
ABSTRACT

ZHANG, MIN. Semiparametric Methods for Analysis of Randomized Clinical Trials
and Arbitrarily Censored Time-to-event Data. (Under the direction of Dr. Marie
Davidian and Dr. Anastasios A. Tsiatis.)

This dissertation includes two parts. In part one, using the theory of semipara-

metrics, we develop a general approach to improving efficiency of inferences in ran-

domized clinical trials using auxiliary covariates. In part two, we study “smooth”

semiparametric regression analysis for arbitrarily censored time-to-event data.

The primary goal of a randomized clinical trial is to make comparisons among

two or more treatments. For example, in a two-arm trial with continuous response,

the focus may be on the difference in treatment means; with more than two treat-

ments, the comparison may be based on pairwise differences. With binary outcomes,

pairwise odds-ratios or log-odds ratios may be used. In general, comparisons may be

based on meaningful parameters in a relevant statistical model. Standard analyses

for estimation and testing in this context typically are based on the data collected

on response and treatment assignment only. In many trials, auxiliary baseline co-

variate information may also be available, and it is of interest to exploit these data

to improve the efficiency of inferences. Taking a semiparametric theory perspective,

we propose a broadly-applicable approach to adjustment for auxiliary covariates to

achieve more efficient estimators and tests for treatment parameters in the analysis of

randomized clinical trials. Simulations and applications demonstrate the performance

of the methods.



A general framework for regression analysis of time-to-event data subject to arbi-

trary patterns of censoring is proposed. The approach is relevant when the analyst is

willing to assume that distributions governing model components that are ordinarily

left unspecified in popular semiparametric regression models, such as the baseline

hazard function in the proportional hazards model, have densities satisfying mild

“smoothness” conditions. Densities are approximated by a truncated series expan-

sion that, for fixed degree of truncation, results in a “parametric” representation,

which makes likelihood-based inference coupled with adaptive choice of the degree

of truncation, and hence flexibility of the model, computationally and conceptually

straightforward with data subject to any pattern of censoring. The formulation allows

popular models, such as the proportional hazards, proportional odds, and accelerated

failure time models, to be placed in a common framework; provides a principled basis

for choosing among them; and renders useful extensions of the models straightfor-

ward. The utility and performance of the methods are demonstrated via simulations

and by application to data from time-to-event studies.
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Chapter 1

Introduction

In this dissertation, we study two topics. First, taking a semiparametric theory

perspective, in Chapters 2 and 3 we develop theory and present a framework for

improving efficiency of inferences in randomized clinical trials using auxiliary baseline

covariates. Second, in Chapters 4 and 5 we study regression analysis of arbitrarily

censored time-to-event data using a “smooth” semiparametric approach. Separate

sets of notations are used for these two topics.

1.1 Introduction (I)

In randomized clinical trials, the primary objective is to compare two or more

treatments on the basis of an outcome of interest. Along with treatment assign-

ment and outcome, baseline auxiliary covariates may be recorded on each subject,

including demographical and physiological characteristics, prior medical history, and

baseline measures of the outcome. For example, the international Platelet Glyco-

protein IIb/IIIa in Unstable Angina: Receptor Suppression Using Integrilin Therapy

(PURSUIT) study (Harrington, 1998) in subjects with acute coronary syndromes

compared the anti-coagulant Integrilin plus heparin and aspirin to heparin and as-

pirin alone (control) on the basis of the binary endpoint death or myocardial infarction

at 30 days. Similarly, AIDS Clinical Trials Group (ACTG) 175 (Hammer et al., 1996)

randomized HIV-infected subjects to four antiretroviral regimens with equal proba-
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bilities, and an objective was to compare measures of immunological status under the

three newer treatments to those under standard zidovudine (ZDV) monotherapy. In

both studies, in addition to the endpoint, substantial auxiliary baseline information

was collected.

Ordinarily, the primary analysis is based only on the data on outcome and treat-

ment assignment. However, if some of the auxiliary covariates are associated with out-

come, precision may be improved by “adjusting” for these relationships (e.g., Pocock

et al., 2002), and there is an extensive literature on such covariate adjustment (e.g.,

Senn, 1989; Hauck, Anderson, and Marcus, 1998; Koch et al., 1998; Tangen and

Koch, 1999; Lesaffre and Senn, 2003; Grouin, Day, and Lewis, 2004). Much of this

work focuses on inference on the difference of two means and/or on adjustment via

a regression model for mean outcome as a function of treatment assignment and co-

variates. In the special case of the difference of two treatment means, Tsiatis et al.

(2007) proposed an adjustment method that follows from application of the theory of

semiparametrics (e.g., van der Laan and Robins, 2003; Tsiatis, 2006) by Leon, Tsi-

atis, and Davidian (2003) to the related problem of “pretest-posttest” analysis, from

which the form of the “optimal” (most precise) estimator for the treatment mean dif-

ference, adjusting for covariates, emerges readily. This approach separates estimation

of the treatment difference from the adjustment, which may lessen concerns over bias

that could result under regression-based adjustment because of the ability to inspect

treatment effect estimates obtained simultaneously with different combinations of co-

variates and “to focus on the covariate model that best accentuates the estimate”

(Pocock et al., 2002, p. 2925).

In Chapters 2 and 3, we expand on this idea by developing a broad framework for

covariate adjustment in settings with two or more treatments and general outcome

summary measures (e.g., log-odds ratios) by appealing to the theory of semiparamet-

rics. The resulting methods seek to use the available data as efficiently as possible

while making as few assumptions as possible. In Section 2.1, we present a semipara-

metric model framework involving parameters relevant to making general treatment

comparisons. Using the theory of semiparametrics, we derive the class of estimating

functions for these parameters in Section 2.2 and in Section 2.3 demonstrate how
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these results lead to practical estimators. This development suggests a general ap-

proach to adjusting any test statistic for making treatment comparisons to increase

efficiency, described in Section 2.4. Detailed theoretical proof is given in Section 2.5.

Performance of the proposed methods is evaluated in simulation studies in Section 3.1

and is shown in representative applications in Section 3.2.

1.2 Introduction (II)

Regression analysis of censored time-to-event data is of central interest in health

sciences research, and the most widely used approaches are based on semiparametric

models. While representing some feature of the relationship between time-to-event

and covariates by a parametric form, these models leave other aspects of their distri-

bution unspecified.

Among such models, Cox’s proportional hazards model (PH) (Cox, 1972) is un-

questionably the most popular and is used almost by default in practice when data

are right-censored, owing to straightforward, widely-available implementation. The

hazard given covariates is represented as a parametric form modifying multiplica-

tively an unspecified baseline hazard function. This proportional hazards assumption

is often not checked; however, effects of prognostic covariates often do not exhibit

proportional hazards (e.g., Gray, 2000). Accordingly, there is considerable interest in

alternative semiparametric regression models.

The accelerated failure time model (AFT) (Kalbfleisch and Prentice, 2002, sec.

2.2.3), in contrast to the PH model, where survival time and covariate effects are

modeled indirectly through the hazard, represents the logarithm of event time directly

by a parametric function of covariates plus a deviation with unspecified distribution,

lending it practical appeal. However, this and similar models are used infrequently,

likely due to computational challenges that undoubtedly dictate lack of commercially-

available software. Although the iterative fitting method of Buckley and James (1979)

(see also, e.g., Lin and Wei, 1992) for right-censored data is simple to program, it can

exhibit problematic behavior, such as oscillation between two “solutions” (Jin, Lin,

and Ying, 2006). Competing approaches based on rank tests (e.g., Tsiatis, 1990; Wei,
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Ying, and Lin, 1990; Jin et al., 2003) may also admit multiple solutions (or have no

solutions at all), can be computationally intensive (Lin and Geyer, 1992), and/or can

involve rather complicated estimation of sampling variance.

The proportional odds (PO) model (Murphy, Rossini, and van der Vaart, 1997;

Yang and Prentice, 1999) instead represents the logarithm of the ratio of the odds

of survival given covariates to the baseline odds as a parametric function of covari-

ates, where the associated baseline survival function is left unspecified. Despite its

pleasing interpretation, the PO model is rarely used, again likely due to difficulty of

implementation.

Hence, although the regression parameters in all of these models have intuitive in-

terpretations, and although one model may be more suitable for representing the data

than another, only the PH model is widely used. The PH and PO models are special

cases of the linear transformation model (Cheng, Wei, and Ying, 1995; Chen, Jin,

and Ying, 2002); Cheng, Wei, and Ying (1997) and Scharfstein, Gilbert, and Tsiatis

(1998) also discuss a general class of models that includes both. The AFT and PH

models are cases of the “extended” hazards model of Chen and Jewell (2001), includ-

ing the “accelerated hazards” model of Chen and Wang (2000). However, there is no

accessible framework that includes all three models and, indeed, further competitors,

in which selection among them may be conveniently placed.

Moreover, the majority of developments for semiparametric time-to-event regres-

sion have been for right-censored (independently given covariates) event times. Fit-

ting the PH model is straightforward under these conditions, but with interval censor-

ing, specialized methods are required (Finkelstein, 1986; Satten, Datta, and Williamson,

1998; Goetghebeur and Ryan, 2000; Pan, 2000; Betensky et al., 2002), as they are for

alternative models (e.g., Betensky, Rabinowitz, and Tsiatis, 2001; Sun, 2006). This

require the analyst to seek out specialized, distinct techniques for different censoring

patterns, even for the familiar PH model.

In Chapters 4 and 5, we propose a general framework for semiparametric re-

gression analysis of censored time-to-event data that (i) provides a foundation for

selection among competing models; (ii) unifies handling of different patterns of cen-

soring, obviating the need for specialized techniques; and (iii) is computationally
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tractable regardless of model or censoring pattern. To achieve simultaneously (i)–

(iii), we sacrifice a bit of generality relative to traditional semiparametric methods by

making the unrestrictive assumption that the distribution associated with unspecified

model components has a density satisfying mild “smoothness” assumptions. Indeed,

large sample theory for traditional methods requires similar assumptions (e.g., Ritov,

1990; Tsiatis, 1990; Jin et al., 2006). We assume that densities lie in a broad class

whose elements may be approximated by the “SemiNonParametric” (SNP) density

estimator of Gallant and Nychka (1987), tailored to provide an excellent approxima-

tion to virtually any plausible survival density. Many authors have used smoothing

techniques in time-to-event regression (e.g., Kooperberg and Clarkson, 1997; Joly,

Commenges, and Letenneur, 1998; Cai and Betensky, 2003; Komárek, Lesaffre, and

Hilton, 2005). Our SNP approach endows likelihood-based inference for any of these

models with “parametric-like” features and a virtually closed-form objective function

under arbitrary censoring patterns that admits tractable implementation with stan-

dard optimization software. Competing models may be placed in a unified likelihood-

based framework, providing a convenient, defensible basis for choosing among them

via standard model selection techniques.

In Section 4.1, we review the SNP representation and describe its use in approx-

imating any plausible survival density. We discuss SNP-based semiparametric time-

to-event regression analysis with arbitrary censoring in Section 4.2. In Section 4.3, we

discuss extension of the representation to more complex models, and in Section 4.4,

we present the details. Simulation studies in Section 5.1 demonstrate performance.

In Section 5.2, we apply the methods to two well-known data sets.
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Chapter 2

Improving Efficiency of Inferences

in Randomized Clinical Trials

Using Auxiliary Covariates

2.1 Semiparametric Model Framework

Denote the data from a k-arm randomized trial, k ≥ 2, as (Yi, Xi, Zi), i = 1, . . . , n,

independent and identically distributed (iid) across i, where, for subject i, Yi is out-

come; Xi is the vector of all available auxiliary baseline covariates; and Zi = g

indicates assignment to treatment group g with known randomization probabilities

P (Z = g) = πg, g = 1, . . . , k,
∑k

g=1 πg = 1. Randomization ensures that Z⊥⊥X,

where “⊥⊥” means “independent of.”

Let β denote a vector of parameters involved in making treatment comparisons

under a specified statistical model. For example, in a two-arm trial, for a continuous

real-valued response Y , a natural basis for comparison is the difference in means for

each treatment, E(Y |Z = 2)−E(Y |Z = 1), represented directly as β2 in the model

E(Y |Z) = β1 + β2I(Z = 2), β1 = E(Y |Z = 1), β = (β1, β2)
T . (2.1)

In a three-arm trial, we may consider the model

E(Y |Z) = β1I(Z = 1) + β2I(Z = 2) + β3I(Z = 3), β = (β1, β2, β3)
T . (2.2)
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In contrast to (2.1), we have parameterized (2.2) equivalently in terms of the three

treatment means rather than differences relative to a reference treatment, and treat-

ment comparisons may be based on pairwise contrasts among elements of β. For

binary outcome Y = 0 or 1, where Y = 1 indicates the event of interest, we may

consider for a k-arm trial

logit{E(Y |Z)} = logit{P (Y = 1|Z)} = β1 + β2I(Z = 2) + · · · + βkI(Z = k), (2.3)

where logit(p) = log{p/(1 − p)}; β = (β1, . . . , βk)
T ; and the log-odds ratio for treat-

ment g relative to treatment 1 is βg, g = 2, . . . , k.

If Yi is a vector of continuous longitudinal responses Yij, j = 1, . . . ,mi, at times

ti1, . . . , timi , response-time profiles in a two-arm trial might be described by the simple

linear mixed model

Yij = α+{β1+β2I(Zi = 2)}tij+b0i+b1itij+eij, (b0i, b1i)
T iid∼ N (0, D), eij

iid∼ N (0, σ2
e),

(2.4)

where β = (β1, β2)
T , and β2 is the difference in mean slope between the two treat-

ments; extension to k > 2 treatment groups is straightforward. Alternatively, instead

of considering the fully parametric model (2.4), one might make no assumption be-

yond

E(Yij |Zi) = α+ {β1 + β2I(Zi = 2)}tij, j = 1, . . . ,mi, (2.5)

leaving remaining features of the distribution of Y given Z unspecified. For binary

Yij, the marginal model logit{E(Yij |Zi)} = α + {β1 + β2I(Zi = 2)}tij might be

adopted.

In all of (2.1)–(2.5), β (p× 1) is a parameter involved in making treatment com-

parisons in a model describing aspects of the conditional distribution of Y given Z

and is of central interest. In addition to β, models like (2.4) and (2.5) depend on a

vector of parameters γ, say; e.g., in (2.4), γ = {α, σ2
e , vech(D)T}T ; and γ = α in (2.5).

In general, we define θ = (βT , γT )T (r × 1), recognizing that models like (2.1)–(2.3)

do not involve an additional γ, so that θ = β.

For these and similar models, consistent, asymptotically normal estimators for θ,

and hence for β and functions of its elements reflecting treatment comparisons, based
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on the data (Yi, Zi), i = 1, . . . , n, only and thus “unadjusted” for covariates, are

readily available. Unadjusted, large-sample tests of null hypotheses of “no treatment

effects” are also well-established. The difference of sample means is the obvious such

estimator for β2 in (2.1) and is efficient (i.e., has smallest asymptotic variance) among

estimators depending only on these data, and a test of H0 : β2 = 0 may be based on

the usual t statistic. Similarly, the maximum likelihood estimator (MLE) for β2 in

(2.4) and associated tests may be obtained from standard mixed model software. For

k > 2, pairwise and global comparisons are possible; e.g., in (2.2), the sample means

are efficient estimators for each element of β, and a test of H0 : β1 = β2 = β3 may be

based on the corresponding two-degree-of-freedom Wald statistic.

As noted in Section 1.1, the standard approach in practice for covariate adjust-

ment, thus using all of (Yi, Xi, Zi), i = 1, . . . , n, is based on regression models for

mean outcome as a function of X and Z. E.g., for k = 2 and continuous Y , a popular

such estimator for β2 in (2.1) is the ordinary least squares (OLS) estimator for φ in

the analysis of covariance model

E(Y |X,Z) = α0 + αT1X + φI(Z = 2); (2.6)

extension to k > 2 treatments is immediate. See Tsiatis et al. (2007, Section 3) for

discussion of related estimators for β2 in the particular case of (2.1). If (2.6) is the

correct model for E(Y |X,Z), then φ and β2 in (2.1) coincide, and, moreover, the

OLS estimator for φ in (2.6) is a consistent estimator for β2 that is generally more

precise than the usual unadjusted estimator, even if (2.6) is not correct (e.g., Yang

and Tsiatis, 2001). For binary Y , covariate adjustment is often carried out based on

the logistic regression model

logit{E(Y |X,Z)} = logit{P (Y = 1) |X,Z)} = α0 + αT1X + φI(Z = 2), (2.7)

where the MLE of φ is taken as the adjusted estimator for the log-odds ratio β2 in

(2.3) with k = 2. In (2.7), φ is the log-odds ratio conditional on X, assuming this

quantity is constant for all X. This assumption may or may not be correct; even if it

were, φ is generally different from β2 in (2.3). Tsiatis et al. (2007, Section 2) discuss

this point in more detail.
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To derive alternative methods, we begin by describing our assumed semiparamet-

ric statistical model for the full data (Y,X,Z), which is a characterization of the

class of all joint densities for (Y,X,Z) that could have generated the data. We seek

methods that perform well over as large a class as possible; thus, we assume that

densities in this class involve no restrictions beyond the facts that Z⊥⊥X, guaranteed

by randomization; that πg = P (Z = g), g = 1, . . . , k, are known; and that β is defined

through a specification on the conditional distribution of Y given Z as in (2.1)–(2.5).

We thus first describe the conditional density of Y given Z. Under (2.3) and (2.4),

this density is completely specified in terms of θ, while (2.5) describes only one aspect

of the conditional distribution, the mean, in terms of θ, and (2.1) and (2.2) make no

restrictions on the conditional distribution of Y given Z. To represent all such situa-

tions, we assume that this conditional density may be written as pY |Z(y|z; θ, η), where

η is an additional nuisance parameter possibly needed to describe the density fully.

For (2.3) and (2.4), η is null, as the density is already entirely characterized. For

(2.1), (2.2), and (2.5), η is infinite-dimensional, as these specifications do not impose

any additional constraints on what the density might be, so any density consistent

with these models is possible.

Under the above conditions, we assume that all joint densities for (Y,X,Z) may be

written, in obvious notation, as pY,X,Z(y, x, z; θ, η, ψ, π) = pY,X|Z(y, x | z; θ, η, ψ)pZ(z;π),

where pZ(z;π) is completely specified, as π = (π1, . . . , πk)
T is known, and satisfy the

constraints

(i)

∫
pY,X|Z(y, x | z; θ, η, ψ) dx = pY |Z(y|z; θ, η), (2.8)

(ii)

∫
pY,X|Z(y, x | z; θ, η, ψ) dy = pX(x). (2.9)

The joint density involves an additional, possibly infinite-dimensional nuisance pa-

rameter ψ, needed to include in the class all joint densities satisfying (i) and (ii). Here,

pX(x) is any arbitrary marginal density for the covariates, and (ii) follows because

Z⊥⊥X. In Section 2.5.1, we demonstrate that a rich class of joint distributions for

(Y,X,Z) may be identified such thatX is correlated with Y and Z⊥⊥X [condition (ii)]

that also satisfy condition (i). Because the joint density involves both finite (paramet-
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ric) and infinite-dimensional components, it represents a semiparametric statistical

model (see Tsiatis, 2006, Section 1.2).

2.2 Estimating Functions for Treatment Parame-

ters Using Auxiliary Covariates

We now derive consistent, asymptotically normal estimators for θ, and hence β,

in a given pY |Z(y | z; θ, η) and using the iid data (Yi, Xi, Zi), i = 1 . . . , n, under the

semiparametric framework satisfying (2.22) and (2.23). To do this, we identify the

class of all estimating functions for θ based on (Y,X,Z) leading to all estimators for

θ that are consistent and asymptotically normal under this framework. An estimat-

ing function is a function of a single observation and parameters used to construct

estimating equations yielding an estimator for the parameters.

