] and [94] are excellent papers and in [94] Pestov shows how to complete the

proof in [25]. On the other hand we believe that the impact on our work here is minimal

since both [25] and [94] require superanalyticity and utilize sheaf theoretic techniques
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while it is our intent to provide a framework more closed related to differential-geometric

influences as opposed to algebraic-geometric ones. Additionally, Pestov uses nonstan-

dard analysis techniques to complete the proof of the third theorem which we find mildly

distracting.

The author is grateful to the referee of [37] for directing our attention to the paper

by Jadczyk and Pilch [68]. Their methods have helped streamline certain proofs in this

chapter.
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Supergeometry of Super Yang-Mills

Theory

Abelian gauge theory has played an important role in physics since the mid nineteenth

century due to the fact that electromagnetism can be viewed as a gauge theory with

gauge group U(1). This viewpoint which was powerfully argued by Weyl in his fas-

cinating 1929 paper which laid the groundwork for the SU(2) gauge theory of Yang

and Mills and also the general nonabelian gauge group theory of Utiyama in the late

1950’s. All of this eventually culminated in the electroweak theory of Weinberg and

Salam; it gained acceptance after some difficult calculations by t’Hooft which showed

their theory had a consistent quantum formulation. During the 1970’s it was under-

stood that gauge theory in physics used the mathematics of principle fiber bundles.

The inhomogeneous transformation law of the gauge potential matches precisely the

transformation law relating two pullbacks of a connection. This understanding has lead

to many interesting results in both mathematics and physics, certainly too many to
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list here. See The Dawning of Gauge Theory [92] for a more detailed history, including

some of the original papers alluded to above.

Super Yang-Mills theory seeks to implement the usual Yang-Mills theory for a mul-

tiplet of fields which simultaneously form a representation of supersymmetry. In short,

this means that there must be both bosons and fermions in the model. In contrast, the

usual Yang-Mills theory makes no particular restriction on the overall field content of

the model except perhaps the existence of the gauge boson. The Wess-Zumino model

is an example of a super Yang-Mills theory. The superfield technique of Salam and

Strathdee was employed to formulate the theory elegantly and compactly. One finds a

good summary of these matters in the introductory text by Wess and Bagger [116].

The mathematics used in Wess and Bagger is internally consistent. However, the

arguments are typically local and the existence and/or construction of supercalculus

is not dealt with. The transformation laws are made at the level of superfields and

do not obviously follow from a principle fiber bundle construction. Francois Gieres

transformed and expanded the arguments of Wess and Bagger and obtained a refor-

mulation of the theory which was much closer to that required for a principle fiber

bundle description of the super gauge theory. However, Gieres’ arguments were also

local, and he admits to ignoring technical issues relating to supermanifold structures.

We believe we have taken Gieres work to its logical conclusion. We have constructed

a global formulation of super Yang-Mills theory over a supermanifold with relatively

weak assumptions. Our formulation reproduces the superfield transformation laws

found in Wess and Bagger from a geometric construction very much reminiscent of the
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principle fiber bundle formulation of Yang-Mills theory. The base manifold becomes a

supermanifold, and the gauge group becomes a supergroup, etc... We derive general

results that apply to a variety of gauge groups, but super Yang-Mills theory itself has

a rather simple gauge group, it is simply the ”superization” of an ordinary gauge group.

The geometry of super Yang-Mills theory has been studied by many other authors.

We mention only those who influenced us in preparing for this work. Schwarz has a se-

ries of papers (for example [105] and [74]) which use a more sheaf-theoretic definition of

supermanifolds. Rosly’s paper [104], which also was connected to the work of Schwarz,

certainly inspired us in no small way. Also the paper by E.A. Ivanov [65] has played

an important motivating role in our work. In particular, the presentation of Ivanov’s

work in [44] stimulated our intuition. Although we will not make an effort to relate our

work to twistor methods, we should mention that there are many papers that followed

from Witten’s the 1978 paper on the subject [117] (see [52] for a mathematical survey).

Additionally, other authors have focused on the relation of superspace to real physical

spacetime. We on the other hand have basically not faced the difficulty of finding

a well-defined body of the supermanifold. Probably a more physical treatment would

form some sort of merger of the ideas introduced in this chapter and those given in [51].
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8.1 Special Sections of a Super Principle Fiber Bun-

dle

In this chapter we are forced to change the topology on our basic space of supernum-

bers. Throughout this chapter Λ will denote the algebra of supernumbers z =
∑

J zJζ
J

(the sum extends over all multi-indices) such that
∑

J |zJ |2 converges. The norm of z

throughout this chapter will be defined by ||z|| =
√∑

J |zJ |2. Additionally, all super-

manifolds will be defined by atlases whose charts take their values in Banach spaces

which are coordinated supervector spaces modeled on Rp|q, for some p, q with norm

||z|| =
√∑

J |zJ |2. This change turns out to be necessary in order that certain sections

of a principal bundle, called special sections by Lichernowicz in [81], be smooth maps.

This issue is dealt with in the first proposition in this chapter below.

Let M be a (p|q) dimensional supermanifold and let τ : P → M be a super princi-

ple fiber bundle with group a super Lie group G. Moreover, suppose ω is a connection

on P and Ω its curvature. We assume that ω is even, i.e., we assume that ω(T iP) ⊆ gi,

where g is the Lie superalgebra of G and i = 0, 1. For each point u ∈ P we denote the

space of horizontal vectors by Hu and TuP = Hu ⊕ Vu.

Recall that if γ : I → M is a path in M and zo ∈ τ−1(γ(0)), then there exists a

unique path γ̃ : I → P such that γ̃(0) = zo, τ ◦ γ̃ = γ and ω( ˙̃γ(t)) = 0 for all t ∈ I.

The path γ̃ is called the horizontal lift of γ to zo since ˙̃γ(t) is a horizontal vector for

each t ∈ I.

Definition 8.1.1. Assume that s : U → P is a local section of τ and that γ : I → U is
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a path in U . The standard argument that one finds in the literature (see, for example

[86]) shows that even in the supercategory there exists a unique mapping g : I → U

such that γ̃(t) = s(γ(t))g(t) for each t ∈ I. The curve g satisfies the equation

ġ(t)g(t)−1 = −(s∗ω)(γ̇(t))

for all t ∈ I and is called the development of γ relative to the local section s. Notice

that ġ(t) is necessarily an even tangent vector for each t ∈ I.

Observation 8.1.2. If we consider a principal fiber bundle with a structure group

which acts on the left (we assume a right action in the first part of this chapter), then

the development g would instead satisfy g(t)−1ġ(t) = −(s∗ω)(γ̇(t)).

Given xo ∈ M and zo ∈ P such that τ(zo) = xo we follow Lichernowicz [81] who con-

structs a local section s of τ as follows. First choose a chart X at xo defined on an open

set U containing xo such that X (xo) = 0 and X (U) is an open ball centered at 0 in Rp|q

of radius 1. We refer to the curves { X−1(tu) | 0 ≤ t ≤ 1 } as ”rays” in U . The section

s is obtained by horizontally lifting each of these rays to zo. Thus s(U) is the union of

the horizontal lifts of the paths t 7→ X−1(tu) to zo. A section arising in this manner

is called a special section at zo by Lichernowicz, and we will use this terminology as well.

Now one might rightly question whether such special sections exist which are G∞

mappings, and in fact Lichernowicz is not clear in [81] as to why such sections are even

differentiable. We sketch an argument in the following remark which shows that G∞

special local sections exist .

Proposition 8.1.3. Each special local section s defined in a deleted neighborhood of
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Figure 8.1: Special Chart Domain
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an arbitrary point m0 of M is of class G∞

Proof. Choose a local section ŝ : U → P of τ such that ŝ is a G∞ mapping and m0 ∈ U.

We can choose such a local section since τ : P → M is locally trivial. We may choose

U small enough so that it is the domain of a chart X : U → X (U) ⊆ Rp|q. Moreover

the chart may be chosen such that {z ∈ R
p|q| ||z|| ≤ 1} ⊆ X (U) and X (m0) = 0.

Here ||z|| =
√∑

j,J |zjJ |2 where zj =
∑

J z
j
Jζ

J and for each j and J the Grassmann

coefficient zjJ is either real or pure imaginary. See Section 2.10 for details on why

the Grassmann coefficients must be either real or pure imaginary in this case. Let

γ : I × S1 → B1 be defined by γ(t, z) = tz, where I = (0, 1), S1 = {z ∈ Rp|q| ||z|| = 1}

and B1 = {z ∈ Rp|q | ||z|| < 1}. Notice that S1 is a submanifold of the Banach manifold

Rp|q. This may be understood by realizing that as a Banach space Rp|q is essentially

the space of all square summable sequences (often denoted l2) and S1 is a “sphere”

in this space. It is not difficult to write explicit formulas for charts covering it whose

transition functions are C∞ maps defined on open subsets of R
p|q ∼ l2. Now γ is a

C∞ mapping on I × S1 with a C∞ inverse. Indeed its inverse is the mapping from

B∗1 = {z| 0 < ||z|| < 1} onto I × S1 defined by z → (||z||, z/||z||). It is easy to show

that the mapping z → ||z|| is a C∞ mapping on 0 < ||z|| < 1 directly as it is the square

root of a “polynomial”.

With these preliminaries out of the way define u : I × X (U) → g0 by

u(t, z) = ω(d(ŝ ◦ X−1)(γ̇(t, z))). (8.1)

Now X (U) is open in the Banach space Rp|q and u(I×X (U)) is contained in the Banach
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space g0. Thus for each z ∈ X (U0), there is a unique solution g : I×X (U)) → G of the

initial value problem g(0, z) = e, d
dt
g(t, z) = u(t, z)g(t, z). Since u depends smoothly

on z, so does g (see [73] for a good treatment of these ideas). Consequently g is a C∞

mapping. Now the special section s is given by s(X−1(γ(t, z)) = ŝ(X−1(γ(t, z))g(t, z).

It follows that for m ∈ X−1(B∗1), s(m) = ŝ(m)g(γ−1(X (m)) and consequently s is a

C∞ mapping from X−1(B∗1) into P.

Observe that S = s(X−1(B∗1)) is a sub-supermanifold of P. The charts are X̃ ◦τS where

X̃ is a chart in the G∞ atlas defined on the open subset X−1(B∗1) of M and τS is the

restriction of τ to S. Two such charts are G∞ related, and the inclusion mapping is a

G∞ mapping relative to this choice of atlas.

Finally, to see that s is a G∞ mapping it suffices to show that it is of class G1 (see [68]).

Thus we have only to show that ds is linear over Λ0. Let α ∈ 0Λ and let X be a tangent

vector of M tangent to a point m ∈ X−1(B∗1), then dτ(ds(αX)) = αX = dτ(αds(X)).

Since τ is invertible on s(X−1(B∗1)), dτ is invertible on tangents to s(X−1(B∗1)) and

consequently ds(αX) = αds(X). The proposition follows.

Once again, following Lichernowicz [81], we show that if x ∈ U and v ∈ T 0
xU where

U is the domain of a special section s at xo ∈ U , then (s∗ω)x(v) can be written as an

integral ∫ 1

0

(s∗xΩ)

(
∂

∂s
,
∂

∂t

)
(s, 1) ds (8.2)

where s, t are parameters of a surface in U determined by x. Actually we only need

such a formula when v is transversal to the tangent to a ray in U so we can derive it
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Figure 8.2: Surface in Chart Domain

only in this case. Let x ∈ U \ {xo} and assume that v ∈ T 0
xU is a vector such that v

is not tangent to the curve l(x) defined by l(x)(t) = X−1(tX (x)), 0 ≤ t ≤ 1. Since we

choose X (U) to be the unit ball B1 ⊆ Rp|q centered at 0, it is clear that there exists a

path µ = l(xo, x) from xo to x in U such that µ−1l(x) is the piecewise smooth boundary

of a surface S contained in U . Moreover, µ can be chosen so that µ(0) = xo, µ(1) = x,

µ̇(1) = v.

In fact, we want a specific surface S such that a point p ∈ S iff there exists 0 ≤ t ≤ 1

such that p lies on the ray s 7→ l(µ(t))(s) where 0 ≤ s ≤ 1 (we use the term surface

loosely as we are not claiming that it is a sub-super manifold; we only require it be

the image of the mapping σ−1 defined below). Here l(µ(t)) is the curve defined by
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l(µ(t))(s) = X−1(sX (µ(t))) for 0 ≤ s ≤ 1. Define a chart σ on S by

σ−1 : [0, 1] × [0, 1] → S where σ−1(s, t) = l(µ(t))(s) (8.3)

Thus we have vector fields on S defined by

∂

∂s

∣∣∣∣
(s,t)

= l(µ(t))′(s)
∂

∂t

∣∣∣∣
(s,t)

=
d

dt

(
t 7→ l(µ(t))

)
(s) (8.4)

Notice that both of these vectors are derivatives of curves in M and so are in T 0
(s,t)M.

Also since l(µ(t)) is a ray in U emanating from xo we see that ds( ∂
∂s
|(s,t)) is horizontal.

Proposition 8.1.4. If the set of pairs (s, t) parametrize a surface S as described above,

and v is a tangent vector to U which is transversal to one of the “rays” of S then

(s∗ω)x(v) =

∫ 1

0

(s∗Ω)

(
∂

∂s
,
∂

∂t

)
(s, 1)ds

where Ω is the curvature of ω.

Proof. First note that s∗Ω = s∗(dω + [ω, ω]) = d(s∗ω) + [s∗ω, s∗ω]. Also notice that

(s∗ω)( ∂
∂s

) = ω(ds( ∂
∂s

))) = 0. Thus, s∗Ω( ∂
∂s
, ∂
∂t

) = d(s∗ω)( ∂
∂s
, ∂
∂t

). Consequently,

s∗Ω( ∂
∂s
, ∂
∂t

) = d(s∗ω)( ∂
∂s
, ∂
∂t

)

= ∂
∂s

((s∗ω)( ∂
∂t

)) − ∂
∂t

((s∗ω)( ∂
∂s

)) − (s∗ω)([ ∂
∂s
, ∂
∂t

])

= ∂
∂s

(s∗ω)( ∂
∂t

)

(8.5)
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and ∫ 1

0
(s∗Ω)( ∂

∂s
, ∂
∂t

)(s, t)ds =
∫ 1

0
∂
∂s

[(s∗ω)( ∂
∂t

)(s, t)]ds

= (s∗ω)( ∂
∂t

)(1, t) − (s∗ω)( ∂
∂t

)(0, t)

= (s∗ω)( ∂
∂t

)(1, t)

= (s∗ω)[ d
dt

[l(µ(t))(1)]]

(8.6)

But d
dt

[l(µ(t))(1)]|t=1 = v and the proposition follows.

Definition 8.1.5. Denote by hΩ(U) the Lie sub-superalgebra of g generated by the set

of elements Ωz(v, w) for z ∈ τ−1(U) and v, w ∈ T 0
z (τ−1(U)).

Corollary 8.1.6. If s : U → P is a special local section of τ at xo ∈ U and x ∈ U

then (s∗ω)x(v) is in the closure of hΩ(U) for each v ∈ T 0
xU .

Proof. If v is tangent to a ray then (s∗ω)x(v) = 0 = (s∗Ω)x(v, v). If v is not tangent to

a ray, then by Proposition 1.4

(s∗ω)x(v) =

∫ 1

0

(s∗ω)

(
∂

∂s
,
∂

∂t

)
(s, 1)ds

which is a limit of finite sums of elements of hΩ(U).

Corollary 8.1.7. If s : U → P is a special section of τ at xo ∈ U and if g : I → G is

the development of an arbitrary loop γ : I → U in U relative to s, then

ġ(t)g(t)−1 ∈ hΩ(U) for all t ∈ I.

Proof. Recall that ġ(t)g(t)−1 = −(s∗ω)(γ̇(t)) for all t ∈ I and that (s∗ω)x(v) ∈ hΩ(U)

for all x ∈ U , v ∈ T 0
xU .

Once more observe that if one used left actions of the structure group of a principle

fiber bundle (instead of the right action we use here), then the mapping g : I → G

236



Chapter 8. Supergeometry of Super Yang-Mills Theory

satisfies g(t)−1ġ(t) = −(s∗ω)(γ̇(t)).

Corollary 8.1.8. If Ω ≡ 0, then each development of each special section is trivial,

i.e. g(t) = e for all t ∈ I. Thus the horizontal lift of each loop in U is a loop in P.

Proof. Note that ġ(t)g(t)−1 is the zero vector in T 0
e G so ġ(t) = 0 in T 0

g(t)G for each

t ∈ I. Thus g is constant and g(t) = e for all t ∈ I. Since γ̃(t) = s(γ(t))g(t), t ∈ I, we

have γ̃(1) = γ̃(0)g(1) = γ̃(0).

Observation 8.1.9. Clearly this is independent of whether left or right actions are

used in the definition of a principle fiber bundle.

If M is a (p|q) dimensional supermanifold, then vector superbundles E over M are

defined as in the usual case of ordinary Banach manifolds except that all relevant

mappings are G∞-mappings (see [80]) and [27]). If E →֒ T 0M is a sub-bundle of the

even tangent bundle T 0M → M, then we say that E → M is integrable iff whenever

X, Y are sections of E → M then so is [X, Y ]. Since T 0M = TBM, the sub-bundle

E → M is an integrable sub-bundle of the tangent bundle TBM → BM of the under-

lying Banach manifold BM, and so by the Frobenius theorem for Banach manifolds

[80], one has a foliation of BM. The leaves of this foliation are initial submanifolds of

BM and thus are G∞ submanifolds as well (see [73] and [37]). Since BM is modelled

on Kp|q = (0Λ)p × (1Λ)q, one has cubical neighborhoods (U, (z1, z2, . . . , zp+q)) = (U, z)

at each point p ∈ M. The cubical neighborhood chart z is chosen such that z(p) = 0,

and the leaves are given by zr+i = ci = constant, zp+s+j = dj = constant for each i, j

with 1 ≤ i ≤ p− r and 1 ≤ j ≤ q− s. This is in close analogy to the finite dimensional

case except here the ci are even supernumbers and the dj are odd supernumbers (see

[27]). The leaves are of dimension (r|s) in this case. We say the foliation is regular iff
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each leaf is an immersed sub-supermanifold with fixed dimension (r|s) for some r, s.

Recall that there exists cubical charts (Uo, z) of M at each point of M such that

each leaf L of FM intersected with Uo is given by zr+i = ci = constant and zp+s+j =

dj = constant where ci ∈ 0Λ and dj ∈ 1Λ for each i, j with 1 ≤ i ≤ p − r and

1 ≤ j ≤ q − s. We choose Uo small enough so that there exists a local section

so : Uo → P of τ . Here r, s are fixed and denote the dimension (r|s) of each leaf.

For each leaf L such that L ∩ Uo 6= ∅ define xLo ∈ L by zL(xLo ) = 0 for all L not in

Ir|s = {i | 1 ≤ i ≤ r or p + 1 ≤ i ≤ p + s }. One can choose U small enough so that

xo ∈ U ⊆ Uo and such that for some δ > 0 one has for each leaf L such that L∩U 6= ∅

that, x ∈ L ∩ U iff |zL(x)| < δ for all L /∈ Ir|s. Thus the image of L ∩ U under z is a

δ-ball about 0 in a slice determined by the constants ci, dj. We will refer to L ∩ U as

the δ-ball about xLo in L. Using the chart z we can define ”curvilinear rays” in L ∩ U

emanating out of xLo . These ”curvilinear rays” map to actual ”rays” in z(U) ⊆ R
p|q

emanating out of z(xLo ) = 0. Now define a ”special section” by horizontally lifting each

curvilinear ray emanating out of xLo and terminating at so(x
L
o ) in τ−1(L) ⊆ P.

