
ABSTRACT

TAO, WENLI. Testing Patterns of Nucleotide Substitution Rates at Multiple Genes. (Under

the direction of Spencer V. Muse.)

Studying patterns of nucleotide substitution rates at multiple loci can help provide

clues to the evolution and function of genes. The computational drawback of the maximum

likelihood version of relative ratio tests becomes a concern when a large number of pairwise

comparisons are performed among multiple genes. We propose a new version of relative ratio

test, including four procedures, based on the use of pairwise sequence distances. The first

is based on ANOVA two-way model and allows covariances between branch lengths. The

second method applies generalized estimation equations (GEEs) to Poisson regression in a

log-linear model. The third one is a nonparametric approach based on bootstrap percentile

confidence intervals. The fourth method is based on weighted least squares estimation with

covariances.

Simulation studies have been conducted to compare Type I errors and powers between

the likelihood version of relative ratio tests and the first three proposed methods. The

formulas have been derived for the last method as well as the numerical steps. The ANOVA-

based method is the least computationally expensive and it has desirable Type I errors in

most cases as well as good powers. The bootstrap-based method is the slowest among the

four methods, but with smallest Type I errors and powers similar to the ANOVA-based

method. The Likelihood-based method is the second slowest and has more desirable Type

I errors than those of the ANOVA-based method, but has less powers than the ANOVA-

based method. The GEE-based method is suitable only for very long genes, but has good

statistical properties.

The ANOVA-based method is applied to mtDNA sequences from a broad range of animal

mitochondrial genomes. The results indicate that it is not uncommon that branch lengths

are conserved well among animal mitochondrial genes.

Key words: ANOVA with covariances, GEEs, Poisson regression in a log-linear model,

bootstrap, weighted least squares with covariances, mitochondrial genome.
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Chapter 1

Introduction

The study of variations and patterns of nucleotide substitution rates has drawn a great

deal of attention in the last two decades with the explosion of DNA sequence data available

to researchers. Indeed, knowledge of the patterns of nucleotide substitution is essential

both to our understanding of molecular sequence evolution and to reliable estimation of

phylogenetic relationships. In addition to testing the central issue in debates over the mode

of molecular evolution, studying the rates of change in DNA sequences can provide insights

into gene functions. For example, it has long been known that amino acids in structurally

important protein regions tend to evolve more slowly than amino acids in less important

regions (Kimura and Ohta 1974). Similar arguments apply to promoter regions embedded

in non-coding DNA; in some cases, promoter regions have been identified because of their

slow rate of evolution (Zurawski et al. 1987). With the advent of genomic technologies,

it is common to obtain DNA sequence data for a set of species at multiple genes. The

challenge will be to elucidate the functions of these genes. To this end, a comparative

evolutionary approach will prove important. Therefore it is interesting to compare patterns

of substitution rates on multiple genes simultaneously.

This project was motivated by work of Muse and Gaut (1997) on studying patterns of

nucleotide substitution rates at multiple genes. In their work Muse and Gaut developed a

statistical approach based on maximum likelihood method for simultaneous analysis of two

or more loci. The test they proposed was termed as the relative ratio test, and it examined

whether or not nucleotide substitution rates across evolutionary lineages had the same

1



relative magnitudes at two loci. Although the maximum likelihood method has recently

become a major approach for sequence data analysis, its computational drawback can still

be a concern if one wants to perform pairwise comparisons among multiple genes of interest.

For example, if we are interested in performing pairwise comparisons among 500 genes in

human genome, there will be total
(
500
2

)
= 124750 tests. If each test takes 1 minute, it needs

about 87 days to finish this task if we only have one processor available. It is necessary

to have an alternative method to reduce such computational burden. In addition, Muse

and Gaut (1997) did not study the statistic properties of the maximum likelihood version

of relative ratio tests. I therefore developed a new version of the relative ratio test based

on the use of pairwise sequence distances, and compared the power of the likelihood-based

method with the newly proposed methods. Several procedures are proposed to examine the

same biological question as that of Muse and Gaut (1997).

In the introduction, I try to give an overview of the biological background and the basic

concepts of the relative ratio tests in the terms of maximum likelihood and pairwise distance

methods.

1.1 Nucleotide Sequences

1.1.1 Introduction of DNA Sequences

In most organisms, genetic information is carried by DNA (deoxyribonucleic acid) molecules.

DNA is composed of two complementary chains twisted around each other to form a he-

lix. Each chain is a long string of the four nucleotides or bases: two purines, adenine (A)

and guanine (G), and two pyrimidines, cytosine (C) and thymine (T). The A’s comple-

ment with T’s, and so do C’s and G’s. DNA sequences are commonly represented by a

sequence of letters such as ACGTTTGCCTTACAGA, with each letter corresponding to

one of nucleotide bases. Usually the unit for DNA sequences is a base pair (bp).

A gene is an ordered sequence of nucleotides located in a particular position on a par-

ticular chromosome that encodes a specific functional product of either a protein or RNA

molecule. Genes are a small portion of DNA sequences in some organisms. A locus usually

2



represents the position on a chromosome of a gene or the DNA at that position. The usage

of terms gene and locus are sometimes interchangeable.

The earth’s present-day species have developed from earlier, different species by evolu-

tionary processes. The degree of relatedness between organisms or species can be estimated

from the similarity of their DNA sequences. Although the processes of DNA replication

from parents to offspring are highly accurate, mutations occur at a small but non-negligible

rate that results in small differences between parents and offspring. Mutations result in the

variability of organisms within a species which increases the chance that some organisms

can survive in the face of large changes in the environment. Such small differences can

accumulate in successive generations with roughly steady state. This makes it possible to

understand the history of genes and species via comparative study of DNA sequences.

Mutation is any heritable change in DNA sequences. There are several mutational pro-

cesses, including substitutions, recombination, deletions, insertions, and inversions. It is

difficult to estimate the amount of mutation directly. Usually, the amount of substitution

is used to reflect the degree of mutation. Nucleotide substitution is a basic process in the

evolution of DNA sequences in which one nucleotide is replaced by another. In addition,

substitution is relatively easy to study. Substitutions can be classified in two ways, one of

which is based on resulting changes of coding in amino acid. The second way is to divide

substitutions into transition and transversion. The exchanges within the purines or the

pyrimidines (i.e., A ↔ G and C ↔ T) are called transition, while transversions are substi-

tutions between the purines and pyrimidines (e.g., A ↔ C and G ↔ T). Accordingly, there

are total four types of transitions and eight types of transversions. In general, the transition

events happen more frequently than those of transversion. On the other hand, in protein

coding regions two types of substitutions are identified based on the coding changes: syn-

onymous substitutions and nonsynonymous substitutions. Synonymous substitutions are

changes that do not result in a new amino acid, while nonsynonymous substitutions result

in an amino acid change. Some authors prefer to naming them as silent and replacement

3



substitutions, respectively. Generally, synonymous substitutions occur at the third posi-

tion of codons, while nonsynonymous substitutions mainly occur at the first or the second

positions of codons. For example, the codon CCU (Pro) can have three synonymous substi-

tutions, to CCC (Pro), CCA (Pro), or CCG (Pro), and six nonsynonymous substitutions,

to UCU (Ser), ACU (Thr), GCU (Ala), CUU (Leu), CAU (His), or CGU (Arg).

1.1.2 Molecular Clocks

The molecular clock hypothesis asserts that the rate of evolution at the molecular level

is approximately constant over time in all evolutionary lineages (Zuckerkandl and Pauling

1965). The concept of a molecular clock has had a great impact on the study of evolution,

therefore debate on it has stimulated a number of empirical and theoretical projects. Obser-

vations of variation in nucleotide substitution rates in a variety of organisms have suggested

that time-calibrated molecular clock is not universal at DNA level (e.g., Li et al. 1992;

Wolfe et al. 1987; Muse and Gaut 1994; Moran 1996). According to the neutral theory

(Kimura 1968), substitution rates are expected to be inversely proportional to generation

time. In other words, organisms with long generation times may have slower rates of nu-

cleotide substitution than organisms with short generation times. The rationale behind this

prediction is that if the number of germ-line cell divisions is equivalent between two organ-

isms, then the organism with a shorter generation time has more germ-line cell divisions

per unit time, which, in turn, results in a higher nucleotide substitution rate per unit time

(Wu and Li 1985). Although some empirical studies supported the generation-time effect,

there is still a debate as to the generality of a generation-time calibrated or time-calibrated

clock in mammalian lineages (reviewed by Easteal et al. 1995). Except for generation-time

effect, many other factors have been considered to contribute to the variation among sub-

stitution rates. For instance, metabolic rate has been postulated to affect mutation rates

(Martin and Palumbi 1993). High metabolic rates may cause high concentrations of DNA

altering free oxygen radicals and then affect mutation rates. It has also been suggested

that phylogenetic groups with fast speciation rates will have fast substitution rates (Bous-

quet et al. 1992). Fidelity of DNA polymerase has also been hypothesized to influence
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nucleotide substitution rates (Wu and Li 1985; Britten 1986). Authors have suggested that

substitution rates also depend on population structure and the strength and direction of

selection. For example, rates of substitution for mildly deleterious mutations are greater in

small populations (Morgan 1996). Many forms of selection, say codon bias, are expected to

be locus specific, but some selection will affect multiple loci (Ohta 1992). These molecular

clock concepts make explicit predictions about correlations between nucleotide substitution

rates and either time or life history traits, and the challenge is how to characterize the rates

and patterns of nucleotide substitutions.

1.1.3 Nucleotide Substitution Rate

The change in nucleotides over time is a basic process in the evolution of DNA sequences.

It is critical to study such changes in nucleotide sequences in order to estimate evolution-

ary rates, to estimate divergence times, and to reconstruct evolutionary trees. Nucleotide

substitutions are commonly detected by comparing differences of nucleotides between two

alignments of homologous DNA sequences. The number of nucleotide substitutions between

two sequences (Figure 1.1) is generally expressed in terms of the number of substitutions

per nucleotide site (K) instead of the total number (N) of substitutions between the two

sequences. If we know L - the number of nucleotide substitution sites compared between

the two sequences and N , then we can have K = N/L, which is referred as the evolutionary

distance between two homologous sequences. For example, in Figure 1.1, Sequence 1 and

Sequence 2 are two homologous sequences diverged from the same ancestral sequence ACC-

TAGAG T years ago. The length of the sequence is L = 8. There is a total of four nucleotide

substitutions between the sequences since they shared the common ancestor (i.e., N = 4).

The number of substitutions per site is then calculated by K = 4/8 = .5. In fact, the

true history of evolution is unknowable in practice. We can only observe three differences

between the two sequences at positions 1, 5, and 6 due to multiple substitutions at the first

position. That is, the number of observed differences between two sequences is always an

underestimate of the true number of evolutionary changes that took place. Since multiple
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Figure 1.1: Divergence of two homologous sequences from a common an-
cestral sequence T years ago. The bold letters represent substitution sites

substitutions could occur at any site and it is impossible to observe such replacements, usu-

ally it is necessary to correct for multiple hits before estimating substitution rates. Without

such a correction, the rate of change in sequences will always be underestimated. In order

to count such multiple substitutions, mathematical models have been developed, and they

will be described in the following section.

We need to estimate the nucleotide substitution rate for different lineages. The rate of

nucleotide substitution is defined as the number of substitutions per site per year. There

are two basic measurements of nucleotide substitution rates: “absolute” rate of substitution

and “relative” rate of substitution. In order to estimate the absolute rates, we need to know

the homologous nucleotide sequences from two taxa and the divergence time between the

taxa. Let λ be the absolute rate of nucleotide substitution per site per year. Given the

estimated number of nucleotide substitution per site, K̂, and the estimated divergence time,
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Figure 1.2: The rooted tree of the species A, B, O, assuming that O is
the known outgroup. C denotes the common ancestor of species A and B

T̂ , the absolute rate of nucleotide substitution per site per year can be estimated as:

λ̂ = K̂/2T̂ .

That is, K̂ = 2λ̂T̂ . K can be estimated via a variety of nucleotide substitution models which

will be reviewed later. The divergence time T is usually inferred from fossil data. Tradition-

ally, estimation of absolute rates requires the assumption that rates of evolution are equal

in the two lineages since they diverged, i.e., an assumption of time-calibrated molecular

clock. In reality, unavailability and unreliability of fossil data often make it impossible to

directly estimate the absolute rate of substitution under the assumption of time-calibrated

molecular clock. To solve this problem, several approaches for estimating absolute rates

recently have been proposed by relaxing the assumption of constant rate among lineages

(Sanderson 1997 & 2002, Thorne et al. 1998, Huelsenbeck et al. 2000, Kishino et al. 2001).

Although those approaches used different statistical methods, they shared the same idea

of estimating divergence times along with absolute rates. Sanderson (1997) proposed a

nonparametric rate smoothing method in which absolute rates and divergence times were
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estimated by a least-squares smoothing method. Thorne et al. (1998) proposed a hierar-

chical model of rate evolution in which the logarithm of the rate on the same branch was

assumed to be a normal distribution. The Bayesian approach was applied to estimate the

rates and times. Huelsenbeck et al. (2000) followed the idea of Thorne et al. (1998), but

they allowed rates to vary across lineages according to a compound Poisson process in which

the amount of rate changes was assumed to be a gamma distribution. To take advantages of

both nonparametric and parametric methods, Sanderson (2002) proposed a semiparametric

smoothing method to estimate the rates and times by using penalized likelihood.

Relative substitution rate has been commonly used to compare the difference of sub-

stitution rates, either between genes or between lineages, without knowledge of divergence

time. Figure 1.2 shows the idea of obtaining the relative rate. This approach requires at

least three homologous DNA sequences in which one serves as an outgroup and the remain-

ing sequences are ingroups. The purpose of the outgroup is to root the tree. Let Kij , or

Kji, be the number of substitutions per site separating nodes i and j. It is obvious that

KAO = KAC+KCO and KBO = KBC+KCO and by subtraction, KAO−KBO = KAC−KBC .

Therefore comparison between KAO and KBO is equivalent to comparison between KAC

and KBC . In other words, using an outgroup makes it possible to estimate the number of

substitution events on the branches leading from the common ancestor C to ingroups A and

B, respectively. Such estimation is not possible using only the ingroup sequences A and B.

It follows that the relative rate of substitution can be obtained by the estimated K̂AC and

K̂BC as

R̂ = K̂AC/K̂BC .

Note that the relative rate R is independent of time dimension since divergence time will

be canceled out when ratio is taken.
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Table 1.1: Common nucleotide substitution models

Models Constraint Comment Reference
JC69 θ1 = θ2 = θ3 = θ4 = θ5 = θ6, all substitutions equally prob-

able; equal base frequencies.
Juke and Can-
tor(1969)πA = πC = πG = πT

F81 θ1 = θ2 = θ3 = θ4 = θ5 = θ6 all substitutions equally prob-
able; base frequencies may be
unequal

Felsenstein
(1981)

K80 θ1 = θ3 = θ4 = θ6; θ2 = θ5, separate transition and
transversion rates; equal base
frequencies

Kimura (1980)

πA = πC = πG = πT

HKY85 θ1 = θ3 = θ4 = θ6; θ2 = θ5. separate transition and
transversion rates; base
frequencies may be unequal.

Hasegawa et al.
(1985)

TN93 θ1 = θ3 = θ4 = θ6 two different transition rates,
and one transversion rate;
base frequencies may be un-
equal.

Tamura and
Nei (1993)

REV none all substitutions occur at dif-
ferent rates; base frequencies
may be unequal.

Tavare (1986)

1.1.4 Models of Nucleotide Substitution

It was recognized long ago that nucleotide substitution could be described using a stationary

homogeneous Markov process (Yang 1994), which was characterized by a rate matrix whose

elements represent instantaneous substitution rates among the four nucleotides. Different

restrictions on the matrix result in various mathematical models of substitution that are

summarized in Table 1.1 (Muse 2000). Almost all the models proposed in the literature are

a special form of the General Reversible Process model (REV) (Dayhoff et al. 1978, Tavaré
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1986). The rate matrix for this model takes the form

A C G T

QREV =

A

C

G

T


−Σ1 θ1πC θ2πG θ3πT

θ1πA −Σ2 θ4πG θ5πT

θ2πA θ4πC −Σ3 θ6πT

θ3πA θ5πC θ6πG −Σ4

 .

The elements on the diagonal are the Σi (i = 1, 2, 3, 4) which is the sum of all the other three

elements on the ith row so the total sum on the row is zero. For example, at the first row

Σ1 = θ1πC +θ2πG +θ3πT . The off-diagonal values in the matrix represent the instantaneous

probabilities of changes from the nucleotides indexed by the row to those indexed by the

column, Pij(δt). Note that every off-diagonal element is a product of two terms. The

θi’s are substitution parameters that control the relative rates of changes between different

nucleotides. The πi’s are frequency parameters representing equilibrium base frequencies

for the four nucleotides. The summation of the πi’s is one. The matrix satisfies the time

reversibility condition of πiQij = πjQji. As Yang (1994) pointed out, it is unclear whether

it is biologically reasonable to consider these two sets of parameters as representing different

forces that affect nucleotide substitution, but this distinction is mathematically convenient.

Although the precise probabilities of changes among different nucleotides may depend on

the base frequencies, the general trends are governed by the substitution parameters.

Different combinations of substitution parameters and base frequencies will result in

different nucleotide models. The model of Jukes and Cantor (1969) (JC69) is the simplest in

that all the changes among the four nucleotides are assumed to occur with equal probability.
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So the rate matrix of the JC69 model is defined as:

A C G T

QJC69 =

A

C

G

T


−3θ/4 θ/4 θ/4 θ/4

θ/4 −3θ/4 θ/4 θ/4

θ/4 θ/4 −3θ/4 θ/4

θ/4 θ/4 θ/4 −3θ/4

 .

Note that all changes have the same substitution parameter θ and all nucleotides have the

same base frequency, 1/4.

Kimura’s model (1980) (K80) allows different rates of transition and transversions by

equating θ2 = θ5 and θ1 = θ3 = θ4 = θ6. The rate of matrix of K80 model is given by:

A C G T

QK80 =

A

C

G

T


−Σ1 θ1/4 θ2/4 θ1/4

θ1/4 −Σ2 θ1/4 θ2/4

θ2/4 θ1/4 −Σ3 θ1/4

θ1/4 θ2/4 θ1/4 −Σ4

 .

Felsenstein’s model (1981) (Fel81) allows the four nucleotides to have unequal frequencies

at equilibrium and have the same substitution parameter θ. The rate matrix of the Fel81

model is defined as:

A C G T

QFel81 =

A

C

G

T


−Σ1 θπC θπG θπT

θπA −Σ2 θπG θπT

θπA θπC −Σ3 θπT

θπA θπC θπG −Σ4

 .

The model of Hasegawa et al. (1985) (HKY85) is the general case of the above three

which allows both different rates for transition and transversions and different nucleotide
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frequencies. The rate matrix of the HKY85 model is

A C G T

QHKY85 =

A

C

G

T


−Σ1 θ2πC θ1πG θ2πT

θ2πA −Σ2 θ2πG θ1πT

θ1πA θ2πC −Σ3 θ2πT

θ2πA θ1πC θ2πG −Σ4

 .

The model of Tamura and Nei (1993) (TN93) makes only the restriction that θ1 = θ3 =

θ4 = θ6, allowing for two classes of transitions. It is easy to see that the model of HKY85

is a special case of the model of Tamura and Nei (1993). The rate matrix for the model

TN93 is given by

A C G T

QTN93 =

A

C

G

T


−Σ1 θ3πC θ1πG θ3πT

θ3πA −Σ2 θ3πG θ2πT

θ1πA θ3πC −Σ3 θ3πT

θ3πA θ2πC θ3πG −Σ4

 .

1.1.5 Estimating Nucleotide Substitution Rate

Given the instantaneous rate matrix Q, the substitution probability matrix for an interval

of time t is given by

P(t) = eQt, (1.1)

The matrix exponential eQt can be calculated by

eQt =
4∑

i=1

etλiviw
′
i , (1.2)

where λi, i = 1, 2, 3, 4, are the eigenvalues of matrix Q, and vi and wi are the left and right

eigenvectors related to the ith eigenvalue (i.e., Qvi = λivi and Q′wi = λiwi).

For the JC69 model, we have the eigenvalues and the corresponding eigenvectors for the
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QJC69 as follows,

λ1 = 0, λ2 = θ, λ3 = λ4 = −2θ.

v1 =


1

1

1

1

 , v2 =


1/2

1/2

−1/2

−1/2

 , v3 =


0

0

1/2

−1/2

 , v4 =


1/2

−1/2

0

0

 ,

w1 =


1/4

1/4

1/4

1/4

 , w2 =


1/8

1/8

−1/8

−1/8

 , w3 =


0

0

1

−1

 , w4 =


1

−1

0

0

 .

Using the equations (1.1) and (1.2), we have transitional probabilities for the model

JC69

Pij(t) =


1
4 + 3

4e−4θt/3 i = j

1
4 − 1

4e−4θt/3 i 6= j

Let pt denote the probability that two homologous nucleotides are the same type at time

t after diverging from their common ancestor. Note that

pt =
∑

j

Pji(t)Pij(t)

=
∑

j

Pij(t)Pji(t)

= Pii(2t) (by Chapman-Kolmogorov equation)

=
1
4

+
3
4
e−8θt/3.

Solving the above equation, the estimate of K = 2θt, the expected number of substitutions
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separating two homologous sites, is given by

K̂ =
3
4

ln
(

3
4p̂t − 1

)
, (1.3)

where p̂t is the observed proportion of identical sites in the two sequences being compared.

K̂ is usually refereed as the evolutionary distance between the two sequences. It can be

shown that K̂ in (1.3) is a maximum−likelihood estimator of K.