When the data on auxiliary covariates X are not taken into account, estimating

functions for θ based only on (Y, Z) in models like those in (2.1)–(2.5) leading to

consistent, asymptotically normal estimators are well known. For example, the OLS

estimator for θ = β in the linear regression model (2.1) may be obtained by considering

the estimating function

m(Y, Z; θ) = {1, I(Z = 2)}T{Y − β1 − β2I(Z = 2)}, θ = β = (β1, β2)
T . (2.10)

and solving the estimating equation
∑n

i=1m(Yi, Zi; θ) = 0 in θ. The OLS estimator

for β2 so obtained equals the usual difference in sample means. Likewise, with θ =

β = (β1, . . . , βk)
T and expit(u) = exp(u)/{1 + exp(u)}, the usual logistic regression

MLE for β in (2.3) is obtained by solving
∑n

i=1m(Yi, Zi; θ) = 0, where the estimating

function m(Y, Z; θ) is equal to

{1, I(Z = 2), . . . , I(Z = k)}T [Y −expit{β1+β2I(Z = 2)+ · · ·+βkI(Z = k)}]. (2.11)

The estimating functions (2.10) and (2.11) are unbiased; i.e., have mean zero as-

suming that (2.1) and (2.3), respectively, are correct. Under regularity conditions,

unbiased estimating functions lead to consistent, asymptotically normal estimators

(e.g., Carroll et al., 2006, Section A.6).
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Our key result is that, given a semiparametric model pY,X,Z(y, x, z ; θ, η, ψ, π) based

on a specific pY |Z(y|z; θ, η) and satisfying (2.22) and (2.23), and given a fixed unbiased

estimating function m(Y, Z; θ) (r× 1) for θ, such as (2.10) or (2.11), members of the

class of all unbiased estimating functions for θ, and hence β, using all of (Y,X,Z)

may be written as

m∗(Y,X,Z; θ) = m(Y, Z; θ) −
k∑

g=1

{I(Z = g) − πg}ag(X), (2.12)

where ag(X), g = 1, . . . , k, are arbitrary r-dimensional functions of X. Because

Z⊥⊥X, the second term in (2.12) has mean zero; thus, (2.12) is an unbiased estimating

function based on (Y,X,Z). When ag(X) ≡ 0, g = 1, . . . , k, (2.12) reduces to the orig-

inal estimating function, which does not take account of auxiliary covariates, and solv-

ing
∑n

i=1m(Yi, Zi; θ) = 0 leads to the unadjusted estimator θ̂ = (β̂T , γ̂T )T to which it

corresponds. Otherwise, (2.12) “augments” m(Y, Z; θ) by the second term. With ap-

propriate choice of the ag(X), the augmentation term exploits correlations between Y

and elements of X to yield an estimator for θ solving
∑n

i=1m
∗(Yi, Xi, Zi; θ) = 0 that

is relatively more efficient than θ̂. The proof of (2.12) is based on applying principles

of semiparametric theory and is given in Section 2.5.2.

Full advantage of this result may be taken by identifying the optimal estimating

function within class (2.12), that for which the elements of the corresponding esti-

mator for θ have smallest asymptotic variance. This estimator for β thus yields the

greatest efficiency gain over β̂ among all estimators with estimating functions in class

(2.12) and hence more efficient inferences on treatment comparisons. By standard

arguments for M-estimators (e.g., Stefanski and Boos, 2002), an estimator for θ cor-

responding to an estimating function of form (2.12) is consistent and asymptotically

normal with asymptotic covariance matrix

∆−1Γ(∆−1)T , Γ = E
(
[m(Y, Z; θ0) −

k∑

g=1

{I(Z = g) − πg}ag(X) ]⊗2
)
, (2.13)

where θ0 is the true value of θ, u⊗2 = uuT , and ∆ = E{−∂/∂θT m(Y, Z; θ)}|θ=θ0 .
Thus, to find the optimal estimating function, one need only consider Γ in (2.13) and
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determine ag(X), g = 1, . . . , k, leading to Γopt, say, such that Γ− Γopt is nonnegative

definite. For given m(Y, Z; θ), it is shown in Section 2.5.3 that Γopt takes ag(X) =

E{m(Y, Z; θ) |X,Z = g}, g = 1, . . . , k. Thus, in general, the optimal estimator in

class (2.12) is the solution to

n∑

i=1

[
m(Yi, Zi; θ) −

k∑

g=1

{I(Zi = g) − πg}E{m(Y, Z; θ) |Xi, Z = g}
]

= 0. (2.14)

In the case of β2 in (2.1), (2.14) yields the optimal estimator in (16) of Tsiatis et al.

(2007).

2.3 Implementation of Improved Estimators

The optimal estimator in class (2.12) solving (2.14) depends on the conditional

expectations E{m(Y, Z; θ) |Xi, Z = g}, g = 1, . . . , k, the forms of which are of course

unknown. Thus, to obtain practical estimators, we first consider a general adaptive

strategy based on postulating regression models for these conditional expectations,

which involves the following steps:

(1) Solve the original estimating equation
∑n

i=1m(Yi, Zi; θ) = 0 to obtain the un-

adjusted estimator θ̂. For each subject i, obtain the values m(Yi, g; θ̂) for each

g = 1, . . . , k.

(2) Note that the m(Yi, g; θ̂) are (r×1). For each treatment group g = 1, . . . , k sep-

arately, based on the r-variate “data”m(Yi, g; θ̂) for i in group g, develop a para-

metric regression modelE{m(Y, g; θ̂) |X,Z = g} = qg(X, ζg) = {qg1(X, ζg1), . . . ,
qgr(X, ζgr)}T , where ζg = (ζTg1, . . . , ζ

T
gr)

T ; i.e., such that qgu(X, ζgu), u = 1, . . . , r,

are regression models for each component of m(Y, g; θ̂). We recommend an ap-

proach analogous to that in Leon et al. (2003, Section 4) where the qgu(X, ζgu)

are represented as {1, cTgu(X)}T ζgu, u = 1, . . . , r, and cgu(X) are vectors of basis

functions in X that may include polynomial terms in elements of X, interaction

terms, splines, and so on. This offers considerable latitude for achieving repre-

sentations that can approximate the true conditional expectations, and hence

predictions derived from them, well. We also recommend obtaining estimates
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ζ̂g = (ζ̂Tg1, . . . , ζ̂
T
gr)

T via OLS separately for each u = 1, . . . , r, as, by a general-

ization of the argument in Leon et al. (2003, Section 4), this will yield the most

efficient estimator for θ in step (3) below when the qg(X, ζg) are of this form.

For each subject i = 1, . . . , n, form predicted values qg(Xi, ζ̂g) for each g =

1, . . . , k.

(3) Using the predicted values from step (2), form the augmented estimating equa-

tion
n∑

i=1

[
m(Yi, Zi; θ) −

k∑

g=1

{I(Zi = g) − πg}qg(Xi, ζ̂g)
]

= 0 (2.15)

and solve for θ to obtain the final, adjusted estimator θ̃. We recommend sub-

stituting π̂g = n−1
∑n

i=1 I(Zi = g) for πg, g = 1, . . . , k, in (2.15).

The foregoing three-step algorithm applies to very general m(Y, Z; θ). Often,

m(Y, Z; θ) = A(Z, θ){Y − f(Z; θ)} (2.16)

for some A(Z, θ) with r rows and some f(Z, θ), as in (2.10) and (2.11). Here, a simpler,

“direct” implementation strategy is possible. Note that E{m(Y, Z; θ) |X,Z = g} =

A(g, θ){E(Y |X,Z = g) − f(g; θ)}; thus, for each g = 1, . . . , k, based on the data

(Yi, Xi) for i in group g, we may postulate parametric regression models E(Y |X,Z =

g) = q∗g(X, ζg) = {1, cTg (X)}ζg, for a vector of basis functions cg(X), and obtain

OLS estimators ζ̂g, g = 1, . . . , k. Then form for each i = 1, . . . , n the corresponding

predicted values for E{m(Y, Z; θ) |X,Z = g} as qg(Xi, ζ̂g, θ) = A(g, θ){q∗g(Xi, ζ̂g) −
f(g, θ)}, where we emphasize that, here, qg(Xi, ζ̂g, θ), g = 1, . . . , k, are functions of

θ. Substituting the qg(Xi, ζ̂g, θ) (and π̂g, g = 1, . . . , k) in (2.15), solve the resulting

equation in θ directly to obtain θ̃.

Several observations follow from semiparametric theory. Although we advocate

representing E{m(Y, Z; θ) |X,Z = g} or E(Y |X,Z = g), g = 1, . . . , k, by paramet-

ric models, consistency and asymptotic normality of θ̃ hold regardless of whether or

not these models are correct specifications of the true E{m(Y, Z; θ) |X,Z = g} or

E(Y |X,Z = g). Thus, the proposed methods are not parametric, as their validity

does not depend on parametric assumptions. The theory also shows that, in either
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implementation strategy, if the qg are specified and fitted via OLS as described above,

then, by an argument similar to that in Leon et al. (2003, Section 4), θ̃ is guaranteed

to be relatively more efficient than the corresponding unadjusted estimator. More-

over, under these conditions, although ζg and πg, g = 1, . . . , k, are estimated, θ̃ will

have the same properties asymptotically as the estimator that could be obtained if the

limits in probability of the ζ̂g were known and substituted in (2.14) and if the true πg

were substituted, regardless of whether the qg are correct or not. In the direct strat-

egy, if Y is discrete, it is natural to instead posit the q∗g(X, ζg) as generalized linear

models; e.g., logistic regression for binary Y , and fit these using iteratively reweighted

least squares (IRWLS). Although the previous statements do not necessarily hold ex-

actly, in our experience, they hold approximately. Regardless of whether or not the qg

are represented by parametric linear models and fitted by OLS, if the representation

chosen contains the true form of E{m(Y, Z; θ)|X,Z = g) or E(Y |X,Z = g), respec-

tively, then θ̃ is asymptotically equivalent to the optimal estimator solving (2.14). In

general, the closer the predictions from these models are to the true functions of X,

the closer θ̃ will come to achieving the precision of the optimal estimator. Because β

is contained in θ, all of these results apply equally to β̃.

Because in either implementation strategy θ̃ solving (2.15) is an M-estimator, the

sandwich method (e.g., Stefanski and Boos, 2002) may be used to obtain a sampling

covariance matrix for θ̃, from which standard errors for functions of β̃ may be derived.

This matrix is of form (2.13), with expectations replaced by sample averages evaluated

at the estimates and ag(X) replaced by the predicted values using the qg, g = 1, . . . , k.

The regression models qg in either implementation, which are the mechanism by

which covariate adjustment is incorporated, are determined separately by treatment

group and are developed independently of reference to the adjusted estimator β̃.

Thus, estimation of β could be carried out by a generalization of the “principled”

strategy proposed by Tsiatis et al. (2007, Section 4) in the context of a two-arm trial

and inference on β2 in (2.1), where development of the models qg would be undertaken

by analysts different from those responsible for obtaining θ̃ to lessen concerns over

possible bias, as discussed in Section 1.1.
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2.4 Improved Hypothesis Tests

The principles in Section 2.2 may be used to construct more powerful tests of

null hypotheses of no treatment effects by exploiting auxiliary covariates. The key

is that, under a general null hypothesis H0 involving s degrees of freedom, a usual

test statistic Tn, say, based on the data (Yi, Zi), i = 1, . . . , n, only is asymptotically

equivalent to a quadratic form; i.e.,

Tn ≈
{
n−1/2

n∑

i=1

ℓ(Yi, Zi)

}T

Σ−1

{
n−1/2

n∑

i=1

ℓ(Yi, Zi)

}
, (2.17)

where ℓ(Y, Z) is a (s × 1) function of (Y, Z), discussed further below, such that

EH0
{ℓ(Y, Z)} = 0, withEH0

denoting expectation underH0; and Σ = EH0
{ℓ(Y, Z)⊗2}.

When the notion of “treatment effects” may be formulated in terms of β in a

model like (2.1)–(2.5), the null hypothesis is typically of the form H0 : Cβ = 0,

where C is a (s× p) contrast matrix. E.g., in (2.2), C is (2 × 3) with rows (1,−1, 0)

and (1, 0,−1). When inference on H0 is based on a Wald test of the form Tn =

(Cβ̂)T (n−1Σ̂)−1Cβ̂, where β̂ is an unadjusted estimator corresponding to an estimat-

ing function m(Y, Z; θ), and n−1Σ̂ is an estimator for the covariance matrix of Cβ̂,

ℓ(Y, Z) = CBm(Y, Z, θ0). Here, B is the (p × r) matrix equal to the first p rows of

[EH0
{−∂/∂θTm(Yi, Zi; θ)}|θ=θ0 ]−1, and θ0 is the value of θ under H0.

In other situations, the null hypothesis may not refer to a parameter like β in

a given model. For example, the null hypothesis for a k-arm trial may be H0 :

S1(u) = · · · = Sk(u) = S(u), where Sg(u) = 1 − P (Y ≤ u|Z = g), and S(u) =

1 − P (Y ≤ u). A popular test in this setting is the Kruskal-Wallis test, which

reduces to the Wilcoxon rank sum test for k = 2. Letting ng =
∑n

i=1 I(Zi = g) and

Rg be the average of the overall ranks for subjects in group g, the test statistic is

Tn = 12
∑k

g=1 ng{Rg − (n + 1)/2}2/{n(n + 1)}. By results in van der Vaart (1998,

Section 12.2), it may be shown that Tn is asymptotically equivalent to a statistic of the

form (2.17), where ℓ(Y, Z) is (k−1×1) with gth element {I(Z = g)−πg}{S(Y )−1/2}.
To motivate the proposed more powerful tests, we consider the behavior of Tn in

(2.17) under a sequence of local alternatives H1n converging to H0 at rate n−1/2. Typ-

ically, under suitable regularity conditions, n−1/2
∑n

i=1 ℓ(Yi, Zi) in (2.17) converges
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under the sequence H1n to a N (τ,Σ) random vector for some τ , so that Tn has

asymptotically a noncentral χ2
s distribution with noncentrality parameter τTΣ−1τ .

To obtain a more powerful test, then, we wish to construct a test statistic with non-

centrality parameter as large as possible. Based on the developments in Section 2.2,

we consider test statistics of the form

T ∗
n =

{
n−1/2

n∑

i=1

ℓ∗(Yi, Xi, Zi)

}T

Σ∗−1

{
n−1/2

n∑

i=1

ℓ∗(Yi, Xi, Zi)

}
, (2.18)

ℓ∗(Y,X,Z) = ℓ(Y, Z) −
k∑

g=1

{I(Z = g) − πg}ag(X), (2.19)

where Σ∗ = EH0
{ℓ∗(Y,X,Z)⊗2}. The second term in (2.19) has mean zero by ran-

domization under H0 or any alternative. Accordingly, it follows under the sequence of

alternatives H1n that n−1/2
∑n

i=1 ℓ
∗(Yi, Xi, Zi) converges in distribution to a N (τ,Σ∗)

random vector, so that T ∗
n in (2.18) has an asymptotic χ2

s distribution with noncen-

trality parameter τTΣ∗−1τ . These results suggest that, to maximize the noncentrality

parameter and thus power, we wish to find the particular Σ∗, Σ∗
opt, say, that makes

Σ∗−1
opt −Σ∗−1 non-negative definite for all Σ∗, which is equivalent to making Σ∗−Σ∗

opt

non-negative definite for all Σ∗. This corresponds to finding the optimal choice of

ag(X), g = 1, . . . , k, in (2.19). By an argument similar to that leading to (2.14), the

optimal choice is ag(X) = E{ℓ(Y, Z)|X,Z = g} for g = 1, . . . , k.

These developments suggest an implementation strategy analogous to that in Sec-

tion 2.3:

(1) For the test statistic Tn, determine ℓ(Y, Z) and substitute sample quantities for

any unknown parameters to obtain ℓ̂(Yi, Zi), i = 1, . . . , n. E.g., for H0 : Cβ = 0

in model (2.2), with C (2×3) as above, m(Y, Z, θ) = {I(Z = 1), I(Z = 2), I(Z =

3)}T{Y − β1I(Z = 1) − β2I(Z = 2) − β3I(Z = 3)}, θ = (β1, β2, β3)
T . Under

H0, θ0 = (µ, µ, µ)T , say, so that m(Y, Z, θ0) = {I(Z = 1), I(Z = 2), I(Z =

3)}T (Y − µ), and

ℓ(Y, Z) =

(
π−1

1 I(Z = 1) − π−1
2 I(Z = 2)

π−1
1 I(Z = 1) − π−1

3 I(Z = 3)

)
(Y − µ). (2.20)
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As µ is unknown, ℓ̂(Yi, Zi) is obtained by substituting n−1
∑n

i=1 Yi for µ. We

recommend substituting π̂g for πg, g = 1, 2, 3, in (2.20), as above. Simi-

larly, for the Kruskal-Wallis test, ℓ̂(Yi, Zi) = {I(Z = g) − π̂g}{Ŝ(Yi) − 1/2},
Ŝ(u) = n−1

∑n
i=1 I(Yi ≥ u).

(2) For each treatment group g = 1, . . . , k separately, treating the ℓ̂(Yi, Zi) for sub-

jects i in group g as s-variate “data,” develop a regression modelE{ℓ̂(Y, g)|X,Z =

g) = qg(X, ζg) = {qg1(X, ζg1) . . . , qgs(X, ζgs)}T by representing each component

qgu(X, ζgu), u = 1, . . . , s, by the parametric “basis function” approach in Sec-

tion 2.3; estimate each ζgu by OLS to obtain ζ̂g; and form predicted values

qg(Xi, ζ̂g), i = 1, . . . , n.

(3) Using the predicted values from step (2), form

ℓ̂∗(Yi, Xi, Zi) = ℓ̂(Yi, Zi) −
k∑

g=1

{I(Zi = g) − π̂g}qg(Xi, ζ̂g) (2.21)

and substitute these values into (2.18). Estimate Σ∗ in (2.18) by Σ̂∗ = n−1

∑n
i=1 ℓ̂

∗(Yi, Xi, Zi)
⊗2. Compare the resulting test statistic T̂ ∗

n to the χ2
s distri-

bution.

As in Section 2.3, there is no effect asymptotically of estimating ζg and πg, g =

1, . . . , k, so that T̂ ∗
n will achieve the same power asymptotically as if the limits in

probability of ζ̂g and the true πg were substituted. Notably, the test based on T̂ ∗
n will

be asymptotically more powerful than the corresponding unadjusted test against any

sequence of alternatives.

The approach of Tangen and Koch (1999) to modifying the Wilcoxon test for two

treatments is in a similar spirit to this general approach.

2.5 Details

2.5.1 Demonstration of the Existence of Joint Densities Sat-

isfying the Semiparametric Model

At the end of Section 2.1, the semiparametric model framework within which we

derive the proposed methods is stated, and is repeated here for convenience.
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The data from a clinical trial are denoted by (Yi, Xi, Zi), i = 1, . . . , n, assumed

iid across i, where Y denotes the response of interest; X is a vector of baseline aux-

iliary covariates; and Z = 1, . . . , k depending on to which of k possible treatment

groups subject i was randomized, with randomization probabilities P (Z = g) = πg,

g = 1, . . . , k,
∑k

g=1 πg = 1. Randomization guarantees that Z⊥⊥X. We assume

that interest focuses on a parameter β involved in characterizing treatment compar-

isons, defined in the context of a model for the conditional density of Y given Z,

pY |Z(y|z; θ, η), where θ = (βT , γT )T . Here, γ represents a finite-dimensional vector of

possible additional parameters, and η is a finite- or infinite-dimensional nuisance pa-

rameter required to describe fully the class of models under consideration. Examples

of such models are discussed in Section 2.1.

The semiparametric model introduced in Section 2.1 consists of all joint densi-

ties pY,X,Z(y, x, z ; θ, η, ψ, π) = pY,X|Z(y, x | z; θ, η, ψ)pZ(z;π) such that the conditional

densities for (Y,X) given Z, denoted pY,X|Z(y, x | z; θ, η, ψ), satisfy

(i)

∫
pY,X|Z(y, x | z; θ, η, ψ) dx = pY |Z(y|z; θ, η), (2.22)

(ii)

∫
pY,X|Z(y, x | z; θ, η, ψ) dy = pX(x), (2.23)

where pX(x) refers to any arbitrary marginal density for the auxiliary covariates, and

(ii) follows because Z⊥⊥X. The additional nuisance parameters ψ and η together are

used to specify conditional densities satisfying (i) and (ii).

We now demonstrate that joint distributions for (Y,X,Z) satisfying conditions

(i) and (ii) in (2.22) and (2.23) may be constructed. For simplicity, we consider

scalar Y and a two-armed trial, k = 2; extensions to vector Y and arbitrary k ≥ 2 are

straightforward. Begin with a given marginal density pX(x) for X and the conditional

density pY |Z(y|z; θ, η) of interest. A joint distribution for (Y,X,Z) may then be

developed through the following steps:

1. Generate X from pX(x).

2. Generate W0 and W1 from any arbitrary conditional densities pW0|X(w0 |x) and
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pW1|X(w1 |x), where, clearly, W0 and W1 have marginal densities

pWk
(wk) =

∫
pWk|X(wk |x)pX(x) dx, k = 1, 2.

A transformation of these variables is used in step 4 below to derive the response

variable Y .

