
Abstract

BEIER, JULIE CATHERINE. Crystals for Demazure Modules of Special Linear Quan-
tum Affine Algebras. (Under the direction of Kailash C. Misra.)

Kac-Moody Lie algebras, independently discovered in the 1960’s by Victor Kac

and Robert Moody, are infinite dimensional analogs of finite dimensional semisimple

Lie algebras. Affine Lie algebras form an important class of infinite dimensional Kac-

Moody Lie algebras with numerous applications in different areas of mathematics and

physics.

Quantum groups, discovered by both Drinfeld and Jimbo in the 1980’s, are q-

deformations of universal enveloping algebras of symmetrizable Kac-Moody Lie alge-

bras. The quantum groups associated with affine Lie algebras are called quantum

affine algebras. For ‘q’ generic and λ a dominant weight there exists a unique (up to

isomorphism) irreducible highest weight module V (λ) for the quantum affine algebra

Uq(g). For each w ∈ W, the Weyl group of g, there is a finite dimensional subspace

Vw(λ) of V (λ) called a Demazure module generated from the extremal weight vector

uwλ by the positive part of Uq(g).

The crystal B(λ) associated with V (λ) was introduced by Kashiwara and Lusztig



in the 1990’s. B(λ) provides an important tool to study the combinatorics of V (λ).

In 1993, Kashiwara showed that a suitable subset Bw(λ) of B(λ) is the crystal for the

Demazure module Vw(λ).

In this thesis we give an explicit realization of the Demazure crystals Bw(λ) for

the special linear quantum affine Lie algebra Uq(ŝl(n)) where w = w(k), k > 0, is

a suitable linear chain of Weyl group elements. This realization is given in terms of

certain combinatorial objects called extended Young diagrams.
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Chapter 1

Introduction

Symmetrizable Kac-Moody Lie algebras (cf. [9]) discovered independently by Victor

Kac [8] and Robert Moody [19] are the infinite dimensional analog of finite dimen-

sional semisimple Lie algebras. Affine Lie algebras form an important class of infinite

dimensional Kac-Moody Lie algebras with numerous applications in different areas of

mathematics and mathematical physics.

An affine Lie algebra, ĝ, associated with an indecomposable generalized Cartan

matrix C = (aij), i, j ∈ I = {0, 1, . . . , n − 1}, can be constructed explicitly from

the finite dimensional simple Lie algebra g with Cartan matrix C = (aij), i, j ∈ I =

{1, 2, . . . , n − 1}. For example, let g = sl(n, C) be the simple Lie algebra of n × n

trace zero matrices. Its Cartan matrix C = (aij), i, j ∈ I = {1, 2, . . . , n − 1}, is given

by aii = 2, aij = −1 for |j − i| = 1, and aij = 0 otherwise. The associated affine Lie

algebra, ŝl(n, C), is ĝ = sl(n, C) ⊗ C[t, t−1] ⊕ Cc ⊕ Cd where c is central and d is the

1



Chapter 1. Introduction

derivation 1 ⊗ t d
dt

with relations:

[x ⊗ ti, y ⊗ tj ] := [x, y] ⊗ ti+j + (i)(tr(xy))δi+j,0c ∀x, y ∈ g i, j ∈ Z

[d, x ⊗ ti] := d(x ⊗ ti) =

(
1 ⊗ t

(
d

dt

))
(x ⊗ ti) = i(x ⊗ ti)

[c, g] := 0 ∀g ∈ ĝ.

The Cartan matrix for ĝ is C = (aij), i, j ∈ I = {0, 1, . . . , n − 1}, given by aii = 2,

aij = −1 for |i− j| = 1, a0,n−1 = −1 = an−1,0 and aij = 0 otherwise. Notice that C sits

inside of C.

In this thesis we will focus specifically on the affine Lie algebra ĝ = ŝl(n), which

has the triangular decomposition ĝ = n− ⊕ h ⊕ n+, where h is the Cartan subalgebra

of ĝ. The subalgebra b = h ⊕ n+ is called the Borel subalgebra. This subalgebra plays

an important role in the construction of Demazure modules as discussed in Chapter 4.

Around 1985, Drinfeld [2] and Jimbo [6] independently introduced the quantum

group (also called quantized universal enveloping algebra) Uq(g) associated with a

symmetrizable Kac-Moody Lie algebra g. These quantum groups are neither groups nor

Lie algebras. They are q-deformations of the universal enveloping algebra U(g). Lusztig

[14] showed that for generic q (q not a root of unity), the combinatorial properties of the

integrable representations of g remain invariant under this deformation. In particular,

the weight space dimensions, and hence the characters, of the integrable representations

of g are the same as that of Uq(g).

Kashiwara [11, 12] and Lusztig [15, 16] independently introduced a basis called

“crystal basis” for the integrable representations of Uq(g) and proved their existence.

2



Chapter 1. Introduction

In particular, crystal basis provide a nice combinatorial tool to study invariants in the

representation space. Roughly, crystal basis can be thought of as a base at the q = 0

limit.

In 1990, Misra and Miwa [17] gave an explicit realization of the crystal basis for

the level one integrable highest weight representations of Uq(ŝl(n)) in terms of certain

combinatorial objects called “extended Young diagrams”. This construction was gen-

eralized to arbitrary level integrable highest weight representations of Uq(ŝl(n)) in [7].

An extended Young diagram can be thought of as a “colored Young diagram” with a

certain charge.

Let W =< r0, r1, . . . , rn−1 > denote the Weyl group for g generated by the simple

reflections r0, r1, . . . , rn−1. For a dominant weight λ ∈ P+, let V (λ) denote the inte-

grable highest weight Uq(g)-module with highest weight λ. For w ∈ W, it is known (see

[9]) that dim V (λ)wλ = dim V (λ)λ = 1. Let V (λ)wλ be spanned by uwλ. The Demazure

module Vw(λ) is the finite dimensional Uq(b)-submodule generated by the extremal

vector uwλ. For w, w′ ∈ W and w ≺ w′ (Bruhat order), we have Vw(λ) ⊆ Vw′(λ).

Further we have V (λ) =
⋃

w∈W

Vw(λ).

In 1993, Kashiwara [13] showed the existence of the crystal Bw(λ) for the Demazure

module Vw(λ) as a subset of the crystal B(λ) for the highest weight module V (λ). In [3],

Foda, Misra, and Okado gave an explicit realization of all Demazure crystals, Bw(λ),

for the quantum affine Lie algebra Uq(ŝl(2)) in terms of extended Young diagrams.

In [18], Demazure crystals, Bw(L)(Λ0), were constructed in terms of extended Young

diagrams for a certain linear chain of Weyl group elements w(L) and the level one

dominant weight Λ0.

3



Chapter 1. Introduction

In this thesis we extend this work. In Chapter 3, we will review the concepts

of crystal base and the realization given in [17] and [7] in terms of extended Young

diagrams. Then in Chapter 4, we extended the work from [18] to give an explicit

realization of Demazure crystals, Bw(L)(λ), for certain linear chains of Weyl group

elements w(L) and any dominant weight λ ∈ P+ in terms of extended Young diagrams.

In this process we give an explicit description for each extremal vector uw(L) in terms

of these diagrams.

4



Chapter 2

The Special Linear Quantum Affine

Algebra

In this chapter we discuss Kac-Moody Lie algebras and their representations. After

discussing each in general, we look specifically at the realizations of the affine special

linear Lie algebra and of its associated quantum group.

2.1 Lie Algebras, Universal Enveloping Algebras

and Representations

Definition 2.1.1. A vector space L over C is a Lie algebra if there is a bilinear

operation, called bracket, [ , ] : L × L → L such that:

1. [x, x] = 0 for all x ∈ L

2. [x, [y, z]]+ [y, [z, x]]+ [z, [x, y]] = 0 for all x, y, z ∈ L. This property is called the

5



Chapter 2. The Special Linear Quantum Affine Algebra

Jacobi identity.

In particular, the special linear Lie algebra, denoted as sl(n, C), is the set of n× n

traceless matrices with entries in C. The bracket for sl(n, C) is the commutator bracket;

i.e. [A, B] = AB − BA. Before considering this general case, consider Example 2.1.2.

Example 2.1.2. Consider sl(2, C), the set of 2 × 2 traceless complex matrices with

the commutator bracket. The standard basis for sl(2, C) is:





E =




0 1

0 0



 , F =




0 0

1 0



 , H =




1 0

0 −1










and the relations are:

[E, F ] = H, [H, E] = 2E, [H, F ] = −2F

Similarly we have a standard basis for sl(n, C). Let Ei,j denote the n by n matrix

with a one in the (i, j)-entry and zeros elsewhere. We define the following basis vectors:

Ei = Ei,i+1, Fi = Ei+1,i, Hi = Ei,i − Ei+1,i+1.

Then sl(n, C) =< Ei, Fi, Hi

∣∣i = 1, 2, . . . , n − 1 >.

The Jacobi identity demonstrates that in general L is not associative. However,

given L we can uniquely construct an associative algebra called the universal enveloping

algebra of L. This algebra is denoted as U(L).

Definition 2.1.3. Let L be a Lie algebra. A universal enveloping algebra of L is a

6



Chapter 2. The Special Linear Quantum Affine Algebra

pair (U(L), i) where U(L) is an associative algebra (and hence U(L) is a Lie algebra)

and i : L → U(L) is a Lie algebra homomorphism satisfying the universal property: If

(A, j) is another such pair (i.e. A is an associative algebra and j : L → A is a Lie

algebra homomorphism) then there exists a unique associative algebra homomorphism

φ : U(L) → A such that j = φ ◦ i. Pictorially:

U(L) A

<<

L

i j

∃! φ

Figure 2.1: Universal enveloping algebra

The universal enveloping algebra U(L) can be constructed as T (L)/ < x⊗ y − y ⊗

x− [x, y] > where T (L) is the tensor algebra of L and < x⊗ y − y ⊗ x− [x, y] > is the

ideal of T (L) generated by elements of the form x⊗ y − y ⊗ x− [x, y] for all x, y in L.

However, for a Kac-Moody Lie algebra we can realize U(L) in terms of generators and

relations. This is shown later in Proposition 2.2.3.

The following Poincare-Birkhoff-Whitt theorem, or PBW theorem, gives a basis for

U(L).

Theorem 2.1.4. [5] Let L be a Lie algebra with ordered basis {xα

∣∣α ∈ Ω}. Let U(L)

paired with j : L → U(L) be its universal enveloping algebra. Then {j(xα1) · · · j(xαn
)
∣∣

n ≥ 0, α1 ≤ α2 ≤ . . . ≤ αn, αi ∈ Ω} is a basis for U(L).

In particular, the map j : L → U(L) is an injective homomorphism.

7



Chapter 2. The Special Linear Quantum Affine Algebra

Corollary 2.1.5 illuminates how the direct sum of Lie algebras manifests in the

universal enveloping algebra.

Corollary 2.1.5. Suppose that L is the direct sum of L1 and L2 as Lie algebras (i.e.

g1 + g2, h1 + h2 ∈ L1 ⊕ L2 = L then [g1 + g2, h1 + h2] = [g1, h1] + [g2, h2]). Then we

have the following natural isomorphism of associative algebras:

U(L) ∼= U(L1) ⊗ U(L2).

We now investigate the representation theory of Lie Algebras.

Definition 2.1.6. Let L be a Lie algebra over C and V a vector space over C. Then:

1. A representation of L on V is a Lie algebra homomorphism φ : L → gl(V ).

2. V is an L-module if there is a bilinear operation from L × V into V given by

(x, v) 7→ x · v such that [x, y] · v = x · (y · v)− y · (x · v) for all x, y ∈ L and v ∈ V .

Given a representation of L on V , namely φ, we can view V as an L-module by

x · v = φ(x)v for all x ∈ L and v ∈ V . Similarly if V is an L-module we can also say

that there is a representation of L on V using φ : L → gl(V ) defined by φ(x)v = x · v

for all x ∈ L and v ∈ V .

Example 2.1.7. Let L = sl(2, C) =< E, F, H > and V = C2 =< v1, v2 >. Then V is

an L-module under matrix multiplication.

E · v1 = Ev1 = 0 F · v1 = Fv1 = v2 H · v1 = Hv1 = v1

E · v2 = Ev2 = v1 F · v2 = Fv2 = 0 H · v2 = Hv2 = −v2

8



Chapter 2. The Special Linear Quantum Affine Algebra

Similarly, we can view this as a representation of L on V by φ : L → gl(V ) where:

φ(E)v1 = 0 φ(F )v1 = v2 φ(H)v1 = v1

φ(E)v2 = v1 φ(F )v2 = 0 φ(H)v2 = −v2

There is a natural way to extend a representation of L to a representation of U(L).

Similarly a representation of U(L) induces a representation on L. Thus the represen-

tation theory of L is similar to that of U(L).

2.2 Affine Kac-Moody Lie Algebras

Affine Lie algebras are a generalization of finite dimensional semisimple Lie algebras.

These affine Lie algebras are constructed from generators and relations which are based

on a special matrix, called a generalized Cartan matrix (GCM).

Definition 2.2.1. Let C = (aij) be an (n − 1) × (n − 1) matrix (indexed by I =

{1, 2, . . . , n − 1}) with integer entries. We call C a generalized Cartan matrix if it

satisfies the following:

1. aii = 2 for all i ∈ I

2. aij ≤ 0 for i 6= j, i, j ∈ I

3. aij = 0 iff aji = 0 for all i, j ∈ I

If C satisfies the additional requirement that it is positive definite then the matrix is

called a Cartan matrix.

9



Chapter 2. The Special Linear Quantum Affine Algebra

If there exists a permutation σ of the indices of C such that

C′ = (aσ(i)σ(j)) =




C1 0

0 C2





then C is called decomposable. If no such σ exists, C is called indecomposable. Since

any decomposable matrix can be realized as the direct sum of indecomposable matrices,

it suffices to consider only generalized Cartan matrices that are indecomposable.

Theorem 2.2.2. [9] Let C be an (n−1)×(n−1) indecomposable GCM. Then C belongs

to exactly one of the following categories:

Finite Type There exists a column vector θ ∈ Zn−1 of positive integers such that Cθ

is a column vector of positive integers. In particular, C is positive definite.

Affine Type There exists a column vector θ ∈ Zn−1 of positive integers such that

Cθ = 0. In particular, C is semi-positive definite with corank 1.

Indefinite Type There exists a column vector θ ∈ Zn−1 of positive integers such that

Cθ is a column vector of negative integers. In particular, C is negative definite.

A generalized Cartan matrix, C, is symmetrizable if there exists an invertible di-

agonal matrix, D = diag(s1, s2, . . . , sn−1), (all si > 0) and a symmetric matrix B such

that C = DB. All GCMs of finite and affine type are symmetrizable. Here after we

assume all GCMs to be both symmetrizible and indecomposable.

There is a correspondence between Cartan matrices and Dynkin diagrams. All of

the Dynkin diagrams are classified for symmetrizable generalized Cartan matrices of

finite and affine type (see [9]).

10
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Let C = (aij), i, j ∈ I = {1, . . . , n − 1}, be a Cartan matrix (i.e. a positive definite

GCM). The triple (h, Π, Π̌) is a realization of C if:

• h is a complex vector space of dimension n.

• Π = {αi

∣∣i ∈ I} ⊂ h∗ is a basis for h∗.

• Π̌ = {α̌i

∣∣i ∈ I} = {Hi

∣∣i ∈ I} ⊂ h is a basis for h.

