
Abstract

YOSHIZAKI, JUN. Use of Natural Tags in Closed Population Capture-Recapture Studies: Mod-
eling Misidentification. (Under the direction of Kenneth H. Pollock and Nicholas M. Haddad.)

Estimates of demographic parameters such as population size, survival rates, and movement

rates are often obtained by use of capture-recapture models. Capture-recapture methods usually

require the capturing and marking of animals. These marks allow us to identify animals upon

their recapture and create unique capture histories for each animal captured. Then, parameter

estimates are obtained based on modeling the capture histories. Traditionally, marks or ”tags”

are applied by researchers (applied tags). However, in recent years, naturally existing features of

animals have also been used as tags in capture-recapture studies (natural tags).

Our research focuses on the use of natural tags as an alternative to applied tags in closed

population capture-recapture studies. We consider plausible misidentification mechanisms for

individual-level natural tags and describe in detail how misidentification leads to errors in the

observed capture history data. Effects on the observed capture history data may differ depending

on how errors are introduced because the misidentification mechanism may vary depending on the

type of natural tag and specific features of the study design. We found that the typical multinomial

approach to model capture history data is not applicable when misidentification is possible, and

it is important to clearly define the misidentification mechanism in a particular study to model

misidentification appropriately.

We first consider misidentification when using genetic tags in closed population capture-

recapture studies (non-evolving natural tags 1). We then focus on the use of photographic tags,

where two different types of errors are considered: those related to quality of photographs (non-

evolving natural tags 2) and those related to changes in natural marks (evolving natural tags).

For each type of misidentification mechanism, we develop a new closed population model that is

applicable to that specific case and estimators based on quadratic distance functions. The models

can be viewed as extensions of the traditional closed capture-recapture model that allows time

variation in capture probabilities. Our goal is to present a clear framework for each misidentifica-

tion mechanism and give its statistical model development. Through simulation studies, we show



that bias in traditional population size estimators can be substantial because misidentification is

ignored, and our new estimators perform well in terms of both bias and precision provided capture

probability is not too low.

For non-evolving natural tags 1, we also present an alternative estimation method, which is

based on likelihood theory, by conditioning on the capture histories that have two or more capture

events. With the likelihood-based approach, only part of data can be used, and capture probabil-

ities and misidentification rate cannnot be estimated separately. However, population size can be

estimated as a derived parameter, and through simulation study, we show that this likelihood-based

estimation method is of comparable accuracy to the quadratic methods that use all of the capture

history data, except in cases with low capture probabilities where the quadratic distance estimators

perform better. We also consider a variation of the basic model in which we allow for behavioral

response, but no time variation, with possible misidentification. We show that population size is

overestimated when misidentification is ignored, and performance of our new estimators is good

provided capture probability is not too low. Finally, we discuss augmentation of capture history

data with extra data on the misidentification rate. We particularly consider use of supplemental

data obtained when identification is performed multiple times independently (multiple identifica-

tion), and develop a model that allows us to utilize the augmented data. Although we demonstrate

the benefit of the supplemental data for the cases where capture probability is low, in cases where

capture probability is high, the benefit of supplemental data is less apparent and requires future

investigation.
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Chapter 1

Use of Natural Tags in
Capture-Recapture Studies

1.1 Introduction

Estimates of demographic parameters such as population size, survival rates, recruitment rates

and movement rates are often obtained by use of capture-recapture models (Williams et al., 2002).

Capture-recapture methods usually require the capturing and marking of animals. These marks

allow us to identify animals upon their recapture, and create unique capture histories (e.g. [110],

[010], etc) for each animal captured. Parameter estimates are obtained based on modeling the

capture histories. These parameter estimates are crucial to building sound population dynamics

models, and they may be used in scientifically based management of many wildlife and fisheries

populations. Capture-recapture models are of many types depending on the study design, and the

data structure and parameters of interest may differ among models. In this chapter, we present

a very brief overview of different types of capture-recapture models and properties of tags used

to mark animals. We then outline issues that arise with use of natural tags in capture-recapture

studies, paying particular attention to the issue of misidentification.

1.2 Conventional Capture-Recapture Models

Conventional capture-recapture models are either closed or open models. Estimation of pop-

ulation size is the focus of closed population models. These models do not allow additions (i.e.,
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births or immigrants) or deletions (i.e., deaths or emigrants) of animals from the population during

the study so that the population is constant during the whole study. The 2-sample closed popula-

tion model, often referred to as the Lincoln-Petersen model , is the simplest capture-recapture

model, and this model assumes equal capture probability for all animals in the population on each

sampling occasion. The assumption of equal capture probability can be relaxed with K-sample

closed population models where K > 2, which allow for varying capture probabilities due to

individual heterogeneity, behavioral response, time variation or combinations of these (Otis et al.,

1978; Pollock et al., 1990; Williams et al., 2002).

Open population models allow additions or deletions of animals from the population during

the study. The general Jolly-Seber model has K > 2 sampling occasions, and population size,

survival rates and recruitment rates can be estimated (Jolly, 1965; Seber, 1965, 1982; Williams

et al., 2002). The Cormack-Jolly-Seber model is based on a component of the Jolly-Seber

model that focuses on the estimation of survival parameters, and uses the data conditioned on first

capture (Cormack, 1964; Lebreton et al., 1992; Williams et al., 2002).

Another class of models comprise the tag-return models of Brownie et al. (1985), in which

tags are usually returned by harvesters. This set of models is related to, but distinct from, the

Cormack-Jolly-Seber model with multiple capture events because animals can be recaptured only

once, but again the main focus is on the estimation of survival parameters. Multistate models,

which can be considered as another extension of Cormack-Jolly-Seber model, have wide applications

in capture-recapture and tag-return studies. Under these models we assume that there are groups

of animals in different states (e.g., populations in different locations, animals in different status

of breeding), and the focus is estimation of parameters that are related to transitions between

different states (e.g., movements from location A to location B, changes from breeder to non-

breeder) in addition to survival parameters (Arnason, 1972; Hestbeck et al., 1991; Brownie et al.,

1993; Schwarz et al., 1993; Williams et al., 2002).

The Robust design is another important area of capture-recapture modeling, which provides

data from both closed and open populations. The robust design has two different types of sampling

periods, primary and secondary. Each primary sampling period has a set of secondary sampling

periods nested within it, and primary periods have long intervals between them and assume an

open population structure, whereas the secondary periods have short intervals between them and

assume a closed population structure within each primary period. The robust study design allows
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us to: allow for unequal catchability of animals; estimate parameters that cannot be estimated by

closed or open population models alone such as temporary emigration; and improve the precision

of parameter estimates (Pollock, 1982; Kendall et al., 1997; Williams et al., 2002).

1.3 Tags

1.3.1 Types of Tags

Different types of marking methods can be used to obtain capture-recapture data, and here a

tag refers to any feature that can be used to identify individuals or groups of animals. Many of the

conventional tags used in capture-recapture studies are applied to animals by investigators, and

we refer to them as applied tags. Traditionally capture-recapture methods are based on applied

tags (Seber, 1982), and there are many different types of tags depending on the animals being

studied. Some examples of applied tags include physical devices or modification of the animals,

such as numbered bands, radio tags, satellite tags, or tattoos.

In capture-recapture studies, applied tags have many advantages because tags can be designed

to suit the purpose of the study, and are in many ways under the researchers’ control. On the

other hand, there are aspects of applied tags that are not desirable. Of particular concern is the

necessity to physically capture animals to apply the tags, which may be very problematic if the

species of interest is elusive or expensive to physically capture. Also, physically attaching tags to

animals can cause various problems such as discomfort and infection, which can affect survival and

capture probability. Further, applied tags may be lost during the study.

On the other hand, naturally existing features of animals (natural marks) can also be used to

mark animals, and we refer to tags based on natural marks as natural tags. Visible features of

animals such as variation in stripe patterns on tigers and scars on manatees (e.g., Pennycuick, 1978;

Hammond, 1986; Karanth et al., 2004b; Langtimm et al., 2004) have been widely used as tags by

taking their photographs, which we refer to as photographic tags, and use of photographic tags

has been an important area of capture-recapture research (e.g., Agler, 1992; Bain, 1992; Durban

et al., 2005). Recently, advances in technology have opened the use of natural tags to a wider range

of ecological studies, and there is now a growing body of literature on the use of different types of

natural tags instead of applied tags. For example, techniques developed in forensic science allow
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us to use genotypes to mark animals, which we refer to as genetic tags (also DNA fingerprints)

(Waits, 2004). Such techniques are currently used in many capture-recapture studies (Waits and

Paetkau, 2005), and are another important area of capture-recapture research (e.g., Mills et al.,

2000; Gosky, 2004; Lukacs, 2005; Lukacs and Burnham, 2005). There are many other types of

natural marks that can be used as tags as well (e.g., otolith chemistry), but in our discussion we

shall mainly focus on use of photographic tags and use of genetic tags.

Natural tags are less invasive than applied tags because it is often not necessary to physically

capture the animals. Therefore, natural tags might appear to be more advantageous in capture-

recapture studies. This may be true in some cases, however, there are aspects of using natural tags

that lead to new challenges that were not faced when using applied tags. Such new challenges can

be summarized into three main issues:

1. uncertainty in the level of identification;

2. misidentification or misclassification; and

3. unmarkable animals.

We are left with the common dilemma in decision making of trade-offs, and to assess these trade-

offs, it is necessary to have a very clear framework for the modeling of capture-recapture data

based on natural tags and the assumptions involved. In later sections, we will discuss each issue

briefly.

1.3.2 Level of Identification

It is also important to consider the level of identification that can be achieved by use of the tags.

In capture-recapture studies, the necessary level of identification of animals differs depending on

the purpose of study. For example, some studies only need to identify groups of animals that share

some aspect of their life history in common (e.g., fish from the same natal river) whereas others

require identification of individual animals. Tags that only allow us to identify groups of animals

that share some aspect in common are referred to as population-level tags. Those that allow

us to identify each individual animal are referred to as individual-level tags. Colored bands,

patterns in gene expression and otolith microchemistry are good examples of population-level tags
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Table 1.1: A summary of terms used to define types of tags and types of capture histories.

Glossary

Tags

Applied tags

Natural tags

Genetic Tags

Photographic Tags

Population-level tags

Individual-level tags

Non-evolving natural tags

Evolving natural tags

True capture history

Observable capture history

Real capture history

Ghost capture history

Any features that can be used to identify animals

Tags that are applied by investigators

Tags based on naturally existing features of animals

Example of natural tags; obtained from analyses of DNA samples

Example of natural tags; use visible unique feature of animal

Tags that can be used to identify groups of animals only

Tags that can be used to identify individual animals

Natural tags that are not likely to change over time

Natural tags that can change over time

Capture history that corresponds to capture events,
and unknown when there is possible misidentification

Capture history that can be observed

Capture history that belongs to existing animals
and may or may not contain misidentification

Capture history that belongs to non-existing animals,
and is created by misidentification

whereas individually numbered bands, coloration patterns and genotypes are good examples of

individual-level tags. A glossary of terms used is presented here to aid the reader (Table 1.1).

1.3.3 Tag-Related Assumptions

There are several underlying assumptions, not always explicitly stated, in capture-recapture

studies that are specific to the properties of tags. These are relevant to both applied and natural

tags. Conventional capture-recapture models assume that:

1. All captured animals can be tagged in some way;

2. The tags do not affect survival;
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3. The tags are not lost or modified during the study;

4. The tags are unique to the level of interest (e.g., population- or individual-level); and

5. The tags allow correct identification of captured animals.

These assumptions plus additional assumptions about capture probabilities are necessary to obtain

estimates that are unbiased. Any violation of these assumptions can have serious consequences.

Thus, properties of tags are an important aspect of capture-recapture studies, and assumptions

that are more or less likely to be violated may differ among different tag types. We shall explore

violation of these assumptions in detail as they relate to the use of various types of natural tags

in later sections.

1.3.4 Special Issues with Natural Tags

Traditionally in capture-recapture studies, investigators assume that the level of identification

(i.e., population- or individual-level) is known, and information to identify animals at the level of

interest is known with certainty. This is particularly true with applied tags. For example, we know

that individually numbered bands can be used to uniquely identify marked individuals and that

the identification number that is applied to each captured animal is known with certainty. In other

words, we can have a catalog of tags in which the identification information on the tags is known

with certainty. However, natural tags often do not allow us to have identification information that

is certain. For example, a catalog of each captured animal’s genotype (i.e., DNA fingerprints) may

be obtained by analyzing the DNA sample upon capture events. Two problems with identification

are possible here: the genotype may not contain enough information to distinguish each animal in

the population (Mills et al., 2000; Gosky, 2004), and the DNA fingerprint may contain errors due

to faulty field or laboratory work (Lukacs and Burnham, 2005). The former problem causes the

situation in which multiple animals share the same genotype, thus the tag should not be used for

individual identification (uncertainty in the level of identification). The latter problem causes

the situation that the tag information is incorrect, thus it can lead to incorrect identification of

individual animals when tags are used at the individual-level (misidentification), or to incorrect

status when tags are used at the population-level (misclassification).
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These are new challenges we have with natural tags, and the resulting violations of the assump-

tions of conventional capture-recapture models may lead to large biases in parameter estimates. In

the next section, we focus on use of individual-level natural tags, and explore potential violations

of conventional capture-recapture model assumptions and their effects on capture-recapture data

in general.

1.4 Individual-Level Natural Tags

1.4.1 Overview

There are many types of natural marks of animals that can be used to mark individual animals,

however, individual-level natural tags can be classified into two main categories: genetic tags and

photographic tags. We will focus closely on these two types of individual-level natural tags to

illustrate potential issues. Genetic tag-based capture-recapture studies typically involve collection

of physical material in the field (e.g., blood, skin or hair) that contains the animal’s DNA, extraction

of DNA, and amplification of the DNA to obtain ”DNA fingerprints” (or genetic tags) using a

technique called polymerase chain reaction (PCR). Each captured individual can then be identified

based on the DNA fingerprint (Waits, 2004), which allows us to construct capture histories of

animals in the population.

The second type of study uses unique visible features of animals, and there are many variations

in natural marks that can be used (e.g., coloration patterns and injury scars). These studies often

employ a photographic identification technique, which typically involves taking photographs of the

natural marks in the field. Then, identification is performed based on the photographic records

of natural marks (photographic tags) (Karanth et al., 2004a). Matching of newly photographed

natural marks to the ones in photographs from previous sampling occasions indicates a recapture

event, while non-matching indicates a first capture event. In some cases and particularly with

terrestrial species, sampling is automated by setting camera traps in the fields (e.g., tigers in

Karanth, 1995). In other cases, and particularly with highly visible aquatic species such as marine

mammals, photographs are taken based upon visual encounters during field surveys (e.g., manatees

in Langtimm et al., 2004). The brief summary of types of natural tags is shown in Figure 1.1.
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Tags

Applied tags

Natural tags
Non-Evolving

Evolving

Genetic
Photographic (e.g. coloration patterns)

Photographic (e.g. injury scars)

Figure 1.1: A summary diagram of tag types commonly used in capture-recapture studies.

1.4.2 Potential Assumption Violations

Misidentification

Theoretically, genetic tags possess good properties as a tag in capture-recapture studies be-

cause:

• all animals can be tagged;

• the tag is unique to an individual animal; and

• there is no loss or modification of the tag.

However, there are a number of potential problems associated with use of this method in practice.

The quality of the samples, which can be affected by field techniques and storing methods, can

cause errors in the DNA fingerprints. Also, errors in DNA fingerprints can be introduced in the

laboratory (Taberlet et al., 1999; Waits, 2004; Waits and Paetkau, 2005). If the DNA fingerprints

contain errors for any reason, they lead to incorrect identification of individual animals (violation

of assumption 5).

Similarly, misidentification of animals is possible with photographic tag-based studies, which

can be caused by a number of factors. For example, less distinctive natural marks or poor quality

photographs may increase the risk of errors during the process of matching photographs. In

addition, unlike genetic tags, some visible natural marks are not consistent over time, for example,

scars are subject to loss or modification over time (e.g., Carlson et al., 1990), possibly making the

misidentification issue more complicated (violation of assumption 3).

Whether a certain type of natural tag can be lost or modified over time is an important

aspect of misidentification, and here we make a division of natural tags into two different types.
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We refer to natural tags that are not likely to change over time as non-evolving natural tags,

and those that can change over time as evolving natural tags. For example, it is reasonable to

consider that genetic tags and photographic tags that use coloration patterns like stripes on tigers

are non-evolving natural tags, but photographic tags that use injury scars on species like manatee

are evolving natural tags in long-term studies. However, whether a certain type of natural tag is

non-evolving or evolving needs to be justified for each study based on considerations such as the

specific natural tag involved, the sampling design, and the duration of study.

Note that minimization of such errors should be an important goal of any study, and there has

been research on field and laboratory techniques to minimize genotyping errors (Waits and Paetkau,

2005; Taberlet and Luikart, 1999) and on methods to quantify the magnitude of errors in DNA

fingerprints (Bonin et al., 2004; McKelvey and Schwartz, 2004; Buchan et al., 2005). For studies

that use photographic tags, there are now detailed protocols to avoid mismatching of photographs

(e.g., Defran et al., 1990), and computer programs have been developed to aid the matching process

(e.g., Arzoumanian et al., 2005). However, misidentification may never be eliminated completely.

Thus, in addition to the effort to minimize errors that lead to misidentification, it is important to

develop models that allow misidentification in order to analyze natural tag-based capture-recapture

data.

Uncertainty in the level of identification

Another potential challenge is uncertainty in the level of identification (violation of assumption

4). For example, in genetic tag-based capture-recapture studies, the genotype would not provide

enough information to identify individuals if the number of loci examined is too small, leading

to a situation in which a number of individuals share the same genotype (Taberlet and Luikart,

1999; Waits, 2004). Thus, it would be only possible to identify groups of individuals within the

population. In such cases, genotype should be treated as a population-level tag, but information

such as the number of distinct genotypes in the population and the number of animals that share

each genotype is unknown, and thus need to be estimated. This problem is often referred to as

the shadow effect , and data should be analyzed with a model that incorporates such uncertainty

(Mills et al., 2000; Gosky, 2004) (see also Figure 1.2).

Uncertainty in level of identification can also be a problem in photographic tag-based studies.
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For example, there may be animals that possess similar injury scars, making them difficult to

distinguish. Therefore, we cannot be absolutely sure that these natural marks are unique to each

animal (Pennycuick, 1978). This problem should be avoided by carefully choosing which natural

marks should be used in the study or by using multiple natural marks for identification so that

animals are identified correctly to the level of the investigators’ interests and needs.

Unmarkable animals

In photographic tag-based studies, it may be the case that we have unmarkable animals

(violation of assumption 1). For example, there may be animals that do not possess distinct

injury scars or young animals in which natural marks have not yet fully developed. Unmarkable

animals cannot be followed to construct their capture histories due to lack of identifiable natural

marks, and the only data we can obtain from them are total number of photographs taken at

each sampling occasion. Consequently, if data on unmarkable animals are ignored, estimates are

only applicable to the markable portion of the population, similar to the case of uncatchable

animals for a particular trapping method (Seber, 1982). In some studies, unmarkable animals are

a serious problem, for example, the majority (≈ 70%) is considered as unmarkable in bowhead

whale populations, and special capture-recapture models that incorporate unmarkable animals

have been developed (Da Silva et al., 2000, 2003).

1.4.3 Modeling Misidentification

Although misidentification can occur with applied tags (e.g., as when numbers on leg bands are

misread), the potential for misidentification is greater and a more serious problem when natural

tags are used in capture-recapture studies. It is important to remember that there is always a

risk of misidentification with individual-level natural tag-based capture-recapture studies. Such

data should be analyzed using models in which an appropriate misidentification mechanism for

the data is incorporated. However, it is often difficult to identify the appropriate misidentification

mechanism, and here we give a simple example of a capture-recapture study to illustrate necessary

considerations and the effects of misidentification on observed capture-recapture data.
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Who is identified through misidentification?

Consider a single sampling occasion. Suppose an animal A is captured. Then, identification of

animal A can be either correct or incorrect. If identification of the animal was incorrect, then the

question is whose identity is assigned to animal A. In some cases correct identification of marked

animals may not be possible even with applied tags, for example, if the last digit of the identification

number on the tag is lost. However unless the tags are completely lost, investigators can identify

the problematic tags because they know the identification numbers applied to previously captured

animals. Thus, this type of misidentification can be removed from capture-recapture data when

applied tags are used. There are other situations where misidentification of applied tags occurs but

is not recognized, for example, when tags are read from a distance and misidentified as another tag.

In such cases, incorrect identification always leads to false identification of other animals in the

population that have already been captured. Schwarz and Stobo (1999) termed this problem tag-

misread , investigated its effect in capture-recapture studies, and developed models to estimate

tag-misreading rates.

On the other hand, with natural tags, it is not known when an identification error has occurred,

and misidentification cannot be restricted to cases that lead to false identification of existing

previously marked animals in the population. In other words, misidentification of an animal can

lead to two types of error: (1) assigning the identity of an animal in the population to a different

animal, and (2) assigning an identity that does not exist to a new capture or to a recaptured

animal. The consequences of misidentification in capture-recapture data differ depending on the

assumptions made concerning the mechanisms of misidentification. For example, assigning the

identity of a previously tagged animal to an existing animal in the population results in the

combining of capture histories of two animals, whereas assigning a non-existing identity to a

captured animal results in splitting of the capture history of an animal into multiple capture

histories.

Theoretically, any type of misidentification can occur with natural tags. However considering

all possible ways that errors in identification can be introduced, there are numerous different effects

of misidentification on the observed capture history data, and hence on parameter estimates from

traditional models that assume no misidentification. We believe that it is not practical to consider

all possible scenarios and incorporate them into capture-recapture models. Thus, it is important



Chapter 1. Use of Natural Tags in Capture-Recapture Studies 12

to identify the mechanisms of misidentification that are most likely to occur in the study, make

appropriate assumptions, and develop models based on the assumptions. For example, Lukacs and

Burnham (2005) studied the particular case of misidentification when genetic tags are used. They

assumed that misidentification leads only to creation of non-existing animals based on the fact that

the number of possible genotypes greatly exceeds the number of individuals in the population, and

that errors in a DNA fingerprint are unlikely to generate a fingerprint that matches that of another

existing animal in the population. This assumption seems to be reasonable for the case of genetic

tags, and it also helps to simplify the issue of misidentification.

When can misidentification occur?

Another aspect that needs to be considered is whether misidentification is possible at all sam-

pling occasions or not. Identification errors in photographic tag-based studies are likely to be due

to matching errors when newly taken photographs are compared to previously taken photographs,

and therefore may not apply to the first capture event. However with certain types of natural tags,

we should include the possibility of misidentification when animals are captured for the first time.

For example, the likelihood of errors in DNA fingerprints does not depend on whether the animal

is a first-time capture or a recapture, and misidentification can occur at both first capture and

recapture events. Consequently, it is again important to consider how errors in identification can

be introduced during the study to model misidentification appropriately.

Can errors be repeated?

It is also important to consider whether the same identification error can occur more than

once during the study. Theoretically, the same false identity can be created on one or more

sampling occasions for the same animal or for multiple different animals. The resulting effects on

capture-recapture data differ depending on how repeated errors can occur during the study. The

simplest case is to assume that an error is never repeated, and we term this situation as unique

identification errors. This may be an oversimplification, but may be necessary to keep models

parsimonious and useful for estimation.
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Effects of misidentification on observed capture-recapture data

To illustrate the effects of misidentification on observed capture-recapture data, and conse-

quences for modeling such data in general, we use a simple example assuming that misidentification

always leads to a non-existing animal, misidentification can occur at any sampling occasion and

identification errors are unique. Consider a 2-sample capture-recapture study and an animal that

was captured on both occasions. This animal has a true capture history [11] where true capture

histories are the ones that correspond to the capture events. The true capture histories may or may

not agree with the observed capture histories (i.e., data) when misidentification is possible, and

they agree with observed capture histories only if identification is correct at all captured events.

Suppose the animal was identified correctly on the first capture, but misidentified at the second

capture. Then, the capture history of the animal at the second sampling occasion is recorded as

non-capture (i.e., [0]), and the capture event is recorded as a first capture for a non-existent

animal, generating two histories, [10] and [01], for the same animal. We refer to capture histories

that belong to existing animals, whether or not they contain misidentification, as real capture

histories, whereas those that belong to non-existing animals as ghost capture histories. Note that,

for this model, on subsequent sampling occasions, the animal is again subject to capture, and

the real capture history can include future recaptures. However, the ghost capture history cannot

include recaptures because we assume that the ghost capture history belongs to a non-existing

animal and the error that led to the non-existing animal is never repeated.

This type of misidentification has unique consequences for the observed capture histories. For

an animal identified correctly at sample 1 and misidentified at sample 2, two capture histories [10]

and [01] are generated with the second history being a ghost capture history as defined above. The

probability, with which the ghost history occurs, can be determined based on the misidentification

mechanism we assume. These two paired histories for one animal are created by a single event, thus

they are not independent. In other words, conditional on [11] being the true capture history and

there being one misidentification at the second occasion, we have two totally dependent capture

histories with the same probability. Of course the observed histories [10] and [01] can arise in

other ways as well, based on other capture and misidentification events, and we can create a list of

observable capture histories for each true capture history. However, obviously, they are also not

independent histories, and we cannot distinguish real and ghost capture histories in the observed
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data. Hence the recorded capture histories do not represent independent fates of the N animals in

the population and the usual multinomial distribution does not apply.

To summarize, the problem here is that, under specific assumptions, the capture history of

an animal can split into multiple capture histories when misidentification occurs, and the ”real”

capture history with incorrect identification and its ”ghost” capture history are always observed

together, but as if they were different animals. This unique characteristic of the observed cap-

ture histories has very serious consequences. ”Fates” are not independent, and the sum of the

marginal probabilities of all the possible capture histories exceeds 1 because of the ghost capture

histories. Consequently, the counts of observed capture histories cannot be modeled with the

multinomial distribution involving population size N as is the case of conventional closed popula-

tion capture-recapture models. Estimates are likely biased if this type of capture history data is

analyzed by conventional capture-recapture models. The key to this problem is to understand the

misidentification mechanism that is likely to occur in the study, and construct a list of observable

capture histories and their probabilities based on assumptions that are appropriate for the specific

misidentification mechanism.

1.5 Population-Level Natural Tags

In the previous section, we noted that many natural tags are suitable for individual iden-

tification of animals, and discussed potential issues with use of individual-level natural tags in

capture-recapture studies. Some natural tags only allow identification to the population level

(i.e., a group of individuals that share an aspect in common), and with population-level natural

tags, the potential assumption violations discussed for individual-level natural tags also need to

be considered. For example, a set of trace elements in the otolith of a fish (Thorrold et al., 1997)

is a type of population-level natural tag. Analyses of trace elements provide a signature which

enables a fisheries scientist to identify where the fish was born or where the fish was at a later age

(state) and construct the history of locations where the fish has been (transition history), thus

enabling the researchers to gain information on age-related movement probabilities (C. Jones, per-

sonal communication). Similar to misidentification issues discussed in the previous section, there

is always a risk of errors in identification of state when natural tags are used (misclassification),

and observed transition histories do not necessarily correspond to the true transition histories. For
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Figure 1.2: A summary diagram of issues with use of natural tags in capture-recapture studies.

example, identification of locations of the fish based on the trace element may contain errors, thus

the observed history of locations may not correspond to the history of locations where the fish has

been. It is again necessary to consider the mechanism of misclassification and its effects on the

observed data so that appropriate models for the data can be developed.

1.6 Discussion

In summary, the use of natural tags can create problems that do not occur when using applied

tags (Figure 1.2). There is always uncertainty associated with identification based on natural tags,

and misidentification or misclassification is always a risk. In addition, issues with natural marks

can be complex depending on the type of natural tags used in the study. For example, injury scars

may change over time, and thus the misidentification issue can be more complex, or coloration

patterns may not be established until a certain age class has been reached, and thus young animals

are unmarkable. Although we have not emphasized the issue of unmarkable animals in this chapter,

it is also an important issue. The potential for errors in identification clearly raises questions in

data analyses. Analyses using conventional capture-recapture models may not be appropriate, and

special models need to be developed that account for these special challenges.

Particular attention has been paid to the issue of misidentification in capture-recapture studies,

which can be very complex depending on the assumptions we make about the way errors in iden-

tification are introduced. Underlying mechanisms of misidentification, and hence the assumptions
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we make, can differ depending on study species, tag types, study design, etc., and understanding

the mechanisms is very important to appropriately model the misidentification process. In the

following three chapters, we consider plausible misidentification mechanisms for individual-level

natural tags and new models that are applicable to such cases. Our goal here is to present a clear

framework for the misidentification mechanism, and with the development of new models, we take

a stepwise approach starting with simpler cases first. For all models, we assume that the popula-

tion is closed during the period of the study. In Chapter 2, we develop a basic closed population

model that can be applied to genetic tag-based capture-recapture data. In Chapter 3, we consider

an alternative estimation approach for the data described in Chapter 2 that is based on a condi-

tional likelihood, and also extensions of the model presented in Chapter 2 by including behavioral

responses and augmentations of data that provide extra information on the misidentification rate.

In Chapter 4, we focus on misidentification issues in photographic tag-based capture-recapture

studies, and develop new models for these studies.
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Chapter 2

Non-Evolving Natural Tags 1:
Possible Misidentification at Any
Capture

2.1 Introduction

Individual identification based on an individual animal’s genotype (genetic tag) has become

an important tool in ecological studies (Waits, 2004). Typical genetic tag-based capture-recapture

studies involve collection in the field of samples that contain an animal’s DNA, followed by analyses

of the DNA samples in the laboratory to obtain genetic information. These analyses involve

extraction of DNA from the material and amplification of DNA (Taberlet and Luikart, 1999; Waits,

2004). The resulting ”DNA fingerprints” (or genetic tags) are used for individual identification,

and capture-recapture data can be constructed based on the individual identification. There are

different types of genetic material that can be collected as a source of DNA in the field, for

example, hair for brown bears (Ursus americanus) (Woods et al., 1999), skin tissue for humpback

whales (Megaptera novaeangliae) (Garrigue et al., 2004), and fecal samples for common wombat

(Vombatus ursinus) (Banks et al., 2002). The number of genetic tag-based capture-recapture

studies has increased recently (Lukacs and Burnham, 2005b), and the method has been applied to

at least 13 different species to obtain minimum count or capture-recapture estimates of population

size (Waits and Paetkau, 2005).

Use of genetic tags in capture-recapture studies is attractive, especially for rare or elusive
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species, because, in some cases, capture-recapture data can be obtained without physically con-

tacting or even observing the animals, and theoretically genetic tags produce unique individual-level

tags. However, there are always technical challenges, such as risk of contamination, amplification

failure, and genotyping errors, and this method does have practical problems (Taberlet et al., 1999;

Taberlet and Luikart, 1999; Waits, 2004). One of the important issues is the uncertainty in level

of identification, which is often referred as to the shadow effect. This is the situation where mul-

tiple animals share the same genotype due to the DNA fingerprints being based on an insufficient

number of loci, and it leads to underestimation of population size (Mills et al., 2000; Waits, 2004).

Another important issue is errors in DNA fingerprints, which can lead to misidentification of in-

dividual animals, and capture-recapture data that contain errors due to misidentification lead to

overestimation of population size (Waits, 2004). Such bias in the population size estimates can be

substantial, for example, misidentification could lead to a 5.5-fold increase in estimated population

size in the case of Yellowstone wolves (Canis lupus) if unaccounted for in the capture-recapture

model (Creel et al., 2003).

There are now several studies available in the literature that examine the solutions to these

issues, many of which are related to field methods and laboratory techniques, which include guide-

lines for pilot studies to examine the feasibility of the use of DNA samples (Taberlet et al., 1999;

Valiere et al., 2007), precautions and protocols for analyses of samples (Taberlet and Luikart, 1999;

Paetkau, 2003; Waits and Paetkau, 2005), methods to compute the proportion of the population

that have indistinguishable genotypes (Waits et al., 2001), and methods to detect and quantify the

magnitude of genotyping errors (Bonin et al., 2004; McKelvey and Schwartz, 2004; Buchan et al.,

2005). However, less attention has been paid to the modeling of genetic tag-based data within the

capture-recapture framework (Lukacs and Burnham, 2005b). It would be ideal if errors in DNA

fingerprints could be eliminated through careful methodological and technical considerations. How-

ever, there are many factors that may cause such errors, and it is often very difficult and expensive

to eliminate them. Thus, it is beneficial to have models that allow for errors in capture-recapture

data. Gosky (2004) considered the issue of the shadow effect and developed capture-recapture

models that can be applied to data that have the shadow effect. Recently, Lukacs and Burn-

ham (2005a) considered cases of misidentification that are likely to occur in genetic tag-based

capture-recapture studies and presented a model that attempts to incorporate misidentification.

In this chapter, we will not focus on field and laboratory techniques to minimize misiden-
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tification from genetic tag-based capture-recapture data, although we do recommend this as an

important area for research. Instead, we shall assume that, even in well designed genetic tag-based

capture-recapture studies, the data always have a risk of containing errors due to misidentification,

and we will develop a framework for misidentification mechanisms that are likely to occur in ge-

netic tag-based capture-recapture studies and then develop a statistical model that can be used to

analyze such data. We consider studies where the population can be assumed to be closed, and our

assumptions are similar to the assumptions of Lukacs and Burnham (2005a): however our model

formulation and hence the resulting estimates are quite different from theirs.

2.2 Lukacs and Burnham Misidentification Model

Lukacs and Burnham (2005a) considered misidentification when an animal’s genotype is used

as an identification tool in closed population capture-recapture studies. They assumed that:

1. The genotype is unique to each animal if correctly identified;

2. A genotyping error always leads to a genotype that is not identical to that of any animal in

the population; and

3. Two errors made at different sampling occasions never produce the same (incorrect) genotype.

Assumption 1 implies that the genetic tag is an individual-level tag. Assumption 2 implies that

misidentification always leads to identification of a non-existing genotype or ”ghost”, and the

possibility of recapture of the non-existing genotype is eliminated by assumption 3. Consequently,

with their closed population model, recorded capture histories that have only one capture event

can contain misidentification, whereas recorded histories containing at least one recapture cannot

involve any misidentification. In addition, though not explicitly stated, their multinomial likelihood

also implicitly assume that

4. The non-existing genotypes are present in the population from the beginning of the study,

and existing and ”non-existing” genotypes suffer independent outcomes.

In other words, their likelihood considers a population of genotypes rather than a population of

animals, and non-existing genotypes are subject to capture during the study, but they can only
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be captured once. We shall see later that this final assumption is not required in our alternative

model formulation.

Lukacs and Burnham (2005a) give the probability of observing each capture history h in a

K-sample study as:

Pr [h] =

[
t1−1∏
i=1

(1 − pi)

]
[pt1α]

[
K∏

i=t1+1

chi
i (1 − ci)1−hi

]

for h with multiple capture events, and

Pr [h] =

[
t1−1∏
i=1

(1 − pi)

][
pt1α

(
K∏

i=t1+1

(1 − ci)

)
+ pt1(1 − α)

]

for h with a single capture event at sample occasion t1, where

t1 is the time that the genotype is initially observed

hi is the ith entry of capture history h

pi is the probability of initially observing a genotype at time i

ci is the probability of subsequently observing (i.e., recapturing) a genotype at

time i

α is the probability of correctly identifying a genotype given that it is observed

for the first time.

Based on the assumptions, and the above probabilities, they constructed the full multinomial

likelihood (omitting constant terms) as

L(fo, pi, ci, α|nh,Mt+1) ∝ (f0 + Mt+1)!
f0!

∏
h

Pr [h]nh ,

where

f0 is the number of genotypes in the population that are never observed

nh is a count of the number of times capture history h is observed
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Mt+1 is the number of distinct genotypes observed,

and estimates are obtained by maximizing L. Note that the population size, N , is not in their

likelihood specification. It is estimated as a derived parameter based on estimated f0 and α as

N̂ = α̂
(
f̂0 + Mt+1

)
.

Assumption 4 of Lukacs and Burnham (2005a) does not seem correct to us, one reason being

that the fates of a ghost and the corresponding existing animal are not independent. Therefore we

were not satisfied with their approach and decided to take a more basic approach to modeling the

capture history data obtained under this type of misidentification.

2.3 Proposed Misidentification Mechanism

We made the same basic three assumptions concerning the misidentification process as do

Lukacs and Burnham (2005a). Thus, we assume:

1. Misidentification of animals always leads to false identification of animals that do not exist

in the population;

2. The same error is never repeated; and

3. Misidentification can occur at any capture event.

Assumption 3 implies that errors in identification information are possible at any sampling occasion

whenever animals are captured. For example, errors in identification of applied tags are unlikely

to occur when an animal is captured for the first time unless information on the tag is recorded

incorrectly. However, genotyping errors are possible whenever DNA samples are analyzed to obtain

information about the genotypes (i.e., DNA fingerprints). In other words, the possibility of errors

in the DNA fingerprint, and thus misidentification of the animal, does not differ whether the

animal is captured for the first time or recaptured. Unlike Lukacs and Burnham (2005a), we

do not assume that the non-existing genotypes are present from the beginning of the study, nor

that fates of existing and non-existing genotypes are independent. Instead, we assume that each

misidentification creates a pair of histories, a real history and a ghost history, which therefore have

the same probability of occurrence.
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Although we consider genetic tags throughout this chapter, our methods apply to any nat-

ural tags that have this type of misidentification mechanism, which we refer to as non-evolving

natural tags 1 . We denote the model developed for capture-recapture data with this type of

misidentification as NE1 .

These assumptions combined together allow us to have a simple misidentification mechanism

with the following characteristics:

• Misidentification can occur at any sampling occasion whenever an animal is captured;

• If a captured animal is incorrectly identified, the capture event of that animal appears as a

non-capture (i.e., the ”real” capture history is recorded as [0]), but it also creates a capture

history of a non-existing animal (i.e., a ”ghost” capture history is created by recording the

capture event [1] for the sampling occasion); and

• The real capture history has a possibility of recapture in the future whereas the capture

history of the ghost cannot contain a recapture.

Unlike Lukacs and Burnham (2005a), we assume that non-existing genotypes do not occur until

misidentification creates them, and outcomes of existing animals and their ”ghost” counterparts

are not treated as independent. We will see that this has very serious implications for the statistical

model that we develop in the next section.

2.4 Statistical Model Development

2.4.1 Model Formulation and Simple Examples

We now formalize our earlier heuristic development of the misidentification mechanism. To

consider misidentification in a statistical modeling framework, it is helpful to consider capture his-

tories in terms of the true capture history (which is unknown with natural tags) vs. the observable

capture history (which is the list of capture histories that can be observed as data). The true

capture history, which is denoted by ω, describes the sequence of capture and non-capture events

of an animal during the study. The corresponding random variable is denoted by Yω, which is the

number of animals that have true capture history ω. On the other hand, the observable capture

history is the history we observe, which is denoted by γ, and the corresponding random variable,
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Table 2.1: A summary of notation used for misidentification models.