3. Generate a random Bernoulli Z random variable (taking values 1 and 2) inde-

pendently of X, W0, and W1, with “success” probability P (Z = 2) = π2. (Here,

P (Z = 1) = π1 = 1 − π2.)

4. Let FWk
(u) = P (Wk ≤ u), k = 1, 2, be the cumulative distribution functions

(cdfs) for Wk, k = 1, 2, and write FY |Z=k(u; θ, η) = P (Y ≤ u |Z = k; θ, η),

k = 1, 2, the cdfs corresponding to pY |Z(y|z; θ, η). Generate Y as

Y = I(Z = 1)F−1
Y |Z=1{FW1

(W1); θ, η} + I(Z = 2)F−1
Y |Z=2{FW2

(W2); θ, η}.

This construction guarantees that Z⊥⊥X, that the conditional distribution of Y given

Z has the required density pY |Z(y|z; θ, η), and allows for flexible relationships for

(Y,X) given Z. The derivation may be generalized straightforwardly to vector Y , as

in the case of longitudinal response.

2.5.2 Derivation of Estimating Functions for Treatment Ef-

fect

We consider the semiparametric framework given at end of Section 2.1, restated in

Section 2.5.1, and apply the principles of semiparametric theory to derive Equation

( 2.12).

Before we present the detailed argument, we summarize the general approach.

Under the semiparametric theory perspective, one views estimating functions as

elements of the Hilbert space H consisting of all functions h(Y,X,Z) such that

E{h(Y,X,Z)} = 0 and E{h(Y,X,Z)Th(Y,X,Z)} < ∞ (e.g., Tsiatis, 2006, Chapter

2). The advantage of considering estimating functions as elements of H is that geo-

metric principles may be used to derive the form of all estimating functions and to
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assess the relative efficiencies of the estimators corresponding to them. The deriva-

tion makes use of the critical result that, under suitable regularity conditions, all

estimating functions for estimators of finite-dimensional parameters of interest in

semiparametric models are orthogonal to the so-called nuisance tangent space, a cer-

tain linear subspace of H (see Tsiatis, 2006, Chapter 4, for general discussion). Thus,

the argument involves characterizing the nuisance tangent space and its orthogonal

complement, in which estimating functions for a particular problem lie. In our case,

then, the key to deriving semiparametric estimators for the parameter θ in our frame-

work is to describe the nuisance tangent space and find the form of elements in its

orthogonal complement, which will be of the form of estimating functions used to

construct estimating equations for θ based on (Y,X,Z).

We remark that the argument given in the rest of this Section is not simply a

special case of a general theory. Rather, it results from applying the semiparametric

theory perspective above to this problem. The argument subsumes and represents a

significant advance beyond that given by Leon et al. (2003) and in Appendix A.2 of

Davidian, Tsiatis, and Leon (2005) for the particular case of estimating the difference

of k = 2 treatment means, β2, defined in Equation ( 2.1).

We present the argument for the particular case scalar Y and infinite dimen-

sional η; similar developments are possible in the cases of multivariate Y and null

η. Formally, the nuisance tangent space we seek is defined as the mean-square clo-

sure of parametric submodel nuisance tangent spaces. A parametric submodel is a

finite-dimensional parametric model that

(a) Is contained in the semiparametric model and

(b) Contains the truth; i.e., the distribution that generates the data.

The parametric submodel nuisance tangent space is the space spanned by the nuisance

score vector of the parametric submodel. Here, we denote such a parametric submodel

as

pY,X|Z(y, x|z; θ, ξη, ξψ),



21

satisfying conditions analogous to (2.22) and (2.23), i.e.,

(i)

∫
pY,X|Z(y, x|z; θ, ξη, ξψ)dx = pY |Z(y|z; θ, ξη) (2.24)

(ii)

∫
pY,X|Z(y, x|z; θ, ξη, ξψ)dy = pX(x; θ, ξη, ξψ), (2.25)

where pY,X|Z(y, x|z; θ0, ξη0 , ξψ0)) = p0Y,X|Z(y, x|z), the true density of Y,X given Z

(i.e., that generating the data); ξη is a finite-dimensional parameter defined so that

pY |Z(y|z; θ, ξη) is a parametric submodel for the semiparametric model pY |Z(y|z; θ, η);
and ξψ is an additional finite dimensional parameter describing the joint distribution

of Y and X given Z such that (i) and (ii) in (2.24) and (2.25) are satisfied.

The parametric submodel nuisance tangent space is the space spanned by the

nuisance score vector {STξη(Y,X,Z), STξψ(Y,X,Z)}T , where

Sξη(y, x, z) =
∂

∂ξη
log{pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)},

and similarly for Sξψ(Y,X,Z). Thus, the parametric submodel nuisance tangent

space is made up of elements {B1Sξη(Y,X,Z) + B2Sξψ(Y,X,Z)}, where B1 and B2

are conformable matrices.

Denote the nuisance tangent space for the semiparametric model pY |Z(y|z; θ, η) by

Λη. By definition, any element spanned by the parametric-submodel nuisance score

vector S∗
ξη

(Y, Z), where S∗
ξη

(y, z) =
∂

∂ξη
log{pY |Z(y|z; θ0, ξη0}, is an element of Λη.

From (2.24), we get

log

{∫
pY,X|Z(y, x|z; θ, ξη, ξψ)dx

}
= log

{
pY |Z(y|z; θ, ξη)

}
(2.26)

so that

∂

∂ξη
log

{∫
pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)dx

}
=

∂

∂ξη
log
{
pY |Z(y|z; θ0, ξη0)

}

and thus

B1
∂

∂ξη
log

{∫
pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)dx

}
= B1

∂

∂ξη
log
{
pY |Z(y|z; θ0, ξη0)

}

= B1S
∗
ξη(y, z).
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Under regularity conditions, the left-hand side of the above equation is equal to

B1

∫
∂

∂ξη
pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)dx
∫
pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)dx

= B1

∫
∂

∂ξη
log{pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)}pY,X|Z(y, x|z; θ0, ξη0 , ξψ0
)dx

∫
pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)dx

= B1E{Sξη(Y,X,Z)|Y = y, Z = z}.

Thus, B1E{Sξη(Y,X,Z)|Y, Z} = B1S
∗
ξη

(Y, Z) ∈ Λη.

Similarly, taking the derivative of both sides of (2.26) with respect to ξψ and

evaluating them at the truth, we get
∂

∂ξψ
log

{∫
pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)dx

}
= 0,

which leads to B2E{Sξψ(Y,X,Z)|Y, Z} = 0.

Combining the arguments above, it follows that any element in the submodel

nuisance tangent space, h(Y,X,Z) = B1Sξη(Y,X,Z) + B2Sξψ(Y,X,Z), must satisfy

the condition

E{h(Y,X,Z)|Y, Z} ∈ Λη.

From (2.25), we get

log

{∫
pY,X|Z(y, x|z; θ, ξη, ξψ)dy

}
= log {pX(x; θ, ξη, ξψ)} (2.27)

∂

∂ξη
log

{∫
pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)dy

}
=

∂

∂ξη
log {pX(x; θ0, ξη0 , ξψ0

)}
∫

∂

∂ξη
log{pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)}pY,X|Z(y, x|z; θ0, ξη0 , ξψ0
)dy

∫
pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)dy

=
∂

∂ξη
log {pX(x; θ0, ξη0 , ξψ0

)} ,

and E{Sξη(Y,X,Z)|X,Z} = S∗
ξη

(X), where S∗
ξη

(x) =
∂

∂ξη
log {pX(x; θ0, ξη0 , ξψ0

)}.
S∗
ξη

(X) has expectation 0 by the following argument. We have
∫
pX(x; θ, ξη, ξψ)dx = 1,
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which implies that

∂

∂ξη

∫
pX(x; θ0, ξη0 , ξψ0

)dx =

∫
∂

∂ξη
pX(x; θ0, ξη0 , ξψ0

)dx = 0,

so that ∫
∂

∂ξη
log{pX(x; θ0, ξη0 , ξψ0

)}pX(x; θ0, ξη0 , ξψ0
)dx = 0,

which implies that E{S∗
ξη

(X)} = 0, as required.

Similarly, taking the derivative of both sides of (2.27) with respect to ξψ and

evaluating them at the truth, we get E{Sξψ(Y,X,Z)|X,Z} = S∗
ξψ

(X), where

S∗
ξψ

(x) =
∂

∂ξψ
log {pX(x; θ0, ξη0 , ξψ0

)} ,

and E{S∗
ξψ

(X)} = 0.

Therefore, if we define Λx as the space of all mean zero functions of X, i.e.,

Λx = {h(X) : E{h(X)} = 0}, then any element in the submodel nuisance tangent

space, h(Y,X,Z) = B1Sξη(Y,X,Z)+B2Sξψ(Y,X,Z), must also satisfy the condition:

E{h(Y,X,Z)|X,Z} ∈ Λx.

To summarize, we have demonstrated that any element h(Y,X,Z) that is spanned

by the score vector {STξη(Y,X,Z), STξψ(Y,X,Z)}T must satisfy

(a). E{h(Y,X,Z)|Y, Z} ∈ Λη, (2.28)

(b). E{h(Y,X,Z)|X,Z} ∈ Λx. (2.29)

With these relationships in mind, we conjecture that the nuisance tangent space

consists of all functions h(Y,X,Z) satisfying conditions (a) and (b) given in (2.28)

and (2.29). We denote such as a space by Λ(conj). We can easily show that the space

of functions satisfying (2.28) is given by Λη + Λ1, where

Λ1 = {h1(Y,X,Z) : E{h1(Y,X,Z|Y, Z)} = 0}, (2.30)

and the space of functions satisfying (2.29) is given by Λx + Λ2, where

Λ2 = {h2(Y,X,Z) : E{h2(Y,X,Z|X,Z)} = 0}. (2.31)
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Consequently, the conjectured nuisance tangent space is Λ(conj) = (Λη+Λ1)∩(Λx+Λ2).

We have already proven that any element in a parametric submodel nuisance tangent

space must belong to Λ(conj); in addition, it can be shown that the space Λ(conj) is

closed. Therefore, the nuisance tangent space Λ ⊂ Λ(conj).

To prove that Λ(conj) is truly the nuisance tangent space, we need to show that

any element in Λ(conj) can be represented as some element or a limit of elements

from some parametric submodel nuisance tangent spaces. Consider some arbitrary

bounded element h(Y,X,Z) ∈ Λ(conj); namely,

h(Y,X,Z) = hη(Y, Z) + h1(Y,X,Z) = hx(X) + h2(Y,X,Z) (2.32)

for some hη(Y, Z) ∈ Λη, h1(Y,X,Z) ∈ Λ1, hx(X) ∈ Λx, and h2(Y,X,Z) ∈ Λ2. We

will construct the parametric submodels in three steps.

Step 1. Because hη(Y, Z) ∈ Λη, hη(Y, Z) is either the corresponding score vector of

some parametric submodel pY |Z(y, |z; θ0, ξη) or the limiting score vector of a sequence

of parametric submodels pY |Z(y, |z; θ0, ξηj). For simplicity, we first assume the former

case; that is,
∂

∂ξη
log{pY |Z(y|z; θ0, ξη0)} = hη(y, z).

Without loss of generality, we can assume that this submodel contains the truth

when ξη = ξη0 = 0. From here on θ is taken to equal θ0 (the truth) and hence will be

suppressed in the notation.

We begin by considering an approximation to the parametric-submodel given by

p∗Y,X|Z(y, x|z, ξη) = p0Y,X|Z(y, x|z)[1 + ξTη {hη(y, z) + h1(y, x, z)}]. (2.33)

This is a proper density function as long as ξη is chosen sufficiently close to 0, and it

contains the truth if ξη is chosen to be 0. By construction, the score vector is given by

{hη(Y, Z) + h1(Y,X,Z)}. We may show that the submodel given by (2.33) satisfies
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condition (ii) as follows:

∫
p∗Y,X|Z(y, x|z, ξη)dy =

∫
p0Y,X|Z(y, x|z)[1 + ξTη {hη(y, z) + h1(y, x, z)}]dy

=

∫
p0Y,X|Z(y, x|z)[1 + ξTη {hx(x) + h2(y, x, z)}]dy

= p0X(x) + ξTη hx(x)p0X(x) + ξTη p0X(x)

∫
h2(y, x, z)p0Y |X,Z(y|x, z)dy

= p0X(x){1 + ξTη hX(x)},

where the last equality follows because, by definition, the conditional expectation of

h2(Y,X,Z) given (X,Z) is 0. This argument shows that X and Z are independent

by this submodel. Therefore, this submodel satisfies condition (ii).

However, this submodel does not satisfy condition (i), because

∫
p∗Y,X|Z(y, x|z, ξη)dx =

∫
p0Y,X|Z(y, x|z)[1 + ξTη {hη(y, z) + h1(y, x, z)}]dx

= p0Y |Z(y|z) + p0Y |Zξ
T
η [hη(y, z) + E{h1(Y,X,Z)|Y = y, Z = z}]

= p0Y |Z(y|z){1 + ξTη hη(y, z)} 6= pY |Z(y|z, ξη).

Step 2. In order to derive a model that satisfies conditions (i) and (ii) while still leading

to the same score vector, we consider the following construction. Take the random

vector (V,X,Z) which has density p∗Y,X|Z(v, x|z, ξη) as defined by (2.33). The idea

is to perturb the random variable V slightly to ensure that the transformed random

variable Y has conditional density pY |Z(y|z, ξη) while not affecting the independence

of X and Z or the score vector. Toward that end, define

(Y,X,Z) = {G(V, Z, ξη), X, Z}, (2.34)

where G{V, Z, ξη} = F−1
2 {F1(V |Z, ξη)|Z, ξη}; F1(y|Z, ξη) is the cdf for p0Y |Z(y|z){1 +

ξTη hη(y, z)}; and F2(y|Z, ξη) is the cdf for pY |Z(y|z, ξη). By construction, the condi-

tional distribution of Y given Z is pY |Z(y|z, ξη), and the conditional density of X

given Z does not change, i.e., X⊥⊥Z. Therefore, by construction, this submodel sat-

isfies conditions (i) and (ii). In addition, when ξη = 0, G{V, Z, ξη = 0} = V , and

pY,X|Z(y, x|z, ξη = 0) = p0Y,X|Z(y, x|z); i.e., contains the truth.
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Next, we derive the density of (Y,X|Z), i.e., pY,X|Z(y, x|z, ξη), and show that

the score vector of this density is still {hη(Y, Z) + h1(Y,X,Z)} as required. As

Y = F−1
2 {F1(V |Z, ξη)|Z, ξη}, we obtain V = F−1

1 {F2(Y |Z, ξη)|Z, ξη}. Consequently,

dV

dY
=

pY |Z(y|z, ξη)
p0Y |Z(v|z){1 + ξTη hη(v, z)}

.

Using the change of variable formula, the density of (Y,X|Z) is

pY,X|Z(y, x|z, ξη) = p0Y,X|Z(v, x|z)[1 + ξTη {hη(v, z) + h1(v, x, z)}]
dV

dY

= p0Y |Z(v|z)p0X|Y,Z(x|v, z)[1 + ξTη {hη(v, z) + h1(v, x, z)}
pY |Z(y|z, ξη)

p0Y |Z(v|z){1 + ξTη hη(v, z)}

= p0X|Y,Z(x|v, z)pY |Z(y|z, ξη)
1 + ξTη {hη(v, z) + h1(v, x, z)}

{1 + ξTη hη(v, z)}
, (2.35)

where v = F−1
1 {F2(y|z, ξη)|z, ξη}.

Now, we will derive the score vector of pY,X|Z(y, x|z, ξη).

∂

∂ξη
log{pY,X|Z(y, x|z, ξη0)} =

∂

∂v
{p0X|Y,Z(x|v, z)} · ∂v

∂ξη
|ξη=0

p0X|Y,Z(x|y, z)

+
∂

∂ξη
log{pY |Z(y|z, ξη0)}

+

hη(v, z) + h1(v, x, z) + ξTη
∂

∂ξη
{hη(v, z) + h1(v, x, z)}

1 + ξTη {hη(v, z) + h1(v, x, z)}
|ξη=0

−
hη(v, z) + ξTη

∂hη(v, z)

∂ξη
1 + ξTη hη(v, z)

|ξη=0

=

∂

∂v
{p0X|Y,Z(x|v, z)} · ∂v

∂ξη
|ξη=0

p0X|Y,Z(x|y, z) + hη(y, z) + hη(y, z) + h1(y, x, z) − hη(y, z)

= hη(y, z) + h1(y, x, z) +

∂

∂v
{p0X|Y,Z(x|v, z)} · ∂v

∂ξη
|ξη=0

p0X|Y,Z(x|y, z) .
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In the above argument, we have used the facts that when ξη = 0, v = y, and that
∂

∂ξη
log{pY |Z(y|z, ξη0)} = hη(y, z). Note that if

∂v

∂ξη
|ξη=0 = 0, then the score vector is

hη(y, z) + h1(y, x, z) as needed. So in the following we will show that
∂v

∂ξη
|ξη=0 = 0.

First note, under suitable regularity conditions,

∂F2(y|z, ξη)
∂ξη

|ξη=0 =
∂

∂ξη

∫ y

−∞

pY |Z(u|z, ξη)du|ξη=0 =

∫ y

−∞

∂

∂ξη
pY |Z(u|z, ξη)|ξη=0 du

=

∫ y

−∞

p0Y |Z(u|z) ∂

∂ξη
log{pY |Z(u|z, ξη)}|ξη=0du =

∫ y

−∞

p0Y |Z(u|z)hη(u, z)du.

Similarly,

∂F1(y|z, ξη)
∂ξη

|ξη=0 =

∫ y

−∞

∂

∂ξη
p0Y |Z(u|z){1 + ξTη hη(u|z)}|ξη=0 du

=

∫ y

−∞

p0Y |Z(u|z)hη(u, z) du.

Consequently,
∂F1(y|z, ξη)

∂ξη
|ξη=0 =

∂F2(y|z, ξη)
∂ξη

|ξη=0.

By construction, y = F−1
2 {F1(v|z, ξη)|z, ξη}. Thus F2(y|z, ξη) = F1(v|z, ξη), and it

follows that

∂F2(y|z, ξη)
∂ξη

|ξη=0 =
∂F1(v|z, ξη)

∂v
· ∂v
∂ξη

|ξη=0 +
∂F1(v|z, ξη)

∂ξη
|ξη=0.

Notice that, when ξη = 0, we have v = y, and
F2(y|z, ξη)

ξη
|ξη=0 =

F1(y|z, ξη)
ξη

|ξη=0, so

that
∂F1(v|z, ξη)

∂v
· ∂v
∂ξη

|ξη=0 = 0,

and it follows that

p0Y |Z(y|z) · ∂v
∂ξη

|ξη=0 = 0, which implies
∂v

∂ξη
|ξη=0 = 0.

Therefore, we have constructed a submodel given by (2.35) that satisfies condi-

tions (i) and (ii). In addition, this submodel has a score vector equal to hη(Y, Z) +

h1(Y,X,Z) = hx(X) + h2(Y,X,Z), which is arbitrarily chosen from the conjecture

space.
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Step 3. Recall that in the above arguments, we have assumed that hη(Y, Z) is the

score vector of some parametric submodel pY |Z(y|z; θ0, ξη). Under this assumption,

it has been demonstrated that a bounded element h(Y,X,Z) can be represented as

an element from some parametric submodel nuisance tangent space. More generally,

hη(Y, Z) may be the limit of score vectors of a sequence of parametric submodels

pjY |Z(y|z; θ0, ξηj); i.e.,

lim
j→∞

∂

∂ξη
log{pjY |Z(y|z; θ0, ξη0)} = hη(y, z).

In this situation, almost identical arguments to those used above can be used to

construct a sequence of submodels that satisfies condition (i) and (ii), and also the

limit of the corresponding score vectors is hη(Y, Z).

