
Abstract

Xudong Xiao: Large-Eddy Simulation/Reynolds-Averaged Navier-Stokes Hybrid Schemes

for High Speed Flows. (Under the direction of Dr. H. A. Hassan)

Three LES/RANS hybrid schemes have been proposed for the prediction of high speed

separated flows. Each method couples thek–ζ(Enstrophy) RANS model with an LES

subgrid scale one-equation model by using a blending function that is coordinate system

independent. Two of these functions are based on turbulence dissipation length scale and

grid size, while the third one has no explicit dependence on the grid. To implement the

LES/RANS hybrid schemes, a new rescaling-reintroducing method is used to generate

time-dependent turbulent inflow conditions. The hybrid schemes have been tested on a

Mach 2.88 flow over 25 degree compression-expansion ramp and a Mach 2.79 flow over 20

degree compression ramp. A special computation procedure has been designed to prevent

the separation zone from expanding upstream to the recycle-plane. The code is parallelized

using Message Passing Interface (MPI) and is optimized for running on IBM-SP3 parallel

machine.

The scheme was validated first for a flat plate. It was shown that the blending function

has to be monotonic to prevent the RANS region from appearing in the LES region. In the

25 deg ramp case, the hybrid schemes provided better agreement with experiment in the



recovery region. Grid refinement studies demonstrated the importance of using a grid inde-

pendent blend function and further improvement with experiment in the recovery region. In

the 20 deg ramp case, with a relatively finer grid, the hybrid scheme characterized by grid

independent blending function well predicted the flow field in both the separation region

and the recovery region. Therefore, with “appropriately” fine grid, current hybrid schemes

are promising for the simulation of shock wave/boundary layer interaction problems.



LARGE-EDDY SIMULATION /
REYNOLDS-AVERAGED NAVIER-STOKES HYBRID

SCHEMES FOR HIGH SPEED FLOWS

by

Xudong Xiao

A dissertation submitted to the graduate faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Department of Mechanical and Aerospace Engineering

Raleigh
October 2002

Approved By:

Dr. F. R. DeJarnette Dr. J. R. Edwards

Dr. R. E. Funderlic Dr. D. S. McRae

Dr. H. A. Hassan, Chair



Biography

Xudong Xiao was born on September 22, 1972 to Dai and Gongmiao Xiao in Sanming, Fu-

jian, P. R. China. His birthday happened to be the Moon Festival(Mid-Autumn) in Chinese

lunar calendar. Xudong spent his first 18 years in this small town in the southeast of China.

Following his sister’s foot-print, he attended Sanming Shiyan Elementary School, Sanming

No.1 Middle/High school. In the summer of 1990, with his dream and the encouragement

from his family, he left his hometown and started his collegiate life in Nanjing University

of Aeronautics and Astronautics(NUAA), where he majored in Aeroengine Design. After

he earned the bachelor degree in 1994, he and his girlfriend, Yanglin Yu, who became his

wife 3 years later, continued their study in NUAA for their master degrees.

In April 1997, he got his master degree and moved to Guangzhou, Guangdong (Can-

ton), where he worked for Southern and Central Regional Administration of Civil Aviation

Administration of China(CAAC). In December 1997, he married Yanglin Yu.

In 1999, he went to North Carolina State University to pursue his Ph.D degree under the

direction of Dr. H. A. Hassan. When writing this dissertation, he and his wife are expecting

their first baby.

ii



Acknowledgments

First and foremost, I feel indebted to my advisor, Dr. H. A. Hassan, not only for the op-

portunity he gave me to study in NCSU, the years of guidance and help he provided me in

various area, but also for the influence I got from his personality and, the most memorable,

his diligence. Special thanks go to Dr. J. R. Edwards for providing me with the code and

discussing various implementation issues. I would also like to thank Dr. D. S. McRae for

his help in my CFD course work and research. Thanks also go to Dr. R. E. Funderlic for

serving on my advisory committee. I am also thankful to Dr. N. Chokani for being willing

but unable to attend my final oral exam as a committee member due to his sabbatical, and

Dr. F. R. DeJarnette for agreeing to serve as a committee member on short notice.

Also I am grateful to my wife, Yanglin Yu, for her understanding, and companying me

for so many years. Without her “pushing”, I may not have reached this stage.

I would like to acknowledge North Carolina Super Computing Center for granting com-

puter time and the service provided by Dr. Mark Reed and his colleagues. Thanks also go

to NCSU for supporting my study.

At this moment, I would like to thank Ryan Bond and Ryan McDaniel for helping me

adjust to new environments after I came to this country, and all my former and current

officemates in Langley room for their friendliness and help.

iii



Table of Contents

List of Tables vi

List of Figures vii

List of Symbols ix

1 Introduction 1

2 Governing Equations 10
2.1 Navier-Stokes Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Filtering Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
2.3 Filtered Compressible Navier-Stokes Equations. . . . . . . . . . . . . . . 13
2.4 Reynolds-Averaged Navier-Stokes(RANS) Equations. . . . . . . . . . . . 15

3 LES/RANS Coupling 17
3.1 Hybrid Turbulence Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Blending Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

4 Turbulent Inflow Boundary Conditions 23
4.1 Rescaling-Reintroducing Procedure. . . . . . . . . . . . . . . . . . . . . 23
4.2 Scaling ofk, ζ andT , ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Implementation 31
5.1 Zheltovodov 25 deg Compression-Expansion Ramp. . . . . . . . . . . . . 31
5.2 Settles 20 deg Compression Ramp. . . . . . . . . . . . . . . . . . . . . . 33
5.3 Computation Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . .35

6 Results and Analysis 38
6.1 Inflow Turbulence Generation Scheme and Monotonic Blend Function. . . 38
6.2 25 Ramp Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

6.2.1 Effects of Starting Procedure. . . . . . . . . . . . . . . . . . . . . 49
6.2.2 Γ1 vsΓ2 on coarse grid. . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.3 Effect ofα1 on Γ2 scheme . . . . . . . . . . . . . . . . . . . . . . 58
6.2.4 Grid Refinement Study. . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 20 Ramp Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

7 Conclusions 77

iv



List of References 79

A Numerical Scheme 84

B Speedup Test of Parallel Code 91

v



List of Tables

5.1 25 Ramp Inflow Conditions @ x=-3.3 cm. . . . . . . . . . . . . . . . . . 33
5.2 20 Ramp Inflow Conditions @ x=-3.81 cm. . . . . . . . . . . . . . . . . . 34

