
ABSTRACT

GHATTAS, RONY. Data Allocation with Real-Time Scheduling (DARTS). (Under the direction
of Dr. Alexander G. Dean).

The problem of utilizing memory and energy efficiently is common to all computing plat-

forms. Many studies have addressed and investigated various methods to circumvent this

problem. Nevertheless, most of these studies do not scale well to real-time embedded systems

where resources might be limited and particular assumptions that are valid to general comput-

ing platforms do not continue to hold.

First, memory has always been considered a bottleneck of system performance. It is well

known that processors have been improving at a rate of about 60% per year, while memory

latencies have been improving at less than 10% per year. This leads to a growing gap between

processor cycle time and memory access Time. To compensate for this speed mismatch prob-

lem it is common to use a memory hierarchy with a fast cache that can dynamically allocate

frequently used data objects close to the processor. Many embedded systems, however, cannot

afford using a cache for many reasons presented later. Those systems opt to use a cacheless sys-

tem which is particularly very popular for real-time embedded applications. Data is allocated

at compile time, making memory access latencies deterministic and predictable. Nevertheless,

the burden of allocating the data to memory is now the responsibility of the programmer/com-

piler.

Second, the proliferation of portable and battery-operated devices has made the efficient

use of the available energy budget a vital design constraint. This is particularly true since the

energy storage technology is also improving at a rather slow pace. Techniques like dynamic

voltage scaling (DVS) and dynamic frequency scaling (DFS) have been proposed to deal with these

problems. Still, the applicability of those techniques to resource-constrained real-time system

1

Rony
Rectangle

has not been investigated.

In this work we propose techniques to deal with both of the above problems. Our main con-

tribution, the data allocation with real-time scheduling (DARTS) framework solves the data alloca-

tion and scheduling problems in cacheless systems with the main goals of optimizing memory

utilization, energy efficiency, and obviously overall system performance. DARTS is a synergis-

tic optimal approach to allocating data objects and scheduling real-time tasks for embedded

systems. It optimally allocates data objects to memory through the use of an integer linear

programming (ILP) formulation, which minimizes the systems worst-case execution times WCET

resulting in more scheduling slack. This additional slack is used by our preemption threshold

scheduler (PTS) to reduce stack memory requirements while maintaining all hard real-time con-

straints. The memory reduction of PTS allows these steps to be repeated. The data objects now

require less memory, so more can fit into faster memory, further reducing WCET and resulting

in more slack time. The increased slack time can be used by PTS to reduce preemptions further,

until a fixed point is reached. Using a combination of synthetic and real workloads, we show

that the DARTS platform leads to optimal memory utilization and increased energy efficiency.

In addition to our main contribution given by the DARTS platform, we also present several

techniques to optimize a systems memory utilization in the absence of a memory hierarchy

using PTS, which we enhance and improve. Furthermore, many advanced energy saving tech-

niques like DFS and DVS are investigated as well, and the tradeoffs in their use is presented

and analyzed.

2

Rony
Rectangle

Data Allocation with Real-Time
Scheduling (DARTS)

By

Rony Ghattas

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the requirements for the Degree
of Doctor of Philosophy in

COMPUTER ENGINEERING

Raleigh, North Carolina, USA
December 2006

APPROVED BY:

Dr. Alexander G. Dean
Chair of Advisory Committee

Dr. Thomas M. Conte

Dr. Eric Rotenberg

Dr. Ralph C. Smith

To my loving mother...

ii

Biography

Rony Ghattas was born and raised in the Egyptian capital Cairo, until the age of 22. He moved

to the city of Murray in the United States in 1997 where he attended Murray State University

majoring in Engineering Physics. In spring of 2000 he was named the year’s outstanding En-

gineering Physics Senior and graduated the same year at the top of his class. In Fall of 2000 he

joined the department of Electrical and Computer Engineering at North Carolina State Univer-

sity as a graduate student. After working at the Center for Power Electronics Research at North

Carolina State University for 18 month, he joined the Center for Embedded Systems Research

as a research assistant until December of 2006.

Upon completing his Ph.D., Rony is moving to Columbia, South Carolina, to join Intel’s

chipset validation team as a Component Design Engineer. Rony is a member of the Sigma Pi

Sigma National Physics Honor Society, Gamma Beta Phi National Honor Society, and a student

member of the IEEE.

iii

Acknowledgements

In this short space I would like to thank the people that have contributed towards the success of

this work. Many individuals helped in this work more than can be listed here, but a few people

certainly deserve a special mention. First, I would like to thank my advisor, Dr. Alexander G.

Dean; his continuous support and guidance has made this work possible. During the course of

my studies I have come to know Alex as a mentor and as a friend. I truly value his advice inside

and outside the workplace. Since at the timing of this writing Alex has just been blessed by

another baby girl, I would like to congratulate him and his wife on their new baby Jacqueline.

Second, I would like to thank Doctors Tom Conte, Eric Rotenberg, and Ralph Smith for

taking time out of their hectic schedule to serve as members on my committee. Dr. Tom Conte,

to whom I owe my fascination with compilers, deserves special thanks. I would also like to

thank Dr. Ralph Smith for his insightful guidance over a period of more than six years during

which he was always ready to lend a helping hand when I needed one.

I would also like to thank all members of the Center for Embedded Systems Research

(CESR) at North Carolina State University for creating such a wonderful intellectual environ-

ment. Special thanks to Ms. Sandra Bronson whom helped me with all the cryptic forms and

paper work often needed to be filled by graduate students: Thank you Sandy for taking care of

all the administrative work and making my life a bit easier. I would like to thank all members

of the Graduate Office at the Electrical and Computer Engineering Department. Special thanks

to Ms. Fay Bostic and to Ms. Pascale Toussaint for their patience and their encouragement.

Special thanks to Dr. Joel Trussell, who in spite of some disagreements, had always been a

mentor to me, ready to give me his genuine advice.

iv

Many thanks to my friends who have always stood by my side in the time of need. I can’t

help remember the old saying that A friend in need is a friend indeed. Though I cannot list all of

your names in this single page, be assured that will always be listed in my mind and heart if not

on this page. Last but not least, my love and appreciation toward my mother for her support

and guidance throughout my academic career (and my whole life for that matter). Mom, I have

not always been the best son you can hope for, but I hope dedicating this work to you can help

me repay 1% of the unconditional love and support you have always provided me with.

Above all, I would like to thank God, the most gracious and forgiving. I now know that life

is not about staying on your feet. It’s about getting up when you fall. Thank you dear God.

v

Contents

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Efficient Utilization of Memory . 2

1.1.1 Hardware Control and Real-Time Predictability 3

1.2 Efficient Utilization of Energy . 6

1.3 Motivation . 7

1.4 Thesis Contributions . 8

1.5 Thesis Outline . 10

2 Related Work and Tools 11

2.1 Real-Time Systems Theory . 12

2.1.1 Real-Time System Model and Terminology 12

2.1.2 Real-Time Scheduling Policies . 13

2.1.3 The Schedulability Problem . 16

2.1.4 Shared Resources . 17

2.1.5 Schedulability with Shared Resource . 22

2.2 Integrated Circuits Energy and Power Dissipation 23

2.2.1 Modeling Power and Energy Dissipation 24

2.3 Energy Dissipation in a Memory Hierarchy . 25

2.3.1 Energy and Power Management Techniques 26

vi

2.3.2 Real-Time Scheduling for Energy Management 29

2.4 The DARTS Tool Chain . 31

2.4.1 Tool Chain Overview . 31

2.4.2 The AVR Static Analysis Tool . 33

2.4.3 The Preemption Threshold Scheduling and Simulation Toolbox 34

2.4.4 The Optimal Multi-Tasking Allocation Toolbox 34

2.4.5 The Single-Stack Real-Time Operating System 34

2.4.6 The Microcontroller Automated Power Analyzer 35

3 Optimizing Memory Utilization with PTS 36

3.1 Related Work . 38

3.2 Unified Schedulability Analysis Framework . 40

3.2.1 System Notation . 40

3.2.2 Total Blocking . 41

3.2.3 Fixed-Priority PTS Schedulability . 42

3.2.4 Dynamic-Priority PTS Schedulability . 43

3.3 Stack Space Optimality of PTS . 44

3.4 Extensions to PTS . 48

3.4.1 Robustness Properties of PTS . 49

3.4.2 Improving System Responsiveness . 51

3.5 Case Studies and Simulations . 54

3.6 Chapter Summary . 59

4 Increasing Energy Efficiency in the Embedded Real-Time Domain 61

4.1 Processors Energy Dissipation Models . 63

4.1.1 Microcontroller Sample . 64

4.1.2 Empirical Modeling of Processors Energy Consumption 64

4.1.3 Simulation Assumptions . 65

4.1.4 Benchmarks . 67

4.1.5 Non-Power-Scheduled Workloads . 67

vii

4.1.6 Power-Scheduled Workloads . 67

4.1.7 Simulation Methodology . 68

4.2 Results and Observations . 68

4.2.1 Workload-Independent Power Dissipation Characteristics 68

4.2.2 Dynamic and Static Power Components . 69

4.2.3 Minimum Power Dissipation . 69

4.2.4 Switching Power Supply . 70

4.2.5 Voltage Transition Rates . 71

4.2.6 Energy Use without a Power Scheduler . 72

4.2.7 Energy Use with a Power Scheduler . 73

4.3 Chapter Summary . 76

5 Data Allocation with Real-Time Scheduling (DARTS) 78

5.1 Related Work . 82

5.2 The Motivation behind DARTS . 85

5.3 Problem Description and Terminology . 89

5.4 Problem Formulation . 95

5.4.1 Allocation Granularity = Coarsest . 95

5.4.2 Allocation Granularity = Finest . 97

5.4.3 Preemption Limiting . 98

5.5 Simulation and Analysis . 100

5.5.1 Synthetic Workloads . 100

5.5.2 The Fly-By-Wire Workload . 106

5.5.3 The GScope Workload . 107

5.6 Chapter Summary . 109

6 Future Work 111

Bibliography 113

Appendices 123

viii

List of Tables

3.1 Robusness exmple system . 50

3.2 The Fly-By-Wire Benchmark Task set . 55

4.1 Sample of Popular 8-Bit Microcontrollers . 62

4.2 Statistical power models for a sample of 8-Bit popular microcontrollers 66

5.1 Normalized overhead cycles . 100

5.2 The real-time tasks composing the Fly-By-Wire benchmark 106

ix

List of Figures

1.1 Traditional memory hierarchy . 2

2.1 The DARTS simulations and analysis tool chain 32

3.1 Schedulable system with all tasks running to their WCETs 50

3.2 Non-schedulable system with some tasks not using their WCET budget 50

3.3 Solution path of the MPTAA . 52

3.4 Fixed-priority PTS stack requirements. 56

3.5 Dynamic-priority PTS stack requirements. 56

3.6 Dramatic reductions in stack space with fixed-priority PTS. 57

3.7 Dramatic reductions in stack space with dynamic-priority PTS. 57

3.8 Responsiveness improvements of the MPTAA through backtracking. 58

3.9 System-level distribution of AWCRT improvements from backtracking 59

3.10 Task-level distribution of AWCRT improvements 60

4.1 Execution profiles for scheduled versus non-scheduled workloads. 67

4.2 Normalized static vs. dynamic energy for popular microcontrollers 69

4.3 Physical limits on energy savings . 71

4.4 Energy usage without a power scheduler . 72

4.5 Normalized energy use for Atmega128 . 74

4.6 Normalized energy use for C8051F120 . 75

4.7 Normalized energy use for AT89S8253 . 77

5.1 Block diagram of typical embedded processor configuration 79

x

5.2 The DARTS data allocation/real-time scheduling framework 81

5.3 Unified and distributed data objects . 90

5.4 The different granularity levels for the data objects 92

5.5 A call graph used to determine procedures lifetimes 93

5.6 A preemption graph used to determine tasks lifetimes 94

5.7 Normalized memory access cycles for synthetic workloads 99

5.8 Normalized overhead cycles . 101

5.9 Normalized memory access cycles as a function of SRAM size 102

5.10 Avg. normalized memory access cycles as a function of DRAM speed 103

5.11 Normalized memory access cycles for Fly-By-Wire workload 107

5.12 Normalized worst-case execution cycles for Fly-By-Wire workload 108

5.13 Normalized energy dissipation for the Fly-By-Wire workload 108

5.14 Normalized memory access cycles for GScope workload 109

xi

Chapter 1

Introduction

This work develops a synergistic framework for data allocation and real-time scheduling for

cacheless1 platforms. To the best of our knowledge this is the first attempt to combine these two

design phases into a single optimal framework.

The DARTS (data allocation with real-time scheduling) technique is a novel iterative frame-

work that can be incorporated in any optimizing compiler to render globally optimal data

allocations while optimizing the real-time scheduling characteristics of the workload. In fact,

our framework enables optimizations that are only possible when these two, seemingly inde-

pendent, design phases are addressed in a unified framework. As will be shown in this work,

the DARTS framework enables many critical optimizations that render improved system per-

formance, better memory utilization, and increased energy efficiency, all while maintaining the

optimality and validity of the real-time schedulability of our workload.

Static data allocation is a rather complicated design problem since the complexity typi-

cally hidden by hardware-controlled caches is now visible to the programmer and/or com-

piler. Things are even more intricate when the data objects to be allocated are of a real-time

nature with timing constraints that cannot be violated. Still, we show in this work that most of

the complexity inherent in static allocation of data and its real-time scheduling is handled ef-

1A cacheless system or platform is any computing platform that utilizes a memory hierarchy without a hardware-
controlled cache. As we will show later, there are many examples of such systems especially in the hard real-time
domain.

1

Magnatic Disk

Main DRAM Memory

L2 Cache

L1 Cache

Figure 1.1: Traditional memory hierarchy

ficiently and systematically by DARTS. DARTS works iteratively; repeating each of its phases,

until an optimal real-time schedule with optimal memory utilization and improved energy

efficiency is obtained.

1.1 Efficient Utilization of Memory

A computer’s memory system is the repository for all the information used by and produced

by the processor. The phenomenal increase in microprocessor performance places significant

demands on the memory system. Indeed, as new processor families and processor cores begin

to push the limits of high performance, the traditional processor-memory gap widens and often

becomes the dominant bottleneck in achieving high performance [1]. This statement is clearly

true for all computing platforms not just the embedded ones.

Since the early ages of computing, people have realized the need for a large amount of fast

2

memory to support the ever increasing complexity of the applications. However, memories are

advancing much slower than processors, and fast memories are very expensive. To circumvent

this problem a memory hierarchy composed of two or more levels of memory with different

latencies and sizes is usually used. An example of a traditional memory hierarchy is shown in

Figure 1.1. As can be see, at lower levels of the hierarchy (i.e., closer to the processor) a small

and fast, and clearly more expensive register file is usually used. On the other end, a larger,

slower, and less expensive magnetic disk is used.

With the advances in fabrication technology, it is now possible to combine multiple het-

erogeneous memory units on the same chip. It is therefore not uncommon anymore to find

memory hierarchies composed of multiple heterogeneous units with different sizes, access la-

tencies, as well as bit-widths all on the same chip. Still, the basic property of any memory

hierarchy still holds independent of the technology used. That is, each level in the hierarchy is

faster and smaller, and usually more expensive, than the one strictly above it. For example, in

Figure 1.1, the register file is bound to the processor and most instructions on registers take a

single cycle. On the other hand, the magnetic disk at the high end of the hierarchy in the same

figure might takes hundreds if not thousands of processor cycles to access. [2].

1.1.1 Hardware Control and Real-Time Predictability

Static analysis2 of programs is fairly straightforward for simple architectures. The presence of

hardware acceleration techniques like pipelines, caches, DMAs, etc. in modern RISC proces-

sors, however, has complicated the process considerably. For example, in a pipelined processor

the instruction latencies are not constant and depend on pipeline stalls. Caches, on the other

hand, introduce unpredictability since it is hard to predict a cache hit or miss from looking

to the program alone. DMA controllers, when operating in cycle stealing mode, can contend

with the processor for I/O peripherals introducing unpredictability. Recently, however, many

techniques have been proposed in the literature to alleviate these problems.

2Static analysis is the analysis of the application code that is performed without actually running it (as opposed
to profiling where the application is executed to infer its dynamic behavior). In the context of real-time applications
static analysis is performed to derive bounds on the execution characteristics of the application that can only occur
under some worst-case scenario and might not show through profiling.

3

Since the early days of computing people have realized that applications tend to spend the

majority of their execution time executing a small subset of instructions (e.g., loops, certain

procedures, etc). In other words, some instructions are much more frequently accessed than

others. Moreover, it is usually the case that those frequently executed instructions are spatially

and/or temporally close to each other. These facts came to be known later as the principles

of spatial and temporal localities and form the basic operational principles of a cache. Hence, a

cache can be defined as a hardware-controlled memory unit that uses the run-time behavior

of the workload to dynamically predict which data objects have the highest probability of being

accessed multiple times. Based on these predictions, it stores these data objects in a fast memory

unit close to the processor avoiding the overheads of accessing frequently accessed data object

from higher levels of memory every time they are needed. Indeed, it is well known that caches

can lead to tremendous performance improvements for general purpose computing platforms

as in the desktop and server domains [3].

Hard real-time applications, on the other hand, must meet their deadlines in all situations

including the worst-case one; otherwise the safety of the controlled system is jeopardized. Nev-

ertheless, the operation of caches is inherently non-deterministic. In other words, the number

of cycles a cache spends accessing data is random and subject to compulsory, capacity, and

conflict misses [2]. This introduces a high degree of unpredictability that makes static analysis

of real-time applications a daunting task.

Many studies, however, have proposed techniques for accurate timing analysis in the pres-

ence of hardware-managed caches. One of the techniques proposed to make behavior of cache

predictable is static cache simulation [4]. In this scheme, each basic block in the program is

simulated and the state of the cache at the entry and exit points are saved. This cache state

is then used to divide instructions into categories like always hit, always miss, first hit, etc.

Straight forward static analysis of the program code can then be performed. The use of integer

linear programming (ILP) to bound worst-case behavior of a workload in the presence of a cache

was suggested by Li et al. [5] through program path analysis and micro-architecture modeling.

Program path analysis is used to eliminate paths whose execution time definitely does not cor-

4

respond to worst-case path. Micro-architecture modeling models the underlying architecture

using simplifying assumptions. The problem of finding the program’s worst-case path is then

expressed in an ILP framework with feasible paths and architecture characteristics expressed

as constraints.

Analyzing the unpredictability introduced by data caches is even more difficult since the

address of the data reference is not known at compile time. One of the important works in

bounding cache access is from White et al. [6]. They provide a tool which will give tight WCET

of a program in presence of data caches. They use the static cache simulation by Mueller [4] to

categorize instructions into first miss, first hit, always miss and always hit. Using the instruc-

tion categorization and program control flow graph, timing analyzer (an iterative algorithm)

will give the worst-case behavior of the program. Extensions of this analysis to set-associative

caches was also address by Mueller in his later work [7].

Many other architectural mechanisms have been used to hide memory latencies. For ex-

ample, direct memory access (DMA) hardware is used in many systems to relieve the processor

from waiting on the slow memory or I/O peripherals. The processor can therefore continue

working until the memory transfer is ready and an interrupt is generated by the DMA con-

troller. Yet DMA controllers can introduce other unpredictability factors. When operating in

cycle-stealing mode, the DMA controller owns the I/O bus as long as the processor does not

need it. As soon as the processor needs the bus, its ownership should be transferred to the

processor. However, this ownership transfer does not take place immediately which causes the

processor to miss some cycles that would not have been missed in the absence of the DMA

hardware [8]. Huang et al. [8] have given an algorithm which calculates the worst-case behav-

ior of a sequence of instructions when executed concurrently with DMA operations. The key

idea behind the algorithm is that execution cycles dont overlap among instructions. The time

delay due to cycle-stealing operation of the DMA controller can be analyzed for each instruc-

tion individually, which results in a very simple algorithm.

In other frameworks, memory latencies have been addressed in different ways. For ex-

ample, multitasking (also known as multithreading) processors hide the latencies due to memory

5

stalls by switching execution between tasks (managed in hardware) at long latency instructions

like memory transfers. This dynamic hardware control, however, introduces a factor of unpre-

dictability that prohibits static analysis of real-time workloads. El-Haj Mahmoud [9], however,

proposed a method for exploiting simultaneous multithreading (SMT) on a super-scalar processor

in a safety-critical real-time system. To this end, El-Haj Mahmoud proposed a new architecture

model of a multithreading super-scalar processor as a collection of virtual processors. Each

virtual processor is a partition enabling a single task to execute without interference from any

other task, and hence, can be analyzed statically. This enables real-time scheduling of safety-

critical systems while rendering optimized performance since memory stalls are hidden by the

overlapped execution of other tasks.

1.2 Efficient Utilization of Energy

Battery powered electronic systems, and the integrated circuits within them, account for a large

and rapidly growing revenue segment for the computer, electronics, and semiconductor indus-

tries. For instance, the revenue from wireless voice/data handsets is expected to exceed that

from PCs in the near future [10]. As was mentioned earlier, processor technology is reaching a

new frontier every day, unfortunately, projected improvements in battery technology are much

slower than what is needed to support the tremendous advances in the systems they power.

Hence, in an analogous manner, there exists some kind of a processor-energy gap similar to

that of the processor-memory gap.

We need to emphasize that the energy efficiency problem is much less significant in the

desktop and server domains. For these platforms, there is usually no need for energy storage

to begin with, and power dissipation is a substantially more important problem due to heat dis-

sipation issues [11]. Minimizing power dissipation, rather than energy, is crucial in those cases

since it implies less expenses spent on heat sinks, cooling systems, and other precautionary

measures.

A completely different problem arises in the embedded domain being that of energy (rather

than power) efficiency. With the proliferation of portable and battery operated systems, it is

6

crucial that embedded systems can sustain their operation for extended periods of time on

the limited energy budget available. Minimizing power alone in this case is useless since the

system will require a longer period of time perform the same amount of work. Hence, without

a good energy management policy, major problems arise.

Energy Efficiency in a Memory Hierarchy

As was mentioned earlier, modern architectures allow memory hierarchies of multiple hetero-

geneous3 memory units. Moreover, the energy dissipation characteristics of these memory units

are dictated by the particular structure and fabrication technology used for each memory unit.

For example, caches in general tend to consume more energy than other memory architectures

[12]. Even in cacheless architectures, there is a great variation between the energy consumed

per access from one memory unit to the next. For example, energy consumption strongly de-

pends on the physical size of the memory unit (both the number of words and the number

of bits per word). Hence, a general rule of thumb is that smaller memories are more energy

efficient than larger ones. Second, the larger the memory hierarchy is (i.e., the more memory

units in the hierarchy), the more energy need be spent due to the addressing complexity. Third,

the further away the memory units are from the processor (distance wise) the increased energy

dissipation due to the wiring overheads.

1.3 Motivation

Our work was motivated by the problems discussed in the previous Sections. Though none of

these problems is new or unique to any particular platform, the tools and solutions available

are. In other words, the tools available to deal with most of the problems discussed above in-

cluding the memory utilization problem and the energy efficiency problems do not necessarily

apply to our special category of real-time embedded applications.

For example, we have already mentioned that caches can be used to render tremendous per-

3We will say two memory units are heterogeneous if they have different access latencies, sizes, and/or bit-
widths.

7

formance improvements in the desktop and server domains. Those improvements, however,

are usually in the average-case performance of the system. But improvements in the average-

case performance do not necessarily imply improvements in the worst-case performances. In

fact, it has been shown many times that improving the average-case performance can actually

deteriorate the worst-case performance. Hence, other custom tailored solutions are needed.

Second, as we have also already mentioned, scaling down the power dissipation of a system

by a factor of two using some of the popular techniques only implies that it will take our system

double the amount of time to finish its work. Clearly this does not improve energy efficiency.

Again, this just implies that special solutions and tools are needed to handle those special

systems and applications. In this work, it is our main aim to develop and analyze such custom

optimization techniques and make sure they are applicable to our category of systems where

many other optimizations simply fail to be of any use.

In this work we address these problems in a unique way that is applicable to that special

category of computing platforms. We develop and analyze new techniques that we apply when

other tools fail to provide the needed functionality. Moreover, we present analytical as well as

experimental results that prove and support our proposed techniques and methodologies.

1.4 Thesis Contributions

In this work we present the data allocation with real-time scheduling (DARTS) framework as a

novel approach to software-managed data allocation and real-time scheduling. In addition, we

present several techniques to optimize memory utilization for single-memory systems using an

extended and improved version of preemption threshold scheduling (PTS). Furthermore, a quan-

titative analysis of the most popular energy management techniques for embedded systems is

presented and analyzed. The detailed contributions can be listed as follows (contributions 1

through 4 are the main contribution of this work):

1. In Section 5.4 we present a novel data allocation framework that is applicable to multi-

tasking real-time systems.

8

2. In Section 5.4.3 we show how our optimal multitasking memory allocation (OMMA) tech-

nique is combined with PTS to render the DARTS framework enabling optimal data allo-

cation and scheduling of real-time embedded applications.

3. In Section 2.4 we present an overview of the complete DARTS tool chain that was specif-

ically developed to support our framework.

4. In Section 5.5 we present multiple simulations and experiments that show how the DARTS

framework leads to optimal static allocations along with significantly improved real-time

schedules. The improvements in the memory traffic, the WCET, and the energy utiliza-

tion of the system are all shown to benefit significantly from the DARTS framework.

5. In Section 3.2 a unified framework enabling the use of PTS with both dynamic- as well as

fixed-priority schemes in the presence of shared resources is presented. Our framework

guarantees schedulability for both schemes and maintains system concurrency.

6. We analytically prove in Section 3.3 that PTS with an algorithm known as the maximal pre-

emption threshold assignment algorithm (MPTAA) is stack space optimal in the sense that no

other preemption limiting framework can result in smaller memory requirements with-

out changing the system model. These results are shown to hold for both priority-driven

scheduling schemes by extending the MPTAA to support dynamic-priority systems.

7. In Section 3.4.1 We analytically prove that PTS results in schedules that are robust to

uncertainties in the workload’s WCETs.