Combining the above arguments, we have shown that any bounded element in

Λ(conj) can be represented as some element or a limit of elements from some parametric

submodel nuisance tangent spaces. As any element in Λ(conj) is either bounded or limit

of bounded elements, it follows that the nuisance tangent space is

Λ = Λ(conj) = (Λη + Λ1) ∩ (Λx + Λ2). (2.36)

As we argued earlier, estimating functions used to derive estimating equations

that lead to semiparametric estimators for θ are orthogonal to the nuisance tangent

space. Therefore, we now derive the orthogonal complement to the nuisance tangent

space. To do so, we use result that that the orthogonal complement of the sum of

two linear spaces is equal to the intersection of the orthogonal complements. That is,

if H1, H2 are closed linear subspaces contained in the Hilbert space H, then

(H1 +H2)
⊥ = H⊥

1 ∩H⊥
2 , (2.37)

We derived the nuisance tangent space Λ as given in (2.36). Therefore, using (2.37)

we thus have that the orthogonal complement of the nuisance tangent space is

Λ⊥ = (Λ⊥
η ∩ Λ⊥

1 ) + (Λ⊥
x ∩ Λ⊥

2 ). (2.38)

We examine the components making up the sum of spaces in (2.38) separately.
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Complement of Λ1. This space is given by

Λ⊥
1 = {h(Y, Z), E{h(Y, Z)} = 0}. (2.39)

Proof: Suppose E{h(Y, Z)} = 0, and h1(Y,X,Z) ∈ Λ1, i.e., E{h1(Y,X,Z|Y, Z)} = 0.

Then

E{hT1 (Y,X,Z)h(Y, Z)} = E[E{hT1 (Y,X,Z)h(Y, Z)|Y, Z}]
= E[hT (Y, Z)E{h1(Y,X,Z|Y, Z)}] = 0.

The last equality follows as E{h1(Y,X,Z|Y, Z)} = 0 by assumption. Therefore, any

mean-zero function of (Y, Z), h(Y, Z), is orthogonal to Λ1.

To finish the proof, we also must prove that any h ∈ H can be written as h1 + h2,

where h1 ∈ Λ1, and h2 ∈ {h(Y, Z), E{h(Y, Z)} = 0}. For any h(Y,X,Z), construct

h2(Y, Z) = E{h(Y,X,Z)|Y, Z}, and h1(Y,X,Z) = h(Y,X,Z) − h2(Y, Z). It is easy

to verify that the constructed h1 ∈ Λ1 and h2 ∈ {h(Y, Z), E{h(Y, Z)} = 0}.

Complement of (Λ⊥
η ∩Λ⊥

1 ). Because Λ⊥
1 = {h(Y, Z), E{h(Y, Z)} = 0}, then the space

(Λ⊥
η ∩Λ⊥

1 ) consists of all elements which belong to the Hilbert space HY,Z = {h(Y, Z) :

E{h(Y, Z)} = 0}, i.e., all mean zero functions of (Y, Z), that are orthogonal to the

nuisance tangent space Λη. This is precisely the orthogonal complement of the nui-

sance tangent space for the parametric submodel pY |Z(y|z; θ, η). Consequently, the

space (Λ⊥
η ∩Λ⊥

1 ) is the space from which estimating functions for θ are derived without

the consideration of the auxiliary covariates. Therefore, we call this space the space

of estimating functions E = (Λ⊥
η ∩ Λ⊥

1 ).

Complement of (Λ⊥
x ∩ Λ⊥

2 ). The same techniques used to find the space Λ⊥
1 may be

used here to prove that Λ⊥
2 = {h(X,Z) : E{h(X,Z)} = 0}]. Consequently, (Λ⊥

x ∩Λ⊥
2 )

consists of all mean-zero functions of X and Z that are orthogonal to functions of X.

That is,

(Λ⊥
x ∩ Λ⊥

2 ) = {h(X,Z) : E{h(X,Z)|X} = 0}. (2.40)

Proof : if E{h(X,Z)|X} = 0, and hx(X) ∈ Λx, then

E{hT (X,Z)hx(X)} = E[E{hT (X,Z)|X}hx(X)] = 0.
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That is, h(X,Z) is orthogonal to Λx. Moreover, any mean-zero functions of (X,Z)

can be written as h1 + h2, where h1 ∈ Λx, and h2 ∈ {h(X,Z) : E{h(X,Z)|X} =

0}. For any h(X,Z) which has mean zero, construct h1(X) = E{h(X,Z)|X}, and

h2(X,Z) = h(X,Z) − h1(X). Clearly E{h1(X)} = 0, and E{h2(X,Z)|X} = 0 as

required.

We refer to this space as the Augmentation Space, denoted by A. Therefore,

we have shown that the space orthogonal to the nuisance tangent space is given by

Λ⊥ = E + A. Thus, the class of estimating functions for θ (and hence β) based on

all the data (Y,X,Z) lies in this space, so that an estimating function for θ may be

written as the sum of an estimating function m(Y, Z; θ) based on (Y, Z) alone (an

element of E) and an element of A.

Accordingly, we characterize elements of A. All functions of X and Z may be

written as
∑k

g=1 I(Z = g)ag(X) for arbitrary functions ag(X), g = 1, . . . , k. Thus,

we can write any function h(X,Z) satisfying E{h(X,Z)|X} = 0 as

h(X,Z) =
k∑

g=1

I(Z = g)ag(X) − E

{
k∑

g=1

I(Z = g)ag(X)

∣∣∣∣∣X
}

=
k∑

g=1

{I(Z = g) − πg}ag(X). (2.41)

Thus the form of all estimating functions is

m(Y, Z; θ) +
k∑

g=1

{I(Z = g) − πg}ag(X),

which may be written equivalently in the form given in Equation ( 2.12).

2.5.3 Derivation of Optimal Estimating Function

The choice of functions ag(X), g = 1, . . . , k resulting in the optimal estimator,

i.e., an estimator solving Equation( 2.12) such that its variance is as small as possible,

may be deduced from Theorem 4.5 of Tsiatis (2006). Alternatively, we derive such

ag(X) directly. By the principles in Chapter 3 of Tsiatis (2006), the element of E +A



31

with smallest variance for a given m(Y, Z; θ) ∈ E is the projection of m(Y, Z; θ) onto

A. Thus, we wish to find a∗g(X), g = 1, . . . , k, such that

E

([
m(Y, Z; θ) −

k∑

g=1

{I(Z = g) − πg}a∗g(X)

][
k∑

g=1

{I(Z = g) − πg}ag(X)

])
= 0

for all ag(X), g = 1, . . . , k. Taking ag(X) = 0 for g 6= j, we thus wish to find a∗g(X),

g = 1, . . . , k, such that

E

([
E{m(Y, Z; θ)|X,Z} −

k∑

g=1

{I(Z = g) − πg}a∗g(X)

]
{I(Z = j) − πj}

∣∣∣∣∣X
)

= 0

(2.42)

for each j = 1, . . . , k. It is straightforward to show that, writingE{m(Y, Z; θ)|X,Z} =
∑k

g=1 I(Z = g)E{m(Y, g; θ)|X,Z = g}, (2.42) implies that we must have

E{m(Y, j; θ)|X,Z = j}−a∗j(X)−
k∑

g=1

[
E{m(Y, g)|X,Z = g} − a∗g(X)

]
πg = 0 (2.43)

for all j = 1, . . . , k. Expression (2.43) is satisfied when

a∗g(X) = E{m(Y, g; θ)|X,Z = g}, g = 1, . . . , k,

yielding the estimating function in Equation ( 2.14).
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Chapter 3

Empirical Studies and Applications

(I)

3.1 Simulation Studies

3.1.1 Estimation

We report results of several simulations, each based on 5000 Monte Carlo data

sets. Tsiatis et al. (2007, Section 6) carried out extensive simulations in the particular

case of (2.1); thus, we focus here on estimation of quantities other than differences of

treatment means.

In the first set of simulations, we considered k = 2, a binary response Y , and

logit{E(Y |Z)} = β1 + β2I(Z = 2), (3.1)

so that β2 is the log-odds ratio for treatment 2 relative to treatment 1, the parameter

of interest; and θ = β = (β1, β2)
T . For each scenario, we generated Z as Bernoulli with

P (Z = 1) = P (Z = 2) = 0.5 and covariates X = (X1, . . . , X8)
T such that X1, X3,

X8 ∼ N (0, 1); X4 and X6 were Bernoulli with P (X4 = 1) = 0.3 and P (X6 = 1) = 0.5;

and X2 = 0.2X1 + 0.98U1, X5 = 0.1X1 + 0.2X3 + 0.97U2, and X7 = 0.1X3 + 0.99U3,

where Uℓ ∼ N (0, 1), ℓ = 1, 2, 3. We then generated Y as Bernoulli according to

logit{P (Y = 1|Z = g,X)} = α0g + αTgX, g = 1, 2, with α0g and αg chosen to yield
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mild, moderate, and strong association between Y and X within each treatment, as

follows. Using the coefficient of determination R2 to measure the strength of associ-

ation, R2 = (0.18, 0.16) for treatments (1,2) in the “mild” scenario, with (α01, α02) =

(0.25,−0.8), α1 = (0.8, 0.5, 0, 0, 0, 0, 0, 0)T , and α2 = (0.3, 0.7, 0.3, 0.8, 0, 0, 0, 0)T ;

R2 = (0.32, 0.33) in the “moderate” scenario, with (α01, α02) = (0.38,−0.8), α1 =

(1.2, 1.0, 0, 0, 0, 0, 0, 0)T , and α2 = (0.5, 1.3, 0.5, 1.5, 0, 0, 0, 0)T ; and R2 = (0.43, 0.41)

in the “strong” scenario, with (α01, α02) = (0.8,−0.8), α1 = (1.5, 1.8, 0, 0, 0, 0, 0, 0)T

and α2 = (1.0, 1.3, 0.8, 2.5, 0, 0, 0, 0)T . Thus, in all cases, X1, . . . , X4 are covariates

“important” for adjustment while X5, . . . , X8 are “unimportant.” For each data set,

n = 600, and, we fitted (3.1) by IRWLS to (Yi, Zi), i = 1, . . . , n, to obtain the un-

adjusted estimate of β. We also estimated β by the proposed methods using the

direct implementation strategy, where the models q∗g(X, ζg) for each g = 1, 2 in the

augmentation term were developed six ways:

Aug. 1 q∗g(X, ζg) = {1, cTg (X)}T ζg, cg(X) = “true,” fit by OLS

Aug. 2 q∗g(X, ζg) = {1, cTg (X)}T ζg, cg(X) = X, fit by OLS

Aug. 3 logit{q∗g(X, ζg)} = {1, cTg (X)}T ζg, cg(X) = “true,” fit by IRWLS

Aug. 4 logit{q∗g(X, ζg)} = {1, cTg (X)}T ζg, cg(X) = X, fit by IRWLS

Aug. 5 q∗g(X, ζg) = {1, cTg (X)}T ζg, cg(X) by OLS with forward selection

Aug. 6 logit{q∗g(X, ζg)} = {1, cTg (X)}T ζg, cg(X) by IRWLS with forward selection

where “true” means that cg(X) contained only Xℓ, ℓ = 1, . . . , 4, for which the corre-

sponding element of αg was not zero (i.e., using the “true important covariates” for

each g); and in Aug. 5 and 6 forward selection from linear terms in X1, . . . , X8 for

linear or logistic regression was used to determine each q∗g(X, ζg), with entry criterion

0.05. Aug. 3, 4, and 6 demonstrate performance when nonlinear models and methods

other than OLS are used. We also estimated β2 by estimating φ in (2.7) via IRWLS

two ways: Usual 1, where only the “important” covariates X1, . . . , X4 were included

in the model; and Usual 2, where the subset of X1, . . . , X8 to include was identified

via forward selection with entry criterion 0.05.

Table 3.1 shows modest to considerable gains in efficiency for the proposed estima-

tors, depending on the strength of the association. The estimators are unbiased, and



34

associated confidence intervals achieve the nominal level. In contrast, the usual ad-

justment based on (2.7) leads to biased estimation of β2, considerable efficiency loss,

and unreliable intervals. This is a consequence of the fact that β2 is an unconditional

measure of treatment effect while φ is defined conditional on X; this distinction does

not matter when the model for Y is linear but is important when it is nonlinear, as

is (2.7) (see, e.g., Robinson et al., 1998).

In the second set of simulations, we again took k = 2 and focused on β2, the dif-

ference in treatment slopes in the linear mixed model (2.4). In each scenario, we gen-

erated for each i = 1, . . . , n = 200 Zi as Bernoulli with P (Z = 1) = P (Z = 2) = 0.5;

X1i, X2i, X3i as above; and subject-specific intercept β0i = 0.5 + 0.2X1i + 0.5X2i + b0i

and slope β1i = α0g + α1gX
2
1i + α2gX2i + α13X3i + b1i, where (α01, α02) = (1.0, 1.3),

(b0i, b1i)
T ∼ N (0, D), with D11 = 1, D12 = 0.2, and D22 = 0.4, so that corr(b0i, b1i) =

0.5. We generated mi = 9, 10, 11 with equal probabilities; took tij = 2(j − 1)

for j = 1, . . . ,mi; and generated Yij = β0i + β1itij + eij, j = 1, . . . ,mi, where

eij
iid∼ N (0, σ2

e = 16). Writing αg = (α1g, α2g, α3g)
T , we took α1 = (0.2, 0.2, 0)T

and α2 = (0.2, 0, 0.2)T , yielding R2 values between subject-specific slopes and co-

variates of (0.11, 0.14) in the two groups, for “mild” association; α1 = (0.13, 0.1, 0)T

and α2 = (0.13, 0, 0.15)T , R2 = (0.24, 0.24), for “moderate” association; and α1 =

(0.28, 0.25, 0)T and α2 = (0.28, 0, 0.25)T , R2 = (0.36, 0.36), for “strong” associ-

ation. For each data set, we obtained the unadjusted estimate for θ by fitting

(2.4) using SAS proc mixed (SAS Institute, 2006). For (2.4), m(Y, Z; θ) has com-

ponents of form (2.16) for α and β and more complicated components quadratic

in Y for D and σ2
e . For simplicity, because the estimators for (α, β) and (D, σ2

e)

are uncorrelated, we fixed D and σ2
e at the unadjusted analysis estimates in the

components of m(Y, Z; θ) for (α, β), as asymptotically this will not impact preci-

sion of the estimators for (α, β), and used the direct implementation strategy based

on the components for (α, β) only. We considered three variants on the proposed

methods, all with each element of q∗g(X, ζg) = {1, cTg (X)}ζg fitted by OLS: Aug

1., taking cg(X) = (1, X2
1 , X2, X3)

T , corresponding to the form of the true rela-

tionship; Aug 2., with cg(X) = (1, X1, X2, X3)
T , so not exploiting the quadratic

relationship in X1; and Aug 3., with cg(X) = (1, X1, X
2
1 , X2, X3)

T , including an
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unneeded linear effect of X1. Writing now Xi = (X1i, X2i, X3i)
T , we also esti-

mated β2 by the estimate of φ from fitting via proc mixed the linear mixed model

Yij = α00 +αT01Xi+(α10 +αT11Xi+φZi)tij + b0i+ b1itij + eij, denoted as Usual; such a

model, with linear covariate effects only, might be prespecified in a trial protocol (e.g.,

Grouin et al., 2004). Table 3.2 shows that the proposed methods lead to relatively

more efficient estimators when quadratic terms in X1 are included in the q∗g(X, ζg).

3.1.2 Testing

We carried out simulations based on 10,000 Monte Carlo data sets involving k = 3

and the Kruskal-Wallis test. For each data set, we generated for each of n = 200 or

400 subjects Z with P (Z = g) = 1/3, g = 1, 2, 3, and (Y,X) with joint distribu-

tion of (Y,X) given Z bivariate normal with mean {β1I(Z = 1) + β2I(Z = 2), 0}T

and covariance matrix vech(1, ρ, 1), where ρ = 0.25, 0.50, 0.75 corresponds to mild,

moderate, and strong association between covariate and response. Under the null

hypothesis, we set β1 = β2 = 0; simulations under the alternative involved β1 = 0.25,

β2 = 0.4. For each data set, we calculated the unadjusted Kruskal-Wallis test

statistic Tn and the proposed statistic T̂ ∗
n using the strategy in Section 2.4, with

each component of the s = 2-dimensional models qg(X, ζg) in (2.21) represented as

qgu(X, ζgu) = {1, cTgu(X)}T ζug, u = 1, 2, cgu(X) = (X,X2)T . Each statistic was com-

pared to the 0.95 quantile of the χ2
2 distribution. Table 3.3 shows that the proposed

procedure yields greater power than the unadjusted test while achieving the nominal

level, where the extent of improvement depends on the strength of the association

between Y and X, as expected.
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Table 3.1: Simulation results for estimation of the log-odds ratio β2 for treatment
Z = 2 relative to Z = 1 in (3.1) based on 5,000 Monte Carlo data sets. “Unadjusted”
refers to the unadjusted estimator based on the data on (Y, Z) only, “Aug. a” for
a = 1, . . . , 6 refers to estimators based on the data on (Y,X,Z) using the strategy in
Section 2.3, and “Usual b” for b = 1, 2 refers to direct logistic regression adjustment, as
described in the text. MC bias is Monte Carlo bias, MC SD is Monte Carlo standard
deviation, Ave. SE is the average of estimated standard errors obtained using the
sandwich formula (2.13), Cov. Prob. is the MC coverage probability of 95% Wald
confidence intervals, and Rel. Eff. is the Monte Carlo mean squared error for the
unadjusted estimator divided by that for the indicated estimator.

Method True MC Bias MC SD Ave. SE Cov. Prob Rel. Eff.

Mild Association
Unadjusted -0.494 0.002 0.168 0.166 0.948 1.00

Aug. 1 -0.494 -0.001 0.156 0.153 0.948 1.16
Aug. 2 -0.494 0.000 0.156 0.153 0.944 1.15
Aug. 3 -0.494 0.000 0.156 0.153 0.946 1.16
Aug. 4 -0.494 0.000 0.156 0.152 0.943 1.15
Aug. 5 -0.494 -0.001 0.156 0.153 0.945 1.16
Aug. 6 -0.494 0.000 0.156 0.153 0.946 1.16
Usual 1 -0.494 -0.091 0.185 0.182 0.922 0.66
Usual 2 -0.494 -0.090 0.185 0.182 0.922 0.66

Moderate Association
Unadjusted -0.490 0.001 0.165 0.165 0.948 1.00

Aug. 1 -0.490 -0.002 0.140 0.139 0.950 1.39
Aug. 2 -0.490 -0.002 0.141 0.139 0.949 1.38
Aug. 3 -0.490 -0.001 0.139 0.138 0.948 1.41
Aug. 4 -0.490 -0.001 0.140 0.137 0.945 1.40
Aug. 5 -0.490 -0.002 0.140 0.139 0.949 1.39
Aug. 6 -0.490 -0.001 0.140 0.138 0.946 1.40
Usual 1 -0.490 -0.218 0.203 0.201 0.813 0.31
Usual 2 -0.490 -0.219 0.204 0.201 0.813 0.31

Strong Association
Unadjusted -0.460 0.004 0.164 0.165 0.954 1.00

Aug. 1 -0.460 0.000 0.132 0.131 0.952 1.55
Aug. 2 -0.460 0.000 0.132 0.131 0.950 1.54
Aug. 3 -0.460 0.001 0.129 0.128 0.948 1.61
Aug. 4 -0.460 0.001 0.130 0.127 0.945 1.60
Aug. 5 -0.460 0.000 0.132 0.131 0.951 1.55
Aug. 6 -0.460 0.001 0.129 0.127 0.947 1.61
Usual 1 -0.460 -0.321 0.223 0.220 0.695 0.18
Usual 2 -0.460 -0.322 0.224 0.220 0.695 0.17
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Table 3.2: Simulation results for estimation of β2 in the linear mixed model (2.4)
using the usual unadjusted method, the proposed augmented methods denoted by
“Aug. a” for a=1,2,3, and the “Usual” method, as described in the text, based on
5,000 Monte Carlo data sets. Entries are as in Table 3.1.

Method True MC Bias MC SD Ave. SE Cov. Prob Rel. Eff.

Mild Association
Unadjusted 0.300 0.000 0.100 0.099 0.951 1.00

Aug. 1 0.300 -0.001 0.095 0.094 0.951 1.10
Aug. 2 0.300 -0.001 0.100 0.097 0.945 1.00
Aug. 3 0.300 -0.001 0.096 0.094 0.950 1.08
Usual 0.300 -0.001 0.100 0.097 0.944 1.00

Moderate Association
Unadjusted 0.300 0.000 0.107 0.106 0.949 1.00

Aug. 1 0.300 -0.001 0.097 0.095 0.951 1.22
Aug. 2 0.300 0.000 0.106 0.103 0.945 1.02
Aug. 3 0.300 -0.001 0.097 0.095 0.952 1.21
Usual 0.300 -0.001 0.105 0.101 0.946 1.04

Strong Association
Unadjusted 0.300 0.000 0.116 0.115 0.950 1.00

Aug. 1 0.300 -0.001 0.098 0.096 0.951 1.41
Aug. 2 0.300 0.000 0.114 0.111 0.943 1.03
Aug. 3 0.300 -0.001 0.098 0.096 0.951 1.39
Usual 0.300 -0.001 0.113 0.109 0.944 1.06
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Table 3.3: Empirical size and power of the usual Kruskal-Wallis test Tn (unadjusted)

and the proposed test T̂ ∗
n based on 10,000 Monte Carlo replications. Each entry in the

columns labeled Tn and T̂ ∗
n is the number of times out of 10,000 that each test rejected

the null hypothesis of “no treatment effects” under the corresponding scenario.