This construction defines a section s : U → P such that for each leaf L such that

U∩L 6= ∅, sL = s|(U∩L) is a special section of τ−1(L) → L in the sense of Lichernowicz

[81].

We will refer to such a section s : U → P as a special section of τ and to the points

xLo as distinguished points of the section.

Proposition 8.1.10. Let τ : P → M be a super principal fiber bundle with structure

group a super Lie group G. Let FM be a regular foliation of M and ω : TP → g an
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even connection with values in the super Lie algebra g of G. Assume that at each point

xo ∈ M there exists a local section so : Uo → P of τ at xo such that the restriction of

so
∗Ω to Uo ∩ L is zero for each leaf L of FM such that Uo ∩ L 6= ∅, then there exists a

local section s defined on U ⊆ Uo along with distinguished points xLo ∈ L∩U such that

the horizontal lift of each loop γ in U ∩L at xLo is sL ◦ γ which is a loop in τ−1(U ∩L).

Here sL = s|(U ∩ L).

Proof. Let L be a leaf of FM. We first show that the curvature Ω of ω restricted to

τ−1(L) is zero. Let iL : L →֒ M and ĩ : τ−1(L) →֒ P be the inclusion mapping, then

the curvature of ĩ∗Lω is ĩ∗LΩ so we must show that ĩ∗Ω = 0. Let xo ∈ L be arbitrary and

choose a local section so : Uo → P of τ at xo such that so
∗Ω restricted to Uo∩L is zero.

Now so
∗(̃i∗Ω) = i∗L(so

∗Ω) which is zero by hypothesis, so so
∗(̃i∗Ω) = 0. But if zo is any

element of τ−1(xo) and s̃ is any local section of τ−1(L) → L through zo, then there

exists a mapping g : dom(s̃) → G such that s̃(x) = s(x)g(x) for all x ∈ Uo ∩ dom(s̃).

Now

s̃∗(̃i∗Ω) = Ad(g−1)(so
∗(̃i∗Ω)) = 0 (8.7)

and since this is true for every such local section s̃ through zo, we have (̃i∗Ω)zo = 0.

Since xo is arbitrary and zo ∈ τ−1(xo) is arbitrary, ĩ∗Ω = 0 as asserted.

Now by the construction just prior to the statement of Proposition 8.1.10 there exists,

at each xo ∈ M, a local section s : U → P and points xLo in each leaf L intersecting U

such that sL = s|(U∩L) is a special section of τ−1(L) → L in the sense of Lichernowicz

[81]. Consequently if γ is a loop at xLo in U ∩ L, then its development g : I → G with

respect to sL is trivial (since the curvature ĩ∗LΩ of ĩ∗Lω is 0). Thus the horizontal lift
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γ̃ = (sL ◦ γ)g of γ to so(x
L
o ) = s(xLo ) in τ−1(L) is a loop. The proposition follows.

Lemma 8.1.11. If u : I → g0 is a smooth mapping then there is a smooth curve

g : I → G such that g(0) = e and ġ(t)g(t)−1 = −u(t) for all t ∈ I. Moreover, g(t) =
→
Pexp(−

∫ t

0
u(τ)dτ) where the product integral is ordered opposite the usual ordering in

[89] and [90].

Proof. It is asserted by Omori in [90] on page 65 that in a regular F-Lie group G with

Lie algebra g the differential equation

ġ(t) = u(t)g(t) g(0) = e (8.8)

has a unique solution which is given by the product or path ordered integral

g(t) =
←
Pexp

∫ t

0

u(τ)dτ (8.9)

If h(t) = g(t)−1 we have hg = e and ḣg + hġ = 0 so that ġ(t)g(t)−1 = −h(t)−1ḣ(t).

Thus ġ = ug implies that ġg−1 = u and −h−1ḣ = u. Moreover if

g(t) =
←
Pexp

∫ t

0

u(τ)dτ (8.10)

then

g(t)−1 =

[
←
Pexp

∫ t

0

u(τ)dτ

]−1

=
→
Pexp

(∫ t

0

(−1)u(τ)dτ

)
(8.11)

where the last integral reverses the path ordering used in [89] and [90]. So we have

ḣ(t) = −h(t)u(t) (8.12)

240



Chapter 8. Supergeometry of Super Yang-Mills Theory

and

h(t) =
→
Pexp

(
−

∫ t

0

u(τ)dτ

)
(8.13)

as required.

Now since a Banach Lie group is a regular F-Lie group, we see that this lemma

holds in the Banach Lie group BG for any super Lie group G where we know BG can

be identified with G relative to a suitably restricted atlas. Recall, however, that the

Lie algebra of BG is the even part of of the Lie superalgebra g (see [37]).

Theorem 8.1.12. Assume that τ : P → M is a super principal fiber bundle with

structure group a super Lie group G where G acts on the left of the bundle P (contrary

to our convention up to this point). Let FM be a regular foliation of M whose leaves are

supermanifolds of dimension (r|s). Let ω : TP → g be an even connection on P whose

curvature restricted to τ−1(L) is zero for each leaf L of FM. If xo ∈ M, then there

exists an open subset U of M about xo on which there is defined a local section s of τ

and a mapping g : U → G such that g(xo) = e. Moreover, this mapping has the property

that if p ∈ U and L is the leaf of FM containing p then g(p)−1dpg(v) = −(s∗ω)p(v) for

every v ∈ T 0
p (U ∩ L).

Proof. Let xo ∈ M. Choose an open set U about xo and a section s : U → P subject

to the construction just prior to Proposition 8.1.10. Thus s is what we have called a

special section of τ and it has the property that if L of FM such that U ∩ L 6= ∅ and

sL = s|(U ∩ L) then sL : U ∩ L → τ−1(L) is a special section of τ−1(L) → L in the

sense of [81]. Choose points xLo ∈ U ∩ L for each leaf L which intersects U such that

loops at xLo in U ∩ L lift to horizontal loops at s(xLo ) in τ−1(L). For each p ∈ U , let L
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be the leaf through p and choose an arbitrary path γp in U ∩ L from xLo to p. Define

g(p) =
→
Pexp

(
−

∫

γp

(s∗ω)

)
(8.14)

We now show that the construction of g(p) to be independent of the choice of γp. To

do this assume γ1, γ2 are paths in U ∩L such that γ1(0) = γ2(0) and γ1(1) = p = γ2(1).

By Corollary 8.1.8, γ̃1(1) = γ̃2(1). But for i = 1, 2

γ̃i(t) = gi(t)s(γi(t)) (8.15)

where

gi(t)
−1ġi(t) = −s∗ω(γ̇i(t)) (8.16)

and consequently using Lemma 8.1.11 we have

gi(t) =
→
Pexp

[
−

∫ t

0

(s∗ω)(γ̇i(τ))dτ

]
, (8.17)

so that g1(1) = g2(1). Thus

→
Pexp

(
−

∫

γ1

(s∗ω)

)
=
→
Pexp

(
−

∫

γ2

(s∗ω)

)
(8.18)

and it follows that the definition of g(p) is independent of the choice of γp. We choose

one such path γp for each p ∈ U . Now let p ∈ U and let L be the leaf through p. Let

v ∈ T 0
p (U ∩ L). We show that

dLg(p)−1(dpg(v)) = −(s∗ω)p(v). (8.19)
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Figure 8.3: Path Independence

Let µ : I → U ∩L be a path such that µ(0) = p and µ̇(0) = v. We have chosen a path

γp from xLo to p in U ∩ L for each p ∈ U ∩ L, thus we have such a curve γµ(σ) from xLo

to µ(σ) for each σ ∈ I. Let µ̂σ denote the path defined by µ̂σ(s) = µ(sσ), s ∈ I. Now

γµ(σ) and µ̂σγµ(0) both initiate at xLo and terminate at µ(σ).

Moreover both paths lie in U ∩ L. Thus for h =
→
Pexp(−

∫
γµ(0)

(s∗ω)) = g(p) we find

g(µ(σ)) =
→
Pexp

∫
γµ(σ)

(−s∗ω)

=
→
Pexp

∫
µ̂σγµ(0)

(−s∗ω)

= [
→
Pexp

∫
γµ(0)

(−s∗ω)][
→
Pexp

∫
µ̂σ

(−s∗ω)]

= h
→
Pexp

(
−

∫ σ

0
(s∗ω)(µ̇(τ)dτ

)

(8.20)
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and

d
dσ

(
g(µ(σ))

)
= dLh

d
dσ

[→
Pexp

(
−

∫ σ

0
(s∗ω)(µ̇(τ))dτ

)]

= dLh
[→
Pexp

(
−

∫ σ

0
(s∗ω)(µ̇(τ))dτ

)(
−(s∗ω)(µ̇(σ))

)] (8.21)

Thus

dLh−1

(
dµ(σ)g(µ̇(σ))

)
=
→
Pexp

(
−

∫ σ

0

(s∗ω)(µ̇(τ))dτ
)(
−(s∗ω)(µ̇(σ))

)

and for σ = 0,

dLg(p)−1

(
dpg(v)

)
= −(s∗ω)p(v)

as required.

Corollary 8.1.13. If g : U → G is defined as in Theorem 8.1.12 and if we utilize the

convention that in a principal fiber bundle the group G acts on the left of the bundle,

then

g(p)−1dpg(v) = −(s∗ω)p(v)

for every p ∈ Tp(U ∩ L) where L is the leaf containing p.

Proof. Let v ∈ Tp(U ∩ L) be an odd tangent vector. For each odd supernumber ζ , ζv

is an even tangent vector in T 0
p (U ∩ L), consequently

dLg(p)−1(dpg(ζv)) = −(s∗ω)p(ζv).

But this implies that

ζdLg(p)−1(dpg(v)) = −ζ(s∗ω)p(v).
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for all ζ ∈ 1Λ. Thus

dLg(p)−1(dpg(v)) = −(s∗ω)p(v).

and the corollary follows.

8.1.1 Choosing a Section which gives Gauge-Flat Leaves

In the remainder of this section we assume, once for all, that

• (1) τ : P → M is a super principal fiber bundle over the supermanifold M with

structure group a super Lie group G,

• (2) FM is a regular foliation of M whose leaves are sub-supermanifolds of di-

mension (r|s) and there is an induced foliation FP of P whose leaves are τ−1(L)

where L is a leaf of FM,

• (3) ω is an even connection on P with values in the super Lie algebra g such

that the curvature Ω of ω vanishes on the tangents to the leaves of FP . Here it

suffices to assume that Ω vanishes on even tangent vectors.

It follows from Theorem 8.1.12 that there exists an open cover {Uα}α∈I of M along

with local sections sα : Uα → P of τ and G∞ maps gα : Uα → G such that if L is a leaf

of FM such that L ∩ Uα 6= ∅, then

gα(q)
−1dqgα(v) = −(sα

∗ω)q(v) (8.22)

for all q ∈ U ∩ L and v ∈ Tq(U ∩ L) (even or odd).

Note that since FM is regular we may choose Uα such that Uα ∩ L is connected for
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each leaf L of FM.

We select Uα, sα, gα subject to these properties and utilize this notation throughout

this section. Next we introduce a notation to help describe leaf-dependent equations.

Definition 8.1.14. If η is a differential form on an open subset U of M, we write

η ≈ 0 iff for each leaf L of FM such that U ∩ L 6= ∅, i∗Lη = 0 where iL : U ∩ L →֒ U

is the inclusion mapping. If η, ζ are both differential forms on U we write η ≈ ζ iff

η − ζ ≈ 0.

Proposition 8.1.15. For each α ∈ I let s̃α : Uα → P be the local section of τ defined

by s̃α = gαsα. Then s̃∗αω ≈ 0.

Proof. Note that

s̃∗αω = Ad(gα)[sα
∗ω + (dL−1

gα
◦ dgα)] ≈ 0.

Proposition 8.1.16. Let s : U → P be a local section of τ and g : U → G a C∞

mapping which is constant on the leaves of FM. Let s̃ = gs, then

1. If s∗ω ≈ −h−1dh for some h : U → G then s∗ω ≈ −(hg−1)d(gh−1).

2. If s∗ω ≈ 0 then s̃∗ω ≈ 0

Proof. Both parts follow from the fact that s̃∗ω = Ad(g)[s∗ω+ dL−1
g ◦ dg] and the fact

that dg ≈ 0 (since g is constant on the leaves of FM). Thus s̃∗ω = Ad(g)[s∗ω] and

(2) follows immediately. The proof of (1) requires the additional observation that if

s∗ω ≈ −h−1dh, then

Ad(g)(s∗ω) ≈ −g(h−1dh)g−1 = −(hg−1)−1d(hg−1)
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where the last equality uses the fact that dg−1 ≈ 0.

8.1.2 Quotients on M and the Lift to P

Recall that the supermanifold M has an atlas A which has G∞ transition functions.

That same atlas gives M a Banach manifold structure, but it is not a maximal C∞

atlas on M (see [37] ).

Also recall that since the foliation FM is regular, it follows M/FM is a manifold,

and the quotient mapping is an open mapping (see [2]). In this section we impose

the additional requirement that the foliation FM on M induces a Hausdorff Banach

manifold structure on M/FM.

Now M is modeled on the Banach space Rp|q, and the leaves of FM are submanifolds

of dimension (r|s) as supermanifolds. If one uses charts of M which respect the leaf

structure of the foliation, then it follows that one obtains charts of M/FM with values

in C
(p−r|q−s), and consequently M/FM is a supermanifold of dimension (p− r|q − s).

These remarks follow from the Frobenius theorem discussed earlier and the detailed

proofs are left to the reader.

Notice that since the leaves of FP are of the form τ−1(L) where L is a leaf of FM,

P/FP is also a supermanifold. This is due to the fact that locally P has the form U×G

where U is an open subset of M. If U is chosen appropriately, so that its image under

the quotient mapping qM : M → FM is a chart domain in M/FM, then domains of

charts of P/FP will take the form qM(U) × V where V is a chart domain of the super

Lie group G. Moreover τ̃ : P/FP → M/FM is a super principal fiber bundle with
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structure group G.

So by assuming that FM is regular and that M/FM is a Hausdorff Banach manifold,

we obtain supermanifold structures on M/FM and P/FP . Let q = qM : M → FM
and ρ = ρP : P → P/FP denote the usual quotient mappings. By modifying the

arguments on page 207 of Abraham, Marsden, and Ratiu [2], one can show that the

quotient mappings q and ρ are G∞ mappings. Moreover, by a similar analysis of the

proof of Proposition 4.4.9 on page 334 of [2], one can show that the mappings q and ρ

have local G∞ sections. It is straightforward to show that the group G acts on FP via

g · ρ(p) = ρ(g · p) for all p ∈ P and g ∈ G. Finally, the mapping τ̃ : P/FP → M/FM
defined by τ̃ (ρ(p)) = q(τ(p)) for all p ∈ P is well-defined and τ̃ : P/FP → M/FM is

a super principal fiber bundle with structure group the super Lie group G.

Recall that we have shown that at each point x ∈ M there exists a local section

s̃ : U → P of τ such that x ∈ U and s̃∗ω ≈ 0. This suggest that there ought to exist

a connection ω̃ on P/FP which in an appropriate local section agrees with s̃∗ω in the

directions transverse to the leaves of FP . It appears that this is not generally true but

we will determine conditions which insure that it is true in our context. First notice

that given such a local section s̃ of τ we can define a local section ŝ of τ̃ as follows.

Define ŝ : q(U) → P/FP by ŝ(q(y)) = ρ(s̃(y)) for each y ∈ U .

It is easy to show that ŝ is well defined since leaves of FP are of the form τ−1(L)

where L is a leaf of FM. Moreover ŝ is a G∞-mapping since in a neighborhood of each

point in its domain one can factor ŝ as a composite ρ ◦ sτ ◦ sq where sτ , sq are local
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P ρ−−−→ P/FP
τ

y
yτ̃

M −−−→
q

M/FM

Figure 8.4: Quotient maps in Base and Bundle Space

G∞ sections of τ and q, respectively. Thus we have ŝ ◦ q = ρ ◦ s̃ and we want to define

a connection ω̃ on P/FP such that (ŝ∗ω̃) ◦ dq = ŝ∗ω. This procedure does not always

result in a well-defined mapping on ŝ∗ω̃. To see this, first observe that for y ∈ M and

p ∈ P

Tq(y)(M/FM) = { dyq(v) | v ∈ TyM } Tρ(p)(P/FP) = { dpρ(w) | w ∈ TpP }

In order that ŝ∗ω̃ be well defined, it must be the case that if y1, y2 ∈ M and q(y1) =

q(y2) ∈ M/FM and if v1, v2 are vectors such that v1 ∈ Ty1M, v2 ∈ Ty2M, dy1q(v1) =

dy2q(v2), then s̃∗ω̃)y1(v1) = s̃∗ω̃)y2(v2). Now if y1 = y2, this is immediate since

dy1q(v1) = dy1q(v2) implies that dy1q(v1 − v2) = 0, and consequently v1 − v2 is tangent

to the leaf of FM containing y1. Since s̃∗ω ≈ 0, (s̃∗ω)y1(v1 − v2) = 0 and consequently

(s̃∗ω)y1(v1) = (s̃∗ω)y1(v2).

Recall that if y1, y2 belong to the same leaf L, there is a vector field X defined on

an open subset of M containing y1, y2 such that X is tangent to the leaves of FM and

whose flow {φt} takes y1 to y2, i.e., both y1, y2 lie on an integral curve of X (see [2] page

330). Since X is everywhere tangent to L, φt(L) ⊆ L for all t. Choose a particular t
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such that φt(y1) = y2 and notice that

dy2q(v2) = dy1q(dy2φ−t(v2)).

Now the fact that dy1q(v1) = dy2q(v2) implies that dy1q(v1 − dy2φ−t(v2)) = 0 and

consequently that

(s̃∗ω)y1(v1) = (s̃∗ω)y1(dy2φ−t(v2)).

In this case we see that in order to obtain (s̃∗ω)(v1) = (s̃∗ω)(v2), it suffices to require

that

(s̃∗ω)(dy2φ−t(v2)) = (s̃∗ω)(v2)

or that

φ∗−t(s̃
∗ω) = (s̃∗ω).

This holds for all t iff d/dt(φ∗−t(s̃
∗ω)) = 0. Obviously requiring that LX(s̃∗ω) = 0

is sufficient to obtain the desired result. The preceding discussion is a proof of the

following theorem.

Theorem 8.1.17. If s̃ : U → P is a local section of τ and ŝ : q(U) → P/FP is the

local section of τ̃ defined by ŝ◦q = ρ◦ s̃, then in order that there be a well-defined gauge

field given on q(U) by

dyq(v) 7→ (s̃∗ω)y(v)

it is sufficient that LX(s̃∗ω) = 0 for each vector field X on M which is tangent to the

leaves of FM.

Remark 8.1.18. Note that if q : M → M/FM possesses a global slice, in the sense
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that there exists a G∞ mapping σ : M/FM → M such that q◦σ is the identity mapping

on M/FM, then one also has a global slice σ̃ : P/FP → P of ρ : P → P/FP . One

defines σ̃, by a minor abuse of notation, by first noting that elements of P/FP may be

identified with leaves τ−1(L) of P and one simply requires that σ̃(τ−1(L)) = τ−1(σ(L)).

