
ABSTRACT

HAN, TAE SIK. Efficient Subsequence Matching with LCS . (Under the direction of As-
sistant Professor Jaewoo Kang.)

Advances in sensors and wireless network technologies have produced many sensor net-

work applications. In a typical setting, a large number of different types of sensors are deployed

over a wide area. The sensor streams generated from individual sensors are then combined in a

server node, naturally forming a multivariable time series, and then saved in a storage system.

Searching and mining interesting patterns from this multivariable time series dataset is a key

challenge in time series analysis.

In this paper, we will propose an efficient subsequence matching method in a single channel

time series and extend the method to multivariable time series data. We propose a novel sub-

sequence matching framework using a non-Euclidean measure, in particular, LCS, and a new

index query scheme. The purpose of the subsequence matching is to find a query sequence in a

long range of data sequences. Due to the abundance of applications, many solutions have been

proposed. Virtually all previous solutions have used the Euclidean distance as the basis for

measuring distance between sequences. Recent studies, however, suggest that the Euclidean

distance often fails to produce proper results due to the irregularity in the data, which is not so

uncommon in our problem domain. Addressing this problem, some non-Euclidean measures,

such as Dynamic Time Warping (DTW) and Longest Common Subsequence (LCS) have been

proposed. However, most of the previous work in this direction focused on the whole sequence

matching problem where query and data sequences are of the same length.



The proposed framework is based on the Dual Match framework where data sequences are

divided into a series of disjoint equi-length subsequences which are then indexed in an R-tree.

We introduced a new way to compute the similarity bound in the index matching framework

using LCS. The proposed query matching scheme that is named as multiple window sliding

scheme, reduces many false alarms encountered in the previous approaches. We also developed

an algorithm to skip expensive LCS computations by observing the warping paths.

We applied our subsequence matching framework to multivariable time series data. Multi-

variable stream data is ubiquitous today. Advances in sensors and wireless network technolo-

gies enable many sensor network applications, such as object tracking, surveillance, object

guarding, structural integrity monitoring of large constructions, to name a few. We extended

the proposed subsequence matching technique for a single channel time series to multivariable

time series data. Our experimental results on 48 datasets in a single channel and 14 in a mul-

tivariable time series suggest that our approach greatly enhances the subsequence matching

performance in various metrics.
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Chapter 1

Introduction

Advances in sensors and wireless network technologies have given rise to many sensor

network applications. In a typical setting, a large number of different types of sensors are

deployed over a wide area. The sensor streams generated from individual sensors are then

combined in a server node, naturally forming a multivariable time series, and then saved in a

storage system. The collected multivariable time series data in the sink node is interpreted by

the analysis module, and an event is matched. Searching and mining interesting patterns from

this multivariable time series dataset is a key challenge in a time series analysis. The collected

multivariable time series data in the sink node is interpreted by the analysis module, and an

event is matched. The use of multiple channels of signals would increase the accuracy and

usability of the analysis better than the use of single channel data.

Figure 1.1 shows an example of time series analysis for sleep apnea. Sleep apnea is a sleep

disorder characterized by pauses in breathing during sleep [2]. Three different data streams
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- heartbeat, chest volume, and blood oxygen concentration - are recorded in the time series

storage system [3]. There are many open problems regarding the apnea patient datasets. One

problem is to find different signals affect each other. Another problem is to determine how

episodes of sleep apnea can be predicted from the preceding data recorded by other patients.

Searching or comparing a new patient data against the previous dataset is a basic problem for

all analysis steps. It is hard to locate an input pattern within datasets because each dataset

collected from individual patients greatly varies in size and pattern.

In this paper, we will first begin with subsequence matching of a single channel time series

and then extend it to subsequence matching of a multivariable time series. One of the basic

problems in handling time series data is locating a pattern of interest from the long sequence of

input data [4–6]. The sequence matching problem has two major components: whole sequence

matching and subsequence matching. Whole sequence matching involves finding, within the

dataset, all sequence entries whose lengths are equal to the query length within the similarity

threshold specified by the user. For example, Figure 1.2 illustrates the way the whole sequence

matching works to find out how the orientation of the palm of the Australian Sign Language

signers is traced for the duration of several different words [7]. Each word of a different signer

is of the same length and is searched for a given query.

Subsequence matching includes finding all subsequences in a longer data sequence that

matches with the query. In Figure 1.3, which locates a query, the data sequence is explored

from the beginning to the end of the data. Subsequence matching is a more general problem

than the whole sequence matching problem. However, most of the previous work has focused
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on the whole sequence matching problem [4, 8, 9]. While applying whole sequence matching

techniques to the subsequence matching can be possible through the GEMINI [5] framework,

the application is not straightforward when non-Euclidean distance measures are used. The

Euclidean distance measure is sensitive to noise and, due to the irregular nature of the data

in sequence applications (e.g., moving object trajectories, query-by-humming, and etc.), non-

Euclidean measures are often more desirable. The non-Euclidean distance measures such as

Dynamic Time Warping (DTW) and Longest Common Subsequence (LCS) address some of

the problems that are characteristic of the Euclidean distance [8, 10].

In this work, we propose an efficient index searching framework for subsequence matching

using LCS. We choose LCS because it is known to be more robust against the noise in the data

than DTW [11,12]. Furthermore, no separate normalization process is needed to overcome the

difference of base unit of multivariable time series. To the best of our knowledge, no previous

work has considered LCS in the context of subsequence matching. We make the following

contributions:

• We have proposed a subsequence matching framework that employs a non-Euclidean

distance measure using LCS. The result is a more intuitive matching performance.

• We have formally introduced criteria to prune the search space when we use a time series

index with the LCS similarity function.

• We have introduced a new index query scheme, multiple window sliding, where several
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adjacent windows are queried and aggregated in order to improve the pruning power of

the index.

• We have proposed a new index search scheme that enables us to skip unnecessary simi-

larity computations of the consecutive matching subsequences.

• We have extended the technique to subsequence matching of multivariable time series

data.
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Chapter 2

Background and Related Work

2.1 Notational Conventions

In order to state the problem and concepts clearly, we define some notations and terminolo-

gies in Table 2.1. In our work, we assume that a time series is a sequence of real numbers and

each real number element is collected from a sensor device. A subsequence is a subset of a

time series in contiguous time stamps.

