
Abstract 
 
 

ZHU, LIANSHENG. Analyzing Longitudinal Data with Non-Ignorable Missing. (Under the 

direction of Dr. Sujit Ghosh and Dr. Subhashis Ghosal.) 

      In longitudinal studies, data are often missing despite every attempt made to collect 

complete data. When the missingness is informative and hence not ignorable, it is generally 

difficult to analyze non-ignorable missing (NIM) data since the distributional assumptions 

about missing data are not easily verifiable using traditional goodness of fit tests or otherwise. 

Selection models and pattern-mixture models are two common approaches to analyze NIM 

data. Each approach has its advantages and disadvantages. Methods proposed in this thesis 

fall into the category of pattern-mixture models. Traditionally, patterns are determined by 

time to occurrence of missing. This definition often results into the problem of not all 

parameters being identifiable. Moreover, marginalization is commonly required and can be 

very tricky when outcomes are discrete. It is recognized that patterns can and need to be 

defined by covariates, surrogate variables and/or time to missing. We propose two 

approaches to model NIM data: (i) pseudo-imputation (PI) approach, in which we first obtain 

predictive means within each pattern, get transformed predictive means by using a suitable 

link function and then fit with covariates to obtain marginal estimates; (ii) joint-modeling 

(JM) approach, in which patterns considered as random effects are marginalized within a 

generalized linear mixed model framework. The JM approach is shown to be able to capture 

the dependence of missing indicators on missing outcomes in some degree as is the case with 

NIM data. Some of the main advantages of these proposed approaches include (i) the 

capability to handle both continuous and discrete responses, (ii) avoidance of the problem of 



under-identifiability, (iii) availability of marginal estimates, and (iv) computational 

efficiency. When the missingness does depend on the patterns, results based on simulated 

data suggest that both approaches yield accurate estimates if the underlying number of 

patterns is specified correctly. Otherwise the PI method leads to biased results whereas the 

JM approach still provides reasonably accurate estimates.  

      Finally, we extend our approaches to a generalized additive model (GAM) replacing the 

GLM framework. When the underlying relationship is highly non-linear, our extended 

approaches with a GAM framework provide flexibility and more accurate estimates. The JM 

approach along with generalized additive models can provide more flexibility than the PI 

approach since it uses a more robust model for the missing indicator. 
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Chapter 1

Introduction

In longitudinal studies, measurements of a response variable and some explanatory

variables for each subject are recorded repeatedly across time. The primary interest

is often the estimation of either the change in the response variables over time or the

effects of independent variables at the completion of studies. Longitudinal studies are

popular in epidemiological research. Besides that, they are gaining increasing popularity

in clinical trials of intervention dealing with chronic diseases. Although most studies are

well designed and every attempt is made to collect data on each subject at each of the

follow-up times, it is often unavoidable to have some measurements missing intermittently

and/or even have subjects dropped out prior to the completion of the study. The reasons

behind such missing may be study-related, for example, adverse event, competing risks,

lack of effectiveness of treatments, or even early recovery. It can also be non-study

related, e.g., accidental death or moving away. An example of a longitudinal study is

given in Section 1.1. Section 1.2 provides notations and definitions for model description.

Some statistical methods in literature dealing with non-ignorable missing are discussed

in Section 1.3.

1.1 A Motivating Study

According to the National Osteoporosis Foundation, vertebral fractures are the most

common osteoporotic fracture. Among postmenopausal women who sustain a vertebral
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fracture, one out of five will suffer their next vertebral fracture within just one year,

potentially leading to a fracture “cascade”. There is a three-year clinical trial in which

binary outcomes (new fracture versus no new fracture) of vertebral fracture are measured

at the end of each year. Baseline measurements include patients’ age, Tscore (calculated

from bone mineral density), and baseline fracture status (0, 1, ≥ 2). Patients are ran-

domly assigned to either the treatment group or the placebo group. Some patients may

not have any post-baseline measurements and some patients may only have incomplete

post-baseline measurements. In this specific study, it was defined that if a fracture is

determined for the patient at the jth year, it will be assumed that his or her post jth

year outcome is a fracture as well since the vertebral fracture can not be cured (once

a fracture, always a fracture). Therefore, data from these patients are not counted as

missing even when there are no measurements available. That means the subjects are

considered as dropouts only if they do not experience fracture before missing. The pri-

mary analysis is to compare the intervention with the control on vertebral fracture based

on the population excluding patients without any post-baseline data. There is reason

to suspect that dropouts may depend on responses because subjects with new fractures

may be more likely to quit than those with no fractures. Hence, standard statistical

methods do allow the missing mechanism to depend on missing observations may yield

biased estimates and hence misleading conclusions might be drawn by the clinicians.

1.2 Notations and Definitions

Let Yij be the responses of the ith subject measured at the jth time point, Xi denote

the vector of baseline covariates, and Rij be the missing indicator variable for i = 1, . . . , n,

and j = 1, . . . ,m. Let Rij = 1 if Yij observed and Rij = 0 otherwise. Let Y be the matrix

of Yij’s and X and R be matrices of Xi’s, and Rij’s. The variable Y can be expressed as

(Yobs, Ymiss), where Yobs denotes observed responses and Ymiss the missing ones.

Consider again the above example of the 3-year study. If subjects have at least one

post-baseline measurement, and then they are included in the analysis. Hence, there are

only three missing patterns since a monotonic missing mechanism (dropout) is observed.

More generally, if subjects are included as long as they baseline measures, then there
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Table 1.1: The typical data structure. (NA: missing data)

Subject Year 1 Year 2 Year 3

1 y11 y12 y13

2 y21 y22 NA

3 y31 NA NA

4 y41 NA y43

5 NA y52 y53

6 NA y62 NA

7 NA NA y73

8 NA NA NA

. . . .

. . . .

can be eight possible missing patterns. A typical data structure is illustrated in Table 1,

where NA indicates a missing observation. In this illustration, R11 = 1, R23 = 0 etc.

In Rubin and Little’s taxonomy (1976, 1987), there are in general three missing

mechanisms that can be expressed in terms of the conditional distribution of R given X

and Y . Let f(U |V ) denote the conditional distribution of U given V .

1. Missing completely at random (MCAR): f(R|X,Y ) = f(R). One extension of

MCAR is defined as the covariate-dependent MCAR if f(R|X,Y ) = f(R|X).

2. Missing at random (MAR): f(R|X,Y ) = f(R|Yobs, X).

3. Non-ignorable missing (NIM): f(R|X,Y ) = f(R|X,Yobs, Ymiss).

The third mechanism (NIM) which makes no restrictive assumption on missing mecha-

nisms is the main focus of our research.

1.3 Models and Associated Methods for NIM Data

It is generally difficult to model NIM data since the distributional assumptions about

the missing data are not easily verifiable using traditional goodness of fit (GOF) tests or
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otherwise. There is a large volume of literature devoted to reduce bias resulting from this

type of missing. Two widely used approaches are selection models and mixture models.

In mixture models, the joint density of repeated outcomes Y and missing indicator R,

conditional on covariates, X is written as f(Y,R|X) = f(Y |R,X)f(R|X) whereas for

selection models it is written as f(Y,R|X) = f(Y |X)f(R|Y,X).

1.3.1 Selection Models

Selection models, which were first introduced in the univariate setting by Heckman

(1976) appearing in the econometrics literature, require one to combine a model for the

full data with a selection model for missing indicators given data. Diggle and Kenward

(1994) extended Heckman’s work to multivariate normal data. Fizmaurice et al. (1996)

proposed multivariate logistic models for incomplete binary responses while Molenberghs

et al. (1997) introduced methods for analyzing longitudinal ordinal data with non-

ignorable missing. In practice, one can assume a generalized linear regression model

for the full-data using a suitable linear function to explain effects of covariates and a

logit or probit model for the selection model.

Selection models are intuitively appealing since the inference about parameter es-

timates of primary interest can be obtained directly from f(Y |X), and parameters in

f(R|Y,X) can be treated as nuisance parameters provided there are no common para-

meters in f(Y |X) and f(R|Y,X). However, some limitations do exist. For instance, for

continuous responses, the common assumption of multivariate normality is not easy to

verify when some responses are missing (Hogan et al., 2004). Moreover, the selection

model postulated to model the dependence of dropout process on unobserved responses

is not verifiable. Inference from selection models can be highly sensitive to model as-

sumptions (Little and Rubin, 2002). Finally, computations can be very intensive due to

general requirement of likelihood maximization and numerical instability occurs resulting

from the possibility of a flat likelihood about the parameters of primary interest (Hogan,

1997).
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1.3.2 Pattern-mixture Models

Although the terminology of pattern-mixture models that are our main focus here

was first defined by Little (1993), the early application of mixture concepts can be traced

back to Rubin (1977). Conventionally, marginalization of results are often in need. For

example, Little (1993, 1994) and Molenberghs et al. (1998) first stratified the incomplete

data by missing patterns, then fitted distinct models within each stratum, and finally

summarized results over patterns. The general model can be written as

f(Y,R|X) = f(Y |R,X)f(R|X), (1.1)

where the distribution of Y , conditional on R and X, is multinomial and R is treated as

a covariate, and the distribution of R given X can be left unspecified or in a parametric

form. Marginalization over patterns is required to obtain estimates of parameters of

primary interest.

