
ABSTRACT

HAN, TAE SIK. Efficient Subsequence Matching with LCS . (Under the direction of As-
sistant Professor Jaewoo Kang.)

Advances in sensors and wireless network technologies have produced many sensor net-

work applications. In a typical setting, a large number of different types of sensors are deployed

over a wide area. The sensor streams generated from individual sensors are then combined in a

server node, naturally forming a multivariable time series, and then saved in a storage system.

Searching and mining interesting patterns from this multivariable time series dataset is a key

challenge in time series analysis.

In this paper, we will propose an efficient subsequence matching method in a single channel

time series and extend the method to multivariable time series data. We propose a novel sub-

sequence matching framework using a non-Euclidean measure, in particular, LCS, and a new

index query scheme. The purpose of the subsequence matching is to find a query sequence in a

long range of data sequences. Due to the abundance of applications, many solutions have been

proposed. Virtually all previous solutions have used the Euclidean distance as the basis for

measuring distance between sequences. Recent studies, however, suggest that the Euclidean

distance often fails to produce proper results due to the irregularity in the data, which is not so

uncommon in our problem domain. Addressing this problem, some non-Euclidean measures,

such as Dynamic Time Warping (DTW) and Longest Common Subsequence (LCS) have been

proposed. However, most of the previous work in this direction focused on the whole sequence

matching problem where query and data sequences are of the same length.

The proposed framework is based on the Dual Match framework where data sequences are

divided into a series of disjoint equi-length subsequences which are then indexed in an R-tree.

We introduced a new way to compute the similarity bound in the index matching framework

using LCS. The proposed query matching scheme that is named as multiple window sliding

scheme, reduces many false alarms encountered in the previous approaches. We also developed

an algorithm to skip expensive LCS computations by observing the warping paths.

We applied our subsequence matching framework to multivariable time series data. Multi-

variable stream data is ubiquitous today. Advances in sensors and wireless network technolo-

gies enable many sensor network applications, such as object tracking, surveillance, object

guarding, structural integrity monitoring of large constructions, to name a few. We extended

the proposed subsequence matching technique for a single channel time series to multivariable

time series data. Our experimental results on 48 datasets in a single channel and 14 in a mul-

tivariable time series suggest that our approach greatly enhances the subsequence matching

performance in various metrics.

Efficient Subsequence Matching with LCS

by

Tae Sik Han

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh, North Carolina

2007

Approved By:

Dr. Xiaosong Ma Dr. Ting Yu

Dr. Jaewoo Kang Dr. Rada Y. Chirkova
Co-Chair of Advisory Committee Co-Chair of Advisory Committee

ii

DEDICATION

To the past of my parents, my parents-in-law, and my wife, Hee Jin, for their sacrifice and

support.

To the future of my daughter, Kaitlyn Hyoree Han, who is the source of incredible energy in

my life.

iii

BIOGRAPHY

Tae Sik Han was born in South Korea in 1970. He graduated from Yonsei University

in February 1994 with a Bachelor of Science degree in both of Mathematics and Computer

Science. He also earned his master’s degree in Computer Science from Yonsei University. His

research topic was ”Word Sense Disambiguation with two neural networks: BP and SOM.”

After graduation, he worked for a system integration company as a database administrator.

He developed many ETL models and processes that helped to downsize mainframe to unix-

based systems. After a year, he moved to Korea Future Exchange to help initiating first future

exchange house in Korea. After a year of service there, he moved to two consulting companies,

KPMG and Andersen Consulting. He served many financial institutes helping them to develop

new data models and data warehousing architecture. In 2001, he was selected as a recipient of

the national scholarship, awarded by the Korean government, which enabled him to pursue a

graduate degree in the United States. He joined the Department of Computer Science at North

Carolina State University (NCSU) in Raleigh in Fall 2001. His research work was focused

on discovering and solving problems in cutting-edge time series mining and data integration

including subsequence matching, motif mining, and schema value matching work. Tae Sik

carried out research on such databases as a graduate research assistant for Dr. Kang and as the

first student member of his research group at NCSU. He also worked as a teaching assistant

for the graduate and undergraduate courses of data structure, database, AI, data mining, and

advanced database classes. In summer of 2006, he worked for the North Carolina state office

of state auditor as a database specialist. Tae Sik devised new warehousing architecture and

iv

generated performance reports for the chief officer. Before finishing his doctoral degree, he

spent a year at the SAS institute as a technical student A. He joined a project to integrate a

Google Search Appliance with SAS Business Intelligence systems. He is now working for

SAS as a senior software developer.

v

ACKNOWLEDGEMENTS

Foremost, I would like to thank my advisor, Dr. Jaewoo Kang, for his thoughtful direction

and affectionate encouragement. This dissertation would not have materialized without his

careful guidance and continuous support. I owe Dr. Kang every bit of credit for my research

accomplishments and exciting experiences I encountered during my doctoral work at NCSU. I

would like to acknowledge my advisory committee members, Drs. Rada Y. Chirkova, Xiaosong

Ma, and Ting Yu for their enlightened comments and constructive suggestions related to my

work.

I also would like to thank Dr. Seung-Kyu Ko for his valuable comments and advice on

my dissertation work. The IT national scholarship program of the Korean Government that

partially supported my graduate study is gratefully acknowledged. The last two years of study

at NCSU were supported by the North Carolina Office of State Auditor and the SAS Institute.

I sincerely appreciate their support which enabled the accomplishments presented in this dis-

sertation. I would like to thank Dr. Eamonn Keogh for his papers and datasets that were very

useful in experiments to validate idea. I would like to thank Dr. Lennox Superville for giving

me a chance to join his project and for his invaluable advice to keep concentrating on my Ph.D.

work. I would like to thank my direct manager, Craig Rubendall, at SAS for being my mentor

and for placing his trust in me.I would like to thank Ms. Vilma Berg for her proofreading and

advice in the final stage.

I would like to thank Pankaj Chopra and Laura for their encouragement through construc-

tive discussions, fruitful collaborations, and endless kindness whenever I lost my way. I would

vi

like to thank Dr. Sungbo Seo for his support and advice on my research work while doing

his visiting scholar research work at NCSU. I would like to thank Dr. Sangmin Kim for his

thoughtful advice on every bit of my life at the university. I also would like to thank Seung-

Yong Lee for his kind and sincere comments supporting my research work at NCSU. Finally, I

want to thank all the previous members of the database laboratory under Dr. Kang’s direction

at NCSU for their heartwarming cooperation and family-like care. I miss those days when I

had weekly meetings with my advisor and friends to present my progress, discuss problems,

and share ideas.

vii

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

2 Background and Related Work 9
2.1 Notational Conventions . 9
2.2 Subsequence Matching Framework (Dual Match vs. FRM) 10
2.3 Dual Match Subsequence Matching with Euclidean Distance 11
2.4 Non-Euclidean Distance DTW and LCS . 12
2.5 Optimal Bounding for Index Matching . 16
2.6 Sequence Alignment . 17
2.7 Other Related Work . 18

3 Subsequence Matching with LCS Using Dual Match Index in Single Channel 19
3.1 Problem Statement . 19
3.2 Linear Search and Skipping LCS Computation 21

3.2.1 Alignment in LCS . 22
3.2.2 Skipping LCS Computation . 22

3.3 Indexing . 24
3.4 Index Matching with LCS . 24
3.5 Window Sliding Schemes in Index Matching 25

3.5.1 Simple Single Window Sliding . 25
3.5.2 Single Window Sliding . 27
3.5.3 Multiple Window Sliding . 28

3.6 Post-Processing and Skipping . 30
3.6.1 Post-Processing . 30
3.6.2 Skipping the LCS Computation . 31

3.7 Experiment of Single Channel Time Series Dataset 31

viii

3.7.1 Different Sliding Schemes and Candidates 32
3.7.2 Goodness and Tightness . 37
3.7.3 Improving Performance by Skipping Similarity Computations 37
3.7.4 Runtime . 39

4 Multivariable Subsequence Matching 42
4.1 Introduction . 42
4.2 Notational Conventions . 46
4.3 Problem Statement . 48
4.4 Indexing for Multivariable Time Series . 49
4.5 Index Matching in Multivariable Time Series 50
4.6 Post-processing . 52
4.7 Skipping with LCS for Multivariable Time Series 52
4.8 Experiment of Multivariable Time Series Dataset 53

4.8.1 Different Sliding Schemes and Candidates in Multivariable Time Se-
ries Data . 53

4.8.2 Goodness and Tightness . 59
4.9 Improving Performance by Skipping Similarity Computations 59

5 Conclusion 62

6 Appendix: First 500 Points of Datasets 64

Bibliography 70

ix

List of Figures

1.1 Sleep Apnea: An Example of Time Series Analysis [1], wk :wake, slp:sleep . . 2
1.2 Whole Sequence Matching in a Single Channel 4
1.3 Subsequence Matching in a Single Channel 5
1.4 Subsequence Matching in a Multivariable Data 6

2.1 Two Subsequence Matching Frameworks . 10
2.2 An Example of DTW Computation . 13
2.3 An Example of LCS Computation . 15
2.4 Euclidean, DTW and LCS When Noise Involved 16

3.1 Matching Subsequences in Subsequence Matching 20
3.2 Alignment with LCS when |Query| = 32 and |Data| = 48 21
3.3 An Example of Skipping LCS Computation when |Q| = 4 and δ = 1 23
3.4 Indexing and Index Matching where w=9 and N=3 25
3.5 Window Sliding Schemes when |v|=4. 26
3.6 Matching points (connected by dotted lines) are not captured in the index

matching using LCS . 26
3.7 Index Matching Result . 29
3.8 Postprocessing determines the entire lengths of the candidate subsequences . . 31
3.9 Candidate Ratio = # of candidates by single windows sliding

of candidates by multiple windows sliding . The same color indicates
queries of the same length. 33

3.10 Summary of Candidate Ratio in Figure 3.9 . 34
3.11 Index . 35
3.12 Goodness and Tightness . 36
3.13 Skipping Similarity Computations . 38
3.14 CPU Time for FRM, Single Window Sliding and Multiple Window Sliding

Scheme . 40
3.15 Median CPU Time for FRM, Single Window Sliding and Multiple Window

Sliding Scheme . 41

x

4.1 Multivariable Subsequence Matching . 43
4.2 Windows, Frames and Channels in a Multivariable Time Series 47
4.3 An Example of an Index that Shows MBRs and Windows 49
4.4 An Example of Multivariable Subsequence Matching 51
4.5 Candidates Ratio= # of candidates by single windows sliding

of candidates by multiple windows sliding . The same color indicates
queries of the same length. 54

4.6 Summary of Candidate Ratio in Figure 4.5 . 55
4.7 Index of Best 2 Multivariable Time Series . 56
4.8 Index of Worst 2 Multivariable Time Series 57
4.9 Candidate Ratio by Increasing the Number of Channels 58
4.10 Goodness and Tightness from multivariable time series experiment 60
4.11 Skipping Similarity Computations . 61

xi

List of Tables

2.1 The Basic Notation . 9

4.1 The Notation for Multivariable Time Series 46

6.1 Time Series Data Used in the Experiments . 64

1

Chapter 1

Introduction

Advances in sensors and wireless network technologies have given rise to many sensor

network applications. In a typical setting, a large number of different types of sensors are

deployed over a wide area. The sensor streams generated from individual sensors are then

combined in a server node, naturally forming a multivariable time series, and then saved in a

storage system. The collected multivariable time series data in the sink node is interpreted by

the analysis module, and an event is matched. Searching and mining interesting patterns from

this multivariable time series dataset is a key challenge in a time series analysis. The collected

multivariable time series data in the sink node is interpreted by the analysis module, and an

event is matched. The use of multiple channels of signals would increase the accuracy and

usability of the analysis better than the use of single channel data.