8. We develop in Section 3.4.2 a backtracking strategy that can be used with the MPTAA to

reduce the tasks WCETs by up to 50%.

9. In Chapter 4.2 a survey of the most popular energy and power minimizing techniques is

presented along with the tradeoffs involved in the use of each.

9

1.5 Thesis Outline

This thesis is divided into 6 main chapters. In Chapter II we present the related work and

tools used throughout this study. In Chapter III we present a unified framework for using

PTS with both priority-driven schemes and prove some of its more important properties used

in later chapters. In Chapter IV we present a survey of the most popular energy and power

management techniques along with the tradeoffs involved in their use. Chapter V presents

our main contributions: the DARTS framework, along with its formulation and experimental

results collected to show how it can be used to improve data allocation as well as real-time

scheduling of real-time applications. Chapter 6 presents a summary of this thesis along with an

outline of our future work. Finally, an appendix is added to present some of the mathematical

derivations used in this work.

10

Chapter 2

Related Work and Tools

In this chapter we try to briefly overview and present some of the studies related to this work.

As we have already mentioned, we are mainly interested in embedded platforms that, in addi-

tion to other design constraints, have deadlines that must be met. A missed deadline is simply

a useless result even if logically correct in the case of soft real-time systems1, or a serious prob-

lem as in the case with safety-critical hard real-time systems2 . The area of computer engineering

dealing with such systems is known as real-time systems theory. This theory is the accumulation

of many years of work by many researchers and can take entire books to just describe its fun-

damentals. Hence, in Section 2.1 we will in no way try to comprehensively cover this extensive

subject, just the very few concepts needed to understand our work.

We then move to the field of digital integrated circuits design in Section 2.2, to state some

of the main results and findings that are used in this work including the energy and power

dissipation models for CMOS-based integrated circuits as well as some of the energy models

describing the energy dissipation of memory hierarchies.

Finally, in Section 2.4 we briefly explain and present the tool chain that was developed for

the DARTS framework. We briefly discuss its major components as will as their principles of

operations. More tool details can be found in their documentation..

1A soft real-time system is defined as a real-time system where some of the deadlines can be missed without
causing serious consequences

2As opposed to soft real-time systems, hard real-time system are mostly safety-critical ones where a missed
deadline can lead to major problems and some times tragic consequences.

11

2.1 Real-Time Systems Theory

2.1.1 Real-Time System Model and Terminology

A real-time task, denoted by T , is an independent thread of execution that competes with other

tasks for processor time and other resources. A task is invoked infinitely many times and each

invocation results in a single execution which we call an instance or a job. We will denote the

ith task in the workload by Ti and denote the j th job of the ith task by Jij . Every job Jij is

characterized by a release time rij (i.e. the instant of time at which the job becomes ready for

execution), a computation time cij (i.e. the amount of time required to complete execution), and

an absolute deadline dij (i.e. the instant of time by which a job is required to be completed).

Moreover, associated with every job Jij is an amount of memory space sij (referred to as the

job’s stack space) used by the job for its local variables, nested function calls, return addresses,

as well as its own context if necessary for preemptions3. We also associate with each job Jij

a unique priority πij ∈ {1, 2, . . . , N} such that contention for resources is resolved in favor of

the job with the highest priority that is ready to run as will be explained in the next section.

Throughout this study we assume time is discrete and clock ticks are indexed by the natural

numbers. Job arrivals, and executions begin at clock ticks, and each of the attributes rij , cij ,

and dij is expressed as a multiple of (the interval between) clock ticks.

Tasks can be periodic or sporadic. If Ti is periodic, the period Pi specifies a constant interval

between arrival times of any two consecutive jobs, and if it is sporadic, Pi specifies a minimum

interval between job arrivals. We say task Ti has a worst-case execution time (WCET) of Ci to

denote that the maximum execution time of any of the task’s jobs is given by Ci (i.e Ci =

maxj[cij]). We say task Ti has a maximum stack space requirement of Si units if the maximum

memory space required by any of the task’s jobs for its stack is given by Si memory units (i.e.

Si = maxj[sij]). Moreover, we say that Ti has a relative deadline of Di time units if all that task’s

jobs must complete execution by no more than Di time units after their arrival to meet their

deadline (i.e. Di = minj [dij − rij]). Finally, we need to point out that the worst-case invocation

3The maximum memory required by each task can be computed by many static analysis tools as explained in
the next Chapter.

12

pattern for a sporadic task (worst in the sense requiring the most processor time) occurs if it is

released every exactly Pi time units. For this reason, we will not usually need to treat sporadic

tasks separately in this work.

2.1.2 Real-Time Scheduling Policies

A scheduling policy dictates the order in which different tasks use the processor time and how

different requests should be serviced. Priority-driven scheduling algorithms refer to a large

class of scheduling algorithms that never leave any resource idle intentionally and are used by

most real-time kernels. Scheduling decisions in a priority-driven system are made when events

such as releases and completions of jobs occur. Hence, a priority-driven algorithm is sometime

viewed as an event-driven scheduling policy.

Let T = {Ti|i = 1, 2, . . . , N} denote some real-time workload with N tasks. At any time

instant tn, a priority-driven scheduling policy can be thought of as a mapping Π(tk) : T →

{1, 2, 3, . . . , N} governing the execution of jobs such that contention for resources is always

resolved in favor of the job with the highest priority that is ready to run4. Many scheduling

policies exist and have been used. Examples include the rate monotonic (RM) policy, the deadline

monotonic (DM) policy, the earliest deadline first (EDF) policy, etc.

Fixed-Priority Scheduling Policies

In a fixed-priority scheduling policy, priorities are assigned offline and remain fixed throughout

the operational time of the system. In a fixed-priority policy, the same priority is assigned to

all jobs in each task (i.e. πij = πik = πi for all j and k). In other words, the priority of each

task is fixed relative to other tasks. Hence, in a fixed-priority scheme we can speak of a ”task’s”

priority rather than of a ”job’s” priority. Classical examples of fixed-priority scheduling policies

include the RM and DM policies, as well as Audsley’s optimal priority assignment algorithms

[13, 14]. We will call a real-time workload along with some priority mapping that has been

assigned statically a static real-time system and denote such system by the tuple (T ,Π).

4In this thesis we maintain the natural ordering of numbers such that saying that Jmn has a higher (lower)
priority than Jij implies that πmn > πij (πmn < πij) respectively.

13

Dynamic-Priority Scheduling Policies

Unlike fixed-priority scheduling, in a dynamic-priority scheme different jobs of the same task

can be assigned different priorities dynamically (i.e. at run-time). The most popular dynamic

priority scheduling policy is the earliest deadline first (EDF) algorithm [13]. It has been shown

in the literature that the EDF algorithm is optimal in the sense that if any dynamic-priority

algorithm can schedule a particular workload, so can the EDF algorithm [15]. Hence, we will

be mainly referring to the EDF algorithm in this study whenever we refer to a dynamic-priority

scheduling algorithm. In EDF scheduling, the priority of each job is assigned dynamically to

be inversely proportional to job’s absolute deadline. Since different jobs of the same task might

have different absolute deadlines, they will also have different priorities. Again, a real-time

workload along with some priority mapping that is assigned dynamically will be referred to as

a dynamic real-time system and denoted by the tuple (T ,Π(tn)).

Preemptive versus Non-Preemptive Scheduling Policies

An essential property of a scheduling policy is preemptability. We say a scheduling policy is

fully-preemptive (FP) if a currently executing task can be preempted by a ready-to-run higher

priority task. On the other hand, we say a scheduling policy is fully-non-preemptive (FNP) if

the ready-to-run higher priority task has to wait for the currently executing task to voluntarily

release the processor.

A fundamental question naturally arises. When is FP scheduling better than FNP schedul-

ing and vice versa? Unfortunately, there is no general answer to this question. However, in

many special cases it has been shown that FP schedulers can make better system utilization,

increased system responsiveness, etc [13]. On the other hand, FNP schedulers are easier to

implement, have no preemption overheads, and do not have the shared resources problem

explained later. As we will show in this study, preemption threshold scheduling (PTS) gives the

system designer the best of the two worlds.

The term preemption threshold scheduling was first coined by Wang and Saksena [16, 17]

after they investigated the concept of preemption thresholds introduced by Express Logic Inc.

14

in their real-time kernel ThreadX [18]. With PTS, a static real-time system (T ,Π) is assigned

an additional mapping Γ : (T ,Π) → {1, 2, . . . , N} (i.e. each task is assigned a preemption

threshold, denoted by γi in addition to its priority πi with the essential property that γi ≥ πi).

When a job begins execution, its priority is raised to its preemption threshold. In this way, all

jobs with priorities less than or equal to the preemption threshold of the executing task cannot

preempt it.

It is easily seen that FP and FNP scheduling policies are special boundary cases of PTS.

By assigning the preemption threshold of each task equal to its priority, PTS becomes an FP

scheduling policy. By assigning the preemption threshold of each task equal to the system’s

highest priority, PTS simplifies to an FNP policy. It has been shown by Wang et al. [16] that

PTS presents a more general framework than either pure FP or FNP scheduling policies. In

fact, in their work, they showed that some workloads that cannot be scheduled neither in a FP

manner, nor in a FNP manner, can be scheduled using PTS.

Real-Time Schedulability

A real-time task Ti is said to be schedulable if every one of its jobs can complete by or before

its deadline. If we denote the completion time of job Jij by fij , then we can define the job’s

response time as R(Jij) = fij − rij . Furthermore, we define the task’s worst-case response time

(WCRT) as R(Ti) = maxj [R(Jij)]. It should be clear that requiring a task to be schedulable is

equivalent to requiring that R(Ti) ≤ Di. This WCRT of a task is assumed to occur under some

worst-case scenario that might or might not occur. Clearly knowing a task’s WCRT solves

the schedulability problem. Unfortunately, however, computing the WCRT is only possible

for statically scheduled (i.e. fixed-priority) real-time workload. For this reason, assessing the

schedulability in a dynamic-priority scheme cannot use the WCRT criteria and other conditions

are used as will be shown later. Finally, if there exists a priority assignment (fixed or dynamic)

such that all tasks composing a workload are schedulable, we say that the system (T ,Π) (or

(T ,Π(tn)) in a dynamic-priority scheme) is schedulable.

15

2.1.3 The Schedulability Problem

A fundamental problem in real-time scheduling theory is that of determining if a particular

workload and a particular priority mapping render a schedulable system as defined in the

previous section. Stated differently: Given a set of tasks, a set of resources available to the

tasks, a scheduling algorithm, and a resource sharing protocol to be used to allocate resources

to tasks, determine whether all jobs can meet their deadlines. In this section we present some

known schedulability conditions.

Fixed-Priority FP Schedulability

We are given a static real-time system (T ,Π) where the fixed-priority mapping has been as-

signed using some algorithm (e.g. RM, DM, etc). We would like to know if this system is

schedulable. In a fixed-priority setting, schedulability can be analyzed using level-i busy period

analysis [19, 20]. To this end, the WCRT of each task, defined in Section 2.1.2, is computed as a

bound on the response times of all jobs by essentially simulating some worst-case scenario that

jobs can experience. If the WCRT for each task is no larger than its respective relative deadline,

the system is schedulable.

Consider the static real-time system (T ,Π), and let Ti ∈ T be any task. Since this is a fixed-

priority scheme, we can speak of task priorities rather than task job priorities. Let HP(T i)

denote the subset of all tasks belonging to T with priorities larger than that of T i (i.e. HP(Ti) =

{Tj ∈ T |πj > πi} ⊂ T). Similarly, let LP(Ti) denote the subset of all tasks belonging to T with

priorities smaller than that of Ti. The WCRT of a task will occur if one of its jobs is released at

the same time with a job from every higher priority task [13]. Hence, the WCRT of a task can be

obtained by considering the response-time of a single job that is released under this worst-case

scenario. This WCRT can be computed using the following equation [20]:

R(Ti) = min
q∈{0,1,2,...}

wi(q) (2.1a)

Where wi(q) denotes the length of a busy period for task Ti with q jobs (instances) of Ti included

16

in the busy period and can be solved for using the following recursive equation.

wi(q) = q · Ci +
∑

Tj∈HP(Ti)

⌈
wi(q)
Pj

⌉
Cj (2.1b)

This iteration over increasing values of q stops if wi(q) ≤ q · Pi. A task set is schedulable fully-

preemptively if and only if R(Ti) ≤ Di for all i ∈ [1, N]. Hence, equations (2.1a) and (2.1b)

present a necessary and sufficient condition for schedulability using in a fixed-priority setting.

Dynamic-Priority FP Schedulability

Processor demand analysis [15] can be used to obtain sufficient and necessary conditions for the

schedulability of a dynamic real-time system (T ,Π(tn)). However, in this study we only ad-

dress sufficient conditions and leave necessary conditions for future work. To this end, given

the tuple (T ,Π(tn)), a sufficient condition for the schedulability of a real-time system is given

by the following EDF schedulability test [13]:

N∑
i=1

Ci

min(Di, Pi)
≤ 1 (2.2)

If the above condition is satisfied, we conclude that our workload is schedulable with the EDF

scheme. We note, however, that if it is not satisfied, then the conclusion we may draw depends

on the relative deadline of the tasks. If Di ≥ Pi for all i, then equation (2.2) reduces to the

following well known EDF utilization test which is both a necessary and sufficient condition:

N∑
i=1

Ci

Pi
≤ 1 (2.3)

On the other hand, if Di < Pi for some i, equation (2.2) is only sufficient not satisfying it can

only imply that system may not be schedulable.

2.1.4 Shared Resources

A task may need some resources in addition to the processor to make progress. We will let R =

{ρ1, ρ2, ..., ρK} be the set of such resources. These resources are typically granted to tasks on a

17

non-preemptive basis and used in a mutually exclusive manner. In other words, when a resource

ρk is granted to a task, this resource is no longer available to other tasks until the task frees it.

Examples of such resources are semaphores, mutexes, reader/writer locks, files, connection

sockets, external devices, etc. Throughout this study we assume that a lock-based concurrency

control mechanism is used to enforce mutually exclusive access of tasks to resources. We call

the segment of a task’s job that begins at a lock and ends at a matching unlock a critical section.

The critical section of job Jij on the kth resource will be denoted by ξk
ij . Moreover, for any of

the schedulability conditions to be of any use, the duration of such a critical section has to be

bounded. Hence, we will denote the maximum time duration of critical section ξk
ij by ωk

ij .

Two tasks requiring the same resource are said to have a resource conflict. When the sched-

uler does not grant a resource ρk to the task requesting it, the task is said to be blocked5. If this

is the case, a priority inversion6 can occur. More seriously, without a proper resource sharing

protocol, the duration of a priority inversion can be unbounded [13]. Furthermore, resource

conflicts can also lead to deadlocks7. Clearly resource conflicts affect the schedulability of our

real-time system. We would like to emphasize, however, that resource sharing can only cause a

problem if preemption is allowed. In FNP schemes, on the other hand, mutual exclusion is not

a problem since a task will never be interrupted while accessing a resource. Below we discuss

some of the resource sharing protocols that have been proposed in the literature to deal with the

above problems.

The Priority Inheritance Protocol

The priority inheritance protocol (PIP) [21] prescribes that if a higher priority task becomes blocked

by a lower priority one, the task’s job that is causing the blocking should execute with a prior-

ity which is the maximum of its own priority and the highest priority of the job(s) that is(are)

currently waiting on the resource (i.e. it should inherit the higher priority). The PIP is a very

5The term blocked will be used many times throughout this study to denote a task that is prevented from execut-
ing by a lower priority one.

6We say a priority inversion occurs whenever a lower priority task executes while some higher priority task waits.
7A deadlock occurs if two tasks A and B require two resources X and Y . Nevertheless, A keeps holding X and

requesting Y , while B keeps holding Y and requesting X. In this case the conflict can never be resolved and we
say a deadlock has occurred.

18

simple protocol that works with all priority-driven scheduling algorithms if there are no dead-

locks. However, the PIP cannot prevent deadlocks, and a task might be blocked multiple times

by each lower priority task that it shares a resource with under the PIP [21].

The Priority Ceiling Protocol

The priority ceiling protocol (PCP) extends the PIP to prevent deadlocks and multiple blocking

times [22]. In doing so, it assumes that all task priorities are fixed (clearly a situation that only

applies to fixed-priority schemes). To this end, the PCP adds a new rule to the PIP: associate

each resource ρk a priority, called the priority ceiling of the resource and denoted by ceil(ρk).

The priority ceiling is an upper bound on the priority of any task that may lock the resource

(which again need be known a priori). That is, the priority ceiling of a resource ρk is defined as

follows:

ceil(ρk) = max
i

(πi |Ti can request ρk) (2.4)

In addition, at any time instant tn, the PCP defines a system ceiling ceil(tn) to equal the

highest priority ceiling of any resource that is in use (i.e. locked) at that time instant, other wise

it is set to zero (implying the lowest priority possible).

ceil(tn) = max
k

[{0} ∪ { ceil(ρk) | ρk locked at tn}] (2.5)

The PCP rule then states that a task is not allowed to start execution until its priority is highest

among the ready or active tasks as well as greater than the system ceiling ceil(tn).

It can be shown that the maximum blocking that a task Ti can experience due to a shared

resource under the PCP is given by the following expression:

Brc
i = max

Tj∈LP(Ti),∀h
{ωk

jh|πi ≤ ceil(ρk)} (2.6)

Again, the PCP was shown to bound priority inversion, prevent deadlocks, and a task can

be blocked at most once due to a shared resource since no task is allowed to enter its critical

19

section unless its priority is higher than all the priority ceilings currently locked by other jobs

(i.e. the system ceiling ceil(tn)). However, the PCP applies only to fixed-priority schemes, and

therefore a more general resource sharing protocol was needed. such a protocol is presented

next.

The Stack Resource Policy

Similar to the PCP, the stack resource policy (SRP) developed by Baker [23] is meant to enable

real-time jobs to share mutually exclusive system resources while bounding priority inversions

and preventing deadlocks. In contrast to the PCP, the SRP can be used with dynamic-priority

schemes as well as fixed-priority ones. To this end, Baker noticed that the potential of resource

conflicts in a dynamic-priority scheme does not change with time, just as in fixed-priority sys-

tems, and hence can be analyzed statically. They key observation here is that a resource conflict

can happen between two jobs only if one of them can preempt the other. Baker also noticed

that even in a dynamic-priority scheme, it is possible to determine a priori the possibility that

jobs in each periodic task will preempt the jobs in other tasks. For example, in EDF scheduling,

a job of a particular task can only be preempted by jobs of other tasks with smaller relative

deadlines.

According to Baker, the possibility that a job of task Ti can preempt another job of any other

task can be captured by its preemption level λi of Ti. In fact, the following essential property is

true for all valid preemption level assignments (validly is described next):

Property 2.1.1. A task Ti can never preempt a task Tj unless λi > λj

Under the RM, the DM, and the EDF scheduling policies, it was shown by Baker that a

valid preemption level assignment that guarantees that the above property holds is obtained if

preemption levels are assigned to be inversely proportional to a task’s period:

∀ Ti, λi ∝
1
Pi

(2.7)

Hence, the preemption level concept defines a static mapping Λ : T → [1, 2, . . . , N] that can

be used to statically analyze both static and dynamic priority systems. When the SRP is used

20

together with the RM and DM scheduling policies, each task is assigned a static priority that

is inversely proportional to its period. Hence, under the RM and DM scheduling policies, the

preemption level mapping is identical to the priority mapping (i.e. Λ ≡ Π). However, when the

SRP is used with the EDF, in addition to the static preemption level, λ i, each job has a dynamic

priority that is inversely proportional to its absolute deadline. We emphasize again, however, that

even if we do not know the priorities of jobs in advance as in dynamic-priority schemes, the preemption

level mapping provides us with all the needed preemption relations between tasks.

Similar to the PCP, the SRP assigns for every shared resource ρk a ceiling defined as follows:

ceil(ρk) = max
i

[{ λi | Ti uses ρk}] (2.8)

Moreover, a dynamic system ceiling is defined as follows at each time instant tn:

ceil(tn) = max
k

[{0} ∪ { ceil(ρk) | ρk locked}] (2.9)

The SRP scheduling rule then states that a task is not allowed to start execution until its priority

is highest among the ready or active tasks and its priority level is greater than the system ceiling

ceil.

The blocking that a task can experience due to a resource contention under the SRP can be

represented in a very similar form to equation (2.6) with the task’s preemption level λ now in

place of its priority π. Hence, it can be shown that the blocking time a task Ti can experience

due to a shared resource (in either a fixed-priority or a dynamic-priority scheme) with a lower

preemption level task Tj is given by length of the longest critical section ξk
jh of Tj on the shared

resource ρk as follows:

Brc
i = max

Tj∈T ,∀h
{ωk

jh|λi > λj ∧ λi ≤ ceil(ρk)} (2.10)

The SRP ensures that once a task starts execution, it cannot be blocked until completion.

The Stack Resource Policy has several interesting properties. It prevents deadlock, bounds

the maximum blocking times of tasks, and reduces the number of context switches. From an

21

implementation point of view, it allows tasks to share a unique stack. In fact, a task never

blocks its execution; it simply cannot start executing if its preemption level is not high enough.

2.1.5 Schedulability with Shared Resource

It should have been evident that in the presence of shared resources some tasks can miss their

deadlines due to blocking. Hence, the schedulability conditions presented in Section 2.1.3 for

fixed-priority and dynamic-priority schemes need be modified to account for the possibility of

such blocking. In this section we present those extensions assuming that the PCP or the SRP

are used (note that the PCP and SRP are equivalent in a fixed-priority scheme).

Fixed-Priority Schedulability with Shared Resources

A task Ti in a fixed-priority system (T ,Π) might experience a different kind of worst-case sce-

nario than that of Section 2.1.3 in the presence of shared resource. That is, in addition to inter-

ference from higher priority tasks in HP(Ti), a task Ti might also be blocked by a lower priority

task Tj ∈ LP(Ti) that is holding a shared resource.

To this end, let ρk be a resource required by Ti as well as some other task Tj ∈ LP(Ti).

Moreover, let us assume that Tj is the task with the longest critical section ξk
ij on ρk of all tasks

in LP(Ti). In this case, the WCRT of Ti will occur if Tj has just locked ρk before Ti was released.

This WCRT can be computed in terms of the task’s (i.e. Ti) worst-case start time and worst-case

finish time as given by the following [24]:

Si(q) = Bi + q · Ci +
∑

Tj∈HP(Ti)

(
1 +

⌊
Si(q)
Pj

⌋)
Cj (2.11a)

Fi(q) = Si(q) + Ci +
∑

Tj∈ T
πi>ceil(ρk)

(⌈
Fi(q)
Pj

⌉
−
(
1 +

⌊
Si(q)
Pj

⌋))
Cj (2.11b)

R(Ti) = max
q∈{0,1,...,�Li/Pi�}

(Fi(q) − q · Pi) (2.11c)

22

Where Li is the longest level-i busy period and is given by the following:

Li = Bi +
∑

Tj∈HP(Ti)

⌈
Li

Pj

⌉
Cj (2.11d)

while Bi denotes the worst-case blocking Ti can experience due to tasks in Ti ∈ LP(Ti) sharing

the resource ρk and is given by equations (2.6) or (2.10). Note that under the PCP as well as the

SRP Ti can only be blocked once by task Tj with the longest critical section on resource ρk.

Dynamic-Priority Schedulability with Shared Resources

As was mentioned previously, the WCRT of a task cannot be computed for dynamic-priority

schemes. Nevertheless, a sufficient condition for the schedulability of a dynamic-priority sys-

tem (T ,Π(tn)) was developed by Baker [23] if the system is transformed into a statically-analyzable

system through the preemption level mapping explained in Section 2.1.4. To this end, given the

system (T ,Λ), we proceed as follows.

Let us re-order our system T such that for any Ti and Tj having i < j implies that λi > λj .

Now let Ti be any task in T that requires the shared resource ρk to make progress. Moreover,

let Tj ∈ T be the task with the longest critical section ξk
ij on the resource ρk such that λj ≤ λi.

The maximum blocking that Ti will experience due to Tj holding the resource ρk is given by

(2.10). A sufficient condition for the schedulability of Ti is then given by [23]:

Brc
i

Di
+

i∑
j=1

Cj

Dj
≤ 1 (2.12)

Where Brc is again the maximum blocking given by (2.10). We say that the entire system is

schedulable if the above condition holds for every Ti ∈ T .

2.2 Integrated Circuits Energy and Power Dissipation

We now present background and related work on energy and power dissipation. We first

examine CMOS-based circuit power and energy requirements, memory hierarchy energy use,

power and energy management techniques, and power schedulers.

23

2.2.1 Modeling Power and Energy Dissipation

The total power dissipation in a CMOS-based circuit has been modeled as the sum of two

components as given by the following [11]:

PCMOS = Pdyn + Pstatic (2.13)

The first component in (2.13) is known as the dynamic-power dissipation component. This com-

ponent arises from: (1) the switching current from charging and discharging paratactic capac-

itances, and (2) the short circuit current resulting from n-channel and p-channel transistors

being momentarily ON at the same time. An expression that accounts for both of these sources

is given by the following [11]:

Pdyn = CP fCLK V 2
CC +

β fCLK trf

12
(VCC − 2Vtn)3 (2.14)

where fCLK and VCC are the clock frequency and the operational voltage respectively, β is a

constant that depends on the transistor’s geometry and fabrication technology, V tn is the tran-

sistor’s threshold voltage, trf is the rise and fall time of the input signal (assumed equal), and

CP is the gates parasitic capacitance in units of Farads. However, it has been shown that the sec-

ond component in (2.14), namely the dynamic-power due to short-circuit currents, is typically

less than 15% of the dynamic-power dissipation and can safely be ignored [25]. The resulting

expression for the dynamic-power dissipation component is thus given by the following:

Pdyn = CP fCLK V 2
CC (2.15)

By choosing an infinitesimal period of time ∆t such that the clock frequency, fCLK , and the

operational voltage VCC are constant over that period of time, the dynamic-energy component

can now be expressed as follows:

Edyn =
∫

CP fCLK V 2
CC dt = CP fCLK V 2

CC∆t (2.16)

Moving our attention to the second component in (2.13), namely Pstat, which is known as

24

the static-power component and is independent of the switching behavior of the circuit. This

component arises due to subthreshold leakage currents as given by the following expression:

Pstat = IlkgVCC (2.17)

where VCC is again the operational voltage, and Ilkg is the leakage current given by the follow-

ing expression [26]:

Ilkg = µCox(W/L)V 2
t e

VCC−Vth
n Vt

(
1 − e

−VCC
Vt

)
(2.18)

where µ is the electron carrier mobility, Cox is the gate capacitance per unit area, W and L

and the channel width and height respectively, Vt is the thermal voltage, Vth is the threshold

voltage, and n is the subthreshold swing coefficient.