Null Alternative

ρ n Tn T̂ ∗
n Tn T̂ ∗

n

0.25 200 0.05 0.05 0.51 0.54
400 0.05 0.05 0.83 0.85

0.50 200 0.05 0.05 0.51 0.64
400 0.05 0.05 0.83 0.92

0.75 200 0.05 0.05 0.51 0.85
400 0.05 0.05 0.83 0.99

3.2 Applications

3.2.1 PURSUIT Clinical Trial

The Platelet Glycoprotein IIb/IIIa in Unstable Angina: Receptor Suppression

Using Integrilin Therapy (PURSUIT) study (Harrington, 1998) was an international

multi-center clinical trial involving subjects with acute coronary syndromes to com-

pare the anti-coagulant therapy Integrilin plus heparin and aspirin to heparin and

aspirin (control) alone on the basis of the binary composite endpoint death or my-

ocardial infarction at 30 days. We consider data from 5,710 patients and focus on the

log-odds ratio for Integrilin relative to control. Thirty-five baseline covariates were

recorded, including age, height, weight, gender, race, geographic region, smoking sta-

tus, diastolic and systolic blood pressure, creatine kinase and creatine kinase-MB

ratios, disease history (e.g., angina, diabetes, congestive heart failure hypercholes-

terolemia, hypertension, renal insufficiency, peripheral vascular disease), and treat-

ment history (e.g., percutaneous coronary intervention within 72 hours of randomiza-

tion; use of calcium blockers, beta blockers, and digoxin; prior coronary artery bypass
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graft).

The unadjusted estimate of the log-odds ratio based on (3.1), β̂2, is −0.174 with

standard error 0.073. To calculate the augmented estimator based on (3.1), we used

the direct implementation strategy and took q∗g(X, ζg) = {1, cTg (X)}T ζg, g = 1, 2,

with cg(X) including main effects of all 35 covariates, and fitted the models by OLS.

The resulting estimate β̃2 = −0.163, with standard error 0.071. For these data,

the relative efficiency of the proposed estimator to the unadjusted, computed as the

square of the ratio of the estimated standard errors, is 1.06. For binary response,

substantial increases in efficiency via covariate adjustment are not likely; thus, this

admittedly modest improvement is encouraging.

3.2.2 AIDS Clinical Trials Group Protocol 175

AIDS Clinical Trials Group (ACTG) 175 (Hammer et al., 1996) randomized

HIV-infected subjects to k = 4 different antiretroviral regimens with equal prob-

abilities: zidovudine(ZDV) monotherapy (g = 1), ZDV+didanosine (ddI, g = 2),

ZDV+zalcitabine (g = 3), and ddI monotherapy (g = 4). We consider data on 2139

subjects and the continuous response CD4 count (cells/mm3, Y ) at 20±5 weeks post-

randomization and focus on comparisons based on differences of the four treatment

means. Twelve baseline auxiliary covariates were considered: continuous variables:

CD4 count (cells/mm3), CD8 count (cells/mm3), age (years), weight (kg), Karnofsky

score (scale of 0-100), and indicator variables for hemophilia, homosexual activity,

history of intravenous drug use, race (0=white, 1=non-white), gender (0=female),

antiretroviral history (0=naive, 1=experienced), and symptomatic status (0=asymp-

tomatic).

We consider the extension of model (2.2) to k = 4 treatments, so that θ = β =

(β1, . . . , β4)
T , βg = E(Y |Z = g), g = 1, . . . , 4. The standard unadjusted estimator for

β is the vector of sample averages; these are (336.14, 403.17, 372.04, 374.32)T for g =

(1, 2, 3, 4), with standard errors (5.68, 6.84, 5.90, 6.22)T . Using the direct implementa-

tion strategy with each element of q∗g(X, ζg) represented using cg(X) containing all lin-

ear terms in the 12 covariates, the proposed methods yield β̃ = (333.85, 403.83, 370.43,
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376.45)T , with standard errors obtained via the sandwich method as (4.61, 5.93, 4.89

, 5.11)T . This is of course one realization of data; however, it is noteworthy that the

standard errors for the proposed estimator correspond to relative efficiencies of 1.51,

1.33, 1.46 and 1.48, respectively.

Similar results obtain for hypothesis testing. The three usual unadjusted Wald

tests for pairwise differences in means between ZDV monotherapy (g = 1) and each

other regimen yield Tn for each comparison of 56.85, 19.22, and 20.55 for comparing

groups 2, 3, and 4 against group 1, respectively; the corresponding proposed statistics

T̂ ∗
n are 98.27, 35.28, and 46.75. Of course, all test statistics reflect very strong evidence

in favor of real differences in each case; however, notably, the “augmented” test

statistics are much larger in each case. We also carried out the standard unadjusted

three-degree-of-freedom Wald test for H0 : β1 = β2 = β3 = β4 and the unadjusted

Kruskal-Wallis test for H0 : S1(u) = · · · = S4(y) = S(u), as well as their adjusted

counterparts; here, we used cgu(X) containing linear and quadratic terms in the

continuous components of X and linear terms in the binary elements. The unadjusted

and adjusted Wald statistics are 59.40 and 109.58, respectively; the unadjusted and

adjusted Kruskal-Wallis statistics are 49.04 and 100.53; and all are to be compared

to χ2
3 critical values. Again, although the evidence against the null hypotheses is

overwhelming even without adjustment, the proposed test statistics are considerably

larger.

The sample size in this trial was very large, so that all analyses are easily able

to uncover treatment differences. To demonstrate that such results are possible in

cases where the evidence is less clear-cut, we repeated these analyses on the data

from a random subset of n = 124 subjects. The three pairwise unadjusted Wald test

statistics are 2.23, 1.45, and 2.18, with p-values 0.07, 0.11, 0.07; the corresponding

adjusted statistics are 4.77, 4.87, and 10.12, with p-values 0.01, 0.01, and < 0.001.

Likewise, the three-degree-of-freedom unadjusted Wald and Kruskal-Wallis statistics

(p-values) are 3.36 (0.34) and 2.35 (0.50), while the adjusted versions are 11.87 (0.01)

and 4.59 (0.20). Although it is certainly not guaranteed that smaller p-values will be

obtained for any given realization of data, these results demonstrate that the proposed

adjustment methods are capable of effecting such improvements.
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Chapter 4

“Smooth” Semiparametric

Regression Analysis for Arbitrarily

Censored Time-to-Event Data

4.1 SNP Representation of a Survival Density

Gallant and Nychka (1987) gave a mathematical description of a class H of k-

dimensional “smooth” densities that are sufficiently differentiable to rule out “un-

usual” features such as jumps or oscillations but that may be skewed, multi-modal,

or fat- or thin-tailed. When k = 1, H includes almost any density that is a real-

istic model for a (possibly transformed), continuous time-to-event random variable

and excludes implausible candidates. For k = 1, densities h ∈ H may be expressed

as an infinite Hermite series h(z) = P 2
∞(z)ψ(z) plus a lower bound on the tails,

where P∞(z) = a0 + a1z + a2z
2 + · · · is an infinite-dimensional polynomial; ψ(z)

is the “standardized” form of a known density with a moment generating function,

the “base density;” and h(z) has the same support as ψ(z). The base density is

almost always taken as N (0, 1), but need not be (see below). For practical use, the

lower bound is ignored and the polynomial is truncated, yielding the so-called SNP
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representation

hK(z) = P 2
K(z)ψ(z), PK(z) = a0 + a1z + z2z

2 + · · ·+ aKz
K , a = (a0, a1, . . . , aK)T ,

(4.1)

With a such that
∫
hK(z) dz = 1 and K suitably chosen, hK(z) provides a basis

for estimation of h(z). The SNP representation has been widely used, particularly

in econometric applications. Section 4.4.1 gives more detail on the SNP and its

properties.

Zhang and Davidian (2001) noted that requiring
∫
hK(z) dz =

∫
P 2
K(z)ψ(z) dz = 1

is equivalent to requiring E{P 2
K(U)} = aTAa = 1, where U has density ψ, and A is a

known positive definite matrix easily calculated for given ψ. Thus, aTAa = cTc = 1,

suggesting the spherical transformation c1 = sin(φ1), c2 = cos(φ1) sin(φ2), . . . , cK =

cos(φ1) cos(φ2) · · · cos(φK−1) sin(φK), cK+1 = cos(φ1) cos(φ2) · · · cos(φK−1) cos(φK) for

−π/2 < φj ≤ π/2, j = 1, . . . , K. Section 4.4.2 presents examples of this formula-

tion. Thus, for fixed K, (4.1) is “parameterized” in terms of φ (K × 1) and we write

hK(z; φ) = P 2
K(z; φ)ψ(z); estimation of the finite-dimensional “parameter” φ leads

to an estimator for h(z).

With K = 0 in (4.1), P 2
K(z) ≡ 1, and hK(z) reduces to the base density; i.e.,

hK(z) = ψ(z). Values K > 1 control the extent of departure from ψ and hence

flexibility for approximating the true h(z) (K is not the number of components in

a mixture). Several authors (e.g., Fenton and Gallant, 1996; Zhang and Davidian,

2001) have shown that hK(z; φ) with K ≤ 4 can well-approximate a diverse range of

true densities.

We now describe how we use (4.1) to approximate the assumed “smooth” density

f0(t) of a continuous, positive, time-to-event random variable T0 with survival function

S0(t) = P (T0 > t), t > 0. As T0 is positive, we assume that we may write

log(T0) = µ+ σZ, σ > 0, (4.2)

where Z takes values in (−∞,∞). We consider two formulations that together are

sufficiently rich to support an excellent approximation to virtually any f0(t). In

(4.2), it is natural to assume that Z has density h ∈ H that may be approximated
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by (4.1) with N (0, 1) base density ψ(z) = ϕ(z) for suitably chosen K, so that T0 is

lognormally distributed when K = 0. Although this can approximate very skewed

or close-to-exponential f0 with large enough K, an alternative formulation better

suited to this case is to assume that Z∗ = eZ has density h ∈ H that may be

approximated by (4.1) with standard exponential base density ψ(z) = E(z) = e−z, so

that Z has an extreme value distribution (Kalbfleisch and Prentice, 2002, sec. 2.2.1)

when K = 0. As discussed in Section 4.2, we propose choosing the representation

(normal or exponential) and associated K best supported by the data.

In both cases, approximations for f0(t) and S0(t) follow straightforwardly. Under

the normal base density representation, for fixed K and θ = (µ, σ,φT )T , we have for

t > 0

f0,K(t; θ) = (tσ)−1P 2
K{(log t− µ)/σ; φ}ϕ{(log t− µ)/σ},

S0,K(t; θ) =

∫ ∞

(log t−µ)/σ

P 2
K(z; φ)ϕ(z) dz.

(4.3)

Because P 2
K(z; φ) may be written as

∑2K
k=0 dkz

k, where the dk are functions of the

elements of φ, S0,K(t; θ) in (4.19) may be written as a linear combination of integrals

of the form I(k, c) =
∫∞

c
zkϕ(z)dz that satisfy I(k, c) = ck−1ϕ(c) + (k − 1)I(k − 2, c)

for k ≥ 2, where I(0, c) = 1−Φ(c), I(1, c) = ϕ(c), and Φ(·) is the N (0, 1) cumulative

distribution function (cdf). For the exponential base density representation, we have

approximations

f0,K(t; θ) = (σeµ/σ)−1 t(1/σ−1) P 2
K{(t/eµ)1/σ; φ} E{(t/eµ)1/σ}

S0,K(t; θ) =

∫ ∞

(t/eµ)1/σ
P 2
K(z; φ) E(z) dz,

(4.4)

where, similar to the normal base case, the integral in (4.4) may be calculated using

the recursion I(k, c) = ckE(c) + kI(k − 1, c), k > 0, with I(0, c) = e−c. Note, then,

that for fixed K, except for the need for a routine to calculate the normal cdf, the

approximations of f0(t) and S0(t) using either base density representation are in a

closed form depending on the “parameter” θ, whose finite dimension depends on

K. This offers computational advantages and makes handling of arbitrary censoring

patterns straightforward, as we demonstrate next.
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4.2 Censored Data Regression Analysis Based on

SNP

4.2.1 Popular Regression Models

Let X i be a vector of time-independent covariates and Ti be the event time, with

(Ti,X i) independent and identically distributed (iid) for i = 1, . . . , n. The usual PH

model is

λ(t|X; β) = limδ→0+ δ−1P (t ≤ T < t+ δ |T ≥ t,X) = λ0(t) exp(XTβ), t > 0,

(4.5)

where λ0(t) is the baseline hazard function corresponding to X = 0. Letting S(t|X; β)

= P (T > t|X) be the conditional survival function for T given X, it is straightforward

(Kalbfleisch and Prentice, 2002, sec. 4.1) to show that S(t|X; β) = S0(t)
exp(XTβ),

where S0(t) = exp{−
∫ t

0
λ0(u) du} is the baseline survival function associated with

λ0(t). Usually, λ0(t) is left completely unspecified, whereupon (4.5) is a semipara-

metric model, and β characterizing the hazard relationship is estimated via partial

likelihood (PL; Kalbfleisch and Prentice, 2002, sec. 4.2). We instead impose the

mild restriction that S0(t) is the survival function of a random variable T0 satisfying

(4.2) with density f0(t), and that f0(t) and S0(t) may be approximated by either

(4.19) or (4.4). Letting the conditional density of T |X be f(t |X; β), we obtain

approximations to S(t |X; β) and f(t |X; β) for fixed K given by

SK(t|X; β,θ) = S0,K(t; θ)exp(XTβ), fK(t|X; β,θ) = eX
Tβλ0,K(t; θ)SK(t|X; β,θ),

(4.6)

where λ0,K(t; θ) = f0,K(t; θ)/S0,K(t; θ). As we demonstrate shortly, the approxi-

mations in (4.6) may be substituted into a likelihood function appropriate for the

censoring pattern of interest, upon which estimation of (β,θ) and choice of K and

the base density may be based.

We propose a similar formulation for the usual AFT model

log(Ti) = XT
i β + ei, ei iid. (4.7)
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Rather than taking the distribution of the “errors” ei to be completely unspecified,

we assume that ei = log(T0i), where T0 has survival function S0(t) and “smooth”

density f0(t) that may be approximated by (4.19) or (4.4). For fixed K, this leads to

approximations to the conditional survival and density functions of T |X, S(t |X; β)

and f(t|X; β), given by

SK(t |X; β,θ) = S0,K(te−X
Tβ ; θ),

fK(t |X; β,θ) = e−X
Tβf0,K(te−X

Tβ ; θ). (4.8)

The same principle may be applied to the PO model, which in its usual form

assumes
S(t |X; β)

1 − S(t |X; β)
=

{
S0(t)

1 − S0(t)

}
exp(−XTβ), (4.9)

where S0(t) is the baseline survival function, assumed to have density f0(t), and

S(t |X; β) is the conditional survival function given X with density f(t |X; β).

Model (4.9) implies S(t |X; β) = S0(t)/{eXTβ + S0(t)(1 − eX
Tβ)}; thus, assuming

S0(t) and f0(t) may be approximated by (4.19) or (4.4), S(t |X; β) and f(t |X; β)

may be approximated by

SK(t |X; β,θ) = S0,K(t; θ)a−1
0,K(t,X; β,θ),

fK(t |X; β,θ) = f0,K(t; θ)eX
Tβa−2

0,K(t,X; β,θ) (4.10)

for fixed K, where a0,K(t,X; β,θ) = eX
Tβ + S0,K(t; θ)(1 − eX

Tβ).

We may now exploit these developments. Assuming as usual that the censor-

ing mechanism is independent of T given X, we demonstrate when T may be (i)

interval-censored, known only to lie in an interval [L,R]; (ii) right-censored at L (set

R = ∞); or (iii) observed (set T = L = R). For (i) and (ii), ∆ = 0; else, ∆ = 1 (iii).

With iid data (Li, Ri,∆i,X i), i = 1, . . . , n, assuming that f(t |X) and S(t |X) may

be represented as in (4.6), (4.8), or (4.10), for fixed K, the loglikelihood for (β,θ),

conditional on the X i, is ℓK(β,θ)

=
n∑

i=1

[
∆i log{fK(Li |X i; β,θ)}+(1−∆i) log{SK(Li |X i; β,θ)−SK(Ri |X i; β,θ)}

]
.
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For fixed K, base density, and model, ℓK(β,θ) may be maximized in (β,θ) using

standard optimization routines; we use the SAS IML optimizer nlpqn (SAS Institute,

2006). Choice of starting values is critical for ensuring that the global maximum is

reached. In Section 4.4.3 we recommend an approach where ℓK(β,θ) is maximized

for each of several starting values found by fixing φ over a grid and using “automatic”

rules to obtain corresponding starting values for (µ, σ,β). Although elements of φ

are restricted to certain ranges, unconstrained optimization virtually always yields a

valid transformation so that
∫
hK(z; φ)dz = 1. The declared estimates correspond to

the solution(s) yielding the largest ℓK(β,θ).

Following other authors (e.g., Gallant and Tauchen, 1990; Zhang and Davidian,

2001), for a given model (PH, AFT, PO), we propose selecting adaptively the K-base

density combination by inspection of an information criterion over all combinations

of base density (normal, exponential) and K = 0, 1, . . . , Kmax. Our extensive studies

show Kmax = 2 is generally sufficient to achieve an excellent fit. With q = dim(β,θ),

criteria of the form −ℓK(β,θ)+ qc have been advocated, with small values preferred.

Ordinarily, the Akaike Information Criterion (AIC), Bayesian Information Criterion

(BIC), and Hannan-Quinn (HQ) criteria take c = 1, log(n)/2, and log{log(n)}, re-

spectively; AIC tends to select “larger” models and BIC “smaller” models, with HQ

intermediate. As noted by Kooperberg and Clarkson (1997, Section 3), with censored

data, dependence of c on n may be suspect; for right-censored data, replacing n by

d = number of failures has been proposed (e.g., Volinsky and Raftery, 2000), although

a similar adjustment under interval censoring is not obvious. It is nonetheless com-

mon practice to base c on n. We have found in the current context that replacing n

by d has little effect on the K-base density choice. We use HQ with c = log{log(n)}
in the sequel.

The SNP approach is an alternative to traditional semiparametric methods such

as PL when one is willing to adopt the assumption of a “smooth” density f0(t). The

formulation also supports selection among competing models (e.g., PH, AFT, PO):

that for which the chosen K-base density combination yields the most favorable value

of the information criterion may be viewed as “best supported” by the data. This

may be used objectively or in conjunction with other evidence, e.g., the outcome of
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a formal test of the proportional hazards assumption (e.g., Gray, 2000; Lin, Zhang,

and Davidian, 2006), in adopting a final model.

To obtain standard errors and confidence intervals for the estimator for β, the

parameter ordinarily of central interest, as well as for any other functional of the

conditional distribution of T |X based on a final selected representation, we follow

other authors and treat the chosen K, base density, and model as predetermined.

That is, we approximate the sampling variance of the resulting estimator β̂ or of

any functional d(β̂, θ̂) via the inverse “information matrix” acting as if the chosen

ℓK(β,θ) were the loglikelihood under a predetermined parametric model. This ma-

trix is readily obtained from optimization software. For β̂, the square root of the

relevant diagonal element of this matrix yields immediately our proposed standard

error; for general functionals, we use the delta method. Assuming that these quanti-

ties have approximately normal sampling distributions, 100(1−α)% Wald confidence

intervals may be constructed as the estimate ± the normal critical value × the esti-

mated standard error. Although the choice of K and base density is made adaptively,

which would seem to invalidate this practice, results cited in Section 4.4.1 propsup-

port it, and simulations in Section 5.1 demonstrate that this approach yields reliable

inferences in realistic sample sizes.