• αj(Hi) =< αj , Hi >= aij for i, j ∈ I

We can now construct the appropriate Lie algebra. Let C be a Cartan matrix

and (h, Π, Π̌) be a realization of C, as defined previously. Let g(C) be the Lie algebra

generated by Ei, Fi (i ∈ I = {1, . . . , n − 1}), and h with relations:

• [Ei, Fj ] = δijHi for i, j ∈ I

• [H, H ′] = 0 for H, H ′ ∈ h

• [H, Ei] = αi(H)Ei for H ∈ h, i ∈ I

• [H, Fi] = −αi(H)Fi for H ∈ h, i ∈ I

• (ad(Ei))
(1−aij )(Ej) = 0 for i, j ∈ I, i 6= j

• (ad(Fi))
(1−aij )(Fj) = 0 for i, j ∈ I, i 6= j

Then g(C) is a finite dimensional Lie algebra. This Lie algebra is also called the Kac-

Moody Lie algebra of finite type associated with C. The generators Ei and Fi (i ∈ I) are

called the Chevalley generators, and the subalgebra h is called the Cartan subalgebra

(CSA). The rank of the Cartan matrix is called the rank of g(C).

11



Chapter 2. The Special Linear Quantum Affine Algebra

Similarly, there is a realization for generalized Cartan matrices of affine type. Let

C = (aij), i, j ∈ I = {0, 1, . . . , n − 1}, be a generalized Cartan matrix of rank n − 1.

The triple (h, Π, Π̌) is a realization of C if:

• h is a complex vector space with dimension n + 1.

• Π = {αi

∣∣i ∈ I} ⊂ h∗ is linearly independent.

• Π̌ = {α̌i

∣∣i ∈ I} = {hi

∣∣i ∈ I} ⊂ h is linearly independent.

• αj(hi) =< αj, hi >= aij for i, j ∈ I

Again we can construct the Lie algebra associated with C using the triple (h, Π, Π̌)

as defined in the last realization. Let g(C) be the Lie algebra generated by ei, fi

(i ∈ I = {0, 1, . . . , n − 1}), and h with relations:

• [ei, fj ] = δijhi for i ∈ I

• [h, h′] = 0 for h, h′ ∈ h

• [h, ei] = αi(h)ei for all h, h′ ∈ h (2.2)

• [h, fi] = −αi(h)fi for all h, h′ ∈ h

• (ad(ei))
(1−aij )(ej) = 0 for i, j ∈ I, i 6= j

• (ad(fi))
(1−aij )(fj) = 0 for i, j ∈ I, i 6= j

Then g(C) is called the Kac-Moody Lie algebra of affine type associated with C. Since

C is affine, g(C) is also called an affine Lie algebra. Again the ei and fi (i ∈ I) are

12



Chapter 2. The Special Linear Quantum Affine Algebra

called the Chevalley generators, and the subalgebra h is called the Cartan subalgebra.

Also, as before, the rank of the generalized Cartan matrix is called the rank of g(C).

Notice that the constructions are similar for the Cartan matrix and for the GCM

of affine type. It is important to note that we have chosen to label the finite type

generators with capital letters, as we did when discussing sl(n) previously, while we

are labeling the affine type generators with lower case letters. Also the affine type

Cartan matrix has size n × n with generators indexed by 0 to n − 1, while the finite

type Cartan matrix has size (n − 1) × (n − 1) with generators indexed by 1 to n − 1.

More details about this construction can be found in [9]. In fact, this same con-

struction can be carried out for any symmetrizable GCM.

For ease of notation, we simply denote g(C) as g.

Once we have the GCM associated with a Lie algebra g we can explicitly realize

the universal enveloping algebra U(g) in terms of generators and relations.

Proposition 2.2.3. [4] The universal enveloping algebra U(g) of g with generalized

Cartan matrix C = (aij)i,j∈I and realization (h, Π, Π̌) is the associative algebra over C

with unity generated by Ei, Fi (i ∈ I) and T = span{Hi} satisfying the relations:

1. HH ′ = H ′H for H, H ′ ∈ T

2. EiFj − FjEi = δijHi for i, j ∈ I

3. HEi − EiH = αi(H)Ei for H ∈ T, i ∈ I

4. HFi − FiH = −αi(H)Fi for H ∈ T, i ∈ I

5.
1−aij∑
k=0

(−1)k
(
1−aij

k

)
E

1−aij−k

i EjE
k
i = 0 for i 6= j

13
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6.
1−aij∑
k=0

(−1)k
(
1−aij

k

)
F

1−aij−k

i FjF
k
i = 0 for i 6= j

Recall the realization (h, Π, Π̌) of C. The set Π is the root basis and its elements

are called simple roots. Similarly, Π̌ is the co-root basis and its elements are called

simple co-roots. The root lattice and the positive root lattice are respectively defined

as:

Q =
⊕

i∈I

Zαi and Q+ =
⊕

i∈I

Z≥0αi

There is a partial ordering, ≥, on Q defined by α ≥ β if and only if α−β ∈ Q+ for

any α, β ∈ Q.

Using the Chevalley generators we can see g contains |I| copies of sl(2, C). For

each i ∈ I, let g(i) = Cei + Cfi + Chi. Then g(i) is isomorphic to sl(2, C) with basis

{ei, fi, hi} and relations: [ei, fi] = hi, [hi, ei] = 2ei, [hi, fi] = −2fi.

The roots give a useful decomposition of g as described below.

Definition 2.2.4. Let g be a Kac-Moody Lie algebra with realization (h, Π, Π̌). For

α ∈ h∗ define

gα = {g ∈ g
∣∣[h, g] = α(h)g for all h ∈ h}.

If gα 6= {0} and α 6= 0, then α is called a root and gα is a root space. Notice that g0 = h.

The dimension of gα is the multiplicity of the root α. The height of α =
∑

αi∈Π

biαi ∈ Q

is
∑
i∈I

|bi| and is denoted as ht(α).

Let ∆ denote the set of roots of g. Since any root is a linear combination of

the simple roots with either all positive or all negative coefficients, the set of roots

splits into the set of positive roots, ∆+ = ∆ ∩ Q+, and the set of negative roots

14
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∆− = ∆ ∩ −Q+ = −∆+. The Lie algebra g has a root space decomposition:

g =

(
⊕

α∈∆

gα

)

⊕ h

Further we know that gαi
= Cei and g−αi

= Cfi.

Additionally there exists an automorphism η : g → g called the Chevalley involution

given by η(ei) = −fi, η(fi) = −ei and η(h) = −h for all h ∈ h. Thus for all α ∈ ∆+,

η(gα) = g−α, mult(α) = mult(−α) and ∆− = −∆+.

Define the following subalgebras of g:

n+ =
⊕

α∈∆+

gα

n− =
⊕

α∈∆−

gα

Then the triangular decomposition of g is g = n+ ⊕ h ⊕ n−. The Borel subalgebra b is

b = n+ ⊕ h. Thus g = b ⊕ n−. Further we see that n+ is generated by the ei’s and n−

is generated by the fi’s.

Given a symmetrizable generalized Cartan matrix, C = DB where D =

diag{s1, s2, . . . , sn−1} (or D = diag{s0, s1, . . . , sn−1} for affine type), there is an asso-

ciated bilinear form on h.

Let C = (aij), i, j ∈ I = {1, . . . , n − 1}, be a symmetrizable GCM of finite type.

Define the bilinear form (·|·) on h = span{Hi

∣∣i ∈ I} by:

(Hi|H) = siαi(H) for i ∈ I, H ∈ h

15
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Now let C = (aij), i, j ∈ I = {0, 1, . . . n − 1}, be a symmetrizable GCM of affine

type. Define the bilinear form (·|·) on h = span{h0, h1, . . . , hn−1, d} by:

(hi|h) = siαi(h) for i ∈ I, h ∈ h

(hi|d) = αi(d) for i ∈ I

In each case, (·|·) is a non-degenerate, invariant, symmetric, bilinear form. This

form induces a non-degenerate, invariant, symmetric, bilinear form on h∗ through the

vector space isomorphism ν : h → h∗ defined by ν(h)(h′) = (h|h′). We use (·|·) to

denote the bilinear form on both h and h∗. We also have that (αi|αj) = bij = aij/si

for αi, αj ∈ Π.

Additionally, (·|·) can be uniquely extended to a non-degenerate, invariant, sym-

metric, bilinear form on g. This form on g has the following properties:

For α, β ∈ ∆, g ∈ gα, g′ ∈ gβ, (g, g′) = 0 whenever α + β = 0

and (ei, fj) = δijsi

Given a Kac-Moody Lie algebra g there is an associated group of reflections called

the Weyl group, denoted by W. For i ∈ I, we define ri on h∗ by ri(λ) = λ−λ(hi)αi. ri is

called a simple reflection. The Weyl group, W, is the subgroup of Aut(h∗) generated by

the set of simple reflections. Notice that ri(αi) = −αi. The Weyl group is particularly

important in Chapter 4.

Let w be any Weyl group element. Then w can be written as the product of simple

16
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reflections, i.e. w =
t∏

j=1

rij for some positive integer t. w is a reduced expression if t is

minimal and t is then called the length of w. We let l(w) denote the length of w.

If g is a Kac-Moody Lie algebra of finite type, then all of the roots are in the Weyl

orbit of simple roots. In other words, for all α ∈ ∆, there exits a w ∈ W such that

w(α) = αi for some i ∈ I. Additionally, in this case, we have that if α is a root, kα

is a root only if k is 1 or -1. Notice that this says that the multiplicity of any root is

one. However, this is not true in either the affine or indefinite case.

If g is a Kac-Moody Lie algebra that is not of finite type, we have some roots

that are Weyl conjugate to a simple root and some that are not. If a root is W-

conjugate to αi, for some i, we say it is a real root. Otherwise, it is an imaginary root.

Imaginary roots may have multiplicity greater than one. In addition, integer multiples

of imaginary roots may also be roots. The set of real roots is denoted by ∆re and the

set of imaginary roots as ∆im. Notice that ∆ = ∆re ⊔ ∆im.

If g is of affine type, there is a root δ such that δ(h) = 0 for all h ∈ h. This

root is called the null root. The null root is imaginary. In fact in the affine case

∆im = {kδ|k ∈ Z}.

The PBW theorem tells us that U(g) also has a triangular decomposition. Namely,

U(g) = U−(g) ⊗ U0 ⊗ U+(g) = U(n−) ⊗ U(h) ⊗ U(n+)

Similar to the root lattice we define the weight lattice as:

P = {λ ∈ h∗
∣∣λ(hi) ∈ Z, hi ∈ Π̌}
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The set of dominant weights is defined as :

P+ = {λ ∈ P |λ(hi) ∈ Z≥0}

Finally we define the coweight lattice as:

P̌ = HomZ(P, Z)

Note that hi ∈ P̌ by defining hi(λ) = λ(hi) for all i ∈ I.

Let V be a g-module. Then, similar to the root spaces, we define weight spaces.

Definition 2.2.5. For λ ∈ h∗, define

Vλ = {v ∈ V
∣∣h · v = λ(h)v for all h ∈ h}

Vλ is called the λ weight space. If Vλ 6= {0}, we call λ a weight. The dimension of Vλ

is called the weight multiplicity of λ in V and is denoted as multV (λ). We denote the

set of weights of V as wt(V ).

If V has a weight space decomposition, i.e. V =
⊕

λ∈h∗
Vλ, it is called a weight module.

If each of the weight spaces is finite dimensional, the character of V is defined as:

ch V =
∑

λ∈h∗

(dimVλ)e
λ

For λ, µ ∈ P , we say λ ≥ µ if λ − µ ∈ Q+. We use this partial ordering of P

to define the set D(λ). For λ ∈ P+, D(λ) = {µ ∈ P
∣∣µ ≤ λ}. We say that D(λ) is

18
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dominated by λ.

We are interested in modules from a certain category. The category O is the set of

weight modules V over g for which there exists a finite number of elements, λ1, . . . , λs,

such that wt(V ) ⊂ D(λ1) ∪ · · · ∪ D(λs). The morphisms for O are homomorphisms.

Category O is closed under finite direct sums, finite tensor products and quotients.

Of particular interest are elements of category O called highest weight modules.

Definition 2.2.6. (cf. [4]) A weight module V is a highest weight module of highest

weight λ ∈ h∗ if there exists a nonzero vector uλ ∈ V , called a highest weight vector,

such that:

ei(uλ) = 0 for all i ∈ I

huλ = λ(h)uλ for all h ∈ h

V = U(g)uλ

We denote this highest weight module as V (λ).

In fact, if V (λ) is a highest weight module then V (λ) = U(g)vλ
∼= U−(g)vλ. Further

the dimension of V (λ)λ is 1 and the dimension of V (λ)µ < ∞ for all µ. V (λ) has its

own weight space decomposition, namely:

V (λ) =
⊕

µ≤λ

V (λ)µ

Example 2.2.7. Let L = sl(2, C) as in Example 2.1.2. Let V (λ) be the irreducible

highest weight module of L with highest weight λ ∈ C and highest weight vector vλ.
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Then λ ∈ Z≥0 and V (λ) is λ + 1 dimensional with basis {vi}i=0,...,λ where

vi =
f i(vλ)

k!
.

Now let g again be any Kac-Moody Lie algebra. Let V (λ) be an integrable highest

weight g-module with highest weight λ and highest weight vector uλ. For each λ ∈

h∗, there exits a unique (up to isomorphism) highest weight module called a Verma

module, denoted by M(λ). The Verma module M(λ) has the property that any highest

weight g-module is a quotient of M(λ). M(λ) has a unique maximal submodule, N(λ).

M(λ)/N(λ) is the irreducible highest weight module V (λ) with highest weight λ. In

fact, every irreducible g-module in category O is isomorphic to M(λ)/N(λ) for some

λ ∈ h∗.

Given a weight module V over g, we call V integrable if all ei and fi, (i ∈ I), are

locally nilpotent on V . We also say that a weight is integral if λ(hi) ∈ Z for all i ∈ I.

Recall that the set of integral weights is contained in the weight lattice P . Now we can

define an important subcategory of O called Oint.

Definition 2.2.8. [4] The category Oint consists of integrable g-modules in the category

O such that wt(V ) ⊂ P .

Note that Verma modules, although in category O, are not in Oint. However, each

irreducible integrable module is a highest weight module. If g is of affine type, the

integrable modules are direct sums of irreducible integrable modules.

Another important property of Oint concerns the Weyl group. If V ∈ Oint and λ is
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a weight of V , then for any Weyl element, w ∈ W:

dim(Vλ) = dim(Vwλ)

From now on we use V (λ) to refer to these irreducible highest weight modules of g

in Oint.

2.2.1 The Affine Special Linear Case

We now consider the realization of the affine special linear Lie algebra, ŝl(n). Note

that this is also denoted by A
(1)
n−1. We consider the base field to be C unless otherwise

specified.

Consider the Cartan matrix C = (aij), i, j ∈ I = {0, 1, . . . , n − 1}, with:

aii = 2 for all i ∈ I

ai,j = −1 for all i, j ∈ I such that |i − j| = 1

a0,n−1 = −1 = an−1,0

0 otherwise

C is the generalized Cartan matrix for ŝl(n). Notice we use the index set I =

{0, 1, . . . , n − 1} for C. It is clear that C is indecomposable. Also we see that C is of

affine type with θ = (1, 1, . . . , 1)T .

The Dynkin diagram for ŝl(n) is:
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Figure 2.2: Dynkin diagram for ŝl(n)

Now we construct the triple (h, Π, Π̌) as previously discussed. So the root basis

is Π = {α0, α1, . . . , αn−1} and αj(hi) = aij for all i, j ∈ I. The coroot basis is Π̌ =

{h0, h1, . . . , hn−1} ⊂ h. g = ŝl(n) can then be constructed from the generators ei and

fi (i ∈ I) with relations 2.2. For example, [h1, e2] = α2(h1)e2 = a12e2 = −e2.