Assuming again that we choose an infinitesimal period of time ∆t such that the operational

voltage and leakage current and almost constant over that period of time, then the static-energy

dissipation component in a CMOS circuit is given by the following:

Estat =
∫

Ilkg VCC dt = Ilkg VCC∆t (2.19)

A final relation that we will be using relates the maximum operating frequency of a CMOS

circuit to its operational voltage. This relation is given by the following [27, 11, 28]:

max[fCLK] =
Kp (VCC − Vth)1.8

VCC
(2.20)

where KP is another constant of proportionality that depends on the circuit’s gate delay.

2.3 Energy Dissipation in a Memory Hierarchy

Before we move on to presenting the most popular energy and power management techniques,

we would like to present some of the models developed to model energy dissipation of mem-

ory subsystems in a memory hierarchy architecture. In this special case there are many factors

25

that have to be accounted for like the size of the memory units, the distance between the var-

ious memory modules, and the fabrication technology used to fabricate the various memory

modules.

Without delving in the derivation of the individual models, it was shown that the amount

of energy required per access is given by a simplified model in terms of the energy required per

read er and the energy required per write ew which are both given by the following equations

[29]:

er = ηr ·
√

b · Nword + κr [pJ/cycle] (2.21a)

ew = ηw ·
√

b · Nword + κw [pJ/cycle] (2.21b)

Where ηr, ηw, κr, and κw are technology dependent with the basic property that ηr ≤ ηw, and

κr ≤ κw for all technologies.

Using the models given by equations (2.21a) and (2.21b), we will be able to analyze the

energy efficiency attainable by DARTS in Chapter V. It is important to emphasize, however,

that those are only simplified models and other more accurate models that account for many

other factors like the wiring overheads, the energy cost of each additional memory unit added

to the hierarchy exist but are not required at this stage of our analysis.

2.3.1 Energy and Power Management Techniques

In this section we present a brief survey of the most popular energy and power management

techniques. We start by presenting some of the less sophisticated techniques, followed by more

complex and more sophisticated ones.

Power Down Modes

Every processor designed in the last two decades usually includes a set of additional states

known as power-down modes (PDM). Basically, PDMs are a set of additional processor states

26

where some modules of the system has the power removed (i.e. the instruction sequencer,

some peripherals like on-chip ADCs, etc). PDMs usually include several variations depending

on the degree of power (energy) that need be minimized (e.g. idle mode, sleep mode, etc).

To avoid confusion, we will only be interested in PDMs where most of the chip peripherals

have been disabled leading to the smallest power dissipation possible. In addition, we will

only be concerned with the available PDMs that can be controlled internally in software. That

is, only PDMs that can be disabled as well as enabled in software will be considered. This is

necessary since, as will be explained later, the power and energy management of the system is

usually handled by the power scheduler, typically part of the operating system, which has to be

able to control those PDMs directly in software.

Dynamic Frequency Scaling

Dynamic frequency scaling (DFS) is a technique in which the processor clock is scaled down to

minimize the power dissipated linearly as can be seen from (2.15). We need to emphasize,

however, that DFS alone can only lead to minimizing the power and not the energy dissipation

of a system. The reason is that at a lower frequency it will take the system more time to process

the same workload, and hence, no energy can be saved. It will be shown later, however, that in

combination with other power and energy management techniques, DFS does indeed lead to

energy savings for under utilized systems.

If the processor does not already support DFS internally, implementing DFS using external

hardware is simple and cost efficient. Two techniques are possible; the first uses inexpensive

simple counter(s) to divide the frequency by an integral value, while the second (clock throt-

tling) uses gates to disable the clock signal periodically and is more complex [30]. It should also

be clear that a power scheduler is needed to calculate the frequency levels required to execute

the various jobs (task instances).

27

Dynamic Voltage Scaling

Dynamic voltage scaling (DVS) reduces the power and energy dissipated by a processor through

scaling down the operating voltage, and in turn the clock frequency (see (2.20)). In contrast to

DFS, DVS also minimizes the static power (and energy) component which is only a function of

the operational voltage (2.19). A disadvantage of DVS, on the other hand, is its complexity and

expensive implementation.

Implementing an effective DVS system has several requirements, as pointed out by Burd

et al. [25]: (1) A variable power supply capable of generating the required voltage levels with

a high voltage transition rate, minimal transition energy losses, and a good voltage transient

response, (2) a wide operational voltage range for the circuit to be powered, (3) and a power

scheduler that can intelligently compute the appropriate frequency and voltage levels needed

to execute the various jobs is also required.

The power supply is an essential component of a DVS system as it enables the voltage

scaling mechanism. Two important parameters of any power supply are the transition time

(also known as the tracking time), and the transition energy (also known as the tracking energy).

The transition time is simply the time it takes to change the output voltage from one stable state

to another, while the transition energy is just the amount of switching losses incurred during

that voltage transition. An equivalent metric to the transition time is the voltage transition rate

(or tracking rate), which is just the difference in the output voltage levels between the two states

divided by the transition time.

The main objective of any power supply is to change the output voltage from one stable

state to another within a defined time, and with the minimal transition energy possible. Unfor-

tunately, various physical and cost constraints exist that limit the achievable minimum transi-

tion time and energy. For example, as explained by Burd et al. [25], any processor produces

large current spikes which the converter’s output capacitor must filter. Hence, a large output

capacitor is desirable to filter and stabilize the output voltage. Nevertheless, it was shown by

Burd that the transition time and transition energy are both directly proportional to the size of

this capacitor. Hence, a large output capacitor implies a large time constant and more energy

28

losses (i.e. less efficiency). Trade-offs exist in several other design dimensions, and hence, a

faster converter with minimal energy losses will usually imply higher costs which might not

be adequate especially for a one dollar microcontroller unit [25].

Two categories of variable voltage supplies with high transition rates, low transition energy

dissipation, and good transients have been used for DVS. The ideal and most efficient approach

uses custom-designed hardware (on-chip when possible). Two such designs were reported

by Burd et al. [25], and another by Gutnic et al. [31]. Both achieve low transition energy

dissipation, excellent transients, and Burd’s has a voltage transition rate on the order of 50 volts

per sec. The second category of variable voltage supplies are commercial DC-DC converters

designed for DVS. For example, the TPS62300 high-frequency buck converter renders high

efficiency as well as good transients. However, its voltage transition rate is much smaller (about

20 millivolts per sec). Still, both of these methods will not be adequate for many systems where

the cost is important. In fact, many low-end embedded microcontrollers can run for under one

dollar [32], making these dedicated power supplies an extremely expensive option.

A final important point for implementing DVS is the state of the processor during the tran-

sition between voltage levels. Ideally, one would like to keep the processor running during

such transitions. Nevertheless, as pointed out by Qu [33], any practical variable voltage system

will have to stop instruction execution during voltage transitions until a stable steady state has

been reached. This is very significant since the longer the transition takes (i.e. long transition

times or equivalently small voltage transition rates), the less time the processor has to finish

executing its workload. This, in fact, is the main drawback of dynamic voltage scaling since

DVS systems with long transition times are very susceptible to the workload’s granularity. The

more jobs, the more transitions, and the more time spent switching, reducing the time available

for actual workload execution.

2.3.2 Real-Time Scheduling for Energy Management

A scheduler is a crucial component in implementing any power or energy management tech-

nique. A scheduler is responsible for: (1) deciding when the processor can reduce its power

29

consumption in a way that does not affect its overall performance, (2) and by how much should

the processor reduce its power consumption, again without affecting the overall performance.

Various scheduling policies and algorithms have been proposed for both non real-time and

real-time systems. These assume that a FP RTOS is present into which the power scheduler

can be incorporated. We note, however, that this might not be the case for low-end comput-

ing platforms where memory is scarce, and application software is much less sophisticated.

In fact, several low-end embedded applications simply operate on a foreground-background

(interrupt-driven) policy. Hence the use of a power scheduler for such systems becomes more

complicated since no central program knows what the other applications are doing. Moreover,

the scheduling policy will actually set the quality of the power savings. An investigation of

this topic will be presented later in this study. For now, however, we present a brief overview

of some of the power scheduling policies used.

Power Scheduling in a Non-Real-Time Environment

For non-real-time systems, most scheduling policies try to minimize the power dissipation of

the system while maintaining a constant throughput. Individual task deadlines are not ac-

counted for since no real-time constraints exist. An operating system is usually present and

most scheduling policies just incorporate the scheduler into it. Most schedulers targeting non-

real-time systems execute two main steps [34], the first step is known as the prediction step,

while the second step is known as the speed setting step. The prediction step predicts how busy

the CPU will be during some future interval by predicting its future utilization. Some of the

most popular prediction algorithms are the PAST algorithm (where the algorithm predicts that

the upcoming interval’s utilization is the same as the last interval utilization), the AGED-a

algorithm (predicts that the upcoming interval’s utilization will be the average of all last a in-

tervals), and the FLAT − µ algorithm (predicts that the upcoming interval’s utilization will

be equal to some constant µ ≤ 1). The speed setting step then uses this information to scale

the supply voltage and clock frequency accordingly. There are several popular speed-setting

algorithms. In the Weiser-style algorithm, if utilization was high during the previous interval

(U > 70%) then increase the speed by 20% of the maximum for the next interval. If U was low

30

during the previous interval (U < 50%) then decrease the speed by 60 − U% of the maximum

speed for the next interval. In the Peg algorithm, if U > 98% for the previous interval, set the

speed to its maximum for the next interval. If U < 93% for the previous interval, decrease

speed to its minimum for the next interval. Finally, in the Chan-style algorithm, multiply the

maximum speed by U of the previous interval to get the speed of the upcoming interval [34].

Power Scheduling in a Real-Time Environment

For real-time systems, maintaining a constant throughput does not guarantee that individual

tasks will meet their deadlines [35]. Hence, scheduling for real-time systems is much more

critical. To this end, the scheduler usually is integrated into a preemptive RTOS to be able to

provide the needed power savings while preserving deadlines guarantees. Several policies and

algorithms have been proposed in the literature for real-time systems as well [28, 36, 37, 30].

2.4 The DARTS Tool Chain

The DARTS (data allocation and real-time scheduling tool chain was developed during working

on this thesis to test and simulate many of the strategies investigated in this thesis. A block

diagram showing the different components of our DARTS tool chain is shown in figure 2.1. A

brief overview of these components and the main concepts they are based upon is presented in

this section.

2.4.1 Tool Chain Overview

Figure 2.1 presents a block diagram of the tools used in this work. As a whole, the tool chain

presents a real-time scheduling, analysis, and visualization tool chain. Though the tool chain

components can be used separately, we present in this chapter an overview of how they can

be used together for analyzing, real-time scheduling, and allocating the data objects of a user’s

application to a cacheless platform8.

8The tool chain was developed targeting the AVR architecture [38]. Nevertheless, most of the tool chain compo-
nents can be easily ported to support other architectures as well.

31

GCC

foo.c

task1.s /task2.s
/....

AVR -SAT

Matlab

ssRTOS.c

OMMA
Toolbox

PTSS
Toolbox

AiSee

bar.memfoo.rt

MAPPA

Figure 2.1: The DARTS simulations and analysis tool chain

To this end, a user’s source code file(s) (which can be compiled separately or with the source

code of a real-time kernel like the single-stack real-time operating system (ssRTOS) presented later

in this chapter) is(are) compiled into assembly code using AVR-GCC [39]. At this step, it is

assumed that the assembly code has been divided into a single assembly file for each of the

logical real-time tasks composing the application. The assembly code files (task1.s/task2.s/...)

are processed by AVR-SAT (AVR-Static Analysis Tool) which constructs several data structures

including the each task’s call graph (CG) and each procedure’s control flow graph (CFG), both

used to compute each task’s worst-case path (WCP). The WCP can either be graphically visual-

ized using the AiSee tool [40], or fed to Matlab [38] for further analysis.

Around Matlab, two main tool chain components have been developed: the preemption

32

threshold scheduling and simulation (PTSS) toolbox, and the optimal multitasking memory allocation

(OMMA) toolbox. The PTSS toolbox uses the real-time characteristics of the application (i.e.

task periods, deadlines, etc.) to compute the optimal preemption threshold assignment (using

the MPTAA algorithm presented in later chapters of this thesis), and can simulate the operation

of the system and output the results of this simulation in a timing diagram (also known as a

Gantt chart). On the other hand, the OMMA toolbox, given the system’s memory architecture,

uses integer linear programming (ILP) to find the optimal memory allocation resulting in the

optimal performance. We present below a more detailed discussion of the various tool chain

components and their operational concepts.

2.4.2 The AVR Static Analysis Tool

The AVR-SAT have been developed with the main goal of extracting the WCP of from a task’s

code. Given the WCP of a particular task, we can use it to compute the task’s worst-case exe-

cution cycles (WCEC). This is used by our real-time scheduler and simulator, the PTSS toolbox.

Moreover, the memory traffic (represented by the number of loads and stores) along this WCP

is further used by the OMMA toolbox to allocate the various task’s data objects to memory

optimally.

AVR-SAT Operation

Given the assembly file (taskN.s) for one of the application’s tasks, the AVR-SAT tool performs

multiple steps to extract the WCP of an application. First, a simple grammar is used to parse

the assembly file. The parser was implemented using the traditional Lex and Yacc tool chain

[41]. Second, the calling behavior of each procedure is analyzed to construct the task’s CG

(this CG is used later for constructing the memory allocation constraints). The AVR-SAT then

constructs the CFG for each procedure. Once all procedures’ CFGs have been constructed,

AVR-SAT recursively traverses the call graph to compute the WCP of leaf node procedures (i.e.

all procedures that have no calls). Once all the WCPs of all leaf node procedures have been

extracted, the parents of these procedures are then traversed and so on.

33

In computing the WCP of a procedure, another recursive function is used that uses a breadth

first search (BFS) like algorithm. Once the task’s WCP has been found, it is traversed to record

the number of loads and stores along this path (for both global and stack variables) which are

required later by the OMMA toolbox for performing data allocation.

2.4.3 The Preemption Threshold Scheduling and Simulation Toolbox

The PTSS toolbox was developed before any of the other tool chain components presented in

this chapter. The main goal behind the PTSS toolbox is to schedule a real-time application

in some optimal manner. As will be explained later in this study, PTS can be used limit the

preemptions in a real-time application such that it only requires the minimal memory for its

data structures. To this end, an algorithm known as the MPTAA (or the maximal preemption

threshold assignment algorithm) can be used to perform this optimal scheduling.

The PTSS toolbox constructs several data structures to enable the analysis, scheduling, and

simulation of a real-time workload. To this end, the MPTAA (see Section 3.3) is used to assign

the optimal preemption thresholds to each task that minimize the stack space of each task

while maintaining its schedulability. The schedule can then be plotted, simulated, or used by

the OMMA toolbox for further optimizations.

2.4.4 The Optimal Multi-Tasking Allocation Toolbox

The optimal multi-tasking allocation (OMMA) toolbox was developed to compute the optimal

memory allocation for a set of data objects (analyzed using the AVR-SAT, or the AVR-static

analysis tool, described earlier) to a memory hierarchy composed of multiple heterogeneous

memory units with different latencies, sizes, and/or bit-widths.

2.4.5 The Single-Stack Real-Time Operating System

The single-stack real-time operating system (ssRTOS) was constructed to experiment with many of

the scheduling policies and protocols available in the literature. ssRTOS utilizes a single task

for all of the system tasks. At this point of the development, the only restriction is that tasks

34

cannot suspend themselves. In other words, once a task gets the processor for execution it can

only be preempted by a higher priority task but can never voluntarily suspend itself. This was

a major requirement to avoid stack corruption if a task that has suspended itself and resume

execution after another task has changed the stack context, stack data corruption can results.

On the other hand, ssRTOS does support mutual exclusion of resources by using semaphores.

A task that might request a particular semaphore is not allowed to start execution unless all of

the semaphores it might need during execution are available. This is just another way of apply-

ing Baker’s SRP, where a task can never be blocked once it starts execution since all its resources

are available.

In addition to the implemented SRP policy, the ssRTOS also supports PTS. In other words,

each task is assigned a preemption threshold in addition to its nominal priority. Once a task

starts execution, it can only be preempted by task with higher preemption thresholds. This, in

effect, creates groups of task can are mutually non-preemptive and can share the same memory

space at run-time. Additional information on ssRTOS is available through its user manual [42].

2.4.6 The Microcontroller Automated Power Analyzer

The microcontroller automated power analyzer (MAPA) was developed to evaluate the power and

energy characteristics of may microcontrollers. To this end, MAPA was developed to measure

and record the supply current utilized by the target microcontroller at different supply volt-

ages and clock frequencies. It uses a simple 8-bit microcontroller, an external oscillator, a few

programmable counters, and a few op-amps including a power op-amp.

35

Chapter 3

Optimizing Memory Utilization with

PTS

As application complexity increases, it often becomes necessary to use a real-time operating

system (RTOS) for modularizing the application into easily manageable segments or modules

while ensuring real-time constraints are met. The benefits of using an RTOS are well known

and have been heavily documented. However, as was discussed in the introductory chapter,

memory (especially RAM) is a very valuable and scarce resource, and an RTOS requires sig-

nificant memory support. The reason is that most real-time operating systems employ a fully-

preemptive scheduling policy which can have excessive preemption overheads and require

significant memory space to support the preemption overheads. For example, many low-end

RTOS’s statically allocate a dedicated space in RAM (e.g. uC/OS-II, FreeRTOS, AvrX, etc.) for

each task. This memory space is referred to as the tasks stack which it uses for nested function

calls, return addresses, and saving its context if it is to be preempted. This memory overhead

can be prohibitively expensive for systems with little RAM or many tasks [43,44,45]. Moreover,

this stack space must be large enough to accommodate worst-case function call nesting, local

variable allocation, and possibly the task control block and context. In addition, many kernels

also allocate additional space in each task’s stack for servicing interrupts (e.g. uC/OS-II and

36

FreeRTOS)1.

Many high-volume embedded systems are built around low-end commercial off-the-shelf

(COTS) microcontrollers because of their low cost. These devices may have very little RAM.

Even in systems with larger amounts of RAM, running out of memory can be a common prob-

lem. Embedded systems tend to evolve over time, with each new generation of software ac-

creting a new layer onto the existing code base. Hence, over a long enough periods of time,

data memory requirements can easily exceed available memory making RAM a precious re-

source. This makes the use of real-time kernels for low-end to mid-range embedded platforms

particularly hard if not impossible.

These issues and problems inherent in fully-preemptive real-time kernels have led to the

emergence of several methods and standards for designing more efficient kernels with reduced

preemption overheads. As the main consumer of low-end microcontrollers, the automotive

industry was the first to realize the need for more efficient operating systems by developing the

OSEK/VDX standard2. Several OSEK/VDX-compliant real-time kernels have been developed.

Live Devices (Realogy) [46, 47] introduced several variations of their real-time architect (RTA)

operating system that utilizes the single-shot execution (SSX) model which enables tasks to share

a single stack while dividing them into mutually non-preemptive groups. Many other OSEK/VDX

compliant real-time operating systems were also developed to be memory efficient in some

way [48, 49]. Outside of the automotive industry, other efficient RTOS design techniques have

been developed. One very promising technique is PTS which was briefly presented in Section

2.1.2. PTS tries to minimize preemptions as much as possible while preserving the system’s

schedulability.

Minimizing preemptions to reduce their overheads and improve the system’s memory uti-

lization is an ad-hoc process which has not been adequately examined to date. For example,

several questions naturally arise that the existing techniques and tools fail to answer. What are

the memory savings attainable through preemption limiting? What are the application char-
1Some kernels use more efficient techniques for servicing interrupts like emulating a separate interrupt stack if

not supported in hardware like AvrX [45].
2The OSEK/VDX standard includes specifications for embedded operating systems, communication subsys-

tems, and embedded network management systems.

37

acteristics that make a particular preemption limiting technique more suitable than another?

Given the maximum stack space that a task can require, is there a way we can in a similar way

know the minimum stack requirements that would maintain the system properties? Unfor-

tunately, such questions had no general answers and were only addressed on a case by case

basis.

In this chapter we try to answer these and other questions. First, we build a framework

for PTS that naturally applies to both fixed-priority and dynamic-priority schemes. Second, we

analyze and enhance PTS and show that when used in combination with any of the well known

scheduling algorithms (e.g. RM, DM, EDF, etc.) it will result in the smallest possible stack

space attainable by any preemption limiting technique without changing the particular task

model. Hence, given a particular real-time application, we provide the system developer with

a limit on the amount of memory that can be saved by limiting preemptions while maintaining

the system schedulability. This feasibility test has a computational complexity of O(N 2) as

opposed to ad hoc methods that are usually exponential in the number of tasks. Third, we

discuss some characteristics of PTS, including undesired side-effects of preemption limiting in

general (e.g. deteriorated system responsiveness and robustness), and show how some can be

reduced. Finally, through simulations, we quantify application characteristics (e.g. workload

utilization, type of scheduling scheme used, etc.) that affect PTS to help developers of real-time

applications assess the design tradeoffs in a timely and systematic manner.

3.1 Related Work

As was explained earlier, PTS was first introduced by Express Logic Inc. in their real-time

kernel ThreadX [18]. The real-time analysis of this dual-priority scheme was pioneered by

Wang et al. [16, 17] and by Davis et al. [47]. In these studies, preemption between tasks was

limited to occur only when necessary to maintain system schedulability. Tasks that run non-

preemptively with respect to each other (referred to as a mutually non-preemptive group) can

be mapped into the same run-time thread and share the same run-time stack minimizing the

memory requirements and other preemption overheads. Our work builds directly on Wang’s

38

et al. work by proving the optimality of their preemption threshold assignment method as well

as extending it to support more general dynamic-priority schemes.

Many resource sharing protocols and real-time synchronization schemes have been adapted

to PTS [50, 51]. Kim et al. [51] showed how the priority inheritance and priority ceiling proto-

cols could be used with PTS when shared resources are present. Gai et al. [50] showed how

Baker’s stack resource policy [23] can be extended to support PTS, resulting in the stack resource

policy with threshold (SRPT). Similar to Gai et al. [50], in this work we use the SRP to show how

shared resources can easily be incorporated in our framework.

Since dynamic-priority task scheduling schemes can be much more efficient than static-

priority schemes, it is of particular interest to know if PTS applies to these schemes. Gai’s [50]

work enables the use of PTS in dynamic-priority schemes through the use of the preemption

level concept, also introduced earlier by Baker [23], which enable static analysis of dynamic-

priority systems. Another dynamic preemption threshold scheme was presented by He et al.

[52] which uses an earliest-deadline-first algorithm to dynamically change the task priorities

as well as their preemption thresholds. Our work on PTS for dynamic-priority schemes builds

on Gai et al. and Baker’s work since, in contrast to He’s et al. [52] work, we enable the system

developer to analyze and verify a design at design time while avoiding all the additional run-

time overheads of dynamically updating preemption thresholds in addition to priorities. To

this end, we modify an existing preemption thresholds search algorithm to apply to both fixed-

and dynamic-priority schemes. The search can be done offline to obtain the optimal preemption

threshold assignment which remains fixed at run-time (incurring no overhead).

Many other studies investigated PTS and presented extensions to its basic concepts. Build-

ing on Wang’s work for fixed-priority schemes, Regehr [24] presented two abstractions that

can be used to force the PTS scheduler to group tasks into non-preemptive groups. Regehr also

investigated the presence of WCET uncertainty and presented algorithms for finding fault-

tolerant PTS schedules. The incorporation of PTS into many real-time design settings was also

addressed. Kim et al. [53] showed how PTS can be used with dynamic voltage scaling to render

efficient schedules that optimize the energy usage of the system. Saksena et al. [54], and Wang

39

et al. [17] also addressed using PTS in a real-time object oriented framework, showing how

object-oriented models of real-time systems can be synthesized automatically into a real-time

task set to be implemented using a fixed-priority PTS scheme.

3.2 Unified Schedulability Analysis Framework

The schedulability conditions for fixed-priority and dynamic-priority systems in the absence of

shared resources were presented in Sections 2.1.3. If there are shared resources, those schedula-

bility conditions were modified and presented in Section 2.1.5. In this section we extend those

conditions to apply to fixed-priority and dynamic-priority schemes when PTS is used. Before

we proceed, however, we define in the following subsection the notation used to build our

unified framework.

3.2.1 System Notation

As we recall from Section 2.1.2, a real-time workload can be scheduled according to either a

fixed-priority or a dynamic-priority policy. A fixed-priority policy is completely characterized

by the fixed priority mapping Π : T → [1, 2, . . . , N]. Nevertheless, if a dynamic-priority policy

is used, the priority mapping is dynamic and cannot be analyzed statically.

To treat both fixed-priority and dynamic-priority schemes in unified scheme, we will use

the preemption level mapping Λ : T → [1, 2, . . . , N] for both fixed and dynamic schemes.

As was explained in Section 2.1.4, the preemption level mapping is equally applicable to both

schemes enabling their static analysis. Hence, whenever the particular scheduling policy used

is of no importance (i.e. whether fixed or dynamic) we will denote our real-time system by the

tuple (T ,Λ) without any mention to the actual nature of the scheduling policy.