Figure 1.1 shows an example of time series analysis for sleep apnea. Sleep apnea is a sleep

disorder characterized by pauses in breathing during sleep [2]. Three different data streams

2

0 50 100 150 200 250 300
-5000

0

5000

10000

15000
0 50 100 150 200 250 300

70

75

80

85

90

0 50 100 150 200 250 3007740

7760

7780

7800

7820

7840

Heartbeat

wk slp

Chest
volume

Blood
oxygen
concentration

Sequence Matching /

Other analysis

Patient Data in

Time Series Database

New patient

Figure 1.1: Sleep Apnea: An Example of Time Series Analysis [1], wk :wake, slp:sleep

3

- heartbeat, chest volume, and blood oxygen concentration - are recorded in the time series

storage system [3]. There are many open problems regarding the apnea patient datasets. One

problem is to find different signals affect each other. Another problem is to determine how

episodes of sleep apnea can be predicted from the preceding data recorded by other patients.

Searching or comparing a new patient data against the previous dataset is a basic problem for

all analysis steps. It is hard to locate an input pattern within datasets because each dataset

collected from individual patients greatly varies in size and pattern.

In this paper, we will first begin with subsequence matching of a single channel time series

and then extend it to subsequence matching of a multivariable time series. One of the basic

problems in handling time series data is locating a pattern of interest from the long sequence of

input data [4–6]. The sequence matching problem has two major components: whole sequence

matching and subsequence matching. Whole sequence matching involves finding, within the

dataset, all sequence entries whose lengths are equal to the query length within the similarity

threshold specified by the user. For example, Figure 1.2 illustrates the way the whole sequence

matching works to find out how the orientation of the palm of the Australian Sign Language

signers is traced for the duration of several different words [7]. Each word of a different signer

is of the same length and is searched for a given query.

Subsequence matching includes finding all subsequences in a longer data sequence that

matches with the query. In Figure 1.3, which locates a query, the data sequence is explored

from the beginning to the end of the data. Subsequence matching is a more general problem

than the whole sequence matching problem. However, most of the previous work has focused

4

: : Query :

Palm Orientation of Australian Sign Language

Figure 1.2: Whole Sequence Matching in a Single Channel

5

langiS taebtraeH

: yreuQ taebtraeH

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 1.3: Subsequence Matching in a Single Channel

6

0 50 100

−2

0

2

C
h

a
n

n
e

l1

0 50 100

−2

0

2

C
h

a
n

n
e

l2

0 50 100

−2

0

2

C
h

a
n

n
e

l3

0 50 100

−2

0

2

C
h

a
n

n
e

l4

0 50 100

−2

0

2

C
h

a
n

n
e

l5

0 50 100

−2

0

2

C
h

a
n

n
e

l6

Query

0 50 100 150 200 250 300 350 400

−2

0

2

0 50 100 150 200 250 300 350 400

−2

0

2

0 50 100 150 200 250 300 350 400

−2

0

2

0 50 100 150 200 250 300 350 400

−2

0

2

0 50 100 150 200 250 300 350 400

−2

0

2

0 50 100 150 200 250 300 350 400

−2

0

2

Data

Evaporator Data

Figure 1.4: Subsequence Matching in a Multivariable Data

7

on the whole sequence matching problem [4, 8, 9]. While applying whole sequence matching

techniques to the subsequence matching can be possible through the GEMINI [5] framework,

the application is not straightforward when non-Euclidean distance measures are used. The

Euclidean distance measure is sensitive to noise and, due to the irregular nature of the data

in sequence applications (e.g., moving object trajectories, query-by-humming, and etc.), non-

Euclidean measures are often more desirable. The non-Euclidean distance measures such as

Dynamic Time Warping (DTW) and Longest Common Subsequence (LCS) address some of

the problems that are characteristic of the Euclidean distance [8, 10].

In this work, we propose an efficient index searching framework for subsequence matching

using LCS. We choose LCS because it is known to be more robust against the noise in the data

than DTW [11,12]. Furthermore, no separate normalization process is needed to overcome the

difference of base unit of multivariable time series. To the best of our knowledge, no previous

work has considered LCS in the context of subsequence matching. We make the following

contributions:

• We have proposed a subsequence matching framework that employs a non-Euclidean

distance measure using LCS. The result is a more intuitive matching performance.

• We have formally introduced criteria to prune the search space when we use a time series

index with the LCS similarity function.

• We have introduced a new index query scheme, multiple window sliding, where several

8

adjacent windows are queried and aggregated in order to improve the pruning power of

the index.

• We have proposed a new index search scheme that enables us to skip unnecessary simi-

larity computations of the consecutive matching subsequences.

• We have extended the technique to subsequence matching of multivariable time series

data.

9

Chapter 2

Background and Related Work

2.1 Notational Conventions

In order to state the problem and concepts clearly, we define some notations and terminolo-

gies in Table 2.1. In our work, we assume that a time series is a sequence of real numbers and

each real number element is collected from a sensor device. A subsequence is a subset of a

time series in contiguous time stamps.

Table 2.1: The Basic Notation
B A time series data sequence, < b1, b2, . . . , bn > , each

bi is a real number at the ith time stamp.
|B| Length of the sequence B
Bi A subsequence of B when B is divided into disjoint

subsequences of an equal length
Q A query sequence, usually |Q| ¿ |B|

B[i : j] A subsequence of B from time stamp i to j

10

Query, Q

FRM Subsequence Matching

Data, B

(c) Index Matching

Sliding Windows on Data

(a)

(b)

(d)

(e)

Dual Match Subsequence Matching

(f) Index Matching

Sliding Windows on Query

Query, Q

FRM Subsequence Matching

Data, B

(c) Index Matching

Sliding Windows on Data

(a)

(b)

(d)

(e)

Dual Match Subsequence Matching

(f) Index Matching

Sliding Windows on Query

Figure 2.1: Two Subsequence Matching Frameworks

2.2 Subsequence Matching Framework (Dual Match vs. FRM)

There are two subsequence matching frameworks: FRM [5] 1 and Dual Match [6]. Both of

the matching processes are illustrated in Figure 2.1. Let n be the number of data points and w

be the size of an index window. In FRM, the data sequence is divided into n − w + 1 sliding

windows. Figure 2.1 (a) shows the FRM indexing step. Every window overlaps with the next

window except for the first data point. Query Q is divided into disjoint windows, Figure 2.1

(b), and each window is to be matched against the sliding windows of the data sequence, Figure

2.1 (c). In the Dual Match framework, the data sequence is divided into disjoint windows, like

in Figure 2.1 (d), and part of the query in its sliding window is matched to the data indexes,

1It is named after its authors.

11

Figure 2.1 (e) and (f). Since the Dual Match does not allow any overlap of the index windows,

it needs less space for an index, and consequently spends less index searching time than FRM.

Through the index matching, we get a set of candidate data for the matching, and the actual

similarity or distance is computed. Since the length of the data is usually very long, the Dual

Match framework reduces the indexing efforts. We employ the Dual Match as our indexing

scheme.

2.3 Dual Match Subsequence Matching with Euclidean Dis-

tance

Dual Match consists of the following three steps:

• First, in the indexing step, data is decomposed into disjoint windows and each window

is represented by a multi-dimensional vector. They are stored in a spatial index structure

like an R-tree [13] or R*-tree [14].

• Second, the query sequence is transformed into the same dimensional representations in

the sliding windows. The size of the sliding window is the same as that of the index. It

is proven that if the length of the query is at least twice as long as the index length, one

of the sliding windows in the query is matched to a data index [6]. The index matching

always returns a superset of the true matching intervals because the similarity of the

index and query sliding window is always greater than or equals to the similarity of the

true match.

12

• Lastly, depending on the positions of the matching sliding windows, whole matching

intervals are determined and actual similarities are computed.

2.4 Non-Euclidean Distance DTW and LCS

Non-Euclidean similarity measures, such as DTW [12, 15–18] and LCS [10, 19], are useful

when we are comparing two time series data sequences that share patterns similar in shapes but

irregular in size. Both use dynamic programming algorithms to compute optimal value based

on a recursive definition of the solution [16–18]. DTW is an algorithm used to find warping

paths of the two time series by computing minimum accumulative distance. The cumulative

distance of the two time series sequence is defined as below.

Definition 1 [10] Let Q=< q1, q2, ...qn > be a query and B=< b1, b2, ...bn > be a data

subsequence of time series. The cumulative distance ρi,j is defined as ρi,j(Q,B) = d(qi, bj) +

min(ρi−1,j, ρi,j−1, ρi−1,j−1). Then, DTW (Q,B) = ρ|Q|,|B|.

DTW was introduced to the time series research community by [15]. Figure 2.2 is an exam-

ple of DTW computation. It also compares DTW to the Euclidean distance of two sequences.

This original DTW algorithm has a greater time complexity than the popular Euclidean dis-

tance function. DTW has O(n2) time complexity when two time series are of the same length

n. It is reduced O(δn) by restricting the greedy algorithm to search minimum distance within

±δ range of each time stamp. The distance is only computed within the diagonal band, the

Sakoe-Chiba band, of the width δ in the computation matrix [20]. The restricted area for opti-

13

Example sequences: b : <0,0,1,1,0,0>, q : <0,0,0,1,1,0>

Euclidean distance (q, b) =

b :

q :

1

0

1

0
1 2 3 4 5 6

2

DTW distance (q, b) = 0

1

0

0

b :

q :

221000

221000

100111

100222

011222

022222

221000

221000

100111

100222

011222

022222

q

b

1 2 3 4 5 6

1

Figure 2.2: An Example of DTW Computation

14

mal warping path is decided by δ. Another popular shape of the δ restriced area is the Itakura

band [21]. It has a diagonal diamond shape [21]. We chose the Sakoe-Chiba band for the ease

of computation. LCS and DTW share the same dynamic programming procedure to compute

the optimal warping path within the δ time interval. We chose LCS as our distance function

and the definition is given below.

Definition 2 [10] Let Q=< q1, q2, ...qn > be a query and B=< b1, b2, ...bn > be a data subse-

quence of time series. Given an integer δ and a real number 0 < ε <1, we define the cumulative

similarity γi,j(Q,B) or γi,j as follows:

γi,j =





0, if i, j = 0

1 + γi−1,j−1 if|qi − bj| ≤ ε

and |i− j| ≤ δ

max(γi,j−1, γi−1,j) otherwise

LCSδ,ε(Q,B) = γ|Q|,|B|

LCS of the two given data sequences is computed by dynamic programming. LCS(Q,B)

returns an integer from 0 to max(|Q|, |B|). δ is the allowable matching interval in the time

dimension and ε is the allowable error bound in the data value dimension. Here is an example

of LCS match for the two sequences A and B of the same length, where A = [0, 0, 0, 0, 0.8,

1, 0.9, 0.1, 0] and B = [0, 0.1, 0, 0.8, 1, 1, 0, 0, 0.1]. Figure 2.3(a) shows the LCS warping

path. Figure 2.3(b) shows the LCS computation process in the LCS warping path matrix. It

is constructed by dynamic programming of the cumulative similarity γ|A|,|B|. The non-zero

15

0 2 4 6 8 10

0
0.1

0.8

1

0
0.1

0.8
0.9

1

LCS
[δ=2,ε =0.2]

 = 8

A

B

(a) Sequence A, B and Warping Path

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 1 1 0 0 0 0 0 0

1 2 2 2 0 0 0 0 0

1 2 3 3 3 0 0 0 0

0 2 3 3 3 3 0 0 0

0 0 3 4 4 4 4 0 0

0 0 0 4 5 5 5 5 0

0 0 0 0 5 6 6 6 6

0 0 0 0 0 6 7 7 7

0 0 0 0 0 0 7 8 8

B

A

LCS Matrix γ
|A|, |B|

 and Warping Path

(b) Sakoe-Chiba Band and an Optimal Warping Path in LCS Computation Martix

Figure 2.3: An Example of LCS Computation

16

0 5 10 15 20 25 30
75

80

85

E uclidean = 59.1208

0 5 10 15 20 25 30

DTW = 8.4745

0 5 10 15 20 25 30
75

80

85

0 5 10 15 20 25 30
75

80

85

E uclidean = 59.1208

0 5 10 15 20 25 30

DTW = 8.4745

0 5 10 15 20 25 30
75

80

85

0 5 10 15 20 25 30
75

80

85

E uclidean = 59.1208

0 5 10 15 20 25 30

DTW = 8.4745

0 5 10 15 20 25 30
75

80

85

0 5 10 15 20 25 30
70

75

80

85

E uclidean = 177.4743

0 5 10 15 20 25 30

DTW = 93.696

0 5 10 15 20 25 30

0 5 10 15 20 25 30
70

75

80

85

E uclidean = 177.4743

0 5 10 15 20 25 30

DTW = 93.696

0 5 10 15 20 25 30

After inserting a noise*Before inserting a noise*

[δ=5,ε =1]
LC S

[δ=5,ε =1][δ=5,ε =1] = 25 [δ=5,ε =1]
LC S

[δ=5,ε =1][δ=5,ε =1] = 24

Figure 2.4: Euclidean, DTW and LCS When Noise Involved

boxes in light color in the LCS warping path matrix of Figure 2.3(b) represent a Sakoe-Chiba

band [20].

