
ABSTRACT 
 
ATTIOGBE, CYRIL EFOE. On Characterizing Nilpotent Lie algebras by their  
 
Multipliers. (Under the direction of Ernest L. Stitzinger.) 
  

                  Authors have turned their attentions to special classes of nilpotent Lie 

algebras such as two-step nilpotent and filiform Lie algebras, in particular filiform Lie 

algebras are classified up to dimension eleven [8]. These techniques have not worked 

well in higher dimensions. For a nilpotent Lie algebra L, of dimension n, we consider 

central extensions 0 M C L 0 with M⊆ c2∩Z(C), where c2 is the derived algebra of 

C and Z(C) is the center of C. Let M(L) be the M of largest dimension and call it the 

multiplier of L due to it’s analogy with the Schur multiplier. The maximum dimension 

that M can obtain is  ½ n(n-1) and this is met if and only if L is abelian.                         

Let t(L) = ½ n(n-1) - dimM(L). Then t(L) =1 if and only if L=H(1), where H(n) is the 

Heisenberg algebra of dimension 2n + 1.   

A recent technique to classify nilpotent Lie algebra is to use the dimension of the  
 
multiplier of L. In particular, to find those algebras whose multipliers have dimension  
 
close to the maximum, we call this invariant t(L). Algebras with t(L) ≤ 8 have been  
 
classified [10]. It’s the purpose of this work to use this technique on filiform Lie algebras  
 
along with three main tools namely: Propositions 0, 3,  and theorem 4. All algebras in this  
 
work will be taken over any field whereas in previous works, they have been taken over  
 
the field of real and complex numbers. 
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1.  Introduction 
 
            The classification of nilpotent Lie algebra has a long history, beginning with  
 
Umlauf, a student of Engel, in 1891.  He found there were only finitely many non- 
 
isomorphic nilpotent Lie algebras of dimension less than or equal to 6.  For dimensions  
 
greater than 6, there are infinitely many non-isomorphic Lie algebras [1], [9].  In recent  
 
years lists of Lie algebras of dimensions 7 and 8 have been studied [9].  Unfortunately,  
 
these lists contain errors as noted by [8], the list of Lie algebra of dimension 7 have been  
 
corrected  more recently as noted in a complete list of nilpotent Lie Algebras of  
 
dimension 7 found in [9],  dimensions of  8 and higher have been harder to classify. 
 
            Authors have turned their attentions to special classes of nilpotent Lie algebras  
 
such as two-step nilpotent [9], and filiform Lie algebras [8].  In particular filiform  
 
lie algebras are classified up to dimensions eleven [8].  These techniques have not  
 
worked well in higher dimensions.  A recent technique to classify nilpotent lie algebras is  
 
to use the dimension of the multiplier of L.(Note: We will define The Multiplier in the  
 
next section). In particular, to find those algebras whose multipliers have dimension close  
 
to the maximum, we call this invariant t(L). The philosophy of this work is to collect the  
 
algebras for values of t(L) and use those to find the next case. This is done for a given  
 
t(L) by considering H=L/Z(L) which has t(H) ≤ t(L) and is filiform. From the previous  
 
cases found in table 22.1, we choose candidates for H and compute the central extensions  
 
to get candidates for L. Algebras with t(L)≤ 8 have been classified in [10]. It’s the  
 
purpose of this work to use this technique on filiform lie algebras. Note: All algebras in  
 
this work will be taken over any field whereas in previous works, they have been  
 
taken over the field of real and complex numbers. 
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2. Preliminaries. Now we will  define The Multiplier of L: 
 
Consider all Lie algebras H such that H/Z(H) ≃ L. H is called a central extension of L .  
 
We want to consider the H of largest dimension. Without further restrictions H can be  
 
infinite, take L⊕ (infinite dimensional abelian Lie algebra) so we demand that Z(H) ⊆  
 
H2. An H of largest dimension is called a cover and Z(H) is called the multiplier of L,  
 
denote it by M(L). We see that M(L) is abelian since it is the center of some H.                                                
 
Note: 1. All covers of L are isomorphic (Peggy Batten) 
       
          2. If L is abelian then dim M(L) =  ½n(n-1) where n=dim L. 
   
          3. dim M(L) ≤  ½n(n-1) ∀ L. 
 
We let  t = t(L) = ½n(n-1) –dim M(L). 
    
 
Definition. Let L be a nilpotent Lie algebra with lower central series 
 
L1 = L, L2 = [L1, L], … , L j = [L j-1, L]… 
 
with Ls = 0, then L is called filiform if dim Lj/Lj+1 = 1 
 
For j = 2,…, s-1, and dim L/L2 = 2. 
 
Note that L is the maximal length a nilpotent Lie algebra can have. 
 
Also note the upper central series 
 
0 = Z0 ⊂ Z1 ⊂ … ⊂ Zs-1 ⊂ Zs = L has dimension Zj+1/Zj = 1 
                                                   
when j=0,…, s-2 and dim L/Zs-1 = 2.   
 
In a nilpotent Lie algebra Z1∩  B ≠ O for any  
 
ideal B≠0, hence Z1 ⊆ B since O ⊄ Z1∩ B ⊆ Z1 and dim Z1 = 1 
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The following are examples of filiform lie algebra: 
 
Ex 1 
  
Let L = (x,y,z) where [x,y] = z 
 
 L2 = (z), L3 = [L2,L] = 0,   Z(L) = (z)  ⇒ L ⊃ L2 ⊃ L3=0 
 
L is H(1) the three dimensional Heisenberg. 
 
Ex 2 
 
L = (x,y,z,c) where [x,y] = z, [x,z] = c 
 
L2 = (z,c), L3 = [L2,L] = c,     L4 = [L 3, L] = 0  ⇒ Z(L) = (c) 
                ⇒ L ⊃ L2 ⊃ L3 ⊃ L4 = 0 
Ex 3 
 
L = (x,y,z,c,r) where [x,y] = z, [x,z] = c, [x,c] = r, [y,z] =r 
  
L2 = (z,c,r), L3 = (c,r), L4 = (r), L5 = 0  ⇒ L1  ⊃ L2 ⊃ L3 ⊃ L4 ⊃ L5 = 0 
 
Ex 4 
 
The following is not filiform. Tn = strictly upper triangular matrices of size n ≥ 4. Since  
 
Dim(T/T2) = n-1. 
 
We will use the technique in [10] on filiform Lie algebra to classify Lie  
 
Algebras with small t(L). Recall t=t(L).   
 
We will begin by introducing some inequalities necessary to our method. 
 
Proposition 0  Let L be a nilpotent Lie algebra of dimension n. Then t ≤ ½ n(n-1) 
 
 
Proof: Since dimM(L) ≤  ½ n(n-1), t = ½  n(n-1) - dimM(L) this implies t ≤½ n(n-1)  ■ 
 
Proposition 1  Let L be a nilpotent Lie algebra of dimension n.  
 
Then dim L2 + dim M(L) <  ½ n(n-1) 
 
Proof:  see [10] 
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Proposition 2   Let L be a nilpotent Lie algebra with Z ⊆ Z(L) ∩ L2 and dim Z = 1  
 
then dim M(L) + 1 < dim M(L/Z) + dim (L/L2) 
 
Proof:  see [10] 
 
 
Proposition 3  Let L be filiform Lie algebra of dimension n.  
 
Let K = Z(L) and H = L/K   then t(H) + dim L2 <  t(L) 
 
Proof:    Since L is filiform, dim K = 1, we know that t(L) = ½n(n-1) – dim M(L) 
 
⇒ dim M(L)= ½n(n-1) – t(L) 
 
now substitute for dim M(L) in Prop 2 [ie dim M(L) + 1 <  dim M(L/Z) + dim (L/L2)] 
 
⇒ ½n(n-1) – t(L) + 1 < dim M(L/Z) + dim L – dim L2 

 
⇒ ½n(n-1) – t(L) + 1 <  dim  M(H) + n – dim L2                        (i) 
 
note:  dim M(H) = M(L) – 1. Thus if dim M(L) = ½n(n-1) – t(L) 
 
then dim M(H) = ½(n-1) (n-2) – t(H)                                           (ii) 
 
now substitute (ii) in (i) 
 
⇒ ½ n(n-1) – t(L) + 1 <  ½(n-1)(n-2) – t(H) + n – dim L2 
 
⇒ t(H) + dim L2 < -½n(n-1) + t(L) – 1 + ½(n-1)(n-2) + n 
    
                            = -½n2 + ½n + t(L) – 1 + ½[n2 – 3n + 2] + n  
    
                            = -½n2 + ½n + t(L) – 1 + ½ n2 –3/2n + 1 + n 
    
                            = ½ n + t(L) – ½ n = t(L) 
 
thus t(H) + dim L2 <  t(L)  ■ 
 
 
 
Proposition 4  Let L be nilpotent.  Then dim L2 < t(L) 
 
Proof:   This follows immediately from Proposition 3. 
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From Pete Hardy’s work and using propositions 1, 2 and 3,  
 
we arrive at the following theorems. 
 
 
Theorem 1  t(L) = 0  IFF L is abelian.   
 
Proof: see [10] 
 
 
 
Note: L is abelian and filiform implies dim L = 2. 
 
 
Theorem 2  t(L) = 1 IFF L = H(1). 
 
Proof; see [10] 
 
  
 
Note:  that H(1)  is indeed filiform Lie algebra . See example 1 
 
 
Theorem 3  There are no filiform Lie algebras with t(L)=2 
 
Proof: see [10] 
  
 
 
We will take advantage of the following new results. 
 
 
Theorem 4  Let L be a Lie algebra, then  c2 + c <  2t   
 
where  c = dim L2 

 

 
Proof: In order to prove theorem 4 we need the following result. 
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Theorem 5 Let L be a nilpotent Lie algebra with H/Z(H) ≃ L. Then dim(H2∩ Z(H)) ≤  
 
dim M(L/L2)+ dim L2[d(L/Z(L)-1] where d(X)=dim(X/X2) thus  
 
d(L/Z(L))=dim{(L/Z(L))/(L/Z(L))2}. 
 
Proof: In general if H/Z(H) ≃ L but Z(H) ⊄ H2, H= H*⊕ S where S is a central ideal and   
 
Z(H)= Z(H*) ⊕ S,  H2∩ Z(H) = H* 2∩ Z(H*) and L ≃ H/Z(H) = (H*⊕ S)/(Z(H*)⊕ S) ≃  
 
H*/Z(H*). Hence we assume that H2 ⊇ Z(H) 
 
We break the process into a collection of  Lemmas. Let H  be a nilpotent Lie algebra with 
 
Z1= Z1(H) ={x ∊ H/ [x,y]=0 ∀ y∊H}   
 
Z2= Z2(H) ={x ∊ H/[x,y] ∊ Z1(H) ∀ y ∊H},  Z2(H)/ Z(H) ≃Z(L)   
 
Since H is nilpotent, if H is not abelian then 0 ⊂ Z1⊂ Z2 and 0 ≠ Z1 ≠ Z2. 
 
 
Lemma 1. Let y ∊ Z2 , y ∉ Z1, then ady is a homomorphism from H onto N where  
 
N⊆Z1. 

 
Proof:  Since ady is linear we need to prove that ady([x, z]) = [ady(x), ady(z)] 
 
Note y ∊ Z2 implies ady(h)=[y, h] ∊ Z1 hence N⊆Z1  
 
Thus ady([x, z])=[y, [x, z]]= -[x, [y, z]] - [z1, [x,y]]=0 
 
Also ady(x)=[y, x] ∊ Z1 and ady(z)=[y, z] ∊ Z1 which implies  [ady(x), ady(z)]=0  ■ 
 
 
 
Lemma  2.  [H2, Z2]=0  
 
Proof:  Need to show that if [x, y] ∊ H2 and z ∊ Z2 then [[x, y], z] = 0 
 
Note: H2= <[x, y]> where x, y ∊ H  
 
now consider [[x, y], z] +[[y, z], x] + [[z, x], y] = 0   
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this implies  [[x, y], z] = -[[y, z], x] - [[z, x], y] = 0 since [y, z] ∊ Z1 and [z, x] ∊ Z1. ■  
 
Lemma 3. Suppose y ∊ Z2 ∩ H2 , y ∉ Z1, then Z2 ⊆ Ker ady 
 
Proof:  Let z ∊ Z2  we need to show that z ∊ Ker ady which implies that ady(z) = [y, z] = 0  
 
∀ y ∊ H2 ∩ Z2.  
 
Since z ∊ Z2  ady(z) = [y, z],  [H2, Z2] = 0  ■ 
 
 
By Lemma 3 there is an induced homomorphism σ: H/Z2(H)  N given by 
 
σ(ℓ+ Z2(H)) = ady(ℓ)=[y, ℓ]. Now the theorem holds if k(L) ≡ dim L2 =0 for then  
 
H2⊆Z(H) i.e., Z(H) ∩ H2= H2. We proceed by induction: Suppose the result holds for all  
 
nilpotent  Lie algebras K with dim K2 < dim L2 and dim(K/K2) ≤ dim(L/L2). 
 
 
 
Lemma 4.  DimM(K/K2) ≤ dim M(L/L2)  
 
Proof: Since dim K2 < dim L2 and dim(K/K2) ≤ dim(L/L2) letting dim(K/K2) = n and  
 
dim(L/L2) = m it follows that  dimM(K/K2) = ½n(n-1) ≤ dim M(L/L2) =  
 
½m(m-1).  ■ 
 
 
Now let y and N be as before (see Lemma 1). Since L/Z(L) ≃ H/Z2(H) and σ is a  
 
homomorphism from  H/Z2(H) onto N,  we consider σ also to be a homomorphism from  
 
L/Z(L) onto N therefore σ(L/Z(L))2=N2=0 therefore (L/Z(L))2 ⊆ Ker (σ). 
 
 
 
 
Lemma 5.  dim N ≤ dim(L/Z(L)) – dim(L/Z(L))2 = dim{(L/Z(L))/(L/Z(L))2} 
 
Proof: Since σ maps L/Z(L) onto N it follows that dim(L/Z(L))=dim N + dim Ker(σ)≥  
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dim N + dim(L/Z(L))2, since {(L/Z(L))2≤ Ker (σ).}■ 
 
Lemma 6. Let E=H/N then, (i) y+  N ⊆ Z(E)  and (ii) y + N ∉ Z(H)/N.  
 
(iii) dim Z(H)/N⊊dim(Z(H/N)) 
 
Proof: (i) This follows since [x + N, y + N] = [x, y] + N = ady(x) + N = N 
           
           (Since ady(x) ∈ N i.e. N = image of  ady) 
            
           (ii) Recall that y ∉ Z(H) (=Z1) 

      
      Suppose that y + N ∈ Z(H)/N. This implies that y + N = x + N,  for some                                             
      
     x ∈Z(H) .  Therefore  y = x + n for some n ∈ N. Thus y ∈ Z(H), a  contradiction. 