In this framework, for any task Ti ∈ T we define HL(Ti) to be the subset of all tasks be-

longing to T with preemption levels that are strictly larger than that of Ti (i.e. HL(Ti) = {Tj ∈

T |λj > λi}). Similarly, let LL(Ti) denote the subset of all tasks belonging to T with preemp-

tion levels strictly smaller than that of Ti. Note that if a fixed-priority scheme is used, then

40

HL(Ti) = HP(Ti) and LL(Ti) = LP(Ti) for any Ti ∈ T . On the other hand, if a dynamic-

priority scheme is used, then we cannot make any assumptions about the priority relations

between the tasks. However, according to property 2.1.1 presented in Section 2.1.4, we know

that no task in LL(Ti) can preempt task Ti. Similarly, only tasks in HL(Ti) can (but might not)

preempt Ti. Based on these observations we can state the following two important properties

(which hold for both fixed and dynamic scheduling schemes):

Property 3.2.1. A task Ti ∈ T can only be preempted by tasks in HL(Ti) independent of the priority

relations

Property 3.2.2. A task Ti ∈ T can never be preempted by tasks in LL(Ti) independent of the priority

relations

In summary, the preemption level mapping will be used as an alternative to the priority

mapping to enable a unified treatment of both priority schemes. This is possible since, as was

explained previously, the former maintains all of the properties of the latter. Additionally, we

will say that task A has a higher (lower) priority than task B to mean that task A has a higher

(lower) preemption level than task B, whenever there is no fear of confusion. Using this nota-

tion and definitions, we now proceed to build our unified schedulability analysis framework

under PTS.

3.2.2 Total Blocking

As was explained in Section 2.1.4, a task might be blocked by a lower priority task that is lock-

ing a shared resource. Yet another reason for blocking is the non-preemptability of a lower

priority task when PTS is used. As was mentioned previously, in PTS, we associate an addi-

tional mapping Γ : (T ,Λ) → [1, 2, . . . , N] such that a task Ti cannot preempt a lower priority

task Tj ∈ LL(Ti) unless γi > γj .

It was shown by Wang et al. [16] that under PTS, a task can be blocked at most once. Hence,

the blocking time that a task Ti can experience due to the non-preemptability of a lower priority

41

task Tj ∈ LL(Ti) is given by the following:

Bpts
i = max

Tj∈LL(Ti)
[Cj − 1] (3.1)

Nevertheless, in the presence of shared resources a task T i might also be blocked by a lower

priority task Tl ∈ LL(Ti) that is locking some needed resource. The duration of this blocking

was given previously and is repeated here for convenience:

Brc
i = max

Tl∈LL(Ti),∀h
{ωk

lh|λi ≤ ceil(ρk)} (3.2)

Since under the SRP a task can be blocked at most once, the duration of the blocking ex-

perienced by a task Ti due to resource contention as well as the non-preemptability of lower

priority tasks can be represented by the following total blocking expression:

Btotal
i = max[Brec

i , Bpts
i] (3.3)

Given that total blocking time a task can experience due to either a shared resource or the

use of PTS, we present the modified schedulability conditions in the following section.

3.2.3 Fixed-Priority PTS Schedulability

Schedulability conditions for fixed-priority fully-preemptive systems with and without shared

resources were presented earlier. Under PTS, the WCRT of a task T i happens in one of two

cases: (1) if the task Tj ∈ LL(Ti) with the longest critical ξk
jh section on the shared resource ρk

has just locked it before the release of Ti, or (2) if the task Tl ∈ LL(Ti) with the largest WCET Cl

and a preemption threshold γj ≥ γi was released one clock cycle before Ti. In both cases, the

WCRT of Ti is given in terms of its worst-case start time and worst-case finish time as follows:

R(Ti) = max
q∈{0,1,...,�Li/Pi�}

(Fi(q) − q · Pi) (3.4a)

Si(q) = Btotal
i + q · Ci +

∑
Tj∈HL(Ti)

(
1 +

⌊
Si(q)
Pj

⌋)
Cj (3.4b)

42

Fi(q) = Si(q) + Ci +
∑

Tj∈ T
λi>γj

(⌈
Fi(q)
Pj

⌉
−
(
1 +

⌊
Si(q)
Pj

⌋))
Cj (3.4c)

where Li is the longest level-i busy period and is given by the following:

Li = Btotal
i +

∑
Tj∈HL(Ti)

⌈
Li

Pj

⌉
Cj (3.4d)

while Btotal
i denotes the total blocking Ti can experience due to tasks in LL(Ti) which are either

locking a shared resource or cannot be preempted due to their preemption threshold value and

is given by equation (3.3). Again, our system is schedulable if and only if R(Ti) ≤ Di for all

Ti ∈ T .

3.2.4 Dynamic-Priority PTS Schedulability

In this section we extend the schedulability analysis under PTS to dynamic-priority schemes.

Since the blocking experienced by a task is the same independent of the priority scheduling

scheme, the blocking a task Ti can experience in a dynamic-priority scheme is the same as that

in a fixed-priority scheme as given by equations (3.1), (3.2), and (3.3). From equations (3.5a) in

Section 2.1.5, we know that a dynamic-priority system with blocking due to shared resources

is schedulable if the following holds for every Ti ∈ T :

Brc
i

Di
+

i∑
j=1

Cj

Dj
≤ 1 (3.5a)

Though the above condition is only sufficient, we can use it to develop another sufficient

condition that applies to dynamic-priority systems under PTS. To this end, we can use the

above conditions to define the following maximum blocking term for any task Ti ∈ T :

Bmax
i =

⎛
⎝1 −

∑
Tj∈HL(Ti)

Cj

Pj

⎞
⎠Pi (3.5b)

Since the above definition only applies to the special case were Di = Pi for all i = [1, 2, . . . , N],

43

we need to use the EDF schedulability conditions to extend the above expression as follows:

Bmax
i =

⎛
⎝1 −

∑
Tj∈HL(Ti)

Cj

min(Dj , Pj)

⎞
⎠min(Dj , Pj) (3.5c)

Informally speaking, the maximum blocking defined by the above equation provides us with

a limit that if we can guarantee that the total blocking of a task is no larger than that limit, then

it is schedulable. In other words, a sufficient condition for a real-time system T in a dynamic-

priority scheme to be schedulable under PTS is given by the following:

∀Ti ∈ T : Btotal
i ≤ Bmax

i =

⎛
⎝1 −

∑
Tj∈HL(Ti)

Cj

min(Dj , Pj)

⎞
⎠min(Dj , Pj) (3.6)

Where Btotal
i is the total blocking given by equation (3.3).

3.3 Stack Space Optimality of PTS

Given the real-time system (T ,Λ), we would like to find a preemption threshold mapping Γ

that is feasible and in some sense optimal. A preemption threshold assignment Γ is feasible

if and only if the workload is schedulable according to the conditions given by (3.4a), (3.4b),

(3.4c), and (3.4d) for a fixed-priority scheme, and by (3.6) for a dynamic-priority scheme. Here-

after, the set of all feasible preemption threshold assignments for the system (T ,Λ) will be

denoted by G(T ,Λ). A particular feasible assignment of special interest is defined below:

Definition 3.3.1. (Identity Preemption Threshold Assignment) We define the identity preemp-

tion threshold assignment, ΓI ∈ G(T ,Λ), as the preemption threshold assignment where all tasks have

been assigned preemption thresholds that are equal to the tasks’ preemption levels (i.e. ΓI = Λ).

In this study we are more interested in optimizing existing real-time schedules than de-

veloping new ones. Hence, in this study we assume that for a given workload T there ex-

ists some preemption level mapping Λ such that the system is at least schedulable in a fully-

preemptive manner (note that we need not differentiate if Λ is associated with fixed-priority or

a dynamic-priority mapping). We also assume that this preemption level mapping Λ has been

44

Algorithm 1 : Γ = MPTAA(T ,Π)
1: for i = N down to 1 do
2: while (schedulable == TRUE and γi < N) do
3: γi = γi + 1;
4: /* Let Tj be the task such that πj = γi */
5: Rj = WCRT (Tj); /* check the schedulability of the affected task Tj */
6: if (Rj > Dj) then
7: schedulable = FALSE;
8: γi = γi − 1;
9: end if

10: end while
11: schedulable = TRUE;
12: end for
13: return Γ;

pre-assigned according to some scheduling algorithm (e.g. RM, DM, EDF, etc), so the identity

assignment ΓI for the real-time system (T ,Λ) is always known. Moreover, G(T ,Λ) is never

empty since it will at least contain the identity assignment.

Given the identity assignment ΓI , other assignments that optimize the system in some sense

need to be found. Wang et al. [16] developed an algorithm that can always find a feasible

preemption threshold assignment if it exists. We shall refer to Wang’s algorithm as the maximal

preemption threshold assignment algorithm (MPTAA) since it finds a special assignment that is

in some sense the largest as will be explained below. This algorithm is shown in algorithm

1. As can be seen, this algorithm uses the WCRT of a task as a measure of schedulability.

Clearly, this implies that it can only be used with fixed-priority systems. Indeed, the original

PTS framework by Wang et al. [16] only address fixed-priority schemes.

To extend the MPTAA to support both scheduling schemes, a modified MPTAA was devel-

oped and shown in algorithm 2. As can be seen, the basic flow of the modified algorithm is

the same. However, on line (7) of the extended version we use the function is task schedulable()

to analyze the schedulability of the task. This function depends on the scheduling scheme

used. If a fixed-priority scheme is used, this function uses WCRT analysis3 to analyze the

task’s schedulability. On the other hand, if a dynamic-priority scheme is used, the function

3The WCRT analysis for fixed-priority schemes under PTS was presented by equations (3.4a), (3.4b), (3.4c), and
(3.4d).

45

Algorithm 2 : Γ = MPTAA(T ,Λ)

1: Γ = ΓI /* initialize preemption threshold to identity assignment */
2: for i = N down to 1 do
3: j = i + 1;
4: while (schedulable == TRUE and γi < N) do
5: γi = γi + 1;
6: /* check the schedulability of the affected task */
7: schedulable = is task schedulable(Tj);
8: if (schedulable == FALSE) then
9: γi = γi − 1;

10: end if
11: j = j + 1;
12: end while
13: schedulable = TRUE;
14: end for
15: return Γ;

uses the maximum blocking concept4 to analyze the schedulability of the task.

The modified MPTAA algorithm has a computational complexity of O
(
N2 · f(N)

)
where

f(N) depends on the schedulability test used on line (7). If the test uses the maximal blocking

test for dynamic-priority schemes, then f(N) = N and the overall computational complexity

of the MPTAA is O(N 3). On the other hand, if WCRT analysis is used, the complexity is not

deterministic since a recursion is utilized. Hence, in this case we say that the computational

complexity is non-deterministic and can only be addressed on a case by case basis. Never-

theless, empirical studies have shown that a recursion can usually be modeled by a computa-

tional complexity of f(N) = N r for some constant r [55]. Another important definition is now

needed:

Definition 3.3.2. (PTS Mapping Size) Given any two preemption threshold mappings Γ and Γ′,

we say that Γ is larger than Γ′, and denote it by Γ � Γ′, if and only if all preemption thresholds of

(γ1, γ2, . . . , γN) ∈ Γ are equal to or greater than the corresponding preemption thresholds of (γ′1, γ
′
2, . . . , γ

′
N) ∈

Γ′. That is, if and only if γi ≥ γ′
i for all i = [1, 2, . . . , N].

The largest of all preemption threshold assignments is of particular interest and is defined as

follows:
4The maximum blocking concept in a dynamic-priority scheme was given by equation (3.6).

46

Definition 3.3.3. (Maximal Preemption Threshold Assignment) We define the maximal preemp-

tion threshold assignment, denoted by Γmax = (γmax
1 , γmax

2 , . . . , γmax
N) ∈ G(T ,Π), as the largest

preemption threshold assignment in G(T ,Π). That is, Γmax � Γ for all Γ ∈ G(T ,Π).

The original MPTAA was analyzed by Chen et al. [55], and was shown to always find the

maximal preemption threshold assignment if one exists5. Since in our case we always start with

a feasible assignment, namely the identity assignment ΓI , the maximal preemption threshold

assignment always exists (which in the worst-case would simply be the same as the identity

assignment).

In the following, we present the main theorem for this section. To prove this theorem, we

will use the tuple (T ,Λ,Γ) to denote a particular real-time workload T , a particular preemption

level mapping Λ, and a particular feasible preemption threshold mapping Γ. Moreover, we will

denote the total stack space required by the real-time system for for its tasks by S total(T ,Λ,Γ).

We again emphasize that the nature of the scheduling scheme (i.e. whether static or dynamic)

is irrelevant to our proof and hence will not be mentioned explicitly.

Theorem 3.3.1. Given two real-time systems (T ,Π,Γ) and (T ,Π,Γ′) with preemption thresholds as-

signments Γ and Γ′ in G(T ,Π) such that Γ � Γ′. The total stack size Stotal(T ,Λ,Γ′) can be no smaller

than Stotal(T ,Λ,Γ).

Proof. Without loss of generality, let us assume that γk = γ′
k for all k = 1, 2, . . . , i−1, i+1, . . . , N

and let γ′
i = γi − 1 < γi for some arbitrary i ∈ {1, 2, . . . , N}. It should be clear that Γ � Γ′ ac-

cording to our definition. Now let Tj ∈ T be the task belonging to the system with a priority

λj chosen such that λj = γ′
i + 1 = γi. The existence of Tj is guaranteed by the way we assign

preemption thresholds. Now since λj = γi, then Tj is not allowed to preempt Ti with the larger

preemption threshold assignment Γ according to the rules of preemption threshold schedul-

ing. On the other hand, Tj is allowed to preempt Ti with the smaller preemption threshold

assignment Γ′ since γ′
i < γi = λj). Hence, we have to allocate an additional Sj stack units to

accommodate the potential preemption between Tj and Ti if we use the smaller preemption

threshold assignment Γ′, and therefore:

5This was only addressed for fixed-priority schemes, but holds equally for dynamic-priority schemes as well.

47

Stotal(T ,Λ,Γ′) =

⎧⎪⎨
⎪⎩

Stotal(T ,Λ,Γ) + Sj if Tj preempts Ti

Stotal(T ,Λ,Γ) otherwise

Hence, S total(T ,Λ,Γ) ≤ Stotal(T ,Λ,Γ′) which completes the proof.

The above theorem and the definition of the maximal preemption threshold assignment leads

us directly to the following important corollary.

Corollary 3.3.2. The MPTAA finds the preemption threshold assignment with the smallest possible

total stack space requirements.

Proof. Theorem 3 in [55] shows that the MPTAA finds the maximal preemption threshold as-

signment Γmax with the essential property that Γmax � Γ for all Γ ∈ G(T ,Π). Combining this

with theorem 3.3.1 proves this important corollary.

Based on theorem 3.3.1 and corollary 3.3.2, it should be clear that the MPTAA provides us

with a lower limit on the amount of stack space the system can utilize without violating any

of its real-time constraints. Again, though many methods exist to obtain upper bounds on

the stack usage of a real-time system, the above framework is the only method that provides

the real-time system developer with the lower limits rather than the upper ones. Those limits

can then be used with many goals like determining the minimum memory support need to

run a particular real-time system without violating its constraints, or as will be shown in the

next chapter, can be used to synthesize a data allocation methodology that improves memory

utilization and enhance the system performance.

3.4 Extensions to PTS

Minimizing preemptions can have some adverse effects on the real-time system under consid-

eration. That is, as preemptions are minimized, some of its benefits are lost. In this section we

address some of these adverse side effects associated with preemption limiting and investigate

how those adverse effects affect real-time PTS.

48

3.4.1 Robustness Properties of PTS

A real-time schedule is said to be robust if it remains correct even when some assumptions

of the underlying workload model are not valid [13]. Clearly, a robust scheduling algorithm

significantly reduces the need to extensive validations since it is guaranteed to work even in

the presence of some uncertainty (which is unavoidable in any realistic system). According to

Mok [56], for example, a scheduling policy is robust if the system schedulability is not affected

by uncertainties in the tasks’ execution times. For example, a task that executes for less than

its WCET should remain schedulable. Though our intuition might tell us that this has to be the

case, unfortunately it is not.

As an example, let us consider the set of real-time task given in table 3.1. If we schedule this

system in a fixed-priority fully-non-preemptive manner, the execution timeline of this system

if all tasks run for their WCET budget is shown in figure 3.1. As can be seen from that figure,

all tasks make their deadlines and no problems occur. Now suppose that job J21 of task T2

completes execution in one clock cycles less than its WCET. The resulting schedule is then

given by figure 3.2 where task T3 misses its deadline at tn = 10. To see why this happens, note

the following:

• At tn = 0 all three tasks are release but T3 gets the processor due to its higher priority.

• At tn = 3 J31 of task T3 completes execution. The second highest priority task T2 get the

processor.

• At tn = 4 J21 of task T2 completes execution, but because T3 has not been released again

for execution, T1 gets the processor.

• At tn = 5 T3 is released for execution again, but becasue an FNP policy is used, it cannot

preempt the lower priority task T1 that has the processor.

• At tn = 8 J11 of task T1 finishes execution finally enabling T3 to start execution.

• At tn = 10 T3 misses its deadline because by the time it got the processor from T1, there

was not enough time for it to complete by its deadline.

49

Table 3.1: Robusness exmple system
Task ID Priority Period Deadline WCET

T3 3 5 5 3
T2 2 10 10 2
T1 1 20 20 4

J3,1

J2,1

J3,2

J1,1

J3,3 J3,4

J2,2

T3

T2

T1

5 10 15 20

Figure 3.1: Schedulable system with all
tasks running to their WCETs

J3,1

J2,1

J3,2

J1,1

T3

T2

T1

5 10 15 20

Deadline Violated at t = 10

Figure 3.2: Non-schedulable system with
some tasks not using their WCET budget

The above example shows the effect of non-preemptability on real-time schedulability. As

was shown, non-preemptability of some tasks can lead to other tasks missing their deadline.

Mok showed that the RM and DM scheduling policies are robust in the sense that if a system

is schedulable with all tasks running to their WCET budgets, the system remain schedulable if

any task runs for less than its WCET. Below we show that PTS is also robust in that same sense.

Theorem 3.4.1. If a real-time system, (T ,Λ,Γ), is schedulable with PTS for some feasible Γ ∈ G(T ,Λ)

with all tasks executing to their WCET, it remains schedulable if any or all tasks execute for less than

their WCET.

Proof. We assume that we are given a system (T ,Λ,Γ) that is schedulable (i.e. Γ is in G(T ,Λ)).

Now consider an arbitrary task Ti and suppose it executes for ci ≤ Ci time units. We show that

this will not affect the schedulability of (1) any higher priority task, (2) any lower priority task.

1. Let Th be any task in HL(Ti). We show that task Th remains schedulable if Ti executes

for ci ≤ Ci time units. To this end, from equation 3.3 it should be clear that the blocking

experienced by the higher priority task (i.e. B total
h) will never increase if any lower priority

task executes for less than its WCET budgets. We hence have two cases:

(a) The length of the busy period of equation (3.4d), and in turn the WCRT of equation

50

(3.4a), will never increase and therefore Th remains schedulable.

(b) Similarly, the blocking experienced by task Th due to task Ti with a lower priority

(i.e. Btotal
h) in a dynamic-priority scheme will never increase if Ti consumes less

than its WCET budget. Hence, B total
h will remain less than or equal to the maximum

blocking Th can tolerate and the its schedulability will not be affected.

2. Let Tl be any task in LL(Ti) in either a static- or dynamic-priority scheme. We show that

task Tl remains schedulable if Ti executes for ci ≤ Ci time units.

(a) It should be clear that the interference term in equation (3.4d) for task Tl will always

be smaller if Ti finished earlier than its WCET. Hence, the schedulability of Tl is not

altered.

(b) On the other hand, let Ti ∈ HL(Tl) be any task with higher preemption level than

that of of Tl. If Ti executes for ci ≤ Ci than the following holds:

1 − ci

min(Di, Pi)
≥ 1 − Ci

min(Di, Pi)

which implies that Bmax
l will only increase if any task Ti ∈ HL(Tl) executes for

ci ≤ Ci. On the other hand, the blocking experienced by Tl will not be affected by Tl

executing for less than its WCET budget and hence will remain smaller than Bmax
l

implying that Tl remains schedulable.

This completes our proof.

3.4.2 Improving System Responsiveness

A main advantage of using a fully-preemptive scheduling policy is to improve the system

responsiveness to internal or external stimuli. However, limiting preemptions in general usu-

ally deteriorates system responsiveness, and PTS is no exception. Hence, if a real-time system

developer is to choose between two PTS schedules, the one that leads to better system respon-

siveness is obviously preferred. In this section we show that it is possible to find an optimal

51

PT Assignment Stack AWCRT
ΓI = (1, 2, 3, 4, 5) 160 26.6
Γ = (1, 2, 3, 5, 5) 150 28.4
Γ = (1, 2, 4, 5, 5) 150 29.6
Γ = (1, 2, 5, 5, 5) 140 29.6
Γ = (1, 3, 5, 5, 5) 110 31.2
Γ = (1, 4, 5, 5, 5) 110 31.6
Γ = (1, 5, 5, 5, 5) 110 31.6
Γ = (2, 5, 5, 5, 5) 110 38.2

Γopt = (3, 5, 5, 5, 5) 90 41.4
Γ = (4, 5, 5, 5, 5) 90 43.4

Γmax = (5, 5, 5, 5, 5) 90 45.2 80 90 100 110 120 130 140 150 160 170

26

28

30

32

34

36

38

40

42

44

46

48

Worst-Case Total Stack Size

A
ve

ra
ge

 W
or

st
-C

as
e

R
es

po
ns

e
T

im
e

reg

max

opt

max

opt

iden .

Figure 3.3: Solution path of the MPTAA

preemption mapping, which we shall denote by Γopt, that minimizes the total stack require-

ments as well as improves the system responsiveness.

Before we continue we need to define some way to be able to measure the system respon-

siveness. A well suited metric for measuring system responsiveness in a fixed-priority scheme

is the average worst case response time (AWCRT) computed by averaging the WCRT over all

tasks in a system. We will denote the AWCRT for the system (T ,Λ,Γ) by AWCRT (T ,Λ,Γ)6.

The system’s AWCRT is a good measure of its responsiveness, as well as its robustness. The

larger the AWCRT, the less slack time available for processing or power saving, and therefore,

a smaller value is very desirable.

We show in this section that there might exist a preemption threshold assignment different

from Γmax that can result in the same optimal stack space requirements while improving the

system’s responsiveness as measured by the AWCRT. That is, we can find a feasible preemption

threshold assignment, that we shall denote by Γopt, such that the following two properties hold.

S(T ,Πstat,Γopt) = S(T ,Πstat,Γmax) (3.7a)

6For simplicity, we focus in this section on fixed-priority systems. However, it should be emphasized that this
treatment is equally applicable to dynamic-priority systems by defining some other metric to measure the system
responsiveness.

52

AWCRT (T ,Πstat,Γopt) ≤ W(T ,Πstat,Γmax) (3.7b)

As an example, a randomly generated system of 5 tasks was used to explore the search path

of the MPTAA. In this example we follow the MPTAA algorithm until it reaches the maximal as-

signment Γmax. The search path for the MPTAA is shown in figure 3.3 with all the assignments

visited starting from the identity assignment. As can be seen, the MPTAA finds the maximal

threshold assignment that minimizes the system stack requirements from 160 to 90 units while

maintaining schedulability. However, it is interesting to note the grouping of the data points

in Figure 3.3; there are multiple vertically-aligned clusters of points with the same worst-case

total stack size but differing AWCRT. The MPTAA reaches each cluster’s lowest point (i.e. best

AWCRT) first, but then proceeds upward, yielding worse AWCRT without improving the total

stack size. Although the MPTAA minimizes the system’s stack usage at 90 units, there are two

other preemption threshold assignments that result in the same memory-optimal total stack re-

quirement but with better system responsiveness. The best is Γopt, which has an AWCRT of 41.4

time units, versus 45.2 for Γmax.

We also need to emphasize that the list of preemption threshold assignments given in figure

3.3 can also be used by system developers who prefer to have higher system responsiveness

on the expense of some additional stack space to be allocated. To this end, the designer simply

chooses from the list the desired level of responsiveness, as well as the number of preemptions

they desire and the preemption threshold assignment corresponding to these parameters is

readily available from the assignments list.

To compute Γopt, we simply traverse the problem graph backward starting with Γmax and

exit as soon as the total stack size starts increasing as shown in Figure 3.3. That is, after each

iteration of algorithm 2, the preemption threshold assignment Γ is saved in a list. After Γmax

has been found, this list is traversed backwards to determine if the same optimal stack size can

be obtained with better system responsiveness.

53

3.5 Case Studies and Simulations

Section 3.3 showed that PTS will always render the smallest stack size that will maintain the

schedulability of the workload. We now evaluate the impact of PTS on stack space and re-

sponse time in two ways. First, we use PTS to schedule a real workload developed for control-

ling an Unmanned Aviation Vehicle (UAV). Second, we use randomly-generated workloads to

examine broad trends across a range of design points.

Paparazzi Benchmark

The ”Paparazzi” project of Brisset and Drouin [57] targets a cheap fixed-wing autonomous UAV

executing a predefined mission. Nemer et al. [58] used the Paparazzi project to develop a real-

time benchmark called ”PapaBench”. PapaBench is composed of two workloads with tasks for

controlling the servo system, and handling navigation and stabilization. In this section we used

PTS to schedule and optimize the the servo controller tasks from PapaBench listed in Table 5.2.

The task set requires 120 bytes for global data and 108 bytes for stack data (detailed in the table).

Hence a fully-preemptive scheduling approach would require a full 108 bytes to support all

task stacks. Using PTS to limit preemptions reduces this total stack space requirement from 108

bytes to 34 bytes while maintaining schedulability. This holds for all utilization levels examined

(37% to 97%). The total RAM required is reduced by 37%, a significant amount. Indeed, PTS

with the MPTAA provides us with a simple systematic method that can be applied directly

to any system independent of the priority assignment policy used. This method provides the

real-time system designer with a tool to investigate the minimal memory requirements that

maintain the schedulability of system, without which PTS would be an error-prone process.

Generic Real-Time Workloads

We next investigate workload characteristics that affect the stack size optimality level achiev-

able through PTS. For example, the optimal stack utilization for some workloads through the

use of PTS can be as small as 20% of the stack space utilization required by the fully-preemptive

version of the system while others need 80%. In this section we simulate and analyze randomly

54

Table 3.2: The Fly-By-Wire Benchmark Task set
ID Name Frequency WCEC Stack
T1 receive radio task 40Hz 14,820 34B
T2 check failsafe task 20Hz 12,477 6B
T3 check autopilot values task 20Hz 5,680 26B
T4 send data to autopilot task 40Hz 5,640 26B
T5 servo transmit task 20Hz 2394 10B
I1 servo interrupt 80 2B
I2 spi interrupt 193 2B
I3 radio interrupt 76 2B

generated systems of tasks to better understand PTS.