LCS is known to be robust to the noise since it does not count the sequence values out of

the range, ε. In Figure 2.4, three distance functions are compared by an example. LCS was

not affected by noise as much as the other two distance functions. An alternative approach to

the noise problem is to use outlier detection algorithms in the pre-processing stage. It helps

subsequence matching by removing extreme values even though we use distance functions that

are not strong against the noise. However, extra time is required to scan the data in order to get

a correct statistics or analysis to identify outliers. [22–24]

2.5 Optimal Bounding for Index Matching

Many researchers did their best to find the optimal bound for efficient indexing of time

series data [25–27]. In [8, 28], the Euclidean distance between MBRs of the data sequence

17

and the query MBE in PAA (Piecewise Aggregate Approximation) representation is a lower

bound for the DTW distance between the data and the query. MBE is a Minimum Bounding

Envelope that covers all the possible matching points. Enhancing this indexing method of [8],

a more efficient index matching scheme was developed by representing a query of the average

values of the MBRs in [9]. [10] introduced LCS to the whole sequence matching problem. The

number of intersecting time stamps of MBRs is an upper bound for the LCS similarity. This

work, however, is proposed not just for the subsequence matching problem but also for the

whole sequence matching using LCS .

2.6 Sequence Alignment

Subsequence matching is similar to the sequence alignment in bioinformatics in that both

compare two different sequences. The sequence alignment is used to arrange two DNA or RNA

sequences which consist of a small number of characters such as A,T,C and G. By identifying

similar regions of two different sequences, researchers try to explain functional or evolutionary

relationships of sequence owners. Depending on the number of sequences in a comparison, se-

quence matching is categorized into piecewise alignment and multiple sequence alignment. In

the piecewise alignment, there are two approaches: global alignment and local alignment. The

Needleman-Wunsch algorithm [29] is a global sequence alignment method. It is a dynamic

programming algorithm that computes the similarity of two sequences. Different from LCS

and DTW, it gives penalty for the unmatched regions. In local alignment, gaps of unmatched

18

sequences reset the alignment. Matching (or alignment) is restarted whenever the algorithm

encounters unmatched subsequences. The Smith-Waterman algorithm [30] is a popular lo-

cal alignment method that employs negative penalty scoring system. Basic Local Alignment

Search Tool (BLAST) [31, 32] is one of the most useful algorithms for genomists to compare

amino-acid sequences or DNA sequences. BLAST is based on the Smith-Waterman algorithm

and it is modified by heuristics to enhance computational performance.

2.7 Other Related Work

To query by content is to find a portion of the data stream similar to a given sequence in

terms of a certain distance measure. [5, 9–11, 33, 34]. Classification and clustering are classic

data mining problems used to label an unknown instance of data based on the previously known

dataset [35, 36]. Motif discovery is a problem to identify frequently recurrent subsequences in

a given data sequence [37–43]. Rule discovery is an application in the next stage of the motif

or basic pattern discovery. Rule discovery finds relationships among subsequences in a given

time series data [44].

19

Chapter 3

Subsequence Matching with LCS Using

Dual Match Index in Single Channel

3.1 Problem Statement

The purpose of the subsequence matching is to find subsequences similar to the given query

sequence. A subsequence matching framework with the Euclidean distance has been already

developed as we stated in the previous section. However, to the best of our knowledge, many

things have not yet been considered when applying a non-Euclidean function to the subse-

quence matching. We need to improve the index search performance, and we need to provide

an index matching criteria that avoids expensive computations caused by non-Euclidean mea-

sures.

In order to describe what the output of the subsequence matching should be, we define

20

0 50 100 150 200 250 300 350
−40

−20

0

20

40

Matching Subsequences

Query, Q

δ = 2, ε = 2, θ = 36, |Q|=40

Figure 3.1: Matching Subsequences in Subsequence Matching

matching subsequences for a query sequence Q in terms of LCSδ,ε.

Definition 3 Let Q=< q1, q2, ...qm > be a query and B=< b1, b2, ...bn > be a data subsequence

of time series. Given an integer δ, a real number 0 < ε <1 and user defined similarity threshold

θ, we define the matching subsequences, M = {B[i : j] | LCSδ,ε(Q, B[i : j]) ≥ θ}

We restrict the scope of our work to searching for the longest possible matching subse-

quences of the length |Q|+ 2δ. Finding all the matches of all the lengths with a non-Euclidean

measure is time-consuming. It makes sense to find the longest matching subsequences since

they also include matching subsequences shorter than |Q| + 2δ. It is possible to search for

shorter matching subsequences after the search process for the longest ones has been com-

pleted. In Figure 3.1, all of the matching subsequences of the longest length, |Q| + 2δ, are

demonstrated in grey lines.

Problem : Find all matching subsequences B[i : j] of the length |Q| + 2δ for data

sequence B, and query Q such that the similarity LCSδ,ε(Q,B[i : j]) is no less than s% of the

|Q|, s
100
|Q|.

Solution Road Map : Here is a road map of solutions to the problem:

21

Data

Query

[δ=8, ε =0.15]

 = 32

0 10 20 30 40 50

 = 19 Similarity

[δ=8, ε =0.15]
Similarity

0 10 20 30 40 50

Data

Query

(a) Aligned to the left (b) Aligned to the center

Figure 3.2: Alignment with LCS when |Query| = 32 and |Data| = 48

• Index pruning criteria (bounding value) is computed to obtain candidates with LCS with-

out missing correct matches.

• When it comes to the index use, the number of candidates is decreased by summing up

the index search results.

• Adjacent matching intervals are efficiently skipped by observing the LCS matrix, which

allows more expensive similarity computations to be avoided.

3.2 Linear Search and Skipping LCS Computation

An intuitive approach to the subsequence matching is comparing the query sequence Q

to all of the candidate subsequences of the data sequence B in a sequential manner. All the

candidates are chosen by sliding a fixed size window along the data sequence.

22

3.2.1 Alignment in LCS

When we compare the query Q to a candidate data subsequence of the length |Q| + 2δ,

we align the query in the middle of each candidate as illustrated in Figure 3.2 (b). In the case

of the whole sequence matching, alignment is not a problem since the query and data are of

the same length. However, in our subsequence matching, we need to locate the query in the

candidate subsequence. If we align the query to the left side of a candidate, we cannot find a

correct subsequence. In Figure 3.2(a), a shorter query is not matched well to the longer data

when aligned to the left. The right side of the query cannot be compared with the data since

the δ is not big enough to cover the matching points of the data. A larger δ needs a heavier

similarity computation. Figure 3.2 (a) shows that the query is correctly matched with the same

δ when aligned to the center.

3.2.2 Skipping LCS Computation

We can avoid expensive similarity computations of the adjacent subsequences by observing

the LCS warping path and the local constraint, such as the Sakoe-Chiba band. In the subse-

quence matching, we can think of the computation matrix as a moving window along the data

sequence, as in Figure 3.3.

Let us take a look at the following example. Let’s assume that |Q| = 4, and that a user wants

to find all the subsequences whose similarity is larger than or equal to 3. Figure 3.3(a) shows

that an LCS warping path is found and represented as a set of arrows. LCS(Q,B[1 : 6]) = 4.

Darker cells represent the Sakoe-Chiba band. In Figure 3.3 (b), we move a sliding window

23

1 2 3 4 5 6 7 8

1

2

3

4

1

2

3

4

1

2

3

4

Need new

computation

At least

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(a) (b) (c)
Data B

Query

Q

Sakoe-Chiba band

1 2 3 4 5 6 7 8

1

2

3

4

1

2

3

4

1

2

3

4

Need new

computation

At least

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(a) (b) (c)
Data B

Query

Q

Sakoe-Chiba band

Figure 3.3: An Example of Skipping LCS Computation when |Q| = 4 and δ = 1

by a time stamp. The Sakoe-Chiba band still includes the warping path. In this case, we do

not have to compute the LCS(Q,B[2 : 7]) since the dynamic programming finds a maximum

warping path in the Sakoe-Chiba band and the LCS(Q,B[2 : 7]) must be larger than or equal

to 4. In Figure 3.3 (c), we need to compute LCS(Q, B[3 : 8]) since only one warping path

remains there.

We can skip a computation of a sliding window by tracing the warping path. If we find that

the Sakoe-Chiba band of the current LCS matrix includes the previous warping path greater

than or equal to the user-defined threshold, then we can skip the LCS computation. The skip-

ping goes until the Sakoe-Chiba band includes a warping path whose similarity is smaller than

the user-defined threshold. It is a useful asset to be used in order to reduce the expensive

similarity computation in the subsequence matching where the adjacent window usually has a

similar value.

Indexing enables us to avoid a number of false candidate subsequences for matching. We

compute the pruning criteria in order to choose candidate matching subsequences with LCS.

We also propose a new framework to search for the index in this section.

24

3.3 Indexing

Data is divided into equi-length disjoint windows for the index. Each window is represented

by a multi-dimensional vector. That is, data sequence B is divided into equi-length disjoint

windows < wi >. Each window wi consists of N MBRs. Let N be the dimensionality of the

space we want to index. An MBR represents a dimension. N MBRs for a wi is transformed

into −→wi =< (ui1, . . . , uiN), (li1, . . . , liN) >, where uij and lij represent the maximum and

minimum values in the jth interval of wi. −→wi is stored in an N dimensional R-tree. An example

is illustrated in Figure 3.4 (a). In the figure, the data in the first window, w1 =< b1, ..., b9 >

is transformed into −→w1 =< (u11, u12, u13), (l11, l12, l13) >. It is stored in an R-tree as in Figure

3.4 (b).

3.4 Index Matching with LCS

A query Q is compared first to the index. Q is transformed into an MBE with the LCSδ,ε

function as illustrated in Figure 3.4 (d). Let MBEQ be an MBE for Q. Let the ith sliding

window of Q be vi. It is transformed into−→vi =< (ûi1, . . . , ûiN), (l̂i1, . . . , l̂iN) >, where ûij and

l̂ij , respectively, are the maximum and minimum values in MBEQ of the jth MBR of the vi.