Alternatively g = ŝl(n) can be constructed from L = sl(n). Recall that L =

< Ei, Fi, Hi

∣∣i = 1, 2, . . . , n − 1 > and is endowed with the commutator bracket. The

affine Lie algebra ŝl(n) is:

g = ŝl(n) = sl(n) ⊗ C[t, t−1] ⊕ Cc ⊕ Cd

where c is central and d is the derivation 1⊗ t d
dt

. The bracket structure on g is defined

as follows:

[x ⊗ ti, y ⊗ tj ] := [x, y] ⊗ ti+j + (i)(tr(xy))δi+j,0c ∀x, y ∈ L i, j ∈ Z

[d, x ⊗ ti] := d(x ⊗ ti) =

(
1 ⊗ t

(
d

dt

))
(x ⊗ ti) = i(x ⊗ ti)

[c, g] := 0 ∀g ∈ g
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In this realization we have the following generating elements for g:

e0 = F0 ⊗ t ei = Ei ⊗ 1

f0 = E0 ⊗ t−1 fi = Fi ⊗ 1

h0 = −H0 ⊗ 1 + c hi = Hi ⊗ 1

The central element is c = h0+h1+. . . hn−1. The CSA, or maximal toral subalgebra,

is h = spanC{hi, d|i ∈ I}. The simple roots then act on h as follows, αj(hi) = aij for

i, j ∈ I and αj(d) = δj0. Notice that the null root is δ = α0 + α1 + · · ·+ αn−1. Now g

is affine and has the imaginary roots ∆im = {kδ
∣∣k ∈ Z}.

As before the root lattice is

Q =
⊕

i∈I

Zαi = Zα0 + Zα1 + · · · + Zαn−1

and the positive root lattice is

Q+ =

n−1⊕

i∈I

Z≥0αi.

Let ∆ be the set of all roots. Again, gαi
= span{ei} and g−αi

= span{fi}. Additionally

we know that ŝl(n) has the triangular decomposition ŝl(n) = n+ ⊕h⊕n−, as discussed

previously.

Notice that C is symmetric. So the invertible diagonal matrix D discussed previously

is the identity. In other words, si = 1 for all i ∈ I. Thus the non-degenerate, invariant,
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symmetric, bilinear form, (·|·) on h is defined by:

(hi|h) = αi(h) for all i ∈ I, h ∈ h

(hi|d) = αi(d) = δi0 for all i ∈ I

This form is extended to a bilinear form on h∗. Then (αi|αj) = aij for all αi, αj ∈ Π.

Extending the form further to a non-degenerate, invariant, symmetric, bilinear form

on g, we have that

For α, β ∈ ∆, g ∈ gα, g′ ∈ gβ, (g, g′) = 0 whenever α + β = 0

and (ei, fj) = δij

Denote the fundamental weights of ŝl(n) by Λi ∈ h∗ where Λi(hj) = δi,j and Λi(d) =

0, for all i, j ∈ I. Then P = ZΛ0 ⊕ . . . ⊕ ZΛn−1 ⊕ Zδ is the weight lattice and

P+ = {λ ∈ P
∣∣λ(hi) ∈ Z≥0} ⊂ P is the set of dominant weights. The coweight lattice

is P̌ = spanZ{hi, d
∣∣i ∈ I} ( h.

For any dominant weight λ we can assume, without loss of generality, that λ =
n−1∑
i=0

kiΛi since V (λ + lδ) ∼= V (λ) ⊗ V (lδ) and dim V (lδ) = 1.

2.3 Quantum Groups

Now we will look at the quantum group associated with g or the quantized univer-

sal enveloping algebra, Uq(g), corresponding to the symmetrizable generalized Cartan
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matrix C = (aij). Recall that C = DB, where D = diag(s0, s1, . . . , sn−1) and B is

symmetric. There are many similarities between the universal enveloping algebra and

Uq(g), particularly when ‘q’ is generic (i.e. not a root of unity).

Assume q to be a generic parameter that is not a root of unity (i.e. qs = 1 if and

only if s = 0). For each n ∈ Z, we define the corresponding q-integer, [n]q, as:

[n]q =
qn − q−n

q − q−1

Next we define the factorial of a q-integer to be:

[0]q! = 1 [n]q! = [n]q[n − 1]q · · · [1]q

For every n, m ∈ Z where 0 ≤ n ≤ m, we define the corresponding q-binomial coeffi-

cient,
[
m

n

]
q
, as: [

m

n

]

q

=
[m]q!

[n]q![m − n]q!

Observe that as q approaches 1, [n]q → n, [n]q! → n! and
[
m

n

]
q
→
(

m

n

)
.

Definition 2.3.1. (cf. [4]) Define the quantum group Uq(g) associated with the sym-

metrizable generalized Cartan matrix C to be the associative algebra over Q(q) with
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unity generated by {qt, ei, fi

∣∣i ∈ I, t ∈ P̌} with the following defining relations:

(i) q0 = 1, qtqt′ = qt+t′ for all t, t′ ∈ P̌

(ii) qteiq
−t = qαi(t)ei for all t ∈ P̌ , i ∈ I

(iii) qtfiq
−t = q−αi(t)fi for all t ∈ P̌ , i ∈ I

(iv) eifj − fjei = δi,j

(
Ki−K−1

i

q−q−1

)
i, j ∈ I

(v)
1−aij∑
n=0

(−1)n
[
1−aij

n

]
qi
e
1−aij−n

i eje
n
i = 0 i 6= j

(vi)
1−aij∑
n=0

(−1)n
[
1−aij

n

]
qi
f

1−aij−n

i fjf
n
i = 0 i 6= j

where qi = qsi and Ki = qsihi.

Note that lim
q→1

Uq(g) = U(g).

Example 2.3.2. Again consider the Lie algebra L = sl(2, C) as in Example 2.1.2.

Uq(sl(2, C)) is the associative algebra over Q(q) with generators {e, f, q±h} and rela-

tions:

qheq−h = q2e, qhfq−h = q−2f, [e, f ] =
qh − q−h

q − q−1
.

Recall that g(i) = Cei + Chi + Cfi is isomorphic to sl(2, C). Similarly, Uq(g(i)) is

isomorphic to Uq(sl(2, C)).

Uq(g) has both root space and triangular decompositions (see [4]):

Uq(g) =
⊕

α∈Q

(Uq)α where (Uq)α = {u ∈ Uq(g)
∣∣qhuq−h = qα(h)u for all h ∈ P̌}

Uq(g) = Uq(n
−) ⊗ Uq(h) ⊗ Uq(n

+) = Uq(n
−)Uq(b)
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Uq(g) has a Hopf algebra structure (as does U(g)). Let ρ denote the comultiplica-

tion, ǫ the counit, and S the antipode. The structure is defined as follows:

• ρ(qh) = qh ⊗ qh for all h ∈ P̌

• ρ(ei) = ei ⊗ K−1
i + 1 ⊗ ei for all i ∈ I

• ρ(fi) = fi ⊗ 1 + Ki ⊗ fi for all i ∈ I (2.3)

• ǫ(qh) = 1, ǫ(ei) = ǫ(fi) = 0 for all i ∈ I, h ∈ P̌

• S(qh) = q−h, S(ei) = −eiKi, S(fi) = −K−1
i fi for all i ∈ I, h ∈ P̌

As discussed in [4], the representation theory of Uq(g) is similar to that of the

Kac-Moody Lie algebra g. Below we will discuss a few of the important features of

Uq(g).

Let V q be a Uq(g)-module.

Definition 2.3.3.

V q
λ = {v ∈ V q

∣∣qhv = qλ(h)v for all h ∈ P̌}

If V q
λ 6= {0}, λ is a weight of V q and V q

λ is a weight space. v ∈ V q
λ is called a weight

vector. If eiv = 0 for all i ∈ I, v is called a maximal vector.

V q, a Uq(g)-module, is a weight module if it admits a weight space decomposition.

Namely,

V q =
⊕

λ∈P

V q
λ .
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Theorem 2.3.4. (cf. [4]) If λ ∈ P+ and V q(λ) is the irreducible highest weight Uq(g)-

module with highest weight λ, then as q → 1, V q(λ) → V 1(λ) = V (λ), the irreducible

highest weight module V (λ) over U(g) with highest weight λ.

The category Oq consists of weight modules V q over Uq(g) with finite dimensional

weight spaces for which there exists a finite number of elements λ1, . . . , λs ∈ P such

that

wt(V q) ⊂ D(λ1) ∪ . . . ∪ D(λs).

A weight module V q(λ) is a highest weight module with highest weight λ ∈ P if

there exists a nonzero vector uλ ∈ V q such that

eiuλ = 0 for all i ∈ I

qtuλ = qλ(t)uλ for all h ∈ P̌

V q(λ) = Uq(g)uλ

uλ is still called the highest weight vector and is unique up to scalar multiple. Again

dim V q(λ)λ = 1, dim V q(λ)µ < ∞ for all µ and V q(λ) admits its own weight space

decomposition as a direct sum of weight spaces ,V q(λ) =
⊕
µ<λ

V q(λ)µ.

We again can define Verma modules and their maximal submodules in the same

manner as before.

Now we define the category Oq
int.

Definition 2.3.5. (cf. [4]) The category Oq
int consists of Uq(g)-modules V q satisfying

the following conditions:
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• V q has a weight space decomposition V q =
⊕
λ∈P

V q
λ , where V q

λ = {v ∈ V q|qhv =

qλ(h)v} and dimV q
λ < ∞ for all λ ∈ P

• There exist a finite number of elements λ1, . . . , λs ∈ P such that

wt(V q) ⊂ D(λ1) ∪ . . . ∪ D(λs)

• All ei and fi, i ∈ I are locally nilpotent on V q

The morphisms are Uq(g)-module homomorphisms.

Again we are interested in irreducible integrable highest weight modules, V q(λ).

Set e
(k)
i = ek

i /[k]qi
! and f

(k)
i = f

(k)
i /[k]qi

!. These are called the divided powers

of ei and fi. For the case of Uq(ŝl(n)), qi = q since si = 1. Thus e
(k)
i = ek

i /[k]q! and

f
(k)
i = f

(k)
i /[k]q!. Let V q(λ) be an irreducible highest weight Uq(g)-module with highest

weight λ. Then, by Uq(sl(2))-representation theory, for any element v in the µ weight

space V q
λ = V q(λ)µ, we can uniquely write v as

v =
∑

k≥0

f
(k)
i vk

where vk ∈ ker(ei)∩V q
µ+kαi

. We use this to define the endomorphisms ẽi and f̃i, called

the Kashiwara operators, on V (λ) as:

ẽi(v) =
∑

k≥1

f
(k−1)
i vk
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f̃i(v) =
∑

k≥0

f
(k+1)
i vk

These Kashiwara operators have great significance in later chapters.

2.3.1 The Quantum Affine Special Linear Case

Now consider this in light of the quantum affine special linear algebra, Uq(ŝl(n)). Recall

Definition 2.3.1 of quantum group. Since the si are the entries of the invertible diagonal

matrix D which symmetrizes the Cartan matrix, each si = 1 for ŝl(n). So qi = q and

Ki = qhi. Thus in the case of Uq(ŝl(n)), conditions (iv), (v) and (vi) in 2.3.1 simplify

to:

(iv) eifj − fjei = δi,j

(
qhi−q−hi

q−q−1

)
i, j = 0, 1, . . . , n − 1

(v)
1−aij∑
n=0

(−1)n
[
1−aij

n

]
q
e
1−aij−n

i eje
n
i = 0 i 6= j

(vi)
1−aij∑
n=0

(−1)n
[
1−aij

n

]
q
f

1−aij−n

i fjf
n
i = 0 i 6= j

Similarly the relations for the Hopf algebra structure labeled 2.3 simplify to:

• ρ(qh) = qh ⊗ qh for all h ∈ P̌

• ρ(ei) = ei ⊗ q−hi + 1 ⊗ ei for all i ∈ I

• ρ(fi) = fi ⊗ 1 + qhi ⊗ fi for all i ∈ I

• ǫ(qh) = 1, ǫ(ei) = ǫ(fi) = 0 for all i ∈ I, h ∈ P̌

• S(qh) = q−h, S(ei) = −eiq
hi, S(fi) = −q−hifi for all i ∈ I, h ∈ P̌

The representation theory discussed previously carries over with no modification

needed. For ease of notation, we supress the superscript q in subsequent chapters.
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Additionally, we now only consider the cases where L = sl(n) and g = ŝl(n). The

quantum group that we consider is Uq(ŝl(n)).
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Chapter 3

Crystal Base

In this chapter we give the definition of crystal base then realize crystals for irreducible

highest weight modules of Uq(ŝl(n)) in terms of combinatorial objects called extended

Young diagrams. Recall that a crystal basis can be roughly thought of as a base at the

q = 0 limit of Uq(g).

3.1 Crystal Base

Let V be an integrable Uq(g)-module. Recall, by Uq(sl(2))-representation theory, for

each i, any v ∈ Vλ can be written as v =
∑
k≥0

f
(k)
i vk where f

(k)
i = fk

i /[k]q! and vk ∈

ker ei ∩ Vλ+kαi
. Also recall that the Kashiwara operators are the endomorphisms ẽi

and f̃i on V defined by :

ẽi(v) =
∑

k≥1

f
(k−1)
i vk and f̃i(v) =

∑

k≥0

f
(k+1)
i vk.
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Define A to be the set of rational functions without poles in Q(q). i.e.

A =

{
f(q)

g(q)
∈ Q(q)

∣∣g(0) 6= 0

}

Kashiwara [11, 13] defines a pair (L, B) to be a crystal base of the integrable Uq(g)-

module V if L is an A-lattice of V and B is a Q-base of L/qL satisfying:

• L =
⊕
λ∈P

Lλ where Lλ = L ∩ Vλ and V = Q(q) ⊗A L

• B =
⋃

λ∈P

Bλ where Bλ = B ∩ (Lλ/qLλ) 6= {0}

• ẽiL ⊂ L and f̃iL ⊂ L

• ẽiB ⊂ B ⊔ {0} and f̃iB ⊂ B ⊔ {0}

• For b, b′ ∈ B, b′ = f̃ib if and only if b = ẽib
′

The crystal graph associated with (L, B) is a color oriented graph with B the set

of vertices and i-colored arrows defined by b
i

−→ b′ if and only if f̃ib = b′. B is called

the crystal for V .

Note that A is an integrable domain with its fraction field Q(q).

Let V (λ) be an irreducible highest weight module of Uq(ŝl(n)) with highest weight

vector uλ. Then the crystal base (L(λ), B(λ)) is given by [18]:

L(λ) =
∑

l>0
i1,...,il∈I

Af̃i1 · · · f̃iluλ,

B(λ) = {f̃i1 · · · f̃iluλ mod qL(λ)
∣∣l ≥ 0, i1, . . . , il ∈ I}\{0}.
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B(λ) can be explicitly realized in terms of some combinatorial objects called extended

Young diagrams [7]. This realization is discussed later in the chapter.

Let V (λ) be a highest weight Uq(ŝl(n))-module with crystal base (L(λ), B(λ)).

Then for b ∈ B(λ), set

ǫi(b) = max{k ≥ 0
∣∣ẽk

i b 6= 0}

φi(b) = max{k ≥ 0|f̃k
i b 6= 0}

If ǫi(b) = 0 for all i ∈ I, then ẽi(b) = 0 for all i ∈ I. We call such a b ∈ B(λ) a highest

weight element.

Crystal bases behave well over tensor product as seen in the following theorem.

Theorem 3.1.1. [11] Let (Lj , Bj) be a crystal base of an integrable Uq(g)-module Vj

for j = 1, 2. Set L = V1 ⊗A V2, B = {b1 ⊗ b2|bj ∈ Bj}. Then (L, B) is a crystal base

of V1 ⊗ V2 where the Kashiwara operators ẽi and f̃i act as follows.