It is easy to show that σ̃ is well-defined, and it is also a G∞-mapping since locally it

may be shown to be G∞ by the arguments similar to those of [2] referred to above. Also

notice that σ̃ factors through τ ; τ ◦ σ̃ = σ ◦ q. Given a section s̃ : U → P such that

s̃∗ω ≈ 0 and its corresponding section ŝ : q(U) → P/FP of τ̃ such that ŝ ◦ q = ρ ◦ s̃,

one can define a connection ω̃ on τ̃−1(q(U)) → q(U) by ŝ∗ω̃ = (ŝ∗ω) ◦ dσ (here ω̃ is

defined in the gauge ŝ, it is easy to deduce the required properties of a connection as in

the proof of the next theorem).

Now in general this definition is dependent on the choice of the slice σ. To clar-

ify this dependence and to relate this definition of ω̃ to the definition used in The-

orem 8.1.17 and in Theorem 8.1.19 consider two such slices σ1, σ2 both defined on

U ⊆ M/FM.

If u ∈ U , then σ1(u), σ2(u) both belong to the same leaf L of M and thus there is

a vector field X which is tangent to the leaves of FM and which is defined on an open

subset of M whose flow {φt} takes σ1(u) to σ2(u) (see [2], page 330 ). If ω̃ is to be

independent of the choice σ1, σ2, then it must be independent of σ1(u), σ2(u) for each

u ∈ U and so the flow {φt} of every local vector field X defined on U which is tangent

to the leaves of FM and which takes points of σ1(U) to points of σ2(U) must satisfy the

condition φ∗t (s̃
∗ω) = s̃∗ω. Thus one must have LX(s̃∗ω) = 0 for each such vector field
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X. It is in this sense that Theorem 8.1.17 has a converse.

Theorem 8.1.19. Assume that ω is an even connection on the super principle fiber

bundle τ : P → M such that its curvature Ω satisfies Ω ≈ 0 and such that for

every vector field X which is tangent to the leaves of FM, it follows that LX̃ω = 0

where X̃ is the ω-horizontal lift of X to P. Then there is a smooth connection ω̃ on

τ̃ : P/FP → M/FM which is induced by ω in the sense that if s̃ : U → P is a local

section of τ such that s̃∗ω ≈ 0 then ŝ∗ω̃ ◦ dq = s̃∗ω where ŝ : q(U) → P/FP is the local

section of τ̃ defined by ŝ ◦ q = ρ ◦ s̃.

Lemma 8.1.20. Assume that ω,X, X̃, s̃, ŝ are subject to the hypothesis of Theorem

8.1.19. Then (LX̃ω)(s̃(p)) = 0 iff (LX(ŝ∗ω)(p) = 0 for every p ∈ U .

Proof. Note that since X is tangent to the leaves of FM and s̃∗ω ≈ 0 we have

ω( d
dt

(s̃(φt(p)))) = ω(ds̃( d
dt

(φt(p))))

= (s̃∗ω)(X(φt(p)))

= 0

(8.23)

where {φt} is the flow of X. It follows that t 7→ s̃(φt(p)) is the horizontal lift of

t 7→ φt(p) to s̃(p). It follows that if {φ̃t} is the flow of X̃, then φ̃t(s̃(p)) = s̃(φt(p)) and

d

dt
(φ̃∗tω)s̃(p) = 0 ⇐⇒ d

dt
((s̃ ◦ φt)∗ω|p = 0 ⇐⇒ d

dt
(φ∗t (s̃

∗ω))|p = 0.

Consequently (LX̃ω)(s̃(p)) = 0 iff LX(ŝ∗ω)(p) = 0 as required. The lemma follows.

Proof. (of Theorem 8.1.19) Choose any point in M/FM and write it as q(yo) for

yo ∈ M. Let s̃ : U → P be a local section of τ such that s̃∗ω ≈ 0 and yo ∈ U .
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By Theorem 8.1.17 there exists a well-defined mapping from q(U) to g defined by

dyq(v) 7→ (s̃∗ω)y(v) for y ∈ U , v ∈ TyM. Define ŝ : q(U) → P/FP by ŝ ◦ q = ρ ◦ s̃.

Now define ω̃ on ŝ(q(U) by requiring that

ω̃ŝ(q(y))(dq(y)ŝ(dyq(v))) = (s̃∗ω)y(v) ω̃ŝ(q(y))(ζ
#) = ζ

where ζ ∈ g and ζ# is the fundamental vertical vector field determined by ζ and the

left action of G on P/FP . Now extend ω̃ŝ(q(y)) linearly to obtain a g-valued mapping

on

Tŝ(q(y))(P/FP) = dŝ(Tq(y)(M/FM) ⊕ T (τ̃−1(q(y))).

Thus ω̃ is a well-defined g-valued one form on Tŝ(q(y))(P/FP) such that ω̃(ζ#) = ζ .

One now defines ω̃ at other points on τ̃−1(q(y)) by requiring that L∗gω̃ = Ad(g)ω. It is

well-known that this construction gives rise to a well-defined smooth connection form

on all of the bundle τ̃−1(q(U)) → q(U). Now we know M/FM is covered by open

sets q(U) on which all of this is valid so it remains to show that if s̃1 and s̃2 are local

sections of τ defined on a common open set U12, then the connection ω̃ is independent

of which of the two local sections s̃1 and s̃2 is used to construct it. To see this, observe

that we assume that s̃∗1ω ≈ 0, s̃∗2ω ≈ 0 and there exists g : U12 → G such that s̃2 = gs̃1.

Since s̃∗2ω = Ad(g)[s̃∗1ω + g−1dg], we see that g−1dg ≈ 0 and so dg ≈ 0. It follows that

g is constant on leaves in FM. However, ŝ1 and ŝ2 are presumed to be local sections of

τ̃ defined on q(U12) such that ŝi ◦ q = ρ ◦ s̃i, i = 1, 2. Thus,

ŝ∗2ω̃ = (s̃∗2ω) ◦ dq = Ad(g ◦ q)[s̃∗1ω + (g ◦ q)−1d(g ◦ q)]
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and consequently ω̃ is a well-defined connection on all of P/FP . Theorem 8.1.19

follows.

8.2 Quotient Space Approach to Pregauge Trans-

formations

Assume in this section that the supermanifold M is locally modelled on the Banach

space R
4|4. Thus at each point we have a chart whose components are (xm, θα, θ̄α̇).

Additionally we assume the existence of four odd vector fields X1, X2, Y1, Y2 defined

on M such that Yi is (super)conjugate to Xi for i = 1, 2, and we assume that for each

point p ∈ M.

E0
p = {aX1(p) + bX2(p) | a, b ∈ 1Λ}

is a 0Λ-submodule of T 0
pM of dimension (2|0). Moreover we assume that E0 → M is

an integrable super sub-bundle of T 0M → M (see [27]) and that each point p ∈ M

there exists a chart (U, xm, θα, θ̄α̇) such that at each q ∈ U ,

Xi(q) =
∑2

α=1
Mα

i (q)Dα(q)

for some supermatrix Mα
i (q). Here Dα = ∂

∂θα +iσmαα̇θ̄
α̇ ∂
∂xm (we follow [116], see page 26)

Now we have two foliations F chiral
M ,Fantichiral

M of M. Leaves L̄ of Fantichiral
M sat-

isfy T 0
q L̄ = E0

q , while leaves L of F chiral
M satisfy T 0

q L = Ē0
q . where Ē0

q = {cY1(q) +

dY2(q) | c, d ∈ 1Λ} is the conjugate of E0
q , q ∈ L̄ ∩ L. Here we assume Y1, Y2 are linear
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combinations of {D̄α̇} locally where D̄α̇ = ∂
∂θ̄α̇ − iθ̄α̇σmαα̇

∂
∂xm . As sub supermanifolds

of M both L̄ and L are modelled on a Banach spaces which as supervector spaces

are isomorphic to T 0
q L̄ = E0

q and T 0
q L = Ē0

q , respectively. Thus L̄ and L are (0|2)

dimensional supermanifolds.

Note that if Eq = {aX1(q)+ bX2(q) | a, b ∈ Λ} then Eq is a super vector space over

0Λ of dimension (2|2) where the even part is Eq. As a sub-supermanifold L̄ is modelled

on a Banach space which as a super vector space is isomorphic to T 0
q L̄ = E0

q . Thus L̄

is a (0|2) dimensional supermanifold.

Note that E = E + Ē is a sub super vector bundle of TM but is not integrable

since in general {Dα, D̄α̇} does not close in E under the brackets of supervector fields

(for example, see [116], page 26).

Each of the foliations F chiral
M , Fantichiral

M give rise to principal fiber bundles,

τ chiral : P/F chiral
P → M/F chiral

M

τantichiral : P/Fantichiral
P → M/Fantichiral

M

where τ : P → M is any super principal bundle over M with super Lie group G. Let

EP and ĒP denote the subbundles of TP → P corresponding to the foliations F chiral
P

and Fantichiral
P respectively.

If ω is any even connection on P such that its curvature Ωp is zero on pairs of vectors

from Eq and such that Ωp is also zero on pairs of vectors from Ēq for each q ∈ P and if
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Figure 8.5: Loops Lift to Loops in Gauge Flat Leaf of Foliation

the Lie derivative of ω is zero along horizontal lifts of vectors tangent to leaves of the two

foliations, then there are induced connections ωchiral and ωantichiral on the corresponding

quotient bundles defined above. We regard these connections as reformulations of

the superconnections φ, φ̃ defined by Gieres on page 64 of [47]. Our formulation

encodes the chiral and antichiral ”pregauge transformations”, usually regarded as maps

Σ,Π : U → G such that D̄α̇Σ = 0 and DαΠ = 0, as ordinary gauge transformations

Σ̂, Π̂ on our quotient bundles. Indeed, the conditions D̄α̇Σ = 0 and DαΠ = 0 may be

regarded as requiring that dΣ(D̄α̇) = 0 and dΠ(Dα) = 0 which is equivalent to saying

that Σ and Π are constant on the leaves of F chiral
M and Fantichiral

M respectively. Thus

Σ,Π induce maps Σ̂, Π̂ on the space on which leaves are collapsed to points, and these

become ordinary gauge transformations.

It should be emphasized that to make contact with the physics literature one must

continue to work on the bundle τ : P → M; our quotient formalism merely provides
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a clearer conceptual framework at this point. The reason for this is that to obtain

N = 1 super Yang-Mills theory, one must introduce additional constraints on Ω called

the ”conventional constraints”. This constraint requires that for q ∈ M and v ∈ Eq,

w ∈ Ēq, Ωq(v, w) = 0.

Remark 8.2.1. We note that the constraints of super Yang-Mills theory have also

been studied by Bartocci and Bruzzo in [10] where they related the constraints to Weil

triviality. We would be interested in understanding better the connection of their result

and the work we present in this chapter.

We emphasize, however,that even before these extra constraints are imposed, we know

that at each point of M there exists an open set U on which one has coordinates

(xm, θα, θ̄α̇) and local sections s1, s2 of τ defined on U such that for maps U ,V : U → G

(s∗1ω)q(v) = −U(q)−1dqU(v)

for q ∈ U , v ∈ Ēq and

(s∗2ω)q(w) = −V(q)−1dqV(w)

for q ∈ U , w ∈ Eq. Moreover,

(s∗1Ω)(v1, v2) = 0

for v1, v2 ∈ Ēq and

(s∗2Ω)(w1, w2) = 0

for w1, w2 ∈ Eq.

It is often inconvenient to have two gauges s1, s2 when one will do. Let s̄ = s1 so

257



Chapter 8. Supergeometry of Super Yang-Mills Theory

that we have s̄∗ω
chiral≈ −U−1dU (on Ē ). Observe that there exists g : U → G such that

s̄ = gs2 and consequently

s̄∗ω = Ad(g)[(s∗2ω) + g−1dg]

= g(s∗2ω)g−1 + (dg)g−1
(8.24)

Thus on E

s̄∗ω = −gV−1(dV)g−1 + (dg)g−1

= −(Vg−1)−1d(Vg−1) + gV−1Vdg−1 + (dg)g−1

= −(Vg−1)−1d(Vg−1) + d(gg−1)

= −(Vg−1)−1d(Vg−1).

(8.25)

So if we replace V by Vg−1 we have a single gauge s̄ on U such that the connection ω

pulls back to a pure gauge along both the chiral and antichiral leaves

(s̄∗ω)|E = −V−1dV|E (s̄∗ω)|Ē = −U−1dU|Ē

Moreover the pullback of the curvature Ω vanishes on pairs of chiral and antichiral

vectors,

(s̄∗Ω)|E×E = 0 (s̄∗ω)|Ē×Ē = 0.

Recall that if A is a gauge field on an open subset of M then Giere’s definition of a

formal gauge transformation is

X
A = X−1

AX −X−1dX (8.26)
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If s is a local section of τ such that A = s∗ω and if we define s̃ = X−1s, we have

s̃∗ω = Ad(X−1)[(s∗ω) + (X−1)−1dX−1]

= X−1AX + (dX−1)X

= X−1AX −X−1dX .

(8.27)

Thus his gauge transformation requires us to use left actions on the principal bundle

and to transform via X−1. This combination is equivalent to working with a right

actions on principal bundles.

Throughout the remainder of this section s will denote an arbitrary local section

s : U → P of τ such that the connection ω pulls back to a pure gauge along both the

chiral and antichiral leaves

(s∗ω)|E = −V−1dV|E (s∗ω)|Ē = −U−1dU|Ē

And the pullback of the curvature Ω vanishes on pairs of chiral vectors and on pairs of

antichiral vectors,

(s∗Ω)|E×E = 0 (s∗ω)|Ē×Ē = 0.

where U ,V : U → G are (super)smooth functions. We know such local sections exist

at every point in M.

Now define A = s∗ω and F = s∗Ω. We see that

Aα = A(Dα) = (s∗ω)(Dα) = −V−1dV(Dα) = −V−1DαV
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and likewise

Aα̇ = A(D̄α̇) = (s∗ω)(D̄α̇) = −U−1dU(D̄α̇) = −U−1D̄α̇U

Moreover

Fαβ = (s∗ω)(Dα, Dβ), Fα̇β̇ = (s∗ω)(D̄α̇, D̄β̇), Fαβ̇ = (s∗ω)(Dα, D̄β̇)

The constraints Fαβ = 0, Fα̇β̇ = 0 are precisely the conditions (s∗Ω)(E × E) = 0,

(s∗ω)(Ē × Ē) = 0 respectively. The constraint Fαβ̇ = 0 is called the ”conventional

constraint”, and it can be stated in our bundle language as (s∗Ω)(E × Ē) = 0.

We believe Giere’s definitions of the superconnections φ, φ̃ on page 62 of [47] are

flawed. It seems certain what he wants are connections which are zero in chiral and

antichiral directions (respectively) but which agree with A in transverse directions. If

we are correct, then he should have

φ = UAU−1 + (dU)U−1

φ̃ = VAV−1 + (dV)V−1.
(8.28)

It will then follow, for example, that on Ē

φ = UAU−1 + (dU)U−1 chiral≈ U(−U−1)dUU−1 + (dU)U−1 (8.29)

hence,

φ
chiral≈ −(dU)U−1 + (dU)U−1 = 0. (8.30)
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A similar result applies for φ̃ over E ( replace
chiral≈ with

antichiral≈ etc...); φ̃
antichiral≈ 0. If

this is the case, then his φ, φ̃ induce our connections ωchiral on P/F chiral
P → M/F chiral

M

and ωantichiral on P/Fantichiral
P → M/Fantichiral

M as defined more generally in the previ-

ous sections of this chapter.

Now notice that if we define local sections of τ by schiral = Us and santichiral = Vs

then

s∗chiralω = Ad(U)[(s∗ω) + U−1dU ]

= UAU−1 + (dU)U−1

= φ.

(8.31)

Similarly we can derive s∗antichiralω = φ̃. Note also that we can connect both of these

sections by the equation santichiral = VU−1schiral so that if W = VU−1, then

φ̃ = (s∗antichiralω) = Ad(W)[(s∗chiralω) + W−1dW]

= WφW−1 + (dW)W−1

= WφW−1 −WdW−1.

(8.32)

Remark 8.2.2. In our view φ, φ̃, and A are all on the same conceptual level; they

are local gauge superfields which represent influence of the connection ω locally on the

base supermanifold. The various special sections we have considered and constructed

are chosen so that we can make contact with the physicists coordinate-dependent ar-

guments. As is typical with physics, the choice of special coordinates enables a simple

solution to otherwise intractable equations.

Giere’s Equation 2.58 in [47] also agrees with us that φ̃ = WφW−1−WdW−1 where
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W = VU−1 Also observe that since φ = UAU−1 + (dU)U−1, we may calculate that,

φα̇ = φ(D̄α̇) = UAα̇U−1 + (dU)(D̄α̇)U−1

= −U(U−1D̄α̇U)U−1 + (D̄α̇U)U−1

= 0

(8.33)

and

φα = φ(Dα) = UAαU−1 + (dU)(Dα)U−1

= −U(V−1DαV)U−1 + (DαU)U−1

= −W−1(DαWU)U−1 + (DαU)U−1

= −W−1(DαW)UU−1 −W−1W(DαU)U−1 + (DαU)U−1

= −W−1DαW.

(8.34)

Similar equations hold for φ̃α, φ̃α̇ and agree with Giere’s equations (2.65).

Giere’s denoted the curvatures of φ, φ̃ by F , F̄ respectively. In our notation

F = s∗chiralΩ = U(s∗Ω)U−1 = UFU−1

and

F̄ = s∗antichiralΩ = V(s∗Ω)V−1 = VFV−1

thus F̄ = WFW−1.
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8.3 Locally Supersymmetric Superspace

In this section we endeavor to describe a general class of supermanifolds which are

locally diffeomorphic to R4|4. Let (M, g) be a Lorentzian spacetime and assume that

M has a spin structure, then there is a double cover SM of the g-orthonormal frame

bundle OgM with structure group SL(2,C) the double cover of SO+(1, 3) (see [16]).

Note that SL(2,C) act on frames {ei} ∈ OgM via {ei} · S ≡ {ejΛ(S−1)
j

i} and acts on

R
0|4 via (θ, θ̄) · S ≡ (θβSαβ , θ̄

β̇S̄α̇
β̇
). We then let SL(2,C) act on the associated bundle

M = OgM×ρR
4 in the standard way. The associated bundle constructed in this man-

ner has the structure of a supermanifold locally modeled on R4|4.

We assume there exists an atlas A on M such that if (x, θ, θ̄) and (x̃, θ̃, ˜̄θ) are two

charts with intersecting domains, then

x̃n = gn(x)

θ̃α = Sαβ (x)θβ

˜̄θ
α̇

= S̄α̇
β̇
(x)θ̄β̇

(8.35)

where x = (x0, x1, x2, x3) ∈ R4|0 and S(x) ∈ SL(2,C). Thus x 7→ Sαβ (x) are transition

functions induced from those of the spin bundle SM as in Theorem 8.1.1 of [102].

As in the previous section we assume the existence of two integrable subbundles

E ,Ė of T 0M → M such that relative to a chart (x, θ, θ̄) in A we have E =< Dα >,

Ė =< D̄α̇ > where

Dα =
∂

∂θα
+ iσmαα̇θ̄

α̇ ∂

∂xm
D̄α̇ = − ∂

∂θ̄α̇
− iθασmαα̇

∂

∂xm
(8.36)
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We consider a subbundle Z of the frame bundle of M defined by

Z = {(ea, eα, eα̇) | {ea} ∈ OgM, eα ∈ E , eα̇ ∈ Ė}

where we identify a frame {ea} of M with its corresponding frame in M defined as

follows.