This is illustrated in Figure 3.4 (e). Since MBEQ covers the entire possible matching area, any

point that lies outside the MBEQ is not counted for the similarity. The number of intersecting

points between B and MBEQ overestimates LCSδ,ε(B,Q) [10]. The number of intersections

is counted through an R-tree operation as in Figure 3.4 (b), which is a intersection of Figure

25

MBEQ

Query

Q

Sliding

Windows

Intersection of

B

Q

…

N-dimensional
R-tree

w1
v1

N-dimensional
R-tree

w1
v1

v1<(u11, u12, u13), (l11, l12, l13)>

MBEQ

^ ^ ^ ^ ^ ^

u11û11
^

u12û12
^

u13û13
^

l13l̂13
^l12l̂12

^
l11l̂11
^

Data

B

…

(c) (d) (e)

(a) (b)

Indexed by disjoint windows

v1
v1

w1 : <(u11, u12, u13), (l11, l12, l13)>w1 : <(u11, u12, u13), (l11, l12, l13)>

w1

w1 and v1w1 and v1

w2

u12

u11

l13

u13
l12

u21

u22

l22

l21

l11
MBR

…

Decomposed into sliding windows MBEQ by LCSS d, e

Figure 3.4: Indexing and Index Matching where w=9 and N=3

3.4 (a) and Figure 3.4 (e).

3.5 Window Sliding Schemes in Index Matching

There are three ways to slide query windows and choose the candidate matching subse-

quences: Simple Single Window Sliding, Single Window Sliding, and Multiple Window Slid-

ing. We explain each window sliding scheme and show how the the bounding similarity is

computed.

3.5.1 Simple Single Window Sliding

In this scheme, as illustrated in Figure 3.5(a), we compare a sliding window of a query to

the index, which is first introduced in the Dual Match [45]. This overestimation method cannot

be applied to the LCS-based subsequence matching since it is based on the Euclidean distance.

26

Query, QQuery, Q

(a) Simple Single Window

Query, Q Query, Q

(b) Single Window

Query, QQuery, Q

(c) Multiple Window

Figure 3.5: Window Sliding Schemes when |v|=4.

… …

v

?

?

(a) Simple single sliding window
(b) Lost
matching points

Q

B

Query’s
MBE

Sliding
Windows

For Q

Query’s
MBE

w w

v

d d

… …

v

?

?

(a) Simple single sliding window
(b) Lost
matching points

Q

B

Query’s
MBE

Sliding
Windows

For Q

Query’s
MBE

w w

v

d d

Figure 3.6: Matching points (connected by dotted lines) are not captured in the index matching
using LCS

We should consider δ on both ends of the query sliding window. In Figure 3.6 (a), a sliding

window v of a query Q is matched to a window w of the data sequence B. In actual index

matching, some points near the start and end of the query Q cannot be matched to those of w

as in Figure 3.6 (b). The data is just indexed by MBR that does not consider δ time shift.

We newly compute the similarity threshold for the simple single window sliding method.

Let us be reminded of our subsequence matching problem: find all the matching subsequence

B[i : j] of the length |Q| + 2δ in data sequence B such that the similarity LCSδ,ε(Q,B[i : j])

27

is no less than s% of the |Q|, s
100
|Q|. Let v be a sliding window of Q. The minimum similarity,

θ is

θ = |v| − (|Q| − s

100
|Q|)− 2δ (3.1)

The term, (|Q|− s
100
|Q|), for the Equation (3.1) is subtracted from |v| when all the mismatches

can be found in the current window v. The last term 2δ is the maximum possible number of

the lost matching points.

3.5.2 Single Window Sliding

When the query length is long enough to contain more than one sliding window, we can use

the consecutive matching information as in Figure 3.5(b). Let us assume query Q and matching

subsequence B have M consecutive disjoint windows, Bi’s and Qi’s. If some Qi and Bi pairs

are not similar, then the other Qj and Bj pairs should be similar, and we can recognize the

B and Q pair as a candidate because of Bj and Qj . When all Bi and Qi pairs have the same

similarities, we should have the minimum value to establish the candidate for comparison. The

multiPiece search [5] is proposed to choose candidates through this process. It is the same for

the Euclidean distance measure. In the multiPiece, the two subsequences, B and Q, of the same

length are given, and each can be divided into p subsequences, each of which is of the length

l. d(B, Q) < ε ⇒ d(Bi, Qi) < ε√
p

for some 1 ≤ i ≤ p where Bi and Qi are ith subsequences

of length l and ε > 0. In the case of the Dual Match using Euclidean distance, we can count a

candidate if the distance is less than or equal to ε√
p
.

Similarly, in the case of LCS, LCSδ,ε(B,Q) > s
100
|Q| ⇒ LCSδ,ε(v,Q[i : j]) >

M |v|−(|Q|− s
100

|Q|)−2δ

M

28

for some j − i + 1 = |v|. So the similarity threshold for single window sliding, θs, is

θs = |v| − (|Q| − s
100
|Q|) + 2δ

M
(3.2)

As illustrated in Figure 3.5(b), M consecutive sliding windows are thought to be one large

sliding window that might lose the warping path at both ends. The threshold for the M sliding

windows is M |v| − (|Q| − s
100
|Q|) − 2δ, and it is divided by M for one sliding window. If

one of the sliding windows among consecutive M sliding windows in Q is larger than or equal

to θs, we can obtain a candidate, and we do not have to do index matching for the remaining

consecutive sliding windows at the same candidate location.

3.5.3 Multiple Window Sliding

In this new window sliding scheme, as illustrated in Figure 3.5(c), the matching results of

consecutive sliding windows in a query are aggregated. If we sum up the index matching result

from M consecutive sliding windows, we can obtain fewer false candidates than when we use

only one window. Let M be the number of consecutive windows fitted in a query Q. We vary

M to contain the maximum number of sliding windows depending on the left-most window.

The index matching results of each sliding window for all disjoint data windows are added

up to get M consecutive sliding windows. In Figure 3.7, the aggregation is done by accumu-

lating the results in a vector A of the size |B|
w

. B is the data sequence and w is the length of an

index window. Let’s assume that < v1 . . . vM > is a series of consecutive windows in the query

29

8 8 9

8 1

4 2

20 12

v1

v2

v3

Data B

Vector A

Query

Q

8

3

w1 w2 wm
. . .

Temporary vector to store

matching results
8 8 9

8 1

4 2

20 12

v1

v2

v3

Data B

Vector A

Query

Q

8

3

w1 w2 wm
. . .

Temporary vector to store

matching results

Figure 3.7: Index Matching Result

Q. The index matching results of a query window vj are placed in a temporary row vector in

Figure 3.7. It is added to A, and A is shifted right. The next matching result for vj+1 is placed

in the temporary row vector. It is added to A, and A is shifted right. In Figure 3.7, we get A

such that

A[1] = LCSδ,ε(
−→v1 ,

−→w1) + LCSδ,ε(
−→v 2,

−→w 2) + LCSδ,ε(
−→v 3,

−→w 3),

A[2] = LCSδ,ε(
−→v1 ,

−→w2) + LCSδ,ε(
−→v 2,

−→w 3) + LCSδ,ε(
−→v 3,

−→w 4),

...

A[m] = LCSδ,ε(
−→v1 ,

−−−→wm−2) + LCSδ,ε(
−→v 2,

−→w m−1) + LCSδ,ε(
−→v 3,

−→w m).

The shift operations aggregate the consecutive index matching results.

The similarity threshold for multiple sliding windows, θm, is computed as if the consecutive

M windows moved as one.

θm = M |v| − (|Q| − s

100
|Q|)− 2δ (3.3)

30

θm is for an aggregate comparison of M consecutive sliding windows, while θs is for one

sliding window.

Using the aggregation of the consecutive index matching information, we can enhance the

pruning power of the index. That is, we have fewer false alarms than the single window sliding

scheme does. In Figure 3.7, the diagonal sum illustrates the aggregatation of the consecutive

index matching results. If θs = 8, the first, second, and the fifth diagonals are selected as the

candidates since one of the matches is greater than or equal to 8. However, in the case of the

multiple window sliding, if θm = 20, the fifth diagonal is not a candidate since the sum 12 is

less than 20, so it has fewer false alarms than the single window sliding scheme does.

3.6 Post-Processing and Skipping

3.6.1 Post-Processing

Post-processing is the final procedure to determine the whole length of the matching sub-

sequence depending on the position of the matching sliding window in a query. The actual

similarity computation should be performed for the whole interval of the subsequence against

the query. Figure 3.8 demonstrates the post-processing. We intentionally omit the adjacent

matching subsequences and show only one that matches. Through the index matching pro-

cess, matching indexes for each sliding window 1©, 2©, 3© are to be found and then the whole

length of the candidate subsequence is computed including 2δ area. In Figure 3.8, one candi-

date subsequence has an index matching area and the entire length of the match is determined

31

Query, Q

Actual Matching intervals

I3I1 I2

1

2

3

1 2
3

Data, B

Data, B

Query, Q

Actual Matching intervals

I3I1 I2

1

2

3

1 2
3

Data, B

Data, B

Figure 3.8: Postprocessing determines the entire lengths of the candidate subsequences

depending on the location of the sliding window in the query.

3.6.2 Skipping the LCS Computation

After determining the whole length of the candidate subsequences, skipping the LCS com-

putation is applied to reduce the computational load. Subsequence matching cannot avoid

many adjacent matching subsequences where one subsequence is found. By tracing the warp-

ing path of the matching subsequences in its LCS warping path matrix, we can reduce the LCS

computation.

3.7 Experiment of Single Channel Time Series Dataset

Experiments were conducted on a machine with a 2.8 GHz Pentium 4 processor and 2GB

memory using Matlab 2006a and Java. Here are the parameters to run the tests:

• Dataset: We have used 48 different time series datasets1 for evaluation. Each dataset
1http://www.cs.ucr.edu/ eamonn/TSDMA/UCR, The UCR Time Series Data Mining Archive

32

has a different data length and a different number of channels. We set the length of each

to 100,000 by attaching the beginning to the end so that all the datasets have the same

length.

• Index: We set the dimension to 8 and MBR size to 4. Determining the sizes of the

dimension, MBR and R-tree requires domain knowledge.

• Query: We choose 4 fixed lengths of queries, 100, 150, 180, and 200, so that each length

includes 3, 4, 5 and 6 windows. Ten queries for each length are randomly selected from

the data sequence.

• Similarity: ε is set to 1 % of the data range, and δ is set to 2.5 % of the |Q|. Similarity

threshold S is set to 99% of the |Q|.

3.7.1 Different Sliding Schemes and Candidates

We compare the performance of the two different index sliding schemes, namely, the sin-

gle window sliding and the multiple window sliding scheme. Figure 3.9 shows the ratios,

of candidates by single windows sliding
of candidates by multiple windows sliding for different lengths of queries of each dataset. Ratios greater

than one means the multiple window sliding scheme generates fewer candidates than those of

the single window sliding scheme. The multiple window sliding scheme has fewer false alarms

than the single window sliding scheme in the tests. The ratio varies from 1 to 140. The multiple

sliding window scheme generates candidates only 1
140

of the single window sliding scheme in

the Fluid dynamics dataset.

33

100
150
180
200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

0

20

40

60

80

100

120

140

Query Length

25:powerplant
26:shuttle
27:attas
28:soiltemp
29:pHdata
30:Realitycheck
31:earthquake
32:ballbeam
33:flutter
34:balloon
35:glassfurnace
36:wind
37:evaporator
38:TOR95
39:network
40:synthetic control
41:burstin
42:leaf all
43:darwin
44:motorCurrent
45:pgt50 alpha
46:robot arm
47:twopat
48:EEG heart rate

Candidate Ratio for (Multipiece Single / Multipiece Multiple)

(ε = 0.01, δ = 0.025, S = 99%, Dim = 8, MBR_size = 4)

Data File

1:Fluid dynamics
2:tickwise
3:tide
4:steamgen
5:buoy sensor
6:random walk
7:power data
8:winding
9:infrasound beamd
10:foetal ecg
11:koski ecg
12:chaotic
13:cstr
14:eeg
15:sunspot
16:dryer2
17:standardandpoor500
18:spot exrates
19:memory
20:greatlakes
21:leleccum
22:ocean shear
23:ocean
24:speech

C
a

n
d

id
a

te
 R

a
ti

o
 f

o
r

(
M

u
lt

ip
ie

ce
 S

in
g

le
 /

 M
u

lt
ip

ie
ce

 M
u

lt
ip

le
)

Figure 3.9: Candidate Ratio = # of candidates by single windows sliding
of candidates by multiple windows sliding . The same color indicates

queries of the same length.