For the HKY85 model, the eigenvalues of QHKY85 are

λ1 = 0, λ2 = −(πY θ2 + πRθ1),

λ3 = −θ2, λ4 = −(πY θ1 + πRθ2),

and the corresponding eigenvectors are

v1 =


πT

πC

πA

πG

 , v1 =


0

0

1

−1

 , v3 =


πRπT

πRπC

πY πA

πY πG

 , v4 =


1

−1

0

0

 ,

w1 =


1

1

1

1

 , w2 =


0

0

πG/πR

−πA/πR

 , w3 =


1/πY

1/πY

−1/πR

−1/πR

 , w4 =


πC/πY

−πT /πY

0

0

 ,

where πY = πT + πC and πR = πA + πG. Applying these expressions into equations (1.1)

and (1.2), we find the transition probabilities for the HKY85 model:

Pij(t) =


πj

(
1 + 1−Πj

Πj
e−θ2t − 1

Πj
e−[Πjθ1+(1−Πj)θ1]t

)
i 6= j, transition

πj

(
1− e−θ2t

)
i 6= j, transversion

πj

(
1 + 1−Πj

Πj
e−θ2t

)
+ Πj−πj

Πj
e−[Πjθ1+(1−Πj)θ2]t i = j, no change,
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where Πj is the frequency of either purines or pyrimidines, depending on the classification

of the “target” nucleotide, j. For example, when i = A, and j = G, there is a transition to a

purine and ΠG = πA + πG. When i = A, and j = C, there is a transversion to a pyrimidine

and ΠC = πC + πT .

Note that the substitution probabilities in both models depend only on the product

of θ and t, which reflects the confounding of these two parameters. Thus the estimates

of substitution rates along evolutionary lineages are usually estimated by branch lengths,

which may be better interpreted as an average, over time, of the amount of sequence change

per site.

There are some mathematical requirements for the substitution model in order to obtain

an analytical formula for estimating the distance separating two sequences (Yang 1994).

Only do the JC69, K80, F81 and TN93 meet the requirements among the models listed

above. It is impossible to derive the analytical formula for estimating the expected number

of nucleotide substitutions for the HKY85 model. Note in the model of TN93, parameters

θ1, θ2, and θ3 stand for the rates of transitional replacement between purines, between

pyrimidines, and of transversional change, respectively. If we let θ1 = θ2 in the model

of TN93, it becomes the HKY85 model. Thus, the formula of evolutionary distance from

the TN93 model may be used to get the estimate of distance for HKY85. When the

nucleotide frequencies were in equilibrium, Tamura and Nei (1993) derived the average rate

of nucleotide substitution per site as

λ = 2πAπGθ1 + 2πT πCθ2 + 2πRπY θ3,

where πR = πA+πG and πY = πC+πT as defined before. The expected number of nucleotide

substitutions between two homologous sequences diverged t evolutional time unites (years

or generations) ago is given by K = 2λt where

K = 4πAπGθ1t + 4πT πCθ2t + 4πRπY θ3t.
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Denote the expected proportions of nucleotide sites showing transitional differences be-

tween purines as P1 and between pyrimidines as P2 and of those showing transversional

differences as S. Tamura and Nei (1993) derived the following formulas

P1 =
2πAπG

πR
πR + πY exp(−2θ3t)− exp[−2(πRθ1 + πY θ3)t], (1.4)

P2 =
2πT πC

πY
πY + πR exp(−2θ3t)− exp[−2(πY θ2 + πRθ3)t], (1.5)

S = 2πRπY [1− exp(−2θ3t)]. (1.6)

In the model of HKY85, the rates of transition are equal, θ1 = θ2 = δ. Consequently,

the expected proportions of nucleotide sites showing transitional differences should be the

sum of differences between purines and differences between pyrimidines, P = P1 + P2. For

consistency, let θ3 = ρ denote the transversional rate. The expected number of nucleotide

substitution between two sequences becomes

K = 4δ(πAπG + πT πC)t + 4πRπY ρt.

In practice, P and S are estimable from sequence comparison and the four base frequencies

can be estimated by the average nucleotide frequencies of the two sequences compared. To

get the estimate of K, we should get the estimates of both δ and ρ. From (1.6), we can

easily obtain the formula for the estimate of ρt as

ρ̂t = −1
2

ln
(

1− S

2πRπY

)
.

By putting P1 and P2 together, we have

P = 2πAπG + 2πT πC +
(

2πAπGπY

πR
+

πT πCπR

πY

)
exp(−2ρt) (1.7)

−2πAπG

πR
{exp[−2(πRδ + πY ρ)t]}

−2πT πC

πY
{exp[−2(πY δ + πRρ)t]}.
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Although it is impossible to get an analytical formula for δt from equation (1.7), we still can

obtain the estimate of δt by taking the advantage of the computer. Consider the function

f(δ) = 2πAπG + 2πT πC +
(

2πAπGπY

πR
+

πT πCπR

πY

)
exp(−2ρt)

−2πAπG

πR
{exp[−2(πRδ + πY ρ)t]}

−2πT πC

πY
{exp[−2(πY δ + πRρ)t]} − P.

Assume that f(δ) = 0. By taking the first derivative with respect to δ, we obtain

f ′(δ) = 4πAπG{exp[−2(πRδ + πY ρ)t]}+ 4πT πC{exp[−2(πY δ + πRρ)t]}
> 0.

Therefore the function f(δ) is a strictly increasing function on (−∞, +∞). Since f(δ) = 0,

lim
δ→+∞

f(δ) > 0, and lim
δ→−∞

f(δ) < 0, there exist a positive integer N1 and a negative integer

N2 such that

f(N1) > 0 (N1 > 1),

and

f(N2) < 0 (N2 < −1),

which satisfies the condition for the bisection method for root finding (Press et al. 1992).

Accordingly, the estimate of δt can be obtained by applying the bisection method to solve

the function f(δ) = 0.

In general, the distance estimate for any model can be found using numerical methods,

even when analytical formulas are not available.
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1.2 Comparison of Patterns of Substitution Rates at One
Loci

1.2.1 Relative Rate Test

Debate on the molecular clock hypothesis is always concerned about the divergence time.

In general, it is impossible to compare evolutionary rates among species, and the estimated

substitution rates can be used for this purpose. Unavailable and unreliable fossil data

made it difficult to estimate the actual substitution rates and test the hypothesis. To

solve this problem, the relative rate test was proposed by Sarich and Wilson (1973). As

mentioned in the previous section, by introducing an outgroup species the branch lengths

along corresponding lineages can be estimated without knowledge of divergence time. The

prior knowledge needed to know is that the outgroup species should be more relatively

distanced than either of two species being compared. In order to know whether or not

substitution rates are same between two species A and B since they diverged from the

common ancestor C, the reference species O is used to root the tree as shown in Figure 1.2.

As usual, letting Kij be the expected number of substitutions per site separating species i

and j, we have

KAO = KAC + KCO, (1.7a)

KBO = KBC + KCO, (1.7b)

KAB = KAC + KBC , (1.7c)

where KAO, KBO, and KCO can be directly estimated from the nucleotide sequences based

on the nucleotide models described in the previous section. Solving these equations, we can

obtain the estimate of KAC , KBC , and KCO:

KAC =
1
2
(KAO + KAB −KBO),

KBC =
1
2
(KAB + KBO −KAO),

KCO =
1
2
(KAO + KBO −KAB).
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That is, we can estimate the number of substitution per site on the branches leading from

the common ancestor C to ingroups A and B by using the outgroup O. The concept of

relative rate of substitution provides a sufficient way to test the molecular clock hypothesis

without knowing the divergence time. In order to well understand the concept of relative

rate test, essential to the contents of the later chapters, I will briefly introduce two different

versions of relative rate test.

1.2.2 Distance-based Methods

The evolutionary distance between a pair of sequences is typically referred as the estimate

of average number of substitutions per site. In other words, it is the sum of the branch

lengths separating two species being compared. There are several distance-based relative

rate tests (e.g., Wu and Li 1985, Li et al. 1985 and Li and Bouquet 1992). The basic idea

is to test the difference of branch lengths between two species of interest by constructing a

form of Z-test. Referring back to Figure 1.2, we want to test the equality of rates between

species A and species B. Because the time that passed since species A and B diverged

from the last common ancestral C is equal for both lineages, KAC and KBC should be

equal according to the molecular clock hypothesis. From equation (1.7), it is easy to obtain

KAC −KBC = KAO −KBO. Thus, testing H0 : KAC −KBC = 0 is equivalent to testing

the null hypothesis H0 : KAO −KBO = 0. The Z-test is given by

Z =
K̂AO − K̂BO√
V(K̂AO − K̂BO)

,

where

V(K̂AO − K̂BO) = V(K̂AO) + V(K̂BO)− 2Cov(K̂AO, K̂BO).

Note that K̂AO = K̂AC +K̂CO and K̂BO = K̂BC +K̂CO and that K̂AC and K̂BC are inde-

pendent of each other since lineages A and B evolve independently. Thus, Cov(K̂AO, K̂BO) =

Var(K̂CO) (Nei et al. 1985). Consequently, we have

V(K̂AO − K̂BO) = V(K̂AO) + V(K̂BO)− 2Var(K̂CO).
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Figure 1.3: The phylogenetic tree of the test of Li and Bouquet (1992): the tree
consists of three lineages, with Lineage 1 having n = 4 taxa, with Lineage 2 having
m = 3 taxa and an outgroup. C is the common ancestor of Lineage 1 and Lineage 2

The Z-test is approximately distributed as N(0, 1).

The tests of Wu and Li (1985) and Li et al. (1985) only compared two taxa simulta-

neously, while Li and Bouquet (1992) extended them to cases where more than one taxon

are sampled for one nucleotide sequence in two lineages (Figure 1.3). Suppose that a tree

consists of two lineages, with Lineage 1 having n taxa and with Lineage 2 having m taxa.

Define N
(1)
i as the number of nucleotides compared between the ith sequence in Lineage

1 and the outgroup sequence, i = 1, · · · , n, and define N
(2)
j as the number of nucleotides

compared between the jth sequence in Lineage 2 and the outgroup sequence, j = 1, · · · , m.

Let x and y be the sums of N
(1)
i and N

(2)
j , respectively. Define K

(1)
i and K

(2)
j to be the

number of nucleotide substitutions between the ith sequence in Lineage 1 and the outgroup,

and jth sequence in Lineage 2 and the outgroup, respectively. The average numbers of nu-

cleotide substitutions between Lineage 1 and the outgroup, and between Lineage 2 and the
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outgroup are given by

K1 =
n∑

i=1

(N (1)
i K

(1)
i )/x,

K2 =
m∑

i=1

(N (2)
j K

(2)
j )/y.

Then the form of Z-test can be constructed as before,

Z =
K1 −K2√
V(K1 −K2)

,

which is also approximately distributed as N(0, 1).

1.2.3 Maximum Likelihood-based Method

Felsenstein (1981) proposed to use maximum likelihood methods to estimate the phyloge-

netic trees. Following the idea of Felsenstein (1981), a more powerful and flexible likelihood

ratio version of relative rate test was formally developed by Muse and Weir (1992). The

basic idea of this version of relative ratio test is the same as the distance-based meth-

ods. To understand the test, first we should know how to form the likelihood function for

phylogenetic tree (Felsenstein 1981).

Suppose we have three species A, B, and O and know the common ancestor D for all

and the common ancestor C only for A and B. Denote the nucleotide at site k of sequence

i as Sik (i = A, B, C, D, and O). Following Felsenstein (1981) the likelihood function for

site k is given by

lk =
4∑

SDk=1

4∑
SCk=1

πSDk
PSDk,SCk

(KCD)PSDk,SOk
(KDO)

PSCk,SAk
(KAC)PSCk,SBk

(KBC)

where the term PSik,Sjk
(Kij) (j = A, B, C, D, and O) represents the probability that a site

being in state Sjk was initially in state Sik (either A, C, G, or T) after period of time, while

Kij = µijtij , is the product of substitution rate and time for the specific branch in the tree,
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Figure 1.4: The maximum likelihood-based relative rate test: three species A, B, and O
and know the common ancestor D for all and the common ancestor C only for A and B

i.e. branch length. Substitution rates confound with divergence time, so it is impossible

to estimate substitution rate directly without knowledge of time information. Felsenstein

(1981) provided the “pulley principle” to reduce the computational demand. That is, for

time-reversible models the likelihood function is the same for all rooted trees corresponding

to a single unrooted tree (Figure 1.5). Therefore the previous equation can be simplified by

lk =
4∑

SCk=1

πSCk
PSCk,SOk

(KCO)PSCk,SAk
(KAC)PSCk,SBk

(KBC),

which reduces the two summations to one and four branches to three.

Assuming that substitution at one position in a sequence occurs independently from

events at other positions, the overall likelihood function for n sites is the product of the n

individual site likelihoods,

L =
n∏

k=1

lk.

Suppose we wish to test the same equality as the distance-based methods: H0 : KAC = KBC ,
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Figure 1.5: The unrooted phylogenetic tree of the species A, B, and O

that is, H0 : µACT2 = µBCT2. It is equivalent to testing HO : µAC = µBC by canceling the

time T2 out. One can first optimize the likelihood function of L without any constraint, say

LA, and then maximize L under the null hypothesis of equality of rates, say LO. Then the

likelihood ratio test can be constructed by

λ = LO/LA,

and −2 log(λ) is approximate to be distributed by a χ2−distribution with one degree of

freedom. One of the benefits of LRT version of relative ratio test is that it can be easily

applied to any substitution models.

1.3 Comparison of Patterns of Substitution Rates at Multi-
ple Loci

1.3.1 Correlated Relative Rates among Loci

As the possibility of accessing multiple data sets of sequences for the same set of species

became reality, various studies have been conducted to compare the relative rates of sub-

stitution at multiple genes or multiple genomes for the same set of species. This kind of

study provides further insights into the mechanisms and processes of sequence evolution
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and the functions of genes. For instance, if some evolutionary forces (e.g., generation times

or speciation rates) that affect the whole plant mitochondrial genome cause rate variation

between lineages of a mitochondrial locus, we can expect to find the similar relative rates

for most of mitochondrial loci. In other words, relative rates can be conserved among loci

by a genome-wide evolutionary force. Conversely, if relative rates are not conserved well

among loci, it indicates that locus-specific factors, say selection, predominate.

By comparing the plant mitochondrial, chloroplast, and nuclear sequences, Wolfe et al.

(1987) showed that silent substitution rate in mtDNA was less 1/3 than that in cpDNA,

which in turn evolved only 1/2 as fast as nDNA. Gaut and Clegg (1993)’s study gave

the evidence that substitution rates in the maize Adh1 lineage were 1.7 times faster than

substitution rates in the millet Adh1 lineage. The study by Muse and Gaut (1994) of the

chloroplast genome suggested that relative rates were relatively well conserved across loci,

and substitution rates were subject to both lineage-specific and locus-specific effects.

As previous studies suggested, two factors were considered to affect the patterns: lineage

effects and locus effects. The lineage effects lead to changes in substitution rates at all loci

in a particular evolutionary lineage. For example, organisms with 1/2 shorter generation

times might lead to twice more substitution rates at all loci. Two distinct types of locus

effects were taken into account. The first type is responsible for inter-locus rate differences

that remain fairly constant across evolutionary lineages. For example, a previous study by

Bulmer et al. (1991) indicated that observed variation in synonymous substitution rates

among loci might result from regional differences in mutation rates. On the other hand, the

second type of locus effect governs substitution rate at single locus in a particular lineage

or set of lineages. Occasional intervals of locus-specific positive or negative selection can

result in this type of effect. We might consider the latter one as an interaction between

locus and lineage effects.

1.3.2 Relative Ratio Test

To answer the interesting question:“are relative substitution rates among particular lineages

well conserved across genes? ”, relative ratio tests have been formulated. The relative ratio
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test was designed for data from the same set of taxa for two or more genes. The purpose

of the test is to determine whether or not the relative lengths of branches are conserved

across loci in the same set of taxa. Consider the example in Figure 1.6. Branch lengths are

generally longer in Locus A than in Locus B since Locus A evolves with a faster absolute

rate than Locus B, but there are different scenarios between the top and bottom panels.

In the top panel, although the absolute branch lengths are different between the two loci,

the relative branch lengths are proportional. Such a proportion suggests that relative rates

are conserved across loci, which can be explained by a single factor acting on both loci

simultaneously. In the bottom panel, branch lengths are uncorrelated - the two loci don’t

share the fast and slow branches. As a consequence, no proportionality holds and relative

rates are not conserved between loci. This requires different factors to be acted in the two

loci.

Figure 1.7 illustrates testing hypotheses. Let the substitution rates for Locus A and Lo-

cus B on the branch i be denoted by µAi and µBi , respectively, and k be the proportionality

constant. The hypotheses of interest are

H0 : µAi = kµBi ,

Ha : µAi 6= kµBi .

The relative rates are the same at the two loci if k is equal to 1. The constant k need

not be known a priori, but can be estimated from the data. Based on the above discussions,

the rejection of the null hypothesis indicates that the true substitution rates don’t have

proportional values at two loci, and that interplay of locus and lineage effects may be

needed to explain differences.

Note that the hypotheses do not include time since the relative rates are independent of

the time dimension, but time probably influences the performance of the test. Additionally,

absolute rates can be different between loci without affecting the comparison. Different

ways have been taken to implement the relative ratio test: distanced-based and maximum

likelihood based. The former included tests developed by Eyre−Walker and Gaut (1997) and
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and k be the proportionality constant.
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Gaut et al. (1997); the latter was proposed by Muse and Gaut (1997). Brief introductions

of these tests are given in the following subsections.

1.3.3 Distance-based Methods

The distance-based version of relative ratio test has been developed in two different ways

by Eyre-Walker and Gaut (1997) and Gaut et al. (1997). In both procedures, the version of

Li and Bousquet (1992)’s relative rate test has been used. As described previously, Li and

Bousquet (1992)’s test is a distance-based method that compares substitution rates between

groups of sequences by testing the average rates in two groups of sequences. Additionally,

the test didn’t make any assumption about relatedness of sequence groups, monophyletic

or homogeneous.

Eyre-Walker and Gaut (1997) treated sequences in each locus as a group, and sim-

ply used Li and Bousquet (1992)’s relative rate test to detect whether average rates of

substitution are equal between two loci or not. They estimated the branch lengths from

a neighbor-joining tree (Saitou and Nei, 1987) and used bootstrapping to estimated the

variances, then used Z-test to compare relative rates between loci.

Gaut et al.(1997) constructed a pairwise matrix of the ratio of substitution rates between

two monophyletic groups of sequences for each locus and then used the Mantel test to detect

whether there is any correlation between loci. The detailed procedure is described in the

example of Figure 1.8. Suppose that two trees consist of two lineages each, with Lineage 1

having n taxa and Lineage 2 having m taxa. Let r be the ratio of substitution rates between

two monophyletic groups of sequences contrasted in a relative rate test, which is defined as:

r̂ =
d10 + d12 − d20

d20 + d12 − d10

,

where d10 is the average distance from n sequences in group one to the outgroup sequence,

d20 is the average distance from m sequences in group two to the outgroup sequence, and

d12 is the average distance of n × m distance pairs between two groups. Thus, pairwise

matrix of r̂ can be obtained for each locus. Mantel test (Sokal and Rolf 1995) was used to
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tion rate and time for the species branch in the gth Locus.

test the correlation among the matrix of r̂. A correlation coefficient, R0, was calculated for

the original matrices. They permutated the rows and columns within one of the matrices

and recalculate the correlation coefficient. The measure of significance was the number

of times that the original correlation coefficient (R0) was exceeded by permutated values.

They concluded that patterns of relative rates were correlated if the test is significant. A

point made by Dr. Thorne that this procedure probably is not a real sense of relative ratio

test since it doesn’t explicitly test the null hypothesis of the relative ratio test.

1.3.4 Maximum Likelihood-based Method

The likelihood ratio version of the relative ratio test was proposed by Muse and Gaut (1997).

Figure 1.9 illustrates the null hypothesis of the test. From the previous introduction, the

likelihood function for site k1, k1 = 1, · · · , n, at Locus 1 is given by

l1k1
=

4∑
S1

Ck1
=1

πS1
Ck1

PS1
Ck1

,S1
Ok1

(K1
CO)PS1

Ck1
,S1

Ak1
(K1

AC)PS1
Ck1

,S1
Bk1

(K1
BC),
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and the likelihood function for site k2, k2 = 1, · · · , m at Locus 2 is given by

l2k2
=

4∑
S2

Ck2
=1

πS2
Ck2

PS2
Ck2

,S2
Ok2

(K2
CO)PS2

Ck2
,S2

Ak2
(K2

AC)PS2
Ck2

,S2
Bk2

(K2
BC),

where Kg
ij (i, j = A, B, C, D, O, and g = 1, 2) represents product of substitution rate and

time for the species branch in the gth Locus. Let L(K1) and L(K2) denote the likelihood

function for Locus 1 and Locus 2, respectively, we have

L(K1) =
n∏

k1=1

l1k1
,

L(K2) =
m∏

k2=1

l2k2
.

Under the assumption that the substitution events are independent among the genes, the

total likelihood function for both genes should be the product of two individual likelihood

function. Without any constraint, the total likelihood function is given by

La = L(K1)L(K2)

Under the null hypothesis, the total likelihood function is given by

L0 = L(kK2)L(K2)

So we can construct the likelihood ratio test as follows

λ(K) =
L(kK2)L(K2)
L(K1)L(K2)

and −2 log(λ(K)) is approximately distributed as a χ2−distribution with the degrees of

freedom that depend on the number of compared branches.
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Chapter 2

The Methods Based on Two-way ANOVA Model

with Covariance Structure

2.1 Introduction

The analysis of variance is one of the most widely used statistical techniques. The basic

idea of ANOVA is to partition variation in means. As mentioned in the previous chapter,

the factors which govern variations in nucleotide substitutions can be considered as lineage

effects, locus effects, and interaction between both. It is natural to use ANOVA method to

deal with our problem. Applying ANOVA for testing the proportionality of relative rates

at two loci is a method based on the use of pairwise sequence distances. Previous distance-

based methods are valid, but they are probably not a powerful approach because they

don’t account for variations among branch lengths. From previous discussions, estimates

of branch lengths within a locus are negatively correlated with each other since they are

obtained by subtraction from estimates of the total number of substitutions separating

two species. Therefore, the classic ANOVA won’t be applicable for analyzing substitution

rates, and the covariances among branch lengths have to be taken into account. It is not

straightforward to obtain an analytical result for the covariance due to the complexity of

substitution models. Fortunately, Bulmer (1989) derived the covariance of the number of

substitutions between each pair of species for the model of Jukes and Canton (1969). The

covariance between branch lengths can be easily deduced from it. Because of the existence of

covariance between branch lengths, standard F tests are invalid. The expected mean squares
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should be derived with incorporation of covariance. In addition to the aforementioned

problems, several other problems are encountered when we perform the ANOVA and will

be described in the following sections.