N

ω

γ

δ

pi

qi

α, β

P ′
i

Q′
i

t1(γ)

t2(γ)

Notation

Population size

True capture history ; Yω = Number of animals that have true capture history ω

Observable capture history ; Xγ = Number of capture histories observed as γ

Latent capture history ; Zδ = Number with latent capture history δ

Probability of capturing an animal at the ith sampling occasion

Probability of not capturing an animal at the ith sampling occasion ; qi = (1 − pi)

Probability of correct identification of a captured animal

Probability of observing an animal with correct identification ; P ′
i = piα

Probability of not observing an animal with correct identification

Sampling occasion at which the first capture event occurs for a give capture history γ

Sampling occasion at which the last capture event occurs for a give capture history γ

Xγ , denotes the number of capture histories γ observed. Notice that random variable Yω describes

the number of animals, whereas random variable Xγ describes the number of observed capture

histories. Without the possibility of misidentification, the observed capture histories always agree

with the true capture histories, thus Yω = Xγ . For example, capture history [11] can only be ob-

served if the animal is encountered and correctly identified at samples 1 and 2, hence the observed

number of histories [11] must equal the number of animals with true capture history [11], and

Y11 = X11. However, with misidentification possible, the observed capture history may or may

not agree with the true capture history: they agree only if identifications at all capture events are

correct. Terms and notation are defined in Tables 1.1 and 2.1.

To give a simple concrete example, we assume that the population is closed during the period of

the study, and consider the 3-sample case with equal capture probabilities except for time variation,

which is an extension of Model Mt. As for the case of a conventional short-term capture-recapture

study, we have a parameter for capture probability of an animal at each sampling occasion, p1,

p2 and p3. Also assuming that the probability of correct identification is constant for all animals
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throughout the study, let α be the probability of correct identification for a captured animal. (A

more general model would allow time dependent α, however, it would be of little use as we could

not estimate time dependent α). Consider an animal which is captured at all sampling occasions.

The animal has true capture history [111], but there are several possible observed capture histories

depending on when misidentification occurs. One of the several possibilities is the pair [101 ; 010],

which is the case that identification at first and third capture events is correct, but at second

capture event is incorrect. Given that an animal has true capture history [111], the probability

of observing the animal with real capture history [101] is p1αp2(1 − α)p3α. The ghost capture

history [010] that is created due to misidentification at the second capture event also has the same

probability p1αp2(1 − α)p3α because real and ghost capture histories are totally dependent. In

a similar way, we can list every possible observable history and obtain its probability. Table 2.2

presents the probability of all the observable capture histories conditioned on the true capture

history for the 3-sample case. The marginal probabilities for the observed capture histories in the

3-sample case are also summarized in Table 2.3, where P ′
i = piα and Q′

i = (1 − P ′
i ). Notice that

the total probability exceeds 1 because of the ghost capture histories we observe, and the total

probability equals 1 if and only if no misidentification occurs (i.e., α = 1).

For K > 3 the same principles apply. As indicated in the previous section, pairs of real and

ghost capture histories are generated if misidentification occurs. Ghost capture histories occur

only as capture histories with a single capture event, however, it is not possible to tell whether a

capture history observed with a single capture event corresponds to a real animal or a ghost. Let

t1(γ) be the sampling occasion when the first capture occurs for a given capture history γ. Then,

the general expression for the probability of observing a capture history γ is

Pr [γ] =
K∏

i=1

P ′γi

i (1 − P ′
i )

(1−γi)

for γ with multiple capture events, and

Pr [γ] =
K∏

i=1

P ′γi

i (1 − P ′
i )

(1−γi) + pt1(γ) (1 − α)

for γ with a single capture event, where
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Table 2.2: A summary of the observable capture histories, γ, and associated probabilities for
non-evolving natural tags 1 for the 3-sample case.

ω
(true history) misID

γ

(observed history) status Pr[γ | ω]

111

110

none

at third

at second

at first

at second and third

at first and third

at first and second

at first, second and third

none

at second

at first

at first and second

111

110
001

101
010

011
100

100
010
001

010
100
001

001
100
010

000
100
010
001

110

100
010

010
100

000
100
010

real

real
ghost*

real
ghost*

real
ghost*

real
ghost*
ghost*

real
ghost*
ghost*

real
ghost*
ghost*

real
ghost*
ghost*
ghost*

real

real
ghost*

real
ghost*

real
ghost*
ghost*

p1αp2αp3α

p1αp2αp3(1 − α)
p1αp2αp3(1 − α)

p1αp2(1 − α)p3α

p1αp2(1 − α)p3α

p1(1 − α)p2αp3α

p1(1 − α)p2αp3α

p1αp2(1 − α)p3(1 − α)
p1αp2(1 − α)p3(1 − α)
p1αp2(1 − α)p3(1 − α)

p1(1 − α)p2αp3(1 − α)
p1(1 − α)p2αp3(1 − α)
p1(1 − α)p2αp3(1 − α)

p1(1 − α)p2(1 − α)p3α

p1(1 − α)p2(1 − α)p3α

p1(1 − α)p2(1 − α)p3α

p1(1 − α)p2(1 − α)p3(1 − α)
p1(1 − α)p2(1 − α)p3(1 − α)
p1(1 − α)p2(1 − α)p3(1 − α)
p1(1 − α)p2(1 − α)p3(1 − α)

p1αp2α(1 − p3)

p1αp2(1 − α)(1 − p3)
p1αp2(1 − α)(1 − p3)

p1(1 − α)p2α(1 − p3)
p1(1 − α)p2α(1 − p3)

p1(1 − α)p2(1 − α)(1 − p3)
p1(1 − α)p2(1 − α)(1 − p3)
p1(1 − α)p2(1 − α)(1 − p3)
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Table 2.2 (continued.)

ω
(true history) misID

γ

(observed history) status Pr[γ | ω]

101

100

011

010

001

000

none

at second

at first

at first and second

at none

at first

none

at third

at second

at second and third

none

at second

none

at third

none

101

100
001

001
100

000
100
001

100

000
100

011

010
001

001
010

000
010
001

010

000
010

001

000
001

000

real

real
ghost*

real
ghost*

real
ghost*
ghost*

real

real
ghost*

real

real
ghost*

real
ghost*

real
ghost*
ghost*

real

real
ghost*

real

real
ghost*

real

p1α(1 − p2)p3α

p1α(1 − p2)p3(1 − α)
p1α(1 − p2)p3(1 − α)

p1(1 − α)(1 − p2)p3α

p1(1 − α)(1 − p2)p3α

p1(1 − α)(1 − p2)p3(1 − α)
p1(1 − α)(1 − p2)p3(1 − α)
p1(1 − α)(1 − p2)p3(1 − α)

p1α(1 − p2)(1 − p3)

p1(1 − α)(1 − p2)(1 − p3)
p1(1 − α)(1 − p2)(1 − p3)

(1 − p1)p2αp3α

(1 − p1)p2αp3(1 − α)
(1 − p1)p2αp3(1 − α)

(1 − p1)p2(1 − α)p3α

(1 − p1)p2(1 − α)p3α

(1 − p1)p2(1 − α)p3(1 − α)
(1 − p1)p2(1 − α)p3(1 − α)
(1 − p1)p2(1 − α)p3(1 − α)

(1 − p1)p2α(1 − p3)

(1 − p1)p2(1 − α)(1 − p3)
(1 − p1)p2(1 − α)(1 − p3)

(1 − p1)(1 − p2)p3α

(1 − p1)(1 − p2)p3(1 − α)
(1 − p1)(1 − p2)p3(1 − α)

(1 − p1)(1 − p2)(1 − p3)
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Table 2.3: A summary of the marginal probabilities of the observable capture histories, γ, for
non-evolving natural tags 1 in a 3-sample study.

γ (observed history)

111

110

101

100

011

010

001

000

Total**

Pr[γ]

P ′
1P

′
2P

′
3

P ′
1P

′
2Q

′
3

P ′
1Q

′
2P

′
3

P ′
1Q

′
2Q

′
3

Q′
1P

′
2P

′
3

Q′
1P

′
2Q

′
3

Q′
1Q

′
2P

′
3

Q′
1Q

′
2Q

′
3

+ p1(1 − α)

+ p2(1 − α)

+ p3(1 − α)

1 + (p1 + p2 + p3) (1 − α)

** Total = 1 if and only if α = 1.

γi is the ith entry of capture history γ

pi is the capture probability of an animal at the ith sampling occasion

α is the probability of correct identification

P ′
i = piα

Q′
i = (1 − P ′

i ).

The sum of the marginal probabilities exceeds 1 because of the ghost capture histories observed,

and these unique characteristics of the data need to be considered when statistical models are

developed.
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2.4.2 Estimation

The typical multinomial approach to building a likelihood for the observed capture histories

is invalid because of the dependency between real and ghost histories, and the fact that the total

probability here exceeds 1 because of the ghost histories. Thus, we found that building a valid

likelihood function was very difficult. The older and simpler methods of unweighted least squares or

minimum χ2, both of which have been used for over a hundred years, can be applied to estimate the

parameters without the likelihood being specified. This is based on the idea of using the observed

values and marginal expected values of Xγ in a quadratic distance function, and minimizing the

quadratic distance function to obtain the estimates. For example, marginal expected values of Xγ

for the 3-sample case can be written as

E [X111] = N [P ′
1P

′
2P

′
3]

E [X110] = N [P ′
1P

′
2Q

′
3]

E [X101] = N [P ′
1Q

′
2P

′
3]

E [X100] = N [P ′
1Q

′
2Q

′
3 + p1 (1 − α)]

E [X011] = N [Q′
1P

′
2P

′
3]

E [X010] = N [Q′
1P

′
2Q

′
3 + p2 (1 − α)]

E [X001] = N [Q′
1Q

′
2P

′
3 + p3 (1 − α)]

E [X000] = N [Q′
1Q

′
2Q

′
3] ,

where X000 is not observed. Then, the estimates are obtained by minimizing the quadratic distance

function

Fls =
∑

γ, γ �=000

(xγ − E [Xγ ] )2

or

Fχ2 =
∑

γ, γ �=000

(xγ − E [Xγ ] )2

E [Xγ ]

where xγ represents the data and Xγ represents the random variable. These estimates are con-

sistent despite the complex dependencies involved. This is somewhat analogous to using ordinary
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least squares when observations are autocorrelated in a time series.

The methods can also be conditioned on the total number of capture histories observed, Xall.

The total probability associated with the observed capture histories is

p∗ = 1 − Q′
1Q

′
2Q

′
3 + (p1 + p2 + p3) (1 − α)

for the 3-sample case, or in general,

p∗ = 1 −
K∏

i=1

(1 − P ′
i ) +

(
K∑

i=1

pi

)
(1 − α)

for the K-sample case. Then expected values of Xγ with the conditional approach can be written

as

E [Xγ | Xall = xall] =
xall Pr [γ]

p∗

where xall is the total number of capture histories observed. Again, the estimates are obtained by

minimizing the quadratic distance function Fls or Fχ2 as described for the unconditional approach.

With the conditional approach, the parameter N is removed from the estimation process and

estimated as a derived parameter,

N̂ =
xall

p̂∗
.

2.5 Simulation Study

2.5.1 Simulation 1: Cases with Time Specific Capture Probabilities

In our simulation study, we considered a closed population of N animals, and a capture-

recapture study with K = 5 sampling occasions. We allowed for the capture probability to be

time dependent, and each animal was subject to capture with probability pi at each sampling

occasion i. Whenever an animal was captured, identification of the animal was either correct with

probability α, or incorrect with probability (1 − α). When the identification was correct, the real

capture history of the animal was recorded as capture (i.e., [1]). However, if the identification was

incorrect, the real capture history of the animal was recorded as non-capture (i.e., [0]), and a ghost

capture history was created with a capture for the sampling occasion (i.e., [1]). Then, each animal
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Figure 2.1: A diagram of the misidentification mechanism for non-evolving natural tags 1.

was again subject to capture at the next sampling occasion (see Figure 2.1). Note that a real

capture history always has the possibility of recapture. However, a ghost capture history does not

have the possibility of recapture, and misidentification always creates a new ghost capture history.

Parameter values were chosen to reflect a wide range of population sizes, capture probabilities

and correct identification rates. We considered four specific cases in the simulation study based on

different combinations of parameter values.

Case 1: N = 1000 and p = [0.7, 0.8, 0.7, 0.8, 0.7]

Case 2: N = 200 and p = [0.7, 0.8, 0.7, 0.8, 0.7]

Case 3: N = 1000 and p = [0.3, 0.2, 0.3, 0.2, 0.3]

Case 4: N = 200 and p = [0.3, 0.2, 0.3, 0.2, 0.3]

Each combination of parameter values is describing either a large or a small population size with

high or low capture probabilities, and for each case, correct identification rates of α = 0.7, 0.8, and

0.9 were considered.

The estimation methods considered under our NE1 model were unweighted least squares and

minimum χ2, based on the quadratic distance functions of Fls and Fχ2 , respectively. In addi-

tion, unconditional and conditional (on xall) approaches were considered. We were also interested

in the comparison of estimates obtained under our NE1 model (Model NE1t), the model de-

veloped by Lukacs and Burnham (2005a) (Model L&Bt) and the corresponding conventional
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capture-recapture model (Model Mt). Thus, estimates were also obtained under Model L&Bt by

maximizing the conditional likelihood (i.e., f0 is not estimated) described in Lukacs and Burnham

(2005a, p.398) and under Model Mt by maximizing the likelihood (conditioned on xall) for the

same generated data sets.

The performance of the estimators was assessed by examining the average estimates, standard

errors and root mean square errors of N̂ based on 100 simulated data sets, and if the estimation

process failed to converge, those estimates were excluded from the computation of the results.

The results for cases 1 to 4 are summarized in Tables 2.4 - 2.7. Although we considered both

unconditional and conditional (on xall) approaches for the estimator of N under Model NE1t, the

unconditional approach displayed numerical problems such as sensitivity to starting values and

non-convergence. Thus, only results from the conditional approach are presented in the Tables.

It is clear from the simulation results that N̂ was positively biased when data were analyzed

under Model Mt, in which misidentification is ignored. Such bias in the estimates can be substan-

tial as the correct identification rate becomes lower (relative bias > 110% for α = 0.7 cases). The

estimates under Model L&Bt were highly variable depending on the starting values we examined,

and it was difficult to evaluate the performance of the L&Bt estimator. Thus, we present esti-

mates obtained by using a particular set of starting values in the Tables for comparison purposes.

Although the bias in N̂ in the estimates obtained under Model L&Bt (relative bias ≈ 10 − 85%)

were smaller than that under Model Mt (relative bias ≈ 25 − 155%), these particular results still

indicated positive biases in the estimates. Also, in the high capture probability cases, the esti-

mates p̂5 were usually close to the boundary value 1 under Model L&Bt. The performance of

both estimation methods under Model NE1t was good, particularly for the cases of high capture

probability (relative bias < 3% and relative standard error < 5% for cases 1 and 2). However,

as for the conventional capture-recapture models, the performance was worse when the capture

probability was low, and we found an increase in bias in N̂ with the low capture probability cases

(relative bias ≈ 1 − 30% and relative standard error ≈ 10 − 60% for cases 3 and 4). For case 4

with α = 0.7, we observed a larger difference between average N̂ from unweighted least squares

and minimum χ2. There were more data sets with α̂ ≈ 1 with unweighted least squares compared

to minimum χ2, and results for these data sets tended to inflate the average N̂ from unweighted

least squares for this case. Performance of the two estimation methods under Model NE1t was

similar for the high capture probability cases, but the method of minimum χ2 gave smaller root
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Table 2.4: [Simulation 1: case 1] Non-evolving natural tags 1 with time specific capture probabil-
ities. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model NE1t are from the conditional (on xall) approach.

Model NE1t

least squares minimum χ2

Model L&Bt

conditional L
Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

1000

0.7

0.7

0.8

0.7

0.8

0.7

−−
−−
−−
−−

1000

0.8

0.7

0.8

0.7

0.8

0.7

−−
−−
−−
−−

1000

0.9

0.7

0.8

0.7

0.8

0.7

−−
−−
−−
−−

1000 (21)

0.700 (0.008)

0.700 (0.026)

0.797 (0.027)

0.698 (0.027)

0.800 (0.026)

0.699 (0.025)

−−
−−
−−
−−
0

21.00

999 (13)

0.799 (0.008)

0.700 (0.020)

0.798 (0.021)

0.698 (0.021)

0.801 (0.020)

0.701 (0.021)

−−
−−
−−
−−
0

13.03

1000 (8)

0.899 (0.005)

0.701 (0.018)

0.803 (0.016)

0.700 (0.019)

0.799 (0.015)

0.701 (0.018)

−−
−−
−−
−−
0

8.00

1007 (21)

0.703 (0.008)

0.697 (0.022)

0.795 (0.022)

0.695 (0.024)

0.795 (0.023)

0.698 (0.019)

−−
−−
−−
−−
0

22.13

1004 (12)

0.801 (0.008)

0.697 (0.017)

0.798 (0.017)

0.696 (0.018)

0.796 (0.016)

0.700 (0.020)

−−
−−
−−
−−
0

12.64

1002 (7)

0.900 (0.005)

0.698 (0.016)

0.798 (0.015)

0.699 (0.016)

0.797 (0.014)

0.698 (0.017)

−−
−−
−−
−−
0

7.28

1255 (209)

0.590 (0.028)

0.334 (0.025)

0.376 (0.033)

0.368 (0.047)

0.560 (0.077)

0.951 (0.139)

0.589 (0.056)

0.493 (0.043)

0.533 (0.033)

0.438 (0.029)

2

329.70

1205 (39)

0.690 (0.018)

0.401 (0.016)

0.423 (0.020)

0.381 (0.029)

0.556 (0.053)

0.925 (0.111)

0.654 (0.032)

0.555 (0.021)

0.614 (0.020)

0.505 (0.021)

1

208.67

1136 (19)

0.824 (0.012)

0.508 (0.014)

0.512 (0.024)

0.410 (0.030)

0.550 (0.046)

0.886 (0.093)

0.724 (0.017)

0.628 (0.016)

0.701 (0.014)

0.586 (0.016)

0

137.32

2531 (54)

−−
0.277 (0.009)

0.316 (0.009)

0.276 (0.009)

0.316 (0.009)

0.277 (0.007)

−−
−−
−−
−−
0

1531.95

1886 (36)

−−
0.371 (0.011)

0.424 (0.010)

0.370 (0.011)

0.424 (0.011)

0.372 (0.011)

−−
−−
−−
−−
0

886.73

1400 (22)

−−
0.500 (0.013)

0.572 (0.014)

0.501 (0.012)

0.571 (0.013)

0.500 (0.012)

−−
−−
−−
−−
0

400.60
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Table 2.5: [Simulation 1: case 2] Non-evolving natural tags 1 with time specific capture probabil-
ities. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model NE1t are from the conditional (on xall) approach.

Model NE1t

least squares minimum χ2

Model L&Bt

conditional L
Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

200

0.7

0.7

0.8

0.7

0.8

0.7

−−
−−
−−
−−

200

0.8

0.7

0.8

0.7

0.8

0.7

−−
−−
−−
−−

200

0.9

0.7

0.8

0.7

0.8

0.7

−−
−−
−−
−−

198 (10)

0.695 (0.018)

0.707 (0.059)

0.806 (0.068)

0.691 (0.053)

0.808 (0.059)

0.703 (0.061)

−−
−−
−−
−−
0

10.19

199 (6)

0.799 (0.018)

0.702 (0.050)

0.794 (0.041)

0.702 (0.051)

0.805 (0.049)

0.706 (0.045)

−−
−−
−−
−−
0

6.08

199 (4)

0.900 (0.013)

0.703 (0.036)

0.806 (0.038)

0.705 (0.041)

0.798 (0.035)

0.690 (0.038)

−−
−−
−−
−−
0

4.12

205 (9)

0.710 (0.018)

0.700 (0.050)

0.790 (0.049)

0.688 (0.047)

0.786 (0.051)

0.690 (0.046)

−−
−−
−−
−−
0

10.29

204 (7)

0.808 (0.017)

0.691 (0.037)

0.782 (0.042)

0.691 (0.043)

0.784 (0.042)

0.696 (0.041)

−−
−−
−−
−−
0

8.06

202 (3)

0.903 (0.012)

0.693 (0.032)

0.787 (0.034)

0.693 (0.031)

0.785 (0.033)

0.682 (0.034)

−−
−−
−−
−−
0

3.60

244 (17)

0.582 (0.045)

0.336 (0.023)

0.379 (0.034)

0.361 (0.039)

0.565 (0.068)

0.962 (0.095)

0.595 (0.075)

0.493 (0.060)

0.535 (0.054)

0.433 (0.050)

1

47.16

239 (10)

0.691 (0.037)

0.405 (0.022)

0.422 (0.027)

0.385 (0.046)

0.566 (0.063)

0.942 (0.080)

0.649 (0.048)

0.558 (0.037)

0.619 (0.039)

0.508 (0.042)

1

40.26

227 (6)

0.826 (0.030)

0.510 (0.028)

0.510 (0.040)

0.407 (0.061)

0.554 (0.079)

0.871 (0.097)

0.727 (0.039)

0.632 (0.038)

0.701 (0.037)

0.577 (0.036)

0

27.65

509 (23)

−−
0.278 (0.019)

0.316 (0.021)

0.273 (0.018)

0.314 (0.016)

0.275 (0.018)

−−
−−
−−
−−
0

309.85

375 (16)

−−
0.373 (0.023)

0.424 (0.023)

0.373 (0.023)

0.427 (0.024)

0.376 (0.025)

−−
−−
−−
−−
0

175.72

279 (9)

−−
0.502 (0.028)

0.574 (0.029)

0.503 (0.031)

0.572 (0.029)

0.494 (0.029)

−−
−−
−−
−−
0

79.51



Chapter 2. Non-Evolving Natural Tags 1 39

Table 2.6: [Simulation 1: case 3] Non-evolving natural tags 1 with time specific capture probabil-
ities. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model NE1t are from the conditional (on xall) approach.

Model NE1t

least squares minimum χ2

Model L&Bt

conditional L
Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

1000

0.7

0.3

0.2

0.3

0.2

0.3

−−
−−
−−
−−

1000

0.8

0.3

0.2

0.3

0.2

0.3

−−
−−
−−
−−

1000

0.9

0.3

0.2

0.3

0.2

0.3

−−
−−
−−
−−

1034 (225)

0.704 (0.069)

0.303 (0.065)

0.203 (0.048)

0.303 (0.069)

0.205 (0.048)

0.303 (0.067)

−−
−−
−−
−−
0

227.55

1048 (209)

0.813 (0.073)

0.297 (0.062)

0.199 (0.042)

0.298 (0.061)

0.196 (0.041)

0.297 (0.062)

−−
−−
−−
−−
0

214.44

1014 (132)

0.904 (0.048)

0.302 (0.041)

0.197 (0.032)

0.301 (0.043)

0.199 (0.029)

0.300 (0.041)

−−
−−
−−
−−
0

132.74

916 (169)

0.680 (0.056)

0.340 (0.060)

0.230 (0.045)

0.340 (0.062)

0.232 (0.045)

0.340 (0.061)

−−
−−
−−
−−
0

188.72

946 (165)

0.788 (0.062)

0.330 (0.061)

0.223 (0.041)

0.330 (0.060)

0.221 (0.040)

0.329 (0.058)

−−
−−
−−
−−
0

173.61

956 (108)

0.889 (0.041)

0.321 (0.037)

0.214 (0.030)

0.320 (0.039)

0.214 (0.026)

0.319 (0.037)

−−
−−
−−
−−
0

116.61

1212 (193)

0.678 (0.079)

0.170 (0.019)

0.116 (0.016)

0.180 (0.028)

0.130 (0.023)

0.205 (0.040)

0.142 (0.028)

0.211 (0.033)

0.137 (0.024)

0.200 (0.026)

1

286.69

1436 (425)

0.787 (0.082)

0.170 (0.026)

0.112 (0.020)

0.166 (0.033)

0.108 (0.023)

0.166 (0.041)

0.162 (0.029)

0.240 (0.034)

0.156 (0.022)

0.230 (0.026)

1

608.86

1509 (255)

0.885 (0.052)

0.180 (0.025)

0.109 (0.018)

0.158 (0.029)

0.096 (0.022)

0.139 (0.035)

0.180 (0.026)

0.275 (0.028)

0.179 (0.019)

0.265 (0.023)

0

569.30

2189 (108)

−−
0.137 (0.009)

0.092 (0.008)

0.137 (0.010)

0.093 (0.009)

0.137 (0.010)

−−
−−
−−
−−
0

1193.89

1641 (81)

−−
0.183 (0.013)

0.123 (0.009)

0.183 (0.013)

0.121 (0.009)

0.183 (0.013)

−−
−−
−−
−−
0

646.09

1266 (39)

−−
0.238 (0.012)

0.156 (0.012)

0.238 (0.012)

0.157 (0.011)

0.237 (0.013)

−−
−−
−−
−−
0

268.84
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Table 2.7: [Simulation 1: case 4] Non-evolving natural tags 1 with time specific capture probabil-
ities. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model NE1t are from the conditional (on xall) approach.

Model NE1t

least squares minimum χ2

Model L&Bt

conditional L
Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

200

0.7

0.3

0.2

0.3

0.2

0.3

−−
−−
−−
−−

200

0.8

0.3

0.2

0.3

0.2

0.3

−−
−−
−−
−−

200

0.9

0.3

0.2

0.3

0.2

0.3

−−
−−
−−
−−

258 (120)

0.761 (0.159)

0.297 (0.159)

0.195 (0.107)

0.294 (0.159)

0.196 (0.108)

0.296 (0.160)

−−
−−
−−
−−
0

133.28

221 (75)

0.819 (0.122)

0.307 (0.120)

0.208 (0.085)

0.304 (0.119)

0.198 (0.076)

0.302 (0.118)

−−
−−
−−
−−
0

77.88

209 (44)

0.906 (0.087)

0.302 (0.072)

0.202 (0.062)

0.302 (0.077)

0.202 (0.058)

0.295 (0.082)

−−
−−
−−
−−
0

44.91

185 (94)

0.700 (0.132)

0.402 (0.154)

0.277 (0.108)

0.402 (0.153)

0.281 (0.116)

0.402 (0.147)

−−
−−
−−
−−
0

95.18

170 (48)

0.770 (0.089)

0.386 (0.102)

0.272 (0.078)

0.390 (0.105)

0.266 (0.074)

0.390 (0.109)

−−
−−
−−
−−
0

56.60

181 (37)

0.877 (0.081)

0.356 (0.075)

0.250 (0.066)

0.358 (0.082)

0.248 (0.064)

0.352 (0.084)

−−
−−
−−
−−
0

41.59

270 (122)

0.701 (0.161)

0.164 (0.027)

0.111 (0.027)

0.173 (0.039)

0.121 (0.034)

0.193 (0.060)

0.144 (0.055)

0.211 (0.066)

0.141 (0.047)

0.204 (0.059)

1

140.65

302 (275)

0.761 (0.132)

0.173 (0.041)

0.116 (0.031)

0.172 (0.051)

0.114 (0.038)

0.175 (0.064)

0.165 (0.058)

0.249 (0.063)

0.158 (0.042)

0.246 (0.057)

0

293.30

367 (239)

0.870 (0.101)

0.165 (0.046)

0.101 (0.032)

0.148 (0.058)

0.089 (0.050)

0.126 (0.075)

0.192 (0.068)

0.272 (0.060)

0.181 (0.046)

0.268 (0.050)

1

291.56

438 (49)

−−
0.139 (0.020)

0.092 (0.017)

0.139 (0.019)

0.093 (0.016)

0.140 (0.022)

−−
−−
−−
−−
0

242.99

332 (28)

−−
0.182 (0.026)

0.122 (0.019)

0.182 (0.025)

0.119 (0.019)

0.182 (0.020)

−−
−−
−−
−−
0

134.93

258 (22)

−−
0.236 (0.036)

0.157 (0.024)

0.236 (0.036)

0.156 (0.026)

0.231 (0.035)

−−
−−
−−
−−
0

62.03
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mean square errors in the cases with low capture probabilities.

An important result here is that ignoring misidentification can lead to overestimation of N as

indicated by other studies (e.g., Creel et al., 2003). The larger the rate of misidentification, the

larger the positive bias in N̂ , and the magnitude of such bias in the estimates can be substantial

as shown by the results. There were cases in which the performance of the NE1t estimator was

not good. However, even for those cases, bias in estimates of N tended to be much smaller than

those under Model Mt and Model L&Bt.

2.5.2 Simulation 2: Cases with Time Specific Capture Probabilities
(High α)

Although error rates in DNA fingerprints can vary widely (Waits, 2004), they can be reduced

greatly through careful considerations on field methods, laboratory techniques, and so on (Paetkau,

2003). Thus, the misidentification rates in reality can be lower than the values we examined in

Simulation 1. Lukacs and Burnham (2005a) considered only very high correct identification rates,

which are probably reasonable for some genetic tag-based capture-recapture studies. Thus, in

this simulation, we considered lower misidentification rates, and generated new sets of data with

correct identification rates of α = 0.950, 0.975 and 1.000 for the four cases described in the previous

section.

With the lower misidentification rates, we were interested in examining (1) whether the NE1t

estimator can effectively estimate α, (2) whether estimates under Model L&Bt improve, and (3)

how well the Mt estimator can perform, or in other words, whether estimates under Model Mt

can be reasonable approximations. Thus, each generated data set was analyzed by using the two

estimation methods under Model NE1t, and also maximum likelihood estimates under Model L&Bt

and Model Mt were obtained for the same generated data sets. The results for cases 1 to 4 are

summarized in Tables 2.8 - 2.11. Again, the unconditional approach under Model NE1t displayed

numerical problems, and we have only included the results from the conditional (on xall) approach

in the Tables.

As we expected, performance of the Mt estimator improved as the value of α increased.

However, there was still substantial positive bias in N̂ , even for the cases of α = 0.975 (relative

bias ≈ 10 − 20% and 5 − 10% for α = 0.950 and 0.975, respectively). The performance of both
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Table 2.8: [Simulation 2: case 1] Non-evolving natural tags 1 with time specific capture probabilities
(high α). Average estimates (with standard errors in parentheses) based on 100 simulated data
sets. Estimates under Model NE1t are from the conditional (on xall) approach.

Model NE1t

least squares minimum χ2

Model L&Bt

conditional L
Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

1000

0.950

0.7

0.8

0.7

0.8

0.7

−−
−−
−−
−−

1000

0.975

0.7

0.8

0.7

0.8

0.7

−−
−−
−−
−−

1000

1.000

0.7

0.8

0.7

0.8

0.7

−−
−−
−−
−−

1000 (6)

0.950 (0.004)

0.698 (0.021)

0.801 (0.016)

0.697 (0.021)

0.799 (0.014)

0.702 (0.020)

−−
−−
−−
−−
0

6.00

999 (6)

0.975 (0.003)

0.701 (0.017)

0.802 (0.017)

0.702 (0.019)

0.799 (0.015)

0.701 (0.019)

−−
−−
−−
−−
0

6.08

997 (3)

0.999 (0.001)

0.701 (0.018)

0.800 (0.015)

0.701 (0.015)

0.802 (0.015)

0.698 (0.018)

−−
−−
−−
−−
0

4.24

1001 (5)

0.950 (0.004)

0.697 (0.015)

0.797 (0.014)

0.696 (0.015)

0.797 (0.012)

0.699 (0.017)

−−
−−
−−
−−
0

5.09

999 (5)

0.975 (0.003)

0.698 (0.015)

0.799 (0.015)

0.700 (0.016)

0.797 (0.014)

0.698 (0.016)

−−
−−
−−
−−
0

5.09

997 (3)

0.999 (0.001)

0.701 (0.015)

0.797 (0.014)

0.698 (0.013)

0.798 (0.013)

0.697 (0.014)

−−
−−
−−
−−
0

4.24

1090 (14)

0.911 (0.010)

0.584 (0.016)

0.594 (0.027)

0.436 (0.038)

0.530 (0.059)

0.746 (0.107)

0.762 (0.016)

0.661 (0.016)

0.747 (0.014)

0.635 (0.017)

0

91.08

1058 (12)

0.957 (0.008)

0.633 (0.016)

0.662 (0.032)

0.470 (0.047)

0.508 (0.069)

0.607 (0.134)

0.782 (0.017)

0.682 (0.016)

0.770 (0.014)

0.663 (0.016)

0

59.22

1043 (81)

0.999 (0.002)

0.674 (0.040)

0.716 (0.094)

0.480 (0.159)

0.354 (0.208)

0.122 (0.136)

0.799 (0.015)

0.700 (0.013)

0.801 (0.014)

0.699 (0.013)

0

91.70

1192 (16)

−−
0.587 (0.015)

0.671 (0.014)

0.585 (0.015)

0.671 (0.014)

0.588 (0.016)

−−
−−
−−
−−
0

192.66

1094 (10)

−−
0.640 (0.015)

0.732 (0.015)

0.641 (0.015)

0.730 (0.014)

0.640 (0.015)

−−
−−
−−
−−
0

94.53

1000 (1)

−−
0.702 (0.015)

0.799 (0.013)

0.699 (0.013)

0.800 (0.013)

0.698 (0.013)

−−
−−
−−
−−
0

1.00
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Table 2.9: [Simulation 2: case 2] Non-evolving natural tags 1 with time specific capture probabilities
(high α). Average estimates (with standard errors in parentheses) based on 100 simulated data
sets. Estimates under Model NE1t are from the conditional (on xall) approach.

Model NE1t

least squares minimum χ2

Model L&Bt

conditional L
Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

200

0.950

0.7

0.8

0.7

0.8

0.7

−−
−−
−−
−−

200

0.975

0.7

0.8

0.7

0.8

0.7

−−
−−
−−
−−

200

1.000

0.7

0.8

0.7

0.8

0.7

−−
−−
−−
−−

199 (3)

0.951 (0.009)

0.700 (0.038)

0.796 (0.031)

0.704 (0.043)

0.799 (0.036)

0.708 (0.041)

−−
−−
−−
−−
0

3.16

199 (3)

0.975 (0.008)

0.705 (0.037)

0.803 (0.035)

0.704 (0.040)

0.800 (0.035)

0.692 (0.039)

−−
−−
−−
−−
0

3.16

198 (1)

0.998 (0.002)

0.699 (0.040)

0.808 (0.034)

0.711 (0.035)

0.804 (0.030)

0.709 (0.043)

−−
−−
−−
−−
0

2.23

200 (3)

0.951 (0.009)

0.692 (0.032)

0.784 (0.029)

0.692 (0.039)

0.788 (0.034)

0.698 (0.034)

−−
−−
−−
−−
0

3.00

199 (2)

0.975 (0.007)

0.695 (0.031)

0.788 (0.030)

0.695 (0.030)

0.788 (0.027)

0.685 (0.033)

−−
−−
−−
−−
0

2.23

198 (1)

0.998 (0.003)

0.688 (0.032)

0.794 (0.028)

0.702 (0.027)

0.790 (0.027)

0.701 (0.035)

−−
−−
−−
−−
0

2.23

217 (4)

0.913 (0.023)

0.587 (0.029)

0.594 (0.048)

0.441 (0.077)

0.541 (0.107)

0.741 (0.126)

0.760 (0.036)

0.662 (0.038)

0.747 (0.036)

0.640 (0.036)

0

17.46

211 (4)

0.957 (0.018)

0.635 (0.031)

0.661 (0.065)

0.475 (0.101)

0.522 (0.149)

0.571 (0.171)

0.784 (0.033)

0.685 (0.034)

0.770 (0.031)

0.655 (0.035)

0

11.70

209 (25)

0.998 (0.003)

0.667 (0.057)

0.728 (0.132)

0.560 (0.237)

0.551 (0.368)

0.155 (0.275)

0.807 (0.030)

0.710 (0.029)

0.801 (0.028)

0.707 (0.037)

4

26.57

237 (6)

−−
0.589 (0.030)

0.670 (0.026)

0.588 (0.034)

0.674 (0.031)

0.593 (0.032)

−−
−−
−−
−−
0

37.48

218 (4)

−−
0.641 (0.031)

0.733 (0.032)

0.643 (0.032)

0.731 (0.030)

0.632 (0.033)

−−
−−
−−
−−
0

18.43

199 (1)

−−
0.693 (0.033)

0.804 (0.028)

0.708 (0.029)

0.800 (0.028)

0.706 (0.037)

−−
−−
−−
−−
0

1.41
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Table 2.10: [Simulation 2: case 3] Non-evolving natural tags 1 with time specific capture proba-
bilities (high α). Average estimates (with standard errors in parentheses) based on 100 simulated
data sets. Estimates under Model NE1t are from the conditional (on xall) approach.

Model NE1t

least squares minimum χ2

Model L&Bt

conditional L
Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

1000

0.950

0.3

0.2

0.3

0.2

0.3

−−
−−
−−
−−

1000

0.975

0.3

0.2

0.3

0.2

0.3

−−
−−
−−
−−

1000

1.000

0.3

0.2

0.3

0.2

0.3

−−
−−
−−
−−

1014 (113)

0.953 (0.047)

0.300 (0.041)

0.202 (0.028)

0.300 (0.037)

0.197 (0.026)

0.299 (0.040)

−−
−−
−−
−−
0

113.86

982 (80)

0.968 (0.033)

0.308 (0.031)

0.202 (0.024)

0.308 (0.031)

0.204 (0.023)

0.308 (0.029)

−−
−−
−−
−−
0

82.00

962 (48)

0.983 (0.022)

0.313 (0.024)

0.210 (0.019)

0.317 (0.025)

0.210 (0.019)

0.310 (0.024)

−−
−−
−−
−−
0

61.22

969 (110)

0.940 (0.046)

0.316 (0.042)

0.214 (0.029)

0.316 (0.040)

0.212 (0.027)

0.316 (0.040)

−−
−−
−−
−−
0

114.28

948 (72)

0.958 (0.032)

0.321 (0.027)

0.214 (0.023)

0.321 (0.029)

0.214 (0.021)

0.320 (0.028)

−−
−−
−−
−−
0

88.81

946 (55)

0.979 (0.024)

0.319 (0.025)

0.217 (0.019)

0.323 (0.025)

0.218 (0.018)

0.317 (0.026)

−−
−−
−−
−−
0

77.07

1763 (835)

0.930 (0.054)

0.174 (0.041)

0.104 (0.029)

0.145 (0.042)

0.083 (0.029)

0.115 (0.048)

0.193 (0.029)

0.287 (0.030)

0.191 (0.020)

0.285 (0.021)

3

1131.10

1937 (2117)

0.953 (0.038)

0.179 (0.051)

0.104 (0.037)

0.145 (0.057)

0.083 (0.043)

0.117 (0.074)

0.195 (0.024)

0.302 (0.025)

0.198 (0.018)

0.296 (0.020)

2

2315.09

1990 (1713)

0.971 (0.030)

0.177 (0.054)

0.104 (0.038)

0.143 (0.067)

0.082 (0.058)

0.109 (0.096)

0.206 (0.027)

0.310 (0.024)

0.207 (0.017)

0.306 (0.022)

0

1978.50

1128 (39)

−−
0.266 (0.016)

0.178 (0.013)

0.266 (0.017)

0.176 (0.012)

0.266 (0.015)

−−
−−
−−
−−
0

133.80

1058 (27)

−−
0.284 (0.014)

0.187 (0.014)

0.284 (0.014)

0.188 (0.013)

0.283 (0.015)

−−
−−
−−
−−
0

63.97

1003 (25)

−−
0.298 (0.015)

0.201 (0.015)

0.301 (0.015)

0.201 (0.014)

0.297 (0.017)

−−
−−
−−
−−
0

25.17
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Table 2.11: [Simulation 2: case 4] Non-evolving natural tags 1 with time specific capture proba-
bilities (high α). Average estimates (with standard errors in parentheses) based on 100 simulated
data sets. Estimates under Model NE1t are from the conditional (on xall) approach.