Traditionally, missing patterns are defined according to times to missing. For ex-

ample, there are eight patterns for a typical data set like the one shown in Table 1.1.

Without a doubt, it is often unavoidable that not all parameters are estimable because of

some missing observations. In other words, pattern-mixture models are under-identified

(Little 1993). Either restriction must be set for some patterns, additional assumptions

be made, or information need to be borrowed from observed data. To overcome the

under-identifiable problem, Wu and Bailey (1988, 1989) allow responses to depend on

missing indicators through individual random effects estimated from a general linear

mixed model, then average over the distribution of random effects that can be assumed

to be parametric or left unspecified. The model can be written as

f(Y,R|X) =

∫
f(Y |b,X)f(R|b,X)dF (b), (1.2)

where b is the subject-specific random parameter vector. The variables Y and R are

linked through b and inference can be made based on (Y |b,X) by integrating out b. This

model is often called shared parameter (SP) model. Follmann and Wu (1995) extended

the work of Wu and Bailey (1988, 1989) to permit generalized linear models for discrete
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responses without any parametric assumption on random effects. Estimation of marginal

means for binary cases was described by Birmingham and Fitzmaurice (2002).

Guo et al. (2004) proposed a random pattern-mixture model for continuous data

in which they considered dropout patterns as random latent variables and determined

according to many factors, including times to missing, baseline covariates and/or time-

varying covariates. The key assumption of this model is that the longitudinal responses,

Y , are independent of the missing indicators, R, conditional on the pattern effects. The

proposed model is given by,

f(Y,R, b|X) =

∫
f(Y |b,X, u,R)f(b|X,R, u)f(R|u,X)f(u|X)du

=

∫
f(Y |b,X, u)f(b|X, u)f(R|u,X)f(u|X)du, (1.3)

where b is the subject-specific random parameter vector and u is the latent variable vector

representing the random pattern effect. To obtain parameters of primary interest, one

requires marginalization over b and u which can be computationally difficult. To avoid

this task, a joint normal approach was adopted and maximum likelihood estimates were

derived by EM algorithm.

As will be seen, marginalization is often required. It may not be that problematic

if responses are continuous and/or the final parameter of interest is the marginal mean.

However, in situations where there are a number of covariates of interest in discrete

longitudinal data, methods for parameter-wise marginalized results can be very tricky.

For instance, suppose that there are two covariates, treatments and patients’ age, denoted

as X1 and X2, respectively. Also, suppose that there are two missing patterns. Then, a

logistic regression is usually fit for binary data conditional on each missing pattern,

P (k) = (1 + exp[−(β
(k)
0 + X

(k)
1 β

(k)
1 + X

(k)
2 β

(k)
2 )])−1. (1.4)

where k is the pattern indicator, 1 or 2. Obviously, β
(k)
1 is the logarithm of odds ratio

between two treatments given the value of age and the pattern k. However, what we

need is a marginal parameter β1 to measure the effect of treatment irrespective of the

pattern. The problem here is how to define a β1 that has the same nice representation
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as β
(k)
1 ’s. The above methods that are available in the literature do not provide such

marginal parameter β1 such that the marginalized estimates of parameters are still of

meaningful representation as the conditional estimates based on patterns.

To resolve both the under-identifiability and marginalization problems, we propose

two approaches in the Chapter 2. The first one will be called the pseudo imputation (PI)

approach, an approximation method for estimating parameters at the marginal level.

Secondly, we extend the method proposed by Guo et al. (2004) to general cases by jointly

modeling Y and R within a Bayesian framework and will be called the joint-modeling

(JM) approach. Both methods are applicable to both discrete and continuous outcomes.

At this moment, it is assumed that a surrogate variable is observed and missing patterns

are known. Simulation studies are conducted to illustrate the proposed methods and

to compare them with some exiting methods. In Chapter 3, we extend our approaches

to accommodate more general situations and relax the assumptions in Chapter 2. In

Chapter 4, the proposed methods are illustrated using a real life data set from an aids

study. Conclusions and future work are presented in Chapter 5.
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Chapter 2

Proposed Statistical Methods

Firstly it is assumed that a surrogate variable determining missing patterns is fully

observed. Then, we define Zi, that has a known distribution, as the design matrix of

missing patterns with the random effect ui. We further assume f(Rij|Yij, Xi, Zi, ui) =

f(Rij|Xi, Zi, ui), which means that the missing mechanism is conditionally MAR given

the latent variable ui. For a given pattern, data often contain both observed responses and

missed ones, the problem of under-identifiability, which is encountered by the traditional

pattern-mixture models that use time to dropout as patterns, does not exist any more.

The models presented in this chapter are general enough in the sense of that we do not

require the assumption of monotonic or intermittent missingness pattern. The pseudo-

imputation (PI) method and its extension will be described in Section 2.1, followed by

the joint modeling (JM) method. In Section 2.3, simulation studies based on different

scenarios are carried out. Section 2.4 presents conclusions and some general remarks.

2.1 The Pseudo-imputation (PI) Method

2.1.1 Model Description

The first step is to estimate E(Yij|Xi, Zi) = µij and its corresponding variance within

each pattern for both observed and missing subjects. Standard methods can be used for

this step here. For example, generalized linear models can be used for discrete responses.
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As it is well-known in the multiple imputation technique, more than one values are sim-

ulated for each missing point based on estimated E(Yij|Zi, Xi) and its variance that are

obtained at the first step. On the contrary, the pseudo-imputation method does not im-

pute the missing values but directly models estimated E(Yij|Zi, Xi) or its transformation

in linear regression framework. By doing so, estimates of marginal parameters can be

obtained. In summary, the following three steps are needed to implement the PI method:

1. Given Zi, estimate µij by using a standard method (e.g., GLMM).

2. Transform the estimate, say h(µ̂ij), by using a desired functional form. For example,

logit for binary data and log for count data. By doing so, h(µ̂ij) will be linear in β.

3. Fit a linear model

E(h(µ̂ij)|Xi) = XT
i β (2.1)

where the estimate of β is indeed at the marginal level.

Notice that the variance of estimates obtained at Stage 3 is under estimated since it

ignores the fact that a major proportion of variation has been reduced at Stage 1. Hence,

we need to derive the variance of estimates for fixed effects, denoted as var(β̂). In linear

models, var(β̂) = (XT V −1X)−1, where,

V = var(h(µ̂ij)) = var(E(h(µ̂ij)|Zi)) + E(var(h(µ̂ij)|Zi)) (2.2)

If a linear mixed model is used at Stage 3 and u treated as random with mean 0 and

variance Ω, then E(var(h(µ̂ij)|u)) = ZT ΩZ + Σ where Ω and the random error Σ can be

estimated at the third stage and E(var(h(µ̂ij)|u)) at the first stage. Therefore, var(β̂)

can be obtained without much difficulty. Explicit steps to get parameter estimates and

their corresponding variance are demonstrated in the following example.

2.1.2 Example

For illustration we consider the binary data described in Section 1. The original data

can often be written as (Yij, Rij, Xi, Si), where Si indicates a discrete-valued surrogate
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variable. Now, we can rewrite (Yij, Xi) as

Y
(k)
ij = {Yij : Si = k}

X
(k)
i = {Xi : Si = k} (2.3)

Suppose the variable, baseline fracture status (BFS), is a good surrogate for responses

and missing indicators and hence it links Y and R. Then, we can have three patterns

corresponding to Si=BFSi = k, k = 1, 2, 3. Hence, the first step is to regress Y
(k)
ij on X

(k)
i

and obtain ˆβ(k) and µ̂
(k)
ij . In this step, a logistic regression can be used since responses

are binary,

Yijk ∼ Ber(P
(k)
ij )

µ
(k)
ij = P

(k)
ij = [1 + exp(−X

(k)
i β(k))]−1. (2.4)

For instance, X
(k)
i = (1, Tscore

(k)
i , year

(k)
i , trt

(k)
i , age

(k)
i )T . Notice that BFS is not included

in the model since there is only one level of BFS in each pattern by definition.