2.1.1 The Hypotheses of the ANOVA-based Tests

Figure 2.1 illustrates the data structure of interest. The question is whether two species, 1

and 2, have evolved at the same proportional rates at two loci, A and B, since they diverged

from their common ancestor C. Note that the third species is an outgroup and used to root

the tree. Write µA1 , µA2 , and µA3 for substitution rates for species 1, 2 and 3 at Locus

A, respectively. Likewise, let µB1 , µB2 , and µB3 be substitution rates for species 1, 2, and

3 at Locus B. Our interest is to test whether or not the relative lengths of branches are

proportional among loci, that is,

H0 : µAi = kµBi , H1 : µAi 6= kµBi .

Figure 2.2 illustrates four scenarios under no interaction between the lineage and locus

effects. It is clear to see that testing the proportionality of relative rates is equivalent to

testing no interaction from Figure 2.2. Thus the hypotheses of interest become

H0 : no interaction effect, H1 : interaction effect exists.
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¯

¯
¯

¯
¯

¯
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L
L
L
L
L
L
LL

L
L
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¯

¯
¯

¯
¯

¯
¯̄

L
L
L
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L
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µB2
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1 2 3

Figure 2.1: The tree structure of the ANOVA-based tests: whether two species, 1 and 2,
have evolved at the same proportional rates at two loci, A and B, since they diverged from
their common ancestor C. The third species is an outgroup and used to root the tree.
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Figure 2.2: The four scenarios under no interaction between lineage and locus effects
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2.1.2 Deriving Covariances between Branch Lengths

Bulmer (1989) evaluated variances and covariances of the expected number of substitutions

between each pair of species by following the model of Jukes and Cantor (1969) in a formal

argument. Suppose that s species from a homologous gene diverged from a common ancestor

many years ago. Write µi for the expected number of substitutions per site in the ith lineage.

Direct estimates of the µi’s can not be made, but the number of substitutions between each

pair of species, say dij , can be estimated. For species i and j, let pij represent the proportion

of identical sites in the two homologous sequences. We have

d̂ij = 3
4 ln

(
3

4pij−1

)
.

Note that

d̂ij = µi + µj + εij .

Bulmer (1989) obtained the following formula:

Var(d̂ij) = 3
4n

{
1
4 exp

[
8
3(µi + µj)

]
+ 1

2 exp
[

4
3(µi + µj)

]− 3
4

}
, (2.1)

and

Cov(d̂ij , d̂ik) = 3
4n

[
1
4 exp

(
8
3µi

)
+ 1

2 exp
(

4
3µi

)− 3
4

]
, (2.2)

where n is defined as the number of nucleotides in two homologous sequences being com-

pared. Now consider three species. If the third is an outgroup, we will have

µ̂1 = 1
2(d̂12 + d̂13 − d̂23),

µ̂2 = 1
2(d̂12 + d̂23 − d̂13),
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and

Cov(µ̂1, µ̂2) =
1
4
Cov

[
(d̂12 + d̂13 − d̂23), (d̂12 + d̂23 − d̂13)

]
=

1
4

[
Cov(d̂12, d̂12) + Cov(d̂12, d̂23)− Cov(d̂12, d̂13)

+ Cov(d̂13, d̂12) + Cov(d̂13, d̂23)− Cov(d̂13, d̂13)

− Cov(d̂23, d̂12)− Cov(d̂23, d̂23) + Cov(d̂23, d̂13)
]

=
1
4
[Var(d̂12)−Var(d̂13)−Var(d̂23) + 2Cov(d̂13, d̂23)].

Note that

1
4
Var(d̂12) =

3
16n

{
1
4

exp
[
8
3
(µ1 + µ2)

]
+

1
2

exp
[
4
3
(µ1 + µ2)

]
− 3

4

}
=

3
64n

{
exp

[
8
3
(µ1 + µ2)

]
+ 2 exp

[
4
3
(µ1 + µ2)

]
− 3

}
,

−1
4
Var(d̂13) =

3
64n

{
− exp

[
8
3
(µ1 + µ3)

]
− 2 exp

[
4
3
(µ1 + µ3)

]
+ 3

}
,

−1
4
Var(d̂23) =

3
64n

{
− exp

[
8
3
(µ2 + µ3)

]
− 2 exp

[
4
3
(µ2 + µ3)

]
+ 3

}
,

and

2
4
Cov(d̂13, d̂23) =

3
64n

{
2 exp

[
8
3
(µ3)

]
+ 4 exp

[
4
3
(µ3)

]
− 6

}
.
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Therefore,

Cov(µ̂1, µ̂2) =
1
4
[Var(d̂12)−Var(d̂13)−Var(d̂23) + 2Cov(d̂13, d̂23)]

=
3

64n

{
exp

[
8
3
(µ1 + µ2)

]
+ 2 exp

[
4
3
(µ1 + µ2)

]
− 3

− exp
[
8
3
(µ1 + µ3)

]
− 2 exp

[
4
3
(µ1 + µ3)

]
+ 3

− exp
[
8
3
(µ2 + µ3)

]
− 2 exp

[
4
3
(µ2 + µ3)

]
+ 3

+2 exp
(

8
3
µ3

)
+ 4 exp

(
4
3
µ3

)
− 6

}
=

3
64n

{
exp

[
8
3
(µ1 + µ2)

]
+ 2 exp

[
4
3
(µ1 + µ2)

]
− exp

[
8
3
(µ1 + µ3)

]
− 2 exp

[
4
3
(µ1 + µ3)

]
− exp

[
8
3
(µ2 + µ3)

]
− 2 exp

[
4
3
(µ2 + µ3)

]
+2 exp

(
8
3
µ3

)
+ 4 exp

(
4
3
µ3

)
− 3

}
(2.3)

2.2 The Models and Tests

2.2.1 The Two-way ANOVA Models

To compare the patterns of substitution rates between two independently evolving lineages

at two loci, rather than relying on a dating of the divergence time of two species, we use a

reference or an outgroup species. The purpose of the outgroup species is to “root” the tree.

Let Yij be the branch length for the jth species at the ith locus. We consider the following

two-way ANOVA model

Yij = µ + αi + βj + γij + εij ,

where µ denotes the grand mean, αi denotes the ith locus effect, βj denotes the jth lineage

effect, γij denotes the interaction between the jth lineage effect and the ith locus effect,

and εij is a random effect.
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There are only four observations for two loci, so it’s obvious that there are no remaining

degrees of freedom for εij . Increasing observations is the only way to overcome this lack

of degree of freedom. Under the assumption of nucleotide substitutions occurring indepen-

dently at each site, we propose to alternatively split the DNA sequence data to “increase”

the sample size, as illustrated by Table 2.1. Suppose we have the following DNA sequence

ACCTGGATCCGATGCC. We want to split the data into two data sets: odd and even data

sets. The nucleotides at the odd positions are indexed by number 1, and the nucleotides

at the even positions are indexed by number 2. The nucleotides indexed by number 1 will

be assigned to the first replicate, the odd data set, and the nucleotides indexed by number

2 will be assigned to the second replicate, the even data set. The purpose of interweaving

replicates rather than blocking piece by piece is to avoid local rate heterogeneity within

sequences. After we split sequence data, branch lengths for each replicate are calculated

respectively.

Table 2.1: Illustration of splitting sequence data

Sequence A C C T G G A T C C G A T G C C

position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Index 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Writing Yijk for the branch length for the jth lineage and the kth replicate at the ith

locus, the desirable model is

Yijk = µ + αi + βj + γij + εijk

for i = 1, · · · , a; j = 1, · · · , b; and k = 1, · · · , n, where αi, βj and γij represent locus effect,

lineage effect and interaction between them, respectively. Assume that εijk is distributed as

a normal distribution with zero mean and proposed variances in the following subsection.
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2.2.2 The Expected Mean Squares and F-tests

To obtain analytical results we first assume equality of variances for branch lengths at all

lineages. This variance will be denoted by σ2. Observed variations in substitution rates

imply this assumption may not be realistic during evolutionary history. Research can get

started from the simplest case. Moreover, the assumption of common variance is one of the

important assumptions in the ANOVA. Secondly, we assume that DNA sequences along the

same evolutionary lineage diverge independently across loci. That is, the branch lengths

along the same lineage have zero covariances across loci. Thirdly, we assume that branch

lengths are correlated to each other in the same magnitude within a locus. This covariance

at the ith locus will be denoted by σi12. Relaxing these rather restrictive assumptions will

be done in next chapters. As pointed out by Thorne et al. (1998), biologically speak, the

substitution rates among closely related evolutionary lineages are probably correlated in

a positive manner because those lineages are more likely to share the similar evolutionary

forces during divergences. On the other hand, estimates of branch lengths within loci

might be negatively correlated with each other since they are obtained by subtraction from

estimates of the total number of substitutions per site separating two species. Therefore we

assume that σi12 < 0.

After we split the sequence data to “increase” observations, those assumptions are valid

within each replicate. We also assume that there is no correlation among branch lengths

across replicates. Let εi1,j1,k1 be the random effect for the j1th lineage and the k1th replicate

at the i1th locus. Similarly, let εi2,j2,k2 be the random effect for the j2th lineage and the

k2th replicate at the i2th locus. Let σ2 and σi12 be the same as the above. The summary
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of the assumptions is illustrated as follows:

Cov(εi1,j1,k1 , εi2,j2,k2)

=



0, if i1 6= i2;

0, if k1 6= k2;

σ2, if i1 = i2, j1 = j2, and k1 = k2;

σi12 < 0, if i1 = i2, j1 6= j2, and k1 = k2.

Assume E [εijk] = 0. Use E [MSA], E [MSB] and E [MSAB] to denote expectation of

locus mean square, lineage mean square and interaction mean square, respectively. Under

the following restrictions:

a∑
i=1

αi = 0,
b∑

j=1

βj = 0,
a∑

i=1

γij = 0, and
b∑

j=1

γij = 0,

we then derive E [MSA], E [MSB] and E [MSAB] (Appendix A)

E [MSA] =
nb

a− 1

a∑
i=1

α2
i + σ2 +

b− 1
a

a∑
i=1

σi12,

E [MSB] =
na

b− 1

b∑
j=1

β2
j + σ2 − 1

a

a∑
i=1

σi12,

E [MSAB] =
n

(a− 1)(b− 1)

a∑
i=1

b∑
j=1

γ2
ij + σ2 − 1

a

a∑
i=1

σi12,

and

E [MSE] = σ2.

These expectations show that if there are no locus main effects (i.e. all αi = 0), MSA and
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MSE have the same expectation term σ2 except for the term b−1
a

∑a
i=1 σi12; similarly, if

there are no lineage effects, MSB and MSE have the same expectation term σ2 except for

the term − 1
a

∑a
i=1 σi12. Finally, if there are no interaction (i.e. if all γij = 0), MSAB and

MSE have the same expectation term σi12 except for the term − 1
a

∑a
i=1 σi12. To construct

the standard F ∗ test statistics based on ideas of the classic two-way ANOVA, all the extra

terms comparing with E(MSE) should be subtracted from the corresponding expectations.

We then obtain the following F ∗ test statistics.

F ∗A = (MSA− b− 1
a

a∑
i=1

σ̂i12)/MSE,

F ∗B = (MSB +
1
a

a∑
i=1

σ̂i12)/MSE,

and

F ∗AB = (MSAB +
1
a

a∑
i=1

σ̂i12)/MSE,

where

MSA =
nb

a− 1

a∑
i=1

(
Y i.. − Y ...

)2
,

MSB =
na

b− 1

b∑
j=1

(
Y .j. − Y ...

)2
,

MSAB =
n

(a− 1)(b− 1)

a∑
i=1

b∑
j=1

(
Y ij. − Y i.. − Y .j. + Y ...

)2
,

MSE =
1

ab(n− 1)

a∑
i=1

b∑
j=1

n∑
k=1

(
Yijk − Y ij.

)2
,

and the estimates of σi12 can be obtained using (2.3). To test whether there are no locus
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effects, no lineage effects and no interactions, we use the critical values from the F distri-

bution. When null hypotheses hold, the decision rules to control the Type I errors at the

level α are:

If F ∗A ≤ F
(a−1)
(k−1)ab(1− α), does not reject H0; otherwise, reject H0,

If F ∗B ≤ F
(b−1)
(k−1)ab(1− α), does not reject H0; otherwise, reject H0,

If F ∗AB ≤ F
(a−1)(b−1)
(k−1)ab (1− α), does not reject H0; otherwise, reject H0.

2.3 The Type I Errors of the Tests

Generally, hypothesis tests are evaluated and compared through their probabilities of Type

I error and power. In order to evaluate the proposed ANOVA-based relative ratio tests,

simulations are performed to compare Type I errors, and powers between the LRT-based

relative ratio tests and ANOVA-based relative ratio tests. The results of Type I errors are

presented in this section, while the results of the powers will be given in next section.

Although we hope that the test statistics F ∗ described in the above will be approximately

distributed as F distribution with appropriate degrees of freedom under the null hypotheses,

we wish to check this for different sequence lengths in order to establish a set of working

rules. To find the sequence length needed in order to invoke the asymptotic F distribution

of the test statistics, two sets of 1000 replicate sets of three sequences with length 500bp,

1000bp and 10000bp each, respectively, are generated by creating two ancestral sequences

by different base frequencies and then allowing the sequences diverge independently by

mutation according to the models of JC69 and HKY85, respectively. The simulation is

conducted using the C++ programming language.

2.3.1 The Parameter Sets

A total of 6 DNA sequences is needed to be generated for three species at two loci for each

simulation. The parameters used to generate those data include the base frequencies for

the ancestor sequences, transition rates, and transversion rates for each species at two loci.

In the simulation study of Type I errors, we considered the four sampling scenarios from
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Figure 2.2. We let each parameter set represent different sampling schemes under the null

hypothesis H0.

set 1: no interaction, no locus effects and no lineage effects

set 2: no interaction, having locus effects and no lineage effects

set 3: no interaction, no locus effects and having lineage effects

set 4: no interaction, having locus effects and lineage effects.

We also consider a variety of combinations of base frequencies with transition and

transversion rates. The cases of equal or unequal base frequencies are taken account un-

der the equal or unequal transitional and transversional rates. We surveyed mitochondrial

sequences in Genbank to obtain the proportion for the four bases in the cases of unequal

base frequencies. In the cases of unequal rates, we let the transitional rates be twice of

the transversional rates. There are four groups of parameter sets, each with four sampling

schemes under the null hypothesis. The parameter sets will be tabulated as follows.
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Table 2.2: The first group of parameter sets for ANOVA-based methods

Locus Set
Base freq

A C G T
Transition
δ1 δ2 δ3

Transversion
ρ1 ρ2 ρ3

A

1
2
3
4

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.10 .10 .20

.10 .10 .25

.10 .20 .50

.05 .10 .25

.10 .10 .20

.10 .10 .25

.10 .20 .50

.05 .10 .25

B

1
2
3
4

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.10 .10 .20

.20 .20 .50

.10 .20 .50

.10 .20 .50

.10 .10 .20

.20 .20 .50

.10 .20 .50

.10 .20 .50

Table 2.3: The second group of parameter sets for ANOVA-based methods

Locus Set
Base freq

A C G T
Transition
δ1 δ2 δ3

Transversion
ρ1 ρ2 ρ3

A

1
2
3
4

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.20 .20 .40

.20 .20 .50

.10 .20 .50

.10 .20 .25

.10 .10 .20

.10 .10 .25

.05 .10 .25

.05 .10 .125

B

1
2
3
4

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.20 .20 .40

.40 .40 1.0

.10 .20 .50

.20 .40 .50

.10 .10 .20

.20 .20 .50

.05 .10 .25

.10 .20 .25
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Table 2.4: The third group of parameter sets for ANOVA-based methods

Locus Set
Base freq

A C G T
Transition
δ1 δ2 δ3

Transversion
ρ1 ρ2 ρ3

A

1
2
3
4

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.05 .05 .10

.05 .05 .125

.05 .10 .25

.05 .10 .25

.05 .05 .10

.05 .05 .125

.05 .10 .25

.05 .10 .25

B

1
2
3
4

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.05 .05 .10

.10 .10 .25

.05 .10 .25

.10 .20 .50

.05 .05 .10

.10 .10 .25

.05 .10 .25

.10 .20 .50

Table 2.5: The fourth group of parameter sets for ANOVA-based methods

Locus Set
Base freq

A C G T
Transition
δ1 δ2 δ3

Transversion
ρ1 ρ2 ρ3

A

1
2
3
4

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.10 .10 .50

.10 .10 .25

.10 .20 .50

.10 .20 .25

.05 .05 .25

.05 .05 .125

.05 .10 .25

.05 .10 .125

B

1
2
3
4

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.10 .10 .50

.20 .20 .50

.10 .20 .50

.20 .40 .50

.05 .05 .25

.10 .10 .25

.05 .10 .25

.10 .20 .25
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2.3.2 The Primary Simulation

The primary simulation was conducted using sequences with total length 1000bp and 10000bp,

respectively. Here we present the primary results for the sequences with 10000bp. After we

generate simulated sequence data for species, first we alternatively split the sequence data

for each species into 10, 20, 40 pieces as described before. Branch lengths are then calculated

for each piece of sequence by using both the JC model and the HKY85 model. Relative

ratio tests of the standard two-way ANOVA-based and the modified two-way ANOVA with

incorporating covariances are performed for both the JC and HKY85 models. The likeli-

hood version of relative ratio test is also conducted on the same data from both models

in order to compare the performance among those procedures. The rejection rates of no

interaction effects at 5% level are computed. The ANOVA represents the standard two-way

ANOVA-based method, and ANOVA.C represents modified ANOVA with covariances. The

results of Type I errors from the fourth group of parameter sets are tabulated in Table 2.6.

Table 2.6: Type I errors (%) of primary simulations
for the sequences with length 10000bp under the 4th
group

Model JC69

Set LRT
ANOVA

10 20 40
ANOVA.C

10 20 40
1
2
3
4

5.0
4.8
5.2
5.8

6.9 7.8 7.9
6.7 6.4 6.4
7.0 7.6 8.0
99.8 99.9 99.9

6.4 6.8 7.4
6.7 6.0 6.1
6.0 6.7 7.0
99.8 99.9 99.9

Model HKY85

1
2
3
4

5.4
4.6
4.5
6.0

7.2 8.0 8.3
6.9 6.8 6.5
7.4 8.2 8.2
99.9 100.0 99.9

6.5 7.1 7.6
6.7 6.3 6.3
6.7 7.1 7.5
99.9 100.0 99.9

It is not surprising to see that rejection rates of the LRT-based method are much closer
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to .05 than those of both ANOVA-based methods. The ANOVA.C improves the classic

ANOVA for parameter set 1, set 2, and set 3, but the parameter set 4, having both locus

and lineage effects, points out some unexpected results that all the rejection rates are

almost 100% for both procedures. It is also interesting to note that consistent rejection

rates within the same method no matter how big the replicates are. All simulation results

are fairly consistent between the JC69 model and the HKY85 model.

2.3.3 The Simulation Results and Discussions

From the primary simulation study, it is clear that the new procedure doesn’t fit all the

cases, especially for the last sampling scheme that both locus effects and lineage effects exist.

Many natural phenomena present on multiplicative scales, i.e., a system is more likely to

“multiple” in response to a change of effects than to shift by a constant. As mentioned in

Chapter 1, substitution rates tend to be inversely proportional to generation times. The

following multiplicative model is probably more meaningful in the sense of biology,

Yijk = αi ∗ βj ∗ γij ∗ εijk,

where Yijk, αi, βj , γij , and εijk are defined as before.

The transformation of logarithm is the natural method for analyzing data with additive

model where the effects are thought to be multiplicative. It is clear that taking logarithms

of branch lengths is the desirable way to transform the model to an ANOVA model. After

taking natural log transformation, the model assumptions are the same as before except for

the covariances between branch lengths. By the first Taylor expansion, covariances can be

approximately computed by (See Appendix B )

Cov(ln µ̂1, ln µ̂2) ≈ 1
µ1µ2

Cov(µ̂1, µ̂2).

The total sequence lengths used to do simulations include 500bp, 1000bp, and 10000bp.

The 500bp and 1000bp sequences are split into 2, 5, and 10 replicates in an alternating way

as described, respectively. We split the 10000bp sequence into 10, 20, and 40 replicates.
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Let ANOVA be the standard procedure. The ANOVA.C represents the procedure of the

standard two-way ANOVA with covariances. The ANOVA.L denotes the procedure of the

standard two-way ANOVA after taking logarithms of branch lengths. Let the ANOVA.L.C

stand for the procedure of the modified ANOVA after taking logarithms of branch lengths.

Both JC69 and HKY85 are applied to the five tests - LRT, ANOVA, ANOVA.C, ANOVA.L,

and ANOVA.L.C under the four groups of parameter sets. The Type I errors from the five

procedures at the 0.05 level are tabulated together for each nucleotide model in order to

compare the simulation results conveniently.

C++ programs have been written for simulations. The computational speeds are highly

dependent on the total sequence lengths for both ANOVA-based and LRT-based procedures.

The longer the total sequence is, the more time is needed. The speeds of ANOVA-based

methods are 500 times faster than those of LRT-based procedures when HYPHY software

is used to perform likelihood version of tests when programs are run under Sun Worksta-

tion. Another computational advantage for the ANOVA-based method is that it is easy to

implement the hypothesis tests for both lineage and locus effects into the relative ratio test

without increasing the computational time much. On the other hand, we should perform

the likelihood version of tests three times to get the test results for locus effects, lineage

effects, and the interaction between both. In this scenario, the ANOVA-based method will

be 1500-fold faster than the likelihood method based on our computing environment.

Type I Errors Comparing with the ANOVA-based procedures, the LRT-based methods

produce the smallest Type I errors for most cases in our simulations. In those exceptional

cases, the ANOVA.L.C procedures are superior to the LRT. Although most of Type I errors

from the LRT are very close to the desired 0.05 level, there are still around 27% cases

that Type I errors are equal to or bigger than .055. For examples, Table 2.9 shows that

Type I error of the LRT is 7.2% at the HKY85 model, which is bigger than those of the

ANOVA-based methods.

Simulation results show that incorporating covariances reduces the false positive rate.

Taking log before doing ANOVA-based methods dramatically decreases false positive rates
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for parameter set 4 for all the cases. The ANOVA.L.C method works quite well for many

cases with Type I errors being close to the desired .05. In addition, the ANOVA.L.C

procedures result in smallest false positive rates among the ANOVA-based methods. Those

findings make the ANOVA.L.C tests more appealing since previous researches suggested

that existence of both locus and lineage effects was common in real data. This leads to

concluding that doing the data transformation before performing ANOVA-based tests is an

essential step. Note that results from both nucleotide models are fairly consistent even when

the data are from the HKY85 model. In other words, the simplest model of nucleotide -

JC69 is applicable to general cases in our simulations. This is very useful because we

have explicit formula for branch lengths and their covariances for the JC model among the

published substitution models. Within the same procedure of the ANOVA-based methods,

no significant decrements are found in false positive rates as the number of replicates is

increased.