To cover a wide range of design points, 40,000 systems with 10 tasks each were randomly

generated. These were created so 1000 have a utilization of 50%, 1000 have 51% utilization, and

so on up to 90%. Task periods have a normal distribution with a mean, P̄ , of 100 time units and

a standard deviation, σP , of 25%, 50%, and 75%, respectively. Moreover, task deadlines were set

equal to their respective periods (for simplicity, though not necessary). Tasks WCETs were set

to incur the required overall system utilization. Task maximum stack space utilizations were

chosen from a uniform distribution between 20 and 120 units. All 40,000 systems generated

were schedulable with a fully-preemptive policy.

We first investigate the effect of the system utilization on the optimal stack utilization re-

quired with PTS. Using the MPTAA, the optimal stack space required by each system was

computed and normalized to the stack space required by the fully-preemptive version of the

system. The average normalized stack utilizations were then plotted as a function of the over-

all system utilization and the standard deviation in the task periods. The results are shown in

figures 3.4 and 3.5 for the fixed-priority and the dynamic-priority schemes, respectively.

First, consider the fixed-priority scheme in figure 3.4. At low utilizations the system’s stack

space requirements might be less than 30% of those of a fully-preemptive system. However,

at higher utilization levels, the variation in the tasks’ periods increasingly affects the savings

attainable. With σP = 25% the savings are only slightly dependent on the utilization level.

On the other hand, as the standard deviation of the periods increases, the savings attainable

55

55 60 65 70 75 80 85 90
25

30

35

40

45

50

55

System Utilization (%)

N
or

m
al

iz
ed

 S
ta

ck
 U

ti
liz

at
io

n
(%

)

σ
P
 = 25%

σ
P
 = 50%

σ
P
 = 75%

Figure 3.4: Fixed-priority PTS stack require-
ments.

55 60 65 70 75 80 85 90
25

30

35

40

45

50

55

System Utilization (%)

N
or

m
al

iz
ed

 S
ta

ck
 U

ti
liz

at
io

n
(%

)

σ
P
 = 25%

σ
P
 = 50%

σ
P
 = 75%

Figure 3.5: Dynamic-priority PTS stack re-
quirements.

decrease significantly at higher utilizations. This can be attributed to the fact that for systems

with large variations in their periods it is much harder to maintain the system’s schedulability

while minimizing preemptions. For example, if a system contains two tasks that have a large

difference in their frequencies, it is difficult, if not impossible, to limit the higher frequency

task from preempting the slower one while maintaining system schedulability. This obviously

becomes much more apparent at high system utilizations where there is much less slack time.

Second, consider the dynamic-priority scheme in figure 3.5. The normalized stack space

utilizations in this case are much more uniform across all utilization levels. This is because the

dynamic (EDF) scheme is much more adaptive to the workload characteristics and has a higher

schedulable utilization7 than a fixed-priority scheme such as RM. This more-efficient scheduling

allows more preemption limiting to occur before schedulability is lost.

Another interesting property is the distribution of the 40,000 systems among the different

normalized stack space utilizations levels. To this end, a histogram was constructed showing

the percentage of systems versus the normalized (optimal) stack space utilization achievable by

each system. Figure 3.6 and figure 3.7 show this distribution for the overall system utilization

levels of 60%, 70%, 80%, and 90%, respectively. Again, as can be seen, the workloads scheduled

7The schedulable utilization of a scheduling algorithm is defined by Liu [13] as the utilization level that guarantees
that any system with this utilization can feasibly be scheduled with this algorithm. It is known that EDF has a
schedulable utilization of unity as compared to RM with schedulable utilization of N(21/N − 1) for N tasks.

56

20 25 30 35 40 45 50 55 60 65 70
0

2

4

6

8

10

12

14

Normalized Memory Requirements (%)

P
er

ce
nt

 o
f

Sy
st

em
s

(%
)

U
sys

 = 60%
U

sys
 = 70%

U
sys

 = 80%
U

sys
 = 90%

Figure 3.6: Dramatic reductions in stack
space with fixed-priority PTS.

20 25 30 35 40 45 50 55 60 65 70
0

2

4

6

8

10

12

14

P
er

ce
nt

 o
f

Sy
st

em
s

(%
)

Normalized Memory Requirements (%)

U
sys

 = 60%
U

sys
 = 70%

U
sys

 = 80%
U

sys
 = 90%

Figure 3.7: Dramatic reductions in stack
space with dynamic-priority PTS.

with the dynamic-priority schemes depend less on the system utilization level than those in a

fixed-priority scheme.

System Responsiveness with PTS

Limiting system preemptions has some undesirable side effects, including increasing a task’s

WCRT. The increase is not constant and depends on workload characteristics. In Section 3.4.2,

we discussed reducing the effect of preemption limiting on the WCRT through backtracking.

To investigate this important issue, the workloads generated in the previous section were

arranged in order of relative improvement in stack memory requirements. The AWCRT for the

workloads was then computed and normalized to the optimal AWCRT of the fully-preemptive

version of the system. For example, if the AWCRT of a system with PTS doubles as compared to

its fully-preemptive AWCRT, then its normalized AWCRT is 200%. This data was then plotted

as shown in figure 3.8 for the MPTAA with and without backtracking.

Figure 3.8 shows two relations. First, the normalized AWCRT is inversely related to the

optimal normalized stack utilization; as the system’s stack space requirements increase, its nor-

malized AWCRT decreases. This is expected, since systems utilizing more stack space allows

more preemptions, resulting in better system responsiveness. Second, backtracking results in

greater improvement at higher stack utilizations. When a high level of preemptions is needed

57

25 30 35 40 45 50 55 60 65 70 75
115

120

125

130

135

140

145

150

155

160

Normalized Stack Utilization (%)

N
or

m
al

iz
ed

 A
W

C
R

T
 (

%
)

MPTAA without BackTracking
MPTAA with BackTracking

Figure 3.8: Responsiveness improvements of the MPTAA through backtracking.

for the system, the MPTAA over-constrains some of the tasks unnecessarily even though the

optimal stack utilization has been reached and further limiting of preemptability will not suc-

ceed in minimizing the stack further.

Finally, we examine the improvement from backtracking the MPTAA. The histogram of

Figure 3.58 shows that although most of the systems had between 0.5% to 1% improvement

only, some systems had a dramatic AWCRT improvement – up to 50%. These generally modest

system-level AWCRT improvements mask the task-level benefits. To see this, we examine a

system of 20 tasks which saw only a 0.98% improvement in AWCRT on the system through

backtracking (98% of systems see an improvement under 1%). The WCRTs of the individual

tasks are plotted in figure 3.5. Remarkably, some task WCRTs improved by more than 50%.

Hence, on the task level, backtracking the MPTAA can indeed be quite beneficial.

8To quantify the improvement of backtracking, the absolute difference between the AWCRT and the AWCRT
with backtracking was normalized to the optimal AWCRT and used to measure the improvement rendered through
backtracking

58

0.001

0.01

0.1

1

10

100

0.5 3.5 6.5 9.4 12
.4

15
.4

18
.4

21
.4

24
.3

27
.3

30
.3

33
.3

36
.3

39
.2

42
.2

45
.2

48
.2

Percent Improvement (%)

P
er

ce
nt

 o
f

Sy
st

em
s

(%
)

 ,

Figure 3.9: System-level distribution of AWCRT improvements from backtracking

3.6 Chapter Summary

In this chapter we developed a framework for using PTS with both dynamic and fixed priority

systems. For dynamic-priority systems, the preemption level mapping was used to determine

the preemption relations of the system a priori and enable us to statically analyze the dynamic-

priority systems in the manner fixed-priority systems are analyzed. The developed framework

is equally applicable with minor changes to both priority-driven schemes enabling providing

the system developer with a fast ”what if” analysis of the system under consideration before

committing to more involved simulations and analysis frameworks.

Using the unified PTS framework, we analytically proved that PTS along with the MPTAA

is stack space optimal in the sense that no other preemption limiting technique can result in

smaller memory requirements than PTS. We have also shown that PTS does not suffer from

does not suffer from common undesired preemption limiting side effects like loss of robust-

ness. To this end, it was shown that PTS maintains system schedulability in the event there

59

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Task

P
er

ce
nt

 I
m

pr
ov

em
en

t
in

 W
C

R
T

 (
%

)

 '

Figure 3.10: Task-level distribution of AWCRT improvements

are uncertainties in the workload’s WCETs. Moreover, we showed that another undesired side

effect of preemption limiting, namely deteriorated system responsiveness, can be improved for

PTS through backtracking the MPTAA. Improvements of up to 50% for some tasks WCET were

obtained using this backtracking scheme.

To aid system developers in deciding the most appropriate use of PTS in their own ap-

plications, we presented several simulations targeted at analyzing some of the properties of

PTS. To this end, we showed that PTS can result in stack space savings of up to 78% for both

fixed-priority and dynamic-priority systems. We also showed that in 40,000 systems simulated,

not one system under PTS required more than 80% of the total stack space required with full

preemption.

60

Chapter 4

Increasing Energy Efficiency in the

Embedded Real-Time Domain

The proliferation of portable and battery-operated computing platforms continues to push re-

search into techniques to save power and energy. One of the defining characteristics of these

devices is their requirement to operate with limited energy budgets. Power and energy mini-

mization techniques have been proposed on almost all levels of a system, including the switch

level, the ISA, the operating system, and the compiler [27, 59, 25, 60].

One effective and extensively-studied method is DVS or dynamic voltage scaling, which

has been demonstrated to be one of the most effective methods for minimizing the power dis-

sipation at run time, and in turn, increase the energy efficiency of the system. This is because

the power dissipated by CMOS-based integrated circuits is a quadratic function of the oper-

ating voltage as was shown in Section 2.2.1. Hence, scaling down the operational voltage lin-

early effectively scales down the power dissipation quadratically. Some processors have been

equipped internally with dynamic voltage scaling support (e.g. Transmeta’s Crusoe processor,

Intel Pentium with SpeedStep [30]).

The bulk of the research available on DVS, and on power and energy management in gen-

eral, addresses only high-end computing platforms (32-bit and 64-bit processors). Certain as-

sumptions are made that might not be applicable to low-end, resource constrained systems (e.g.

61

Microcontroller Program Memory Data Memory IOs Speed Timers PWR-DWN Modes
ATmega128 128KB 4KB 53 16MHz 5 6

FLASH SRAM
C8051F120 128KB 8KB+ 80 100MHz 1 N/A

FLASH 256B RAM
PIC18LF8720 128KB 3840B 68 25MHz 5 1

FLASH SRAM
MC68HC705C8A Up to Up to 31 4MHz 3 N/A

7744B 304B
PROM RAM

ATmega8 8KB 1KB 23 16MHz 3 5
FLASH SRAM

PIC16LF877 14KB 368B 33 20MHz 2 1
FLASH SRAM

MC68L11D3 4KB 192B 26 2MHz 1 N/A
EPROM RAM

AT89S8253 12KB 256B 32 24MHz N/A 2
EPROM RAM

SX20AC 2KB 136B 12 75MHz 1 N/A
FLASH SRAM

ATtiny26 2KB 128B 16 16MHz 2 4
FLASH SRAM

PIC16LF84A 2KB 68B 13 20MHz 2 1
FLASH SRAM

Table 4.1: Sample of Popular 8-Bit Microcontrollers

62

Rony
Rectangle

Rony
Text Box
62

Rony
Text Box
Table 4.1: Sample of popular 8-bit microcontrollers

Rony
Rectangle

the cost of an adjustable power supply is negligible; an RTOS is present, etc). To the best of our

knowledge, no studies have investigated power management for short-bit-width computing

platforms (e.g. 8-bit processors). However, short-bit-width processors continue to dominate

worldwide microcontroller sales volumes [32, 61, 62]. Many digital consumer applications use

these devices because of their low price and the availability of extensive tools and documenta-

tion. Many applications have no need for more powerful processors. Examples of portable or

battery operated applications range from automotive keyless entry systems, automotive theft

alarms, universal remote controls, portable compact discs and digital audio players, to digital

thermometers and blood pressure monitors. Moreover, market research firms generally predict

a stable, if unexciting, future for short-bit-width systems. In 2006, it is expected that 8-bit units

will continue to lead all microcontrollers in revenue and unit shipments [61].

This section investigates the applicability of advanced energy saving methods such as DVS

and DFS in combination with built-in low-power modes for short-bit-width commodity commer-

cial off-the-shelf (COTS) processors, where some of the assumptions made in previous studies

might not hold. We also try to weigh the advantages of using those techniques for low-cost

embedded systems based on COTS processors versus their relatively high cost and complexity

of implementation. To conduct our simulations and analysis, we use eleven 8-bit microcon-

trollers from the most popular architectures [61]. Complete and general mathematical models

for the power dissipation characteristics of those microcontrollers are developed and listed in

this study.

4.1 Processors Energy Dissipation Models

A sample of low-end commercial microcontrollers was chosen to investigate the applicability

of various power and energy management techniques like DFS and DVS to those resource con-

strained embedded platforms. In this section we develop empirical models capturing the en-

ergy and power dissipation characteristics of some popular 8-bit microcontrollers. The models

developed and their statistical error bounds will be presented. In order to make this analysis

tractable, we do not include I/O power. Digital I/O and peripherals (serial communication,

63

analog interfacing, timers, etc.) that are used in an application-specific manner and need to be

considered in a system-level analysis.

4.1.1 Microcontroller Sample

Eleven COTS microcontrollers were chosen to represent the most popular 8-bit architectures in

the market [32, 61, 62]. This sample includes Intel’s 8051 architecture, Microchip’s PicMicro ar-

chitecture, Motorola’s 6805, 6811, and 6812 architectures, and Atmel’s AVR architecture. Table

4.1 lists these microcontrollers along with some of their features.

4.1.2 Empirical Modeling of Processors Energy Consumption

As can be recalled from Section 2.2.1, three main relations completely characterize the energy

dissipated in a CMOS-based circuit. These three relations are repeated here for convenience:

Edyn = CP fCLK V 2
CC ∆t (4.1a)

Estat = Ilkg VCC ∆t (4.1b)

max[fCLK] =
Kp (VCC − Vth)1.8

VCC
(4.1c)

where the leakage current is given by the following [26]:

Ilkg = µCox(W/L)V 2
t e

VCC−Vth
n Vt

(
1 − e

−VCC
Vt

)
(4.1d)

where, fCLK is the circuit’s operational frequency, VCC is the circuit’s operational voltage, Vth

is the circuit’s threshold voltage, and Ilkg is the leakage current due to subthreshold currents.

The problem with the above model is that it requires detailed knowledge of many low level pa-

rameters that are dependent on the fabrication technology as can be seen from the expression

for the leakage current Ilkg given by equation (4.1d). Since at our level of abstraction this infor-

64

mation is not available to us, and even if it was it will restrict our analysis to a chips fabricated

using a particular technology, we will make a simplifying assumption.

As can be seen from (4.1d) there is dependence of the leakage current on the operational

voltage VCC . In combination with equation (4.1b), it should be clear that the static energy

component has to depend quadratically on the operational voltage VCC . To this end, we chose

to model this relation using the following empirical equation (which is simply a second order

approximation of the actual relation):

Estat = SP V 2
CC ∆t (4.2)

Where SP is a constant of proportionality that will only depend on the conductivity properties

of the circuit with units of � (or mhos).

To develop the need empirical models, we only need now to estimate the constants of pro-

portionality CP , SP , and KP such that the modeling error is minimized. The complete deriva-

tion of this model is presented in the appendix. The resulting empirical models developed and

the nominal values of the estimated parameters are listed in Table 4.2.

4.1.3 Simulation Assumptions

In our simulations, we do not try to compare the various microcontrollers to find which is the

most energy-efficient, as this depends on many other factors not considered here (e.g. ISA,

compiler). We only try to compare the potential benefits of using the various power-saving

methods for a given processor. To this end, we generate execution profiles with a specific

utilization level and a specific granularity level (number of jobs, or releases (instances) of tasks)

and compose our workloads from those execution profiles. Once the workloads are generated,

they are passed to our simulator which uses the models developed earlier, and various other

parameters (e.g. voltage transition rate for DVS, wake-up delay time for PDM) to calculate

the normalized power and energy used with the various power management techniques. The

minor ”humps and bumps” in the plots are noise resulting from the execution profiles’ discrete

nature and limited length, and would be eliminated with longer profiles.

65

Model Parameters Nom. CP Min. CP Max. CP Nom. SP Min. SP Max. SP Nom. KP Min. KP Max. KP Nom. Power (mW)

ATmega128 0.3739 0.3596 0.3881 0.2322 0.0935 0.3708 5.1562 4.1239 6.1884 0.3739fCLK V 2
CC + 0.2322V 2

CC

C8051F120 0.1901 0.1846 0.1957 1.9783 1.6873 2.2692 51.613 27.119 76.106 0.1901fCLK V 2
CC + 1.9783V 2

CC

PIC18LF8720 0.1055 0.0988 0.1122 0.2221 0.1197 0.3245 8.2201 6.6372 9.803 0.1055fCLK V 2
CC + 0.2221V 2

CC

MC68HC705C8A 0.3212 0.279 0.3634 0.1054 0.0038 0.207 1.1804 1.067 1.2939 0.3212fCLK V 2
CC + 0.1054V 2

CC

ATmega8 0.2073 0.1908 0.2237 0.42 0.26 0.5801 5.2377 4.2031 6.2724 0.2073fCLK V 2
CC + 0.42V 2

CC

PIC16LF877 0.0445 0.0405 0.0484 0.1997 0.1506 0.2488 6.1159 5.3373 6.8946 0.0445fCLK V 2
CC + 0.1997V 2

CC

MC68L11D3 1.2866 1.1203 1.453 0.1401 0.0104 0.4032 0.5403 0.2026 0.878 1.2866fCLK V 2
CC + 0.1401V 2

CC

AT89S8253 0.0239 0.02 0.0279 0.498 0.461 0.522 6.436 5.1427 7.9665 0.0239fCLK V 2
CC + 0.498V 2

CC

SX20AC 0.2574 0.2416 0.2732 0.8702 0.2572 1.4833 23.034 16.942 29.125 0.2574fCLK V 2
CC + 0.8702V 2

CC

ATtiny26 0.1681 0.1588 0.1773 0.2093 0.1189 0.2997 5.3728 4.3587 6.3869 0.1681fCLKV 2
CC + 0.20931V 2

CC

PIC16LF84A 0.0386 0.0355 0.0418 0.0419 0.0044 0.0793 5.9998 5.4603 6.5393 0.0386fCLK V 2
CC + 0.0419V 2

CC

Table 4.2: Statistical power models for a sample of 8-Bit popular microcontrollers

66

Rony
Text Box
66

Rony
Rectangle

Rony
Note
Completed set by Rony

Rony
Note
Accepted set by Rony

Rony
Text Box
Table 4.2: Statistical power models of 8-bit microcontrollers sample

Rony
Rectangle

Figure 4.1: Execution profiles for scheduled versus non-scheduled workloads.

4.1.4 Benchmarks

Each workload is generated from an execution profile with a specific utilization and number of

tasks. Since many applications might not support a power scheduler, we divide the workloads

into scheduled and unscheduled as follows.

4.1.5 Non-Power-Scheduled Workloads

Each of the workloads used has N tasks that have a utilization of U over some fixed period

of time t. Applications are released (invoked) randomly while maintaining the particular uti-

lization. The execution profile of a sample workload with a 50% utilization (U = 50%) and 20

jobs (N = 20) is shown in figure 4.1.4. Note that in the absence of a real time scheduler, there is

a substantial amount of idle time (where applications might be waiting on other applications,

inputs, etc.) that is not utilized. Without applying any power management method, the proces-

sor will simply remain active during those idle slots consuming power while not performing

any useful work.

4.1.6 Power-Scheduled Workloads

A scheduling process is crucial to any successful implementation of a power saving method.

Moreover, scheduling for real-time systems is even more critical since these applications have

real-time constraints that must be met for a correct and safe system operation. For this chapter

67

we do not consider real-time scheduling. Instead, we simply implement a scheduler that uses

the PAST prediction policy, and the Chan-style speed-setting policy. The scheduler calculates

the utilization over some past window of time, Upast, and sets the current clock frequency to be

Upast·fmax. If the current utilization, Ucurrent turned out to be different from the past utilization,

Upast, the difference, U = |Ucurrent−Upast| is added to the future utilization, Ufuture = Ucurrent+

U , and the clock is adjusted accordingly. A sample execution profile of the workload given in

Section 4.1.5 after being scheduled is shown in figure 4.1.4.

4.1.7 Simulation Methodology

The simulation will depend on the presence or absence of a power scheduler. In the absence

of such a scheduler, only PDM can be used by embedding some power-down function in the

application code. In the simulation, we assume such function has been implemented in every

application composing the particular workload and calculate the power dissipation based on

that.

In the presence of a power scheduler, PDM, DFS, or DVS can be used. We assume that when

DFS or DVS are used, they are used in combination with PDM when available (e.g. DVS-PDM,

DFS-PDM).

4.2 Results and Observations

4.2.1 Workload-Independent Power Dissipation Characteristics

Certain power dissipation characteristics are independent of the workload being executed and

depend only on the microcontroller or the power management technique under consideration.

These characteristics can help us decide and understand why a particular power management

method is more suitable for a particular microcontroller than the other. For example, consider

a microcontroller with a relatively large static power dissipation component and a ”power-

down” mode which in reality merely stops the clock rather than removing power. For this

MCU, DVS is preferred as it is the only method that directly reduces the leakage component

68

Figure 4.2: Normalized static vs. dynamic energy for popular microcontrollers

of power. As another example, a power management method with small transition times is

expected to perform better with a large number of jobs (i.e. high granularity level).

4.2.2 Dynamic and Static Power Components

Figure 4.2.1 shows the normalized power components dissipated when the microcontrollers

are running at their maximum operational voltage and frequency. Note how the AT89S8253

has a static component that is almost as large as its dynamic component. DVS should render

the best savings for this microcontroller as it minimizes the large static component. The other

devices should see less benefit from DVS.

4.2.3 Minimum Power Dissipation

Figure 3 shows the power dissipated when the particular microcontroller is always idle and a

single power management technique (i.e. either PDM, DFS, or DVS) is used all the time. This

provides a bound on the amount of energy that can be saved with the various methods.

69

For DFS, we assume that the frequency dividing circuit contains an 8-bit counter which di-

vides the operating frequency by 28 = 256, so the microcontroller runs at fmin = fmax/256.

For DVS, the energy dissipation shown in figure 4.2.3 corresponds to using DVS to run the

particular microcontroller at Vmin (i.e. the minimal possible operational voltage for each micro-

controller).

Microcontroller behavior falls into one of three categories: The first is microcontrollers with

a usable built-in PDM, which always use the least power. This is lower by a factor of at least

1000 when compared to the energy dissipated using the two other power-saving methods. In

the second category, DFS leads to the lowest power dissipation (when PDM is not available)

and the second lowest power dissipation (when PDM is available). In the third category, DVS

leads to lower power dissipation than DFS. This category includes only two microcontrollers

(AT89S8253 and PIC16LF877). These two microcontrollers are those with the highest static

energy/dynamic power ratio (which can be seen from Figure 4.2.1) and consequently, DVS

leads to better results than DFS because it minimizes this large static power component while

DFS does not.

4.2.4 Switching Power Supply

As discussed earlier, the voltage transition rate is a power supply design parameter that de-

pends on various issues. In general, the voltage transition rate will be proportional to the

power converter’s design and implementation costs. This tradeoff must be evaluated by the

system designer to decide whether a power converter with the required voltage transition rate

will be worth its cost.

The transition time for DVS and DFS can be considered microcontroller independent since

it will only depend on the converter’s transition rate and frequency divider circuit for DVS

and DFS respectively. On the other hand, the transition time for PDM depends on the wake-

up delay of the particular microcontroller (the PDM transition delay in the figure has been

simulated using the ATmega128 model as a representative microcontroller).

Note how the accumulating transition time for DVS has a higher rate of increase (this is

70

Figure 4.3: Physical limits on energy savings

a log-log plot) than both PDM and DFS. This is a drawback of DVS since the transition time

(|V1 − V2|/dVCC/dt) will almost always be much larger than the transition time for DFS (which

will have a worst case of 2n cycles when using an n-bit counter for frequency division), or the

transition time for PDM (which usually will fall between a several cycles to a few thousand

cycles). Hence, DVS is usually much more sensitive to the granularity level than DFS or PDM,

which makes it less suitable for high-granularity workloads.

4.2.5 Voltage Transition Rates

The voltage transition rate will affect the sensitivity of DVS to the granularity level of the work-

load. Figure 4.2.5 shows the normalized energy dissipated by a microcontroller using DVS with

three converters, with voltage transition rates of 0.01, 0.05 and 0.1 mV/ s. The smaller the tran-

sition rate is, the more sensitive the microcontroller to the number of transitions, and in turn,

the number of jobs. Beyond a certain point, transition energy increases rapidly. Note that in

the remainder of this study we use the transition rate of 1.95 mV/ s.

71

Figure 4.4: Energy usage without a power scheduler

4.2.6 Energy Use without a Power Scheduler

In the absence of a power scheduler, the system designer has no choice but the use of a built-in

power down mode (if supported by the particular microcontroller). In this case, the program-

mer inserts power-down code that activates the microcontroller’s low power state until some

waking event occurs (e.g. timer overflow interrupt, external event). Figure 4.2.5 shows the

energy dissipated per microcontroller as a function of the utilization (for the microcontrollers

that support PDM mode), normalized to no power management. As the utilization increases,

the energy used approaches that of a processor without any power management technique.

This should be expected since power down modes can only save power while the processor is

idle. As the utilization increases, the idle time decreases, and so does PDM’s opportunity of

reducing the system’s energy consumption.