After obtaining the estimates of µ
(k)
ij , µ̂

(k)
ij at the first step, the second step is to

transform µ̂
(k)
ij by the logit function, denoted as h(µ̂

(k)
ij ), which is linear in β. Obviously,

h(µ̂
(k)
ij ) = X

(k)
i β(k). At the third step, the marginal estimate, β̂, will be obtained by using

a linear model for µ̂
(k)
ij and all covariates,

E(h(µ̂
(k)
ij )) = XT

i β, (2.5)

where XT
i = (1, Tscorei, yeari, trti, agei, BFSi)

T . The variance of h(µ̂
(k)
ij ) is given by

V̂ = V̂ar(h(µ̂
(k)
ij )) = V̂ar(E(h(µ̂

(k)
ij )|Si)) + Ê(Var(h(µ̂

(k)
ij )|Si)). (2.6)

Since the logit function is used at the second step, h(µ̂
(k)
ij ) = X

(k)
i

ˆβ(k). Hence,

v̂ar(E(h(µ̂
(k)
ij )|Si)) = Σ̂ + ST Ω̂S

Ê(Var(h(µ̂
(k)
ij )|Si) = Var(X

(k)
i

ˆβ(k)) = X
(k)
i Var( ˆβ(k))(X

(k)T
i ). (2.7)
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Where S is the vector of Si’s. The estimate of variance-covariance matrix for the within-

pattern variation and the between-pattern variance (Σ̂ and Ω̂ can be obtained at the

third step while Var( ˆβ(k)) is available at the first step. Let V ∗ be the matrix of Var( ˆβ(k)).

Therefore, var(β̂) = (XT V̂ −1X)−1 = (XT (Σ̂ + ST Ω̂S + V ∗)−1X)−1.

2.1.3 Extension and Asymptotic Property

Previously, we assume there exists a desirable link function at the second stage of

the proposed method. However, it is not necessary. In the following, we are going to

construct the estimation equation and derive asymptotic properties in a general sense.

Denote the estimates of the predictive means obtained at the first stage to be µ̂k and nk

be the number of observations for the kth pattern. Notice that µk = µ under the true

model. Then the likelihood score equation for approximating β is

K∑
k=1

nk

(
∂µk(β)

∂β

)
V −1

k (µ̂k − µk(β)) (2.8)

and the variance of the maximum likelihood estimator for β̂ can be estimated by

[ K∑
k=1

nk

(
∂µk(β)

∂β

)
V −1

k

(
∂µk(β)

∂β

)T ]−1

(2.9)

Lemma 1. Suppose that β0 is the true parameter and that

(i) n
1
2
k (µ̂k − µk(β0)) has asymptotic distribution N(0, Vk) for k = 1, . . . , K,

ii) ∂µk(β)
∂β

and Vk for all k are continuous in the neighborhood of β0 and the inverse of the

limit of

1
n

∑K
k=1 nk(

∂µk(β)
∂β

)V −1
k (∂µk(β)

∂β
)T

exists. Then,

(a) β̂ is consistent for β0,

(b) n
1
2 (β̂ − β0) has an asymptotic normal distribution.

Proof. In general, consistency will hold if the expectation of the likelihood equation (1.18)



12

is equal to 0 and some regularity conditions are satisfied. The regularity conditions for

consistency can be found in Serfling (Chapter 4, 1980), Huber (Lemma 2.1 and Theorem

2.2 in Chapter 6, 1981) , and van der Vaart (Theorems 5.7 and 5.9, 1998). Here, we only

check if the expectation condition holds. Clearly, as the expectation is with respect to

β0, E [(µ̂k − µk(β))|Zk] = 0 as the condition (i) in Lemma 1 holds. Hence, with respect

to β0,

E
[∑K

k=1 nk(
∂µk(β)

∂β
)V −1

k (µ̂k − µk(β))|Zk

]
= 0.

By conditional expectation, it results in

E{∑K
k=1 nk(

∂µk(β)
∂β

)V −1
k (µ̂k − µk(β))} = 0.

Therefore, β̂ is the consistent estimator of β0. To derive the large sample distributional

properties of the above estimator, one can follow the usual approach for the M-estimators

(See e.g., Serlfing, 1980, Chapter 7; Van der Vaart, 1998, Chapter 5). Details are omitted.
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2.2 Joint Modeling

2.2.1 Model Description

We propose to use the following model,

µij = E(Yij|Xi, Zi, ui, β) = g1(X
T
i β + Ziu1i) (2.10)

πij = E(Rij = 1|ui, Xi, Zi, α) = g2(X
T
i α + Ziu2i) (2.11)

ui ∼ F (.) (2.12)

where g1 and g2 are monotone link functions, the random effects ui = (u1i, u2i) have a

bivariate distribution which can be left unspecified. Xi is a known design matrix. The

parameter vectors β and α are unknown and β is of primary interest. u1i and u2i are

correlated random effects with the design matrix Zi for dropout patterns. Here we call

Model (2.10) as the Y-model and Model (2.11) the R-model. With the key assumption

of f(Y |R,X,Z, u1) = f(Y |X,Z, u1), the joint distribution of Y and R with u for random

pattern effects can be written as

f(Y,R, u|X,Z) = f(Y |R,X,Z, u)f(R|X,Z, u)f(u|X) = f(Y |X,Z, u)f(R|X,Z, u)f(u|X).

(2.13)

Lemma 2. The proposed model (2.10) - (2.12) captures the dependence of R on Y .

Proof. Notice that, under MAR, f(R|Y,X) = f(R|Yobs, X) ⇔ f(Ymiss|Yobs, R,X) =

f(Ymiss|Yobs, X). Hence, it is enough to show that f(Y |R,X)/f(Yobs) is not free of R.
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Notice that,

f(Y |R,X) =

∫
f(Y, u|R,X)du

=

∫
f(Y |u,R,X)f(u|X,R)du

=

∫
f(Y |u,X)f(u|X,R)du

=

∫
f(Y |u,X)

f(R|u,X)f(u|X)

f(R|X)
du

=

∫
f(Y |u,X)f(R|u,X)f(u|X)du∫

f(R, u|X)du
(2.14)

and

f(Yobs|R,X) =

∫ ∫
f(Yobs, Ymiss|u,X)f(R|u,X)f(u|X)dudYmiss∫

f(R, u|X)du
(2.15)

Hence,
f(Y |R,X)

f(Yobs|R,X)
=

∫
f(Yobs, Ymiss|u,X)f(R|u,X)f(u|X)du∫ ∫

f(Yobs, Ymiss|u,X)f(R|u,X)f(u|X)dudYmiss

(2.16)

which can not be free of R in general. Therefore, our proposed model does capture the

dependency of R on Y which is the key assumption of NIM.

For the purpose of illustration, we investigate the dependence of R on Y through

a numerical example by using Monte Carlo approximation. Suppose the univariate re-

sponses, Yi ∼ Ber(1, pi) and Ri ∼ Ber(1, πi), where logit(pi) = XT
i β, βT = (β0, . . . , β5) =

(−6.9,−0.5, 0.7, 0.04, 1, 1.8) are true values, XT
i = (1, Tscorei, trti, agei, BFSi)

T , logit(πi) =

−1.5 − 0.5xi + 0.5Yi and i = 1 . . . 100. Values of covariates are generated by the same

way as in Section 2.3. By the data construction, R does depend on Y . Now, we would

like to see if our formulation captures the dependency. Equivalently, if f(Y |R=1,X)
f(Yobs|R=1,X)

=
f(Y |R=0,X)

f(Yobs|R=0,X)
, then the ratio is free of R. Otherwise, it is not. Given values of parameters,

Equation (2.14) can be approximated by

f(Y |R,X)

f(Yobs|R,X)
≈ N−1

∑N
l=1 f(Yobs, Ymiss|ul, X)f(R|ul, X)

N−1
∑N

l=1

∫
f(Yobs, Ymiss|ul, X)f(R|ul, X)dYmiss

(2.17)
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where ul has the bivariate standard normal distributions with correlation coefficient ρ =

0.6. For each given set of values of ul, terms inside of summand can be evaluated. By

repeating it N = 5000 times, ratios that can be obtained with respect to R are 0.0099 and

0.0027. Clearly, they are different. Hence, our proposed method captures dependency of

R on Y .

Let Dobs = (Yobs, X, Z,R) denote the observed data. Write D = (Y,X,Z,R) and

thus D is not fully observed. For simplicity, let us assume u has the bivariate normal

distribution with mean 0 and variance-covariance matrix Σu. We consider independent

priors for β, α, and Σu, so that π(β, α, Σu) = π(β)π(α)π(Σu). Then, the joint posterior

of θ = (β, α, Σu) is

π(β, α, Σu|Dobs) =

[ ∏
f(Yobs,ij|Xi, Zij, ui)f(Rij|Xi, Zij, ui)f(ui|Xi)

]
π(β, α, Σu).