34

100 150 180 200

1
2
3
4
5
6
7

Median Candidate Ratio of Single Window/Multiple Window
(ε = 0.01, δ = 0.025, S = 99%, Dim = 8, MBR_size = 4)

Query Length, |Q|

Median
Ratio

Figure 3.10: Summary of Candidate Ratio in Figure 3.9

Figure 3.10 shows the median values from the Figure 3.9 for each length of the queries.

Figure 3.10 summarizes how much the performance is improved as the length of the query gets

longer in all of the datasets. It demonstrates that as the length of a query gets longer to include

more index windows, fewer false alarms occur in the multiple window sliding than in the single

window sliding.

However, in the datasets, such as an EEG heart rate, two pat, or robot arm, there is not

much difference between the two methods. We can explain it in terms of the index. For these

datasets, all of the disjoint data windows are very similar to each other. Figure 3.11 shows the

first 500 points index of the best and the worst three datasets regarding the candidate generation.

Comparing the index of the best three datasets to the worst three, we cannot easily distinguish a

set windows from any other set of windows. This is the reason why the index search is difficult

even though the multiple index information is used.

35

Best 3
0 50 100 150 200 250 300 350 400 450 500

−1

0

1

fluid
dynamics

0 50 100 150 200 250 300 350 400 450 500
2.082

2.1027

tickwise

0 50 100 150 200 250 300 350 400 450 500
−31.8965

55.0042

tide

Worst 3
0 50 100 150 200 250 300 350 400 450 500

66.615

560.083

network

0 50 100 150 200 250 300 350 400 450 500
23.512

43.6161

synthetic

control

0 50 100 150 200 250 300 350 400 450 500
0.0673575

2.3878

burstin

Figure 3.11: Index

36

100150

1802001357911131517192123252729313335373941434547

0

0.1

0.2

0.3

0.4

Data File

Tightness for Single Sliding

(ε = 0.01, δ = 0.025, S = 99%, Dim = 8, MBR_size = 4)

 #
 o

f E
st

im
at

ed
 S

im
ila

rit
y

/ #
 o

f T
ru

e
Si

m
ila

rit
y

1001501802001357911131517192123252729313335373941434547

0

0.1

0.2

0.3

0.4

Data File

Tightness for Multiple sliding

(ε = 0.01, δ = 0.025, S = 99%, Dim = 8, MBR_size = 4)

37:steamgen
38:sunspot
39:synthetic control
40:tide
41:TOR95
42:twopat
43:wind
44:winding
45:koski ecg

of

 E
st

im
at

ed
 S

im
ila

rit
y

/ #
 o

f T
ru

e
Si

m
ila

rit
y

25:pgt50 alpha
26:pHdata
27:powerplant
28:power data
29:random walk
30:Realitycheck
31:robot arm
32:shuttle
33:soiltemp

13:Fluid dynamics
14:flutter
15:foetal ecg
16:glassfurnace
17:greatlakes
18:infrasound beamd
19:leaf all
20:leleccum
21:memor

1:attas
2:ballbeam
3:balloon
4:buoy sensor
5:burstin
6:chaotic
7:cstr
8:darwin
9:dr er2

100
150

180
200

1 3 5 7 911131517192123252729313335373941434547

0

0.2

0.4

0.6

0.8

Data File

Goodness for Single Sliding

(ε = 0.01, δ = 0.025, S = 99%, Dim = 8, MBR_size = 4)

 #
of

 C
an

di
da

te
s /

 #
of

 Tr
ue

 M
at

ch
es

100150180200

1 3 5 7 911131517192123252729313335373941434547

0

0.2

0.4

0.6

0.8

Data File

Goodness for Multiple sliding

(ε = 0.01, δ = 0.025, S = 99%, Dim = 8, MBR_size = 4)

 #
of

 C
an

di
da

te
s /

 #
of

 Tr
ue

 M
at

ch
es

Figure 3.12: Goodness and Tightness

37

3.7.2 Goodness and Tightness

Goodness and tightness are metrics that show how well the index works [8].

Goodness =
of all true matches
of all candidates

(3.4)

Tightness =
Sum of all true similarity

Sum of all estimated similarity
(3.5)

Goodness shows how much the index reduces the expensive computations. Tightness shows

how close the estimated values are to the actual values in indexing [8]. If the tightness is 1.0,

then it means that the estimation is perfect. In Figure 3.12, the multiple sliding window scheme

shows greater goodness and tightness than that of the single window sliding scheme.

3.7.3 Improving Performance by Skipping Similarity Computations

Figure 3.13 shows how effective the skipping of the similarity computation is. The chart

demonstrates that we can avoid many similarity computations as the length of the query gets

longer.

However, it also shows that the skipping mechanism does not work well for the datasets

that cannot be properly indexed because the index parameter captures all of the windows in the

data as well as the ones similar to the LCS matrix.

38

1
4

7
10

13
16

19
22

25
28

31
34

37
40

43
46

0

0.2

0.4

0.6

0.8

200

Query Length

180
150

100

Skipped Matching Ratio for All Candidates

(ε = 0.01, δ = 0.025, S = 99%, Dim = 8, MBR_size = 4)

Data File

 #
 S

ki
p

e
d

 /
 #

 C
a

n
d

id
a

te

37:glassfurnace
38:pgt50 alpha
39:robot arm
40:soiltemp
41:darwin
42:balloon
43:earthquake
44:twopat
45:evaporator
46:EEG heart rate
47:network
48:burstin

25:dryer2
26:power data
27:steamgen
28:buoy sensor
29:foetal ecg
30:koski ecg
31:sunspot
32:speech
33:motorCurrent
34:leaf all
35:synthetic control
36:!utter

13:powerplant
14:TOR95
15:spot exrates
16:attas
17:leleccum
18:chaotic
19:wind

21:pHdata
22:eeg
23:tide
24:winding

1:ballbeam
2:cstr
3:greatlakes

4:infrasound beamd
5:memory
6:ocean
7:ocean shear
8:random walk

9:Realitycheck
10:shuttle
11:standardandpoor500
12:tickwise

20:Fluid dynamics

Figure 3.13: Skipping Similarity Computations

39

3.7.4 Runtime

We compare the performance of FRM, single window sliding dual match and the multiple

sliding window Dual Match in CPU time. 10 randomly selected queries are searched against 48

datasets. Experiments are done for four different lengths: 100, 150, 180 and 200. Figure 3.14

shows median CPU times of 10 runs of subsequence matching using three different methods

for each query length. It shows that in most cases, multiple sliding window scheme performs

better than FRM and single sliding windows. FRM spent much more time on searching an

R-tree than Dual Match method did. In the case the data size is n and index window size is

w, FRM has n-w+1 ≈ n index elements in the R-tree while Dual Match has only n/w. FRM

has more candidates than the Dual Match and FRM needs more operations to merge index

information as the query length gets longer [5]. Figure 3.15 summarizes the Figure 3.14 by

choosing median CPU time of all data sets for each length. It clearly demonstrates that as the

query length gets longer, the multiple sliding window scheme based on the Dual Match method

shows better performance in CPU time than the other two methods.

40

1: Fluid_dynamics

2: tickwise

3: tide

4: steamgen

5: buoy_sensor

6: random_walk

7: power_data

8: winding

9: infrasound_beamd

10: foetal_ecg

11: koski_ecg

12chaotic

13: cstr

14: eeg

15: sunspot

16: dryer2

17: standardandpoor500

18: spot_exrates

19: memory

20: greatlakes

21: leleccum

22: ocean_shear

23: ocean

24: speech

25: powerplant

26: shuttle

27: attas

28: soiltemp

29: pHdata

30: Realitycheck

31: earthquake

32: ballbeam

33: !utter

34: balloon

35: glassfurnace

36: wind

37: evaporator

38: TOR95

39: network

40: synthetic_control

41: burstin

42: leaf_all

43: darwin

44motorCurrent

45pgt50_alpha

46: robot_arm

47: twopat

48: EEG_heart_rate

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
0

500

1000

1500

2000

2500

Data File

C
P

U
 t

im
e

 (
se

co
n

d
)

CPU time : Single Window Sliding vs. Multiple Window Sliding

FRM

Single Windlw(Dual Match)

Multiple Window(Dual Match)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
0

1000

2000

3000

4000

5000

Data File

C
P

U
 t

im
e

 (
se

co
n

d
)

 |Q| =180

FRM

Single Windlw(Dual Match)

Multiple Window(Dual Match)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
0

500

1000

1500

2000

2500

3000

3500

Data File

C
P

U
 t

im
e

 (
se

co
n

d
)

 |Q| =150

FRM

Single Windlw(Dual Match)

Multiple Window(Dual Match)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
0

1000

2000

3000

4000

5000

Data File

C
P

U
 t

im
e

 (
se

co
n

d
)

 |Q| =200

FRM

Single Windlw(Dual Match)

Multiple Window(Dual Match)

(ε = 0.01, δ = 0.025, S = 99%, Dim = 8, MBR_size = 4)

 |Q| =100

Figure 3.14: CPU Time for FRM, Single Window Sliding and Multiple Window Sliding
Scheme

41

100 150 180 200
0

100

200

300

400

500

600

Query Length

C
P

U
 t

im
e

 (
se

co
n

d
)

Median CPU time : Single Window Sliding vs. Multiple Window Sliding

(ε = 0.01, δ = 0.025, S = 99%, Dim = 8, MBR_size = 4)

FRM

Single Windlw(Dual Match)

Multiple Window(Dual Match)

Figure 3.15: Median CPU Time for FRM, Single Window Sliding and Multiple Window Slid-
ing Scheme

42

Chapter 4

Multivariable Subsequence Matching

4.1 Introduction

Multivariable stream data is ubiquitous today. Advances in sensors and wireless network

technologies have produced many sensor network applications, such as object tracking, surveil-

lance, object guarding, and structural integrity monitoring of large constructions , to name a

few. In a typical sensor network application scenario, a large number of different types of sen-

sors are deployed over a wide area. Each sensor generates a continuous sensor stream. Sensor

streams are collected by a sink node and relayed to a server node for analysis. The combined

data collected in the server node naturally forms a multivariable time series data. Multivariable

time series data is a set of time series that shares the same time stamps. We call an individual

time series a channel. A multivariable time series data consists of multiple numbers of chan-

nels. Multivariable time series are more popular and useful in the real world than the single

43

10 20 30
−1

0

1

x

10 20 30
−1

0

1

y

10 20 30
−1

0

1

z

10 20 30
−1

0

1

ro
ll

10 20 30
−1

0

1

th
u

m
b

10 20 30
−1

0

1

in
d

e
x

10 20 30
−1

0

1

m
id

d
le

10 20 30
−1

0

1

ri
n

g

0 30 60 90 120 150 180 210 240 270 300
−1

0

1

0 30 60 90 120 150 180 210 240 270 300
−1

0

1

0 30 60 90 120 150 180 210 240 270 300
−1

0

1

0 30 60 90 120 150 180 210 240 270 300
−1

0

1

0 30 60 90 120 150 180 210 240 270 300
−1

0

1

0 30 60 90 120 150 180 210 240 270 300
−1

0

1

0 30 60 90 120 150 180 210 240 270 300
−1

0

1

come girl man maybe mine name read right science thank
−1

0

1

Figure 4.1: Multivariable Subsequence Matching

44

channel time series data. With the advancement of the sensor technology, many applications

require tracing a large number of channels from various sources.