First recall that the spin connection on SM induces a spin connection on each of

its associated bundles, and thus it induces one on τB : M → M . Let H ⊆ T 0M be the

subbundle of horizontal vectors relative to the induced connection. Now we identify

{ea} with (dτB|H)−1(ea) a basis of the bundle H →M at each point of the fiber τ−1
B (p)

of M over the point p ∈M at which {ea} is defined. Relative to a chart (x, θ, θ̄) in A,

points of Z take the form,

(ema
∂

∂xm
, λαDα, µ

β̇D̄β̇) (8.37)

where ema ∈ 0Λ and λα, µβ̇ ∈ 1Λ. The local bases {Dα}, {D̄α̇} of E , Ė respectively can

be reformulated in terms of the frame {ea} as follows. We denote the inverse of ema by

e a
m . Thus while ea = ema

∂
∂xm , we also have ∂

∂xm = e a
m ea. These matrices ema serve to

convert ”curved” indices to ”Lorentz” indices. For example, on the entire chart domain

we can define σaαα̇

σaαα̇ ≡ eamσ
m
αα̇

so that σaαα̇ transforms via the Lorentz index a. In terms of the frames we can rewrite

equation 8.36

Dα = ∂
∂θα + iσaαα̇θ̄

α̇ea

D̄α̇ = − ∂
∂θ̄α̇ − iθασaαα̇ea.

(8.38)
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If the frame {ea} is transformed to {ẽb} then ẽb = lab ea for some l ∈ SO+(1, 3) and

σaαα̇ea = σ̃aαα̇ẽa

is invariant. Notice that the structure group of Z is SO+(1, 3) × SL(2,C) since two

frames (ẽa, ẽα, ẽα̇) and (ea, eα, eα̇) are related by the equations,

ẽa = lbaeb, ẽα = Sβαeβ, ẽα̇ = S̄ β̇α̇eβ̇

for l ∈ SO+(1, 3), S ∈ SL(2,C).

To understand how these relate to one another in local coordinates observe that if we

denote the inverse of the matrix l by l̃, then eb = ek b
∂
∂xk and eb = l̃abẽa = l̃abẽ

m
a

∂
∂x̃m =

l̃abẽ
m
a
∂xn

∂x̃m
∂
∂xn so enb = l̃abẽ

m
a
∂xn

∂x̃m . Thus locally a change of frame in M is encoded as a

tensor transformation law.

To proceed we require a reduction Z0 of Z to the group SL(2,C). We assume that

Z0 ⊆ Z such that if (ẽa, ẽα, ẽα̇) and (ea, eα, eα̇) both belong to Z0, then there exists

S ∈ SL(2,C) such that

ẽa = Λ(S−1)
b

aeb

ẽβ = Sαβ eα

ẽα̇ = S̄ β̇α̇eβ̇

(8.39)

where Λ(S−1) indicates the double cover map of SL(2,C) onto SO+(1, 3) (see [16]).

Remark 8.3.1. We do not know when such reductions are possible generally. Clearly
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if A has one global chart as in the rigid superspace case, this reduction holds. Also if

M = M × R0|4 is trivial this reduction is possible. In general it could depend on the

foliations E , Ė and so there may be topological obstructions. We would be interested in

knowing the answer to this question.

We now briefly explore the local consequences of assuming the existence of such a

reduction of Z0 of Z to the group SL(2,C).

If there exists such a reduction Z0 and if one has (ea, Dα, D̄α̇) ∈ Z0 for ea = ema
∂

∂xm

relative to a chart (x, θ, θ̄) ∈ A and if (ẽa, D̃α,
˜̄Dα̇) is also in Z0 relative to another

overlapping chart (x̃, θ̃, ˜̄θ), then one has

ẽa = ẽma
∂

∂x̃m
, ea = ema

∂

∂xm
, ẽb = Λ(S−1)

b

aeb (8.40)

D̃α = SβαDβ
˜̄Dα̇ = S̄ β̇α̇D̄β̇ (8.41)

relative to these charts. Recall that

x̃n = gn(x)

θ̃α = Sαβ (x)θβ

˜̄θ
α̇

= S̄α̇
β̇
(x)θ̄β̇

(8.42)

and observe that we may choose curved coordinates such that at a point they are

Lorentzian, hence

Sαβσ
m
αα̇S̄

α̇

β̇
Λ(S−1)

n

m = σn
ββ̇
.
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Now multiply by e a
n to convert n to the Lorentz index a,

Sαβσ
m
αα̇S̄

α̇

β̇
Λ(S−1)

n

me
a

n = σa
ββ̇

Then rewrite σmαα̇ = σbαα̇e
m
b

Sαβσ
b
αα̇S̄

α̇

β̇
embΛ(S−1)

n

me
a

n = σa
ββ̇

Observe that embΛ(S−1)
n

me
a

n = Λ(S−1)
a

b . Thus,

Sαβσ
b
αα̇S̄

α̇

β̇
Λ(S−1)

a

b = σa
ββ̇

which is precisely the Lorentz index version of the identity.

Recall from the calculation above that a change in frame is locally encoded by the

tensor transformation law enb = l̃abẽ
m
a
∂xn

∂x̃m . In the reduced bundle Z0 the matrix l

takes the form l = Λ(S). Consequently in the reduced bundle this transformation law

becomes

enb = Λ(S−1)abẽ
m
a

∂xn

∂x̃m

Thus (en b) is a tensor in both n, b indices except one has that l = Λ(S) when we

require a reduction. Notice that

∂

∂θ̃α
=
∂θβ

∂θ̃α
∂

∂θβ
= (S−1)

β

α

∂

∂θβ

where the matrix S is a function of x which is in the intersection of the domains of the
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two charts. We suppress this dependence below for simplicity. Consequently,

D̃α = ∂

∂θ̃α
+ iσaαα̇

˜̄θα̇ẽa

= (S−1)
β

α
∂
∂θβ + iS̄α̇

β̇
θ̄β̇σaαα̇Λ(S−1)

b

aeb

= (S−1)
β

α
∂
∂θβ + iθ̄β̇S̄α̇

β̇
σaαα̇Λ(S−1)

b

aeb

= (S−1)
β

α
∂
∂θβ + iθ̄β̇(S−1)

β

ασ
b

ββ̇
eb

= (S−1)
β

α[
∂
∂θβ + iθ̄β̇σb

ββ̇
eb]

= (S−1)
β

αDβ

(8.43)

from which it follows that upon change of chart, Dα transforms like a spinor.

8.4 Consequences of the Bianchi identities

At this point we consider the implications of the Bianchi identity coupled with our

restrictions on the curvature. Recall that the Bianchi identity is 0 = DΩ = dΩ+Ω∧ω

which in a local gauge assumes the form dF + F ∧ A = 0 (see page 97 of [116]). Wess

and Bagger show on pages 104-105 of [116] that in coordinates the constraints

Fαβ = Fα̇β̇ = Fαβ̇ = 0 (8.44)

along with the Bianchi identities imply the existence of fields W α,W
α̇

such that

Faα = −iσaαβ̇W
β̇

Faα̇ = −iW βσaβα̇β.
(8.45)
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In our situation we have assumed the existence of a reduction Z0 of the bundle Z to

an Sl(2,C) subbundle. So locally there exist vector fields ea, eα, eα̇ such that at each

point p of an open subset of M,

(ea(p), eα(p), eα̇(p)) ∈ Z0.

If we define

Fαβ = F(eα, eβ), Fα̇β̇ = F(eα̇, eβ̇),

Faα = F(ea, eα), Faα̇ = F(ea, eα̇)
(8.46)

and invoke the Bianchi identities along with the constraints in Equation 8.44, then

calculations analogous to those in Wess and Bagger yield the identity

(−2i)σaβα̇Fαa + (−2i)σaαα̇Fαβ = 0 (8.47)

along with an additional identity which arises since we work in a nonholonomic frame,

namely

fdbcFad − fdacFdb = 0 (8.48)

where

fabc = e m
b de a

m (ec). (8.49)

Notice that the identities are written in terms of the vector fields ea, eα, eα̇. It follows

from Equation 8.44 and 8.47 that we can define spinor fields

W α = (−i/4)Faα̇σ
aα̇α

W
α̇

= (−i/4)Faασ
aα̇α.

(8.50)
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The only difference in these fields from those of Wess and Bagger is that our fields are

defined in terms of local sections of the bundle Z0 → M and so are independent of

local data. To see this for W α, let (x̃m, θ̃α, θ̃
α̇

) and (xm, θα, θ
α̇
) be charts in our atlas A

with domains Ũ ⊆ M, U ⊆ M, respectively. On these domains we have local sections

(ẽa, ẽα, ẽα̇) and (ea, eα, eα̇) of Z0 defined in terms of charts as in Equation 8.37. We

have that

ẽa = Λ(S−1)baeb ẽα = S β
α eβ ẽα̇ = S

β̇

α̇ eβ̇ . (8.51)

Now

W̃ α = (−i/4)F(ẽa, ẽα̇)σ
aα̇α

= (−i/4)Λ(S−1)baS
β̇

α̇ F(eb, eβ̇)σ
aα̇α

= (−i/4)F(eb, eβ̇)Λ(S−1)baS
β̇

α̇ σ
aα̇α

= (−i/4)F(eb, eβ̇)σ
bβ̇β(S−1)αβ

= W β(S−1)αβ .

(8.52)

Since the two sets of frames of Z0 are related by S ∈ Sl(2,C), this shows that one has

a well-defined spinor field Ŵ defined on the bundle Z0 which in local sections s̃, s are

related to the fields W̃ ,W by s̃∗Ŵ = W̃ , s∗Ŵ = W. We see that W αWα is an Lorentz

invariant on M.

We can show through very similar arguments that W̄α̇ transforms as a dotted-Weyl

spinor on an overlap. And W̄ α̇ transforms inversely to W̄α̇ with respect to a Lorentz

transformation. Thus W̄α̇W̄
α̇ forms a Lorentz scalar.

Finally define an action SW in the usual way,

SW =

∫
d4x tr

[
W αWα|θθ + W̄α̇W̄

α̇|θ̄θ̄
]
. (8.53)
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This action is a supersymmetric, real, gauge and Lorentz invariant. The ”tr” is over

the group representation which we have not discussed. We admit that some details

are hidden in our current notation. See [47] for additional discussion concerning the

reality conditions. Also see Equation 10.80 in Chapter 10 for how this action unfolds

into many terms at the level of component fields.
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Supersymmetry and Superfields

9.1 Overview

A superfield in general is a supersmooth mapping from Kp|q to Kr|s. The analysis of

such superfields is straightforward ( as we explored in depth in previous chapters) in

view of the fact that superfields are mappings between Banach spaces. Our focus in

this section will not be so general. Instead, we will focus on superfields that are used

to construct models which have N = 1 supersymmetry.

We choose to study mappings from R
4|4 to Cc. This space is known as N = 1

rigid superspace. The label ”rigid” derives from the fact that superspace is trivial as

a supermanifold; it is parametrized by a single global chart into R4|4. The mappings

we are studying in this section are termed unconstrained scalar bosonic superfields in

the physics literature. Our goal here is simply to make explicit the connection between

our real parametrization of R4|4 and the Weyl spinor based parametrizations of R4|4

prevalent throughout the physics literature on superfields on superspace.
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Historically, it was Salam and Strathdee who made the idea of a superfield popular.

Other physicists had made some preliminary studies of supersymmetry from what we

would term the component field viewpoint. Such arguments can be made without any

explicit reference to superspace. One can begin with a set of bosonic and fermionic fields

over Minkowski space and then study supersymmetry operations which mix the fields

together. Generally we define a supersymmetry transformation to be one which mixes

fields of different Lorentz type; that is, supersymmetry transformations mix together

fields with different spin. With those operations in mind, one can then construct

actions so that they are invariant under those supersymmetry operations. Conversely,

one could begin with an action and then discover it has supersymmetries. All of

that could be done without superspace, but it is much more efficient and clear to

use the superfield approach where the whole collection of fields (sometimes termed a

supermultiplet) is described compactly by a single superfield. The parametrization

of superspace that Salam and Strathdee used was the one we have labled the Weyl

parametrization, as is usually the case in physics, all the calculations were done in

those coordinates (well almost all, there is also a notion of chiral coordinates ). Only

later did a geometric coordinate free formulation emerge. It should be noted that the

mathematics of superspace was known to Berezin and others before its application by

Salam and Strathdee. Grassmann variables have wide application throughout modern

field theory. For example, they are used in path integrals involving fermionic fields and

the BRST cohomology. Our interest here is quite narrow. We just want to understand

explicitly what superspace is and how it encodes N=1 supersymmetry. This is an

interesting question because N=1 supersymmetry forms the basis of what is known as

the MSSM. That is the Minimal Supersymmetric Standard Model. This model has

273



Chapter 9. Supersymmetry and Superfields

predictions which differ from the current Standard Model of particle physics. It is

possible that the Large Hadron Collider (LHC) at CERN will detect supersymmetry

as early as 2010. Of course, if it is not detected the theorists can always push off its

discovery a few more TeV’s (or in experimental terms a few decades).

In R4|4 there are four independent real Grassmann variables; we denote them φi for

i = 1, 2, 3, 4. Here φ plays the role that θ assumed previously. Because φiφi = 0, there

are finitely many terms in the fermionic Taylor series for the supersmooth function

F : R4|4 → Cc

F = F0 + Fiφ
i + Fijφ

iφj + Fijkφ
iφjφk + Fijklφ

iφjφkφl (9.1)

To be more careful we should mention that F depends on (xm, φi) whereas

F0, Fi, Fij, Fijk, Fijkl are all Cc-valued or Ca-valued functions of the even coordinates

xm.

Alternatively, we can expand F : R4|4 → Cc in the component field expansion

relative to the Weyl parametrization of superspace

F = f + θφ+ θ̄X̄ + θθm+ θ̄θ̄n+ θσmθ̄vm + θθθ̄λ̄+ θ̄θ̄θψ + θθθ̄θ̄d. (9.2)

Each of the component fields is an ordinary relativistic quantum field. However, there

are several inequivalent representations of the Poincare group that appear here. Scalar

fields f,m, n, d (spin zero), Weyl spinor fields φ, ψ, λ̄, X̄ (spin 1/2), and the vector field

vm (spin one). Contained in this single superfield we have all the necessary fields to

construct known particle physics. Assembling them in this one superfield assumes an

additional symmetry of physics which is called supersymmetry. Supersymmetry asserts
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that there is a balance between the number of bosons and the number of fermions in a

theory. A representation of supersymmetry then necessarily has that property. From

our analysis above we see that there are 8 bosonic degrees of freedom (4 scalars plus

one 4-vector), and there are 8 fermionic degrees of freedom (4 Weyl spinors). Until we

place further constraints on the system these are all complex degrees of freedom.

9.2 Poincare Algebra

The Poincare algebra is a Lie algebra that is formed by the four generators of spacetime

translations (Pm) and the six generators of the Lorentz transformations (Jmn = −Jnm).

For now we can view the Poincare algebra as an abstract Lie algebra over C defined

by the following relations, note ηij is the Minkowski metric tensor with diag(η) =

{−1, 1, 1, 1}
[Pm, Pn] = 0

[Pm, Jnk] = i(ηmnPk − ηmkPn)

[Jmn, Jlk] = i(ηnlJmk − ηmlJnk + ηmkJnl − ηnkJml)

(9.3)

where l, k,m, n = 0, 1, 2, 3. Lorentz transformations include ordinary rotations in three

dimensions as well as boosts. Boosts are transformations to moving frames of reference,

they can be viewed as hyperbolic rotations of time and space. In particular,

Jij = ǫijkJk i, j, k = 1, 2, 3 generate rotations

Ji0 = −Ki i = 1, 2, 3 generate boosts.
(9.4)

To be careful, we should emphasize that the operators above are not the transforma-

tions. Instead they are the generators of the transformations. Mathematically they
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form the Lie algebra corresponding to the Lie group of transformations. Later on, we’ll

expand on the relation of the Lie algebra to the Lie group as it relates to the Poincare

algebra and group.

For now we prefer to point out that the Poincare algebra has several interesting

subalgebras,

[Ji, Jj ] = ǫijkJk su(2,C)

[Pi, Pj] = 0 Abelian subalgebra
(9.5)

The existence of the su(2,C) subalgebra was particularly striking in the 1950’s and

1960’s when much of the theoretical physics communities efforts were placed in under-

standing the role isospin played in fundamental interactions. Since isospin also has a

su(2,C) algebra structure it was (and is) tempting to try to identify the su(2,C) of

isospin with the su(2,C) of the Poincare algebra. To be less naive, one might ask if

there is a way to extend the Poincare algebra so that the enlarged version has subalge-

bras from which isospin could be derived. This would have been very beautiful in some

sense as it would have placed fundamental nuclear interactions on the same foundation

as momentum or energy (which are associated to Pm). However, this ambitious dream

to enlarge the Poincare algebra was shot down by the famous paper by Coleman and

Mandula (Physical Review 159,1251 (1967)). They proved a very important no-go

theorem which stated that it was not possible to enlarge the Poincare algebra without

violating important symmetries of the S-matrix. The dream of understanding isospin

and other ”external” symmetries in a more intrinsic geometric manner lives on. This

theorem merely shows that it cannot be accomplished in a strictly conventional way.

The standard formalism of relativistic quantum field theory will not admit it. To give

isospin a geometric (in the sense of real spatial origins ) meaning will require a change
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in fundamental formalism like strings, twistors or perhaps noncommutative geometry.

Interestingly, the no-go theorem of Coleman and Mandula sparked a very different

line of inquiry than one might have expected. Hagg, Lopuszanski and Sohnius (Nuclear

Physics B 88 257 (1975)) noticed that the no-go theorem’s proof assumed that the

additional operators to the Poincare algebra should obey commutator brackets. Why

should that be ? Why can’t there be physical symmetries which are generated by

anticommuting generators? Hagg, Lopuszanski and Sohnius argued that the no-go

theorem was too narrow in its assumptions, that in fact it was possible to extend

the Poincare algebra by adding generators which anticommute. They argued that for

physical reasons (absence of higher spin states for example) that the anticommuting

generators must obey the following algebraic structure,

{QA
α , Q

B
β } = ZAB

{Q̄A
α , Q̄

B
β } = Z̄AB

{QA
α , Q̄

B
β } = 2σm

αβ̇
Pmδ

AB

(9.6)

where the anticommutator is {X, Y } = XY + Y X, σm
αβ̇

are the Pauli matrices for

m = 1, 2, 3, and A,B = 1, 2, 3, . . .N . Indices like α, β, γ are called ”undotted indices”

while indices like α̇, β̇, γ̇ are called ”dotted indices”, both types take values 1 or 2 hope-

fully without danger of confusion. The central charges ZAB commute with everything

and are antisymmetric in A and B. These relations plus the Poincare algebra form the

N=1,2,3,4 super Poincare algebras.

The case of interest to us is N = 1 for which there are no central charges since

indices A,B=1. We will call the generators Qα, Q̄α̇ the supercharges. In total the super
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Poincare algebra is defined by the relations,

[Pm, Pn] = 0

[Pm, Jnk] = i(ηmnPk − ηmkPn)

[Jmn, Jlk] = i(ηnlJmk − ηmlJnk + ηmkJnl − ηnkJml)

[Qα, Pm] = 0

[Q̄α̇, Pm] = 0

[Jmn, Qα] = −i(σmn) β
α Qβ

[Jmn, Q̄α̇] = −i(σ̄mn) β̇
α̇ Q̄β̇

{Qα, Qβ} = 0

{Q̄α, Q̄β} = 0

{Qα, Q̄β} = 2σm
αβ̇
Pm

(9.7)

The matrices σmn and σ̄mn are formed from antisymmetrized products of the Pauli

matrices. The details need not concern us here (see Wess and Bagger [116] for many

useful formulas dealing with such objects; generally we follow their conventions).