(2.18)

In the above equation, β is the parameter of primary interest and α, Σu are considered

as nuisance parameters.

2.2.2 Prior Selection and Posterior Computation

The choice of prior distributions reflects information about unknown parameters. It

is desirable to pick mathematically manageable functions as prior distributions which

results in computationally convenient posterior distributions. Hence, conjugate prior

distributions are often desired. If responses are discrete as in our case, finding conjugate

priors can be hardly possible, particularly for parameters β and α in the proposed model.

Moreover, the data provide little information about the additional variance compo-

nents (Σu) for the latent variable - missing patterns. Therefore, the specification of a

proper prior for Σu might be a crucial element in this missing-data problem. This prior

distribution should carry some degree of information, capturing a reasonable amount of

variation between dropout patterns and association between f(Y |X,Z, u) and f(R|X,Z, u).

Intuitively, a Wishart distribution with the scale matrix Q and the degrees of freedom

η can be a good candidate as the prior for the inverse of Σu. For priors of β and α, we

simply take the normal distribution with mean 0 and precision τI. A small value of τ is
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chosen resulting in nearly a non-informative prior.

To sample from the joint posterior distribution π(β, α, Σu|Dobs), a standard Gibbs

sampling algorithm obtains samples from the following conditional distributions: 1)

[β|α, Σu, Dobs], 2) [α|β, Σu, Dobs], and 3) [Σu|β, α,Dobs]. Closed forms of the above three

full conditional posterior distributions are not available. However, if these full condi-

tional distributions are log concave functions, we can use the adaptive rejection sampling

(Gilks, 1992). By construction, the above condition holds. Therefore, direct sampling

or derivative-free adaptive rejection sampling algorithm (Gilks, 1992) can be adopted to

draw samples from each of the above three conditional posterior distributions.

Convergence of MCMC samples is often an issue for Bayesian computing. Fortunately,

it can be easily checked in WinBUGS by looking at trace plots with running multiple

chains. In our cases two chains mix quite well after a few thousand samples from each

chain. Initial samples can be discarded as burn-in samples and then remaining iterations

can be retained to obtain approximate posterior estimates of the desired parameters.

Density plots can be obtained to summarize posterior distributions. Literature on how

to deal with these issues in MCMC samples includes Brooks (1998), Cowles and Carlin

(1996), and Gilks et al. (1996).

2.2.3 Model Selection

The joint-modeling approach requires determination of the number of patterns. Ini-

tially, we assume the underlying number of patters are known. In reality, it remains

unknown and ultimately needs to be determined. It can be determined arbitrarily or in a

purely data-driven way. Hence, it is critical to assess model adequacy that is the matter

of model selection. Here, we consider a Bayesian model selection criterion, namely, a

deviance information criterion (DIC) proposed by Spiegellhalter et al. (2002). It can be

used with informative, uninformative, and improper priors.

DIC is defined as, DIC = D̄(θ)+pD, where θ is the vector of all parameters involved in

the model, pD is the estimated effective number of parameters in the posterior distribution

given by pD = D̄(θ) − D(θ̄), and D̄(θ) is the posterior mean of the deviance and D(θ̄)

is the deviance evaluated at the posterior mean of parameters. Mathematically, D(θ) =
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−2 log f(y|θ) where f(y|θ) is the likelihood. DIC can be easily obtained in WinBUGS.

It had been observed that this definition proposed by Spiegellhalter et al. (2002) can

hardly be utilized due to that the R2WinBUGS program is not able to call the deviance

function because of WinBUGS called from the outside of R2WinBUGS (Sturtz et al.,

2005). Actually, it is available in R2WinBUGS program now. Instead, Sturtz et al.

(2005) adopted the definition of pD introduced by Gelman et al. (2003, Section 6.7)

which is defined as the half of the posterior variance of the Bayesian deviance. In other

words, DIC = D̄(θ) + 1
2
V̂ar(D(θ)). An additional advantage of choosing this definition

is that pD > 0 even when D̄(θ) < D(θ̄).

Gelman et al. (2003) noted that both definitions of pD can be derived from the asymp-

totic χ2 distribution of the deviance relative to its minimum. A model with the smallest

DIC will be chosen. Since both DIC’s can be easily obtained by using WinBUGS, we

will compare their performance in later simulation studies.

2.3 Simulation Study

To study the performance of proposed methods, we conduct a series of simulation

studies covering different missing mechanisms. Data are simulated mimicking the study

described in Section 1.1. The full data are generated from the following model:

Yij ∼ Ber(pij)

pij =
[
1 + exp{−XT

i β}]−1
(2.19)

where βT = (β0, . . . , β6) = (−7.5,−0.47, 0.5, 0.7, 0.04, 1.05, 1.82) are true values of para-

meters for covariates XT
i = (1, Tscorei, yeari, trti, agei, BFSi)

T , i = 1, . . . , 600 index for

subjects, j = 1, 2, 3 the time points. The values of Tscore and age for each individual are

generated from N (−2.7, 0.52) and N (73, 5.42), respectively. The values of yeari = 1, 2, or

3, trti = 1 or 0, and BFSi = 1, 2, or 3 are generated with equal probabilities. Then, a sur-

rogate variable, say Wij ∼ N(ST
i β∗, 1), where β∗T = (−5.25,−0.4, 0.35, 0.02, 0.63, 1.27, 0),

and ST
i = (intercepti, Tscorei, trti, agei, bfs1iI(BFSi = 1), bfs2iI(BFSi = 2), yeari)

T .

Then, according to the order of Wij’s, partition them into 3 groups, say Zij . For
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example, subjects with the values of Wij’s within the first 1/3 of the ordered Wij’s are

allocated into the first group, or Zij = 1.

After data are simulated, we fit 9 models to each dataset. These model include the

full data analysis (FA), last observation carried forward (LOCF), pseudo-imputation (PI)

methods with 3 patterns (PI3), PI with 6 patterns (PI6), PI and with 12 patterns (PI12),

the joint modeling approach with 3 patterns (JM3), JM with 6 patterns (JM6), and JM

with 12 patterns (JM12), the shared-parameter model using the subject-specific random

effect as the link between Y -model and R-model. For the joint modeling approach,

u is modeled as to have the bivariate normal distribution with a mean vector of 0’s

and a variance-covariance Σu. The prior distribution for both β and α is assumed to

be N(0, 10−4) and for the inverse of Σu we use the Wishart distribution with the 2-

dimensional identity matrix as the scale matrix and the degree of freedom of 2. For

each scenario considered, 500 data sets are generated. Models for generating missing

indicators are described in the following sections.

2.3.1 Results based on Scenario 1

In the first scenario, the missing indicator Rij are generated using the following model:

Rij ∼ Ber(πij)

logit(πij) = α0 + α1 ∗ trti + α2 ∗ yeari + Zijui (2.20)

where trti, a subvector of Xi, denotes the treatment assignment, (α0, α1, α2) = (−3.3,−0.5, 0.1),

and ui ∼ N (0, 1.752). On average, 16% of data were found to be missing.

A portion of one simulated data set based on the first scenario is given in Table 2.1.

As shown, some subjects fail to comply after the first year, some after the second year,

and some complete the study. Figure 2.1 summarizes the results for the fixed effects in

the Y -model from the FA, LOCF, PI3 and JM3 approaches. The dash lines indicate

true values of parameters. The LOCF method produces substantially biased estimates

for almost every fixed effect. On the other hand, the pseudo-imputation method and the

joint-modeling approach provide remarkably accurate estimates similar to the the ideal



19

Table 2.1: Proportion of data simulated in the first scenario

Subject Trt Tscore age year BFS u y r ynew

110 1 −2.9 61.1 1 3 0.50 0 1 0

110 1 −2.9 61.1 2 3 0.50 0 0 NA

110 1 −2.9 61.1 3 3 0.50 0 0 NA

228 2 −1.6 61.6 1 1 −0.12 0 1 0

228 2 −1.6 61.6 2 1 −0.12 0 1 0

228 2 −1.6 61.6 3 1 −0.12 0 0 NA

173 2 −2.2 59.7 1 2 −0.50 1 1 1

173 2 −2.2 59.7 2 2 −0.50 1 1 1

173 2 −2.2 59.7 3 2 −0.50 1 1 1

471 1 −2.3 60.1 1 1 −0.12 0 1 0

471 1 −2.3 60.1 2 1 −0.12 0 1 0

471 1 −2.3 60.1 3 1 −0.12 1 1 1

full-data analysis, when the number of patterns is correctly specified. Also, estimates

obtained from the pseudo-imputation method generally have larger variations than those

from the joint-modeling approach.