B.1 The decomposition of the whole domain. . . . . . . . . . . . . . . . . . . 91
B.2 The Results of Speedup Test. . . . . . . . . . . . . . . . . . . . . . . . . 92
B.3 L2 usage and the communication time. . . . . . . . . . . . . . . . . . . . 93

vi



List of Figures

1.1 LES with inner layer modeling.. . . . . . . . . . . . . . . . . . . . . . . . 3

4.1 Rescaling-reintroducing procedure.. . . . . . . . . . . . . . . . . . . . . . 24

5.1 Zheltovodov 25 deg Ramp.. . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Settles 20 deg Ramp.. . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
5.3 Turbulent fluctuations on flat plate: contour plot ofu. . . . . . . . . . . . . 36
5.4 A combined initial solution: contour plot ofu. . . . . . . . . . . . . . . . . 37

6.1 Mean streamwise velocity profiles, case 1.. . . . . . . . . . . . . . . . . . 40
6.2 Mean streamwise velocity profiles, case 2.. . . . . . . . . . . . . . . . . . 41
6.3 Mean streamwise velocity profiles, case 3.. . . . . . . . . . . . . . . . . 41
6.4 Profiles ofRMSmass flow fluctuations, case 3.. . . . . . . . . . . . . . . 42
6.5 Profiles of mean eddy viscosity, case 3.. . . . . . . . . . . . . . . . . . . 43
6.6 Profiles of blending functionΓ, case 3.. . . . . . . . . . . . . . . . . . . . 44
6.7 Mean streamwise velocity profile, case 4.. . . . . . . . . . . . . . . . . . 44
6.8 Profiles ofRMSmass flow fluctuations, case 4.. . . . . . . . . . . . . . . 45
6.9 Profiles of blending functionΓ, case 4.. . . . . . . . . . . . . . . . . . . . 45
6.10 Profiles of mean eddy viscosity, case 4.. . . . . . . . . . . . . . . . . . . 46
6.11 Profiles of mean streamwise velocity , case 4.. . . . . . . . . . . . . . . . 47
6.12 Profiles of meank profile, case 4.. . . . . . . . . . . . . . . . . . . . . . . 47
6.13 Instantaneous temperature inx-y plane, case 4.. . . . . . . . . . . . . . . 48
6.14 Instantaneous temperature iny-z plane, case 4. . . . . . . . . . . . . . . . 48
6.15 25 Ramp: Instantaneous streamwise velocity(u) distribution. . . . . . . . . 50
6.16 25 Ramp:RMSmass flow fluctuation on recycle-plane,Γ1 = tanh( lε

5∆m
)4 . 51

6.17 25 Ramp: Skin friction distribution,Γ1 = tanh( lε
5∆m

)4. . . . . . . . . . . . 51
6.18 25 Ramp: Wall pressure distribution,Γ1 = tanh( lε

5∆m
)4. . . . . . . . . . . 52

6.19 25 Ramp: Comparison of skin friction distribution,Γ1 = tanh( lε
5∆m

)4. . . . 52
6.20 25 Ramp: Comparison of wall pressure distribution,Γ1 = tanh( lε

5∆m
)4. . . 53

6.21 25 Ramp: Blending function profiles on recycle-plane,Γ1 vsΓ2. . . . . . . 54
6.22 25 Ramp: Skin friction distribution,Γ1 vsΓ2. . . . . . . . . . . . . . . . . 54
6.23 25 Ramp: Wall pressure distribution,Γ1 vsΓ2. . . . . . . . . . . . . . . . . 55
6.24 25 Ramp: Mean eddy viscosity distribution,Γ1 vsΓ2. . . . . . . . . . . . . 56
6.25 25 Ramp: Comparison of velocity profiles,Γ1 vsΓ2. . . . . . . . . . . . . 57
6.26 25 Ramp: Profiles of blending function on recycle-plane,Γ2. . . . . . . . . 59
6.27 25 Ramp: Mean velocity profiles on recycle-plane,Γ2. . . . . . . . . . . . 59

vii



6.28 25 Ramp: Skin friction distribution,Γ2. . . . . . . . . . . . . . . . . . . . 60
6.29 25 Ramp: Wall pressure distribution,Γ2. . . . . . . . . . . . . . . . . . . . 60
6.30 25 Ramp: Comparison of velocity profiles,Γ2 . . . . . . . . . . . . . . . . 62
6.31 25 Ramp: Comparison of 2D RANS solutions. . . . . . . . . . . . . . . . 63

6.32 25 Ramp: Skin friction distribution,Γ2 = tanh
(

lε
5∆v

)2

. . . . . . . . . . . 64

6.33 25 Ramp:RMSmass flow fluctuation profiles,Γ2 = tanh
(

lε
5∆v

)2

, on

recycle-plane.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

6.34 25 Ramp: Blend function profiles and mean velocity profiles,Γ2 = tanh
(

lε
5∆v

)2

,

on recycle-plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

6.35 25 Ramp: Comparison of velocity profiles,Γ2 = tanh
(

lε
5∆v

)2

. . . . . . . 67

6.36 25 Ramp: Skin friction distribution,Γ3 = tanh
(
ls

25λ

)2
. . . . . . . . . . . . 68

6.37 25 Ramp: Wall pressure distribution,Γ3 = tanh
(
ls

25λ

)2
. . . . . . . . . . . 68

6.38 25 Ramp: Blending function profiles,Γ3 = tanh
(
ls

25λ

)2
. . . . . . . . . . . 69

6.39 25 Ramp: Comparison of velocity profiles,Γ3 = tanh
(
ls

25λ

)2
. . . . . . . . 70

6.40 20 Ramp: Instantaneous streamwise velocity(u) distribution. . . . . . . . . 72
6.41 20 Ramp: Wall pressure distribution.. . . . . . . . . . . . . . . . . . . . . 73
6.42 20 Ramp: Skin friction distribution.. . . . . . . . . . . . . . . . . . . . . 74
6.43 20 Ramp: Profiles of blending function and mean velocity.. . . . . . . . . 74
6.44 20 Ramp: Velocity profiles in the vicinity of ramp apex.. . . . . . . . . . . 75
6.45 20 Ramp: Velocity profiles in recovery region.. . . . . . . . . . . . . . . . 76

