
Abstract

LEE, HYEYOUNG. Reparametrized Dynamic Space-Time Models and Spatial Model

Selection. (Under the direction of Sujit Ghosh.)

Researchers in diverse areas such as environmental and health sciences are in-

creasingly facing working with space-time data. Often the dimension of space-time

data sets can be very large and moreover, space-time processes are often compli-

cated in that the dependence structure across space and time is non-trivial, often

non-separable and non-stationary in space and/or time. Hence, space-time model-

ing is a challenging task and in particular parameter estimation can be problematic

due to the high dimensionality. We propose a reparametrization approach to fit dy-

namic space-time models with an unstructured covariance function. Our modeling

contribution is to present unconstrained reparametrization for a covariance matrix

in dynamic space-time models. Using this unconstrained reparametrization method,

we are able to implement the modeling of a high dimensional covariance matrix that

automatically maintains the positive definiteness constraint. We illustrate the use of

this reparametrization method by applying our model to a set of atmospheric nitrate

concentration data. We also consider the problem of model selection for spatial data.

The issue of model selection in spatial models has rarely been addressed in the lit-

erature, though it is very important. To address this problem, we consider selection

criteria such as the Akaike Information Criterion (AIC), Corrected Akaike Informa-

tion Criterion (AICc) and Bayesian Information Criterion (BIC). The performance

of these selection criteria are examined using Monte Carlo simulations. In particular,

the ability of these criteria to select the correct model is evaluated.
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Chapter 1

Introduction

Researchers in diverse areas such as environmental and health sciences are increas-

ingly faced with working with data that are observed over space and time. These

data arise because of advances in data collection methods, which use state of the art

equipment for collecting data from such platforms as radars and satellites. Increased

computational resources aid in the analysis of these data. The use of space-time data

can be found in many applications. For example, we investigate a set of space-time

data that involves the analysis of nitrate concentrations and their relations to mete-

orological data such as temperature, relative humidity, wind speed and precipitation

and chemical data such as sulfate, ammonium, and ozone as predictors. This data

set was collected at selected monitoring sites on a weekly basis over several years in

the eastern part of United States. We describe some general features of this spa-

tial/temporal data set in Chapter 4.

Traditionally spatial data are classified into one of three types: point referenced

data, areal data and point pattern data. Different data types correspond to different
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mechanisms of data collection procedures. Let D ⊆ R
d (d ≥ 2) denote a domain in

the space where we collect data and s ∈ D represent the location of a site. Point

referenced data are often referred to as geostatistical data and typically arise when the

spatial location s varies continuously over a fixed study region D. For example, in our

application to an air pollution problem, data are collected over a domain in the eastern

U.S. The data are called areal or lattice data where the fixed domain D is partitioned

into a finite number of areal units with well defined boundaries such as postal codes

or counties. Here an observation is thought to be associated with an areal unit of

non-zero volume as opposed to a particular location point. Spatial point pattern data

arise when an event of interest (e.g., an outbreak of a disease) occurs at random

locations. In this case, the domain D is random and its index set gives the spatial

point pattern. In some cases this information might be supplemented by additional

covariate information at the event locations. See Chapter 1 of Schabenberger and

Gotway (2005) for additional discussion on spatial data types.

Similar to spatial data, time series data can be categorized into continuous or

discrete. Continuous time series data are observed at every instant of time (e.g.,

lie detectors), and discrete time series data are usually observed at regularly spaced

intervals (e.g., weekly share prices and daily rainfall). Notice that frequently observed

discrete time series data can be used to approximate a continuous time series.

In this thesis, we focus on space-time data, which are a combination of spatial

point referenced data and discrete time series data. Thus, for our application we only

consider geostatistical (point-referenced) data observed over a discrete time grid.
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1.1 Statistical Models for Space-Time Data

In recent years, there has been widespread attention in the statistical literature

given to models for space-time data (Mardia et al., 1998; Kyriakidis and Journel,

1999; Wikle and Cressie, 1999; Stroud et al., 2001; Gelfand et al., 2005). Often, in

modeling space-time data, it is of interest to predict the time evolution of a response

variable over a given spatial domain. To this end, statistical models are employed to

obtain accurate predictions of a response variable, such as nitrate concentrations.

Following Banerjee et al. (Chapter8, 2004), the general form of models for space-

time data can be defined as

Z(si, t) = Y (si, t) + ǫ(si, t), i = 1, · · · , n, t = 1, · · · ,m, (1.1)

where Z(si, t) represents the observed response variable, Y (si, t) represents the un-

derlying space-time process and ǫ(si, t) represents the error process which is assumed

to be a white noise process. The space-time process Y (si, t) can be expressed as

Y (si, t) = µ(si, t) + ω(si, t), (1.2)

where µ(si, t) is a mean process and ω(si, t) is a zero mean space-time process. We

generally assume the ǫ-process to be independent of the ω-process. The mean process

is usually modeled using parametric or nonparametric regression with a set of observed

covariates x(si, t). A parametric covariance structure is typically assumed for the

ω(si, t) process. The space-time covariance function is defined as

C(s1, s2; t1, t2) = Cov[ω(s1, t1), ω(s2, t2)]. (1.3)
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The space-time process ω(s, t) is said to be stationary if

C(s1, s2; t1, t2) = C(s1 − s2; t1 − t2) = C(d; τ), (1.4)

where d = s1 − s2 and τ = t1 − t2 denote the separation vectors, which means the

space-time covariance function is a function of the separation vectors. A stationary

process is said to be isotropic if

C(d; τ) = C(||d||; |τ |), (1.5)

that is, the covariance function depends on the separation vectors only through their

lengths ||d|| and |τ |. Processes which are not isotropic are called anisotropic. In the

literature isotropic processes are popular because of their simplicity and interpretabil-

ity. An isotropic process ω(s, t) is said to be separable if

C(||d||; |τ |) = Cs(||d||)Ct(|τ |). (1.6)

Suitable forms for the functions Cs(·) and Ct(·) are available in the literature. A

popular choice for Cs(·) is the Matern covariance (Matern, 1986) function and the

ARMA (Box and Jenkins, 1976) covariance function for Ct(·).

Various approaches have been proposed to model space-time processes (Kyriakidis

and Journel, 1999). One can consider the space-time problem from a multivariate

geostatistical perspective, which requires that the space-time covariance functions be

specified (Cressie and Huang, 1999; Gneiting, 2002; Schmidt and O’Hagan, 2003;

Stein, 2005). This approach has been limited in that the known class of valid space-

time covariance functions is quite small, and such covariance functions are often not

realistic for complicated dynamical processes. In addition, high dimensionality of

these space-time models can prohibit practical implementation.
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Space-time models are often constructed by combining traditional time series tech-

niques with methods from spatial statistics. In the time series context, popular ap-

proaches include ARIMA models (Box, Jenkins and Reinsel, 1994) for stationary data,

and dynamic linear models (West and Harrison, 1997), which allow for nonstationary

components such as temporal trends and seasonality.

Early attempts to develop space-time models assumed temporal stationarity. In

an early Bayesian application, Handcock and Wallis (1994) considered the space-time

modeling of winter temperature data observed over a region in the northern United

States. They employed stationary Gaussian process models with an AR(1) model for

the time series at each location and carried out separate spatial analyses to study

global warming in each year. Carroll et al. (1997) again used stationary Gaussian

processes, assuming a separable form for the space-time covariance function to study

ground level ozone. Their model combines trend terms incorporating temperature

and hourly or monthly effects, and an error model in which the correlation in the

residuals is a nonlinear function of time and space, in particular the spatial structure

is a function of the lag between observations. Brown et al. (2000) considered the

space-time modeling of rainfall data using a non-separable model. They showed that

this model is well suited to a wide range of realistic problems which will be poorly

fitted by separable models.

More recently, researchers have developed space-time models that allow for non-

stationary components. Guttorp et al. (1994) modeled the spatial covariances of

hourly ozone levels using the Sampson and Guttorp (1992) nonparametric spatial

covariance approach. They allowed the parameters of the model to vary as a func-
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tion of time of day. Other approaches involving hierarchical Bayesian models include

Wikle et al. (1999) and Waller et al. (1997). Wikle et al. (1999) analyzed monthly

maximum atmospheric temperatures and Waller et al. (1997) used generalized linear

models to map lung cancer rates in Ohio.

There is also much recent space-time modeling, which employs a Markov random

field structure in the form of conditionally autoregressive (CAR) specifications. Waller

et al. (1997) studied disease mapping, and Gelfand et al. (1998) looked at single

family home sales. Pace et al. (2000) worked with simultaneous autoregressive (SAR)

models extending them to allow temporal neighbors as well as spatial neighbors.

Researchers have also found the dynamic linear model (DLM), or state-space,

framework convenient for analyzing spatial time series. Many of the authors took a

Bayesian approach, often relying on Markov Chain Monte Carlo (MCMC) simulation

for posterior inference. MCMC methods for DLM are extensively described by West

and Harrison (1997). A DLM framework is a common approach used in environmental

problems, which are commonly temporally rich in data to update uncertainties about

general model parameters as observations are made. Examples include Shaddick and

Wakefield (2002) and Stroud et al. (2001). Shaddick and Wakefield (2002) modeled

multiple-pollutant data sets measured over time at multiple sites within a dynamic

linear modeling framework. The modeling was carried out to provide exposure for

a study investigating the health effects of air pollution. In Stroud et al. (2001)

a DLM was used principally in the time domain but only a restricted number of

spatial points were modeled. Inferences for intermediate points were then made using

kriging. A particular advantage of this approach is that data are not restricted to
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a lattice framework and the updates have a relatively low computational load using

the Kalman filtering and smoothing algorithms. Kriging is a common interpolation

technique used for making spatial predictions at locations where measurements have

not been obtained. Points which are close together have a higher spatial correlation

than points that are far apart. Predictions at unmeasured locations are based on

a weighted average of measured locations, where weights are assigned to all points

based on the rate of information decay when moving away from a measurement point.

Sansó and Guenni (1999) proposed a DLM with unknown covariance parameters

to model rainfall data. Tonellato (1997) developed a state-space model with both

stationary and nonstationary temporal components, which was applied in Tonellato

(1998) to an Irish wind power prediction problem. Huerta et al. (2004) modeled

ozone concentrations over Mexico City and carried out spatial as well as temporal

interpolation and prediction using DLM. Banerjee et al. (2005) discussed univariate

space-time dynamic models and multivariate spatial dynamic models. They allowed

for nonlinear mean structure and non-stationary association structure in modeling

space-time data.

State-space approaches in a non-Bayesian setting include Huang and Cressie (1996)

and Mardia et al. (1998). Huang and Cressie (1996) modeled snow water in time

and space using a separable dynamic model. Mardia et al. (1998) proposed a kriged

Kalman filter and outlined a likelihood-based estimation strategy.

From a methodological point of view, space-time data require substantial work,

as we must develop models that account for both spatial and temporal correlations.

Such modeling also carries an obvious associated increase in computational complex-
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ity. Also, the dimension of space-time data sets can be very large, and moreover,

space-time processes are often complicated in that the dependence structure across

space and time is non-trivial, often non-separable and non-stationary in space and/or

time. Hence, space-time modeling is a challenging task which requires the manipula-

tion of large data sets and the ability to fit realistic and complex models. In particular,

parameter estimation can be problematic due to the high dimensionality. Parameter

identifiability is often a difficult task with high dimensional models. Several modeling

strategies have been proposed to address this problem. Many authors have consid-

ered ways of reducing the computational load of the multivariate DLM. A common

approach is to reduce the number of dimensions, for instance by constructing the

update using summary variables. Wikle and Cressie (1999) developed a space-time

Kalman-filter that achieves dimension reduction by decomposing the state-process

into sets of basis functions and time series. To avoid a high computational load they

used an empirical Bayesian method for the estimation of model parameters rather

than a fully Bayesian hierarchical approach. However, the additional variability in

estimating parameters is ignored in such a method. Stroud et al. (2001) specified very

simple random walk dynamics, while Xu and Wikle (2004) discussed efficient estima-

tion approaches via the expectation-maximization (EM) algorithm for the parameter

and covariance matrices with high dimensionality in dynamic space-time models.

In Chapter 2 of this thesis, we propose a reparametrization approach to fit dynamic

space-time models with an unstructured covariance function. That is, our models are

not limited by the stationarity and isotropy restrictions for the covariance function.

Our modeling contribution is to present an unconstrained reparametrization method
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to be used for a covariance function within dynamic space-time modeling framework.

Using this unconstrained reparametrization method, we are able to implement the

models to fit high-dimensional data without many restrictive assumptions. We take

a Bayesian approach and use Markov chain Monte Carlo (MCMC) simulation tech-

niques to obtain the parameter estimates followed by predictive inference. Recent

developments in MCMC computing allow fully Bayesian analyses of complex multi-

level models for dynamic space-time data. Pole et al. (1994) and West and Harrison

(1997) are good references on the dynamic models from a Bayesian point of view.

1.2 Model Selection Methods

Model choice is a crucial issue in statistical data analysis. Researchers typically

consider a number of plausible models in statistical applications, and hence model

comparison is required to identify the “best ” model among several candidate models.

Model comparison enables the selection of a suitable model based on a given data set

and other modeling information. A variety of model selection methods are available

in the literature. We discuss these methods in this section.

Hypothesis testing is probably the most frequently used method in model selection.

In particular, sequential hypothesis testing has most often been used. Sequential

testing can be performed via one of the forward, backward, and stepwise methods.

The forward method begins with no variables in the model. Then variables are

added one by one to the model until no remaining variable produces a significant F

statistic. The variable that has the largest F statistic is added to the model. The F
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statistic calculated for each variable reflects the variable’s contribution to the model

if it is included. The backward method begins with all of the variables included in

the model. Then the variables are deleted from the model one by one until all the

variables remaining in the model produce significant F statistics. At each step, the

variable showing the smallest contribution to the model is deleted. The stepwise

method modifies the forward and backward methods and differs in that variables

can be added or deleted at each step. This stepwise process ends when none of the

variables outside the model has a significant F statistic and every variable in the

model is significant.

However, hypothesis testing is defined only for nested models. A model M1 is

called nested under M2 if M1 is a special case of model M2. Also, Akaike (1974)

stated that hypothesis testing, in general, performs very poorly when used for model

selection.

Cross-validation is one of the methods that also has been suggested for model

selection (Stone, 1974). The holdout method is the simplest kind of cross validation.

The data set is separated into two sets, called the training set and the testing set. The

training set is used for model fitting, and the testing set is used for model validation.

One predicts the data in the testing set using the fitted model based on the training

set. Then a best model is selected by a chosen criterion such as minimum squared

prediction error. However, this method depends heavily on how the division is made.

K-fold cross validation is one way to obtain improvement over the holdout method.

The data set is divided into k subsets, and the holdout method is repeated k times.

Each time, one of the k subsets is used as the test set and the other k − 1 subsets

10



are put together to form a training set. Then the average error across all k trials

is computed. The advantage of this method is that it matters less how the data

gets divided, however it becomes computationally very intensive. A variant of this

method is to randomly divide the data into a test and training set k different times.