Table 2.2 shows biases and SE’s of estimates from the PI method with different

number of missing patterns. The biases and SE’s appear to be larger as the number

of patterns increases except that the estimate of the treatment effect has the least bias

when the number of patterns assumed to be 6. It implies that the PI method might

be very sensitive to the number of patterns chosen. When the number of patterns is

specified incorrectly, results can be very misleading, even if a right surrogate variable is

used and the missingness indeed depends on the random pattern variable controlled by

that surrogate variable.

Comparison of the joint-modeling approach with a different number of patterns and

the SP model is given in Figure 2.2. The estimates appear to be approximately unbiased

despite the fact that JM model is based on the wrong number of patterns. The SP

model provides acceptable results, compared with the JM model. The estimates based

on the SP model are generally more biased than the PI approach and the JM approach
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Figure 2.1: Parameter estimates from 4 methods under Scenario 1. FA, the full-

data analysis. LOCF, the last observation carried forward method. PI3, the pseudo-

imputation method with 3 patterns. JM3, the joint-modeling approach with 3 patterns.
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Table 2.2: Comparison of Bias’s and SE’s of estimates for the scenario 1. FA: the full-

data analysis. PI3, PI6, and PI12: the pseudo-imputation methods with 3, 6, and 12

patterns, respectively.

FA PI3 PI6 PI12

Parameter Bias(SE) Bias(SE) Bias(SE) Bias(SE)

age 0.001(0.01) 0.001(0.01) 0.002(0.02) 0.011(0.06)

bfs1 0.01(0.15) 0.06(0.23) 0.14(0.50) 0.52(2.18)

bfs2 0.01(0.14) 0.07(0.24) 0.17(0.46) 0.63(2.40)

year 0.01(0.07) 0.02(0.09) 0.03(0.09) 0.06(0.44)

trt 0.006(0.12) 0.011(0.16) 0.002(0.033) 0.078(1.01)

tscore -4.1E-05(0.11) -6.5E-03(0.16) -9.5E-03(0.25) -4.6E-02(0.72)

but the biases are not substantial. It is expected as the SP model can be considered

as a special case of the JM approach in a way that each subject is a pattern. We now

turn to model selection, using two definitions of DIC as described in Section 2.2.3.

Results are presented in Table 2.3. Both versions of DIC’s pick the 3-pattern model

most frequently. Certainly, DIC’s perform quite well in picking up the true model with

high precision (about 90%). The SP model is never preferred by DIC, mainly because it

does not improve the precision of estimates but involves more random parameters than

needed to be estimated. In addition, the joint-modeling approach is able to accurately

estimate fixed effects in the R-model, which other models do not provide. Results from the

JM approach are presented in Table 2.4. Obviously, the joint-model approach provides

accurate estimates regardless how many number of patterns are specified in the model

and moreover the DIC picks up the true model, subject to about 10% type I error.
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Figure 2.2: Parameter estimates of fixed effects in the Y -model from joint-modeling

approach with different patterns under Scenario 1.

Table 2.3: Comparison of two versions of DIC’s. DIC1 (Spiegellhalter et al., 2002) and

DIC2 (Gelman et al., 2003).

JM3 JM6 JM12 SP

DIC1 89.4% 9.2% 1.4% 0%

DIC2 89.4% 9.0% 1.6% 0%
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Table 2.4: Comparison of estimates and their SE’s for fixed effects in the R-model from

joint-modeling approach based on the scenario 1

JM3 JM6 JM12

Parameter (Truth) Estimate(SE) Estimate(SE) Estimate(SE)

intercept(−3.30) −3.28(1.13) −3.27(1.08) −3.35(1.08)

year (0.10) 0.10(0.13) 0.10(0.13) 0.10(0.13)

trt (0.50) 0.51(0.22) 0.51(0.22) 0.51(0.22)

2.3.2 Results Based on Scenario 2

In the second scenario, Rij’s are allowed to depend on responses and treatments and

are generated by the following model,

Rij ∼ Ber(πij)

logit(πij) = α0 + α1trti + α2Yij + α3yeari (2.21)

where (α0, α1, α2) = (−3, 0.8, 1.2, 0.1). Again on the average about 16% of data are

missing. Notice that the true model generating the data in this scenario does not belong

to the class of models considered by JM and PI approaches. Moreover, unlike in the first

scenario, the true number of missing patterns is no longer known.

The simulation results based on Scenario 2 are shown in Figure 2.3, in which 4 fixed

effects are presented and there are no big difference among all models for the rest of fixed

effects. As expected, the LOCF approach produces highly biased estimates. Comparing

the PI approach and the JM method, we are able to see the same trend as in first

scenario. Estimates of the PI approach fluctuate as the number of patterns varies. The

JM approach provides stable estimates regardless of the number of patterns posited

in the model. Overall, estimates obtained from the PI method have more variations

than those from the JM approach. The SP model has the similar performance as the

JM model except that its parameter estimate for the variable“age” is more biased. As

expected, estimates of the treatment effects are moderately biased. However, the JM

approach produces estimates with less biases than the PI method. On average, the JM
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approach reduces the bias by about 31% as compared to the estimate based on the

full-data analysis. Except the treatment effect, the JM approach appears to provide

unbiased estimates for other fixed effects despite the fact that the assumed model is not

correct. Hence, the JM approach is preferred over the PI method. With respect to model

selection, again both definitions of DIC’s have the similar preference. On average, the

JM approach with 3 patterns are selected 71.6%, 18.8% for 6 patterns, and 9.6% for 12

patterns. Therefore, the JM approach with 3 patterns might be the best model for this

type of data set.



25

FA LOCF PI3 PI6 PI12 JM3 JM6 JM12 SP

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

year

FA LOCF PI3 PI6 PI12 JM3 JM6 JM12 SP

0.
00

0.
05

0.
10

0.
15

age

FA LOCF PI3 PI6 PI12 JM3 JM6 JM12 SP

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0

tscore

FA LOCF PI3 PI6 PI12 JM3 JM6 JM12 SP

−
0.

5
0.

0
0.

5
1.

0
1.

5

trt

Figure 2.3: Partial parameter estimates under Scenario 2.
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Table 2.5: Results of simulation for the joint modeling with the misspecification of the

distribution for random patterns.

Parameter Bias SE MSE

age 0.001 0.011 0.02

bfs1 0.047 0.176 0.03

bfs2 0.083 0.203 0.05

year 0.008 0.081 0.01

trt 0.014 0.127 0.02

tscore -0.011 0.127 0.02

2.3.3 Sensitivity Analysis for the JM Approach

Notice that it is assumed the random pattern u has the bivariate normal distribution

in the JM approach and f(R|X, u) follows a logistic-regression model. In this section,

sensitivity of the model will be assessed on these two respects.

First, we use the same model as the one in Scenario 1 with three patterns but ui is

generated by a mixture of two normal distributions given by N(µ1, Σ1) and N(µ2, Σ2)

with weights 2/3 and 1/3, respectively, where µ1 = (−1.5, 0)T , µ2 = (1.5, 0)T , Σ1 = 1,

and Σ2 = 3.06

For this scenario about 11.5% of data are missing. After data are generated, we fit

the JM with 3 patterns. The biases, standard errors (SE’s), and MSE’s of parameter

estimates are reported in Table 2.5. None of these biases is substantially large (≤ 5%).

Both SE’s and MSE’s are fairly small. Hence, the JM approach provides consistent

estimates of fixed effects in the Y -model even though the distribution of random effects

is misspecified.

Second, we use the data simulated in Scenarios 1 with 3 patterns and fit the same

Y -model but a probit regression for the R-model instead of the logistical regression used

for data generation. In other words, the assumed R-model is not correct. Here, we only

consider 3 patterns in the simulation. Results are summarized in Figure 2.4. Apparently,

both models provide almost identical estimates although variations of estimates provided
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by the JM with a probit regression are slightly larger. Therefore, the JM generally

delivers robust estimates even when the model for the missing indicators are not correctly

postulated.

2.4 Conclusions

We proposed two approaches, the pseudo-imputation method and the joint-modeling

method, that are general enough in the sense that both methods can be applied to contin-

uous and discrete outcomes. Here, we assumed that a surrogate variable can be correctly

identified. Based on our simulation studies, we see that the LOCF approach provides bi-

ased estimates even when the missingness is not informative. The PI method performed

well only if the missingness depends on missing patterns and the underlying number of

patterns is correctly specified. When the number of patterns is incorrectly defined, the

PI method produces biased estimates. On the other hand, the JM method gives approxi-

mately unbiased estimates as long as the the missing depends on patterns even when the

number of patterns is not correctly specified. The SP model performs similarly in overall

as the JM model although it seems to produce comparatively more based estimates. In

cases of the missingness depending on the unobserved responses themselves, all methods

provide biased estimates but the JM based method reduces the bias substantially for the

estimate of the treatment effect. In terms of model selection, the DIC criteria picks the

right model about 90% for the joint-modeling approach. Furthermore, the JM approach

is not sensitive to mild model violations. Overall, the joint model approach is preferred.