Model NE1t

least squares minimum χ2

Model L&Bt

conditional L
Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

200

0.950

0.3

0.2

0.3

0.2

0.3

−−
−−
−−
−−

200

0.975

0.3

0.2

0.3

0.2

0.3

−−
−−
−−
−−

200

1.000

0.3

0.2

0.3

0.2

0.3

−−
−−
−−
−−

202 (31)

0.947 (0.062)

0.309 (0.068)

0.206 (0.052)

0.306 (0.067)

0.201 (0.049)

0.300 (0.060)

−−
−−
−−
−−
0

31.06

195 (27)

0.958 (0.059)

0.317 (0.058)

0.212 (0.056)

0.317 (0.064)

0.211 (0.049)

0.309 (0.067)

−−
−−
−−
−−
0

27.45

186 (24)

0.969 (0.055)

0.330 (0.064)

0.221 (0.053)

0.335 (0.066)

0.219 (0.052)

0.334 (0.066)

−−
−−
−−
−−
0

27.78

181 (30)

0.922 (0.062)

0.348 (0.065)

0.245 (0.056)

0.349 (0.068)

0.240 (0.053)

0.350 (0.069)

−−
−−
−−
−−
0

35.51

180 (26)

0.943 (0.057)

0.350 (0.060)

0.246 (0.054)

0.352 (0.069)

0.243 (0.054)

0.345 (0.066)

−−
−−
−−
−−
0

32.80

174 (21)

0.956 (0.051)

0.358 (0.059)

0.253 (0.045)

0.363 (0.061)

0.251 (0.054)

0.360 (0.057)

−−
−−
−−
−−
0

33.42

356 (226)

0.909 (0.079)

0.173 (0.047)

0.106 (0.036)

0.146 (0.052)

0.086 (0.040)

0.116 (0.065)

0.194 (0.054)

0.293 (0.063)

0.188 (0.040)

0.295 (0.042)

2

274.61

372 (204)

0.931 (0.068)

0.172 (0.052)

0.101 (0.034)

0.140 (0.053)

0.076 (0.031)

0.103 (0.051)

0.207 (0.066)

0.299 (0.057)

0.202 (0.046)

0.300 (0.047)

3

266.83

465 (329)

0.951 (0.063)

0.157 (0.059)

0.090 (0.041)

0.123 (0.068)

0.064 (0.037)

0.089 (0.061)

0.215 (0.054)

0.322 (0.053)

0.214 (0.044)

0.316 (0.044)

2

422.45

228 (16)

−−
0.264 (0.035)

0.178 (0.026)

0.265 (0.035)

0.173 (0.027)

0.265 (0.030)

−−
−−
−−
−−
0

32.24

215 (14)

−−
0.282 (0.039)

0.188 (0.026)

0.283 (0.040)

0.187 (0.030)

0.277 (0.039)

−−
−−
−−
−−
0

20.51

199 (11)

−−
0.303 (0.038)

0.203 (0.030)

0.306 (0.036)

0.201 (0.031)

0.303 (0.036)

−−
−−
−−
−−
0

11.04
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estimation methods under Model NE1t was good for the high capture probability cases (relative

bias ≤ 1% and relative standard error < 2% for cases 1 and 2). The low capture probability

cases indicated bias in N̂ in general, particularly for case 4 with the minimum χ2 method (relative

bias ≈ 9 − 13% and relative standard error ≈ 10 − 15%). As in Simulation 1, the estimates

under Model L&Bt varied depending on the starting values, and here we present the estimates

obtained by using a particular set of starting values in the Tables for comparison purposes. For

high capture probability cases, these particular results under Model L&Bt improved as the value

of α increased (relative bias < 10% and relative standard error < 13% for cases 1 and 2). However,

the performance of L&Bt estimator was poor for the cases with low capture probability (relative

bias > 75% and relative standard error > 80% for cases 3 and 4).

The important message here is that the effect of misidentification on the estimates under

the Mt estimator was more serious than we expected, and ignoring misidentification can lead to

substantial positive bias in N̂ . On the other hand, the performance of the NE1t estimator was

good, especially for high capture probability cases. However, some bias was noted for the low

capture probability cases, and such bias in the estimates increases as the value of α approaches 1.

Sensitivity to starting values seemed to be a persisting problem of the L&Bt estimator throughout

Simulations 1 and 2, and we believe this is caused by non-identifiability of the model when p and

c are time specific. The results here indicate that performance of the L&Bt estimator was clearly

inferior to the performance of the NE1t estimators for data generated under the misidentification

mechanism NE1.

2.5.3 Simulation 3: Cases with Constant Capture Probability

In this simulation, we assumed a constant capture probability, p. Here, we again considered

a closed population of N animals, and a capture-recapture study with K = 5 sampling occasions.

The parameter values were chosen to follow the four cases in Simulation 1, and new sets of data

were generated by assuming a constant capture probability.

Case 1: N = 1000 and p = 0.8

Case 2: N = 200 and p = 0.8

Case 3: N = 1000 and p = 0.3

Case 4: N = 200 and p = 0.3
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Each combination of parameter values is describing either a large or a small population size with

high or low capture probability, and for each case, correct identification rates of α = 0.7, 0.8, 0.9,

0.950, 0.975 and 1.000 were considered.

The data sets were analyzed by using two different estimation methods, unweighted least

squares and minimum χ2, under a version of Model NE1 that assumes constant capture prob-

abilities (Model NE10). Only the conditional approach (on xall) was considered here. Also,

we were interested in the loss of precision when the data generated assuming constant capture

probability are analyzed under models that assume time specific capture probabilities. Thus, the

same data sets were also analyzed by using two different estimation methods under Model NE1t.

In addition, we were interested in the comparison of estimates obtained under NE1 models, L&B

models and conventional capture-recapture models. Thus, the conditional likelihood estimates un-

der Model L&B (Model L&B0 and Model L&Bt) and the maximum likelihood estimates under

conventional capture-recapture models (Model M0 and Model Mt) were also obtained for the

same generated data sets.

The performance of estimators under the four models was assessed by examining the average

estimates, standard errors and root mean square errors on N̂ over 100 simulated data sets. The

results for cases 1 to 4 are summarized in Tables 2.12 - 2.19. Results in Tables 2.12 - 2.15 are

from models that assume constant capture probability whereas those in Tables 2.16 - 2.19 are from

models that assume time specific capture probabilities.

The results under models that assume constant capture probability indicated the same ten-

dency as in Simulations 1 and 2. N̂ was positively biased when data were analyzed under con-

ventional capture-recapture model (Model M0), and such bias in the estimates can be substantial

as the correct identification rate becomes lower (relative bias > 120% for α = 0.7 cases). The

performance of both estimation methods under Model NE10 was good, particularly for the cases

of high capture probability (relative bias < 4% and relative standard error < 4% for cases 1 and

2). However, as for the cases in Simulations 1 and 2, an increase in bias in N̂ was evident for

low capture probability cases (relative bias ≈ 1 − 20% and relative standard error ≈ 4 − 52% for

cases 3 and 4). The differences in precision of N̂ under Model NE10 and Model NE1t were small

(the difference was less than 5% when relative standard errors were compared case by case). The

estimates from Model L&B0 did not vary depending on the starting values, and the performance of

the estimator was better compared to the cases with time specific capture probabilities examined
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Table 2.12: [Simulation 3: case 1] Non-evolving natural tags 1 with constant capture probabil-
ity. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model NE10 are from the conditional (on xall) approach.

Model NE10
least squares minimum χ2

Model L&B0

conditional L
Model M0

conditional L
N
α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

1000

0.7

0.8

−−

1000

0.8

0.8

−−

1000

0.9

0.8

−−

1000

0.950

0.8

−−

1000

0.975

0.8

−−

1000

1.000

0.8

−−

998 (14)

0.699 (0.008)

0.801 (0.012)

−−
0

14.14

1000 (12)

0.799 (0.006)

0.801 (0.013)

−−
0

12.00

999 (7)

0.900 (0.005)

0.800 (0.010)

−−
0

7.07

1000 (5)

0.949 (0.004)

0.800 (0.009)

−−
0

5.00

1000 (4)

0.975 (0.003)

0.800 (0.009)

−−
0

4.00

998 (2)

1.000 (0.001)

0.801 (0.008)

−−
0

2.82

1007 (14)

0.702 (0.008)

0.797 (0.011)

−−
0

15.65

1006 (11)

0.801 (0.006)

0.797 (0.012)

−−
0

12.52

1003 (5)

0.901 (0.005)

0.796 (0.008)

−−
0

5.83

1001 (4)

0.949 (0.004)

0.798 (0.007)

−−
0

4.12

1000 (3)

0.975 (0.002)

0.797 (0.007)

−−
0

3.00

998 (2)

1.000 (0.001)

0.798 (0.006)

−−
0

2.82

1571 (42)

0.559 (0.011)

0.260 (0.010)

0.536 (0.010)

0

572.54

1342 (26)

0.661 (0.011)

0.354 (0.010)

0.618 (0.011)

0

342.98

1161 (14)

0.804 (0.011)

0.498 (0.012)

0.703 (0.008)

0

161.60

1086 (10)

0.895 (0.009)

0.609 (0.013)

0.749 (0.008)

0

86.57

1047 (7)

0.951 (0.007)

0.690 (0.014)

0.772 (0.008)

0

47.51

999 (1)

1.000 (0.001)

0.801 (0.010)

0.800 (0.006)

0

1.41

2599 (60)

−−
0.308 (0.007)

−−
0

1600.12

1933 (33)

−−
0.414 (0.008)

−−
0

933.58

1421 (20)

−−
0.563 (0.008)

−−
0

421.47

1207 (14)

−−
0.663 (0.009)

−−
0

1600.12

1100 (9)

−−
0.726 (0.008)

−−
0

933.58

1000 (1)

−−
0.800 (0.005)

−−
0

421.47
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Table 2.13: [Simulation 3: case 2] Non-evolving natural tags 1 with constant capture probabil-
ity. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model NE10 are from the conditional (on xall) approach.

Model NE10
least squares minimum χ2

Model L&B0

conditional L
Model M0

conditional L
N
α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

200

0.7

0.8

−−

200

0.8

0.8

−−

200

0.9

0.8

−−

200

0.950

0.8

−−

200

0.975

0.8

−−

200

1.000

0.8

−−

199 (7)

0.699 (0.017)

0.802 (0.033)

−−
0

7.07

200 (4)

0.800 (0.016)

0.798 (0.026)

−−
0

4.00

199 (3)

0.897 (0.011)

0.801 (0.019)

−−
0

3.16

199 (2)

0.949 (0.008)

0.799 (0.021)

−−
0

2.23

199 (2)

0.974 (0.006)

0.800 (0.017)

−−
0

2.23

199 (1)

0.999 (0.001)

0.803 (0.016)

−−
0

1.41

207 (6)

0.712 (0.017)

0.781 (0.030)

−−
0

9.21

206 (4)

0.809 (0.015)

0.780 (0.021)

−−
0

7.21

202 (3)

0.900 (0.011)

0.786 (0.016)

−−
0

3.60

200 (2)

0.950 (0.008)

0.787 (0.015)

−−
0

2.00

199 (2)

0.974 (0.006)

0.788 (0.013)

−−
0

2.23

199 (1)

0.999 (0.001)

0.789 (0.014)

−−
0

1.41

312 (17)

0.558 (0.024)

0.263 (0.019)

0.534 (0.025)

4

113.28

269 (12)

0.665 (0.026)

0.355 (0.025)

0.616 (0.022)

0

70.03

232 (6)

0.798 (0.025)

0.497 (0.027)

0.702 (0.019)

0

32.55

217 (4)

0.899 (0.021)

0.608 (0.029)

0.747 (0.018)

4

17.46

209 (3)

0.948 (0.016)

0.693 (0.032)

0.772 (0.015)

0

9.48

199 (5)

0.999 (0.002)

0.804 (0.027)

0.802 (0.016)

0

5.09

520 (24)

−−
0.308 (0.015)

−−
0

320.89

385 (17)

−−
0.415 (0.019)

−−
0

185.77

286 (9)

−−
0.559 (0.021)

−−
0

86.46

241 (6)

−−
0.633 (0.020)

−−
0

320.89

220 (4)

−−
0.726 (0.018)

−−
0

185.77

200 (1)

−−
0.801 (0.013)

−−
0

86.46
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Table 2.14: [Simulation 3: case 3] Non-evolving natural tags 1 with constant capture probabil-
ity. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model NE10 are from the conditional (on xall) approach.

Model NE10
least squares minimum χ2

Model L&B0

conditional L
Model M0

conditional L
N
α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

1000

0.7

0.3

−−

1000

0.8

0.3

−−

1000

0.9

0.3

−−

1000

0.950

0.3

−−

1000

0.975

0.3

−−

1000

1.000

0.3

−−

1039 (171)

0.707 (0.051)

0.297 (0.052)

−−
0

175.39

1031 (148)

0.809 (0.047)

0.296 (0.041)

−−
0

151.21

1015 (112)

0.905 (0.041)

0.299 (0.033)

−−
0

113.00

1012 (83)

0.954 (0.032)

0.298 (0.026)

−−
0

83.86

995 (71)

0.972 (0.027)

0.304 (0.024)

−−
0

71.17

970 (41)

0.989 (0.017)

0.311 (0.015)

−−
0

50.80

964 (141)

0.695 (0.045)

0.322 (0.050)

−−
0

145.52

967 (107)

0.796 (0.037)

0.317 (0.033)

−−
0

111.97

981 (93)

0.897 (0.036)

0.312 (0.030)

−−
0

94.92

998 (76)

0.948 (0.030)

0.308 (0.024)

−−
0

76.02

979 (69)

0.968 (0.027)

0.311 (0.023)

−−
0

72.12

961 (43)

0.987 (0.018)

0.315 (0.017)

−−
0

58.05

1538 (228)

0.678 (0.064)

0.129 (0.017)

0.202 (0.021)

0

584.31

1327 (120)

0.780 (0.055)

0.175 (0.016)

0.234 (0.018)

0

348.32

1145 (83)

0.886 (0.052)

0.231 (0.018)

0.268 (0.018)

0

167.07

1073 (58)

0.941 (0.041)

0.262 (0.017)

0.284 (0.015)

0

93.23

1028 (49)

0.963 (0.036)

0.282 (0.018)

0.294 (0.016)

0

56.43

981 (40)

0.984 (0.025)

0.302 (0.019)

0.306 (0.012)

0

44.28

2217 (99)

−−
0.136 (0.006)

−−
0

1221.02

1654 (61)

−−
0.182 (0.007)

−−
0

656.83

1277 (32)

−−
0.236 (0.008)

−−
0

278.84

1130 (29)

−−
0.266 (0.009)

−−
0

1130.37

1065 (22)

−−
0.282 (0.009)

−−
0

68.62

998 (16)

−−
0.301 (0.009)

−−
0

16.12
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Table 2.15: [Simulation 3: case 4] Non-evolving natural tags 1 with constant capture probabil-
ity. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model NE10 are from the conditional (on xall) approach.

Model NE10
least squares minimum χ2

Model L&B0

conditional L
Model M0

conditional L
N
α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

200

0.7

0.3

−−

200

0.8

0.3

−−

200

0.9

0.3

−−

200

0.950

0.3

−−

200

0.975

0.3

−−

200

1.000

0.3

−−

238 (103)

0.740 (0.127)

0.296 (0.108)

−−
0

109.78

207 (54)

0.808 (0.089)

0.308 (0.079)

−−
0

54.45

204 (34)

0.905 (0.067)

0.304 (0.059)

−−
0

34.23

199 (27)

0.949 (0.053)

0.308 (0.049)

−−
0

27.01

192 (21)

0.962 (0.045)

0.319 (0.042)

−−
0

22.47

185 (18)

0.969 (0.040)

0.331 (0.038)

−−
0

23.43

188 (56)

0.708 (0.088)

0.360 (0.095)

−−
0

57.27

185 (38)

0.797 (0.067)

0.349 (0.068)

−−
0

40.85

189 (28)

0.893 (0.058)

0.336 (0.053)

−−
0

30.08

189 (24)

0.941 (0.045)

0.332 (0.047)

−−
0

26.40

185 (20)

0.956 (0.042)

0.339 (0.041)

−−
0

25.00

181 (17)

0.966 (0.037)

0.346 (0.037)

−−
0

25.49

344 (107)

0.715 (0.140)

0.131 (0.035)

0.199 (0.044)

0

179.40

282 (75)

0.789 (0.103)

0.174 (0.041)

0.234 (0.039)

0

111.12

233 (36)

0.884 (0.087)

0.232 (0.040)

0.270 (0.036)

0

48.83

217 (27)

0.941 (0.065)

0.261 (0.040)

0.286 (0.032)

0

31.90

202 (21)

0.945 (0.063)

0.285 (0.041)

0.303 (0.029)

0

21.09

196 (17)

0.964 (0.051)

0.300 (0.041)

0.313 (0.028)

0

17.46

446 (55)

−−
0.137 (0.016)

−−
0

252.07

333 (31)

−−
0.181 (0.018)

−−
0

136.56

257 (16)

−−
0.235 (0.020)

−−
0

59.20

225 (13)

−−
0.266 (0.020)

−−
0

28.17

212 (9)

−−
0.285 (0.020)

−−
0

15.00

201 (8)

−−
0.300 (0.018)

−−
0

8.06
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Table 2.16: [Simulation 3: case 1] Non-evolving natural tags 1 with constant capture probabil-
ity. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model NE1t are from the conditional (on xall) approach.

Model NE1t

least squares minimum χ2

Model L&Bt

conditional L
Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

1000

0.7

0.8

0.8

0.8

0.8

0.8

−−
−−
−−
−−

1000

0.8

0.8

0.8

0.8

0.8

0.8

−−
−−
−−
−−

1000

0.9

0.8

0.8

0.8

0.8

0.8

−−
−−
−−
−−

998 (14)

0.699 (0.008)

0.800 (0.021)

0.799 (0.023)

0.800 (0.025)

0.803 (0.024)

0.804 (0.028)

−−
−−
−−
−−
0

14.14

999 (12)

0.799 (0.006)

0.801 (0.018)

0.803 (0.019)

0.798 (0.023)

0.800 (0.017)

0.802 (0.019)

−−
−−
−−
−−
0

12.04

999 (7)

0.900 (0.005)

0.801 (0.016)

0.800 (0.018)

0.801 (0.018)

0.799 (0.016)

0.802 (0.017)

−−
−−
−−
−−
0

7.07

1005 (14)

0.701 (0.008)

0.796 (0.018)

0.799 (0.017)

0.798 (0.018)

0.796 (0.017)

0.798 (0.016)

−−
−−
−−
−−
0

14.86

1005 (11)

0.800 (0.006)

0.799 (0.018)

0.797 (0.017)

0.798 (0.018)

0.797 (0.018)

0.797 (0.019)

−−
−−
−−
−−
0

12.08

1002 (5)

0.900 (0.005)

0.797 (0.015)

0.798 (0.016)

0.797 (0.014)

0.795 (0.013)

0.796 (0.015)

−−
−−
−−
−−
0

5.38

1230 (91)

0.563 (0.043)

0.369 (0.018)

0.354 (0.032)

0.391 (0.032)

0.527 (0.046)

0.996 (0.008)

0.606 (0.082)

0.569 (0.043)

0.539 (0.039)

0.507 (0.049)

1

247.34

1230 (204)

0.667 (0.023)

0.440 (0.032)

0.384 (0.036)

0.393 (0.047)

0.513 (0.075)

0.932 (0.137)

0.653 (0.040)

0.643 (0.027)

0.620 (0.032)

0.578 (0.029)

2

307.43

1134 (11)

0.808 (0.011)

0.570 (0.010)

0.469 (0.020)

0.418 (0.028)

0.519 (0.036)

0.946 (0.042)

0.720 (0.018)

0.719 (0.016)

0.702 (0.013)

0.673 (0.016)

0

134.45

2599 (60)

−−
0.307 (0.008)

0.308 (0.008)

0.308 (0.010)

0.308 (0.009)

0.308 (0.009)

−−
−−
−−
−−
0

1600.12

1933 (33)

−−
0.415 (0.009)

0.415 (0.009)

0.414 (0.010)

0.414 (0.009)

0.415 (0.010)

−−
−−
−−
−−
0

933.58

1421 (20)

−−
0.563 (0.011)

0.563 (0.012)

0.562 (0.013)

0.562 (0.010)

0.563 (0.012)

−−
−−
−−
−−
0

421.47
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Table 2.16 (continued.)

Model NE1t

least squares minimum χ2

Model L&Bt

conditional L
Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

1000

0.950

0.8

0.8

0.8

0.8

0.8

−−
−−
−−
−−

1000

0.975

0.8

0.8

0.8

0.8

0.8

−−
−−
−−
−−

1000

1.000

0.8

0.8

0.8

0.8

0.8

−−
−−
−−
−−

1000 (5)

0.949 (0.004)

0.801 (0.016)

0.800 (0.016)

0.801 (0.019)

0.800 (0.017)

0.800 (0.018)

−−
−−
−−
−−
0

5.00

1000 (5)

0.975 (0.003)

0.800 (0.016)

0.799 (0.018)

0.800 (0.019)

0.799 (0.015)

0.801 (0.018)

−−
−−
−−
−−
0

5.00

998 (3)

1.000 (0.001)

0.802 (0.015)

0.803 (0.014)

0.798 (0.015)

0.802 (0.015)

0.799 (0.015)

−−
−−
−−
−−
0

3.60

1000 (4)

0.949 (0.004)

0.799 (0.013)

0.797 (0.012)

0.798 (0.015)

0.798 (0.014)

0.798 (0.015)

−−
−−
−−
−−
0

4.00

999 (3)

0.975 (0.002)

0.797 (0.012)

0.797 (0.014)

0.797 (0.014)

0.796 (0.012)

0.797 (0.015)

−−
−−
−−
−−
0

3.16

998 (2)

1.000 (0.001)

0.799 (0.012)

0.799 (0.014)

0.796 (0.012)

0.798 (0.012)

0.797 (0.012)

−−
−−
−−
−−
0

2.82

1085 (12)

0.897 (0.010)

0.663 (0.013)

0.548 (0.026)

0.454 (0.042)

0.506 (0.067)

0.875 (0.092)

0.760 (0.015)

0.759 (0.015)

0.750 (0.014)

0.729 (0.017)

0

85.84

1053 (9)

0.951 (0.007)

0.723 (0.013)

0.626 (0.028)

0.492 (0.047)

0.492 (0.068)

0.734 (0.115)

0.780 (0.016)

0.779 (0.014)

0.771 (0.012)

0.759 (0.015)

1

53.75

1023 (74)

0.999 (0.001)

0.785 (0.042)

0.747 (0.105)

0.640 (0.190)

0.479 (0.290)

0.167 (0.213)

0.801 (0.014)

0.798 (0.012)

0.801 (0.013)

0.799 (0.011)

6

77.49

1207 (14)

−−
0.664 (0.012)

0.664 (0.013)

0.662 (0.014)

0.663 (0.012)

0.664 (0.013)

−−
−−
−−
−−
0

207.47

1100 (9)

−−
0.727 (0.012)

0.727 (0.013)

0.726 (0.014)

0.726 (0.011)

0.726 (0.014)

−−
−−
−−
−−
0

100.40

1000 (1)

−−
0.801 (0.012)

0.801 (0.013)

0.798 (0.012)

0.800 (0.012)

0.799 (0.012)

−−
−−
−−
−−
0

1.00
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Table 2.17: [Simulation 3: case 2] Non-evolving natural tags 1 with constant capture probabil-
ity. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model NE1t are from the conditional (on xall) approach.

Model NE1t

least squares minimum χ2

Model L&Bt

conditional L
Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

200

0.7

0.8

0.8

0.8

0.8

0.8

−−
−−
−−
−−

200

0.8

0.8

0.8

0.8

0.8

0.8

−−
−−
−−
−−

200

0.9

0.8

0.8

0.8

0.8

0.8

−−
−−
−−
−−

198 (7)

0.696 (0.018)

0.797 (0.054)

0.810 (0.052)

0.801 (0.051)

0.799 (0.062)

0.794 (0.053)

−−
−−
−−
−−
0

7.28

200 (4)

0.799 (0.016)

0.798 (0.043)

0.799 (0.040)

0.798 (0.041)

0.798 (0.037)

0.799 (0.041)

−−
−−
−−
−−
0

4.00

199 (3)

0.897 (0.012)

0.806 (0.036)

0.801 (0.034)

0.800 (0.038)

0.803 (0.037)

0.801 (0.037)

−−
−−
−−
−−
0

3.16

205 (7)

0.710 (0.017)

0.789 (0.043)

0.788 (0.043)

0.788 (0.042)

0.787 (0.044)

0.777 (0.044)

−−
−−
−−
−−
0

8.60

205 (4)

0.807 (0.015)

0.784 (0.035)

0.787 (0.037)

0.784 (0.034)

0.782 (0.036)

0.780 (0.033)

−−
−−
−−
−−
0

6.40

201 (3)

0.899 (0.011)

0.793 (0.032)

0.787 (0.032)

0.786 (0.030)

0.790 (0.032)

0.790 (0.032)

−−
−−
−−
−−
0

3.16

248 (18)

0.569 (0.046)

0.366 (0.019)

0.355 (0.024)

0.396 (0.041)

0.528 (0.066)

0.993 (0.014)

0.578 (0.071)

0.564 (0.046)

0.542 (0.052)

0.495 (0.058)

1

51.26

245 (12)

0.677 (0.032)

0.443 (0.026)

0.385 (0.044)

0.396 (0.042)

0.513 (0.080)

0.937 (0.138)

0.648 (0.048)

0.643 (0.036)

0.616 (0.043)

0.576 (0.041)

0

46.57

226 (5)

0.800 (0.026)

0.571 (0.027)

0.462 (0.041)

0.431 (0.064)

0.517 (0.071)

0.946 (0.049)

0.720 (0.038)

0.711 (0.034)

0.705 (0.033)

0.677 (0.035)

1

26.47

520 (24)

−−
0.308 (0.019)

0.309 (0.017)

0.308 (0.018)

0.308 (0.019)

0.305 (0.019)

−−
−−
−−
−−
0

320.89

385 (17)

−−
0.415 (0.024)

0.416 (0.024)

0.415 (0.023)

0.415 (0.020)

0.414 (0.024)

−−
−−
−−
−−
0

185.77

286 (9)

−−
0.562 (0.029)

0.558 (0.026)

0.557 (0.027)

0.559 (0.028)

0.560 (0.026)

−−
−−
−−
−−
0

86.46
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Table 2.17 (continued.)

Model NE1t

least squares minimum χ2

Model L&Bt

conditional L
Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

200

0.950

0.8

0.8

0.8

0.8

0.8

−−
−−
−−
−−

200

0.975

0.8

0.8

0.8

0.8

0.8

−−
−−
−−
−−

200

1.000

0.8

0.8

0.8

0.8

0.8

−−
−−
−−
−−

199 (2)

0.949 (0.008)

0.801 (0.042)

0.802 (0.035)

0.801 (0.038)

0.799 (0.037)

0.797 (0.039)

−−
−−
−−
−−
0

2.23

199 (2)

0.974 (0.006)

0.805 (0.037)

0.800 (0.034)

0.799 (0.039)

0.802 (0.034)

0.800 (0.037)

−−
−−
−−
−−
0

2.23

199 (1)

0.999 (0.002)

0.807 (0.036)

0.805 (0.033)

0.804 (0.028)

0.808 (0.035)

0.796 (0.036)

−−
−−
−−
−−
0

1.41

200 (2)

0.949 (0.008)

0.791 (0.032)

0.791 (0.029)

0.789 (0.030)

0.787 (0.029)

0.785 (0.029)

−−
−−
−−
−−
0

2.00

199 (2)

0.973 (0.006)

0.794 (0.030)

0.789 (0.029)

0.787 (0.027)

0.790 (0.028)

0.792 (0.031)

−−
−−
−−
−−
0

2.23

199 (1)

0.999 (0.001)

0.793 (0.028)

0.793 (0.028)

0.790 (0.025)

0.793 (0.031)

0.784 (0.029)

−−
−−
−−
−−
0

1.41

217 (4)

0.901 (0.022)

0.663 (0.029)

0.544 (0.053)

0.446 (0.085)

0.510 (0.111)

0.868 (0.094)

0.762 (0.034)

0.759 (0.030)

0.746 (0.030)

0.724 (0.033)

1

17.46

210 (3)

0.948 (0.017)

0.726 (0.031)

0.621 (0.067)

0.504 (0.113)

0.502 (0.159)

0.714 (0.165)

0.780 (0.031)

0.776 (0.029)

0.772 (0.031)

0.762 (0.030)

0

10.44

208 (43)

0.999 (0.002)

0.784 (0.076)

0.745 (0.155)

0.701 (0.277)

0.425 (0.427)

0.222 (0.361)

0.806 (0.032)

0.800 (0.025)

0.806 (0.030)

0.796 (0.029)

4

43.73

241 (6)

−−
0.664 (0.029)

0.665 (0.027)

0.664 (0.029)

0.663 (0.027)

0.662 (0.031)

−−
−−
−−
−−
0

41.43

220 (4)

−−
0.730 (0.031)

0.724 (0.028)

0.723 (0.028)

0.725 (0.030)

0.727 (0.028)

−−
−−
−−
−−
0

20.39

200 (1)

−−
0.804 (0.028)

0.804 (0.026)

0.800 (0.025)

0.804 (0.031)

0.794 (0.030)

−−
−−
−−
−−
0

1.00
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Table 2.18: [Simulation 3: case 3] Non-evolving natural tags 1 with constant capture probabil-
ity. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model NE1t are from the conditional (on xall) approach.

Model NE1t

least squares minimum χ2

Model L&Bt

conditional L
Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

1000

0.7

0.3

0.3

0.3

0.3

0.3

−−
−−
−−
−−

1000

0.8

0.3

0.3

0.3

0.3

0.3

−−
−−
−−
−−

1000

0.9

0.3

0.3

0.3

0.3

0.3

−−
−−
−−
−−

1046 (175)

0.708 (0.052)

0.291 (0.051)

0.297 (0.058)

0.298 (0.058)

0.296 (0.053)

0.295 (0.052)

−−
−−
−−
−−
0

180.94

1036 (150)

0.810 (0.048)

0.292 (0.044)

0.296 (0.043)

0.295 (0.043)

0.293 (0.043)

0.295 (0.043)

−−
−−
−−
−−
0

154.25

1019 (113)

0.906 (0.041)

0.299 (0.034)

0.296 (0.036)

0.300 (0.037)

0.298 (0.035)

0.297 (0.040)

−−
−−
−−
−−
0

114.58

960 (138)

0.694 (0.044)

0.320 (0.050)

0.324 (0.053)

0.323 (0.054)

0.324 (0.050)

0.324 (0.052)

−−
−−
−−
−−
0

143.68

963 (107)

0.794 (0.038)

0.317 (0.037)

0.319 (0.036)

0.318 (0.037)

0.317 (0.036)

0.319 (0.036)

−−
−−
−−
−−
0

113.21

980 (93)

0.896 (0.036)

0.313 (0.031)

0.311 (0.032)

0.314 (0.033)

0.312 (0.031)

0.311 (0.034)

−−
−−
−−
−−
0

95.12

1121 (117)

0.677 (0.063)

0.180 (0.014)

0.190 (0.017)

0.204 (0.022)

0.226 (0.030)

0.257 (0.044)

0.213 (0.031)

0.207 (0.027)

0.201 (0.024)

0.199 (0.027)

0

168.31

1245 (149)

0.779 (0.053)

0.188 (0.014)

0.189 (0.018)

0.191 (0.024)

0.196 (0.028)

0.208 (0.033)

0.247 (0.034)

0.239 (0.025)

0.234 (0.022)

0.228 (0.021)

0

286.75

1344 (175)

0.883 (0.049)

0.200 (0.021)

0.188 (0.025)

0.180 (0.031)

0.171 (0.036)

0.162 (0.041)

0.276 (0.032)

0.274 (0.024)

0.267 (0.023)

0.263 (0.022)

0

385.95

2216 (99)

−−
0.135 (0.009)

0.136 (0.009)

0.136 (0.009)

0.136 (0.008)

0.136 (0.008)

−−
−−
−−
−−
0

1220.02

1654 (61)

−−
0.181 (0.010)

0.183 (0.011)

0.181 (0.010)

0.181 (0.010)

0.182 (0.010)

−−
−−
−−
−−
0

656.83

1276 (32)

−−
0.236 (0.012)

0.235 (0.013)

0.237 (0.012)

0.235 (0.013)

0.235 (0.013)

−−
−−
−−
−−
0

277.84
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Table 2.18 (continued.)

Model NE1t

least squares minimum χ2

Model L&Bt

conditional L
Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

1000

0.950

0.3

0.3

0.3

0.3

0.3

−−
−−
−−
−−

1000

0.975

0.3

0.3

0.3

0.3

0.3

−−
−−
−−
−−

1000

1.000

0.3

0.3

0.3

0.3

0.3

−−
−−
−−
−−

1018 (85)

0.956 (0.032)

0.295 (0.031)

0.298 (0.031)

0.297 (0.030)

0.294 (0.029)

0.297 (0.031)

−−
−−
−−
−−
0

86.88

997 (71)

0.972 (0.027)

0.304 (0.026)

0.301 (0.027)

0.306 (0.029)

0.302 (0.026)

0.302 (0.030)

−−
−−
−−
−−
0

71.06

971 (39)

0.990 (0.017)

0.310 (0.021)

0.313 (0.023)

0.311 (0.021)

0.308 (0.019)

0.310 (0.022)

−−
−−
−−
−−
0

48.60

985 (76)

0.947 (0.030)

0.307 (0.027)

0.310 (0.029)

0.308 (0.028)

0.308 (0.027)

0.309 (0.027)

−−
−−
−−
−−
0

77.46

978 (69)

0.967 (0.027)

0.312 (0.026)

0.310 (0.026)

0.313 (0.026)

0.311 (0.026)

0.311 (0.029)

−−
−−
−−
−−
0

72.42

960 (44)

0.986 (0.018)

0.314 (0.022)

0.318 (0.023)

0.316 (0.022)

0.314 (0.020)

0.315 (0.023)

−−
−−
−−
−−
0

59.46

1425 (314)

0.937 (0.039)

0.202 (0.032)

0.188 (0.036)

0.172 (0.043)

0.154 (0.046)

0.141 (0.056)

0.290 (0.030)

0.286 (0.023)

0.284 (0.020)

0.282 (0.019)

0

528.41

1473 (398)

0.957 (0.033)

0.206 (0.043)

0.187 (0.051)

0.171 (0.058)

0.152 (0.070)

0.134 (0.084)

0.298 (0.033)

0.297 (0.021)

0.295 (0.022)

0.294 (0.022)

1

618.16

1644 (823)

0.976 (0.026)

0.200 (0.055)

0.182 (0.061)

0.159 (0.064)

0.132 (0.068)

0.116 (0.078)

0.310 (0.030)

0.306 (0.023)

0.310 (0.021)

0.308 (0.020)

0

1045.01

1129 (29)

−−
0.265 (0.014)

0.267 (0.015)

0.266 (0.013)

0.265 (0.014)

0.266 (0.014)

−−
−−
−−
−−
0

132.21

1065 (22)

−−
0.283 (0.014)

0.281 (0.014)

0.284 (0.014)

0.282 (0.015)

0.282 (0.016)

−−
−−
−−
−−
0

68.62

997 (16)

−−
0.300 (0.016)

0.304 (0.016)

0.302 (0.016)

0.300 (0.017)

0.301 (0.015)

−−
−−
−−
−−
0

16.27
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Table 2.19: [Simulation 3: case 4] Non-evolving natural tags 1 with constant capture probabil-
ity. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model NE1t are from the conditional (on xall) approach.

Model NE1t

least squares minimum χ2

Model L&Bt

conditional L
Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

200

0.7

0.3

0.3

0.3

0.3

0.3

−−
−−
−−
−−

200

0.8

0.3

0.3

0.3

0.3

0.3

−−
−−
−−
−−

200

0.9

0.3

0.3

0.3

0.3

0.3

−−
−−
−−
−−

243 (107)

0.744 (0.131)

0.291 (0.115)

0.284 (0.108)

0.296 (0.119)

0.286 (0.106)

0.293 (0.119)

−−
−−
−−
−−
0

115.31

212 (57)

0.813 (0.091)

0.297 (0.085)

0.303 (0.090)

0.298 (0.085)

0.302 (0.085)

0.300 (0.089)

−−
−−
−−
−−
0

58.24

208 (35)

0.908 (0.068)

0.303 (0.074)

0.298 (0.070)

0.296 (0.072)

0.291 (0.062)

0.300 (0.065)

−−
−−
−−
−−
0

35.90

186 (57)

0.704 (0.088)

0.362 (0.101)

0.361 (0.099)

0.367 (0.102)

0.359 (0.095)

0.369 (0.105)

−−
−−
−−
−−
0

58.69

183 (39)

0.793 (0.068)

0.352 (0.077)

0.354 (0.081)

0.352 (0.072)

0.354 (0.079)

0.353 (0.075)

−−
−−
−−
−−
0

42.54

188 (28)

0.891 (0.058)

0.339 (0.063)

0.342 (0.061)

0.339 (0.067)

0.332 (0.057)

0.341 (0.064)

−−
−−
−−
−−
0

30.46

293 (58)

0.705 (0.132)

0.180 (0.025)

0.186 (0.028)

0.202 (0.039)

0.217 (0.048)

0.253 (0.070)

0.205 (0.074)

0.204 (0.059)

0.199 (0.051)

0.200 (0.050)

0

109.60

271 (149)

0.784 (0.103)

0.184 (0.033)

0.184 (0.036)

0.183 (0.036)

0.193 (0.048)

0.200 (0.054)

0.244 (0.072)

0.245 (0.053)

0.233 (0.058)

0.229 (0.043)

0

165.05

292 (165)

0.880 (0.086)

0.193 (0.033)

0.186 (0.040)

0.170 (0.045)

0.162 (0.056)

0.161 (0.079)

0.277 (0.061)

0.278 (0.055)

0.264 (0.044)

0.269 (0.052)

0

188.91

445 (55)

−−
0.137 (0.022)

0.136 (0.019)

0.138 (0.021)

0.136 (0.019)

0.139 (0.022)

−−
−−
−−
−−
0

251.09

332 (31)

−−
0.181 (0.025)

0.182 (0.028)

0.181 (0.026)

0.182 (0.026)

0.181 (0.024)

−−
−−
−−
−−
0

135.59

257 (16)

−−
0.236 (0.031)

0.238 (0.026)

0.236 (0.033)

0.232 (0.029)

0.238 (0.029)

−−
−−
−−
−−
0

59.20
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Table 2.19 (continued.)