Table 2.1: The Basic Notation
B A time series data sequence, < b1, b2, . . . , bn > , each

bi is a real number at the ith time stamp.
|B| Length of the sequence B
Bi A subsequence of B when B is divided into disjoint

subsequences of an equal length
Q A query sequence, usually |Q| ¿ |B|

B[i : j] A subsequence of B from time stamp i to j
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Figure 2.1: Two Subsequence Matching Frameworks

2.2 Subsequence Matching Framework (Dual Match vs. FRM)

There are two subsequence matching frameworks: FRM [5] 1 and Dual Match [6]. Both of

the matching processes are illustrated in Figure 2.1. Let n be the number of data points and w

be the size of an index window. In FRM, the data sequence is divided into n − w + 1 sliding

windows. Figure 2.1 (a) shows the FRM indexing step. Every window overlaps with the next

window except for the first data point. Query Q is divided into disjoint windows, Figure 2.1

(b), and each window is to be matched against the sliding windows of the data sequence, Figure

2.1 (c). In the Dual Match framework, the data sequence is divided into disjoint windows, like

in Figure 2.1 (d), and part of the query in its sliding window is matched to the data indexes,

1It is named after its authors.
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Figure 2.1 (e) and (f). Since the Dual Match does not allow any overlap of the index windows,

it needs less space for an index, and consequently spends less index searching time than FRM.

Through the index matching, we get a set of candidate data for the matching, and the actual

similarity or distance is computed. Since the length of the data is usually very long, the Dual

Match framework reduces the indexing efforts. We employ the Dual Match as our indexing

scheme.

2.3 Dual Match Subsequence Matching with Euclidean Dis-

tance

Dual Match consists of the following three steps:

• First, in the indexing step, data is decomposed into disjoint windows and each window

is represented by a multi-dimensional vector. They are stored in a spatial index structure

like an R-tree [13] or R*-tree [14].

• Second, the query sequence is transformed into the same dimensional representations in

the sliding windows. The size of the sliding window is the same as that of the index. It

is proven that if the length of the query is at least twice as long as the index length, one

of the sliding windows in the query is matched to a data index [6]. The index matching

always returns a superset of the true matching intervals because the similarity of the

index and query sliding window is always greater than or equals to the similarity of the

true match.
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• Lastly, depending on the positions of the matching sliding windows, whole matching

intervals are determined and actual similarities are computed.

2.4 Non-Euclidean Distance DTW and LCS

Non-Euclidean similarity measures, such as DTW [12, 15–18] and LCS [10, 19], are useful

when we are comparing two time series data sequences that share patterns similar in shapes but

irregular in size. Both use dynamic programming algorithms to compute optimal value based

on a recursive definition of the solution [16–18]. DTW is an algorithm used to find warping

paths of the two time series by computing minimum accumulative distance. The cumulative

distance of the two time series sequence is defined as below.

Definition 1 [10] Let Q=< q1, q2, ...qn > be a query and B=< b1, b2, ...bn > be a data

subsequence of time series. The cumulative distance ρi,j is defined as ρi,j(Q,B) = d(qi, bj) +

min(ρi−1,j, ρi,j−1, ρi−1,j−1). Then, DTW (Q,B) = ρ|Q|,|B|.

DTW was introduced to the time series research community by [15]. Figure 2.2 is an exam-

ple of DTW computation. It also compares DTW to the Euclidean distance of two sequences.

This original DTW algorithm has a greater time complexity than the popular Euclidean dis-

tance function. DTW has O(n2) time complexity when two time series are of the same length

n. It is reduced O(δn) by restricting the greedy algorithm to search minimum distance within

±δ range of each time stamp. The distance is only computed within the diagonal band, the

Sakoe-Chiba band, of the width δ in the computation matrix [20]. The restricted area for opti-
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mal warping path is decided by δ. Another popular shape of the δ restriced area is the Itakura

band [21]. It has a diagonal diamond shape [21]. We chose the Sakoe-Chiba band for the ease

of computation. LCS and DTW share the same dynamic programming procedure to compute

the optimal warping path within the δ time interval. We chose LCS as our distance function

and the definition is given below.

Definition 2 [10] Let Q=< q1, q2, ...qn > be a query and B=< b1, b2, ...bn > be a data subse-

quence of time series. Given an integer δ and a real number 0 < ε <1, we define the cumulative

similarity γi,j(Q,B) or γi,j as follows:

γi,j =





0, if i, j = 0

1 + γi−1,j−1 if|qi − bj| ≤ ε

and |i− j| ≤ δ

max(γi,j−1, γi−1,j) otherwise

LCSδ,ε(Q,B) = γ|Q|,|B|

LCS of the two given data sequences is computed by dynamic programming. LCS(Q,B)

returns an integer from 0 to max(|Q|, |B|). δ is the allowable matching interval in the time

dimension and ε is the allowable error bound in the data value dimension. Here is an example

of LCS match for the two sequences A and B of the same length, where A = [0, 0, 0, 0, 0.8,

1, 0.9, 0.1, 0] and B = [0, 0.1, 0, 0.8, 1, 1, 0, 0, 0.1]. Figure 2.3(a) shows the LCS warping

path. Figure 2.3(b) shows the LCS computation process in the LCS warping path matrix. It

is constructed by dynamic programming of the cumulative similarity γ|A|,|B|. The non-zero
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Figure 2.4: Euclidean, DTW and LCS When Noise Involved

boxes in light color in the LCS warping path matrix of Figure 2.3(b) represent a Sakoe-Chiba

band [20].

LCS is known to be robust to the noise since it does not count the sequence values out of

the range, ε. In Figure 2.4, three distance functions are compared by an example. LCS was

not affected by noise as much as the other two distance functions. An alternative approach to

the noise problem is to use outlier detection algorithms in the pre-processing stage. It helps

subsequence matching by removing extreme values even though we use distance functions that

are not strong against the noise. However, extra time is required to scan the data in order to get

a correct statistics or analysis to identify outliers. [22–24]

2.5 Optimal Bounding for Index Matching

Many researchers did their best to find the optimal bound for efficient indexing of time

series data [25–27]. In [8, 28], the Euclidean distance between MBRs of the data sequence
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and the query MBE in PAA (Piecewise Aggregate Approximation) representation is a lower

bound for the DTW distance between the data and the query. MBE is a Minimum Bounding

Envelope that covers all the possible matching points. Enhancing this indexing method of [8],

a more efficient index matching scheme was developed by representing a query of the average

values of the MBRs in [9]. [10] introduced LCS to the whole sequence matching problem. The

number of intersecting time stamps of MBRs is an upper bound for the LCS similarity. This

work, however, is proposed not just for the subsequence matching problem but also for the

whole sequence matching using LCS .