We should pause and note that the super Poincare algebra is a Z2-graded Lie

algebra. It possesses both even and odd elements. The bracket is in fact a superbracket

which is sometimes a commutator and other times an anticommutator. The Jacobi

identity of Lie algebras is replaced by the graded Jacobi identity, but generally things

look mostly the same as Lie algebras. To see a rather complete account of Z2-graded

algebras over C we point the reader to the classic paper by Kac [69].
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9.3 The Coset View of Spacetime

In the previous section we often referred to the objects of consideration as ”operators”,

but that begs the question ”operators on what?”. The answer is not unique as there

are many possible representations. One very fundamental type of operator is the linear

differential operator on functions of space and time. Modulo time this is often what one

encounters in the study of quantum mechanics. For example the formulas Px = i ∂
∂x

or

Jz = x ∂
∂y
−y ∂

∂y
ought to be familiar to the introductory student of quantum mechanics.

In the discussion that follows, we will see how to derive the form of the differential

operators from the starting point of just knowing the Lie algebra. We will explain how

to use the algebra to construct the group. First, we derive the transformations that the

Poincare algebra induces on spacetime, then once that is established we will explain

how to choose a representation of the algebra in terms of linear differential operators

acting on functions of spacetime.

Recall a nontrivial identity known as the Baker-Cambell-Hausdorff relation,

exp(A)exp(B) = exp(A +B +
1

2
[A,B] +

1

12
[[A,B], A] − 1

12
[[A,B], B] + . . . ) (9.8)

The higher order terms can again be formed by taking 3,4,5,... fold nested commutators.

This relation allows us to reconstruct a neighborhood of the identity in the group from

the algebra. The fact that we consider a Lie algebra means that we know how to

calculate all the commutators from the very definition of a Lie algebra. This process

is referred to as exponentiation; we exponentiate the algebra g to form the group G.
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9.3.1 Momenta Pm Generate Translations in Space and Time

Consider then the following calculation, let A = xmo Pm and let B = xmPm where

xmo , x
m ∈ R and where we utilize the Einstein conventions; summation over the index

m = 0, 1, 2, 3 is implicit. Note that the momenta Pm commute so all the commutator

terms vanish,

exp(ixmo Pm)exp(ixmPm) = exp(ixmo Pm + ixmPm) = exp(i(xmo + xm)Pm). (9.9)

Let us explain the meaning of the calculation above; multiplying on the right by

exp(ixmPm) has shifted the initial position xo to the new position xo + x.

exp(ixmo Pm)exp(ixmPm) −→ xmo 7→ xmo + xm. (9.10)

Hence the enigmatic claim that momentum are the generators of translations. Note

that to make this claim we have identified the parameters xmo as an event in spacetime.

This identification is called the ”coset” view of spacetime although it is not clear yet

here why the term ”coset” is warranted.

9.3.2 Jmn Generate Boosts and Rotations

Next let ωmn ∈ R and consider right multiplication by exp(iωmnJmn),

exp(ixkoPk)exp(iω
mnJmn) = exp(ixkoPk + iωmnJmn − 1

2
[xkoPk, ω

mnJmn] + . . . ).

(9.11)
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Lets calculate the commutator separately, let (xmo ) = (t, rj) for j = 1, 2, 3,

[xkoPk, ω
mnJmn] = xkoω

mn[Pk, Jmn]

= xkoω
mni(ηkmPn − ηknPm)

= i(tωmn(η0mPn − η0nPm) + rjωmn(ηjmPn − ηjnPm))

= i(tωmn(−δ0mPn + δ0nPm) + rjωmn(δjmPn − δjnPm))

= i(−tω0nPn + tωm0Pm + rjωjnPn − rjωmjPm)

= i(2tωm0Pm − 2rjωmjPm)

= 2i(tωm0 − rjωmj)Pm)

(9.12)

In the last couple of steps we have assumed that the parameters ωmn = −ωnm.

To summarize we can see that the position xo is shifted via right multiplication by

exp(ωmnJmn), as follows

xmo 7→ x0
m − tωm0 + rjωmj . (9.13)

Now this is only to the first order in the parameters ωmn. A short examination of the

higher commutators will reveal that they also contribute to the transformation. We

leave such calculations as an character building exercise for the reader. At this stage in

the calculation it takes a little imagination to see why the motion above are rotations

and boosts. To see this we break up the parameters ωmn into parameters of boosts and
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rotations,

ω01 = φ1 rapidity of the x− boost

ω02 = φ2 rapidity of the y − boost

ω03 = φ3 rapidity of the z − boost

ω12 = θ3 Euler angle w.r.t the z − axis

ω31 = θ2 Euler angle w.r.t the y − axis

ω23 = θ1 Euler angle w.r.t the x− axis

(9.14)

In short, 1
2
ωmnJmn = φiKi + θiJi where i is summed over i = 1, 2, 3.

Now we specialize to the case that the parameter is zero for all components except

ω12 = −ω21 = θ, this will reduce the transformation since ωm0 = 0 leaving just

t 7→ t

rj 7→ rj + rkωjk
(9.15)

Expanding (rj) = (x, y, z) we find,

t 7→ t

x 7→ x+ yθ

y 7→ y − xθ

z 7→ z.

(9.16)

Behold, this is the first order approximation of a rotation around the z-axis by an angle

θ. If you don’t see it yet, then recall that such a rotation could be written in matrix
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form as follows (ignoring time t),




x

y

z




7→




cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1







x

y

z




=




xcos(θ) + ysin(θ)

−xsin(θ) + ycos(θ)

z



. (9.17)

Then to first order in θ we know that cos(θ) = 1 and sin(θ) = θ. Thus we find that

J12 = J3 generates a rotation around the z-axis. Our proof is approximate here; we

have only checked the first order. Higher orders are straightforward but tedious to

check.

Next we specialize to the case that ωmn is non-zero only for ω01 = −ω10 = φ. We

claim that this choice of parameter will generate a boost in the x-direction. Here our

previous calculations specialize to,

t 7→ t+ xφ

x 7→ x+ tφ

y 7→ y

z 7→ z.

(9.18)

This is the first order approximation to a boost in the x-direction by rapidity φ. For

the reader unfamiliar with rapidity let us introduce the concept and explain how it

relates to a Lorentz transformation. Recall first that a Lorentz transformation is a

change of coordinates to a moving frame of reference. If the new frame has velocity

v with respect to x in the old coordinates, and the two coordinate systems coincide

at the origin, then we can relate the new moving coordinates (t′, x′, y′, z′) and the old

283



Chapter 9. Supersymmetry and Superfields

coordinates (t, x, y, z) by the standard Lorentz transformation.

t′ = γt+ γβx

x′ = γx+ γβt

y′ = y

z′ = z

(9.19)

We take the speed of light c=1 for convenience and have introduced the parameters

β = v/c = v and γ = 1/(
√

1 − β2). Define then the rapidity φ by the equation

tanh(φ) = β. Recall the Pythagorean theorem for hyperbolic functions,

cosh2(φ) − sinh2(φ) = 1 =⇒ tanh2(φ) =
sinh2(φ)

cosh2(φ)
=

sinh2(φ)

1 + sinh2(φ)
= β2. (9.20)

Solve for sinh2(φ),

sinh2(φ) =
β2

1 − β2
= β2γ2. (9.21)

Thus we find that sinh(φ) = βγ and consequently cosh(φ) = γ. Rewrite the standard

Lorentz transformation in terms of rapidity, (this makes manifest the fact that boosts

are hyperbolic rotations)




t′

x′

y′

z′




=




cosh(φ) sinh(φ) 0 0

sinh(φ) cosh(φ) 0 0

0 0 1 0

0 0 0 1







t

x

y

z




=




γt+ γβx

γx+ γβt

y

z



. (9.22)

To first order in φ one can show cosh(φ) = 1 and sinh(φ) = φ. Thus, we find our claim

was true; J01 = K1 generates a boost in the x-direction. Again we emphasize that this
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proof is incomplete; we leave the higher orders to the reader to check.

9.3.3 Poincare/Lorentz = Spacetime

The Poincare group is generated by exponentiation of the Poincare algebra. An arbi-

trary element has the form,

exp(ixmPm + iωmnJmn) (9.23)

By the Poincare algebra and the Baker Cambell Hausdorff relation we can prove that

this factors,

exp(ixmPm + iωmnJmn) = exp(iymPm)exp(iamnJmn). (9.24)

This is a long calculation. ym are defined by infinite series of the parameters xm and

ωmn. The details need not concern us. What is important is to see that we divide by

elements of the form exp(iamnJmn) that will leave just the coset exp(iymPm). As we

have explored in depth in the previous sections it is natural to identify the coset with

Minkowski space; indeed, multiplication in the Poincare group naturally induces the

standard translations, rotations and Lorentz transformations. This is the coset view

of space time.

9.3.4 Linear Differential Operators Represent the Poincare

Algebra

We narrow our focus to infinitesimal motions of the Poincare group. Our first goal here

is to find a linear differential operator D(Pm) which represents momenta and generates
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translations in the following sense, for y small,

exp(iymD(Pm))xk = (1 + iymD(Pm))xk = xk + yk. (9.25)

Notice here in our view we do not have to assume the far r.h.s. of the equation. Rather,

it is derived from the coset view of spacetime and the Poincare algebra. This view-

point takes the algebra as the starting point and attempts to derive other ideas from

that foundation. Examining the equation above yields,

iymD(Pm)xk = yk =⇒ D(Pm) = −i ∂

∂xm
. (9.26)

As an abuse of notation we will hereafter identify Pm with −i ∂
∂xm . Notice that the fact

that partial commutes shows that Pm = −i ∂
∂xm satisfies [Pm, Pn] = 0. Now let’s try

to deduce the form of the operators that represent Jmn. Let ωmn be small and write

(xm) = (t, rj),

exp(iωmnD(Jmn))x
k = (1 + iωmnD(Jmn))x

k = xk − tωm0 + rjωmj. (9.27)

Recall the right hand side followed from the Poincare group acting on the coset space.

Also, there is an implicit summation over j = 1, 2, 3. Examining the equation above

reveals that,

iωmnD(Jmn)x
k = −tωm0 + rjωmj. (9.28)
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Let us specialize to the particular case of J12 = J3. Recall we derived that this operator

generated a rotation around the z-axis by an angle θ,

iθD(J12)x
k = yθδk1 − xθδk2 . (9.29)

It is not difficult to see that

D(J12) = −i(x ∂
∂y

− y
∂

∂x
) (9.30)

satisfies the condition. Since J12 = J3 we can, by a slight abuse of notation, claim,

J3 = −i(x ∂
∂y

− y
∂

∂x
). (9.31)

The abuse here is that the algebra and its representation are identified. By calculations

very similar to those we have thus far done, one can calculate the following represen-

tation of the Poincare algebra by linear differential operators that act on space time,
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P0 = −i∂t
P1 = −i∂x
P2 = −i∂y
P3 = −i∂z
J1 = −i(y∂z − z∂y)

J2 = −i(z∂x − x∂z)

J3 = −i(x∂y − y∂x)

K1 = i(t∂x − x∂t)

K2 = i(t∂y − y∂t)

K3 = i(t∂z − z∂t).

(9.32)

This makes functions of spacetime states in this representation; That is, to represent the

Poincare algebra, we can simply take functions of spacetime, then the operators above

induce an action of the Poincare algebra onto such functions. An obvious question is

whether this is possible for the super Poincare algebra, and if so what space plays the

role of spacetime. This is the question that we really want to answer in this chapter.

9.3.5 Finding the Algebra Given the Group

The direction we have taken in this section is somewhat counter to what one usually

finds in literature. It is much more natural to begin with the group and then derive the

algebra. This really amounts to differentiation, whereas what we have attempted in

this section is integration. For a good account of how to find the Poincare algebra from

the group, we point the reader to chapter 2 of Quantum Field Theory [107]. He shows

how the Lie algebra is found by looking at the derivatives of the group at the identity.
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Specifically, if one considers curves through the identity generated by one-parameter

groups, then one can form the vector space for the Lie algebra by taking the span of

the tangents to those curves at the identity. The group multiplication near the identity

will yield the bracket for the tangent vectors viewed as derivations. Ryder also provides

more physical motivations for the topics in consideration here.

9.4 Looking Ahead to Superspace

We have gone to some trouble to explain how one may represent an algebra in terms of

linear differential operators that act on functions of the parameter space. Actually, we

did not need the whole parameter space, but rather a four-dimensional subspace which

we found it natural to identify with Minkowksi space. The question that we consider

in this section is whether it is possible to find some space on which we can form a

linear representation of the super Poincare algebra. Unlike the usual Poincare algebra,

we cannot begin with transformations of the group (which are rather intuitive for the

Poincare group, certainly the group came before the algebra historically) because we

only have a formal idea of the group at this point. The super Poincare algebra came

from general algebraic reasoning, but now we try to understand what space it can

be understood to act on naturally. For the Poincare algebra, that space is simply

spacetime. We will find that with the proper motivations and parametrizations the

space R
4|4 turns out to be the natural space on which the super Poincare group acts.
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9.5 Coset View of Superspace

9.5.1 Super Poincare / Lorentz = Superspace

First by analogy with the Poincare group, a typical element in the super Poincare

group is,

exp(ixmPm + iωmnJmn + iθQ+ iθ̄Q̄). (9.33)

We assume that the operators above satisfy the super Poincare algebra. This is a

Grassmann generalization of the concept of exponentiation; Grassmann in the sense

that we use Grassmann parameters which are essentially real. Although to be more

precise, θα is complex with conjugate θ̄α̇. All the products that appear in the exponen-

tial are even objects (but not the factors !) so the Baker-Cambell-Hausdorff relation

still holds and we can factor out the Lorentz transformations,

exp(ixmPm+ iωmnJmn+ iθQ+ iθ̄Q̄) = exp(i(ymPm+βQ+ β̄Q̄))exp(iamnJmn). (9.34)

This is not a trivial calculation. In fact ym, β, β̄, amn are formed by infinite series of the

parameters xm, θ, θ̄, ωmn. We will use xm, θ, θ̄ as the parameters to label a typical coset.

The coset space will then give us a natural construction of superspace, the analogue of

spacetime to the super Poincare algebra.

9.5.2 Translations and Supertranslations in Superspace

We saw previously how the algebra of the momenta generated a translation on the pa-

rameter space of the group. Let us generalize that calculation to the case of superspace,
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exp(i(xmPm + θQ+ θ̄Q̄))exp(i(amPm + ǫQ+ ǭQ̄)) =

= exp(i(xm + am)Pm + i(θ + ǫ)Q+ i(θ̄ + ǭ)Q̄− 1
2
[xmPm + θQ+ θ̄Q̄, amPm + ǫQ+ ǭQ̄])

Besides the commutator terms everything looks fairly similar to ordinary translations.

The even coordinates get shifted by am, and the odd coordinates get shifted by ǫ and

ǭ. Naively that might be all you would expect for a supertranslation, however, there is

more hidden in the commutator. Let us calculate it in stages. Remember all we have

to work with at this stage is the super Poincare algebra itself, along with the properties

of Grassmann variables (we assume that the operators Pm are even as they satisfy a

commutation relation, whereas we assume that the operators Qα and Q̄α̇ are odd as

they satisfy an anticommutation relation). Notice

[xmPm, a
mPm + ǫQ+ ǭQ̄] = 0

[xmPm + θQ+ θ̄Q̄, amPm] = 0.
(9.35)

We used linearity of the bracket to isolate Q and P and P with P , these commute by

definition of super Poincare algebra. Next,

[θQ, ǫQ] = θQǫQ− ǫQθQ

= θαQαǫ
βQβ − ǫβQβθ

αQα

= −θαǫβQαQβ + ǫβθαQβQα

= −θαǫβ(QαQβ +QβQα)

= −θαǫβ{Qα, Qβ} = 0

(9.36)
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Since {Qα, Qβ} = 0. Next,

[θ̄Q̄, ǭQ̄] = θ̄Q̄ǭQ̄− ǭQ̄θ̄Q̄

= θ̄α̇Q̄
α̇ǭβ̇Q̄

β̇ − ǭβ̇Q̄
β̇ θ̄α̇Q̄

α̇

= −θ̄α̇ǭβ̇(Q̄α̇Q̄β̇ + Q̄β̇Q̄α̇)

= −θ̄α̇ǭβ̇{Q̄α̇, Q̄β̇} = 0

(9.37)

Since {Q̄α̇, Q̄β̇} = 0. Next,

[θQ, ǭQ̄] = θQǭQ̄− ǭQ̄θQ

= θαQαQ̄β̇ ǭ
β̇ − Q̄β̇ ǭ

β̇θαQα

= θαǭβ̇QαQ̄β̇ − ǭβ̇θαQ̄β̇Qα

= θαǭβ̇(QαQ̄β̇ + Q̄β̇Qα)

= θαǭβ̇{Qα, Q̄β̇}

= 2θαǭβ̇σm
αβ̇
Pm

= 2θσmǭPm,

(9.38)

where we used that the supercharges are the ”square root of momentum”;

{Qα, Q̄β} = 2σm
αβ̇
Pm. Next, by the same calculation (just switching θ and ǫ and their

conjugates) we find,

[θ̄Q̄, ǫQ] = −[ǫQ, θ̄Q̄]

= −2ǫσmθ̄Pm.
(9.39)

We have completed the calculation of the commutator encountered at the beginning of

this section. The reader should verify that in fact all the higher commutators vanish.

Our result here is not approximate since the series terminates after the terms we’ve
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calculated. To summarize we found,

exp(i(xmPm + θQ+ θ̄Q̄))exp(i(amPm + ǫQ+ ǭQ̄)) =

= exp(i(xm + am)Pm + i(θ + ǫ)Q+ i(θ̄ + ǭ)Q̄− 1
2
(2θσmǭPm − 2ǫσmθ̄Pm))

= exp(i(xm + am + iθσmǭ− iǫσmθ̄)Pm + i(θ + ǫ)Q+ i(θ̄ + ǭ)Q̄)

Taking the case am = 0, we find that the supercharges generate the following motion

on the parameter space,

xm 7→ xm + iθσmǭ− iǫσmθ̄

θα 7→ θα + ǫα

θ̄α̇ 7→ θ̄α̇ + ǭα̇.

(9.40)

These are supertranslations on superspace ( the parameter space is superspace ).

9.5.3 Derivations on R
4|4 Represent the Super Poincare Alge-

bra

We have found the transformations induced by the super Poincare algebra on super-

space. We may now try to find a linear representation of the super Poincare algebra in

much the same way as we did before for the Poincare algebra. We wish to find linear

differential operators D(Qα) which act on functions of (xm, θα, θ̄α̇) such that for small
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ǫ,

exp(iǫαD(Qα))(x
m, θα, θ̄α̇) = (1 + iǫαD(Qα))(x

m, θα, θ̄α̇) = (xm − iǫσmθ̄, θα + ǫα, θ̄α̇).

We require that

iǫαD(Qα)x
m = −iǫσmθ̄

iǫαD(Qα)θ
α = ǫα

iǫαD(Qα)θ̄
α̇ = 0.