Several useful byproducts follow from the SNP approach. Selection of a model

with K = 0 suggests evidence favoring the parametric model implied by the chosen

base density; e.g., the AFT model with K = 0 and normal base density corresponds

to assuming T given X is lognormally distributed. Because “smooth” estimates of

baseline densities and survival functions are immediate, predictors of survival prob-

abilities and calculation of associated confidence intervals as in Cheng et al. (1997)

are easily handled.
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4.3 More Complex Models

4.3.1 Extension of the AFT Model to “Heteroscedastic Er-

rors”

For transformed event-time models such as (4.7), a standard assumption is that the

deviations ei are iid, made in virtually all studies of these models (a recent exception

is Huang, Ma, and Xie, 2005). Stare, Heinzl, and Harrell (2000) discuss the potential

for biased inference on β if this is violated. The SNP approach readily handles so-

called “heteroscedastic errors” and provides a mechanism for testing departures from

the iid assumption, which may be difficult to detect graphically (Stare et al., 2000).

In (4.21), the SNP representation implies that E{log(Ti)|X i} = {µ+ σE(Zi)} +

XTβ and var{log(Ti)|X i} = σ2var(Zi), where E(Zi) and var(Zi) are calculated as-

suming either Z or Z∗ = eZ has density h ∈ H, so that under a fixed K-base

density combination are known functions of the corresponding φ. This suggests an

equivalent formulation with “centered errors;” i.e., writing Equation (4.2) instead as

log(T0) = µ+ σ{Z − E(Z)} and again taking ei = log(T0i) in (4.21) yields log(Ti) =

XT
i β+µ+σ{Zi−E(Zi)}, so the mean is reparameterized asE{log(Ti)|X i} = µ+XT

i β

while still var{log(Ti)|X i} = σ2var(Zi). Viewing {Zi − E(Zi)} as a mean-zero devi-

ation, then, permits the immediate extension of (4.21) given by

log(Ti) = XTβ + ei, ei = µ+ σv(X i,α){Zi − E(Zi)}, (4.11)

where v(x,α) > 0 for all x is a parametric variance function such that v(x,α) ≡ 1 if

x = 0 or α = 0, so that var{log(Ti)|X i} = σ2var(Zi)v
2(X i,α). Although it may not

be possible to postulate a “correct” model v(x,α), a parsimonious, flexible variance

function may be a useful way to capture at least the predominant features of potential

heterogeneity (Carroll and Ruppert, 1988, Ch. 3). E.g., a model popular in ordinary

regression for this purpose is v(x,α) = exp(xTα) (or similar form depending on a

subset of x). Again assuming Z or Z∗ = eZ has density h ∈ H, it is straightforward

to derive SNP approximations to the conditional survival and density functions of

T |X based on (4.22), as we now show.
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In what follows, we present the conditional survival and density functions of T

given X, suppressing the subscript i. Considering the case where Zi in (4.22) is taken

to have the standard normal base density SNP representation, letting

r =
log(t) − XTβ − µ

σv(X,α)
+ E(Z),

the conditional density and survival distribution are given by

fK(t |X; β,α,θ) = {tσv(X,α)}−1P 2
K(r)ϕ(r),

SK(t |X; β,α,θ) =

∫ ∞

r

P 2
K(z)ϕ(z) dz.

(4.12)

The integral in (4.23) may be calculated straightforwardly using the recursive formulæ

given after Equation ( 4.19). The term E(Z) may written as a function of φ as before.

For the SNP representation using the standard exponential base density, we as-

sume that the density of Z∗ = eZ may be approximated by this representation. That

is, the density of Z∗ is represented as hK(z∗) = P 2
K(z∗)E(z∗) = (a0 + a1z

∗ + · · · +

aKz
∗K)2e−z

∗

. Let

r = exp

{
log(t) − XTβ − µ

σv(X,α)
+ E(Z)

}
.

It may then be shown that the conditional density and survival function of T |X are

fK(t |X; β,α,θ) = {tσv(X,α)}−1rP 2
K(r)E(r),

SK(t |X; β,α,θ) =

∫ ∞

r

P 2
K(z) E(z) dz.

(4.13)

Again, the integral in (4.24) is calculable by the recursion. As r involves E(Z) =

E{log(Z∗)}, we present explicitly this calculation for K = 0, 1, 2, where as before

a0, a1, a2 are the coefficient in the polynomial PK(z), which are in turn expressed in

terms of φ. With Euler’s constant γ = 0.57721566490153286060, defining H1 = −γ,
H2 = 1 − γ,H3 = 3 − 2γ, H4 = 11 − 6γ, H5 = 50 − 24γ, we have for K = 0,

E(Z) = −γ = H1; for K = 1, E(Z) = a2
0H1 + 2a0a1H2 + a2

1H3; and for K = 2,

E(Z) = a2
0H1 + 2a0a1H2 + (2a0a2 + a2

1)H3 + 2a1a2H4 + a2
2H5.

In fitting this model, one may include α as an additional parameter to be esti-

mated; typically, α will be of low dimension (1 or 2). As noted by Stare et al. (2000),

graphical displays that are standard diagnostic tools for detecting heteroscedasticity
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in ordinary uncensored regression (Carroll and Ruppert, 1988) can be misleading,

so it is not prudent to rely on such techniques to suggest starting values. As we

propose “working” variance models such as the exponential model for which α = 0

corresponds to no heterogeneity, we suggest using α = 0 as the starting value in the

“wave” of fits across the grid of φ. Upon inspection of the results, a second “wave”

may be undertaken using a new starting value for α. This process may be iterated

until the analyst feels confident that the procedure has “zeroed in” on a reasonable

fit.

Of course, (4.22) no longer has the usual AFT property that time is simply rescaled

relative to baseline by a function of covariates. See Hsieh (1996) for an interpreta-

tion of (4.22) when X is a vector of treatment indicators and v(x,α) = exp(xTα),

allowing different location and scale for each treatment, and the goal is to test for

homogeneity of scale, corresponding here to α = 0. More generally, the SNP-based

model offers a convenient framework for detecting heterogeneity, alerting the analyst

that standard methods may be inappropriate.

4.3.2 Extension of the AFT Model to Time-Dependent Co-

variates

Time-to-event regression analyses involving time-dependent covariates are com-

monplace in practice; see Kalbfleisch and Prentice (2002, sec. 6.3) for a discussion

of the care that must be taken in this setting. Due to ease of implementation, an-

alysts routinely default to the Cox model (which no longer has proportional haz-

ards); however, alternative models are available, but are rarely used. Cox and Oakes

(1984, sec. 5.2) define an AFT model in this case, which we describe for scalar such

covariate X(t); see also Robins and Tsiatis (1992). For a subject with covariate

X(t) and event time T , the model assumes that time evolves relative to the time

T0 the subject would have had if X(t) ≡ 0 according to a monotone transformation

T0 =
∫ T

0
exp{βX(u)}du = Ψ{X(T ), β}, where X(t) = {X(s), 0 ≤ s ≤ t} is the

covariate history to t, assumed independent of T0. If T0 has survival function S0(t)

with density f0(t) and hazard function λ0(t), it is conventional to express the model
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in terms of the hazard for T given the covariate history, which we denote in obvious

notation as

λ{t|X(t)} = λ0[Ψ{X(t), β}]Ψ̇{X(t), β} = λ0

[∫ t

0

exp{βX(u)}du
]

exp{βX(t)},
(4.14)

where Ψ̇(u, β) = dΨ(u, β)/du. Ordinarily, λ0(t) is left completely unspecified (e.g.,

Robins and Tsiatis, 1992; Lin and Ying, 1995). If the analyst is willing to assume

f0(t) is “smooth,” so that it and S0(t) may be represented by SNP as in Equations

( 4.19) and ( 4.4), it should be clear that the conditional hazard in (4.14) may be

approximated by λ0,K(t; θ) = f0,K(t; θ)/S0,K(t; θ). In the case of right-censored data,

then, where now L is a right-censoring time if ∆ = 0 and an event time if ∆ = 1,

with iid data {Li,∆i, X i(Li)}, i =, 1, . . . , n, the loglikelihood for fixed K and base

density, ℓK(β,θ), for (β,θ) conditional on covariate history satisfies

exp{ℓK(β,θ)} =
∏n

i=1

(
λ0,K [Ψ{X i(Vi), β}; θ]Ψ̇i{X i(Vi), β}

)∆i

exp
{
−
∫ Ψ{Xi(Vi),β}

0
λ0,K(u; θ) du

}
.

(4.15)

Extension to multivariate X(t) and time-independent covariates Z; i.e.,

Ψ{XT (T ),Z,β, δ} =
∫ T
0

exp{XT (u)β + ZTδ}du, is straightforward. A similar for-

mulation holds for the PH model.

It is worth noting that other models, e.g. for interval censored data with time

dependent covariates (Sparling, Younes, and Lachin, 2006) may also be placed in the

SNP framework.

4.4 Details

4.4.1 Properties of the SNP Density Estimator

In this section, we give more detail on the SNP density estimator, review work

establishing its properties, and describe what is known about its performance when

it has been embedded in various complex statistical models. We refer the reader to

the references cited, especially Gallant and Nychka (1987) and Fenton and Gallant

(1996, 1996b), for technical details and further developments.
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The SNP density estimator is a truncation (or sieve) estimator based on a Hermite

series expansion and was originally introduced by Gallant and Nychka (1987) in the

context of representing the nonparametric part of nonlinear structural models popular

in econometric analysis. These models can be rather complicated and would ordinarily

also include a finite-dimensional parametric component, as in the semiparametric

time-to-event regression models we consider. Since its introduction, the SNP has

been used in numerous applications with great success, where it has been embedded in

various complex statistical models involving possibly numerous additional parameters

of interest. These include in econometric models for stock volatility (Gallant, Hansen,

and Tauchen, 1990), as a model for a bivariate distribution in binary choice models for

labor-force participation (Gabler, Laisney, and Lechner, 1993), as the underpinning

of methods for nonlinear time series analysis (Gallant and Tauchen, 1990; Gallant,

Rossi, and Tauchen, 1993), and as a representation of the density of a vector of random

effects in various mixed effects (e.g., Davidian and Gallant, 1992, 1993; Zhang and

Davidian, 2001; Chen, Zhang, and Davidian, 2002) and joint longitudinal-survival

data models (Song, Davidian, and Tsiatis, 2002). In all of these settings, empirical

studies suggest that, via a maximum likelihood approach analogous to that proposed

previously for the semiparametric time-to-event regression, fitting is computationally

stable and feasible and valid inferences may be obtained, as discussed further below.

Gallant and Nychka (1987) considered the general case of a k-variate density in

statistical models where both the density and a finite-dimensional vector of param-

eters are to be estimated. They described the class H in which the true density f0

is assumed to lie in terms of a weighted Sobolev norm, depending on the number

of derivatives f0 is assumed to possess, and they provided a rigorous statement of

the conditions under which the SNP estimators for f0 and other parameters should

be consistent in some sense for the true values, assuming the parametric part of the

model is correctly specified. In particular, they showed that, as long as the truncation

rule (choice of K) is such that K = Kn, say, converges to infinity with n, the SNP

density estimator is consistent with respect to Sobolev norm and that this implies

that functionals of the true density, such as the distribution function, as well as the

finite-dimensional parameters in the model, are also estimated consistently. See Gal-
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lant and Nychka (1987) for technical details and discussion and Davidian and Gallant

(1993, Section 3) for a summary. From a practical point of view, a main consideration

in the use of SNP as a representation for the density of a model component is the

degree of smoothness the true density is thought to enjoy as reflected by the degree

of differentiability it is thought to possess, as for other density estimation methods.

Estimation of f0 in the case k = 1, has been studied in some detail. Fenton and

Gallant (1996) specialized the consistency results of Gallant and Nychka (1987) to the

univariate case when estimation of f0 is to be based on an iid sample from f0, and they

carried out an extensive battery of empirical studies demonstrating the ability of the

SNP density estimator to approximate a wide range of true densities, including some

exhibiting rather extreme behavior. They and other authors mentioned below focused

on the estimator based on the normal base density, as it has been used extensively in

econometric applications. They noted that, for k = 1, the class H of densities defined

by Gallant and Nychka is spanned by

Hn =



fn : fn(z,a) =

(
Kn∑

j=0

ajz
j

)2

e−z
2/2 + ǫ0ϕ(z)



 , (4.16)

where ϕ(z) is the standard normal density, and a are such that
∫
fn(z,a) dz =

1; choices other than e−z
2/2 and ϕ(z) are also permitted. In (4.16), ǫ0 is a small

positive number, and Kn depends on n; it is possible to rewrite (4.16) in terms of

Hermite polynomials. As discussed by Gallant and Nychka (1987) and Davidian

and Gallant (1993), the second term in (4.16) acts as a lower bound that governs

tail behavior, ensuring that
∫

log fn(z,a)f0(z) dz exists for all fn ∈ Hn, required

in order to establish the results in Gallant and Nychka (1987); see this paper for

further discussion. The lower bound is usually ignored in practice, and vast empirical

evidence has shown that this practice leads to reasonable results..

Fenton and Gallant (1996b) established rates of convergence in L1 where Kn =

O(nα) for α > 0. Coppejans and Gallant (2002) derived the convergence rate under

the Hellinger metric and investigated the use of cross-validation as an alternative

to information-criterion based selection of the truncation point. As noted by Kim

(2007), an SNP estimator may not achieve the optimal convergence rate established
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by Stone (1990) for log-spline density estimators; however, it has several advantages,

including computational ease and convenience; a straightforward means of simultane-

ous estimation of finite-dimensional parameters when the density is part of an overall

semiparametric model; and the ability to evaluate whether or not the parametric

model corresponding to the base density is sufficient to represent the data. Fenton

and Gallant (1996b, Erratum) note that, while it is not possible to demonstrate that

SNP density estimators have the same convergence rate as kernel density estimators,

the extensive available empirical evidence suggests that they are qualitatively and

asymptotically similar to kernel estimators.

Regarding asymptotic normality of estimators for finite-dimensional parameters

and functionals in SNP-based semiparametric models, formal, theoretical results for

general semiparametric models are not available. As noted by Kim (2007), this is

probably because of the fact that the SNP density estimator is “parametric” for any

fixed degree of truncation. There is extensive empirical evidence in different statistical

models (e.g., Gallant and Tauchen, 1990; Zhang and Davidian, 2001; Song et al.,

2002), as well as theoretical evidence in specific settings (e.g., Eastwood and Gallant,

1991; Fan, Zhang, and Zhang, 2001) that, if one treats the degree of truncation as

fixed, so that the model involves a finite-dimensional “parameter,” standard errors

and confidence intervals may be constructed using standard parametric asymptotic

theory. As shown by Eastwood and Gallant (1991) in a simpler setting, this requires

that the degree of truncation be chosen adaptively; these authors show that the

use of information-criterion-based (so adaptive) truncation rules will result in such

inferences being asymptotically correct. As noted by Coppejans and Gallant (2002)

and Kim (2007), the practice of basing inferences on standard parametric large sample

theory following adaptive choice of the truncation point is widely accepted to yield

reasonable inferences in general problems and is standard in applications in analyses

based on SNP.

In summary, two decades of experience suggest that use of SNP to represent

ordinarily unspecified or latent components of general complex statistical models,

as proposed for the specific case of semiparametric time-to-event regression models,

leads to reliable inferences under conditions similar to those assumed for competing
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approaches.

As noted in the Discussion, a rigorous proof of the theoretical properties of the

SNP approach is an open problem. We conjecture that it should be possible to prove

that the SNP-based estimator for β is root-n consistent. For the PH and PO models,

which are members of the linear transformation model class, this is true when one

is completely nonparametric with respect to the unknown baseline distribution and

uses nonparametric maximum likelihood to estimate it in these models. Thus, we

expect that, under appropriate conditions, it is true for the SNP approach as well.

Our simulation results do not contradict this supposition. We conjecture that this is

also true for the AFT model, as it is possible to show such results for, e.g., rank-based

methods. This model is a bit more problematic than the other two in that a fully

efficient approach where one is completely nonparametric about the unknown survival

distribution would require the support points of the distribution to depend on β. We

suspect that the undercoverage of Wald confidence intervals for β we report on in

this case for smaller samples may be related to this structural phenomenon somehow.

4.4.2 Parametrization of the SNP Representation

In this section, we give a more detailed description of how the “standard” SNP

density representation in Equation ( 4.1) may be parameterized in terms of φ. See

Zhang and Davidian (2001) for the general case. For fixed K and base density ψ(z),

the representation is

hK(z) = P 2
K(z)ψ(z) = (a0 + a1z + a2z

2 + · · · + aKz
K)2 ψ(z), (4.17)

subject to constraint
∫

(a0 + a1z + a2z
2 + · · · + aKz

K)2 ψ(z) dz = 1. (4.18)

Let a = (a0, a1, · · · , aK)T of length K+1, define w = (1, z, z2, . . . , zK), and define the

random vector W = (1, Z, Z2, . . . , ZK)T , where Z is a random variable with density

ψ(z). Then note that we can write the polynomial squared in (4.17) as

(a0 + a1z + a2z
2 + · · · + aKz

K)2 = aTwwTa.
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Therefore, the constraint (4.18) is equivalent to requiring that

aTAa = 1, A = E(WW T ).

For ψ(z) either the standard normal or exponential densities, the matrix A is known

and positive definite, so that we can write A = BTB for some positive definite matrix

B. Thus, write aTAa = aBTBa, so that with c = Ba, aTAa = cTc = 1. Thus, c

lies on the unit sphere, which suggests the spherical transformation

c1 = sin(φ1),

c2 = cos(φ1) sin(φ2),
...

cK = cos(φ1) cos(φ2) · · · cos(φK−1) cos(φK),

cK+1 = cos(φ1) cos(φ2) · cos(φK−1) cos(φK),

given in Section 4.1, where φ = (φ1, φ2, . . . , φK)T , −π/2 < φj ≤ π/2, j = 1, . . . , K−1,

0 ≤ φk ≤ 2π.

To demonstrate how this transformation works, we give two explicit examples. In

the first example, suppose K = 2 and let φ(z) be the standard normal density. In this

case, c = (c1, c2, c3)
T , and c1 = sin(φ1), c2 = cos(φ1) sin(φ2), c3 = cos(φ1) cos(φ2), so

that φ = (φ1, φ2)
T . It is straightforward to show that

A =




1 0 1

0 1 0

1 0 3


 ,

in which case

B =




1 0 1

0 1 0

0 0
√

2


 and B−1 =




1 0 −1/
√

2

0 1 0

0 0 1/
√

2


 .

Now

a = B−1c =




1 0 −1/
√

2

0 1 0

0 0 1/
√

2







sin(φ1)

cos(φ1) sin(φ2)

cos(φ1) cos(φ2)


 . (4.19)
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Thus note that we can express the polynomial in (4.17) in terms of φ as a0 + a1z +

a2z
2 = aT (1, z, z2)T , where a is given in (4.19). This may be substituted in (4.17) to

give the representation h2(z; φ) in terms of φ.

As a second example, take again K = 2 but with ψ(z) the standard exponen-

tial density. Again we have a = (a0, a1, a2) = B−1c, where c is as before. It is

straightforward to show that now

A =




1 1 2

1 2 6

2 6 24


 , B =




1 1 2

0 1 4

0 0 2


 , B−1 =




1 −1 1

0 1 −2

0 0 1/2


 .

4.4.3 Achieving the Global Maximum/Starting Values

In this section, we describe the approaches we have used successfully to obtain

starting values for parameters for maximizing the SNP loglikelihood for each model

(AFT, PH, or PO) for fixed K and base density. For a given K and base density, the

corresponding SNP likelihood ℓK(β,θ) involves the parameters β and θ = (µ, σ,φT )T ,

and maximization requires starting values for all of these parameters. The SNP

loglikelihood typically is quite complex and is replete with local maxima. Thus,

we require a procedure that offers assurance that the global maximum has been

identified. This suggests using “waves” of starting values, as has been proposed with

SNP in other contexts (e.g., Gallant and Tauchen, 1990). We thus obtain different

sets of starting values that hopefully traverse a likely region of the parameter space

where the global maximum lies by fixing φ at each value over a grid of possible

values and then deriving corresponding starting values for the remaining parameters

(µ, σ,βT )T (µ, σ, β) depending on the model (PH, AFT, PO) being fitted, as we

describe shortly. For each set of starting values so obtained, ℓK(β,θ) is maximized.

The maximizing values of (β,θ) leading to the largest value of ℓK(β,θ) are assumed

to yield to the global maximum and are taken to be the final estimates. Often,

many of the sets of starting values will lead to the same maximized value of ℓK(β,θ)

and the same estimates, engendering confidence that the global maximum has indeed

been identified. We have found that, although elements of φ are restricted to certain
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ranges, as long as the grid of starting values is chosen as recommended, one may use

unconstrained optimization of ℓK(β,θ) with assurance that the resulting estimates

are such that hK(z; φ) evaluated at the estimates is a valid density.