The advantage of doing this is that one can independently choose how large each test

set is and how many trials you average over.

The adjusted coefficient of multiple determination (R2) has been used in model

selection for classical multiple linear regression analysis. This is computed as

1 − (1 −R2)

(

n− 1

n− p

)

,

where R2 is the usual coefficient of multiple determination (Draper and Smith, 1981).

Under this method, one selects the model in which this adjusted statistic is largest.

McQuarrie and Tsai (1998) found this approach to be very poor in model selection.

Mallows’ Cp (Mallows 1973) statistic is well known for variable selection, but

limited to multiple linear regression problems with normal errors. Mallows’ Cp is

computed as

Cp =
SSres
MSres

− n+ 2p,

where SSres is the residual sum of squares for the model with p− 1 variables, MSres

is the residual mean square when using all available variables, n is the number of

observations, and p is the number of variables used for the model plus one. The general

procedure to find an adequate model by means of the Cp statistic is to calculate Cp

for all possible combinations of variables. The model with the lowest Cp value which

is approximately equal to p is the most “adequate ” model.
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Information criteria have played an important role in model selection. These

criteria are based on information theory. The basis for the information-theoretic

approach to model selection is the Kullback-Leibler (K-L) information (Kullback and

Leibler, 1951) given by,

I(f, g) =

∫

f(x)log

(

f(x)

g(x|θ)

)

dx,

where θ represents parameters in model g. Here, I(f, g) can be interpreted as the

“information lost when the model g is used to approximate full reality or truth f”

(Burnham and Anderson, Section 2.1, 2002). I(f, g) also can be interpreted as a

“distance ” from the approximating model g to truth f . We seek to find a candidate

model that minimizes I(f, g) over the candidate models. However, I(f, g) cannot be

used directly because it requires knowledge of f(x) and the parameters in models

g(x|θ).

Akaike’s information-theoretic approach has led to a number of methods having

desirable properties for the selection of the best approximating models in practice.

Akaike (1973) provided a way to estimate relative, expected I(f, g) based on the

empirical log-likelihood function. He found that the maximized log-likelihood value

was a biased estimate of the relative, expected K-L information, and that under

certain conditions this bias was approximately equal to p, the number of parameters

in the approximating model g. His method, Akaike’s Information Criterion (AIC) is

based on this finding. AIC is defined as,

AIC = −2log
[

L(θ̂|X)
]

+ 2p,

where log[L(θ̂|X)] is the value of the log-likelihood at its maximum point, and p
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denotes the number of paramters in the model.

Takeuchi (1976) derived a general method to get from K-L information to AIC.

He derived an asymptotically unbiased estimator of the relative, expected K-L in-

formation without special conditions. Takeuchi’s Information Criterion (TIC) has a

more general bias adjustment term,

TIC = −2log
[

L(θ̂|X)
]

+ 2tr
(

J(θ)I(θ)−1
)

,

where J(θ) represents the variance matrix of the first-order derivatives, I(θ) represents

minus the expected value of the matrix of second-order derivatives of the log-likelihood

with respect to the parameter θ and “tr ” denotes the matrix trace function. AIC is

an approximation to TIC, where tr(J(θ)I(θ)−1) = p. TIC requires large sample sizes

to estimate the elements of the two p× p matrices in the bias-adjustment term. This

criterion is known to be useful when the candidate models are not particularly close

approximations to f (Burnham and Anderson, 2002).

The method for small sample approximations, called Corrected AIC (AICc), was

proposed by Sugiura (1978) and Hurvich and Tsai (1989). They pointed out that

AIC may perform poorly if the number of parameters are too large in relation to the

size of the sample. AICc is defined as,

AICc = −2log
[

L(θ̂|X)
]

+ 2p

(

n

n− p− 1

)

,

where n is sample size. Unless the sample size is large with respect to the number of

estimated parameters, use of AICc is recommended.

Information criteria are applicable across a very wide range of statistical models.

Burnham and Anderson (2002) recommends the use of AIC and AICc because they are
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easy to compute and quite effective in many applications. In most practical situations,

AIC and AICc are very useful approximations to the relative K-L information.

QAIC and QAICc, based on quasi-likelihood theory, have been derived for appro-

priate model selection when count data are found to be overdispersed. If overdisper-

sion is found in the analysis of count data, the nominal log-likelihood function must be

divided by an estimate of the overdispersion to obtain the correct log-likelihood. The

principles of quasi-likelihood suggest simple modifications to AIC and AICc (Lebreton

et al., 1992). QAIC and QAICc are defined as,

QAIC = −2log
[

L(θ̂|X)/ĉ
]

+ 2p,

QAICc = −2log
[

L(θ̂|X)/ĉ
]

+ 2p

(

n

n− p− 1

)

,

where ĉ is an estimated overdispersion factor.

AIC, AICc, QAIC, and QAICc are estimates of the relative K-L distance between

truth f and the approximating model g. These criteria were motivated by the concept

that the truth is very complex and that no true model exists. Thus, one could only

approximate truth with a model, say g. Given a good set of candidate models for the

data, one could estimate which approximating model is best. TIC allows that the

set of candidate models does not include f or any model similar to f (Burnham and

Anderson, 2002).

Several criteria have been developed, based on the assumption that a true model

exists, that it is one of the candidate models being considered, and that the model

selection goal is to select the true model. These criteria are derived to provide a

consistent estimator of the dimension (p) of this true model, and the probability of
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selecting this true model approaches one as sample size increases. The best known

of these dimension-consistent criteria is the Bayesian Information Criterion (BIC),

which was derived by Schwarz(1978) in a Bayesian context. It is defined as,

BIC = −2log
[

L(θ̂|X)
]

+ plog(n),

where p is the dimension of the model and n is sample size. BIC arises from a Bayesian

viewpoint with equal prior probability on each model and very vague priors on the

parameters, given the model. BIC is not an estimator of relative K-L information.

Bozdogan (1987) provides a review of many of the other dimension-consistent criteria.

Spiegelhalter et al. (2002) have developed a Deviance Information Criterion (DIC)

from a Bayesian perspective that is analogous to AIC. DIC is one of the common

methods for model comparison in the Bayesian framework. It is defined as,

DIC = −2log
[

L(θ̄|X)
]

+ 2pDIC ,

where θ̄ = E[θ|X] denotes the posterior mean of θ given the data X, and pDIC denotes

the effective number of parameters given by pDIC = E[D(θ)|X] −D(E[θ|X]), where

D(θ) = −2log[L(θ|X)] denotes the deviance of the model. DIC seems to behave like

AIC rather than like BIC (Spiegelhalter et al., 2002). One disadvantage of DIC is

that it usually requires computationally intensive methods like Markov Chain Monte

Carlo (MCMC) approach to compute both of its components.

Another measure that can be used as a model selection tool in a Bayesian frame-

work is the predictive criterion suggested by Laud and Ibrahim (1995), and further

developed by Gelfand and Ghosh (1998). This method assesses the predictive perfor-

mance of a model in terms of prediction accuracy of a replicate of the observed data
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while still being loyal to the original data. A simplified version of this predictive cri-

terion computes the predictive mean of the squared difference between the observed

data and a replicate of data under the model, and chooses the model with the small-

est value. The predictive criterion can also be decomposed into two terms (Gelfand

and Ghosh, 1998). The first term can be viewed as a goodness of fit term with the

mean of the posterior predictive distribution of the replicate replacing the maximum

likelihood estimate of the mean, and the second term is a variance term that can be

thought of as a penalty function. Gelfand et al. (1998) adopt this criterion to select

a model for the analysis of residential sales data based on a variety of space-time

models.

The principle of parsimony provides a basis for model selection. As the goal of

model selection using information criteria is to select parsimonious models, models

that minimize the criterion are selected.

We further investigate information criteria, such as AIC, AICc, and BIC, for

model selection in Chapter 3. We discuss comparisons of these criteria and explore

their performance using Monte Carlo simulations. In particular, we evaluate their

ability to select the correct model in a spatial modeling context.
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Chapter 2

A Reparametrization Approach for

Dynamic Space-Time Models

2.1 Introduction

Statistical modeling of time series processes is usually based on classes of dynamic

models. The term dynamic relates to changes in such processes due to the passage

of time. Following West and Harrison (1997), in a Bayesian framework, forecasting

problems through dynamic modeling are structured using four fundamental principles:

(i) sequential model definition,

(ii) structuring using parametric models,

(iii) probabilistic representation of information about parameters, and

(iv) forecasts derived as probability distributions.
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Suppose that the time origin, t = 0, represents the current time, and that the

existing information available is denoted by D0, the initial information set. This

represents all the available relevant starting information which is used to form ones

initial views about the future. In forecasting ahead to any time t1 > 0, the primary

objective is calculation of the forecast distribution for (Yt1|D0), where Yt1 is the ob-

servation at time t1. Generally, we denote by Dt the information set available at

time t. Thus statements made at time t about any random quantities of interest are

based on Dt. In particular, forecasting ahead to time t2 > t1 involves consideration

of the forecast distribution for (Yt2|Dt1). Observing the value of Yt2 at time t2 im-

plies that Dt2 includes both the previous information set Dt1 and the observation

Yt2 , that is, Dt2 = {Yt2 , Dt1}, which represents information updating. The sequential

focus is emphasized through the use of statistical models for the development of the

series into the future described via distributions for Yt2 , Yt3(t3 > t2), · · · , conditional

on past information Dt1 . From now on we assume that the temporal observations

are collected at regular time interval denoted by t = 1, 2, · · · . Focusing on one-step

ahead, the forecaster’s views are then structured in terms of a parametric model,

p(Yt|θt, Dt−1),

where θt represents the parameter vector at time t. Indexing θt by t indicates that the

parameterization is dynamic. The model parameter θt provides the means by which

information relevant to forecasting the future is summarized and used in forming

forecast distributions. The learning process involves sequentially revising the state

of knowledge about such parameters. At time t, historical information Dt−1 is sum-

marized through a prior distribution for future model parameters. The prior density
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p(θt|Dt−1) and the posterior density p(θt|Dt) provide a concise, coherent and effective

transfer of information on the time series process through time. An ultimate goal is

attained by directly applying probability laws. That is,

p(Yt,θt|Dt−1) = p(Yt|θt, Dt−1)p(θt|Dt−1),

from which the relevant one-step forecast may be deduced as the marginal

p(Yt|Dt−1) =

∫

p(Yt,θt|Dt−1)dθt.

Inference for the future Yt is now a standard statistical problem of summarizing the

information encoded in the forecast distribution.

2.2 Dynamic Linear Models

The most widely known and used subclass in dynamic models are the Gaussian

Dynamic Linear Models, referred to more simply as Dynamic Linear Models (DLM)

(West and Harrison, 1997), where the normality and linearity are assumed for sequen-

tial model definitions and structured parameters, respectively. The DLM framework

has been a common approach used in space-time data, which are commonly tem-

porally rich, such as environmental problems to update uncertainties about general

model parameters as observations are made. The DLM can be seen as a generalization

of regression models that allow changes in parameter values over time and provide a

very flexible framework that permits smooth and abrupt changes in the time series

generating the process. In this section we discuss traditional DLM in the time series

context.
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Let yt be a n × 1 vector of observations at time t. yt is modeled conditionally

based on a p× 1 vector, θt, called the state vector, through a measurement equation

or a observation equation. In general, the elements of θt are not observable, but are

generated by a first-order Markovian process, resulting in a transition equation or

evolution equation. Therefore, we can describe the above framework for t = 1, 2, · · · ,

as

Observation equation : yt = Ftθt + υt, υt ∼ N(0,Συ
t ),

Evolution equation : θt = Gtθt−1 + ηt, ηt ∼ N(0,Ση
t ),

where Ft and Gt are n × p and p × p matrices, respectively. The first equation is

the observation equation, where υt is a n× 1 vector of serially uncorrelated Gaussian

variables with mean zero and a n× n covariance matrix, Συ
t . The second equation is

the evolution equation with ηt being a p×1 vector of serially uncorrelated zero-mean

Gaussian disturbances and Ση
t the corresponding p×p covariance matrix. The model

is completed with a Gaussian prior on the initial state: θ0 ∼ N(m0, C0), with θ0

independent of υt and ηt. We further assume that ηt and υt are independent.

Ft and Gt are referred to as system matrices which are allowed to change over

time. The matrix Ft is usually specified by the design of the problem at hand, while

Gt is specified through modeling assumptions; for example, Gt = Ip, the p×p identity

matrix would render a vector autoregressive (VAR) random walk of order one V AR(1)

process for θt. A random walk prior is a natural choice when no prior information

is available. As a result, the system is linear, and for any time point t, yt can be

expressed as a linear combination of the present υt and the present and past ηt’s.
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The evolution variance matrix Ση
t can be specified either explicitly or through a dis-

count factor δ ∈ (0, 1], which defines Ση
t = 1−δ

δ
Pt, with Pt = V ar(Gtθt−1|y1, · · · ,yt−1).

When p is large, the discount method is usually preferred, since it requires elicita-

tion of only one parameter instead of p(p + 1)/2. The observation variance matrix

Συ
t is usually assumed to be a diagonal matrix. We will show that our proposed

reparametrization method allows one to relax these restrictive assumptions.

2.3 Dynamic Space-Time Models (DSTM)

We adapt the above DLM framework to space-time data. The approach taken

here is to view the data as arising from a time series of spatial processes.

Suppose the process Z(s, t) is observed on a finite number of sites labeled as

s1, ..., sn at each time t, where t = 1, 2, · · · ,m. Consider the n× 1 vector time series

Zt = (Z(s1, t), ..., Z(sn, t))
T at time t. For each t, the DLM is usually formed by an

observation equation and an evolution equation. An observation equation describes

the relationship between the observation (Zt) and the regressors (Xt) that takes the

form of a multivariate regression process,

Zt = Xtβt + νt, νt ∼ N(0,Σν
t ) (2.1)

where Xt is an n × p observed design matrix and βt is a p × 1 vector of regression

coefficients or state parameters. An evolution equation describes the dynamics of the

vector of regression coefficients or state parameters βt through time,

βt = Gtβt−1 + ωt, ωt ∼ N(0,Σω
t ) (2.2)
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where Gt is a p × p evolution matrix. There are several ways to model the Gt’s.

The most common assumption is that the Gt’s are structurally known, possibly up

to some finite number of parameters. In this thesis, we do not make any structural

assumption about the Gt’s but we assume that Gt = G for all t and that G follows a

matrix-valued normal distribution with mean G0 and variance-covariance parameters

Ω0 and ΣG
0 . That is, G ∼ MNp×p(G0, Ω0, ΣG

0 ). We also assume that the νt and ωt

error vectors are independent and have multivariate normal distributions with mean

0 and variance-covariance matrices Σν
t and Σω

t , respectively. The model is completed

with a normal prior for the initial state, β1 ∼ N(β0,Σ
ω
0 ), where β0 is known.