(9.41)

Hence, we find that D(Qα) = −i ∂
∂θα − σm

αβ̇
θ̄β̇ ∂

∂xm . You can check this is correct, just

substitute it back into the last equation.
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Deformed Super Yang-Mills Theory

This chapter breaks from the mathematical rigor of most of the earlier chapters. We

consider a particular physical model, and we make calculations without much regard

for domains. Consistency is key in this chapter. It is likely that one could understand

the mathematics that follows carefully with the help of a sheaf theoretic construction.

We chose to calculate like a physicist in this chapter. Rigor aside, this work has re-

cently found a place as perhaps a sort of counter example within an ongoing discussion

initiated by E.A. Ivanov and A.V. Smilga (see [66]). Apparently the concept of crypto-

reality may be a better physical assumption than rigid hermiticity. After all, we will see

in this chapter that hermiticity on non(anti) commutative superspace essentially forces

us to consider a nonassociative star product. Associativity has been a critical feature

in much work done on Poisson manifolds. It seems it would be better to maintain that

feature. Having said that, this chapter may help give the mathematical reader a better

sense of how superfields are used to construct Lagrangians and actions. To obtain the

usual theory on undeformed superspace one can simply remove the star products.
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We develop a gauged Wess-Zumino model in noncommutative Minkowski super-

space. This is the natural extension of the work of Carlson and Nazaryan, which

extended N = 1/2 supersymmetry written over deformed Euclidean superspace to

Minkowski superspace. We investigate the interaction of the vector and chiral super-

fields. Noncommutativity is implemented by replacing products with star products.

Although, in general, our star product is nonassociative, we prove that it is associative

to the first order in the deformation parameter C. We show that our model reproduces

the N = 1/2 theory in the appropriate limit, namely when the deformation parameters

C̄ α̇β̇ = 0. Essentially, we find the N = 1/2 theory and a conjugate copy. As in the

N = 1/2 theory, a reparametrization of the gauge parameter, vector superfield and chi-

ral superfield are necessary to write standard C-independent gauge theory. However,

our choice of parametrization differs from that used in the N = 1/2 supersymmetry,

which leads to some unexpected new terms.

10.1 Introduction

There have been a number of papers concerning deformations of superspace in recent

years (see [111], [33], [41], [42], [75], [71], [38], [38], [112], [54], [87], [32] and [72] for

an undoubtedly a partial list). Of particular interest to this chapter is the deformed

Euclidean superspace constructed by Seiberg in [112]. Generally, the literature follow-

ing Seiberg has focused on superspace with a Euclidean signature. One exception is

[87], in which Carlson and Nazaryan found how to construct a deformed Minkowski

superspace

Remark 10.1.1. After the original completion of [36] the author learned that the
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work of M. Chaichian and A. Kobakhidze in [32] and the work of Y. Kobayashi and S.

Sasaki in [72] also studied the Wess-Zumino model on deformed Minkowski superspaces

in some detail. Both of these works employ a star product which is associative but not

hermitian. The star product studied here is hermitian but not associative in general.

Also, note that [71] and [42] study some aspects of deformed Minkowski superspace that

have relevance to this work.

In their paper, they implemented superspace noncommutativity with a star product

which was hermitian but not associative in general. Their star product reproduces the

deformation of N = 1
2

supersymmetry in a certain limit. Additionally, they studied the

Wess-Zumino model (without gauge interactions) and found results similar to Seiberg’s.

Our goal is to construct the gauged Wess-Zumino model in this noncommutative Min-

kowski superspace.

Following the construction of Nazaryan and Carlson, we deform N = 1 rigid

Minkowski superspace as follows:

{θ̂α, θ̂β} = Cαβ { ˆ̄θα̇, ˆ̄θβ̇} = C̄ α̇β̇ (10.1)

where (Cαβ)∗ = C̄ α̇β̇. In this deformation, all of the fermionic dimensions of superspace

are deformed. Here both Q and Q̄ are broken symmetries, so we will say that this space

has N = 0 supersymmetry. Despite this, the deformation still permits most of the usual

superfield constructions.

In section 10.2.1 we explicitly define the noncommutative Minkowski superspace by

summarizing the required structure of the deformed coordinate algebra found in [87].

The deformed coordinates have hats on them to distinguish them from the standard
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coordinates. The usual model is then deformed by simply putting a hat on all of the

objects in the standard theory. In practice, we will not explicitly calculate anything in

terms of these operators. Instead, we will find it useful to make the usual exchange of

the operator product for the star product of ordinary functions of superspace;

f̂1f̂2 7→ f1 ∗ f2. (10.2)

This correspondence allows us to work out the details of noncommutative theory using

ordinary calculus on superspace. In this sense we obtain the noncommutative Wess-

Zumino model by simply replacing ordinary products with star products.

In sections 10.2.2 and 10.2.3, we continue our brief summary of the work of Carlson

and Nazaryan in [87]. In [87], deformed Minkowski space was constructed to the second

order in the deformation parameter. In this chapter, we primarily examine the first

order extensions of their work. In section 10.3, we examine how to write a nonabelian

supersymmetric gauge theory on noncommutative Minkowski superspace. Following

the standard superfield construction(see [116] for example), we introduce the vector

superfield (V) and calculate the star exponential (eV ) in section 10.3.1. We calculate

the explicit modification these definitions imply for the component fields of the vector

multiplet.

The gauge transformation itself will be discussed in section 10.4. In section 10.4.1,

we find a parametrization of the vector superfield such that the standard gauge transfor-

mations are realized at the component field level. This procedure is similar to Seiberg’s

in [112]. We employ a modified Wess-Zumino gauge throughout the calculations. This

is possible provided that we define the gauge parameter Λ with some carefully chosen
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deformation dependent shifts. We will find that reality uniquely affixes this construc-

tion. Next, in section 10.4.2, we introduce the spinor superfield Wα by making the

natural modification to the standard definition.

Then, in section 10.5, we examine the gauge transformation on a chiral superfield.

Again, we will find it necessary to shift the chiral superfield by a deformation dependent

term in order to preserve the usual gauge theory. These shifts, similar to those found

in [112] and [6], are derived in detail.

Finally, in section 10.6, we construct the Lagrangian of the gauged Wess-Zumino

model. This construction closely resembles that of Wess and Bagger in [116] except that

products have been replaced by star products. Also, the component field expansions

of the superfields have some C-dependent shifts as derived in the previous sections.

Overall, the gauge symmetry of the Lagrangian is established by arguments analogous

to the standard arguments. We conclude the chapter by computing the Lagrangian

written explicitly in terms of the component fields. Our result is similar to [6], however,

there are some unexpected terms.

Remark 10.1.2. This chapter contains some second order results for the star expo-

nential. However, we do not complete the development of the theory to second order

in this chapter. We do find some partial results at the second order of the deformation

parameter and they agree with the N = 1
2

in the limit C̄ α̇β̇ = 0. The paper [36] contains

only the first order results given here.
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10.2 Noncommutative Minkowski Superspace

10.2.1 Deformed Coordinate Algebra

We begin by considering N = 1 rigid Minkowski superspace where a typical point is

(xm, θα, θ̄α̇). In the commutative case, we have:

[xm, xn] = 0 [xm, θα] = 0

{θα, θβ} = 0 [xm, θ̄α̇] = 0

{θ̄α̇, θ̄β̇} = 0 {θα, θ̄β̇} = 0

(10.3)

The coordinates xm are identified with spacetime coordinates, whereas the θα and θ̄α̇ are

Grassmann variables. We then construct noncommutative Minkowski superspace by

replacing coordinate functions (xm, θα, θ̄α̇) with operators (x̂m, θ̂α, ˆ̄θα̇). In particular,

we require that the deformed coordinates satisfy

{θ̂α, θ̂β} = Cαβ [x̂m, θ̂α] = iCαβσm
ββ̇

ˆ̄θβ̇

{ ˆ̄θα̇, ˆ̄θβ̇} = C̄ α̇β̇ [x̂m, ˆ̄θα̇] = iC̄ α̇β̇ θ̂βσm
ββ̇

{θ̂α, ˆ̄θβ̇} = 0 [x̂m, x̂n] = (Cαβ ˆ̄θα̇ ˆ̄θβ̇ − C̄ α̇β̇ θ̂αθ̂β)σmαα̇σ
n

ββ̇
.

(10.4)

This algebra was defined by Carlson and Nazaryan so that the deformed chiral coor-

dinates ŷm = x̂m + iθ̂σm ˆ̄θ and ˆ̄y
m

= x̂m − iθ̂σm ˆ̄θ satisfy

{θ̂α, θ̂β} = Cαβ [ŷm, θ̂α] = 0

{ ˆ̄θα̇, ˆ̄θβ̇} = C̄ α̇β̇ [ˆ̄ym, ˆ̄θα̇] = 0

{θ̂α, ˆ̄θβ̇} = 0.

(10.5)
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These relations will allow us to develop chiral and antichiral superfields in much the

same way as in the commutative theory. In addition, we have:

[ˆ̄ym, θ̂α] = 2iCαβσm
ββ̇

ˆ̄θβ̇

[ŷm, ˆ̄θα̇] = 2iC̄ α̇β̇ θ̂βσm
ββ̇

[ŷm, ŷn] =
(
4C̄ α̇β̇ θ̂αθ̂β − 2CαβC̄ α̇β̇

)
σmαα̇σ

n

ββ̇
(10.6)

[ˆ̄ym, ˆ̄yn] =
(
4Cαβ ˆ̄θα̇ ˆ̄θβ̇ − 2CαβC̄ α̇β̇

)
σmαα̇σ

n

ββ̇

[ŷm, ˆ̄yn] = 2CαβC̄ α̇β̇σmαα̇σ
n

ββ̇
.

This choice of deformed coordinate is motivated by our desire to follow the same

construction of chiral superfields as in the commutative theory.

10.2.2 Star Product

The star product on Minkowski superspace is defined by

f ∗ g = f(1 + S)g (10.7)

where S is formed using the supercharges Qα and Q̄α̇,

S = −1
2
Cαβ

←
Qα

→
Qβ − 1

2
C̄ α̇β̇

←
Q̄α̇

→
Q̄β̇

+1
8
CαβCγδ

←
Qα

←
Qγ

→
Qδ

→
Qβ + 1

8
C̄ α̇β̇C̄ γ̇δ̇

←
Q̄α̇

←
Q̄γ̇

→
Q̄δ̇

→
Q̄β̇

+1
4
CαβC̄ α̇β̇(

←
Q̄α̇

←
Qα

→
Q̄β̇

→
Qβ −

←
Qα

←
Q̄α̇

→
Qβ

→
Q̄β̇).

We follow the conventions of Wess and Bagger in [116]. In the chiral coordinates

ym = xm + iθσmθ̄, the supercharges have the familiar forms. Note that the derivatives
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of θα and θ̄α̇ are taken at fixed ym.

Qα = ∂
∂θα |y

Q̄α̇ = − ∂
∂θ̄α̇ |y + 2iθασmαα̇

∂
∂ym

(10.8)

Whereas, when the derivatives are taken at fixed antichiral coordinates ȳm = xm −

iθσmθ̄, we have

Qα = ∂
∂θα |y − 2iσmαα̇θ̄

α̇ ∂
∂ȳm

Q̄α̇ = − ∂
∂θ̄α̇ |ȳ.

(10.9)

We will not make explicit |y or |ȳ elsewhere since they are to be understood implicitly.

Many other formulae can be found in [87]. Some properties of this star product on

functions f , g, and h are

f ∗ g = g ∗ f (f + g) ∗ h = f ∗ h+ g ∗ h

f ∗ g 6= g ∗ f f ∗ (g ∗ h) 6= (f ∗ g) ∗ h.
(10.10)

The noncommutativity and nonassociativity will require some attention in general.

However, to the first order in the deformation parameter, we note that

f ∗ (g ∗ h) = (f ∗ g) ∗ h (10.11)

the star product is associative. A proof is given in the last section of the chapter.

10.2.3 N = 0 Supersymmetry

The formulae below are stated for the operators acting on functions of the deformed

Minkowki superspace. In particular, they should be understood as statements about
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how the operators act on star products of functions. We define the star brackets as

{A,B}∗ = A ∗B +B ∗ A and [A,B]∗ = A ∗B − B ∗ A. (10.12)

Then calculate

{θα, θβ}∗ = θα ∗ θβ + θβ ∗ θα = Cαβ

{θ̄α̇, θ̄β̇}∗ = θ̄α̇ ∗ θ̄β̇ + θ̄β̇ ∗ θ̄α̇ = C̄ α̇β̇.
(10.13)

It is important to note that products of both θα and θ̄α̇ are deformed. This has the

consequence of breaking all of the supersymmetry. Starting with the canonical forms

of the supercharges, we obtain

{Qα, Qβ}∗ = −4C̄ α̇β̇σmαα̇σ
n

ββ̇

∂2

∂ȳm∂ȳn

{Q̄α̇, Q̄β̇}∗ = −4Cαβσmαα̇σ
n

ββ̇

∂2

∂ym∂yn

{Qα, Q̄α̇}∗ = 2iσmαα̇
∂

∂ym .

(10.14)

Comparing this to [112], we note that when C̄ α̇β̇ = 0, thenQα is an unbroken symmetry,

hence the label N = 1
2

supersymmetry. The author proposes that we call the theory

constructed by Carlson and Nazaryan N = 0 supersymmetry to be consistent. Now,

although the supercharges are broken, we still have

{Dα, Qβ}∗ = {D̄β̇, Qβ}∗ = {Dα, Q̄β̇}∗ = {D̄α̇, Q̄β̇}∗ = 0

{Dα, Dβ}∗ = {D̄α̇, D̄β̇}∗ = 0.
(10.15)

These relations are crucial. We can still define the chiral (Φ) and antichiral (Φ̄) super-

fields by the constraints D̄α̇ ∗ Φ = 0 and Dα ∗ Φ̄ = 0 on noncommutative Minkowski

superspace. Thus, most of the usual techniques in Wess and Bagger [116] still apply
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for our discussion. The primary difference is that products will be replaced with star

products.

10.3 Vector Superfield

Our goal is to construct a nonabelian gauge on deformed Minkowski superspace. Thus,

we consider a vector superfield V which carries some matrix representation of the gauge

group and is subject to the usual constraint: V = V . In the standard super Yang-Mills

theory, it is convenient to use a reduced set of component fields called the Wess Zumino

gauge. We will show in section 10.4.1 that the Wess Zumino gauge can be generalized

to the current discussion provided we make some C dependent shifts. For now, we let

V take the canonical parametrization of the Wess-Zumino gauge

V = −θσmθ̄vm + iθθθ̄λ̄− iθ̄θ̄θλ+
1

2
θθθ̄θ̄(D − i∂mv

m) (10.16)

where the above is in chiral coordinates ym.

10.3.1 Star Exponential of Vector Superfield

We define the star exponential of the vector superfield in the natural way:

eV = 1 + V +
1

2
V ∗ V +

1

3!
V ∗ V ∗ V + ... (10.17)

Our notation for the usual exponential will be exp(V ) and powers are to be understood

as ordinary powers - for example V 2 = V V . In this chapter, star products will be

explicitly indicated.
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The vector superfield is even, thus no new signs arise from pushing the Qα or Q̄α̇

past V in the star product. Thus, to first order in the deformation parameter,

V ∗ V = V (1 + S)V

= V 2 − 1

2
Cαβ(QαV )(QβV ) − 1

2
C̄ α̇β̇(Q̄α̇V )(Q̄β̇V )

+
1

8
CαβCγδ(QαQγV )(QδQβV ) +

1

8
C̄ α̇β̇C̄ γ̇δ̇(Q̄α̇Q̄γ̇V )(Q̄δ̇Q̄β̇V )

+
1

4
CαβC̄ α̇β̇

(
(Q̄α̇QαV )(Q̄β̇QβV ) − (QαQ̄α̇V )(QβQ̄β̇V )

)

We will now calculate these terms in chiral coordinates starting with

QαV = ∂α

[
−θσmθ̄vm + iθθθ̄λ̄− iθ̄θ̄θλ +

1

2
θθθ̄θ̄(D − i∂mv

m)

]

= −σmαα̇θ̄α̇vm + 2iθαθ̄λ̄+ θ̄θ̄
(
−iλα + θα(D − i∂mv

m)
)
. (10.18)

Continuing, we find that

QβQαV = ∂β

[
−σmαα̇θ̄α̇vm + 2iθαθ̄λ̄+ θ̄θ̄(−iλα + θα(D − i∂mv

m)
)]

= −2iǫβαθ̄λ̄− ǫβαθ̄θ̄(D − i∂mv
m). (10.19)

Next we calculate Q̄α̇V .

Q̄α̇V = (−∂α̇ + 2iθασnαα̇∂n)

[
−θσmθ̄vm + iθθθ̄λ̄− iθ̄θ̄θλ +

1

2
θθθ̄θ̄(D − i∂mv

m)

]

= −θασmαα̇vm +
(
−2iθ̄α̇ + 2θ̄θ̄σmαα̇θ

α∂m
)
θλ

+θθ

(
iλ̄α̇ + θ̄α̇(D − i∂mv

m) + iǫαβσmαα̇σ
n

ββ̇
θ̄β̇∂mvn

)
(10.20)
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The next calculation is a bit longer.

Q̄α̇Q̄β̇V = (−∂α̇ + 2iθασmαα̇∂m)(Q̄β̇V ) (10.21)

= −2iǫα̇β̇θλ+ θθ

(
ǫα̇β̇(D − i∂mv

m)

+iǫαβ(σm
αβ̇
σnβα̇ − σmαα̇σ

n

ββ̇
)∂mvn + 2(σmαα̇θ̄

β̇ − θ̄α̇σm
αβ̇

)∂mλ
α

)

Now, for the mixed supercharges, using the results above, we find that

QαQ̄α̇V = ∂α(Q̄α̇V ) (10.22)

= −σmαα̇vm + 2i(θαλ̄α̇ − θ̄α̇λα)

+θα

(
2θ̄α̇(D − i∂mv

m) + 2iθ̄β̇ǫσβσmσα̇σ
n

ββ̇
∂mvn + 2θ̄θ̄σmβα̇∂mλ

β

)

Similarly, we find that

Q̄α̇QαV = (−∂β̇ + 2iθασmαα̇∂m)(QαV ) (10.23)

= σmαα̇vm − 2i(θαλ̄α̇ − θ̄α̇λα)

+2θαθ̄α̇(D − i∂mv
m) − 2iθβ θ̄β̇σmβα̇σ

n

αβ̇
∂mvn

−2θθσmαα̇∂m(θ̄λ̄) + θ̄θ̄

(
2θβσmβα̇∂mλα + iθθσmαα̇∂m(D − i∂mv

m)

)

The next task is to calculate the products of the terms above. In the product below,

we have omitted from the beginning those terms with θ̄θ̄ because there is a θ̄ in each
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term.

1

2
CαβQαV QβV =

1

2
Cαβ

[
−σmαα̇θ̄α̇vm + 2iθα(θ̄λ̄)

][
−σn

ββ̇
θ̄β̇vn + 2iθβ(θ̄λ̄)

]
(10.24)

=
1

4
Cαβǫα̇β̇σmαα̇σ

n

ββ̇
vmvnθ̄θ̄ +

i

2
Cαβθβσmαα̇[vm, λ̄

α̇]θ̄θ̄

=

(
1

2
Cmnvmvn −

i

2
Cαβσmαα̇θ̄

β̇[vm, λ̄
α̇]

)
θ̄θ̄

where we have used the identity Cmn = 1
2
Cαβǫα̇β̇σmαα̇σ

n

ββ̇
, following the conventions of

[112]. Continuing to compute the products, since every term has a θ this time, we can

ignore the θθ terms from the outset.