Model NE1t

least squares minimum χ2

Model L&Bt

conditional L
Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

c2

c3

c4

c5

no. not conv.�
MSE(N̂)

200

0.950

0.3

0.3

0.3

0.3

0.3

−−
−−
−−
−−

200

0.975

0.3

0.3

0.3

0.3

0.3

−−
−−
−−
−−

200

1.000

0.3

0.3

0.3

0.3

0.3

−−
−−
−−
−−

201 (28)

0.952 (0.053)

0.299 (0.061)

0.304 (0.065)

0.300 (0.060)

0.304 (0.057)

0.304 (0.061)

−−
−−
−−
−−
0

28.01

194 (21)

0.963 (0.046)

0.317 (0.057)

0.316 (0.057)

0.312 (0.061)

0.309 (0.047)

0.315 (0.053)

−−
−−
−−
−−
0

21.84

187 (18)

0.970 (0.039)

0.325 (0.048)

0.325 (0.051)

0.329 (0.055)

0.323 (0.054)

0.326 (0.052)

−−
−−
−−
−−
0

22.20

188 (25)

0.938 (0.047)

0.334 (0.061)

0.335 (0.061)

0.335 (0.056)

0.336 (0.056)

0.335 (0.054)

−−
−−
−−
−−
0

27.73

185 (20)

0.955 (0.042)

0.340 (0.051)

0.344 (0.051)

0.340 (0.054)

0.333 (0.047)

0.343 (0.052)

−−
−−
−−
−−
0

25

180 (18)

0.966 (0.038)

0.348 (0.045)

0.347 (0.046)

0.352 (0.053)

0.342 (0.046)

0.346 (0.051)

−−
−−
−−
−−
0

26.90

299 (114)

0.934 (0.063)

0.199 (0.044)

0.184 (0.051)

0.165 (0.057)

0.156 (0.066)

0.140 (0.075)

0.292 (0.071)

0.294 (0.050)

0.284 (0.050)

0.285 (0.041)

0

150.98

371 (448)

0.937 (0.061)

0.194 (0.054)

0.177 (0.055)

0.152 (0.060)

0.132 (0.051)

0.114 (0.056)

0.309 (0.063)

0.311 (0.054)

0.296 (0.041)

0.308 (0.046)

1

479.52

448 (740)

0.958 (0.050)

0.194 (0.068)

0.172 (0.075)

0.152 (0.075)

0.129 (0.079)

0.116 (0.101)

0.317 (0.061)

0.326 (0.053)

0.307 (0.046)

0.312 (0.042)

1

780.45

225 (13)

−−
0.266 (0.034)

0.267 (0.035)

0.267 (0.034)

0.267 (0.033)

0.267 (0.031)

−−
−−
−−
−−
0

28.17

211 (9)

−−
0.286 (0.035)

0.289 (0.028)

0.285 (0.038)

0.280 (0.031)

0.288 (0.032)

−−
−−
−−
−−
0

14.21

201 (8)

−−
0.302 (0.035)

0.300 (0.031)

0.305 (0.034)

0.296 (0.034)

0.300 (0.034)

−−
−−
−−
−−
0

8.06
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in Simulations 1 and 2 (relative bias < 72% and relative standard errors < 54%, compared to the

results in Simulations 1 and 2 where relative bias < 133% and relative standard errors < 212%).

However, the estimates varied when data were analyzed under Model L&Bt, and the estimates

were poor (relative bias ≤ 124% and relative standard error ≤ 370%) compared to the estimates

from Model L&B0.

2.5.4 Simulation 4: Estimated Generalized Least Squares Method

In previous simulations, we examined two methods of estimation under Model NE1t, un-

weighted least squares and minimum χ2, both of which are based on the idea of using the observed

values and expected values of Xγ in a quadratic distance function. The quadratic distance function,

in general, has the form

F = (xγ − E [Xγ ])′ C−1 (xγ − E [Xγ ])

(Lindsay and Qu, 2003). The method of unweighted least squares treats C as an identity matrix,

thus C is free of parameters, whereas the method of minimum χ2 treats C as a diagonal matrix

where the diagonal elements of C−1 are based on the inverse of expected values. In this section,

we derive the variance-covariance matrix C of the observed capture histories Xγ , and considered

an estimated generalized least squares method (W. Link, personal communication). With this

approach, the dependencies in the data are incorporated in the estimator, and this may help to

improve precision, especially for the low capture probability cases. For simplicity, we consider cases

with K = 3 sampling occasions because the details are unwieldy for K > 3.

To construct the variance-covariance matrix, C, consider only real capture histories for now.

The real capture history, given each true capture history, is denoted by δ, and the corresponding

random variable, Zδ, denotes the number of real capture histories conditional on the true capture

history. Note that the Zδ cannot be observed, but represent latent variables. Because the capture

history [000] is not observed, we condition on the total number of real capture histories other than

[000]. Then, for the 3-sample case, we have 26 distinct real capture histories δ (Table 2.20). Here

we use letters A to Z to denote each δ rather than a sequence of 0’s and 1’s because the same

real capture history can arise from different true capture histories. Each δ has its own probability,

which is denoted by πδ. Now, notice that Zδ is multinomial because we do not consider ghost
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Table 2.20: A summary of the latent capture histories, δ, and associated probabilities for non-
evolving natural tags 1 for the 3-sample case.

ω
(true history)

γ

(observed history) status δ
(latent history) πδ = Pr [δ | ω]

111

110

111

110
001

101
010

011
100

100
010
001

010
100
001

001
100
010

000
100
010
001

110

100
010

010
100

000
100
010

real

real
ghost*

real
ghost*

real
ghost*

real
ghost*
ghost*

real
ghost*
ghost*

real
ghost*
ghost*

real
ghost*
ghost*
ghost*

real

real
ghost*

real
ghost*

real
ghost*
ghost*

A

B

C

D

E

F

G

H

I

J

K

L

[p1αp2αp3α]/π∗

[p1αp2αp3(1 − α)]/π∗

[p1αp2(1 − α)p3α]/π∗

[p1(1 − α)p2αp3α]/π∗

[p1αp2(1 − α)p3(1 − α)]/π∗

[p1(1 − α)p2αp3(1 − α)]/π∗

[p1(1 − α)p2(1 − α)p3α]/π∗

[p1(1 − α)p2(1 − α)p3(1 − α)]/π∗

[p1αp2α(1 − p3)]/π∗

[p1αp2(1 − α)(1 − p3)]/π∗

[p1(1 − α)p2α(1 − p3)]/π∗

[p1(1 − α)p2(1 − α)(1 − p3)]/π∗
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Table 2.20 (continued.)

ω
(true history)

γ

(observed history) status δ
(latent history) πδ = Pr [δ | ω]

101

100

011

010

001

101

100
001

001
100

000
100
001

100

000
100

011

010
001

001
010

000
010
001

010

000
010

001

000
001

real

real
ghost*

real
ghost*

real
ghost*
ghost*

real

real
ghost*

real

real
ghost*

real
ghost*

real
ghost*
ghost*

real

real
ghost*

real

real
ghost*

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[p1α(1 − p2)p3α]/π∗

[p1α(1 − p2)p3(1 − α)]/π∗

[p1(1 − α)(1 − p2)p3α]/π∗

[p1(1 − α)(1 − p2)p3(1 − α)]/π∗

[p1α(1 − p2)(1 − p3)]/π∗

[p1(1 − α)(1 − p2)(1 − p3)]/π∗

[(1 − p1)p2αp3α]/π∗

[(1 − p1)p2αp3(1 − α)]/π∗

[(1 − p1)p2(1 − α)p3α]/π∗

[(1 − p1)p2(1 − α)p3(1 − α)]/π∗

[(1 − p1)p2α(1 − p3)]/π∗

[(1 − p1)p2(1 − α)(1 − p3)]/π∗

[(1 − p1)(1 − p2)p3α]/π∗

[(1 − p1)(1 − p2)p3(1 − α)]/π∗

where π∗ = 1 − (1 − p1)(1 − p2)(1 − p3)
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capture histories here, and the total number of real capture histories, excluding [000], corresponds

to the total number of animals captured, Mt+1, thus

Zδ ∼ multinomial (Mt+1, πδ) .

Note that Mt+1 is unobservable here. Then, the expected values and variance-covariance of Zδ

can be easily constructed. For the 3-sample case, the expected value of Zδ is

E [Zδ] = Mt+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

πA

πB

πC

...

πX

πY

πZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the variance-covariance of Zδ is

V ar [Zδ] = Mt+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

πA(1 − πA) −πAπB · · · −πAπY −πAπZ

−πBπA πB(1 − πB) · · · −πBπY −πBπZ

−πCπA −πCπB · · · −πCπY −πCπZ

...
...

. . .
...

...

−πXπA −πXπB · · · −πXπY −πXπZ

−πY πA −πY πB · · · πY (1 − πY ) −πY πZ

−πZπA −πZπB · · · −πZπY πZ(1 − πZ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Recall that this latent variable Zδ cannot be observed directly. Similarly, Mt+1 is unknown here.

However, the expected value of Mt+1 can be written in terms of the total number of observed

capture histories Xall as
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E [Mt+1] =

E [Xall]

[
1 −

K∏
i=1

(1 − pi)

]

1 −
K∏

i=1

(1 − P ′
i ) +

[
K∑

i=1

pi

]
(1 − α)

.

Now, because we know the relationship between real and ghost capture histories, we can

construct a matrix W that maps latent variable (Zδ) to observable variable (Xγ), so that Xγ =

WZδ. For the 3-sample case, with the Zδ listed as in Table 2.20 and

Xγ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

111

110

101

100

011

010

001

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W can be constructed as

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0

0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

for example, row 2 indicates that observed history [110] includes both latent histories B and I.
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Then, we can write a quadratic distance function

Fcov = (xγ − E [Xγ ])′ C−1 (xγ − E [Xγ ]) ,

where

E [Xγ ] = W E [Zδ]

and

C = W V ar [Zδ] W ′ .

Then, estimates are obtained by minimizing the quadratic distance function, Fcov.

In this simulation, we modified the four specific cases described in Simulation 1 by limiting to

K = 3 sampling occasions because of the complexity of the elements of Zδ and W .

Case 1: N = 1000 and p = [0.7, 0.8, 0.7]

Case 2: N = 200 and p = [0.7, 0.8, 0.7]

Case 3: N = 1000 and p = [0.3, 0.2, 0.3]

Case 4: N = 200 and p = [0.3, 0.2, 0.3]

For each case, the correct identification rates of α = 0.7, 0.8 and 0.9 were considered. Because we

were primarily interested in whether accounting for the covariance structure of the data improves

the estimates, for each generated data set, estimates were obtained by using three different esti-

mation methods under Model NE1t: (1) unweighted least squares (Fls), (2) minimum χ2 (Fχ2)

and (3) estimated generalized least squares (Fcov). The performance of each estimation method

was investigated by examining the average estimates, standard errors and root mean square errors

of N̂ over 100 simulations. The results for cases 1 to 4 are summarized in Tables 2.21 and 2.22.

We were interested in whether estimates obtained by using different estimation methods differ,

especially in cases with high misidentification rates. However, it is clear from the results that the

estimates did not improve when the covariance structure of the data was incorporated into the

estimator. This is most likely because the elements of C were estimated rather than known. Al-

though extending to the 5-sample case may show some improvement, we did not see any advantage

with the more complicated estimator in our simulation of the 3-sample case.
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Table 2.21: [Simulation 4: cases 1 and 2] Non-evolving natural tags 1. Average estimates (with
standard errors in parentheses) based on 100 simulated data sets under Model NE1t.

least squares minimum χ2 EGLS**

** EGLS = estimated generalized least squares

N
α
p1

p2

p3

no. not conv.�
MSE(N̂)

N
α
p1

p2

p3

no. not conv.�
MSE(N̂)

N
α
p1

p2

p3

no. not conv.�
MSE(N̂)

N
α
p1

p2

p3

no. not conv.�
MSE(N̂)

N
α
p1

p2

p3

no. not conv.�
MSE(N̂)

N
α
p1

p2

p3

no. not conv.�
MSE(N̂)

1000
0.7
0.7
0.8
0.7

1000
0.8
0.7
0.8
0.7

1000
0.9
0.7
0.8
0.7

200
0.7
0.7
0.8
0.7

200
0.8
0.7
0.8
0.7

200
0.9
0.7
0.8
0.7

1011 (86)
0.700 (0.027)
0.698 (0.058)
0.796 (0.068)
0.697 (0.059)

0

86.70

999 (57)
0.799 (0.021)
0.702 (0.043)
0.805 (0.050)
0.704 (0.041)

0

57.00

999 (40)
0.900 (0.016)
0.700 (0.030)
0.802 (0.033)
0.702 (0.032)

0

40.01

215 (41)
0.717 (0.061)
0.673 (0.116)
0.765 (0.129)
0.672 (0.111)

0

43.65

200 (22)
0.798 (0.043)
0.708 (0.084)
0.808 (0.090)
0.707 (0.084)

0

22.00

200 (18)
0.901 (0.038)
0.705 (0.072)
0.802 (0.073)
0.701 (0.066)

0

18.00

1011 (84)
0.700 (0.027)
0.698 (0.058)
0.795 (0.065)
0.697 (0.059)

0

84.71

1000 (58)
0.799 (0.021)
0.702 (0.042)
0.804 (0.051)
0.704 (0.041)

0

58.00

999 (39)
0.899 (0.016)
0.700 (0.030)
0.802 (0.033)
0.702 (0.031)

0

39.01

214 (41)
0.717 (0.060)
0.674 (0.116)
0.768 (0.130)
0.674 (0.112)

0

43.32

199 (22)
0.796 (0.043)
0.711 (0.087)
0.812 (0.090)
0.710 (0.084)

0

22.02

199 (18)
0.900 (0.039)
0.705 (0.073)
0.801 (0.076)
0.701 (0.068)

0

18.02

1010 (84)
0.700 (0.027)
0.698 (0.058)
0.796 (0.066)
0.697 (0.058)

0

84.59

1000 (58)
0.799 (0.021)
0.702 (0.043)
0.804 (0.050)
0.703 (0.041)

0

58.00

999 (39)
0.900 (0.016)
0.700 (0.030)
0.802 (0.033)
0.702 (0.031)

0

39.01

214 (41)
0.716 (0.060)
0.677 (0.116)
0.770 (0.129)
0.676 (0.112)

0

43.32

199 (22)
0.796 (0.043)
0.711 (0.084)
0.812 (0.089)
0.711 (0.084)

0

22.02

200 (18)
0.901 (0.039)
0.704 (0.072)
0.801 (0.074)
0.700 (0.067)

0

18.00
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Table 2.22: [Simulation 4: cases 3 and 4] Non-evolving natural tags 1. Average estimates (with
standard errors in parentheses) based on 100 simulated data sets under Model NE1t.

least squares minimum χ2 EGLS**

** EGLS = estimated generalized least squares

N
α
p1

p2

p3

no. not conv.�
MSE(N̂)

N
α
p1

p2

p3

no. not conv.�
MSE(N̂)

N
α
p1

p2

p3

no. not conv.�
MSE(N̂)

N
α
p1

p2

p3

no. not conv.�
MSE(N̂)

N
α
p1

p2

p3

no. not conv.�
MSE(N̂)

N
α
p1

p2

p3

no. not conv.�
MSE(N̂)

1000
0.7
0.3
0.2
0.3

1000
0.8
0.3
0.2
0.3

1000
0.9
0.3
0.2
0.3

200
0.7
0.3
0.2
0.3

200
0.8
0.3
0.2
0.3

200
0.9
0.3
0.2
0.3

1176 (641)
0.729 (0.186)
0.340 (0.176)
0.229 (0.121)
0.340 (0.179)

0

664.72

1104 (422)
0.821 (0.153)
0.320 (0.138)
0.214 (0.096)
0.323 (0.139)

0

434.62

1018 (253)
0.900 (0.106)
0.320 (0.093)
0.211 (0.065)
0.315 (0.092)

0

253.63

264 (170)
0.747 (0.234)
0.376 (0.283)
0.264 (0.198)
0.374 (0.277)

0

181.64

203 (124)
0.767 (0.212)
0.438 (0.279)
0.295 (0.188)
0.437 (0.274)

0

124.03

201 (75)
0.881 (0.159)
0.362 (0.197)
0.239 (0.129)
0.363 (0.189)

0

75.00

1162 (582)
0.731 (0.173)
0.329 (0.159)
0.220 (0.108)
0.329 (0.164)

0

604.12

1092 (416)
0.819 (0.153)
0.322 (0.136)
0.216 (0.095)
0.325 (0.137)

0

426.05

1017 (250)
0.900 (0.106)
0.319 (0.094)
0.212 (0.066)
0.316 (0.093)

0

250.57

270 (159)
0.771 (0.234)
0.366 (0.281)
0.254 (0.194)
0.360 (0.273)

0

173.72

198 (112)
0.776 (0.209)
0.437 (0.278)
0.298 (0.189)
0.441 (0.280)

0

112.01

199 (72)
0.883 (0.157)
0.362 (0.194)
0.243 (0.134)
0.362 (0.184)

0

72.00

1157 (584)
0.729 (0.174)
0.332 (0.161)
0.222 (0.109)
0.332 (0.166)

0

604.73

1090 (418)
0.818 (0.153)
0.324 (0.137)
0.217 (0.095)
0.326 (0.138)

0

427.57

1016 (251)
0.900 (0.106)
0.320 (0.094)
0.212 (0.066)
0.316 (0.093)

0

251.50

268 (160)
0.767 (0.238)
0.374 (0.288)
0.260 (0.199)
0.368 (0.279)

0

173.85

196 (113)
0.770 (0.213)
0.448 (0.284)
0.305 (0.193)
0.451 (0.286)

0

113.07

198 (73)
0.880 (0.160)
0.367 (0.201)
0.246 (0.135)
0.367 (0.189)

0

73.02
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2.6 Discussion

In general, the performance of least squares and minimum χ2 estimators under Model NE1t

was good. The problematic cases are the ones with low capture probabilities, where substantial

bias in N̂ can occur, especially as the value of α approaches 1. Differences between the unweighted

least squares and minimum χ2 estimators of N were small, and it was an interesting observation

that generalized least squares estimator with estimated variance-covariance did not perform better

than these simpler methods.

An important observation is that even when the chance of error is only 0.05, the estimator

of N showed substantial positive bias when misidentification is ignored, and the conventional Mt

estimator is used. This is reasonable because the conventional capture-recapture models do not

account for misidentification so that each observed capture history is treated as if it belongs to

a distinct animal. Thus, a ghost capture history is also counted as if it belongs to an animal in

the population, which leads to overestimation of N . The magnitude of this bias can be substan-

tial as the misidentification rate increases, and researchers should be aware of the possibility of

misidentification and its consequences when their studies use natural tags.

For the cases of relatively low correct identification rates, it is clear that the NE1t estimators

perform better than the Mt estimator, as demonstrated by the results from Simulation 1. The

results from Simulation 2 also indicated that the NE1t estimators also perform well compared to

the Mt estimator when the correct identification rate is as high as 0.975, especially for high capture

probability cases. However, as the correct identification rate approaches 1, the performance of the

NE1t estimators deteriorates, especially for low capture probability cases, whereas the performance

of the Mt estimator improves. These models make different assumptions about the data, and it is

not an easy task to determine which is the most appropriate for a given data set. An important

topic for future research is to develop a tool to test whether, for a given data set, the true correct

identification rate is 1 or close enough to 1 so that misidentification can be ignored. Also, guidelines

or criteria that determine whether to use Model NE1 or conventional capture-recapture models

need to be developed.

Performance of the maximum likelihood estimator based on the L&B likelihood is poor com-

pared to the estimators based on Model NE1. Although Lukacs and Burnham (2005a) considered

only constant capture probability and correct identification rates of 0.95 to 0.99 in their simula-
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tion, we considered cases with capture probabilities varied across sampling occasions in addition

to the cases with constant capture probability, and used a range of correct identification rates that

included values from α = 0.7 to 1.000, where α = 1.000 indicates no misidentification. Estimates

under Model L&Bt are sensitive to starting values, and it is difficult to assess the performance

of the estimator. We also note that the number of parameters in Model L&B is larger than that

in Model NE1, and that there appears to be a problem with identifiability of Model L&B when

we assume time dependent capture probabilities. We tested a few of our generated data sets by

imposing the constraint p4 = p5 or p5 = c5 and also by using program MARK to obtain the L&Bt

estimates. The results from program MARK, as well as our results, support the conclusion that

there is an identifiability problem. Both Model NE1 and Model L&B were developed for genetic

tag-based capture-recapture studies under the same assumptions about the misidentification mech-

anism. However, Lukacs and Burnham (2005a) constructed their model based on a multinomial

likelihood approach, which we believe to be invalid, whereas we enumerated all possible observed

histories and corresponding probabilities. Our estimation methods were based on quadratic dis-

tance function, which compared observed and expected numbers of capture histories. We here

clearly see differences between Model NE1 and Model L&B, and it is an important next step to

understand the differences clearly.

Finally, we have assumed that only a single source of DNA (e.g., a hair sample) of a captured

animal at a sampling occasion is analyzed and used to construct capture history data. Thus, at

most, only one ghost capture history can be created for each captured animal. In reality, it is more

likely to collect multiple sources of DNA for an individual animal at a sampling occasion (i.e.,

an animal leaves multiple hair samples at a sampling occasion). In such cases, we can recognize

that the multiple samples of a captured animal actually belong to the same animal only if the

identification based on DNA fingerprints is correct. Thus, those identified correctly are recorded

as a single real capture history whereas those that are incorrectly identified are all recorded as

separate ghost capture histories. In other words, multiple ghost capture histories can be created for

each captured animal at a sampling occasion. Consequently, the capture-recapture data are likely

to contain ’extra’ ghost capture histories. Such extra ghost capture histories are not considered

under Model NE1 developed in this chapter, and we expect even larger bias in N̂ if such extra

ghost capture histories are present in the data, but ignored. This multiple capture problem needs

to be investigated further, and study designs to reduce observations of extra ghost capture histories
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or capture-recapture models that allow extra ghost capture histories need to be considered.

In Chapter 3, we further consider the misidentification mechanism (NE1) discussed in this

chapter. We first consider an alternative estimator which is based on the likelihood conditioning

on the capture histories that have more than one capture event. Second, we consider an extension

of Model NE1 to allow for both behavioral response as well as misidentification. Finally, we discuss

augmentation of data, with the goal of improving estimator performance by obtaining extra data

on the misidentification rate.
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Chapter 3

Extensions of Model NE1

3.1 Introduction

In this chapter, we extend Model NE1 illustrated in Chapter 2. First, we consider an al-

ternative estimation method. One of the interesting characteristics of NE1 is that ghost capture

histories appear only in the observable capture histories with a single capture event (see Table

2.3). In other words, if we use a subset of the data that includes only capture histories that have

two or more capture events, we can eliminate all ghost capture histories, and thus the complex

dependency between real and ghost histories. In the first part of this chapter, we focus on this

subset of the data, develop a likelihood-based estimator, and perform a simulation study to assess

the performance of the estimator.

Variation in the capture probability is a common phenomenon in capture-recapture studies.

Variation can occur among individual animals (heterogeneity), across time (temporal), between

unmarked and marked animals (behavioral response), or some combination of these, and conven-

tional capture-recapture models have been developed to allow for these types of variation in the

capture probabilities (Otis et al., 1978; Pollock et al., 1990; Williams et al., 2002). In the second

part of this chapter, we consider a modification of Model NE1 that allows for both misidentification

and behavioral response to occur in the same study.

In the last part of this chapter, we extend Model NE1 to incorporate additional external in-

formation on the misidentification rate. The basic idea here is similar to the multi-tube approach

(Navidi et al., 1992; Taberlet et al., 1996; Taberlet and Luikart, 1999; Taberlet et al., 1999), which
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performs multiple independent amplifications of DNA. This approach allows for detection of possi-

ble genotyping errors by comparing the results of multiple amplifications performed independently,

and an accurate genotype can be deduced by examining all of the amplification results. Here we

apply a similar idea to the identification procedure. We are interested in the consistency in iden-

tification when multiple identifications were performed from a sample that contains an animal’s

DNA. In other words, if a source of DNA is analyzed independently multiple times, the identifica-

tion based on the DNA fingerprints should indicate the same animal. However, if misidentification

occurs for some reason, we observe inconsistency in the identifications. Such data can provide

valuable information for estimating the misidentification rate, as well as for improving the estima-

tion of population size, when they are used to augment the capture history data. We refer to this

approach as the multiple identification , and we will illustrate the concept by using a simple

example, develop an estimator that incorporates such data, and perform a simulation study to

assess the estimator performance.

3.2 Likelihood-Based Estimation Method

3.2.1 Statistical Model Development and Estimation

Here we consider the case of non-evolving natural tags 1 (NE1). In Chapter 2, we defined

the observable capture histories γ, and demonstrated the construction of the probability of ob-

serving each capture history γ for a study with this type of misidentification. We also presented

the marginal probability of each observable capture history (Table 2.3). Recall that, with NE1,

”ghosts” do not have a possibility of recapture, and thus every ghost capture history has only a

single capture event. Consequently, capture histories that have two or more capture events are all

”real”. We focus on this feature of the data, and construct a likelihood function by conditioning on

the total number of animals that have been captured at least twice. Estimators are then obtained

by maximum likelihood.

To give a simple concrete example, consider the 3-sample closed population case we illustrated

in Chapter 2. Here we just consider observable capture histories that have two or more capture

events, which are denoted by γ′′ (Table 3.1). The corresponding random variable, which is the

number of capture histories that have capture history γ′′, is denoted by Xγ′′ , and the total number
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Table 3.1: A summary of the probabilities of the observable capture histories under Model NE1t

conditional on the capture histories that have two or more capture events, γ′′, in a 3-sample study.

γ

111

110

101

100

011

010

001

000

Total

Pr[γ]

P ′
1P

′
2P

′
3

P ′
1P

′
2Q

′
3

P ′
1Q

′
2P

′
3

P ′
1Q

′
2Q

′
3 + p1(1 − α)

Q′
1P

′
2P

′
3

Q′
1P

′
2Q

′
3 + p2(1 − α)

Q′
1Q

′
2P

′
3 + p3(1 − α)

Q′
1Q

′
2Q

′
3

1 + (p1 + p2 + p3) (1 − α)

status

real

real

real

real + ghost

real

real + ghost

real + ghost

real

γ′′

111

110

101

−−

011

−−

−−

−−

Pr[γ′′ | x′′
all]

P ′
1P

′
2P

′
3/τ∗

P ′
1P

′
2Q

′
3/τ∗

P ′
1Q

′
2P

′
3/τ∗

−−

Q′
1P

′
2P

′
3/τ∗

−−

−−

−−
1

of capture histories that have two or more capture events is denoted by x′′
all. Then the probability

of observing γ′′ conditional on x′′
all, which is denoted by τγ′′ , can be written as

τ111 = Pr [111 | x′′
all] =

Pr [111]
τ∗ =

P ′
1P

′
2P

′
3

τ∗

τ110 = Pr [110 | x′′
all] =

Pr [110]
τ∗ =

P ′
1P

′
2Q

′
3

τ∗

τ101 = Pr [101 | x′′
all] =

Pr [101]
τ∗ =

P ′
1Q

′
2P

′
3

τ∗

τ011 = Pr [011 | x′′
all] =

Pr [011]
τ∗ =

Q′
1P

′
2P

′
3

τ∗

where

τ∗ = P ′
1P

′
2P

′
3 + P ′

1P
′
2Q

′
3 + P ′

1Q
′
2P

′
3 + Q′

1P
′
2P

′
3 .
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Notice that all γ′′ are real capture histories, and Xγ′′ is multinomial,

Xγ′′ ∼ multinomial (x′′
all, τγ′′) .

Then the conditional likelihood is

Lc(P ′
i | xγ′′ , x′′

all) =
(

x′′
all

x111 x110 x101 x011

)
[τ111]

x111 [τ110]
x110 [τ101]

x101 [τ011]
x011 ,

and the estimates are obtained by maximizing Lc. Notice that, in Lc, the parameters for the

capture probabilities (pi) and correct identification rate (α) always occur together as a product

(P ′
i = piα ; Q′

i = 1−P ′
i ), and we estimate the product P ′

i . We cannot obtain individual estimates

of pi and α from the conditional likelihood, Lc. However, the estimates of P ′
i are used to estimate

τ∗, and thus population size is estimated as a derived parameter

N̂c =
x′′

all

τ̂∗ .

The estimator N̂c is a consistent estimator for N when misidentification occurs.

For K > 3, the same principles apply. In general, the probability of observing γ′′ can be

written as

τγ′′ = Pr [γ′′ | x′′
all] =

Pr [γ]
τ∗

where

τ∗ =
∑
γ′′

Pr [γ] ,

and the likelihood function, conditioning on the capture histories that have two or more capture

events, is

Lc(P ′
i | xγ′′ , x′′

all) =
(

x′′
all

xγ′′

)∏
γ′′

[τγ′′ ]xγ′′

where xγ′′ and x′′
all represent the data. The estimate of population size is obtained as a derived

parameter shown above.
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3.2.2 Simulation Study: Conditional Likelihood Estimation Method

The data sets that were generated in Simulation 1 in Chapter 2 are used here to evaluate the

conditional maximum likelihood estimator. For each data set, only the capture histories that have

two or more capture events were needed for this simulation study. Thus, we have the same four

specific cases, each with correct identification rates of α = 0.7, 0.8 and 0.9.

Case 1: N = 1000 and p = [0.7, 0.8, 0.7, 0.8, 0.7]

Case 2: N = 200 and p = [0.7, 0.8, 0.7, 0.8, 0.7]

Case 3: N = 1000 and p = [0.3, 0.2, 0.3, 0.2, 0.3]

Case 4: N = 200 and p = [0.3, 0.2, 0.3, 0.2, 0.3]

We considered the estimation method based on the conditional likelihood, Lc, as illustrated in

the previous section, and the estimates of P ′
i were obtained by maximizing Lc. Then the estimate

of N was obtained as a derived parameter. The performance of the estimator was assessed by

examining the average estimates, standard errors and root mean square errors of N̂ based on 100

simulated data sets, and if the estimation process failed to converge, those estimates were excluded

from the computation of the results. The results for cases 1 to 4 are summarized in Tables 3.2 - 3.5.

In order to compare the performance of the likelihood-based estimator with the other estimators

under Model NE1, the results from methods of unweighted least squares and minimum χ2 (Tables

2.4 - 2.7) are presented again in Tables 3.2 - 3.5.

For the high capture probability cases, the overall performance of the likelihood-based estima-

tor was good (relative bias < 1% and relative standard error ≤ 5%), and the bias and precision of

N̂c were similar to those from unweighted least squares and minimum χ2 examined in Simulation

1 in Chapter 2. For case 3, the overall performance of the likelihood-based estimator was also

good (relative bias < 4% and relative standard error < 23%), and the magnitude of bias in N̂c

was smaller than those from unweighted least squares and minimum χ2. However, the likelihood-

based estimator N̂c was more precise than the unweighted least squares estimator, but less precise

than the minimum χ2 estimator. For case 4, N̂c was less precise (relative standard error > 35%)

compared to the results from unweighted least squares and minimum χ2. However, the bias in

N̂c (relative bias ≈ 6 − 47%) was not consistently better nor consistently worse compared to the

results from unweighted least squares and minimum χ2.
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Table 3.2: [Simulation Study: case 1] NE1t with likelihood-based estimation method. Average
estimates (with standard errors in parentheses) under Model NE1t. Estimates are based on 100
simulated data sets.

NE1t

least squares minimum χ2

NE1t

conditional L

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

1000

0.7

0.7

0.8

0.7

0.8

0.7

1000

0.8

0.7

0.8

0.7

0.8

0.7

1000

0.9

0.7

0.8

0.7

0.8

0.7

1000 (21)

0.700 (0.008)

0.700 (0.026)

0.797 (0.027)

0.698 (0.027)

0.800 (0.026)

0.699 (0.025)

0

21.00

999 (13)

0.799 (0.008)

0.700 (0.020)

0.798 (0.021)

0.698 (0.021)

0.801 (0.020)

0.701 (0.021)

0

13.03

1000 (8)

0.899 (0.005)

0.701 (0.018)

0.803 (0.016)

0.700 (0.019)

0.799 (0.015)

0.701 (0.018)

0

8.00

1007 (21)

0.703 (0.008)

0.697 (0.022)

0.795 (0.022)

0.695 (0.024)

0.795 (0.023)

0.698 (0.019)

0

22.13

1004 (12)

0.801 (0.008)

0.697 (0.017)

0.798 (0.017)

0.696 (0.018)

0.796 (0.016)

0.700 (0.020)

0

12.64

1002 (7)

0.900 (0.005)

0.698 (0.016)

0.798 (0.015)

0.699 (0.016)

0.797 (0.014)

0.698 (0.017)

0

7.28

N

−−
P ′

1

P ′
2

P ′
3

P ′
4

P ′
5

no. not conv.

�
MSE(N̂)

N

−−
P ′

1

P ′
2

P ′
3

P ′
4

P ′
5

no. not conv.

�
MSE(N̂)

N

−−
P ′

1

P ′
2

P ′
3

P ′
4

P ′
5

no. not conv.

�
MSE(N̂)

1000

0.49

0.56

0.49

0.56

0.49

1000

0.56

0.64

0.56

0.64

0.56

1000

0.63

0.72

0.63

0.72

0.63

1000 (21)

−−
0.490 (0.018)

0.560 (0.020)

0.489 (0.019)

0.559 (0.019)

0.492 (0.016)

0

21.00

999 (12)

−−
0.559 (0.017)

0.642 (0.014)

0.558 (0.018)

0.638 (0.016)

0.561 (0.018)

0

12.04

1000 (7)

−−
0.629 (0.017)

0.721 (0.015)

0.630 (0.016)

0.720 (0.014)

0.630 (0.016)

0

7.00
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Table 3.3: [Simulation Study: case 2] NE1t with likelihood-based estimation method. Average
estimates (with standard errors in parentheses) under Model NE1t. Estimates are based on 100
simulated data sets.

NE1t

least squares minimum χ2

NE1t

conditional L

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

200

0.7

0.7

0.8

0.7

0.8

0.7

200

0.8

0.7

0.8

0.7

0.8

0.7

200

0.9

0.7

0.8

0.7

0.8

0.7

198 (10)

0.695 (0.018)

0.707 (0.059)

0.806 (0.068)

0.691 (0.053)

0.808 (0.059)

0.703 (0.061)

0

10.19

199 (6)

0.799 (0.018)

0.702 (0.050)

0.794 (0.041)

0.702 (0.051)

0.805 (0.049)

0.706 (0.045)

0

6.08

199 (4)

0.900 (0.013)

0.703 (0.036)

0.806 (0.038)

0.705 (0.041)

0.798 (0.035)

0.690 (0.038)

0

4.12

205 (9)

0.710 (0.018)

0.700 (0.050)

0.790 (0.049)

0.688 (0.047)

0.786 (0.051)

0.690 (0.046)

0

10.29

204 (7)

0.808 (0.017)

0.691 (0.037)

0.782 (0.042)

0.691 (0.043)

0.784 (0.042)

0.696 (0.041)

0

8.06

202 (3)

0.903 (0.012)

0.693 (0.032)

0.787 (0.034)

0.693 (0.031)

0.785 (0.033)

0.682 (0.034)

0

3.60

N

−−
P ′

1

P ′
2

P ′
3

P ′
4

P ′
5

no. not conv.

�
MSE(N̂)

N

−−
P ′

1

P ′
2

P ′
3

P ′
4

P ′
5

no. not conv.

�
MSE(N̂)

N

−−
P ′

1

P ′
2

P ′
3

P ′
4

P ′
5

no. not conv.

�
MSE(N̂)

200

0.49

0.56

0.49

0.56

0.49

200

0.56

0.64

0.56

0.64

0.56

200

0.63

0.72

0.63

0.72

0.63

198 (10)

−−
0.497 (0.044)

0.564 (0.043)

0.491 (0.045)

0.557 (0.041)

0.489 (0.042)

0

10.19

199 (6)

−−
0.562 (0.036)

0.642 (0.038)

0.559 (0.038)

0.641 (0.038)

0.567 (0.040)

0

6.08

199 (3)

−−
0.630 (0.034)

0.721 (0.034)

0.633 (0.035)

0.719 (0.035)

0.621 (0.036)

0

3.16
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Table 3.4: [Simulation Study: case 3] NE1t with likelihood-based estimation method. Average
estimates (with standard errors in parentheses) under Model NE1t. Estimates are based on 100
simulated data sets.

NE1t

least squares minimum χ2

NE1t

conditional L

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

1000

0.7

0.3

0.2

0.3

0.2

0.3

1000

0.8

0.3

0.2

0.3

0.2

0.3

1000

0.9

0.3

0.2

0.3

0.2

0.3

1034 (225)

0.704 (0.069)

0.303 (0.065)

0.203 (0.048)

0.303 (0.069)

0.205 (0.048)

0.303 (0.067)

0

227.55

1048 (209)

0.813 (0.073)

0.297 (0.062)

0.199 (0.042)

0.298 (0.061)

0.196 (0.041)

0.297 (0.062)

0

214.44

1014 (132)

0.904 (0.048)

0.302 (0.041)

0.197 (0.032)

0.301 (0.043)

0.199 (0.029)

0.300 (0.041)

0

132.74

916 (169)

0.680 (0.056)

0.340 (0.060)

0.230 (0.045)

0.340 (0.062)

0.232 (0.045)

0.340 (0.061)

0

188.72

946 (165)

0.788 (0.062)

0.330 (0.061)

0.223 (0.041)

0.330 (0.060)

0.221 (0.040)

0.329 (0.058)

0

173.61

956 (108)

0.889 (0.041)

0.321 (0.037)

0.214 (0.030)

0.320 (0.039)

0.214 (0.026)

0.319 (0.037)

0

116.61

N

−−
P ′

1

P ′
2

P ′
3

P ′
4

P ′
5

no. not conv.

�
MSE(N̂)

N

−−
P ′

1

P ′
2

P ′
3

P ′
4

P ′
5

no. not conv.

�
MSE(N̂)

N

−−
P ′

1

P ′
2

P ′
3

P ′
4

P ′
5

no. not conv.

�
MSE(N̂)

1000

0.21

0.14

0.21

0.14

0.21

1000

0.24

0.16

0.24

0.16

0.24

1000

0.27

0.18

0.27

0.18

0.27

1028 (222)

−−
0.210 (0.030)

0.139 (0.022)

0.210 (0.029)

0.142 (0.026)

0.210 (0.029)

0

223.75

1031 (206)

−−
0.241 (0.031)

0.161 (0.025)

0.239 (0.033)

0.160 (0.023)

0.240 (0.030)

0

208.31

1003 (122)

−−
0.272 (0.026)

0.181 (0.022)

0.273 (0.026)

0.180 (0.019)

0.270 (0.026)

0

122.03
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Table 3.5: [Simulation Study: case 4] NE1t with likelihood-based estimation method. Average
estimates (with standard errors in parentheses) under Model NE1t. Estimates are based on 100
simulated data sets.