ẽi(b1 ⊗ b2) =






ẽib1 ⊗ b2 ifφi(b1) ≥ ǫi(b2)

b1 ⊗ ẽib2 ifφi(b1) < ǫi(b2)

f̃i(b1 ⊗ b2) =






f̃ib1 ⊗ b2 ifφi(b1) > ǫi(b2)

b1 ⊗ f̃ib2 ifφi(b1) ≤ ǫi(b2)

Now abstracting the properties of crystal base, we define a crystal as follows.

Definition 3.1.2. [10] A crystal is a set B with maps ẽi, f̃i : B ∪ {0} → B ∪ {0} with
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the following properties for each i ∈ I.

ẽi0 = 0 = f̃i0

For all b ∈ B, i ∈ I, there is an n ∈ Z>0 such that ẽn
i b = 0 = f̃n

i b

For all b, b′ ∈ B, i ∈ I, b′ = f̃ib if and only if b = ẽib
′

We say that a crystal B is P weighted if B =
⋃

λ∈P

Bλ and for each i ∈ I, b ∈ Bλ the

following hold:

ẽib ∈ Bλ+αi
∪ {0}

f̃ib ∈ Bλ−αi
∪ {0}

λ(hi) = φi(b) − εi(b)

In the next subsection we discuss extended Young diagrams and use these to realize

B(λ), the crystal for the highest weight module V (λ).

3.2 Extended Young Diagram Realization

Extended Young diagrams are basically colored Young tableau and are associated with

a sequence rather than a partition. More formally, we have the following definition:

Definition 3.2.1. [18] An extended Young diagram, Y = (yk)k≥0, is a weakly increas-

ing sequence with integer entries such that there exists some fixed y∞ with yk = y∞ for

k >> 0. We call y∞ the charge of the extended Young diagram Y .

Example 3.2.2.

Y = (−4,−3,−1,−1, 1, 1, . . .)
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−4 ≤ −3 ≤ −1 ≤ −1 ≤ 1 ≤ 1 . . . and charge y∞ = 1

With each sequence, we associate a diagram in the following way. Draw Y in the

Z × Z right half-plane as a diagram of connected columns where each column has

depth yi. Then truncate the diagram at the charge height and fill in boxes. A general

illustration of this process is in Figure 3.1 and a specific example follows. At this point,

since color has not yet been assigned, it is important to keep track of the charge.
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Y = (y1, y2, . . . , yk−1, yk, . . .)

= (y1, y2, . . . , yk−1, y∞, y∞, . . .)

xy

. .
.

y∞

y1

y2

yk−1
-Truncate

. .
.

. .
.

y∞

Figure 3.1: General extended Young diagram construction

Example 3.2.3.

Y = (−4,−3,−1,−1, 1, 1, . . .)

0

//

y∞ = 1

Figure 3.2: Extended Young diagram construction for Y = (−4,−3,−1,−1, 1, 1, . . .)

Denote a k-tuple of extended Young diagrams, (Y1, Y2, . . . , Yk), by Y .
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Let |Y |, called the width of Y , denote the number of boxes in the top, or widest,

row of Y . |Y| is the maximum of the |Yi| for i = 1, 2, . . . , k.

We define the diagonal number of each box to be d = a + b where (a,b) is the

coordinate of either the upper-left or lower-right corner of the box. Then we color each

box with the i-color if d ∼= i mod n. There are n colors labeled 0, 1, . . . , n − 1, one

corresponding to each simple root. If n > 2, we will forgo coloring the box and denote

an i-colored box as i . Notice that the charge color will always be the color of the

top left box since this box has coordinates (0, y∞). In addition, all boxes on the same

diagonal will have the same color.

Example 3.2.4.

Y = (−2,−1,−1, 1, 1, . . .) and n = 3

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

d
=

0

d
=

3

d
=

1

d
=

1

d
=

2

d
=

2

d
=

-1

q

q

q

q

q

q

q

q

q

q

q

q

q

q

(0, −2)

(0, −1) (1,
−
1)

(2,
−
1)

(3, −1)

(0, 0)

(0, 1) (1, 1) (2, 1)

(3, 0)

(3, 1)

(1,
−
2)

//

1 2 0

0 1 2

2

Figure 3.3: Extended Young diagram for Y = (−2,−1,−1, 1, 1, . . .) and n = 3

We define the weight of Y , denoted by wt(Y ), by

wt(Y ) = Λcharge −
n−1∑

i=0

miαi
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where mi is the number of i-colored boxes in Y . So in the previous example, the wt(Y )

is Λ1 − 2α0 − 2α1 − 3α2. The weight of a k-tuple, Y , is defined as: wt(Y) =
k∑

i=1

wt(Yi).

In order to describe the action of the Kashiwara operators, we define corners and

i-signatures. A corner occurs in a diagram, Y = (yi)i≥0, whenever yk 6= yk+1. A corner

may be convex, , meaning that it is occupied by a box, or concave, , meaning that

it is empty. Now we construct i-signatures, one corresponding to each color.

Definition 3.2.5. [18] The (reduced) i-signature of a k-tuple of extended Young dia-

grams, Y = (Y1, Y2, . . . , Yk), is a sequence ε = (ε0, ε1, . . . , εm) such that:

1.
k∑

j=1

#{i − corners of Yj} = m

2. Each corner, r, is assigned a pair (d(r), j(r)), where d(r) = the diagonal number

and j(r) = the index of the diagram containing the corner.

3. The corners, ri, are ordered in the following way: r1 < r2 iff (d(r1), j(r1)) >

(d(r2), j(r2)) where we define (d, j) > (d′, j′) iff either (i) d > d′ or (ii) d = d′

and j < j′.

4. Each εr = 0 or 1; εr = 0 if the corresponding corner is concave and εr = 1 if the

corner is convex.

5. All (0, 1) pairs are recursively deleted.

Example 3.2.6. Let n = 3. Consider Y = (Y1, Y2, Y3) where Y1 = (−1, 0, 0, . . .),

Y2 = (−1, 0, 1, 1, . . .), and Y3 = (0, 0, 2, 2, . . .). Y is in B(Λ0 +Λ1 +Λ2). Notice that the

diagram charges ‘agree’ with λ = Λ0 + Λ1 + Λ2; i.e. the charge of Y1 is 0, the charge
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of Y2 is 1 and the charage of Y3 is 2. This notion of agreement between the charges of

the Yi and the weight λ will be discussed in more detail later.
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Y =




0 , 1 2

0
, 2 0

1 2





Figure 3.4: Y as in Example 3.2.6; Y ∈ B(Λ0 + Λ1 + Λ2)

Labeling each corner with (d, j) we have:




0 , 1 2

0
, 2 0

1 2





r

rr

(1,1)

(0,1)(-1,1)

r

rr

rr

(3,2)

(2,2)
(1,2)

(0,2)(-1,2)

r

rr

(4,3)

(2,3)(0,3)

Figure 3.5: Y , as in Example 3.2.6, labeled with pairs (d, j)

The ordering defined previously gives the following order for each set of colored

corners in this example:

0 − corners : (3, 2) > (0, 1) > (0, 2) > (0, 3)

1 − corners : (4, 3) > (1, 1) > (1, 2)

2 − corners : (2, 2) > (2, 3) > (−1, 1) > (−1, 2)

Completing the i-signatures by assigning the appropriate 0’s and 1’s, we get:

ε0(Y) = (0, 1, 1, 0) (1, 0)

ε1(Y) = (0, 0, 0)

ε2(Y) = (1, 1, 0, 0)

We now define the actions of the Kashiwara operators ẽi and f̃i on Y . Let Y =
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(Y1, Y2, . . . , Yk) and Y ′ = (Y ′
1 , Y

′
2 , . . . , Y

′
k) be two k-tuples of extended Young diagrams.

Then we define the actions of ẽiY = Y ′ and f̃iY = Y ′ if and only if [18]:

• The charge of Yj is the same as the charge of Y ′
j for j = 1, 2, . . . k.

• εi = (ε1, . . . , εm) and ε′i = (ε′1, . . . , ε
′
m) are the i-signatures of Y and Y ′ respec-

tively.

• The number of reductions (or # of (0,1) pairs deleted) to achieve the signature

for εi and ε′i are the same. Additionally the index of each deletion should be the

same. In other words, if (εj, εj+1) was deleted during the reduction of εi, the

corresponding pair, (ε′j, ε
′
j+1), must have been deleted during the reduction of ε′i.

• To define ẽi(Y) = Y ′, ∃k such that ε′k = 0 and εk = 1 or to define f̃i(Y) = Y ′,

∃k such that ε′k = 1 and εk = 0. In addition, for either case, the following is

satisfied:

εj = ε′j = 1 for all j < k

εj = ε′j = 0 for all j > k.

If no such Y ′ exists, we define the action to be 0. If Y ′ does exist, the actions are

defined as follows:

• ẽi(Y) deletes an i-colored box of Y such that the last 1 in the i-signature becomes

a 0

• f̃i(Y) adds an i-colored box to Y such that the first 0 in the i-signature becomes

a 1
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It is clear that the action of ẽi increases the weight of Y by αi and the action of f̃i

decreases the weight of Y by αi.

Example 3.2.7. Let Y be defined as in the previous example. It is easy to verify that

ẽi and f̃i act as follows:

ẽ0 (Y) =




0 , 1 2 , 2 0

1 2




f̃0 (Y) =





0 , 1 2

0
, 2 0

1 2

0





ε0 = (0, 1, 0, 0) (0, 0) ε0 = (0, 1, 1, 1) (1, 1)

ẽ1 (Y) = 0 f̃1 (Y) =




0 , 1 2

0
, 2 0 1

1 2





ε1 = (1, 0, 0)

ẽ2 (Y) =




0 , 1 2

0
, 2 0

1



 f̃2 (Y) =




0

2
, 1 2

0
, 2 0

1 2





ε2 = (1, 0, 0, 0) ε2 = (1, 1, 1, 0)

Figure 3.6: Action of the Kashiwara operators on Y as in Example 3.2.6

Using the Kashiwara operators, we can construct the crystal B(λ) corresponding

to the highest weight module V (λ). Say λ = k0Λ0 + k1Λ1 + . . . + kn−1Λn−1. Since the
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crystal is a highest weight crystal, and the f̃i lower the weight by adding boxes, we

begin with a sequence of k = k0 + k1 + . . . + kn−1 (empty) concave corners. The first

k0 corners have charge 0, the next k1 corners have charge 1 and so on. Next we apply

each of the f̃i. This repeated application creates B(λ).

Example 3.2.8. Following is a partial crystal graph of B(Λ0 + Λ1) when n = 2. In

this example the zero color is white and the one color is black. The action of f̃0 is

indicated by a down-left arrow and the action of f̃1 is indicated by a down-right arrow.
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We say that two extended Young diagrams, Y and Y ′, are contained in each other

if they are contained as diagrams. i.e. Y ⊆ Y ′ if yi ≥ y′
i for all i. For k-tuples, Y ⊆ Y ′

if Yj ⊆ Y ′
j for j = 1, 2, . . . , k.

Define Y [n] to be a shift of the diagram Y by n units. If Y = (y1, y2, . . .) then

Y [n] = (y1 + n, y2 + n, . . .). Note that for any extended Young diagram Y , Y [n] ⊂ Y

if n > 0, Y [n] = Y if n = 0, and Y [n] ⊃ Y is n < 0.

Given the need for the charge of Yi to appropriately correspond to the weight, as

disccussed in Example 3.2.6, we define the set of appropriate diagrams Y(λ).

Definition 3.2.9. Let λ = Λγ1 + Λγ2 + . . . + Λγk
with 0 ≤ γ1 ≤ . . . ≤ γk ≤ n − 1.

Define Y(λ) = {Y = (Y1, Y2, . . . , Yk)
∣∣Yi has charge γi}.

Jimbo, Misra, Miwa and Okado used these defnitions to give an explicit realization

for all of the Y in the highest weight crystal.

Theorem 3.2.10. [7] Let B(λ) be the crystal for the highest weight Uq(ŝl(n)) module

V (λ). Then

B(λ) = {Y ∈ Y(λ)
∣∣Y1 ⊇ Y2 ⊇ . . . ⊇ Yk ⊇ Yk+1 = Y1[n],

and for each j > 0, ∃ some 1 ≤ i ≤ k s.t. (Yi+1)j 
 (Yi)j+1}

Example 3.2.11. We can use this theorem to find all possible tuples in a specific

B(λ). For example, let n = 2 and λ = Λ0 + Λ1. Consider the weight space for

µ = λ − 2α0 − 2α1. Following is a table containing the potential 2-tuples of diagrams

for B(λ) with weight µ.
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Table 3.1: All possible tuples of weight Λ − 2α0 − 2α1 in B(Λ0 + Λ1)

I II III IV

(

,

) 

 ,







 ,





(

,

)

(

,

) 

 ,







 ,







 ,





(

,

) 


,








,







 ,





(

,

) 



,









,







 ,








,








,





Column (I) contains all diagrams of weight µ that are indeed in B(λ), so they satisfy

both of the conditions of Theorem 3.2.10. Column (II) contains all of the diagrams

which fail the first required containment, Y1 ⊇ Y2. Column (III) contains diagrams

which fail the second required containment, Y2 ⊇ Y3 = Y1[2]. The final column, (IV),

contains all diagrams which fail the inequality condition of Theorem 3.2.10.
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Since these are all of the possible diagrams constructed from two white and two black

boxes with the charge of Y1 = 0 and the charge of Y2 = 1, we see that the dimension of

V (λ)µ is four.

Let B(λ) denote the crystal for the highest weight Uq(ŝl(n))-module V (λ). We

define the subset BL(λ) as:

BL(λ) = {Y ∈ B(λ)
∣∣|Y| ≤ L}

This subset proves to be important in Chapter 4.
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(
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)

(

,

) (

,

)

(

,

)

(

,

)

(

,

)

(

,

)

(

,

)

(

,

)



 ,





(

,

)

(

,

)

(

,

)

(

,

)



 ,







 ,





(

,

)

(

,

)

(

,

)

(

,

)

(

,

)



 ,





(

,

)



 ,







 ,





...



 ,





(

,

)

(

,

)

(

,

)

(

,

)

(

,

)



 ,





(

,

)

...



 ,







 ,





...

f̃0 f̃1

Figure 3.7: Partial crystal graph of B(Λ0 + Λ1) when n = 2
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Demazure Crystals

In this chapter we discuss Demazure modules and their corresponding crystals. Then

we present new results which provide an explicit realization of a large class of these

modules in terms of extended Young diagrams.

Recall that g can be decomposed into a Borel subalgebra and a negative piece,

g = b⊕ n−. Let W be the Weyl group of g, W =< r0, r1, . . . , rn−1 >. It is known that

1 = dim V (λ)λ = dim V (λ)wλ for any w ∈ W (see [9]). Since the dimension is one, let

uwλ be the basis vector for V (λ)wλ. This vector is called the extremal vector. Then

the Demazure module associated with w is Vw(λ) = Uq(b)uwλ.

These Demazure modules, Vw(λ), are finite dimensional subspaces of V (λ). Further

they satisfy the following:

V (λ) =
⋃

w∈W

Vw(λ)

Vw(λ) ⊆ Vw′(λ) for all w � w′ (Bruhat order) , w, w′ ∈ W
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In 1993, Kashiwara [13] proved that the crystal for Vw(λ), denoted as Bw(λ), is a

subset of the highest weight crystal B(λ) for V (λ). Specifically, he showed that for

w ∈ W, there exits a subset Bw(λ) ⊂ B(λ) such that

Vw(λ) ∩ L(λ)

Vw(λ) ∩ qL(λ)
=

⊕

b∈Bw(λ)

Qb

where (L(λ), B(λ)) is the crystal base for V (λ). The set Bw(λ) is the crystal for the

Demazure module Vw(λ).