 
          (iii)Since Z(H)/N is always contained in Z(H/N), we get Z(H)/N⊊      
 
 Z(H/N) by (i), (ii) of Lemma 6  ■ 

 Let A ≡ E /Z(E) then L ≃ H/Z(H) ≃ (H/N)/(Z(H)/N)  (H/N)/(Z(H/N)) = E/Z(E)=A 
 
Hence  A  is the homomorphic image of L and dim A  < dim L by the last proof. Hence  
 
A/(A)2 is a homomorphic image of L/L2 and  A/Z(A) is a homomorphic image of L/Z(L)  
 
and (A)2 is a homomorphic image of L2. In fact we use induction on A. Note this  
 
discussion yields:   
 
 
Lemma 7.  dim(A/ (A)2) ≤ dim(L/L2) and dim (A)2 ≤ dim L2                           

Proof : Recall y ∈ Z2 ∩ H2 , y ∉Z1 and y + N ⊆  Z(H/N) since N = image ady. So in the  
 
homomorphisms  L≃ H/Z(H)  A , the image of y in L is in L2 but it is not 0 but it’s  
 
image in A is 0. Hence the homomorphism carries L2 onto A2 and it is not  
 
injective. Thus dim L2 > dim A2. By induction dim(E2∩ Z(E))≤ dimM(A/A2) + dim A2 

 

dim[(A /Z(A))/(A/Z(A))2 – 1]. 
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By a previous “ proof ” dimM(A/A2) ≤ dimM(L/L2) and we have seen dim (A)2 < dim L2. 
 
Since  A /Z(A) is the homomorphic image of L,  
 
dim[(A /Z(A))/(A/Z(A))2] ≤ dim[(L/Z(L))/(L/Z(L))2]. Substitution yields  

dim [(E)2∩ Z(E)] ≤ dim M(L/L2) + [dim(L2) – 1] {dim[(L/Z(L))/(L/Z(L))2 – 1]} 

Now y + N ∈ Z(E) ∩ (E)2 and y+N ∉ H2∩ Z(H)/N and since the latter  

is always contained in the former, dim H2 ∩ Z(H)/N <dim [(E)2∩  

Z(E]. Thus dim[(E )2∩ Z(E)]≤ dim N + dim((E)2∩ Z(E)) –1 

          ≤ dim[(L/Z(L))/(L/Z(L))2] +  dim M(L/L2) + [dim(L2) – 1] 

                            [dim((L/Z(L))/(L/Z(L))2 – 1] – 1   

= dim M(L/L2) – dim L2 + dim L2 dim[(L/Z(L))/(L/Z(L))2–1] 

= dim M(L/L2) + dim L2[dim[(L/Z(L))/(L/Z(L))2]and the result is shown.                           

( Note that we have used the fact that ady is a homomorphism from H onto N and N ⊆ Z1  

by lemma 1 as a consequence N is abelian and by lemma 3  Z2 ⊆ Ker ady . Consequently  

we have an induced homomorphism from H/Z2(H)  N and an induced homomorphism  

from (H/Z2(H))/(H/ Z2(H)2)  N/N2≃N. Therefore dim N ≤ dim[(L/Z(L))/(L/Z(L))2].) ■                                

 

When working with M(L), H2 ⊇ Z(H) so the formula is dim M(L/L2) = dim H2 ∩ Z(H)≤  

dimM(L/L2) + dim L2[ dim[(L/Z(L))/(L/Z(L))2] or  ½n(n-1) – t ≤ ½ d(d –1) + c[δ – 1]  

where c = dim L2 , d = dim(L/L2) (c + d=n) dim L = n and δ = dim[(L/Z(L))/(L/Z(L))2]. 

 

We can now prove theorem 4.  

Proof:  Note: dim L2 = c, dim L = n where L2 ⊇ Z(L) . For Lie algebra n = c + d 

δ = dim(L/Z(L)) – dim(L2/Z(L)) = dim(L/L2) we also know from the definition of t = t(L)  

that dimM(L) = ½ n(n-1) – t and now substituting for dimM(L) in the inequality  
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dimM(L) ≤ dimM(L/L2) + dimL2[d(L/Z(L)) –1] 

⇒ ½ n(n-1) – t ≤ ½d(d - 1) + c[d – 1] 

⇒ ½ (c + d)[c + d –1] – t ≤ ½ d(d-1)+ c[d – 1] 

⇒ ½[c2+ cd – c + dc + d2 – d] – t ≤ ½ [d2 – d ] + (cd – c) 

⇒ c2 – c – 2t ≤ -2c 

⇒ c2 + c ≤ 2t  ■ 

Note theorem 5 has been proved in [17 ] by cohomological methods. 

 

Henceforth, L will be a filiform Lie algebra, we define 
 
c = dim L2,   t = t(L) and t* = t(H),  H = L/Z(L) 
 
and from proposition 3,     t* + c <  t . 
  
We will now find the filiform Lie algebras for increasing values of t(L). 
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3. t(L) = 3 
 
      This case has been computed by Hardy. We will do the work  to check  that our  
 
method is consistent with Hardy’s. By proposition 4 (dim L2 ≤ 3). If dim L2=3 then   
 
dimH2 =2{since L2 ≃(H/Z(H))2 =(H2+Z(H))/Z(H) ≃ H2/Z(H)}( and t(H )= 0 by  
 
proposition 3 (t(H) + dim L2 ≤ 3) which implies H is abelian, a  
 
contradiction. If dim L2= 1, then L2 = Z(L) and L is Heisenberg. But the only Heisenberg  
 
that is filiform is the three dimensional one of example 1. It has t(L) =1 (by Theorem 2), a  
 
contradiction. If  dim L2 = 0, then t(L) = 0, another  contradiction.  Hence, consider      
 
dim L2 = 2.  Then dim H2 = 1 and t(H) < 1.  If  t(H) =0 ,  then H is abelian which implies  
 
dim H2 = 0, a contradiction (since dim H2=1). If t(H) = 1, then by Theorem 2, H = H(1)  
 
and L is  a central extension of a one dimensional ideal K by H(1) and K⊆  L2. 
 
A basis for L is {x,y,z,r} with [x,y] = z + α1 r,  [x,z] = α2r,  [y,z] = α3r and r є Z(L). 
 
Either α2 or α3 must be non-zero, for otherwise dim L2 = 1 a  
 
Contradiction. WOLOG, let α2 ≠ 0.  Then letting z′ = z + α1 r,            
 
y ′ = y - α3/α2x,  r′ = α2r and relabelling yields [x,y] = z,  [x,z] = r  
 
and [y,z] = 0.  Now to compute the multiplier start with  
 
[x,y]=z + s1     [y,z]=s3   [y,r]=s5 
 
[x,z]=r + s2       [x,r]=s4     [z,r]=s6 
 
where s1,s2,…,s6 generate M(L). Next we perform a change of  
 
variables i.e. [x,y]=z + s1 =z*  which implies [x,y]=z* similarly  
 
[x,z]=r + s2=r* and    [y,z]=s3  ,[x,r]=s4      [y,r]=s5 and [z,r]=s6 

 
thus s1=s2=0. Next we use Jacobi on all possible triples.  
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 [[x,y],z] + [[y,z],x] + [[[z,x],y] = 0 
                
               ⇒        0 + [s3,x] + s5 = 0 
 

⇒ s5 = 0. 
 
Similarly, s6 = 0. Therefore we get s1 = s2 = s5 = s6 = 0. Now going back  
 
to the original algebra which was  (s1, s2, s3, s4, s5, s6) now becomes 
 
(s3, s4)=2=dimM(L). These are free variables and we can vary them and  
 
have different central extensions since t(L)= ½n(n-1) – dimM(L),                                       
 
it follows that t(L) =  6 – 2 = 4.  Note n=4 since the basis for  
 
L={x,y,z,r} we adopt the notation of Hardy and denote this algebra by L(3,4,1,4)  
 
where the first digit designates it came from the t(L) = 3 case, the  
 
second is the dimension of L, the third is dim Z(L) and the last is  
 
t(L).  Thus L(3,4,1,4) is the filiform Lie algebra with basis  
 
{x,y,z,r} and non-zero multiplication [x,y] = z, [x,z] = r. 
 
 
We will use this algebra when t(L) = 4. 
 
Theorem 6  There are no filiform Lie algebras with t(L) = 3.  
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4. t(L) = 4 
 

By proposition 4 dim L2  ≤ 4 and if  dim L2 = 4, then dim H2 = 3 and t (H) = 0,  
 

(by proposition 3) which implies H is abelian, a  contradiction.  If dim L2 = 3, 
 
 then dim H2 = 2 and t (H) <  1 (by  proposition 3).There are no such filiform   

 
algebras by previous work(i.e t(H) = 0, t(H) = 1).  If dim L2 = 1, then L2 = Z (L) and L is  
 
Heisenberg since L is filiform, L is the three dimensional heisenberg. This contradicts  
 
theorem 2.  If dim L2 = 0, then L is  abelian and t(L) = 0, a contradiction.  The only  
 
remaining possibility is dim L2 = 2,  then dim H2 = 1 and t(H) < 2, by proposition 3. 

 
By previous work, H = H(1). The case H= H(1) has been computed in the last section and  
 
it was found that  L = L (3,4,1,4), which satisfies t(L) = 4.  
  
 
 
Theorem 7  Let L be filiform with t(L) = 4. Then L = L(3,4,1,4). 
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5. t(L) = 5 
 

By Theorem 4, we know that  c2 + c ≤ 2t where c = dim L2 and t = t(L), thus if         
 
t = t(L) = 5 then  c2 + c ≤ 10 which implies that c ≤ 2 therefore c =0,1 or 2.   If         
 
dim L2 = 0 = c, then t(L) = 0 and L is abelian, a contradiction (see Theorem 1). If  
 
dim L2= 1 = c, then L2= Z(L) and L is Heisenberg(see Theorem 2) but the only  
 
Heisenberg Lie algebra that is filiform is the 3 dimensional one of example 1. It has  
 
t(L) = 1,  a contradiction. If dim L2= 2, then dim H2= 1 and t(H) ≤ 3. i.e t(H) = 0,1,2  
 
or 3. If t(H) = 1, then H=H(1), L = L(3,4,1,4) and t(L) = 4, a contradiction. If t(H) =2,  
 
then there is no filiform Lie algebra (Theorem 3). Similarly if t(H) = 3 there is no  
 
filiform Lie algebra(Thm 6).  
 
If t(H) = 0,  then H is abelian , a contradiction.(Theorem 1). 

 
 
 
Theorem 8  There are no filiform Lie algebras with t(L) = 5 
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 6. t(L) = 6 
      
      By Theorem 4, we know that  c2 + c ≤ 2t where c = dim L2 and t = t(L), thus if       

 
t = t(L) = 6 then c2 + c ≤ 12 which implies that c ≤ 3 therefore c = 0,1,2 or 3. Also  
 
from Proposition 0{i.e t≤ ½ (n)(n-1)}and since n=c+2 for filiform we get                   
 
t≤ ½ (c+2)(c+1). If c=0, then t=6≤ ½ (2)(1)=1, a contradiction. If c=1, then            
 
t=6≤ ½ (3)(2)=3, a contradiction. If c =2, then t=6≤ ½ (4)(3)=6, and 
 

      if c=3 t=6≤ ½ (5)(4)=10. Thus c=2, 3 are the only cases that satisfy the  
 
      inequality(Proposition 0), therefore c≥2.   
           
      If c = dim L2 = 2, then dim H2=1 and t(H) ≤ 4(Prop 3) i.e t(H) = 0,1,2,3 or 4. If    
 
      t(H)=0 then H is abelian, a contradiction(Theorem 1).  If t(H) = 1, then H=H(1),                                        
 
      H=L(3,4,1,4) and   t(L) = 4, a contradiction. By previous work there are no    
 
      filiform Lie algebras for t(H)=2 or 3(see theorems 3 and 4 respectively).  

 
If t(H) = 4, then H=L(3,4,1,4) a contradiction(since the dimension of the derived  
 
algebra is 2 not 1). If c=3=dimL2 then dimH2 =2 and t(H)≤3(Prop 3)i.e t(H)=0,1,2,3.  
 
If t(H) =0 the H is abelian, a contradiction(Theorem 1). If t(H) =1 then H=H(1),                                         
 
L=L(3,4,1,4) and t(L)=4, a contradiction. By previous work, if t(H)=2 or 3 there are  
 
no filiform Lie algebras(Theorems 3 ,6). If t(H)=4, then Proposition 3 is contradicted. 
 
 
 
 
 
Theorem 9  There are no filiform Lie algebras with t(L)= 6 
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7. t(L) = 7 
 
      Again by Theorem 4,  c2 + c ≤ 2t where c = dim L2 and t = t(L), thus if t=t(L)=7,  

 
then c2 + c ≤ 14 which implies that c ≤ 3 therefore c = 0,1,2 or 3. Again by  
 
Proposition 0 {i.e. t≤½(n)(n-1)} and since n=c+2 for filiform we get t≤½(c+2)(c+1). 
 
Similarly if c=0, then t=7≤½(2)(1)=1, a contradiction. If c=1, then t=7≤½(3)(2)=3  
 
another contradiction. If c=2 then t=7≤½(4)(3)=6 another contradiction. Finally if  
 
c=3, then t=7≤½(5)(4)=10, a true statement, therefore the inequality is true only for  
 
c=3, thus if c=dim L2=3, then dim H2 =2 and t(H) ≤ 4(proposition 3) i.e.t(H) =0,1,2,3  
 
or 4. If t(H)=0 , then H is abelian, a contradiction. If t(H)=1, then H=H(1),  
 
L=L(3,4,1,4) and t(L)=4, a contradiction.  Again  by previous work, if t(H) = 2 or 3  
 
there are no filiform Lie algebras (Theorems 3 and 4). If t(H)=4, then H=L(3,4,1,4).  
 
(Henceforth t(H) = 4 and dimL2=3).  
 
Now consider H=L(3,4,1,4). Then L can be described generally by the basis  
 
{x,y,z,c,r} and multiplication [x,y]=z, [x,z]=c,[y,z]=α3r, [x,c]= α4r, [y,c]= α5r and  
 
[z,c]= α6r, r ∈ Z(L). The Jacobi identity shows that α5= α6=0. 
 