72

4.2.7 Energy Use with a Power Scheduler

Adding a power scheduler enables power and energy savings while the processor is active,

opening the door to the advantages of DVS. When analyzing the power dissipation with a

power scheduler, the microcontrollers fall in one of three categories. The first and largest cate-

gory includes nine microcontrollers: the ATmega128, the PIC18LF8720, the MC68HC705C8A,

the ATmega8, the PIC16LF877, the MC68L11D3, the SX20AC, the ATtiny26, and the PIC16LF84A.

These microcontrollers have similar characteristics. The normalized energy used by the AT-

mega128 (a representative of this category) is given in Figures 4.5(a), 4.5(b) and 4.5(c), for uti-

lization levels of 25%, 50%, and 75% respectively.

At low utilization (25%) and low granularity, DFS-PDM uses less power than DVS-PDM.

DVS-PDM is much more sensitive to the number of jobs (granularity) than DFS-PDM or PDM

alone. As granularity increases, the performance of DFS-PDM and DVS-PDM become similar.

Beyond a certain number of jobs (the critical granularity level), the accumulated transition time

is so large that the processor cannot reduce the voltage anymore and must run at full speed and

power in order to maintain its throughput. As utilization increases to 50% and 75%, DVS-PDM

becomes more efficient than DFS-PDM below the critical granularity level.

Two microcontrollers show different behavior. The energy used by the C8051F120 at uti-

lization levels of 25%, 50%, and 75%, is shown in Figures 4.6(a), 4.6(b) and 4.6(c), respectively.

Note that at low utilization, regardless of utilization DFS saves much more energy than DVS

(90% by DFS as opposed to 70% by DVS). For medium utilization, both DFS and DVS provide

energy saving of about 60% - 65%. Only for high utilization does DVS out-perform DFS with

energy savings of about 60% for DVS and 50% for DFS. Even then, the difference is relatively

small. The exceptional behavior of the C8051F120 is due to two characteristics. First, the nar-

row operational voltage range (2.7 to 3.6V) limits the potential benefits of DVS. Second, the

minimum frequency for DVS is limited by this narrow voltage range, when compared with the

potential clock division by 256 in DFS.

The AT89S8253 provides an exception on the other end of the spectrum. The normalized

energy used by the microcontroller for utilization levels of 25%, 50%, and 75%, are shown in

73

(a) Normalized energy use for the ATmega128 with U = 25%

(b) Normalized energy use for the ATmega128 with U = 50%

(c) Normalized energy use for the ATmega128 with U= 75%

Figure 4.5: Normalized energy use for Atmega128

74

(a) Normalized energy use for the C8051F120 with U = 25%

(b) Normalized energy use for the C8051F120 with U = 50%

(c) Normalized energy use for the C8051F120 with U = 75%

Figure 4.6: Normalized energy use for C8051F120

75

Figures 4.7(a), 4.7(b) and 4.7(c), respectively. Note how DVS outperforms DFS for all utilization

levels. In fact, DVS provides from 20% to 30% more savings than DFS for all utilizations.

This microcontroller has a large static power component, as explained earlier, and only DVS

minimizes this leakage component. Hence, for this microcontroller DVS is a better energy

management method.

4.3 Chapter Summary

We find that DVS with PDM generally offers improvements over DFS with PDM for most

short-bit-width microcontrollers with workloads of significant utilizations (50% and above)

and moderate granularity. Systems with a large static power component benefit dispropor-

tionately from DVS-PDM. However, for workloads with low utilizations or high granularity,

the overhead of voltage scaling outweighs the energy savings, making DFS-PDM an attrac-

tive, cost-effective alternative. Though often significant, the energy enhancements provided

by DVS-PDM may not justify the additional cost of a switching power supply. The designer

must carefully weigh this issue. However, some microcontrollers do not fit this rule, so the de-

signer should measure the device’s power characteristics to determine the best energy-saving

approach.

DVS benefits from a wide voltage range to leverage its quadratic energy savings, but for

all MCUs studied this range was relatively small (at most 2). This limitation also affects 32-bit

microprocessors such as the IBM PowerPC405LP, TransMeta Crusoe TM5800 and Intel XScale

80200 [32]. DVS also requires a fast variable power supply (i.e. large dVcc/dt), but this may

increase the circuit cost beyond the cost constraints, rendering it infeasible. Without fast tran-

sitions, the workload’s job granularity becomes a bottleneck to saving energy. DFS can scale

down the clock frequency by a factor of 256 with a simple 8-bit counter leading to at most a

256x power reduction with a much less expensive circuit.

Finally, for most MCUs, the dynamic energy component is still much higher than the static

energy component, making DFS still a more attractive solution especially in our cost-constrained

design space. This may change as MCUs migrate to newer fabrication processes.

76

(a) Normalized energy use for the AT89S8253 with U = 25%

(b) Normalized energy use for the AT89S8253 with U = 50%

(c) Normalized energy use for the AT89S8253 with U = 75%

Figure 4.7: Normalized energy use for AT89S8253

77

Chapter 5

Data Allocation with Real-Time

Scheduling (DARTS)

As was explained in the introductory chapter, the efficient utilization of memory plays a very

important role in the embedded design process, and often significantly impacts the embedded

system’s performance, energy dissipation, and overall cost of implementation. In order to

alleviate the processor-memory gap, many embedded systems exploit a memory hierarchy

of two or more on-chip and off-chip memory units. The advances in fabrication technology

have made it possible to combine multiple heterogeneous memory units on the same chip.

For example, it is now possible to combine a DRAM module with ordinary static logic on one

chip [59]. It is therefore not uncommon to find a memory hierarchy composed of multiple

heterogeneous1 memory units with different sizes, access latencies, as well as bit-widths. The

memory units found today in many embedded system can include on-chip SRAM, off-chip

SRAM, on-chip DRAM, off-chip DRAM, and even EPROM or EEPROM that is writable by

software.

For most general purpose computing platforms, the on-chip memory typically been im-

plemented as a fast hardware-controlled cache that interfaces with one or more slower off-chip

memory units (typically DRAM). This is particularly true for mid- to high-end general purpose

1We will say two memory units are heterogeneous if they use different fabrication technology, and/or they have
different sizes, access latencies, and/or bit-widths.

78

Figure 5.1: Block diagram of typical embedded processor configuration

processors [3]. The use of a cache in such system can greatly enhance the overall system per-

formance by reducing the average case memory latency. Embedded systems, however, have

different design constraints, making caches less appropriate or even unacceptable when trying

to bridge the processor-memory speed gap. Many embedded systems are real-time and re-

quire a priori determination of worst-case execution times (WCETs) to guarantee at design time

that timing constraints will always be met. The dynamic nature of caches make worst-case

performance prediction extremely difficult resulting in WCET estimates that are usually too

pessimistic for practical use. Another problem with caches is their energy consumption and

memory footprint [12].

Embedded system designers may still decide to use a memory hierarchy to bridge the speed

gap, choosing instead to manage it in a more predictable, and hence easily analyzed (and more

tightly bounded) way. Scratch-pad memory (usually a small and fast on-chip SRAM memory)

may be used to provide guaranteed access times. Both fast and slow embedded systems may

have a memory hierarchy although for different reasons. A fundamental challenge is to allo-

cate data objects into the hierarchy to provide optimal performance (e.g. run-time or energy).

The most frequently used objects should be allocated to the fastest or lowest energy memories.

79

There are many examples of systems that opt to use a cacheless memory hierarchy. Examples

include many low-end embedded processors, as well as many DSPs (Digital Signal Processors),

including most 8-bit microcontrollers (e.g. Atmels’ AVR series, PicMicro PIC series, Texas In-

struments’ TMS370Cx7x series), as well as many 16-bit and 32-bit embedded platforms (e.g.

Motorola’s 68HC12 and MCORE series, Intel’s IXP network processor series, Analog Devices

ADSP-21160M series, Atmel’s ARM7TDMI series).

In the absence of a cache (for the reasons explained above and in chapter I) a new prob-

lem that was hidden by hardware control is now the responsibility of the programmer and/or

compiler, namely, the mapping of the application’s data objects to the memory levels. This

mapping has to maintain good data locality in the sense that frequent data accesses should be

from the fast memory levels rather than the slow ones. Until recently, this allocation had to be

performed by the programmer using assembly directives, and many performance-critical ker-

nels had to be completely written in assembly. Lately, there has been a significant amount of

research invested in developing automatic and efficient data allocation techniques for cacheless

systems [63, 64, 65, 66, 67, 29, 68, 69, 70, 71, 72, 1, 73, 74, 75, 76]. However, most of these techniques

are not aimed at multitasking real-time applications. As we will show in this chapter, there

is a strong interaction between the data allocation and the real-time scheduling problems in a

multitasking real-time environment. In fact, even if these two design problems can be treated

separately, doing so ignores many optimizations possible when considering them together. To

this end, we will show that in a multitasking real-time setting, the data allocation and real-time

scheduling problems are interdependent by nature. Solving one of them will affect the degree

of optimality attainable by the other.

In this chapter we develop a unified, iterative data allocation and real-time scheduling ap-

proach to real-time systems design. We start by using integer linear programming (ILP) to find

the data allocation map that optimizes the system performance. This allocation minimizes

the number of cycles spent by each task accessing memory along its worst-case path mini-

mizing the worst-case execution times (WCET)2. The resulting real-time properties are then used

2WCET is needed for real-time scheduling of the system.

80

No
Change

Multi-Tasking
Memory Allocator

(OMMA)

Initial SystemInitial
System

Worst Case
Statistics
Analyzer

Multi-Tasking
Memory Allocator

(OMMA)

Multi-Tasking
Memory Allocator

(OMMA)

Multi-Tasking
Memory Allocator

(OMMA)

PTS
Scheduler

 Change

No
Change Change

Initial SystemOptimal
System

Figure 5.2: The DARTS data allocation/real-time scheduling framework

to schedule the system using PTS which minimizes the preemptions between tasks without

violating any of their real-time constraints. By limiting the preemptions, some tasks will have

disjoint lifetimes, enabling them to share the same fast memory space, rather than forcing some

to use slower memory. The data allocation phase is repeated, resulting in even more reductions

in tasks’ WCETs. This in turn introduces extra slack time that can be used by the PTS to further

limit the system preemptions. This may result in even more tasks that use the smaller memory.

This iterative data allocation/real-time scheduling approach is depicted in Figure 5.2. We ex-

amine how this iterative solution can be used at several allocation granularities depending on

the amount of overheads (additional run-time cycles and additional overhead instructions) the

system developer is willing to tolerate. To quantify the benefits of using our design approach,

many simulations were performed on synthetic as well as real benchmarks. The results indicate

that the using the DARTS framework will always result in an enhanced system performance,

81

increased energy efficiency, and better memory utilization.

5.1 Related Work

The effectiveness of caches is primarily based on their ability to maintain, at each time dur-

ing program execution, the subset of data that is frequently used at that time in the cache. In

other words, caches are able to dynamically track the changing locality of references in a pro-

gram. This is achieved automatically by hardware control and is completely invisible to the

programmer/compiler. For cacheless systems, specific mechanisms are required to ensure that

the mapping of data to the memory hierarchy address space takes full advantage of the locality

of references in the program being executed. In the simplest case, the programmer lays out the

allocation of data objects to the memory hierarchy address space manually using assembly di-

rectives based on the structure of the particular program. However, this often proves extremely

tedious and prohibits any global compiler optimizations. Several automatic allocation methods

have been developed to address this issue [63, 64, 65, 66, 67, 29, 68, 69, 70, 71, 72, 1, 73, 74, 75, 76].

Though these automatic data allocation methods have different flavors, they all try to optimally

allocate the application’s data objects (i.e. global variables, stack variables, and heap variables)

to memory such that the system performance is enhanced and/or its energy utilization is im-

proved.

Many automatic allocation methods have been developed and presented in the literature

[63, 64, 65, 66, 67, 29, 68, 69, 70, 71, 72, 1, 73, 74, 75, 76]. To the best of our knowledge, however,

only two studies [1, 63] considered the data allocation problem in a multi-tasking (non real-

time) environment, while only one study [74] considered the problem in a real-time (only for

a single-task) environment. None of the available studies considered the allocation problem in

a real-time multi-tasking environment or the interaction between the data allocation and the

real-time scheduling problems.

The available methods can be broadly categorized as being static or dynamic. Static meth-

ods are those whose allocation map does not change at run-time. Our data allocation strategy

belongs to this category which is much more suitable for static timing analysis, and hence

82

preferred for real-time applications. Many static allocation methods were proposed in the lit-

erature. The earliest two static methods presented by Sjodin et al. [71] and by Panda et al. [1]

only addressed the allocation of global variables. The later study by Sjodin et al. [72] addressed

the allocation of both global as well as stack variables with the goal of optimizing the use of

pointers in addition to optimally allocating data to memory. Another study by Panda [1], on

the other hand, targeted an architecture that, in addition to having multiple software-managed

memories, uses a hardware-managed cache. In the presence of a cache, the main goal behind

the data allocation method changes significantly from those addressing cacheless systems like

ours. In the presence of a cache, the allocation goal becomes finding a memory map that would

result in the minimal cache misses (especially conflict misses) by trying to allocate the data that

can cause a conflict miss in the cache to the scratch-pad memory. The two studies by Avissar

et al. [68, 73], and the study by Cao et al. [29] used a very similar ILP formulation like ours

to statically allocate the application’s data objects to memory, while a later paper by one of the

authors of [73] reformulated the problem when some of the memory unit sizes are unknown at

compile-time [64].

Many dynamic data allocation methods were presented in the literature as well. Dynamic

allocation methods are those whose data allocation map can change at run-time. Those meth-

ods usually incur significant run-time overheads due to the reallocation of data at run-time.

Moreover, the instructions added to move data between memories at run-time can dramati-

cally increase code size as well. One dynamic data allocation technique is software-managed

caching. This method emulates the working of a hardware cache in software; inserting in-

structions before loads and stores to check a software maintained cached tags. This method,

however, incur large run-time overheads, code size, and data memory space for tags, and de-

livers poor real-time guarantees just like its hardware counterpart. Other dynamic allocation

techniques which promise less run-time and code overheads have also been proposed in the

literature [64, 66, 69, 70].

The work of Suhendra et al. [74] is the only one known that addressed the data allocation

problem in a real-time environment. Suhendra et al. [74] used a static allocation strategy to

83

allocate data objects to scratch-pad memories with the goal of minimizing the application’s

worst-case execution times (WCET). To this end, they formulated an ILP optimization problem,

similar to ours, to allocate the data object to memory such that the application’s WCETs are

minimized. Nevertheless, this study assumed that all data objects are alive all the time (i.e.

stack variables were modeled as global variables). This limits the benefits attainable through

their work considerably since the lifetimes of stack variables (and of tasks as will be shown

in this study) can be disjoint allowing more objects to be placed in the faster memory units,

and in turn, resulting in significant improvements in the tasks WCETs as well as the overall

performance of the application. Moreover, they did not consider the effect of having more

than one task in their framework as many real-time applications do. On the other hand, the

studies that considered the data allocation problem of a multi-tasking workload [1,63] assumed

that all tasks can be alive at the same time. Though this is true in a FP system, techniques

for limiting preemptions between tasks while maintaining the system schedulability in a real-

time environment have been proposed in the literature (e.g. PTS presented previously). These

techniques can be used to create groups of mutually non-preemptive tasks that can share the same

memory space at run time as we will show in this study.

The allocation of heap data was considered in [76]. Nevertheless, in our proposed tech-

nique we do not consider the allocation of heap data for many reasons. First, dynamic memory

allocation functions like malloc() and new() are not always available on every embedded

platform. Second, many real-time design standards prohibit the use of these functions for real-

time applications as they are not considered real-time thread safe. For example, the OSEK/VDX

standard3 specifies that all resources needed by the operating system have to be statically allo-

cated during generation time and therefore no dynamic memory management is needed. The

reason is that these functions can have a non-deterministic unpredictable behavior since their

execution time can vary every time they are called [77]. By eliminating dynamic memory allo-

cation, real-time applications are ensured that allocating any resource will never fail and will

take a predictable amount of time. Still, if a heap has to be used with our proposed design

3The OSEK/VDX standard includes specifications for embedded operating systems, communication subsys-
tems, and embedded network management systems [77].

84

strategy, it can be simply assumed that all heap data will be allocated to the slowest memory

unit available without affecting the allocation strategy.

5.2 The Motivation behind DARTS

Given an application’s workload, we would like to allocate its data objects to a memory hi-

erarchy composed of a set of heterogeneous memory units which can have different access

latencies, sizes, and/or bitwidths. The main goal of the allocation is to optimize the system

performance and energy usage by reducing the time and energy spent on accessing data from

slow memory units (which usually also have higher memory requirements per access [29]).

A simple, yet naive, approach to this problem is to allocate the different data objects based on

their access frequencies. That is, we can allocate the more frequently accessed data objects to the

fast memory units (which also usually require less energy per access), while all less frequently

accessed data objects are allocated to slower memories. In a single-tasking non real-time envi-

ronment, the above problem simplifies to finding a strategy to allocate the application’s global

variables, heap variables if a heap is used, as well as stack variables, to the memory hierarchy.

Global variables are always alive4 in the sense that they have to be allocated for the entire

operational time of the application. Allocating global variables to a memory hierarchy there-

fore simplifies to allocating the subset of all global variables that are frequently accessed to

the fast memory units, while leaving all other global variables reside on the slower, yet larger

and cheaper, units of the memory hierarchy. Heap variables, though usually left in the slower

levels of the memory hierarchy, are beyond the scope of this paper, as explained earlier, since

they are rarely used in safety-critical real-time systems. Stack variables, on the other hand,

are different. Normally, the stack grows in units of stack frames (which we will refer to them

as procedural stack frames hereafter to make a distinction between them and a higher level of

abstraction, namely the task stack discussed later in this section) one per procedure, where a

procedural stack frame is a block of contiguous memory locations containing all the local vari-

ables, parameters, and return variables of the procedure. Procedural stack frames, however,
4The lifetime of a variable, defined as the period between its definition and last use [78], is an important metric

affecting register allocation.

85

are born (i.e. allocated) upon procedure entry and die (i.e. de-allocated) after its exit. Hence,

stack variables have limited lifetimes and any two stack variables with the disjoint lifetimes can

share the same memory space. This can enable substantial space and performance improve-

ments over global variables since, for example, two procedural stack frames can share the fast

memory unit, resulting in enhanced performance and better memory space utilization.

A multi-tasking real-time environment has different requirements. First, real-time tasks

have real-time constraints that have to be met. The particular data allocation strategy used

affects the real-time properties of those tasks, and in turn, the scheduling characteristics of the

system. On the other hand, the scheduling policy used affects the preemption relations of the

system. Those preemption relations can be exploited to optimize the particular data allocation

method used. Hence, in a real-time environment, the data allocation phase and the schedul-

ing phase are tightly coupled. These two phases should not be performed independently even

if possible since many potential optimizations would be wasted. Second, allocating data ob-

jects to memory based on their access frequencies obtained through profiling helps improve

the average case application performance, assuming in the first place that the profile data is

representative of the average-case. Most data allocation techniques proposed in the literature

fall in this category. Nevertheless, real-time systems, especially safety critical ones, need guar-

antees on their worst-case execution rather than their average-case. An optimal allocation for

the average-case may not necessarily be the optimal allocation for the worst-case. As we will

explain in this section, both of these differences between single-tasking systems in a non real-

time environment, and multi-tasking systems in a real-time environment, seek some kind of a

unified iterative data allocation/real-time scheduling technique.

As discussed earlier, currently all design strategies perform the data allocation phase inde-

pendent of the real-time scheduling phase. Though sometimes possible, this design strategy

cannot take advantage of many potential optimizations. To see why, suppose some real-time

application developer decides to perform the data allocation first then independently perform

the real-time scheduling. In this case, the system designer would use some data allocation

method to allocate the application’s data objects to the memory units. Later use some tim-

86

ing analysis technique to estimate the worst-case execution times of the application. Using

this information, he would schedule the workload according to some scheduling policy. In

this case, the system designer did not take advantage of many possible optimizations due to

the preemption relations of the real-time application. As an example, suppose that two of the

application’s tasks are the most frequently executed. Suppose that these two tasks share some

common resource (e.g. an input/output device) that prohibits them from ever executing simul-

taneously. Suppose further that there is enough space in the fast memory unit to hold the data

objects of one of these tasks but not both. An intelligent scheduling policy will probably make

these two tasks mutually non-preemptive. Being mutually non-preemptive, they can share the

same memory space at run-time because they are guaranteed never to execute simultaneously.

Nevertheless, the data allocation was performed independent of the scheduling and hence, the

allocator did not have enough information about the preemption relation of these two task. If

it did, it would have placed both of them in the fast memory unit resulting in an improved

performance, energy utilization, as well as an overall smaller memory footprint.

If the system developer, on the other hand, decides to perform the real-time scheduling

first, then to allocate the data objects to physical memory, other problems will arise as well.

First of all, the application’s execution properties used to construct the schedule may not be

valid anymore after the data is re-allocated to multiple memory units with different latencies.

Even if the schedule remains valid, it might be too conservative because the scheduling policy

did not exploit possibility of moving the data objects between the different memory units to

render more efficient schedules. In all cases, a significant potential for optimization has been

wasted by treating the data allocation and the scheduling problems as two independent design

phases. In this study, we show how this problem lends itself to a unified iterative solution as

was shown in Figure 5.2. Using this unified approach, we can guarantee that both the data

allocator and the real-time scheduling have all the information needed to to render optimal

solutions while maintaining all the real-time guarantees required in a real-time environment.

Another reason for exploiting an iterative unified data allocation/real-time scheduling ap-

proach is concerned with the requirements imposed on a real-time application. All real-time

87

applications, especially safety critical ones, require guarantees on their worst-case execution

properties. Nevertheless, as was explained in section 5.1, most data allocation methods avail-

able use profiling data to optimize the average-case properties of the system and are very pro-

file dependent. Assuming that the profiling data is representative of the actual execution of

the system in the first place, a particular memory allocation method that is optimal for the

average-case, may not necessarily be optimal in the worst-case. For a real-time system, we

prefer to use the information available on the system’s worst-case execution properties. To this

end, we are interested in minimizing the memory access cycles along the worst-case path of

execution. Nevertheless, as data is allocated to the memory hierarchy, a new execution path

may become the worst-case path. This, in turn, will change many of the real-time properties

of the system necessitating the process to be repeated. As a result, all non-iterative techniques

proposed in the literature may not lead to optimal solutions when real-time systems are con-

sidered. Again, this presents another reason to exploit a unified iterative data allocation and

scheduling approach.

Another reason for exploiting an iterative unified data allocation/real-time scheduling ap-

proach is concerned with the requirements imposed on a real-time application. Though the

real-time system developers cannot usually make the lifetimes of two procedures disjoint with-

out altering the functionality of the procedures, we will show in this study that this is not the

case when it comes to the lifetimes of real-time tasks. Tasks have interfering lifetimes if and

only if two tasks can preempt each other. Nevertheless, techniques to minimize the preemp-

tions between tasks while not violating any of their real-time constraints have been presented

in the literature. One method that we are particularly interested in is preemption threshold

scheduling or PTS.

By limiting the preemptions, more tasks will have disjoint lifetimes enabling them to share

the same memory space. That in turn means more data objects can fit in the faster units of

memory resulting in enhanced run-time performance, and better energy utilization. But now

that some tasks are allocated to the fast memory units their execution times is reduced, resulting

in more slack time. This in turn enables even more task data to fit into the fast memory without

88

violating the system’s timing constraints. But this just means that even more tasks can fit into

the fast memory now enhancing the system performance even more and leading to more slack

time and so on.

5.3 Problem Description and Terminology

In this study we address the dual problem of data allocation and real-time scheduling com-

bined. For our memory hierarchy, we assume that it is composed of NU units. We define tr
k[twk]

as the time it takes to read[write] a single word5 from[to] memory unit Uk for k ∈ [1, NU],

respectively. We also define Lk as the number of lines in memory unit Uk and Wk as the

number of words in each line. Hereafter, each memory unit in the system will be denoted

by Uk = 〈trk, twk , Lk,Wk〉 for k ∈ [1, NU].

We are given a real-time workload, denoted by W = (G,T), where G and T are two abstract

entities representing a set of NG global variables and a set of NT real-time tasks, respectively.

In the above definitions for the set of global variables G and the set of real-time tasks T we are

not concerned with the actual form of these entities as long as they satisfy one basic conditions.

The memory space where the global variable gi ∈ G will reside at run-time, which we will

denote by xG
i , has to be allocated for the entire operational time of the system (this is just

another way of saying that global variables are always alive). On the other hand, the memory

space associated with each real-time task Tm ∈ T where the task saves its return addresses

and/or uses for nested procedure calls and is called the task’s stack, which we denote by xT
m,

need not have this property. A problem with these definitions that will show up later is the

granularity level considered. The above definitions are very constraining since they force us to

treat each global variable and each real-time task as a separate and indivisible entity that has to

be allocated to a single memory unit. However, memory accesses of any data object are seldom

uniform. For example, particular fields of a global structure construct, or particular locations

of a global array, might be much more frequently accessed than others. Similarly, particular

nested procedures in a real-time task might be much more frequently called than other.
5In this study we use the term word to denote the smallest addressable memory unit and formulate all other

quantities as multiples of a single word. This word might be an 8-bit word, a 16-bit word, a 32-bit word, etc.

89

foo()
 {

int a;
int b;

 ...
 } foo + 1

foo

struct foo
 {
int field 1;
int field 2;

 ...
 }

Unified
global

variablefoo

foo + 1

Distributed
global

variable

memory unit 1

memory unit 2

memory unit

(a) Global Variable

b

memory unit

Growth

SP

Unified
procedure

stack

a

foo()
 {

int a;
int b;

 ...
 }

foo()
 {

int a;
int b;

 ...

 ...
 }

a

b

Distributed
procedure

stack

memory unit 1

memory unit 2

Growth

Growth

SP1

SP2

(b) Procedural Stack Frame

foo ()

memory unit

Growth

SP
Unified

task
stack

bar ()

foo()
 {

int a;
int b;

 ...
 }

mytask()
 {

foo ();
 bar ();

 ...