Equivalently, the model can be written using hierarchical specifications as follows:

Zt|βt ∼ N(Xtβt,Σ
ν
t ),

βt|βt−1, G ∼ N(Gβt−1,Σ
ω
t ),

G ∼ MN(G0,Ω0,Σ
G
0 ),

β1 ∼ N(β0,Σ
ω
0 ),

where the matrix valued normal distribution MN(G0,Ω0,Σ
G
0 ) has the probability

density function given by

p(G|G0,Ω0,Σ
G
0 ) = (2π)−p

2/2|Ω0|
−p/2|ΣG

0 |
−p/2exp

(

−
1

2
tr

[

Ω0
−1(G−G0)Σ

G
0

−1
(G−G0)

T
]

)

.

This Bayesian hierarchical approach not only helps organize our thinking about the

model, but also fully accounts for all sources of uncertainty without making substan-

tial structural assumptions like, spatial stationarity, isotropy, etc.

In order to keep our illustrations simple, first we consider the following simplified

DLM. Specifically, we assume that Σν
t = Σν and Σω

t = Σω in equation (2.1) and (2.2).
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That is, variance-covariance matrices Σν and Σω do not change over time (and hence

are static). Our simplified DLM can be written as,

Zt = Xtβt + νt, νt ∼ N(0,Σν), (2.3)

βt = Gβt−1 + ωt, ωt ∼ N(0,Σω), (2.4)

and β1 ∼ N(β0,Σ
ω
0 ). Here, Σν and Σω are unstructured variance-covariance matrices

and for the ease of exposition, we initially assume that Zt and X t are observed at

all time points t. Later we discuss how to relax this assumption if some observations

are missing.

The Bayesian model is completed with the specification of a prior distribution for

the parameters. These include the data-model covariance matrix Σν and the error

covariance matrix Σω. Prior specifications for Σν and Σω can be tricky as these

matrices are usually high-dimensional (e.g., Σν is n×n) and they need to be positive

definite (pd). It is customary to use the inverse Wishart distributions to model such

covariance matrices. Note that our models require no restrictive assumptions such

as stationarity and isotropy as Σν is left unstructured. However, if such assumptions

are deemed necessary, we can easily incorporate them in our modeling framework.

As we mentioned earlier, inference for dynamic models is made sequentially by

obtaining the prior predictive and updated distributions for the state parameters βt

for each time t. The prior predictive distributions are respectively obtained by

p(βt|Dt−1) =

∫

p(βt|βt−1)p(βt−1|Dt−1)dβt−1

p(Zt|Dt−1) =

∫

p(Zt|βt)p(βt|Dt−1)dβt
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and the updated distribution is obtained by Bayes’ theorem as

p(βt|Dt) ∝ p(Zt|βt)p(βt|Dt−1)

where Dt represents all the available information upto time t.

2.4 Model Fitting

The most popular computing tools in Bayesian practice today are Markov chain

Monte Carlo (MCMC) methods. This is due to their ability to enable inference

from posterior distributions of arbitrarily large dimension, essentially by reducing the

problem to one of recursively solving a series of lower-dimensional problems. Like

traditional Monte Carlo methods, MCMC methods work by producing not a closed

form for the posterior, but a sample of values {θ(l), l = 1, · · · , B} from this distrib-

ution. While this obviously does not carry as much information as the closed form

itself, a histogram or kernel density estimate based on such a sample is typically suf-

ficient for reliable inference. Moreover such an estimate can be made accurate merely

by increasing the Monte Carlo sample size B. However, unlike traditional Monte

Carlo methods, MCMC algorithms produce correlated samples from the posterior,

since they arise from recursive draws from the path of a Markov chain, the stationary

distribution of which is the same as the posterior.

Suppose our model features p parameters, θ = (θ1, · · · , θp)
T . To implement the

Gibbs sampler, we must assume that samples can be generated from each of the full

conditional distributions {p(θi|θj 6=i,y), i = 1, · · · , p} in the model, where y denotes

the set of observed data. Under mild conditions, the collection of full conditional
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distributions uniquely determine the joint posterior distribution, p(θ|y), and hence

all marginal posterior distributions p(θi|y), i = 1, · · · , p. Given an arbitrary set of

starting values {θ
(0)
2 , · · · , θ

(0)
p }, the algorithm for the Gibbs sampler proceeds as fol-

lows:

Step1 Draw θ
(l)
1 from p(θ1|θ

(l−1)
2 , θ

(l−1)
3 , · · · , θ

(l−1)
p ,y)

Step2 Draw θ
(l)
2 from p(θ2|θ

(l)
1 , θ

(l−1)
3 , · · · , θ

(l−1)
p ,y)

...

Stepp Draw θ
(l)
p from p(θp|θ

(l)
1 , θ

(l)
2 , · · · , θ

(l)
p−1,y)

The cycles from Step1 to Stepp are repeated for l = 1, · · · , B. Under mild regu-

latory conditions that are generally satisfied for most statistical models (see Geman

and Geman, 1984), one can show that {θ
(l)
1 , · · · , θ

(l)
p } converges in distribution to a

draw from the true joint posterior distribution p(θ1, · · · , θp|y). This means that for l

sufficiently large, say l0, {θ
(l), l = l0 + 1, · · · , B} is a sample from the true posterior,

from which any posterior quantities of interest may be estimated. For example, a

histogram of the {θ
(l)
i , l = l0 + 1, · · · , B} provides a simulation-consistent estimator

of the marginal posterior distribution for θi, p(θi|y). The time from l = 0 to l = l0 is

commonly known as the burn-in period, and posterior estimates are obtained using

{θ(l), l = l0 + 1, · · · , B}.

We fit our model using a Markov chain Monte Carlo (MCMC) procedure known

as the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990) via the

WinBUGS software which is a window-based software package for Bayesian analysis

using MCMC methods. The software can be downloaded from the website

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml.
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The updating scheme in the dynamic space-time model may not be easy to imple-

ment when the G matrix is completely unknown. Further these types of multivariate

updating schemes can be very unstable and time consuming when the dimensions are

very large. In order to avoid such numerical instabilities and to accelerate model fit-

ting, we describe an equivalent univariate scheme for the aforementioned DLM using

a reparametrization method in the next section. As by-products of this reparame-

trization method, we obtain several extensions of the usual DLM.

2.5 A Reparametrization Method

In this section, we describe the proposed reparametrization method for a covari-

ance matrix. Modeling a covariance matrix Σ is difficult because (i) it is a high

dimensional parameter and (ii) it is restricted to be positive definite. Pourahmadi

(1999) introduced an unconstrained parameterization procedure to model a temporal

covariance matrix. The Cholesky decomposition of the inverse of a covariance matrix

is used to associate a unique unit lower triangular and a unique diagonal matrix with

each covariance matrix. The entries of the lower triangular matrix and the log of

the diagonal matrix are completely unconstrained and have interpretations similar to

regression coefficients and prediction variances, respectively, when regressing a mea-

surement on its predecessors. Using the Cholesky decomposition and the ensuing

unconstrained and statistically meaningful reparameterization, Daniels and Pourah-

madi (2002) provides a convenient and intuitive framework for developing condition-

ally conjugate prior distributions for covariance matrices, and show their connections

with generalized inverse Wishart priors. However, to the best of our knowledge this
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type of reparameterization of covariance matrices has been used only to model tem-

poral processes, taking advantage of the natural ordering of time. We extend these

methodologies to spatial and temporal processes and show several extensions.

For our DLM framework, we define two lower triangular matrices T ν and T ω

and two diagonal matrices Dν and Dω such that T νΣνT νT = Dν and T ωΣωT ωT =

Dω. Such decompositions of positive definite matrices are unique. More precisely,

let T ν and T ω be the lower triangular matrices with 1’s as their diagonal entries

and −φii′ , i > i′ and −ψkk′ , k > k′ as their lower triangular entries, respectively.

Also, let Dν and Dω be diagonal matrices with entries σν1
2, · · · , σνn

2 and σω1
2, · · · , σωp

2,

respectively. We now re-express the equations (2.3) and (2.4) using the entries of

their lower triangular and diagonal matrices.

Let Zit = Z(si, t), i = 1, · · · , n, t = 1, · · · ,m and Xitk = Xk(si, t), k = 1, · · · , p.

Notice that Zt = (Z1t, · · · , Znt)
T and {Xt}n×p = ((Xitk))1≤i≤n,1≤k≤p, which appear

in (2.3). Then we can represent the DLM defined by (2.3) and (2.4) as follows. The

observation equation can be written as,

Zit =

p
∑

k=1

βktXitk +
i−1
∑

i′=1

φii′Zi′t + νit, (2.5)

Z1t =

p
∑

k=1

βktX1tk + ν1t, (2.6)

where i = 2, · · · , n, t = 1, · · · ,m, E[νit] = 0, E[ν2
it] = σνi

2, and E[νitνi′t] = 0, i 6= i′.

Notice that νt = (ν1t, · · · , νnt)
T as in (2.3). The evolution equation can now be
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written as,

βkt =

p
∑

k′=1

βk′t−1gkk′ +
k−1
∑

k′=1

ψkk′βk′t + ωkt, (2.7)

β1t =

p
∑

k′=1

βk′t−1g1k′ + ω1t, (2.8)

where k = 2, · · · , p, t = 2, · · · ,m, E[ωkt] = 0, E[ω2
kt] = σωk

2, and E[ωktωk′t] = 0,

k 6= k′, and initial state equation can be written as,

βk1 = βk0 +
k−1
∑

k′=1

ψkk′βk′1 + ωk1, (2.9)

where k = 2, · · · , p. Notice that ωt = (ω1t, · · · , ωnt)
T as in (2.2). The model is

completed with

β11 = β10 + ω11.

Here, notice that no structural constraints are required for the elements of T ν , T ω, Dν ,

and Dω (i.e., φii′ , ψkk′ ∈ R and σνi
2, σωk

2 ∈ (0,∞)). In particular, for our applications

we may specify a prior distribution for these parameters as,

φii′ ∼ N(φ0, σ
2
φ), 1 ≤ i′ < i ≤ n,

ψkk′ ∼ N(ψ0, σ
2
ψ), 1 ≤ k′ < k ≤ p,

σ2
νi ∼ IG(aν , bν), i = 1, · · · , n,

σ2
ωk ∼ IG(aω, bω), k = 1, · · · , p,

gkk′ ∼ N(g0, σ
2
g), k, k

′ ∈ 1, · · · , p,

where φ0, σ
2
φ, ψ0, σ

2
ψ, aν , bν , aω, bω, g0 and σ2

g are all known values that can be used

to quantify the prior information if available, otherwise we can use values that would
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generate a set of vague priors. Here N(a, b) denotes a normal distribution with mean

a and variance b, and IG(a, b) denotes an inverse gamma distribution with mean b
a−1

for a > 1 and variance b2

(a−1)2(a−2)
for a > 2. For instance, we choose these values

in such a way that these will have minimal impact on the posterior inference of the

parameters. Other prior distributions can also be adapted for our framework very

easily.

Using this reparametrized univariate scheme we can avoid numerical instabilities

due to high dimensionality. The routine handling of missing data is also apparent by

using the reparametrization scheme. If an observation is missing, we just sample it

from its full conditional distribution. We illustrate the use of this reparametrization

method by applying our model to a set of nitrate concentration data in Chapter 4.

The advantages of our proposed reparametrized dynamic space-time models (RD-

STM) can be summarized as follows:

i) Numerical stability: RDSTM avoids numerical instabilities caused by multivari-

ate updating scheme when the dimensions are very large.

ii) Routine handling of missing data: RDSTM allows missing data to be imputed

from its full conditional distribution.

iii) Implementation using WinBUGS: RDSTM can be implemented using Win-

BUGS, while multivariate scheme of DSTM cannot.

Our proposed method can be extended to develop a very flexible class of space-

time models that are not subject to structural restrictions. Several possible extensions
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are as follows:

i) Dynamic modeling of covariance function Σν and Σω: we can allow Σν and Σω

to depend on t, that is, φii′ ’s, ψkk′ ’s, σ
ν
i
2’s, and σωk

2’s depend on t and thus

making these parameters dynamic as well.

ii) Relaxing the Gaussian assumption of distributions for νt’s and ωt’s: we can

assume other than Gaussian distributions such as t-distributions for νt’s and

ωt’s.

iii) Extension of the first-order Markovian assumption: we can assume θt is gener-

ated by a higher order Markovian process rather than a first-order in evolution

equations in (2.7) and (2.8).

There are several space-time models available in the literature and it is almost

impossible to compare our proposed model to all such models. But we provide a brief

description of a model that closely resembles ours and we compare our models to that

proposed by Wikle and Cressie (1999).

2.6 Comparison with Space-Time Kalman Filter

Wikle and Cressie (1999) introduced a dimension reduced approach to space-time

Kalman filtering (STKF). Their goal is to achieve space-time prediction using the
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dimension reduction. The model is of the form,

Zt = yt + υt, υt ∼ N(0, R),

yt = Φat + νt, νt ∼ N(0, V ),

at = Hat−1 + Jηt, ηt ∼ N(0, Q),

where H = JB, J = (Φ′Φ)−1Φ′, and n × K matrices Φ and B are defined as Φ ≡

[φ(s1), · · · ,φ(sn)]
′ andB ≡ [b(s1), · · · , b(sn)]

′. Here, φ(s) ≡ [φ1(s), · · · , φK(s)]′,at ≡

[a1(t), · · · , aK(t)]′, and b(s) ≡ [b1(s), · · · , bK(s)]′. {φj(s) : j = 1, · · · , K} are a

complete and orthonormal sequence of deterministic spatial functions, {aj(t) : t =

1, 2, · · · .} is a random time series for each j = 1, 2, · · · , K, and {bj(s) : j = 1, · · · , K}

are unknown but nonstochastic parameters. Also, n denotes number of locations and

K denotes the key to dimension reduction.

Then the model can be written as,

Zt = Φat + υ∗
t , υ∗

t ∼ N(0, R + V ),

at = Hat−1 + η∗
t , η∗

t ∼ N(0, JQJT ).

That is, it has the same form as our dynamic space-time model (DSTM) except that

Φ does not change over time and the variance matrices R + V and JQJT are also

assumed to be static over time.

Wikle and Cressie (1999) used an empirical Bayesian technique for computing

efficiency, because a fully Bayesian hierarchical approach requires highly intensive

computational resources for Kalman filtering. But doing so, some statistical pre-

cision (and hence efficiency) is lost which can be obtained with the fully Bayesian
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approach. However, our RDSTM achieves both computing efficiency by using the

reparametrized univariate scheme and statistical efficiency by using the fully hierar-

chical approach. Further they used standard method of moments to estimate R, V,Q,

and B for computational efficiency and used such plugging in estimator within the

Kalman filter. This again leads to underestimation of uncertainty. Moreover, they

did not use maximum likelihood estimators because high dimensionality causes diffi-

culty to implement such procedures. As we mentioned earlier, our RDSTM approach

are not limited by such approximations due to high dimensionality. In addition, it is

not clear if the positive definiteness is ensured for the estimated covariance matrices

obtained by such moment based methods. Our RDSTM guarantees that the covari-

ance matrices are positive definite and the estimates are obtained with high efficiency.