      Now, assume c ∉ Z(L), which implies α4≠0. If α3=0, then replacing r by (1/ α4)r and   
 
      relabelling yields non-zero multiplication [x, y]=z,  [x, z]=c,  [x, c]=r. To compute the  
 
      multiplier, start with  

 
          [x,y]=z + s1      [y,c]= s5      [z,r] = s9  

 
    [x,z]=c + s2    [z,c]= s6          [s,r]=s10 

 

      [y,z]=s3               [x,r] = s7           
 
    [x,c]=r + s4        [y,r]=s8 

 
     where s1,…,s10 generate the multiplier. By relabelling we get s1= s2 = s4= 0. 
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Using Jacobi identity on all triples gives s6+ s8 = 0 and s5 = s9  = s10 = 0.  Hence the  
      
multiplier has basis {s3, s6, s7}, dim M(L) = 3 and t(L) = 7. This filiform algebra        
 
satisfies the  requirements and we call it L(7,5,1,7). For the record, it has  

 
basis{x,y,z,c,r} and non-zero multiplication [x, y] = z, [x, z]=c,  [x, c]=r. If  α3 ≠ 0, 

 
then replacing r by (1/ α3)r and relabelling yields non-zero multiplication 

 
[x, y] = z, [x, z] = c, [y, z] = r, [x, c] = βr,  β = ( α4/ α3) ≠ 0. Then letting  y* = βy, 
 
 

z* = βz, c* = βc and r* = β2r and relabelling yields non-zero multiplication 
 
[x, y] = z, [x, z] = c, [y, z] = r, [x, c] = r 
 
 
To compute the multiplier, start with 

 
          [x, y]=z + s1      [y, c]= s5      [z, r] = s9  

 
    [x, z]=c + s2    [z ,c]= s6          [s, r]=s10 

 

      [y, z]=r + s3        [x, r] = s7           
           
          [x, c]=r + s4        [y, r]=s8 

 
where s1,…,s10 generate the multiplier. 

 
By relabelling we get s1 = s2 = s3 = 0. Using the Jacobi identity on all possible triple gives    
 
s5 - s7  = 0, s6 +  s8 = 0 and s9 = s10 = 0. Hence, the multiplier has basis {s4, s, s6},                  
 
dim M(L)=3 and t(L)=7. This filiform algebra satisfies the requirement and call it  
 
L′(7,5,1,7). For the record, it has basis {x,y,z,c,r} and non-zero multiplication   

 
[x,y]=z,  [x,z]=c,  [y,z]=r,  [x,c]=r. 
 

  
Theorem 10  Let L be filiform with t(L)=7 then L=L(7,5,1,7) or L=L′(7,5,1,7) 
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8.t(L) = 8 
 

Again by Theorem 4, c2 + c ≤ 2t where c = dimL2 and t=t(L), thus if t=t(L)=8 then  
 

c2 + c≤ 16 which implies that c≤3 therefore c=0,1,2 or 3 but again by proposition 0  
 

we have t≤ ½(c+2)(c+1) which implies that if c=0, then t=8≤½(2)(1)=1, a  
 

contradiction. If c=1, then t=8≤ ½(3)(2)=3, a contradiction. If c=2, then  
 

t=8≤ ½(4)(3)=6, a contradiction. If c=3, then t=8≤ ½(5)(4)=10, a true statement,  
 

therefore   c=3 is the only case that satisfies the inequality. Thus if c=dimL2=3, then  

 dimH2=2 and t(H)≤5 (Prop3). Therefore t(H)=0,1,2,3,4 or 5. If t(H)=0 then H is           

 abelian, a contradiction (Theorem 1). If t(H)=1, then H=H(1), L=L(3,4,1,4) and   

t(L)=4, a contradiction. Again by previous work, if t(H)=2 or 3 there are no filiform  

Lie algebras(Theorems 3 and 6). If t(H)=4, then H=L(3,4,1,4), a contradiction since we  

have found that t(L) = 7. If t(H) = 5 there are no filiform Lie algebras(Theorem 6). 

       

 
Theorem 11   There are no filiform Lie algebras with t(L)=8 
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9. t(L)=9 
 
By Theorem 4,  c2 + c≤ 2t where c=dim L2 and t=t(L), thus if t=t(L)=9 then  
 
c2+c≤18 which implies that c≤ 3 therefore c=0,1,2 or 3 but by proposition 0, we have  
 
9 ≤ ½(c+2)(c+1) and  by solving this inequality we know that c=3 is the only case  
 
that satisfies the inequality. Thus if c=dimL2=3, then dim H2=2 and t(H)≤6(prop 3).  
 
By previous work there are no filiform Lie algebras if t(H)=2,3,5 or 6(theorems 3,6,8  
 
and 9). If t(H)=0, then H is abelian, a contradiction(theorem 1). If t(H)=1,  then  
 
H=H(1), L=L(3,4,1,4) and t(L)=4, a contradiction. If t(H)=4, then  
 
H=L(3,4,1,4), a contradiction, since from the t(L)=7 case we know that L=L(7,5,1,7)  
 
or L=L′(7,5,1,7) which have t(L)=7 but here t(L)=9.    

 
 

      Theorem 12      There are no filiform Lie algebras with t(L)= 9. 
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10. t(L)= 10 
 

Similarly, by Theorem 4,  if t=t(L)=10 then c2+c≤20 which implies that c≤4,  
 
therefore c=0,1,2,3 or 4 but by proposition 0, we have10≤ ½(c+2)(c+1) 
 
and by solving this inequality we know that c=3 and c=4 are the two cases that satisfy  
 
the inequality.Thus if c=dimL2=3, then dim H2=2 and t(H)≤7(prop 3). Again by  
 
previous work, there are no filiform Lie algebras if t(H)= 2,3,5 or 6(Theorems 3,6,8,9  
 
respectively). If t(H)=0, then H is abelian, a contradiction(Theorem 1). If t(H)=1, then  
 
H=H(1), L=L(3,4,1,4) and t(L)=4, a contradiction since from the t(L)=7 case we  
 
know that L=L(7,5,1,7) or L=L′(7,5,1,7) which have t(L)=7 but here t(L)=10. If  
 
t(H)=4, then H=L(3,4,1,4), a contradiction since from the t(L)=7 case we know that  
 
L=L(7,5,1,7) or L′(7,5,1,7) which have t(L)=7 but here t(L)=10. If  t(H)=7, then  
 
H=L(7,5,1,7) or L′(7,5,1,7), a contradiction since the algebras H=L(7,5,1,7) or  
 
L′(7,5,1,7) were found to have t(L)=11 and here t(L)= t(L)=10. 
 
Also if c=dimL2=4, then dim H2=3 and t(L)≤6(prop 3).  
 
Again by previous work, there are no filiform Lie algebras if t(H)=2,3,5 or 6. If  
 
t(H)=0, then H is abelian, a contradiction(Theorem1). If t(H)=1, then H=H(1) ,  
 
L=L(3,4,1,4) and t(L)= 4, a contradiction. If t(H)=4, then H=L(3,4,1,4), a  
 
Contradiction by similar argument above.   
 

       
Theorem 13  There are no filiform Lie algebras with t(L)= 10. 
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11. t(L)= 11 
 
By Theorem 4 , if t=11 then c2+ c ≤22 which implies that c≤4 therefore c=0,1,2,3 or  
 
4, but by proposition 0, we have 11≤ ½(c+2)(c+1) and by solving this inequality we  
 
know that c=4 is the only case that satisfies the inequality. Thus if c=dimL2= 4, then  
 
dimH2=3 and t(H)≤7(prop 3). By looking at table 22.1, we found that the only  
 
time these parameters are satisfied was when t(L)=7.Again by table 22.1, there  
 
are no filiform Lie algebras if t(H)=2,3,5 or 6. If t(H)=0, then H is abelian, a  
 
contradiction. If t(H) =1, then H=H(1), L=L(3,4,1,4) and t(L)= 4, a contradiction.  
 
If t(H)= 7, then L=L(7,5,1,7) or L=L′(7,5,1,7).  
 
We will consider these two cases. First let’s consider Case 1 where H=L(7,5,1,7).  
 
{We will later consider Case 2 where H=L′(7,5,1,7), since it has different  
 
multiplication table}.This L can be described  generally by the basis {x, y, z, c, r, t}  
 
and multiplication 
 

      [x,y]=z, [x,z]=c, [x,c]=r,  [x,r]=α4t, [y,z]=α5t, [y,c]= α6t,  [y,r]= α7t, [z,c]= α8t                                    
 

      [z,r]= α9t, [c,r ]=α10t,  and t∈Z(L). The Jacobi identity shows that α6 =α9 =α10=0 and 
 
  α8 = - α7. 

 
      Relabelling yields the non zero multiplication [x,y]=z, [x, z]=c, [x, c]=r,  [x, r]= α4t,  
 
     [y, z]=α5t, [y, c]= 0, [y, r]= α7t, [z, c]= -α7t, [z, r]= 0, [c, r]= 0 and  t∈Z(L).   
 
Now if α7 =0 and α4 ≠ 0. (Since if α7 = α4=0 then r is also in the center Z(L), a  
 
contradiction because L is filiform and only one element can be in Z(L) and we have  
 
already designated t to be in Z(L) earlier.) Further relabelling yields  
 
[x,y]=z, [x, z]=c, [x, c]=r,  [x, r]=α4t, [y, z]=α5t, [y, c]= 0, [y, r]= α7t, [z, c]= -α7t, [z, r]=0,  
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[c, r]= 0 and  t∈Z(L).  
 
Now by substituting t´= α4t which implies t=(1/ α4)t´, we get  
 
[x,y]=z, [x, z]=c, [x, c]=r,  [x, r]= t´, [y, z]= (α5/α4)t´, [y, c]= 0, [y, r]=0, [z, c]=0, [z, r]=0,  
 
[c, r]= 0, now let yz=α5´t this implies  
 
[x,y]=z, [x, z]=c, [x, c]=r,  [x, r]= t´=t, [y, z]=α5 ´t, [y, c]= 0, [y, r]=0, [z, c]=0, [z, r]=0,  
 
[c, r]= 0, thus α4=1 therefore  we will now consider:   
 
 
Case 1 (i) where we suppose  α7 = 0 and  1= α4 ≠ 0 . (Since again if α7 = α4=0 then r is  
 
also in the center Z(L), a contradiction.) 
 
 
Relabelling yields the non zero multiplication [x, y]= z, [x, z]=c, [x, c]=r,  [x, r]= t,  
 
     [y, z]=α5t, [y, c]= 0, [y, r]= 0, [z, c]= 0, [z, r]= 0, [c, r]= 0 and  t∈Z(L).     
 
 
To  compute the  multiplier start  with  

 
   [x,y]=z+s1         [y, z]=α5t+s5          [z,r]=s9                      [z, t]=s13             
                                     
   [x, z]=c+s2      [y, c]=s6                    [c, r]=s10                 [c, t]=s14     

         
         [x, c]=r+s3          [y, r]= s7                   [x, t]=s11                   [r, t]=s15 

                      

         [x, r]=t+s4           [z,c]= s8                    [y, t]=s12                   

 
where s1,…,s15 generate the multiplier. Now we will use the Jacobi identity on all     
 
triples. 
 
• (xy)z+(yz)x+(zx)y = 0    
 
⇒ (α5t)x-cy=0     
 
⇒ - α5s11+ s6=0    
 
⇒ s6= α5s11 
 
 



 23

• (xy)c+(yc)x+(cx)y = 0     ⇒ zc-ry=0            ⇒ s8- s7  =0      ⇒ s8=- s7 .  
 
 
• (xy)r+(yr)x+(rx)y = 0      ⇒zr+s7x-ty =0      ⇒ s9+ s12=0      ⇒- s9=-s12. 
 
 
• (xy)t+(yt)x+(tx)y = 0      ⇒zt =0                   ⇒ s13=0.     
 
 
• (xz)r+(zr)x+(rx)z = 0      ⇒cr- (α4t)z =0        ⇒ s10=0. 
  
 
• (xz)c+(zc)x+(cx)z = 0      ⇒ 0+s8x-rz=0        ⇒ 0-rz=0         ⇒ s9=0.   
 
 
• (xz)t+(zt)x+(tx)z = 0        ⇒ct=0                    ⇒ s14=0 . 
 
 
• (xr)c+(rc)x+(cx)r = 0       ⇒ (α4t)c- s10x=0      ⇒ α4s14=0      ⇒ s14=0. 
 
 
• (xr)t+(rt)x+(tx)r = 0         ⇒ (α4t)t=0 
 
 
• (xc)t+(ct)x+(tx)c = 0        ⇒rt=0      ⇒ s15=0 
 
 
• (yz)c+(zc)y+(cy)z = 0      ⇒(α5t)c+s8y-s6z=0      ⇒ -α5s14=0     ⇒s14=0  
 
 
• (yz)r+(zr)y+(ry)z = 0       ⇒( α5t)r+(-α7t)z=0      ⇒ α50+α70=0  
 
 
• (yz)t+(zt)y+(ty)z = 0       ⇒ (α5t)t=0      ⇒0=0 
 
 
• (yc)r+(cr)y+(ry)c = 0       ⇒ 0=0 
 
 
• (yc)t+(ct)y+(ty)c = 0        ⇒ 0=0 
 
 
• (rc)t+(ct)r+(tr)c = 0      ⇒0=0 
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From the preceding work  we obtain the following equations. 
 
 (i) s6=α5s11   (ii) s7=-s8 (iii) s9=-s12 (iv) s13=0 (v)s10=0  
 
(vi) s9 =0 (vii) s14=0 (viii) s15=0.  This implies  
 
s9=s10=s12= s13= s14= s15= 0. Further s6, s8 ∊(s4,s5,s7, s11) thus dimM(L)=(s4,s5,s7, s11)=4.  
 
Therefore t(L)=½n(n-1)-dimM(L)= ½(6)(5) - 4=11, call this L=L(11,6,1,11). 
 
Now by substituting t´= α7t which implies t=(1/ α4)t´, we get  
 
[x,y]=z, [x, z]=c, [x, c]=r,  [x, r]=α4t´, [y, z]= (α5/α7)t´, [y, c]= 0, [y, r]=t´, [z, c]= -t´, 
 
[z, r]=0, [c, r]= 0, now let yz=α5´t this implies  
 
[x,y]=z, [x, z]=c, [x, c]=r,  [x, r]= α4t, [y, z]=α5 ´t, [y, c]= 0, [y, r]=t´, [z, c]=-t´, [z, r]=0,  
 
[c, r]= 0, thus α7=1 therefore  we will now consider:    
 
 
Case 1 (ii) where we suppose 1= α7 ≠ 0.     
 
 
Relabelling yields the non zero multiplication [x, y]= z, [x, z]=c, [x, c]=r,  [x, r]= α4t,  
 
     [y, z]=α5t, [y, c]= 0, [y, r]= t, [z, c]= -t, [z, r]= 0, [c, r]= 0 and  t∈Z(L).    
 