2.6 Sequence Alignment

Subsequence matching is similar to the sequence alignment in bioinformatics in that both

compare two different sequences. The sequence alignment is used to arrange two DNA or RNA

sequences which consist of a small number of characters such as A,T,C and G. By identifying

similar regions of two different sequences, researchers try to explain functional or evolutionary

relationships of sequence owners. Depending on the number of sequences in a comparison, se-

quence matching is categorized into piecewise alignment and multiple sequence alignment. In

the piecewise alignment, there are two approaches: global alignment and local alignment. The

Needleman-Wunsch algorithm [29] is a global sequence alignment method. It is a dynamic

programming algorithm that computes the similarity of two sequences. Different from LCS

and DTW, it gives penalty for the unmatched regions. In local alignment, gaps of unmatched
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sequences reset the alignment. Matching (or alignment) is restarted whenever the algorithm

encounters unmatched subsequences. The Smith-Waterman algorithm [30] is a popular lo-

cal alignment method that employs negative penalty scoring system. Basic Local Alignment

Search Tool (BLAST) [31, 32] is one of the most useful algorithms for genomists to compare

amino-acid sequences or DNA sequences. BLAST is based on the Smith-Waterman algorithm

and it is modified by heuristics to enhance computational performance.

2.7 Other Related Work

To query by content is to find a portion of the data stream similar to a given sequence in

terms of a certain distance measure. [5, 9–11, 33, 34]. Classification and clustering are classic

data mining problems used to label an unknown instance of data based on the previously known

dataset [35, 36]. Motif discovery is a problem to identify frequently recurrent subsequences in

a given data sequence [37–43]. Rule discovery is an application in the next stage of the motif

or basic pattern discovery. Rule discovery finds relationships among subsequences in a given

time series data [44].
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Chapter 3

Subsequence Matching with LCS Using

Dual Match Index in Single Channel

3.1 Problem Statement

The purpose of the subsequence matching is to find subsequences similar to the given query

sequence. A subsequence matching framework with the Euclidean distance has been already

developed as we stated in the previous section. However, to the best of our knowledge, many

things have not yet been considered when applying a non-Euclidean function to the subse-

quence matching. We need to improve the index search performance, and we need to provide

an index matching criteria that avoids expensive computations caused by non-Euclidean mea-

sures.

In order to describe what the output of the subsequence matching should be, we define
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Figure 3.1: Matching Subsequences in Subsequence Matching

matching subsequences for a query sequence Q in terms of LCSδ,ε.

Definition 3 Let Q=< q1, q2, ...qm > be a query and B=< b1, b2, ...bn > be a data subsequence

of time series. Given an integer δ, a real number 0 < ε <1 and user defined similarity threshold

θ, we define the matching subsequences, M = {B[i : j] | LCSδ,ε(Q, B[i : j]) ≥ θ}

We restrict the scope of our work to searching for the longest possible matching subse-

quences of the length |Q|+ 2δ. Finding all the matches of all the lengths with a non-Euclidean

measure is time-consuming. It makes sense to find the longest matching subsequences since

they also include matching subsequences shorter than |Q| + 2δ. It is possible to search for

shorter matching subsequences after the search process for the longest ones has been com-

pleted. In Figure 3.1, all of the matching subsequences of the longest length, |Q| + 2δ, are

demonstrated in grey lines.

Problem : Find all matching subsequences B[i : j] of the length |Q| + 2δ for data

sequence B, and query Q such that the similarity LCSδ,ε(Q,B[i : j]) is no less than s% of the

|Q|, s
100
|Q|.

Solution Road Map : Here is a road map of solutions to the problem:
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Figure 3.2: Alignment with LCS when |Query| = 32 and |Data| = 48

• Index pruning criteria (bounding value) is computed to obtain candidates with LCS with-

out missing correct matches.

• When it comes to the index use, the number of candidates is decreased by summing up

the index search results.

• Adjacent matching intervals are efficiently skipped by observing the LCS matrix, which

allows more expensive similarity computations to be avoided.

3.2 Linear Search and Skipping LCS Computation

An intuitive approach to the subsequence matching is comparing the query sequence Q

to all of the candidate subsequences of the data sequence B in a sequential manner. All the

candidates are chosen by sliding a fixed size window along the data sequence.
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3.2.1 Alignment in LCS

When we compare the query Q to a candidate data subsequence of the length |Q| + 2δ,

we align the query in the middle of each candidate as illustrated in Figure 3.2 (b). In the case

of the whole sequence matching, alignment is not a problem since the query and data are of

the same length. However, in our subsequence matching, we need to locate the query in the

candidate subsequence. If we align the query to the left side of a candidate, we cannot find a

correct subsequence. In Figure 3.2(a), a shorter query is not matched well to the longer data

when aligned to the left. The right side of the query cannot be compared with the data since

the δ is not big enough to cover the matching points of the data. A larger δ needs a heavier

similarity computation. Figure 3.2 (a) shows that the query is correctly matched with the same

δ when aligned to the center.

3.2.2 Skipping LCS Computation

We can avoid expensive similarity computations of the adjacent subsequences by observing

the LCS warping path and the local constraint, such as the Sakoe-Chiba band. In the subse-

quence matching, we can think of the computation matrix as a moving window along the data

sequence, as in Figure 3.3.

Let us take a look at the following example. Let’s assume that |Q| = 4, and that a user wants

to find all the subsequences whose similarity is larger than or equal to 3. Figure 3.3(a) shows

that an LCS warping path is found and represented as a set of arrows. LCS(Q,B[1 : 6]) = 4.

Darker cells represent the Sakoe-Chiba band. In Figure 3.3 (b), we move a sliding window
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Figure 3.3: An Example of Skipping LCS Computation when |Q| = 4 and δ = 1

by a time stamp. The Sakoe-Chiba band still includes the warping path. In this case, we do

not have to compute the LCS(Q,B[2 : 7]) since the dynamic programming finds a maximum

warping path in the Sakoe-Chiba band and the LCS(Q,B[2 : 7]) must be larger than or equal

to 4. In Figure 3.3 (c), we need to compute LCS(Q, B[3 : 8]) since only one warping path

remains there.

We can skip a computation of a sliding window by tracing the warping path. If we find that

the Sakoe-Chiba band of the current LCS matrix includes the previous warping path greater

than or equal to the user-defined threshold, then we can skip the LCS computation. The skip-

ping goes until the Sakoe-Chiba band includes a warping path whose similarity is smaller than

the user-defined threshold. It is a useful asset to be used in order to reduce the expensive

similarity computation in the subsequence matching where the adjacent window usually has a

similar value.

Indexing enables us to avoid a number of false candidate subsequences for matching. We

compute the pruning criteria in order to choose candidate matching subsequences with LCS.

We also propose a new framework to search for the index in this section.
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3.3 Indexing

Data is divided into equi-length disjoint windows for the index. Each window is represented

by a multi-dimensional vector. That is, data sequence B is divided into equi-length disjoint

windows < wi >. Each window wi consists of N MBRs. Let N be the dimensionality of the

space we want to index. An MBR represents a dimension. N MBRs for a wi is transformed

into −→wi =< (ui1, . . . , uiN), (li1, . . . , liN) >, where uij and lij represent the maximum and

minimum values in the jth interval of wi. −→wi is stored in an N dimensional R-tree. An example

is illustrated in Figure 3.4 (a). In the figure, the data in the first window, w1 =< b1, ..., b9 >

is transformed into −→w1 =< (u11, u12, u13), (l11, l12, l13) >. It is stored in an R-tree as in Figure

3.4 (b).