NE1t

least squares minimum χ2

NE1t

conditional L

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

200

0.7

0.3

0.2

0.3

0.2

0.3

200

0.8

0.3

0.2

0.3

0.2

0.3

200

0.9

0.3

0.2

0.3

0.2

0.3

258 (120)

0.761 (0.159)

0.297 (0.159)

0.195 (0.107)

0.294 (0.159)

0.196 (0.108)

0.296 (0.160)

0

133.28

221 (75)

0.819 (0.122)

0.307 (0.120)

0.208 (0.085)

0.304 (0.119)

0.198 (0.076)

0.302 (0.118)

0

77.88

209 (44)

0.906 (0.087)

0.302 (0.072)

0.202 (0.062)

0.302 (0.077)

0.202 (0.058)

0.295 (0.082)

0

44.91

185 (94)

0.700 (0.132)

0.402 (0.154)

0.277 (0.108)

0.402 (0.153)

0.281 (0.116)

0.402 (0.147)

0

95.18

170 (48)

0.770 (0.089)

0.386 (0.102)

0.272 (0.078)

0.390 (0.105)

0.266 (0.074)

0.390 (0.109)

0

56.60

181 (37)

0.877 (0.081)

0.356 (0.075)

0.250 (0.066)

0.358 (0.082)

0.248 (0.064)

0.352 (0.084)

0

41.59

N

−−
P ′

1

P ′
2

P ′
3

P ′
4

P ′
5

no. not conv.

�
MSE(N̂)

N

−−
P ′

1

P ′
2

P ′
3

P ′
4

P ′
5

no. not conv.

�
MSE(N̂)

N

−−
P ′

1

P ′
2

P ′
3

P ′
4

P ′
5

no. not conv.

�
MSE(N̂)

200

0.21

0.14

0.21

0.14

0.21

200

0.24

0.16

0.24

0.16

0.24

200

0.27

0.18

0.27

0.18

0.27

293 (383)

−−
0.206 (0.076)

0.140 (0.052)

0.213 (0.073)

0.143 (0.055)

0.210 (0.067)

2

394.12

213 (81)

−−
0.239 (0.063)

0.159 (0.043)

0.247 (0.060)

0.160 (0.044)

0.252 (0.066)

0

82.03

219 (75)

−−
0.264 (0.055)

0.180 (0.047)

0.269 (0.063)

0.177 (0.048)

0.266 (0.058)

0

77.36
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In general, the results indicate that performance of the conditional maximum likelihood esti-

mator was comparable to the methods that use all of the capture histories, except in cases with low

capture probabilities. Conditioning on histories with at least two captures will eliminate a larger

fraction of the data when the capture probabilities are low, and as a result, methods of unweighted

least squares and minimum χ2 will have better properties compared to the conditional maximum

likelihood approach.

3.3 Model NE1 with Behavioral Responses

3.3.1 Statistical Model Development and Estimation

In this section, we again consider the case of non-evolving natural tags 1 (NE1). Assumptions

for the misidentification mechanism we make here are the same as those described in Chapter 2.

However, we consider variation in capture probability due to behavioral response. Thus, as for the

conventional behavioral response capture-recapture model (Model Mb), we have two parameters

for capture probability, p for unmarked animals and c for marked animals. Also, for simplicity,

we assume that the probability of correct identification is constant for all animals at any capture

event with a parameter for correct identification rate, α. The construction of the probabilities

of observable capture histories γ is very similar to the case we described in Chapter 2. For

example, with the 3-sample case, an animal which is captured at all sampling occasions has true

capture history [111], but there are several possible observed capture histories depending on when

misidentification occurs. One of the possibilities is the pair [101 ; 010], which is the case where

identification at the first and third capture events is correct, but at the second capture event

is incorrect. Given that an animal has true capture history [111], the probability of observing

the animal with real capture history [101] is pαc(1 − α)cα. The ghost capture history [010] that

is created due to misidentification at the second capture event also has the same probability

pαc(1−α)cα because real and ghost capture histories are totally dependent. Table 3.6 presents the

probability of all the observable capture histories for the 3-sample case. The marginal probabilities

for the observed capture histories for the 3-sample case are also summarized in Table 3.7 where

q = (1 − p), P ′ = pα, Q′ = (1 − P ′), C ′ = cα, and D′ = (1 − C ′). As with the case in Chapter

2, total probability exceeds 1 because of the ghost capture histories created, and it equals 1 if and
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only if no misidentification occurs (i.e., α = 1).

For K > 3 cases, the same principles apply. Let t1(γ) be the sampling occasion when the first

capture occurs for a given capture history γ. Then the general expression for the probability of

observing capture history γ is

Pr [γ] =

⎡
⎣(1 − p)(t1(γ)−1)P ′ + h

⎛
⎝p(1 − α)C ′

t1(γ)∑
i=2

(1 − p)(t1(γ)−i)(1 − C ′)(i−2)

⎞
⎠
⎤
⎦

×
⎡
⎣ K∏

i=t1(γ)+1

C ′γi(1 − C ′)(1−γi)

⎤
⎦

for γ with multiple capture events, and

Pr [γ] =

⎡
⎣(1 − p)(t1(γ)−1)P ′ + h

⎛
⎝p(1 − α)C ′

t1(γ)∑
i=2

(1 − p)(t1(γ)−i)(1 − C ′)(i−2)

⎞
⎠
⎤
⎦

×
⎡
⎣ K∏

i=t1(γ)+1

C ′γi(1 − C ′)(1−γi)

⎤
⎦+

[
(1 − p)(t1(γ)−1)p + h

(
1 − (1 − p)(t1(γ)−1)

)
c
]
(1 − α)

for γ with a single capture event, where

p is the capture probability of an unmarked animal

c is the capture probability of an marked animal

α is the probability of correct identification

P ′ = pα

C ′ = c α

h = 0 if t1(γ) = 1 ; else h = 1.

Again, the typical multinomial approach to building a likelihood function for the observed

capture histories is invalid because of the dependency between real and ghost histories, and the

fact that the total probability exceeds 1. We apply the methods of unweighted least squares and

minimum χ2, both of which are based on the idea of using the observed values and marginal

expected values of Xγ to obtain estimates. The marginal expected values of Xγ for the 3-sample
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Table 3.6: A summary of the observable capture histories, γ, and associated probabilities for
non-evolving natural tags 1 with behavioral response for the 3-sample case.

ω
(true history) misID

γ

(observed history) status Pr[γ | ω]

111

110

none

at third

at second

at first

at second and third

at first and third

at first and second

at first, second and third

none

at second

at first

at first and second

111

110
001

101
010

011
100

100
010
001

010
100
001

001
100
010

000
100
010
001

110

100
010

010
100

000
100
010

real

real
ghost*

real
ghost*

real
ghost*

real
ghost*
ghost*

real
ghost*
ghost*

real
ghost*
ghost*

real
ghost*
ghost*
ghost*

real

real
ghost*

real
ghost*

real
ghost*
ghost*

pαcαcα

pαcαc(1 − α)
pαcαc(1 − α)

pαc(1 − α)cα
pαc(1 − α)cα

p(1 − α)cαcα

p(1 − α)cαcα

pαc(1 − α)c(1 − α)
pαc(1 − α)c(1 − α)
pαc(1 − α)c(1 − α)

p(1 − α)cαc(1 − α)
p(1 − α)cαc(1 − α)
p(1 − α)cαc(1 − α)

p(1 − α)c(1 − α)cα
p(1 − α)c(1 − α)cα
p(1 − α)c(1 − α)cα

p(1 − α)c(1 − α)c(1 − α)
p(1 − α)c(1 − α)c(1 − α)
p(1 − α)c(1 − α)c(1 − α)
p(1 − α)c(1 − α)c(1 − α)

pαcα(1 − c)

pαc(1 − α)(1 − c)
pαc(1 − α)(1 − c)

p(1 − α)cα(1 − c)
p(1 − α)cα(1 − c)

p(1 − α)c(1 − α)(1 − c)
p(1 − α)c(1 − α)(1 − c)
p(1 − α)c(1 − α)(1 − c)



Chapter 3. Extensions of Model NE1 86

Table 3.6 (continued.)

ω
(true history) misID

γ

(observed history) status Pr[γ | ω]

101

100

011

010

001

000

none

at second

at first

at first and second

at none

at third

none

at third

at second

at second and third

none

at second

none

at third

none

101

100
001

001
100

000
100
001

100

000
100

011

010
001

001
010

000
010
001

010

000
010

001

000
001

000

real

real
ghost*

real
ghost*

real
ghost*
ghost*

real

real
ghost*

real

real
ghost*

real
ghost*

real
ghost*
ghost*

real

real
ghost*

real

real
ghost*

real

pα(1 − c)cα

pα(1 − c)c(1 − α)
pα(1 − c)c(1 − α)

p(1 − α)(1 − c)cα
p(1 − α)(1 − c)cα

p(1 − α)(1 − c)c(1 − α)
p(1 − α)(1 − c)c(1 − α)
p(1 − α)(1 − c)c(1 − α)

pα(1 − c)(1 − c)

p(1 − α)(1 − c)(1 − c)
p(1 − α)(1 − c)(1 − c)

(1 − p)pαcα

(1 − p)pαc(1 − α)
(1 − p)pαc(1 − α)

(1 − p)p(1 − α)cα
(1 − p)p(1 − α)cα

(1 − p)p(1 − α)c(1 − α)
(1 − p)p(1 − α)c(1 − α)
(1 − p)p(1 − α)c(1 − α)

(1 − p)pα(1 − c)

(1 − p)p(1 − α)(1 − c)
(1 − p)p(1 − α)(1 − c)

(1 − p)(1 − p)pα

(1 − p)(1 − p)p(1 − α)
(1 − p)(1 − p)p(1 − α)

(1 − p)(1 − p)(1 − p)
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Table 3.7: A summary of the marginal probabilities of the observable capture histories, γ, for
non-evolving natural tags 1 with behavioral response in a 3-sample study.

γ (observed history) Pr[γ]

111 P ′C ′ C ′

110 P ′C ′ D′

101 P ′D′ C ′

100 P ′D′ D′ + p (1 − α)

011 q P ′ C ′+ p (1 − α)C ′C ′

010 q P ′ D′ + p (1 − α)C ′D′ + [qp + (1 − q)c](1 − α)

001 q q P ′ + p (1 − α)D′C ′ + qp (1 − α)C ′ + [q2p + (1 − q2)c](1 − α)

000 q q Q′ + p (1 − α)D′D′+ qp (1 − α)D′

Total** 1 + [(1 + q + q2)p + ((1 − q) + (1 − q2))c](1 − α)

** Total = 1 if and only if α = 1.

case can be written as a product of population size and the appropriate cell probabilities (Table

3.7),

E [Xγ ] = NPr [γ] .

Then, the estimates are obtained by minimizing the quadratic distance function

Fls =
∑

γ,γ �=000

(xγ − E [Xγ ] )2

or

Fχ2 =
∑

γ,γ �=000

(xγ − E [Xγ ] )2

E [Xγ ]

where xγ represents the data and Xγ represents the random variable.

The method can also be conditioned on the total number of capture histories observed, Xall.
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The total probability associated with the observed capture histories is

p∗ = 1 − [qqQ′ + p(1 − α)D′D′ + qp(1 − α)D′]

+
[
p + qp + (1 − q)c + q2p + (1 − q2)c

]
(1 − α)

= 1 − [qqQ′ + p(1 − α)D′D′ + qp(1 − α)D′]

+
[
(1 + q + q2)p + ((1 − q) + (1 − q2))c

]
(1 − α)

for the 3-sample study case, or in general,

p∗ = 1 −
[
(1 − p)(K−1)(1 − P ′) +

K−2∑
i=0

(
(1 − p)i(1 − C ′)(K−i−1)

)
p(1 − α)

]

+

[
K∑

i=1

(
(1 − p)(i−1)p +

(
1 − (1 − p)(i−1)

)
c
)]

(1 − α)

for the K-sample case. Then expected values of Xγ with the conditional approach can be written

as

E [Xγ | Xall = xall] =
xall Pr [γ]

p∗

where xall is the total number of capture histories observed. Again, the estimates are obtained

by minimizing the quadratic distance function Fls or Fχ2 where expectations are conditional on

xall, so that the parameter N is removed from the estimation process. Then N is estimated as a

derived parameter,

N̂ =
xall

p̂∗
.

3.3.2 Simulation Study: Cases with Behavioral Responses

In this simulation study, we again considered a closed population of N animals, and a study

with K = 5 sampling occasions. Here we have two parameters for capture probabilities, p for

unmarked animals and c for marked animals, and each unmarked or marked animal was subject

to capture with probability p or c, respectively, at each sampling occasion. When an animal

was captured, identification of the animal was either correct with probability α or incorrect with

probability (1−α). Note that the probability of correct and incorrect identification does not differ

between unmarked and marked animals. If the identification was correct, the event was recorded
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Figure 3.1: A diagram of the misidentification mechanism for non-evolving natural tags 1 with
behavioral response.

as a capture (i.e., [1]) in the real capture history of the animal. However, if the identification was

incorrect, the event was recorded as a non-capture (i.e., [0]) in the real capture history, and a ghost

capture history was created with the event recorded as a capture (i.e., [1]). Then, each animal

was subject to capture at the next sampling occasion (see Figure 3.1). Note that a real capture

history always has the possibility of recapture. However, a ghost capture history does not have

the possibility of recapture, and misidentification always creates a new ghost capture history.

Parameter values were chosen to reflect a wide range of population sizes, capture and recapture

probabilities and correct identification rates. We considered the following three specific cases.

Case A: p = 0.8 and c = 0.5

Case B: p = 0.3 and c = 0.1

Case C: p = 0.3 and c = 0.5

Cases A and B describe negative behavioral response with high and low initial capture probabilities,

respectively, and case C describes positive behavioral response with a low initial capture probability.

We expect that positive behavioral responses would be less problematic, and estimators would

have good properties, especially if the initial capture probability is high. Thus, we omit the

case with positive behavioral response and high initial capture probability from this simulation

study. For each case, population sizes N of 1000 and 200, and correct identification rates of

α = 0.7, 0.8, and 0.9 were considered. We considered unweighted least squares and minimum χ2
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estimators based on the quadratic distance functions of Fls and Fχ2 , respectively. However, we

only considered the conditional (on xall) approach here. We were also interested in the comparison

of estimates obtained under our NE1 model (Model NE1b) and the corresponding conventional

capture-recapture model (Model Mb). Thus, the same generated data sets were analyzed under

these two different models.

The performance of the estimators was assessed by examining the average estimates, standard

errors and root mean square errors of N̂ based on 100 simulated data sets, and if the estimation

process failed to converge, those estimates were excluded from the computation of the results. The

results for cases A to C are summarized in Tables 3.8 - 3.10. Note that ’convergence’ only means

that the estimation process successfully reached a local optimum, and it does not necessarily mean

that the estimates are reasonable values. Among data sets where the algorithm converged, the

estimates from two data sets for case C with N = 200 and α = 0.7 and one data set for case C

with N = 200 and α = 0.8 were extremely unrealistic. Thus, these estimates were also excluded

from the computation of the results presented in Table 3.10.

Analogous to the cases with time dependent capture probability considered in Chapter 2, the

simulation results indicated that N̂ was positively biased when data were analyzed under Model

Mb, and bias in N̂ increased as the misidentification rate increased. However, the bias in N̂ was

smaller for the negative behavioral response cases (relative bias ≈ 10− 110%) and much larger for

the positive behavioral response cases (relative bias ≈ 50− 460%) compared to those for the cases

with time specific capture probabilities (relative bias ≈ 25 − 155%). For case A, the performance

of NE1b estimator was good (relative bias ≤ 3% and relative standard error < 8%). For case B,

N̂ under Model NE1b was negatively biased except for cases with α = 0.7 and unweighted least

squares, and the estimates were more biased with minimum χ2 (relative bias > 10%) than with

unweighted least squares (relative bias < 8%). For the exceptional cases that had positive bias in

N̂ , there were no obvious outliers. However, there were a number of data sets with α̂ ≈ 1, which

can lead to an increase in the estimate of population size. This might have caused an increase in the

average of N̂ , thus positive bias for the case. For case C, estimators of N were all positively biased.

N̂ from unweighted least squares were more biased and less precise (relative bias ≈ 0.5− 21% and

relative standard error ≈ 7 − 70%) than those from minimum χ2 (relative bias < 3% and relative

standard error < 26%). Note that, for the case with N = 200 and α = 0.7, N̂ from unweighted

least squares seemed exceptionally biased and less precise. For this case, we observed five relatively
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Table 3.8: [Simulation Study: case A] Non-evolving natural tags 1 with behavioral response. Av-
erage estimates (with standard errors in parentheses) based on 100 simulated data sets. Estimates
under Model NE1b are from the conditional (on xall) approach.

Model NE1b

least squares minimum χ2
Model Mb

conditional L
N
α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

1000

0.7

0.8

0.5

1000

0.8

0.8

0.5

1000

0.9

0.8

0.5

200

0.7

0.8

0.5

200

0.8

0.8

0.5

200

0.9

0.8

0.5

998 (32)

0.701 (0.012)

0.804 (0.037)

0.502 (0.023)

0

32.06

996 (20)

0.799 (0.010)

0.804 (0.026)

0.504 (0.014)

0

20.39

1001 (17)

0.901 (0.008)

0.798 (0.022)

0.500 (0.012)

0

17.02

205 (15)

0.704 (0.030)

0.782 (0.080)

0.486 (0.050)

0

15.81

203 (11)

0.806 (0.027)

0.786 (0.069)

0.494 (0.038)

0

11.40

201 (7)

0.901 (0.017)

0.792 (0.049)

0.496 (0.026)

0

7.07

1005 (24)

0.704 (0.012)

0.797 (0.023)

0.501 (0.016)

0

24.51

1001 (15)

0.801 (0.009)

0.800 (0.018)

0.504 (0.012)

0

15.03

1002 (15)

0.901 (0.008)

0.798 (0.017)

0.500 (0.012)

0

15.13

205 (11)

0.714 (0.028)

0.788 (0.058)

0.503 (0.034)

0

12.08

206 (9)

0.815 (0.024)

0.779 (0.051)

0.497 (0.032)

0

10.81

203 (6)

0.905 (0.015)

0.778 (0.041)

0.497 (0.025)

0

6.70

2059 (52)

−−
0.339 (0.011)

0.216 (0.007)

0

1060.27

1649 (30)

−−
0.426 (0.011)

0.290 (0.008)

0

649.69

1297 (18)

−−
0.555 (0.013)

0.382 (0.009)

0

297.54

413 (22)

−−
0.342 (0.023)

0.214 (0.015)

0

214.13

329 (15)

−−
0.429 (0.029)

0.290 (0.018)

0

129.86

260 (8)

−−
0.552 (0.031)

0.379 (0.019)

0

60.53
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Table 3.9: [Simulation Study: case B] Non-evolving natural tags 1 with behavioral response. Av-
erage estimates (with standard errors in parentheses) based on 100 simulated data sets. Estimates
under Model NE1b are from the conditional (on xall) approach.

Model NE1b

least squares minimum χ2
Model Mb

conditional L
N
α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

1000

0.7

0.3

0.1

1000

0.8

0.3

0.1

1000

0.9

0.3

0.1

200

0.7

0.3

0.1

200

0.8

0.3

0.1

200

0.9

0.3

0.1

1031 (264)

0.765 (0.208)

0.318 (0.101)

0.109 (0.071)

0

265.81

957 (226)

0.789 (0.176)

0.340 (0.102)

0.125 (0.066)

0

230.05

928 (178)

0.849 (0.140)

0.343 (0.089)

0.130 (0.058)

0

192.01

213 (66)

0.804 (0.223)

0.329 (0.159)

0.114 (0.107)

0

67.26

190 (66)

0.771 (0.223)

0.372 (0.171)

0.150 (0.110)

0

66.75

191 (50)

0.863 (0.180)

0.352 (0.149)

0.137 (0.092)

0

50.80

868 (153)

0.638 (0.109)

0.364 (0.067)

0.147 (0.048)

0

202.07

858 (144)

0.713 (0.108)

0.367 (0.063)

0.148 (0.043)

0

202.23

889 (128)

0.820 (0.103)

0.350 (0.056)

0.140 (0.039)

0

169.42

167 (53)

0.677 (0.178)

0.412 (0.136)

0.189 (0.104)

0

62.43

166 (49)

0.727 (0.167)

0.401 (0.133)

0.191 (0.101)

0

59.64

170 (40)

0.805 (0.138)

0.383 (0.113)

0.177 (0.084)

0

50.00

1301 (71)

−−
0.229 (0.018)

0.047 (0.004)

0

309.26

1195 (52)

−−
0.250 (0.018)

0.063 (0.005)

0

201.81

1100 (44)

−−
0.271 (0.019)

0.081 (0.006)

0

109.25

259 (27)

−−
0.234 (0.038)

0.049 (0.011)

0

64.88

248 (27)

−−
0.238 (0.041)

0.061 (0.010)

0

55.07

225 (19)

−−
0.265 (0.036)

0.079 (0.013)

0

31.40
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Table 3.10: [Simulation Study: case C] Non-evolving natural tags 1 with behavioral response. Av-
erage estimates (with standard errors in parentheses) based on 100 simulated data sets. Estimates
under Model NE1b are from the conditional (on xall) approach.

Model NE1b

least squares minimum χ2
Model Mb

conditional L
N
α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

N

α

p

c

no. not conv.�
MSE(N̂)

1000

0.7

0.3

0.5

1000

0.8

0.3

0.5

1000

0.9

0.3

0.5

200

0.7

0.3

0.5

200

0.8

0.3

0.5

200

0.9

0.3

0.5

1005 (148)

0.698 (0.028)

0.306 (0.049)

0.506 (0.051)

0

148.08

1005 (93)

0.799 (0.018)

0.302 (0.035)

0.501 (0.030)

0

93.13

1021 (70)

0.902 (0.015)

0.294 (0.029)

0.496 (0.019)

0

73.08

241 (137)

0.710 (0.072)

0.299 (0.112)

0.502 (0.123)

0

143.00

213 (50)

0.807 (0.042)

0.295 (0.071)

0.503 (0.067)

0

51.66

203 (32)

0.900 (0.037)

0.310 (0.063)

0.495 (0.055)

0

32.14

998 (99)

0.703 (0.022)

0.308 (0.036)

0.505 (0.035)

0

99.02

1003 (70)

0.802 (0.016)

0.303 (0.028)

0.502 (0.025)

0

70.06

1015 (58)

0.904 (0.015)

0.298 (0.023)

0.497 (0.019)

0

59.90

204 (51)

0.721 (0.050)

0.326 (0.075)

0.516 (0.077)

0

51.15

205 (32)

0.819 (0.037)

0.309 (0.060)

0.509 (0.057)

0

32.38

200 (25)

0.908 (0.032)

0.322 (0.053)

0.498 (0.047)

0

25.00

4519 (979)

−−
0.071 (0.017)

0.219 (0.008)

0

3652.64

2415 (250)

−−
0.126 (0.016)

0.293 (0.010)

0

1436.91

1508 (80)

−−
0.198 (0.016)

0.384 (0.012)

0

514.26

1111 (899)

−−
0.076 (0.035)

0.219 (0.020)

4

1279.89

511 (123)

−−
0.124 (0.033)

0.299 (0.021)

0

334.43

302 (42)

−−
0.205 (0.040)

0.380 (0.023)

0

110.30
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large estimates where N̂ > 500 with unweighted least squares whereas there was no N̂ > 500 with

minimum χ2. These five estimates inflated the average N̂ and decreased precision.

In general, the performance of the NE1b estimators was good when the capture probabilities

were high, and the parameters describing the behavioral response and misidentification were rea-

sonably well estimated. When capture probabilities were low, the data did not contain sufficient

information for estimating behavioral response and misidentification rate resulting in poor esti-

mation performance. Also, the estimates under Model NE1b were better with positive behavioral

response than with negative behavioral response as expected.

3.4 Supplemental Data from Multiple Identification

3.4.1 Statistical Model Development and Estimation

Extra information on the misidentification rate may be used so that estimates may be improved

by augmenting the capture history data. This is similar to the idea of tag-return models when

a supplemental study is done to learn about the reporting rate. Different study designs can be

developed, but the typical augmented study has two components; a standard capture-recapture

study component augmented with an extra information component. In this section, we particularly

consider application of multiple identification to obtain extra information on the misidentification

rate, illustrate the concept with a simple study design in which multiple identification is performed

only at the last sampling occasion, and then develop a statistical model to analyze such data.

Consider a 3-sample genetic tag-based capture-recapture study. Suppose we perform a stan-

dard genetic tag-based capture-recapture study as described in Chapter 2 so that we can construct

3-sample capture-recapture data from identifications based on the DNA fingerprints. We assume

there is a risk of misidentification, and that the misidentification mechanism, data structure and

statistical model formulation that we described in Chapter 2 apply.

For simplicity, we perform multiple identification on the last sampling occasion only. Suppose

that 150 capture histories were observed at the last sampling occasion, and among them 100

capture histories were recaptures (i.e., have at least one capture event before the last sampling

occasion). In other words, 100 recapture histories were observed at the last sampling occasion,

when the standard capture-recapture study was performed. From these 100 recapture histories
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n∗ = 20 samples are selected for re-analysis. If there are no errors in the DNA fingerprints,

animals identified from the first and second analyses should match because they are from the same

source of DNA. However, if misidentification occurs for some reason, for example a genotyping

error, we observe inconsistency between the identifications.

The key point is that, for the n∗ samples, we perform two identifications on the same sources

of DNA. And, for identifications from the first and second DNA fingerprints to be the same, both

identifications must be correct. So, choose n∗ randomly from the samples which correspond to

histories with two or more captures (i.e., recaptures) because, under the assumptions of NE1,

the identifications of the capture histories that have two or more capture events must be correct,

and misidentification can be detected in the second analyses if the second DNA fingerprint does

not match the first. In a sense, we are creating a known population of n∗ animals, and multiple

identification was performed on the known population. Assuming that the laboratory procedures

that generate the first and second DNA fingerprints are independent, then the number of consistent

identifications or matches, which is denoted as a random variable X∗, is binomial

X∗ ∼ binomial (n∗, α) ,

and its expected value can be written as E [X∗] = n∗α.

Combining all data from this specific study design, the conditional (on xall) expected values

can be written as

E [X111] =
xall [P ′

1P
′
2P

′
3]

p∗

E [X110] =
xall [P ′

1P
′
2Q

′
3]

p∗

E [X101] =
xall [P ′

1Q
′
2P

′
3]

p∗

E [X100] =
xall [P ′

1Q
′
2Q

′
3 + p1 (1 − α)]
p∗

E [X011] =
xall [Q′

1P
′
2P

′
3]

p∗

E [X010] =
xall [Q′

1P
′
2Q

′
3 + p2 (1 − α)]
p∗

E [X001] =
xall [Q′

1Q
′
2P

′
3 + p3 (1 − α)]
p∗

E [X∗] = n∗α
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where xall is the total number of capture histories observed in the standard capture-recapture

study component, and

p∗ = 1 − Q′
1Q

′
2Q

′
3 + (p1 + p2 + p3) (1 − α) .

Note that the first seven expected values (i.e., E[Xγ ]) correspond to the standard capture-recapture

component and the last one (i.e., E[X∗]) corresponds to the multiple identification component.

Then, the estimates are obtained by minimizing the quadratic distance function

Fls =
∑
γ∗

(
xγ∗ − E

[
Xγ∗

] )2

or

Fχ2 =
∑
γ∗

(
xγ∗ − E

[
Xγ∗

] )2
E
[
Xγ∗

]
where xγ∗ represents the augmented data, consisting of the standard capture-recapture component

(xγ) and the multiple identification component (x∗). With this conditional approach, the parameter

N is removed from the estimation process and estimated as a derived parameter,

N̂ =
xall

p̂∗
.

The same principles apply to studies where K > 3. We considered the Model NE1t developed

in Chapter 2 as an example here, but other misidentification models (e.g., Model NE1b) can be

used for the standard capture-recapture component. Also, we considered a simple study design for

the multiple identification component. However, other study designs can be applied, and, if so,

the appropriate structure of the statistical model needs to be developed accordingly.

3.4.2 Simulation 1: Application of Multiple Identification to NE1t

In simulation 1, we considered the application of the multiple identification to Model NE1t.

We used the data generated for Simulation 1 in Chapter 2 for the standard capture-recapture

component of the study (xγ), and we have the same specific four cases here.

Case 1: N = 1000 and p = [0.7, 0.8, 0.7, 0.8, 0.7]

Case 2: N = 200 and p = [0.7, 0.8, 0.7, 0.8, 0.7]
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Case 3: N = 1000 and p = [0.3, 0.2, 0.3, 0.2, 0.3]

Case 4: N = 200 and p = [0.3, 0.2, 0.3, 0.2, 0.3]

To generate data for the multiple identification component of the study (x∗), we randomly chose n∗

histories from the recaptures at the last sampling occasion, and each of them was assigned either

correct identification with probability α or incorrect identification with probability (1 − α). Then

the number of capture histories that had the correct identification was counted. For each data

set, the values of n∗ = 20 and 40 were considered to examine whether estimates can be improved

by augmenting the capture history data with additional information on the misidentification rate,

and how much the degree of improvement differs depending on the sample size used for multiple

identification. We also considered estimators obtained assuming that the value of α is known from

external information, that means, with α fixed at the true value and not estimated during the

simulation.

We considered estimation based on the methods of unweighted least squares and minimum

χ2 that use the quadratic distance functions of Fls and Fχ2 , respectively. We considered only the

conditional (on xall) approach here. The performance of the estimators was assessed by examining

the average estimates, standard errors and root mean square errors of N̂ based on 100 simulated

data sets, and the model here is denoted as Model NE1t,α to indicate that we have extra in-

formation on the correct identification rate, α. The results for cases 1 to 4 are summarized in

Tables 3.11 - 3.14. Note that n∗ = 0 indicates that the study that did not include any multiple

identification, which is the case we examined in Simulation 1 in Chapter 2. Thus, the results for

n∗ = 0 are exactly the same as those presented in Tables 2.4 - 2.7. However, they are presented

again here for comparison purposes.

We here expected less biased and more precise N̂ when capture-recapture data were augmented

with extra information on misidentification rate. However, the results indicated that, for high

capture probability cases, the estimates based on the quadratic distance functions Fls and Fχ2 were

not improved by performing multiple identification. In fact, we observed a number of unexpected

results where N̂ was more biased or less precise, especially when the value of α was assumed to

be known. For low capture probability cases, precision of N̂ was always improved by performing

multiple identification, and the improvement was always greater when n∗ = 40 than with n∗ = 20.

The precision was further improved for known α cases. The bias in N̂ was also reduced in most
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Table 3.11: [Simulation 1: case 1] Application of multiple identification to NE1t. Average esti-
mates (with standard errors in parentheses) under the Model NE1t,α. Estimates are based on 100
simulated data sets, and n∗ indicates the sample size used for multiple identification.

n∗
least squares

0 20 40 known α

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

1000

0.7

0.7

0.8

0.7

0.8

0.7

1000

0.8

0.7

0.8

0.7

0.8

0.7

1000

0.9

0.7

0.8

0.7

0.8

0.7

1000 (21)

0.700 (0.008)

0.700 (0.026)

0.797 (0.027)

0.698 (0.027)

0.800 (0.026)

0.699 (0.025)

0

21.00

999 (13)

0.799 (0.008)

0.700 (0.020)

0.798 (0.021)

0.698 (0.021)

0.801 (0.020)

0.701 (0.021)

0

13.03

1000 (8)

0.899 (0.005)

0.701 (0.018)

0.803 (0.016)

0.700 (0.019)

0.799 (0.015)

0.701 (0.018)

0

8.00

1000 (21)

0.700 (0.008)

0.700 (0.026)

0.797 (0.027)

0.698 (0.027)

0.800 (0.026)

0.699 (0.025)

0

21.00

999 (13)

0.799 (0.008)

0.700 (0.020)

0.798 (0.021)

0.698 (0.021)

0.801 (0.020)

0.701 (0.021)

0

13.03

1000 (8)

0.899 (0.005)

0.701 (0.018)

0.803 (0.016)

0.700 (0.019)

0.799 (0.015)

0.701 (0.018)

0

8.00

1000 (21)

0.700 (0.008)

0.700 (0.026)

0.797 (0.027)

0.698 (0.027)

0.800 (0.026)

0.699 (0.025)

0

21.00

999 (13)

0.799 (0.008)

0.700 (0.020)

0.798 (0.021)

0.698 (0.021)

0.801 (0.020)

0.701 (0.021)

0

13.03

1000 (8)

0.899 (0.005)

0.701 (0.018)

0.803 (0.016)

0.700 (0.019)

0.799 (0.015)

0.701 (0.018)

0

8.00

1000 (22)

−−
0.699 (0.026)

0.796 (0.026)

0.698 (0.027)

0.799 (0.025)

0.699 (0.024)

0

20.00

1002 (19)

−−
0.699 (0.021)

0.797 (0.021)

0.697 (0.020)

0.800 (0.020)

0.700 (0.022)

0

19.10

1001 (16)

−−
0.700 (0.018)

0.802 (0.017)

0.700 (0.019)

0.798 (0.016)

0.701 (0.019)

0

16.03



Chapter 3. Extensions of Model NE1 99

Table 3.11 (continued.)

n∗
minimum χ2

0 20 40 known α

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

1000

0.7

0.7

0.8

0.7

0.8

0.7

1000

0.8

0.7

0.8

0.7

0.8

0.7

1000

0.9

0.7

0.8

0.7

0.8

0.7

1007 (21)

0.703 (0.008)

0.697 (0.022)

0.795 (0.022)

0.695 (0.024)

0.795 (0.023)

0.698 (0.019)

0

22.13

1004 (12)

0.801 (0.008)

0.697 (0.017)

0.798 (0.017)

0.696 (0.018)

0.796 (0.016)

0.700 (0.020)

0

12.64

1002 (7)

0.900 (0.005)

0.698 (0.016)

0.798 (0.015)

0.699 (0.016)

0.797 (0.014)

0.698 (0.017)

0

7.28

1007 (21)

0.703 (0.008)

0.697 (0.022)

0.795 (0.022)

0.695 (0.024)

0.795 (0.023)

0.698 (0.019)

0

22.13

1004 (12)

0.801 (0.008)

0.697 (0.017)

0.798 (0.017)

0.696 (0.018)

0.796 (0.016)

0.700 (0.020)

0

12.64

1002 (7)

0.900 (0.005)

0.698 (0.016)

0.798 (0.015)

0.699 (0.016)

0.797 (0.014)

0.698 (0.017)

0

7.28

1007 (21)

0.703 (0.008)

0.697 (0.022)

0.795 (0.022)

0.695 (0.024)

0.795 (0.023)

0.698 (0.019)

0

22.13

1004 (12)

0.801 (0.008)

0.697 (0.017)

0.798 (0.017)

0.696 (0.018)

0.796 (0.016)

0.700 (0.020)

0

12.64

1002 (7)

0.900 (0.005)

0.698 (0.016)

0.798 (0.015)

0.699 (0.016)

0.797 (0.014)

0.698 (0.017)

0

7.28

999 (20)

−−
0.700 (0.021)

0.799 (0.021)

0.699 (0.022)

0.799 (0.021)

0.702 (0.017)

0

20.02

1002 (17)

−−
0.698 (0.018)

0.799 (0.015)

0.697 (0.018)

0.797 (0.017)

0.700 (0.019)

0

17.11

1002 (15)

−−
0.698 (0.016)

0.798 (0.016)

0.699 (0.016)

0.797 (0.014)

0.698 (0.016)

0

15.13
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Table 3.12: [Simulation 1: case 2] Application of multiple identification to NE1t. Average esti-
mates (with standard errors in parentheses) under the Model NE1t,α. Estimates are based on 100
simulated data sets, and n∗ indicates the sample size used for multiple identification.

n∗
least squares

0 20 40 known α

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

200

0.7

0.7

0.8

0.7

0.8

0.7

200

0.8

0.7

0.8

0.7

0.8

0.7

200

0.9

0.7

0.8

0.7

0.8

0.7

198 (10)

0.695 (0.018)

0.707 (0.059)

0.806 (0.068)

0.691 (0.053)

0.808 (0.059)

0.703 (0.061)

0

10.19

199 (6)

0.799 (0.018)

0.702 (0.050)

0.794 (0.041)

0.702 (0.051)

0.805 (0.049)

0.706 (0.045)

0

6.08

199 (4)

0.900 (0.013)

0.703 (0.036)

0.806 (0.038)

0.705 (0.041)

0.798 (0.035)

0.690 (0.038)

0

4.12

198 (10)

0.695 (0.018)

0.707 (0.059)

0.806 (0.068)

0.691 (0.053)

0.808 (0.059)

0.703 (0.061)

0

10.19

199 (6)

0.799 (0.018)

0.702 (0.050)

0.795 (0.041)

0.703 (0.051)

0.805 (0.049)

0.706 (0.045)

0

6.08

199 (4)

0.900 (0.012)

0.703 (0.036)

0.806 (0.038)

0.705 (0.041)

0.798 (0.035)

0.690 (0.038)

0

4.12

198 (10)

0.695 (0.017)

0.707 (0.058)

0.807 (0.068)

0.691 (0.053)

0.808 (0.058)

0.703 (0.060)

0

10.19

199 (6)

0.799 (0.017)

0.702 (0.050)

0.794 (0.041)

0.702 (0.051)

0.805 (0.048)

0.706 (0.045)

0

6.08

199 (4)

0.900 (0.012)

0.703 (0.036)

0.806 (0.038)

0.705 (0.041)

0.798 (0.035)

0.690 (0.038)

0

4.12

201 (10)

−−
0.699 (0.058)

0.796 (0.066)

0.682 (0.053)

0.797 (0.052)

0.695 (0.059)

0

10.04

199 (9)

−−
0.700 (0.048)

0.793 (0.042)

0.701 (0.050)

0.803 (0.049)

0.705 (0.047)

0

9.05

199 (7)

−−
0.703 (0.039)

0.805 (0.040)

0.705 (0.045)

0.797 (0.038)

0.690 (0.040)

0

7.07
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Table 3.12 (continued.)

n∗
minimum χ2

0 20 40 known α

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

200

0.7

0.7

0.8

0.7

0.8

0.7

200

0.8

0.7

0.8

0.7

0.8

0.7

200

0.9

0.7

0.8

0.7

0.8

0.7

205 (9)

0.710 (0.018)

0.700 (0.050)

0.790 (0.049)

0.688 (0.047)

0.786 (0.051)

0.690 (0.046)

0

10.29

204 (7)

0.808 (0.017)

0.691 (0.037)

0.782 (0.042)

0.691 (0.043)

0.784 (0.042)

0.696 (0.041)

0

8.06

202 (3)

0.903 (0.012)

0.693 (0.032)

0.787 (0.034)

0.693 (0.031)

0.785 (0.033)

0.682 (0.034)

0

3.60

205 (9)

0.710 (0.017)

0.700 (0.050)

0.790 (0.050)

0.688 (0.047)

0.786 (0.051)