 
To  compute the  multiplier start  with  

 
   [x,y]=z+s1            [y, z]=α5t+s5           [z,r]=s9                    [z, t]=s13             
                                     
   [x, z]=c+s2        [y, c]=s6                      [c, r]=s10              [c, t]=s14     

         
        [x, c]=r+s3               [y, r]=t+s7                 [x, t]=s11                [r, t]=s15 

                      

         [x, r]= α4t+s4        [z,c]= - t +s8            [y, t]=s12                   
 
 where s1,…,s15 generate the multiplier. Now we will use the Jacobi on all  triples. 
 
• (xy)z+(yz)x+(zx)y = 0 
 
⇒zz+ (α5t)x+ s5x+(-c)y=0 
 
⇒- α5 s11+ s6=0      ⇒ s6=α5s11    
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• (xy)c+(yc)x+(cx)y = 0      ⇒ (z)c+ (s6)x-(r)y=0     ⇒ -t-ry=0   ⇒ -t+t+ s7=0    ⇒ s7=0     
 
 
• (xy)r+(yr)x+(rx)y = 0      ⇒zr+tx-( α4t-s4)y=0      ⇒ s9- s11+ α4 s12=0     ⇒s11=s9+ α4s12   
 
 
• (xy)t+(yt)x+(tx)y = 0      ⇒zt+ s12x- s11y=0          ⇒ s13=0 
 
 
• (xz)r+(zr)x+(rx)z = 0      ⇒ cr+s9x- α4tz-s4z=0         ⇒ s10+ α4s13=0      ⇒ s10=- α4s13 
 
 
• (xz)c+(zc)x+(cx)z = 0      ⇒ cc-tx-rz=0                     ⇒ s11=-s9 
 
 
• (xz)t+(zt)x+(tx)z = 0      ⇒ ct+s13x-s11z=0                 ⇒ α4s14=0 
 
 
• (xr)c+(rc)x+(cx)r = 0      ⇒ (α4t)c-s10x-rr=0               ⇒ s14=0 
 
 
• (xr)t+(rt)x+(tx)r = 0        ⇒ (α4t)t+s4t+s15x-s11r=0     ⇒ 0=0 
 
 
• (xc)t+(ct)x+(tx)c = 0       ⇒ rt+s14x-s11c=0                  ⇒ s15=0 
 
 
• (yz)c+(zc)y+(cy)z = 0     ⇒ (α5t)c -ty-s6z=0                ⇒ -α5s14+s12=0   ⇒ s12= α5s14   
 
 
• (yz)r+(zr)y+(ry)z = 0      ⇒ s5r+s9y-tz=0                    ⇒ s13=0 
   
 
• (yz)t+(zt)y+(ty)z = 0      ⇒ (α5t)t+s13y+(-s12)z=0       ⇒ 0=0 
 
 
• (yc)r+(cr)y+(ry)c = 0     ⇒s6r+s10y+tc=0                   ⇒s14=0 
 
 
• (yc)t+(ct)y+(ty)c = 0      ⇒s6t+s14y-s12c=0                 ⇒0=0 
 
 
• (rc)t+(ct)r+(tr)c = 0       ⇒-s10t+s14r-s15c=0               ⇒0=0 
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From the preceding work  we obtain the following equations. 
 
(i) s6=α5s11  (ii)s7=0 (iii) s11=s9+ α4s12   (iv) s13= 0 (v) s10=- α4s13 (vi) s11=-s9  
 
(vii) s14=0 (viii) s15=0 (ix) s12= α5s14. This implies s7=s8=s9=s10=s11= s12= s13= s14=s15=0.  
 
Further (s9, s11, s12) ∊ (s4, s5, s6) thus dimM(L)=(s4, s5, s6)=3.  
 
Therefore t(L)=½n(n-1)-dimM(L)= ½(6)(5) - 3=12, call this algebra L=L(11,6,1,12). 
 
 
Now we will consider case 2 where H=L′(7,5,1,7)This L can be described  generally by  
 
the basis  {x, y, z, c, r, t} and multiplication 

 
         [x,y]=z, [x,z]=c, [x,c]=r,  [x,r]=α4t, [y,z]=r+α5t, [y,c]= α6t,  [y,r]= α7t, [z,c]= α8t                                    

 
  [z,r]= α9t, [c,r ]=α10t,  and t∈Z(L). The Jacobi identity shows that α9 =α10=0 and 
 

 α6 =  α4  and α8 = - α7. 
 
Relabelling yields the non zero multiplication [x,y]=z, [x, z]=c, [x, c]=r,  [x, r]= α4t,  
 
     [y, z]=r+α5t, [y, c]= α4t , [y, r]= α7t, [z, c]= -α7t, [z, r]= 0, [c, r]= 0 and  t∈Z(L).   
 
Now by substituting t´= α7t which implies t=(1/ α7)t´, we get  
 
[x,y]=z, [x, z]=c, [x, c]=r,  [x, r]=(α4/α7) t´, [y, z]=r+(α3/α7)t´, [y, c]=(α4/α7)t´, [y, r]=t´,   
 
[z, c]= -t´, [z, r]=0, [c, r]= 0, now letting  yc=α4´t  implies yc= α4t  ⇒ α7=1 
 
also letting yr= α7´t implies yr= α7t ⇒, also letting zc=-α7´t implies zc=-α7t ⇒ α7=1 
 
similarly letting yr = r + α3´t implies yr = r + α3t ⇒ α7=1.  
 
Thus α7=1 therefore  we will now consider:    
 
 
Case 2 (i) where we suppose  1=α7 ≠ 0.      
 
 
Relabelling yields the non zero multiplication [x, y]= z, [x, z]=c, [x, c]=r,  [x, r]= α4t,  
 
     [y, z]=r+α5t, [y, c]= α4t, [y, r]=t, [z, c]=-t, [z, r]= 0, [c, r]= 0 and  t∈Z(L).     
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To  compute the  multiplier start  with  
 
   [x,y]=z+s1           [y, z]=r+ α5t+s5        [z,r]=s9                    [z, t]=s13             
                                     
   [x, z]=c+s2       [y, c]= α4t +s6           [c, r]=s10               [c, t]=s14     

         
        [x, c]= r+s3            [y, r]=t+ s7                 [x, t]=s11                  [r, t]=s15 

                      

         [x, r]= α4t +s4     [z,c]=-t+ s8                 [y, t]=s12                   
 
 
where s1,…,s15 generate the multiplier. Now we will use the Jacobi identity on all     
 
triples. 
 
 
• (xy)z+(yz)x+(zx)y = 0     ⇒ zz+ (r+α5t)x-(-c)y=0    ⇒ -α4t- α5s11+ α4t =0    ⇒ -α5s11=0       
 
 
• (xy)c+(yc)x+(cx)y = 0     ⇒ (z)c+ (α4t)x-(r)y=0       ⇒ -t- α4s11+ t =0        ⇒ α4s11=0 
 
 
• (xy)r+(yr)x+(rx)y = 0      ⇒ zr+tx-( α4t)y=0            ⇒ s9- s11+ α4s12=0       ⇒s9=s11-  
 
α4s12   
 
 
• (xy)t+(yt)x+(tx)y = 0       ⇒ zt+ s12x- s11y=0           ⇒ s13=0 
 
 
• (xz)r+(zr)x+(rx)z = 0       ⇒ cr+s9x- α4tz=0            ⇒s10- α4s13=0             ⇒ s10= α4s13=0 
 
 
• (xz)c+(zc)x+(cx)z = 0      ⇒ cc-tx-rz=0                  ⇒ s11=-s9 
 
 
• (xz)t+(zt)x+(tx)z = 0         ⇒ ct+s13x-s11z=0          ⇒ s14=0 
 
 
• (xr)c+(rc)x+(cx)r = 0       ⇒(α4t)c-s10x-rr=0        ⇒ α4s14=0= α4s11      ⇒s14=s11=0  ⇒s9=0 
 
 
• (xr)t+(rt)x+(tx)r = 0        ⇒(α4t)t+s15x-s11r=0     ⇒0=0   
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• (xc)t+(ct)x+(tx)c = 0          ⇒ rt+s14x-s11c=0                      ⇒ s15=0 
 
 
• (yz)c+(zc)y+(cy)z = 0        ⇒ (r+α5t)c -ty +(-α4t)z=0         ⇒ rc+ α5tc-ty- α4tz =0 
 
⇒- s10- α5s14+ s12+ s13=0      ⇒ s12= 0       ⇒s9=s11 
 
 
• (yz)r+(zr)y+(ry)z = 0         ⇒ (r+ α5t)r+s9y-tz=0                 ⇒ rr+ α5tr+s13=0 
 
 
 ⇒- α5s15+s13=0                   ⇒ s13=0 
 
 
• (yz)t+(zt)y+(ty)z = 0         ⇒ (r+α5t)t+s13y+(-s12)z=0          ⇒ s15=0     
 
 
• (yc)r+(cr)y+(ry)c = 0        ⇒ α4tr+s10y-tc=0           ⇒ - α4s15+s14=0    ⇒ 0=0  
 
 
• (yc)t+(ct)y+(ty)c = 0        ⇒ (α4t)t+s14y-s12c=0      ⇒ 0=0 
 
 
• (rc)t+(ct)r+(tr)c = 0          ⇒-s10t+s14r-s15c=0          ⇒0= 0 
     
 
 
 
From the preceding work  we obtain the following equations. 
 
(i)- α5s11=0   (ii) α4s11=0 (iii) s9=s11- α4s12 (iv) s13=0 (v)s10=0 
 
(vi) s11=-s9 (vii)s14=0 (viii) α4s14=0 (ix) s11=s14=0 (x)s9=0 (xi)s15=0 (xii) s12=0 (xiii) s13=0   
 
This implies s7=s8=s9=s10=s11= s12= s13= s14=s15=0, thus  
 
dimM(L)=(s4, s5, s6)=3.  
 
Therefore t(L)=½n(n-1)-dimM(L)= ½(6)(5) - 3=12, call this algebra L=L´(11,6,1,12). 
 
Now by substituting t´= α4t which implies t=(1/ α4)t´, we get  
 
[x, y]=z, [x, z]=c, [x, c]=r,  [x, r]=1/α4t´, [y, z]=r+(α5/α4)t´, [y, c]=(1/ α4)t´, [y, r]=0,         
 
[z, c]=0,[z, r]=0, [c, r]= 0, now letting [x, r]=1/α4t´=t´´  implies t´= α4t´´ thus relabelling 
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implies [x, y]=z, [x, z]=c, [x, c]=r,  [x, r]= 1/α4t´=t´´=t , [y, z]= r+(α5/α4)(α4t´´)=r+ α5t ,  
 
[y, c]= (1/ α4)( α4t´´)=t, [y, r]=0, [z, c]=0, [z, r]=0, [c, r]= 0, thus α4=1. Therefore  we will  
 
now consider:    
 
 
Case 2 (ii) where we suppose  α7 = 0 and 1= α4 ≠ 0.(Again, α4 and α7  

 
cannot  both be zero since this implies r is also in the center, a contradiction) 
 
 
Relabelling yields the non zero multiplication [x, y]= z, [x, z]=c, [x, c]=r,  [x, r]= t,  
 
     [y, z]=r + α5t, [y, c]= t, [y, r]= 0, [z, c]= 0, [z, r]= 0, [c, r]= 0 and  t∈Z(L).    
 
 
To  compute the  multiplier start  with  

 
   [x,y]=z+s1             [y, z]=r + α5t+ s5           [z,r]=s9                    [z, t]=s13             
                                     
   [x, z]=c+s2        [y, c]=t + s6                        [c, r]=s10              [c, t]=s14     

         
        [x, c]=r+s3               [y, r]= s7                              [x, t]=s11                [r, t]=s15 

                      

         [x, r]= t+s4             [z,c]= s8                               [y, t]=s12                   
 
 
where s1,…,s15 generate the multiplier. Now we will use the Jacobi identity on all     
 
triples. 
 
 
 
• (xy)z+(yz)x+(zx)y = 0        ⇒ zz+ (r+α5t)x+(-c)y=0       ⇒ - α5s11=0       
 
 
• (xy)c+(yc)x+(cx)y = 0        ⇒ (z)c+ (α4t)x-(r)y=0          ⇒ s8-s11+s7 =0        ⇒ s8 = s11-s7 
 
 
• (xy)r+(yr)x+(rx)y = 0        ⇒zr+ α7tx-( α4t)y=0             ⇒ s9- α7s11+ α4 s12=0 
     
 
⇒ s9= α7s11- α4s12  =- s12 
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• (xy)t+(yt)x+(tx)y = 0          ⇒ zt+ s12x- s11y=0            ⇒ s13=0  
 
 
• (xz)r+(zr)x+(rx)z = 0          ⇒ cr+s9x-tz=0                       ⇒ s10+ s13=0         ⇒ s10= -s13         
 
 
• (xz)c+(zc)x+(cx)z = 0         ⇒ cc- α7tx-rz=0                     ⇒ -α7s11+s9=0        ⇒ s9=0 
 
 
• (xz)t+(zt)x+(tx)z = 0          ⇒ct+s13x-s11z=0                     ⇒ s14=0 
 
 
• (xr)c+(rc)x+(cx)r = 0          ⇒(α4t)c-s10x-rr=0                   ⇒ α4 s14=0         ⇒ s14=0 
 
 
• (xr)t+(rt)x+(tx)r = 0            ⇒(α4t)t+s15x-s11r=0                ⇒0=0 
 
 
• (xc)t+(ct)x+(tx)c = 0          ⇒rt+s14x-s11c=0                       ⇒s15=0 
 
 
• (yz)c+(zc)y+(cy)z = 0        ⇒ (r+α5t)c – α7ty +(-α4t)z=0    ⇒rc+ α5tc-tz=0   
 
 
⇒s10=- α5s14 
 
 
• (yz)r+(zr)y+(ry)z = 0          ⇒(r+ α5t)r+s9y-tz=0                ⇒ rr+ α5tr+s13=0     
 
 
 ⇒ -α5s15+s13=0                     ⇒ α5s15=0 
 
 
• (yz)t+(zt)y+(ty)z = 0            ⇒(r+α5t)t+s13y+(-s12)z=0       ⇒ s15=0    
 
 
• (yc)r+(cr)y+(ry)c = 0           ⇒ tr+s10y- s7c=0                     ⇒ s15=0      
 
 
• (yc)t+(ct)y+(ty)c = 0           ⇒ (t)t+s14y-s12c=0                   ⇒ 0=0 
 
 
  
• (rc)t+(ct)r+(tr)c = 0            ⇒-s10t+s14r-s15c=0                   ⇒0= 0 
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From the preceding work  we obtain the following equations. 
 