Further, the Demazure crystal Bw(λ) has the following recursive property: If

w ≺ riw (Bruhat order), then

Briw(λ) = {f̃m
i b
∣∣m ≥ 0, b ∈ Bw(λ), ẽib = 0}\{0}.

The condition that ẽib = 0 can be removed from the requirements for this recursive

property.

The crystal Bw(λ) can be constructed in terms of exended Young diagrams using

two different methods. The first, which comes from the construction of the Demazure

module, is to find the extremal vector uwλ then act on it by the ẽi’s. In order to use

this construction one must know the extremal vector explicitly.

The second construction is due to the recursive property mentioned above. Using

this property, we can construct the crystal using only the f̃i’s. Recall that for w ∈ W,

w = rim . . . ri2ri1 is a reduced expression for some simple reflections and some m. Thus,

by the recursive property, to find Bw(λ) we must act by f̃i1 exhaustively, then by f̃i2

and so on.
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We define φi to be a concave (or empty) corner of color i. The superscript i will

be supressed when the color is understood. A k-tuple of φi in Y(λ) is denoted as Φ.

Note that Φ is the top tuple in the higheset weight crystal B(λ) and corresponds to

the highest weight vector uλ.

We use the notation wΦ to mean the k-tuple of extended Young diagrams Y ∈ Y(λ)

which corresponds to uwλ, where uwλ is the basis vector for V (λ)wλ. Similarly, we say

that w acting on Φ creates the set of diagrams in the crystal Bw(λ).

Example 4.0.12. Let n = 3 and λ = 2Λ0. Consider the Demazure crystal Br0r1r2r0(λ).

The recursive property tells us that the Demzaure crystal can be constructed by letting

f̃0 act exhaustively on Φ, then f̃2 acting exhaustively on all existing diagrams, followed

by f̃1 and finally finished with f̃0. This construction is indicated in Figure 4.1 with

solid downward arrows.

By the construction of Demazure modules, the Demazure crystal can also be realized

by letting the ẽi act on the extremal element r0r1r2r0Φ. It turns out that

r0r1r2r0Φ =





0 1

2 0

1

0

, 0 1

2 0

1

0





.

This construction is also indicated in Figure 4.1. The extremal element is located

in the bottom left and the dashed upward arrows represent the action of the ẽi’s.
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Figure 4.1: The crystal graph for the Demazure module Vr0r1r2r0(2Λ0) when n = 3
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ẽ0

ẽ1

ẽ2
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Recall that the Weyl group is W =< r0, r1, . . . , rn−1 >. For j ∈ Z, define rj = rj′

when j′ = j mod n. The Dynkin diagram (see Figure 2.2) of g has an automorphism

which rotates the nodes. This induces an automorphism, σ, on the Weyl group which

acts as follows: σ(rj) = rj+1.

Define w(k) for k ∈ Z≥0 as follows:

w(0) = 1 wk = rn−k+1 . . . rn−2rn−1r0

We refer to Weyl group elements consisting of linear chains of simple reflections in

this order as reverse ordered. Let w(L) = wL(n−1). Notice that the length of w(L) is

L(n − 1). We also have that the length of w(L) equals the length of σ(w(L)).

Let Bw(λ) be the crystal for the Demazure module Uq(b)uwλ where uwλ is the basis

vector for V (λ)wλ. We use the remainder of this chapter to describe Demazure modules

of the form Bw(L)(λ) in terms of extended Young diagrams.

Recall the notation conventions established in Chapter 3. Y = (Yi), i ∈ I =

{1, 2, . . . , k}, is a k-tuple of extended Young diagrams. Each Yi = (y1, y2, . . . , ym, y∞

, y∞, . . .) where the charge of Yi is y∞.

Given Theorem 3.2.10, we realize that successive columns of an extended Young

diagram in B(λ) can differ in height by no more than n − 1 boxes. This corollary is

useful later.

Corollary 4.0.13. Let Y ∈ B(λ). Then 0 ≤ (Yi)j+1 − (Yi)j ≤ n − 1 for

1 ≤ i ≤ k, j > 0.

Proof.
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Notice (Yi)j+1 − (Yi)j ≤ n− 1 if and only if (Yi)j+1 − (Yi)j < n if and only if (Yi)j+1 <

(Yi)j + n, for all i, j. Assume there exists an 1 ≤ i0 ≤ k and j0 such that (Yi0)j0+1 ≥

(Yi0)j0 + n.

Clearly we have the following containments:

. . . ⊇ Yk[−n] ⊇ Y1 ⊇ Y2 ⊇ . . . ⊇ Yk ⊇ Y1[n] ⊇ Y2[n] ⊇ . . . ⊇ Yk[n] ⊇ Y1[2n] ⊇ . . .

Define Yi for all i ∈ Z by Yi = Yp+mk = Yp[mn] where 1 ≤ p ≤ k.

Clearly (Yi)j+1 − (Yi)j ≥ 0, else (Yi)j+1 < (Yi)j which contradicts Y an extended

Young diagram.

Observe that the conditions in Theorem 3.2.10 are as follows:

(∗) Y1 ⊇ Y2 ⊇ . . . ⊇ Y1[n] ⇔ (Yi+1)j ≥ (Yi)j ∀i, j

(∗∗) For each j, ∃ ij s.t. (Yij+1)j > (Yij)j+1 1 ≤ ij ≤ k

Fix j = j0. Consider each of the three cases.

Case 1: i0 < ij

(Yi0)j0+1 ≥ (Yi0)j0 + n = (Yi0+k)j0 by assumption

≥ (Yi0+k−1)j0 ≥ . . . ≥ (Yij+1)j0 by (∗)

	 (Yij)j0+1 by (∗∗)

≥ (Yij−1)j0+1 ≥ . . . ≥ (Yi0)j0+1 by (∗)

So (Yi0)j0+1 	 (Yi0)j0+1, which is a contradiction.

Case 2: i0 = ij

55



Chapter 4. Demazure Crystals

(Yi0)j0+1 ≥ (Yi0)j0 + n = (Yi0+k)j0 by assumption

≥ (Yi0+k−1)j0 ≥ . . . ≥ (Yij+1)j0 by (∗)

	 (Yij)j0+1 = (Yi0)j0+1 by (∗∗)

So (Yi0)j0+1 	 (Yi0)j0+1, which is a contradiction.

Case 3: i0 > ij

We have assumed (Yi0)j0+1 ≥ (Yi0)j0 + n, so (Yi0)j0+1 − n = (Yi0−k)j0+1 ≥ (Yi0)j0 .

(Yi0−k)j0+1 ≥ (Yi0)j0 by assumption

≥ (Yi0−1)j0 ≥ . . . ≥ (Yij+1)j0 by (∗)

	 (Yij)j0+1 by (∗∗)

≥ (Yij−1)j0+1 ≥ . . . ≥ (Yi0−k)j0+1 by (∗)

So (Yi0−k)j0+1 	 (Yi0−k)j0+1, which is a contradiction.

Therefore, (Yi)j+1 − (Yi)j ≤ n − 1 for 1 ≤ i ≤ k, j > 0.

Recall the construction of Bw(L)(λ) based on the construction of Demazure modules

requires knowledge of the extremal element. We can explicitly describe the extremal

element w(L)Φ for the case of λ = kΛ0 using the following lemma.

Lemma 4.0.14. The extremal vector wL(n−1)Φ in B(kΛ0) is Y = (Y1, Y2, . . . , Yk) where

Yi =
(
− L(n − 1),−(L − 1)(n − 1), . . . ,−(n − 1), 0, 0, . . .

)
, i = 1, 2, . . . , k.

Proof.

Let Φ = (φ1, φ2, . . . , φk) with the charge of each φi equal to zero. Define b = n − (L −

1)(n − 1) mod n.

Let L = 1. Then b = 0. Consider w(n−1)Φ = r2 . . . rn−1r0Φ.

Notice the signatures of Φ are non-existent except for when i = 0. Further, ε0 =

εb = (0, 0, . . . , 0︸ ︷︷ ︸
k

) where each zero corresponds to a concave 0-corner φi. Note that
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0 = b where b = n − (L − 1)(n − 1) mod n. It is clear from ε0 that r2 . . . rn−1r0Φ =

r2 . . . rn−2rn−1

(
f̃k

0 Φ
)
.

Now, f̃k
0 Φ = (f̃0φ1, f̃0φ2, . . . , f̃0φk) and each f̃0φi = (−1, 0, 0, . . .). Notice the fol-

lowing about f̃k
0 Φ:

• r0Φ = f̃k
0 Φ =

(
0 , 0 , . . . , 0

)

• ε0 = (1, 1, . . . , 1︸ ︷︷ ︸
k

) = εb

• ε1 = (0, 0, . . . , 0︸ ︷︷ ︸
k

) = εb+1; And since r1 = rb+1 does not appear in the remaining

chain of reflections, r2 . . . rn−1, ε1 will remain all 0’s (although the signature

length may increase).

• εn−1 = (0, 0, . . . , 0︸ ︷︷ ︸
k

) = εb−1

• All other εi are non-existent.

By the ε1 comments it is clear that |w(1)Φ| = 1, thus we know by the previous

corollary, Corollary 4.0.13, that each Yi can have no more than n− 1 boxes. In fact we

now show that each Yi has precisely depth n − 1.

The (n − 1)-signature makes it clear that r2 . . . rn−1r0Φ = r2 . . . rn−2rn−1

(
f̃k

0 Φ
)

=

r2 . . . rn−2

(
f̃k

n−1f̃
k
0 Φ
)
. Now f̃k

n−1f̃
k
0 Φ =

(
f̃n−1f̃0φ1, f̃n−1f̃0φ2, . . . , f̃n−1f̃0φk

)
and each

f̃n−1f̃0φi = (−2, 0, 0, . . .).

Similar to above we observe the following about f̃k
n−1f̃

k
0 Φ:

• rn−1r0Φ = f̃k
n−1f̃

k
0 Φ =

(
0

n-1
,

0
n-1

, . . . ,
0
n-1

)
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• ε1 = εb+1 = (0, 0, . . . , 0︸ ︷︷ ︸
k

)

• εn−1 = εb−1 = (1, 1, . . . , 1︸ ︷︷ ︸
k

)

• εn−2 = εb−2 = (0, 0, . . . , 0︸ ︷︷ ︸
k

)

• All other εi are non-existent.

Repeating this process to the n − 1 step, we see:

r2 . . . rn−1r0Φ = f̃k
2 . . . f̃k

n−1f̃
k
0 Φ =

(
f̃2 . . . f̃n−1f̃0φ1, f̃2 . . . f̃n−1f̃0φ2, . . . , f̃2 . . . f̃n−1f̃0φk

)

and f̃2 . . . f̃n−1f̃0φi =
(
− (n − 1), 0, 0, . . .

)
for each i.

Representing this visually,

r2 . . . rn−1r0Φ = f̃k
2 . . . f̃k

n−1f̃
k
0 Φ =





0
n-1
...
2

,

0
n-1
...
2

, . . . ,

0
n-1
...
2





Thus w(n−1)Φ = w(1)Φ = (Y1, Y2, . . . , Yk) where each Yi =
(
− (n−1), 0, 0, . . .

)
and

the lemma holds for L = 1.

Assume that it holds for L − 1. i.e. Assume that w(L−1)(n−1)Φ = w(L − 1)Φ =

(Y1, Y2, . . . , Yk) where Yi =
(
− (L− 1)(n− 1),−(L− 2)(n− 1), . . . ,−(n− 1), 0, 0, . . .

)
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for each i. Graphically,

Yi =(L−1)(n−1)

8
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>
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>
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>
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>

>

>
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. .

. .
. .
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x





n−1

where x = (L − 2) − (n − 2)

Notice that b + 1 mod n = n − (L − 1)(n − 1) + 1 mod n = L mod n = (L −

2) − (n − 2) mod n and in general the ith column ends in a box of color (i − 1) −

((L − i)(n − 1) − 1) mod n = L mod n. Thus each column of Yi ends in a b + 1-

colored box. Also, L − 2 mod n = b − 1 mod n, so there exists a concave b-corner at

the end of the first row of each Yi. So we see that:

Yi =(L−1)(n−1)

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

0
n-1
...............

b+1

}
n−1

1
0
.........

b+1
. .

. .
. .

b-1

b-2
...

b+1





n−1

Show that the lemma holds for L.

Observe wL(n−1)Φ = rb−n+2 . . . rb−1rbw
(L−1)(n−1)Φ where b = n − (L − 1)(n −

1) mod n, as before. Notice the following about w(L−1)(n−1)Φ:

• εb = (0, 0, . . . , 0︸ ︷︷ ︸
Lk

)

• εb+1 = (1, 1, . . . , 1︸ ︷︷ ︸
(L−1)k

)
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• All other εi are non-existent

So wL(n−1)Φ = rb−n+2 . . . rb−2rb−1

(
f̃Lk

b

(
w(L−1)(n−1)Φ

))
and f̃Lk

b

(
w(L−1)(n−1)Φ

)
=

(Y1, Y2, . . . , Yk) where each Yi =
(
− (L − 1)(n − 1) − 1,−(L − 2)(n − 1) − 1, . . . ,-

(n − 1) − 1,−1, 0, 0, . . .
)

because f̃Lk
b adds a b-colored box to the bottom of each

column and to the end of the first row of each Yi.

Similar to before, the following is true of f̃Lk
b w(L−1)(n−1)Φ:

• εb = (1, 1, . . . , 1︸ ︷︷ ︸
Lk

)

• εb+1 = (0, 0, . . . , 0︸ ︷︷ ︸
k

) Notice that rb+1 does not occur in the remaining chain of

reflections.

• εb−1 = (0, 0, . . . , 0︸ ︷︷ ︸
Lk

)

• All other εi are non-existent.

So we know:

rb−n+2 . . . rb−1rbw
(L−1)(n−1)Φ = rb−n+2 . . . rb−2rb−1

(
f̃Lk

b w(L−1)(n−1)Φ
)

= rb−n+2 . . . rb−2

(
f̃Lk

b−1f̃
Lk
b w(L−1)(n−1)Φ

)

and f̃Lk
b−1f̃

Lk
b w(L−1)(n−1)Φ = (Y1, Y2, . . . , Yk) where for each i,

Yi = (−(L − 1)(n − 1) − 2,−(L − 2)(n − 2) − 2, . . . ,−(n − 1) − 2,−2, 0, 0, . . .) .

Repeating this process to the n − 1 step we see:

60



Chapter 4. Demazure Crystals

wL(n−1)Φ = rb−n+2 . . . rb−1rbw
(L−1)(n−1)Φ

= f̃Lk
b−n+2 . . . f̃Lk

b−1f̃
Lk
b w(L−1)(n−1)Φ

= (Y1, Y2, . . . , Yk)

where for each i,

Yi =
(
− (L − 1)(n − 1) − (n − 1),−(L − 2)(n − 1) − (n − 1), . . . ,

(n − 1) − (n − 1),−(n − 1), 0, 0, . . .
)

=
(
− L(n − 1),−(L − 1)(n − 1), . . . ,−2(n − 1),−(n − 1), 0, 0, . . .

)
.

Note that for the case when λ = Λ0, this has been shown in [18].

Given this realization of the extremal element we can now realize the Demazure

crystals Bw(L)(kΛi) in terms of extended Young diagrams as follows.

Theorem 4.0.15. For k ∈ Z>0, BwL(n−1)(kΛ0) =
{
Y ∈ B(kΛ0)

∣∣|Y| ≤ L
}
.