Choice of Outgroup The proposed ANOVA.L.C procedure is a distance-based method,

i.e., the nucleotide branch lengths for each species are first calculated by introducing an

outgroup species. It is possible to obtain non-positive values for the branch lengths, which

will lead to invalid observations for the method of ANOVA.L.C since we can’t take loga-

rithms of non-positive values. Those percentages of non-positive have been presented within

parentheses in all the tables and will reduce reliability and power to significantly detect true

differences. In our simulation the ourgroups are always arranged to be the ones with largest

substitution rates among three species. Based on simulation results, not only does the

number of non-logarithms depend on the choice of an outgroup, but also does rely on the

number of replicates and the total sequence length, i.e., the length of sequence for each

replicate. For the locus with sequence length over 500bp, we should keep the length of

sequence for each replicate to be at least over 200bp.
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2.4 The Powers of the Tests

We performed simulation to investigate the power of ANOVA.L.C-based and LRT-based

relative ratio tests under different phylogenetic trees. As mentioned in the first chapter,

the motivation of the ANOVA-based methods is to avoid computational burden from LRT-

version relative ratio test for analyzing large DNA sequence data at multiple genes. Thus

power study is conducted on total length 10000bp. First two ancestral sequences are gener-

ated by different base frequencies, and then allowing the sequences diverge along six paths,

each with different substitution rates, independently by mutation. As shown in Table 2.19,

the parameters used to investigate powers allow transition rates to be twice of transversion

rates and unequal base frequencies. For the four parameter sets, besides increasing the

branch lengths for species 2 at gene A, we keep branch lengths for all the other species as

constant.

First of all, note that all powers increase close to 1 as the branch lengths of the second

species at gene B slightly increase for both ANOVA.L.C and LRT-based methods. Any

larger differences are virtually certain to be detected. For the ANOVA.L.C method, results

of powers are fairly consistent with that of Type I errors for both the models HKY85 and

JC69. Look closely at Figure 2.3, it is clear to see that powers from the ANOVA.L.C

have no significant changes as the number of replicates for both the models HKY85 and

JC69 are increased. Comparing the top panel with bottom panel in Figure 2.3, powers

of the JC69 are almost the same as that of the HKY85. As shown in Figure 2.4, both

ANOVA.L.C and LRT-version relative ratio tests perform equally well when applying in

the model JC69, but when both tests are applied into the model HKY85, powers from

LRT-based test decrease 20%. This suggests that the method of ANOVA.L.C is robust in

terms of choosing substitution models.
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Table 2.7: Comparing Type I errors (%) of ANOVA-based methods with those of
LRT-based method for the sequences with length 500bp at the 1st group

Model JC69

Set LRT
ANOVA

2 5 10
ANOVA.C

2 5 10
ANOVA.L

2 5 10
ANOVA.L.C

2 5 10
1
2
3
4

5.2
5.3
5.4
5.6

6.9 6.0 6.8
8.8 8.6 8.7
8.5 9.3 9.6
17.7 21.1 21.5

6.6 5.4 6.2
7.2 7.5 7.7
7.5 7.8 7.4
16.2 19.0 19.6

7.2 5.8 5.6
7.5 6.4 8.6
8.9 7.7 7.5
7.5 5.6 5.5

6.9 5.4(3.0) 5.1(65.0)
6.7 6.0(3.7) 8.2(58.6)
7.6 6.9(22.7) 5.5(87.3)
6.6 5.4(26.0) 5.5(92.0)

Model HKY85

1
2
3
4

4.3
4.7
5.1
5.2

7.1 6.2 6.9
10.5 10.4 11.1
9.9 11.4 11.3
20.4 23.9 25.0

6.3 5.7 6.2
8.9 9.1 10.3
8.6 9.7 9.7
18.2 22.3 22.7

7.6 6.3 5.3
8.5 8.0 8.4
11.0 8.4 7.9
7.8 6.1 5.4

7.1 5.9(3.5) 5.0(68.0)
7.8 7.3(7.4) 8.4(75.0)
9.3 7.3(39.6) 7.9(96.2)
7.0 5.9(36.0) 5.4(96.0)

Table 2.8: Comparing Type I errors (%) of ANOVA-based methods with those of
LRT-based method for the sequences with length 500bp at the 2nd group

Model JC69

Set LRT
ANOVA

2 5 10
ANOVA.C

2 5 10
ANOVA.L
2 5 10

ANOVA.L.C
2 5 10

1
2
3
4

5.1
5.9
5.7
4.6

5.8 6.1 6.2
9.4 10.2 8.5
7.3 8.0 7.6
18.7 23.3 26.0

5.3 5.8 5.4
8.6 8.9 7.4
6.5 7.2 7.0
18.2 22.1 24.1

5.9 5.4 6.3
7.7 8.6 6.7
7.6 6.8 7.0
6.8 5.8 6.8

5.4 5.2(1.3) 5.6(41.6)
6.9 7.6(2.4) 6.4(48.6)
6.6 6.2(2.7) 6.6(91.6)
6.4 5.6(8.8) 6.1(71.5)

Model HKY85

1
2
3
4

4.1
5.7
5.4
5.4

5.7 5.5 6.5
10.5 9.6 11.2
7.4 8.1 7.2
19.2 24.9 28.0

5.6 5.2 5.9
9.2 8.4 9.9
6.6 7.3 6.8
18.7 23.7 26.3

6.2 5.1 6.5
8.0 8.0 8.3
6.5 7.1 6.6
6.9 5.8 6.8

5.6 4.7(1.5) 6.3(46.0)
7.1 7.2(7.7) 8.3(80.8)
6.0 6.3(3.1) 6.2(93.5)
6.5 5.3(9.1) 6.2 (76.4)

Note: the numbers inside parentheses are percentages of non-positive branch lengths for the both

methods of ANOVA.L and ANOVA.L.C.
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Table 2.9: Comparing Type I errors (%) of ANOVA-based methods with those of
LRT-based method for the sequences with length 500bp at the 3rd group

Model JC69

Set LRT
ANOVA

2 5 10
ANOVA.C

2 5 10
ANOVA.L
2 5 10

ANOVA.L.C
2 5 10

1
2
3
4

5.1
6.0
4.8
5.0

5.2 5.0 5.6
6.8 7.8 7.1
6.0 6.1 7.1
15.9 20.0 20.5

5.0 4.9 5.5
6.4 7.2 7.0
5.7 5.6 6.1
14.4 17.9 19.6

4.5 4.7 0.0
5.3 6.5 0.0
6.1 5.9 0.0
7.9 5.3 3.7

4.4 4.5(47.1) 0.0(99.9)
5.1 6.0(28.0) 0.0(98.6)
5.5 5.5(32.2) 0.0(98.0)
7.1 4.6(28.9) 1.9(94.6)

Model HKY85

1
2
3
4

7.2
6.3
5.4
6.1

5.1 5.1 6.3
6.8 7.9 7.6
6.3 6.6 7.5
18.1 22.3 23.2

5.0 5.0 5.8
6.4 7.5 7.4
5.8 6.1 6.9
16.2 20.6 23.2

4.5 4.8 0.0
5.5 7.2 0.0
6.2 6.1 0.0
7.4 4.4 1.21

4.5 4.4(47.4) 0.0(99.9)
5.2 6.5(29.1) 0.0 (98.7)
5.7 5.8 (37.6) 0.0(98.7)
6.9 3.3 (36.9) 1.2(98.7)

Table 2.10: Comparing Type I errors (%) of ANOVA-based methods with those of
LRT-based method for the sequences with length 500bp at the 4th group

Model JC69

Set LRT
ANOVA

2 5 10
ANOVA.C

2 5 10
ANOVA.L
2 5 10

ANOVA.L.C
2 5 10

1
2
3
4

5.3
5.6
4.1
5.9

7.7 6.7 7.1
6.7 7.3 6.9
6.3 6.0 6.8
17.5 22.3 23.5

6.7 6.1 6.2
6.4 6.6 6.7
5.6 5.1 6.0
16.8 21.5 22.6

6.8 4.5 0.0
6.0 5.7 8.9
6.7 5.4 4.6
6.6 6.6 9.0

6.1 4.4(28.7) 0.0(98.5)
5.8 5.6(10.6) 8.9(91.0)
5.8 4.6(28.1) 3.4(91.2)
6.2 5.7(8.9) 8.2(76.7)

Model HKY85

1
2
3
4

5.8
4.6
4.9
7.0

7.8 6.8 7.8
7.0 7.3 7.3
6.2 6.2 7.2
18.4 24.0 25.9

6.7 6.3 6.7
6.5 7.0 6.6
5.8 5.6 6.6
17.7 23.0 24.6

6.7 4.9 0
5.9 5.9 5.5
6.7 5.3 5.0
6.7 6.3 8.1

6.1 4.6(33.2) 0.0(99.2)
5.8 5.9(12.2) 5.5(99.2)
5.6 4.9(32.5) 3.3(94.0)
6.1 6.1(11.3) 8.1(82.7)
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Table 2.11: Comparing Type I errors (%) of ANOVA-based methods with those of
LRT-based method for the sequences with length 1000bp at the 1st group

Model JC69

Set LRT
ANOVA

2 5 10
ANOVA.C

2 5 10
ANOVA.L

2 5 10
ANOVA.L.C

2 5 10
1
2
3
4

5.0
4.8
5.2
4.4

5.0 6.0 6.0
8.1 7.8 7.2
8.1 7.9 7.7
25.4 34.4 36.6

4.7 5.8 5.5
6.8 6.9 6.5
6.6 7.1 6.4
23.6 32.0 33.1

4.8 6.0 6.0
7.4 7.0 6.2
7.4 7.9 6.6
5.9 6.2 5.4

4.4 5.6 5.4(5.1)
6.5 6.4 5.5(10.5)
6.3 6.8 5.7(40.0)
5.2 5.2 4.5(47.0)

Model HKY85

1
2
3
4

5.1
4.2
5.8
5.0

4.8 5.9 5.9
9.3 8.5 9.5
8.8 8.6 9.1
28.5 39.4 41.0

4.6 5.6 5.5
8.4 8.0 8.8
7.2 7.6 8.2
27.0 36.8 39.0

4.5 5.7 5.6
8.3 7.6 7.6
8.2 8.2 10.1
6.7 6.7 5.2

4.2 5.6 5.3(5.6)
7.5 6.7 6.9(12.6)
7.2 7.1 8.3(61.5)
6.2 6.3 5.0(59.8)

Table 2.12: Comparing Type I errors (%) of ANOVA-based methods with those of
LRT-based method for the sequences with length 1000bp at the 2nd group

Model JC69

Set LRT
ANOVA

2 5 10
ANOVA.C

2 5 10
ANOVA.L

2 5 10
ANOVA.L.C

2 5 10
1
2
3
4

4.2
5.3
4.4
5.0

6.0 5.5 6.0
8.8 8.5 9.2
5.6 7.1 7.0
30.2 41.6 43.8

5.4 5.1 5.3
7.0 7.1 7.4
5.2 6.3 6.5
29.4 39.8 42.8

6.2 5.4 5.8
7.1 7.3 7.9
6.0 5.9 6.2
5.6 5.4 4.6

5.7 5.0 5.4(3.0)
5.9 6.4 7.0 (5.1)
5.0 5.5 2.2(4.4)
5.0 5.1 4.6 (14.6)

Model HKY85

1
2
3
4

4.6
5.7
4.7
5.3

5.9 6.2 6.0
9.4 9.3 10.8
5.6 7.2 7.1
30.7 43.4 45.3

5.2 5.6 5.6
8.0 8.0 9.4
5.2 6.4 6.7
29.4 41.9 44.2

6.2 6.3 6.0
7.1 8.0 8.7
6.5 6.0 5.4
5.6 5.2 4.5

5.7 5.9 5.5(4.5)
5.9 7.4 7.5(16.9)
5.0 5.1 5.2(4.8)
5.4 4.9 4.5(18.1)

53



Table 2.13: Comparing Type I errors (%) of ANOVA-based methods with those of
LRT-based method for the sequences with length 1000bp at the 3rd group

Model JC69

Set LRT
ANOVA

2 5 10
ANOVA.C

2 5 10
ANOVA.L
2 5 10

ANOVA.L.C
2 5 10

1
2
3
4

6.2
5.4
4.7
6.3

6.1 5.9 6.7
6.3 6.0 5.9
6.6 6.0 6.6
22.9 32.8 32.8

5.7 5.7 6.1
6.1 5.2 5.6
6.0 5.5 5.9
21.3 30.4 30.8

5.4 5.8 6.8
5.3 5.7 5.8
7.2 6.2 6.0
8.1 7.8 7.8

5.2 5.8(1.6) 6.8(69.3)
5.1 5.5(1.3) 5.5(45.2)
6.7 5.8(4.5) 6.0(53.2)
7.3 7.0(2.9) 7.4(44.9)

Model HKY85

1
2
3
4

5.6
4.6
4.7
6.0

6.1 6.2 6.7
6.5 5.8 6.3
6.4 6.6 6.7
25.9 36.1 37.3

6.0 6.0 6.4
6.2 5.5 6.1
6.1 5.9 6.4
25.0 34.3 35.4

5.3 5.9 6.9
5.3 5.5 6.0
7.5 6.3 4.8
8.2 7.9 7.6

5.2 5.6(1.6) 6.9(69.6)
5.0 5.5(1.5) 6.0(46.2)
7.0 6.1(6.3) 4.8(60.0)
7.3 7.6(5.9) 7.4(60.6)

Table 2.14: Comparing Type I errors (%) of ANOVA-based methods with those of
LRT-based method for the sequences with length 1000bp at the 4th group

Model JC69

Set LRT
ANOVA

2 5 10
ANOVA.C

2 5 10
ANOVA.L

2 5 10
ANOVA.L.C

2 5 10
1
2
3
4

5.6
5.8
4.9
6.4

7.5 7.8 8.0
6.9 8.0 6.9
6.4 7.4 7.6
27.5 35.0 37.3

6.9 7.0 6.6
6.2 6.9 6.3
5.6 7.0 6.9
26.4 33.0 35.7

7.4 6.7 8.2
6.9 7.1 6.7
6.1 7.2 7.1
7.5 7.8 8.3

6.7 6.2(1.5) 8.2(48.7)
6.1 6.8(0.0) 6.7(21.2)
5.2 6.7(3.2) 6.2(42.3)
6.6 7.3(0.0) 8.2(17.8)

Model HKY85

1
2
3
4

5.2
5.4
4.3
5.3

7.6 8.0 8.2
7.1 7.9 7.1
6.4 7.7 7.9
28.4 38.0 40.1

6.8 7.1 7.5
6.6 7.3 6.8
5.9 7.2 7.0
28.0 36.9 39.1

7.5 7.1 8.6
7.0 7.4 7.0
6.0 7.6 7.2
7.5 7.8 8.3

6.8 6.6(2.4) 7.9(54.4)
6.2 7.1(0.0) 6.9(22.9)
5.4 7.2(4.0) 6.9(50.9)
6.8 7.3(0.0) 8.0(22.7)
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Table 2.15: Comparing Type I errors (%) of ANOVA-based methods with those of
LRT-based method for the sequences with length 10000bp at the 1st group

Model JC69

Set LRT
ANOVA

10 20 40
ANOVA.C

10 20 40
ANOVA.L

10 20 40
ANOVA.L.C
10 20 40

1
2
3
4

4.7
4.7
5.2
6.0

6.1 5.8 5.4
9.3 8.9 8.5
8.1 8.0 7.7
99.2 99.3 99.4

5.6 5.5 5.2
7.8 8.0 7.3
6.7 6.5 6.4
99.2 99.3 99.4

5.9 6.3 5.4
8.6 8.7 8.3
8.1 7.8 7.5
6.5 6.4 6.6

5.5 5.4 5.0(0.0)
7.7 7.8 7.6(0.0)
7.3 6.9 6.7(16.3)
6.0 6.0 6.1(12.1)

Model HKY85

1
2
3
4

5.3
5.0
5.4
5.7

6.0 5.6 5.7
10.2 9.1 9.6
9.1 8.3 8.8
100 100 99.8

5.4 5.3 5.1
9.2 7.9 8.4
7.7 7.1 7.2
100 100 99.8

6.1 5.9 6.6
9.3 9.6 8.8
8.5 8.3 7.0
8.8 8.5 9.0

5.7 5.4 6.0(0.0)
8.3 8.3 7.9 (0.0)
7.5 6.8 6.3(20.2)
8.1 8.1 8.6(17.0)

Table 2.16: Comparing Type I errors (%) of ANOVA-based methods with those of
LRT-based method for the sequences with length 10000bp at the 2nd group

Model JC69

Set LRT
ANOVA

10 20 40
ANOVA.C

10 20 40
ANOVA.L

10 20 40
ANOVA.L.C

10 20 40
1
2
3
4

5.0
4.8
4.3
3.8

7.0 7.0 7.2
9.2 8.9 8.3
6.2 6.9 6.6
100 100 100

6.4 6.2 6.7
7.7 7.6 7.2
5.5 6.2 5.8
100 100 100

7.0 7.2 7.4
8.5 8.3 8.1
6.5 7.0 6.3
4.3 4.7 4.8

6.4 6.6 6.7(0.0)
7.4 7.1 6.7 (0.0)
6.0 6.2 5.6(6.8)
4.3 4.4 4.5(0.2)

Model HKY85

1
2
3
4

4.4
5.6
4.2
4.4

6.5 6.2 7.0
9.2 8.4 8.1
6.5 6.7 6.7

100.0 99.9 100.0

5.8 5.7 6.2
7.9 6.9 6.4
5.8 6.2 6.0

100.0 99.9 94.4

6.4 6.4 7.0
8.1 7.1 7.2
6.3 7.0 6.1
5.0 5.0 4.7

5.9 5.9 6.6(0.0)
7.0 6.0 6.2(0.0)
5.6 6.0 5.7(8.5)
4.6 4.5 4.7(0.4)
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Table 2.17: Comparing Type I errors (%) of ANOVA-based methods with those of
LRT-based method for the sequences with length 10000bp at the 3rd group

Model JC69

Set LRT
ANOVA

10 20 40
ANOVA.C

10 20 40
ANOVA.L
10 20 40

ANOVA.L.C
10 20 40

1
2
3
4

4.7
5.4
5.5
4.9

5.6 5.1 5.2
7.4 7.8 7.3
6.7 6.7 6.2
98.2 98.7 98.8

5.4 5.0 5.1
7.3 7.6 7.1
6.3 6.1 6.1
97.8 98.5 98.3

5.6 5.7 5.4
7.3 6.5 6.2
7.3 7.4 6.3
7.4 8.0 8.4

5.2 5.7 5.3(4.6)
7.0 6.4 5.9(1.4)
6.5 6.9 5.9(14.0)
6.9 6.9 7.4(9.2)

Model HKY85

1
2
3
4

4.5
4.8
5.0
5.8

5.6 5.4 5.2
7.7 7.9 8.2
6.7 6.7 6.5
99.4 99.5 99.6

5.5 5.0 5.2
7.3 7.5 7.1
6.6 6.6 6.3
99.4 99.4 99.6

5.6 5.7 5.5
7.3 7.0 6.7
7.3 7.4 5.8
7.7 7.5 7.4

5.3 5.5 5.4(4.4)
7.1 6.5 6.0(1.6)
6.9 6.9 5.5(19.3)
7.0 6.9 6.9(17.9)

Table 2.18: Comparing Type I errors (%) of ANOVA-based methods with those of
LRT-based method for the sequences with length 10000bp at the 4th group

Model JC69

Set LRT
ANOVA

10 20 40
ANOVA.C

10 20 40
ANOVA.L

10 20 40
ANOVA.L.C

10 20 40
1
2
3
4

5.0
4.8
5.2
5.8

6.9 7.8 7.9
6.7 6.4 6.4
7.0 7.6 8.0
99.8 99.9 99.9

6.4 6.8 7.4
6.7 6.0 6.1
6.0 6.7 7.0
99.8 99.9 99.9

6.8 8.0 8.0
5.8 6.3 6.0
6.4 6.8 6.8
7.2 7.1 7.2

6.3 7.4 7.6(3.9)
5.6 6.2 5.8(0.0)
5.9 6.4 6.1(6.1)
6.7 7.0 6.9(0.0)

Model HKY85

1
2
3
4

5.4
4.6
4.5
6.0

7.2 8.0 8.3
6.9 6.8 6.5
7.4 8.2 8.2
99.9 100.0 99.9

6.5 7.1 7.6
6.7 6.3 6.3
6.7 7.1 7.5
99.9 100.0 99.9

6.8 8.1 8.5
6.2 6.3 6.1
6.8 6.9 6.8
6.8 7.0 6.9

6.3 7.6 8.0(5.3)
5.6 6.2 6.0(0.0)
6.3 6.7 5.9(8.0)
6.1 6.7 6.7(0.0)
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Table 2.19: The parameter sets of power study for ANOVA-based methods

Locus Tree
Base freq

A C G T
Transition
δ1 δ2 δ3

Transversion
ρ1 ρ2 ρ3

A

1
2
3
4

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.10 .10 .25

.10 .10 .25

.10 .10 .25

.10 .10 .25

.05 .05 .15

.05 .05 .15

.05 .05 .15

.05 .05 .15

B

1
2
3
4

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.10 .12 .25

.10 .13 .25

.10 .14 .25

.10 .15 .25

.05 .060 .15

.05 .065 .15

.05 .070 .15

.20 .075 .15

57



0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Replicates

P
ow

er
s

Tree1

Tree2

Tree3
Tree4

Model JC69

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Replicate

P
ow

er

Tree1

Tree2

Tree3
Tree4

Model HKY85

Figure 2.3: Power (%) study of ANOVA.L.C method
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Chapter 3

The Methods Based on Generalized Estimating

Equations

3.1 Introduction

The events of nucleotide substitution over sites are commonly assumed to follow Poisson

process, which leads to using the Poisson distribution to describe the expected number of

nucleotide substitutions per site. The simulation study in the previous chapter suggests

the multiplicative model of substitution rates is more suitable to analyze sequence data as

well as meaningful in biology. We propose to use Poisson regression in log-linear model,

one type of generalized linear model, to analyze the substitution data. Since substitution

rates are correlated, regular GLM which aims at uncorrelated data won’t be appropriate.