1

2
C̄ α̇β̇Q̄α̇V Q̄β̇V =

1

2
C̄ α̇β̇

[
−θασmαα̇vm − 2iθ̄α̇θλ

][
−θβσn

ββ̇
vn − 2iθ̄β̇θλ

]
(10.25)

= −1

4
C̄ α̇β̇ǫβασm

αβ̇
σnβα̇vmvnθθ −

i

2
C̄ α̇β̇ θ̄β̇σ

m
αα̇[vm, λα]θθ

=

(
1

2
C̄mnvmvn +

i

2
C̄ α̇β̇σmαα̇θ̄β̇[vm, λ

α]

)
θθ

where we identified C̄mn = −1
2
C̄ α̇β̇ǫαβσmαα̇σ

n

ββ̇
following [87]. Next, consider the second

order in deformation parameter terms:

1

8
CαβCγδ(QαQγV )(QδQβV ) =

1

8
CαβCγδǫαγǫβδ[2iθ̄λ̄+ θ̄θ̄(D − i∂mv

m)]2

= −1

8
|C|2λ̄λ̄θ̄θ̄

where we use |C|2 = 4CαβCγδǫαγǫδβ . Similarly, we find that the next term is easily

307



Chapter 10. Deformed Super Yang-Mills Theory

calculated due to a sizeable cancellation since we may omit a θθ term from the start.

1

8
C̄ α̇β̇C̄ γ̇δ̇(Q̄α̇Q̄γ̇V )(Q̄δ̇Q̄β̇V ) =

1

8
C̄ α̇β̇C̄ γ̇δ̇ǫα̇γ̇ǫβ̇δ̇[−2iθλ]2

= −1

8
|C̄|2λλθθ

where we use |C̄|2 = 4C̄ α̇β̇C̄ γ̇δ̇ǫα̇γ̇ǫβ̇δ̇. The remaining term to consider in V ∗ V is

1
4
CαβC̄ α̇β̇[(Q̄α̇QαV )(Q̄β̇QβV ) − (QαQ̄α̇V )(QβQ̄β̇V )]. We calculate

1
4
CαβC̄ α̇β̇

(
(Q̄α̇QαV )(Q̄β̇QβV ) − (QαQ̄α̇V )(QβQ̄β̇V )

)
=

= 1
4
CαβC̄ α̇β̇

(
σmαα̇{vm, 4i(θ̄β̇λβ − θβλ̄β̇)}

− 2iσmαα̇{vm, ∂lvk(θγσlγβ̇σ
k
βγ̇ θ̄

γ̇ + θβǫσγσl
δβ̇
σkγγ̇ θ̄

γ̇)}

+ 2σmαα̇θ̄θ̄σ
l

γβ̇
{vm, θγ∂lλβ − θβ∂lλ

γ}

− 2σmαα̇θθσ
l

ββ̇
{vm, ∂l(θ̄λ̄)}

+ iσmαα̇θθθ̄θ̄σ
l

ββ̇
{vm, ∂l(D − i∂mv

m)}

− 4θαθ
γσm

γβ̇
σnβγ̇ θ̄

γ̇{λ̄α̇, ∂mvn}

+ 4θ̄α̇θ
γσm

γβ̇
σnβγ̇ θ̄

γ̇{λα, ∂mvn}

+ 4iθαθ̄θ̄θ
γσm

γβ̇
{λ̄α̇, ∂mλβ}

+ 4iθαθθθ
γσm

ββ̇
{λα, ∂mλ̄γ̇}

− 4iθαθ̄α̇θ
γσm

γβ̇
σnβγ̇ θ̄

γ̇{(D − i∂mv
m), ∂mvn}

− 4θγ θ̄γ̇θσθ̄σ̇σkγσ̇σ
l
αγ̇σ

m

σβ̇
σnβσ̇∂kvl∂mvn

)
.

(10.26)

We can see from the expression above the full second order calculations will be lengthy.

Additionally, we would have to deal with the nonassociativity of the star product. At

present, the author has only calculated portions of the theory to the second order,
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mostly for the purpose of comparing the present work with [112]. We leave the complete

development of the second order deformed gauge theory to a later paper.

Expanding V ∗ V ∗ V

We shall now find the correction to V ∗ V ∗ V to the first order in Cαβ . First, recall

first that in the commutative theory, V 3 is zero in the Wess-Zumino gauge. Thus any

nontrivial term in V ∗ V ∗ V must arise from the deformation.

V ∗ (V ∗ V ) =

= V (V ∗ V ) − 1
2
Cαβ(QαV )Qβ(V ∗ V ) − 1

2
C̄ α̇β̇(Q̄α̇V )Q̄β̇(V ∗ V )

(10.27)

We can replace V ∗ V with V 2 as we are looking for the first order in Cαβ terms.

V ∗ (V ∗ V ) =

= V (V ∗ V ) − 1
2
Cαβ(QαV )Qβ(V

2) − 1
2
C̄ α̇β̇(Q̄α̇V )Q̄β̇(V

2)

= V (V ∗ V )

(10.28)

The two terms vanish because QαV and Q̄α̇V have a θ̄ and θ in each term respectively

while Qβ(V
2) and Q̄β̇(V

2) are proportional to θ̄θ̄ and θθ respectively. To the first order,

we have

V ∗ (V ∗ V ) =

=
(
−θσmθ̄vm + iθθθ̄λ̄− iθ̄θ̄θλ + 1

2
θθθ̄θ̄(D − i∂mv

m)
)
(V ∗ V ).

(10.29)

Now, if we examine the first order terms in V ∗ V , we notice that each term either

has θθ or θ̄θ̄; thus, the product with V which is proportional to θ and θ̄ vanishes.
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Therefore, to the first order in the deformation parameter,

V ∗ (V ∗ V ) = 0. (10.30)

It is not hard to see that this extends to higher star products. Thus, (V )n∗ = 0 for

n ≥ 3 to the first order in the deformation parameter. That is, to the first order in C,

we have eV = 1 + V + 1
2
V ∗ V . This is nice but it will clearly be spoiled if we include

the second order terms. For example, if one examines the mixed second order term

(10.26), the first few lines have only θ or θ̄. Hence, in the product with V they will not

vanish like the first order case, thus generating a nontrivial term in V ∗ (V ∗ V ). We

will not complete the development of eV to the second order in this chapter. Next, we

shall show that in the limit of C̄ α̇β̇ = 0, we recover the terms found by Seiberg in [112].

Collecting the results of this section, we find that the star exponential of V in the

canonical Wess-Zumino gauge is

eV = 1 + V + 1
2
V ∗ V

= 1 − θσmθ̄vm + iθθθ̄λ̄− iθ̄θ̄θαλα + 1
2
θθθ̄θ̄(D − i∂mv

m)

−
(

1
4
Cmnvmvn + i

4
Cαβθβσ

m
αα̇[λ̄

α̇, vm]
)
θ̄θ̄

−
(

1
4
C̄mnvmvn + i

4
C̄ α̇β̇ θ̄β̇σ

m
αα̇[vm, λ

α]
)
θθ.

− 1
16
|C|2λ̄λ̄θ̄θ̄

− 1
16
|C̄|2λλθθ

+ other 2nd order terms containing C̄ α̇β̇.

(10.31)
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10.3.2 N = 0 Verses N = 1

2
Star Exponentials

To compare with the N = 1
2

construction, we make the following dictionary:

m 7−→ µ

vm 7−→ Aµ

λ̄α̇ 7−→ λ̄α̇

λα 7−→ λα + 1
4
ǫαβC

βγσµγγ̇{λ̄γ̇, Aµ}

(D − i∂mv
m) 7−→ D − i∂µA

µ.

(10.32)

We use Greek indices for Euclidean spacetime and Latin indices for Minkowski space-

time. In [112], only products of θ were deformed. It is clear that we can recover this

deformation by setting C̄ α̇β̇ to zero wherever it occurs. Using the dictionary and setting

C̄ α̇β̇ = 0, we have

eV = 1 + V + 1
2
V ∗ V

= 1 − θσµθ̄Aµ + iθθθ̄λ̄− iθ̄θ̄θα(λα + 1
4
ǫαβC

βγσµγγ̇{λ̄γ̇, Aµ})

+ 1
2
θθθ̄θ̄(D − i∂µA

µ) − 1
4
CµνAµAν θ̄θ̄

− i
4
Cαβθβσ

µ
αα̇[Aµ, λ̄

α̇]θ̄θ̄ − 1
16
|C|2λ̄λ̄θ̄θ̄.

(10.33)

This is precisely the exponential that Seiberg found on noncommutative Euclidean

superspace in [112].
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10.4 Gauge Theory on N = 0 Minkowski Super-

space

In this section, we generalize super Yang-Mills theory to deformed Minkowski super-

space. Most of the usual constructions hold and the approach is similar to Sieberg’s

N = 1
2

super Yang Mills theory in [112]. We simply replace products in [116] with

star products. The main subtlety is finding the correct parametrization of the vector

superfield.

10.4.1 Gauge Transformations

Our goal is to find a way to embed the usual C-independent gauge transformations

into superfield equations on noncommutative Minkowski superspace. Since our spinors

are built on Minkowski space, we are forced to relate θ and θ̄ by conjugation. This

means that we cannot directly follow the construction of [112]. In [112], we can see that

(θα) 6= θ̄α̇, V 6= V and (Λ + Λ̄) 6= Λ + Λ̄. These relations are sensible for Seiberg, who

wrote them over noncommutative Euclidean superspace. On Minkowski space, these

inequalities must become equalities. We will find that these reality conditions and the

requirement that we recover N = 1
2

theory in the C̄ α̇β̇ = 0 limit almost uniquely fixes

this construction.

Nonabelian gauge transformations on the vector superfield are embedded into the

following superfield equation on noncommutative Minkowski superspace.

eV 7−→ eV
′
= e−iΛ̄ ∗ eV ∗ eiΛ (10.34)
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This is the natural modification of [116]. Infinitesimally, we have

δeV = −iΛ̄ ∗ eV + ieV ∗ Λ. (10.35)

The component fields of the vector superfield should transform in the adjoint rep-

resentation of the gauge group as in the standard gauge theory. That is, under an

infinitesimal gauge transformation, we should have

δvm = −2∂mφ+ i[φ, vm]

δλα = i[φ, λα]

δD = i[φ,D].

(10.36)

Our goal now is to find a suitable parametrization of the gauge parameter Λ and the

vector superfield V such that (10.36) are embedded into (10.35). It is not surprising

that the canonical Wess-Zumino gauge (10.31) does not work in the N = 0 case, since it

was also necessary for [112] to shift the λ component in the N = 1
2

case. The reality of

V requires that we cannot shift only λ; we must also shift λ̄. To be precise, λ 7→ λ+A

and λ̄ 7→ λ̄ + B. We now determine what choice of A and B will preserve the reality

of V while concurrently embedding (10.36). To the first order in C, we find under the

above redefinitions that (10.31) becomes,

eV = 1 − θσmθ̄vm − 1
4
C̄mnvmvnθθ + 1

4
Cmnvmvnθ̄θ̄ + 1

2
(D − i∂mv

m)θθθ̄θ̄

+ θ̄θ̄θα(−iλα − iA+ i
4
ǫαβC

βγσmγα̇[vm, λ̄
α̇])

+ θθθ̄α̇(−iλ̄α̇ − iB − i
4
ǫα̇β̇C̄

β̇γ̇σmαγ̇ [vm, λ
α]).

(10.37)

Additionally, we make a C-dependent shift of the gauge parameter Λ similar to that of
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[112]. For the moment, let us make a reasonably general ansatz for the gauge parameter

in terms of a variable p.

Λp = −φ+ ipθσmθ̄∂mφ+ i
2
θθC̄mn{vn, ∂mφ} − (p+ 1)θθθ̄θ̄∂2φ

Λ̄p = −φ+ i(2 − p)θσmθ̄∂mφ− i
2
θ̄θ̄Cmn{∂mφ, vn} − (p+ 1)θθθ̄θ̄∂2φ

(10.38)

where everything is a function of y in the above. Notice that modulo the higher θ

components in Λ, this reduces to the choice of gauge parameter in [112] when p = 0.

We now determine which choice of p will embed (10.36) in (10.35). We calculate that

the θ̄θ̄θα term in the RHS of (10.35) is

[φ, λα] + [φ,A] − 1
4
ǫαβC

βγσmγα̇
(
[φ, [λ̄α̇, vm]] − 2i(pλ̄α̇∂mφ+ (2 − p)∂mφλ̄

α̇)
)
. (10.39)

Similarly, the θθθ̄α̇ term in the RHS of (10.35) is

[φ, λ̄α̇] + [φ,B] + 1
4
ǭα̇β̇C̄

β̇γ̇σmαγ̇
(
[φ, [λα, vm]] + 2i(pλα∂mφ+ (2 − p)∂mφλ

α)
)
. (10.40)

The θ̄θ̄θα component of the LHS of (10.35) is

−iδλα − iδA+ i
4
ǫαβC

βγσmγα̇δ[λ̄
α̇, vm]. (10.41)

Similarly, the θθθ̄α̇ component of the LHS of (10.35) is

−iδλ̄α̇ − iδB − i
4
ǭα̇β̇C̄

β̇γ̇σmαγ̇δ[λ
α, vm]. (10.42)
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It is not difficult to show (applying (10.36)) that

iδ[λα, vm] + [φ, [λα, vm]] = −2i[λα, ∂mφ]

iδ[λ̄α̇, vm] + [φ, [λ̄α̇, vm]] = 2i[λ̄α̇, ∂mφ]

iδ{λ̄α̇, vm} + [φ, {λ̄α̇, vm}] = 2i{λ̄α̇, ∂mφ}

iδ(vmλ
α) + [φ, vmλ

α] = 2i∂mφλ
α

iδ(λ̄α̇vm) + [φ, λ̄α̇vm] = 2iλ̄α̇∂mφ.

(10.43)

Next, equate (10.41) and (10.39). Then require that δλα = i[φ, λα] so that (10.43)

holds. Some terms cancel and we find that

−iδA− [φ,A] = i
2
ǫαβC

βγσmγα̇
(
(p+ 1)λ̄α̇∂mφ+ (1 − p)∂mφλ̄

α̇
)
. (10.44)

Likewise, equate (10.42) and (10.40). Then require that δλ̄α̇ = i[φ, λ̄α̇] so that (10.43)

holds. Some terms cancel and we find that

−iδB − [φ,B] = i
2
ǫαβC

βγσmγα̇
(
(p− 1)λα∂mφ+ (3 − p)∂mφλ

α
)
. (10.45)

When p = 0, we find that (10.44) becomes

−iδA− [φ,A] = i
2
ǫαβC

βγσmγα̇{λ̄α̇, ∂mφ}. (10.46)

Hence, in view of (10.43), we can see why [112] shifted the λα component of the

vector multiplet by A = 1
4
ǫαβC

βγσmγα̇{λ̄α̇, vm}. If we tried to use this choice of gauge

parameter, we would destroy the reality of V because (10.45) would lead us to choose

B = 1
4
ǭα̇β̇C̄

β̇γ̇σmαγ̇(−λαvm + 3vmλ
α). The correct choice is p = 1. With this choice
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of gauge parameter, we find the following conditions for A and B from (10.44) and

(10.45):

−iδA− [φ,A] = iǫαβC
βγσmγα̇λ̄

α̇∂mφ

−iδB − [φ,B] = iǭα̇β̇C̄
β̇γ̇σmαγ̇∂mφλ

α.
(10.47)

These conditions are satisfied by

A = 1
2
ǫαβC

βγσmγα̇λ̄
α̇vm

B = 1
2
ǭα̇β̇C̄

β̇γ̇σmαγ̇vmλ
α.

(10.48)

It is easy to see that Ā = B and B̄ = A, which is necessary in order to preserve

V̄ = V . This is the only parametrization of the vector superfield and gauge parameter

for noncommutative Minkowski superspace if we wish to stay in a generalized Wess

Zumino gauge. In principle, we could use the other lower θ components of the vector

superfield to do more complicated shifts. Fortunately, we will not need to do that.

Define the vector superfield to be

V (y) = −θσmθ̄vm + θθθ̄α̇(−iλ̄α̇ + i
2
ǭα̇β̇C̄

β̇γ̇σmαγ̇vmλ
α)

+θ̄θ̄θα(−iλα − i
2
ǫαβC

βγσmγα̇λ̄
α̇vm) + 1

2
θθθ̄θ̄(D − i∂mv

m).
(10.49)

It should be evident from the calculations in this section that this parametrization of V

embeds (10.36) in (10.35) while maintaining the reality of V. This, of course, requires

that we define the gauge parameters as functions of y to be

Λ(y) = −φ+ iθσmθ̄∂mφ+ i
2
θθC̄mn{vn, ∂mφ} − 2θθθ̄θ̄∂2φ

Λ̄(y) = −φ+ iθσmθ̄∂mφ− i
2
θ̄θ̄Cmn{∂mφ, vn} − 2θθθ̄θ̄∂2φ.

(10.50)
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For the remainder of this chapter, we will assume that the vector superfield is parametrized

as in (10.49) and that the gauge parameter is parametrized as in (10.50). Explicitly in

this parametrization, to the first order in C, (10.31) becomes:

eV = 1 − θσmθ̄vm − 1
4
C̄mnvmvnθθ + 1

4
Cmnvmvnθ̄θ̄ + 1

2
(D − i∂mv

m)θθθ̄θ̄

+ θ̄θ̄θα(−iλα − i
4
ǫαβC

βγσmγα̇{λ̄α̇, vm})

+ θθθ̄α̇(−iλ̄α̇ − i
4
ǫα̇β̇C̄

β̇γ̇σmαγ̇{λα, vm}).

(10.51)

10.4.2 Spinor Superfields

Again, we will construct these as in the commutative theory except that everywhere

that we had a product in the commutative theory, we place a star product here. Define

Wα = −1
4
D̄α̇ ∗ D̄α̇ ∗ e−V ∗Dα ∗ eV . (10.52)

Conveniently, in chiral coordinates ym = xm + iθσmθ̄, several of the star products in

the above are ordinary products. Thus,

Wα = −1
4
D̄α̇D̄

α̇e−V ∗Dα ∗ eV . (10.53)

Likewise define

W α̇ = −1
4
Dα ∗Dα ∗ e−V ∗ D̄α̇ ∗ eV . (10.54)

Similarly, in antichiral coordinates ȳm = xm − iθσmθ̄, the above simplifies to

W α̇ = −1
4
DαDαe

−V ∗ D̄α̇ ∗ eV . (10.55)
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We must determine the component field content ofWα andW α̇. Referring to (10.51)

and keeping only up to the first order in C, we obtain

Wα = Wα(C = 0)

+θθ(1
2
C̄mn{Fmn, λα} + C̄mn{vn,Dmλα − i

4
[vm, λα]})

+Cγβǫβαθγ λ̄λ̄,

(10.56)

where following Wess and Bagger’s conventions in [116], the field strength and covariant

derivative of the gaugino are

Fmn = ∂mvn − ∂nvm + i
2
[vm, vn]

Dmλα = ∂mλα + i
2
[vm, λα].

(10.57)

Additionally, the spinor superfield of ordinary superspace is

Wα(C = 0) = −iλα + θαD − σmnβα θβFmn + θθσm
αβ̇
Dmλ̄

β̇. (10.58)

Notice that when we set C̄ α̇β̇ = 0, we recover the result of Seiberg [112] for Wα.