Proof.

Let Φ = (φ1, φ2, . . . , φk) ∈ B(kΛ0). Assume Y 6= Φ.

Let BL(kΛ0) =
{
Y ∈ B(kΛ0)

∣∣|Y| ≤ L
}
.

Begin by showing BwL(n−1)(kΛ0) ⊆ BL(kΛ0). Clearly Y ∈ BwL(n−1)(kΛ0) gives that

Y ∈ B(kΛ0), so it is sufficient to show |Y| ≤ L.
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Let L = 1 and Y ∈ Bw(n−1)(kΛ0). Then Y is one of the diagrams created by the

action of r2 . . . rn−1r0 on Φ. Thus Y = f̃
sn−1

1 . . . f̃ s2
n−1f̃

s1
0 Φ for some si ∈ Z≥0, s1 6= 0.

and for each m = 1, 2, . . . , k, Ym = f̃
tn−1

2 . . . f̃ t2
n−1f̃

t1
0 φm for some ti ∈ Z≥0, ti ≤ si,

Y1 6= φ1. More specifically, we know:

0 ≤ sn−1 ≤ sn−2 ≤ . . . ≤ s2 ≤ s1 ≤ k

and 0 ≤ tn−1 ≤ tn−2 ≤ . . . ≤ t2 ≤ t1 ≤ 1 (i.e. ti ∈ {0, 1} and ti = 0 ⇒ ti+1 = 0).

This is clear from the proof of Lemma 4.0.14, but for clarity we repeat some of this

argument below.

The 0-signature of Φ is (0, 0, . . . , 0︸ ︷︷ ︸
k

), where each 0 corresponds to a concave 0-corner

φi so s1 ≤ k and t1 ≤ 1. It is easily observed that the (n − 1)-signature of f̃ s1
0 Φ is

(0, 0, . . . , 0︸ ︷︷ ︸
s1

), where each 0 corresponds to the concave (n − 1)-corner of the first s1

diagrams in Y (this corner is located below the 0-box). So s2 ≤ s1 and t2 ≤ t1.

We continue in this fashion with the (n − i)-signature of f̃ si

n−i+1 . . . f̃ s1
0 Φ becoming

(0, 0, . . . , 0︸ ︷︷ ︸
si

), so 0 ≤ sn−1 ≤ . . . ≤ s2 ≤ s1 ≤ k and 0 ≤ tn−1 ≤ . . . ≤ t2 ≤ t1 ≤ 1.

Notice that the action of f̃0 increases the width of the φm to one. However, the

width is not further increased to two since this can only happen by filling the concave

1-corners (there are s1 width-increasing 1-corners, sn−1 depth increasing 1-corners and

the 1-signature of f̃
sn−1

2 . . . f̃ s2
n−1f̃

s1
0 Φ is (0, 0, . . . , 0︸ ︷︷ ︸

s1+sn−1

)) of the Ym, which requires action

by f̃1, which does not occur in the chain of f̃i’s.

In other words it is clear that each Ym is contained in Y ∗
m = (−(n − 1), 0, 0, . . .) =
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w(n−1)Φ. So each Ym = (−am, 0, 0, . . .) for some am with 0 ≤ am ≤ n − 1, a1 6= 0.

Furthermore since the si’s and the ti’s weakly decrease, am ≥ am+1. [Note this also

comes from the fact that Y ∈ B(kΛ0).] More precisely, we know that am is the value

such that tam
= 1 and tam+1 = 0 (where we say tn = 0 since f̃1 does not occur in the

sequence). So clearly, |Ym| ≤ 1 for m = 1, 2, . . . , k (and specifically |Y1| = 1), thus

|Y| ≤ 1 (in fact |Y| = 1 since Y 6= Φ). Therefore Bw(1)(kΛ0) ⊆ B1(kΛ0).

Assume the result holds for L − 1. i.e. Assume Bw(L−1)(n−1)(kΛ0) ⊆ BL−1(kΛ0).

Show holds for L.

Let Y ∈ BwL(n−1)(kΛ0). Observe that wL(n−1) = rb−n+2 . . . rb−1rbw
(L−1)(n−1)Φ where

b = n − (L − 1)(n − 1) mod n. So Y is one of the diagrams created by the action of

rb−n+2 . . . rb−1rb on w(L−1)(n−1)Φ.

More specifically, there exists a Y ′ = (Y ′
1 , Y

′
2 , . . . Y

′
k) ∈ Bw(L−1)(n−1)(kΛ0), Y

′ 6= Φ,

such that Y is one of the diagrams created by the action of rb−n+2 . . . rb−1rb on Y ′.

In other words, Y = f̃ sn−1
b−n+2 . . . f̃ s2

b−1f̃
s1
b Ym for some si ∈ Z≥0, so for m = 1, 2, . . . , k,

Ym = f̃
tn−1

b−n+2 . . . f̃ t2
b−1f̃

t1
b Y ′

m for some ti ∈ Z≥0, ti ≤ si, with the sum of the ti equal to si.

Now consider |Ym|. If |Y ′
m| = L − 1, then there is a concave b-corner at the end

of the first row that contributes a 0 to the b-signature of Y ′
m. So if the 0 remains in

the relevant signature, and t1 is large enough to fill this corner, |f̃ t1
b Y ′

m| = L. Else,

|f̃ t1
b Y ′

m| = L − 1 and its width can not be increased by the remaining chain of actions.

Now if |f̃ t1
b Y ′

m| = L the only way to increase the width of f̃ t1
b Y ′

m is to fill the (b + 1)-

concave corner at the end of the first row. However the action of f̃b+1 does not occur

in our remaining chain so |Ym| is L or L − 1.

If |Y ′
m| < L−1, then there is a convex corner of some color, say q, at the end of the
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first row. The action by f̃q may increase the width by one. However, the next action

that can widen Y ′
m is now f̃q+1. But this action is n − 1 away in any reverse ordered

chain of actions and we only have, at most, n−2 actions remaining in our chain. Thus

|Ym| ≤ L − 1.

Therefore, for each m, |Ym| ≤ L. We can also observe this fact by realizing that

Y must be contained in the extremal element Y∗ = wL(n−1)Φ = (Y ∗
1 , Y ∗

2 , . . . Y ∗
k ) where

Y ∗
i = (−L(n − 1),−(L − 1)(n − 1), . . . ,−(n − 1), 0, 0, . . .). So Ym ⊆ Y ∗

m and |Y ∗
m| = L,

so |Ym| ≤ L.

Thus |Y| ≤ L and Y ∈ BL(kΛ0). Since Y is arbitrary, BwL(n−1)(kΛ0) ⊆ BL(kΛ0).

A shorter argument for Bw(n−1)(kΛ0) ⊆ BL(kΛ0):

Let Y ∈ BwL(n−1)(kΛ0). Then Y is one of the diagrams created by wL(n−1) acting on

Φ. i.e. Y is one of the diagrams created by . . . rn−2rn−1r0︸ ︷︷ ︸
L(n−1)

acting on Φ. So Y ⊆ wL(n−1)Φ.

But by 4.0.14, |wL(n−1)Φ| = L. Thus |Y| ≤ L, so Y ∈ BL(kΛ0).

Next, show BL(kΛ0) ⊆ BwL(n−1)(kΛ0). Let L = 1 and Y ∈ B1(kΛ0). So |Y| ≤ 1

and Y ∈ B(kΛ0). In other words we know:

• |Ym| ≤ 1 for m = 1, 2, . . . , k

• Y1 ⊇ Y2 ⊇ . . . ⊇ Yk ⊇ Y1[n]

• ∀q ≥ 0, ∃ p such that (Yp+1)q > (Yp)q+1.

In particular, for every m = 1, 2, . . . , k, Ym = (−am, 0, 0, . . .) where:

• am ∈ Z≥0, a1 6= 0

• am < n (by Corollary 4.0.13)
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• a1 ≥ a2 ≥ . . . ≥ ak ≥ 0

• ak > a1 − n (Since a1 − n < 0).

So it is clear that for each m, Ym = f̃n−am+1 . . . f̃n−1f̃0φm where n−am +1 mod n ≥

2. If the required use of reverse order for the f̃i is unclear, refer to the argument below.

Consider the weight of Y , wt Y = kΛ0 −
n−1∑
j=0

cjαj. Notice: c1 = 0 since no f̃1 action

appears in the sequences for Ym. Observe that c0 ≥ cn−1 ≥ . . . ≥ c2 (clear from actions

creating Ym and a1 ≥ a2 ≥ . . . ≥ ak) and c0 6= 0. Furthermore, k ≥ ci ≥ 0 since

|Y| = 1. Then we can write Y specifically as: Y = f̃ c2
2 . . . f̃

cn−1

n−1 f̃ c0
0 Φ.

Although the discussions above should be clear, the details are presented here for

rigor. Notice the 0-signature for Φ is (0, 0, . . . , 0︸ ︷︷ ︸
k

) where each zero corresponds to a

concave 0-corner created by φi and all other signatures are non-existent. Thus f̃ c0
0 Φ

places a 0-colored box in the first c0 corners (so all components of f̃ c0
0 Φ are either

(−1, 0, 0, . . .) or (0, 0, 0, . . .)). Next observe that c0 is precisely |{am

∣∣am ≥ 1}|. Observe

the signatures of f̃ c0
0 Φ. The 0-signature is (1, 1, . . . , 1︸ ︷︷ ︸

c0

, 0, 0, . . . , 0︸ ︷︷ ︸
k−c0

). The (n−1)- signature

is (0, 0, . . . , 0︸ ︷︷ ︸
c0

) where each zero corresponds to a concave (n−1)-corner located directly

below one of the 0-boxes just created. All other signatures are non-existent. So we

see f̃
cn−1

n−1 f̃ c0
0 Φ has a (n − 1)-signature of (1, 1, . . . , 1︸ ︷︷ ︸

cn−1

, 0, 0, . . . , 0︸ ︷︷ ︸
c0−cn−1

), a (n − 2)-signature of

(0, 0, . . . , 0︸ ︷︷ ︸
cn−1

) and all other signatures are non-existent. We continue in this fashion to

create Y .

Thus Y ∈ Bwn−1(kΛ0) so B1(kΛ0) ⊆ Bw(1)(kΛ0).

Assume this result holds for L− 1. i.e. BL−1(kΛ0) ⊆ Bw(L−1)(n−1)(kΛ0). Show holds

for L.
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Let Y ∈ BL(kΛ0). So |Y| ≤ L and Y ∈ B(kΛ0). In other words we know:

• |Ym| ≤ L for m = 1, 2, . . . , k

• Y1 ⊇ Y2 ⊇ . . . ⊇ Yk ⊇ Y1[n]

• ∀q ≥ 0, ∃p such that (Yp+1)q > (Yp)q+1

Notice that if |Y| < L, Y ∈ BL−1(kΛ0) so by the induction step, Y ∈

Bw(L−1)(n−1)(kΛ0) ⊆ BwL(n−1) . So it is sufficient to only consider Y for which |Y| = L.

If —Y| = L, |Ym| = L for at least one m. Notice that due to the containment

property, |Ym| < L gives that |Ym+1| < L (or that |Ym| = L ⇒ |Ym−1| = L). Observe

the following: The Lth box on row 1 of Ym, if it exists, is of color b (b = n− (L−1)(n−

1) mod n as previously defined). The Lth box on row 2 of Ym is of color b−1 = b+(n−1).

And so on with the Lth box on row i of Ym having color b + n − i. Also realize (by

Corollary 4.0.13) the depth of the Lth column is less than n.

Let ξi be the number of Ym in Y such that the Lth column has height at least i,

i = 1, 2, . . . , n− 1. [i.e. If Ỹ = (Ỹ1, Ỹ2, . . . , Ỹk) where each Ỹm is the Lth column of Ym,

then ξi = c̃b+i−1 mod n where wt Ỹ = kΛ0 −
n−1∑
j=0

c̃jαj.] Notice that ξn = ξn+1 = . . . = 0.

If ξn−1 6= 0, then Y1, Y2, . . . , Yξn−1 all have a (b + 2)-colored box at the end of the

Lth column. So there exists a Y ′ ∈ B(kΛ0) and βn−1 ≥ ξn−1 such that ẽ
βn−1

b+2 Y = Y ′

and |Y ′| = L.

It is clear that ξn−1 ≤ ξn−2 ≤ . . . ≤ ξ2 ≤ ξ1 > 0. Similar to the argument above,

for every ξi 6= 0, we can find an appropriate βi such that we get:

ẽβ2

b . . . ẽ
βn−2

b+3 ẽ
βn−1

b+2︸ ︷︷ ︸
n−1

Y = Y ′.
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However, now |Y ′| = L − 1. And:

f̃
βn−1

b+2 f̃
βn−2

b+3 . . . f̃β2

b−1f̃
β1

b Y ′ = Y .

Since |Y ′| = L − 1 and Y ′ ∈ B(kΛ0), Y ′ ∈ BL−1(kΛ0), which means that it is in

Bw(L−1)(n−1)(kΛ0) by the induction step. But this makes it clear, since there are no

more than n − 1 of the f̃i acting on Y ′ in reverse order needed to create Y , that

Y ∈ BwL(n−1)(kΛ0). Since Y is arbitrary, we have that BL(kΛ0) ⊆ BwL(n−1)(kΛ0).

This result again can be found in [18] for the case of k = 1.

Interestingly a quick corollary to this theorem can tell us exactly how many dia-

grams are in Bw(L)(Λi).

Corollary 4.0.16. In Uq(ŝl(n)),
∣∣∣{Y ∈ B(Λ0)

∣∣|Y | ≤ L}
∣∣∣ =

∣∣BL(Λ0)
∣∣∣ =

∣∣∣Bw(L)(Λ0)
∣∣ =

nL.

Proof.

First observe that this corollary holds for L = 0. The only diagram in B0(Λ0) is φ.

Thus |B0(Λ0)| = 1 = n0.

Now note that for L > 0 the corollary holds if and only if,
∣∣∣{Y ∈ B(Λ0)

∣∣|Y | =

L}
∣∣∣ = (n− 1)nL−1, since nL = n(nL−1) = nL−1 + . . . + nL−1

︸ ︷︷ ︸
n times

= nL−1 + (n− 1)nL−1 and

nL−1 = {Y ∈ B(Λ0)
∣∣|Y | ≤ L − 1}.

Recall that Y ∈ B(Λ0) if and only if yj+1−yj < n ∀j, in other words if and only if

consecutive columns in the diagram of Y differ by no more than n−1 boxes (Corollary

4.0.13 ).

67



Chapter 4. Demazure Crystals

Let L = 1. Then the diagram Y consists of only one column. If Y 6= φ, the height

of this column must be an integer strictly greater than 0 and less than n by Corollary

4.0.13. Thus there are n − 1, or (n − 1)nL−1, possibilities.

Let L = 2. Assume |Y | = 2. Then again the far right column (the second column)

can have up to n− 1 boxes and must have at least one box. Assume there are c boxes

in this column. Then the adjacent preceeding column, the first column, must have at

least c boxes and can have up to n − 1 additional boxes (again by Corollary 4.0.13).

Thus there are (n − 1)(1 + n − 1) = (n − 1)n, or (n − 1)nL−1, possible such Y .

Assume that this holds for diagrams of width L − 1. Show for width L. Assume

that |Y | = L. By the induction step, there are (n− 1)nL−1 options for the diagrams of

width L − 1. So there are (n − 1)nL−1 options for columns 2 through L of Y . Let the

height of the second column of Y be c. Then the first column of Y must have at least

c boxes and may have up to n − 1 additional boxes (Corollary 4.0.13). Thus there are

n choices for this column. Therefore there are n× ((n− 1)nL−1), or (n− 1)nL,options

for Y .