3.4 Index Matching with LCS

A query Q is compared first to the index. Q is transformed into an MBE with the LCSδ,ε

function as illustrated in Figure 3.4 (d). Let MBEQ be an MBE for Q. Let the ith sliding

window of Q be vi. It is transformed into−→vi =< (ûi1, . . . , ûiN), (l̂i1, . . . , l̂iN) >, where ûij and

l̂ij , respectively, are the maximum and minimum values in MBEQ of the jth MBR of the vi.

This is illustrated in Figure 3.4 (e). Since MBEQ covers the entire possible matching area, any

point that lies outside the MBEQ is not counted for the similarity. The number of intersecting

points between B and MBEQ overestimates LCSδ,ε(B,Q) [10]. The number of intersections

is counted through an R-tree operation as in Figure 3.4 (b), which is a intersection of Figure
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3.4 (a) and Figure 3.4 (e).

3.5 Window Sliding Schemes in Index Matching

There are three ways to slide query windows and choose the candidate matching subse-

quences: Simple Single Window Sliding, Single Window Sliding, and Multiple Window Slid-

ing. We explain each window sliding scheme and show how the the bounding similarity is

computed.

3.5.1 Simple Single Window Sliding

In this scheme, as illustrated in Figure 3.5(a), we compare a sliding window of a query to

the index, which is first introduced in the Dual Match [45]. This overestimation method cannot

be applied to the LCS-based subsequence matching since it is based on the Euclidean distance.
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using LCS

We should consider δ on both ends of the query sliding window. In Figure 3.6 (a), a sliding

window v of a query Q is matched to a window w of the data sequence B. In actual index

matching, some points near the start and end of the query Q cannot be matched to those of w

as in Figure 3.6 (b). The data is just indexed by MBR that does not consider δ time shift.

We newly compute the similarity threshold for the simple single window sliding method.

Let us be reminded of our subsequence matching problem: find all the matching subsequence

B[i : j] of the length |Q| + 2δ in data sequence B such that the similarity LCSδ,ε(Q,B[i : j])
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is no less than s% of the |Q|, s
100
|Q|. Let v be a sliding window of Q. The minimum similarity,

θ is

θ = |v| − (|Q| − s

100
|Q|)− 2δ (3.1)

The term, (|Q|− s
100
|Q|), for the Equation (3.1) is subtracted from |v| when all the mismatches

can be found in the current window v. The last term 2δ is the maximum possible number of

the lost matching points.

3.5.2 Single Window Sliding

When the query length is long enough to contain more than one sliding window, we can use

the consecutive matching information as in Figure 3.5(b). Let us assume query Q and matching

subsequence B have M consecutive disjoint windows, Bi’s and Qi’s. If some Qi and Bi pairs

are not similar, then the other Qj and Bj pairs should be similar, and we can recognize the

B and Q pair as a candidate because of Bj and Qj . When all Bi and Qi pairs have the same

similarities, we should have the minimum value to establish the candidate for comparison. The

multiPiece search [5] is proposed to choose candidates through this process. It is the same for

the Euclidean distance measure. In the multiPiece, the two subsequences, B and Q, of the same

length are given, and each can be divided into p subsequences, each of which is of the length

l. d(B, Q) < ε ⇒ d(Bi, Qi) < ε√
p

for some 1 ≤ i ≤ p where Bi and Qi are ith subsequences

of length l and ε > 0. In the case of the Dual Match using Euclidean distance, we can count a

candidate if the distance is less than or equal to ε√
p
.

Similarly, in the case of LCS, LCSδ,ε(B,Q) > s
100
|Q| ⇒ LCSδ,ε(v,Q[i : j]) >

M |v|−(|Q|− s
100

|Q|)−2δ

M
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for some j − i + 1 = |v|. So the similarity threshold for single window sliding, θs, is

θs = |v| − (|Q| − s
100
|Q|) + 2δ

M
(3.2)

As illustrated in Figure 3.5(b), M consecutive sliding windows are thought to be one large

sliding window that might lose the warping path at both ends. The threshold for the M sliding

windows is M |v| − (|Q| − s
100
|Q|) − 2δ, and it is divided by M for one sliding window. If

one of the sliding windows among consecutive M sliding windows in Q is larger than or equal

to θs, we can obtain a candidate, and we do not have to do index matching for the remaining

consecutive sliding windows at the same candidate location.

3.5.3 Multiple Window Sliding

In this new window sliding scheme, as illustrated in Figure 3.5(c), the matching results of

consecutive sliding windows in a query are aggregated. If we sum up the index matching result

from M consecutive sliding windows, we can obtain fewer false candidates than when we use

only one window. Let M be the number of consecutive windows fitted in a query Q. We vary

M to contain the maximum number of sliding windows depending on the left-most window.

The index matching results of each sliding window for all disjoint data windows are added

up to get M consecutive sliding windows. In Figure 3.7, the aggregation is done by accumu-

lating the results in a vector A of the size |B|
w

. B is the data sequence and w is the length of an

index window. Let’s assume that < v1 . . . vM > is a series of consecutive windows in the query
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Figure 3.7: Index Matching Result

Q. The index matching results of a query window vj are placed in a temporary row vector in

Figure 3.7. It is added to A, and A is shifted right. The next matching result for vj+1 is placed

in the temporary row vector. It is added to A, and A is shifted right. In Figure 3.7, we get A

such that

A[1] = LCSδ,ε(
−→v1 ,

−→w1) + LCSδ,ε(
−→v 2,

−→w 2) + LCSδ,ε(
−→v 3,

−→w 3),

A[2] = LCSδ,ε(
−→v1 ,

−→w2) + LCSδ,ε(
−→v 2,

−→w 3) + LCSδ,ε(
−→v 3,

−→w 4),

...

A[m] = LCSδ,ε(
−→v1 ,

−−−→wm−2) + LCSδ,ε(
−→v 2,

−→w m−1) + LCSδ,ε(
−→v 3,

−→w m).

The shift operations aggregate the consecutive index matching results.

The similarity threshold for multiple sliding windows, θm, is computed as if the consecutive

M windows moved as one.

θm = M |v| − (|Q| − s

100
|Q|)− 2δ (3.3)
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θm is for an aggregate comparison of M consecutive sliding windows, while θs is for one

sliding window.