Liang and Zeger (1986) introduced generalized estimating equations (GEEs) as a method

of dealing with correlated data when, except for the correlation among responses, the data

can be modeled as a generalized linear model. One advantage of GEEs is to avoid making

homogeneity of variance as well as the same covariance assumptions for substitution data

analysis as in the ANOVA-based methods. To better understand the proposed method, a

brief introduction of GLMs and GEEs will be given as follows.

3.1.1 Definition of GLM

Generalized linear models (GLM) are an extension of traditional linear models that allows

the response probability distribution to be any member of an exponential family of distri-

butions. It is flexible to use generalized linear models for a wider range of data analysis,
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particularly for fitting counts and measured proportions data. In addition to the classical

linear models with normal distributions, many other widely-used statistical models belong

to generalized linear models, such as logistic and probit models for binomial variates, and

log-linear models for multinomial and Poisson data.

In generalized linear models, response variables are assumed to be in a subclass of the

one-parameter exponential family. That is, the probability density of a random variable Y

for continuous responses, or the probability mass function for the discrete responses, can

be written as

f(y|θ; φ) = exp
[
θy − r(θ)

a(φ)

]
h(φ, y), (3.1)

for some functions r, a, and h which define various distributions. θ is an unknown parameter,

and φ is an unknown constant. The function a(φ) is a positive function that allows φ to be

defined easily for different cases. The expressions of mean and variance of response variable

Y can be derived from standard theory. We have

E(Y ) = r′(θ) ≡ µ, (3.2)

Var(Y ) = r′′(θ), (3.3)

where the primes denote derivatives with respect to θ. Typically, r′ is an invertible function

so we can write θ as a function of the mean µ, say,

θ = r∗(µ).

For the ith response, a linear structure for distribution (3.1) is naturally written as

θi = x′iβ,

where x′i = (xi1, · · · , xip) is a 1 × p row vector of known predictor variables, and β =

(β1, · · · , βp)′ is a p× 1 column vector of unknown parameters. Note that with θi = r∗(µi),
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the linear structure x′iβ is also a function of the mean µi, more generally say,

g(µi) = x′iβ. (3.4)

Comparing expression (3.4) with (3.2) and (3.3), the variance of Y is also a function of

the mean µ. It is often written as

v(µ) = r′′(θ),

and v(µ) is often called as the variance function.

In summary a generalized linear model consists of independent responses yi, i = 1, · · · , n

with

yi ∼ f(yi|θi, φ), E(yi) ≡ µi, g(µi) = x′iβ.

If g(µi) = θi, then the model is a canonical generalized linear model.

Conventionally, we call the linear structure x′β as the linear predictor, while the func-

tion g(·) is the link function which specifies the relationship between the mean and linear

predictor. If g(µ) = θ, the function g(·) is called the canonical link function. For instance,

the identity is the canonical link for the normal distribution, the logit is the canonical link

for the binomial distribution, and the log is the canonical link for the Poisson distribution.

An advantage of canonical links is that a minimal sufficient statistic for β exists, i.e. all

the information about β is contained in a function of the data of the same dimensionality

as β. Maximum likelihood functions are used to estimate parameters in generalized linear

models.

3.1.2 Generalized Estimating Equations

A generalized linear model described above can be applied to uncorrelated data. Liang and

Zeger (1986) introduced Generalized Estimating Equations (GEEs) to handle correlated
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data when the data can be modeled as a generalized linear model. Instead of using a max-

imum likelihood, a class of estimating equations which take correlation into account were

proposed to estimate the regression parameters and their variance-covariance matrices. The

most common form of correlated data in the applied world is longitudinal data that include

repeated measurements for each subject. The brief review of GEEs is illustrated using lon-

gitudinal data. Let Yij (i = 1, · · · , k, and j = 1, · · · , ni) represent the jth measurement on

the ith subject. Let the vector of measurements on the ith subject be Y i = [Yi1, · · · , Yini ]
′

with corresponding vector of means µi = [µi1, ..., µini ]
′, and let V i be an estimate of the

covariance matrix of Y i. Let the vector of independent variables for the jth measurement

on the ith subject be

xij = [xij1, ..., xijp]
′

The Generalized Estimating Equation for estimating β is given by

K∑
i=1

∂µ′i
∂β

V −1
i (Y i − µi(β)) = 0.

For generalized linear model a link function g satisfies that

g(uij) = x′ijβ.

Applying the chain rule to the matrix operations, we can obtain

∂µ′i
∂β

=


xi11

g′(ui1)
· · · xini1

g′(uini)
...

. . .
...

xi1p

g′(ui1)
· · · xinip

g′(uini)

 .

The covariance matrix for subject i is estimated by

V i = A
1
2
i Ri(α)A

1
2
i ,

where Ai is an ni× ni diagonal matrix with v(µij) as the jth diagonal element, and Ri(α)

is an ni × ni working correlation matrix. It is estimated in the iterative fitting process
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using the current value of the parameter vector β to compute appropriate functions of the

Pearson residual as

eij =
yij − µij√

v(µij)
.

The model-based covariance matrix of estimated β is

Cov(β̂) =

(
K∑

i=1

∂µ′i
∂β

V −1
i

∂µi

∂β

)−1

≡ V m,

which is same as the covariance estimate of the maximum likelihood estimator of β in

generalized linear model.

The empirical, or robust estimator of the covariance matrix of β is

Cov(β̂) = V −1
m

[
K∑

i=1

∂µ′i
∂β

V −1
i Cov(Y i)V −1

i

∂µi

∂β

]
V −1

m (3.5)

Note that Generalized Estimating Equations are not maximum likelihood functions.

McCullagh (1983) proved that the estimates β̂ from GEEs converge to a normal distribu-

tion in large samples. The model-based covariance matrix of β̂ is only consistent if the

mean model and the working correlation matrix are correct, while the empirical, or robust

estimator of the covariance matrix of β is consistent even if the working correlation matrix

is misspecified, i.e., Cov(Y i) 6= V i. Then the following estimate can be used to replace

Cov(Y i) in the (3.5)

Cov(Y i) =
(
Y i − µi(β̂)

) (
Y i − µi(β̂)

)′
.

3.2 The Models and Tests

3.2.1 Poisson Regression in a Log-linear Model

Poisson regression in the log-linear model is one of the most commonly used generalized

linear models. It is applied to count data in which the response variable represents the

number of events happening in a fixed period of time. To ensure the positive mean for
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Poisson distribution, it is natural to assume that the logarithm of the expected mean is

a linear function of explanatory variables. Suppose a random variable Yi, (i = 1, 2, · · ·n)

follows a Poisson distribution. Let xi = (xi1, · · · , xip), and β = (β1, · · · , βp) to be the

vector of independent variables for the ith response and the vector of parameters as usual.

We have a log-linear model such as

log E(Yi) = x′iβ. (3.6)

That is, the link function is log for Poisson regression. In this model the regression coefficient

βj represents the expected change in the log of the mean per unit change in the predictor

xij . In other words increasing xij by one unit is associated with an increase of βj in the log

of the mean.

By exponentiating Equation (3.6) we obtain a multiplicative model for the mean itself:

E(Yi) = exp(x′iβ).

In this model, an exponentiated regression coefficient exp(βj) represents a multiplicative

effect of the jth predictor on the mean. Increasing xij by one unit multiplies the mean by

a factor exp(βj)

Note the mean and variance are same,

Var(Yi) = E(Yi) = exp(x′iβ).

Thus, the usual assumption of homoscedasticity would not be appropriate for Poisson data

since variance increase with mean.

The problem of lacking observations still exists when applying Poisson regression into

sequence data. Sequence data are split by following the same technique as described in

Chapter 2 to “increase” the number of replicates. We then have the following model,

Yijk = µ + αi + βj + γij + εijk, (3.7)

for i = 1, · · · , a; j = 1, · · · , b; and k = 1, · · · , n, where Yijk is the substitution rate for the
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jth species at ith locus for replicate k; and αi, βj , and γij represent gene effects, lineage

effect and interacting between them respectively. The εijk’s are assumed to be dependent,

random variables with zero means and variances depending on the mean of response variable.

Covariance can be modeled from data.

In order to apply GEEs to the log-linear model, we first need to identify the subject of

interest, which will give the correlation structure of the data. We made the assumptions

that substitution rates are independent across genes, but dependent within a gene at a

particular replication. That is, the subject of our interest is substitution rates at a gene

under the same replicate. Letting yi be the ith subject, equation (3.7) can be written by

matrix notation,

yi = xiβ.

The matrix xi is a design matrix and the vector β is unknown coefficients. Note that

yi ∼ Poisson (exp(xiβ), V i), where V i is the variance-covariance matrix in which variance

depending on the mean of response variable and covariance will be modeled directly from

data. After we obtain the estimates of β and covariance matrix, Wald statistics can be

constructed to test the null hypothesis.

3.2.2 Wald Statistics

When our sample is large enough, we may obtain an approximation to the sampling distri-

bution of the estimator β obtained by solving the GEEs as

β̂ ∼ N(β, V̂β).

As in the ordinary generalized linear models, the Wald testing procedure is used to test null

hypotheses of the form

H0 : Lβ = h,
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where rank(L) is the raw number of L. As usual, the large sample approximation is given

Lβ̂ ∼ N(Lβ,LV̂βL′).

Therefore, we may form the Wald-χ2 statistics as follows,

χ2
∗ = (Lβ̂ − h)′(LV̂βL′)−1(Lβ̂ − h).

which is approximately distributed as a χ2 distribution with the degree of freedom equal to

the number of rows of L.

3.3 The Type I Errors of the Tests

3.3.1 The Parameter Sets

The primary simulations were conducted under the same parameter sets as the ANOVA-

based methods to test the same null hypothesis as previous discussions. The way to test

proportionality of branch lengths among loci is to test the interaction between lineage and

locus effects. When we invoked PROC GENMOD from SAS software to get the estimated

variance-covariance matrices, the procedure couldn’t converge since singularity was present

in the variance-covariance matrices in many cases. We tried different parameters and found

that the procedure could converge well when the evolutionary distance between two homolo-

gous sequences is at least 0.1. Thus we increased the values of transitional and transversional

rates in our simulations. The parameter sets used to investigate Type I errors for the null

hypothesis at α = 0.05 are illustrated in the following tables. As in the previous chapters,

four sampling schemes are taken into account when investigating the Type I errors. The

base frequencies used here are the same as those of ANOVA based-methods, and the transi-

tional and transversional rates are increased to avoid the non-convergence in the GENMOD

procedure. The following parameter sets represent different sampling schemes.

set 1: no interaction, no locus effects and no lineage effects

set 2: no interaction, having locus effects and no lineage effects
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set 3: no interaction, no locus effects and having lineage effects

set 4: no interaction, having locus effects and lineage effect

Table 3.1: The first group of parameter sets for the GEE-based methods

Locus Set
Base freq

A C G T
Transition

δ1 δ2 δ3

Transversion
ρ1 ρ2 ρ3

A

1
2
3
4

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .75

.25 .25 .50

.25 .75 1.0

.10 .30 .45

.25 .25 .75

.25 .25 .50

.25 .75 1.0

.10 .30 .45

B

1
2
3
4

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .75

.50 .50 1.0

.25 .75 1.0

.20 .60 .90

.25 .25 .75

.50 .50 1.0

.25 .75 1.0

.20 .60 .90

Table 3.2: The second group of parameter sets for the GEE-based methods

Locus Set
Base freq

A C G T
Transition

δ1 δ2 δ3

Transversion
ρ1 ρ2 ρ3

A

1
2
3
4

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.50 .50 .75

.25 .25 .50

.30 .50 .75

.20 .40 .50

.25 .25 .375
.125 .125 .25
.15 .25 .375
.10 .20 .25

B

1
2
3
4

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.25 .25 .25 .25

.50 .50 .75

.50 .50 1.00

.30 .50 .75

.40 .80 1.00

.25 .25 .375

.25 .25 .50

.15 .25 .375

.20 .40 .50
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Table 3.3: The third group of parameter sets for the GEE-based methods

Locus Set
Base freq

A C G T
Transition

δ1 δ2 δ3

Transversion
ρ1 ρ2 ρ3

A

1
2
3
4

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.25 .25 .75

.25 .25 .50

.25 .75 1.0

.10 .30 .45

.25 .25 .75

.25 .25 .50

.25 .75 1.0

.10 .30 .45

B

1
2
3
4

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.25 .25 .75

.50 .50 1.0

.25 .75 1.0

.20 .60 .90

.25 .25 .75

.50 .50 1.0

.25 .75 1.0

.20 .60 .90

Table 3.4: The fourth group of parameter sets for the GEE-based methods

Locus Set
Base freq

A C G T
Transition

δ1 δ2 δ3

Transversion
ρ1 ρ2 ρ3

A

1
2
3
4

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.50 .50 .75

.25 .25 .50

.30 .50 .75

.20 .40 .50

.25 .25 .375
.125 .125 .25
.15 .25 .375
.10 .20 .25

B

1
2
3
4

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.50 .50 .75

.50 .50 1.00

.30 .50 .75

.40 .80 1.00

.25 .25 .375

.25 .25 .50

.15 .25 .375

.20 .40 .50
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3.3.2 The Simulation Results and Discussions

Simulations are conducted to compare the performance of the proposed ANOVA.L.C with

GEE-based methods under both JC69 and HKY85 models. As introduced previously, both

model-based and robust estimators of variance matrix can be obtained from GEEs. The

terms GEE-model and GEE-robust will be used to represent methods by using correspond-

ing variance estimators. Although we expect that the Wald statistics will be distributed as

χ2 distribution with one degree of freedom under the null hypothesis of proportionality of

relative rates across loci, we wish to check this under different sequence lengths in order to

establish a set of working rules. Two sets of 1000 replicate sets of three sequences with 500bp,

1000bp, and 10000bp each, respectively, are generated by creating two ancestral sequences

by different base frequencies and then allowing the sequences to diverge independently by

different combinations of transition and transversion rates. The descendent sequence data

are then alternatively split into replicates 2, 5, and 10 for sequences with length 500bp and

1000bp, and replicates 2, 5, 10, 20, and 40 for sequences with length 10000bp, respectively.

The substitution rates are estimated by the models JC69 and HKY85.

Simulations are conducted by invoking the GENMOD procedure from SAS Version 6.02

within my C++ program. The computational speed is also dependent on the total sequence

length. The GENMOD procedure is about 300 times slower than that of the ANOVA-based

method when we used SAS, or about twice as fast as the likelihood procedure. Simulation

results for Type I errors at the 0.05 significance level are tabulated in the following tables.

Note the numbers inside parentheses under the ANOVE.L.C are the percentage of non-

positive substitution rates, while under the GEE-model are the sum of percentage of non-

positive substitution rates and the non-convergence in GEE. The percentages under the

GEE-robust are omitted since they are same as those under the GEE-model.

The simulation results from the ANOVA.L.C testing are fairly consistent with the pre-

vious simulations in which Type I errors had no significant changes as increasing number

of replicates. In contrast, Type I errors for all sampling schemes reduce as the number

of replicates increases in GEE-based methods. Look closely at simulation results from the
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GEE-based methods, we see that Type I errors are in the range of 0.2 to 0.4 when the num-

ber of replicate is 2. Generally, most of Type I errors approach the desired level .05 when

the number of replicates is at least 10. For the sequences with length 500bp, 10 replicates

will result in no solution in 30% to 70% cases. For the sequences with total length 1000bp,

most of Type I errors are around 0.06 to 0.08 which are still slightly away from the desired

level 0.05. For the sequences with length 10000bp, Type I errors are very close to the desired

level as the number of replicates is increased to 40. Additionally, there are just a few cases

without solution. This leads us to conclude that the GEEs-based method is more suitable

to long sequence data with relatively big replicates than the short sequence. Furthermore,

simulation results show that both the model-based and robust methods give similar Type

I errors, which indicates that assumptions about correlation structure of substitution rates

are probably fine. Comparing the results from both JC69 model and HKY85 model, we

don’t see any obvious difference even if the data are generated based on the HKY85 model.
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Table 3.5: Comparing Type I errors (%) of the GEE-based methods with
those of ANOVA.L.C for the sequences with length 500bp at the 1st group

Model JC69

Set
ANOVA.L.C

2 5 10
GEE-model

2 5 10
GEE-robust
2 5 10

1
2
3
4

5.3 5.9(1.5) 6.3(20.0)
6.1 5.7(4.5) 5.0(30.3)
5.7 5.6(3.0) 5.2(41.2)
5.9 6.4(11.3) 4.7(47.6)

21.2 11.9(4.1) 6.3(31.7)
22.8 13.1(5.0) 7.2(36.7)
24.3 14.3(3.7) 7.1(44.4)
23.5 10.0 (16.2) 5.3(48.5)

25.6 12.8 5.3
23.4 9.8 7.9
27.6 13.8 7.2
27.5 11.2 4.2

Model HKY85

1
2
3
4

5.0 5.6(1.5) 5.8(31.5)
6.4 6.2(5.6) 4.0(51.3)
5.6 6.5(8.7) 4.3(56.6)
5.7 5.3(16.2) 3.6(66.3)

26.7 15.3(5.9) 4.9(33.1)
24.4 11.3(8.1) 3.0(53.0)
25.7 12.0(10.7) 5.7(59.0)
26.1 12.8(25.1) 3.2(69.2)

27.0 14.4 4.8
24.7 11.9 3.2
25.3 10.3 4.1
26.1 12.9 3.7

Table 3.6: Comparing Type I errors (%) of the GEE-based methods with
those of ANOVA.L.C for sequences with length 500bp at the 2nd group

Model JC69

Set
ANOVA.L.C

2 5 10
GEE-model

2 5 10
GEE-robust
2 5 10

1
2
3
4

5.8 5.9(0.9) 5.8(28.2)
6.6 6.5(2.5) 6.0(38.5)
6.7 7.1(3.5) 5.2(42.2)
5.8 5.4(8.7) 5.3(47.5)

19.2 10.6(1.1) 6.3(33.7)
18.2 10.1(4.7) 7.2(39.9)
20.3 13.1(5.7) 9.1(44.9)
22.8 14.0(13.2) 4.3(50.5)

19.6 11.8 6.4
18.4 9.7 6.9
21.7 8.1 8.2
21.9 8.0 4.2

Model HKY85

1
2
3
4

5.6 6.0(0.9) 5.8(31.5)
6.4 7.2(3.2) 6.4(42.3)
6.9 7.5(5.7) 4.3(56.1)
6.7 6.3(13.2) 3.6(60.3)

19.7 12.3(1.1) 5.9(34.1)
19.3 12.7(5.2) 6.3(43.0)
18.3 11.0(7.1) 8.7(60.0)
20.6 11.8(15.3) 3.2(68.9)

19.0 11.3 4.9
20.4 10.9 3.2
21.3 12.4 8.9
22.9 13.9 3.5
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Table 3.7: Comparing Type I errors (%) of the GEE-based methods with
those of ANOVA.L.C for sequences with length 500bp at the 3rd group

Model JC69

Set
ANOVA.L.C

2 5 10
GEE-model

2 5 10
GEE-robust
2 5 10

1
2
3
4

6.3 6.9(0.9) 6.3(26.0)
7.1 6.5(6.5) 4.7(30.3)
6.3 7.1(6.7) 5.7(44.2)
5.9 6.4(12.3) 5.9(49.5)

25.2 12.6(2.1) 5.3(31.2)
24.2 11.1(9.0) 8.2(38.4)
26.3 13.1(9.7) 4.1(47.6)
28.5 16.5(14.2) 3.3(53.5)

25.5 12.8 5.5
23.4 9.2 7.3
27.6 13.1 4.2
27.5 12.8 3.4

Model HKY85

1
2
3
4

5.3 6.0(0.7) 5.8(41.5)
7.4 7.2(5.0) 6.4(62.3)
6.9 7.5(5.7) 5.3(66.1)
6.7 6.3(15.2) 4.6(63.3)

26.7 13.3(1.9) 4.9(43.1)
24.3 12.7(5.2) 7.6(48.3.0)
25.3 13.0(5.7) 5.7(67.0)
26.9 13.8(15.9) 4.2(68.2)

27.0 14.0 4.9
24.3 11.9 7.0
25.8 12.4 5.2
26.6 12.9 3.4

Table 3.8: Comparing Type I errors (%) of the GEE-based methods with
those of ANOVA.L.C for sequences with length 500bp at the 4th group

Model JC69

Set
ANOVA.L.C

2 5 10
GEE-model

2 5 10
GEE-robust
2 5 10

1
2
3
4

6.1 6.5(0.5) 6.7(29.0)
6.0 6.7(3.5) 5.5(38.3)
6.7 7.7(3.0) 5.8(44.2)
5.4 5.4(10.3) 4.7(47.5)

25.4 12.6(1.1) 4.3(31.2)
25.1 12.1(4.0) 5.2(38.7)
26.4 13.5(3.7) 2.1(44.6)
27.0 13.8 (11.2) 4.3(47.5)

25.6 13.8 4.3
23.4 10.2 4.9
25.6 12.1 2.2
27.5 13.4 4.0

Model HKY85

1
2
3
4

6.3 6.0(0.7) 5.4(41.5)
5.8 7.2(5.0) 4.4(62.3)
6.5 7.5(5.7) 3.3(66.1)
5.7 5.5(15.2) 3.7(63.3)

26.1 13.3(1.9) 4.9(43.1)
25.3 11.7(5.2) 3.0(63.0)
26.5 12.8(5.7) 3.7(67.0)
27.6 13.6(15.9) 3.2(68.2)

28.1 14.0 4.9
23.3 10.9 2.8
25.3 10.4 2.9
28.9 12.9 3.6
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Table 3.9: Comparing Type I errors (%) of the GEE-based methods
with those of ANOVA.L.C for sequences with length 1000bp at the
1st group

Model JC69

Set
ANOVA.L.C

2 5 10
GEE-model

2 5 10
GEE-robust

2 5 10
1
2
3
4

5.2 5.8 5.3(0.0)
6.3 6.4 6.6(2.8)
6.1 5.9 6.3(14.1)
6.4 6.0 5.5(6.1)

23.7 10.9 6.2(0.0)
19.8 9.4 6.9(5.9)
23.6 11.2 8.2(16.2)
25.6 14.5 6.4(11.4)