B.1 Speedup Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

viii



List of Symbols

A, B, C, D Flux Jacobian matrices
Cp Specific heat at constant pressure
Cv Specific hear at constant volume
E Total energy per unit mass
F, G, H Flux vectors
H Total enthalpy per unit mass
J Jacobian of coordinate transformation
k Subgrid turbulence kinetic energy

or Fluctuation kinetic energy per unit mass,
lε Dissipation length scale
ls von Karman length scale
M Mach number
p Pressure
Pr Laminar Prandtl number
Prt Turbulent Prandtl number
Qi Subgrid scale turbulence heat flux vector,

or Reynolds heat flux vector
qi Laminar heat flux vector
R Gas constant
S Source term
Sij Strain-rate tensor
t Time
T Temperature
Tij Stress tensor
U Time-averaged velocity
U Vector of conservative variables
U , V,W Contravariant velocity component
u, v, w Velocity component inx, y, z direction, respectively
ui Velocity vector
V Grid cell volume
W Vector of primitive variables
x, y, z Coordinate directions in physical space
xi Position vector
α1 Model constant in blending functions
Γ, Γ1, Γ2, Γ3 Blending functions
∆m, ∆v Grid cell size
δ Boundary layer thickness

ix



δij Kronecker delta
ξ, η, ς Coordinate directions in computational space
ζ Enstrophy
θ Boundary layer momentum thickness
λ Taylor’s microscale
µ Laminar(molecular) viscosity coefficient
µt Turbulent(eddy) viscosity coefficient
ν Kinematic laminar(molecular) viscosity coefficient
νt Kinematic turbulent(eddy) viscosity coefficient
ρ Density
σij Deviatoric part of strain-rate tensor
τij Subgrid scale stress tensor,

or Reynolds stress tensor
Ωi Vorticity vector
Ω Magnitude of vorticity,

√
ΩiΩi

Subscripts:
∞ Denotes freestream quantity
e Denotes boundary layer edge quantity
eff Denotes effective quantities
i, j, k Denotes spatial coordinates or cell indices
inlet Denotes inlet quantities
recy Denotes recycle-plane quantities
t Denotes turbulent quantities
w Denotes wall quantities

Superscript:
′ Denotes subgrid scale component,

or time-averaged fluctuating component
′′ Denotes Favre-averaged fluctuating components
inn Denotes boundary layer inner region
out Denotes boundary layer outer region

Accents:
¯ Denotes spatially filtered quantities
˜ Denotes Favre-filtered quantities
ˆ Denotes time-averaged quantities
ˇ Denotes Favre-averaged quantities

Abbreviations:
CFD Computational Fluid Dynamics
DES Detached-Eddy Simulation
DNS Direct Numerical Simulation

x



LES Large Eddy Simulation
RANS Reynolds-averaged Navier-Stokes equations
RMS Root Mean Square
SGS Subgrid Scale
TLM Two-Layer Models
VLES Very Large-Eddy Simulation

xi



Chapter 1

Introduction

Because of its frequent occurrence in engineering applications, turbulence has been the

subject of study for a long time. It is characterized by a three-dimensional, time-dependent,

and random flow field, where a large range of time scales and length scales exists. Although

it can be described by the Navier-Stokes equations, the analytical solution to turbulent

flow is not possible. Thus, Computational Fluid Dynamics(CFD) becomes a powerful tool

to predict turbulent flows. In general, there are three kinds of approaches for turbulence

simulation:

1. Direct Numerical Simulation(DNS);

2. Large-Eddy Simulation(LES);

3. Reynolds-Averaged Navier-Stokes(RANS).

In DNS, the Navier-Stokes equations are solved to determine the instantaneous flow

field. All length scales and time scales must be resolved. Hence, no modeling is needed.

Since the ratio of the largest length scale,L, to the smallest, Kolmogorov length scale,η, is

of the order ofRe
3
4 , and the smallest grid size must be of orderη, the number of grid nodes

for a three dimensional turbulence flow will be of the orderRe
9
4 . Moreover, relative to the

largest time scale, the smallest time scale decreases asRe−
3
4 . Hence, the overall cost of
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DNS is of orderRe3[1], which is computationally expensive. As a result, DNS is restricted

to flows with low-to-moderate Reynolds number, and thus is considered as a research tool

for turbulence [2], and not a general solver for engineering problems.

In the other extreme, RANS approaches model all scales and solve time-averaged equa-

tions. The resulting flow field is represented by the mean properties. Additional model

equations are solved for Reynolds stresses. If a turbulence viscosity model is used, the tur-

bulence viscosity, or eddy viscosity, can be obtained explicitly from an algebraic relation,

or implicitly by solving some partial differential equations of turbulence quantities, likek–

ω, k–ε andk–ζ models. The Reynolds stresses can then be determined from the Boussinesq

assumption. In RANS approaches, the cost does not significantly increase with Reynolds

number, since all scales of turbulent motion are modeled. Because of its efficiency, RANS

approaches are dominant in current CFD applications. Various RANS models are now

available for different flows. But for the shock-induced boundary layer separations, “far

less improvement has been made with turbulence models for such flows”([ 3], page 261).

For LES, the spatially-filtered Navier-Stokes equations are solved. The large scales

of three-dimensional unsteady turbulent motion can be calculated directly, but the eddies

smaller than the grid size have to be modeled (subgrid scale(SGS) modeling). Since, exper-

imentally and theoretically, the energy-dissipating eddies (small eddies) can be considered

universal, the uncertainty of SGS modeling should be less than that of RANS. So LES

is believed to be more accurate than RANS, especially for separated flows[1]. For wall-

bounded flows, LES grid requirement in the outer region of boundary layer is proportional

to Re0.4, while in the inner layer, in order to resolve viscous sublayer streaks, the number
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of grid points is proportional toRe1.8(Chapman[4]). So the cost of LES with near-wall

resolution is between DNS and RANS. However, LES is still prohibitively expensive for

high speed flows.

Motivated by the limitations of LES and RANS, endeavors have been devoted in past

decades toward reducing the grid resolution requirements at the near-wall region for LES.