Using the aggregation of the consecutive index matching information, we can enhance the

pruning power of the index. That is, we have fewer false alarms than the single window sliding

scheme does. In Figure 3.7, the diagonal sum illustrates the aggregatation of the consecutive

index matching results. If θs = 8, the first, second, and the fifth diagonals are selected as the

candidates since one of the matches is greater than or equal to 8. However, in the case of the

multiple window sliding, if θm = 20, the fifth diagonal is not a candidate since the sum 12 is

less than 20, so it has fewer false alarms than the single window sliding scheme does.

3.6 Post-Processing and Skipping

3.6.1 Post-Processing

Post-processing is the final procedure to determine the whole length of the matching sub-

sequence depending on the position of the matching sliding window in a query. The actual

similarity computation should be performed for the whole interval of the subsequence against

the query. Figure 3.8 demonstrates the post-processing. We intentionally omit the adjacent

matching subsequences and show only one that matches. Through the index matching pro-

cess, matching indexes for each sliding window 1©, 2©, 3© are to be found and then the whole

length of the candidate subsequence is computed including 2δ area. In Figure 3.8, one candi-

date subsequence has an index matching area and the entire length of the match is determined



31

Query, Q

Actual Matching intervals

I3I1 I2

1

2

3

1 2
3

Data, B

Data, B

Query, Q

Actual Matching intervals

I3I1 I2

1

2

3

1 2
3

Data, B

Data, B

Figure 3.8: Postprocessing determines the entire lengths of the candidate subsequences

depending on the location of the sliding window in the query.

3.6.2 Skipping the LCS Computation

After determining the whole length of the candidate subsequences, skipping the LCS com-

putation is applied to reduce the computational load. Subsequence matching cannot avoid

many adjacent matching subsequences where one subsequence is found. By tracing the warp-

ing path of the matching subsequences in its LCS warping path matrix, we can reduce the LCS

computation.

3.7 Experiment of Single Channel Time Series Dataset

Experiments were conducted on a machine with a 2.8 GHz Pentium 4 processor and 2GB

memory using Matlab 2006a and Java. Here are the parameters to run the tests:

• Dataset: We have used 48 different time series datasets1 for evaluation. Each dataset
1http://www.cs.ucr.edu/ eamonn/TSDMA/UCR, The UCR Time Series Data Mining Archive
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has a different data length and a different number of channels. We set the length of each

to 100,000 by attaching the beginning to the end so that all the datasets have the same

length.

• Index: We set the dimension to 8 and MBR size to 4. Determining the sizes of the

dimension, MBR and R-tree requires domain knowledge.

• Query: We choose 4 fixed lengths of queries, 100, 150, 180, and 200, so that each length

includes 3, 4, 5 and 6 windows. Ten queries for each length are randomly selected from

the data sequence.

• Similarity: ε is set to 1 % of the data range, and δ is set to 2.5 % of the |Q|. Similarity

threshold S is set to 99% of the |Q|.

3.7.1 Different Sliding Schemes and Candidates

We compare the performance of the two different index sliding schemes, namely, the sin-

gle window sliding and the multiple window sliding scheme. Figure 3.9 shows the ratios,

# of candidates by single windows sliding
# of candidates by multiple windows sliding for different lengths of queries of each dataset. Ratios greater

than one means the multiple window sliding scheme generates fewer candidates than those of

the single window sliding scheme. The multiple window sliding scheme has fewer false alarms

than the single window sliding scheme in the tests. The ratio varies from 1 to 140. The multiple

sliding window scheme generates candidates only 1
140

of the single window sliding scheme in

the Fluid dynamics dataset.
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Figure 3.10 shows the median values from the Figure 3.9 for each length of the queries.

Figure 3.10 summarizes how much the performance is improved as the length of the query gets

longer in all of the datasets. It demonstrates that as the length of a query gets longer to include

more index windows, fewer false alarms occur in the multiple window sliding than in the single

window sliding.

However, in the datasets, such as an EEG heart rate, two pat, or robot arm, there is not

much difference between the two methods. We can explain it in terms of the index. For these

datasets, all of the disjoint data windows are very similar to each other. Figure 3.11 shows the

first 500 points index of the best and the worst three datasets regarding the candidate generation.

Comparing the index of the best three datasets to the worst three, we cannot easily distinguish a

set windows from any other set of windows. This is the reason why the index search is difficult

even though the multiple index information is used.
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3.7.2 Goodness and Tightness

Goodness and tightness are metrics that show how well the index works [8].

Goodness =
# of all true matches
# of all candidates

(3.4)

Tightness =
Sum of all true similarity

Sum of all estimated similarity
(3.5)

Goodness shows how much the index reduces the expensive computations. Tightness shows

how close the estimated values are to the actual values in indexing [8]. If the tightness is 1.0,

then it means that the estimation is perfect. In Figure 3.12, the multiple sliding window scheme

shows greater goodness and tightness than that of the single window sliding scheme.

3.7.3 Improving Performance by Skipping Similarity Computations

Figure 3.13 shows how effective the skipping of the similarity computation is. The chart

demonstrates that we can avoid many similarity computations as the length of the query gets

longer.

However, it also shows that the skipping mechanism does not work well for the datasets

that cannot be properly indexed because the index parameter captures all of the windows in the

data as well as the ones similar to the LCS matrix.
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3.7.4 Runtime

We compare the performance of FRM, single window sliding dual match and the multiple

sliding window Dual Match in CPU time. 10 randomly selected queries are searched against 48

datasets. Experiments are done for four different lengths: 100, 150, 180 and 200. Figure 3.14

shows median CPU times of 10 runs of subsequence matching using three different methods

for each query length. It shows that in most cases, multiple sliding window scheme performs

better than FRM and single sliding windows. FRM spent much more time on searching an

R-tree than Dual Match method did. In the case the data size is n and index window size is

w, FRM has n-w+1 ≈ n index elements in the R-tree while Dual Match has only n/w. FRM

has more candidates than the Dual Match and FRM needs more operations to merge index

information as the query length gets longer [5]. Figure 3.15 summarizes the Figure 3.14 by

choosing median CPU time of all data sets for each length. It clearly demonstrates that as the

query length gets longer, the multiple sliding window scheme based on the Dual Match method

shows better performance in CPU time than the other two methods.
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Chapter 4

Multivariable Subsequence Matching

4.1 Introduction

Multivariable stream data is ubiquitous today. Advances in sensors and wireless network

technologies have produced many sensor network applications, such as object tracking, surveil-

lance, object guarding, and structural integrity monitoring of large constructions , to name a

few. In a typical sensor network application scenario, a large number of different types of sen-

sors are deployed over a wide area. Each sensor generates a continuous sensor stream. Sensor

streams are collected by a sink node and relayed to a server node for analysis. The combined

data collected in the server node naturally forms a multivariable time series data. Multivariable

time series data is a set of time series that shares the same time stamps. We call an individual

time series a channel. A multivariable time series data consists of multiple numbers of chan-

nels. Multivariable time series are more popular and useful in the real world than the single
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channel time series data. With the advancement of the sensor technology, many applications

require tracing a large number of channels from various sources.