Further it is clear that this is the entire set of Y satisfying yj+1 − yj < n and that

the Y are all distinct. It is easy to check that all of these diagrams are in B(Λ0). It is

clear that condition one of Theorem 3.2.10 is met since Y1 ⊇ Y1[n]. Condition two of

this theorem is also met since yj+1 − yj < n ⇒ yj+1 < yj + n ⇒ (Y1)j+1 < (Y1[n])j.

Now we will generalize the extremal element description to any dominant weight

λ ∈ P+.

Theorem 4.0.17. Let λ = k0Λ0 + k1Λ1 + . . . + kn−1Λn−1,
n−1∑
i=0

ki = k, κi =
i∑

j=0

kj for

i = 0, 1, . . . n− 1. The extremal vector wL(n−1)Φ in B(λ) is Y = (Y1, Y2, . . . , Yk) where:
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(i) Y1 = Y2 = · · · = Yκ0 =
(
− L(n − 1),−(L − 1)(n − 1), . . . ,−(n − 1), 0, 0, . . .

)

(ii) Yκi−1+1 = Yκi−1+2 = · · · = Yκi
=

(
− (L − 1)(n − 1) + 1,−(L − 2)(n − 1) + 1, . . . ,−(n − 1) + 1, 1, i, i, . . .

)

[Notice the depth of the columns of the diagrams with charge 0 is a multiple of

n−1 and is one more than the depth of the columns of the diagrams with charge n−1.

Additionally the depth of the columns of the diagrams with charge n − 1 is one more

than those in diagrams with charge n − 2, which are one more than those with charge

n − 3 and so on.]

Proof.

Let L = 1. Consider wn−1Φ = r2 . . . rn−1r0Φ. Let φi be a concave i-corner. So Φ =
(
φ0

1, φ
0
2, . . . , φ

0
κ0

, φ1
κ0+1, . . . , φ

1
κ1

, . . . , φn−1
κn−2+1, . . . , φ

n−1
κn−1

)
. Observe that the signatures of

Φ are εi = (0, 0, . . . , 0︸ ︷︷ ︸
ki

), i = 1, 2, . . . , n − 1, where each zero corresponds to a φi. Now

using the 0-signature we see r0Φ = f̃k0
0 Φ. Observe the following about f̃k0

0 Φ:

• f̃k0
0 Φ =

(

︸ ︷︷ ︸
k0

0 , 0 , . . . , 0 , φ1
κ0+1, . . .φ

1
κ1, . . . , φn−1

κn−1

)

i.e. Y1 = Y2 = · · · = Yκ0 = (−1, 0, 0, . . .) and all other diagrams of f̃k0
0 are

empty corners.

• ε0 = (1, 1, . . . , 1︸ ︷︷ ︸
k0

)

• ε1 = (0, 0, . . . , 0︸ ︷︷ ︸
k0+k1

)
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• εn−1 = (0, 0, . . . , 0︸ ︷︷ ︸
kn−1+k0

)

• εi = (0, 0, . . . , 0︸ ︷︷ ︸
ki

) for i 6= 0, 1, n − 1

Now the (n−1)-signature shows that rn−1r0Φ = f̃
kn−1+k0

n−1 f̃k0
0 Φ. Observe the follow-

ing about f̃
kn−1+k0

n−1 f̃k0
0 Φ:

• f̃
kn−1+k0

n−1 f̃k0
0 Φ =

(

︸ ︷︷ ︸
k0

0
n-1

,
0
n-1

, . . . ,
0

n-1
, φ1

κ0+1, . . . , φ1
κ1, φ2

κ1+1, . . . , φn−2
κn−2, ︸ ︷︷ ︸

kn−1

n-1 , n-1 , . . . , n-1

)

i.e. Y1 = Y2 = · · · = Yκ0 = (−2, 0, 0, . . .)

Yκn−2+1 = Yκn−2+2 = · · · = Yκn−1 = (n − 2, n − 1, n − 1, . . .) and all other

diagrams of f̃
kn−1+k0

n−1 f̃k0
0 Φ are empty corners.

• ε0 = (0, 0, . . . , 0︸ ︷︷ ︸
kn−1

) [Note: r0 does not occur in the remaining chain of actions thus

no ones will be added to this signature.]

• ε1 = (0, 0, . . . , 0︸ ︷︷ ︸
k0+k1

)

• εn−2 = (0, 0, 0, . . . , 0, 0︸ ︷︷ ︸
k0+kn−1+kn−2

)

• εn−1 = (1, 1, . . . , 1︸ ︷︷ ︸
k0+kn−1

)

• εi = (0, 0, . . . , 0︸ ︷︷ ︸
ki

) for i 6= 0, 1, n − 2, n − 1
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Repeating this process to the nth step we see that

r2 . . . rn−1r0Φ = f̃
k0+(kn−1+...+k3+k2)
2 . . . f̃

k0+kn−1

n−1 f̃k0
0 Φ and observe the following:

• f̃
k0+(kn−1+...+k3+k2)
2 . . . f̃

k0+kn−1

n−1 f̃k0
0 Φ =




︸ ︷︷ ︸

k0

0
n-1
...
2

,

0
n-1
...
2

, . . . ,

0
n-1
...
2

, φ1, φ1, . . ., φ1

︸ ︷︷ ︸
k1

,
︸ ︷︷ ︸

k2

2 , 2 , . . . , 2 ,
︸ ︷︷ ︸

k3

3
2 ,

3
2 , . . . ,

3
2 ,

. . . ,

︸ ︷︷ ︸
kn−1

n-1

n-2
...
2

,

n-1

n-2
...
2

, . . . ,

n-1

n-2
...
2





i.e. Y1 = Y2 = · · · = Yκ0 =
(
− (n − 1), 0, 0, . . .

)

Yκi−1+1 = Yκi−1+2 = · · · = Yκi
= (1, i, i, . . .) for i = 1, 2, 3, . . . , n − 1

Yκ0+1 = Yκ0+2 = · · · = Yκ1 = φ1 = (1, 1, 1, . . .) [which agrees with above]

• ε0 = (0, 0, . . . , 0︸ ︷︷ ︸
kn−1

)

• ε1 = (0, 0, 0, 0, . . . , 0, 0, 0︸ ︷︷ ︸
(k0+k1+···+kn−1)+k0

) = (0, 0, . . . , 0︸ ︷︷ ︸
k+k0

)

• ε2 = (1, 1, 1, 1, . . . , 1, 1, 1︸ ︷︷ ︸
k0+(k2+k3+···+kn−1)

) = (1, 1, . . . , 1︸ ︷︷ ︸
k−k1

)

• εi = (0, 0, . . . , 0︸ ︷︷ ︸
ki−1

) for i = 3, 4, . . . , n − 1
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Thus the statement holds for L = 1. Assume it holds for L − 1. i.e. Assume

w(L−1)(n−1)Φ = (Y1, Y2, . . . , Yk) where:

Y1 = Y2 = · · · = Yκ0 =
(
− (L − 1)(n − 1),−(L − 2)(n − 1), . . . ,−(n − 1), 0, 0, . . .

)

and

Yκi−1+1 = Yκi−1+2 = · · · = Yκi
=
(
−(L−2)(n−1)+1,−(L−3)(n−1)+1, . . . , 1, i, i, . . .

)

Show that the statements holds for L. Define b = n − (L − 1)(n − 1) mod n. Notice

that b = L − 1. Observe the following about w(L−1)(n−1)Φ:

• w(L−1)(n−1)Φ =





(L
−

1
)(

n
−

1
)






0
n-1
...............

b+1

}
n−1

1
0
.........

b+1
. .

. .
. .

L-2

L-3
...

b+1





n−1

L−1︷ ︸︸ ︷

, . . . . . . ,

(L
−

1
)(

n
−

1
)





0
n-1
...............

b+1

}
n−1

1
0
.........

b+1
. .

. .
. .

L-2

L-3
...

b+1





n−1

L−1︷ ︸︸ ︷

︸ ︷︷ ︸
k0

,
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(L
−

2
)(

n
−

1
)






1
0
...............

b+1

}
n−1

2
1
.........

b+1
. .

. .
. .

L-2

L-3
...

b+1





n−1

L−2︷ ︸︸ ︷

, . . . . . . ,

(L
−

2
)(

n
−

1
)






1
0
...............

b+1

}
n−1

2
1
.........

b+1
. .

..
. .

L-2

L-3
...

b+1





n−1

L−2︷ ︸︸ ︷

︸ ︷︷ ︸
k1

,
(L

−
2
)(

n
−

1
)+

1






2
1
...............

b+1

}
n−1

3
2
.........

b+1
. .

..
. .

L-1

L-2
...

b+1

}
n−1

L

L−1︷ ︸︸ ︷

, . . . . . . ,
(L

−
2
)(

n
−

1
)+

1






2
1
...............

b+1

}
n−1

3
2
.........

b+1
. .

. .
. .

L-1

L-2
...

b+1

}
n−1

L

L−1︷ ︸︸ ︷

︸ ︷︷ ︸
k2

,

(L
−

2
)(

n
−

1
)+

2






3
2
...............

b+1

}
n−1

4
3
.........

b+1
. .

..
. .

L
L-1
...

b+1

}
n−1

L+1

L

L−1︷ ︸︸ ︷

, . . . . . . ,

(L
−

2
)(

n
−

1
)+

2






3
2
...............

b+1

}
n−1

4
3
.........

b+1
. .

. .
. .

L
L-1
...

b+1

}
n−1

L+1

L

L−1︷ ︸︸ ︷

︸ ︷︷ ︸
k3

,
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• • •,
(L

−
2
)(

n
−

1
)+

(n
−

2
)

=
(L

−
1
)(

n
−

1
)−

1






n-1

n-2
.....................

b+1

}
n−1

n
n-1
...............

b+1
. .

. .
. .

L-4

L-5
.........

b+1

}
n−1

L-3

L-4
...
L

L−1︷ ︸︸ ︷
}

n−2

, . . . . . . ,

(L
−

2
)(

n
−

1
)+

(n
−

2
)

=
(L

−
1
)(

n
−

1
)−

1






n-1

n-2
.....................

b+1

}
n−1

n
n-1
...............

b+1
. .

. .
. .

L-4

L-5
.........

b+1

}
n−1

L-3

L-4
...
L

L−1︷ ︸︸ ︷
}

n−2

︸ ︷︷ ︸
kn−1





• εb = (0, 0, 0, . . . , 0, 0︸ ︷︷ ︸
(L−1)k+k0

) [It is easier to see the length of the signature in this way:

(L − 1)k + k0 = (L − 1)(k0 + k2 + k3 + . . . + kn−1) + (L − 2)k1 + k0 + k1.]

So wL(n−1)Φ = rb−n+2 . . . rb−1rb

(
w(L−1)(n−1)Φ

)
= rb−n+2 . . . rb−2rb−1

(
f̃

(L−2)k+k0

b Φ
)
. And

we observe the following:

• f̃
(L−2)k+k0

b Φ =





(L
−

1
)(

n
−

1
)+

1






0
n-1
...............

b

}
n−1

1
0
.........

b . .
. .

. .

L-2

L-3
...
b

}
n−1

b

L︷ ︸︸ ︷

, . . . . . . ,

(L
−

1
)(

n
−

1
)+

1






0
n-1
...............

b

}
n−1

1
0
.........

b . .
. .

. .

L-2

L-3
...
b

}
n−1

b

L︷ ︸︸ ︷

︸ ︷︷ ︸
k0

,
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(L
−

2
)(

n
−

1
)+

1






1
0
...............

b

}
n−1

2
1
.........

b . .
. .

. .
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...
b

}
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b

L−1︷ ︸︸ ︷

, . . . . . . ,

(L
−

2
)(

n
−

1
)+

1






1
0
...............

b

}
n−1

2
1
.........

b . .
. .

. .

L-2

L-3
...
b

}
n−1

b

L−1︷ ︸︸ ︷

︸ ︷︷ ︸
k1

,
(L

−
2
)(

n
−

1
)+

2






2
1
...............

b

}
n−1

3
2
.........

b . . .
. .

.

L-1

L-2
...
b

}
n−1

L
b

L︷ ︸︸ ︷

, . . . . . . ,
(L

−
1
)(

n
−

1
)+

2






2
1
...............

b

}
n−1

3
2
.........

b . . .
. .

.

L-1

L-2
...
b

}
n−1

L
b

L︷ ︸︸ ︷

︸ ︷︷ ︸
k2

,

(L
−

2
)(

n
−

1
)+

3






3
2
.....................

b

}
n−1

4
3
...............

b

. . .
. .

.

L
L-1
.........

b

}
n−1

L+1

L
b

L︷ ︸︸ ︷

, . . . . . . ,

(L
−

1
)(

n
−

1
)+

3






3
2
.....................

b

}
n−1

4
3
...............

b

. . .
. .

.

L
L-1
.........

b

}
n−1

L+1

L
b

L︷ ︸︸ ︷

︸ ︷︷ ︸
k3

,
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• • • ,

(L
−

1
)(

n
−

1
)






n-1

n-2
.....................

b

}
n−1

n
n-1
...............

b

. .
. .

. .

L-4

L-5
.........

b

}
n−1

L-3

L-4
...
b

L︷ ︸︸ ︷
}

n−1

, . . . . . . ,

(L
−

1
)(

n
−

1
)






n-1

n-2
.....................

b

}
n−1

n
n-1
...............

b

. .
. .

. .

L-4

L-5
.........

b

}
n−1

L-3

L-4
...
b

L︷ ︸︸ ︷
}

n−1

︸ ︷︷ ︸
kn−1





i.e. Y1 = Y2 = · · · = Yκ0 =
(
− (L − 1)(n − 1) − 1,−(L− 2)(n − 1) − 2, . . . ,−(n − 1),−1, 0, 0, . . .

)

Yκ0+1 = Yκ0+2 = · · · = Yκ1 =
(
− (L − 2)(n − 1),−(L − 2)(n − 1), . . . ,−(n − 1), 0, 1, 1, . . .

)

and Yκi−1+1 = Yκi−1+2 = · · · = Yκi
=

(
− (L − 2)(n − 1),−(L − 3)(n − 1), . . . ,−(n − 1), 0, i, i, i, . . .

)

for i = 1, 2, . . . , n − 1

• εb−1 = (0, 0, 0, . . . , 0, 0︸ ︷︷ ︸
Lk−k1+kn−1

) [It is easier to see the length of the signature in this way:

Lk − k1 + kn−1 = (L)(k0 + k2 + k3 + . . . + kn−1) + (L − 1)k1 + kn−1.]

So wL(n−1)Φ = rb−n+2 . . . rb−3rb−2

(
f̃

Lk−k1+kn−1

b−1 f̃
(L−1)k+k0

b Φ
)
.
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Continue this process to the (n − 1) step. Then we find that:

wL(n−1)Φ = rb−n+2 . . . rb−1rbΦ

= f̃Lk−k1+k2

b−n+2 . . . f̃
Lk−k1+kn−1

b−1 f̃
(L−1)k+k0

b Φ

and

Y1 = Y2 = · · · = Yκ0

=
(
− (L − 1)(n − 1) − (n − 1),−(L − 2)(n − 1) − (n − 1), . . . ,

−(n − 1) − (n − 1),−(n − 1), 0, 0, . . .
)

=
(
− L(n − 1),−(L − 1)(n − 1), . . . ,−2(n − 1),−(n − 1), 0, 0, . . .