Finally, it is well-known that a fully hierarchical method of estimation provides the

true measure of uncertainty as compared to two-stage methods that uses plugging

in estimates from the first stage. We demonstrate the applicability of our RDSTM

for a large data set of nitrate concentrations in Chapter 4. We will also provide sev-

eral ways to fully utilize the estimates obtained from the RDSTM in the context of

atmospheric sciences.
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Chapter 3

Performance of Information

Criteria for Spatial Models

Model selection is an important part of statistical analysis. Many researchers have

examined this issue and various methods for selecting the “best ” model have been

suggested, as we discussed in Section 1.2. Information criteria have been widely used

in model selection. However, there have been few investigations of the performance

of these criteria in a spatial modeling context. Hoeting et al. (2006) considered the

problem of model selection for geostatistical data. They explored the effect of spatial

correlation on model selection using the AIC applied to a geostatistical model. Their

simulation results showed that the use of AIC for a geostatistical model is superior to

the often used traditional approach of ignoring spatial correlation in the selection of

explanatory variables. In particular, few studies have compared the performance be-

tween different information criteria like Akaike Information Criterion (AIC) (Akaike,

1973) and Bayesian Information Criterion (BIC) (Schwarz, 1978). Hence, little is

known about the relative performance of different information criteria. Currently,
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there is no consensus on the best criterion for spatial model selection. Of particular

interest is how these different criteria perform with various spatial covariance models.

We explore this issue via Monte Carlo simulations in this chapter. The purpose of this

study is to examine the performance of different information criteria for use in spatial

covariance model selection. We compare the performance of traditional information

criteria such as AIC, BIC, and Corrected AIC (AICc) (Sugiura, 1978; Hurvich and

Tsai, 1989). This comparison is made using various spatial covariance models ranging

from stationary isotropic to nonstationary models.

The remainder of this chapter is organized as follows. Section 3.1 introduces

various information criteria used for model selection such as AIC, BIC and AICc. In

Section 3.2, we describe various spatial covariance models such as stationary isotropic

and anisotropic, and nonstationary models that will be used as an illustration to

generate data from a specific covariance model. Finally, in Section 3.3., we present

results from simulations which compare the performance of AIC, BIC and AICc with

regard to their ability to identify the true model among various spatial covariance

models.

3.1 Information-Theoretic Criteria for Model Se-

lection

A variety of information-theoretic criteria have been used in model selection as we

mentioned in Section 1.2. A substantial advantage in using information criteria is that

they are valid for nonnested models. Traditional likelihood ratio tests are defined only
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for nested models, and this represents a limitation in the use of hypothesis testing in

model selection.

Most information criteria have a form that consists of two terms. In general,

the first term is the negative log-likelihood, multiplied by two, of the data calculated

with the maximum likelihood estimates of the parameters; it represents the amount of

information required to describe the data. The second term differs between different

information criteria; it represents the amount of information required to describe the

model. The second term can be interpreted as a penalty for model complexity; it thus

increases as the number of parameters in the model increases. The basic principle of

model selection using information criteria is to select statistical models that simplify

the description of the data and model. Specifically, information methods emphasize

minimizing the amount of information required to express the data and the model.

This results in the selection of models that are the most parsimonious or efficient

representations of observed data. To select parsimonious models, models minimizing

information criteria are selected. In the following sections, we describe commonly

used information criteria such as AIC, AICc, and BIC.

3.1.1 Akaike Information Criterion (AIC)

Akaike Information Criterion (AIC) (Akaike, 1973) is one of the most well known

information criteria used in model selection. AIC is an estimate of relative, expected

Kullback-Liebler distance (KLD) (Kullback and Liebler, 1951). The KLD is a quan-

tity which measures the discrepancy from the approximating model to truth. AIC is
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an estimate of KLD between a fitted model and the true model. AIC is defined as

AIC = −2log
[

L(θ̂|X)
]

+ 2p, (3.1)

where logL(θ̂|X) represents the log-likelihood function of the maximum likelihood

estimator (MLE), θ̂, given the observed data X, and p is the dimension of the para-

meter θ. The first term can be interpreted as a measure of lack of model fit, while

the second term can be interpreted as a penalty for increasing the dimension of the

model. Recall that the second term is the asymptotic bias-correction term. It is the

result of deriving an asymptotic estimator of relative expected KLD. In application,

one computes AIC for each of the candidate models and selects the model with the

smallest value of AIC. Models producing smaller values of AIC can be thought of as

having a smaller difference from the true model, where the true model is unknown.

AIC provides a simple and effective means for the selection of the best approximating

model to the true model (Burnham and Anderson, 2002). With regard to general

linear models, AIC is known to perform relatively well for small samples, however the

criterion is large-sample inconsistent, which means AIC does not tend to select the

true model in large samples (Hurvich and Tsai, 1990).

3.1.2 Corrected Akaike Information Criteria (AICc)

As an approximately unbiased estimator of the expected KLD of a fitted model,

AIC has been shown to be strongly negatively biased in small samples (Sugiura, 1978;

Hurvich and Tsai, 1989). Hurvich and Tsai (1989) derived a bias-corrected version

of AIC, AICc. They argued that AICc should be used in place of AIC, when the
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dimension of the model is large relative to sample size or when n is small, for any p.

The AICc is defined as

AICc = −2log
[

L(θ̂|X)
]

+ 2p

(

n

n− p− 1

)

= −2log
[

L(θ̂|X)
]

+ 2p+
2p(p+ 1)

n− p− 1
(3.2)

= AIC +
2p(p+ 1)

n− p− 1
,

where n is the sample size and p is the number of parameters in the model. AICc

has an additional bias-correction term compared to AIC, which is adjusted to the

parameter complexity p and the sample size n. However, if n is large with respect

to p, then this additional bias-correction is negligible and AIC should perform well.

Burnham and Anderson (2002) advocated the use of AICc, in particular, when the

ratio n/p < 40 for the model with the largest value of p. If n/p is sufficiently large,

then AIC and AICc are similar and will tend to select the same model. They also

mentioned that AICc should be used in practice, because AICc converges to AIC as

n gets large, with p fixed.

3.1.3 Bayesian Information Criterion (BIC)

Along with AIC, Bayesian Information Criterion (BIC) (Schwarz, 1978) is cur-

rently among the most commonly used information criteria in model selection. BIC

is usually explained in terms of Bayesian theory, especially as an approximation of

the Bayes factor, which is the ratio of the marginal likelihoods for two models. Re-

call that unlike AIC, BIC is not an estimate of relative expected KLD. BIC is the
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dimension-consistent criterion as we discussed in Section 1.2.4. BIC is defined as

BIC = −2log
[

L(θ̂|X)
]

+ plog(n), (3.3)

where log
[

L(θ̂|X)
]

again represents the log-likelihood function of θ̂, which is the

maximum likelihood estimator (MLE) based on the observed data X; p is the number

of parameters in the model, and n is the sample size. The first term of BIC is same

as that of AIC. However, the second term penalizes the model with increased model

complexity, or larger p, and sample size as well. AIC and BIC differ only by the

coefficient multiplying the number of parameters, in other words, by how strongly

they penalize large models. In general, models chosen by BIC are more parsimonious

than those chosen by AIC. As usually used, one computes the BIC for each model

and selects the model with the smallest criterion value. In contrast to AIC, BIC is

large sample model consistent, that is, BIC tends to choose the true model in large

samples. However, BIC has also known to perform poorly in small samples in the

context of general linear models (Hurvich and Tsai, 1990).

3.2 Spatial Models

We consider various point-referenced data models in this section. In particular,

we illustrate the performance of information criteria using models that range from

stationary to nonstationary models.
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3.2.1 Stationary Processes

Consider a random process {Z(s) : s ∈ D}, where D is a fixed subset of ℜd.

Assume that the random process Z(·) satisfies

E(Z(s)) = µ, for all s ∈ D and (3.4)

Cov(Z(si), Z(sj)) = C(si − sj), for all si, sj ∈ D. (3.5)

That is, the mean does not depend on s and the covariance is a function only of the

increment si − sj. Then Z(·) is said to be a second-order or weak stationary process.

Furthermore, if C(si−sj) is a function of ‖si−sj‖ only, that is, the distance between si

and sj, then C(·) is called isotropic. An isotropic process assumes that the correlation

structure between sites is circular which indicates the correlation depends only on the

distance between sites.

One frequently used isotropic covariance function is the exponential model. Here

the covariance between measurements at two locations is an exponential function of

the distance between two locations,

Cov(Z(si), Z(sj)) = σ2exp(−φ‖si − sj‖) + τ 2I(i = j), σ2 > 0, φ > 0, τ 2 > 0, (3.6)

where ‖si − sj‖ is the distance between sites si and sj, and I denotes the indicator

function. Here σ2 and φ are positive parameters called the partial sill and the decay or

inverse range parameter, respectively. When i = j, dij = 0 and C(dij) = V ar(Z(si))

is often expanded to τ 2 + σ2, where τ 2 > 0 is called a nugget effect, and τ 2 + σ2 is

called the sill.

Many other parametric models for the isotropic covariance function are also com-
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monly used (Schabenberger and Gotway, 2005, Section 2.1). Isotropic processes are

popular because a number of relatively simple parametric forms are available.

If dependence between Z(si) and Z(sj) is a function of both the distance and the

direction of si − sj, then the process Z is called anisotropic. Hence, the covariance

function, C(si − sj) is no longer purely a function of distance between two spatial

locations, si and sj.

Sometimes the anisotropy can be corrected by a linear transformation of the in-

crement vector si − sj. This anisotropy is known as geometric anisotropy and gives

elliptical contours for the correlation. Specifically, the geometric anisotropy is cor-

rected by (i) a rotation of the coordinate system to align the major and minor axes of

the elliptical contours, and (ii) a compression of the major axis to make the contours

spherical. Following Schabenberger and Gotway (2005, p.151), the anisotropy matrix

A is thus defined as,

A =

[

1 0

0 λ

] [

cosγ −sinγ

sinγ cosγ

]

, (3.7)

where λ and θ are the anisotropy ratio for compression and the anisotropy angle for

rotation, respectively. Here λ equals the ratio of the ranges in the directions of the

major and minor axes of the elliptical contours. Geometric anisotropy is common

for processes that evolve along particular directions. For example, airborne pollution

emitted from an industrial plant will likely evolve along the wind directions (Sch-

abenberger and Gotway, 2005, p.151).

In general, geometric anisotropy can be incorporated in the isotropic model by

correcting distances. For instance, we can incorporate geometic anisotropy in the
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exponential model (3.6),

Cov(Z(si), Z(sj)) = σ2exp(−φ‖A(si − sj)‖) + τ 2I(i = j), (3.8)

where A is the anisotropy matrix in (3.7).

3.2.2 Nonstationary Processes

We consider a class of parametric nonstationary covariance models proposed by

Hughes-Oliver et al. (1998). They incorporate nonstationarity in the covariance

model driven by a point source, (e.g., the center of a wafer in semiconductor process-

ing). Their covariance model for a point source at location c is

Cov[Z(si), Z(sj)] = σ2exp{−φhijexp{α|ci − cj| + βmin[ci, cj]}} + τ 2I(i = j), (3.9)

where hij = ‖si−sj‖, ci = ‖si−c‖, and cj = ‖sj−c‖. Here ci and cj are the distances

of sites si and sj from the point source c, respectively, and α, β ≥ 0. This covariance

model is nonstationary because the correlation between sites si and sj depends on

the distances between sites and the point source through ci and cj.

The covariance model (3.9) can be thought of as a generalization of the exponential

model for an isotropic process. Note that when α = β = 0 in (3.9), the covariance

model (3.9) reduces to the exponential model (3.6). Here (3.9) assumes that the

effects of the point source are circular, that is, point source isotropy. Hence the

correlation depends only on the distance between sites and on the distance between

a site and the point source.

We can also incorporate point source anisotropy in the nonstationary point source

isotropic model in a similar way as shown in (3.8). Schabenberger and Gotway (2005,
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p.423) presented point source anisotropy incorporated in the model (3.9),

Cov[Z(si), Z(sj)] = σ2exp{−φh∗ijexp{α|c∗i − c∗j | + βmin[c∗i , c
∗
j ]}} + τ 2I(i = j),(3.10)

where h∗ij = ‖A(si − sj)‖, c
∗
i = ‖Ac(si − c)‖, c∗j = ‖Ac(sj − c)‖ and A, Ac are the

anisotropy matrices in (3.7).

3.3 A Simulation Study

In this simulation study, we evaluate and compare the performance of information

criteria presented in Section 1.1. Of particular interest is how these criteria perform

with different spatial covariance models. Specifically, we compare the performance of

these information criteria with regard to their ability to discriminate the true model

under various spatial covariance models, parameter values, and sample sizes.

3.3.1 Covariance Models

We consider following four different forms of exponential models for spatial co-

variance functions.

i) Σ1: Exponential Isotropic Model,

Σij = Cov[Z(si), Z(sj)] = σ2exp{−φhij} + τ 2I(i = j),

ii) Σ2: Exponential Anisotropic Model,

Σij = Cov[Z(si), Z(sj)] = σ2exp{−φh∗ij} + τ 2I(i = j),
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iii) Σ3: Exponential Point Source Isotropic Model,

Σij = Cov[Z(si), Z(sj)] = σ2exp{−φhijexp{α|ci − cj|}} + τ 2I(i = j),

iv) Σ4: Exponential Point Source Anisotropic Model,

Σij = Cov[Z(si), Z(sj)] = σ2exp{−φh∗ijexp{α|c∗i − c∗j |}} + τ 2I(i = j),

where hij = ‖si − sj‖, h
∗
ij = ‖A(si − sj)‖, ci = ‖si − c‖, c∗i = ‖Ac(si − c)‖, cj =

‖sj − c‖, c∗j = ‖Ac(sj − c)‖, and A, Ac are anisotropy matrices in (3.7).

We use a Gaussian process with the above covariance models to enable like-

lihood inference. The most convenient assumption would be a multivariate nor-

mal distribution for the observed data. That is, suppose we have observations

Z = (Z(s1), · · · , Z(sn))
′ at known locations si, i = 1, · · · , n. We then assume that

Z|θ ∼ Nn(0,Σ(θ)), (3.11)

where Nn denotes the n-dimensional normal distribution, with mean 0 and covariance

(Σ(θ)), where (Σ(θ)) takes one of the four forms described above.

Now we consider the following four different spatial models for our simulation

studies.

i) M1: Stationary Isotropic Model,

Z|θ ∼ Nn(0,Σ1(θ)), θ = (σ2, φ, τ 2),

ii) M2: Stationary Anisotropic Model,

Z|θ ∼ Nn(0,Σ2(θ)), θ = (σ2, φ, τ 2, λ, γ),
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Table 3.1: Number of Parameters and Parameters in Each Model

Model p θ

M1 3 σ2, φ, τ 2

M2 5 σ2, φ, τ 2, λ, γ
M3 4 σ2, φ, τ 2, α
M4 6 σ2, φ, τ 2, γ, λ, α

iii) M3: Nonstationary Point Source Isotropic Model,

Z|θ ∼ Nn(0,Σ3(θ)), θ = (σ2, φ, τ 2, α),

iv) M4: Nonstationary Point Source Anisotropic Model,

Z|θ ∼ Nn(0,Σ4(θ)), θ = (σ2, φ, τ 2, γ, λ, α).