Our recommended grid points become less dense as K increases owing to the

increasing computational cost of repeated maximizations. For K = 0, there is no

φ, and starting values for (µ, σ,βT )T may be found as described below, where E(Z)

and var(Z) are known constants. Because for K > 0 each element of φ must satisfy

−π/2 < φj ≤ π/2, j = 1, . . . , K, for K = 1 we choose the grid to be the 16

values in (−1.5,−1.3,−1.1, · · · , 1.3, 1.5). For K = 2, we fix φ = (φ1, φ2) over 16

values of (−1.5,−0.5, 0.5, 1.5) × (−1.5,−0.5, 0.5, 1.5). We have demonstrated in our

simulations and applications that choosing the grid points in this way yields reliable

results (i.e., plausible estimates that appear to represent the global maximum) with

feasible computation times.

Indeed, computation times are entirely manageable. For example, the typical

time to fit all three models (PH, AFT, PO) to one data set with n = 200 and 25%

right censoring using our SAS implementation, where maximizations are carried out

using the SAS IML optimizer nlpqn, including maximization at each set of starting

values for each K-base density combination for each model followed by selection of

the preferred model-K-base density combination using HQ, is 100 seconds on a 1.73

GHz PC.

AFT Model

As in Equation (4.7), the AFT model is

log(Ti) = XT
i β + ei, ei iid. (4.20)

The SNP approach represents the AFT model (4.7) as

log(Ti) = XT
i β + ei = XT

i β + µ+ σZi, (4.21)

where ei and Zi are iid, and the density of Zi may be well-approximated by the two

proposed SNP formulations. To get a rough estimate of (µ, σ,β) for each fixed φ,



59

we pretend that the ei follows a normal distribution and fit (4.21) using SAS proc

lifereg to obtain estimates of β and the mean and variance of ei, which we denote

by βe, µe, and σ2
e , respectively. We use βe as the starting value for β and obtain

starting values of µ and σ by solving the equations

µe = µ+ σE(Z)

σ2
e = σ2var(Z),

for µ and σ. Here, E(Z) and var(Z) are functions of φ for each K-base density

combination (K > 0) and hence for a given φ grid point are fixed constants. E.g.,

for the standard normal base density and K = 2, E(Z) = 2a0a1 +6a1a2 and var(z) =

a2
0 + 3(2a0a2 + a2

1) + 15a2
2 − {E(Z)}2, where a is a function of φ as in Section 4.4.2

and hence is fixed once φ is fixed.

When K = 0, there is no φ. To obtain multiple starting values, we solve for µ

and σ as above, where E(Z) and var(Z) are known constants for both base densities.

We use three sets of starting values: the solution (µ, σ) so determined, (µ− σ/2, σ),

and (µ+ σ/2, σ).

PH Model

To obtain a starting value for β, we use Cox’s partial likelihood method imple-

mented in SAS proc phreg. The procedure proc phreg also gives an estimate of

the baseline survival function S0(t). To obtain starting values for µ and σ for a

fixed φ, we pretend that log(T0) in Equation ( 4.2) is normally distributed, so that

T0 is lognormal. Now E(T0) =
∫∞

0
S0(t)dt and E(T 2

0 ) =
∫∞

0
2tS0(t)dt, and by sub-

stituting the estimated baseline survival function into these expressions, we obtain

estimates of E(T0) and E(T 2
0 ). This calculation is simple, as the estimated baseline

survival function is a step function and thus the two integrals reduce to summations.

If we denote the mean and variance of log(T0) as µe and σ2
e , using the relationships

E(Tm0 ) = exp(mµe + m2σ2
e/2), m = 1, 2, we may obtain rough estimates of µe and

σ2
e by solving two equations. Once these are obtained, we may proceed as described

before for the AFT model to find starting values for µ and σ for each K ≥ 0.
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PO Model

Similar to the procedure for the AFT model, we first assume a parametric model

for the baseline event time to estimate β. In order to use a standard SAS procedure

to fit a PO model, we exploit the fact that when the “errors” in an AFT model,

ei, i = 1, . . . , n, are iid with a logistic distribution, this model is also a PO model.

That is, by letting ei in (4.21) be iid with a logistic distribution, we are equivalently

specifying a PO model with baseline event time T0 from a log-logistic distribution.

Thus, we may use SAS proc lifereg to obtain estimates we denote as βaft, µl and

σl, where the subscript “aft” indicates that the fitted coefficient is with respect to

the AFT model, and subscript l indicates µl and σl are parameters characterizing a

logistic distribution. Obtaining estimates of the mean and variance of ei, denoted

by µe and σe as before, is straightforward by using the relationships µe = µl and

σ2
e = π2σ2

l /3. Starting values for for µ and σ may be obtained in the same way as

described previously for K ≥ 0. As for the starting value for β, the coefficient the

coefficient corresponding to the PO model, one can easily derive that β is equal to

−βaft/σl, and thus the obvious approach is to substitute the fitted values from proc

lifereg into this expression.

4.4.4 Extension of the AFT Model to “Heteroscedastic Er-

rors”

For transformed event-time models such as (4.7), a standard assumption is that the

deviations ei are iid, made in virtually all studies of these models (a recent exception

is Huang, Ma, and Xie, 2005). Stare, Heinzl, and Harrell (2000) discuss the potential

for biased inference on β if this is violated. The SNP approach readily handles so-

called “heteroscedastic errors” and provides a mechanism for testing departures from

the iid assumption, which may be difficult to detect graphically (Stare et al., 2000).

In (4.21), the SNP representation implies that E{log(Ti)|X i} = {µ+ σE(Zi)} +

XTβ and var{log(Ti)|X i} = σ2var(Zi), where E(Zi) and var(Zi) are calculated as-

suming either Z or Z∗ = eZ has density h ∈ H, so that under a fixed K-base
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density combination are known functions of the corresponding φ. This suggests

an equivalent formulation with “centered errors;” i.e., writing (2) in the main pa-

per instead as log(T0) = µ + σ{Z − E(Z)} and again taking ei = log(T0i) in

(4.21) yields log(Ti) = XT
i β + µ + σ{Zi − E(Zi)}, so the mean is reparameter-

ized as E{log(Ti)|X i} = µ + XT
i β while still var{log(Ti)|X i} = σ2var(Zi). Viewing

{Zi − E(Zi)} as a mean-zero deviation, then, permits the immediate extension of

(4.21) given by

log(Ti) = XTβ + ei, ei = µ+ σv(X i,α){Zi − E(Zi)}, (4.22)

where v(x,α) > 0 for all x is a parametric variance function such that v(x,α) ≡ 1 if

x = 0 or α = 0, so that var{log(Ti)|X i} = σ2var(Zi)v
2(X i,α). Although it may not

be possible to postulate a “correct” model v(x,α), a parsimonious, flexible variance

function may be a useful way to capture at least the predominant features of potential

heterogeneity (Carroll and Ruppert, 1988, Ch. 3). E.g., a model popular in ordinary

regression for this purpose is v(x,α) = exp(xTα) (or similar form depending on a

subset of x). Again assuming Z or Z∗ = eZ has density h ∈ H, it is straightforward

to derive SNP approximations to the conditional survival and density functions of

T |X based on (4.22), as we now show.

In what follows, we present the conditional survival and density functions of T

given X, suppressing the subscript i. Considering the case where Zi in (4.22) is taken

to have the standard normal base density SNP representation, letting

r =
log(t) − XTβ − µ

σv(X,α)
+ E(Z),

the conditional density and survival distribution are given by

fK(t |X; β,α,θ) = {tσv(X,α)}−1P 2
K(r)ϕ(r),

SK(t |X; β,α,θ) =

∫ ∞

r

P 2
K(z)ϕ(z) dz.

(4.23)

The integral in (4.23) may be calculated straightforwardly using the recursive formulæ

given after Equation (3) in the main paper. The term E(Z) may written as a function

of φ as before.
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For the SNP representation using the standard exponential base density, we as-

sume that the density of Z∗ = eZ may be approximated by this representation. That

is, the density of Z∗ is represented as hK(z∗) = P 2
K(z∗)E(z∗) = (a0 + a1z

∗ + · · · +

aKz
∗K)2e−z

∗

. Let

r = exp

{
log(t) − XTβ − µ

σv(X,α)
+ E(Z)

}
.

It may then be shown that the conditional density and survival function of T |X are

fK(t |X; β,α,θ) = {tσv(X,α)}−1rP 2
K(r)E(r),

SK(t |X; β,α,θ) =

∫ ∞

r

P 2
K(z) E(z) dz.

(4.24)

Again, the integral in (4.24) is calculable by the recursion described in the main paper.

As r involves E(Z) = E{log(Z∗)}, we present explicitly this calculation for K =

0, 1, 2, where as before a0, a1, a2 are the coefficient in the polynomial PK(z), which are

in turn expressed in terms of φ. With Euler’s constant γ = 0.57721566490153286060,

defining H1 = −γ, H2 = 1 − γ,H3 = 3 − 2γ, H4 = 11 − 6γ, H5 = 50 − 24γ, we have

for K = 0, E(Z) = −γ = H1; for K = 1, E(Z) = a2
0H1 + 2a0a1H2 + a2

1H3; and for

K = 2, E(Z) = a2
0H1 + 2a0a1H2 + (2a0a2 + a2

1)H3 + 2a1a2H4 + a2
2H5.

In fitting this model, one may include α as an additional parameter to be esti-

mated; typically, α will be of low dimension (1 or 2). As noted by Stare et al. (2000),

graphical displays that are standard diagnostic tools for detecting heteroscedasticity

in ordinary uncensored regression (Carroll and Ruppert, 1988) can be misleading,

so it is not prudent to rely on such techniques to suggest starting values. As we

propose “working” variance models such as the exponential model for which α = 0

corresponds to no heterogeneity, we suggest using α = 0 as the starting value in the

“wave” of fits across the grid of φ. Upon inspection of the results, a second “wave”

may be undertaken using a new starting value for α. This process may be iterated

until the analyst feels confident that the procedure has “zeroed in” on a reasonable

fit.

Of course, (4.22) no longer has the usual AFT property that time is simply rescaled

relative to baseline by a function of covariates. See Hsieh (1996) for an interpreta-

tion of (4.22) when X is a vector of treatment indicators and v(x,α) = exp(xTα),
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allowing different location and scale for each treatment, and the goal is to test for

homogeneity of scale, corresponding here to α = 0. More generally, the SNP-based

model offers a convenient framework for detecting heterogeneity, alerting the analyst

that standard methods may be inappropriate.
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Chapter 5

Empirical Studies and Applications

(II)

5.1 Simulation Studies

We report on simulations to evaluate performance of the SNP approach. For all

SNP fits, we consideredKmax = 2 and both the normal and exponential base densities.

In the first set of scenarios, data were generated under the PH model (4.5) with

continuous covariate X uniformly distributed on (0, 1) and 25% independent uniform

right censoring, with true baseline hazard λ0(t) corresponding to a lognormal with

mean 2.9 and scale 0.66; a Weibull with shape 0.9 and scale 25.0; a gamma with shape

and scale 2.0; and a log-mixture of normals found by exponentiating draws from the

bimodal normal mixture 0.3N (0.2, , 0.36)+0.7N (1.8, 0.36). In all cases, the true value

of β = 2.0, n = 200, and 1000 Monte Carlo (MC) data sets were generated. For each,

the PH model was fitted by PL via SAS proc phreg and by the SNP approach, with

comparable results, as shown in Table 5.1(a). The SNP-based AFT and PO models

(4.7) and (4.9) were also fitted to each data set, and Table 5.1(a) summarizes how

often HQ selected each model. Percentages do not necessarily add to 100% across

the three models; because fits with K = 0 and exponential base density lead to the

same value of HQ for the AFT and PH models, HQ supports more than one model

when this configuration is selected, so the percentages reflect the proportions of times
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this occurred. Under the Weibull, selection of the AFT or PH model corresponds to

choosing a PH model (Kalbfleisch and Prentice, 2002, p. 44). “Correct” indicates the

percentage of data sets for which HQ supported selection of the (true) PH model under

these conditions and indicates that inspection of HQ across SNP fits of competing

models can be useful for deducing the appropriate model, a capability that grows

with sample size. The true PH model was identified over 90% of the time for all

distributions when n = 500.

Informally, the information on λ0(t) and β is roughly “orthogonal,” so it is not

unexpected that imposing smoothness assumptions on λ0(t) and fitting the SNP-based

PH model does not yield increased precision for estimating β relative to PL. For the

PH model, the real advantage of the SNP approach is the ease with which it handles

interval- and other arbitrarily-censored data. Under the gamma and log-mixture-

normal scenarios, we generated interval-censored data for each subject by drawing

five random examination times, where the times between each were independently

lognormally distributed, and then generated independently an event time from the PH

model. This led to the percentages of right- and interval-censored data in Table 5.1(a).

Results of fitting the PH model by SNP for 1000 MC data sets with n = 200 show

that the approach leads to reliable inferences.

The second set of scenarios involved a true PO model (4.9) with X and either

independent 25% uniform right censoring or interval censoring as above, β = 2.0 or

−2.0, n = 200, and 1000 data sets generated with f0(t) lognormal with mean and

scale 13.8 and 0.53, log-mixture-normal from 0.3N (1.2, 0.36)+0.7N (−1.8, 0.36), and

Weibull with shape and scale 1.0 and 5.0. From Table 5.1(b), when the true PO

model is fitted via SNP, reliable inferences on β obtain, and HQ is able to identify

the true PO model well except for the Weibull; for this case, performance improves

with increasing sample size.

In the third set of scenarios, data were generated from the AFT model (4.7) with

X as above; β = 2.0; and f0(t) lognormal with mean 0.5 and scale 1.31, Weibull

with shape 2.0 and scale 16.0, gamma with shape and scale 2.0, and the log-mixture

of normals 0.3N (1.2, , 0.36) + 0.7N (−1.8, 0.36) (bimodal). For each of 1000 data

sets with independent uniform right censoring, the AFT model was fitted via SNP;
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the Buckley-James method; and the rank-based method of Jin et al. (2003), with

both logrank and Gehan-type weight functions, using the R function aft.fun (Zhou,

2006). Table 5.2 shows that the SNP method yields reliable inferences and compares

favorably to competing semiparametric methods, achieving marked relative gains in

efficiency in some cases. With n = 200 and 50% censoring, the SNP procedure

continues to perform well. Undercoverage of SNP Wald confidence intervals in the

log-mixture-normal case is resolved for n = 500. The PH and PO models were

also fitted. In all but the gamma scenario, HQ strongly supports the AFT model;

increasing to n = 500 in the gamma case vastly improves identification of the correct

model. The similarity of the gamma distribution to a Weibull may be responsible for

the difficulty the criterion has distinguishing the AFT and PH models for the smaller

sample size.

Byproducts of the SNP approach for any model are estimates of the corresponding

density f0(t) and survival function S0(t). Figure 5.1 shows the 1000 estimates of S0(t)

under two of the AFT scenarios, demonstrating that its true form can be recovered

with impressive accuracy.

We also carried out simulations for the true AFT model for gamma and log-

mixture-normal scenarios under interval censoring, each with 1000 data sets generated

as for the PH model to yield the censoring patterns in Table 5.2. The AFT model

was fitted to each using the SNP approach; as for PH, the results demonstrate the

reliable performance of the method, with undercoverage of confidence intervals for

n = 200 under the log-mixture-normal.

For all three model scenarios, Table 5.3 presents for selected configurations the

number of times each K-base density combination was chosen by HQ when fitting the

true model. Not surprisingly, the normal base density is chosen most often when f0(t)

is lognormal and log-mixture normal, and the exponential base density is preferred

for the Weibull and gamma.

Undercoverage of Wald intervals in some instances with n = 200 in Table 5.2

suggests that the delta method approximation may be less reliable for the AFT model

than for PH and PO. We thus investigated replacing delta method standard errors by

those from a nonparametric bootstrap, where the K-base density for the AFT model
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is chosen by HQ for each bootstrap data set. E.g., for the interval censored log-

mixture scenario, for the first 300 of the 1000 MC data sets, the MC mean, standard

deviation, average of delta method standard errors, and associated coverage are 2.05,

0.26, 0.23, and 90.3, respectively. The MC average of bootstrap standard errors

using 50 bootstrap samples and coverage of the associated interval are 0.28 and 94.3,

suggesting that this approach can correct underestimation of sampling variation.

The foregoing results involved simple models with a single covariate in order to

allow reporting for a number of scenarios with straightforward interpretation. Given

failure to achieve nominal coverage for some settings for the AFT model, further eval-

uation of the SNP-based approach in this case is warranted. Moreover, demonstration

of computational stability and feasibility of the proposed methods for all three models

under more complex conditions is required. Accordingly, we carried out additional

simulations. We report on representative scenarios, each involving 1000 MC data sets

with n = 200 or 500 and 25% independent uniform right censoring and generated

from the AFT model (4.7), where X = (X1, X2, X3)
T with X1 distributed as uniform

on (0,2), X2 Bernoulli with P (X2 = 1) = 0.5, and X3 ∼ N (0.5, 1) and the true value

of β = (2.5, 0.5,−0.8)T . Table 5.4 shows results for fitting the AFT model when

the true f0(t) was lognormal with mean 54.6 and scale 7.3, gamma with with shape

2.0 and scale 6.0, and log-mixture of normals 0.3N (1.2, , 0.36) + 0.7N (−1.8, 0.36)

(bimodal). In all scenarios, no computational issues were encountered for any data

sets, and performance is similar to that for the simpler models above, with analogous

undercoverage of Wald intervals for components of β in some cases. HQ chose K-base

density combinations in proportions similar to those in Table 5.3 in all cases. For the

gamma and log-mixture scenarios with n = 200, we used a nonparametric bootstrap

with 50 bootstrap replicates as described above to obtain alternative standard errors

for the first 300 MC data sets; results are indicated by an asterisk in Table 5.4 and

suggest that, as above, use of bootstrap standard errors to form Wald intervals yields

reasonable performance.

We also carried out analogous simulations under the PH and PO models. Here,

we show results of two representative, analogous simulations when the true model

is the PH or PO model. Each is based on 1000 MC data sets with n = 200 and
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25% independent uniform right censoring. In each case, X = (X1, X2, X3)
T were

generated as before.

In the first scenario, data were generated from the PH model in (4.5) with β =

(1.2, 1.0, 0.2)T and with true λ0(t) corresponding to a gamma with with shape 2.0 and

scale 6.0. In the second scenario, data were generated from the PO model in (4.9) with

β = (1.2,−1.0, 0.2)T and with true f0(t) a log-mixture of normals 0.3N (10, , 0.6) +

0.7N (8, 0.6). Table 5.6 shows the results, where the PH model was also fitted using

PL, which are qualitatively similar to those with a single covariate for these models.

Again, computation was stable and straightforward in every situation we tried, and,

as in the single covariate case reported above, coverage of delta method intervals

achieved the nominal level for both models.

We carried out a small simulation (100 data sets for each scenario) to demonstrate

its value for accommodating and detecting heterogeneity of the “errors” in the AFT

model using (4.22). For each data set with n = 200, iid Zi were generated from the

(bimodal) normal mixture 0.3N (0.21, 0.36) + 0.7N (−0.9, 0.36); Xi were generated

as uniform on (0, 1) as before; and Ti were generated from either (4.7) or (4.22)

with µ = −0.9 and β = 2.0, subject to independent uniform 30% right censoring.

In scenario I, Ti were generated from the usual AFT model (4.7) with σ = 1, and

(4.7) was fitted via SNP. Scenario II was the same as I, except we fitted (4.22) with

v(x, α) = exp(xα). In scenarios III and IV, data were generated from (4.22) with

σ = 0.4 and v(x, α) = exp(x) (α = 1.0); (4.7) was fitted in III and (4.22) with

v(x, α) = exp(xα) was fitted in IV. In scenario V, Ti were from (4.22) with σ = 1

and v(x,α) = α1 +α2x, α = (0.4, 0.7)T , but (4.22) was fitted with v(x, α) = exp(xα)

as in IV, so misspecifying v. In II, IV, and V, α was estimated along with β and

θ. Table 5.5 shows the results. I and IV show that the SNP method yields reliable

performance when the correct model is fitted, while II shows that departures from

homogeneity may be detected. III shows that failure to take account of heterogeneity

has dire consequences, and V demonstrates that the exponential model can detect

heterogeneity even if the working variance model is not of the correct functional form.