In the cases of absence of a surrogate variable, patterns may be defined according

to available covariates but extreme care must be given since misspecification of patterns

may introduce serious bias and produce misleading conclusions. This issue is explained

in the next chapter.
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Chapter 3

Modeling NIM Data using GAM

A parametric generalized linear model may not be appropriate especially when some

measurements are non-ignorable missing. Also a specific parametric structure can not be

validated easily. Such parametric structures may lead to possible bias when the under-

lying model for the full data is nonlinear. Particularly, the generalized linear model used

in the first step for the PI approach may not produce reliable estimates of the predictive

means that will be used in latter steps. Therefore, final estimates might be biased and

inference will be misleading. Hence, instead of the generalized linear model, we consider

the use of the generalized additive model (GAM) proposed by Hastie and Tibshirani

(1990). As it is known, parameters in GAM can be difficult to interpret. However, para-

meters need not to be interpretable in the first step of the PI approach and hence we can

still apply GAM to obtain the predictive means for latter use. Moreover, in situations

that only the treatment effect or effects of other discrete covariates may be of primary

interest, estimations in terms of odds ratios can be obtained without much trouble. A

brief description about generalized additive models and model fitting techniques is given

in Section 3.1. Section 3.2 provides simulation results comparing a generalized linear

model and a generalized additive model within the PI method. Possibilities of fitting the

GAM within the JM approach will be illustrated in Section 3.3.
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3.1 Model Description

Many nonparametric methods do not perform well when there is a large number of

independent variables in the model. The sparseness of data in this setting inflates the

variance of the estimates. The problem of rapidly increasing variance for increasing di-

mensionality is sometimes referred to as the curse of dimensionality . To overcome this

difficulty, Stone (1985) proposed additive models. These models estimate an additive

approximation to the multivariate regression function. The benefits of an additive ap-

proximation are at least twofold. First, since each of the individual additive terms is

estimated using a univariate smoother, the curse of dimensionality is avoided, at the

cost of not being able to approximate universally. Second, estimates of the individual

terms explain how the dependent variable changes with the corresponding independent

variables.

Hastie and Tibshirani (1990) proposed generalized additive models that extend the

traditional additive models (Stone, 1985) to accommodate more distribution functions.

These models assume that the mean of the dependent variable depends on an additive

predictor through a nonlinear link function. Generalized additive models permit the

response probability distribution to be any member of the exponential family of dis-

tributions. Many widely used statistical models belong to this general class, including

additive models for Gaussian data, nonparametric logistic models for binary data, and

nonparametric log-linear models for Poisson data.

The generalized additive models can be expressed as

E(Yi|Xi) = g(s0 +

p∑
i=1

si(Xi)) (3.1)

where g(·) is a known link function, si(·)’s are smooth functions, and p is the number of

the predictor variables. The GAM can also be used to incorporate partial linear models

(Hastie and Tibshirani, 1986). This is achieved by replacing some smooth functions with

linear functions. Thus, parameters in linear functions in the GAM can be interpretable,

which makes it possible to draw inferences for some covariates if they are of primary

interest.
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The estimating procedure for generalized additive models consists of two loops. The

local scoring algorithm is used in the outer loop and a weighted backfitting algorithm for

the inner loop. The local scoring algorithm uses a modified form of adjusted dependent

variable regression, as described for generalized linear models in McCullagh and Nelder

(1989), with the additive predictor taking the role of the linear predictor (Hastie and

Tibshirani, 1986). The backfitting algorithm (Friedman and Stuetzle, 1981; Hastie and

Tibshirani, 1986) is a general algorithm for an additive model using any regression-

type fitting mechanisms. This algorithm always converges for Gaussian distribution

(Hastie and Tibshirani, 1986). However, for other distributions, numerical instabilities

with weights may cause convergence problems. Even when the algorithm converges, the

individual functions need not be unique, since dependence among the covariates can

lead to more than one representation for the same fitted surface. A weighted backfitting

algorithm has the same form as for the un-weighted case, except that the smoothers

are weighted according to distribution functions. Both PROC GAM in SAS/STAT and

GAM in R package of MGCV can be used to fit these models.

3.2 Simulation Studies

The objective of the first simulation is to compare the performance of different models

used at the first step in the PI method. The model used in the Chapter 2 is a generalized

linear model (GLM) and we also use a generalized additive model (GAM) in this sim-

ulation. For simplicity, these two strategies are referred to as the PI-GLM method and

the PI-GAM method. At the second stage, we will still use a generalized linear model

as described in Chapter 2. Data are generated by using the same models described in

Chapter 2 under Scenario 1. The underlying Y-model follows a logistic regression and

the missing indicator depends on missing patterns. One thousand Monte Carlo samples

are simulated and the sample size for each sample is 1800.

Simulation results are summarized in Figures 3.1 − 3.3. When the configuration

of patterns is correctly known, both models yield precise estimates. When patterns

are misspecified, the PI-GAM method provides slightly more biased estimates than the

PI-GLM method for most covariates, but the estimates are not significantly more biased
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than estimates from the PI-GLM method. Thus, the methods appear to be approximately

unbiased. Also from the boxplots in Figure 3.1, we see that the sampling distributions of

the parameter estimates are very similar. Overall, the PI-GLM method and the PI-GAM

method have the similar performance in terms of parameter estimation. Hence, there is

no significant loss of efficiency to fit a GAM at the first step of the PI method even when

the underlying Y-model is a GLM.

In the second simulation study, the full data are generated from the following model

Yi ∼ Ber(pi)

logit(pi) = β0 + β1trti + f(agei) (3.2)

where βT = (β0, β1) = (−1.5, 0.3) are true values of parameters and

f(age) = 0.001(age−20)(age−30)(age−40)I(age < 40)+0.1(age−40)I(age > 40). The

values of age for each individual are generated from Uniform(18, 58). The surrogate

variable Wi = 0.7× logit(pi) + ei, where ei ∼ N (0, 0.82). Patterns are determined in the

same way as in Chapter 2.

Notice that the model used to generate data in this simulation is determined according

to the real data from the AIDS study which we will analyze in the last chapter. To

simplify the simulation, we only include two independent variables, treatment (trt) and

age in the model. The treatment variable is binary and the age variable is continuous.

The curve of the spline function versus the corresponding covariate is given in Figure 3.4.

Obviously, the relation with age is non-linear.

Then, the missing indicator Ri is generated using the following model:

Rij ∼ Ber(πij)

logit(πij) = α0 + α1 ∗ trti + Ziui (3.3)

where trti, a subvector of Xi, denotes the treatment assignment, (α0, α1) = (−3, 1.7),

and ui ∼ N (0, 0.752). On average, 15% of data were found to be missing.

As in the first simulation, a total of one thousand Monte Carlo samples are simu-

lated with 1800 subjects in each sample. After data generated, we use both the PI-GLM
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method and the PI-GAM method to fit to each dataset. Difference from the first sim-

ulation is that we also fit the GLM and the GAM accordingly at the second stage. A

summary of results is presented in Figure 3.5. It is clear from Figure 3.5 that the PI-GAM

method provides more accurate estimates compared to the PI-GLM method.

In summary, the PI method with the GAM has similar performance even when the un-

derlying Y-model follows a generalized linear model. Moreover, it yields precise estimates

when the underlying Y-model is nonlinear. Hence, the PI-GAM method is preferred uni-

versally. In practice, the underlying distribution is unknown and missing data adds more

uncertainty. A good strategy would be to obtain the predictive mean by fitting a GAM

at the first stage of the PI method. Then plot the predictive mean versus covariates to

discover the potential data structure and fit the model accordingly. When the treatment

effect is of primary interest, we can fit the GAM within the PI method at both stages.

3.3 The JM Approach with GAM

It has been shown via simulation studies presented in Chapter 2 that the JM approach

performs better than other approaches. As the treatment effect is of primary interest,

one may prefer to adopt the JM approach with the GAM in the Y-model (Equation 2.8)

over the PI method. However, it is generally difficult, at least for practical statisticians,

to fit smooth functions within Bayesian framework since there is no existing program or

procedure available to resolve this task in ready-made software.

Speed (1991) developed connection between nonparametric regression and mixed

model. It allows one with some programming experience to code smoothing functions in

the Bayesian way. Some earlier work made connections of this kind but did not men-

tion the mixed models (Wahba, 1978; Wecker and Ansley, 1983; and Green, 1985) Many

types of splines can be obtained with different choices of knots and penalty functions.