Note that M1, M2, and M3 are nested under M4. That is, M1, M2, and M3 are special

cases of M4. Specifically, M4 reduces to M1 when α = 0 and A = I in the covariance

function Σ4. Also, M4 reduces to M2 when α = 0 and M3 when A = I. Table 3.1

summarizes the number of parameters p in each model along with parameters θ for

each model.

3.3.2 Data Generation Processes

Using the method presented in Cressie (1993, Section 3.6) to simulate point-

referenced data, we simulated the spatial process at n locations, s1, · · · , sn, following

a multivariate normal distribution with mean vector E(Z) = 0, and covariance matrix

Cov(Z) = Σi, i = 1, · · · , 4, as presented in Section 3.3.1. We used the Cholesky

decomposition which allows the covariance matrix, Σi, to be decomposed as the matrix
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product Σi = LiL
′
i, where Li is a lower triangular n× n matrix. Then we simulated

Z, which satisfies the mean 0 and the covariance Σi through the relation Z = Liǫ,

where ǫ = (ǫ(s1), · · · , ǫ(sn))
′ and ǫ(si)’s are iid with a standard normal distribution.

We also simulated irregularly spaced n locations, s1, · · · , sn, distributed uniformly

on the square [0, 100]2.

Simulated data were generated under 18 different conditions created by varying

four factors of interest: the true model (M = M1,M2,M3,M4), the true parameter

value for nonstationarity (α = 5, 10) and for anisotropy ratio (λ = 5, 10), and sample

size (n = 50, 100). From the combinations of the true parameter values in the models,

we created nine sets of data as given in Table 3.2. D1 was generated from model M1,

D21, D22 from model M2 with different λ, D31, D32 from model M3 with different α,

and D41, D42, D43, D44 from model M4 with the combination of different λ and α. We

assumed the point source to be located at the origin c = (0, 0) for model M3 and

M4. These nine data sets were generated with two different sample sizes. 100 data

sets were replicated for each of the nine scenarios, and hence a total of 1800 data sets

were generated for our simulation study.

3.3.3 Results

First, we compared the covariance functions of nine scenarios with n = 50 given

in Table 3.2 by computing the Frobenius distances between these nine covariance

functions. Frobenius distance can be used to measure the distance between two

matrices and to indicate the difference between these matrices. Suppose A = {aij}

and B = {bij} are square matrices with the same dimension, then the Frobenius
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Table 3.2: True Parameter Values for Each Data Generation Process

DGP α γ λ
D1 0 0 1
D21 0 π/4 5
D22 0 π/4 10
D31 5 0 1
D32 10 0 1
D41 5 π/4 5
D42 5 π/4 10
D43 10 π/4 5
D44 10 π/4 10

Table 3.3: Frobenius Distance between Covariance Functions of Models

Σ1 Σ21 Σ22 Σ31 Σ32 Σ41 Σ42 Σ43 Σ44

Σ1 0 8.350 9.745 10.972 11.032 11.120 11.132 11.128 11.133
Σ21 0 2.165 4.810 4.887 4.951 4.979 4.970 4.980
Σ22 0 3.407 3.487 3.413 3.448 3.437 3.450
Σ31 0 0.802 1.721 1.694 1.692 1.689
Σ32 0 1.767 1.741 1.707 1.705
Σ41 0 0.302 0.224 0.312
Σ42 0 0.119 0.076
Σ43 0 0.092
Σ44 0

distance between these two matrices is calculated as,

F (A,B) =

√

√

√

√

n
∑

i=1

n
∑

j=1

(aij − bij)2. (3.12)

Thus the closer F (A,B) is to 0, then the more these two matrices A and B are similar.

Also notice that F (A,B) = 0 if and only if A = B.

Table 3.3 presents the Frobenius distances between the covariance functions of

nine scenarios generated using sample size n = 50. Here, Σi represents the covari-

ance function of Di, i = 1, 21, 22, 31, 32, 41, 42, 42, 44. The Frobenius distances are
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small between the covariance functions generated from the same model with different

parameter values, in particular, between the covariance functions of nonstationary

models. Σ1 seemed very different from all of other covariance functions. Σ22 was a

little closer than Σ21 to the covariance functions of the nonstationary models. That

is, the stationary anisotropic model with a large anisotropy ratio (λ = 10) seems to be

closer than the stationary anisotropic model with a small anisotropy ratio (λ = 5) to

the nonstationary model. The distances of the stationary covariance functions from

the nonstationary point source isotropic covariance functions are very similar to those

from the nonstationary point source anisotropic covariance functions. Unlike in the

stationary models, whether the covariance function is isotropic or anisotropic seemed

not to make much difference in the nonstationary models. The stationary anisotropic

model appeared closer to the nonstationary models than to the stationary isotropic

model. The distances between nonstationary point source isotropic models and non-

stationary point source anisotropic models were the smallest among the distances

between different models. Similar comparative features are observed between covari-

ance functions generated using the sample of size n = 100.

Each of the nine scenarios was modeled using one of four different models, M1, M2,

M3, M4. Each dataset was thus modeled with one correct model and three incorrect

models. Models were fit using the R statistical software which uses the optim function

to maximize the likelihood. AIC, AICc, and BIC were calculated for each dataset

using the formula given in (3.1), (3.2), and (3.3), respectively. Table 3.4 presents the

penalty used by each criterion for each model. BIC uses a penalty almost twice as

large as that of AIC and AICc. The penalties used by AIC and AICc are not much
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Table 3.4: Penalty Given by Each Criterion to Four Models with Two Different
Sample Size

n = 50 n = 100
M1 M2 M3 M4 M1 M2 M3 M4

AIC 6 10 8 12 6 10 8 12
BIC 11.736 19.560 15.648 23.472 13.816 23.026 18.421 27.631
AICc 6.522 11.364 8.889 13.953 6.250 10.638 8.421 12.903

different. Only the penalty of AIC does not depend on the sample size n.

We examined whether AIC, AICc, and BIC can correctly identify the true un-

derlying model when various spatial models are fit to a particular data set which is

generated from one of the models fitted. Results are summarized in Tables 3.5-3.8.

Each table presents the percentage of times one of the four models is chosen by an

information criterion. For example, the first row and second column of Table 3.4

presents the percentage of times that model M1 is selected based on AICc when D1

is fitted. The last row of each table represents the total percentage of times that the

true model is not picked by the corresponding criteria, which can be called an ‘Error

’. In each table, the true model is marked by ‘* ’ for convenience.

We expected the true model to be chosen most of the time, when the data are

fitted to various models including the true model. Results from our simulation study

indicated that AIC, AICc, and BIC performed well for some specific spatial models,

however these criteria performed poorly as well for some other spatial models.

Table 3.5 presents results for D1 generated from the stationary isotropic model,

M1. All criteria performed well for both n = 50 and n = 100. Especially BIC

performed very well. BIC picked the true model 99% of the time for n = 50 and
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Table 3.5: Percentage of Correct Decisions When data are generated from M1

DGP: D1

n = 50 n = 100Model Fit
AIC BIC AICc AIC BIC AICc

M∗
1 90 99 92 91 100 92

M2 6 0 5 5 0 4
M3 4 1 3 4 0 4
M4 0 0 0 0 0 0

Error 10 1 8 9 0 8

100% for n = 100. AIC and AICc chose the correct model 90% and 92% of the time

for n = 50 and 91% and 92% of the time for n = 100. The performances of AIC

and AICc were similar. Note that M4 was never picked by all criteria. Overall BIC

performed better than AIC and AICc in selecting the stationary isotropic model M1.

Figure 3.1 shows results of each criterion obtained by fitting four models to D1.

In each plot, the X-axis represents the model fitted and the Y-axis represents the

criterion obtained by fitting the models. For all criteria, the medians for M4 were

larger than those for other models in both sample sizes. This explains the reason why

M4 was never picked by all criteria as shown in Table 3.5. Also, note that the median

difference between M1 and other models were larger in BIC than in AIC and AICc.

This supports the better performance of BIC than AIC and AICc as shown in Table

3.5.

Table 3.6 summarizes the results for D21 and D22. D21 and D22 were generated

from the stationary anisotropic model, M2, with different parameter values for λ = 5

and λ = 10, respectively, and with the same parameter value γ = π/4. Each criterion

performed similarly in D21 and D22 except that AIC and AICc picked M3 more often
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Figure 3.1: Box Plots for Each Criterion Obtained by Fitting Each Model to D1

50



Table 3.6: Percentage of Correct Decisions When data are generated from M2

DGP: D21

n = 50 n = 100Model Fit
AIC BIC AICc AIC BIC AICc

M1 50 84 61 20 50 23
M∗

2 32 7 23 71 45 70
M3 10 8 9 4 5 4
M4 8 1 7 5 0 3

Error 68 93 77 29 55 30

DGP: D22

n = 50 n = 100Model Fit
AIC BIC AICc AIC BIC AICc

M1 49 83 56 14 41 15
M∗

2 27 6 19 69 50 69
M3 21 10 23 8 7 8
M4 3 1 2 9 2 8

Error 73 94 81 31 50 31

in D22. All criteria did not perform well when the sample size was n = 50. Especially

BIC performed poorly. BIC picked the true model, M2, only 7% of the time in D21

and 6% in D22. AIC performed better than AICc for n = 50. This is counter to the

idea that AICc is designed to perform well for small sample sizes. When n = 50, all

criteria more often selected M1 instead of the true model, M2. All criteria tended to

pick the parsimonious model, that is, the simpler model even though the true model

is more complex. As sample size increased to 100, the performance of all the criteria

improved. All criteria selected the correct model M2 most often except BIC for D21.

AIC and AICc were successful in choosing the correct model and the performances

of them were similar. For AIC, the success rate of picking the true model increased

from 32% to 71% under D21 and from 27% to 69% for D2. Also, the performances
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of AICc increased by 47% for D21 and 50% for D22. While AIC and AICc performed

well with the sample size n = 100, BIC still tended to pick parsimonious model, M1.

BIC correctly picked the true model 45% for D21 and 50% for D22.

We found that the results from D21 and those from D22 were similar but slightly

different. When n = 50, all criteria selected M3 more often in D22 than in D21, and

chose M2 less often in D22 than in D21 except BIC for n = 100. This occurrence

makes sense because the covariance function for D22 was closer than the covariance

function for D21 to the covariance functions of M3. However, based on the Frobenius

distance given in Table 3.3, it still does not make sense to choose M1 more often than

other models. When n = 100, all criteria also picked the correct model M2 less often

and picked M3 and M4 more often in D22 than in D21. We think it is because that

the covariance function of D22 was closer than that of D21 to the covariance functions

of M3 and M4. BIC picked M2 more often than M1 in D22. The reverse occurred in

D21. Overall, AIC performed better than AICc and BIC in choosing the stationary

anisotropic model M2.

Figures 3.2-3.3 support the results shown in Table 3.6. When n = 50, the medians

of AIC and AICc for M2 tended to be slightly larger than those for M1, while the

median of BIC for M2 was much larger than that for M1. This resulted in for all

criteria selecting M1 more often than M2. As n increased to 100, the medians of AIC

and AICc for M2 tended to be much smaller than for M1, while the median of BIC

for M2 was slightly smaller than that for M1. This resulted that the performance of

all criteria increased when n = 100.
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Figure 3.2: Box Plots for Each Criterion Obtained by Fitting Each Model to D21
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Figure 3.3: Box Plots for Each Criterion Obtained by Fitting Each Model to D22
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Table 3.7: Percentage of Correct Decisions When data are generated from M3

DGP: D31

n = 50 n = 100Model Fit
AIC BIC AICc AIC BIC AICc

M1 24 49 28 6 17 6
M2 3 1 2 3 1 3
M∗

3 73 50 70 91 82 91
M4 0 0 0 0 0 0

Error 27 50 30 9 18 9

DGP: D32

n = 50 n = 100Model Fit
AIC BIC AICc AIC BIC AICc

M1 23 61 35 9 18 9
M2 4 0 2 4 0 4
M∗

3 73 39 63 87 82 87
M4 0 0 0 0 0 0

Error 27 61 37 13 18 13

The results for D31 and D32 are given in Table 3.7. D31 and D32 were generated

from the nonstationary point source isotropic model, M3, with different parameter

values for θ = 5 and θ = 10, respectively, and with the same parameter value λ = 1.

Overall, all criteria performed well with the exception of BIC when the sample size

was n = 50. For n = 50, BIC picked both the wrong model, M1, and the correct

model, M3, with almost the same percentages (49% and 50%, respectively) for D31,

while the wrong model, M1, was picked with a higher percentage (61%) for D32.

This indicated that BIC tended to select a simpler model, M1, than the true model,

M3, when n = 50. In contrast, AIC and AICc identified the true model relatively

well for n = 50. AIC selected the correct model 73% of the time for both D31

and D32, and AICc chose the true model 70% and 63% of the time for D31 and D32,
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respectively. AIC performed better than AICc for the small sample size. For n = 100,

the performance of all criteria improved. The performances of AIC and AICc were

same, and these criteria performed better than BIC. Overall, the error rates decreased

with increasing sample size for both D31 and D32. All criteria performed better in

D31 than D32. The performance of each criterion appeared to have a similar pattern

under D31 and D32 except that BIC and AICc picked M1 more often in D31 than in

D32 for n = 50. Note that M4 was never picked by all criteria given all the values of

θ and n considered, even though the covariance function of M4 was closer than that

of M1 and M2 to the covariance function of M3 in terms of the Frobenius distance in

Table 3.3.

Figures 3.4-3.5 show that the median of BIC for M3 was similar to that for M1 in

both D31 and D32 when n = 50. This supports the result that BIC picked M1 often

even though the true model was M3. However, when n = 100, the median for M3 was

smaller than that for M1. This resulted in the high performance of BIC for n = 100.

We also found that the median of all criteria for M4 was much larger than those for

other models. This explains the result that M4 was never picked by all criteria as

shown in Table 3.7.