Likewise, we find that

W α̇ = W α̇(C = 0)

+θ̄θ̄(1
2
Cmn{Fmn, λ̄α̇} + Cmn{vn,Dmλ̄α̇ − i

4
[vm, λ̄α̇]})

+C̄ γ̇β̇ǫβ̇α̇θ̄γ̇λλ

(10.59)

where

W α̇(C = 0) = iλ̄α̇ + θ̄α̇D − σmnβ̇α̇ θ̄β̇Fmn + θ̄θ̄σ̄mα̇βDmλ
β. (10.60)
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Again, we reproduce the result of [112] upon setting C̄ α̇β̇ = 0.

Gauge Transformation of Spinor Superfields

The spinor superfield transforms as in the commutative theory. From the nonabelian

gauge transformation (10.34), it follows that

Wα 7→ W
′

α = e−iΛ̄ ∗Wα ∗ eiΛ. (10.61)

This can be shown by modifying the calculation used in the commutative theory. We

simply change products to star products and utilize the algebra given in (10.15).

10.5 Chiral and Antichiral Superfields

Chiral (Φ) and antichiral(Φ̄) superfields are defined as usual.

D̄α̇ ∗ Φ = 0 Dα ∗ Φ̄ = 0 (10.62)

The stars deform any multiplications that result. However, as Dα = ∂α in the chiral

coordinates yµ = xµ+iθσmθ̄ and D̄α̇ = ∂α̇ in the antichiral coordinates ȳµ = xµ−iθσmθ̄,

we find that the star products are ordinary products. Consequently, we find the well-

known solutions

Φ(y, θ) = A(y) +
√

2θψ(y) + θθF (y)

Φ̄(ȳ, θ̄) = Ā(ȳ) +
√

2θ̄ψ̄(ȳ) + θθF̄ (ȳ).
(10.63)

These solutions follow from the chain rule as in the standard commutative theory. This

construction need not be modified on noncommutative Minkowski superspace because
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the anticommutation relations given in (10.15) are uneffected by the deformation.

10.5.1 Parametrizing the Chiral and Antichiral Superfields

The matter fields in the Wess-Zumino model should transform in the fundamental and

antifundamental representations of the gauge group. This is naturally embedded into

the following superfield equation written on noncommutative Minkowski superspace,

(as T. Araki, K. Ito and A. Ohtsuka did for Euclidean case in [6]),

Φ 7→ Φ′ = e−iΛ ∗ Φ Φ̄ 7→ Φ̄′ = Φ̄ ∗ eiΛ̄. (10.64)

Infinitesimally, we have

δΦ = −iΛ ∗ Φ δΦ̄ = iΦ̄ ∗ Λ̄. (10.65)

At the level of component fields, (10.65) should embed

δA(y) = iφA(y) δĀ(ȳ) = −iĀφ(ȳ)

δψ(y) = iφψ(y) δψ̄(ȳ) = −iψ̄φ(ȳ)

δF (y) = iφF (y) δF̄ (ȳ) = −iF̄ φ(ȳ).

(10.66)

It was necessary for [6] to shift the F̄ -term in Φ̄ to maintain the usual C-independent

gauge transformations on the component fields. Similarly, we must modify both Φ and

Φ̄ from the canonical form given in (10.63).

Φ(y) = A +
√

2θψ + θθ(F + η)

Φ̄(ȳ) = Ā +
√

2θ̄ψ̄ + θ̄θ̄(F̄ + β)
(10.67)
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where the shifts η and β must be chosen as to embed (10.66) in (10.65). Now Λ and

Λ̄ were given in (10.50), however, it will be convenient to view Λ̄ as a function of ȳ for

this section.

Λ(y) = −φ+ iθσmθ̄∂mφ+ i
2
θθC̄mn{vn, ∂mφ} − 2θθθ̄θ̄∂2φ

Λ̄(ȳ) = −φ− iθσmθ̄∂mφ− i
2
θ̄θ̄Cmn{∂mφ, vn} − 2θθθ̄θ̄∂2φ

(10.68)

The θθ coefficient in (10.65) yields

δF + δη = iφF + iφη − 2iC̄mn∂mφ∂nA+ 1
2
C̄mn{vn, ∂mφ}A. (10.69)

Likewise, the θ̄θ̄ coefficient in (10.65) yields

δF̄ + δβ = −iF̄ φ− iβφ− 2iCmn∂nĀ∂mφ+ 1
2
CmnĀ{∂mφ, vn}. (10.70)

If we require that (10.66) holds, then we then find that the following condition on β

from (10.70) is

δβ − iφβ = −2iCmn∂nĀ∂mφ+ 1
2
CmnĀ{∂mφ, vm}. (10.71)

Similarly, we find that the following condition on η from (10.69) is

δη − iφη = −2iC̄mn∂mφ∂nA+ 1
2
C̄mn{vn, ∂mφ}A. (10.72)
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Following [6], we notice that

δ[iCmn∂m(Āvn) − 1
4
CmnĀvmvn] + i[iCmn(∂mĀvn) − 1

4
CmnĀvmvn]φ =

= −2iCmn(∂mĀ)(∂nφ) + 1
2
CmnĀ{∂mφ, vn}.

(10.73)

Additionally, we note that

δ[−iC̄mn∂mvnA + 1
4
C̄mnvmvnA] − iφ[−iC̄mn∂m(vnA) + 1

4
C̄mnvmvnA] =

= 2iC̄mn(∂nφ)(∂mA) + 1
2
C̄mn{vn, ∂mφ}A.

(10.74)

Then, observe that (10.74) and (10.72) indicate that

η = −iC̄mn∂m(vnA) + 1
4
C̄mnvmvnA. (10.75)

Then, observe that (10.73) and (10.71) indicate that

β = iCmn∂m(Āvn) − 1
4
CmnĀvmvn. (10.76)

Thus, we define the chiral and antichiral superfields with respect to (10.50) as

Φ = A+
√

2θψ + θθ(F − iC̄mn∂m(vnA) + 1
4
C̄mnvmvnA)

Φ̄ = Ā+
√

2θ̄ψ̄ + θ̄θ̄(F̄ + iCmn∂m(Āvn) − 1
4
CmnĀvmvn).

(10.77)

It should be clear from this section that this is the correct parametrization of the

anti(chiral) superfields. This definition embeds (10.66) in (10.65). This parametriza-

tion gives the component fields the standard C-independent gauge transformations.
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10.6 Gauged Wess-Zumino Model

We construct the gauge invariant Lagrangian of the Wess-Zumino model on noncom-

mutative Minkowski superspace:

L = 1
16kg2

(∫
d2θtrW ∗W +

∫
d2θ̄trW ∗W

)
+

∫
d2θd2θ̄Φ̄ ∗ eV ∗ Φ. (10.78)

Gauge invariance of L follows directly from the cyclicity of the trace and equations

(10.34), (10.61) , and (10.64). Also, note that this Lagrangian is real as the star

product has the property f ∗ g = g ∗ f . To first order in the deformation parameter,

we can calculate

trW ∗W |θθ = trW ∗W (C = 0)|θθ − iCmntrFmnλ̄λ̄+ iC̄mntrλλFmn

trW ∗W |θ̄θ̄ = trW ∗W (C = 0)|θ̄θ̄ − iCmntrFmnλ̄λ̄+ iC̄mntrλλFmn

(10.79)

where

W ∗W (C = 0)|θθ = −2iλ̄σ̄mDmλ− 1
2
FmnFmn +D2 + i

4
FmnF lkǫmnlk

W ∗W (C = 0)|θ̄θ̄ = −2iλ̄σ̄mDmλ− 1
2
FmnFmn +D2 − i

4
FmnF lkǫmnlk.

(10.80)

To the first order, these terms match those found by [112] if we set the C̄mn = 0. Next,

consider the coupling of the vector and chiral multiplets. After some calculation, we
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find

Φ̄ ∗ eV ∗ Φ|θθθ̄θ̄ = F̄F + iσmαα̇(∂mψ̄
α̇)ψα + 1

2
ψ̄α̇σmαα̇vmψ

α

+1
2
Ā(D − i∂mv

m)A− 1
4
ĀvmvmA+ (∂2Ā)A

−i(∂mĀ)vmA+ i
√

2
2
Āλψ − i

√
2

2
ψ̄λ̄A

+iCmn∂m(Āvn)F − iCmn(∂mĀ)vnF

−iC̄mnF̄ ∂m(vnA) + iC̄mnF̄ vn∂mA

−1
2
CmnĀvmvnF + 1

2
C̄mnF̄ vmvnA

−i
√

2
8
Cαβσmαα̇Ā{λ̄α̇, vm}ψβ

−i
√

2
8
C̄ α̇β̇σmαα̇ψ̄β̇{λα, vm}A

−
√

2
2
Cαβσmαα̇(∂mĀ)λ̄α̇ψβ

−
√

2
2
C̄ α̇β̇σmαα̇ψ̄β̇λ

α∂mA.

(10.81)

We identify the terms without deformation parameters as the usual terms in the Wess

Zumino model; that is, up to a total derivative we have

Φ̄ ∗ eV ∗ Φ(C = 0)|θθθ̄θ̄ = F̄F − iψ̄σ̄mDmψ − (DmĀ)(DmA)

+1
2
ĀDA+ i√

2
(Āλψ − ψ̄λ̄A)

(10.82)

where ψ and A are in the fundamental representation of the gauge group

Dmψ = ∂mψ + i
2
vmψ DmA = ∂mA+ i

2
vmA. (10.83)

In (10.81), we recover most of the terms found by [6] plus their conjugates. However, in

comparison to the N = 1
2

theory, terms that are linear in λ and λ̄ are notably modified.

The new shifts in the gauge parameters (10.50) lead to the modification of the λ and
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λ̄ components of the vector superfield V which in turn give rise to the following terms

in the Lagrangian L:

−i
√

2
8
Cαβσmαα̇Ā{λ̄α̇, vm}ψβ −

√
2

2
Cαβσmαα̇(∂mĀ)λ̄α̇ψβ

−i
√

2
8
C̄ α̇β̇σmαα̇ψ̄β̇{λα, vm}A−

√
2

2
C̄ α̇β̇σmαα̇ψ̄β̇λ

α∂mA.
(10.84)

Using covariant derivatives, these terms become

−i
√

2
8
Cαβσmαα̇Ā[λ̄α̇, vm]ψβ −

√
2

2
Cαβσmαα̇(DmĀ)λ̄α̇ψβ

+i
√

2
8
C̄ α̇β̇σmαα̇ψ̄β̇ [λ

α, vm]A−
√

2
2
C̄ α̇β̇σmαα̇ψ̄β̇λ

αDmA.
(10.85)

The term −
√

2
2
Cαβσmαα̇(DmĀ)λ̄α̇ψβ was also found in [6]. However, the commutator

terms result from the choice of gauge parameter we made in (10.50). We might naively

have expected only the terms without the commutators. Let us summarize:

L = 1
16kg2

tr
(
−4iλ̄σ̄mDmλ− FmnFmn + 2D2

)

+F̄F − iψ̄σ̄mDmψ −DmĀDmA + 1
2
ĀDA+ i√

2
(Āλψ − ψ̄λ̄A)

+ 1
16kg2

tr
(
−2iCmnFmnλλ+ 2iC̄mnλ̄λ̄Fmn

)

+ i
2
CmnĀFmnF − i

2
C̄mnF̄FmnA

−i
√

2
8
Cαβσmαα̇Ā[λ̄α̇, vm]ψβ −

√
2

2
Cαβσmαα̇(DmĀ)λ̄α̇ψβ

+i
√

2
8
C̄ α̇β̇σmαα̇ψ̄β̇ [λ

α, vm]A−
√

2
2
C̄ α̇β̇σmαα̇ψ̄β̇λ

αDmA.

(10.86)

10.7 Summary

We have developed a nonabelian gauge theory over deformed Minkowski superspace.

In this deformation, all of the fermionic dimensions are deformed and as a result, all

of the supersymmetry is broken. To be consistent with the N = 1
2

terminology, we
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say that this deformed superspace has N = 0 supersymmetry. Many of the results

directly mirror the results of N = 1
2

from [112] or [6]. This is due to the fact that

the deformation we consider in this chapter reduces to the deformation of N = 1/2

supersymmetry upon setting C̄ α̇β̇ = 0. It is not surprising that we recover the same

gauge theoretic results as [112] in the limit C̄ α̇β̇ = 0. The exception to this rule is

the choice of gauge parameter introduced by Seiberg in [112]. We found that it was

not possible to use the same construction because it violated the hermiticity of the

vector superfield. We fixed this by introducing a new gauge parameter which served

to maintain both hermiticity and the C-independent gauge transformations on the

component fields.

Next, we introduced the chiral superfield Φ. Again, we found it necessary to mod-

ify the canonical component field expansion in order to maintain the standard gauge

transformations on the component fields. The modification is similar in spirit to that

of [6]. Essentially, what we found is the N = 1
2

theory and conjugate copy where all

of the usual N = 1
2

terms are accompanied by their conjugates due to the hermiticity

properties of the star product used in this construction.

Finally, we constructed the Lagrangian which coupled the gauge and matter fields.

The gauge invariance of L follows for reasons similar to the commutative theory. We

simply modified the standard arguments for the gauged Wess-Zumino model by re-

placing products with star products. The primary obstacle to this construction was

the task of finding the correct parametrization for the superfields. The Lagrangian is

similar to that found by [6], however, there are several new terms. Most new terms

come directly from the added deformation {θ̄α̇, θ̄β̇}∗ = C̄ α̇β̇ (which should have been

expected from the outset). However, the reparametrization of the gauge parameter
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also led us to some terms which were not immediately obvious from the N = 1
2

theory.

There is much work left to do. First, we should complete the program begun in

this work to the second order in the deformation parameter. Nonassociativity will

have to be addressed. It is likely that, the constructions of this chapter will need

modification at the second order. Secondly, there are numerous papers investigating

N = 1/2 supersymmetry [6], [60], [61], [50], [46], [19], [14], [20], [83], [103], [21], [12],

[49], [5], [67], [110], [85], [115], [1], [109], [63], [62], [9], [48], [3], [93], [8], [53], [15], [7],

[108], [34] and it would be interesting to find complementary results for the N = 0 case

where possible. We could try to find the dual results for, instantons as in [60], [61], [50],

[46], [19], [14], or renormalization as in [20], [83], [103], [21], [12], [49], [5], [67], or the

possibility of residual supersymmetry as in [110], or the Seiberg Witten map as in [85].

We do not attempt to give a complete account of the N = 1/2 developments, we just

wish to point out the variety of novel directions future research might take. Finally,

it would be interesting to derive the N = 0 deformation from a string theoretical

argument.

10.8 Star Product Approximately Associative

Define the parity of F to be ǫF . If F is even, then ǫF = 1. If F is odd, then ǫF = −1.

We can express the star product to the first order as:

F ∗G = FG− 1
2
CαβǫF (QαF )(QβG) − 1

2
C̄ α̇β̇ǫF (Q̄α̇F )(Q̄β̇G).
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Let us then prove that the first order star product is associative. Consider:

(F ∗G) ∗H = (FG− 1
2
CαβǫF (QαF )(QβG) − 1

2
C̄ α̇β̇ǫF (Q̄α̇F )(Q̄β̇G)) ∗H

= FGH − 1
2
CαβǫF (QαF )(QβG)H − 1

2
C̄ α̇β̇ǫF (Q̄α̇F )(Q̄β̇G)H

−1
2
CαβǫFG(QαFG)(QβH) − 1

2
C̄ α̇β̇ǫFG(Q̄α̇FG)(Q̄β̇H)

= FGH − 1
2
CαβǫF (QαF )(QβG)H − 1

2
C̄ α̇β̇ǫF (Q̄α̇F )(Q̄β̇G)H

−1
2
CαβǫFG[(QαF )G+ ǫFF (QαG)]QβH

−1
2
C̄ α̇β̇ǫFG[(Q̄α̇F )G+ ǫFF (Q̄α̇G)]Q̄β̇H

= FGH − 1
2
CαβǫF (QαF )(QβG)H − 1

2
C̄ α̇β̇ǫF (Q̄α̇F )(Q̄β̇G)H

−1
2
Cαβ [ǫF ǫG(QαF )G(QβH) + ǫGF (QαG)(QβH)]

−1
2
C̄ α̇β̇ [ǫF ǫG(Q̄α̇F )G(Q̄β̇H) + ǫGF (QαG)(Q̄β̇H)].

Notice that we have used ǫFG = ǫF ǫG and ǫF ǫF = 1 to complete the calculation above.

Likewise consider:

F ∗ (G ∗H) = F ∗ (GH − 1
2
CαβǫG(QαG)(QβH) − 1

2
C̄ α̇β̇ǫG(Q̄α̇G)(Q̄β̇H))

= FGH − 1
2
CαβǫGF (QαG)(QβH) − 1

2
C̄ α̇β̇ǫGF (Q̄α̇G)(Q̄β̇H)

−1
2
CαβǫF (QαF )(QβGH) − 1

2
C̄ α̇β̇ǫF (Q̄α̇F )(Q̄β̇GH)

= FGH − 1
2
CαβǫGF (QαG)(QβH) − 1

2
C̄ α̇β̇ǫGF (Q̄α̇G)(Q̄β̇H)

−1
2
CαβǫF (QαF )[(QβG)H + ǫGG(QβH)]

−1
2
C̄ α̇β̇ǫF (Q̄α̇F )[(Q̄β̇G)H + ǫGG(Q̄β̇H)]

= FGH − 1
2
CαβǫGF (QαG)(QβH) − 1

2
C̄ α̇β̇ǫGF (Q̄α̇G)(Q̄β̇H)

−1
2
Cαβ [ǫF (QαF )(QβG)H + ǫF ǫG(QαF )G(QβH)]

−1
2
C̄ α̇β̇[ǫF (Q̄α̇F )(Q̄β̇G)H + ǫF ǫG(QαF )G(Q̄β̇H)].

Therefore, F ∗ (G ∗H) = (F ∗G) ∗H to the first order in the deformation parameter.
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[13] F.A. Berezin, D.A. Lěites, Supermanifolds Sov. Math, Dokl. 16 (1975) 1218.

[14] M. Billo, M. Frau, I. Pesando, A. Lerda, N=1/2 gauge theory and its instanton
moduli space from open strings in R-R background, JHEP 0405, 023 (2004) [hep-
th/0402160].

[15] M. Billo, M. Frau, F. Lonegro, A. Lerda, N=1/2 quiver gauge theories from open
strings with R-R fluxes, JHEP 0505, 047 (2005) [hep-th/0502084]

[16] Gauge theory and variational principles, D.D. Bleecker, Addison-Wesley Publish-
ing Company Inc. 1981.

[17] L. Bonora, P. Pasti, M. Tonin Supermanifolds and BRS transformations J. Math.
Phys. 23 (5) (May 1982) 839-845.

[18] The Theory of G∞-Supermanifolds, C.P. Boyer, S. Gitler, Transactions of the
American Mathematical Society, Vol. 285. No.1. (September 1984) 241-267.

[19] R. Britto, B. Feng, O. Lunin, S.J. Rey, U(N) Instantons on N=1/2 superspace
– exact solution and geometry of moduli space, Phys.Rev. D69, 126004 (2004)
[hep-th/0311275].

[20] R. Britto, B. Feng, S.J. Rey, Non(anti)commutative Superspace, UV/IR Mixing
and Open Wilson Lines, JHEP 0308, 001 (2003) [hep-th/0307091].

[21] R. Britto, B. Feng, N=1/2 Wess-Zumino model is renormalizable, Phys.Rev.Lett.
91, 201601 (2003) [hep-th/0307165].
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