Time series data is usually stored in a back-end intelligence module to analyze the prop-

erties of the data. The multivariable time series data is also fed as input to some online appli-

cations monitoring real-time events based on the back-end analysis. Unfortunately, however,

traditional data mining solutions are not directly applicable to the sensor network applica-

tion framework. Traditional techniques focus on rather static collections of records containing

mainly discrete values, while in sensor network applications, data is an unbounded stream of

continuous values. Furthermore, characteristics of data instances are also different. A record in

sensor stream data typically contains values representing particular sensor readings at a given

point in time. Unlike the traditional databases, the records in this environment have temporal

locality; for example, the current sensor readings are likely to be similar to the ones observed

recently rather than to the ones monitored a long time ago. These differences pose substantial

challenges to the traditional data management techniques, enough to force a paradigm shift in

the long-established data management standards.

In this work, we will attempt to address some of the challenges, especially in subsequence

matching in multivariable time series data. We extend the subsequence matching technique

to multivariable time series with LCS. Most of the existing solutions focus on searching sub-

sequence matching of a single channel data. [4, 5, 8, 9, 45]. Although these techniques are

successful in many application domains, they fail to search efficiently interesting patterns that

may span over multiple interdependent sensor readings in a multivariable time series data.
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The use of multiple channels of signals would increase the accuracy of the security sys-

tem even though multivariable time series requires complex analysis. For example, in sign

language recognition, movements of the body parts are captured in a multivariable time series

data. The orientation of a palm, its angles as well as the positions of fingers, wrists, and arms

are represented in a time series for recognition. Figure 4.1 shows an example of a search of

multivariable time series in Australian Sign Language [7]. The data has 8 channels (x, y, z

position of a hand, orientation of a palm, and the folding degree of 4 fingers). In the figure,

data (to be searched) is a time series of 10 different sign words. Each word comes from one

of the 20 different signers. The query is the sign word, ”girl.” Subsequence matching in this

multivariable time series is to locate the query sign word in the data. In this example, data is

a kind of a sign language sentence, although the actual one is more complicated than this one,

since there is a pause between two words and the length of each word is not as regular as the

provided example.

We chose LCS in definition 2 as our non-Euclidean measure to run similarity matching to

overcome the Euclidean measure. If we apply LCS to each channel of a multivariable time

series data, we do not have to perform extra computations for normalization or weighting to

avoid problems from different basis units of each channel.

We avoid many expensive LCS computations in subsequence matching by observing the

computation matrix. LCS requires expensive computation; O(|Q|2), when query Q is compared

to the data of the same length. [10,12,20,21,28,46]. To reduce the number of computations for

every instance of the matching subsequence, data is indexed by spatial structure, and candidate
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Table 4.1: The Notation for Multivariable Time Series
B A multivariable time series data sequence, <

b1,1, b1,2, . . . , b2,1, b2,2, . . . > , each bi,j is a real num-
ber at the ith channel and jth time stamp.

B[i, :] ith channel of data
B[:, j : k] a window of data from jth frame to kthframe

Q A query sequence, we assume that all channels in Q
are of the same length.

subsequences are computed through an inexpensive operation. In the following sections, we

will explain how to compute and reduce candidate matching subsequences by applying our

proposed method to the multivariable time series data. We will also validate our proposed

method through the experiments carried out on 14 multivariable datasets.

4.2 Notational Conventions

Multivariable time series data is expressed in two dimensions, value and time, in several

streams. Each stream is called a channel and it represents a feature or attribute of a temporal

event in real numbers. These values are recorded in regular time intervals. A time stamp is a

time point when a set of values of all channels is recorded. The set of values for all channels

at a time stamp is a frame. A window is a set of frames. The number of frames in a window is

the size of the window. All terms are illustrated in Figure 4.2.

We define some notations and terminologies in Table 4.1 for multivariable time series.
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4.3 Problem Statement

We apply the proposed subsequence matching method in a single channel dataset to the

multivariable time series data. We generalize the definition of matching subsequences in Defi-

nition 3 for multivariable time series with LCSδ,εi
.

Definition 4 Let Q=< q1,1, q1,2, ...qm,n > be a query and B=< b1,1, b1,2, ... > be a data sub-

sequence of time series of m channels of finite length. Given an integer δ, a real number 0 <

εi <1 for each ith channel and user defined similarity threshold θ, we define the matching sub-

sequences, M = {B[:, j : k] | LCSδ,εi
(Q,B[:, j : k]) ≥ θ}, where LCSδ,εi

(Q,B[:, j : k]) =

∑
1<i<n LCSδ,εi

(Q[i,:],B[i,j:k])

m
}

Problem: Find all matching subsequences B[:, j : k] of the length |Q| + 2δ for data se-

quence B and query Q such that the similarity LCSδ,{εi}(Q,B[:, j : k]) is no less than S% of

the |Q|, S
100
|Q|.

Solution Road Map Here is a road map of solutions to the problem:

• Index pruning criteria (bounding value) is computed and applied to each channel.

• Candidates from the index matching process are chosen by summing up the contiguous

index search results.

• Adjacent matching intervals are efficiently skipped by observing the LCS matrix of all

channels.
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A window of 8 MBRs

Figure 4.3: An Example of an Index that Shows MBRs and Windows

4.4 Indexing for Multivariable Time Series

Subsequence matching in multivariable time series data begins by indexing each channel of

data into separate R-trees. If there are m channels, we need m separate R-trees. Each channel

has its own error range to determine similarity. That is, ith channel has its own εi for LCS

similarity depending on the application context. All channels share the same δ.

Data is divided into equi-length disjoint windows for the index. Each window is represented

by a multi-dimensional vector. That is, data sequence B is divided into equi-length disjoint

windows < wi(k) >, ith window of the channel k. It consists of N MBRs. Let N be the

dimensionality of the space we want to index. An MBR represents a dimension. N MBRs
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for a wi(k), is transformed into
−−−→
wi(k) =< (ui1, . . . , uiN), (li1, . . . , liN) >k, where uij and lij

represent the maximum and minimum values in the jth interval of wi(k). −→wi is stored in an N

dimensional R-tree for channel k, R-tree(k).

4.5 Index Matching in Multivariable Time Series

A query is represented by MBE-MBRs. Each channel of the query Q is transformed into an

MBE, and one or more sliding windows are chosen depending on window sliding schemes.

We obtain m MBEs from the m channels of the query Q, and each MBE is divided into

separate MBRs of the chosen sliding window. We compare this transformed query against the

data using the Dual Match index. Figure 4.4 illustrates index matching steps in multivariable

time series.