Time series data is usually stored in a back-end intelligence module to analyze the prop-

erties of the data. The multivariable time series data is also fed as input to some online appli-

cations monitoring real-time events based on the back-end analysis. Unfortunately, however,

traditional data mining solutions are not directly applicable to the sensor network applica-

tion framework. Traditional techniques focus on rather static collections of records containing

mainly discrete values, while in sensor network applications, data is an unbounded stream of

continuous values. Furthermore, characteristics of data instances are also different. A record in

sensor stream data typically contains values representing particular sensor readings at a given

point in time. Unlike the traditional databases, the records in this environment have temporal

locality; for example, the current sensor readings are likely to be similar to the ones observed

recently rather than to the ones monitored a long time ago. These differences pose substantial

challenges to the traditional data management techniques, enough to force a paradigm shift in

the long-established data management standards.

In this work, we will attempt to address some of the challenges, especially in subsequence

matching in multivariable time series data. We extend the subsequence matching technique

to multivariable time series with LCS. Most of the existing solutions focus on searching sub-

sequence matching of a single channel data. [4, 5, 8, 9, 45]. Although these techniques are

successful in many application domains, they fail to search efficiently interesting patterns that

may span over multiple interdependent sensor readings in a multivariable time series data.

45

The use of multiple channels of signals would increase the accuracy of the security sys-

tem even though multivariable time series requires complex analysis. For example, in sign

language recognition, movements of the body parts are captured in a multivariable time series

data. The orientation of a palm, its angles as well as the positions of fingers, wrists, and arms

are represented in a time series for recognition. Figure 4.1 shows an example of a search of

multivariable time series in Australian Sign Language [7]. The data has 8 channels (x, y, z

position of a hand, orientation of a palm, and the folding degree of 4 fingers). In the figure,

data (to be searched) is a time series of 10 different sign words. Each word comes from one

of the 20 different signers. The query is the sign word, ”girl.” Subsequence matching in this

multivariable time series is to locate the query sign word in the data. In this example, data is

a kind of a sign language sentence, although the actual one is more complicated than this one,

since there is a pause between two words and the length of each word is not as regular as the

provided example.

We chose LCS in definition 2 as our non-Euclidean measure to run similarity matching to

overcome the Euclidean measure. If we apply LCS to each channel of a multivariable time

series data, we do not have to perform extra computations for normalization or weighting to

avoid problems from different basis units of each channel.

We avoid many expensive LCS computations in subsequence matching by observing the

computation matrix. LCS requires expensive computation; O(|Q|2), when query Q is compared

to the data of the same length. [10,12,20,21,28,46]. To reduce the number of computations for

every instance of the matching subsequence, data is indexed by spatial structure, and candidate

46

Table 4.1: The Notation for Multivariable Time Series
B A multivariable time series data sequence, <

b1,1, b1,2, . . . , b2,1, b2,2, . . . > , each bi,j is a real num-
ber at the ith channel and jth time stamp.

B[i, :] ith channel of data
B[:, j : k] a window of data from jth frame to kthframe

Q A query sequence, we assume that all channels in Q
are of the same length.

subsequences are computed through an inexpensive operation. In the following sections, we

will explain how to compute and reduce candidate matching subsequences by applying our

proposed method to the multivariable time series data. We will also validate our proposed

method through the experiments carried out on 14 multivariable datasets.

4.2 Notational Conventions

Multivariable time series data is expressed in two dimensions, value and time, in several

streams. Each stream is called a channel and it represents a feature or attribute of a temporal

event in real numbers. These values are recorded in regular time intervals. A time stamp is a

time point when a set of values of all channels is recorded. The set of values for all channels

at a time stamp is a frame. A window is a set of frames. The number of frames in a window is

the size of the window. All terms are illustrated in Figure 4.2.

We define some notations and terminologies in Table 4.1 for multivariable time series.

47

lennahC

emarF
wodniW

0 1 2 3 4 5 6 7 8 9 01 11 21 31 41 51 61 71 81 91 02 12 22 32 42 52 62 72 82 92 03

]: ,1[B

emiT

V
a

lu
e
s

]: ,2[B

]: ,3[B

Figure 4.2: Windows, Frames and Channels in a Multivariable Time Series

48

4.3 Problem Statement

We apply the proposed subsequence matching method in a single channel dataset to the

multivariable time series data. We generalize the definition of matching subsequences in Defi-

nition 3 for multivariable time series with LCSδ,εi
.

Definition 4 Let Q=< q1,1, q1,2, ...qm,n > be a query and B=< b1,1, b1,2, ... > be a data sub-

sequence of time series of m channels of finite length. Given an integer δ, a real number 0 <

εi <1 for each ith channel and user defined similarity threshold θ, we define the matching sub-

sequences, M = {B[:, j : k] | LCSδ,εi
(Q,B[:, j : k]) ≥ θ}, where LCSδ,εi

(Q,B[:, j : k]) =

∑
1<i<n LCSδ,εi

(Q[i,:],B[i,j:k])

m
}

Problem: Find all matching subsequences B[:, j : k] of the length |Q| + 2δ for data se-

quence B and query Q such that the similarity LCSδ,{εi}(Q,B[:, j : k]) is no less than S% of

the |Q|, S
100
|Q|.

Solution Road Map Here is a road map of solutions to the problem:

• Index pruning criteria (bounding value) is computed and applied to each channel.

• Candidates from the index matching process are chosen by summing up the contiguous

index search results.

• Adjacent matching intervals are efficiently skipped by observing the LCS matrix of all

channels.

49

A window of 8 MBRs

Figure 4.3: An Example of an Index that Shows MBRs and Windows

4.4 Indexing for Multivariable Time Series

Subsequence matching in multivariable time series data begins by indexing each channel of

data into separate R-trees. If there are m channels, we need m separate R-trees. Each channel

has its own error range to determine similarity. That is, ith channel has its own εi for LCS

similarity depending on the application context. All channels share the same δ.

Data is divided into equi-length disjoint windows for the index. Each window is represented

by a multi-dimensional vector. That is, data sequence B is divided into equi-length disjoint

windows < wi(k) >, ith window of the channel k. It consists of N MBRs. Let N be the

dimensionality of the space we want to index. An MBR represents a dimension. N MBRs

50

for a wi(k), is transformed into
−−−→
wi(k) =< (ui1, . . . , uiN), (li1, . . . , liN) >k, where uij and lij

represent the maximum and minimum values in the jth interval of wi(k). −→wi is stored in an N

dimensional R-tree for channel k, R-tree(k).

4.5 Index Matching in Multivariable Time Series

A query is represented by MBE-MBRs. Each channel of the query Q is transformed into an

MBE, and one or more sliding windows are chosen depending on window sliding schemes.

We obtain m MBEs from the m channels of the query Q, and each MBE is divided into

separate MBRs of the chosen sliding window. We compare this transformed query against the

data using the Dual Match index. Figure 4.4 illustrates index matching steps in multivariable

time series.

Formally, let MBEQ(j) be an MBE for Q[j, :], jth channel of Q. Let the ith sliding

window of Q[j, :] be vi(j). It is transformed into
−−→
vi(j) =< (ûi1, . . . , ûiN), (l̂i1, . . . , l̂iN) >j ,

where ûik and l̂ik, respectively, are the maximum and minimum values in MBEQ(j) of the kth

MBR of the
−−→
vi(j).

MBEQ(j) covers whole possible matching areas using LCS. Any point that lies outside the

MBEQ(j) is not counted for the similarity. The number of intersecting points between B[j, :

] and MBEQ(j) overestimates LCSδ,εj
(B[j, :], Q[j, :]) [10]. So,

∑
j LCSδ,εj

(B[j, :], Q[j, :])

overestimates actual similarity by counting all intersections of MBE-MBRs of Q and data index

in all channels. The intersections are counted through the R-tree operation.

51

7 4

Channel 1

Sliding

window1

w1 w2
…w3

20 12

18 8

a candidate
Not a

candidate
A candidate if

average >=

Temp sum of Channel 1

Sliding window 1

v1

v2

v3

19 10
Average of all channel

for sliding window1

average

average <

Query

Data

Sliding window 2

Sliding window 3

7 4

6 4

20 12

6 3

Channel 2

Sliding

window1

w1 w2
…w3

v1

v2

v3

Data

6 3

6 2

18 8

Temporary vectors1

2

3

Temp sum of Channel 2 *Assume that threshold is 16.

Figure 4.4: An Example of Multivariable Subsequence Matching

We apply one sliding window to all channels of query. In the figure, a window qi of query

Q is searched in R-tree indexes to find estimated matching values. These values are stored in a

temporary vector like 1© in figure 4.4. The individual matching process of each channel is the

same as the one for the single channel data.

We use the same θs and θm depending on the window sliding schemes. These were com-

puted in the previous chapter.

Temporary vectors of a channel are diagonally aggregated into a vector, temp sum of a

channel, labeled 2© in Figure 4.4. In the 2-channel example of Figure 4.4, the first element of

the temporary vector in channel 1 is a sum of 7 + 7 + 6.

Index matching results of all channels in the temp sum vectors are aggregated and divided

by the number of channels as 3© in Figure 4.4. This final vector contains index matching

52

results. Only the vector elements greater than or equal to the matching threshold, θm or θs, are

considered candidates.

4.6 Post-processing

Post-processing determines the whole length of the matching subsequence by actual LCS

computation. Candidate subsequences are chosen based on this index matching. If the average

value of LCS similarities of all channels are greater than or equal to the threshold , θs or θm, a

candidate is chosen. If not, the window is not chosen for a candidate. In Figure 4.4, a window

that has (12 + 8) / 2 in the result of index matching will be rejected since it is less than the

computed threshold 16.

4.7 Skipping with LCS for Multivariable Time Series

We can skip one or more LCS computations in the neighboring candidates by observing the

LCS warping path. In the case of the multivariable time series data, this observing process is

done for each channel. We obtain all possible skippings for all channels. A minimum number

among these possible skippings of all channels is chosen to skip LCS computations. This

minimum number of skippings prevents us from computing the actual LCS for all channels.

53

4.8 Experiment of Multivariable Time Series Dataset

Here is a brief introduction to the multivariable datasets used in our experimental study and

its parameters chosen to run our tests:

• Dataset: We have used 14 different time series datasets 1 for evaluation. Each dataset

has a different length of data and a different number of channels from 2 to 15. We set the

length of each to 10,000 by attaching the beginning to the end so that all the datasets are

of the same length.

• Index: We set the dimension to 8 and MBR size to 4. Determining the sizes of the

dimension, MBR and R-tree requires domain knowledge.

• Query: We chose 4 fixed-lengths of queries, 100, 150, 180, and 200, so that each length

includes 3, 4, 5 and 6 windows. Ten queries for each length are randomly selected from

the data sequence.

• Similarity: ε is set to 1 % of the data range, and δ is set to 2.5 % of the |Q|. Similarity

threshold S is set to 99% of the |Q|.

4.8.1 Different Sliding Schemes and Candidates in Multivariable Time

Series Data

In the first experiment with multivariable time series datasets, we compare the performance

of two different index sliding schemes, single window sliding, and multple window sliding,
1http://www.cs.ucr.edu/ eamonn/TSDMA/UCR, The UCR Time Series Data Mining Archive

54

100

150

180

200

1
3

5
7

9
11

13

0

50

Query Length

8:cstr(3)
9:phone1(8)
10:winding(7)
11:wind(15)
12:steamgen(4)
13:foetal ecg(9)
14:shuttle(6)

Candidate Ratio for (Multipiece Single / Multipiece Multiple)

(ε = 0.01, δ = 0.025, S = 99%, Dim = 8, MBR_size = 4)

Data File

1:evaporator (6)
2:Physiological data B1(3)
3:water(3)
4:buoy sensor(4)
5:phdata(3)
6:greatlakes(5)
7:baloon(2)

(
M

u
lt

ip
ie

ce
 S

in
g

le
 /

 M
u

lt
ip

ie
ce

 M
u

lt
ip

le
)

Figure 4.5: Candidates Ratio= # of candidates by single windows sliding
of candidates by multiple windows sliding . The same color indicates

queries of the same length.