21.5 9.7 6.4
19.2 9.9 6.6
23.9 11.6 8.7
25.7 13.4 7.0

Model HKY85

1
2
3
4

5.7 5.9 5.5(2.5)
6.4 6.8 5.9(6.0)
5.7 5.8 6.4(15.5)
6.1 6.6 6.5(9.3)

26.1 11.1 6.4(4.0)
25.9 12.8 7.0(8.8)
24.2 11.4 7.9(18.6)
25.2 10.6 7.1(13.5)

25.7 11.4 6.0
26.5 11.5 6.7
24.5 11.9 8.2
27.5 13.4 7.6

Table 3.10: Comparing Type I errors (%) of the GEE-based meth-
ods with those of ANOVA.L.C for sequences with length 1000bp at
the 2nd group

Model JC69

Set
ANOVA.L.C

2 5 10
GEE-model

2 5 10
GEE-robust

2 5 10
1
2
3
4

5.6 5.8 5.6(1.0)
5.9 6.3 6.0(4.7)
6.0 6.9 6.3(12.1)
6.4 7.0 6.5(10.1)

20.0 9.7 5.6(3.1)
21.2 9.3 6.8(6.9)
23.0 12.2 7.6(14.2)
25.2 13.5 7.0(13.4)

20.5 8.7 4.0
22.2 9.8 7.0
23.4 11.6 8.1
25.2 13.3 6.9

Model HKY85

1
2
3
4

6.0 6.5 6.5(2.6)
6.4 6.8 6.4(6.0)
6.7 6.8 6.4(14.2)
7.0 7.2 6.8(19.4)

20.9 9.0 6.0(5.0)
21.9 10.8 6.7(8.8)
24.8 11.9 6.9(17.6)
25.0 12.7 4.7(30.7)

20.7 10.6 6.1
22.9 12.5 5.6
24.9 11.6 6.5
27.1 13.4 4.4
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Table 3.11: Comparing Type I errors (%) of the GEE-based meth-
ods with those of ANOVA.L.C for sequences with length 1000bp at
the 3rd group

Model JC69

Set
ANOVA.L.C

2 5 10
GEE-model

2 5 10
GEE-robust

2 5 10
1
2
3
4

5.8 6.6 6.0(1.0)
6.3 6.4 5.6(2.7)
5.7 6.0 6.1(4.8)
6.8 6.9 6.3(11.2)

24.2 12.8 6.5(2.1)
26.1 13.2 6.8(5.6)
27.3 14.5 6.9(7.9)
25.9 12.5 7.0(16.6)

25.1 12.7 6.6
26.4 13.0 6.9
26.2 10.8 6.2
26.0 11.7 5.8

Model HKY85

1
2
3
4

5.4 6.1 7.5(3.0)
6.5 7.0 6.4(7.6)
6.0 6.8 7.0(10.3)
7.3 7.1 6.5(16.2)

27.0 13.2 6.3(7.3)
25.5 11.3 6.3(10.6)
26.0 12.1 7.6(17.5)
27.9 13.4 6.8(26.2)

27.8 12.9 6.7
26.3 10.6 5.9
26.9 12.7 6.1
27.8 13.1 6.9

Table 3.12: Comparing Type I errors (%) of the GEE-based meth-
ods with those of ANOVA.L.C for sequences with length 1000bp at
the 4th group

Model JC69

Set
ANOVA.L.C

2 5 10
GEE-model

2 5 10
GEE-robust

2 5 10
1
2
3
4

5.9 6.8 6.6(0.0)
5.7 7.4 6.6(1.7)
6.9 7.9 7.3(12.1)
6.4 7.5 8.5(2.0)

23.2 12.7 6.4(0.0)
19.2 9.3 5.8(1.9)
23.3 12.2 7.8(14.2)
25.4 13.5 6.0(30.4)

20.5 8.7 4.0
19.2 9.0 7.0
23.4 10.6 8.1
25.2 11.5 6.7

Model HKY85

1
2
3
4

6.4 7.0 6.5(2.0)
6.4 7.8 6.9(6.0)
5.7 6.8 6.4(13.2)
7.0 7.6 7.5(29.4)

23.9 10.2 6.0(2.0)
20.9 9.8 6.7(6.8)
24.8 11.9 6.9(17.6)
26.0 10.7 5.3(39.7)

26.7 11.6 6.1
26.9 12.7 5.6
24.9 10.9 6.9
27.1 11.4 4.9
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Table 3.13: Comparing Type I errors (%) of the GEE-based methods with
those of ANOVA.L.C for sequences with length 10000bp at the 1st group

Model JC69

Set
ANOVA.L.C

2 5 10 20 40
GEE-model

2 5 10 20 40
GEE-robust

2 5 10 20 40
1
2
3
4

5.9 5.8 5.7 5.0 5.6(0.0)
5.6 5.5 5.3 5.4 5.6(0.0)
6.0 5.7 6.1 5.5 6.1(0.0)
5.6 5.3 5.2 5.0 5.4(0.7)

31.2 14.6 6.2 5.3 5.2(0.6)
31.7 13.3 6.0 4.9 4.9(0.8)
32.6 14.5 6.4 5.4 4.2(1.0)
32.8 14.4 7.3 5.9 4.0(2.3)

29.3 13.1 5.6 5.5 5.1
31.4 13.4 5.4 5.0 5.0
32.8 14.7 6.8 5.8 4.4
34.2 15.2 7.3 6.5 5.6

Model HKY85

1
2
3
4

5.1 5.7 5.2 5.6 5.6(0.0)
5.5 5.3 5.5 5.9 5.4(0.0)
5.6 6.3 6.7 6.0 6.5(0.0)
5.8 6.1 5.4 6.1 5.9(3.9)

31.2 13.6 7.2 5.3 5.2(0.8)
30.5 13.3 7.5 5.4.0 5.0(0.9)
33.2 15.7 7.9 6.0 5.4(1.2)
34.4 16.8 8.3 5.9 5.0(5.3)

30.2 13.2 7.0 5.8 5.2
32.6 14.1 7.4 6.0 5.4
34.6 16.1 7.9 6.0 5.3
33.6 13.8 7.2 5.6 4.3

Table 3.14: Comparing Type I errors (%) of the GEE-based methods with
those of ANOVA.L.C for sequences with length 10000bp at the 2nd group

Model JC69

Set
ANOVA.L.C

2 5 10 20 40
GEE-model

2 5 10 20 40
GEE-robust

2 5 10 20 40
1
2
3
4

6.0 6.8 6.4 7.0 7.6(0.0)
5.9 6.0 7.2 6.4 7.0(0.0)
6.0 7.0 7.1 6.6 6.1(0.0)
6.1 6.7 7.2 7.0 7.4(0.9)

28.3 14.0 7.2 6.3 5.2(0.1)
30.5 15.3 7.9 7.0 5.6(0.1)
29.9 14.5 6.9 6.0 4.9(0.0)
31.0 15.4 7.3 5.9 4.0(1.7)

29.3 15.1 7.6 7.0 6.1
30.7 14.6 7.0 6.7 5.6
30.8 15.7 7.8 6.8 5.4
29.2 14.2 8.3 6.5 5.5

Model HKY85

1
2
3
4

6.1 6.7 6.7 6.6 6.6(0.0)
5.8 6.3 6.0 6.4 6.5(0.0)
6.3 6.7 6.8 7.0 6.5(0.6)
5.8 6.1 6.4 6.1 6.2(3.3)

28.2 14.2 7.2 6.3 5.2(0.2)
30.1 14.7 7.5 7.0 6.0(1.2)
29.2 14.6 6.7 6.4 4.9(2.8)
32.4 15.8 7.9 5.9 4.0(4.6)

30.2 15.2 8.0 7.0 6.2
30.1 14.5 7.4 7.0 5.4
29.6 15.1 6.9 6.0 5.3
28.7 14.8 7.2 5.8 4.3
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Table 3.15: Comparing Type I errors (%) of the GEE-based methods with
those of ANOVA.L.C for sequences with length 10000bp at the 3rd group

Model JC69

Set
ANOVA.L.C

2 5 10 20 40
GEE-model

2 5 10 20 40
GEE-robust

2 5 10 20 40
1
2
3
4

6.4 7.0 7.0 6.8 6.6(0.0)
5.9 6.0 7.2 6.4 7.0(0.0)
6.4 7.0 7.1 6.0 6.1(0.0)
5.7 6.3 7.2 7.0 7.4(0.7)

36.2 18.0 9.2 7.3 5.6(0.8)
37.0 18.3 9.6. 7.6 5.7(0.5)
38.9 19.5 9.9 8.0 5.9(0.0)
40.6 20.0 10.3 7.9 5.0(4.3)

37.0 18.1 9.6 7.5 5.8
36.7 18.0 9.0 8.0 5.6
40.2 19.7 10.7 7.8 5.4
41.2 21.2 11.3 8.5 5.9

Model HKY85

1
2
3
4

7.0 7.5 7.6 7.6 7.6(0.0)
5.8 6.6 6.5 6.8 6.9(0.0)
6.2 7.0 7.1 7.5 7.0(1.0)
5.8 6.1 6.4 7.1 6.2(3.4)

37.1 17.2 9.0 7.3 5.2(1.2)
36.5 16.3 9.5 7.5 6.0(1.1)
39.2 18.6 9.9 7.8 6.0(1.2)
40.5 19.8 9.3 6.9 5.4(4.9)

38.2 17.2 9.7 7.3 5.2
37.1 18.5 9.4 7.1 5.4
40.6 19.1 9.9 7.9 5.9
42.8 20.8 10.2 7.9 5.3

Table 3.16: Comparing Type I errors (%) of the GEE-based methods with
those of ANOVA.L.C for sequences with length 10000bp at the 4th group

Model JC69

Set
ANOVA.L.C

2 5 10 20 40
GEE-model

2 5 10 20 40
GEE-robust

2 5 10 20 40
1
2
3
4

6.9 7.8 7.7 7.0 6.6(0.0)
5.9 6.0 7.2 6.4 6.0(0.0)
6.0 6.0 6.1 6.0 6.1(0.0)
6.1 7.3 7.2 7.0 6.4(0.7)

33.2 15.0 7.2 7.3 5.2(0.1)
33.0 15.3 7.0 7.0 5.0(0.1)
32.9 15.5 6.9 7.0 4.9(0.0)
32.6 15.0 7.3 5.9 4.0(1.3)

33.3 15.1 7.6 7.5 6.1
34.7 16.0 8.0 8.0 5.0
32.8 15.7 7.8 7.8 5.4
33.2 16.2 8.3 7.5 5.9

Model HKY85

1
2
3
4

7.1 7.7 7.0 7.6 7.6(0.0)
5.8 6.3 6.5 6.0 6.9(0.0)
6.6 7.3 7.0 7.0 7.5(0.0)
5.8 8.1 6.4 7.1 6.2(3.4)

33.2 15.2 8.2 7.3 5.2(0.2)
32.1 14.3 7.5 7.0 6.0(0.1)
33.2 15.6 6.9 7.0 4.9(0.0)
32.4 14.8 7.3 5.9 4.0(4.3)

33.2 14.2 8.0 7.3 5.2
32.1 14.5 7.4 7.0 5.4
33.6 15.1 6.9 7.0 5.9
32.8 14.8 7.2 5.9 4.3
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3.4 The Powers of the Tests

We performed simulation to compare the power of GEE-based methods with ANOVA.L.C

method under different phylogenetic trees. As mentioned before, there are some chances

that no result is obtained if the evolutionary distance between two homologous sequences is

small. So we should keep this in mind when we choose the parameters. From results of Type

I errors, the GEE-based methods perform well on the long sequences with big replicates.

Thus power study is conducted on the sequences with length 10000bp. First two sets of

ancestral sequences with length 10000bp are generated by different based frequencies, and

then allowing the sequences to diverge along six paths, each with different substitution rates,

independently by mutation. As shown in Table 3.17, the parameters used to investigate

powers allow transition rates to be the twice of transversion rates. For the four parameter

sets, besides for increasing branch length for species 2 at gene A, keep branch lengths for

all the other species as a constant.

The results of power studies are shown in Figure 3.1 and 3.2. First, we compared the

powers between methods based on GEE-model and GEE-robust under both the JC69 and

HKY85 Models. As shown in Figure 3.1, the powers show the similar trend under the

different phylogenetic trees for both GEE-model and GEE-robust methods as increasing

the number of replicates. The magnitudes of powers under GEE-robust are slightly bigger

than those under GEE-model. There are only two obvious increments of powers at the

replicate 10 and 20 in almost all cases, and a slight increment of powers as increasing the

number of replicates after 20. Comparing the powers under different phylogenetic trees,

powers increases from about 15% to 70% as increasing the true differences from Tree 1

to Tree 4. Comparing the top panel with bottom panel in Figure 3.1, we can see that

powers of the JC69 models are almost the same as those of the HKY85 model. This is quite

consistent with the results from study of Type I errors.

Figure 3.2 shows the comparisons of powers between the GEE-based methods and

ANOVA.L.C. at the replicates 20. The method based on GEE-model estimators was used

to illustrate here. It is easy to see that the powers of ANOVA.L.C are bigger than those of
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GEE-based methods. The magnitude of increase is about 50% under the same tree.

Table 3.17: The parameter sets of power study for the GEE-based methods

Locus Set
Base freq

A C G T
Transition
δ1 δ2 δ3

Transversion
ρ1 ρ2 ρ3

A

1
2
3
4

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.20 .20 .50

.20 .20 .50

.20 .20 .50

.20 .20 .50

.10 .10 .30

.10 .10 .30

.10 .10 .30

.10 .10 .30

B

1
2
3
4

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.40 .10 .20 .30

.20 .24 .50

.20 .26 .50

.20 .28 .50

.20 .30 .50

.10 .12 .30

.10 .13 .30

.10 .14 .30

.40 .15 .30
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Figure 3.1: Power (%) study of GEE-based methods
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Chapter 4

The Methods Based on Bootstrap Percentile

Confidence Intervals

4.1 Introduction

4.1.1 Relation between Confidence Intervals and Hypothesis Tests

To better understand the proposed methods, we first review the basic relation between

confidence intervals and hypothesis tests. Suppose we have an estimator β̂ which is believed

to be normally distributed as:

β̂ ∼ N(β, s2),

with the known standard error s. The following random variable then has a standard normal

distribution,

Z =
β̂ − β

s
∼ N(0, 1).

The (1− 2α) confidence interval of (β̂ − β)/s is

z(α) ≤ β̂ − β

s
≤ z(1−α).

Thus, the (1− 2α) confidence interval of β is given by

[β̂ + sz(α), β̂ + sz(1−α)].
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Let β̂lo = β̂ + sz(α) and β̂up = β̂ + sz(1−α). The probability that the interval [β̂lo, β̂up]

contains true value of β is 1− 2α. Usually, the probability that β is below the lower bound

is exactly α, as is the probability that β is above the upper bound,

Probβ{β < β̂lo} = α, Probβ{β > β̂up} = α.

From the hypothesis testing point of view, we have another way to understand the

1 − 2α confidence interval [β̂lo, β̂up] for β. Suppose the true β = β̂lo and let the related

test statistics be β∗, and

β∗ ∼ N(β̂lo, s2).

It is obvious that the probability that β∗ exceeds the estimate β̂ is α,

Probβ{β∗ ≥ β̂} = α.

Then for any true value of β smaller than the lower bound β̂lo, we can have

Probβ{β∗ ≥ β̂} < α. (4.1)

Likewise, for any true value of β larger than the upper bound β̂up, we can have

Probβ{β∗ ≤ β̂} < α. (4.2)

Now we can say that the 1 − 2α confidence interval [β̂lo, β̂up] for β is the set of values of

β with observed β̂, and we can’t exclude those values by both of the tests (4.1) and (4.2).

That is, a hypothesis test can be performed by constructing a confidence interval and then

checking whether the true value is in the interval or not. If the confidence interval fails to

include the true value, then the test is deemed to be rejected at the significance level 2α.

4.1.2 Confidence Intervals Based on Bootstrap Percentile

The bootstrap is a computer-based resampling method for estimating some statistical pa-

rameters of interest. To illustrate the idea of bootstrap procedure, we consider the following
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case: we have a random sample x = (x1, x2, · · · , xn) from an unknown probability distri-

bution F , and we want to estimate a parameter of interest β = g(x). Given that we have

no other information about the population, the sample x is the single best estimate of that

population. We therefore treat that sample as the population and use bootstrap sampling

to generate a series of resamples from the original sample. Suppose F̂ is the empirical

distribution of F , and a bootstrap sample is a random sample of size n drawn from F̂

with replacement, say x∗ = (x∗1, x∗2, · · · , x∗n). That is, each data point in the sample x

has equal probability 1/n to be drawn. The one of advantages of bootstrap is that one

can draw any number of resample that one wants. Suppose we draw B bootstrap samples

(x∗1,x∗2, · · · ,x∗B), then we can obtain β̂
∗

= (β̂∗1 , β̂∗2 , · · · , β̂∗B) from B bootstrap samples,

β̂∗B = g(x∗B).

Suppose F̂ ∗ is the cumulative distribution function of β̂
∗
. The 1−2α percentile interval

is given by the α and 1− α percentiles of F̂ ∗:

[β̂lo, β̂up] = [F̂ ∗−1(α), F̂ ∗−1(1− α)].

4.2 The Methods and Simulations

4.2.1 Estimate of Parameters

Let Yijk be the substitution rate for the jth species at the ith locus within the kth replicate.

Consider the following two-way ANOVA model

Yijk = µ + αi + βj + γij + εijk, (4.3)

for i = 1, · · · , a; j = 1, · · · , b; and k = 1, · · · , n. Where µ denotes the grand mean, αi

denotes the ith locus effect, βj denotes the jth lineage effect, γij denotes the interaction

between the jth lineage and the ith locus effects, and εijk are independent N(0, σ2).
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To obtain the least squares estimators, we minimize the following expression:

Q =
∑

i

∑
j

∑
k

[Yijk − µ− αi − βj − γij ]2

under the restrictions:

a∑
i=1

αi = 0,
b∑

j=1

βj = 0,
a∑

i=1

γij = 0,
b∑

j=1

γij = 0.

We obtain the following least squares estimators of the parameters:

µ̂ = Ȳ..., α̂i = Ȳi.. − Ȳ..., β̂i = Ȳ.j. − Ȳ..., γ̂ij = Ȳij. − Ȳi.. − Ȳ.j. + Ȳ... (4.4)

Note that those estimators can still be obtained if the number of replicate k = 1.

Similarly, those least squares estimators also can be obtained in the same way for the

following model:

log (Yijk) = µ + αi + βj + γij + εijk, (4.5)

4.2.2 Hypothesis Tests Based on Confidence Intervals

The way to test proportionality of branch lengths among loci is to test the interaction

between lineage and locus effects. That is, the hypotheses of the proposed method based

on the model (4.3) are defined as

H0 : all γij = 0, H1 : at least one of γij 6= 0. (4.6)

Suppose the 1 − 2α confidence intervals for the estimate γ̂ij are [γ̂lo
ij , γ̂

up
ij ] which will be

constructed by using bootstrap resampling. The test (4.6) is equivalent to checking whether

the confidence intervals [γ̂lo
ij , γ̂

up
ij ] contain the null value 0. If [γ̂lo

ij , γ̂
up
ij ] excludes the null

value 0, then we can reject the null hypothesis at the significance level α.

4.2.3 The Type I Errors of the Tests

There are two kinds of tests based on bootstrap percentile confidence intervals. We name

one based on Model (4.3) as BOOTPCI, while calling another one based on Model (4.5)
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as BOOTPCI.L. We use the same parameter sets as those in ANOVA-based methods in

chapter2 to generate the original DNA sequences for three species at two loci, respectively.

The study of Type I errors is conducted on sequences with lengths 500bp and 1000bp,

respectively. 1000 bootstrap samples of three species at two loci are then drawn column by

column for three species within each locus, separately, from that original DNA sequences.

That is, we treat the three nucleotides at the same position for the three species at the same

gene as a data point. Thus, we draw them together and put them in the same position

to the corresponding DNA sequences. Although we do not have the problem of lacking

replicate like all the previously proposed methods here, the sequences are still alternatively

split as before in order to compare with other proposed methods.

We compute 1000 bootstrap estimates γ̂∗ij = (γ̂∗1ij , γ̂∗2ij , · · · , γ̂∗1000ij ) according to the for-

mula (4.4) from the 1000 bootstrap samples. We then sort the 1000 γ̂∗ij in ascending order,

and obtain values of γ̂∗ij at the positions 25 and 975, denoting as γ̂∗ij(25) and γ̂∗ij(975). Thus,

the 95% percentile confidence intervals based on bootstrap are [γ̂∗ij(25), γ̂∗ij(975)]. Compari-

son of the null value 0 of γ̂ij with the intervals [γ̂∗ij(25), γ̂∗ij(975)] will be conducted to check

whether the interval contains 0. The total 1000 such simulations are conducted in the way

as described. Let m denote the total number of simulations that the 95% confidence in-

tervals fail to contain the value 0 in the 1000 times of simulation, the Type I error can be

calculated by m/1000.

The Simulation study is conducted to compare Type I errors for LRT, ANOVA.L.C

and Bootstrap versions of the relative ratio test under the model of JC69 for the sequences

with lengths 500bp and 1000bp, respectively. For convenience, we put the simulation results

from the lengths 500bp and 1000bp at the same parameter set into one table. First, we

examine the Type I errors from the bootstrap based methods. Generally, BOOTPCI.L, the

method with taking logarithms of substitution rates, gives smaller Type I errors than does

the BOOTPCI method. In particular, for the 4th sampling scheme, having both lineage and

locus effects, the BOOTPCI.L performs much better than the BOOTPCI method in which

the Type I errors are in the range of .15 to .40. For the four sets of parameters, Type I errors
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produced by the BOOTPCI.L method are very close to 0.05 at the significance level α = .05

for most cases. As increasing the number of replicates to 5, most Type I errors from the

BOOTPCI.L method are closer to the desired value of 0.05 than those from simulations with

1 replicate. Note that some of Type I errors are very small for the sequences with length

500bp at the replicate 5. The reason is that a certain amount of estimated substitution

rates are not positive values when we split the sequence with length 500bp into 5 pieces of

sequences. For the simulation using bootstrap resampling, it is impossible to count that

proportions like the ANOVA.L.C method and include them in the tables. By checking the

values of percentages inside the parentheses for the ANOVA.L.C method, we can have a

clear picture of the 1000 original data for bootstrap. The larger the percentages from the

ANOVA.L.C method are, the more unreliable Type I errors from the BOOTPCI.L method.