 (i)- α5s11 =0   (ii)s8=s11-s7 (iii) s9= α7s11- α4s12=-s12   (iv) s13= 0 (v)s10=-s13               
 
(vi) s9=0(vii) s14=0 (viii) s15=0 (ix) s10=- α5s14 (x) α5s15=0 .Now from (i) if α5  is not zero, 
 
this implies s8=s9=s10= s12= s13= s14=s15=0.  Further s11∊ (s5, s6, s7, s8 ) thus  
 
dimM(L)=(s5, s6, s7, s8)=4.  
 
Therefore t(L)=½n(n-1)-dimM(L)= ½(6)(5) - 4=11, we call this algebra L=L´(11,6,1,11). 
 
From this work we have found the following algebras for t(L)=11 and we summarize  
 
 
them in the following theorem. 
 
 
Theorem 14   Let L be filiform with t(L)=11 then L=L(11,6,1,11) or   L=L´(11,6,1,11)  
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12. t(L)= 12 
 
By  Theorem 4, we know that c2+ c ≤ 2t where c = dimL2 and t= t(L). If t = 12 then  
 
c2+ c ≤ 24 which implies that c ≤ 4 therefore c = 0, 1, 2, 3 or 4 , but by proposition  0  
 
(i.e. t ≤ ½n(n-1)) and since n= c+2 for filiform we get 12 ≤ ½(c + 2)(c + 1) and by solving  
 
this inequality we know that c = 4 is the only case that satisfies the inequality. Thus if c =  
 
dim L2 = 4, then dim H2 = 3 and t(H) ≤ 8 (proposition 3). In the t(L)=11 case we have  
 
already computed these and we list them in the following theorem.  
 
 
Theorem 15   Let L be filiform with t(L)=12, then L=L(11,6,1,12) or L=L´(11,6,1,12). 
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13. t(L) = 13 
 
By  Theorem 4, we know that c2+ c ≤ 2t where c = dimL2 and t= t(L). If t = 13 then 
 
c2+ c ≤ 26 which implies that c ≤ 4 therefore c = 0, 1, 2, 3 or 4 , but by proposition  0 
 
(i.e. t ≤ ½n(n-1)) and since n= c+2 for filiform we get 13 ≤ ½(c + 2)(c + 1) and by solving 
 
this inequality we know that c = 4 is the only case that satisfies the inequality. Thus if c =  
 
dim L2 = 4, then dim H2 = 3 and t(H) ≤ 9 (proposition 3), but from Table 22.1, we  
 
know that the only time these conditions are satisfied is when t(L)=7, but here t(L)=13,  
 
hence a contradiction. We thus summarize our findings in the following Theorem. 
 
 
Theorem 16  There are no filiform Lie algebras with t(L) = 13. 
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14. t(L)=14 
 
By  Theorem 4, we know that c2+ c ≤ 2t where c = dimL2 and t= t(L). If t =14 then 
 
c2+ c ≤ 28 which implies that c ≤ 4 therefore c = 0, 1, 2, 3 or 4 , but by proposition  0 
 
(i.e. t ≤ ½n(n-1)) and since n= c+2 for filiform we get 14 ≤ ½(c + 2)(c + 1) and by solving 
 
this inequality we know that c = 4 is the only case that satisfies the inequality. Thus if c =  
 
dim L2 = 4, then dim H2 = 3 and t(H) ≤10 (proposition 3), but from Table 22.1,we  
 
know that the only time these conditions are satisfied is when t(L)=7, but here t(L)=14,  
 
hence a contradiction. We thus summarize our findings in the following Theorem. 
 
 

 
Theorem 17  There are no filiform Lie algebras with t(L) = 14. 
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15. t(L)=15 
 

By  Theorem 4, we know that c2+ c ≤ 2t where c = dimL2 and t= t(L). If t =15 then 
 
c2+ c ≤ 30 which implies that c ≤ 5 therefore c = 0, 1, 2, 3, 4 or 5  but by proposition  0 
 
(i.e. t ≤ ½n(n-1)) and since n= c+2 for filiform we get 15 ≤ ½(c + 2)(c + 1) and by solving 
 
this inequality we know that c = 4 and c=5 are the two cases that satisfy the inequality.  
 
Thus if c = dim L2 = 4, then dim L = 6 which implies dim H=5, but from Table 22.1 
 
This is a contradiction.  
 
Also if  c = dim L2 = 5, then dim H2 = 4 and t(H) ≤10 (proposition 3), but again from  
 
Table 22.1, we know that there are no filiform Lie algebras satisfying these conditions,  
 
hence a contradiction. We thus summarize our findings in the following Theorem. 
 
Theorem 18  There are no filiform Lie algebras with t(L) = 15. 
  
 
 
 
. 
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16. t(L)=16 
 
 

By  Theorem 4, we know that c2+ c ≤ 2t where c = dimL2 and t= t(L). If t =16 then 
 
c2+ c ≤ 32 which implies that c ≤ 5 therefore c = 0, 1, 2, 3, 4 or 5  but by proposition  0 
 
(i.e. t ≤ ½n(n-1)) and since n= c+2 for filiform we get 16 ≤ ½(c + 2)(c + 1) and by solving 
 
this inequality we know that c = 4 or c=5.  Thus (1) if c = dim L2 = 4, then dim H2 = 3  
 
and t(H) ≤12 (proposition 3). (2) If c= dim L2 = 5 then dim H2=4 and t(H)≤11  
 
(proposition 3), but from previous work we know that the only time these conditions are  
 
satisfied is when t(L)=11 or t(L)=12. If t(H)=11, then H=L(11,6,1,11) or H=L´(11,6,1,11) 
 
and if t(H)=12, then H=L(11,6,1,12) or H=L´(11,6,1,12) but note that c = dim L2 = 4 is  
 
impossible since the dimension of c must equal to 5 because c has to be 2 less than the  
 
dimension of L which has 7 elements as defined by the basis {x, y, z, c, r, t, u} which is  
 
what we need here for t(L)=16. Therefore (1) above is totally eliminated leaving us with  
 
only (2). We will therefore now consider the two cases for t(L)=11. The first is when  
 
H=L(11,6,1,11) and the second is when H=L´(11,6,1,11).  
 
CASE 1  Let H=L(11,6,1,11), this L can be described  generally by the basis                  
 
{x, y, z, c, r, t, u} and multiplication 

 
[x,y]=z, [x,z]=c, [x,c]=r,  [x,r]= α4t+β4u, [y,z]=α5t+β5u, [y,c]= β6u,  [y,r]= t+β7u,      
 
[z,c]= -t+β8u , [z,r]=β9u, [c,r ]=β10u, [x, t]= β11u, [y, t]= β12u, [z, t]= β13u, [c, t]= β14u,            
 
[r, t]= β15u, and u∈Z(L). Now we will use the Jacobi Identity on all triples. 
 
 
• (xy)z+(yz)x+(zx)y = 0 
 
⇒zz+ (α5t+ β5u)x +(-c)y=0 
 
⇒ α5tx+ β5ux-cy=0 
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⇒ -α5β11u-(-β6u)=0            ⇒ β6= α5β11   
 
 
• (xy)c+(yc)x+(cx)y = 0     ⇒ zc+ β6ux-(-t- β7u )=0       ⇒ zc+ t+ β7u=0      ⇒ β7 = - β8 
 
 
• (xy)r+(yr)x+(rx)y = 0      ⇒ zr+ (t + β7u)x + (-α4t-β4u)y=0   ⇒ zr+ tx+ β7ux-α4tyβ4uy=0   
 
 
⇒ β9u-β11u- α4(-β12u)        ⇒ β9= β11- α4β12 
 
 
• (xy)t+(yt)x+(tx)y = 0      ⇒ zt + β12ux-β11uy=0    ⇒β13u=0    
 
 
• (xy)u+(yu)x+(ux)y = 0    ⇒ 0=0   
 
 
• (xz)c+(zc)x+(cx)z = 0     ⇒ cc+(-t+ β8u)x-rz=0     ⇒ -tx-rz=0    ⇒ β11u+ β9u=0 
 
 
 ⇒ β9=- β11 
 
 
• (xz)r+(zr)x+(rx)z = 0     ⇒cr+ β9ux- α4tz- β4uz=0      ⇒β10u+ α4β13u=0 

 
⇒ β10=- α4β13 
 
 
• (xz)t+(zt)x+(tx)z = 0    ⇒ct+ β13ux- β11uz=0           ⇒β14u=0 
 
 
• (xz)u+(zu)x+(ux)z = 0    ⇒ 0=0   
 
 
• (xc)r+(cr)x+(rx)c = 0    ⇒rr+ β10ux- α4tc- β4uc=0     ⇒ -α4tc=0    ⇒α4β14u=0 
 
 
• (xc)t+(ct)x+(tx)c = 0     ⇒rt+ β14ux+(-β11u)c=0      ⇒ β15u=0 
 
 
 
• (xc)u+(cu)x+(ux)c = 0    ⇒0=0   
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•(xr)t+(rt)x+(tx)r = 0       ⇒ (α4t+ β4u)t+ β15ux+(-β11u)r=0       ⇒0=0   
 
 
• (xr)u+(ru)x+(ux)r = 0     ⇒ 0=0 
 
 
• (xt)u+(tu)x+(ux)t = 0      ⇒0=0 
 
 
• (yz)c+(zc)y+(cy)z = 0     ⇒(α5t+ β5u)c+(-t+ β8u)y+(-β6u)z=0 
 
 
⇒ α5tc+ β5uc- ty+ β8uy- β8uz=0    ⇒-α5 β14u+ β12u=0    ⇒ α5 β14= β12   
 
 
• (yz)r+(zr)y+(ry)z = 0   ⇒ (α5t+ β5u)r+ β9uy+(- t- β7u)z=0   ⇒ α5tr- tz- β7uz=0      
 
⇒ -α5 β15u+ β13u=0       ⇒ β13= α5 β15    
 
 
• (yz)t+(zt)y+(ty)z = 0   ⇒ (α5t+ β5u)t + β13uy- β12uz=0     ⇒0=0 
 
 
• (yz)u+(zu)y+(uy)z = 0  ⇒ 0=0  

 
 
• (yc)r+(cr)y+(ry)c = 0     ⇒ β6ur+ β10uy+(-t- β7u)c=0   ⇒-tc- β7uc=0   ⇒ β14u=0 

 
 
• (yc)t+(ct)y+(ty)c = 0     ⇒ β6ut+ β14uy+β7uc=0      ⇒0=0   
 
 
• (yc)u+(cu)y+(uy)c = 0    ⇒0=0   
 
 
• (yr)t+(rt)y+(ty)r = 0       ⇒ (t+ β7u)t+ β15uy-β12ur=0   ⇒0=0   
 
  
• (yr)u+(ru)y+(uy)r = 0    ⇒0=0  
 
 
• (yt)u+(tu)y+(uy)t = 0      ⇒0=0 
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• (zc)r+(cr)z+(rz)c = 0           ⇒ (-t+ β8u)r+ β10uz-β9uc=0     ⇒ -tr=0       ⇒β15u=0 
 

 
• (zc)t+(ct)z+(tz)c = 0           ⇒ (-t+ β8u)t- β14uz-β13uc=0      ⇒0=0 

 
 
• (zc)u+(cu)z+(uz)c = 0        ⇒ 0=0 
 
    
• (zr)t+(rt)z+(tz)r = 0            ⇒ β9ut+ β15uz-β13ur=0    ⇒0=0           

 
 
• (zr)u+(ru)z+(uz)r = 0         ⇒ 0=0 

 
 
• (zt)u+(tu)z+(uz)t = 0         ⇒ 0=0 

 
 
• (cr)t+(rt)c+(tc)r = 0           ⇒ β10ut+ β15uc-β14ur=0        ⇒0=0   

 
 
• (cr)u+(ru)c+(uc)r = 0         ⇒0=0 

 
 
• (rt)u+(tu)r+(ur)t = 0           ⇒0=0 

 
 
 
We will now summarize the equations found below: 
 
(1) β6= α5 β11   (2) β7 =- β8  (3) β9= β11-α4 β12  (4) β13u=0 (5) β9= β11 (6) β10=-α4 β13 

 
(7) β14u=0 (8) α4β14u=0 (9) β15u=0 (10) α5 β14=β12 (11) β13= α5 β15 
 
 
From the preceding work we obtain the following equations. 
 
(i)   β6 = β9 = β10 = β11 = β12= β13= β14=  β15=0  (ii) β7=-β8 
 
(iii) β9 =-β11= β11=0  (iv) β10=-α4 β13=0  (v) β13= α5 β15=0. 

 
 
Relabelling yields the non zero multiplication 
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[x,y]=z, [x,z]=c, [x,c]=r,  [x,r]= α4t+β4u, [y,z]=α5t+β5u, [y,c]= 0,  [y,r]= t-β8u,      
 
[z,c]= -t+β8u , [z,r]=0, [c,r ]=0, [x, t]= 0, [y, t]= 0, [z, t]= 0, [c, t]= 0,            
 
[r, t]=0, and u∈Z(L). This implies that t is also in the center, a contradiction, thus we we  
 
have not found any filiform lie algebra for this case. 
 

 
CASE 2. We will now consider H=L´(11,6,1,11). This can be described generally  
 
by the basis {x, y, z, c, r, t, u} and multiplication  

 
[x,y]=z, [x,z]=c, [x,c]=r,  [x,r]= α4t+β4u, [y,z]=r+α5t+β5u, [y,c]= α4t+β6u,  [y,r]= t+β7u,      
 
[z,c]= -t+β8u , [z,r]=β9u, [c,r ]=β10u, [x, t]= β11u, [y, t]= β12u, [z, t]= β13u, [c, t]= β14u,            
 
[r, t]= β15u, and u∈Z(L). Now we will use the Jacobi Identity on all triples. 