To illustrate the feasibility of implementing of the AFT model with time-dependent

covariates using the SNP approach, we conducted a simulation with 1000 MC data
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sets and n = 200 generated to mimic a heart transplant scenario (e.g., Lin and Ying,

1995). For each i, a U(0, 600) waiting time Wi was generated, and T0i was generated

independently from a gamma distribution with shape 10 and scale 40. With Xi(t) = 0

for t < Wi and Xi(t) = 1 for t ≥ Wi, the event time Ti was computed according to

the transformation T0i =
∫ Ti

0
exp{βXi(u)}du with β = −1.0 and was possibly right

censored by an independently generated U(0, 600) censoring time, yielding about

30% censoring. Maximizing the SNP-based loglikelihood (4.15) yielded MC mean

estimated β of −1.00, with MC standard deviation and average of estimated delta

method standard errors both equal to 0.08, and MC coverage of the nominal 95%

Wald interval for β of 93.0%.

Overall, the simulations demonstrate that the SNP approach is computationally

straightforward and yields reliable performance under the “smoothness” assumption

and provides a tool for practical model selection.
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Table 5.1: Simulation results based on 1000 Monte Carlo data sets when the true
model is the PH or PO model with baseline density f0(t). Mean is Monte Carlo mean
of the 1000 estimates of β when the true model is fitted, SD is their Monte Carlo
standard deviation, SE is the average of the 1000 estimated delta method standard
errors, and CP is Monte Carlo coverage probability, expressed as a percent, of 95%
Wald confidence intervals. For right-censored data, SNP and PL indicate fitting
using the SNP approach with K and the base density chosen via HQ and partial
likelihood, respectively. All of the AFT, PH, and PO models were fitted to each data
set under right-censoring; the columns AFT, PH, and PO indicate the percentage of
1000 data sets for which that model was chosen based on HQ, and Correct indicates
the percentage of data sets supporting the PH model; see the text. For interval-
censored data, only SNP was used. (a) PH model: true value of β = 2.0 in all cases.
(b) PO model: true value of β = 2.0 (lognormal, Weibull) or β = −2.0 (log-mixture).

f0(t) n Cens. Method Mean SD SE CP AFT PH PO Cor.

(a) True PH model

Right-censored data

lognormal 200 25% SNP 2.02 0.32 0.31 95.4 9.4 86.5 5.2 86.5
PL 2.00 0.32 0.32 96.3

Weibull 200 25% SNP 2.02 0.31 0.31 95.5 86.7 88.0 2.8 97.2
PL 2.01 0.32 0.32 96.3

gamma 200 25% SNP 2.06 0.32 0.31 94.3 66.8 81.6 6.3 81.6
PL 2.02 0.32 0.32 95.2

log-mixture 200 25% SNP 2.04 0.34 0.33 94.9 2.4 73.6 24.0 73.6
PL 2.02 0.33 0.33 95.5

Interval-censored data

gamma 200 18% right, SNP 2.04 0.30 0.29 93.9
82% interval

log-mixture 200 20% right, SNP 2.04 0.30 0.30 94.8
80% interval

(b) True PO model

Right-censored data

lognormal 200 25% SNP 2.01 0.18 0.18 94.6 0.7 2.2 97.1 97.1
Weibull 200 25% SNP 2.00 0.46 0.45 94.6 29.4 19.7 65.1 65.1
log-mixture 200 25% SNP −1.99 0.46 0.45 95.3 1.4 15.4 83.2 83.2

Interval-censored data

log-mixture 200 20% right, SNP −2.01 0.48 0.47 95.7
80% interval
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Table 5.2: Simulation results based on 1000 Monte Carlo data sets when the true
model is the AFT model with baseline density f0(t). For right-censored data, SNP,
BJ, Gehan, and LR indicate fitting using the SNP approach with K and the base
density chosen via HQ, the Buckley-James method, and the rank-based method of
Jin et al. (2003) using Gehan-type and log-rank weight functions, respectively. All
other entries are as in Table 5.1. For interval-censored data, only SNP was used. True
value of β = 2.0 in all cases.

f0(t) n Cens. Method Mean SD SE CP AFT PH PO Cor.

Right-censored data

lognormal 200 25% SNP 2.02 0.27 0.26 94.4 80.2 8.0 12.3 80.2
BJ 2.02 0.27 0.26 94.2

Gehan 2.02 0.27 0.28 95.3
logrank 2.01 0.29 0.29 94.7

200 50% SNP 2.02 0.30 0.30 93.3
Weibull 200 25% SNP 2.00 0.14 0.15 95.9 71.0 88.7 1.1 98.9

BJ 2.00 0.18 0.19 96.3
Gehan 2.00 0.17 0.17 95.7
logrank 2.00 0.14 0.15 96.1

200 50% SNP 2.01 0.20 0.20 94.8
gamma 200 25% SNP 2.00 0.20 0.19 94.0 65.0 66.4 11.4 65.0

BJ 2.00 0.22 0.23 96.0
Gehan 2.00 0.21 0.22 95.4
logrank 2.00 0.20 0.21 95.4

200 50% SNP 2.00 0.26 0.24 92.9
500 25% SNP 2.00 0.06 0.06 94.0 98.8 1.2 0.0 98.8

log-mixture 200 25% SNP 1.99 0.19 0.18 91.9 100.0 0.0 0.0 100.0
BJ 1.99 0.42 0.28 80.5

Gehan 1.99 0.29 0.29 95.6
logrank 2.00 0.41 0.43 96.5

200 50% SNP 1.98 0.23 0.22 91.5
500 25% SNP 2.00 0.05 0.05 94.8
500 50% SNP 2.00 0.06 0.06 93.5

Interval-censored data

gamma 200 20% right, SNP 2.01 0.22 0.21 92.2
80% interval

gamma 500 16% right, SNP 2.00 0.06 0.06 94.7
84% interval

log-mixture 200 17% right, SNP 2.05 0.27 0.23 90.3
83% interval

log-mixture 500 17% right, SNP 2.00 0.07 0.06 94.0
83% interval
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Table 5.3: Numbers of times each K-base density combination was chosen by the HQ
criterion when fitting the true model (PH, AFT, PO) for selected configurations in
Tables 5.1 and 5.2.

Base Density Standard Normal Standard Exponential
K K

f0(t) n Cens. 0 1 2 0 1 2

True PH Model

lognormal 200 25% 873 43 19 11 33 21

Weibull 200 25% 9 0 35 854 74 28

gamma 200 25% 140 12 33 644 143 28

log-mixture 200 25% 239 26 721 0 0 14

gamma 200 18% right, 302 28 8 645 12 5

82% interval
log-mixture 200 20% right, 505 62 241 9 6 177

80% interval

True AFT Model

lognormal 200 25% 873 49 18 10 30 20

Weibull 200 25% 3 0 24 890 54 29

gamma 200 25% 65 16 49 624 212 34

log-mixture 200 25% 0 153 847 0 0 0

gamma 200 20% right, 223 32 17 640 68 20

80% interval
log-mixture 200 18% right, 0 567 432 0 0 1

82% interval

True PO Model

lognormal 200 25% 878 81 19 0 6 16

Weibull 200 25% 31 3 40 830 82 14

log-mixture 200 25% 0 225 774 0 0 1

log-mixture 200 18% right, 0 620 350 0 6 24

82% interval
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Table 5.4: Simulation results for the SNP approach based on 1000 Monte Carlo data
sets when the true model is the AFT model with baseline density f0(t) and multiple
covariates under right censoring. Entries are as in Table 5.1. The True β column gives
the true values of the elements of β. Entries with an asterisk (∗) at the sample size
indicate results for the first 300 Monte Carlo data sets, for which both delta method
and nonparametric bootstrap standard errors were used, where SEboot and CPboot

denote the average of bootstrap standard error and Monte Carlo coverage probability
expressed as a percent, of 95% Wald confidence intervals using the bootstrap standard
errors, respectively. For each scenario, NK and EK , K = 0, 1, 2, indicate the number
of times the configuration of normal (N) or exponential (E) base density with the
indicated K was chosen by HQ.

f0(t) n Cens. True β Mean SD SE CP SEboot CPboot

lognormal 200 25% 2.5 2.51 0.27 0.26 94.8
0.5 0.49 0.15 0.15 93.5

-0.8 -0.81 0.30 0.29 94.6
(N0 = 853, N1 = 64, N2 = 19, E0 = 8, E1 = 38, E2 = 18)

gamma 200 25% 2.5 2.50 0.16 0.11 93.3
0.5 0.50 0.06 0.06 92.3

-0.8 -0.80 0.12 0.11 92.1
(N0 = 50, N1 = 16, N2 = 60, E0 = 594, E1 = 237, E2 = 43)

200∗ 25% 2.5 2.50 0.11 0.11 93.3 0.13 96.0
0.5 0.51 0.07 0.06 92.7 0.07 95.0

-0.8 -0.79 0.12 0.11 91.3 0.13 96.3

500 25% 2.5 2.50 0.07 0.07 93.7
0.5 0.50 0.04 0.04 93.1

-0.8 -0.80 0.07 0.07 93.8
(N0 = 0, N1 = 3, N2 = 68, E0 = 418, E1 = 464, E2 = 47)

log-mixture 200 25% 2.5 2.49 0.10 0.09 94.1
0.5 0.50 0.06 0.05 92.8

-0.8 -0.80 0.11 0.10 91.8
(N0 = 0, N1 = 197, N2 = 803, E0 = 0, E1 = 0, E2 = 0)

200∗ 25% 2.5 2.49 0.09 0.09 95.3 0.10 96.7
0.5 0.50 0.06 0.05 93.0 0.06 94.0

-0.8 -0.80 0.11 0.10 91.7 0.11 93.0

500 25% 2.5 2.49 0.06 0.06 94.7
0.5 0.50 0.03 0.03 94.7

-0.8 -0.80 0.07 0.06 94.5
(N0 = 0, N1 = 16, N2 = 984, E0 = 0, E1 = 0, E2 = 0)
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Figure 5.1: SNP estimates of S0(t) for the AFT model based on 1000 Monte Carlo data
sets, with the true S0(t) (white solid line) and average of 1000 estimates (dashed line)
superimposed. (a) log-normal mixture scenario with n = 500, 50% right censoring.
(b) gamma scenario with n = 200, 25% right censoring.
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Table 5.5: Simulation results based on 100 Monte Carlo data sets under different
scenarios involving possible “heteroscedastic” errors in the AFT model (4.22). Sce-
narios I–V are described in the text; table entries are as described in the tables for
estimation of each of the parameters µ, β, α.

µ (true=-0.9) β (true=2.0) α

Mean SD SE CP Mean SD SE CP Mean SD SE CP

I -0.92 0.15 0.14 0.95 2.03 0.18 0.18 0.94

II -0.91 0.14 0.15 0.94 2.01 0.22 0.23 0.96 -0.03 0.18 0.17 0.95

III -0.75 0.11 0.09 0.66 1.51 0.22 0.12 0.08

IV -0.90 0.06 0.07 0.96 2.01 0.15 0.16 0.93 0.97 0.15 0.16 0.94

V -0.91 0.06 0.07 0.97 2.03 0.16 0.18 0.95 0.99 0.16 0.17

5.2 Applications

5.2.1 Cancer and Leukemia Group B Protocol 8541

Lin et al. (2006) discuss Cancer and Leukemia Group B (CALGB) protocol 8541,

a randomized clinical trial comparing survival for high, moderate, and low dose regi-

mens of cyclophosphamide, adriamycin, and 5-flourouacil (CAF) in women with early

stage, node-positive breast cancer. Following the primary analysis, interest focused on

the prognostic value of baseline characteristics. We consider estrogen receptor (ER)

status; ER-positive tumors are more likely to respond to anti-estrogen therapies than

those that are ER-negative. ER status is available for 1437 of the 1479 subjects, of

whom 64% were ER-positive, with 64% right-censored survival times. Figure 1 of Lin

et al. (2006) suggests that the relationship of survival to ER status does not exhibit

proportional hazards, a finding corroborated by their spline-based test for departures

from proportional hazards (p-value< 0.001).

We fit the AFT, PH, and PO models with binary covariate Xi (=1 if ER-positive)

using SNP; here and in Section 5.2.2 we considered the normal and exponential base

densities and Kmax = 2. The HQ criterion was 10177, 10197, and 10192 for the pre-

ferred K-base density combinations for AFT, PH, and PO, respectively. Both the PL

and SNP fits of the PH model yielded an estimated hazard ratio of 0.77. The AFT
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Table 5.6: Simulation results based on 1000 Monte Carlo data sets when the true
model is PH or PO. Table entries are as described in the tables for estimation of β

(3 × 1).

f0(t) n Cens. Method True β Mean SD SE CP

PH model

gamma 200 25% SNP 1.2 1.24 0.31 0.30 94.7

1.0 1.05 0.18 0.18 94.2

0.2 0.21 0.09 0.09 94.9

(N0 = 137, N1 = 8, N2 = 31, E0 = 681, E1 = 115, E2 = 28)

PL 1.2 1.22 0.31 0.30 94.8

1.0 1.03 0.18 0.18 95.0

0.2 0.21 0.09 0.09 95.4

PO model
log-mixture 200 25% SNP 1.2 1.24 0.24 0.23 95.4

-1.0 -1.02 0.27 0.27 95.3

0.2 0.21 0.13 0.13 95.4

(N0 = 5, N1 = 125, N2 = 850, E0 = 0, E1 = 0, E2 = 20)
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model is best supported by the data, consistent with the evidence discrediting the

PH model. The preferred AFT fit takes K = 1 with normal base density, with an

estimate of β of 0.45 (SE 0.08). Here, the effect of a covariate is multiplicative on time

itself rather than on the hazard, leading to the interpretation that failure times for

ER-positive women are “decelerated” relative to those for ER-negative women: the

probability that an ER-positive woman survives to time t is the same as the prob-

ability that an ER-negative woman survives to time 0.64t, so that, roughly, being

ER-negative curtails survival times by 64% relative to being ER-positive. A possi-

ble explanation is that ER-positive women may have received anti-estrogen therapy

during follow-up, enhancing their survival.

For demonstration of analysis under a more complex model in practice, we fit

PH, PO, and AFT models to the CALGB 8541 data involving a linear predictor in

several covariates X. As the primary analysis found no difference between the high

and moderate doses of CAF, with both superior to the low dose, we considered the

treatment indicator X1 = 1 if high-moderate dose and 0 if low dose. We also included

X2 = 1 if the woman was ER-positive, = 0 otherwise; X3 = 1 if the woman was

post-menopausal, = 0 otherwise; X4 = tumor size (cm); and X5 = number of histo-

logically positive lymph nodes found. Letting X = (X1, X2, X3, X4, X5)
T , we fit the

SNP-based PH, PO, and AFT models to the data from the 1429 subjects for whom

all five covariates are available; for comparison, we also fit the PH model via PL using

SAS proc phreg, and the AFT model assuming f0(t) is lognormal using SAS proc

lifereg. The results are shown in Table 5.7. Note that for the AFT model, HQ

chooses the normal base density but with K = 1, suggesting that, if one assumes this

model, the parametric lognormal model is not appropriate. Estimates and standard

errors for the SNP-based (via the delta method) and traditional fits of the PH and

AFT models are comparable. Looking across models, the HQ criterion indicates sup-

port for the PO model, with normal baseline density f0(t), over the other two models.
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Table 5.7: Fits to the CALGB data. Base-K shows the base density-K combination
chosen by the HQ criterion for the indicated model, and HQ gives the value of the
criterion for the preferred choice. Est denotes the estimate of the corresponding
component of β, and SE denotes either delta method (SNP) or usual (PL, likelihood)
standard errors.

Model Method Base-K HQ X1 X2 X3 X4 X5

PH SNP normal-1 10033 Est −0.234 −0.269 −0.104 0.181 0.058
SE 0.091 0.090 0.089 0.036 0.006

PL Est −0.239 −0.271 −0.111 0.182 0.057
SE 0.091 0.090 0.089 0.036 0.006

PO SNP normal-0 10016 Est −0.303 −0.402 −0.177 0.231 0.090
SE 0.114 0.113 0.111 0.046 0.010

AFT SNP normal-1 10019 Est 0.185 0.339 0.146 −0.140 −0.058
SE 0.074 0.072 0.071 0.030 0.007

lognormal ML Est 0.206 0.292 0.116 −0.148 −0.057
SE 0.076 0.074 0.073 0.031 0.007

5.2.2 Breast Cosmesis Study

The famous breast cosmesis data (Finkelstein and Wolfe, 1985) involve time to

cosmetic deterioration of the breast in early breast cancer patients who received ra-

diation alone (X = 0, 46 patients) or radiation+adjuvant chemotherapy (X = 1, 48

patients). Deterioration times were right-censored for 38 women. Times for the 56

women experiencing deterioration were interval-censored due to its evaluation only

at intermittent clinic visits. Numerous authors have used these data to demonstrate

methods for interval censored data.

We fitted the AFT, PH, and PO models using the SNP approach, obtaining HQ

values of 309, 309, 317, respectively, for the chosen K-base density combination,

supporting AFT and PH. The preferred fit for each uses K = 0 and the exponential

base density; this configuration is equivalent to a Weibull regression model, for which

the PH and AT models are the same. This is consistent with the adoption of the

PH (e.g., Goetghebeur and Ryan, 2000; Betensky et al., 2002) or AFT (e.g., Tian
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Figure 5.2: Estimated survival functions for time to cosmetic deterioration for the
radiation only group (solid line) and radiation+chemotherapy group (dashed line)
based on the SNP fit of the PH (AFT) model to the breast cosmesis study data.

and Cai, 2006) models by many authors. The SNP estimate of β = 0.95 (SE 0.280)

in (4.5) is consistent with the results from several methods for fitting the PH model

with interval censored data reported by Goetghebeur and Ryan (2000) and Betensky

et al. (2002). The corresponding Wald statistic for testing β = 0 is 3.35, in line with

the score statistic of Finkelstein (1986) of 2.86 and Wald statistics implied in Table 2

of Goetghebeur and Ryan (2000). Figure 5.2 shows the SNP estimates of S(t |X = 0)

and S(t |X = 1) based on the PH fit; compare to Figure 1 of Goetghebeur and Ryan

(2000).
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Chapter 6

Discussion

6.1 Discussion (I)

In Chapters 2 and 3, we have proposed a general approach to using auxiliary base-

line covariates to improve the precision of estimators and tests for general measures

of treatment effect and general null hypotheses in the analysis of randomized clinical

trials by using semiparametric theory.

We identify the optimal estimating function involving covariates within the class

of such estimating functions based on a given m(Y, Z; θ). For differences of treatment

means or measures of treatment effect for binary outcomes, this estimating function

in fact leads to the efficient estimator for the treatment effect. In more complicated

models, e.g., repeated measures models, we do not identify the optimal estimating

function among all possible. Our experience in other problems suggests that gains

over the methods here would be modest.

The use of model selection techniques, such as forward selection in our simulations,

to determine covariates to include in the augmentation term models should have no

effect asymptotically on the properties of the estimators for θ. However, such effects

may be evident in smaller samples, requiring a “correction” to account for failure of

the asymptotic theory to represent faithfully the uncertainty due to model selection.

Investigation of how approaches to inference after model selection (e.g., Hjort and

Claeskens, 2003; Shen, Huang and Ye, 2004) may be adapted to this setting would
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be a fruitful area for future research.

6.2 Discussion (II)

In Chapters 4 and 5, we have proposed a general framework for regression analysis

of arbitrarily censored time-to-event data under the mild assumption of a “smooth”

density for model components ordinarily left unspecified under a semiparametric per-

spective. The methods are straightforward to implement using standard optimization

software, and computation is stable across a range of conditions. A SAS macro is

available from the first author. Although we focused on the PH, AFT, and PO models,

the approach allows any competing models, such as generalizations of (4.7), models

with nonlinear covariate effects, and linear transformation models to be placed in a

common framework, providing a basis for model selection. Standard errors and Wald

confidence intervals may be obtained using standard parametric asymptotic theory

in most cases; however, this approximation is less reliable for the AFT model, so we

recommend using a nonparametric bootstrap with small samples/numbers of failures

in this case. A rigorous proof of consistency and asymptotic normality of the estima-

tors for β and functionals of f0(t) in the general censored-data regression formulation

here is an open problem.

It should be possible to adapt the approach to problems involving both censor-

ing and truncation (Joly et al., 1998; Pan and Chappell, 2002). Because with the

SNP representation f(t|X; β) and S(t|X; β) are in “parametric” form, the likelihood

function is straightforward under the usual assumption that censoring and truncation

are independent of event time.

A further advantage, not illustrated here, is that an efficient rejection sampling

algorithm for simulation from a fitted SNP density is available (Gallant and Tauchen,

1990). This may be used to simulate draws from the fit of f0(t) under the preferred

model and hence draws of Ti from f(t |X) for any X, allowing any functional of this

distribution to be approximated.
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