For the purpose of simplifying programming, we primarily focus on penalized splines,

also called P-splines, a terminology introduced by Eilers and Marx (1996) and Marx and

Eilers (1998), which also coined with the names of pseudosplines and low-rank smoothers

(Hastie, 1996; Ruppert and Carroll, 2000). We will use P-splines throughout afterwards.

Penalized splines use relatively small and fixed number of knots but do not sacrifice
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much degradation in the quality of the fit and the specification of knots is very much

a minor detail(Wand, 2003). Ruppert (2002) also noted that the number of knots is

not a crucial parameter and typically 5-20 is large enough. A surge of research on P-

splines has appeared, including contribution on mixed-model representations of P-splines

(Brumback et al., 1999) and other work (Berry et al., 2002; Durban and Currie, 2003;

Lang and Brezger, 2004). Crainiceanu et al. (2005) suggested to use P-splines which

tend to have good numerical properties and provide much smaller posterior correlation

of parameters than other basis.

For illustration purpose, we consider the data following Model 3.2. Then, the Y-model

in the JM approach can be written as

g−1
1 (µi) = βtrti + f(agei) + Ziui (3.4)

Then, the P-spline representation of f(agei) is

f(agei) = τ0 + τ1agei +
K∑

k=1

vk|agei − κk|3+ (3.5)

where κ1 < κ2 < . . . < κK are fixed knots based on percentiles of the age variable.

We use the equivalence between penalized splines (P-splines) and mixed models for

semiparametric modeling presented by Ruppert et al. (2003). Specially, the P-spline is

equal to the best linear predictor and then Equation 3.4 can be written as

g−1
1 (µ) = XΥ + SKv + Zu (3.6)

where Υ = (β, τ0, τ1)
T , v = (v1, . . . , vK)T , and SK be the matrix with ith row SKi =

(|agei − κ1|3, . . . , |agei − κK |3). E(v) = 0 and var(v) = λΣ−1
K , where the (l, k)th entry

of ΣK is |κl − κk|3. Thus, the GAM becomes the generalized linear mixed model that

can be easily fitted in Bayesian inferential perspective by placing priors on the model

parameters.

We apply the approach described above to data in the second simulation in Section

3.2. We choose 15 knots according to percentiles of the age variable. From the Figure
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3.6, the JM approach with GAM yields accurate estimate. Hence, the proposed modeling

approach performs well and can be useful in application.
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Figure 3.1: Parameter estimates for covariates “trt” (top) and “tscore” (bottom) in the

first simulation. GLM: the generalized linear model and GAM: the generalized additive

model at the first step of the PI method. 3, 6 and 12 indicated the number of patterns

specified for both methods. The dashed horizonal line indicates the true value of β.
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Figure 3.2: Parameter estimates for covariates “age” (top) and “year” (bottom) in the

first simulation. GLM: the generalized linear model and GAM: the generalized additive

model at the first step of the PI method. 3, 6 and 12 indicated the number of patterns

specified for both methods. The dashed horizonal line indicates the true value of β.
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Figure 3.3: Parameter estimates for covariates “bfs1” (top) and “bfs2” (bottom) in the

first simulation. GLM: the generalized linear model and GAM: the generalized additive

model at the first step of the PI method. 3, 6 and 12 indicated the number of patterns

specified for both methods. The dashed horizonal line indicates the true value of β.
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Figure 3.5: Parameter estimates of treatment effects from the PI approach with different

modeling techniques. GLM: the generalized linear model and GAM: the generalized

additive model at the first step of the PI method. 3 and 6 indicated the number of

patterns specified for both methods. The data generation model is a GAM under Scenario

1. The dashed horizonal line indicates the true value of β.
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when data generated by a GAM under Scenario 1. The dashed horizonal line indicates

the true value of β.
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Chapter 4

Application: CPCRA Aids Study

The study described in the Section 1.1 is still ongoing and data could not be obtained

during the research work. Alternatively, we illustrate our methods using is a dataset,

called CPCRA Aids Study, whose data structure is very similar to that described in

Section 1.1. We fit all the methods developed in Chapters 2 and 3 to this dataset.

4.1 Study Description

The CPCRA 010 Clinical Trial is a randomized, prospective, double-blind study com-

paring fluconazole vs. placebo (trt) for primary and secondary prophylaxis of mucosal

candidiasis in HIV-infected women with 323 patients enrolled (Schuman et al., 1997). Bi-

nary indicators for a positive vaginal culture for the candidiasis fungus are used as the re-

sponses measured every 3 months. In total, there are 5 visit times including the first visit

for baseline measure. Many baseline variables have been measured, including age, anti-

retroviral use (aruse), diagnosis of vaginal candidasis at baseline (canvbl), diagnosis of

vaginal oral candidasis at baseline (canobl), CD4 counts at baseline (cd4bl), intravenous

drug use (idu), progression of disease at baseline (podbl), and race (white/non-white).

The covariate vector in the analysis is X = (age, aruse, canvbl, canobl, cd4bl, idu, podbl, race, trt)T .

The primary interest is to compare effects of two treatment arms on aids occurrences.

Data structure of this study is very similar to the one we described in Section 1.1.
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4.2 Data Analysis Assuming a GLM

Just like other longitudinal studies, a large proportion of data were missing in this

study as well. Briefly, the percentage of missing outcomes at the each visit time is

0.31%, 19.20%, 26.32%, 33.75%, and 39.63%. They are missed both intermittently and

monotonic. It is well known that CD4 counts often serve as the surrogate variable in

AIDS trial. At first, patients are partitioned into 4 groups according to their CD4 counts

at the baseline (0-100, 101-200, 201-300, and > 300). Group frequencies are 28.2%,

26.6%, 26.9% and 18.3%. To check whether the groups can serve as the random pattern

variable, we need to assess the dependence of both responses and missing indicators on

them. It is commonly believed that the likelihood of HIV occurrence is highly associated

with CD4 counts. Thus, the first dependence holds. Furthermore, the percentages of

missing data for groups 1-4 are 34.9%, 21.86%, 17.70%, and 18.64%, respectively. In

other words, subjects with lower cd4 counts appear to be more vulnerable to be missing

than those with higher cd4 counts. Hence, missingness seems to depend on CD4 counts.

Therefore, groups based on the CD4 counts can be treated as the random pattern variable

in our proposed methods which functions as the bridge between Y -model and R-model.

For jointly modeling Y and R, all covariates can be included in the Y -model. To

determine variables included in the R-model, a multivariate logistic regression can be

employed to perform the variable selection. We found that canobl, cd4bl, idu, trt, and

time have relatively strong effect on the missingness. Hence, the vector of covariates in-

cluded in the Y -model is (age, aruse, canvbl, canobl, cd4bl, idu, podbl, race, trt, time)T

and (canobl, cd4bl, idu, trt, time)T for the R-model. Besides the joint model, we also

consider three other competing models. They are a multivariate regression model by

assuming that the mechanism of missing is completely at random (MCAR), the pseudo-

imputation (PI) method, a pattern-mixture model with the multiple imputation tech-

nique (PMMI), and a shared parameter (SP) model. Both PI and PMMI are fitting the

same model at the first step to obtain a predictive probability for each subject at each

visit time. Then, the predictive probability is treated as the response to fit a model

at the second step in PI whereas an imputation method is used to fill in the missing

value in PMMI. After imputation, a complete dataset is formed and then re-fitted with
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a multivariate logistic regression model to obtain marginal estimates of parameters.

Results are summarized in Table 4.1. Estimates from MCAR are far away from those

obtained from other three methods. In terms of parameter estimates, the PMMI, PI,

JM, and SP approaches perform similarly but the SP approach results into the largest

standard error whereas the PMMI and JM approaches had the smallest standard errors.

The variable, cd4bl, is significant under the PMMI and PI approaches but not using the

JM approach. It is reasonable for values of cd4bl within patterns are more similar than

between patterns. All methods detect the significant difference between treatments,

which confirms the original finding in the primary analysis conducted by Schuman et

al. (1997), although they did a survival analysis on time until occurrence of the first

disease event. As the number of patterns increases, estimates from the PI approach are

slightly varying and their standard errors increase. The overall parameter estimates (and

standard errors) from the JM approach seem to be stable as the number of patterns

varies. It is the same phenomena that we observed in the simulation studies presented

in Chapter 2. When the DIC criterion is computed, the JM approach with 8 patterns

(DIC = 3089) is preferred over the JM approach with 4 patterns (DIC = 3102) but the

overall difference between corresponding parameter estimates is not substantial.

4.3 Data Analysis Assuming a GAM

In this section, methods discussed in Chapter 3 are applied: the PI method with

GAM’s at both steps (PI-GAM) and the JM approach with a GAM (JM-GAM). For

the JM-GAM method, we only report results based on 5 knots for the smooth function.