 ...
 }

foo

bar

Distributed
task stack

memory unit 1

memory unit 2

Growth

Growth

SP1

SP2

(c) Task Stack

Figure 5.3: Unified and distributed data objects

90

To alleviate the above problem with our definitions, we need to consider finer levels of ob-

ject granularity. That is, we are not bound to alocate any single data object to a single memory

unit. For example, a global variable can be either allocated to a single memory unit, or dis-

tributed between multiple memory units (figure 5.3(a)). A procedural stack frame can either

be allocated as a single entity, or distributed between multiple memory units (figure 5.3(b)).

A task stack can be allocated as a single entity, or distributed between multiple memory units

(figure 5.3(c)), and so on. Nevertheless, we need to emphasize that the finer the granularity

level adopted, usually the more run-time overhead needed. For example, if two procedures

nested in the same real-time task are allocated to two different memory units, two stack point-

ers have to be used with all the additional instructions and run-time overheads to increment

each stack pointer, decrement each stack pointer, etc. Similarly, if a task’s stack is distributed

between two memory units, the same argument holds, and so on. Still, as will be shown later in

this study, sufficient performance improvements can usually be obtained by considering some

intermediate granularity level rather than the finest one with the most overheads.

To exploit these different granularity levels, we need to modify the above definitions. To

this end, we assume that the memory space xG
i associated with each global variable gi can be

decomposed into a set of NP (i) global partitions and denote the memory space needed for each

partition by xP
ij for j ∈ [1, NP (i)]. We also assume that the memory space for each task stack xT

m

associated with the real-time task Tm can be decomposed into a set of NF (m) procedural stack

frames and denote the memory for each procedural stack frame by xF
mn for n ∈ [1, NF (m)]. At

the finest level of granularity, we assume that the memory space of each procedural stack frame

xF
mn of each nested procedure can be further decomposed into a set of NV (m,n) stack variables

and denote the memory space associated with each stack variable by xV
mno for o ∈ [1, NV (m,n)].

Clearly, with the above definitions we have two levels of granularity for the global variables,

and three levels of granularity for the real-time tasks, for a total of six granularity levels for

the overall real-time workload. The relation between these various data objects can be easily

understood from the graphical representation of a generic memory map in Figure 5.4.

When trying to allocate the various data objects represented above at the different granular-

91

xV
ij1

xP
1

xP
2

xV
ij1

xV
ij2

xV
ij2

Global Variable

. .
 .

. .
 .

. .
 .

Procedural Stack Frame xF
ij

Task's Stack xT
i

Procedural
Stack Variable

Global Partition

Figure 5.4: The different granularity levels for the data objects

ity levels, it is obviously possible to treat all of these objects as global variables that have to be

allocated for all the time without violating any of the system’s real-time constraints. Neverthe-

less, procedural stack frames, and in turn procedural stack variables, are automatic variables

that are allocated on procedure entry and de-allocated on its exit. Hence, some of these proce-

dural stack frames and stack variables might have disjoint life times enabling them to share the

same memory space at run-time. To determine if two procedures have disjoint lifetimes, a call

graph can be generated as shown in Figure 5.5. In a similar sense, two tasks have disjoint life-

times, and their stacks can share the same memory space, if they are mutually non-preemptive.

Hence, allocating task stack frames for all the time by dividing the memory space between

them is not optimal. The reason is that performance as well as the memory footprint can be

significantly improved by taking advantage of their disjoint lifetimes. To enable us of perform-

ing such a lifetime analysis on the task level, we need to define a call graph like structure. We

define the preemption graph for a workload as a directed acyclic graph with the essential prop-

92

task()

foo1 ()

foo3 ()

foo2 ()

foo2 ()

Figure 5.5: A call graph used to determine procedures lifetimes

erty that an edge exists from task A to task B if and only if task B can preempt task A. An

example preemption graph for a generic fully-preemptive workload with three tasks is shown in

Figure 5.6.

In this study we do not use profile data to determine the frequency of memory accesses to

the different data objects. Instead, we use static timing analysis to determine the worst-case

execution path the workload can take. We then try to minimize the number of memory access

cycles on this worst-case path. As was explained earlier, the data allocation performed might

change this worst-case path, but the iterative nature of our method implicitly accounts for that.

To this end, we let N r
m(xO) denote the number of reads (i.e. loads) of data object xO (which

can be a global memory space, global partition, task stack, etc.) on the worst-case execution

path of our workload during any single invocation of task Tm. Similarly, we let Nw
m(xO) be the

number of writes (i.e. stores) of data object xO on the worst-case path that any invocation of

task Tm can take. We would like to note here that the number of reads or writes of a single data

object along the worst-case execution path of two tasks might be different. Nevertheless, this is

also accounted for in our formulation as we show later. Finally, we let the number of memory

words (i.e. size) of data object xO be denoted by S(xO).

93

T0

T3T2T1

T3T2 T3

T3

Figure 5.6: A preemption graph used to determine tasks lifetimes

Since real-time scheduling will also be performed, we will need to have the real-time prop-

erties of the task set. To this end, tasks can be periodic or sporadic. If Tm is periodic, the period pm

specifies a constant interval between arrival times of any two consecutive jobs (i.e. any two in-

stances of the task), and if it is sporadic, pm specifies a minimum interval between job arrivals.

We say task Tm has a WCET of cm time units if all instances of Tm can take no longer than cm

time units to execute. We also associate with each task Tm a unique priority πm ∈ {1, 2, . . . , NT }

such that contention for resources is resolved in favor of the job with the highest priority that

is ready to run. In addition to each task’s priority, we associate with each task Tm a preemption

threshold γm ≥ πm which acts as the task’s effective priority as it executes. That is, an executing

task Tm cannot be preempted by a ready task Tn unless πn > γm.

Finally, in this data allocation/real-time scheduling work, we assume that other compiler

optimizations have been already performed on the application’s variables. In particular, we as-

sume that the register allocation has already been performed. Given the embedded application

code, our goal is to determine the mapping of each variable not bound to a processor regis-

94

ter to the different memory units while maximizing the application’s overall memory access

performance and minimizing its energy usage.

5.4 Problem Formulation

Given a real-time workload W = (T ,G) composed of NT real-time tasks, NG global variables,

we would like to allocate the data objects of this workload to a memory hierarchy composed

of NU heterogeneous units. Before proceeding any further, however, we define for each data

object xO a set of NU decision variables In(xO) for n ∈ [1, NU], such that In(xO) is non-zero

if and only if xO is allocated to memory unit Un and is zero otherwise. That is, for each data

object xO we define the following set of decision variables for n ∈ [1, NU]:

In(xO) =

⎧⎨
⎩

1 if object xO allocated to unit Un

0 otherwise
(5.1)

As was explained previously, there are various levels of granularity that can be considered.

Nevertheless, we chose to only formulate the problem here for the two boundary cases due to

space limitations. That is, we present below the problem formulation for the coarsest and the

finest granularity levels only.

5.4.1 Allocation Granularity = Coarsest

At this level of granularity, the memory space for each global variables xG
i , as well as the stack

of each task xT
m, is to be allocated to a contiguous memory space. In other words, data ob-

jects cannot be distributed between multiple memory units and no additional run-time or code

overheads are needed. To this end, we can represent the memory access cycles of each task Tm

for m ∈ [1, NT] along its worst-case execution path by the following expression:

NU∑
n=1

NG∑
j=1

In(xG
j)
[
T r

nN r(xG
j) + T w

n Nw(xG
j)
]
S(xG

j)

+
NU∑
n=1

In(xT
m)
[
T r

nN r(xT
m) + T w

n Nw(xT
m)
]
S(xT

m)
(5.2)

The above expression represents the memory access cycles of each task along its worst-case

95

execution path. Again, this worst-case execution path might change after the data allocation

phase, however, this is implicitly accounted for by the iterative nature of our method. More-

over, since the application might be composed of multiple tasks, we need to create an objective

function that accounts for all tasks in the application. To this end, we note that any task Tm

can be invoked at max km = H/pm times during any hyperperiod6 H [13]. Hence, an objective

function that accounts for frequency of invocation of each task along with its worst-case path

information is simply given by the following weighted sum:

NT∑
m=1

km × MAC(Tm) (5.3)

Where the memory access cycles (MAC) of each task is given by (5.2).

Minimizing the above objective function will result in the optimal data allocation of each

task’s objects along its worst-case execution path. Three constraints for the above problem are

needed, however. First, any global variable memory space xG
i and any task stack xT

m needs

only be allocated to a single memory unit. The following two constraints enforce this criteria:

NU∑
k=1

Ik(xG
i) = 1 (∀i ∈ [1, NG]) (5.4a)

NU∑
k=1

Ik(xT
m) = 1 (∀m ∈ [1, NT]) (5.4b)

We also need to guarantee that the total memory space available in the system’s memory

hierarchy is adequate for all global variables and the task stacks. Nevertheless, task stacks

need not be allocated for all the time if two tasks are mutually non-preemptive. Hence, we

can make use of the fact that some tasks do not preempt others to let them share the same

memory space. This will minimize the overall memory requirements of the system, as well as

enable us to locate more data objects to the faster memories, and hence, enhance the system’s

performance. As was explained earlier, the system’s preemption graph can be used to analyze

the preemption properties of our system. Any two tasks that lie on the same path from the root

node to any of the leaf nodes in the system’s preemption graph cannot share the same memory

6A workload’s hyperperiod is defined as the least common multiple of the tasks’ periods or inter-arrival times.

96

space since a preemption can occur. To this end, let L be the set of all leaf node tasks in the

system’s preemption graph. Moreover, let Pq(Tl) be the qth unique path from the root node to

the leaf node Tl ∈ L, and let there be NP (Tl) such paths. Then the following constraint can be

derived:

NG∑
i=1

In(xG
i)S(xG

i) +
∑

∀Tm∈Pq(Tl)

In(xT
m)S(xT

m) ≤ Lk Wk

(∀k ∈ [1, NU], ∀Tl ∈ L, ∀q ∈ [1, NP (Tl)])

(5.4c)

Minimizing equation (5.2) subject to the constraints given by (5.4a), (5.4b), and (5.4c) will re-

sult in the optimal allocation of the global variables and the task stack frames. Nevertheless, at

this level of granularity, it becomes very hard to obtain significant performance improvement.

Memory requirements can be improved significantly, on the other hand, as will be shown in

the simulations and experimentation section.

5.4.2 Allocation Granularity = Finest

This is the finest granularity level we address, and also the one requiring the most run-time

and code overheads. For this granularity level, the memory access cycles of any task during

any of its invocations on its worst-case path can be represented by the following expression:

NU∑
k=1

NG∑
i=1

NP (i)∑
j=1

Ik(xP
ij)
[
T r

kN r
m(xP

ij) + T w
k Nw

m(xP
ij)
]
S(xP

ij)

+
NU∑
k=1

NF (m)∑
n=1

NV (m,n)∑
o=1

Ik(xV
mno)T r

k N r
m(xV

mno)S(xV
mno)

+
NU∑
k=1

NF (m)∑
n=1

NV (m,n)∑
o=1

Ik(xV
mno)T w

k Nw
m(xV

mno)S(xV
mno)

(5.5)

Similar to the previous granularity level, there are four constraints that need be added.

First, we still don’t want any data object to be located to more than one memory unit. Hence,

the first three constraints are given by the following:

NU∑
k=1

Ik(xP
ij) = 1 (∀j ∈ [1, NP (i)], ∀i ∈ [1, NG]) (5.6a)

NU∑
k=1

Ik(xV
mno) = 1 (∀o ∈ [1, NV (m, n)], ∀n ∈ [1, NF (m)], ∀m ∈ [1, NT]) (5.6b)

97

The fourth constraint which guarantees that the memory available is adequate for the vari-

ous data objects is given by the following expression:

NG∑
i=1

NP (i)∑
j=1

Ik(xP
ij)S(xP

ij) +
∑

∀Tm∈Pq(Tl)

∑
∀xF

ij∈Pir(xF
il)

NV (i,j)∑
k=1

In(xV
ijk)S(xV

ijk) ≤ Ln Wn

(
∀k ∈ [1, NU], ∀Tl ∈ L, ∀q ∈ [1, NP (Tl)], ∀xF

ml ∈ Lm, ∀r ∈ [1, NPm(xF
ml)]

)
(5.6c)

5.4.3 Preemption Limiting

As was shown in the previous sections, in a preemptive system the preemption relations be-

tween the tasks are part of the model (i.e. they affect the ILP constraints) and clearly will affect

the allocation results. To exploit this property to our advantage, we try to prevent as many pre-

emptions as possible without violating the system’s real-time constraints. Preemption thresh-

old scheduling, or PTS, limits preemptions to occur only when necessary to maintain system

schedulability. Tasks that run non-preemptively with respect to each other can be mapped

into the same run-time thread and share the same stack, reducing memory requirements and

other preemption overheads. The preemption threshold assignment problem was considered

in several studies. An algorithm known as the MPTAA (maximal preemption threshold assignment

algorithm was developed by Wang et al. [16] to find a feasible preemption threshold assignment

if it exists. This algorithm was shown later [79] to be memory optimal in the sense that it finds

the preemption threshold assignment resulting in the minimal total stack space usage.

In our framework, once the data allocation objective functions have been minimized using

an ILP solver, the MPTAA algorithm is then used to find the optimal preemption threshold

assignment. Clearly this assignment will change the preemption relations of the system (as can

be seen in the system’s preemption graph), so the entire process shown in Figure 5.2 is repeated

until a fixed point is reached, resulting in the final data allocation and real-time schedule.

98

(a) Average normalized memory access cycles

(b) Minimum normalized memory access cycles

(c) Maximum normalized memory access cycles

Figure 5.7: Normalized memory access cycles for synthetic workloads

99

Table 5.1: Normalized overhead cycles
Allocation Granularity Best-Case Worst-Case
uniTstack + uniPstack 0.12% 0.12%
distTstack + uniPstack 0.12% 0.62%
distTstack + distPstack 0.12% 3.33%

5.5 Simulation and Analysis

To assess and analyze our proposed unified data allocation/real-time scheduling method, sev-

eral simulations were performed and their results analyzed. We present these simulations in

the following section. We start by presenting our simulations for synthetic workloads, fol-

lowed by our simulations for the Fly-By-Wire workload from the Autopilot and PapaBench

benchmarks [58] and the GScope workload; a real-time oscilloscope emulator.

5.5.1 Synthetic Workloads

Matlab [38] was used to analyze our memory allocation method and compare it to existing

methods using synthetic workloads. The memory hierarchy is composed of an on-chip SRAM

with read/write latency of 1 cycle, an off-chip DRAM with read/write latency of 10 cycles,

and an EEPROM with a 3 cycle read/latency and a 500 cycle write latency. The DRAM and

EEPROM sizes are fixed at 8K words and 1K word, respectively. The SRAM size is varied as

explained below.

One hundred synthetic workloads are used for our first two experiments, all with real-time

constraints that must be met. The number of global variables in each workload is approxi-

mately 10 variables ranging from 1 word scalars up to 40 word arrays. Each of the tasks has

between 1 and 10 nested procedures, with each procedure having between 1 and 16 stack vari-

ables (between 1 and 16 words in size). The load/store frequency ratio for global and stack

variables is approximately 1:1; this only has an effect for memories with different read and

write times.

The first simulation performed compares the memory execution cycles at different alloca-

tion granularities with different real-time scheduling schemes. The memory access cycles for

100

Figure 5.8: Normalized overhead cycles

each experiment was normalized to the all sram case (in which SRAM is large enough to hold all

data). The average, minimum, and maximum, of these normalized memory access cycles for all

workloads is presented in Figures 5.7(a), 5.7(b), and 5.7(c), respectively. The memory hierarchy

for this experiment has on-chip 1-cycle SRAM and off-chip 10-cycle DRAM. The SRAM size s

fixed at 256 words, which is about 20% of the total data memory required by each workload.

The memory hierarchy model used was chosen to be consistent with Motorola’s M-Core

chips [80]. The microcontrollers have a three level memory hierarchy; an EEPROM level with a

3 cycle read latency and a 500 cycles write latency, an external DRAM level with a constant 10

cycles read/write latency, and an internal SRAM level with a single cycle read/write latency.

We emphasize here that this simple memory model is sufficient for evaluating the proposed

scheme, however, more realistic models can be used without affecting the resulting frame-

work. For example, different DRAM access modes like fast page mode can be incorporated into

our model without affecting our formulation or most of the results presented in this section.

Moreover, we perform a sensitivity analysis later on some of the parameters used in this simu-

lation to investigate their effect on the proposed scheme.

The all dram case shows the worst performance; all data objects are now allocated to the

101

(a) Coarsest Allocation Granularity

(b) Medium Allocation Granularity

(c) Finest Allocation Granularity

Figure 5.9: Normalized memory access cycles as a function of SRAM size

102

Figure 5.10: Avg. normalized memory access cycles as a function of DRAM speed

slow DRAM. The lexical case shows the average execution time when all data objects are al-

located to memory sequentially in the order they are found in the program code or symbol

table.

The intermediate cases are combinations of various options. First, all task stacks can be

allocated to a single memory unit (uniTstack) or they can be distributed (distTstack). Second,

all procedural stack frames for a given task can be allocated to a single memory (uniPstack) or

distributed (distPstack). Third, the scheduler may ignore possible preemption limitations (no

label) or it may use PTS (pts).

In the lexical case, no frequency information is used; some frequently accessed variables

may still be allocated to DRAM. For uniTstack + uniPstack, the frequency information cannot be

used because although almost every task has some variables that are more frequently accessed

than others, we are forcing the allocator to group the tasks’ data objects together, so this infor-

mation is lost. There is some minor improvement here when we limit the preemptions using

PTS (uniTstack + uniPstack + pts) because the allocator can now share parts of the fast memory

between the tasks with the highest memory traffic. At a finer level of allocation granularity, we

can see some improvements in the distTstack + uniPstack. Here the allocator has more freedom

103

to allocate the procedural stack frames with the highest memory access from different tasks to

the fast memory and not bound to group them with the rest of the data objects of the parent

task. Still, in this case the fast memory can only be shared between procedural stack frames

with disjoint lifetimes, as the preemption relation of the parent tasks are not accounted for yet.

A significant improvement at this same allocation granularity can now be obtained when PTS

is used to limit the preemptions between tasks as can be seen in the distTstack + uniPstack +

pts case. In fact, the average execution time was reduced by 50% when PTS was used. This

significant improvement is due to the fact that the most frequently called procedures from all

mutually non-preemptive tasks are now grouped in the fast memory. The distTstack + distPstack

case gives the allocator the most freedom in allocating the frequently accessed data objects to

fast memory. At this level of granularity, stack variables belonging to more than one procedure,

which might belong to more than one task, can be distributed between multiple memory units.

This, however, is at the expense of significant run-time and code overheads as was explained

previously. In the final distTstack + distPstack + pts case, we can allocate enough frequently-

accessed data objects to fast memory to result in an average memory access cycles that is close

to the ideal case of all sram. In this case, the memory accesses are only 11.2% more than the

ideal all sram case with just 20% of the memory footprint.

The overheads imposed by using each of the three non-trivial granularity methods are

shown in Table 5.1. These values are the average (over all workloads) normalized number

of cycles spent adjusting and maintaining multiple stacks for the tasks and procedures. We

assume that six cycles are needed to switch the storage context between two memory units 7 .

At the coarsest granularity level, the overhead is 0.12% in both the best and worst cases. This

is expected at this allocation granularity since we only need to switch between memory units

at the tasks boundaries (i.e. on the entry or exit point of a task) which is only dependent on the

invocation frequencies of the tasks. At the procedure granularity level, we have two cases to

consider. In the best case, all procedures nested in a single task would be allocated to the same

memory unit, and hence only task boundaries need to be considered where a switch between

7We assume a pointer must be swapped with another register or memory. Architectures with many pointer
registers will have less overhead.

104

two memory units would occur. In the worst-case, we might have to switch between two mem-

ory units at the entry and exits of every procedure. Still, the overhead in this case is at most

0.62%. Finally, at the finest granularity level, we might have to switch between two memory

units whenever we access a stack variable within a procedure. Depending on the number of

variables per procedure, and the number of procedures per task, as well as the invocation fre-

quencies of the different task, this will lead to the highest number of overhead cycles. As can

be seen from the Figure 5.8, this can be a number as large as 3.33% of the total memory access

cycles, which might be significant for some systems. Code motion could be used to group data

accesses to the same unit, reducing memory switches. We leave this for future work.

Our second experiment explores the amount of fast memory (i.e. SRAM) needed to obtain

certain normalized execution times. The results are shown in Figures 5.9(a), 5.9(b), and 5.9(c),

for the different allocation granularities with and without the use of PTS. The amount of SRAM

available was varied from 16 to 2048 words, and the average normalized memory access cycles

were calculated. At the coarsest allocation granularity (i.e. uniTstack + uniPstack), PTS does

not improve the average memory cycles until the memory size reaches a certain level. This

is because none of the task stacks can fit into the fast (but small) memory to begin with, so

limiting the preemptions cannot improve system performance. This is not the case for finer

granularities, shown in Figures 5.9(b) and 5.9(c). Here PTS improves the system performance

for almost all sizes of the available memory. Since the data objects are much smaller than in

the coarse granularity case, many more are small enough to fit into the fast memory. Hence

by limiting the preemptions we can fit many of those objects in the same fast memory space,

resulting in significant performance improvements.

As a final experiment, the sensitivity of DARTS to the model parameters used at the dif-

ferent allocation granularities is investigated. To this end, the SRAM and DRAM sizes were

fixed, and the DRAM speed was varied from 10 times the SRAM speed, to the same speed of

the SRAM (i.e. until no more benefits will be obtained from allocating the data to the SRAM

since the DRAM has the same speed). The average memory access cycles are shown as a func-

tion of the DRAM versus SRAM speed in Figure 5.10. As can be seen from the figure, limiting

105

Table 5.2: The real-time tasks composing the Fly-By-Wire benchmark
ID Name Frequency
T1 receive radio task 40Hz
T2 send data to autopilot task 40Hz
T3 check autopilot values task 20Hz
T4 servo transmit task 20Hz
T5 check failsafe task 20Hz
I1 servo interrupt
I2 spi interrupt
I3 radio interrupt

preemptions with DARTS still results in improved performance at all relative DRAM speeds.

However, at finer allocation granularities, the improvements are much more significant and

increase in magnitude with the decrease in the DRAM speed relative to the SRAM.

5.5.2 The Fly-By-Wire Workload

We next assess our proposed method by evaluating the Fly-By-Wire workload available in the

Autopilot and PapaBench benchmark for the AVR architecture. This workload is composed

of five periodic tasks and three sporadic interrupt handlers as shown in table 5.2. The experi-

mental platform used was earlier shown in Figure 2.1 where the application’s source files are

compiled into assembly code using the AVR-GCC compiler. The resulting assembly code is

then analyzed to determine the number of reads and writes along the worst-case path of exe-

cution of each task using the AVR-SAT tool. OMMA (the Optimal Multitasking Memory Al-

locator) and the PTSS toolboxes are then used to perform the optimal allocation and real-time

scheduling phases.

The normalized memory access cycles for the Fly-By-Wire benchmark and its normalized

total execution cycles are shown in figures 5.11 and 5.12, respectively. As can be seen, the

improvement in the memory access cycles are evident. Nevertheless, the Fly-By-Wire workload

spends less than 4% of its execution time accessing memory, and therefore the effect of the

data allocation policy on the overall execution time is small as can be seen from Figure 5.12.

Another interesting observation can be seen from Figure 5.11 where the memory access cycles

at the procedure granularity with PTS results in better performance that at the finer granularity

106

Figure 5.11: Normalized memory access cycles for Fly-By-Wire workload

level in the absence of PTS. This shows that we can sometimes avoid the additional run-time

overheads of the finer granularity levels because similar improvements can be obtained with

PTS.

It is also interesting to note how the energy dissipation spend on the memory traffic was

minimized under the DARTS framework as can be seen in Figure 5.13. As expected, limiting

the preemption through PTS minimized the preemption overheads including the energy per

access. In other words, fewer preemptions now take place resulting in better energy utilization

as was pointed to earlier.

5.5.3 The GScope Workload

Finally, we evaluate DARTS on the GScope workload. GScope is an oscilloscope emulator

implemented on an Atmega128 microcontroller by Atmel. The workload is composed of three

tasks, and as it turns out, is a little bit more memory intensive than the Fly-By-Wire workload.

As in the experiment performed in the previous section, the normalized memory access cy-

cles for the GScope workload are shown in Figure 5.14. Again, the improvement in the memory

107

Figure 5.12: Normalized worst-case execution cycles for Fly-By-Wire workload

Figure 5.13: Normalized energy dissipation for the Fly-By-Wire workload

108

Figure 5.14: Normalized memory access cycles for GScope workload

access cycles is evident. In a similar manner to the Fly-By-Wire workload, we obtain signifi-

cant improvements when we limit preemptions at the procedure granularity level; reducing

the need for addressing the finer granularity level with the additional overheads associated

with it.

5.6 Chapter Summary

In this chapter we present a novel, unified data allocation/real-time scheduling technique

which improves run-time performance for real-time multi-tasking systems with memory hi-

erarchies. Our method allocates data to memory to minimize worst-case execution time and

improve performance while combining with preemption threshold scheduling to reduce stack

memory requirements. Our technique was formulated at different allocation granularities for

flexibility.

After evaluating the proposed technique, we find that it leads to significant performance

improvements in general, and can reduce overall memory access cycles significantly. In fact,

109

an improvement factor of 5 was obtained in some cases. Still, even in situations where memory

access cycles are not improved dramatically, there can be a large improvement in memory

energy use.

110

Chapter 6

Future Work

In this work we have shown how software-managed data allocation and real-time scheduling

need not be treated as a separate design problems anymore with the help of the DARTS frame-

work. Nevertheless, there are still many interesting problems that have not been addressed in

this work and are left to future work. Some of these are (in random order):

• Investigate the possibility of using the slack time generated online due to early task com-

pletion to further enhance our data allocation and schedule. Clearly part of the allocation

will have to be done online in that case.

• A study by Venkatesan et al.[81] showing how that different pages in DRAM have sub-

stantially different retention times. DARTS can be used in this case to perform the allo-

cation not just based on the frequency of memory access, but also on the retention rate of

the memory.