Formally, let MBEQ(j) be an MBE for Q[j, :], jth channel of Q. Let the ith sliding

window of Q[j, :] be vi(j). It is transformed into
−−→
vi(j) =< (ûi1, . . . , ûiN), (l̂i1, . . . , l̂iN) >j ,

where ûik and l̂ik, respectively, are the maximum and minimum values in MBEQ(j) of the kth

MBR of the
−−→
vi(j).

MBEQ(j) covers whole possible matching areas using LCS. Any point that lies outside the

MBEQ(j) is not counted for the similarity. The number of intersecting points between B[j, :

] and MBEQ(j) overestimates LCSδ,εj
(B[j, :], Q[j, :]) [10]. So,

∑
j LCSδ,εj

(B[j, :], Q[j, :])

overestimates actual similarity by counting all intersections of MBE-MBRs of Q and data index

in all channels. The intersections are counted through the R-tree operation.
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Figure 4.4: An Example of Multivariable Subsequence Matching

We apply one sliding window to all channels of query. In the figure, a window qi of query

Q is searched in R-tree indexes to find estimated matching values. These values are stored in a

temporary vector like 1© in figure 4.4. The individual matching process of each channel is the

same as the one for the single channel data.

We use the same θs and θm depending on the window sliding schemes. These were com-

puted in the previous chapter.

Temporary vectors of a channel are diagonally aggregated into a vector, temp sum of a

channel, labeled 2© in Figure 4.4. In the 2-channel example of Figure 4.4, the first element of

the temporary vector in channel 1 is a sum of 7 + 7 + 6.

Index matching results of all channels in the temp sum vectors are aggregated and divided

by the number of channels as 3© in Figure 4.4. This final vector contains index matching
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results. Only the vector elements greater than or equal to the matching threshold, θm or θs, are

considered candidates.

4.6 Post-processing

Post-processing determines the whole length of the matching subsequence by actual LCS

computation. Candidate subsequences are chosen based on this index matching. If the average

value of LCS similarities of all channels are greater than or equal to the threshold , θs or θm, a

candidate is chosen. If not, the window is not chosen for a candidate. In Figure 4.4, a window

that has (12 + 8) / 2 in the result of index matching will be rejected since it is less than the

computed threshold 16.

4.7 Skipping with LCS for Multivariable Time Series

We can skip one or more LCS computations in the neighboring candidates by observing the

LCS warping path. In the case of the multivariable time series data, this observing process is

done for each channel. We obtain all possible skippings for all channels. A minimum number

among these possible skippings of all channels is chosen to skip LCS computations. This

minimum number of skippings prevents us from computing the actual LCS for all channels.
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4.8 Experiment of Multivariable Time Series Dataset

Here is a brief introduction to the multivariable datasets used in our experimental study and

its parameters chosen to run our tests:

• Dataset: We have used 14 different time series datasets 1 for evaluation. Each dataset

has a different length of data and a different number of channels from 2 to 15. We set the

length of each to 10,000 by attaching the beginning to the end so that all the datasets are

of the same length.

• Index: We set the dimension to 8 and MBR size to 4. Determining the sizes of the

dimension, MBR and R-tree requires domain knowledge.

• Query: We chose 4 fixed-lengths of queries, 100, 150, 180, and 200, so that each length

includes 3, 4, 5 and 6 windows. Ten queries for each length are randomly selected from

the data sequence.

• Similarity: ε is set to 1 % of the data range, and δ is set to 2.5 % of the |Q|. Similarity

threshold S is set to 99% of the |Q|.

4.8.1 Different Sliding Schemes and Candidates in Multivariable Time

Series Data

In the first experiment with multivariable time series datasets, we compare the performance

of two different index sliding schemes, single window sliding, and multple window sliding,
1http://www.cs.ucr.edu/ eamonn/TSDMA/UCR, The UCR Time Series Data Mining Archive
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Figure 4.5: Candidates Ratio= # of candidates by single windows sliding
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queries of the same length.
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in the multivariable time series data. By counting the number of candidates, we can correctly

compare the performance of two methods independently. For ease of comparison, a ratio of the

candidates is computed. Figure 4.5 shows that ratio, # of candidates by single windows sliding
# of candidates by multiple windows sliding increases

as the length of queries increases for most datasets. The number of channels of a dataset is

specified in the legend of the figure. In this experiment, the multiple window sliding scheme

has fewer false alarms than the single window sliding scheme. The ratio varies from 1 to 50. In

the best case, the multiple sliding window generates candidates only 1
50

of the single window

sliding scheme.

Figure 4.6 shows the median values from Figure 4.5 for each length of the queries. It

summarizes the improvement that occurs as the length of the query gets longer when we use

the multiple window sliding method. We have fewer false alarms in the multiple window

sliding than in the single window sliding as the length of a query gets longer. For the longer

query, we have more index windows than for the shorter one, which reduces the chances of

getting wrong candidates.

We can explain this difference in candidates in terms of the index. For these datasets, all
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Figure 4.7: Index of Best 2 Multivariable Time Series

of the disjoint data windows are very similar to each other. Figure 4.7 and Figure 4.8 show

the first 100 points index of the best and the worst two datasets in terms of the candidate

generation. When we compare the index of the best two datasets to the worst two, we cannot

easily distinguish a set of windows from another set of windows. This makes it hard to search

the index quickly even though multiple index information is used.

We tested the effect of the number of channels in use. We chose the best data set, evapo-

rator dataset, and applied the same experiment while increasing the number of channels from

1 to 6. Multiple sliding windows scheme greatly reduces the number of false candidates. Fig-
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Figure 4.8: Index of Worst 2 Multivariable Time Series
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ure 4.9 shows that, as the number of channels increases, the number of candidates decreases

when multiple window sliding scheme is used. As the query length gets longer, the number of

windows in the query increases. The increase of the number of windows in a query enables us

to use more information in index matching process and as a result we have fewer false alarms

than we have in a shorter query. From Figure 4.9, we can conclude that the number of channels

affects candidate computation because it increases the amount of information for correct index

matching.
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4.8.2 Goodness and Tightness

We compute the goodness and the tightness as given in the equations 3.4 and 3.5. In Figure

4.10, the multiple sliding window scheme shows better goodness and tightness than the ones

of the single window sliding scheme. We can see from the figure, as the length of query gets

longer, goodness and tightness improve. A long query includes more windows than a short

one. This increases the accuracy of the index matching process using multiple numbers of

index windows.