 
 
 
• (xy)z+(yz)x+(zx)y = 0   ⇒zz+ (r+α5t+ β5u)x +(-c)y=0       ⇒rx+ α5tx+ β5ux-cy=0   
 
⇒ (-α4t-β4u)+α5(-β11u)-(-α4t-β6u)=0   ⇒ β6=β4u+α5β11 
    
 
• (xy)c+(yc)x+(cx)y = 0   ⇒ zc+(α4t+β6u)x-ry=0   ⇒ -t+β8u+ α4tx+ β6ux+t+β7u)=0       

 
⇒ β7 =α4β11-β8 

 
 
• (xy)r+(yr)x+(rx)y = 0   ⇒ zr+ (t +β7u)x + (-α4t- β4u)y=0  ⇒ β9u+tx+ β7ux-α4ty-β4uy =0   
 
 
⇒ β9u-β11u- α4(-β12u)      ⇒ β9= β11- α4β12  
 
 
• (xy)t+(yt)x+(tx)y = 0    ⇒ zt + β12ux-β11uy=0       ⇒β13u=0 
 
 
• (xy)u+(yu)x+(ux)y = 0  ⇒0=0     
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• (xz)c+(zc)x+(cx)z = 0     ⇒ cc+(-t+ β8u)x-rz=0     ⇒ -tx-rz=0    ⇒ β11u+ β9u=0   
 
⇒ β9=- β11 
 
• (xz)r+(zr)x+(rx)z = 0     ⇒ cr+ β9ux- α4tz- β4uz=0     ⇒β10u+ α4β13u=0     ⇒ β10=- α4β13   

 
 
• (xz)t+(zt)x+(tx)z = 0     ⇒ ct+ β13ux- β11uz=0      ⇒β14u=0  
 
 
• (xz)u+(zu)x+(ux)z = 0   ⇒ 0=0  
 
 
• (xc)r+(cr)x+(rx)c = 0      ⇒ rr+ β10ux- α4tc- β4uc=0  ⇒ -α4tc=0      ⇒α4β14u=0    
 
 
• (xc)t+(ct)x+(tx)c = 0      ⇒ rt+ β14ux+(-β11u)c=0     ⇒ β15u=0  
 
 
• (xc)u+(cu)x+(ux)c = 0    ⇒ 0=0  
 
 
• (xr)t+(rt)x+(tx)r = 0        ⇒ (α4t+ β4u)t+ β15ux+(-β11u)r=0    ⇒0=0     
 
 
• (xr)u+(ru)x+(ux)r = 0      ⇒0=0 
 
 
• (xt)u+(tu)x+(ux)t = 0       ⇒0=0     
 
 
• (yz)c+(zc)y+(cy)z = 0      ⇒(α5t+ β5u)c+(-t+ β8u)y+(-β6u)z=0                                
 
  
⇒(α5t+ β5u)c+(-t+ β8u)y+(-β6u)z=0   ⇒ α5tc+ β5uc- ty+ β8uy- β8uz=0    
 
 
⇒-α5 β14u+ β12u=0       ⇒ α5 β14= β12    
 
 
• (yz)r+(zr)y+(ry)z = 0  ⇒ (α5t+ β5u)r+ β9uy+(- t- β7u)z=0      ⇒ α5tr- tz- β7uz=0 
 
 
⇒ -α5 β15u+ β13u=0       ⇒ β13= α5 β15  
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• (yz)t+(zt)y+(ty)z = 0    ⇒ (α5t+ β5u)t + β13uy- β12uz=0     ⇒0=0    
 
 
• (yz)u+(zu)y+(uy)z = 0      ⇒ 0=0 
 
 
• (yc)r+(cr)y+(ry)c = 0      ⇒  (α4t+β6u)r+ β10uy+(-t- β7u)c=0    ⇒α4tr+β6ur+ -tc- β7uc=0   

 
 
⇒ β14= α4β15 

 
 
• (yc)t+(ct)y+(ty)c = 0      ⇒ (α4+β6u)t+ β14uy+β7uc=0     ⇒0=0  
 
 
• (yc)u+(cu)y+(uy)c = 0    ⇒ 0=0 
 
 
• (yr)t+(rt)y+(ty)r = 0        ⇒ β12ut+ β15uy-β12ur=0   ⇒0=0    
 
 
• (yr)u+(ru)y+(uy)r = 0      ⇒ 0=0 
 
 
• (yt)u+(tu)y+(uy)t = 0      ⇒ 0=0 

 
 
• (zc)r+(cr)z+(rz)c = 0       ⇒ (-t+ β8u)r+ β10uz-β9uc=0   ⇒ -tr=0   ⇒β15u=0 
 
 
• (zc)t+(ct)z+(tz)c = 0      ⇒ (-t+ β8u)t+β14uz-β13uc=0     ⇒ 0=0 

 
 
• (zc)u+(cu)z+(uz)c = 0     ⇒ 0=0  
 
 
• (zr)t+(rt)z+(tz)r = 0        ⇒ β9ut+ β15uz-β13ur=0  ⇒0=0    

 
 
• (zr)u+(ru)z+(uz)r = 0   ⇒0=0 
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• (zt)u+(tu)z+(uz)t = 0    ⇒0=0     
 

 
• (cr)t+(rt)c+(tc)r = 0     ⇒ β10ut+ β15uc-β14ur=0  ⇒ 0=0     
 
 
• (cr)u+(ru)c+(uc)r = 0    ⇒0=0 
 
 
• (rt)u+(tu)r+(ur)t = 0      ⇒0=0 

 
 
We will now summarize the equations found below: 
 
(1) β6=β4u+ α5 β11   (2) β7 =α4β11-β8  (3) β9=β11-α4 β12  (4) β13u=0  (5) β9= β11                             
 
(6) β10=-α4β13  (7) β14u=0  (8) α4β14u=0  (9) β15u=0  (10) α5 β14=β12  (11) β13= α5 β15         
 
(12) β14= α4 β15 
 
 
From the preceding work we obtain the following equations. 
 
(i) β9 = β10 = β11 = β12= β13= β14=  β15=0  (ii) β7=-β8 
 
(iii) β6 =β4  
 
 
Relabelling yields the non zero multiplication 
 
[x,y]=z, [x,z]=c, [x,c]=r,  [x,r]= α4t+β4u, [y,z]=r+α5t+β5u, [y,c]=α4t,  [y,r]= t-β8u,      
 
[z,c]= -t+β8u , [z,r]=0, [c,r ]=0, [x, t]= 0, [y, t]= 0, [z, t]= 0, [c, t]= 0,            
 
[r, t]=0, and u∈Z(L). Again this implies that t is also in the center, a contradiction, thus  
 
we again have not found any filiform Lie algebras for this case and now summarize our  
 
findings in the following Theorem  
 
Theorem 19  There are no filiform Lie algebras for t(L)=16 
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17. t(L)=17 
 
By  Theorem 4, we know that c2+ c ≤ 2t where c = dimL2 and t= t(L). If t =17 then 
 
c2+ c ≤ 34 which implies that c ≤ 5 therefore c = 0, 1, 2, 3, 4 or 5 but by proposition  0 
 
(i.e. t ≤ ½n(n-1)) and since n= c+2 for filiform we get 17 ≤ ½(c + 2)(c + 1) and by solving 
 
this inequality we know that c = 5 is the only case that satisfies the inequality. Thus if c =  
 
dim L2 = 5, then dim H2 = 4 and t(H) ≤12(proposition 3), but from Table 22.1, we  
 
know that the only time these conditions are satisfied is when t(H)=12. We will therefore  
 
consider the two cases for t(H)=12. The first case is when H=L(11, 6, 1, 12) and the      
 
second is when H=L´(11, 6, 1, 12). 
 
 
CASE 1.  Let H=L(11, 6, 1, 12), this L can be described generally by the basis  
 
{x, y, z, c, r, t, u} and multiplication 
 
[x,y]=z, [x,z]=c, [x,c]=r,  [x,r]= t, [y,z]= α5t+β5u, [y,c]= β6u,  [y,r]=β7u,      
 
[z,c]=β8u , [z,r]=β9u, [c,r ]=β10u, [x, t]= β11u, [y, t]= β12u, [z, t]= β13u, [c, t]= β14u,            
 
[r, t]= β15u, and u∈Z(L). Now we will use the Jacobi Identity on all triples. 
 
 
 
• (xy)z+(yz)x+(zx)y = 0   ⇒zz+ α5tx+ β5ux +(-c)y=0 ⇒ α5tx-cy=0      
 
 
⇒ - α5β11u-(-β6u)=0    ⇒ β6= α5β11   
 
 
• (xy)c+(yc)x+(cx)y = 0   ⇒ zc+ β6ux-ry=0           ⇒ β8u+ β7u=0       ⇒ β7 = - β8        
 
 
• (xy)r+(yr)x+(rx)y = 0    ⇒ zr+ (β7u)x + (-t)y=0   ⇒ β9u- (-β12u)=0   ⇒ β9=-β12 
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• (xy)t+(yt)x+(tx)y = 0        ⇒ zt + β12ux-β11uy=0      ⇒ β13u=0           ⇒ β13=0 
 
 
• (xy)u+(yu)x+(ux)y = 0     ⇒0=0  
 
 
• (xz)c+(zc)x+(cx)z = 0       ⇒ cc+β8ux-rz=0            ⇒ β9u=0             ⇒ β9=0     
 
 
• (xz)r+(zr)x+(rx)z = 0        ⇒cr+ β9ux-tz=0             ⇒ cr-(-β13u)=0  ⇒ β10u+ α4β13u=0    

 
 
⇒ β10=-β13                       ⇒ β10=0 
 
 
• (xz)t+(zt)x+(tx)z = 0        ⇒ ct+ β13ux- β11uz=0       ⇒ β14u=0              β14=0 
 
 
• (xz)u+(zu)x+(ux)z = 0      ⇒ 0=0 
 
 
• (xc)r+(cr)x+(rx)c = 0        ⇒ rr+ β10ux-α4tc=0           ⇒ -α4tc=0     ⇒ β14=0  
 
 
• (xc)t+(ct)x+(tx)c = 0        ⇒ rt+ β14ux+(-β11u)c=0     ⇒ β15u=0     ⇒ β15=0 
 
 
• (xc)u+(cu)x+(ux)c = 0     ⇒ 0=0 
 
 
• (xr)t+(rt)x+(tx)r = 0         ⇒ (t+ β4u)t+ β15ux-β11ur=0  ⇒ tt+ β4ut+ β15ux-β11ur=0    
 
 
⇒0=0 
 
 
• (xr)u+(ru)x+(ux)r = 0      ⇒ 0=0     
 
 
• (xt)u+(tu)x+(ux)t = 0      ⇒ 0=0  
 
 
 
• (yz)c+(zc)y+(cy)z = 0   ⇒(α5t+ β5u)c+β8uy+(-β6u)z=0 ⇒ α5tc=0  ⇒ α5β14=0  ⇒0=0 
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• (yz)r+(zr)y+(ry)z = 0       ⇒ (α5t+ β5u)r+ β9uy- β7uz=0      ⇒ α5tr=0  ⇒ α5β15u=0 ⇒0=0        
 
 
• (yz)t+(zt)y+(ty)z = 0        ⇒ (α5t+ β5u)t + β13uy- β12uz=0  ⇒ 0=0    
 
 
• (yz)u+(zu)y+(uy)z = 0     ⇒ 0=0 

 
 
• (yc)r+(cr)y+(ry)c = 0       ⇒ β6ur+ β10uy+(-β7u)c=0            ⇒ 0=0 

 
 
• (yc)t+(ct)y+(ty)c = 0       ⇒ β6ut+ β14uy-β12uc=0                 ⇒ 0=0 
 
 
• (yc)u+(cu)y+(uy)c = 0     ⇒ 0=0  
 
 
• (yr)t+(rt)y+(ty)r = 0         ⇒ (β7u)t+ β15uy-β12ur=0             ⇒0=0 
 
 
• (yr)u+(ru)y+(uy)r = 0      ⇒ 0=0    
 
 
• (yt)u+(tu)y+(uy)t = 0      ⇒0=0    

 
 
• (zc)r+(cr)z+(rz)c = 0       ⇒ β8ur+ β10uz-β9uc=0     ⇒ 0=0    
 

 
• (zc)t+(ct)z+(tz)c = 0       ⇒ β8ut- β14uz-β13uc=0      ⇒0=0 

 
 
• (zc)u+(cu)z+(uz)c = 0     ⇒ 0=0  
 
 
• (zr)t+(rt)z+(tz)r = 0        ⇒ β9ut+ β15uz-β13ur=0      ⇒0=0    
 
 
• (zr)u+(ru)z+(uz)r = 0     ⇒0=0 
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• (zt)u+(tu)z+(uz)t = 0    ⇒ 0=0     
 

 
• (cr)t+(rt)c+(tc)r = 0      ⇒ β10ut+ β15uc-β14ur=0   ⇒ 0=0      

 
 
• (cr)u+(ru)c+(uc)r = 0    ⇒0=0   

 
 
• (rt)u+(tu)r+(ur)t = 0      ⇒0=0 

 
 
We will now summarize the equations found below: 
 
(1) β6=α5β11   (2) β7 =- β8  (3) β9=-β12  (4) β13=0 (5) β9=0 (6) β10=0 

 
(7) β14=0  (8)  β15=0. 
 
 
From the preceding work we obtain the following equations. 
 
(i) β9 = β10 = β13= β14=  β15=0  (ii) β7=-β8  (iii) β12=0 (iv) β6 = α5 
 
 
Relabelling yields the non zero multiplication 
 
[x,y]=z, [x,z]=c, [x,c]=r,  [x,r]= t, [y,z]= α5t+β5u, [y,c]= α5u,  [y,r]=-β8u,      
 
[z,c]=β8u , [z,r]=0, [c,r ]=0, [x, t]=u, [y, t]= 0, [z, t]= 0, [c, t]= 0,            
 
[r, t]=0, and u∈Z(L). For t to not be in Z(L), either β11 or β12 is not zero, but β12=0 so  
 
β11≠0 thus  [x, t]=u by the substitution u´= β11u which implies that β11=1. 
 
 
To compute the multiplier start with 
 
[x,y]=z, [x,z]=c, [x,c]=r, [x,r]= t, [y,z]= α5t+β5u+s5, [y,c]= α5u+s6,              
 
[y,r]=-β8u+s7  [z,c]=β8u+s8 , [z,r]=s9, [c,r ]=s10, [x, t]=u, [y, t]=s12,               
 
[z, t]=s13, [c, t]=s14,  [r, t]=s15, [x, u]=s16, [y, u]=s17, [z, u]=s18,[c, u]=s19, [r, u]=s20       
 
[t, u]=s21,   where s1,…,s21   generate the multiplier. 
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Now we will use the Jacobi identity on all triples.  
 