• A study by Bankar et al[12] claimed that caches will always consume more energy than

other memories of the same capacity. Nevertheless, it might be the case that a smaller ca-

pacity cache would lead to the same performance needed by a large memory. Comparing

the energy dissipation in this case is not a sufficient metric to make any conclusion. In

our future work we propose to perform a comparison of the energy dissipated to reach a

certain level of performance.

111

These and many other questions have not been answered completely by our work. We

leave them, and many others, to be investigated in future studies.

112

Bibliography

[1] P. R. Panda, N. D. Dutt, and A. Nicolau, “On-chip vs. off-chip memory: The data parti-

tioning problem in embedded processor-based systems,” ACM Trans. Des. Autom. Electron.

Syst., vol. 5, no. 3, pp. 682–704, 2000.

[2] D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantitative Approach, 3rd ed.

San Francisco, CA, USA: Morgan Kaufmann, 2002.

[3] J. Handy, The cache memory book. San Diego, CA, USA: Academic Press Professional, Inc.,

1993.

[4] F. Mueller, “Static cache simulation and its applications,” Ph.D. dissertation, Tallahassee,

FL, USA, 1995.

[5] Y.-T. S. Li, S. Malik, and A. Wolfe, “Efficient microarchitecture modeling and path analysis

for real-time software,” in RTSS ’95: Proceedings of the 16th IEEE Real-Time Systems Sympo-

sium (RTSS ’95). Washington, DC, USA: IEEE Computer Society, 1995, p. 298.

[6] R. T. White, C. A. Healy, D. B. Whalley, F. Mueller, and M. G. Harmon, “Timing analysis for

data caches and set-associative caches,” in RTAS ’97: Proceedings of the 3rd IEEE Real-Time

Technology and Applications Symposium (RTAS ’97). Washington, DC, USA: IEEE Computer

Society, 1997, p. 192.

[7] F. Mueller, “Generalizing timing predictions to setassociative caches,” in 9th Euromicro

workshop on real-time systems, Toledo, Spain, 1997.

113

[8] T.-Y. Huang, J. W.-S. Liu, and D. Hull, “A method for bounding the effect of dma i/o

interference on program execution time,” in RTSS ’96: Proceedings of the 17th IEEE Real-

Time Systems Symposium (RTSS ’96). IEEE Computer Society, 1996, p. 275.

[9] A. E.-H. Mahmoud, “Hard-real-time multithreading: A combined microarchitectural and

scheduling approach,” Ph.D. dissertation, Raleigh, NC, USA, 2006.

[10] K. Lahiri, S. Dey, D. Panigrahi, and A. Raghunathan, “Battery-driven system design: A

new frontier in low power design,” in ASP-DAC ’02: Proceedings of the 2002 conference on

Asia South Pacific design automation/VLSI Design. Washington, DC, USA: IEEE Computer

Society, 2002, p. 261.

[11] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits. New Jersey,

USA: Prentice-Hall, 1996.

[12] R. Banakar, S. Steinke, B. Lee, M. Balakrishnan, and P. Marwedel, “Scratchpad memory:

A design alternative for cache on-chip memory in embedded systems,” in Proc. of the 10th

International Workshop on Hardware/Software Codesign, CODES, Estes Park, Colorado, 2002.

[13] J. W. S. W. Liu, Real-Time Systems. Upper Saddle River, NJ, USA: Prentice Hall, 2000.

[14] A. N. Audsley, A. Burns, M. Richardson, and K. Tindell, “Applying new scheduling

theory to static priority pre-emptive scheduling,” Software Engineering Journal, vol. 8, pp.

284–292, 1993. [Online]. Available: citeseer.ist.psu.edu/audsley93applying.html

[15] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and complexity concerning

the preemptive scheduling of periodic, real-time tasks on one processor,” Real-Time Syst.,

vol. 2, no. 4, pp. 301–324, 1990.

[16] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with preemption threshold,” in

RTCSA ’99: Proceedings of the Sixth International Conference on Real-Time Computing Systems

and Applications, Hong Kong, China, 1999, p. 328.

[17] M. Saksena and Y. Wang, “Scalable multi-tasking using preemption thresholds,” in The 6th

IEEE Real-Time Technology and Application Symposium, Cheju Island, South Korea, 2000.

114

citeseer.ist.psu.edu/audsley93applying.html

[18] ThreadX User Guide, 2003. [Online]. Available: http://www.expresslogic.com

[19] J. Lehoczky, “Fixed priority scheduling of periodic task sets with arbitrary deadlines,” in

11th Real-Time Systems Symposiom (RTSS’ 90), Lake Buena Vista, FL, 1990.

[20] K. W. Tindell, A. Burns, and A. J. Wellings, “An extendible approach for analyzing fixed

priority hard real-time tasks,” Real-Time Syst., vol. 6, no. 2, pp. 133–151, 1994.

[21] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: An approach to

real-time synchronization,” IEEE Trans. Comput., vol. 39, no. 9, pp. 1175–1185, 1990.

[22] J. B. Goodenough and L. Sha, “The priority ceiling protocol: A method for minimizing the

blocking of high priority ada tasks,” in IRTAW ’88: Proceedings of the second international

workshop on Real-time Ada issues. New York, NY, USA: ACM Press, 1988, pp. 20–31.

[23] T. P. Baker, “Stack-based scheduling for real-time processes,” Real-Time Syst., vol. 3, no. 1,

pp. 67–99, 1991.

[24] J. Regehr, “Scheduling tasks with mixed preemption relations for robustness to timing

faults,” in RTSS ’02: Proceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS’02),

Austin, TX, 2002, p. 315.

[25] T. D. Burd and R. W. Brodersen, “Design issues for dynamic voltage scaling,” in ISLPED

’00: Proceedings of the 2000 international symposium on Low power electronics and design. Ra-

pallo, Italy: ACM Press, 2000.

[26] A. Ferre and J. Figueras, “On estimating leakage power consumption for submicron cmos

digital circuits,” 1995. [Online]. Available: citeseer.ist.psu.edu/687140.html

[27] T. D. Burd and R. W. Brodersen, “Energy efficient cmos microprocessor design,” in HICSS

’95: Proceedings of the 28th Hawaii International Conference on System Sciences. Kauai, HI:

IEEE Computer Society, 1995, p. 288.

[28] A.Qadi, S.Goddard, and S.Farritor, “A dynamic voltage scaling algorithm for sporadic

tasks,” in RTSS ’03: Proceedings of the 24th IEEE International Real-Time Systems Symposium.

Los Alamitos, CA, USA: IEEE Computer Society, 2003.

115

http://www.expresslogic.com
citeseer.ist.psu.edu/687140.html

[29] Y. Cao, H. Tomiyama, T. Okuma, and H. Yasuura, “Data memory design considering ef-

fective bitwidth for low-energy embedded systems,” in ISSS ’02: Proceedings of the 15th

international symposium on System Synthesis. Kyoto, Japan: ACM Press, 2002, pp. 201–206.

[30] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony, and R. Rajkumar, “Critical power

slope: Understanding the runtime effects of frequency scaling,” in ICS ’02: Proceedings of

the 16th international conference on Supercomputing, New York, NY, USA, 2002, pp. 35–44.

[31] V. Gutnik and A. P. Chandrakasan, “Embedded power supply for low-power dsp,” IEEE

Trans. Very Large Scale Integr. Syst., pp. 425–435, 1997.

[32] E. Nisley, “Rising tides,” Dr. Dobb’s Journal, vol. 346, 2003.

[33] G. Qu, “What is the limit of energy saving by dynamic voltage scaling?” in ICCAD ’01:

Proceedings of the 2001 IEEE/ACM international conference on Computer-aided design, San Jose,

California, 2001.

[34] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling algorithms with pace,”

in SIGMETRICS ’01: Proceedings of the 2001 ACM SIGMETRICS international conference on

Measurement and modeling of computer systems, Cambridge, Massachusetts, United States,

2001, pp. 50–61. [Online]. Available: citeseer.ist.psu.edu/lorch01improving.html

[35] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-power embedded

operating systems,” in SOSP ’01: Proceedings of the eighteenth ACM symposium on Operating

systems principles. Banff, Alberta, Canada: ACM Press, 2001, pp. 89–102.

[36] G. Quan and X. Hu, “Energy efficient fixed-priority scheduling for real-time systems on

variable voltage processors,” in DAC ’01: Proceedings of the 38th conference on Design au-

tomation. Las Vegas, Nevada, United States: ACM Press, 2001.

[37] A. Sinha and A. P. Chandrakasan, “Energy efficient real-time scheduling,” in ICCAD ’01:

Proceedings of the 2001 IEEE/ACM international conference on Computer-aided design. San

Jose, California: IEEE Press, 2001, pp. 458–463.

[38] Matlab 6.5, The MathWorks, 2003. [Online]. Available: http://www.themathworks.com

116

citeseer.ist.psu.edu/lorch01improving.html
http://www.themathworks.com

[39] AVR-GCC, 2005. [Online]. Available: www.avrfreaks.net/AVRGCC/

[40] AiSee Features, 2004. [Online]. Available: http://www.aisee.com/features.htm

[41] J. R. Levine, T. Mason, and D. Brown, Lex & Yacc (A Nutshell Handbook). Boston, MA,

USA: O’Reilly Media, 1992.

[42] R. Ghattas, ssRTOS: Singe-Stack RTOS with Preemption Threshold Support, 2006. [Online].

Available: http://www4.ncsu.edu/∼rghatta/ssrtos/

[43] J. J. Labrosse, Microc/OS-II, 2nd ed. CMP Books, 2002.

[44] R. Barry, Free Real-Time Operating System (FreeRTOS), 2006. [Online]. Available:

http://www.freertos.org/

[45] L. Barello, AvrX Real-Time Kernel, 2006. [Online]. Available: http://barello.net/avrx/

[46] A. Coombs, “Designing an efficient rtos for a resource-constrained 8-bit microprocessor,”

Tech. Rep., 2001. [Online]. Available: www.omimo.be

[47] R. Davis, N. Merriam, and N. Trace, “How embedded applications using an (rtos) can stay

within on-chip memory limits,” in In 12th Proceedings of Euromicro Conference on Real-Time

Systems, Maastricht, Netherlands, June 2000.

[48] W. Chen, Z. Wu, and X. Wang, “Minimizing memory utilization of task sets in smartosek,”

aina, vol. 02, pp. 552–558, 2005.

[49] Nucleus OSEK. [Online]. Available: http://www.mentor.com

[50] P. Gai, G. Lipari, and M. D. Natale, “Minimizing memory utilization of real-time task sets

in single and multi-processor systems-on-a-chip,” in RTSS ’01: Proceedings of the 22nd IEEE

Real-Time Systems Symposium (RTSS’01), London, UK, 2001, p. 73.

[51] S. Kim, S. Hong, and T.-H. Kim, “Perfecting preemption threshold scheduling for object-

oriented real-time system design: from the perspective of real-time synchronization,” in

LCTES/SCOPES ’02: Proceedings of the joint conference on Languages, compilers and tools for

embedded systems. Berlin, Germany: ACM Press, 2002, pp. 223–232.

117

www.avrfreaks.net/AVRGCC/
http://www.aisee.com/features.htm
http://www4.ncsu.edu/~rghatta/ssrtos/
http://www.freertos.org/
http://barello.net/avrx/
www.omimo.be
http://www.mentor.com

[52] D.-Z. He, F.-Y. Wang, and W. Li, “Dynamic preemption threshold scheduling for specific

real-time control systems,” in Proceedings. 2005 IEEE conference on Networking, Sensing and

Control. Beijing, China: IEEE Computer Society, 2005.

[53] W. Kim, J. Kim, and S. L. Min, “Preemption-aware dynamic voltage scaling in hard real-

time systems,” in Proceedings of the 2004 international symposium on Low power electronics

and design (ISLPED’04). Newport Beach, California, USA: ACM Press, 2004, pp. 393–398.

[54] M. Saksena, P. Karvelas, and Y. Wang, “Automatic synthesis of multi-tasking implemen-

tations from real-timeobject-oriented models,” in Third IEEE International Symposium on

Object-Oriented Real-Time Distributed Computing, Newport, CA, USA, 2002.

[55] J. Chen, A. Harji, and P. Buhr, “Solution space for fixed-priority with preemption thresh-

old,” in RTAS ’05: Proceedings of the 11th IEEE Real Time on Embedded Technology and Appli-

cations Symposium. San Francisco, CA: IEEE Computer Society, 2005, pp. 385–394.

[56] A. K. Mok, “Tracking real-time system requirements,” in 7th International Workshop on Real-

Time Computing and Applications Symposium (RTCSA 2000). Cheju Island, South Korea:

IEEE Computer Society, 2000.

[57] The Paparazzi Project. [Online]. Available: http://www.recherche.enac.fr/paparazzi/

[58] F. Nemer, H. Cass, P. Sainrat, J.-P. Bahsoun, and M. D. Michiel, “Papabench: a free real-

time benchmark,” in 6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis,

F. Mueller, Ed., Dresden, Germany, 2006.

[59] J. A. Fisher, P. Faraboschi, and C. Young, Embedded Computing : A VLIW Approach to Archi-

tecture, Compilers and Tools. Boston, NY, USA: Morgan Kaufmann, 2005.

[60] C. Chakrabarti and D. Gaitonde, “Instruction level power model of microcontrollers,”

in IEEE International Symposium on Circuits and Systems, 1999. [Online]. Available:

citeseer.ist.psu.edu/260043.html

[61] J. Shandle, “More for less: Stable future for 8-bit microcontrollers,” TechOnLine, 2004.

[Online]. Available: http://www.techonline.com

118

http://www.recherche.enac.fr/paparazzi/
citeseer.ist.psu.edu/260043.html
http://www.techonline.com

[62] M. Le, “8-bit microcontrollers: Still going . . .” EE Times, 2004. [Online]. Available:

http://www.eetimes.com

[63] O. Ozturk, M. Kandemir, and I. Kolcu, “Shared scratch-pad memory space management,”

in 7th International Symposium on Quality of Electronic Design (ISQED 2006). San Jose, CA:

IEEE Computer Society, 2006.

[64] N. Nguyen, A. Dominguez, and R. Barua, “Memory allocation for embedded systems with

a compile-time-unknown scratch-pad size,” in CASES ’05: Proceedings of the 2005 interna-

tional conference on Compilers, architectures and synthesis for embedded systems, San Fransisco,

CA, 2005, pp. 115–125.

[65] M. Verma, L. Wehmeyer, and P. Marwedel, “Dynamic overlay of scratchpad memory for

energy minimization,” in CODES+ISSS ’04: Proceedings of the 2nd IEEE/ACM/IFIP interna-

tional conference on Hardware/software codesign and system synthesis. Stockholm, Sweden:

ACM Press, 2004, pp. 104–109.

[66] J. D. Hiser and J. W. Davidson, “Embarc: An efficient memory bank assignment algorithm

for retargetable compilers,” in LCTES ’04: Proceedings of the 2004 ACM SIGPLAN/SIGBED

conference on Languages, compilers, and tools for embedded systems, Washington, DC, USA,

2004, pp. 182–191.

[67] S. Udayakumaran and R. Barua, “Compiler-decided dynamic memory allocation for

scratch-pad based embedded systems,” in CASES ’03: Proceedings of the 2003 international

conference on Compilers, architecture and synthesis for embedded systems, San Jose, California,

USA, 2003, pp. 276–286.

[68] O. Avissar, R. Barua, and D. Stewart, “Heterogeneous memory management for embed-

ded systems,” in CASES ’01: Proceedings of the 2001 international conference on Compilers,

architecture, and synthesis for embedded systems, Atlanta, Georgia, USA, 2001, pp. 34–43.

[69] M. Kandemir, J. Ramanujam, J. Irwin, N. Vijaykrishnan, I. Kadayif, and A. Parikh, “Dy-

namic management of scratch-pad memory space,” in DAC ’01: Proceedings of the 38th

119

http://www.eetimes.com

conference on Design automation. Las Vegas, Nevada, United States: ACM Press, 2001, pp.

690–695.

[70] M. Kandemir and A. Choudhary, “Compiler-directed scratch-pad memory hierarchy de-

sign and management,” in DAC ’02: Proceedings of the 39th conference on Design automation,

New Orleans, Louisiana, USA, 2002, pp. 628–633.

[71] J. Sjodin, B. Froderberg, and T. Lindgren, “Allocation of global data objects in on-chip

ram,” in In Proc. Workshop on Compiler and Architectural Support for Embedded Computer

Systems, 1998. [Online]. Available: citeseer.ist.psu.edu/sjodin98allocation.html

[72] J. Sjodin and C. von Platen, “Storage allocation for embedded processors,” in CASES ’01:

Proceedings of the 2001 international conference on Compilers, architecture, and synthesis for

embedded systems, Atlanta, Georgia, USA, 2001, pp. 15–23.

[73] O. Avissar, R. Barua, and D. Stewart, “An optimal memory allocation scheme for scratch-

pad-based embedded systems,” Trans. on Embedded Computing Sys., vol. 1, no. 1, pp. 6–26,

2002.

[74] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen, “Wcet centric data allocation to

scratchpad memory,” in RTSS ’05: Proceedings of the 26th IEEE International Real-Time Sys-

tems Symposium. Miami, Florida: IEEE Computer Society, 2005.

[75] E. G. Hallnor and S. K. Reinhardt, “A fully associative software-managed cache design,”

in ISCA ’00: Proceedings of the 27th annual international symposium on Computer architecture.

Vancouver, British Columbia, Canada: ACM Press, 2000, pp. 107–116.

[76] A. Dominguez, S. Udayakumaran, and R. Barua, “Heap data allocation to scratch-pad

memory in embedded systems,” Journal of Embedded Computing(JEC), 2005.

[77] The OSEK/VDX Standards. [Online]. Available: http://www.osek-vdx.org/

[78] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles, techniques, and tools. Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1986.

120

citeseer.ist.psu.edu/sjodin98allocation.html
http://www.osek-vdx.org/

[79] R. Ghattas and A. G. Dean, “Memory-optimal and robust preemption threshold

scheduling with improved system responsiveness,” Tech. Rep., 2006. [Online]. Available:

http://www.cesr.ncsu.edu/agdean/Papers/pts tech report.pdf.

[80] M-Core Reference Manual, 2005. [Online]. Available: www.freescale.com

[81] R. Venkatesan, S. Herr, and E. Rotenberg, “Retention-aware placement in dram (rapid):

software methods for quasi-non-volatile dram,” in Symposium on The Twelfth International

High-Performance Computer Architecture, 2006, 2006.

[82] E. K. P. Chong and S. H. *Zak, An Introduction to Optimization, New York, USA, 2002.

[83] E. Kreyszig, Introductory Functional Analysis with Applications, New York, USA, 1978.

[84] Montgomery and G. C. Runger, Applied Statistics and Probability for Engineers, New York,

NY, 1999.

121

http://www.cesr.ncsu.edu/agdean/Papers/pts_tech_report.pdf.
www.freescale.com

Appendices

122

Empirical Modeling of Proccesors

Energy Consumption

For completence, we list below the three relations the govern the energy and power consump-

toin of any CMOS based processor.

Edyn = CP fCLK V 2
CC ∆t (A-1a)

Estat = SP V 2
CC ∆t (A-1b)

max[fCLK] =
Kp (VCC − Vth)1.8

VCC
(A-1c)

To develop the needed imperial models, the microcontroller automated power analyzer or MAPA

(see section 2.4.6), in addition to the manufacturers data sheets, were used to determine the

current required for operation the circuit at different operating voltages. To start with, the

constants of proportionality CP and SP are to be estimated in a way that would minimize

the modeling error. Fortunately, finite-dimensional mathematical optimization along with sta-

tistical interference provide us with the needed framework to construct the needed unbiased

estimators[82, 83, 84]. Once the first two constant’s of proportionality have been estimated, we

proceed to obtain an estimate of our third and last constant of proportionality, namely KP , in a

very similar manner.

Before we proceed, we need to recall that the total energy dissipated by a CMOS ciruit is

123

given by the followiing expresoin:

ECMOS = CP fCLK V 2
CC ∆t + SP V 2

CC ∆t (A-2)

While the total power dissipated by a CMOS circuit is simply obtained by diffirenciating the

above expression to get:

PCMOS = CP fCLK V 2
CC + SP V 2

CC (A-3)

Moreover, the following expression presents the supply current ICC at the supply voltage VCC :

ICC = CP fCLK VCC + SP VCC (A-4)

Givent the above expression for the supply current ICC , we can proceed to construct a linear

optimization framework to estimate the reqiured parameters. To this end, note that equation

(A-4) relates the total supply current of a CMOS based circuit to its clock frequency/supply

voltage product linearly through the constant of proportionality, Cp, and to the supply voltage

alone (again linearly) through the constant of proportionality, Sp. In other words, that equation

can also be written as follows:

ICC =
[

fCLK × VCC VCC

]⎡⎢⎣ CP

SP

⎤
⎥⎦ (A-5)

Assuming that we have P data points for the supply current ICC at different clock frequencies

and operating voltages, then the following also holds for k = [1, 2, . . . , P]:

〈ICC〉k =
[
〈fCLK × VCC〉k 〈VCC〉k

]⎡⎢⎣ CP

SP

⎤
⎥⎦ (A-6)

124

We now define the following matrices and vectors:

AN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

〈fCLK × VCC〉1 〈VCC〉1
〈fCLK × VCC〉2 〈VCC〉2

...
...

〈fCLK × VCC〉P 〈VCC〉P

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

yP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

〈VCC〉1
〈VCC〉2

...

〈VCC〉P

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

x =

⎡
⎢⎣ CP

SP

⎤
⎥⎦ (A-7)

yhe symbols AP , yP , and x, were used to be consistent with the technical literature []. It

should be obvious that with the above definitions solving for our first two constants of pro-

portionality becomes simply solving the linear set of equations. Moreover, since rank(AP) =

2 < P , this is just a classical example of what is referred to as an over-determined set of linear

equations. A solution to the above problem can be found by finding some vector, x̂ = [ĈP ŜP]T

such that the difference, (i.e. error), between the actual values given by the vector yP , and the

calculated values given by ŷP = AP x̂ is minimal in some sense (as will be seen shortly, turns

out to be in least sum-of-squares sense).

Fortunately, this ends up to be a simple, finite-dimensional, optimization problem over the

complete inner-product space (more formally the P dimensional Hilbert space of real numbers

RP). Therefore, the principle of orthogonality holds, and there does exist a unique vector,

x̂ ∈ R2, such that the following holds:

‖eP ‖2 =
∥∥yP − ŷP

∥∥2 = ‖AP x − AP x̂‖2 ≤
∥∥yP − AP z

∥∥2 ∨ z ∈ R2 (A-8)

where ‖·‖2 is simply the square of the Euclidian length defined over RP , and for any vector

vT = [v1 v2 . . . vP] ∈ RP , is given by the following:

‖v‖2 =
P∑

i=1

(vi)2 (A-9)

Clearly, the above norm represents nothing more than the sum of the squared error, and min-

imizing such an error is usually referred to as a least-squares regression analysis problem, and in

the statistical jargon, it is referred to as a multiple linear regression analysis. The unique solution

125

to the above problem has been given in the literature by the following []:

x̂ =
(
AT

P AP

)−1
AT

P yP (A-10)

It was shown in the literature that the above estimate not only results in the lowest modeling

error (in the sun-of-squares sense), but it also posses some useful statistical properties as will

be explained in the next section when we establish the necessary statistical bounds on our

estimated parameters. Finally, once CP and SP have been calculated, we shall use (A-1c) to

calculate an estimate for our third and last constant of proportionality, namely, KP , using a

very similar procedure. Once the empirical models have been developed, statistical analysis

has been used to bound the estimation errors. The complete models developed have been

already presented in table 4.2.

126

	List of Tables
	List of Figures
	Introduction
	Efficient Utilization of Memory
	Hardware Control and Real-Time Predictability

	Efficient Utilization of Energy
	Motivation
	Thesis Contributions
	Thesis Outline

	Related Work and Tools
	Real-Time Systems Theory
	Real-Time System Model and Terminology
	Real-Time Scheduling Policies
	The Schedulability Problem
	Shared Resources
	Schedulability with Shared Resource

	Integrated Circuits Energy and Power Dissipation
	Modeling Power and Energy Dissipation

	Energy Dissipation in a Memory Hierarchy
	Energy and Power Management Techniques
	Real-Time Scheduling for Energy Management

	The DARTS Tool Chain
	Tool Chain Overview
	The AVR Static Analysis Tool
	The Preemption Threshold Scheduling and Simulation Toolbox
	The Optimal Multi-Tasking Allocation Toolbox
	The Single-Stack Real-Time Operating System
	The Microcontroller Automated Power Analyzer

	Optimizing Memory Utilization with PTS
	Related Work
	Unified Schedulability Analysis Framework
	System Notation
	Total Blocking
	Fixed-Priority PTS Schedulability
	Dynamic-Priority PTS Schedulability

	Stack Space Optimality of PTS
	Extensions to PTS
	Robustness Properties of PTS
	Improving System Responsiveness

	Case Studies and Simulations
	Chapter Summary

	Increasing Energy Efficiency in the Embedded Real-Time Domain
	Processors Energy Dissipation Models
	Microcontroller Sample
	Empirical Modeling of Processors Energy Consumption
	Simulation Assumptions
	Benchmarks
	Non-Power-Scheduled Workloads
	Power-Scheduled Workloads
	Simulation Methodology

	Results and Observations
	Workload-Independent Power Dissipation Characteristics
	Dynamic and Static Power Components
	Minimum Power Dissipation
	Switching Power Supply
	Voltage Transition Rates
	Energy Use without a Power Scheduler
	Energy Use with a Power Scheduler

	Chapter Summary

	Data Allocation with Real-Time Scheduling (DARTS)
	Related Work
	The Motivation behind DARTS
	Problem Description and Terminology
	Problem Formulation
	Allocation Granularity = Coarsest
	Allocation Granularity = Finest
	Preemption Limiting

	Simulation and Analysis
	Synthetic Workloads
	The Fly-By-Wire Workload
	The GScope Workload

	Chapter Summary

	Future Work
	Bibliography
	Appendices