When the grid in the inner layer is too coarse, the effect of the wall layer must be modeled[5].

Depending on the complexity of inner layer modeling, three major types of modeling tech-

niques have been developed, as shown in Figure1.1.

Level 1: Equilibrium Laws
(Deardorff 1970, Schumann 1975, Piomelli 1989, ...)

Level 2: Two-Layer Models (TLM)
(Balaras et al. 1994, Balaras et al. 1996, ...)

Level 3: LES/RANS Hybrid Schemes

DES
(Spalart et al. 1997,
 Nikitin et al. 2000,
 Strelets 2001, …)

Wall-Layer Models
(Cabot &  Moin 1999,
 Piomelli &  Balaras 2002)

RANS/VLES
(Speziale 1996, 1998,
 Arunajatesan & Sinha 2001,
 Batten et al. 2002, …)

Others

C
om

pl
ex

it
y 

in
cr

ea
se

s

Figure 1.1: LES with inner layer modeling.

Most of the equilibrium laws compute the wall stress by using log law of the wall

at some distance away from the wall. Some examples can be found in Deardorff[6],
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Schumann[7], Piomelli[8], etc. As is known, the law of the wall is not valid for separated

flows. So it is difficult to extend this approach to more complex turbulent flows.

Rather than using simple relations from the law of the wall, two-layer models(TLM)

solve a simplified set of differential equations(i.e., boundary layer equations) in the near

wall region. This method was proposed by Balaras & Bennocci[9] and Balaraset al.[10].

In this approach, the boundary layer equations are solved on a fine grid embedded in the

coarser LES grid. The exchange of boundary conditions between the two grids is somewhat

like that used in Chimera scheme[11]: the coarse LES grid provides free stream conditions

for inner layer simulation, and the wall stress calculated in the embedded mesh returns to

the coarse LES mesh as a wall boundary condition. Note that two grids and two sets of

equations are involved.

In the third level, the LES/RANS hybrid schemes use one grid (at least in the wall

normal direction) and solve a more complete set of equations – the RANS equations in

the near-wall region. Different turbulence models are applied to different regions. In the

vicinity of the wall, the RANS model is used, whereas, away from the wall, the eddy-

viscosity is calculated from LES SGS model.

Up till now, there are two major techniques among LES/RANS hybrid schemes. One

is the “Detached-Eddy Simulation”, advocated by Spalartet al.[12] for the simulation of

massively separated flows. In [5], DES, TLM and equilibrium laws models are considered

as “Wall-Layer Models”. Recent reviews of wall-layer models can be found in Cabot &

Moin[13] and Piomelli & Balaras[5].
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In DES, the distance to the nearest wall,d, in the Spalart-Allmaras one-equation model[14]

destruction term is replaced with a new length scaled̃:

d̃ = min(d, CDES∆) (1.1)

whereCDES is a model constant, and∆ the largest mesh spacing in all directions:

∆ = max(∆x,∆y,∆z) (1.2)

In the near wall region,̃d = d, the modified S-A model functions as the original model.

When it is far away from the wall,̃d = CDES∆, and the model equation works as an SGS

stress model for LES. In this “LES region”, when the production and the destruction of

S-A model are balanced, it produces the eddy viscosityνt ∝ S∆2 [12], which is similar to

Smagorinsky SGS model[15].

In standard DES, the entire incoming boundary layer is simulated with RANS by using

a so-called “RANS grid”, where the mesh spacing parallel to the wall is so large thatd̃ = d

in the entire boundary layer. While in the separated regions , the mesh is refined in all

direction, then LES can be used. More mesh issues for DES can be found in [16]. But

in Nikitin et al.[17], DES approach is applied to the attached boundary layer in a plane

channel flow, where the RANS model in the inner layer is combined with LES at the outer

region of the boundary layer. With this approach, they reproduced the logarithmic profiles.

However, a so-called “DES buffer layer” or “grey region” showed up and resulted in the

logarithmic layer with a high intercept, and, in some cases, incorrect slope, in LES region.

Since the pioneering paper of Spalartet al.[12], DES has been applied to various flows,

e.g., Travinet al.[18], Squireset al.[19]. After noticing that S-A model is not superior
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to some more sophisticated models, and thus the DES with S-A model might fail in some

cases, Strelets[20] extended the DES concept on a two-equation model, i.e., Menter’s shear-

stress transport(M-SST) model. And instead of the wall distance, the dissipation length

scale,
√
k/(β∗ω), is used as a working parameter. A similar extension was developed by

Bush & Mani[21]. Encouraging results have been obtained from their researches.

The other type of LES/RANS hybrid scheme was proposed by Speziale[22; 23], who

realized the shortcomings of existing LES SGS models and tried to bridge the gap between

DNS, LES and RANS. In his model, the turbulent stress was expressed as a product of

Reynolds stress and a damping function:

τij = [1− exp(−β∆/LK)]n τ
(R)
ij (1.3)

whereLK is the Kolmogorov length scale,∆ the grid size,τ (R)
ij the Reynolds stress, and

β andn are the model constants. With this damping function, RANS stress models can

be recovered in coarse grid, and LES can change to RANS computation smoothly. Similar

formula appeared in Arunajatesan and his co-workers[24; 25], and Zhanget al.[26]. And

recently, the LNS approach of Battenet al.[27; 28] used an alternative to the damping

function, which they called “latency factor”,α,

α = min [L · VLES, L · VRANS] /L · VRANS (1.4)

whereL andV are length scale and velocity scale, respectively. In [28], theL · VLES was

the kinematic eddy viscosity from Smagorinsky SGS model[15], CS(L∆)2S∗, where the

L∆ is the mesh spacing. And theL · VRANS is the kinematic eddy viscosity from ak–ε

model.
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Note that aforementioned hybrid schemes compare different length scales, and decide

therefrom the LES or the RANS model to be used in a certain region. In most cases, the

grid size is one of the length scale to be compared with. Therefore the “RANS region”

and the “LES region” are grid-dependent. It is the user’s task to choose different models

to operate in different regions. An alternative to these length scale-type approaches is to

treat these two regions in a pre-determined manner [29; 30]. Fan and co-workers [31; 32;

33] developed the “flow-dependent” blending function to couple the two-equation RANS

model with the LES SGS one-equation model. The working parameters of their blending

function are the wall distance and some quantities from model equations, rather than the

local grid spacing. Thus, users needn’t worry about grid issues.