Table 3.8 illustrates the results for D41, D42, D43, and D44 which were generated

from the nonstationary point source anisotropic model, M4, with different parameter

values of θ and λ as shown in Table 3.2. As given in Table 3.8, the performances

of the criteria did not vary much across four data sets. All criteria performed very

poorly in selecting the true model, M4, and tended to choose a simpler model than the

real model. In particular, BIC did not pick the true model even one time out of 100
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Figure 3.4: Box Plots for Each Criterion Obtained by Fitting Each Model to D31
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Figure 3.5: Box Plots for Each Criterion Obtained by Fitting Each Model to D32

58



Table 3.8: Percentage of Correct Decisions When data are generated from M4

DGP: D41

n = 50 n = 100Model Fit
AIC BIC AICc AIC BIC AICc

M1 44 76 50 11 47 12
M2 6 9 4 24 4 22
M3 46 24 43 57 49 60
M∗

4 4 0 3 8 0 6
Error 96 100 97 92 100 94

DGP: D42

n = 50 n = 100Model Fit
AIC BIC AICc AIC BIC AICc

M1 41 72 49 9 45 9
M2 8 0 2 21 5 19
M3 52 28 49 56 50 60
M∗

4 2 0 0 14 0 12
Error 98 100 100 86 100 88

DGP: D43

n = 50 n = 100Model Fit
AIC BIC AICc AIC BIC AICc

M1 34 71 41 14 46 16
M2 8 1 5 19 4 18
M3 58 28 54 57 50 59
M∗

4 0 0 0 10 0 7
Error 100 100 100 90 100 93

DGP: D44

n = 50 n = 100Model Fit
AIC BIC AICc AIC BIC AICc

M1 42 75 50 11 49 13
M2 8 1 4 16 3 12
M3 49 24 46 64 48 67
M∗

4 1 0 0 9 0 8
Error 99 100 100 91 100 92
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replications. Even though AIC performed better than AICc and BIC, AIC did not

perform well. AIC only picked the true model less than 5% of the time when n = 50

and less than 15% when n = 100 for all of four data sets. For n = 50, all criteria

selected M1 and M3 most of the time. BIC picked M1 more often (more than 70% of

the time) than AIC and AICc. AICc picked M1 more often and selected M3 less often

than AIC. For n = 100, AIC and AICc picked M3 more often, and BIC picked M1

and M3 with similar percentage. The performances of AIC and AICc were similar. In

this case, it seemed that AIC and AICc made more sense than BIC in model selection

for M4. Selecting M1 more often than other models seems unreasonable based on the

Frobenius distance, because the covariance function of M1 was much different from

that of M4. The covariance functions of M2 and M3 were much closer than that of

M1 to the covariance function of M4 as shown in Table 3.3. Overall, AIC performed

better than AICc and BIC in selecting M4.

Figures 3.6-3.9 show that the medians of all criteria for M4 were larger than those

for other models. This explains why all criteria hardly picked the true model, M4.

In particular, the median of BIC for M4 was much larger than that for other models.

This supports the poor performance of BIC as we already mentioned. For AIC and

AICc, M1 and M3 had similar median values when n = 50, and M3 had the smallest

median value when n = 100. This supports the finding that AIC picked M1 and M3

with similar percentages when n = 50, and M3 was picked most often when n = 100.

Similarly, the median of BIC for M1 was the smallest when n = 50, and M1 and M3

had similar median values for BIC when n = 100. This resulted in M1 being selected

by BIC most often when n = 50, and M1 and M3 were chosen by BIC with similar
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Figure 3.6: Box Plots for Each Criterion Obtained by Fitting Each Model to D41
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Figure 3.7: Box Plots for Each Criterion Obtained by Fitting Each Model to D42
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Figure 3.8: Box Plots for Each Criterion Obtained by Fitting Each Model to D43
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Figure 3.9: Box Plots for Each Criterion Obtained by Fitting Each Model to D44
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percentages when n = 100.

3.3.4 Findings and Future Research

We investigated how information criteria such as AIC, AICc, and BIC perform in

the spatial model selection problems via simulations. The results are summarized as

follows:

• BIC was superior to AIC and AICc when the true model was the stationary

isotropic model. When the sample size was large (e.g., n = 100), BIC perfectly

picked the true model. BIC also performed very well even though the sample

size was small (e.g., n = 50). AIC and AICc also performed well.

• When the true model was the stationary anisotropic model, all criteria did not

perform well for n = 50. Especially BIC performed poorly. As n increased to

100, the performance of all criteria improved. AIC and AICc performed well

for n = 100, however BIC did not perform well even for the large sample size.

• AIC performed better than AICc and BIC for n = 50, and both AIC and AICc

outperformed BIC for n = 100, when the true model was the nonstationary

point source isotropic model. BIC picked the stationary isotropic model most

often when n = 50, however it picked the correct model most of the time when

n = 100. AIC and AICc performed well for both n = 50 and n = 100. The

error rates for all criteria decreased as sample size increased.

• All criteria performed poorly when the true model was the nonstationary point

source anisotropic model. AIC performed better than AICc and BIC. BIC never
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picked the true model even when the sample size was n = 100. In contrast, AIC

and AICc picked the true model more often when n = 100.

• Our results indicate that the performance of the criteria to select the true model

generally improved with increase of sample size, despite differences in perfor-

mance among the criteria.

• From the results obtained from simulations, we found that the performance of

the criteria depends on sample size and model complexity, but not parameter

values. Hence, it would be worthwhile to investigate further simulation studies

with large sample sizes, e.g., n = 500 and n = 1000 and other stationary and

nonstationary models.
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Chapter 4

Application to Total Nitrate

Concentration Data

4.1 Introduction

The release of different types of hazardous emissions has been instrumental in pol-

luting the atmosphere over the last few decades, and hence atmospheric deposition

has become a major topic of concern in environmental studies. The U. S. Envi-

ronmental Protection Agency (EPA) established the Clean Air Status and Trends

Network (CASTNET) to monitor air pollutant emissions and pollutant deposition

(National Research Council, 2004). The U. S. EPA simulates concentrations of a va-

riety of atmospheric pollutants using the Community Multiscale Air Quality (CMAQ)

model, and then compares these simulated values with the observed values. One of

the pollutants simulated most poorly is particulate nitrate (NO−
3 ). Recent studies

indicate that the model performance for particulate nitrate depends strongly on the

model performance for total nitrate TNO3 (particulate nitrate plus gaseous nitric acid
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(HNO3)). One of the goals of the scientists working with this model is to improve

the predictive accuracy of simulated values of total nitrate, that is, to simulate total

nitrate values which are “close ” to the observed total nitrate values. To this end, one

would like to explore the empirical relationship that may exist between the observed

values of total nitrate and other observed variables. We can then use this empirical

information to modify, if needed, the routines in CMAQ that simulate TNO3 values.

To estimate this empirical relationship in the observed data, we employ the RDSTM

proposed in Chapter 2. We use total nitrate as the response variable and consider the

following variables as explanatory or predictor variables within a regression model:

sulfate (SO4), ammonium (NH4), ozone (O3), temperature, relative humidity, wind

speed, precipitation, solar radiation, and dew point temperature. We expect these

variables to be reasonably good predictors of total nitrate. The RDSTM allows us

to estimate dynamic relationships that are allowed to vary with weeks or months

between total nitrate and the chemical species and meteorological variables.

4.2 The CASTNET Data

All of the data for this study were obtained from the U. S. EPA CASTNET sites. A

complete description of this network can be found at: http : //www.epa.gov/castnet.

Figure 4.1 shows the locations of the stations used in this study. We used 33 stations in

the eastern U. S. These sites were selected on the basis of the extent of NOX (NO2 +

NO) emissions, where NO represents nitrous oxide. Note that all the CASTNET

sites are located in rural locations.
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Figure 4.1: Locations of Stations

Our data were collected between January, 1997 and July, 2004, and a total of 394

weeks are available during this period. The chemical species used in this study were ni-

tric acid (HNO3) (µmol/m3), nitrate (NO−
3 ) (µmol/m3), sulfate (SO4) (µmol/m3),

ammonium (NH4) (µmol/m3) and ozone (O3) (ppb). Nitric acid and nitrate were

summed to get total nitrate (µmol/m3). Residual ammonium was also used, which

is calculated as (NH4 − 2× SO4). The factor of two is necessary as it takes two am-

monium molecules to neutralize one sulfate molecule. Sulfate and ammonium usually

appear in combination as (NH4)2SO4, which is the ammonium sulfate. Sulfate and

ammonium are higher in the summer and lower in the winter. Residual ammonium

69



can equal zero or be positive or negative. When this covariate is equal to zero all

the ammonium has been used to neutralize all the sulfate; there is no residual am-

monium. When the value is negative, there is insufficient ammonium to neutralize

the sulfate, which often occurs in the summer. When the value is positive there is

more ammonium than is needed to neutralize the sulfate and this extra ammonium

is available to form particulate nitrate. Positive values of residual ammonium often

occur in the winter. Thus the residual ammonium covariate tells us the status of

ammonium after considering its use in the neutralization of sulfate. In the statistical

analysis one could use ammonium, sulfate and residual ammonium. However, since

residual ammonium is a known linear combination of the other two, only one of the

other two should be used. By using sulfate and residual ammonium, one is prevented

from having two ammonium variables in the statistical analysis, which also makes

sense thermodynamically.

Meteorological variables are observed on site at each of the CASTNET stations.

In this study we used temperature (T) (◦C), relative humidity (RH) (%), dew point

temperature (Td) (◦C), solar radiation (SR) (Wm−2), wind speed (WS) (m/s) and

precipitation (P) (mm/week). Dew point temperature is calculated from temperature

and relative humidity. All of the meteorological variables were measured hourly.

With the exception of ozone, which was measured hourly, the chemical species were

averaged over a week from Tuesday to Tuesday. To conform to this weekly pattern, the

meteorological (T, RH, Td, SR, and WS) variables were averaged over the same period

and the daily maximum O3 values were averaged over each week. The precipitation

data were summed over the same period.
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We now present some background material on the chemical processes of some of

the variables used in this study, which in turn provides more insight to explain the

variation of total nitrate as a function of some of the selected chemical species.

4.3 Background Chemistry for Total Nitrate

The brief discussions on the chemistry that we present here is very limited and

for additional information on the chemical reactions that are presented below, see

Seinfeld and Pandis (1998). During the day, HNO3 is produced by the following

chemical reaction:

NO2 +OH → HNO3

The emission and subsequent oxidation of nitrous oxide (NO) is responsible for the

generation of the nitrogen dioxide (NO2) in this equation. The above equation indi-

cates that the hydroxyl radical (OH) is also important in the formation of HNO3.

Measurements of that species are not readily available for use in the statistical model.

In its place, we have used ozone, O3, which through one path in the photolysis process,

leads to OH. Thus O3 is a good surrogate for OH. At night HNO3 is produced by

the following reactions:

NO2 +O3 → NO3 +O2

NO2 +NO3 → N2O5

N2O5 +H2O(on a particle surface) → 2HNO3

In above, N2O5 denotes the dinitrogen pentoxide and NO3 denotes the nitrate radical.

At night O3 is important because it reacts with NO2 to the formation of NO3 which
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is one of the key elements in the nighttime production of HNO3. The NO3 then

reacts with NO2 to form dinitrogen pentoxide. These first two reactions occur in the

gas phase. In the third equation, N2O5 in the gas phase reacts with liquid water to

form dissolved HNO3. The last reaction occurs on particle surfaces that have become

coated with water because of the high relative humidities. Thus we expect that O3

and relative humidity to be important in the formulation of HNO3 and then total

nitrate TNO3.

So far, we have described the mechanisms by which TNO3 is produced in the

atmosphere. The mechanisms of removal are also important in predicting the at-

mosphere concentrations of TNO3. In general, TNO3 may be removed from the

atmosphere by wet deposition (i.e., rain out) and dry deposition. The speed at which

TNO3 is removed by dry deposition depends on whether the nitrate exists predomi-

nantly in the gas phase or the particulate phase. The dry deposition velocity ofHNO3

is significantly faster than that of particulate nitrate. The distribution of TNO3

between gaseous HNO3 and particulate nitrate depends mainly on three variables:

temperature, relative humidity, and residual ammonium. At low temperatures and/or

high relative humidities, the TNO3 favors the particulate phase, and vice versa. At

high concentrations of residual ammonium, total nitrate also favors the particulate

phase. Because particulate nitrate is removed less efficiently then gaseous HNO3, it

follows that the atmospheric concentration of total nitrate will be enhanced under

conditions of low temperature, high relative humidity, or high residual ammonium.

This background chemistry of total nitrate is used to select appropriate predictors in

addition to some exploratory data analysis, as we describe in the following section.
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4.4 Exploratory Data Analysis (EDA)

We performed some exploratory data analysis (EDA) as a preliminary part of the

research. The total number of weeks available varies from station to station because

of missing data, but they are in fairly equal proportions. Table A.1 presents the total

number of weeks available for each site. The observed values range from a high of

394 weeks (all weeks observed) to 361 weeks.

Figures A.1-A.12 summarize the variations of all the chemical species and the me-

teorological variables used in this study across locations, years, and months. Overall,

all the variables did not seem to vary across years, however significant variations were

observed in all of these variables across sites and months. This indicated that year

does not seem to have a significant effect on TNO3. In contrast, location and month

appeared to be important factors to describe these variables. Among the chemical

variables, HNO3, NO
−
3 , and TNO3 presented some variations across sites. Recall

that TNO3 is the sum of HNO3 and NO−
3 . Among the meteorological variables,

the largest variation across locations was shown in wind speed. All the chemical

species and most of the meteorological variables seemed to have a seasonal pattern.

HNO3, SO4, NH4, and O3 seem to have higher values during summer. In contrast,

NO−
3 , TNO3 and residual ammonium appeared low in the summer. Among meteo-

rological variables, wind speed was low while temperature, dew point temperature,

and solar radiation were high during summer, as expected. Note that the pattern of

temperature and dew point temperature looked very similar to each other. This is

not a surprise as dew point temperature is derived analytically from temperature and
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Table 4.1: Spearman Rank Correlation Coefficients between Variables

TNO3 SO4 NH4 O3 SR T Td WS RH P
TNO3 1.00
SO4 0.17 1.00
NH4 0.43 0.80 1.00
O3 -0.06 0.61 0.32 1.00
SR -0.09 0.51 0.25 0.81 1.00
T -0.20 0.67 0.34 0.79 0.79 1.00
Td -0.23 0.68 0.37 0.70 0.69 0.97 1.00
WS 0.42 -0.34 -0.07 -0.24 -0.20 -0.36 -0.37 1.00
RH -0.14 0.17 0.19 -0.22 -0.27 0.06 0.22 -0.15 1.00
P -0.28 -0.01 -0.13 -0.02 -0.08 0.11 0.19 -0.06 0.32 1.00

relative humidity. Precipitation did not seem to have much variation across months.

We know that NO−
3 is highest during the winter months (Warneck, 2000). It

occurs as NH4NO3 in solid or aqueous phase. On the other hand, SO4 reaches its

highest values in the summer (Warneck, 2000).

SO4 occurs in the solid or aqueous phase as ammonium sulfate ((NH4)2SO4).

The data from the CASTNET sites shows that the peak in TNO3 generally occurs

in the winter of the year. NH4 and SO4 both show summer maximum values as does

O3. For residual NH4, positive values generally occur in the winter when SO4 is at

its lowest, while negative values occur in the summer when SO4 values are at their

highest.

Table 4.1 summarizes Spearman rank correlation coefficient between variables in

the data. Spearman rank correlation is a nonparametric measure of the association

between two variables based on the rank of the observed values of the two variables.

It is known to be more robust than ordinary correlation coefficient that measures only
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a linear relationship. The formula is

Corr(X,Y ) =

∑

(Ri − R̄)(Si − S̄)
√

∑

(Ri − R̄)2
∑

(Si − S̄)2
.

where Ri is the rank of the ith value of variable X, Si is the rank of the ith value

of variable Y , R̄ is the mean of the Ri values, and S̄ is the mean of the Si values.

Table 4.1 indicates high correlations between SO4 and NH4 (0.80), between O3 and

SR (0.87), between O3 and T (0.79), and between SR and T (0.79). The correlations

are moderate between SO4 and O3 (0.61), between O3 and Td (0.70), and between

SR and Td (0.69). T and Td seem to be very highly correlated (0.97), as expected.