4.9 Improving Performance by Skipping Similarity Compu-

tations

Figure 4.11 shows how the skipping strategy effectively reduces expensive LCS computa-

tions. As we found in the experiment with the single channel dataset in the previous chapter,

this experimental result shows that we can avoid many similar LCS computations as the length

of the query gets longer in the multivariable time series data.
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Figure 4.10: Goodness and Tightness from multivariable time series experiment
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Chapter 5

Conclusion

We have proposed a novel subsequence matching framework that employs a non-Euclidean

distance, in particular, LCS, a multiple window sliding scheme and a similarity skipping idea.

Subsequence matching is used to find a query sequence out of a long range of data sequence.

Our framework is based on the Dual Match subsequence matching where the data sequence is

divided into a series of disjoint equi-length subsequences and then indexed in an R-tree while

the query is searched in sliding windows. We newly computed the similarity bounds in the

index matching framework with LCS. The proposed query matching scheme reduces many

false alarms present in the previous approaches. We developed an algorithm to skip expensive

LCS computations by observing the warping paths in a computation matrix. We extended our

proposed subsequence matching scheme of a single channel data to multivariable time series

data. An index is constructed in individual channels. A query is matched using a multiple

sliding window scheme for each channel. The index matching results from all channels are
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aggregated and divided by the number of channels to determine candidates.

We have validated our new framework through experiments with 48 time series datasets for

single channels and 15 for multivariable time series datasets. The proposed methods enabled

us to have more intuitive and efficient subsequence matching algorithms. The multiple window

sliding scheme was more efficient than the single window sliding scheme for the longer query

in candidate generation, along with goodness and tightness. Skipping of the LCS computation

greatly reduced expensive similarity computations in a single channel and multivariable time

series data.

Regarding future work, the next research direction of the proposed work is to apply the

subsequence matching method to other time series mining problems. Motif finding typically

needs efficient subsequence matching algorithms. It requires a great amount of searching in or-

der to guess basic patterns to explain events because we do not know ahead of time the lengths

of frequent patterns. This implies that all patterns of all lengths of subsequences should be

counted. Cluster analysis also includes several comparisons of neighboring subsequences and

group similar patterns. All time series analysis work requiring heavy searching is a candidate

for the next research topic.
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Chapter 6

Appendix: First 500 Points of Datasets

Table 6.1: Time Series Data Used in the Experiments

Title Data Cite

attas 0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

[47]

ballbeam 0 50 100 150 200 250 300 350 400 450 500
−0.2

−0.1

0

0.1

0.2

[48]

balloon 0 50 100 150 200 250 300 350 400 450 500
−1.5

−1

−0.5

0

0.5

[49]

buoy sensor 0 50 100 150 200 250 300 350 400 450 500
−0.4

−0.2

0

0.2

0.4

[50]

burstin 0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

[51]
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Table 6.1 continued

Title Data Cite

chaotic 0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

[52]

cstr 0 50 100 150 200 250 300 350 400 450 500
0.05

0.1

0.15

0.2

0.25

[48]

darwin 0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

[53]

dryer2 0 50 100 150 200 250 300 350 400 450 500
−20

0

20

40

[48]

earthquake 0 50 100 150 200 250 300 350 400 450 500
−0.2

−0.1

0

0.1

0.2

[54]

eeg 0 50 100 150 200 250 300 350 400 450 500
−100

−50

0

50

[55]

evaporator 0 50 100 150 200 250 300 350 400 450 500
−100

−50

0

50

[48]

Fluid dynamics 0 50 100 150 200 250 300 350 400 450 500
−1

−0.5

0

0.5

1

[56]

flutter 0 50 100 150 200 250 300 350 400 450 500
−4

−2

0

2

4

[57]

foetal ecg 0 50 100 150 200 250 300 350 400 450 500
−50

0

50

[48]
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Table 6.1 continued

Title Data Cite

glassfurnace 0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

[48]

greatlakes 0 50 100 150 200 250 300 350 400 450 500
1.755

1.76

1.765

1.77

1.775
x 10

4

[55]

infrasound beamd 0 50 100 150 200 250 300 350 400 450 500
−5000

0

5000

[55]

leaf all 0 50 100 150 200 250 300 350 400 450 500
−4

−2

0

2

4

[55]

leleccum 0 50 100 150 200 250 300 350 400 450 500
200

300

400

500

[55]

memory 0 50 100 150 200 250 300 350 400 450 500
−5

0

5

10

[55]

motorCurrent 0 50 100 150 200 250 300 350 400 450 500
−10

−5

0

5

10

[58]

ocean 0 50 100 150 200 250 300 350 400 450 500
−6

−4

−2

0

2

[55]

ocean shear 0 50 100 150 200 250 300 350 400 450 500
−6

−4

−2

0

2

[55]

pgt50 alpha 0 50 100 150 200 250 300 350 400 450 500
−4

−2

0

2

4

[1]
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Table 6.1 continued

Title Data Cite

pHdata 0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

[48]

powerplant 0 50 100 150 200 250 300 350 400 450 500
−1000

−500

0

500

1000

[48]

power data 0 50 100 150 200 250 300 350 400 450 500
500

1000

1500

2000

[59]

random walk 0 50 100 150 200 250 300 350 400 450 500
−10

0

10

20

30

[55]

Realitycheck 0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

[55]

robot arm 0 50 100 150 200 250 300 350 400 450 500
−1

−0.5

0

0.5

1

[55]

shuttle 0 50 100 150 200 250 300 350 400 450 500
0.2

0.4

0.6

0.8

1

[60]

soiltemp 0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

[54]

speech 0 50 100 150 200 250 300 350 400 450 500
0

2000

4000

6000

[54]

spot exrates 0 50 100 150 200 250 300 350 400 450 500
0.02

0.025

0.03

0.035

0.04

[61]
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Table 6.1 continued

Title Data Cite

standardandpoor500 0 50 100 150 200 250 300 350 400 450 500
10

15

20

25

30

[49]

steamgen 0 50 100 150 200 250 300 350 400 450 500
−10

0

10

20

[48]

sunspot 0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

[62]

synthetic control 0 50 100 150 200 250 300 350 400 450 500
20

30

40

50

[63]

tide 0 50 100 150 200 250 300 350 400 450 500
−50

0

50

100

[64]

TOR95 0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

[55]

twopat 0 50 100 150 200 250 300 350 400 450 500
−5

0

5

[48]

wind 0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

[49]

winding 0 50 100 150 200 250 300 350 400 450 500
−6

−4

−2

0

2

[48]

koski ecg 0 50 100 150 200 250 300 350 400 450 500
−10000

−5000

0

5000

[65]
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Table 6.1 continued

Title Data Cite

EEG heart rate 0 50 100 150 200 250 300 350 400 450 500
10

20

30

40

50

[55]

network 0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

[55]

tickwise 0 50 100 150 200 250 300 350 400 450 500
2.08

2.09

2.1

2.11

[66]
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