)

Yκi−1+1 = Yκi−1+2 = · · · = Yκi

=
(
− (L − 1)(n − 1) + 1 − (n − 1),−(L − 3)(n − 1) + 1 − (n − 1), . . . ,

−(n − 1) + 1 − (n − 1), 1 − (n − 1), 1, i, i, . . .
)

=
(
− (L − 1)(n − 1) + 1,−(L − 2)(n − 1) + 1, . . . ,

−2(n − 1) + 1,−(n − 1) + 1, 1, i, i, . . .
)

for i = 1, 2, . . . , n − 1

If we change the index set I from our constructions to be {1, 2, . . . , n} instead of

{0, 1, . . . , n − 1}, the two descriptions (i) and (ii) collapse into one description.

Now we want to similarly generalize the explicit realization of Bw(L)(kΛi) for any
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dominant weight λ ∈ P+. In order to accomplish this we need the following lemma,

which essentially states that any reverse ordered string of n reflections with the first

one having non-trivial action will increase the width of Y by one.

Lemma 4.0.18. Let w(l) = rn−l+1 . . . rn−1r0 and λ = k0Λ0 + k1Λ1 + . . . + kn−1Λn−1

with k0 6= 0. Then max
{
|Y|
∣∣∣Y ∈ Bw(l)(λ)

}
=
⌈

l
n−1

⌉
.

Proof.

Case 1: l is a multiple of n − 1

If l is a multiple of n − 1, then w(l)Φ = wp(n−1) = w(p) for some p. Then Y ∈

Bw(l)(λ) implies that Y ⊆ w(l)Φ = w(p)Φ, since w(p)Φ is extremal. By Therorem

4.0.17, |w(p)Φ| = p, so |Y| ≤ p. But since w(p)Φ is itself in Bw(l)(λ), we know

max
{
|Y|
∣∣∣Y ∈ Bw(l)(λ)

}
= p. Notice that p = p(n−1)

n−1
= l

n−1
=
⌈

l
n−1

⌉
. So the statement

holds.

Case 2: l is not a multiple of n − 1

If l is not a multiple of n − 1, then l is between some multiples of n − 1. Let L be the

smallest integer such the L(n − 1) is larger than l. So (L − 1)(n − 1) ≤ l ≤ L(n − 1).

Then we have the following:

L − 1 = max
{
|Y|
∣∣∣Y ∈ Bw(L−1)(λ)

}

≤ max
{
|Y|
∣∣∣Y ∈ Bw(l)(λ)

}

≤ max
{
|Y|
∣∣∣Y ∈ Bw(L)(λ)

}
= L

Let b = n − (L − 1)(n − 1) mod n as before. Consider rbw(L − 1)Φ. Clearly this is
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in Bw(l)(λ). Now εb for w(L − 1)Φ is (0, 0, 0, . . . , 0, 0︸ ︷︷ ︸
(L−1)k+k0

) by the argument in Theorem

4.0.17, and k0 of these zeros correspond to b-corners located at the end of the first row

of the first k0 diagrams, whose current width is L− 1 (again see argument in Theorem

4.0.17). Then rbw(L − 1)Φ = f̃
(L−1)k+k0

b Φ, which fills these empty b-corners (see

Theorem 4.0.17). Thus |rbw(L− 1)Φ| = L− 1 + 1 = L. So max
{
|Y|
∣∣∣Y ∈ Bw(l)(λ)

}
=

L =
⌈

l
n−1

⌉
.

Notice that if k0 = 0, then max
{
|Y|
∣∣∣Y ∈ Bw(l)(λ)

}
≤
⌈

l
n−1

⌉
.

Finally we have the following description for Bw(L)(λ), the Demazure crystal for

the Demazure Uq(ŝl(n))-module Vw(L)(λ).

Theorem 4.0.19. Main Theorem Let Bw(L)(λ) be the Demazure crystal for the

Demazure Uq(ŝl(n))-module Vw(L)(λ) generated by w(L) = rn−L(n−1)+1 . . . rn−1r0 with

highest weight λ ∈ P+. Let σ be the Dynkin diagram automorphism whose effect on

the simple reflections is: σ(ri) = ri+1. If:

I . λ = kΛ0, then Bw(L)(λ) = BL(λ)

II . λ ∈ P+, then
n−1⋃
j=0

Bσj(w(L))(λ) = BL(λ)

III . λ ∈ P+, then
n−1⋂
j=0

Bσj(w(L))(λ) = BL−1(λ)

Proof.

(I): This is proven previously as Theorem 4.0.15. Note that this statement also

agrees with Part II and Part III. Since λ = kΛ0, any initial action other than r0 will
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leave Φ unchanged. So the effect of σj(w(L)) acting on Φ is the same as some sub-

sequence of w(L) acting on Φ. Thus
n−1⋃
j=0

Bσj (w(L))(λ) = Bw(L)(kΛ0) = BL(kΛ0). Sim-

ilarly, it is clear that
n−1⋂
j=0

Bσj(w(L))(λ) = Bw(L−1)(kΛ0) = BL−1(kΛ0) since
n−1⋂
j=0

w(L) =

rn−(L(n−1))+1 . . . rn−1r0Φ = w(L− 1)Φ.

(II): Let λ be any dominant weight and Y ∈
n−1⋃
j=0

Bσj(w(L))(λ). Immediately we

have Y ∈ B(λ). Now Y in the union gives that Y is contained in Bσj (w(L))(λ) for

some j. Recall σj(w(L)) is rj−(L(n−1))+1 . . . rj−1rj︸ ︷︷ ︸
L(n−1)

, a sequence of L(n− 1) reverse order

reflections. So by Lemma 4.0.18, |Y| ≤ L(n−1)
n−1

= L. Thus Y ∈ BL(λ).

Next, we show BL(λ) ⊆
n−1⋃
j=0

Bσj(w(L))(λ). Let Y ∈ BL(λ). Then Y ∈ B(λ) and

|Y| = max{|Yi|
∣∣i = 1, 2, . . . , k} = L.

Let L = 1 and assume Y 6= Φ. Then |Yi| = 1 or 0 for each i. We know that

each Yi is created by some sequence of f̃ ρi

i acting on φi (ρi ∈ Z≥0, 0 ≤ i ≤ n − 1)

and similarly for Y . So we know Y is in the crystal generated by some sequence of

reflections.

Consider Y in sections by charge: Y1, . . . , Yκ0 is the 0-section; Yκ0+1, . . . , Yκ1 is the

1-section, and so on. By determining the reflections needed to generate each section,

we can learn those needed for Y .

Look at the 0-section, (φ0
1, φ

0
2, . . . , φ

0
κ0

) = Φ0. ε0 here is (0, 0, . . . , 0︸ ︷︷ ︸
k0

) and all other εi

are non-existant. Thus the first action to create this section must be f̃ ρ0

0 so we must

start with r0. Now there are three non-trivial signatures for r0Φ
0: ε0, ε1, and εn−1.

These are:
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• ε0 = (1, 1, . . . , 1︸ ︷︷ ︸
ρ0

, 0, 0, . . . , 0

︸ ︷︷ ︸
k0

)

• ε1 = (0, 0, . . . , 0︸ ︷︷ ︸
ρ0

) and notice that action of f̃1 will increase the width of Y to

greater than one.

• εn−1 = (0, 0, . . . , 0︸ ︷︷ ︸
ρ0

).

So the next action to create Y must be f̃
ρn−1

n−1 since it is the only action that will

result in a change that does not increase the width. Thus we act by rn−1 and consider

the signatures of rn−1r0Φ0. We have:

• ε0 = (1, 1, . . . , 1︸ ︷︷ ︸
ρ0+ρn−1

, 0, 0, . . . , 0

︸ ︷︷ ︸
k0−ρn−1

)

• ε1 = (0, 0, . . . , 0︸ ︷︷ ︸
ρ0

)

• εn−1 = (1, 1, . . . , 1︸ ︷︷ ︸
ρn−1

, 0, 0, . . . , 0

︸ ︷︷ ︸
ρ0

)

• εn−2 = (0, 0, . . . , 0︸ ︷︷ ︸
ρn−1

)

We continue this process to the n − 1 step. We stop here because Lemma 4.0.18 tells

us that the nth step will increase the width of Y to two. Thus we see that the 0-section

is generated by at most r2 . . . rn−1r0 = w(1).

Repeat this process for each section. So the i-section is generated by at most

ri−(n−1)+1 . . . ri−1ri = σi(w(1)).
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To generate Y we must have some subset of these generating sequences (or subse-

quences of them). Now by Theorem 4.0.17, we know that we need at least n−1 reverse

order reflections since w(1) ∈ B1(λ). Each of the pieces above fits this requirement and

nothing shorter. But by Lemma 4.0.18, we know that there is at most n−1 reflections

used to generate Y , else max{|Y |} = 2 > 1. Thus Y must be generated by precisely

one of the generating sequences above! So Y ∈
n−1⋃
j=0

Bσj(w(1))(λ).

It is easy to reason that this extends to L. Assume it holds for L− 1. Show for L.

Now Y ∈ BL(λ) and the argument follows directly from Theorem 4.0.17 and Lemma

4.0.18 as before. Y must be, by argument used previously, generated by some sequence

of simple reflections in reverse order: . . . rn−2rn−1r0. This is assumed for L − 1 in

induction. Now consider the signatures. Action by f̃b is the only pertinent one and

the b-signature contains at least one zero (if |Y| = L, else |Y| < L and we are in the

induction case), so act by rb. Next the only non-width-increasing action to use is b− 1

and so on until we have accumulated up to n−1 additional reflections. So each segment

is generated by ri−L(n−1)+1 . . . ri−2ri−1ri, i = 0, 1, . . . , n − 1. Consider the reflections

needed to generate Y . By Lemma 4.0.18, we know the length of this string can not

exceed L(n−1), else max{|Y |} = L+1. However, Theorem 4.0.17 tells us that w(L)Φ

is in BL(λ). Thus we must have at least L(n − 1) actions in our sequence if we are to

generate any arbitrary piece. Therefore Y itself must be generated by precisely one of

these. So Y ∈
n−1⋃
j=0

Bσj (w(L))(λ).

(III): Let λ be any dominant weight. Recall we have defined rj = rj′ if j = j′ mod n.

However, we will avoid taking mod n for large portions of this proof and leave j′ in

order to be more precise. Essentially we will consider any sequence of reverse order
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reflections to be portions of:

. . . r−n−1r−n . . . r−3r−2r−1r0r1r2r3 . . . rnrn+1 . . .

First we show
n−1⋂
j=0

Bσj(w(L))(λ) ⊆ BL−1(λ)

Let Y ∈
n−1⋂
j=0

Bσj (w(L))(λ). Then Y is generated by each of the following sequences

of reflections acting on Φ (This is set 4.1 consisiting of n − 1 linear chains.):

r−L(n−1)+1 . . . r−2 r−1 r0 (1 : 4.1)

r−L(n−1)+2 . . . r−1 r0 r1 (2 : 4.1)

...
...

r−(L−1)(n−1)+1 . . . rn−3 rn−2 rn−1 (n − 1 : 4.1)

Furthermore, if we shift the indices by n for any combination of these rows we get that

Y must also be generated by each of the new sequence of reflections acting on Φ. For

example, in (2:4.1), r1 comes before the initial r0 in (1:4.1), but it could be viewed as

coming after it instead by simply shifting the indices −n. In other words, we could

write (2:4.1) as r−(L+1)(n−1)+1 . . . r−nr−n+1. Notice that although this does not result

in a change in the actual sequence of actions, it does change the intersection of the

rows. Since Y is in the intersection of the Bσj (w(L))(λ), it must be generated by some

subsequence of reflections common to each sequence (1 : 4.1)−(n−1 : 4.1), or common

to the same set with one or more index shifted rows.
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By examination, the maximal common subsequences are:

S0 = r−(L−1)(n−1)+1 . . . r−1r0

and

Sj = σj(S0) j = 1, 2, . . . , n − 1

Notice that the length of S0 is (L − 1)(n − 1). Thus we know S0 = w(L − 1) and

Sj = σj(w(L − 1)). Since Y is generated by one of these, Y ∈
n−1⋃
j=0

Bσj (w(L−1))(λ). By

Part II of this theorem, we know
n−1⋃
j=0

Bσj(w(L−1))(λ) = BL−1(λ), thus Y ∈ BL−1(λ).

Now, show BL−1(λ) ⊆
n−1⋂
j=0

Bσj(w(L))(λ). Let Y ∈ BL−1(λ). Then by Part II of this

theorem, Y ∈
n−1⋃
j=0

Bσj(w(L−1))(λ). So Y is generated by at least one of the following

sequences of reflections acting on Φ (This is set 4.2 which also consists of n − 1 linear

chains.):

r−(L−1)(n−1)+1 . . . r−2 r−1 r0 (1 : 4.2)

r−(L−1)(n−1)+2 . . . r−1 r0 r1 (2 : 4.2)

...
...

r−(L−2)(n−1)+1 . . . rn−3 rn−2 rn−1 (n − 1 : 4.2)

Note that if Y is generated by (1 : 4.2), we are done since (1 : 4.2) is S0, a

subsequence of each (1 : 4.1)− (n− 1 : 4.1). Now look at (2 : 4.2). Clearly it is in each

of (2 : 4.1)−(n−1 : 4.1). Since (1 : 4.1) can be rewritten as rn−(L(n−1)+1 . . . rn−2rn−1rn,
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by shifting the indices up n (i.e. moving the section right). Now it is clear that (2 : 4.2)

is contained in (1 : 4.1). In fact, (2 : 4.2) is S1 = σ1(S0). Similarly, (i : 4.2) is in each

of (i : 4.1) − (n − 1 : 4.1) and in (1 : 4.1) − (i − 1 : 4.1) after shifting the indices of

(1 : 4.1) − (i − 1 : 4.1) by n. Again we see that (i : 4.2) is actually Si = σi(S0).

Since Y is generated by some (i : 4.2) = Si, and every Si is in each (j : 4.1),

Y is generated by the actions of each (j : 4.1). Thus Y ∈ Bσj(w(L))(λ) for each

j = 0, 1, . . . , n − 1. Therefore Y ∈
n−1⋂
j=0

Bσj(w(L))(λ).

The following example illustrates the main theorem. The first three figures give

examples of Bσj (w(L))(λ) while the fourth gives the union of the crystals and the final

diagram illustrates their intersection.

Example 4.0.20. Let n = 3 and λ = Λ0 + Λ1 + Λ2. Consider L = 2. Then w(2)

contains 4 reverse ordered reflections and, as illustrated in the following figures:

2⋃

j=0

Bσj (w(L))(Λ0 + Λ1 + Λ2) =

Br0r1r2r0(Λ0 + Λ1 + Λ2) ∪ Br1r2r0r1(Λ0 + Λ1 + Λ2) ∪ Br2r0r1r2(Λ0 + Λ1 + Λ2) =

B2(Λ0 + Λ1 + Λ2)

and
2⋂

j=0

Bσj (w(L))(Λ0 + Λ1 + Λ2) =

Br0r1r2r0(Λ0 + Λ1 + Λ2) ∩ Br1r2r0r1(Λ0 + Λ1 + Λ2) ∩ Br2r0r1r2(Λ0 + Λ1 + Λ2) =

B1(Λ0 + Λ1 + Λ2)
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Figure 4.2: Crystal graph for the Demazure module Vr0r1r2r0(Λ0 +Λ1 +Λ2) when n = 3
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Figure 4.3: Crystal graph for the Demazure module Vr1r2r0r1(Λ0 +Λ1 +Λ2) when n = 3
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Figure 4.4: Crystal graph for the Demazure module Vr2r0r1r2(Λ0 +Λ1 +Λ2) when n = 3
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Figure 4.5:
2⋃

j=0

Bσj(w(L))(Λ0 + Λ1 + Λ2) = B2(Λ0 + Λ1 + Λ2)
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j=0

Bσj(w(L))(Λ0 + Λ1 + Λ2) = B1(Λ0 + Λ1 + Λ2)
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