Note that SO4, residual NH4, and WS are positively correlated to TNO3, whereas

O3, SR, T, Td, RH, and P are negatively correlated to TNO3.

4.5 Statistical Models

Atmospheric pollutants are known to depend on location, season, chemical species

and meteorological conditions. Using flexible statistical models, we explore the rela-

tionship between the response variable TNO3 and a set of covariates appropriately

chosen from the chemical species and meteorological variables mentioned in Section

4.2. In addition we also explore the effects of location and seasonality on TNO3. A

few Linear models are considered to identify such relationships.

First, linear regression models (LRM) are used as a part of the preliminary data

analysis. In this analysis, we select explanatory variables for our final analysis using

the stepwise variable selection method via SAS PROC REG. In the stepwise method,

variables are added one by one to the model, and to be added in the model a variable
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should produce an F statistic which is significant at a specific level, 0.15. Rawlings

(1998) recommends 0.15 in the context of stepwise regression. After a variable is

added, the stepwise method checks all the variables already included in the model and

deletes any variable for which an F statistic is not significant at a specific level. After

all the necessary deletions are completed, another variable is then added to the model.

This stepwise process ends when none of the variables to be added has a significant

F statistic. We then fit the linear regression model based on the covariates chosen

from this stepwise variable selection method. Second, we fit the RDSTM proposed

in Section 2.4 using these selected covariates. The RDSTM allows the regression

coefficients for the covariates to vary with time (week). Hence, RDSTM can explain

the dynamic relationship between the response variable and the covariates over time

(week). This is an advantage of using RDSTM over the traditional LRM. Note that

the regression coefficients are static (fixed) over time in LRM.

4.5.1 Linear Regression Models (LRM)

We use log transformed total nitrate as a response variable. Figure 4.2 suggests

that the total nitrate is skewed to the right, and a logarithmic transformation would

probably make the normality and homoscedastic variance assumptions plausible for a

response variable in the linear regression models. We also use standardized chemical

species and meteorological variables as covariates which are transformed to have the

empirical mean 0 and the variance 1. In addition, longitude and latitude are consid-

ered as covariates to include location effects in the model. We then regress log(TNO3)

on the covariates adjusted for the time (year and month) effect. The linear regression
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Figure 4.2: Histogram for TNO3 and log(TNO3)

model used is of the form,

Yijkl = µ0 + αi + γj + (αγ)ij + xTijklβ + εijkl, (4.1)

where εijkl
iid
∼ N(0, σ2) for i = 1997, · · · , 2004; j = 1, · · · , 12; k = 1, · · · , 33; l =

1, · · · , nijk (number of measurements at month j of year i at location k). Here, Yijkl

denotes the log(TNO3)ijkl, and αi and γj are the fixed effects of year i and month j,

respectively. (αγ)ij is the interaction effect of year i and month j. xijk is a vector of

the covariates measured on the kth week of month j of year i, and β is a vector of

the regression coefficients for the covariates.

4.5.2 Reparametrized Dynamic Space-Time Models (RDSTM)

We now consider the reparametrized dynamic space-time model (RDSTM) pro-

posed in Section 2.4. Suppose Zit denotes log(TNO3)it and Xitk the kth covariate at
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site i and time t (week), where i = 1, · · · , n = 33, t = 1, · · · ,m = 394, and k =

1, · · · , p = 7. Notice that Zt = (Z1t, · · · , Znt)
T and {Xt}n×p = ((Xitk))1≤i≤n,1≤k≤p.

Then following the discussion in Section 2.4, the RDSPM consists of the observation

equation that can be written as,

Zit =

p
∑

k=1

βktXitk +
i−1
∑

i′=1

φii′Zi′t + νit,

Z1t =

p
∑

k=1

βktX1tk + ν1t,

where i = 2, · · · , n, t = 1, · · · ,m. The evolution equation can now be written as,

βkt =

p
∑

k′=1

βk′t−1gkk′ +
k−1
∑

k′=1

ψkk′βk′t + ωkt,

β1t =

p
∑

k′=1

βk′t−1g1k′ + ω1t,

where k = 2, · · · , p, t = 2, · · · ,m and initial state equation can be written as,

βk1 = βk0 +
k−1
∑

k′=1

ψkk′βk′1 + ωk1,

where k = 2, · · · , p. The model is completed with

β11 = β10 + ω11.

Using this univariate reparametrized scheme we avoid numerical instabilities due to

high dimensionality that could occur in a multivariate scheme. Also, this allows

missing data to be imputed from its full conditional distribution. In addition, the

RDSTM does not require simplifying assumptions like stationarity, isotropy etc. for

the spatial part by allowing the φii′ ’s to be completely unstructured.
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4.6 Results

We now present the results obtained by fitting LRM and RDSTM to our data set

described in Section 4.2.

4.6.1 LRM

We considered all the chemical species and the meteorological variables described

in Section 4.2 as potential covariates to be included in the final model. Among these

variables, SO4, residual NH4, O3, wind speed, relative humidity, and precipitation

were selected to be used as covariates in the model. These variables were chosen using

the stepwise variable selection method at 0.15 level of significance. SAS PROC REG was

used to fit this model. We did not include temperature and dew point temperature

even though they were also selected by the stepwise method. This is because of the

fact that these variables are highly correlated with O3 as can be seen in Table 4.1. It

is well-known that highly correlated variables cause a multicollinearity problem when

included together in the model. Multicollinearity exposes the redundancy of variables

and the need to remove variables from the analysis. The higher the multicollinearity,

the greater the difficulty in partitioning out the individual effects of the independent

variables.

Table 4.2 summarizes the result of fitting the LRM. All the year, month, their

interaction, location, chemical species, and meteorological covariates were significant

at the 0.05 level. R2 of this model is 0.6374. Linear regression estimates of the covari-

ates were 0.348 (SO4), 0.270 (residual NH4), 0.082 (O3), 0.105 (wind speed), -0.073
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Table 4.2: ANOVA Table for LRM

Source DF SS MS F -value p-value
Model 98 2027.075 20.684 206.74 <.0001
Error 11624 1162.981 0.100
Total 11722 3190.056

Variable DF Estimate S.D. t-Value p-value
latitude 1 0.054 0.001 37.91 <.0001
longitude 1 -0.008 0.001 -10.74 <.0001
SO4 1 0.348 0.005 74.07 <.0001
ResiNH4 1 0.270 0.005 57.88 <.0001
O3 1 0.081 0.007 11.81 <.0001
WS 1 0.104 0.004 28.85 <.0001
RH 1 -0.072 0.004 -18.57 <.0001
PR 1 -0.026 0.003 -8.01 <.0001

(relative humidity), and -0.026 (precipitation). While SO4, residual NH4, O3, and

wind speed have positive effects, relative humidity, and precipitation have negative

effects on log(TNO3). That is, log(TNO3) increases as SO4, residual NH4, O3, or

wind speed increase, and as relative humidity or precipitation decrease when other

effects are kept at a fixed level. Compared to other variables, SO4 and residual NH4

seem to have a stronger relationship with log(TNO3). Note that O3 was negatively

correlated to log(TNO3) and residual NH4 was most highly correlated to log(TNO3)

in terms of the Spearman rank correlation given in Table 4.1. This shows that the

relationship between TNO3 and other variables used as covariates changed when they

are considered together with other variables in the model.

We used the space-time correlogram to check whether there are any spatial and/or

temporal dependence left in the residuals of the model. This correlogram provides a

measure of spatial and temporal correlations by describing how data are related with
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Figure 4.3: Space-Time Correlogram for the Residual of LRM

regard to distance and time lag. In general, two observations close in time or in space

are likely to have similar values. Figure 4.3 displays the space-time correologram of

the residual of the model (4.1). The X-axis represents distance between sites and

the Y-axis represents time lag in weeks. This correlogram indicates that correlation

existed in the residuals at a range of about 100 units in space and 1 unit in time.

That is, residuals of observations which are closely located in space and time are

autocorrelated to each other. This violates the independence assumption for errors.

Hence, LRM seems not to be an adequate model for our data.
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4.6.2 RDSTM

Our results from the RDSTM were obtained numerically using a Markov chain

Monte Carlo (MCMC) procedure via the WinBUGS software. Usually a complete data

set (i.e., no missing data) is required to fit the multivariate version of DSTM. How-

ever, as we already mentioned in the EDA (Section 4.4), our data have missing values.

Our proposed RDSTM overcomes this limitation of a regular DSTM and performs

imputations using Gibbs sampling. Gibbs sampling provides a natural solution by

imputing values for the missing data at each iteration, sampling from their full condi-

tional distribution given the available data. Regression coefficients are then updated

conditional on the imputed values. We assumed that each of the standardized covari-

ates, when missing, follows a standard normal distribution, that is, Xmiss
itk ∼ N(0, 1).

We analyzed the data using vague priors (i.e., proper priors with large variance)

on parameters to have minimal impacts on the posterior inference. We assigned

independent N(0, 103) priors to φii′ , ψkk′ and gkk′ , and independent G(103, 103) priors

to 1/σ2
νi and 1/σ2

ωk. Here, we may use other priors for the parameters, however we

do not expect that the results would be much different. We obtained 10,000 iterates

using a single chain from the MCMC sampler. The first 5000 iterates were discarded

as a part of the Markov chain burn-in period, and all the posterior summaries reported

were based on Monte Carlo estimates from the remaining 5000 iterates. The number

of burn-in and final MCMC sample sizes were chosen using trace plots for parameters

by diagnosing for their convergence performances to stationary region. We examined

trace plots of the sampled values versus iteration to look for evidence of when the

simulation appears to have stabilized to a stationary distribution.
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For every covariate, the RDSTM provides posterior estimates of the dynamic

regression coefficient that changes with each week from January, 1997 to July, 2004,

a total of 394 weeks. This is in sharp contrast to the linear regression coefficients.

It is of interest to know how the covariates are dynamically related to total nitrate.

Notice that a static regression coefficient might turn out to be insignificant when the

significant effects in positive and negative directions might vary with time. On the

other hand, the RDSTM can provide the dynamic nature of the regression coefficient

(see Figures 4.4-4.9).

We first checked how many weeks in each month have a significant positive/negative

effect on total nitrate. We used 95% equal-tail credible intervals to see whether the

dynamic regression coefficients βt are significant in the sense that these intervals do

not contain the zero. To this end, we counted two separate numbers of significant

weeks in each month for all the covariates. The first count provides the number of

weeks which have significant positive coefficients (i.e., the lower limit of 95% interval

is positive) and the other the significant negative coefficients (i.e., the upper limit is

negative). The left-side plots in Figures 4.4-4.9 summarize this result. The right-side

plots in Figure 4.4-4.9 present the box plots for the posterior medians of significant

coefficients for each covariate in each month. Here, ‘* ’ indicates the regression co-

efficient from LRM. These plots explain how strongly each covariate is related to

total nitrate across months and thus provides a better interpretation of the regression

coefficients in contrast to static LRM regression coefficients. We also computed the

mean and the standard deviation of these posterior medians to summarize our find-

ings numerically. These are given in Tables 4.3-4.8. Here, Nsig represents the number
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Figure 4.4: Frequencies and Box Plots for Posterior Medians of Significant Weeks in
Each Month for SO4

of significant weeks, and Ntot represents the total number of weeks. Using these dy-

namic regression coefficients, we can find which covariate has the biggest effect on the

response variable, total nitrate at what time of the year.

In the left plot of Figure 4.4, sulfate seems to have a positive relationship with total

nitrate uniformly over all months. This follows from the fact that in rural areas power

plants are the main source of both SOX (SO3 plus SO2) and NOX (NO plus NO2).

Also, both pollutants would build up during stagnant meteorological conditions and

be diluted during periods of high winds. In addition to the counts of significant weeks,

The right plot of Figure 4.4 shows that the relationship and associated uncertainties

between total nitrate and sulfate that varies with months. Sulfate seems to have a

stronger relationship with total nitrate along with higher uncertainty during winter

months. During the winter sulfate levels are low, and hence we have high level
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Table 4.3: Mean and S.D. of Posterior Medians of Significant Regression Coefficients
for SO4

Month Nsig Ntot Mean S.E.
January 34 34 0.646 0.322
February 33 33 0.441 0.116
March 34 35 0.496 0.167
April 35 35 0.425 0.134
May 30 34 0.354 0.224
June 31 35 0.194 0.106
July 32 35 0.169 0.085

August 27 31 0.202 0.136
September 30 30 0.290 0.137
October 31 31 0.405 0.194

November 29 29 0.502 0.212
December 32 32 0.528 0.236

of residual ammonium. This results in increase of total nitrate because the residual

ammonium reacts with nitrate. Table 4.3 shows the mean and the standard deviation

of the posterior medians of the significant regression coefficients. The mean ranges

from 0.169 (July) to 0.646 (January) and such differences are significant as evident

from non-overlapping box plots (e.g., compare the box plots of June-September to

the rest of the box plots).

The left plot in Figure 4.5 indicates that residual ammonium is also positively

related to total nitrate with a distinct monthly pattern. Residual ammonium appears

less significant in the summer (from June to September) compared to other seasons.

In particular, only 9 out of 35 weeks in July are significant. Finding out patterns

like this is another advantage which is achieved by using RDSTM. LRM does not

provide this kind of result. Based on the right plot in Figure 4.5, similar to sulfate,

residual ammonium also seems less strongly related to total nitrate during the summer
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Figure 4.5: Frequencies and Box Plots for Posterior Medians of Significant Weeks in
Each Month for Residual NH4

Table 4.4: Mean and S.D. of Posterior Medians of Significant Regression Coefficients
for Residual NH4

Month Nsig Ntot Mean S.E.
January 34 34 0.213 0.063
February 33 33 0.177 0.035
March 35 35 0.186 0.041
April 35 35 0.195 0.037
May 31 34 0.165 0.056
June 21 35 0.113 0.041
July 9 35 0.107 0.036

August 15 31 0.098 0.027
September 22 30 0.117 0.033
October 30 31 0.184 0.047

November 29 29 0.204 0.049
December 32 32 0.207 0.047
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Figure 4.6: Frequencies and Box Plots for Posterior Medians of Significant Weeks in
Each Month for O3

months from June to September than during other months. Recall that in the summer

sulfate concentrations are high and thus the residual ammonium values will be near

zero or even negative, while in the winter sulfate values are low and the residual

ammonium values will be positive. Thus in the summer a low number of weeks in

each month are significant probably because of the lack of free ammonium to produce

ammonium nitrate, NH4NO3. In the winter the excess residual ammonium is free

to produce more ammonium nitrate, which yields a stronger relationship between

residual ammonium and total nitrate. Table 4.4 summarizes the posterior medians

of the significant regression coefficients for residual ammonium in each month. The

smallest regression coefficient is 0.098 (August) and the largest is 0.213 (January).