0.690 (0.046)

0

10.29

204 (7)

0.808 (0.017)

0.691 (0.037)

0.783 (0.042)

0.691 (0.043)

0.784 (0.042)

0.696 (0.041)

0

8.06

202 (3)

0.903 (0.012)

0.693 (0.032)

0.787 (0.034)

0.693 (0.031)

0.785 (0.033)

0.682 (0.034)

0

3.60

205 (9)

0.710 (0.017)

0.700 (0.049)

0.791 (0.049)

0.688 (0.047)

0.786 (0.050)

0.690 (0.046)

0

10.29

204 (7)

0.808 (0.017)

0.691 (0.037)

0.783 (0.043)

0.691 (0.043)

0.784 (0.042)

0.696 (0.041)

0

8.06

202 (3)

0.903 (0.012)

0.693 (0.032)

0.787 (0.034)

0.693 (0.031)

0.785 (0.033)

0.682 (0.034)

0

3.60

200 (9)

−−
0.710 (0.047)

0.802 (0.048)

0.698 (0.045)

0.797 (0.044)

0.701 (0.045)

0

9.00

199 (8)

−−
0.698 (0.037)

0.791 (0.041)

0.697 (0.039)

0.792 (0.039)

0.704 (0.042)

0

8.06

200 (7)

−−
0.695 (0.034)

0.789 (0.034)

0.695 (0.034)

0.787 (0.035)

0.684 (0.035)

0

7.00
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Table 3.13: [Simulation 1: case 3] Application of multiple identification to NE1t. Average esti-
mates (with standard errors in parentheses) under the Model NE1t,α. Estimates are based on 100
simulated data sets, and n∗ indicates the sample size used for multiple identification.

n∗
least squares

0 20 40 known α

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

1000

0.7

0.3

0.2

0.3

0.2

0.3

1000

0.8

0.3

0.2

0.3

0.2

0.3

1000

0.9

0.3

0.2

0.3

0.2

0.3

1034 (225)

0.704 (0.069)

0.303 (0.065)

0.203 (0.048)

0.303 (0.069)

0.205 (0.048)

0.303 (0.067)

0

227.55

1048 (209)

0.813 (0.073)

0.297 (0.062)

0.199 (0.042)

0.298 (0.061)

0.196 (0.041)

0.297 (0.062)

0

214.44

1014 (132)

0.904 (0.048)

0.302 (0.041)

0.197 (0.032)

0.301 (0.043)

0.199 (0.029)

0.300 (0.041)

0

132.74

1014 (176)

0.699 (0.056)

0.304 (0.055)

0.204 (0.041)

0.304 (0.058)

0.206 (0.042)

0.305 (0.057)

0

176.55

1033 (180)

0.808 (0.064)

0.299 (0.056)

0.200 (0.038)

0.300 (0.056)

0.198 (0.037)

0.299 (0.056)

0

183.00

1013 (125)

0.904 (0.045)

0.301 (0.040)

0.197 (0.031)

0.301 (0.041)

0.198 (0.028)

0.300 (0.040)

0

125.67

1019 (162)

0.700 (0.048)

0.301 (0.050)

0.202 (0.038)

0.301 (0.052)

0.204 (0.039)

0.302 (0.051)

0

163.11

1023 (149)

0.806 (0.052)

0.299 (0.047)

0.200 (0.032)

0.300 (0.048)

0.198 (0.033)

0.299 (0.047)

0

150.76

1009 (110)

0.903 (0.040)

0.302 (0.036)

0.197 (0.028)

0.301 (0.035)

0.199 (0.027)

0.301 (0.036)

0

110.36

1014 (64)

−−
0.296 (0.026)

0.198 (0.022)

0.296 (0.027)

0.200 (0.024)

0.296 (0.027)

0

65.51

1003 (63)

−−
0.300 (0.026)

0.201 (0.019)

0.301 (0.027)

0.198 (0.020)

0.300 (0.027)

0

63.07

999 (35)

−−
0.302 (0.018)

0.197 (0.018)

0.300 (0.018)

0.199 (0.017)

0.301 (0.021)

0

35.01
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Table 3.13 (continued.)

n∗
minimum χ2

0 20 40 known α

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

1000

0.7

0.3

0.2

0.3

0.2

0.3

1000

0.8

0.3

0.2

0.3

0.2

0.3

1000

0.9

0.3

0.2

0.3

0.2

0.3

916 (169)

0.680 (0.056)

0.340 (0.060)

0.230 (0.045)

0.340 (0.062)

0.232 (0.045)

0.340 (0.061)

0

188.72

946 (165)

0.788 (0.062)

0.330 (0.061)

0.223 (0.041)

0.330 (0.060)

0.221 (0.040)

0.329 (0.058)

0

173.61

956 (108)

0.889 (0.041)

0.321 (0.037)

0.214 (0.030)

0.320 (0.039)

0.214 (0.026)

0.319 (0.037)

0

116.61

917 (155)

0.681 (0.051)

0.338 (0.055)

0.228 (0.042)

0.338 (0.057)

0.231 (0.042)

0.338 (0.057)

0

175.82

945 (155)

0.788 (0.058)

0.329 (0.058)

0.223 (0.040)

0.329 (0.057)

0.221 (0.039)

0.328 (0.055)

0

164.46

956 (104)

0.889 (0.039)

0.321 (0.036)

0.214 (0.029)

0.320 (0.038)

0.214 (0.026)

0.319 (0.036)

0

112.92

920 (145)

0.682 (0.048)

0.336 (0.053)

0.227 (0.040)

0.336 (0.054)

0.229 (0.040)

0.337 (0.055)

0

165.60

946 (151)

0.789 (0.056)

0.328 (0.056)

0.222 (0.039)

0.328 (0.056)

0.220 (0.037)

0.328 (0.053)

0

160.36

957 (100)

0.890 (0.038)

0.320 (0.034)

0.213 (0.028)

0.320 (0.036)

0.214 (0.025)

0.318 (0.035)

0

108.85

965 (50)

−−
0.314 (0.021)

0.212 (0.019)

0.314 (0.023)

0.214 (0.020)

0.315 (0.024)

0

61.03

969 (49)

−−
0.314 (0.022)

0.212 (0.017)

0.314 (0.022)

0.210 (0.016)

0.313 (0.022)

0

57.98

979 (31)

−−
0.310 (0.016)

0.206 (0.017)

0.309 (0.016)

0.207 (0.014)

0.308 (0.017)

0

37.44
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Table 3.14: [Simulation 1: case 4] Application of multiple identification to NE1t. Average esti-
mates (with standard errors in parentheses) under the Model NE1t,α. Estimates are based on 100
simulated data sets, and n∗ indicates the sample size used for multiple identification.

n∗
least squares

0 20 40 known α

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

200

0.7

0.3

0.2

0.3

0.2

0.3

200

0.8

0.3

0.2

0.3

0.2

0.3

200

0.9

0.3

0.2

0.3

0.2

0.3

258 (120)

0.761 (0.159)

0.297 (0.159)

0.195 (0.107)

0.294 (0.159)

0.196 (0.108)

0.296 (0.160)

0

133.28

221 (75)

0.819 (0.122)

0.307 (0.120)

0.208 (0.085)

0.304 (0.119)

0.198 (0.076)

0.302 (0.118)

0

77.88

209 (44)

0.906 (0.087)

0.302 (0.072)

0.202 (0.062)

0.302 (0.077)

0.202 (0.058)

0.295 (0.082)

0

44.91

214 (64)

0.709 (0.079)

0.309 (0.100)

0.203 (0.069)

0.303 (0.094)

0.204 (0.075)

0.311 (0.115)

0

65.51

211 (54)

0.805 (0.073)

0.305 (0.089)

0.206 (0.067)

0.301 (0.086)

0.198 (0.062)

0.297 (0.078)

0

55.10

207 (32)

0.903 (0.060)

0.300 (0.062)

0.198 (0.045)

0.298 (0.063)

0.199 (0.047)

0.289 (0.060)

0

32.75

208 (52)

0.703 (0.064)

0.312 (0.096)

0.205 (0.070)

0.305 (0.085)

0.205 (0.068)

0.313 (0.105)

0

52.61

208 (40)

0.803 (0.053)

0.301 (0.074)

0.203 (0.053)

0.296 (0.068)

0.195 (0.053)

0.293 (0.063)

0

40.79

208 (30)

0.905 (0.047)

0.297 (0.059)

0.196 (0.043)

0.296 (0.063)

0.197 (0.045)

0.287 (0.056)

0

31.04

204 (27)

−−
0.302 (0.052)

0.199 (0.047)

0.296 (0.047)

0.198 (0.042)

0.302 (0.062)

0

27.29

205 (21)

−−
0.297 (0.053)

0.201 (0.040)

0.293 (0.048)

0.193 (0.039)

0.290 (0.041)

0

21.58

205 (21)

−−
0.300 (0.058)

0.197 (0.042)

0.297 (0.055)

0.198 (0.042)

0.289 (0.052)

0

21.58



Chapter 3. Extensions of Model NE1 105

Table 3.14 (continued.)

n∗
minimum χ2

0 20 40 known α

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

non-conv.

�
MSE(N̂)

200

0.7

0.3

0.2

0.3

0.2

0.3

200

0.8

0.3

0.2

0.3

0.2

0.3

200

0.9

0.3

0.2

0.3

0.2

0.3

185 (94)

0.700 (0.132)

0.402 (0.154)

0.277 (0.108)

0.402 (0.153)

0.281 (0.116)

0.402 (0.147)

0

95.18

170 (48)

0.770 (0.089)

0.386 (0.102)

0.272 (0.078)

0.390 (0.105)

0.266 (0.074)

0.390 (0.109)

0

56.60

181 (37)

0.877 (0.081)

0.356 (0.075)

0.250 (0.066)

0.358 (0.082)

0.248 (0.064)

0.352 (0.084)

0

41.59

171 (56)

0.687 (0.086)

0.397 (0.124)

0.273 (0.087)

0.397 (0.122)

0.277 (0.097)

0.399 (0.118)

0

63.06

171 (41)

0.773 (0.074)

0.380 (0.092)

0.267 (0.072)

0.383 (0.093)

0.261 (0.068)

0.383 (0.097)

0

50.21

181 (34)

0.879 (0.073)

0.353 (0.070)

0.248 (0.061)

0.355 (0.076)

0.246 (0.059)

0.349 (0.078)

0

38.94

170 (48)

0.688 (0.074)

0.393 (0.114)

0.270 (0.079)

0.392 (0.111)

0.273 (0.088)

0.395 (0.109)

0

56.60

171 (36)

0.775 (0.065)

0.375 (0.084)

0.264 (0.066)

0.378 (0.086)

0.258 (0.064)

0.378 (0.089)

0

46.22

183 (32)

0.883 (0.068)

0.349 (0.065)

0.245 (0.058)

0.351 (0.072)

0.243 (0.056)

0.345 (0.074)

0

36.23

174 (20)

−−
0.363 (0.053)

0.251 (0.045)

0.363 (0.053)

0.253 (0.046)

0.366 (0.056)

0

32.80

182 (15)

−−
0.343 (0.044)

0.241 (0.036)

0.345 (0.045)

0.236 (0.037)

0.343 (0.040)

0

23.43

190 (15)

−−
0.330 (0.045)

0.230 (0.033)

0.331 (0.047)

0.228 (0.034)

0.325 (0.045)

0

18.02
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cases. We explain the unexpected results by noting that the estimation methods based on Fls and

Fχ2 do not use optimal weights in C, and do not incorporate the additional information on α in

the most efficient way.

3.4.3 Simulation 2: Application of Multiple Identification to NE1b

In simulation 2, we considered the application of multiple identification to augment the capture

history data, assuming the behavioral response model (Model NE1b) holds. We used the data

generated for the simulation study in Section 3.3 for the standard capture-recapture component of

the study (xγ). Thus, we have the same three specific cases here.

Case A: p = 0.8 and c = 0.5

Case B: p = 0.3 and c = 0.1

Case C: p = 0.3 and c = 0.5

The same procedure described in Simulation 1 was performed to generate data for the multiple

identification component of the study (x∗). We randomly chose n∗ histories from the recaptures

at the last sampling occasion, and each of them was assigned either correct identification with

probability α or incorrect identification with probability (1 − α). Then the number of recaptures

that had correct identification was counted. For each data set, the values of n∗ = 20 and 40 and

known α were considered.

We considered estimation based on the methods of unweighted least squares and minimum

χ2 that use the quadratic distance functions of Fls and Fχ2 , respectively. However, we considered

only the conditional (on xall) approach here. The performance of the estimators was again assessed

by examining the average estimates, standard errors and root mean square errors of N̂ based on

100 simulated data sets, and the model here is denoted as Model NE1b,α. When the estimation

process failed to converge, those estimates were excluded from the computation of the results. The

results for cases A to C are summarized in Tables 3.15 - 3.17. Note that n∗ = 0 indicates that the

study that did not include additional information from multiple identification. Thus, the results

for n∗ = 0 are exactly the same as those presented in Tables 3.8 - 3.10, but they are presented here

for comparison purposes.
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Table 3.15: [Simulation 2: case A] Application of multiple identification to NE1b. Average esti-
mates (with standard errors in parentheses) under the Model NE1b,α. Estimates are based on 100
simulated data sets, and n∗ indicates the sample size used for multiple identification.

n∗
least squares

0 20 40 known α

N
α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

1000

0.7

0.8

0.5

1000

0.8

0.8

0.5

1000

0.9

0.8

0.5

200

0.7

0.8

0.5

200

0.8

0.8

0.5

200

0.9

0.8

0.5

998 (32)

0.701 (0.012)

0.804 (0.037)

0.502 (0.023)

0

32.06

996 (20)

0.799 (0.010)

0.804 (0.026)

0.504 (0.014)

0

20.39

1001 (17)

0.901 (0.008)

0.798 (0.022)

0.500 (0.012)

0

17.02

205 (15)

0.704 (0.030)

0.782 (0.080)

0.486 (0.050)

0

15.81

203 (11)

0.806 (0.027)

0.786 (0.069)

0.494 (0.038)

0

11.40

201 (7)

0.901 (0.017)

0.792 (0.049)

0.496 (0.026)

0

7.07

998 (32)

0.700 (0.012)

0.804 (0.037)

0.502 (0.023)

0

32.06

996 (20)

0.799 (0.010)

0.804 (0.026)

0.504 (0.014)

0

20.39

1001 (17)

0.901 (0.008)

0.798 (0.022)

0.500 (0.012)

0

17.02

205 (15)

0.703 (0.029)

0.782 (0.079)

0.487 (0.049)

0

15.81

203 (11)

0.806 (0.026)

0.786 (0.068)

0.494 (0.037)

0

11.40

201 (7)

0.901 (0.017)

0.792 (0.049)

0.496 (0.026)

0

7.07

998 (32)

0.700 (0.012)

0.804 (0.036)

0.502 (0.023)

0

32.06

996 (19)

0.799 (0.010)

0.804 (0.026)

0.504 (0.014)

0

19.41

1001 (17)

0.901 (0.008)

0.798 (0.022)

0.500 (0.012)

0

17.02

205 (14)

0.703 (0.027)

0.783 (0.078)

0.487 (0.048)

0

14.86

203 (10)

0.806 (0.026)

0.786 (0.067)

0.494 (0.037)

0

10.44

201 (6)

0.901 (0.017)

0.792 (0.048)

0.496 (0.025)

0

6.08

997 (33)

−−
0.804 (0.033)

0.502 (0.022)

0

33.13

1000 (21)

−−
0.801 (0.023)

0.502 (0.016)

0

21.00

998 (15)

−−
0.799 (0.019)

0.501 (0.012)

0

15.13

203 (14)

−−
0.784 (0.072)

0.489 (0.047)

0

14.31

200 (10)

−−
0.794 (0.052)

0.500 (0.032)

0

10.00

201 (7)

−−
0.792 (0.044)

0.496 (0.026)

0

7.07
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Table 3.15 (continued.)

n∗
minimum χ2

0 20 40 known α

N
α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

1000

0.7

0.8

0.5

1000

0.8

0.8

0.5

1000

0.9

0.8

0.5

200

0.7

0.8

0.5

200

0.8

0.8

0.5

200

0.9

0.8

0.5

1005 (24)

0.704 (0.012)

0.797 (0.023)

0.501 (0.016)

0

24.51

1001 (15)

0.801 (0.009)

0.800 (0.018)

0.504 (0.012)

0

15.03

1002 (15)

0.901 (0.008)

0.798 (0.017)

0.500 (0.012)

0

15.13

205 (11)

0.714 (0.028)

0.788 (0.058)

0.503 (0.034)

0

12.08

206 (9)

0.815 (0.024)

0.779 (0.051)

0.497 (0.032)

0

10.81

203 (6)

0.905 (0.015)

0.778 (0.041)

0.497 (0.025)

0

6.70

1005 (24)

0.704 (0.012)

0.797 (0.023)

0.501 (0.016)

0

24.51

1001 (15)

0.801 (0.009)

0.800 (0.018)

0.504 (0.012)

0

15.03

1001 (14)

0.901 (0.008)

0.798 (0.017)

0.500 (0.012)

0

14.03

205 (11)

0.714 (0.027)

0.789 (0.057)

0.503 (0.033)

0

12.08

206 (9)

0.814 (0.024)

0.779 (0.051)

0.497 (0.031)

0

10.81

203 (6)

0.905 (0.015)

0.778 (0.041)

0.497 (0.025)

0

6.70

1005 (24)

0.704 (0.012)

0.797 (0.023)

0.501 (0.016)

0

24.51

1001 (15)

0.801 (0.009)

0.800 (0.018)

0.504 (0.012)

0

15.03

1002 (14)

0.901 (0.008)

0.798 (0.017)

0.500 (0.012)

0

14.14

204 (11)

0.714 (0.027)

0.789 (0.057)

0.504 (0.033)

0

11.70

206 (9)

0.814 (0.024)

0.779 (0.051)

0.497 (0.031)

0

10.81

203 (6)

0.905 (0.015)

0.779 (0.041)

0.497 (0.025)

0

6.70

995 (25)

−−
0.802 (0.020)

0.505 (0.014)

0

25.49

998 (18)

−−
0.801 (0.018)

0.504 (0.011)

0

18.11

998 (14)

−−
0.799 (0.015)

0.501 (0.011)

0

14.14

198 (10)

−−
0.805 (0.049)

0.516 (0.028)

0

10.19

199 (8)

−−
0.796 (0.042)

0.509 (0.027)

0

8.06

200 (6)

−−
0.784 (0.038)

0.501 (0.023)

0

6.00
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Table 3.16: [Simulation 2: case B] Application of multiple identification to NE1b. Average esti-
mates (with standard errors in parentheses) under the Model NE1b,α. Estimates are based on 100
simulated data sets, and n∗ indicates the sample size used for multiple identification.

n∗
least squares

0 20 40 known α

N
α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

1000

0.7

0.3

0.1

1000

0.8

0.3

0.1

1000

0.9

0.3

0.1

200

0.7

0.3

0.1

200

0.8

0.3

0.1

200

0.9

0.3

0.1

1031 (264)

0.765 (0.208)

0.318 (0.101)

0.109 (0.071)

0

265.81

957 (226)

0.789 (0.176)

0.340 (0.102)

0.125 (0.066)

0

230.05

928 (178)

0.849 (0.140)

0.343 (0.089)

0.130 (0.058)

0

192.01

213 (66)

0.804 (0.223)

0.329 (0.159)

0.114 (0.107)

0

67.26

190 (66)

0.771 (0.223)

0.372 (0.171)

0.150 (0.110)

0

66.75

191 (50)

0.863 (0.180)

0.352 (0.149)

0.137 (0.092)

0

50.80

1006 (234)

0.734 (0.176)

0.322 (0.094)

0.112 (0.067)

1

234.07

950 (210)

0.779 (0.160)

0.340 (0.098)

0.125 (0.062)

0

215.87

934 (171)

0.853 (0.132)

0.340 (0.086)

0.127 (0.056)

0

183.29

199 (42)

0.703 (0.112)

0.327 (0.121)

0.114 (0.072)

0

42.01

195 (42)

0.769 (0.120)

0.334 (0.127)

0.124 (0.076)

0

42.29

198 (32)

0.876 (0.105)

0.319 (0.109)

0.115 (0.056)

0

32.06

982 (185)

0.701 (0.122)

0.323 (0.082)

0.114 (0.057)

2

185.87

949 (174)

0.771 (0.126)

0.335 (0.087)

0.121 (0.053)

0

181.32

952 (153)

0.866 (0.117)

0.330 (0.078)

0.121 (0.050)

0

160.35

200 (31)

0.700 (0.071)

0.312 (0.078)

0.105 (0.047)

0

31.00

203 (29)

0.794 (0.067)

0.302 (0.077)

0.104 (0.039)

0

29.15

204 (18)

0.899 (0.051)

0.295 (0.044)

0.101 (0.022)

0

18.43

1003 (48)

−−
0.302 (0.023)

0.099 (0.010)

0

48.09

998 (41)

−−
0.302 (0.023)

0.100 (0.008)

0

41.04

1001 (39)

−−
0.301 (0.021)

0.101 (0.008)

0

39.01

201 (22)

−−
0.304 (0.050)

0.100 (0.026)

0

22.02

206 (21)

−−
0.292 (0.050)

0.098 (0.018)

0

21.84

205 (16)

−−
0.293 (0.042)

0.099 (0.018)

0

16.76



Chapter 3. Extensions of Model NE1 110

Table 3.16 (continued.)

n∗
minimum χ2

0 20 40 known α

N
α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

1000

0.7

0.3

0.1

1000

0.8

0.3

0.1

1000

0.9

0.3

0.1

200

0.7

0.3

0.1

200

0.8

0.3

0.1

200

0.9

0.3

0.1

868 (153)

0.638 (0.109)

0.364 (0.067)

0.147 (0.048)

0

202.07

858 (144)

0.713 (0.108)

0.367 (0.063)

0.148 (0.043)

0

202.23

889 (128)

0.820 (0.103)

0.350 (0.056)

0.140 (0.039)

0

169.42

167 (53)

0.677 (0.178)

0.412 (0.136)

0.189 (0.104)

0

62.43

166 (49)

0.727 (0.167)

0.401 (0.133)

0.191 (0.101)

0

59.64

170 (40)

0.805 (0.138)

0.383 (0.113)

0.177 (0.084)

0

50.00

885 (125)

0.646 (0.082)

0.353 (0.056)

0.139 (0.040)

0

169.85

877 (116)

0.725 (0.085)

0.355 (0.052)

0.140 (0.034)

0

169.07

905 (113)

0.832 (0.090)

0.342 (0.050)

0.135 (0.034)

0

147.62

169 (37)

0.668 (0.096)

0.388 (0.103)

0.172 (0.075)

0

48.27

175 (33)

0.748 (0.101)

0.361 (0.091)

0.163 (0.068)

0

41.40

179 (30)

0.835 (0.095)

0.354 (0.085)

0.157 (0.064)

0

36.61

901 (113)

0.655 (0.070)

0.345 (0.051)

0.134 (0.034)

0

150.23

896 (104)

0.738 (0.071)

0.345 (0.046)

0.134 (0.030)

0

147.07

918 (99)

0.842 (0.078)

0.335 (0.043)

0.130 (0.029)

0

128.54

172 (31)

0.675 (0.072)

0.375 (0.087)

0.163 (0.063)

0

41.77

180 (26)

0.762 (0.069)

0.344 (0.070)

0.151 (0.051)

0

32.80

184 (26)

0.856 (0.080)

0.340 (0.072)

0.147 (0.055)

0

30.52

969 (45)

−−
0.315 (0.023)

0.113 (0.011)

0

54.64

976 (38)

−−
0.311 (0.021)

0.111 (0.009)

0

44.94

989 (35)

−−
0.306 (0.019)

0.110 (0.009)

0

36.68

180 (18)

−−
0.349 (0.052)

0.144 (0.034)

0

26.90

192 (17)

−−
0.316 (0.048)

0.132 (0.025)

0

18.78

197 (14)

−−
0.311 (0.038)

0.127 (0.023)

0

14.31



Chapter 3. Extensions of Model NE1 111

Table 3.17: [Simulation 2: case C] Application of multiple identification to NE1b. Average esti-
mates (with standard errors in parentheses) under the Model NE1b,α. Estimates are based on 100
simulated data sets, and n∗ indicates the sample size used for multiple identification.

n∗
least squares

0 20 40 known α

N
α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

1000

0.7

0.3

0.5

1000

0.8

0.3

0.5

1000

0.9

0.3

0.5

200

0.7

0.8

0.5

200

0.8

0.3

0.5

200

0.9

0.3

0.5

1005 (148)

0.698 (0.028)

0.306 (0.049)

0.506 (0.051)

0

148.08

1005 (93)

0.799 (0.018)

0.302 (0.035)

0.501 (0.030)

0

93.13

1021 (70)

0.902 (0.015)

0.294 (0.029)

0.496 (0.019)

0

73.08

241 (137)

0.710 (0.072)

0.299 (0.112)

0.502 (0.123)

0

143.00

213 (50)

0.807 (0.042)

0.295 (0.071)

0.503 (0.067)

0

51.66

203 (32)

0.900 (0.037)

0.310 (0.063)

0.495 (0.055)

0

32.14

1004 (146)

0.698 (0.027)

0.306 (0.048)

0.507 (0.051)

0

146.05

1005 (92)

0.799 (0.018)

0.302 (0.035)

0.501 (0.030)

0

92.13

1021 (69)

0.902 (0.015)

0.294 (0.029)

0.496 (0.019)

0

72.12

220 (80)

0.702 (0.056)

0.304 (0.099)

0.508 (0.105)

0

82.46

210 (45)

0.805 (0.037)

0.297 (0.067)

0.506 (0.061)

0

46.09

202 (30)

0.899 (0.034)

0.311 (0.061)

0.497 (0.052)

0

30.06

1004 (145)

0.698 (0.027)

0.306 (0.048)

0.507 (0.050)

0

145.05

1005 (92)

0.799 (0.018)

0.302 (0.035)

0.501 (0.030)

0

92.13

1021 (69)

0.902 (0.015)

0.294 (0.029)

0.496 (0.019)

0

72.12

220 (83)

0.702 (0.047)

0.302 (0.094)

0.504 (0.093)

0

85.37

208 (40)

0.804 (0.035)

0.297 (0.063)

0.506 (0.060)

0

40.79

203 (31)

0.900 (0.032)

0.309 (0.060)

0.495 (0.051)

0

31.14

1007 (67)

−−
0.301 (0.029)

0.499 (0.026)

0

67.36

1009 (55)

−−
0.299 (0.026)

0.497 (0.020)

0

55.73

1009 (45)

−−
0.297 (0.023)

0.499 (0.018)

0

45.89

211 (42)

−−
0.297 (0.072)

0.496 (0.062)

0

43.41

204 (27)

−−
0.299 (0.056)

0.507 (0.041)

0

27.29

202 (23)

−−
0.307 (0.055)

0.491 (0.036)

0

23.08
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Table 3.17 (continued.)

n∗
minimum χ2

0 20 40 known α

N
α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

N

α

p

c

non-conv.�
MSE(N̂)

1000

0.7

0.3

0.5

1000

0.8

0.3

0.5

1000

0.9

0.3

0.5

200

0.7

0.3

0.5

200

0.8

0.3

0.5

200

0.9

0.3

0.5

998 (99)

0.703 (0.022)

0.308 (0.036)

0.505 (0.035)

0

99.02

1003 (70)

0.802 (0.016)

0.303 (0.028)

0.502 (0.025)

0

70.06

1015 (58)

0.904 (0.015)

0.298 (0.023)

0.497 (0.019)

0

59.90

204 (51)

0.721 (0.050)

0.326 (0.075)

0.516 (0.077)

0

51.15

205 (32)

0.819 (0.037)

0.309 (0.060)

0.509 (0.057)

0

32.38

200 (25)

0.908 (0.032)

0.322 (0.053)

0.498 (0.047)

0

25.00

998 (98)

0.703 (0.022)

0.308 (0.036)

0.505 (0.035)

0

98.02

1003 (71)

0.802 (0.016)

0.303 (0.028)

0.502 (0.025)

0

71.06

1014 (58)

0.904 (0.015)

0.298 (0.023)

0.497 (0.019)

0

59.66

203 (47)

0.720 (0.047)

0.328 (0.073)

0.517 (0.073)

0

47.09

205 (30)

0.818 (0.035)

0.310 (0.058)

0.510 (0.055)

0

30.41

200 (24)

0.908 (0.031)

0.322 (0.053)

0.498 (0.046)

0

24.00

997 (97)

0.703 (0.021)

0.308 (0.035)

0.505 (0.034)

0

97.04

1003 (70)

0.802 (0.016)

0.303 (0.027)

0.502 (0.025)

0

70.06

1015 (58)

0.904 (0.015)

0.298 (0.023)

0.497 (0.019)

0

59.90

201 (43)

0.718 (0.044)

0.328 (0.071)

0.518 (0.070)

0

43.01

204 (30)

0.817 (0.035)

0.310 (0.058)

0.511 (0.055)

0

30.26

200 (24)

0.908 (0.031)

0.322 (0.052)

0.498 (0.046)

0

24.00

981 (51)

−−
0.311 (0.025)

0.508 (0.019)

0

54.42

994 (48)

−−
0.305 (0.022)

0.504 (0.016)

0

48.37

1000 (36)

−−
0.301 (0.018)

0.501 (0.014)

0

36.00

185 (20)

−−
0.346 (0.055)

0.537 (0.042)

0

25.00

191 (19)

−−
0.327 (0.048)

0.527 (0.033)

0

21.02

194 (16)

−−
0.328 (0.044)

0.504 (0.030)

0

17.08
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For case A, it is clear from the simulation results that the estimates of N were not improved by

performing the multiple identification when population size was large. When the population size

was small, no improvement was noted in most cases. However, for some cases, a slight improvement

in precision, bias or both was evident when multiple identification was performed. For case B, the

precision in N̂ was improved by performing the multiple identification, and the improvement was

greater for the cases with n∗ = 40 than with n∗ = 20. Also, in some cases, a decrease in bias

in N̂ was evident. For case C, there were no obvious improvement in N̂ by performing multiple

identification when population size was large. When population size was small, we noted greater

improvement in N̂ , especially for the cases with high misidentification rate, compared to the cases

with a large population size.

3.5 Discussion

In Chapter 1, we discussed the difficulty of applying likelihood theory to the full data set when

misidentification is possible. The conditional likelihood approach demonstrated in this chapter is a

compromise in which we can develop a statistical model and estimators based on likelihood theory.

However, only part of data can be used. Given that the probability of recapture is high, a relatively

small fraction of real histories is omitted by conditioning on two or more captures, and there is

little loss of information. However, when capture probabilities (and hence the chance of recapture)

are low, a larger fraction of the data is omitted in the conditional likelihood, resulting in negative

effects on the estimates, especially their precision. It is clear that, for some cases, there is some

additional information that cannot be obtained by likelihood-based approach, which uses only

part of the data. However, the conditional likelihood approach may have advantages as long as the

purpose of the study is estimation of population size and the study has high capture probabilities.

One advantage is that assumption of constant correct identification rate may be relaxed because

we are estimating the product of capture probability and correct identification rate. Also, Lc

is multinomial and thus programs such as SURVIV can be used to obtain conditional likelihood

estimates and standard errors for P ′
i for a real data set. Then the covariance matrix of the P̂ ′

i can

be output and used to estimate variance of N̂c by using the delta method.

The cases with behavioral response in capture probabilities also showed overestimation of

population size when misidentification was ignored, similar to using the Mt estimator when there
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is misidentification as well as temporal variation in capture probabilities. In addition, such positive

bias is larger when positive behavioral response is present. We suspected that it may be difficult to

estimate both behavioral response and misidentification, particularly negative behavioral response,

because both mechanisms affect the probability of recapture. However, estimators under Model

NE1b seem to have reasonable performance when capture probabilities are high. On the other

hand, when capture probabilities are low, the model seemed to have difficulty in separating the

behavioral response and misidentification, particularly the negative behavioral response. In general,

there seemed to be a trend that estimates of population size under Model NE1b are negatively

biased when negative behavioral response is present, and positively biased when positive behavioral

response is present. Also, N̂ under Model NE1b with negative behavioral response were more biased

and less precise whereas those with positive behavioral response were less biased and more precise

compared to N̂ under Model NE1t we examined in Chapter 2.

Improvements in the estimates were evident for most of the low capture probability cases by

augmenting capture histories with extra information on misidentification rate, whereas improve-

ments were not evident for high capture probability cases. For the high capture probability cases,

the sample size used for multiple identification (i.e., n∗ = 20 or 40) is small compared to the

number of capture histories observed (e.g., the expected number of capture histories observed for

case 1 with α = 0.7 in Simulation 1 is approximately 2000). Also, the standard error of α̂ without

multiple identification was small compared to that from multiple identification (e.g., for case 1 with

α = 0.7 in Simulation 1, the standard error of α̂ without multiple identification is approximately

0.01 compared to the binominal standard error of α̂ for n∗ = 20 or 40 being approximately 0.1).

Thus, for the high capture probability cases that we studied, the extra data included does not

make much difference in the performance of the estimator. On the other hand, for the low capture

probability cases, the sample size used in the multiple identification component is large relative to

the number of capture histories observed, and the standard error of α̂ without multiple identifica-

tion was large compared to that from multiple identification. Thus, the extra data included does

provide additional information to improve the performance of the estimator, and augmentation by

including extra data on misidentification rate seems to have a clear advantage for these cases.

Another reason for the unexpected trends in the estimates for high capture probability cases

when multiple identification was performed is that the methods of unweighted least squares and

minimum χ2 are not the most efficient methods, and it is not clear whether we are using the
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most efficient weights in the quadratic distance function when the extra information is added.

Consequently, we may not observe the properties that we would expect if we were using a fully

efficient method such as maximum likelihood. The weights are particularly important for high

capture probability cases because the information in the data from capture-recapture component

is already high, and using less than optimal weights when the data from capture-recapture are

augmented with the data from multiple identification could lead to the unexpected trends observed

in the results. On the other hand, for low capture probability cases, augmenting with data from

the multiple identification component without optimal weights still improves the estimates because

information in the data from the capture-recapture component is not high. Thus, the most likely

reason for the unexpected trends we observed is that our method of estimation is a type of quasi-

likelihood, not a standard likelihood method. An alternative approach for analyses of augmented

data is to use the conditional likelihood approach described in Section 3.2 for the data from

capture-recapture component and treat the data from multiple identification as binomial. In this

way, a likelihood-based function can be constructed for the augmented data. In future research, the

benefit of supplemental data needs to be investigated further over a range of scenarios that reflect a

wide range of population sizes, capture probabilities and correct identification rates. Also, possible

differences between estimation methods and the effect of sample size for data augmentation are

also important future topics.

One aspect that needs to be mentioned about multiple identification is that multiple identi-

fication based on the samples only provides information on errors that are related to processing

samples in the laboratory. There are other possible causes of misidentification (such as contami-

nation of samples in the field), and the true value of α may be lower than the estimate of α from

multiple identification.

We here considered the genetic tag-based capture-recapture study, however, the idea of multi-

ple identification can be applied to photographic tag-based capture-recapture studies. For example,

researchers can take multiple photographs of natural marks, and then obtain extra information

on the misidentification rate by matching the multiple photographs independently. We also only

discussed augmentation of data in terms of multiple identification with a simple study design.

However, there are different study designs that can be applied to obtain extra information on the

misidentification rate. For example, multiple identification can be performed at every sampling

occasion. Such data can be used as extra information on the misidentification rate as we demon-
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strated in this chapter, but they also provide information that can be used to test for a constant

misidentification rate across sampling occasions. Also, there are different ways of augmenting

data. For example, we can mark a subset of captured animals by applied tags instead of multi-

ple identification, and then more accurate information on misidentification rates can be obtained.

Or, some capture-recapture studies use both genetic and photographic tags (e.g., Anderson et al.,

2001; Stevick et al., 2001), and such studies can treat genetic tags as a second type of tag (or as

more conventional tags) because identification based on genetic tags can be very accurate if high

quality DNA analyses are performed. However, high quality DNA analyses can be very expensive,

and understanding the benefit of augmentation of data, such as the amount of improvement in

the estimates in relation to the number of additional tags needed, will be valuable information to

design studies effectively.
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Chapter 4

Photographic Tag-based
Capture-Recapture Studies:
Models NE2 and EV

4.1 Introduction

Photographic identification is one commonly used technique to obtain capture-recapture data.

This technique typically uses visible features of an animal, and individual animals are identified

at capture and recapture based on comparison with photographic records of these natural marks

(photographic tags). There are many features that can be used as photographic tags; patterns

of wear and damage to the leafy appendages for leafy seadragons (Connolly et al., 2002); spot

patterns for cheetahs (Kelly, 2001); blotch structure and arrangement for pythons (Bhupathy, 1991;

Vijayakumar, 1999); head marking for adders (Sheldon and Bradley, 1989); facial marking for snow

leopards (Blomqvist and Nystrom, 1980); tail marks for crocodiles (Swanepoel, 1996); pigmentation

variation for anemonefish (Nelson et al., 1994); stripe patterns for tigers (Karanth et al., 2004b);

injury scars on manatees (Langtimm et al., 2004); profiles of dorsal fins for bottlenose dolphins

(Mazzoil et al., 2004); and body coloration patterns of tiger salamanders (Church et al., 2007).

Photographic tags are particularly useful when the animals are difficult to capture physically, and

the method has been widely used to study marine mammals. This method is also applied in the

study of rare and elusive terrestrial species such as tigers, where the photographic procedures

are often automated by setting camera traps (e.g, Karanth, 1995). In this chapter, we consider
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the misidentification issue in photographic tag-based capture-recapture studies, focusing on closed

populations.

Misidentification can be introduced into photographic tag-based capture-recapture data when

photographed natural marks from the same individual cannot be matched. There are mainly

two types of errors that cause such failures. The first type of error is related to the quality of

photographs. If a photograph fails to capture identifying marks, for example, because the animal

was photographed from a bad angle, it may not be possible to match this photograph to others

from the same animal. This type of error has the same or a similar misidentification mechanism

to that for non-evolving natural tags 1 we discussed in Chapter 2. The other type of error is

related to changes in natural marks. When natural marks are modified or disappear over time, the

original natural marks do not exist any more. Thus, photographs from the same animal cannot be

matched. In a sense, this case is equivalent to the tag loss problem for applied tags.

In general, both of these two types of errors are present in photographic tag-based capture-

recapture studies. However, the misidentification due to the second type of errors (i.e., change

in natural marks) can be eliminated by choosing the types of natural marks used. For example,

it is reasonable to assume that there is no risk of misidentification due to the second type of

error when rather permanent natural marks, such as stripe patterns on tigers, are used. In such

cases, we only need to consider the risk of misidentification due to the first type of error. On

the other hand, some dolphin species are studied by taking photographs of unique profiles of

dorsal fins such as scars and nicks. These natural marks have a risk of modification or loss, for

example, when dolphins acquire new injuries. Thus, this type of capture-recapture data has a risk

of misidentification due to both types of errors. In Chapter 1, we defined two different types of

natural tags: those based on natural marks that are not likely to change over time (e.g., coloration

patterns), which we refer to as non-evolving natural tags, and those based on natural marks

that can change over time (e.g., injury scars), which we refer to as evolving natural tags. We

make this division because the misidentification mechanism in photographic tag-based capture-

recapture studies is slightly different between these two types of natural tags. In other words,

a photographic tag-based capture-recapture study that uses non-evolving natural tags needs to

consider misidentification due to only the first type of error, whereas one that uses evolving natural

tags needs to consider misidentification due to both types of error. In the following sections, we

first consider the misidentification issue in photographic tag-based capture-recapture studies that
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use non-evolving natural tags, and then evolving natural tags.