For the hybrid schemes, one of the problems yet to be solved is the inflow boundary

conditions. Because of the LES component, the resulting flow field solved by LES/RANS

hybrid schemes has to be three-dimensional and time-dependent. Thus, the inflow bound-

ary condition must be time-dependent. Therefore, as is the case in LES, specification of

turbulentinflow conditions is also a challenge to LES/RANS hybrid schemes.

Generally, there are two approaches for simulating the turbulent inflow conditions. One

is based on random fluctuations ([34], [35], [36], etc). The instantaneous velocity field in

the inflow boundary is generated by

ui(y, z, t) = Ui(y) + Lijφj(y, z, t) (1.5)
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whereUi is the mean velocity,Lij defines a lower triangle matrix such that

R = LLT (1.6)

Rij = u′′i u
′′
j (1.7)

andφj are three random variates, each of which has zero mean, unit variance and zero

covariance with other two variates.L can be calculated using Cholesy factorization. Using

this procedure, the random fluctuations can statistically recover the turbulent stresses. In the

procedure of Le and Moin[37; 38], the spectrum of fluctuation is defined in Fourier space

and the velocity fluctuation distribution is provided by an inverse Fourier transformation.

Because the random field is not governed by Navier-Stokes equations, it is not physical and

needs a lengthy development section[34]. As was shown in [32] by Fanet al., this approach

did not give good results for shock wave / boundary layer interaction problems.

Recently, Battenet al.[28] “synthesized” the turbulence: the velocity fluctuations in

the overall flow field are generated from stochastic PDEs, which required three additional

equations to be solved. This may increase the overhead of computation and suffer from the

same difficulty as the other random fluctuation methods.

The other is the so-called rescaling-reintroducing method, which is used to simulate

the inflow turbulence over a flat plate. It utilizes the similarities in the turbulent boundary

layer, rescales the flow field at a downstream location and then reintroduces the results to

the inflow boundary. This method was originally developed by Spalart and Leonard[39],

then modified by Lundet al.[34]. Recently, it has been extended to compressible supersonic

flow by Urbin & Knight[40]. As shown in [34], it is more efficient than the methods based
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on random fluctuations. However, in [34] and [40], this approach was only applied to LES.

Furthermore, only constant-coefficient SGS model was used. Therefore, this method can

not be directly applied to LES/RANS hybrid schemes in which some model equations have

to be accounted for.

In this study, three LES/RANS hybrid schemes have been proposed and applied to

wall-bounded flows. In these schemes, thek–ζ RANS model is coupled with one-equation

subgrid scale LES model through blending functions. Both models and blending functions

have no dependence on the wall-distance. Two of the blending functions use grid size as

a working parameter. The third one is independent of the local grid spacing. Potentially,

these schemes are highly suited for flows characterized by a complex geometry. And based

on rescaling-reintroducing method, a method for generating inflow boundary conditions

for hybrid schemes has been implemented and validated. All the hybrid schemes have been

tested on supersonic compression ramp problems, since the shock wave/boundary layer

interaction has been a challenging problem for CFD.

The governing equations will be developed in Chapter 2. Chapter 3 presents the tur-

bulence closure method. The method for generating turbulent inflow boundary conditions

is discussed in Chapter 4. In Chapter 5, the configurations for testing hybrid schemes are

presented. This chapter also gives the special computation procedure for the application

of hybrid schemes to ramp problems. In Chapter 6, the results from different cases are

presented and discussed. Chapter 7 gives the concluding remarks.
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Chapter 2

Governing Equations

In this chapter, the derivation of governing equations for LES and RANS is presented.

As will be shown, the two sets of governing equations have similar form. This feature

facilitates the coupling of LES and RANS such that the coupling can be done through

turbulence models.

2.1 Navier-Stokes Equations

The governing equations for the conservation of mass, momentum and energy in compress-

ible turbulent flows are:

∂ρ

∂t
+
∂ρuj
∂xj

= 0 (2.1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂Tij
∂xj

(2.2)

∂ρE

∂t
+
∂ρHui
∂xi

=
∂

∂xi
(Tijuj − qi) (2.3)

whereui is the velocity,p the pressure,ρ the density of the fluid,E the total energy per

unit mass,H the total enthalpy per unit mass ,Tij the stress tensor, andqj the heat flux.
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E,H andqi are defined as

E = CvT +
1

2
ρuiui (2.4)

H = CpT +
1

2
ρuiui (2.5)

qi = −µCp
Pr

∂T

∂xi
(2.6)

whereT is the temperature. In current work, the fluid is assumed to be calorically perfect

gas.Cv andCp are therefore constants.

For Newtonian flows,Tij are defined as,

Tij = µσij, (2.7)

with

σij = 2Sij −
2

3
δijSkk (2.8)

whereSij is the strain-rate tensor,

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.9)

σij is the deviatoric part of the strain-rate tensor,µ is the dynamic viscosity which can be

determined as a function of temperature using Sutherland’s law.

The equation of statep = ρRT and the assumption of constant Prandtl numberPr

close the system.

But in LES and RANS, Equation(2.1)–(2.3) are not the equations that are solved by

CFD codes. Instead, the filtered Navier-Stokes equations and Reynolds-Averaged Navier-

Stokes equations are solved in LES and RANS simulation, respectively.
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2.2 Filtering Operation

To get LES governing equations, afiltering operation[1] is defined to decompose the in-

stantaneous quantity into the sum of a filtered component and a residual component,

f(r, t) = f(r, t) + f ′(r, t) (2.10)

The general filtering operation on any flow variablef is defined as

f(x, t) =

∫
G(r,x)f(x− r, t)dr, (2.11)

where the integration is over the whole flow domain,G is a filter function, andf is the

filtered variable. The filterG is chosen so as to eliminate the fluctuations whose length

scales are smaller than the mesh size[41; 42] so thatf̄ represents the large scales of motion.

Some properties of the filtering operation[1; 23] are summarized as follows:

1. Normalization condition ofG. The filter function satisfies∫
G(r,x)dr = 1 (2.12)

2. The operations of filtering and differentiating w.r.t. time commute, i.e.

∂f

∂t
=
∂f

∂t
(2.13)

3. For homogeneous filters,∂G(r,x)
∂xj

= 0, the operations of filtering and differentiating

w.r.t. position commute, i.e.