The left plot in Figure 4.6 reveals that June, July, and August have more sig-

nificant weeks than other months for ozone. This tells us that ozone clearly has a
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Table 4.5: Mean and S.D. of Posterior Medians of Significant Regression Coefficients
for O3

Month Nsig Ntot Mean S.E.
January 8 34 0.131 0.185
February 6 33 0.151 0.026
March 6 35 0.153 0.023
April 8 35 0.156 0.028
May 11 34 0.160 0.054
June 24 35 0.155 0.036
July 27 35 0.175 0.026

August 29 31 0.155 0.078
September 15 30 0.159 0.031
October 11 31 0.158 0.032

November 5 29 0.055 0.162
December 7 32 0.147 0.040

more significant effect on total nitrate during summer time than other times, which is

expected. As shown in Figure A.6, ozone displays a strong summer peak. Because of

the increased strength of the incoming solar radiation during summer, the photolysis

of ozone takes place during this time. The photolysis process leads to the formation

of OH, which is critical to the daytime formation of total nitrate. In addition, total

nitrate formation during the summer is dominated by daytime production, whereas

nighttime production dominates in the winter. Since ozone is mainly related to day-

time production even though it is also related to nighttime production as well, it

correlates with total nitrate less frequently during the winter than during the sum-

mer. Again, this fact can not be learned by fitting LRM. The right plot in Figure 4.6

shows that the significant regression coefficients for ozone are not much different from

month to month except November. Ozone seems to have a weaker relationship with

total nitrate in November than in other month. Summaries of the posterior medians
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Figure 4.7: Frequencies and Box Plots for Posterior Medians of Significant Weeks in
Each Month for Wind Speed

of significant regression coefficients across months are given in Table 4.5. The mean

values range from 0.055 (November) to 0.175 (July).

The RDSTM results for the meteorological variables are also very interesting.

Wind speed seems to have a very interesting pattern for total nitrate. Figure 4.7

indicates that wind speed has a positive effect during summer months from May to

September and negative effect during other months except October. No significant

week is observed in October. Also, note that not many weeks are significant in each

month. The most significant month is January, where 20 out of 34 weeks have sig-

nificant regression coefficients. All of the other months have a smaller number of

significant weeks than January. This is an important advantage over using LRM,

which does not allow us to see this type of dynamic effect. Here, the negative correla-

tions during winter months make sense. We believe that this is a result of a dilution
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Table 4.6: Mean and S.D. of Posterior Medians of Significant Regression Coefficients
for Wind Speed

Month Nsig Ntot Mean S.E.
January 20 34 -0.060 0.018
February 13 33 -0.047 0.008
March 16 35 -0.046 0.009
April 2 35 -0.041 0.002
May 1 34 0.044 .
June 12 35 0.047 0.005
July 15 35 0.052 0.009

August 10 31 0.055 0.007
September 8 30 0.054 0.005
November 5 29 -0.043 0.002
December 13 32 -0.050 0.006

effect. Wind spreads the total nitrate over a large spatial area thus reducing its con-

centrations. Hence, it would yield lower total nitrate concentration when the wind

speeds are high and higher concentrations when the wind speeds are low.

In the summer, we think that an entrainment effect may be important. In the sum-

mer with higher evaporation rates, the soil surface is generally drier and the aerosol

on the soil surface is more easily entrained by the wind. The positive relationship

that is indicated between wind speed and total nitrate would seem to support this

idea. The higher wind speed would tend to entrain more aerosol from the surface into

the lower atmosphere yielding higher concentrations of total nitrate, while lower wind

speed would have little effect on the entrainment process thus keeping total nitrate

concentrations lower. Table 4.6 shows that the magnitude of such effects seems very

similar across months. The only difference over months is that wind speed is posi-

tively related to total nitrate from May to September and negatively related during

other months. The mean of the significant regression coefficients varies from -0.060
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Figure 4.8: Frequencies and Box Plots for Posterior Medians of Significant Weeks in
Each Month for Relative Humidity

(January) to 0.055 (August).

The pattern that we see for relative humidity is not very intuitive. Figure 4.8

demonstrates that relative humidity has negative effects on total nitrate for all months

except July. No significant week is observed in July. It also shows that relative

humidity is less significant during summer months than other months. However, its

effect does not seem to be significant in terms of the number of significant weeks

because only a few weeks are significant in each month. Specifically, only 7 out of

34 weeks are significant in January which is the most significant month for relative

humidity. Again, this type of result cannot be discovered by fitting LRM. Based

on the chemical processes involved, we expected to see an increase of total nitrate

with relative humidity at all times of the year, however the RDSTM results point

us to just the opposite effect. This is an area that will need more investigations.

91



Table 4.7: Mean and S.D. of Posterior Medians of Significant Regression Coefficients
for Relative Humidity

Month Nsig Ntot Mean S.E.
January 7 34 -0.075 0.025
February 6 33 -0.068 0.006
March 3 35 -0.137 0.116
April 6 35 -0.076 0.010
May 5 34 -0.071 0.005
June 1 35 -0.062 .

August 2 31 -0.069 0.001
September 3 30 -0.078 0.015
October 6 31 -0.083 0.036

November 6 29 -0.071 0.012
December 5 32 -0.091 0.055

Table 4.7 indicates that the relationship between total nitrate and relative humidity

is uniform across the months except March. The mean regression coefficient of March

is -0.137 and it is almost twice as large as those of other months. The mean regression

coefficients for the other months vary from -0.091 to -0.062. It is instructive to look

at the ratio HNO3

(HNO3+NO−

3
)
. Data presented in Warneck (2000, Figure 9.14) shows this

ratio to be low in winter and high in summer. This would tend to indicate that the

winter period is a time of high aerosol NO−
3 levels and lower HNO3 levels, while the

reverse is true in the summer. Our results are somewhat similar to these. This ratio

is a function of relative humidity, temperature, and residual ammonium. The mean

relative humidity does not change much from season to season as shown in Figure

A.12. However, outside of the summer months there are more instances of low relative

humidities. RDSTM results indicate that relative humidity is negatively related to

total nitrate, and the relation is particularly stronger in the winter months. This

negative relationship is strongest in March, but for only about a third of the weeks.
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Figure 4.9: Frequencies and Box Plots for Posterior Medians of Significant Weeks in
Each Month for Precipitation

In the summer, this relationship, while negative, is very weak. Currently we do not

have a formal scientific justification of this peculiar behavior, and it is a focus of our

future research.

As shown in Figure 4.9 precipitation has a negative effect on total nitrate. We

think it occurs because of precipitation scavenging processes, and hence precipitation

Table 4.8: Mean and S.D. of Posterior Medians of Significant Regression Coefficients
for Precipitation

Month Nsig Ntot Mean S.E.
April 2 35 -0.038 0.006
May 5 34 -0.040 0.007
June 1 35 -0.047 .
July 1 35 -0.025 .

October 1 31 -0.034 .
December 1 32 -0.040 .
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is negatively related to total nitrate during all seasons. Precipitation acts to cleanse

the atmosphere of all the pollutants. Precipitation seems the most insignificant fac-

tor on total nitrate among the covariates based on the number of significant weeks.

Only 11 weeks are significant out of 394 weeks over 7 years. No significant week is

observed in January, February, March, August, September, and November. Among

these 11 significant weeks, 5 weeks occurred in May. Table 4.8 shows the mean of

these significant coefficients which appear to be similar across months. The values

range from -0.047 (June) to -0.025 (July).

Overall, by comparing the number of significant weeks and the magnitude of

regression coefficients for each covariate shown in Tables 4.3-4.8, we conclude that

sulfate has the strongest effect on total nitrate among the covariates used. Sulfate

is significant over all months, and its effect on total nitrate differs significantly over

month to month. In particular, high effects occur during winter months from No-

vember to January, and low effects occur during the summer months from June to

August. Ozone has the second largest effect on total nitrate during summer month

from June to September, then residual ammonium has the second largest effect during

other months. Also, ozone appears more significant during summer, whereas residual

ammonium appears more significant during the other months. Wind speed, relative

humidity, and precipitation have relatively small impacts on total nitrate. In addition

they are not as significant as other covariates, such as sulfate, residual ammonium,

and ozone, in terms of the number of significant weeks and also in terms of the magni-

tude of regression coefficients. Notice that the magnitude of the significant regression

coefficients corresponding to chemical species are almost 10-20 times than those that
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correspond to meteorological variables.

Finally as a part of stochastic relations, we checked to see if the covariance func-

tion obtained from the RDSTM (using the φii′ ’s and σνi
2) is stationary in nature. To

this end, we computed the correlogram to examine spatial dependence. This correl-

ogram provides a measure of spatial autocorrelation across distances. In the spatial

analysis, generally, correlations at short distances (under 100km) between locations

are important to identify the characteristics (e.g., stationary, nonstationary, isotropic,

or anisotropic) of the covariance function. The stations observed in our data are very

sparse as shown in Figure 4.1, and unfortunately only a few observations are available

at short distances. Hence our data might not be good for the spatial analysis. The

correlogram computed based on our data is plotted in Fig 4.10. Here, the X-axis rep-

resents the distance in kilometers between two locations, and the Y-axis represents

the correlation between two data values observed at two different locations. We also

computed three different directional correlograms to see if the process appears to be

isotropic. The first correlogram plot shows that the correlation has a low median

value (0.1) at a distance 200km, and it decreases to zero as the distance between

two locations increases. The underlying process seems to be stationary because the

correlations computed at fixed distance do not appear to be significantly different.

That is, the correlations appear to depend only on distances between two locations.

Also the underlying process seems isotropic because three different directional cor-

relograms look similar, which means the correlations are not changing significantly

with directions. So we considered a variety of the stationary isotropic processes for

the covariance model of the RDSTM. Among them we found that the exponential
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Figure 4.10: Spatial Correlogram and Fitted Exponential Correlation Model
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covariance model with parameter values of τ 2 ≈ 0.029, σ2 ≈ 0.008, r ≈ 20 has the

smallest distance (0.031) (in terms of Frobenius distance) from the estimated covari-

ance matrix of RDSTM. Hence the exponential covariance model seems appropriate

to fit the covariance function of RDSTM. The fitted exponential correlation model

(solid line) is shown along with the correlogram in Fig 4.10 .

4.7 Findings and Future Research

We used LRM and RDSTM to explain the relationship between total nitrate,

other chemical species (sulfate, residual ammonium, and ozone), and meteorological

variables (wind speed, relative humidity, and precipitation). From these analyses, we

have learned quite a few interesting facts; these are summarized as below:

• Among the covariates we considered, sulfate is most strongly related to total

nitrate both in LRM and in RDSTM. The relationship of sulfate to total nitrate

is weaker during the summer than during other months.

• We found that residual ammonium has a stronger relationship with total nitrate

than ozone in LRM. However, RDSTM results indicate that ozone is more

strongly related to total nitrate than residual ammonium during summer and

less strongly related to total nitrate during winter. Clearly ozone plays an

important role in the formation of total nitrate during summer, whereas residual

ammonium has a stronger role during winter, which makes sense chemically.

• RDSTM suggests that wind speed is positively related to total nitrate during
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summer months, and negatively related to total nitrate during other months.

We think wind appears to act as an entrainment agent in the summer, and thus

increases total nitrate. Wind speed is more highly related to total nitrate than

ozone in LRM, however RDSTM results show the reverse.

• RDSTM results seem to indicate that relative humidity is not that significant as

compared to the other chemical species covariates described above in the sense

that they have a lesser number of significant weeks. However, in the LRM,

relative humidity seems more significant than ozone based on the t-value given

in Table 4.2. We expected a positive relationship between relative humidity and

total nitrate, but RDSTM suggests a counter intuitive result. We do not have

much scientific insights for such a counter intuitive result, and hence further

research is needed to come up with a scientific explanation.

• Precipitation seems to have an insignificant effect on total nitrate in RDSTM.

Both LRM and RDSTM indicate a very weak negative relationship with total

nitrate. This relationship makes sense because precipitation acts to cleanse the

atmosphere of total nitrate.

• The residuals of LRM appear to be spatially and temporally autocorrelated.

RDSTM takes care of such spatial and temporal correlations in the model

through the dynamic regression coefficients. For this data it appears that the

covariance function of RDSTM can be modeled using a stationary isotropic

process, and that the exponential covariance model is most appropriate among

various stationary isotropic covariance models.
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• The results from RDSTM could be used to diagnose the problems that CMAQ

has with the simulations of total nitrate. As a first step in this effort, we

have applied RDSTM to atmospheric measurements and obtained a dynamic

relationship between total nitrate and the covariates over time. In the future,

RDSTM may be applied to obtain predictive values of TNO3 based on at-

mospheric data at grid locations used in CMAQ. By using model comparison

methods (Fuentes and Raftery, 2005) to compare the predictions with CMAQ

model values, if needed, improvements can be done to CMAQ in order to obtain

more realistic predictions.
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Appendix A

Tables and Plots

A.1 Table and Plots for EDA in Chapter 4
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Table A.1: Total Number of Weeks N for Each Site

ID Siteid N Percent
1 ABT147 392 3.04
2 ALH157 394 3.06
3 ANA115 387 3.00
4 ARE128 394 3.06
5 BEL116 366 2.84
6 BVL130 393 3.05
7 BWR139 361 2.80
8 CDR119 391 3.03
9 CKT136 394 3.06
10 CND125 393 3.05
11 COW137 391 3.03
12 CTH110 394 3.06
13 CVL151 394 3.06
14 DCP114 394 3.06
15 ESP127 394 3.06
16 GAS153 388 3.01
17 KEF112 393 3.05
18 LRL117 393 3.05
19 LYK123 392 3.04
20 MCK131 393 3.05
21 MCK231 394 3.06
22 MKG113 394 3.06
23 OXF122 394 3.06
24 PNF126 393 3.05
25 PSU106 393 3.05
26 SAL133 390 3.02
27 SHN418 390 3.02
28 SPD111 394 3.06
29 STK138 392 3.04
30 UVL124 394 3.06
31 VIN140 394 3.06
32 VPI120 388 3.01
33 WSP144 394 3.06
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Figure A.1: Box Plots for HNO3 by Siteid, Year and Month
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Figure A.2: Box Plots for NO3 by Siteid, Year and Month
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Figure A.3: Box Plots for TNO3 by Siteid, Year and Month

109



1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32

0
10

20
30

SITEID

S
ul

fa
te

 (u
g/

m
3)

1997 1998 1999 2000 2001 2002 2003 2004

0
10

20
30

YEAR

S
ul

fa
te

 (u
g/

m
3)

1 2 3 4 5 6 7 8 9 10 11 12

0
10

20
30

MONTH

S
ul

fa
te

 (u
g/

m
3)

Figure A.4: Box Plots for SO4 by Siteid, Year and Month
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Figure A.5: Box Plots for NH4 by Siteid, Year and Month
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Figure A.6: Box Plots for O3 by Siteid, Year and Month
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Figure A.7: Box Plots for Temperature by Siteid, Year and Month
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Figure A.8: Box Plots for Dew Point Temperature by Siteid, Year and Month
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Figure A.9: Box Plots for Solar Radiation by Siteid, Year and Month
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Figure A.10: Box Plots for Wind Speed by Siteid, Year and Month
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Figure A.11: Box Plots for Relative Humidity by Siteid, Year and Month
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Figure A.12: Box Plots for Precipitation by Siteid, Year and Month
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