55

100 150 180 200

1

2

3

4

5

6

Median Candidate Ratio of Single/Multiple

(ε = 0.01, δ = 0.025, S = 99%, Dim = 8, MBR_size = 4)

Query Length, |Q|

Median
Ratio

Figure 4.6: Summary of Candidate Ratio in Figure 4.5

in the multivariable time series data. By counting the number of candidates, we can correctly

compare the performance of two methods independently. For ease of comparison, a ratio of the

candidates is computed. Figure 4.5 shows that ratio, # of candidates by single windows sliding
of candidates by multiple windows sliding increases

as the length of queries increases for most datasets. The number of channels of a dataset is

specified in the legend of the figure. In this experiment, the multiple window sliding scheme

has fewer false alarms than the single window sliding scheme. The ratio varies from 1 to 50. In

the best case, the multiple sliding window generates candidates only 1
50

of the single window

sliding scheme.

Figure 4.6 shows the median values from Figure 4.5 for each length of the queries. It

summarizes the improvement that occurs as the length of the query gets longer when we use

the multiple window sliding method. We have fewer false alarms in the multiple window

sliding than in the single window sliding as the length of a query gets longer. For the longer

query, we have more index windows than for the shorter one, which reduces the chances of

getting wrong candidates.

We can explain this difference in candidates in terms of the index. For these datasets, all

56

0 20 40 60 80 100
75

80

85

C
h

a
n

n
e

l 1

0 20 40 60 80 100
−2

0

2
x 10

4

C
h

a
n

n
e

l 2

0 20 40 60 80 100
7750

7800

7850

C
h

a
n

n
e

l 3

Time

Physiological data B1

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

C
h

a
n

n
e

l 1

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

C
h

a
n

n
e

l 2

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

C
h

a
n

n
e

l 3

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

2

C
h

a
n

n
e

l 4

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

C
h

a
n

n
e

l 5

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

C
h

a
n

n
e

l 6

Time

evaporator

Figure 4.7: Index of Best 2 Multivariable Time Series

of the disjoint data windows are very similar to each other. Figure 4.7 and Figure 4.8 show

the first 100 points index of the best and the worst two datasets in terms of the candidate

generation. When we compare the index of the best two datasets to the worst two, we cannot

easily distinguish a set of windows from another set of windows. This makes it hard to search

the index quickly even though multiple index information is used.

We tested the effect of the number of channels in use. We chose the best data set, evapo-

rator dataset, and applied the same experiment while increasing the number of channels from

1 to 6. Multiple sliding windows scheme greatly reduces the number of false candidates. Fig-

57

0 20 40 60 80 100
0

0.2

0.4

C
h

a
n

n
e

l 1

0 20 40 60 80 100
0.4

0.6

0.8

1

C
h

a
n

n
e

l 2

0 20 40 60 80 100
0.4

0.6

0.8

1

C
h

a
n

n
e

l 3

0 20 40 60 80 100
0

0.1

0.2

C
h

a
n

n
e

l 4

0 20 40 60 80 100
0

0.5

1

C
h

a
n

n
e

l 5

0 20 40 60 80 100
0

0.2

0.4

C
h

a
n

n
e

l 6

Time

shuttle

0 20 40 60 80 100
0

0.1

0.2

C
h

a
n

n
e

l 1

0 20 40 60 80 100
−50

0

50

C
h

a
n

n
e

l 2

0 20 40 60 80 100
−100

0

100

C
h

a
n

n
e

l 3

0 20 40 60 80 100
−100

0

100

C
h

a
n

n
e

l 4

0 20 40 60 80 100
−50

0

50

C
h

a
n

n
e

l 5

0 20 40 60 80 100
−100

0

100

C
h

a
n

n
e

l 6

0 20 40 60 80 100
−1000

0

1000

C
h

a
n

n
e

l 7

0 20 40 60 80 100
−1000

0

1000

C
h

a
n

n
e

l 8

0 20 40 60 80 100
−1000

0

1000

C
h

a
n

n
e

l 9

Time

foetal ecg

Figure 4.8: Index of Worst 2 Multivariable Time Series

58

100

150

180

200

1 2 3 4 5 6

0

50

Query Length

Candidate Ratio for (Multipiece Single / Multipiece Multiple)
(ε = 0.01, δ = 0.025, S = 99%, Dim = 8, MBR_size = 4)

Number of Channels

Figure 4.9: Candidate Ratio by Increasing the Number of Channels

ure 4.9 shows that, as the number of channels increases, the number of candidates decreases

when multiple window sliding scheme is used. As the query length gets longer, the number of

windows in the query increases. The increase of the number of windows in a query enables us

to use more information in index matching process and as a result we have fewer false alarms

than we have in a shorter query. From Figure 4.9, we can conclude that the number of channels

affects candidate computation because it increases the amount of information for correct index

matching.

59

4.8.2 Goodness and Tightness

We compute the goodness and the tightness as given in the equations 3.4 and 3.5. In Figure

4.10, the multiple sliding window scheme shows better goodness and tightness than the ones

of the single window sliding scheme. We can see from the figure, as the length of query gets

longer, goodness and tightness improve. A long query includes more windows than a short

one. This increases the accuracy of the index matching process using multiple numbers of

index windows.

4.9 Improving Performance by Skipping Similarity Compu-

tations

Figure 4.11 shows how the skipping strategy effectively reduces expensive LCS computa-

tions. As we found in the experiment with the single channel dataset in the previous chapter,

this experimental result shows that we can avoid many similar LCS computations as the length

of the query gets longer in the multivariable time series data.

60

Figure 4.10: Goodness and Tightness from multivariable time series experiment

61

100
150

180
200

1

4

7

10

13

0

0.2

0.4

0.6

0.8

Query Length

1:winding
2:cstr
3:steamgen
4:foetal ecg
5:shuttle
6:greatlakes
7:phdata
8:Physiological data B1
9:evaporator
10:buoy sensor
11:water
12:phone1
13:wind
14:baloon

Skipped Matching of all Matchings

(ε = 0.01, δ = 0.025, S = 99%, Dim = 8, MBR_size = 4)

Data FileData FileData FileData File

 #
 S

ki
p

e
d

 /
 #

 C
a

n
d

id
a

te

Figure 4.11: Skipping Similarity Computations

62

Chapter 5

Conclusion

We have proposed a novel subsequence matching framework that employs a non-Euclidean

distance, in particular, LCS, a multiple window sliding scheme and a similarity skipping idea.

Subsequence matching is used to find a query sequence out of a long range of data sequence.

Our framework is based on the Dual Match subsequence matching where the data sequence is

divided into a series of disjoint equi-length subsequences and then indexed in an R-tree while

the query is searched in sliding windows. We newly computed the similarity bounds in the

index matching framework with LCS. The proposed query matching scheme reduces many

false alarms present in the previous approaches. We developed an algorithm to skip expensive

LCS computations by observing the warping paths in a computation matrix. We extended our

proposed subsequence matching scheme of a single channel data to multivariable time series

data. An index is constructed in individual channels. A query is matched using a multiple

sliding window scheme for each channel. The index matching results from all channels are

63

aggregated and divided by the number of channels to determine candidates.

We have validated our new framework through experiments with 48 time series datasets for

single channels and 15 for multivariable time series datasets. The proposed methods enabled

us to have more intuitive and efficient subsequence matching algorithms. The multiple window

sliding scheme was more efficient than the single window sliding scheme for the longer query

in candidate generation, along with goodness and tightness. Skipping of the LCS computation

greatly reduced expensive similarity computations in a single channel and multivariable time

series data.

Regarding future work, the next research direction of the proposed work is to apply the

subsequence matching method to other time series mining problems. Motif finding typically

needs efficient subsequence matching algorithms. It requires a great amount of searching in or-

der to guess basic patterns to explain events because we do not know ahead of time the lengths

of frequent patterns. This implies that all patterns of all lengths of subsequences should be

counted. Cluster analysis also includes several comparisons of neighboring subsequences and

group similar patterns. All time series analysis work requiring heavy searching is a candidate

for the next research topic.

64

Chapter 6

Appendix: First 500 Points of Datasets

Table 6.1: Time Series Data Used in the Experiments

Title Data Cite

attas 0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

[47]

ballbeam 0 50 100 150 200 250 300 350 400 450 500
−0.2

−0.1

0

0.1

0.2

[48]

balloon 0 50 100 150 200 250 300 350 400 450 500
−1.5

−1

−0.5

0

0.5

[49]

buoy sensor 0 50 100 150 200 250 300 350 400 450 500
−0.4

−0.2

0

0.2

0.4

[50]

burstin 0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

[51]

65

Table 6.1 continued

Title Data Cite

chaotic 0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

[52]

cstr 0 50 100 150 200 250 300 350 400 450 500
0.05

0.1

0.15

0.2

0.25

[48]

darwin 0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

[53]

dryer2 0 50 100 150 200 250 300 350 400 450 500
−20

0

20

40

[48]

earthquake 0 50 100 150 200 250 300 350 400 450 500
−0.2

−0.1

0

0.1

0.2

[54]

eeg 0 50 100 150 200 250 300 350 400 450 500
−100

−50

0

50

[55]

evaporator 0 50 100 150 200 250 300 350 400 450 500
−100

−50

0

50

[48]

Fluid dynamics 0 50 100 150 200 250 300 350 400 450 500
−1

−0.5

0

0.5

1

[56]

flutter 0 50 100 150 200 250 300 350 400 450 500
−4

−2

0

2

4

[57]

foetal ecg 0 50 100 150 200 250 300 350 400 450 500
−50

0

50

[48]

66

Table 6.1 continued

Title Data Cite

glassfurnace 0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

[48]

greatlakes 0 50 100 150 200 250 300 350 400 450 500
1.755

1.76

1.765

1.77

1.775
x 10

4

[55]

infrasound beamd 0 50 100 150 200 250 300 350 400 450 500
−5000

0

5000

[55]

leaf all 0 50 100 150 200 250 300 350 400 450 500
−4

−2

0

2

4

[55]

leleccum 0 50 100 150 200 250 300 350 400 450 500
200

300

400

500

[55]

memory 0 50 100 150 200 250 300 350 400 450 500
−5

0

5

10

[55]

motorCurrent 0 50 100 150 200 250 300 350 400 450 500
−10

−5

0

5

10

[58]

ocean 0 50 100 150 200 250 300 350 400 450 500
−6

−4

−2

0

2

[55]

ocean shear 0 50 100 150 200 250 300 350 400 450 500
−6

−4

−2

0

2

[55]

pgt50 alpha 0 50 100 150 200 250 300 350 400 450 500
−4

−2

0

2

4

[1]

67

Table 6.1 continued

Title Data Cite

pHdata 0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

[48]

powerplant 0 50 100 150 200 250 300 350 400 450 500
−1000

−500

0

500

1000

[48]

power data 0 50 100 150 200 250 300 350 400 450 500
500

1000

1500

2000

[59]

random walk 0 50 100 150 200 250 300 350 400 450 500
−10

0

10

20

30

[55]

Realitycheck 0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

[55]

robot arm 0 50 100 150 200 250 300 350 400 450 500
−1

−0.5

0

0.5

1

[55]

shuttle 0 50 100 150 200 250 300 350 400 450 500
0.2

0.4

0.6

0.8

1

[60]

soiltemp 0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

[54]

speech 0 50 100 150 200 250 300 350 400 450 500
0

2000

4000

6000

[54]

spot exrates 0 50 100 150 200 250 300 350 400 450 500
0.02

0.025

0.03

0.035

0.04

[61]

68

Table 6.1 continued

Title Data Cite

standardandpoor500 0 50 100 150 200 250 300 350 400 450 500
10

15

20

25

30

[49]

steamgen 0 50 100 150 200 250 300 350 400 450 500
−10

0

10

20

[48]

sunspot 0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

[62]

synthetic control 0 50 100 150 200 250 300 350 400 450 500
20

30

40

50

[63]

tide 0 50 100 150 200 250 300 350 400 450 500
−50

0

50

100

[64]

TOR95 0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

[55]

twopat 0 50 100 150 200 250 300 350 400 450 500
−5

0

5

[48]

wind 0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

[49]

winding 0 50 100 150 200 250 300 350 400 450 500
−6

−4

−2

0

2

[48]

koski ecg 0 50 100 150 200 250 300 350 400 450 500
−10000

−5000

0

5000

[65]

69

Table 6.1 continued

Title Data Cite

EEG heart rate 0 50 100 150 200 250 300 350 400 450 500
10

20

30

40

50

[55]

network 0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

[55]

tickwise 0 50 100 150 200 250 300 350 400 450 500
2.08

2.09

2.1

2.11

[66]

70

Bibliography

[1] J. Aach and G. Church, “Aligning gene expression time series with time warping

algorithms,” in Bioinformatics, pp. 17:495–508, 2001.