We compare the Type I errors from the BOOTPCI.L with both methods of ANOVA.L.C

and LRT. It is not surprising to see that BOOTPCI.L results in smaller Type I errors

than does ANOVA.L.C method in 95% of the cases. In contrast, it is surprising that the

BOOTPCI.L gives more desirable Type I errors than does LRT method in general. We

compare the speed of computing between LRT-based method with the BOOTPCI.L. At

one simulation time, it takes 12 seconds to obtain the result from the BOOTPCI.L method,

and 1 second from the LRT based method for the sequence length with 1000bp under the

SUNBlade 1000’s with 750Mhz processors with 1 GB of memory. That is the speed of

BOOTPCI.L is about 12 times slower than that of LRT based method.

87



Table 4.1: Comparing Type I errors (%) of the bootstrap-based
methods with those of ANOVA.L.C at the 1st group

Sequence Length 500bp

Set LRT
ANOVA.L.C
2 5

BOOTPCI
1 2 5

BOOTPCI.L
1 2 5

1
2
3
4

5.2
5.3
5.4
5.6

6.9 5.4(3.0)
6.7 6.0(3.7)
7.6 6.9(22.7)
6.6 5.4(26.0)

4.3 4.4 4.3
6.1 6.2 5.6
4.1 4.0 4.1
18.2 18.3 18.6

4.1 4.2 3.3
5.3 5.1 4.1
3.9 3.4 1.8
4.3 4.3 2.9

Sequence Length 1000bp

1
2
3
4

5.0
4.8
5.2
4.4

4.4 5.6(0.0)
6.5 6.4(0.0)
6.3 6.8(0.0
5.2 5.2(0.0)

6.0 6.1 6.1
5.9 5.6 5.7
4.6 4.9 4.6
28.0 28.0 28.0

5.9 5.8 5.4
5.5 5.6 5.4
4.7 4.8 4.0
5.1 4.9 4.1

Table 4.2: Comparing Type I errors (%) of the bootstrap-based
methods with those of ANOVA.L.C at the 2nd group

Sequence Length 500bp

Set LRT
ANOVA.L.C
2 5

BOOTPCI
1 2 5

BOOTPCI.L
1 2 5

1
2
3
4

5.1
5.9
5.7
4.6

5.4 5.2(1.3)
6.9 7.6(2.4)
6.6 6.2(2.7)
6.4 5.6(8.8)

4.2 4.4 4.0
6.3 6.2 6.0
6.0 5.9 5.8
23.7 23.6 23.7

4.1 4.3 2.9
6.0 6.0 5.9
4.9 4.7 3.3
5.9 5.7 3.5

Sequence Length 1000bp

1
2
3
4

4.2
5.3
4.4
5.0

5.7 5.0(0.0)
5.9 6.4(0.0)
5.0 5.5(0.0)
5.0 5.1(0.0)

5.4 5.1 5.3
5.0 5.6 5.0
4.4 4.3 4.5
38.9 39.1 39.4

5.4 5.6 4.8
5.3 4.9 4.8
4.9 4.8 3.9
5.5 5.3 5.1

Note: the numbers inside the parentheses are percentages of
non-positive branch lengths for method of ANOVA.L.C.
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Table 4.3: Comparing Type I errors (%) of the bootstrap-based
methods with those of ANOVA.L.C at the 3rd group

Sequence Length 500bp

Set LRT
ANOVA.L.C
2 5

BOOTPCI
1 2 5

BOOTPCI.L
1 2 5

1
2
3
4

5.1
6.0
4.8
5.0

4.4 4.5(47.1)
5.1 6.0(28.0)
5.5 5.5(32.2)
7.1 4.6(28.9)

4.5 4.4 4.3
6.2 5.7 5.8
5.3 5.2 5.1
16.3 15.7 15.5

4.4 4.3 3.2
5.7 5.4 4.1
5.2 4.0 2.2
5.1 4.3 2.2

Sequence Length 1000bp

1
2
3
4

6.2
5.4
4.7
6.3

5.2 5.8(1.6)
5.1 5.5(1.3)
6.7 5.8(4.5)
7.3 7.0(2.9)

5.9 5.6 5.9
6.0 6.0 5.8
5.0 5.1 4.8
25.5 25.9 25.2

5.5 5.1 4.0
5.3 5.0 4.3
4.6 4.5 3.4
6.1 6.0 4.0

Table 4.4: Comparing Type I errors (%) of the bootstrap-based
methods with those of ANOVA.L.C at the 4th group

Sequence Length 500bp

Set LRT
ANOVA.L.C
2 5

BOOTPCI
1 2 5

BOOTPCI.L
1 2 5

1
2
3
4

5.3
5.6
4.1
5.9

6.1 4.4(28.7)
5.8 5.6(10.6)
5.8 4.6(28.1)
6.2 5.7(8.9)

4.8 4.7 4.6
4.5 4.3 4.3
5.0 4.9 4.7
18.9 18.9 18.8

5.3 4.5 2.1
4.9 4.5 3.0
4.8 4.4 2.5
6.7 6.6 4.9

Sequence Length 1000bp

1
2
3
4

5.6
5.8
4.9
6.4

6.7 6.2(1.5)
6.1 6.8(0.0)
5.2 6.7(3.2)
6.6 7.3(0.0)

5.2 5.1 5.1
4.5 4.4 4.6
5.4 5.4 5.4
31.8 31.6 31.6

4.9 4.9 3.8
5.8 5.6 5.6
5.6 5.1 4.6
6.1 5.9 5.4
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4.2.4 The Power of the Tests

Simulations are also conducted to compare statistical powers of BOOTBCI.L method with

ANOVA.L.C and LRT based methods. We use the same parameter sets as those in the

power study of ANOVA-based methods. It is shown in Table 2.19. The parameters used to

investigate powers allow transition rates to be twice of transversion rates and unequal base

frequencies. For the four parameter sets, besides increasing the branch lengths for species

2 at gene A accordingly, we keep branch lengths for all the other species as constant in the

meantime. Sequences with length 2000bp are used in primary simulations. The numbers of

replicates is 2, 5, 8, 10 for the ANOVA.L.C, and 1, 2, 5, 8, 10 for the BOOTPCI.L. The JC69

model is used, and the significance level α = .05 as usual.

In order to easily see the subtle differences of power among different methods, we il-

lustrate the results in Table 4.2.4. We surprisingly see that the powers for both LRT and

ANOVA.L.C are much smaller than those from previous investigation of ANOVA based

methods in which we used the sequences with length 10000bp. For example, the powers of

ANOVA.L.C and LRT are around 40% at Tree 4 here, in contrast, those are close to 100% if

using the sequences with length 10000bp. It is interesting to see that powers increase as the

number of replicates increase for the ANOVA.L.C method, and the powers slightly decrease

as the number of replicates is increasing for the BOOTPCI.L method. The greatest powers

for both BOOTPCI.L and ANOVA.L.C method are pretty close to each other, and also

close to the powers of LRT method.

Table 4.5: Comparing powers (%) of BOOTPCI.L with those of
both LRT and ANOVA.L.C methods

Tree LRT
ANOVA.L.C

2 5 8 10
BOOTPCI.L

1 2 5 8 10
1
2
3
4

12.5
19.9
28.2
41.0

9.90 12.5 13.0 13.9
14.8 18.6 18.8 19.6
20.7 27.1 27.6 27.5
27.1 40.0 39.9 40.3

12.5 12.2 11.8 11.0 10.6
19.9 20.1 18.7 17.2 16.8
27.1 27.4 26.2 24.6 24.1
40.6 40.9 39.9 38.0 37.0
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Chapter 5

The Methods Based on Weighted Least Squares

Estimation with Covariance Structure

5.1 Introduction

In Chapter 2 we introduced a two-way ANOVA model with nonzero covariances. Although

the proposed method ANOVA.L.C has better power than LRT-based relative ratio test,

the Type I errors are slightly away from the desired level. We suspect that the assumption

of homogenous error variances may be the major reason, so we went back to examine our

simulated data of substitution rates and found the following interesting results. The sample

variances of substitution rates are approximately a linear function of sample means with

a constant coefficient. The sample covariances between two substitution rates at the same

gene are approximately a linear function of the product of the square root of the two sample

means.

Based on this observation, we assume that covariances between two substitution rates

at the same gene are a linear function of the product of the square root of the means.

We propose a new method which uses iterative weighted least squares (IWLS) estimation

with variance and covariance structure. The typical IWLS procedure just deals with het-

eroscedastic linear regression. The challenge here is how to incorporate covariance structure

into the weight also. We will derive the formula here. The implementation will be the future

work.
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5.2 IWLS with Covariance Structure

5.2.1 Deriving the Formulas of Estimating Parameters

Based on previous introduction, we assume that

Yijk = µ + αi + βj + γij + εijk

for i = 1, · · · , a; j = 1, · · · , b; and k = 1, · · · , n, where αi, βj , and γij represent gene effects,

lineage effects and interaction between them, respectively. For simplicity of discussion,

assume that b = 2. If b > 2, the idea is similar but more complicated.

Further assume that fij , i = 1, · · · , a; j = 1, · · · , b are positive known constants.

Assume that

Cov(εi1,j1,k1 , εi2,j2,k2) =



0, if i1 6= i2

0, if k1 6= k2

σ2fi1,j1 , if i1 = i2, j1 = j2, and k1 = k2

σi12

√
fi1,j1fi2,j2 , if i1 = i2, j1 6= j2, and k1 = k2

and E(εijk) = 0.

If fij ’s are constant 1 for i = 1, · · · , a; j = 1, · · · , b, this model will become the model

we discussed before.

Make the following transformation:

Y ?
ijk = Yijk/

√
fij ,

ε?
ijk = εijk/

√
fij .

Then the transformed model is

Y ?
ijk = µ/

√
fij + αi/

√
fij + βj/

√
fij + γij/

√
fij + ε?

ijk,
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and

Cov(ε?
i1,j1,k1

, ε?
i2,j2,k2

) =



0, if i1 6= i2

0, if k1 6= k2

σ2, if i1 = i2, j1 = j2, and k1 = k2

σi12, if i1 = i2, j1 6= j2, and k1 = k2

Assume that σi12 < 0 and σ2 > −σi12. Moreover, assume that σ2 and σi12 are known

constants for i = 1, · · · , a.

Let

Ai =

 σ2 σi12

σi12 σ2

 .

It is easy to verify that Ai’s two eigenvalues are σ2 − σi12 and σ2 + σi12 and their

eigenvectors are

 1

−1

 , and

 1

1

 .

respectively.

Therefore,

Ai =

 1/
√

2 1/
√

2

−1/
√

2 1/
√

2

 σ2 − σi12

σ2 + σi12

 1/
√

2 −1/
√

2

1/
√

2 1/
√

2

 .

This leads to making the following transformation:

Y ??
i1k =

1√
2(σ2 − σi12)

(Y ?
i1k − Y ?

i2k),

Y ??
i2k =

1√
2(σ2 + σi12)

(Y ?
i1k + Y ?

i2k).
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Or equivalently

Y ??
i1k =

1√
2(σ2 − σi12)

(
Yi1k√

fi1
− Yi2k√

fi2

)
,

Y ??
i2k =

1√
2(σ2 + σi12)

(
Yi1k√

fi1
+

Yi2k√
fi2

)
.

Similarly,

ε??
i1k =

1√
2(σ2 − σi12)

(
εi1k√
fi1

− εi2k√
fi2

)
,

ε??
i2k =

1√
2(σ2 + σi12)

(
εi1k√
fi1

+
εi2k√
fi2

)
.

That is,

Y ??
i1k =

1√
2(σ2 − σi12)

[
(

1√
fi1

− 1√
fi2

)µ + (
1√
fi1

− 1√
fi2

)αi

+
β1√
fi1

− β2√
fi2

+
γi1√
fi1

− γi2√
fi2

]
+ ε??

i1k,

Y ??
i2k =

1√
2(σ2 + σi12)

[
(

1√
fi1

+
1√
fi2

)µ + (
1√
fi1

+
1√
fi2

)αi

+
β1√
fi1

+
β2√
fi2

+
γi1√
fi1

+
γi2√
fi2

]
+ ε??

i2k

where ε’s are uncorrelated and with variance 1.

This model is a typical regression model and easily solved by normal equations, that is,

by simple matrix operations to obtain estimators for µ, αi, βj and γij .

Now we are ready to discuss the model we are interested.

Yijk = µ + αi + βj + γij + εijk

for i = 1, · · · , a; j = 1, · · · , b; and k = 1, · · · , n.

Cov(εi1,j1,k1 , εi2,j2,k2) =



0, if i1 6= i2

0, if k1 6= k2

σ2fi1,j1 , if i1 = i2, j1 = j2, and k1 = k2

σi12

√
fi1,j1fi2,j2 , if i1 = i2, j1 6= j2, and k1 = k2
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where

fi,j = µ + αi + βj + γij ,

that is, the variance is proportional to the mean. Obviously, there is no simple way to find

the maximum likelihood estimator or other good estimators.

5.2.2 Numerical Steps for Finding the Estimators of Parameters

We propose the following numerical steps to find the estimators.

Step 1: Initial estimators:

Assume that fij = 1 and find the estimators.

Y ??
i1k =

1√
2(σ2 − σi12)

[β1 − β2 + γi1 − γi2] + ε??
i1k,

Y ??
i2k =

1√
2(σ2 + σi12)

[µ/2 + αi/2 + β1 + β2 + γi1 + γi2] + ε??
i2k.

Step 2:

Based on the estimators of µ, αi, βj and γij , we obtain the mean estimator for µ + αi +

βj + γij . Substituting these estimators to calculate fij . Assume that fij were constant (of

course they are not) and obtain the estimators:

Y ??
i1k =

1√
2(σ2 − σi12)

 1√
µ̂ + α̂i + β̂1 + γ̂i1

− 1√
µ̂ + α̂i + β̂2 + γ̂i1

µ

+

 1√
µ̂ + α̂i + β̂1 + γ̂i1

− 1√
µ̂ + α̂i + β̂2 + γ̂i2

 αi

+
β1√

µ̂ + α̂i + β̂1 + γ̂i1

− β2√
µ̂ + α̂i + β̂2 + γ̂i2

+
γi1√

µ̂ + α̂i + β̂1 + γ̂i1

− γi2√
µ̂ + α̂i + β̂2 + γ̂i2

 + ε??
i1k
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Y ??
i2k =

1√
2(σ2 + σi12)

 1√
µ̂ + α̂i + β̂1 + γ̂i1

+
1√

µ̂ + α̂i + β̂2 + γ̂i1

µ

+

 1√
µ̂ + α̂i + β̂1 + γ̂i1

+
1√

µ̂ + α̂i + β̂2 + γ̂i2

 αi

+
β1√

µ̂ + α̂i + β̂1 + γ̂i1

+
β2√

µ̂ + α̂i + β̂2 + γ̂i2

+
γi1√

µ̂ + α̂i + β̂1 + γ̂i1

+
γi2√

µ̂ + α̂i + β̂2 + γ̂i2

 + ε??
i2k

Step 3: Execute Step 2 again until the estimators converge.

When finished, the estimators are those we are interested.
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Chapter 6

Patterns of Nucleotide Substitution Rates at

Multiple Loci of Animal Mitochondrial Genomes

6.1 Introduction

Animal cells hold two separate genomes located in the nucleus and mitochondria. Nuclear

genome stores the majority of genetic information, while mitochondria stores an additional

portion. Mitochondrion is a small two-membrane-bound organelle that is the source of cell’s

power. The animal mitochondrial genomes are normally circular, 15−20 KB in length, and

encode 13 proteins used for energy production. The two genomes have distinct differences

in heritage and evolutionary processes. First, Brown et al. (1997) showed that substitution

rates were much lower in nuclear genome than in its counterpart of mitochondria. Mito-

chondria use a different genetic code from nucleus. Most mitochondrial mRNAs cannot be

translated in the nuclear-cytoplasmic compartment. Hence, this specific mtDNA genetic

code confines the mtDNA genes to express within the mitochondria. As well known, each

parent gives their offspring approximate half of their nuclear DNA. In contrast, offspring

only receive their mothers’ mitochondrial DNA, but none of their father’s mtDNA, with no

recombination. The result is that mtDNA is passed on only along the maternal line.

Mitochondrial DNA was believed to be an ideal molecular “clock”. Two reasons mainly

contributed to this belief. The first reason is that mtDNA is not divided during cell division

and generally passed down via the mother’s line. Secondly, most mutation in mtDNA was

thought to be neutral instead of natural selection. Therefore mtDNA was widely used to
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date the origin of taxonomic group through the use of molecular clocks. New evidences

have indicated that mtDNA is subject to natural selection (Fos et al. 1990, Malhotra et

al. 1994). Recent studies also showed that paternal mtDNA can on rare occasions enter an

egg during fertilization and alter the maternal mtDNA through recombination (Ladoukakis

et al. 2001, Meunier et al. 2001). Such recombination would affect the mutation rate of

mtDNA. Those evidences as well as the fact of fast mutation rate in mtDNA suggest that

mitochondrial DNA probably is not an idea molecular “clock”. It is doubt to date the origin

by only counting the number of mutants in mtDNA between any taxonomic groups.

Many studies have been conducted to examine the patterns of nucleotide substitution

at animal mitochondrial loci (e.g., Hasegawa et al. 1989, Fos et al. 1990, Malhotra et

al. 1994, Adachi et al. 1995, Parsons et al. 1997) by using single-locus approach. Here

we use muti-loci approach to simultaneously study the patterns of nucleotide substitution

at multiple loci of animal mitochondrial genomes. As we introduced previously, variation

in substitution rates can be governed by three components: locus effect, lineage effect and

interplay between these two effects. In general, locus effect and lineage effect have been well

documented (e.g., MacRea et al. 1988, Malhotra et al. 1994), but the interaction between

them have not been widely studied, especially for nucleotide substitution rates of animal

mitochondrial sequences.

In this study, we examined patterns in substitution rates of the 11 protein coding genes

from five mtDNA data sets. Each data set includes three taxa, and together the five data

sets represent a broad range of animal species. Pairwise comparisons were conducted among

the 11 genes for each data set separately to identify the factors that might affect nucleotide

substitution rates in animal mitochondrial genes. There are two purposes of the study.

First, we want to know whether locus effects, lineage effects and locus × lineage effects can

be detected in nucleotide substitution rates of animal mtDNA. Secondly, we want to know

what kinds of molecular evolutionary processes may affect animal mtDNA.
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6.2 Materials and Methods

6.2.1 The mtDNA Sequences

The data are from Hilton et al. (1996). The mtDNA sequence data they used satisfied

the following criteria. First, the whole mtDNA sequences must have been identified from

three-taxon phylogenies. To insure that each data set can represent the independent process

of evolution, they tried to reduce phylogenetic overlap in the three-taxon data sets.

We studied patterns of nucleotide substitution rates in animal mtDNA from five data

sets. Table 6.1 provides their classifications, scientifical and common names, accession

numbers in GenBank and references. The first data set contains two strains of mosquitoes

susceptible to malaria from the family Diptera, and with fruit fly as an outgroup. The

second data set contains two types of fish from the superfamily Cyprinoidea, with trout

as an outgroup (Weber et al. 1916). The third data set contains two birds in the ratite

family, with chicken as an outgroup. The fourth data set contains two primates, human

and gorilla, with orangutan as an outgroup (Kavanagh 1984, Hasegawa et al. 1985). The

last data set contains two mammals, cat and seal, in the Order Carnivora, with rhino from

the Order Perissondactyla as an outgroup (Stains 1984).

The 11 genes of the 13 protein coding genes were examined in five data sets. The gene

atp8 was not included in analysis because it is too short (160 − 200bp), and the gene nd6

was not used because it was difficult to align. The DNA sequences were aligned manually,

and overlay between genes was eliminated from analysis. Table 6.2 gives the gene names

and lengths in comparisons among five organisms. The lengths of the 11 genes range from

201bp at the gene nd3 for Bird to 1836bp at the gene nd5 for Fish. In general, gene nd5 has

the longest length, while gene nd4l has the shortest length. Similar lengths present at the

same gene across the different organisms except for the genes nd4l and nd5 for Insect and

the gene nd3 for Bird.
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Table 6.1: List of species whose mtDNA sequences were studies

Organism Scientific name Common name Acce. No. Reference

Insect Anopheles quadrimaculatus A mosquito L04272 Cockburn 1990

Anopheles gambiae mosquito L20934 Beard 1993

Drosophila melanogaster∗ fruit fly U37541 Lewis 1995

Fish Cyrinus carpio carp X61010 Chang 1994

Crossostoma lacustre loach M91245 Tzeng 1992

Oncorhynchus mykiss∗ trout L29771 Zardoya 1995

Bird Rhea americana Rhea Y16884 Harlid 1998

Struthio camelus ostrich Y12025 Harlid 1997

Gallus gallus∗ chicken NC001323 Desjardins 1990

Primate Homo sapian human X93334 Arnason 1996

Garilla gorilla gorilla X93347 Xu 1996a

Pongo pygmaeus∗ orangutan D38115 Horai 1992

Mammal Felis catus cat U20753 Lopez 1996

Halichoerus grypus seal X72004 Arnason 1993

Rhinoceros unicornis∗ rhino X97336 Xu 1996b

Star (*) represents an outgroup.

Table 6.2: Sequence lengths (bp) at 11 loci for different organisms

Gene Insect Fish Bird Primate Mammal
atp6 678 675 684 633 636
co1 1527 1551 1548 1539 1539
co2 678 690 681 681 684
co3 789 786 783 783 783
cytb 1124 1137 1137 1140 1140
nd1 933 975 975 950 954
nd2 1026 1057 1038 1041 1041
nd3 354 336 201 345 345
nd4 1335 1371 1371 1377 1377
nd4l 243 291 297 294 297
nd5 1725 1836 1816 1806 1806
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6.2.2 Statistical Methods

The purpose of the study was to detect the factors that influence nucleotide substitu-

tion rates in animal mitochondrial genes. To accomplish our goal, we employed proposed

ANOVA-based method, ANOVA.L.C, to the mtDNA data. We used the HKY85 Model to

estimate the branch lengths since rates of transition and transversion differ considerably in

mtDNA sequences (Hasegawa et al. 1985). Previous simulation studies have suggested that

we would use small number of replicates to obtain high statistical powers for ANOVA.L.C,

thus we separated each sequence into two data sets in an alternating way. Furthermore,

since each codon is a single replication of the evolution experiment, we split the sequences

of genes into two data sets representing alternated codons. There are some gaps presented

in the mtDNA data sets, we therefore cleaned those gaps before separating the sequences.