• (xy)z+(yz)x+(zx)y = 0            ⇒ zz+ (α5t+ β5u+s5)x +(-c)y=0    ⇒ α5tx+ β5ux+s5x-cy=0    
 
 
⇒ α5(-u)-β5s16+ α5u+s6=0   ⇒ s6= β5s16  
 
 
• (xy)c+(yc)x+(cx)y = 0             ⇒ zc+ (α5u+s6)x-ry=0    ⇒ β8u+s8+ α5ux+s6x-ry=0    
 
 
⇒ β8u+s8+ α5(-s16)-(β8u-s7)=0     ⇒ s8 = α5s16-s7 
     
 
• (xy)r+(yr)x+(rx)y = 0         ⇒ zr+(-β8u+s7)x+(-α4t)y=0           ⇒ s9-β8ux+ s7x-ty=0 
 
 
⇒s9-β8(-s16)-α4(-s12)=0  ⇒ s9+β8s16+ s12            ⇒ s9=-β8s16-s12 
 
 
• (xy)t+(yt)x+(tx)y = 0         ⇒ zt+(s12)x+(-u)y=0  ⇒ s13-(-s17 )=0 
 
 
⇒ s13=-s17  
 
 
• (xy)u+(yu)x+(ux)y = 0      ⇒ zu+s17x-s16y=0                       ⇒ s18 =0 
 
 
• (xz)c+(zc)x+(cx)z = 0         ⇒ cc+( β8u+s8)x-rz=0               ⇒β8ux+s8x+s9=0 
 
  
⇒ β8(-s16)+s9=0                    ⇒ s9 =β8s16 
 
 
• (xz)r+(zr)x+(rx)z = 0          ⇒ cr+s9x+(-t)z=0                      ⇒ s10=-α4s13 
   
 
• (xz)t+(zt)x+(tx)z = 0          ⇒ ct+ s13x+(-u)z=0       ⇒ s14-uz=0 
 
 
⇒ s14-(-s18)=0                    ⇒ s14 = -s18                           ⇒ s14 =0 
 
 
• (xz)u+(zu)x+(ux)z = 0        ⇒ cu + s18x- s16z=0                  ⇒s19 =0 
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• (xc)r+(cr)x+(rx)c = 0         ⇒ rr+s10x+(-t)c=0               ⇒ -tc=0             ⇒ s14=0 
 
 

• (xc)t+(ct)x+(tx)c = 0         ⇒ rt+(tx)c=0                           ⇒ s15 =- s19      ⇒ s15 =0      
 
 
• (xc)u+(cu)x+(ux)c = 0       ⇒ ru + s19x- s16c=0                 ⇒ s20 =0 
 
 
• (xr)t+(rt)x+(tx)r = 0           ⇒ -ur=0                                   ⇒ s20 =0 
 
 
• (xr)u+(ru)x+(ux)r = 0        ⇒ tu+s20x- s16r=0                    ⇒ s21 =0 
 
 
• (xt)u+(tu)x+(ux)t = 0         ⇒ s21x- s16t=0                         ⇒ 0 =0 
 
 
• (yz)r+(zr)y+(ry)z = 0        ⇒ (α5t+ β5u+s5)r+s9y+ (β8u-s7)z=0                                               
 
 
⇒ (α5tr+ β5ur+s5r)+β8uz     ⇒ -α5s15-β5s20- β8 s18=0   ⇒ α5s15= β8 s18=0 
 
 
• (yz)c+(zc)y+(cy)z = 0       ⇒ (α5t+ β5u)c+ β8uy-α5uz=0                                               
 
 
⇒ -α5s14-β8s17-α5s18=0         ⇒ β8 s17=0                                         
 
 
• (yz)t+(zt)y+(ty)z = 0         ⇒ (α5t+ β5u+s5)t+s13y+(-s12)z=0   ⇒ β5ut =0         
 
 
⇒ -β5s21=0                          ⇒ β5s21= 0     

 
 
• (yz)u+(zu)y+(uy)z = 0      ⇒ (α5t+ β5u+s5)u+s18y-s17z=0   ⇒ α5tu+ β5uu=0 ⇒ α5s21=0      
 
 
• (yc)r+(cr)y+(ry)c = 0        ⇒ (α5u+s6)r+s10y+(β8u-s7)c=0 ⇒α5ur+ s6r+s10y+β8uc=0 
 
 
⇒ α5(-s20)+ β8(s19)=0         ⇒ -β8s19=α5s20 
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• (yc)t+(ct)y+(ty)c = 0     ⇒ (α5u+s6)t+ s14y+s12c=0      ⇒ α5ut=0        ⇒ α5s21=0  
 
 
• (yc)u+(cu)y+(uy)c = 0      ⇒ (α5u+s6)u+ s19y+s17c=0   ⇒ α5uu+s6u=0  ⇒ 0=0                  
 
 
• (yr)t+(rt)y+(ty)r = 0          ⇒ (-β8u+s7)t+s15y+(-s12)r=0    ⇒ -β8ut =0              
 
 
⇒ β8s21=0                           ⇒ 0=0                      
 
 
• (yr)u+(ru)y+(uy)r = 0      ⇒ (-β8u+s7)u+s20y-s17r=0            ⇒ -β8uu=0        ⇒ 0=0                      
 
 
• (yt)u+(tu)y+(uy)t = 0       ⇒(s12)u+ s12y- s17t=0                  ⇒ 0=0 
 
 
• (zc)r+(cr)z+(rz)c = 0       ⇒ ( β8u+s8)r+s10z-s9c=0              ⇒ β8ur=0            ⇒ 0=0                      
 
 
• (zc)t+(ct)z+(tz)c = 0        ⇒ (β8u+s8)t+s14z+-s13c=0          ⇒ β8ut=0            ⇒ 0=0                      
 
 
• (zc)u+(cu)z+(uz)c = 0     ⇒ ( β8u+s8)u+s19z-s18c=0         ⇒ 0=0      
 
 
• (zr)t+(rt)z+(tz)r = 0         ⇒ s9z+ s15z-s13r=0                    ⇒ 0=0 
 
 
• (zr)u+(ru)z+(uz)r = 0       ⇒ s9u+ s20z-s18r=0                   ⇒ 0=0 
 
 
• (zt)u+(tu)z+(uz)t = 0         ⇒ s13u+ s21z-s18t=0                 ⇒ 0=0 
 
 
• (cr)t+(rt)c+(tc)r = 0          ⇒ s10t+ s15c-s14r=0                  ⇒ 0=0  
 
 
• (cr)u+(ru)c+(uc)r = 0       ⇒ s10u+ s20c-s19r=0                 ⇒ 0=0 
 
 
• (rt)u+(tu)r+(ur)t = 0         ⇒ s15u+ s21r-s20t=0                  ⇒ 0=0 
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We now summarize the equations found below: 
 
(1) s6= β5s16 (2) s8 = α5s16-s7  (3) s9=-β8s16-s12 (4) s13=-s17   
 
(5) s18=0 (6) s9=β8s16(7) s10= -s13 (8) s14=0 (9) s19=0 (10) s15=-s19 =0 (11) s20=0 
 
(12) s21=0 (13) β8s17=0   
 
From the preceding work  and equation (13) above we have two cases. β8s17=0  implies    
 
Either  Case (A) s17=0 or Case (B) s17 ≠ 0 and β8 = 0 
 
In Case (A), if  s17=0 then s21= s20 = s19= s18=s15=s14=s13=s10=0 and s6=β5s16 , s8 = α5s16-s7  

 

s9=β8s16 , s12=-β8s16- s9 which implies s6, s8, s9, s12 ∊ (s5, s7, s16 ) thus dimM(L)=3  
                                                             
 
which implies t(L)=½n(n-1)-dimM(L)= ½(7)(6)-3=18 ,we call this algebra               
 
L=L(17, 7, 1,18). 
 
In Case (B), s17 ≠ 0 and β8 = 0 then s21= s20 = s19= s18=s15=s14=0 and s6=β5s16 , s8 = α5s16-s7  

 

s9=β8s16 , s12=- s9 , s10=- s13 = s17 which implies s6, s8, s9, s12 , s10, s13 ∊ (s5, s7, s16, s17) thus  
 
dimM(L)=4 which implies t(L)=½n(n-1)-dimM(L)= ½(7)(6)-4=17 ,we call this algebra               
 
L=L(17, 7, 1,17). 
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CASE 2.  Let H=L´(11, 6, 1, 12), this L can be described generally by the basis  
 
{x, y, z, c, r, t, u} and multiplication 
 
[x,y]=z, [x,z]=c, [x,c]=r,  [x,r]= t, [y,z]=r+ α5t+β5u, [y,c]=t+ β6u,  [y,r]=β7u,      
 
[z,c]=β8u , [z,r]=β9u, [c,r ]=β10u, [x, t]= β11u, [y, t]= β12u, [z, t]= β13u, [c, t]= β14u,            
 
[r, t]= β15u, and u∈Z(L). Now we will use the Jacobi Identity on all triples. 

 
 

 
• (xy)z+(yz)x+(zx)y = 0      ⇒ zz+ (r+ α5t+ β5u)x +(-c)y=0    ⇒rx+ α5tx+ β5ux-(-t-β6u)=0     
 
 
⇒ -t-α5β11+t+β6u=0            ⇒ β6 =α5β11 
      
 
• (xy)c+(yc)x+(cx)y = 0      ⇒ zc+(t+β6u)x-ry=0                   ⇒ β8u+tx+ β6ux-ry=0  

 
⇒ β8u-β11u+β7u=0              ⇒ β7= β11- β8 
 
• (xy)r+(yr)x+(rx)y = 0       ⇒ zr+β7ux+(-t)y =0                    ⇒ β9u-ty =0     ⇒ β9=-β12         
 
 
• (xy)t+(yt)x+(tx)y = 0        ⇒ zt + β12ux-β11uy=0                 ⇒β13u=0           ⇒β13=0      
 
 
• (xy)u+(yu)x+(ux)y = 0     ⇒ 0=0     
 
 
• (xz)c+(zc)x+(cx)z = 0      ⇒ cc+(β8u)x-rz=0                       ⇒ β9=0    
 
 
• (xz)r+(zr)x+(rx)z = 0        ⇒cr+ β9ux+(-t-β4u)z=0              ⇒ β10u-tz =0       ⇒ β10=-β13  

 
 
• (xz)t+(zt)x+(tx)z = 0         ⇒ct+ β13ux- β11uz=0                 ⇒ β14u=0             ⇒ β14=0 
 
 
• (xz)u+(zu)x+(ux)z = 0      ⇒ 0=0   
 
 
• (xc)r+(cr)x+(rx)c = 0        ⇒ rr+ β10ux+(-t)c=0                  ⇒ β14=0         
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• (xc)t+(ct)x+(tx)c = 0        ⇒ rt+ β14ux+(-β11u)c=0     ⇒ β15u=0                  ⇒ β15=0            
 
 
• (xc)u+(cu)x+(ux)c = 0     ⇒ 0=0 
 
 
• (xr)t+(rt)x+(tx)r = 0         ⇒ (t)t+ β15ux+(-β11u)r=0       ⇒ 0=0    
 
 
• (xr)u+(ru)x+(ux)r = 0      ⇒ 0=0  
 
 
• (xt)u+(tu)x+(ux)t = 0      ⇒ 0=0 
 
 
• (yz)c+(zc)y+(cy)z = 0     ⇒(r+ α5t+ β5u)c+(β8u)y+(-t-β6u)z=0 
 
 
⇒rc+ α5tc+ β5uc+ β8uy-tz-β6uz=0      ⇒ -β10u- α5β14u+ β13u=0   ⇒ β13= β10+ α5β14     
 
 
• (yz)r+(zr)y+(ry)z = 0     ⇒ (r+ α5t+ β5u)r+ β9uy+( β7u)z=0     ⇒ rr + α5tr+ β5ur=0    
 
 
⇒ -α5β15u=0          ⇒ α5 β15=0 
 
 
• (yz)t+(zt)y+(ty)z = 0      ⇒ (r+ α5t+ β5u)t + β13uy- β12uz=0     ⇒ rt + α5tt+ β5ut=0 
 
 
⇒ β15u=0 ⇒ β15=0 
 
 
• (yz)u+(zu)y+(uy)z = 0    ⇒ 0=0 

 
 
• (yc)r+(cr)y+(ry)c = 0      ⇒ (t+β6u)r+ β10uy+(-β7u)c=0       ⇒ tr+β6ur=0 
 
 
⇒ β15= 0 

 
   

• (yc)t+(ct)y+(ty)c = 0       ⇒ (t+β6u)t+ β14uy-β12uc=0         ⇒ 0=0 
 



 54

• (yc)u+(cu)y+(uy)c = 0     ⇒ 0=0 
 
 
• (yr)t+(rt)y+(ty)r = 0         ⇒ β7ut+ β15uy-β12ur=0               ⇒ 0=0 
 
 
• (yr)u+(ru)y+(uy)r = 0       ⇒ 0=0 
 
 
• (yt)u+(tu)y+(uy)t = 0        ⇒ 0=0 

 
 
• (zc)r+(cr)z+(rz)c = 0        ⇒ (β8u)r+ β10uz-β9uc=0           ⇒ 0=0 
 

 
• (zc)t+(ct)z+(tz)c = 0        ⇒ (β8u)t+β14uz-β13uc=0            ⇒0=0 

 
 
• (zc)u+(cu)z+(uz)c = 0     ⇒0=0 
 
 
• (zr)t+(rt)z+(tz)r = 0               ⇒ β9ut+ β15uz-β13ur=0           ⇒0=0     

 
 
• (zr)u+(ru)z+(uz)r = 0            ⇒0=0 

 
 
• (zt)u+(tu)z+(uz)t = 0             ⇒0=0 

 
 
• (cr)t+(rt)c+(tc)r = 0               ⇒ β10ut+ β15uc-β14ur=0          ⇒0=0 
   

 
• (cr)u+(ru)c+(uc)r = 0             ⇒0=0 
 
    
• (rt)u+(tu)r+(ur)t = 0               ⇒0=0  
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We will now summarize the equations found below: 
 
(1)β6 =α5β11 (2) β7 =β11-β8   (3) β9=-β12  (4) β13=0 (5) β9=0                      
 
(6) β10=- β13 (7) β14=0 (8) β13=β10+ α5β14(9) β15=0  (10) α5β15=0 
 
 
From the preceding work we obtain the following equations. 
 
(i) β9 = β10 = β12= β13= β14=  β15=0  (ii) β8=1- β7 (iii) α5= β6 
 
 
Relabelling yields the non zero multiplication 
 
[x,y]=z, [x,z]=c, [x,c]=r,  [x,r]=t, [y,z]=r+ α5t+β5u, [y,c]= t+ β6u,  [y,r]= β7u,      
 
[z,c]=β8u , [z,r]=0, [c,r ]=0, [x, t]= β11u, [y, t]= 0, [z, t]= 0, [c, t]= 0,            
 
[r, t]=0, and u∈Z(L). Hence for t∉ Z(L), β11≠0 and we can use xt=u for multiplier . 
 
 
To compute the multiplier start with 
 
[x,y]=z, [x,z]=c, [x,c]=r, [x,r]=t, [y,z]=r+α5t+β5u+s5, [y,c]=t+ β6u+s6,              
 
[y,r]=β7u+s7  [z,c]=β8u+s8 , [z,r]=s9, [c,r ]=s10, [x, t]=u, [y, t]=s12,               
 
[z, t]=s13, [c, t]=s14,  [r, t]=s15, [x, u]=s16, [y, u]=s17, [z, u]=s18,[c, u]=s19, [r, u]=s20       
 
[t, u]=s21,   where s1,…,s21   generate the multiplier. 
 