∂f

∂xj
=

∂f

∂xj
(2.14)

Most commonly-used filtered functions are homogeneous. Some examples can be

found in [1], pp. 563.
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4. Different from Reynolds averages,

f 6= f, f ′ 6= 0 (2.15)

5. f depends on time. Therefore, an LES must be a time-dependent computation.

In order to eliminate terms that require modeling in the continuity equation, Favre-

averaging[43] is introduced:

f̃ ≡ ρf

ρ
(2.16)

2.3 Filtered Compressible Navier-Stokes Equations

The filtering of Equation(2.1)–(2.3) can be expressed in the conservation form[44]:

∂ρ̄

∂t
+

∂

∂xj
(ρ̄ũj) = 0 (2.17)

∂

∂t
(ρ̄ũi) +

∂

∂xj
(ρ̄ũiũj) = − ∂p̄

∂xi
+

∂

∂xj

(
T̃ij + τSGSij

)
(2.18)

∂

∂t

(
ρ̄Ẽ
)

+
∂

∂xj

(
ρ̄H̃ũj

)
=

∂

∂xj

(
ũi(T̃ij + τSGSij )− (q̃j +QSGS

j )
)

(2.19)

whereρ̄ is filtered density,̃ui are the components of Favre-filtered velocity,p̄ = ρ̄RT̃ is

the filtered pressure,̃E and H̃ are the filtered total energy and total enthalpy per mass,

respectively,

ρ̄Ẽ = ρ̄CvT̃ +
1

2
ρ̄ũiũi + ρ̄k (2.20)

ρ̄H̃ = ρ̄CpT̃ +
1

2
ρ̄ũiũi + ρ̄k (2.21)

wherek is subgrid scale turbulence kinetic energy per mass

k ≡ 1

2
(ũiuj − ũiũj) (2.22)
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The filtered stress̃Tij is defined as

T̃ij ≡ µ(T̃ )σ̃ij (2.23)

where

σ̃ij =
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3
δij
∂ũk
∂xk

(2.24)

The subgrid scale stress,τSGSij , is defined as

τSGSij ≡ −ρ̄(ũiuj − ũiũj) (2.25)

The filtered heat flux,̃qj, is defined as

q̃j ≡
µ(T̃ )Cp
Pr

∂T̃

∂xj
(2.26)

The subgrid scale turbulence heat flux,QSGS
j , is defined as

QSGS
j ≡ ρ̄(T̃ uj − T̃ ũj) (2.27)

To get Equations (2.17)–(2.19), it is assumed that[44]

T̃ij ≈ µσij (2.28)

q̃j ≈
µ(T )Cp
Pr

∂T

∂xj
(2.29)

T̃ijũi ≈ Tijui (2.30)

τSGSij ũi ≈ −1

2
ρ̄(ũiuiuj − ũiũiũj − 2kũj) (2.31)

The subgrid scale stressesτSGSij and heat fluxQSGS
j can not be computed directly and

thus have to be modeled. When an eddy viscosity SGS model is employed, these two terms
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can be modeled as

τSGSij = µtσ̃ij +
2

3
ρ̄kδij (2.32)

QSGS
j = −µtCp

Prt

∂T̃

∂xj
(2.33)

whereµt is the eddy viscosity for LES andPrt ≈ 0.89 is considered as a constant for

turbulent flows.

2.4 Reynolds-Averaged Navier-Stokes(RANS) Equations

The governing equations can be further simplified by using Reynolds averaging [45]. The

resulting equation is so-called RANS. In this approach, the flow property can be decom-

posed into mean and fluctuating components

f = f̂ + f ′ (2.34)

wheref denotes any flow properties,f ′ is the fluctuation around̂f or the time-averaged

value off , which is defined as

f̂ =
1

τ

∫ t0+τ

t0

f(x, t)dt (2.35)

whereτ is a period of time that is much longer than the time-scale of turbulent fluctuations.

The Favre-average for time-averaging is defined as

f̌ =
ρ̂f

ρ̂
(2.36)

Therefore, the decomposition off can then be rewritten as

f = f̌ + f ′′ (2.37)
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wheref ′′ is the fluctuations imposed oňf .

Apply the Reynolds averaging procedure to the original Navier-Stokes equations, we

can obtain the RANS equations (c.f.[3] for detailed derivation):

∂ρ̂

∂t
+

∂

∂xj
(ρ̂ǔj) = 0 (2.38)

∂

∂t
(ρ̂ǔi) +

∂

∂xj
(ρ̂ǔiǔj) = − ∂p̂

∂xi
+

∂

∂xj

(
T̂ij + τRANSij

)
(2.39)

∂

∂t

(
ρ̂Ě
)

+
∂

∂xj

(
ρ̂Ȟǔj

)
=

∂

∂xj

(
ǔi

(
T̂ij + τRANSij

)
−
(
q̂j +QRANS

j

))
(2.40)

In Equations(2.38)-(2.40),

τRANSij ≡ −ρ̂û′′i u′′j (2.41)

QRANS
j ≡ ρ̂u′′jh

′′ (2.42)

ρ̂k ≡ 1

2
ρ̂u′′i u

′′
i (2.43)

whereτRANSij is Reynolds-stress tensor,QRANS
j denotes turbulent heat-flux vector, andk

is the turbulence kinetic energy,̌E andȞ are averaged total energy and total enthalpy per

unit mass, respectively.

Using Boussinesq approximation, and denoting the eddy viscosity byµt, the resulting

expression for the modeled Reynolds-stresses has the same form as Equation(2.32). µt

can be obtained from model equations, such ask–ω, k–ζ models,etc. The RANS and the

model equations close the system.

Note that the governing equations for the RANS [Eqs. (2.38) – (2.39)] and the LES

[Eqs.(2.17) – (2.19)] have similar form. Therefore, both sets of equations can be solved

with a single numerical scheme.
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Chapter 3

LES/RANS Coupling

The governing equations of LES and RANS have the same form. There is no coupling

issue in the governing equations. The coupling of LES and RANS relies on how the eddy-

viscosity is calculated. In this study, it is implemented by “blending” one-equation LES

SGS turbulence model with two-equationk–ζ model through ablending function, which

makes the turbulence model change smoothly from a RANS model in the near-wall region

to an LES SGS model far away from the wall.