To guarantee the codon at the same position to be assigned into the same separated data

set, we deleted the three nucleotides of a codon in the three species at once as long as there

was any gap presented in that codon.

6.3 Results and Discussion

We applied ANOVA.L.C-based relative ratio test to all 275 pairs of genes within each of

the five data set (Table 6.1). The null hypothesis of the relative ratio test is that locus and

lineage effects are sufficient to explain the data; rejection of the null hypothesis suggests

that the presence of locus × lineage effects. As mentioned in Chapter 2, one of merit of

ANOVA-based relative ratio test is that locus and lineage effects can be easily detected

in the meantime. To better understand the factors that influence substitution rates of

mitochondrial genes, we reported the results of locus × lineage effects as well as locus

and lineage effects for each pairwise comparison. The results are summarized in Table 6.3

− 6.7. In each table, stars indicate significant tests at p< 0.05(*) or p< 0.01(**) levels.

The significant tests for locus × lineage effects are above the diagonal, while the significant

tests for locus and lineage (inside the parentheses ) effects are below the diagonal.

The total number 22 out of 275 (8%) relative ratio tests are significant at the 0.05
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level. This gives the impression that locus × lineage effects are not common in animal

mitochondrial genomes. For example, none of relative ratio comparisons within bird data

set is significant at the 0.05 level. The fish data set has the highest frequency of significant

relative ratio results at 10 out of 55 (18%). Secondly, a common pattern of significant relative

ratio tests does not present among five data sets. For example, comparisons involving nd4l

gene reject relative ratio tests most often in the primate data set and do not reject in the

others, suggesting that this loci may have atypical rate in primate relative to other loci.

There are also many significant rejections for both locus and lineage effects for comparisons

involving nd4l in the primate data. Together we may first need to check whether or not the

sequence alignment for this locus is fine.

Insect Two strains of mosquitoes susceptible to malaria are under investigation. Only are

two comparisons involving nd5 gene detected to reject relative ratio tests at the significance

level 0.05. This indicates that rates of nucleotide substitutions for the two mosquitoes are

well conserved between nd5 with both cytb and nd4 genes. For testing locus and lineage

effects, a total of 4 comparisons involving co1 gene gives significant results for locus effects.

Two significant lineage effects are found between nd3 and atp6, and between co1 and nd4.

There is fairly convincing evidence that the two mosquitoes don’t behave very differently.

Fish Comparisons between fish carp and loach reject the null hypothesis for 18% of relative

ratio tests which include 3 tests involving nd2, 3 tests involving nd5, 2 tests involving nd4,

and 1 between nd2 and nd3. A large number of locus and lineage effects are detected to be

significant. For example, comparisons involving atp6 gene reject the null hypothesis of no

lineage effect at 60%, and reject the null hypothesis of no locus effect at 40%. Comparisons

involving co3 gene have the highest frequency of significant both locus and lineage effects

at 30%. Together results among relative ratio tests, tests of locus effects, and tests of

lineage effects, provide compelling evidence that carp and loach have experienced different

evolutionary forces since they diverged from the latest common ancestors.
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Bird There is no rejection of relative ratio tests for Rhea and ostrich across the 11 genes

at the significance level 0.05. This suggests that rates of substitution for both birds are well

conserved across the 11 genes. Comparisons involving cytb with nd1, nd2, and nd4 reject

the null hypothesis of no locus effect at significance level 0.01, and only is one rejection

detected between cytb and nd2. Comparisons involving co2 with nd1, nd2, and nd4 only

reject the null hypothesis of no locus effect at the significance level 0.05. Locus effects are

found to be significant for the tests involving co1 with nd1 and nd2, while lineage effect

is significant between Rhea and ostrich for the comparison between co1 and nd4. This

provides evidence that locus effects are predominate between a set of three genes co1, co2

and cytb with a set of three genes nd1, nd2 and nd4.

Primate Comparisons between human and gorilla detect 50% rejections of relative ratio

tests and 60% rejections of the null hypothesis of no locus effects, and 40% rejections of the

null hypothesis of no lineage effect for tests involving nd4l gene. It is clear that nd4l gene

does have quite different evolutionary behavior. Two significant rejections of relative ratio

tests are also detected for comparisons involving nd5 gene, and comparisons involving nd3

genes.

Mammal Comparisons between cat and seal detect a total of one rejection of relative

ratio tests between nd5 and cytb at the significance level 0.05. Many locus and lineage

effects are significant at either level 0.05 or 0.01. For example, comparisons involving nd1

reject the null hypothesis of no locus effect for 50%, while comparisons involving nd5 reject

the null hypothesis of no locus effect for 40% at the significance level 0.05. For lineage

effects, comparisons involving cytb reject the null hypothesis of no lineage effect for 40%,

while comparisons involving cytb and nd4 reject the null hypothesis of no lineage effect

for 30% at the significance level 0.05. This suggests that locus and lineage effects play an

important role for the mitochondrial genes since cat and seal diverged from their latest

ancestor.
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Discussion We have examined nucleotide substitution rates in animal mitochondrial

genes using ANOVA.L.C method. The locus effects, lineage effects and locus × lineage

effects have been detected in animal mtDNA. The results provide evidences that lineage

and locus effects are more common components than locus × lineage effects in variations

of nucleotide substitution rates of animal mitochondrial genomes. Furthermore, the results

also suggest that these effects vary qualitatively among phylogenetically distinct data sets.

To better understand the evolutionary forces affecting animal mtDNA, the functions of

mitochondrial genes will be first discussed.

Mitochondria supply energy to the cell (ATP) produced by the respiratory chain by

using oxygen. The respiratory chain consists of the four succeeding complexes: complex I,

complex II, complex III and complex IV. All the mitochondrial DNA genes encode subunits

of the oxidative phosphorylation enzymes, except for the complex II. Complex I consists

of approximately 42 polypeptides, seven (nd1, nd2, nd3, nd4, nd4l, nd5, nd6) encoded by the

mtDNA; Complex III of about 11 polypeptides, one (cytb) encoded by mtDNA; Complex IV

of 13 polypeptides, three (co1, co2, co3) encoded by the mtDNA; Complex V of 12 polypep-

tides, two (atp6, atp8) encoded by the mtDNA. However, while mtDNA does not code for

any DNA repair proteins, it has been observed that a number of repair factors can be found

in mitochondrial extracts (Bohr et al. 1999). Thus, this could indicate the presence of

a more complex repair process in mtDNA than in nuclear DNA. A variety of studies in

apoptosis focusing on mitochondria suggested that mitochondria might have a pivotal part

in controlling cell life and death (e.g., Green et al. 1998, Murphy et al. 1999, Rustin et

al. 2000). Those functions of mitochondrial genes indicate that the metabolic rate of an

organism and the process of aging might relate to functions of mitochondria. It is known

that metabolism is related to the size of a creature and whether it is warm-blooded or cold-

blooded (Martin et al. 1993). Among warm-blooded animals, bigger animals tend to have

a slower metabolism than smaller ones. Cold-blooded animals have a slower metabolism

than warm-blooded animals.

In our survey of the five organisms, four are warm-blooded animals except for fish.
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Among the four warm-blooded animals, there exist big differences in weight within bird,

primate and mammal. In bird, ostrich is the largest living bird in the world (average

90−130kg) and rhea is much smaller than ostrich. Ostrich has relative longer life span than

rhea. In primate, gorilla is larger than human in general. In mammal, seal is much larger

than cat. As discussed in Chapter 1, different metabolic rates can result in lineage effects.

Those lineage effects detected in bird, Primate and mammal probably can be explained

by different metabolisms. Currently, there are two kinds of interpretations for lineage

effects. The first one assumes that lineage effects are caused by differences in mutation

rates between evolutionary lineages. That is, the variation in mutation rates could reflect

differences in metabolic process (Martin et al. 1992, Martin et al. 1993). The second one

uses different selective pressure between evolution lineages to explain lineage effects. For

example, adaptation to different temperatures like cold-blooded vs. warm-blooded animals

or differences in population size. The differences in substitution rates between evolution

lineages have been found for cold-blooded vs. warm-blooded animal (Martin et al.1992).

There is a relatively large number of locus effects that have been detected in our five data.

Locus effects might be caused by the differences in mutation rates for a particular locus.

Generally, the mutation rates for animal mtDNA can be divided by three catalogues: the

rapidly evolving sequences (nd1, nd3, nd4, nd5, and nd6), the moderately evolving sequences

(cytb), and the slowly evolving sequences (co1, co2, co3, atp6, nd2 and nd4l) (Billington,

2002). Currently, the evolutionary process contributing to locus × lineage effects are not

very clear. One possible explanation is the levels of selective pressures vary among genes and

among evolutionary lineages. Note the gene nd4l has very interesting results for primate

data: comparisons involving that gene reject relative ratio test most often in the primate

data and do not reject in other data as well as for locus and lineage effects. The gene nd4l

is one of the seven nd genes involving complex I in respiratory chain. A number of studies

have been shown that any disorder in complex I could result in dysfunction in brain (e.g.,

Wiedemann et al. 2002, Mezies et al. 2002, Chalmers 2002). The fact that human has

higher intelligence than gorilla may result in the atypical results for primate data. In other
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words, nd4l is probably more likely to involve the activities of brains than the other genes.
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Table 6.3: Results of ANOVA.L.C-based relative ratio test for insect

Locus atp6 co1 co2 co3 cytb nd1 nd2 nd3 nd4 nd4l nd5
atp6 –
co1 –
co2 –
co3 * –
cytb * – *
nd1 * –
nd2 –
nd3 (*) –
nd4 * – *
nd4l –
nd5 (*) –

Note: interaction effects above diagonal, locus and lineage (inside parentheses)
below diagnal. Stars indicate significant tests at the p< 0.05(*) or p< 0.01(**).

Table 6.4: Results of ANOVA.L.C-based relative ratio test for fish

Locus atp6 co1 co2 co3 cytb nd1 nd2 nd3 nd4 nd4l nd5
atp6 – * * * *
co1 * –
co2 –
co3 *(*) – * * *
cytb (*) –
nd1 (*) *(*) – *
nd2 * ** ** * – *
nd3 (*) *(*) (*) – *
nd4 * * –
nd4l * * –
nd5 * **(*) ** ** (*) * –
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Table 6.5: Results of ANOVA.L.C-based relative ratio test for bird

Locus atp6 co1 co2 co3 cytb nd1 nd2 nd3 nd4 nd4l nd5
atp6 –
co1 –
co2 –
co3 –
cytb –
nd1 * * ** –
nd2 * ** **(*) –
nd3 –
nd4 (*) * ** –
nd4l –
nd5 –

Table 6.6: Results of ANOVA.L.C-based relative ratio test for primate

Locus atp6 co1 co2 co3 cytb nd1 nd2 nd3 nd4 nd4l nd5
atp6 – * **
co1 – *
co2 –
co3 –
cytb – *
nd1 * – * **
nd2 –
nd3 (*) – *
nd4 – *
nd4l **(*) * (*) **(*) * * **(**) * – **
nd5 * * ** –
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Table 6.7: Results of ANOVA.L.C-based relative ratio test for mammal

Locus atp6 co1 co2 co3 cytb nd1 nd2 nd3 nd4 nd4l nd5
atp6 –
co1 * –
co2 –
co3 * –
cytb (*) – *
nd1 **(*) *(*) –
nd2 * ** –
nd3 * –
nd4 (**) * * (*) **(*) –
nd4l * –
nd5 * * ** (*) ** –
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Appendix A

Deriving Expected Mean Squares for the two-way

ANOVA Model with Covariance Structure

Consider the model

Yijk =µ + αi + βj + γij + εijk

for i = 1, · · · , a; j = 1, · · · , b; and k = 1, · · · , n.

Assume that

Cov(εi1,j1,k1 , εi2,j2,k2) =



0, if i1 6= i2;

0, if k1 6= k2;

σ2, if i1 = i2, j1 = j2, and k1 = k2;

σi12 < 0, if i1 = i2 = i, j1 6= j2, and k1 = k2.

and E [εijk] = 0, with the following restrictions:

a∑
i=1

αi = 0,

b∑
j=1

βj = 0,

a∑
i=1

γij = 0, and
b∑

j=1

γij = 0. (A.1)
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Note that

Y ... = µ + ε...

Y i.. = µ + αi + εi..

Y .j. = µ + βj + ε.j.

Y ij. = µ + αi + βj + γij + εij.

and

SSA = nb
a∑

i=1

(
Y i.. − Y ...

)2

SSB = na
b∑

j=1

(
Y .j. − Y ...

)2

SSAB = n
a∑

i=1

b∑
j=1

(
Y ij. − Y i.. − Y .j. + Y ...

)2

SSE =
a∑

i=1

b∑
j=1

n∑
k=1

(
Yijk − Y ij.

)2

1
nb

SSA =
a∑

i=1

[αi + (εi.. − ε...)]
2

=
a∑

i=1

α2
i +

a∑
i=1

(εi.. − ε...)2 +
∑
i,j

αi(εj.. − ε...)

E

[
1
nb

SSA

]
=

a∑
i=1

α2
i + E

[
a∑

i=1

(εi.. − ε...)2
]

E
[
(εi.. − ε...)2

]
= Var (εi.. − ε...)

= Var (εi..) + Var (ε...)− 2 · Cov (εi.., ε...)
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Var (εi..) = Var

∑
j,k

εijk/(bn)


=

1
b2n2

Var

∑
j,k

εijk


=

1
b2n2

∑
j,k

Var (εijk) +
∑

(j1,k1) 6=(j2,k2)

Cov(εi,j1,k1 , εi,j2,k2)


=

1
b2n2

bnσ2 +
∑

j1 6=j2

Cov(εi,j1,k, εi,j2,k)


=

1
b2n2

bnσ2 + n ·
∑

j1 6=j2

σi12


=

1
b2n2

[
bnσ2 + n(b2 − b)σi12

]
=

1
bn

[
σ2 + (b− 1)σi12

]

Var(ε...) = Var

(
1
a

∑
i

εi..

)

=
1
a2

Var

(∑
i

εi..

)

=
1
a2

∑
i

Var (εi..)

=
1

a2bn

∑
i

[
σ2 + (b− 1)σi12

]
=

1
a2bn

[
aσ2 + (b− 1)

∑
i

σi12

]

=
1

abn

[
σ2 +

b− 1
a

∑
i

σi12

]
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Cov (εi.., ε...) = Cov

(
εi..,

1
a

a∑
t=1

εt..

)

=
1
a
Var(εi..)

E (εi.. − ε...)
2 = Var (εi..) + Var (ε...)− 2 · Cov (εi.., ε...)

=
a− 2

a
Var (εi..) + Var (ε...)

∑
i

E (εi.. − ε...)
2 =

a− 2
a

∑
i

Var (εi..) + aVar (ε...)

=
a− 2
abn

[
aσ2 + (b− 1)

∑
i

σi12

]
+

a

abn

[
σ2 +

b− 1
a

∑
i

σi12

]

=
a− 1
bn

[
σ2 +

b− 1
a

∑
i

σi12

]

Therefore,

E

[
1
nb

SSA

]
=

a∑
i=1

α2
i +

a− 1
bn

[
σ2 +

b− 1
a

∑
i

σi12

]

and

E [MSA] =
nb

a− 1

a∑
i

α2
i + σ2 +

b− 1
a

a∑
i

σi12
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Now, find E [MSB]

1
na

SSB =
b∑

j=1

[βj + (ε.j. − ε...)]
2

=
b∑

j=1

β2
j +

b∑
j=1

(ε.j. − ε...)2 +
∑

j

βj(ε.j. − ε...)

E

[
1
na

SSB

]
=

b∑
j=1

β2
j + E

 b∑
j=1

(ε.j. − ε...)2



E
[
(ε.j. − ε...)2

]
= Var (ε.j. − ε...)

= Var (ε.j.) + Var (ε...)− 2Cov (ε.j., ε...)

Var (ε.j.) = Var

∑
i,k

εijk/na

 =
1
na

σ2

114



Cov (ε.j., ε...) = Cov

(
ε.j.,

1
b

b∑
t=1

ε.t.

)

=
1
b

Var(ε.j.) +
∑
t6=j

Cov(ε.j., ε.t.)


=

1
abn

σ2 +
1

a2bn2

∑
t6=j

Cov(
∑
i1,k1

εi1jk1 ,
∑
i2,k2

εi2tk2)



=
1

abn
σ2 +

1
a2bn2

∑
t6=j

∑
i1,k1
i2,k2

Cov(εi1jk1 , εi2jk2)


=

1
abn

σ2 +
1

a2bn2

∑
t6=j

∑
i,k

Cov(εijk, εitk)


=

1
abn

σ2 +
1

a2bn2

∑
t6=j

(
n

a∑
i=1

σi12

)

=
1

abn
σ2 +

1
a2bn2

(b− 1)n
a∑

i=1

σi12

=
1

abn

(
σ2 +

b− 1
a

a∑
i=1

σi12

)

E
[
(ε.j. − ε...)2

]
= Var(ε.j.) + Var (ε...)− 2 · Cov (ε.j., ε...)

= Var(ε.j.)−Var(ε...)
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b∑
j=1

E
[
(ε.j. − ε...)2

]
=

∑
j

[
1
na

σ2 − 1
abn

(
σ2 +

b− 1
a

a∑
i=1

σi12

)]

=
b− 1
na

(
σ2 − 1

a

∑
1

σi12

)

Therefore,

E

[
1
na

SSB

]
=

b∑
j=1

β2
j +

b− 1
na

(
σ2 − 1

a

∑
1

σi12

)

and

E [MSB] =
na

b− 1

∑
j

β2
j + σ2 − 1

a

∑
i

σi12

Then we need to find E [MSAB]

1
n

SSAB =
a∑

i=1

b∑
j=1

(γij + εij. − εi.. − ε.j. + ε...)2

=
∑
i,j

γ2
ij +

∑
i,j

(εij. − εi.. − ε.j. + ε...)2 + 2
∑
i,j

γij(εij. − εi.. − ε.j. + ε...)

E

[
1
n

SSAB

]
=

∑
i,j

γ2
ij +

∑
i,j

E(εij. − εi.. − ε.j. + ε...)2
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E(εij. − εi.. − ε.j. + ε...)2 = Var(εij. − εi.. − ε.j. + ε...)

= Var(εij.) + Var(εi..) + Var(ε.j.) + Var(ε...)

− 2Cov(εij., εi..)− 2Cov(εij., ε.j.) + 2Cov(εij., ε...)

+ 2Cov(εi.., ε.j.)− 2Cov(εi.., ε...)− 2Cov(ε.j., ε...)

From the previous results, we know the formula for Var(εi..), Var(ε.j.), Var(ε...), Cov(εi..,

ε...) and Cov(ε.j., ε...). Here we find the others

Var(εij.) = Var

(
n∑

k=1

εijk/n

)

=
1
n2

∑
k

Var(εijk) +
∑
k 6=t

Cov(εijk, εijt)


=

1
n

σ2

Cov(εij., εi..) = Cov

(
εij.,

b∑
t=1

εit./b

)

=
1
b
Cov(εij., εij.) +

1
b

∑
t6=j

Cov(εij., εit.)

=
1
b
Var(εij.) +

1
b

∑
t6=j

Cov

 n∑
k1

(εijk1/n),
n∑
k2

(εitk2/n)


=

1
bn

σ2 +
1

bn2

∑
t6=j

∑
k

Cov(εijk, εitk)

=
1
bn

σ2 +
1

bn2
(b− 1)nCov(εijk, εitk)

=
1
bn

[σ2 + (b− 1)σi12]
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Cov(εij., ε.j.) = Cov

(
εij.,

a∑
t=1

εtj./a

)

=
1
a
Cov(εij., εij.) +

1
a
Cov

εij.,
∑
t6=i

εtj.


=

1
an

σ2

Cov(εij., ε...) = Cov

(
εij.,

1
a

a∑
t=1

εt..

)

=
1
a
Cov(εij., εi..) +

1
a
Cov(εij.,

∑
t6=i

εt..)

=
1

abn

[
σ2 + (b− 1)σi12

]

Cov(εi.., ε.j.) = Cov

(
εi..,

1
a

a∑
t=1

εtj.

)

=
1
a
Cov(εi.., εij.) +

1
a
Cov

εi..,
∑
t6=i

εtj.


=

1
abn

[
σ2 + (b− 1)σi12

]

E(εij. − εi.. − ε.j. + ε...)2

=
(b− 1)

abn

[
(a− 1)σ2 − (a− 2)σi12 − 1

a

∑
i

σi12

]
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a∑
i=1

b∑
j=1

E(εij. − εi.. − ε.j. + ε...)2

=
(a− 1)(b− 1)

n

[
σ2 − 1

a

∑
i

σi12

]

Therefore,

E [SSAB] = n
∑
i,j

γ2
ij + (a− 1)(b− 1)

[
σ2 − 1

a

∑
i

σi12

]

and

E [MSAB] =
n

(a− 1)(b− 1)

∑
i,j

γ2
ij + σ2 − 1

a

∑
i

σi12

Finally, we derive the formular for E [MSE]

E [SSE] =
∑

i

∑
j

∑
k

E(εijk − εij.)2

E(εijk − εij.)2 = Var(εijk) + Var(εij.)− 2Cov(εijk, εij.)

Cov(εijk, εij.) = Cov

[
εijk,

n∑
t=1

εijt/n

)

=
1
n

Var(εijk)

=
1
n

σ2
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E(εijk − εij.)2 = σ2 +
1
n

σ2 − 2
n

σ2

=
n− 1

n
σ2

Therefore,

E [SSE] = abn
n− 1

n
σ2

and

E [MSE] = σ2

120



Appendix B

Derive the Covariance of Substitution Rates

Recalling Taylor’s expansion:

f(x) ≈ f(x0) + f ′(x0)(x− x0).

If f(x) = ln(x) then

ln(x) ≈ ln(x0) +
1
x

(x− x0).

Therefore, replacing x with µ̂1 and x0 with µ1

ln(µ̂1) ≈ ln(µ1) +
1
µ1

(µ̂1 − µ1).

Simiarly,

ln(µ̂2) ≈ ln(µ2) +
1
µ2

(µ̂2 − µ2).

Therefore,

Cov(ln µ̂1, ln µ̂2) ≈ 1
µ1µ2

Cov(µ̂1, µ̂2).
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