4.2 Non-Evolving Natural Tags 2: Misidentification is Pos-
sible Only at Recaptures

4.2.1 Proposed Misidentification Mechanism

There are many reasons why the quality of a photograph may be poor. For example, the

animal may be moving when photographs are taken, the natural marks may be photographed from

a bad angle, or weather conditions may be bad. As a result, it may be difficult to identify the

natural marks, and misidentification is likely. It is often the case that poor quality photographs

are discarded, and not used to obtain capture history data. However, it is beneficial to have

models that allow for errors in capture-recapture data so that marginal quality photographs can

be included, and we here assume that the data always have a risk of containing errors due to

misidentification that is related to quality of photographs. Although misidentification mechanism

NE1 considered in Chapter 2 can be applied to this type of misidentification, we here consider a

variation of NE1 and make the following assumptions:

1. Misidentification of animals always leads to false identification of animals that do not exist

in the population;

2. The same error is never repeated; and

3. Misidentification can occur only at recapture events.

The basic ideas of this misidentification mechanism are similar to those for non-evolving natural

tags 1 that we considered in Chapter 2, and assumptions 1 and 2 are exactly same. For photographic

tag-based studies, assumption 1 may be an oversimplified scenario, and it may be more realistic

to include the possibility of assigning false identification of existing animals in the population.

However, it is a necessary assumption at this point, and we continue our model formulation with

assumption 1. Assumption 3 is different because we assume that an animal has been captured

with good quality photographs, and thus ”tagged” correctly. Then, we consider errors that lead to

misidentification of this animal on recapture that are caused by an inability to match subsequent
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photographs to the ones on record. Consequently, we assume there is no risk of misidentification

for animals at their first capture in this type of misidentification mechanism.

These assumptions together lead to a simple misidentification mechanism with the following

characteristics:

• Misidentification can occur at any recapture events;

• If a recaptured animal is incorrectly identified, the recapture event of that animal appears as

a non-capture (i.e., the ”real” capture history is recorded as [0]), but it also creates a capture

history of a non-existing animal (i.e., a ”ghost” capture history is created by recording a

capture [1] for a fictitious animal for this sampling occasion); and

• Recaptures can occur in a ”real” capture history whereas each ghost capture history contains

exactly one capture.

This type of misidentification is a variation of non-evolving natural tags 1 and referred to as non-

evolving natural tags 2 (NE2 ). The only difference between NE1 considered in Chapter 2 and

NE2 is whether misidentification is possible at the first capture event (NE1) or not (NE2). Whether

to use NE1 or NE2 in a particular photographic tag-based capture-recapture study needs to be

determined by the researchers. For example, some studies have strict criteria for obtaining good

photographic information of animals’ visible features before they can be used in capture-recapture

studies. In such cases, NE2 seems to be the more appropriate misidentification mechanism. On

the other hand, if a study is not designed to obtain prior photographic information of animals’

visible features before they can be used as a part of capture-recapture study, then NE1 seems to

be the more appropriate misidentification mechanism.

4.2.2 Statistical Model Development

As in Chapter 2, we assume the population is closed during the period of study, and here we

use a 3-sample study for illustrative purposes. Terms and notation used here follow those given

in the previous chapters (see Tables 1.1 and 2.1). We have a parameter for capture probability

of an animal at each sampling occasion, p1, p2 and p3. Also for simplicity, we assume that the

probability of correct identification is constant for all animals throughout the study, and we have

a parameter for a probability of correct identification for an animal at recapture, α. Consider
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an animal which is captured at all sampling occasions. The animal has true capture history

[111], but there are several possibilities for the observable capture histories depending on whether

misidentification occurs. One of the possibilities is the pair [101 ; 010], which is the case that

misidentification occurred only at the second sampling occasion. Given that an animal has true

capture history [111], the probability of observing the animal with real capture history [101] is

p1p2(1−α)p3α. Misidentification at sample 2 also creates a ghost capture history [010], which has

the same probability p1p2(1 − α)p3α, because of the complete dependency of this pair of real and

ghost capture histories. Table 4.1 presents the probability of all the observable capture histories

conditioned on the true capture history for the 3-sample case. The marginal probabilities for

the observed capture histories in the 3-sample case are summarized in Table 4.2 where P ′
i = piα

and Q′
i = (1 − P ′

i ). Notice that the total probability exceeds 1 because of the ghost capture

histories created, as was the case for non-evolving natural tags 1, and it equals 1 if and only if no

misidentification occurs (i.e., α = 1).

Let t1(γ) be the sampling occasion when the first capture occurs for a given capture history

γ. Then the general expression for the probability of observing capture history γ for the K-sample

case is

Pr [γ] =

⎡
⎣t1(γ)∏

i=1

pγi

i (1 − pi)(1−γi)

⎤
⎦
⎡
⎣ K∏

i=t1(γ)+1

P ′γi

i (1 − P ′
i )

(1−γi)

⎤
⎦

for γ with multiple capture events or with a single capture event and t1(γ) = 1, and

Pr [γ] =

⎡
⎣t1(γ)∏

i=1

pγi

i (1 − pi)(1−γi)

⎤
⎦
⎡
⎣ K∏

i=t1(γ)+1

P ′γi

i (1 − P ′
i )

(1−γi)

⎤
⎦+

t1(γ)−1∑
i=1

⎡
⎣i−1∏

j=0

(1 − pj)pi

⎤
⎦ pt1(γ)(1−α)

for γ with a single capture event and t1(γ) > 1 where

γi is the ith entry of capture history γ

pi is the capture probability of an animal at the ith sampling occasion; pj = 0 if

j = 0

α is the probability of correct identification

P ′
i = piα

Q′
i = (1 − P ′

i ).
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Table 4.1: A summary of the observable capture histories and associated probabilities for non-
evolving natural tags 2 for the 3-sample case.

ω
(true history) misID

γ

(observed history) status Pr[γ | ω]

111

110

101

100

011

010

001

000

none

at third

at second

at second and third

none

at second

none

at third

none

none

third

none

none

none

111

110
001

101
010

100
010
001

110

100
010

101

100
001

100

011

010
001

010

001

000

real

real
ghost*

real
ghost*

real
ghost*
ghost*

real

real
ghost*

real

real
ghost*

real

real

real
ghost*

real

real

real

p1p2αp3α

p1p2αp3(1 − α)
p1p2αp3(1 − α)

p1p2(1 − α)p3α

p1p2(1 − α)p3α

p1p2(1 − α)p3(1 − α)
p1p2(1 − α)p3(1 − α)
p1p2(1 − α)p3(1 − α)

p1p2α(1 − p3)

p1p2(1 − α)(1 − p3)
p1p2(1 − α)(1 − p3)

p1(1 − p2)p3α

p1(1 − p2)p3(1 − α)
p1(1 − p2)p3(1 − α)

p1(1 − p2)(1 − p3)

(1 − p1)p2p3α

(1 − p1)p2p3(1 − α)
(1 − p1)p2p3(1 − α)

(1 − p1)p2(1 − p3)

(1 − p1)(1 − p2)p3

(1 − p1)(1 − p2)(1 − p3)
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Table 4.2: A summary of the marginal probabilities of the observable capture histories, γ, for
non-evolving natural tags 2 in a 3-sample study.

γ (observed history)

111

110

101

100

011

010

001

000

Pr[γ]

p1P
′
2P

′
3

p1P
′
2Q

′
3

p1Q
′
2P

′
3

p1Q
′
2Q

′
3

q1p2P
′
3

q1p2Q
′
3

q1q2p3

q1q2q3

+ p1p2(1 − α)

+ (q1p2 + p1)p3(1 − α)

Total** 1 + [p1p2 + q1p2p3 + p1p3](1 − α)

** Total = 1 if and only if α = 1.

4.2.3 Estimation

As was the case for non-evolving natural tags 1, a multinomial approach to building a likelihood

for the observed histories is invalid because of the dependency between pairs of real and ghost

histories, and the total probability here exceeds 1. Again we apply the methods of unweighted

least squares and minimum χ2, both of which are based on the idea of using the observed values

and marginal expected values of Xγ to obtain estimates. The marginal expected values of Xγ for
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the 3-sample case can be written as

E [X111] = N [p1P
′
2P

′
3]

E [X110] = N [p1P
′
2Q

′
3]

E [X101] = N [p1Q
′
2P

′
3]

E [X100] = N [p1Q
′
2Q

′
3]

E [X011] = N [q1 p2 P ′
3]

E [X010] = N [q1 p2 Q′
3 + p1p2 (1 − α)]

E [X001] = N [q1 q2 p3 + (q1p2 + p1) p3 (1 − α)]

E [X000] = N [q1 q2 q3 ] ,

where X000 is not observable. Then, the estimates are obtained by minimizing the quadratic

distance functions

Fls =
∑

γ,γ �=000

(xγ − E [Xγ ] )2

or

Fχ2 =
∑

γ,γ �=000

(xγ − E [Xγ ] )2

E [Xγ ]

where xγ represents the data and Xγ represents the random variable.

Estimators can also be obtained by conditioning on the total number of capture histories

observed, Xall. The total probability associated with the observed capture histories is

p∗ = 1 − q1q2q3 + [p1p2 + q1p2p3 + p1p3] (1 − α)

= 1 − q1q2q3 + [q1q2q3 − 1 + p1 + p2 + p3] (1 − α)

for the 3-sample case, or in general,

p∗ = 1 −
K∏

i=1

(1 − pi) +

[
K∏

i=1

(1 − pi) − 1 +
K∑

i=1

pi

]
(1 − α)

for the K-sample case. Then the expected values of Xγ with the conditional approach can be
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written as

E [Xγ | Xall = xall] =
xall Pr [γ]

p∗

where xall is the total number of capture histories observed. Again, the estimates are obtained by

minimizing the quadratic distance function Fls or Fχ2 as described for the unconditional approach.

With the conditional approach, the parameter N is removed from the estimation process and

estimated as a derived parameter,

N̂ =
xall

p̂∗
.

4.2.4 Simulation Study

Simulation 1: Cases with Time Specific Capture Probabilities

In our simulation study, we considered a closed population of N animals, and the data were

generated for a study with K = 5 sampling occasions. We allowed for the capture probability to be

time specific, and each animal was subject to capture with probability pi at each sampling occasion

i. When an animal was captured for the first time, the animal was not subject to misidentification.

However, whenever an animal was recaptured, identification of the animal was either correct with

probability α, or incorrect with probability (1 − α). If the identification was correct, the capture

event of the animal was recorded as capture (i.e., [1]). However, if the identification was incorrect,

the event was recorded as non-capture (i.e., [0]) in the real history, and a ghost history was created

in which the event was recorded as a capture (i.e., [1]). Then, each animal was again subject to

capture at the next sampling occasion (see Figure 4.1). Note that real capture histories can contain

recaptures. However, a ghost capture history cannot contain any recaptures, and misidentification

always creates a new ghost capture history with a single capture at the sample when incorrect

identification occurs.

Parameter values were chosen to reflect a wide range of population sizes, capture probabilities

and correct identification rates. We considered the same four specific cases as we did for non-

evolving natural tags 1.

Case 1: N = 1000 and p = [0.7, 0.8, 0.7, 0.8, 0.7]

Case 2: N = 200 and p = [0.7, 0.8, 0.7, 0.8, 0.7]
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Figure 4.1: A diagram of the misidentification mechanism for non-evolving natural tags 2.

Case 3: N = 1000 and p = [0.3, 0.2, 0.3, 0.2, 0.3]

Case 4: N = 200 and p = [0.3, 0.2, 0.3, 0.2, 0.3]

Each combination of parameter values is describing either a large or a small population size with

high or low capture probabilities, and for each case, correct identification rates of α = 0.7, 0.8, and

0.9 were considered. We considered estimation methods based on unweighted least squares and

minimum χ2, based on the quadratic distance functions Fls and Fχ2 , respectively. In addition,

unconditional and conditional (on xall) approaches were considered. We were also interested in the

comparison of estimates obtained under our NE2 model (Model NE2t) and the corresponding

conventional capture-recapture model (Model Mt). Thus, maximum likelihood estimates (condi-

tional on xall) assuming Model Mt to be correct were also obtained for the same generated data

sets.

The performance of the two estimation methods under Model NE2t and maximum likelihood

under Model Mt was assessed by examining the average estimates, standard errors and root mean

square errors of N̂ over 100 simulated data sets. The results for cases 1 to 4 are summarized in

Tables 4.3 - 4.6. Although we considered unconditional and conditional (on xall) approaches for

estimation of N under Model NE2t, the unconditional approach displayed numerical problems such

as sensitivity to starting values and non-convergence. Thus, only the results from the conditional

(on xall) approach are presented in the Tables.

Similar to the case for non-evolving natural tags 1, we observed positive bias in N̂ when
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Table 4.3: [Simulation 1: case 1] Non-evolving natural tags 2 with time specific capture probabil-
ities. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model NE2t are from the conditional (on xall) approach.

Model NE2t

least squares minimum χ2

Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

1000

0.7

0.7

0.8

0.7

0.8

0.7

1000

0.8

0.7

0.8

0.7

0.8

0.7

1000

0.9

0.7

0.8

0.7

0.8

0.7

998 (9)

0.699 (0.009)

0.699 (0.018)

0.803 (0.016)

0.697 (0.021)

0.800 (0.021)

0.701 (0.020)

0

9.21

1000 (7)

0.800 (0.008)

0.698 (0.018)

0.800 (0.015)

0.701 (0.017)

0.800 (0.016)

0.700 (0.017)

0

7.00

999 (6)

0.900 (0.006)

0.699 (0.017)

0.801 (0.013)

0.698 (0.019)

0.802 (0.014)

0.703 (0.018)

0

6.08

1004 (11)

0.702 (0.009)

0.696 (0.016)

0.798 (0.018)

0.696 (0.017)

0.798 (0.017)

0.700 (0.017)

0

11.70

1004 (7)

0.801 (0.008)

0.695 (0.016)

0.796 (0.014)

0.698 (0.017)

0.797 (0.016)

0.698 (0.015)

0

8.06

1001 (6)

0.900 (0.006)

0.697 (0.015)

0.798 (0.012)

0.696 (0.016)

0.798 (0.013)

0.701 (0.016)

0

6.08

2011 (41)

−−
0.347 (0.010)

0.399 (0.010)

0.347 (0.010)

0.398 (0.010)

0.349 (0.010)

0

1011.83

1614 (28)

−−
0.432 (0.012)

0.496 (0.011)

0.434 (0.011)

0.496 (0.011)

0.434 (0.012)

0

614.63

1287 (16)

−−
0.543 (0.014)

0.622 (0.012)

0.542 (0.013)

0.623 (0.011)

0.546 (0.013)

0

287.44
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Table 4.4: [Simulation 1: case 2] Non-evolving natural tags 2 with time specific capture probabil-
ities. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model NE2t are from the conditional (on xall) approach.

Model NE2t

least squares minimum χ2

Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

200

0.7

0.7

0.8

0.7

0.8

0.7

200

0.8

0.7

0.8

0.7

0.8

0.7

200

0.9

0.7

0.8

0.7

0.8

0.7

200 (4)

0.700 (0.022)

0.697 (0.044)

0.801 (0.040)

0.698 (0.045)

0.792 (0.042)

0.695 (0.047)

0

4.00

199 (2)

0.799 (0.019)

0.696 (0.036)

0.794 (0.032)

0.701 (0.045)

0.804 (0.034)

0.700 (0.037)

0

2.23

200 (2)

0.900 (0.013)

0.703 (0.037)

0.796 (0.032)

0.696 (0.038)

0.798 (0.038)

0.707 (0.040)

0

2.00

205 (5)

0.711 (0.021)

0.689 (0.032)

0.784 (0.042)

0.687 (0.035)

0.783 (0.039)

0.688 (0.038)

0

7.07

204 (3)

0.806 (0.018)

0.689 (0.032)

0.779 (0.033)

0.693 (0.041)

0.782 (0.029)

0.694 (0.036)

0

5.00

201 (2)

0.901 (0.013)

0.693 (0.031)

0.783 (0.030)

0.692 (0.035)

0.786 (0.031)

0.696 (0.030)

0

2.23

401 (17)

−−
0.349 (0.021)

0.400 (0.024)

0.348 (0.021)

0.397 (0.022)

0.348 (0.023)

0

201.71

323 (12)

−−
0.433 (0.024)

0.493 (0.025)

0.435 (0.028)

0.497 (0.025)

0.435 (0.025)

0

123.58

257 (7)

−−
0.544 (0.025)

0.621 (0.028)

0.543 (0.029)

0.621 (0.029)

0.547 (0.029)

0

57.42
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Table 4.5: [Simulation 1: case 3] Non-evolving natural tags 2 with time specific capture probabil-
ities. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model NE2t are from the conditional (on xall) approach.

Model NE2t

least squares minimum χ2

Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

1000

0.7

0.3

0.2

0.3

0.2

0.3

1000

0.8

0.3

0.2

0.3

0.2

0.3

1000

0.9

0.3

0.2

0.3

0.2

0.3

1086 (191)

0.743 (0.092)

0.283 (0.052)

0.189 (0.034)

0.283 (0.047)

0.190 (0.036)

0.289 (0.053)

0

209.46

1022 (159)

0.814 (0.090)

0.302 (0.049)

0.201 (0.034)

0.301 (0.051)

0.198 (0.033)

0.302 (0.049)

0

160.51

1000 (112)

0.898 (0.071)

0.306 (0.039)

0.203 (0.027)

0.303 (0.040)

0.204 (0.030)

0.303 (0.040)

0

112.00

1021 (143)

0.725 (0.073)

0.301 (0.043)

0.203 (0.029)

0.300 (0.041)

0.205 (0.030)

0.305 (0.042)

0

144.53

982 (125)

0.805 (0.075)

0.314 (0.043)

0.212 (0.030)

0.314 (0.044)

0.211 (0.030)

0.313 (0.041)

0

126.28

966 (93)

0.886 (0.063)

0.317 (0.034)

0.213 (0.022)

0.315 (0.033)

0.213 (0.024)

0.314 (0.033)

0

99.02

1568 (65)

−−
0.191 (0.013)

0.128 (0.009)

0.191 (0.011)

0.129 (0.009)

0.194 (0.012)

0

571.70

1326 (47)

−−
0.227 (0.012)

0.152 (0.011)

0.227 (0.014)

0.151 (0.012)

0.227 (0.013)

0

329.37

1150 (34)

−−
0.262 (0.014)

0.174 (0.013)

0.261 (0.014)

0.175 (0.013)

0.260 (0.015)

0

153.80
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Table 4.6: [Simulation 1: case 4] Non-evolving natural tags 2 with time specific capture probabil-
ities. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model NE2t are from the conditional (on xall) approach.

Model NE2t

least squares minimum χ2

Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

200

0.7

0.3

0.2

0.3

0.2

0.3

200

0.8

0.3

0.2

0.3

0.2

0.3

200

0.9

0.3

0.2

0.3

0.2

0.3

211 (67)

0.740 (0.167)

0.308 (0.106)

0.215 (0.084)

0.320 (0.109)

0.216 (0.077)

0.321 (0.114)

0

67.89

203 (52)

0.794 (0.141)

0.315 (0.095)

0.214 (0.067)

0.313 (0.099)

0.206 (0.063)

0.312 (0.084)

0

52.08

192 (36)

0.870 (0.115)

0.328 (0.075)

0.212 (0.055)

0.325 (0.076)

0.214 (0.053)

0.320 (0.072)

0

36.87

188 (48)

0.731 (0.130)

0.341 (0.083)

0.248 (0.067)

0.353 (0.088)

0.243 (0.061)

0.353 (0.094)

0

49.47

185 (36)

0.792 (0.112)

0.344 (0.074)

0.242 (0.054)

0.342 (0.077)

0.240 (0.056)

0.341 (0.068)

0

39.00

179 (27)

0.862 (0.093)

0.353 (0.059)

0.242 (0.046)

0.353 (0.063)

0.245 (0.047)

0.349 (0.060)

0

34.20

309 (27)

−−
0.191 (0.026)

0.134 (0.024)

0.198 (0.022)

0.132 (0.022)

0.198 (0.025)

0

112.29

271 (19)

−−
0.221 (0.027)

0.149 (0.024)

0.220 (0.031)

0.148 (0.022)

0.221 (0.027)

0

73.49

230 (14)

−−
0.263 (0.032)

0.173 (0.024)

0.263 (0.035)

0.175 (0.026)

0.261 (0.036)

0

33.10
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misidentification was ignored, and the bias can be substantial as the value of α becomes lower

(relative bias > 50% for α = 0.7 cases). The performance of the NE2t estimators was good,

especially for the cases with high capture probability (relative bias < 3% and relative standard

error < 3% for cases 1 and 2). However, some bias in N̂ was noted for the cases of low capture

probability (relative bias ≈ 0 − 11% and relative standard error ≈ 9 − 34% for cases 3 and 4). It

was again difficult to differentiate between the methods of unweighted least squares and minimum

χ2. However, the method of minimum χ2 seemed to have a tendency that N̂ are negatively biased

when capture probabilities are low, especially as the value of α increases. The magnitudes of bias

and precision for non-evolving natural tags 2 cases (relative bias < 11% and relative standard error

< 34%) were better than those for the non-evolving natural tags 1 cases (relative bias < 30% and

relative standard error ≤ 60%). This is as expected because misidentification does not occur at the

first capture event with NE2, and thus there are fewer occasions that misidentification can occur

compared to NE1. An important result is that ignoring misidentification can lead to overestimation

of N as the case for non-evolving natural tags 1. The larger the rate of misidentification, the larger

such positive bias in N̂ becomes, and the magnitude of such bias can be substantial as shown by

the results.

Simulation 2: Cases with Time Specific Capture Probabilities (High α)

We also considered cases with lower misidentification rates as we did for non-evolving natural

tags 1. We generated new sets of data for the four cases described in the previous section, but

with correct identification rates of α = 0.950, 0.975 and 1.000. The data sets were again analyzed

using the two estimation methods under Model NE2t, and also maximum likelihood (conditional

on xall) under Model Mt. Results for cases 1 to 4 are summarized in Tables 4.7 - 4.10. Once again,

the unconditional approach of Model NE2t had numerical problems. Thus, we have only included

the results from the conditional (on xall) approach in the Tables.

As we expected, the performance of the Model Mt estimator improved as the value of α

increased. However, even when the misidentification rate was as low as 0.025, positive bias in N̂

was evident (relative bias > 6% and 3% for α = 0.950 and 0.975, respectively). For high capture

probability cases, the Model NE2t estimators performed well (relative bias < 1% and relative

standard error ≤ 1% for cases 1 and 2), and performance was better than that of Model Mt even
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Table 4.7: [Simulation 2: case 1] Non-evolving natural tags 2 with time specific capture probabilities
(high α). Average estimates (with standard errors in parentheses) based on 100 simulated data
sets. Estimates under Model NE2t are from the conditional (on xall) approach.

Model NE2t

least squares minimum χ2

Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

1000

0.950

0.7

0.8

0.7

0.8

0.7

1000

0.975

0.7

0.8

0.7

0.8

0.7

1000

1.000

0.7

0.8

0.7

0.8

0.7

1000 (4)

0.950 (0.005)

0.697 (0.019)

0.800 (0.016)

0.700 (0.019)

0.801 (0.014)

0.700 (0.017)

0

4.00

999 (5)

0.975 (0.004)

0.699 (0.018)

0.801 (0.014)

0.697 (0.020)

0.802 (0.014)

0.703 (0.019)

0

5.09

998 (2)

0.999 (0.001)

0.701 (0.018)

0.801 (0.014)

0.700 (0.016)

0.799 (0.016)

0.701 (0.016)

0

2.82

1001 (4)

0.950 (0.004)

0.696 (0.015)

0.797 (0.012)

0.698 (0.015)

0.796 (0.013)

0.698 (0.014)

0

4.12

999 (5)

0.975 (0.004)

0.697 (0.015)

0.798 (0.012)

0.696 (0.015)

0.799 (0.013)

0.701 (0.015)

0

5.09

997 (3)

0.999 (0.001)

0.698 (0.014)

0.799 (0.012)

0.699 (0.014)

0.797 (0.014)

0.698 (0.013)

0

4.24

1139 (11)

−−
0.612 (0.014)

0.702 (0.011)

0.615 (0.014)

0.702 (0.013)

0.614 (0.014)

0

139.43

1068 (8)

−−
0.653 (0.015)

0.749 (0.013)

0.653 (0.014)

0.750 (0.013)

0.657 (0.014)

0

68.46

1000 (1)

−−
0.699 (0.014)

0.801 (0.012)

0.699 (0.014)

0.799 (0.013)

0.699 (0.013)

0

1.00



Chapter 4. Photographic Tag-based Capture-Recapture Studies 135

Table 4.8: [Simulation 2: case 2] Non-evolving natural tags 2 with time specific capture probabilities
(high α). Average estimates (with standard errors in parentheses) based on 100 simulated data
sets. Estimates under Model NE2t are from the conditional (on xall) approach.

Model NE2t

least squares minimum χ2

Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

200

0.950

0.7

0.8

0.7

0.8

0.7

200

0.975

0.7

0.8

0.7

0.8

0.7

200

1.000

0.7

0.8

0.7

0.8

0.7

200 (2)

0.950 (0.010)

0.698 (0.037)

0.794 (0.033)

0.702 (0.046)

0.802 (0.031)

0.704 (0.040)

0

2.00

200 (2)

0.975 (0.009)

0.703 (0.038)

0.797 (0.031)

0.698 (0.040)

0.798 (0.037)

0.703 (0.042)

0

2.00

199 (1)

0.999 (0.002)

0.706 (0.043)

0.801 (0.032)

0.697 (0.041)

0.803 (0.034)

0.698 (0.044)

0

1.41

200 (2)

0.951 (0.010)

0.691 (0.031)

0.780 (0.027)

0.693 (0.039)

0.787 (0.030)

0.695 (0.031)

0

2.00

199 (2)

0.974 (0.008)

0.693 (0.031)

0.786 (0.030)

0.692 (0.033)

0.786 (0.030)

0.694 (0.029)

0

2.23

199 (1)

0.998 (0.003)

0.696 (0.036)

0.788 (0.027)

0.689 (0.031)

0.789 (0.030)

0.691 (0.031)

0

1.41

228 (5)

−−
0.613 (0.029)

0.698 (0.028)

0.616 (0.034)

0.704 (0.028)

0.616 (0.030)

0

28.44

214 (3)

−−
0.654 (0.030)

0.747 (0.030)

0.653 (0.031)

0.746 (0.030)

0.658 (0.030)

0

14.31

200 (1)

−−
0.703 (0.036)

0.800 (0.028)

0.696 (0.033)

0.801 (0.030)

0.697 (0.033)

0

1.00
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Table 4.9: [Simulation 2: case 3] Non-evolving natural tags 2 with time specific capture probabilities
(high α). Average estimates (with standard errors in parentheses) based on 100 simulated data
sets. Estimates under Model NE2t are from the conditional (on xall) approach.

Model NE2t

least squares minimum χ2

Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

1000

0.950

0.3

0.2

0.3

0.2

0.3

1000

0.975

0.3

0.2

0.3

0.2

0.3

1000

1.000

0.3

0.2

0.3

0.2

0.3

997 (93)

0.947 (0.057)

0.306 (0.034)

0.204 (0.025)

0.303 (0.036)

0.201 (0.026)

0.302 (0.034)

0

93.04

967 (70)

0.953 (0.046)

0.316 (0.029)

0.208 (0.021)

0.312 (0.032)

0.210 (0.024)

0.311 (0.031)

0

77.38

966 (56)

0.975 (0.038)

0.316 (0.024)

0.208 (0.019)

0.312 (0.028)

0.205 (0.020)

0.311 (0.029)

0

65.51

977 (83)

0.943 (0.054)

0.312 (0.033)

0.211 (0.023)

0.312 (0.033)

0.210 (0.024)

0.311 (0.030)

0

86.12

953 (66)

0.950 (0.047)

0.320 (0.027)

0.215 (0.019)

0.317 (0.026)

0.215 (0.020)

0.317 (0.028)

0

81.02

949 (56)

0.969 (0.041)

0.322 (0.023)

0.215 (0.020)

0.318 (0.025)

0.214 (0.018)

0.321 (0.026)

0

75.74

1069 (32)

−−
0.282 (0.015)

0.188 (0.013)

0.281 (0.016)

0.188 (0.014)

0.281 (0.014)

0

76.05

1032 (27)

−−
0.292 (0.015)

0.194 (0.014)

0.290 (0.015)

0.195 (0.014)

0.290 (0.017)

0

41.86

999 (22)

−−
0.303 (0.016)

0.200 (0.014)

0.300 (0.017)

0.199 (0.014)

0.302 (0.016)

0

22.02
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Table 4.10: [Simulation 2: case 4] Non-evolving natural tags 2 with time specific capture proba-
bilities (high α). Average estimates (with standard errors in parentheses) based on 100 simulated
data sets. Estimates under Model NE2t are from the conditional (on xall) approach.

Model NE2t

least squares minimum χ2

Model Mt

conditional L

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

α

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

200

0.950

0.3

0.2

0.3

0.2

0.3

200

0.975

0.3

0.2

0.3

0.2

0.3

200

1.000

0.3

0.2

0.3

0.2

0.3

188 (30)

0.904 (0.104)

0.328 (0.075)

0.223 (0.055)

0.326 (0.076)

0.214 (0.050)

0.324 (0.064)

0

32.31

186 (26)

0.922 (0.084)

0.336 (0.064)

0.216 (0.048)

0.331 (0.069)

0.218 (0.044)

0.324 (0.063)

0

29.52

187 (25)

0.947 (0.078)

0.340 (0.065)

0.219 (0.053)

0.323 (0.062)

0.219 (0.055)

0.320 (0.074)

0

28.17

181 (25)

0.906 (0.086)

0.346 (0.066)

0.243 (0.049)

0.345 (0.062)

0.243 (0.053)

0.343 (0.056)

0

31.40

176 (21)

0.914 (0.074)

0.357 (0.050)

0.244 (0.040)

0.355 (0.056)

0.246 (0.042)

0.353 (0.054)

0

31.89

178 (19)

0.939 (0.069)

0.356 (0.056)

0.247 (0.040)

0.348 (0.050)

0.239 (0.046)

0.344 (0.059)

0

29.06

216 (13)

−−
0.277 (0.033)

0.187 (0.030)

0.276 (0.037)

0.185 (0.029)

0.276 (0.034)

0

20.61

207 (10)

−−
0.292 (0.035)

0.192 (0.025)

0.292 (0.039)

0.195 (0.028)

0.289 (0.038)

0

12.20

201 (11)

−−
0.304 (0.039)

0.203 (0.027)

0.298 (0.036)

0.197 (0.034)

0.294 (0.039)

0

11.04
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when the misidentification rate was as low as 0.025. However, for low capture probability cases,

some negative bias was evident in the NE2t estimators, and their performance was not as good as

that of the Mt estimator (relative bias ≈ 0.3−12% and relative standard error ≈ 5−15% for cases

3 and 4).

4.3 Evolving Natural Tags

4.3.1 Proposed Misidentification Mechanisms

Although photographic tags based on natural marks that can change over time may have a risk

of misidentification due to both types of errors, here we simplify the scenario, and consider only

misidentification due to the second type of error, which is caused by change in natural marks over

time. In other words, we here assume that the quality of photographs is high, and misidentification

occurs only if the natural marks are modified or lost since the last capture event. We make the

following assumptions:

1. Misidentification of an animal leads to creating a new but false identity;

2. Once a new identity is created, the old identity is not subject to recapture, but the new,

false, identity is subject to recapture;

3. The same error is never repeated; and

4. Misidentification can occur only at recapture events.

These assumptions are similar to those for non-evolving natural tags 2. We assume that there is

no risk of misidentification at the first capture event because misidentification occur in relation

to comparison with previously existing natural marks (assumption 4). However, when changes

occur in natural marks, the result is as if the original tag is lost and a new tag put in its place.

Thus, misidentification leads to creating a new identity that persists, rather than a temporary false

identification that cannot be repeated (assumption 2). We also assume that the new tag created by

misidentification is different from tags on animals that already exist in the population (assumption

1), and that misidentification of two different animals never leads to the same new false identity

(assumption 3).
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The main difference between the misidentification mechanism associated with evolving nat-

ural tags, compared to the non-evolving natural tags, is that the original capture history, which

is referred to as the real capture history, can not have any future recapture events once misiden-

tification occurs, whereas the ghost capture history, that is created by misidentification, has the

possibility of future recapture until further changes in the natural mark lead to occurrence of a

new misidentification. This situation is comparable to that where a marked animal with an ap-

plied tag loses the tag, and is fitted with a new tag at a subsequent capture event. Thus, we

never capture the animal with the original tag, but the animal may be recaptured with the newly

applied tag. The terms of real and ghost capture histories have a different meaning from that in

the non-evolving cases, but we continue using our original terminology for simplicity. We refer to

this type of misidentification mechanism as evolving natural tags, and the model developed for

data that contain this type of misidentification is denoted as EV .

In summary the misidentification mechanism for evolving natural tags has the following char-

acteristics:

• Misidentification can occur at any recapture event;

• If a recaptured animal is incorrectly identified, the recapture event of that animal appears as

a non-capture (i.e., the ”real” capture history is recorded as [0]), but it also creates a capture

history of a new animal in the population as a mirror image (i.e., a ”ghost” capture history

is created by recording the capture event [1] for the sampling occasion); and

• Once misidentification occurs, the ”real” capture history cannot contain further recaptures,

whereas the ”ghost” capture history can be recaptured in the future until misidentification

occurs again.

4.3.2 Statistical Model Development

We again use a 3-sample study on a closed population as an example. Terms and notations

used follow those given in the previous chapters (see Tables 1.1 and 2.1). We have a parameter

for capture probability of an animal at each sampling occasion, p1, p2 and p3. Also, for simplic-

ity, assuming that the probability of correct identification at recapture is constant for all animals

throughout the study, we let β represent this probability. Notice that this parameter β applies
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only to recaptured animals, and that (1 − β) can also be considered as the probability that the

existing natural mark undergoes a change between two consecutive capture events. Consider an

animal which is captured at all sampling occasions. The animal has true capture history [111],

but has several possibilities for the observable capture histories depending on whether misidentifi-

cation occurs. One of the possibilities is the pair of [100 ; 011], corresponding to the case where

misidentification occurred only at the second sampling occasion, or in other words, the change

in the natural mark occurred between the first and second sampling occasions. Given that an

animal has a true capture history [111], the probability of observing the animal with real capture

history [100] is p1p2(1 − β)p3β. This event also creates a ghost capture history [011], which has

the same probability p1p2(1 − β)p3β because of the relationship between the real and ghost cap-

ture histories. Note that real capture history [100] did not have the possibility of recapture at

the third sampling occasion because misidentification occurred at the second sampling occasion

whereas the ghost capture history had the possibility of recapture at the third sampling occasions.

Table 4.11 presents all the observable capture histories conditioned on the true capture history,

and the probability of occurrence for the 3-sample case. The marginal probabilities for the ob-

servable capture histories in the 3-sample case are also summarized in Table 4.12 where P ′
i = piβ

and Q′
i = (1− pi)Q′

i+1 + pi(1− β) with Q′
K+1 = 1. Notice that Q′

i here is defined differently from

the other misidentification models, and again, the same issue arises; the total probability exceeds

1 because of the ghost capture histories created, and it equals 1 if and only if no misidentification

occurs (i.e., β = 1).

Let t1(γ) and t2(γ) be the sampling occasions where the first and last, respectively, capture

occurs for a given capture history γ. Then the general expression for the probability of each

observable capture history γ for the study with K-sampling occasions is

Pr [γ] =

⎡
⎣t1(γ)∏

i=1

pγi

i (1 − pi)(1−γi)

⎤
⎦
⎡
⎣ t2(γ)∏

i=t1(γ)+1

P ′γi

i (1 − pi)(1−γi)

⎤
⎦

h

Q′
t2(γ)+1
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Table 4.11: A summary of the observable capture histories and associated probabilities for evolving
natural tags for the 3-sample case.

ω
(true history) misID

γ

(observed history) status Pr[γ | ω]

111

110

101

100

011

010

001

000

none

at third

at second

at second and third

none

at second

none

at third

none

none

third

none

none

none

111

110
001

100
011

100
010
001

110

100
010

101

100
001

100

011

010
001

010

001

000

real

real
ghost*

real
ghost*

real
ghost*
ghost*

real

real
ghost*

real

real
ghost*

real

real

real
ghost*

real

real

real

p1p2βp3β

p1p2βp3(1 − β)
p1p2βp3(1 − β)

p1p2(1 − β)p3β

p1p2(1 − β)p3β

p1p2(1 − β)p3(1 − β)
p1p2(1 − β)p3(1 − β)
p1p2(1 − β)p3(1 − β)

p1p2β(1 − p3)

p1p2(1 − β)(1 − p3)
p1p2(1 − β)(1 − p3)

p1(1 − p2)p3β

p1(1 − p2)p3(1 − β)
p1(1 − p2)p3(1 − β)

p1(1 − p2)(1 − p3)

(1 − p1)p2p3β

(1 − p1)p2p3(1 − β)
(1 − p1)p2p3(1 − β)

(1 − p1)p2(1 − p3)

(1 − p1)(1 − p2)p3

(1 − p1)(1 − p2)(1 − p3)
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Table 4.12: A summary of the marginal probabilities of the observable capture histories, γ, for
evolving natural tags in a 3-sample study.

γ (observed history)

111

110

101

100

011

010

001

000

Pr[γ]

p1P
′
2P

′
3

p1P
′
2Q

′
3

p1q2P
′
3

p1Q
′
2

q1p2P
′
3

q1p2Q
′
3

q1q2p3

q1q2q3

+ p1p2(1 − β)P ′
3

+ p1p2(1 − β)Q′
3

+ (q1p2 + p1)p3(1 − β)

Total** 1 + [p1p2P
′
3 + p1p2Q

′
3 + q1p2p3 + p1p3](1 − β)

** Total = 1 if and only if β = 1.

for γ with t1(γ) = 1, and

Pr [γ] =

⎡
⎣t1(γ)∏

i=1

pγi

i (1 − pi)(1−γi) +
t1(γ)−1∑

i=1

⎛
⎝i−1∏

j=0

(1 − pj)pi

⎞
⎠ pt1(γ)(1 − β)

⎤
⎦

×
⎡
⎣ t2(γ)∏

i=t1(γ)+1

P ′γi

i (1 − pi)(1−γi)

⎤
⎦

h

Q′
t2(γ)+1

for γ with t1(γ) > 1 where

γi is the ith entry of capture history γ

pi is the capture probability of an animal at the ith sampling occasion; pj = 0 if

j = 0

β is the probability of correct identification
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P ′
i = piβ

Q′
i = (1 − pi)Q′

i+1 + pi(1 − β) ; Q′
K+1 = 1

h = 0 if t1(γ) = t2(γ) ; else h = 1.