3.1 Hybrid Turbulence Model

The hybrid LES/RANS turbulence modeling consists of two sets of model equations. One

is thek–ζ two-equation model[46] for the RANS component. The other is the one-equation

SGS model for the LES part.

k–ζ model has been successfully applied to different turbulent flows, including free

shear flows and wall-bounded shear flows, in both low speed and high speed cases[46;

47; 48]. Its transitional extension predicts well the onset and extent of transition in two

and three dimensional transitional flows[49; 50]. Because it is free of wall and damping

functions, it is a good candidate for the implementation of a hybrid scheme that has no
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explicit dependence on the geometry.

Thek andζ equations in thek–ζ model are defined as[46]:

∂ρk

∂t
+
∂ρũjk

∂xj
=

∂

∂xj

[(
µ

3
+
µt
σk

)
∂k

∂xj

]
+τij

∂ũi
∂xj
− 1

Ck

µt
ρ2

∂ρ

∂xi

∂P

∂xi
− C1

ρk

τρ
− µζ (3.1)

∂ρζ

∂t
+
∂ρũjζ

∂xj
=

∂

∂xj

[(
µ+

µt
σζ

)
∂ζ

∂xj

]
+
µt
σr

∂Ωi

∂xj

(
∂Ωi

∂xj
+
∂Ωj

∂xi

)
−εmijρ

∂Ωi

∂xj

[
∂

∂xl
(u′′mu

′′
l )−

∂k

∂xm

]
+(α3bij +

1

3
δij)ρζs̃ij −

β4τijΩiΩj

kΩ
− β5

Rk + δ
ρζ3/2

−2β6τijνt
kν

ΩΩiΩj +
β7ρζ

Ω2
ΩiΩj s̃ij

+2β8εilm

(τij
k

) ∂k

∂xl

∂ζ

∂xm

Ωj

s2 + Ω2/2

+ max[Pζ , 0]− 2ρζs̃ij − Cζ1
µtζΩ

τρk
(3.2)

All model constants in above equations are documented in [46].

In this model, the kinematic eddy viscosity is given by:

νt,RANS = Cµ
k2

νζ
(3.3)

whereCµ = 0.09.

For the LES component, the one-equation subgrid scale (SGS) model is given by

∂ρk

∂t
+
∂ρũjk

∂xj
= τij

∂ũi
∂xj
− Cd

ρ̄k3/2

∆
+ Diffusion (3.4)

whereτij is the SGS stress tensor,∆ is the grid size, andCd is a model constant. Here, we

assume that the diffusion term is the same as that in Equation(3.1). Two versions of grid

size are used in this work. The cell-volume based grid size is defined as,

∆v = V 1/3 (3.5)
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whereV is the volume of grid cell. The other choice of∆ is given by

∆m = max (∆x,∆y,∆z) (3.6)

where∆x, ∆y, and∆z are the mesh spacings in three coordinate directions, respectively.

Under this one-equation model, the eddy-viscosity is calculated by

νt,LES = Cs
√
k∆ (3.7)

where∆ is the same as that used ink equation. So it can be∆m or ∆v.

For equilibrium conditions, where production equals dissipation, it follows from Equa-

tion(3.4) and Equation(3.7) that

νt,LES ≈ Cs

√
Cs
Cd

∆2S̃ (3.8)

which is equivalent to the Smagorinsky model[15].

To get an LES/RANS hybrid scheme, the one-equation SGS model, is blended with the

k-equation ofk–ζ model by a blending functionΓ. The resultingk equation is given by:

∂ρk

∂t
+
∂ρũjk

∂xj
=

∂

∂xj

[(
µ

3
+
µt
σk

)
∂k

∂xj

]
+τij

∂ũi
∂xj

−(1− Γ)

(
1

Ck

µt
ρ2

∂ρ

∂xi

∂P

∂xi
+ C1

ρk

τρ
+ µζ

)
− ΓCdρ

k3/2

∆
(3.9)

ζ equation remains unchanged.

The hybrid eddy viscosity is then defined as:

νt = (1− Γ)νt,RANS + Γνt,LES (3.10)

which is used to calculate the turbulent stressesτij.
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3.2 Blending Functions

One of the objectives in this research is to look for a blending function without explicit

dependence on the wall distance. Recall that, in LES,smalleddies need to be modeled. In

other words, compared with the grid size, the size of the energy bearing eddies (integral

length scale) determines the manner in which turbulence is modeled. If this size is much

larger than grid size, then it can be mostly captured by using LES. Otherwise, RANS has

to be used. Since the dissipation length scalelε:

lε =
k3/2

νζ
, (3.11)

is of the order of the integral length scale[3], it can be used to construct the blending

function. With different choices of grid size, we have the following two blending functions,

calledΓ1 andΓ2:

Γ1 = tanh (lε/α1∆m)4 (3.12)

and

Γ2 = tanh (lε/α1∆v)
2 (3.13)

Here,α1 is a model constant. Note that, from Equation(3.3), νt,RANS can be expressed as

νt,RANS = Cµlε
√
k (3.14)

So Equation(3.3) and (3.7) yield that

lε
α1∆

∝ νt,RANS
νt,LES

(3.15)

WhenΓ1 is used,∆ = ∆m is used in Equations(3.7) and (3.9). WhenΓ2 is used,∆ = ∆v

in those two equations.
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To preventΓ from decreasing in the freestream region as a result of small value ofk,

Γ must be a non-decreasing function as the distance from the wall increases. One way to

implement this is to set:

Γ[j] = max(Γ[j],Γ[j − 1]) (3.16)

wherej is the index of grid cell in the the direction normal to the wall. This mimics

blending functions used in [31][32] that have explicit dependence on wall distance.

To choose a proper constantα1, we need to analyze the length scale in the inner layer

and outer layer of turbulent boundary-layer.

From the law of the wall, we have:

u =
uτ
κ

ln

(
yuτ
νw

)
+ C

in log law region, where the friction velocityuτ ≡
√
τw/ρw, κ is von Karman’s constant,

andC ≈ 5.5.