[2] “Apnea in wikipedia.” http://en.wikipedia.org/wiki/Apnea.

[3] “Tickwise data.” http://www-psych.stanford.edu/ andreas/Time-Series/SantaFe.html.

[4] R. Agrawal, C. Faloutsos, and A. N. Swami, “Efficient similarity search in sequence

databases,” in FODO ’93, (London, UK), pp. 69–84, Springer-Verlag, 1993.

[5] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subsequence matching in

time-series databases,” in Proceedings 1994 ACM SIGMOD Conference, Mineapolis,

MN.

[6] Y.-S. Moon, K.-Y. Whang, and W.-K. Loh, “Efficient time-series subsequence matching

using duality in constructing windows,” Information Systems, vol. 26, no. 4,

pp. 279–293, 2001.

71

[7] M. Kadous, “Grasp: Recognition of australian sign language using instrumented

gloves,” 1995.

[8] E. J. Keogh, “Exact indexing of dynamic time warping,” in VLDB, pp. 406–417, 2002.

[9] Y. Zhu and D. Shasha, “Warping indexes with envelope transforms for query by

humming,” in SIGMOD ’03, (New York, NY, USA), pp. 181–192, ACM Press, 2003.

[10] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh, “Indexing

multi-dimensional time-series with support for multiple distance measures,” in KDD

’03, (New York, NY, USA), pp. 216–225, ACM Press, 2003.

[11] D. Gunopoulos, “Discovering similar multidimensional trajectories,” in ICDE ’02:

Proceedings of the 18th International Conference on Data Engineering, (Washington,

DC, USA), p. 673, IEEE Computer Society, 2002.

[12] D. Sankoff and J. Kruskal, Time warps, string edits, and macromolecules : the theory

and practice of sequence comparison. Addison-Wesley Pub. Co., 1983.

[13] A. Guttman, “R-trees: a dynamic index structure for spatial searching,” in SIGMOD ’84:

Proceedings of the 1984 ACM SIGMOD international conference on Management of

data, (New York, NY, USA), pp. 47–57, ACM Press, 1984.

[14] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree: an efficient and

robust access method for points and rectangles,” SIGMOD Rec., vol. 19, no. 2,

pp. 322–331, 1990.

72

[15] D. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time series,”

in AAAI-94 Workshop on Knowledge Discovery in Databases, (Seattle, WA, USA),

pp. 229–248, 1994.

[16] R. L. R. Thomas H. Cormen, Charles E. Leiserson and C. Stein, Introduction to

Algorithms. The MIT Press, 2001.

[17] S. Baase, Computer Algorithms. Addison Wesley, 1991.

[18] R. P. Grimaldi, Discrete and Combinatorial Mathematics - An Applied Introduction.

Addison Wesley, 1989.

[19] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest common subsequence

algorithms,” in SPIRE ’00: Proceedings of the Seventh International Symposium on

String Processing Information Retrieval (SPIRE’00), (Washington, DC, USA), p. 39,

IEEE Computer Society, 2000.

[20] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spoken word

recognition,” pp. 159–165, 1990.

[21] F. Itakura, “Minimum prediction residual principle applied to speech recognition,” in

Readings in Speech Recognition (A. Waibel and K.-F. Lee, eds.), pp. 154–158, San

Mateo, CA: Kaufmann, 1990.

[22] S. Basu and M. Meckesheimer, “Automatic outlier detection for time series: an

application to sensor data,” Knowl. Inf. Syst., vol. 11, no. 2, pp. 137–154, 2007.

73

[23] G. R. George Box, Gwilym M. Jenkins, Time Series Analysis: Forecasting and Control

(3rd Edition). Prentice Hall, 1994.

[24] M. K. Jiawei Han, Data Mining, Second Edition : Concepts and Techniques. Morgan

Kaufmann, 2005.

[25] B.-K. Yi, H. V. Jagadish, and C. Faloutsos, “Efficient retrieval of similar time sequences

under time warping,” in ICDE ’98: Proceedings of the Fourteenth International

Conference on Data Engineering, (Washington, DC, USA), pp. 201–208, IEEE

Computer Society, 1998.

[26] S.-W. Kim, S. Park, and W. W. Chu, “Efficient processing of similarity search under

time warping in sequence databases: an index-based approach,” Inf. Syst., vol. 29, no. 5,

pp. 405–420, 2004.

[27] R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim, “Fast similarity search in the

presence of noise, scaling, and translation in time-series databases,” in Twenty-First

International Conference on Very Large Data Bases, (Zurich, Switzerland),

pp. 490–501, Morgan Kaufmann, 1995.

[28] E. J. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time warping.,”

Knowl. Inf. Syst., vol. 7, no. 3, pp. 358–386, 2005.

[29] S. Needleman and C. Wunsch, “A general method applicable to the search for

74

similarities in the amino acid sequence of two proteins.,” J Mol Biol, vol. 48, no. 3,

pp. 443–53, 1970.

[30] T. F. Smith and M. S. Waterman, “Identification of common molecular subsequences,”

Journal of Molecular Biology, vol. 147, pp. 195–197, 1981.

[31] “Blast.” http://www.ncbi.nlm.nih.gov/BLAST/.

[32] “Blast tutorial.” http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/tut1.html.

[33] A. W. chee Fu, E. Keogh, L. Y. H. Lau, and C. A. Ratanamahatana, “Scaling and time

warping in time series querying,” in VLDB ’05: Proceedings of the 31st international

conference on Very large data bases, pp. 649–660, VLDB Endowment, 2005.

[34] S.-L. Lee, S.-J. Chun, D.-H. Kim, J.-H. Lee, and C.-W. Chung, “Similarity search for

multidimensional data sequences,” in ICDE, pp. 599–608, 2000.

[35] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “Segmenting time series: A survey and

novel approach,” 1993.

[36] E. Keogh, J. Lin, and W. Truppel, “Clustering of time series subsequences is

meaningless: Implications for previous and future research,” in ICDM ’03: Proceedings

of the Third IEEE International Conference on Data Mining, (Washington, DC, USA),

p. 115, IEEE Computer Society, 2003.

[37] F. Höppner, “Discovery of core episodes from sequences,” in Proceedings of the ESF

75

Exploratory Workshop on Pattern Detection and Discovery, (London, UK),

pp. 199–213, Springer-Verlag, 2002.

[38] J. Lin, E. Keogh, S. Lonardi, and P. Patel, “Finding motifs in time series,” in

Proceedings of the Second Workshop on Temporal Data Mining, (Edmonton, Alberta,

Canada), July 2002.

[39] P. Patel, E. J. Keogh, J. Lin, and S. Lonardi, “Mining motifs in massive time series

databases,” in ICDM ’02: Proceedings of the 2002 IEEE International Conference on

Data Mining (ICDM’02), (Washington, DC, USA), p. 370, IEEE Computer Society,

2002.

[40] Y. Tanaka, K. Iwamoto, and K. Uehara, “Discovery of time-series motif from

multi-dimensional data based on mdl principle,” Mach. Learn., vol. 58, no. 2-3,

pp. 269–300, 2005.

[41] G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth, “Rule discovery from

time series,” in Knowledge Discovery and Data Mining, pp. 16–22, 1998.

[42] B. Chiu, E. J. Keogh, and S. Lonardi, “Probabilistic discovery of time series motifs.”

[43] J. Buhler and M. Tompa, “Finding motifs using random projections,” in RECOMB,

pp. 69–76, 2001.

[44] F. Hoppner, “Discovery of temporal patterns – learning rules about the qualitative

behavior of time series,” 2001.

76

[45] Y.-S. Moon, K.-Y. Whang, and W.-K. Loh, “Duality-based subsequence matching in

time-series databases,” in Proceedings of the 17th ICDE, (Washington, DC, USA),

pp. 263–272, IEEE Computer Society, 2001.

[46] D. Gunopoulos, “Discovering similar multidimensional trajectories,” in ICDE ’02:

Proceedings of the 18th International Conference on Data Engineering (ICDE’02),

(Washington, DC, USA), p. 673, IEEE Computer Society, 2002.

[47] J. Tikka and J. Hollmen, “Learning linear dependency trees from multivariate

time-series data,” in Proceedings of the Workshop on Temporal Data Mining:

Algorithms, Theory and Applications (in conjunction with The Fourth IEEE

International Conference on Data Mining), (Brighton, U.K.), November 2004.

[48] “Data of the ball-and-beam setup in sista.”

http://www.esat.kuleuven.ac.be/ tokka/daisydata.html.

[49] “Data from a balloon about 30 kilometres above the surface of the earth.”

http://lib.stat.cmu.edu/datasets/.

[50] “Data for the camp current meter moorings.” http://ccs.ucsd.edu/zoo/.

[51] “Data for elastic burst detection.”

http://cs.nyu.edu/cs/faculty/shasha/papers/burst.d/burst.html.

[52] “Chaotic data.”

http://cns-web.bu.edu/pub/cn550/project98/data/time series specification.html.

77

[53] “Monthly climate values of the darwin slp series from 1882 to 1998.”

http://www.stat.duke.edu/ mw/ts data sets.html.

[54] “Earthwuake data.” http://lib.stat.cmu.edu/general/tsa/tsa.html.

[55] “Ucr dataset.” http://www.cs.ucr.edu/

[56] G. L. J. K. Brijesh Garabadu, Cindi Thompson, “Fast and accurate nn approach for

multi-event annotation of time series,” vol. UUCS-03-021, 2003.

[57] F. Kuleuven, “Time-frequency analysis for transfer function estimation and application

to flutter clearance,” AIAA.

[58] N. A. O. Demerdash and J. F. Bangura, “Characterization of induction motors in

adjustable-speed drives using a time-stepping coupled finite element state-space method

including experimental validation,” p. 790, IEEE Transactions On Industry Applications,

1999.

[59] “Cluster and calendar-based visualization of time series data.”

http://www.win.tue.nl/ vanwijk/clv.pdf.

[60] “Robot arm data.” http://www-aig.jpl.nasa.gov/public/mls/time-series/.

[61] “spot prices (foreign currency in dollars)and the returns for daily exchange rates.”

http://www.stat.duke.edu/data-sets/mw/ts data/all exrates.html.

[62] “Monthly sunspot data from jan 1749 to july 1990.”

http://xweb.nrl.navy.mil/timeseries/multi.diskette.

78

[63] “Synthetic data.” http://kdd.ics.uci.edu/.

[64] “Tioed data.” http://lib.stat.cmu.edu/jasadata/percival-m.

[65] “Koski’s ecg data.” http://www2.cs.utu.fi/staff/antti.koski/abs.html.

[66] “Tickwise data.” http://www.stern.nyu.edu/ aweigend/Time-Series/Data/.