4.3.3 Estimation

As for non-evolving natural tags, the typical multinomial approach to building a likelihood is

invalid because of the dependency between pairs of real and ghost histories (which leads to the total

probability exceeding 1). We again apply the methods of unweighted least squares and minimum

χ2, which are based on using the observed values and marginal expected values of Xγ to obtain

estimates. The marginal expected values of Xγ for the 3-sample case can be written as

E [X111] = N [p1P
′
2P

′
3]

E [X110] = N [p1P
′
2Q

′
3]

E [X101] = N [p1 q2P
′
3 ]

E [X100] = N [p1 Q′
2 ]

E [X011] = N [q1 p2P
′
3 + p1p2(1 − β)P ′

3 ]

E [X010] = N [q1 p2Q
′
3 + p1p2(1 − β)Q′

3]

E [X001] = N [q1 q2 p3 + (q1p2 + p1)p3(1 − β)]

E [X000] = N [q1 q2 q3 ] .

where X000 is not observed. Then, the estimates are obtained by minimizing the quadratic distance

function

Fls =
∑

γ,γ �=000

(xγ − E [Xγ ] )2

or

Fχ2 =
∑

γ,γ �=000

(xγ − E [Xγ ] )2

E [Xγ ]

where xγ represents the data and Xγ represents the random variable.

The method can also be conditioned on the total number of capture histories observed, Xall.
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The total probability associated with the observed capture histories is

p∗ = 1 − q1q2q3 + [p1p2P
′
3 + p1p2Q

′
3 + q1p2p3 + p1p3] (1 − β)

= 1 − q1q2q3 + [p1p2 + q1p2p3 + p1p3] (1 − β)

= 1 − q1q2q3 + [q1q2q3 − 1 + p1 + p2 + p3] (1 − β)

for the 3-sample study case, or in general,

p∗ = 1 −
K∏

i=1

(1 − pi) +

[
K∏

i=1

(1 − pi) − 1 +
K∑

i=1

pi

]
(1 − β)

for the K-sample case. Then expected values of Xγ with the conditional approach can be written

as

E [Xγ | Xall = xall] =
xall Pr [γ]

p∗

where xall is the total number of capture histories observed. Then, the estimates are obtained by

minimizing the quadratic distance function Fls or Fχ2 as described for the unconditional approach.

With the conditional approach, the parameter N is removed from the estimation process and it is

estimated as a derived parameter,

N̂ =
xall

p̂∗
.

4.3.4 Simulation Study

Simulation 1: Cases with Time Specific Capture Probabilities

In our simulation study, we again considered a closed population of N animals, and a study

with K = 5 sampling occasions. We allowed for the capture probability to be time specific, and each

animal was subject to capture with probability pi at each sampling occasion i. When an animal

was captured for the first time, the animal was not subject to misidentification. However, whenever

an animal was recaptured, identification of the animal was either correct with probability β, or

incorrect with probability (1 − β). If the identification was correct, the event was recorded in the

real capture history of the animal as a capture (i.e., [1]). However, if the identification was incorrect,

the event was recorded as non-capture (i.e., [0]) in the real capture history, and a ghost capture
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Figure 4.2: A diagram of the misidentification mechanism for evolving natural tags.

history was created with a capture recorded for the sampling occasion (i.e., [1]). Then, each animal

was subject to capture at the next sampling occasion (see Figure 4.2). Note that ”real” and ”ghost”

capture histories here have different meaning from those in non-evolving natural tags, and a ”real”

capture history does not have possibility of recapture once misidentification occurs. However, the

”ghost” capture history will have possibility of recapture until another misidentification occurs.

We considered the same four specific cases as described in the previous section, and for each

case, the correct identification rates of β = 0.7, 0.8, and 0.9 were considered.

Case 1: N = 1000 and p = [0.7, 0.8, 0.7, 0.8, 0.7]

Case 2: N = 200 and p = [0.7, 0.8, 0.7, 0.8, 0.7]

Case 3: N = 1000 and p = [0.3, 0.2, 0.3, 0.2, 0.3]

Case 4: N = 200 and p = [0.3, 0.2, 0.3, 0.2, 0.3]

As for non-evolving natural tags, we considered estimators based on the methods of unweighted

least squares and minimum χ2, that is based on the quadratic distance functions of Fls and Fχ2 ,

respectively. In addition, unconditional and conditional (on xall) approaches were considered, and

for each generated data set, estimates were obtained under our EV model (Model EVt) as well as

using maximum likelihood (conditional on xall) under the conventional capture-recapture model

(Model Mt).



Chapter 4. Photographic Tag-based Capture-Recapture Studies 146

The performance of each estimator was again assessed by examining the average estimates,

standard errors and root mean square errors of N̂ over 100 simulated data sets. The results for

cases 1 to 4 are summarized in Tables 4.13 - 4.16. Although we considered both unconditional and

conditional (on xall) approaches under Model EVt, the unconditional approach again displayed

numerical problems such as sensitivity to starting values and non-convergence. Thus, only results

from the conditional (on xall) approach are presented in the Tables.

Here we observed the same tendency in the estimates of N as the cases for non-evolving

natural tags, that is positive bias in N̂ if the misidentification was ignored, and the magnitude of

the bias was substantial when the misidentification rate was high (relative bias > 50% for α = 0.07

cases). The performance of estimators under Model EVt was good, especially for the cases of

high capture probability (relative bias ≤ 2% and relative standard error < 3% for cases 1 and 2).

However, again, some bias in N̂ were noted for the cases of low capture probability (relative bias

≈ 1 − 10% and relative standard error ≈ 11 − 33% for cases 3 and 4). Such bias in N̂ could be

negative or positive depending on the case. The magnitude of bias and precision were better than

in the cases with non-evolving natural tags 1 and similar to those with non-evolving natural tags

2. This is as expected because misidentification cannot occur on the first capture event here, and

thus there are fewer occasions that misidentification can occur than in NE1, or about the same

number of occasions in NE2. One interesting aspect is that the estimates of N̂ under Model Mt

were exactly the same for the data generated under the two misidentification models, non-evolving

natural tags 2 and evolving natural tags. This is because, at each sampling occasion, the total

number of captures generated is the same under the NE2 and EV mechanisms (provided the same

seed is used for the random number generator). The observed histories, Xγ , generated by the two

mechanisms will differ, but the summary statistics used by the Mt estimator are the same. Hence,

the estimates obtained under Model Mt were identical for the generated capture histories under

two different misidentification mechanisms (NE2 and EV).

Simulation 2: Cases with Time Specific Capture Probabilities (High α)

We also considered the cases of lower misidentification rates. We generated new sets of data

for the four cases described in the previous section, but with correct identification rates of β =

0.950, 0.975 and 1.000, and the data sets were analyzed by using the two estimation methods, the
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Table 4.13: [Simulation 1: case 1] Evolving natural tags with time specific capture probabili-
ties. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model EVt are from the conditional (on xall) approach.

Model EVt

least squares minimum χ2

Model Mt

conditional L

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

1000

0.7

0.7

0.8

0.7

0.8

0.7

1000

0.8

0.7

0.8

0.7

0.8

0.7

1000

0.9

0.7

0.8

0.7

0.8

0.7

999 (12)

0.700 (0.010)

0.698 (0.020)

0.801 (0.018)

0.696 (0.019)

0.800 (0.018)

0.701 (0.018)

0

12.04

1001 (10)

0.800 (0.009)

0.696 (0.018)

0.800 (0.018)

0.700 (0.018)

0.800 (0.015)

0.700 (0.015)

0

10.04

999 (7)

0.900 (0.006)

0.700 (0.018)

0.800 (0.014)

0.697 (0.019)

0.802 (0.015)

0.703 (0.018)

0

7.07

1006 (11)

0.702 (0.010)

0.694 (0.017)

0.798 (0.019)

0.695 (0.018)

0.796 (0.017)

0.699 (0.018)

0

12.52

1004 (9)

0.801 (0.009)

0.696 (0.017)

0.796 (0.017)

0.698 (0.016)

0.796 (0.015)

0.698 (0.016)

0

9.84

1000 (8)

0.900 (0.006)

0.698 (0.017)

0.799 (0.013)

0.696 (0.015)

0.799 (0.014)

0.701 (0.015)

0

8.00

2011 (41)

−−
0.347 (0.010)

0.399 (0.010)

0.347 (0.010)

0.398 (0.010)

0.349 (0.010)

0

1011.83

1614 (28)

−−
0.432 (0.012)

0.496 (0.011)

0.434 (0.011)

0.496 (0.011)

0.434 (0.012)

0

614.63

1287 (16)

−−
0.543 (0.014)

0.622 (0.012)

0.542 (0.013)

0.623 (0.011)

0.546 (0.013)

0

287.44
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Table 4.14: [Simulation 1: case 2] Evolving natural tags with time specific capture probabili-
ties. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model EVt are from the conditional (on xall) approach.

Model EVt

least squares minimum χ2

Model Mt

conditional L

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

200

0.7

0.7

0.8

0.7

0.8

0.7

200

0.8

0.7

0.8

0.7

0.8

0.7

200

0.9

0.7

0.8

0.7

0.8

0.7

199 (5)

0.699 (0.021)

0.700 (0.042)

0.801 (0.038)

0.696 (0.039)

0.794 (0.037)

0.697 (0.049)

0

5.09

199 (4)

0.799 (0.019)

0.702 (0.038)

0.798 (0.034)

0.705 (0.044)

0.804 (0.034)

0.704 (0.039)

0

4.12

200 (4)

0.900 (0.015)

0.699 (0.040)

0.798 (0.035)

0.698 (0.039)

0.799 (0.039)

0.706 (0.043)

0

4.00

204 (5)

0.710 (0.020)

0.688 (0.034)

0.787 (0.036)

0.688 (0.035)

0.782 (0.037)

0.690 (0.036)

0

6.40

202 (4)

0.804 (0.018)

0.693 (0.035)

0.783 (0.035)

0.696 (0.040)

0.790 (0.034)

0.697 (0.035)

0

4.47

200 (4)

0.900 (0.013)

0.694 (0.034)

0.787 (0.033)

0.693 (0.034)

0.789 (0.032)

0.699 (0.035)

0

4.00

401 (17)

−−
0.349 (0.021)

0.400 (0.024)

0.348 (0.021)

0.397 (0.022)

0.348 (0.023)

0

201.71

323 (12)

−−
0.433 (0.024)

0.493 (0.025)

0.435 (0.028)

0.497 (0.025)

0.435 (0.025)

0

123.58

257 (7)

−−
0.544 (0.025)

0.621 (0.028)

0.543 (0.029)

0.621 (0.029)

0.547 (0.029)

0

57.42
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Table 4.15: [Simulation 1: case 3] Evolving natural tags with time specific capture probabili-
ties. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model EVt are from the conditional (on xall) approach.

Model EVt

least squares minimum χ2

Model Mt

conditional L

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

1000

0.7

0.3

0.2

0.3

0.2

0.3

1000

0.8

0.3

0.2

0.3

0.2

0.3

1000

0.9

0.3

0.2

0.3

0.2

0.3

1019 (184)

0.711 (0.094)

0.304 (0.053)

0.203 (0.039)

0.303 (0.057)

0.202 (0.038)

0.307 (0.055)

0

184.97

1016 (156)

0.811 (0.096)

0.303 (0.052)

0.202 (0.037)

0.302 (0.050)

0.200 (0.035)

0.302 (0.048)

0

156.81

1010 (114)

0.905 (0.076)

0.302 (0.036)

0.200 (0.026)

0.300 (0.039)

0.202 (0.028)

0.300 (0.040)

0

114.43

985 (141)

0.706 (0.076)

0.312 (0.045)

0.211 (0.032)

0.312 (0.046)

0.213 (0.033)

0.317 (0.043)

0

141.79

967 (128)

0.796 (0.082)

0.319 (0.047)

0.216 (0.033)

0.319 (0.044)

0.215 (0.033)

0.318 (0.043)

0

132.18

979 (112)

0.894 (0.074)

0.314 (0.039)

0.211 (0.026)

0.312 (0.039)

0.212 (0.028)

0.311 (0.039)

0

113.95

1568 (65)

−−
0.191 (0.013)

0.128 (0.009)

0.191 (0.011)

0.129 (0.009)

0.194 (0.012)

0

571.70

1326 (47)

−−
0.227 (0.012)

0.152 (0.011)

0.227 (0.014)

0.151 (0.012)

0.227 (0.013)

0

329.37

1150 (34)

−−
0.262 (0.014)

0.174 (0.013)

0.261 (0.014)

0.175 (0.013)

0.260 (0.015)

0

153.80
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Table 4.16: [Simulation 1: case 4] Evolving natural tags with time specific capture probabili-
ties. Average estimates (with standard errors in parentheses) based on 100 simulated data sets.
Estimates under Model EVt are from the conditional (on xall) approach.

Model EVt

least squares minimum χ2

Model Mt

conditional L

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

200

0.7

0.3

0.2

0.3

0.2

0.3

200

0.8

0.3

0.2

0.3

0.2

0.3

200

0.9

0.3

0.2

0.3

0.2

0.3

209 (65)

0.735 (0.163)

0.305 (0.102)

0.212 (0.072)

0.320 (0.105)

0.214 (0.070)

0.318 (0.107)

0

65.62

213 (55)

0.826 (0.161)

0.295 (0.084)

0.203 (0.066)

0.300 (0.087)

0.199 (0.065)

0.304 (0.099)

0

56.51

197 (39)

0.885 (0.128)

0.318 (0.086)

0.210 (0.064)

0.321 (0.077)

0.213 (0.060)

0.317 (0.089)

0

39.11

180 (39)

0.707 (0.114)

0.352 (0.080)

0.255 (0.060)

0.365 (0.081)

0.250 (0.056)

0.364 (0.090)

0

43.82

186 (40)

0.794 (0.128)

0.344 (0.076)

0.242 (0.059)

0.345 (0.083)

0.243 (0.064)

0.344 (0.079)

0

42.37

180 (33)

0.867 (0.110)

0.354 (0.072)

0.244 (0.055)

0.355 (0.078)

0.246 (0.058)

0.351 (0.079)

0

38.58

309 (27)

−−
0.191 (0.026)

0.134 (0.024)

0.198 (0.022)

0.132 (0.022)

0.198 (0.025)

0

112.29

271 (19)

−−
0.221 (0.027)

0.149 (0.024)

0.220 (0.031)

0.148 (0.022)

0.221 (0.027)

0

73.49

230 (14)

−−
0.263 (0.032)

0.173 (0.024)

0.263 (0.035)

0.175 (0.026)

0.261 (0.036)

0

33.10
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methods of unweighted least squares and minimum χ2, under Model EVt and maximum likelihood

(conditional on xall) under Model Mt. The results for cases 1 to 4 are summarized in Tables 4.17

- 4.20. The unconditional approach under Model EVt had numerical problems. Thus, we only

included the results from the conditional (on xall) approach in the Tables.

Again, we observed the same tendency; the performance of the Mt estimator improved as

the value of β increased. However, there was still some positive bias in N̂ if misidentification is

present, even when the misidentification rate was as low as 0.025 (relative bias > 5% and 3% for

α = 0.950 and 0.975, respectively). For high capture probability cases, the EVt estimators perform

well (relative bias < 1% and relative standard error < 2% for cases 1 and 2). However, for low

capture probability cases, some negative bias was noted in N̂ , especially for case 4 with minimum

χ2 (relative bias ≈ 10 − 13% and relative standard error ≈ 12 − 14%). Also, the performance of

estimators under Model EVt was not as good as the performance of the Model Mt estimator for

low capture probability cases.

4.4 Discussion

For both non-evolving natural tags 2 and evolving natural tags, we observed the same ten-

dencies in performance of the estimators. The N̂ were positively biased if misidentification was

ignored, and the bias could be substantial if the misidentification rate was high. In general, the

estimators under Model NE2 and Model EV performed well for the cases with high capture proba-

bility. However, estimators of N̂ had substantial bias for the cases of low capture probability, and

the bias tended to be negative for the low misidentification cases. Also, cases with misidentification

rates as low as 0.025, the performance of the NE2 and EV estimators was not as good as that of

the Model Mt estimator, especially for low capture probability cases. It is probably a reasonable

observation that as capture probability becomes lower, we do not capture enough animals to have

enough information to estimate the correct identification rate in addition to the capture probabil-

ities, and the simpler model, Model Mt, has advantages. In addition, as the correct identification

rate increases, the capture-recapture data contain fewer misidentifications. Consequently, data do

not contain much information on the misidentification rate.

In this chapter, we focused on two factors that can lead to misidentification in photographic

tag-based capture-recapture studies: poor quality of photographs and changes in natural marks.
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Table 4.17: [Simulation 2: case 1] Evolving natural tags with time specific capture probabilities
(high α). Average estimates (with standard errors in parentheses) based on 100 simulated data
sets. Estimates under Model EVt are from the conditional (on xall) approach.

Model EVt

least squares minimum χ2

Model Mt

conditional L

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

1000

0.950

0.7

0.8

0.7

0.8

0.7

1000

0.975

0.7

0.8

0.7

0.8

0.7

1000

1.000

0.7

0.8

0.7

0.8

0.7

1000 (8)

0.950 (0.005)

0.697 (0.019)

0.799 (0.018)

0.700 (0.018)

0.800 (0.015)

0.700 (0.018)

0

8.00

999 (7)

0.975 (0.004)

0.699 (0.020)

0.800 (0.014)

0.697 (0.019)

0.802 (0.015)

0.702 (0.020)

0

7.07

998 (4)

0.999 (0.001)

0.702 (0.018)

0.801 (0.014)

0.700 (0.016)

0.799 (0.016)

0.701 (0.016)

0

4.47

1001 (6)

0.950 (0.005)

0.695 (0.015)

0.796 (0.014)

0.698 (0.015)

0.797 (0.014)

0.698 (0.015)

0

6.08

998 (6)

0.974 (0.004)

0.697 (0.016)

0.798 (0.013)

0.696 (0.014)

0.799 (0.014)

0.701 (0.015)

0

6.32

999 (3)

0.999 (0.001)

0.698 (0.014)

0.798 (0.012)

0.698 (0.014)

0.797 (0.013)

0.698 (0.013)

0

3.16

1139 (11)

−−
0.612 (0.014)

0.702 (0.011)

0.615 (0.014)

0.702 (0.013)

0.614 (0.014)

0

139.43

1068 (8)

−−
0.653 (0.015)

0.749 (0.013)

0.653 (0.014)

0.750 (0.013)

0.657 (0.014)

0

68.46

1001 (1)

−−
0.699 (0.014)

0.801 (0.012)

0.699 (0.014)

0.799 (0.013)

0.699 (0.013)

0

1.41
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Table 4.18: [Simulation 2: case 2] Evolving natural tags with time specific capture probabilities
(high α). Average estimates (with standard errors in parentheses) based on 100 simulated data
sets. Estimates under Model EVt are from the conditional (on xall) approach.

Model EVt

least squares minimum χ2

Model Mt

conditional L

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

200

0.950

0.7

0.8

0.7

0.8

0.7

200

0.975

0.7

0.8

0.7

0.8

0.7

200

1.000

0.7

0.8

0.7

0.8

0.7

199 (3)

0.950 (0.012)

0.697 (0.040)

0.797 (0.036)

0.702 (0.045)

0.802 (0.033)

0.705 (0.041)

0

3.16

199 (3)

0.974 (0.009)

0.704 (0.042)

0.797 (0.032)

0.698 (0.039)

0.800 (0.037)

0.704 (0.045)

0

3.16

199 (2)

0.997 (0.004)

0.709 (0.044)

0.802 (0.033)

0.697 (0.041)

0.804 (0.034)

0.700 (0.045)

0

2.23

199 (3)

0.949 (0.011)

0.692 (0.031)

0.783 (0.030)

0.696 (0.039)

0.790 (0.032)

0.696 (0.034)

0

3.16

199 (3)

0.973 (0.009)

0.695 (0.033)

0.787 (0.030)

0.693 (0.032)

0.787 (0.032)

0.696 (0.032)

0

3.16

199 (1)

0.998 (0.003)

0.696 (0.036)

0.789 (0.026)

0.691 (0.032)

0.790 (0.029)

0.692 (0.031)

0

1.41

228 (5)

−−
0.613 (0.029)

0.698 (0.028)

0.616 (0.034)

0.704 (0.028)

0.616 (0.030)

0

28.44

214 (3)

−−
0.654 (0.030)

0.747 (0.030)

0.653 (0.031)

0.746 (0.030)

0.658 (0.030)

0

14.31

201 (1)

−−
0.703 (0.036)

0.800 (0.028)

0.696 (0.033)

0.801 (0.030)

0.697 (0.033)

0

1.41
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Table 4.19: [Simulation 2: case 3] Evolving natural tags with time specific capture probabilities
(high α). Average estimates (with standard errors in parentheses) based on 100 simulated data
sets. Estimates under Model EVt are from the conditional (on xall) approach.

Model EVt

least squares minimum χ2

Model Mt

conditional L

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

1000

0.950

0.3

0.2

0.3

0.2

0.3

1000

0.975

0.3

0.2

0.3

0.2

0.3

1000

1.000

0.3

0.2

0.3

0.2

0.3

979 (93)

0.936 (0.064)

0.311 (0.039)

0.208 (0.027)

0.310 (0.036)

0.205 (0.027)

0.308 (0.036)

0

95.34

972 (70)

0.957 (0.051)

0.311 (0.026)

0.207 (0.021)

0.311 (0.028)

0.209 (0.021)

0.309 (0.030)

0

75.39

965 (61)

0.974 (0.041)

0.315 (0.030)

0.209 (0.020)

0.314 (0.027)

0.207 (0.023)

0.312 (0.029)

0

70.32

954 (84)

0.927 (0.060)

0.320 (0.035)

0.216 (0.025)

0.320 (0.034)

0.216 (0.025)

0.319 (0.033)

0

95.77

959 (75)

0.954 (0.054)

0.318 (0.029)

0.214 (0.021)

0.316 (0.030)

0.214 (0.022)

0.316 (0.030)

0

85.47

948 (58)

0.968 (0.041)

0.323 (0.026)

0.216 (0.020)

0.319 (0.025)

0.214 (0.020)

0.321 (0.026)

0

77.89

1069 (32)

−−
0.282 (0.015)

0.188 (0.013)

0.281 (0.016)

0.188 (0.014)

0.281 (0.014)

0

76.05

1032 (27)

−−
0.292 (0.015)

0.194 (0.014)

0.290 (0.015)

0.195 (0.014)

0.290 (0.017)

0

41.86

1001 (22)

−−
0.303 (0.016)

0.200 (0.014)

0.299 (0.017)

0.199 (0.014)

0.301 (0.016)

0

22.02
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Table 4.20: [Simulation 2: case 4] Evolving natural tags with time specific capture probabilities
(high α). Average estimates (with standard errors in parentheses) based on 100 simulated data
sets. Estimates under Model EVt are from the conditional (on xall) approach.

Model EVt

least squares minimum χ2

Model Mt

conditional L

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

N

β

p1

p2

p3

p4

p5

no. not conv.

�
MSE(N̂)

200

0.950

0.3

0.2

0.3

0.2

0.3

200

0.975

0.3

0.2

0.3

0.2

0.3

200

1.000

0.3

0.2

0.3

0.2

0.3

190 (32)

0.908 (0.104)

0.318 (0.066)

0.223 (0.055)

0.328 (0.075)

0.216 (0.053)

0.326 (0.081)

0

33.52

188 (29)

0.928 (0.100)

0.328 (0.074)

0.216 (0.056)

0.333 (0.066)

0.220 (0.053)

0.325 (0.075)

0

31.38

185 (27)

0.939 (0.092)

0.341 (0.081)

0.225 (0.053)

0.336 (0.071)

0.226 (0.054)

0.327 (0.079)

0

30.88

179 (27)

0.899 (0.092)

0.349 (0.060)

0.246 (0.050)

0.350 (0.070)

0.247 (0.055)

0.350 (0.067)

0

34.20

177 (25)

0.918 (0.087)

0.356 (0.061)

0.245 (0.049)

0.357 (0.068)

0.247 (0.050)

0.353 (0.066)

0

33.97

177 (25)

0.930 (0.087)

0.364 (0.073)

0.252 (0.047)

0.358 (0.067)

0.245 (0.050)

0.352 (0.071)

0

33.97

216 (13)

−−
0.277 (0.033)

0.187 (0.030)

0.276 (0.037)

0.185 (0.029)

0.276 (0.034)

0

20.61

207 (10)

−−
0.292 (0.035)

0.192 (0.025)

0.292 (0.039)

0.195 (0.028)

0.289 (0.038)

0

12.20

203 (11)

−−
0.303 (0.039)

0.202 (0.027)

0.297 (0.036)

0.196 (0.034)

0.293 (0.039)

0

11.40



Chapter 4. Photographic Tag-based Capture-Recapture Studies 156

In general, in photographic tag-based capture-recapture studies, there could be a multiplicative

effect of these two types of misidentification mechanisms. Although it may be necessary to have a

more complex structure depending on the study, a simple way to consider both effects is to have

probability of correct identification = αβ. For those studies that use non-evolving natural tags,

we only need to consider misidentification risk due to poor quality of photographs (i.e., we can

assume β = 1), and Model NE2 is a reasonable model to analyze such data. Although we used

an oversimplified scenario to develop a model for studies that use evolving natural tags (i.e., we

assumed that α = 1), in reality, the misidentification issue for those studies is more complicated

because neither α nor β should be treated as 1. It is an important next step to develop a clear

framework to analyze data that have both types of misidentification mechanisms, or develop study

designs that can eliminate one or the other type of error.

Poor quality photographs are usually discarded in photographic tag-based capture-recapture

studies, thus reducing the sample size and capture probabilities greatly. On the other hand,

Models NE1 and NE2 allow for misidentification that is related to quality of photographs, thus

marginal quality photographs can be included in capture-recapture study. Both misidentification

mechanisms are applicable to photographic tag-based capture-recapture studies, and it is left for

researchers to decide which misidentification mechanism is more likely in the study. It is an

interesting future research topic to examine the cost and benefit of inclusion of marginal quality

photographs.

Evolving natural tags have additional complicated aspects that need to be addressed in future

research. For example, for evolving natural tags, it is more realistic to assume that the probability

of misidentification is greater (i.e., smaller β) for an animal that is not observed for a longer period

of time because it gives more chance for natural marks to be modified or lost. We considered

only the case that the probability of misidentification is constant for all sampling occasions and

all animals to simplify the scenario in this chapter, and it is probably a reasonable assumption in

closed population model time scale. However, one way to relax this assumption is to simply define

β to be the probability that the existing natural mark undergoes a change between two sampling

occasions rather than two consecutive capture events. For example, the probability of observing

[101] given that true capture history would be [101] is p1(1−p2)βp3β. Alternatively, we can define

the probability of correct identification in relation to the number of consecutive non-capture events:

define parameters βi where i indicates number of consecutive non-capture sampling occasions, and
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assume that β0 > β1 > · · · > βK−2. For example, the probability of observing an animal with

capture history [111] given that the animal has true capture history [111] is p1p2β0p3β0 whereas

that of [101] given that animal has true capture history [101] is p1(1−p2)p3β1. On the other hand,

if the probability of misidentification is greater for animals that are not observed for a longer period

of time, then the effects of misidentification can be more serious with long-term studies. Extension

of misidentification models to open population models, and relaxation of assumption of constant

misidentification rate are also important future research topics, especially for evolving natural tags.

The conditional likelihood approach we considered in Chapter 3 can be applied to non-evolving

natural tags 2 in the same manner. However, the approach is not practical for evolving natural

tags. The essence of the conditional likelihood approach is to eliminate ghost capture histories while

minimizing the elimination of real capture histories. With evolving natural tags, ghost capture

histories appear in all observed capture histories except for the ones that have capture event at

the first sampling occasion (see Appendix A.1 - A.3). Consequently, elimination of ghost capture

histories results in elimination of most part of data.

We here excluded the possibility that misidentification consists of assigning the identity of a

different animal in the population to the captured animal. Considering the number of different

DNA fingerprints that can be created through errors, there is a very small chance that a DNA

fingerprint that is created by error will be the same as the true DNA fingerprint of another animal.

Thus, it is a reasonable assumption for genetic tag-based capture-recapture studies. However, there

seems to be a greater chance that misidentification may lead to identification of existing animals

in the population with photographic tag-based studies. For example, visible natural marks of

different animals may look similar, and such misidentification may lead to the false identification

of an existing animal in the population. Also, changes in natural marks may not be obvious,

thus both real and ghost capture histories of the animal could be recaptured in the future. These

additional aspects are also interesting future research topics. In addition, photographic tag-based

capture-recapture studies can also have a problem with multiple captures of an animal at a sampling

occasion. For example, multiple photographs of an animals can be taken, and there is a risk of

multiple misidentification of an animal, leading to creation of extra ghost capture histories. As

indicated in Chapter 2, this problem with multiple captures is not covered under Models NE2 and

EV, and this aspect needs to be investigated as a future research topic.

Finally, there has been a tendency to consider that misidentification issues with genetic tag-



Chapter 4. Photographic Tag-based Capture-Recapture Studies 158

and photographic tag-based capture-recapture studies are similar. However, there are differences

in the misidentification mechanism, as we described. In addition, there are many factors that affect

misidentification, such as types of natural tags used, species studied, study design applied, and so

on. It is important to keep in mind that the misidentification mechanism can be very specific to

the study, and effects on estimates can be substantial if it not appropriately accounted for.
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Summaries of the Marginal
Probabilities in a 5-Sample Study
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Table A.1: A summary of the marginal probabilities of the observable capture histories, γ, for
non-evolving natural tags 1 in a 5-sample study.

γ

(observed history)
Pr[γ]

11111 P ′
1 P ′

2 P ′
3 P ′

4 P ′
5

11110 P ′
1 P ′

2 P ′
3 P ′

4 Q′
5

11101 P ′
1 P ′

2 P ′
3 Q′

4 P ′
5

11100 P ′
1 P ′

2 P ′
3 Q′

4 Q′
5

11011 P ′
1 P ′

2 Q′
3 P ′

4 P ′
5

11010 P ′
1 P ′

2 Q′
3 P ′

4 Q′
5

11001 P ′
1 P ′

2 Q′
3 Q′

4 P ′
5

11000 P ′
1 P ′

2 Q′
3 Q′

4 Q′
5

10111 P ′
1 Q′

2 P ′
3 P ′

4 P ′
5

10110 P ′
1 Q′

2 P ′
3 P ′

4 Q′
5

10101 P ′
1 Q′

2 P ′
3 Q′

4 P ′
5

10100 P ′
1 Q′

2 P ′
3 Q′

4 Q′
5

10011 P ′
1 Q′

2 Q′
3 P ′

4 P ′
5

10010 P ′
1 Q′

2 Q′
3 P ′

4 Q′
5

10001 P ′
1 Q′

2 Q′
3 Q′

4 P ′
5

10000 P ′
1 Q′

2 Q′
3 Q′

4 Q′
5 + p1(1 − α)

01111 Q′
1 P ′

2 P ′
3 P ′

4 P ′
5

01110 Q′
1 P ′

2 P ′
3 P ′

4 Q′
5

01101 Q′
1 P ′

2 P ′
3 Q′

4 P ′
5

01100 Q′
1 P ′

2 P ′
3 Q′

4 Q′
5

01011 Q′
1 P ′

2 Q′
3 P ′

4 P ′
5

01010 Q′
1 P ′

2 Q′
3 P ′

4 Q′
5

01001 Q′
1 P ′

2 Q′
3 Q′

4 P ′
5

01000 Q′
1 P ′

2 Q′
3 Q′

4 Q′
5 + p2(1 − α)

00111 Q′
1 Q′

2 P ′
3 P ′

4 P ′
5

00110 Q′
1 Q′

2 P ′
3 P ′

4 Q′
5

00101 Q′
1 Q′

2 P ′
3 Q′

4 P ′
5

00100 Q′
1 Q′

2 P ′
3 Q′

4 Q′
5 + p3(1 − α)

00011 Q′
1 Q′

2 Q′
3 P ′

4 P ′
5

00010 Q′
1 Q′

2 Q′
3 P ′

4 Q′
5 + p4(1 − α)

00001 Q′
1 Q′

2 Q′
3 Q′

4 P ′
5 + p5(1 − α)

00000 Q′
1 Q′

2 Q′
3 Q′

4 Q′
5
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Table A.2: A summary of the marginal probabilities of the observable capture histories, γ, for
non-evolving natural tags 2 in a 5-sample study.

γ

(observed history)
Pr[γ]

11111 p1 P ′
2 P ′

3 P ′
4 P ′

5

11110 p1 P ′
2 P ′

3 P ′
4 Q′

5

11101 p1 P ′
2 P ′

3 Q′
4 P ′

5

11100 p1 P ′
2 P ′

3 Q′
4 Q′

5

11011 p1 P ′
2 Q′

3 P ′
4 P ′

5

11010 p1 P ′
2 Q′

3 P ′
4 Q′

5

11001 p1 P ′
2 Q′

3 Q′
4 P ′

5

11000 p1 P ′
2 Q′

3 Q′
4 Q′

5

10111 p1 Q′
2 P ′

3 P ′
4 P ′

5

10110 p1 Q′
2 P ′

3 P ′
4 Q′

5

10101 p1 Q′
2 P ′

3 Q′
4 P ′

5

10100 p1 Q′
2 P ′

3 Q′
4 Q′

5

10011 p1 Q′
2 Q′

3 P ′
4 P ′

5

10010 p1 Q′
2 Q′

3 P ′
4 Q′

5

10001 p1 Q′
2 Q′

3 Q′
4 P ′

5

10000 p1 Q′
2 Q′

3 Q′
4 Q′

5

01111 (1 − p1) p2 P ′
3 P ′

4 P ′
5

01110 (1 − p1) p2 P ′
3 P ′

4 Q′
5

01101 (1 − p1) p2 P ′
3 Q′

4 P ′
5

01100 (1 − p1) p2 P ′
3 Q′

4 Q′
5

01011 (1 − p1) p2 Q′
3 P ′

4 P ′
5

01010 (1 − p1) p2 Q′
3 P ′

4 Q′
5

01001 (1 − p1) p2 Q′
3 Q′

4 P ′
5

01000 (1 − p1) p2 Q′
3 Q′

4 Q′
5 + p1p2(1 − α)

00111 (1 − p1) (1 − p2) p3 P ′
4 P ′

5

00110 (1 − p1) (1 − p2) p3 P ′
4 Q′

5

00101 (1 − p1) (1 − p2) p3 Q′
4 P ′

5

00100 (1 − p1) (1 − p2) p3 Q′
4 Q′

5 + [p1+(1 − p1)p2]p3(1 − α)

00011 (1 − p1) (1 − p2) (1 − p3) p4 P ′
5

00010 (1 − p1) (1 − p2) (1 − p3) p4 Q′
5

+ [p1+(1 − p1)p2+(1 − p1)(1 − p2)p3]p4(1 − α)

00001 (1 − p1) (1 − p2) (1 − p3) (1 − p4) p5

+ [p1 + (1 − p1)p2 + (1 − p1)(1 − p2)p3 + (1 − p1)(1 − p2)(1 − p3)p4]p5(1 − α)

00000 (1 − p1) (1 − p2) (1 − p3) (1 − p4) (1 − p5)
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Table A.3: A summary of the marginal probabilities of the observable capture histories, γ, for
evolving natural tags in a 5-sample study.

γ

(observed history)
Pr[γ]

11111 p1 P ′
2 P ′

3 P ′
4 P ′

5

11110 p1 P ′
2 P ′

3 P ′
4 Q′

5

11101 p1 P ′
2 P ′

3 Q′
4 P ′

5

11100 p1 P ′
2 P ′

3 Q′
4

11011 p1 P ′
2 Q′

3 P ′
4 P ′

5

11010 p1 P ′
2 Q′

3 P ′
4 Q′

5

11001 p1 P ′
2 Q′

3 Q′
4 P ′

5

11000 p1 P ′
2 Q′

3

10111 p1 Q′
2 P ′

3 P ′
4 P ′

5

10110 p1 Q′
2 P ′

3 P ′
4 Q′

5

10101 p1 Q′
2 P ′

3 Q′
4 P ′

5

10100 p1 Q′
2 P ′

3 Q′
4

10011 p1 Q′
2 Q′

3 P ′
4 P ′

5

10010 p1 Q′
2 Q′

3 P ′
4 Q′

5

10001 p1 Q′
2 Q′

3 Q′
4 P ′

5

10000 p1 Q′
2

01111 (1 − p1) p2 P ′
3 P ′

4 P ′
5 + p1p2(1 − α)P ′

3P
′
4P

′
5

01110 (1 − p1) p2 P ′
3 P ′

4 Q′
5 + p1p2(1 − α)P ′

3P
′
4Q

′
5

01101 (1 − p1) p2 P ′
3 Q′

4 P ′
5 + p1p2(1 − α)P ′

3Q
′
4P

′
5

01100 (1 − p1) p2 P ′
3 Q′

4 + p1p2(1 − α)P ′
3Q

′
4

01011 (1 − p1) p2 Q′
3 P ′

4 P ′
5 + p1p2(1 − α)Q′

3P
′
4P

′
5

01010 (1 − p1) p2 Q′
3 P ′

4 Q′
5 + p1p2(1 − α)Q′

3P
′
4Q

′
5

01001 (1 − p1) p2 Q′
3 Q′

4 P ′
5 + p1p2(1 − α)Q′

3Q
′
4P

′
5

01000 (1 − p1) p2 Q′
3 + p1p2(1 − α)Q′

3

00111 (1 − p1) (1 − p2) p3 P ′
4 P ′

5 + [p1 + (1 − p1)p2]p3(1 − α)P ′
4P

′
5

00110 (1 − p1) (1 − p2) p3 P ′
4 Q′

5 + [p1 + (1 − p1)p2]p3(1 − α)P ′
4Q

′
5

00101 (1 − p1) (1 − p2) p3 Q′
4 P ′

5 + [p1 + (1 − p1)p2]p3(1 − α)Q′
4P

′
5

00100 (1 − p1) (1 − p2) p3 Q′
4 + [p1 + (1 − p1)p2]p3(1 − α)Q′

4

00011 (1 − p1) (1 − p2) (1 − p3) p4 P ′
5

+ [p1 + (1 − p1)p2 + (1 − p1)(1 − p2)p3]p4(1 − α)P ′
5

00010 (1 − p1) (1 − p2) (1 − p3) p4 Q′
5

+ [p1 + (1 − p1)p2 + (1 − p1)(1 − p2)p3]p4(1 − α)Q′
5

00001 (1 − p1) (1 − p2) (1 − p3) (1 − p4) p5

+ [p1 + (1 − p1)p2 + (1 − p1)(1 − p2)p3 + (1 − p1)(1 − p2)(1 − p3)p4]p5(1 − α)

00000 (1 − p1) (1 − p2) (1 − p3) (1 − p4) (1 − p5)