Other number of knots were tried but results were similar. Here, the age variable is

modeled using the smoothing function and other variables are fitted using a linear form.

To avoid repetitions, we assume 4 missing patterns in this section. After applying these

two methods on the data set, it is found that there are not significant difference among

estimates obtained from methods assuming generalized linear models or generalized ad-

ditive models. Hence, only estimates of the treatment effect, the primary interest, are

presented in Table 5.2. Clearly, the estimates are very similar.

Although methods with GAMs did not show advantage over methods with GLMs at
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Table 4.1: Parameter estimates and their standard errors from analyzing aids data by

utilizing various methods. * indicates the fixed effect is significant at the significance

level α = 0.05

MCAR PMMI4 PI4 PI8 JM4 JM8 SP

age -0.01 -0.02* -0.02* -0.03* -0.02* -0.02* -0.04*

(s .e.) 0 .01 0 .01 0 .01 0 .01 0 .01 0 .01 0 .01

aruse 0.51 -0.05 -0.05 -0.02 -0.03 -0.04 -0.05

(s .e.) 0 .25 0 .15 0 .17 0 .22 0 .16 0 .15 0 .25

canvbl 0.03 0.01 0.01 -0.01 0.01 -0.01 0.01

(s .e.) 0 .20 0 .12 0 .13 0 .19 0 .12 0 .12 0 .22

canobl -0.62 -0.256 -0.265* -0.34 -0.253 -0.34* -0.23

(s .e.) 0 .21 0 .13 0 .14 0 .20 0 .14 0 .13 0 .21

cd4bl -0.002 -0.001* -0.001 -0.001 -0.0016 -0.0025 -0.002*

(s .e.) 0 .0008 0 .0005 0 .0007 0 .0011 0 .0011 0 .0017 0 .0001

idu -0.13 -0.22 -0.24 -0.26 -0.24 -0.28* -0.36

(s .e.) 0 .21 0 .12 0 .13 0 .19 0 .13 0 .13 0 .21

podbl 0.44 0.48* 0.51* 0.58* 0.51* 0.44* 0.55*

(s .e.) 0 .27 0 .15 0 .16 0 .22 0 .16 0 .16 0 .25

race 1.43 0.52* 0.56* 0.61* 0.50* 0.52* 0.45

(s .e.) 0 .39 0 .18 0 .18 0 .27 0 .19 0 .19 0 .30

time 0.021 0.017 0.02 0.02 0.02 0.02 0.01

(s .e.) 0 .028 0 .014 0 .014 0 .016 0 .015 0 .014 0 .02

trt 0.87 0.55* 0.59* 0.58* 0.56* 0.55* 0.64*

(s .e.) 0 .20 0 .12 0 .13 0 .18 0 .13 0 .12 0 .21
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Table 4.2: Parameter estimates and their standard errors from analyzing aids data by

utilizing various methods.

PI-GLM4 JM-GLM4 PI-GAM4 JM-GAM4

trt 0.59 0.60 0.56 0.57

(s .e.) 0 .13 0 .13 0 .13 0 .12

this illustrative example, one must try both methods while fitting the models. Then on

the reasons of parsimony one may suggest the use of the simpler model. Hence, for this

dataset a GLM seems to be adequate.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

It is generally difficult to model data with non-ignorable missing. Pattern-mixture

models and selections models are commonly used to fit data of these kind. We propose two

approaches, the pseudo-imputation (PI) approach and the joint-modeling (JM) approach,

that fall into the category of pattern-mixture models.

For both approaches, we make a key assumption that there is an observable surro-

gate variable used to determine missing patterns and then the missing indicator will be

independent of missing responses conditional on the given missing pattern. Simulation

studies in Chapter 2 show that both approaches yield precise point estimates when this

assumption holds. The JM approach provides stable estimates with less variations than

the PI approach even when the number of missing patterns is misspecified. When the

assumption is violated, estimates obtained from the JM approach are much less biased

than those from the PI approach. Looking at the models constructed to conduct simu-

lations at the second scenario, we can see that the odds ratio of Y = 1 to Y = 0 being

missing is very high. It is reasonable to believe that the JM approach would provide

acceptable estimates while the magnitude of odds ratio is relatively small.

In Chapter 3, we apply our approaches to cases where a generalized linear regression

may not be appropriate. Hence, fitting data in the generalized additive model framework

may be desired, particularly when the primary interest is the treatment difference. In
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simulation studies, it has been shown that parameter estimates for both approaches with

a generalized additive model are nearly equally accurate in general even when data are

generated from the generalized linear model. When there exists a non-linear relationship,

these two approaches can take advantage of their flexibility, capture the nonlinearity

existing in data, and yield precise estimates. The JM approach along with generalized

additive models can provide more flexibility than the PI approach since it allows to fit a

generalized additive model for the missing indicator model. It can be very much desired

since no interpretation is required for parameters in the missing indicator model, no

matter what the underling model is.

5.2 Future Work

5.2.1 Pattern Finder

Previously, we assumed that the surrogate variable solely determining the group mem-

bership of subjects can be observed. In this section, we discuss a few ideas to relax this

assumption and extend our methods to more general settings. For example, there is no

surrogate variable on record but only covariates measured at the baseline, or along with

covariates, we have full measurements of time-dependent surrogate variable. Thus, before

we use the proposed models as in Chapter 2, we might need to use some form of classifi-

cation or clustering to create the pattern variable. Comparison of clustering methods is

out of scope of this dissertation. We only provide a brief review on this subject in the

following sections. Once the clustering method is determined and missing patterns are

defined, one can apply our proposed approaches to address the missing data problem.

There is a rich volume of literature devoted into the field of classification and clus-

tering. Some historical information about the development of theories of classification

is discussed by numerous authors (Cain 1962; Reyment et al., 1984; Sutcliffe, 1994).

Generally, classification can be referred to as either supervised learning or unsupervised

learning. In supervised learning, a subject is assumed to belong to one of the known

number of groups whose characteristics have been defined using a training set and the

objective is to determine the class for subjects who miss their group labels. On the other
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hand, the unsupervised learning is to find groups in data without the help of a response

variable and the number of classes is to be determined. Supervised learning is of little

interest in our cases and some discussions of it can be found in Krzanowski and Marriott

(1995), Ripley (1996) and Fayyad et al. (1996). Classification methods reviewed in the

followings fall into the category of the unsupervised learning.

Graphic aids can be of immediate attentions, such as scatter plots, Andew’s plot

(Andrew, 1972) and Chernoff faces (Chernoff, 1973). In addition, formal classification

methods are either partitional or hierarchical. Classification tree is the most commonly

used hierarchical methods (Bobisud and Bobisud, 1972; McMorris et al., 1983). Cluster-

ing criteria include single link (Sneath, 1957), complete link (McQuitty, 1960), centroid

(Gower, 1967b), and others (Podani, 1989). The most common partition method is the

K-mean clustering (Friedman and Rubin, 1967; MacQueen, 1967; Babfield and Bassill,

1977; Linde et al., 1980; Ismail and Kamel, 1989). There are also abundant of research

on Bayesian clustering. Chang and Afifi (1974) proposed a Bayes procedure for classi-

fying observations with one binary variable and c continuous variables. Vlachonikolis

(1990) extended this approach to more general cases in which observations consist of b

binary variable and c continuous variables. Stephens (2000) considered the problem of

label switching in mixture models. Kang (2005) applied Dirichlet mixtures to clustering

techniques to estimate nonparametric regression.

One possibility that allows flexibility is a way to produce reasonable configurations

as we go along a markov chain. We start with a configuration based on the best of

our current knowledge or a known surrogate variable. Then we move stochastically an

observation or observations from the present configuration to a new one depending on

some criteria, possibly defined in terms of some goodness of fit and penalty for the size

of a given configuration. Each time movement is one of the following elementary move:

(a) Join two group, (b) Split one group, or (c) Move one observation from present group

to a different one.
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5.2.2 Testing the MAR Assumption

In both approaches we proposed, there is a key assumption that, conditional on the

missing pattern, the cause of the missingness is not to do with missing responses. In

other word, the MAR can be assumed with a given pattern. This was an assumption and

can not be verified. There are some likelihood ratio tests introduced to test the missing

completely at random hypothesis (Fuchs, 1982; Little, 1988). A non-parametric test has

been proposed by Diggle (1989). Chen and Little (1999) generalized the test statistics

in Little (1988) to the generalized estimating equation setting to avoid distributional

assumptions. Even though the above methods are not for testing the MAR assumption,

we can still us them as preliminary screening tools. If the MCAR assumption holds, then

one can definitely apply our methods. In other hand, we might be able to determine the

magnitude of violation.
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