 
Now we will use the Jacobi identity on all triples. 
 
• (xy)z+(yz)x+(zx)y = 0     ⇒ zz+(r+α5t+ β5u+s5)x +(-c)y=0    ⇒rx+ α5tx+β5ux+s5x-cy=0    
 
 
⇒ rx +α5tx+β5ux-(-t-β6u-s6)=0   ⇒ -t+ α5(-u)+ t+β6u+s6=0 
 
 
⇒ s6=  β5s16  
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• (xy)c+(yc)x+(cx)y = 0               ⇒ zc+ (t+β6u+s6)x-ry=0        
 
 
⇒ β8u+s8-u-β6s16+β7u+s7 =0        ⇒ s8+β6(-s16)+s7=0      
   
 
⇒ s8=β6s16-s7 
 
 
• (xy)r+(yr)x+(rx)y = 0                ⇒ zr+(β7u+s7)x-ty=0              
 
 
⇒ s9 +β7(-s16)-s12=0                     ⇒ s12= s9-β7s16  
 
 
• (xy)t+(yt)x+(tx)y = 0                ⇒ zt+ s12x+(-u)y=0     ⇒ s13+ s17=0   ⇒ s13=-s17 
 
 
 
• (xy)u+(yu)x+(ux)y = 0            ⇒ zu+s17x-s16y=0                      ⇒s18 =0 
 
 
• (xz)c+(zc)x+(cx)z = 0              ⇒ cc+( β8u+s8)x-rz=0               ⇒β8ux+s8x+s9=0 
 
  
⇒ β8(-s16)+s9=0                         ⇒ s9 =β8s16 
 
 
• (xz)r+(zr)x+(rx)z = 0               ⇒ cr+s9x-tz=0                          ⇒ s10+ s13=0    ⇒ s10=-s13 
     
 
• (xz)t+(zt)x+(tx)z = 0               ⇒ ct+ s13x-uz=0                       ⇒ s14+ s18=0     ⇒ s14=-s18 
 
 
• (xz)u+(zu)x+(ux)z = 0             ⇒ cu + s18x- s16z=0                 ⇒s19 =0 
 
 
• (xc)r+(cr)x+(rx)c = 0               ⇒-tc=0                      ⇒s14 =0 
 
 

• (xc)t+(ct)x+(tx)c = 0       ⇒ rt + s14x -uc =0     ⇒ s15+s19=0    ⇒ s15=0 
 
 
• (xc)u+(cu)x+(ux)c = 0       ⇒ ru + s19x- s16c=0                        ⇒ s20 =0 
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• (xr)t+(rt)x+(tx)r = 0       ⇒ -ur=0 ⇒ s20=0                  
 
 
• (xr)u+(ru)x+(ux)r = 0      ⇒s21=0 
              
 
• (xt)u+(tu)x+(ux)t = 0       ⇒ 0 =0 
 
 
• (yz)r+(zr)y+(ry)z = 0        ⇒ (r+α5t+ β5u+s5)r+s9y+ (-β7u-s7)z=0                                               
 
 
⇒ (rr+α5tr+ β5ur+s5r)-β7uz=0   ⇒ -α5s15-β5s20+β7 s18=0   ⇒ α5s15= 0 
 
 
• (yz)c+(zc)y+(cy)z = 0        ⇒ (r+α5t+ β5u+s5)c+(β8u+s8)y+ (-t-β6u-s6)z=0 
 
 
⇒ rc+α5tc+ β5uc+s5c+β8uy+s8y-tz-β6uz-s6z=0                                                  
 
 
⇒ -s10+ α5(-s14)+ β5(-s19)+β8(-s17)-(-s13)- β6(-s18)=0  
 
 
⇒ s10=-β8s17+s13 
 
 
• (yz)t+(zt)y+(ty)z = 0         ⇒ (r+α5t+ β5u+s5)t+s13y+(-s12)z=0    
 
 
⇒ s15=0                                                                                            

 
 
• (yz)u+(zu)y+(uy)z = 0      ⇒ (r+α5t+ β5u+s5)u+s18y-s17z=0   ⇒ru+ α5tu+ β5uu=0            
 
 
⇒ s20=-α5s21                        ⇒ 0=0 
 
 
• (yc)r+(cr)y+(ry)c = 0        ⇒ (t+β6u+s6)r+s10y+(-β7u-s7)c=0                                           
 
 
⇒ tr+β6ur+ s6r+s10y-β7uc=0 
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⇒ -s15+ β6(-s20)+β7(s19)=0   ⇒ s19 =0 
 
 
• (yc)t+(ct)y+(ty)c = 0        ⇒ (t+β6u+s6)t+s14y+(-s12)c=0          
 
 
⇒ tt+β6ut+s6t-s12c=0  ⇒ β6(-s21)=0                ⇒ β6s21=0       ⇒ 0=0                                   
 
 
• (yc)u+(cu)y+(uy)c = 0      ⇒ (t+β6u+s6)u+ s19y-s17c=0        ⇒ tu=0                ⇒ s21=0                  
 
 
• (yr)t+(rt)y+(ty)r = 0          ⇒ (β7u+s7)t+s15y+(-s12)r=0        ⇒ 0=0                       
 
 
⇒ β7ut+s7t-β12ur=0            ⇒ β7 (-s21)-β12(-s20)=0                 ⇒ β12s20= β7 s21              
 
 
• (yr)u+(ru)y+(uy)r = 0      ⇒ (β7u+s7)u+s20y-s17r=0             ⇒ β7uu=0            ⇒ 0=0                      
 
 
• (yt)u+(tu)y+(uy)t = 0       ⇒ (s12 )u + s21y- s17t=0       ⇒ 0=0 
 
 
• (zc)r+(cr)z+(rz)c = 0       ⇒ ( β8u+s8)r+s10z-s9c=0              ⇒ β8ur=0            ⇒ 0=0                      
 
 
• (zc)t+(ct)z+(tz)c = 0        ⇒ (β8u+s8)t+s14z-s13c=0          ⇒ β8ut=0                ⇒ 0=0                      
 
 
• (zc)u+(cu)z+(uz)c = 0     ⇒ ( β8u+s8)u+s19z-s18c=0         ⇒ 0=0      
 
 
• (zr)t+(rt)z+(tz)r = 0         ⇒ s9z+ s15z-s13r=0                    ⇒ 0=0 
 
 
• (zr)u+(ru)z+(uz)r = 0       ⇒ s9u+ s20z-s18r=0                   ⇒ 0=0 
 
 
• (zt)u+(tu)z+(uz)t = 0        ⇒ s13u+ s21z-s18t=0                 ⇒ 0=0 
 
 
• (cr)t+(rt)c+(tc)r = 0          ⇒ s10t+ s15c-s14r=0                  ⇒ 0=0  
 
 



 59

• (cr)u+(ru)c+(uc)r = 0       ⇒ s10u+ s20c-s19r=0                 ⇒ 0=0 
 
 
• (rt)u+(tu)r+(ur)t = 0         ⇒ s15u+ s21r-s20t=0                  ⇒ 0=0 

 
 
We now summarize the equations found below: 
 
(1) s6=- β5s16  (2) s8=β6 s16-s7  (3) s12= s9 -β7s16  (4) s13=-s17        
 
(5) s9=β8s16   (6) s13=-s10  (7) s10=-β8s17 +s13  (8) s19=0                                                        
 
(9) s21= s20 = s19= s18=s15=s14=0 
 
 
From the preceding work  we have dimM(L)=(s17, s16, s7, s5)=4.                                                              
 
Thus t(L)=t(L)=½n(n-1)-dimM(L)=½(7)(6)-3=17, we call this algebra L=L´(17, 7, 1, 17), 
 
And we summarize our result in the following theorem. 
 
 
Theorem 20 Let L be filiform with t(L)=17 then L=L(17,7,1,17) or L=L´(17, 7, 1, 17). 
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18. t(L)=18 
 
By  Theorem 4, we know that c2+ c ≤ 2t where c = dimL2 and t= t(L). If t =18 then 
 
c2+ c ≤ 36 which implies that c ≤ 5 therefore c = 0, 1, 2, 3, 4 or 5 but by proposition  0 
 
(i.e. t ≤ ½n(n-1)) and since n= c+2 for filiform we get 18 ≤ ½(c + 2)(c + 1) and by solving 
 
this inequality we know that c = 5 is the only case that satisfies the inequality. Thus if c =  
 
dim L2 = 5, then dim H2 = 4 and t(H) ≤13(proposition 3). In the t(L)=17 case we have  
 
already computed this algebra and we list it in the following theorem. 
 

 
Theorem 21 Let L be filiform with t(L)=18, then L=L(17, 7, 1, 18). 
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19. t(L)=19 
 
By  Theorem 4, we know that c2+ c ≤ 2t where c = dimL2 and t= t(L). If t =19 then 
 
c2+ c ≤ 38 which implies that c ≤ 5 therefore c = 0, 1, 2, 3, 4 or 5 but by proposition  0 
 
(i.e. t ≤ ½n(n-1)) and since n= c+2 for filiform we get 19 ≤ ½(c + 2)(c + 1) and by solving 
 
this inequality we know that c = 5 is the only case that satisfies the inequality. Thus if       
 
c = dim L2 = 5, then dim H2 = 4 and t(H) ≤14(proposition 3), but again from Table 22.1,  
 
we know that there are no filiform Lie algebras possible under these conditions,  
 
thus we have the following Theorem. 

 
Theorem 22  There are no filiform Lie algebras with t(L) = 19. 
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20. t(L)=20 
 
By  Theorem 4, we know that c2+ c ≤ 2t where c = dimL2 and t= t(L). If t =20 then 
 
c2+ c ≤ 40 which implies that c ≤ 5 therefore c = 0, 1, 2, 3, 4 or 5 but by proposition  0 
 
(i.e. t ≤ ½n(n-1)) and since n= c+2 for filiform we get 20 ≤ ½(c + 2)(c + 1) and by solving 
 
this inequality we know that c = 5 is the only case that satisfies the inequality. Thus if c =  
 
dim L2 = 5, then dim H2 = 4 and t(H) ≤15(proposition 3), but from Table 22.1, we  
 
know that there are no filiform Lie algebras possible under these conditions, thus we have  
 
the following Theorem. 

 
Theorem 23  There are no filiform Lie algebras with t(L) = 20. 
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21. t(L)=21 
 
By  Theorem 4, we know that c2+ c ≤ 2t where c = dimL2 and t= t(L). If t =21 then 
 
c2+ c ≤ 42 which implies that c ≤ 6 therefore c = 0, 1, 2, 3, 4,5 or 6  but by proposition  0 
 
(i.e. t ≤ ½n(n-1)) and since n= c+2 for filiform we get 21 ≤ ½(c + 2)(c + 1) and by solving 
 
this inequality we know that c = 5 and c=6 are the two cases that satisfy the inequality.  
 
Thus if c = dim L2 = 5, then dim H2 = 4 and t(H) ≤16 (proposition 3), but from Table  
 
22.1, we know that there are no filiform Lie algebras possible under these conditions. 
 
Also if  c = dim L2 = 6, then dim H2 = 5 and t(H) ≤15 (proposition 3), but again from  
 
Table 22.1, we know that there are no filiform Lie algebras possible under these  
 
conditions, thus we have the following Theorem. 
 
Theorem 24 There are no filiform Lie algebras with t(L) = 21. 
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22. SUMMARY 
 
       The following table summarizes the findings of this paper : 
 
TABLE 22.1 The Filiform Lie Algebras With t(L)=3 Through t(L)=21.  
 
t(L) dimL Basis Non Zero Multiplication   Filiform Lie Algebra 
  4   4  {x,y,z,r}  [x,y]=z,  [x,z]=r     L=L(3, 4, 1, 4) 
               
  7   5 {x,y,z,c,r}  [x,y]=z,  [x,z]=c,  [x,c]=r   OR    L=L(7, 5, 1, 7) OR 
       [x,y]=z,  [x,z]=c, [y,z]=r [x,c]=r    L=L´(7, 5, 1, 7) 
 11   6 {x,y,z,c,r,t}  [x,y]=z,  [x,z]=c,  [x,c]=r,      

     1= α7 ≠ 0  [x,r]=α4t, [y,z]=α5t, [y,c]=0     

       [y,r]=t, [z,c]=-t, [z,r]=0     

       [c,r]=0   L=L(11,6,1,11) OR 

       OR    L=L´(11,6,1,11) 
 [x,y]=z,  [x,z]=c,  [x,c]=r,  
 [x,r]=α4t, [y,z]=r+α5t, [y,c]=α4t 
 [y,r]=t, [z,c]=-t, [z,r]=0 

   

 [c,r]=0 

  

               
 12   6 {x,y,z,c,r,t}  [x,y]=z,  [x,z]=c,  [x,c]=r    L=L(11,6,1,12) OR 

       [x,r]=t, [y,z]=α5t, [y,c]=0   L=L´(11,6,1,12)  

       [y,r]=0, [z,c]=0, [z,r]=0     

       [c,r]= 0     

       OR     

       [x,y]=z,  [x,z]=c,  [x,c]=r,     

       [x,r]=t, [y,z]=r+α5t, [y,c]=t     
 [y,r]=0, [z,c]=0, [z,r]=0    
 [c,r]=0 

  

 17   7 {x,y,z,c,r,t,u}  [x,y]=z,  [x,z]=c,  [x,c]=r    L=L(17,7,1,17)  

       [x,r]=t, [y,z]= α5t+ β5u, [y,c]= β6u    β6= α5 

       [y,r]=0, [z,c]= 0, [z,r]= 0     

       [c,r]= 0,[x,t]= 0, [y,t]=0     
[z,t]= 0, [c,t]= 0, [r,t]= 0 

       OR    OR  

       [x,y]=z,[x,z]=c,[x,c]=r,[x,r]=t+β4u   L=L´(17,7,1,17)   

       [y,z]=r+α5t+β5u, [y,c]=t+β6u   β6= α5 and  

       [y,r]= β7u, [z,c]= β8u, [z,r]= 0   β8=1- β7  

       [c,r]= 0,[x,t]= 0, [y,t]=0     

       [z,t]= 0, [c,t]= 0, [r,t]= 0      
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TABLE 22.1 (continued) 
 
18   7 {x,y,z,c,r,t,u}  [x,y]=z,  [x,z]=c,  [x,c]=r,     L=L(17,7,1,18)  

       [x,r]=t, [y,z]= α5t+ β5u, [y,c]= β6u   Β7=-β8 

       [y,r]= β7u, [z,c]= β8u, [z,r]= 0     

       [c,r]= 0,[x,t]= 0, [y,t]= 0     
[z,t]= 0, [c,t]= 0, [r,t]= 0 
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