By differentiating above equation w.r.t.y, we have:

du

dy
=
uτ
κy

Since, in this region, the turbulent stressτ ≈ const, andk ≈ const, thenνt ∼ κy.

But in log law region, Equation(3.7) has different behavior, because length scale∆ can be

constant in a structured grid. Therefore, Equation(3.7) should be used in the outer region

of a boundary layer, where the turbulence length scale∼ δ, which is function ofx.
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Above blending functions,Γ1 andΓ2, depend on grid size. An alternative to the grid-

dependent blending functions is to use von Karman length scale,ls:

ls ≡
S̃

|∇S̃|
(3.17)

where

S̃ =

√
S̃ijS̃ij (3.18)

ls is a measure of the real size of turbulent eddies. In log-law layer,ls ∝ y. Therefore,

ls can be considered as an indication of the distance away from the wall. Based on this,

another blending function,Γ3, is defined as

Γ3 = tanh(
ls
α1λ

)2 (3.19)

whereλ is Taylor’s microscale

λ =
√
k/ζ (3.20)

which lies in the inertial subrange – the range between the energy containing eddies and

the viscous range. Thus,Γ3 has no explicit dependence on the grid. In this research, when

Γ3 is used,∆ = ∆v is used in Equations(3.7) and (3.9). Equation(3.16) is also applied to

this blending function.

22



Chapter 4

Turbulent Inflow Boundary Conditions

As described in foregoing chapters, the LES and therefore the LES/RANS hybrid scheme

are time-dependent computations. This requires the inflow boundary condition to be un-

steady.

In many baseline experiments for testing capability of high-speed turbulence modeling,

inflow boundary layer is developed over a flat plate ahead of various experimental models.

So, in this chapter, the method to provide turbulent inflow boundary conditions for the flow

over a flat plate suited for hybrid LES/RANS calculation is presented.

4.1 Rescaling-Reintroducing Procedure

The current inflow turbulence generation method can be considered as a variant of rescaling-

reintroducing method developed by Urbinet al.[40]. The procedure in [40], which is illus-

trated in Figure4.1, consists of the following steps:

1. Getmean valuesandfluctuationsfrom a downstream station, the recycle-plane;

2. Based on similarity, rescale above values;
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Rescale

Reintroduce

Inlet plane

Recycle plane

Figure 4.1: Rescaling-reintroducing procedure.

3. Introduce the rescaled value at the inlet station as an updated inflow boundary con-

dition.

In [40], constant-coefficient SGS model and MILES model were employed. Thus, no

additional equations for closure of governing equations are required. For current LES/RANS

hybrid schemes, two extra model equations must be considered, and this will necessitate a

modification of the procedure of [40].

Moreover, the need to match mean inflow conditions of experiments, such as momen-

tum thickness, skin friction,etc., requires the inflow mean velocity and temperature profiles

remain fixed. So the modified rescaling-reintroducing method can be described as:
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1. Fix the inflow mean profiles of velocity and static temperature. Mean static pressure

at inflow boundary is set equal top∞, the freestream static pressure, since we are

dealing with the flow over flat plate. Then, mean density profile is determined from

the equation of state.

2. Fluctuations of velocity and static temperature at recycle station is rescaled and su-

perimposed onto the inflow mean profiles.

3. Mean values and fluctuations ofk andζ can be rescaled and reintroduced.

The general rescaling-reintroducing procedure is described as follows using the velocity

for example.

Let u(x, y, z, t) denote instantaneous velocity inx direction. It can be decomposed into

two components:

u(x, y, z, t) = U(x, y) + u′′(x, y, z, t) (4.1)

U(x, y) =
1

tf − ti

∫ tf

ti

〈u〉dt (4.2)

whereU is the mean value, andu′′ the instantaneous fluctuation.〈·〉 stands for the average

overz-direction.

The multilayer scaling of a compressible boundary-layer makes use of an effective ve-

locity developed by van Driest. The effective velocity is related toU by the relation[51]

Ueff =
U∞
A1

[
sin−1

(
2A2

1(U/U∞)− A2√
A2

2 + 4A2
1

)
+ sin−1

(
A2√

A2
2 + 4A2

1

)]
(4.3)

25



with

A1 =

√
(γ − 1)

2
rM2
∞

(
T∞
Tw

)
, A2 =

1 + (γ−1)
2
rM2
∞

Tw/Te
− 1

whereT∞ andTw are free stream and wall static temperature, respectively,M∞ is the free

stream Mach number,r ≈ Pr1/3 is the recovery factor, andPr = 0.7 is the laminar Prandtl

number.

By using the effective velocity, two similarity laws of compressible boundary-layer are:

U inn
eff = uτf1(y+), law of the wall (4.4)

U∞eff − U out
eff = uτf2(η), defect law (4.5)

whereη = y/δ is nondimensional wall distance for outer layer,y+ = yuτ/νw is nondi-

mensional wall distance for inner layer,U∞eff is the effective velocity ofU∞, the freestream

velocity. “inn” and “out” stand for inner and outer region of boundary layer, respectively.

According to the two similarity laws, we can have the following two transformations

for the fluctuations of velocity:

u′′inninlet = βu′′innrecy (y+
inlet, z, t) (4.6)

u′′outinlet = βu′′outrecy(ηinlet, z, t) (4.7)

whereβ = uτ,inlet/uτ,recy, “inlet” and “recy” denote the inlet station and the recycle

station, respectively.

The wall-normal velocity fluctuationv′′ and the spanwise velocity fluctuationw′′ are

scaled similarly.
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Then, the complete velocity fluctuations are the weighted average values of inner and

outer fluctuation profiles, which are given by[34][40]:

u′′inlet = u′′inninlet[1−W (ηinlet)] + u′′outinletW (ηinlet) (4.8)

where, the weight function is defined as

W (η) =
1

2

(
1 +

{
tanh

[
4(η −B)

(1− 2B)η +B

]})
(4.9)

whereB = 0.2. Thus the weight function have a smooth switch[34][40] at y/δ = 0.2.

With the fixed inlet mean velocity profiles, the complete inlet velocity is given by:

uinlet = Uinlet + u′′inlet (4.10)

Other velocity components can be processed similarly.

β andδinlet/δrecy, as suggested in [40], can be derived from power law[52], U/U∞ =

(y/δ)
1
n . Forn = 9, we have

δrecy
δinlet

=

[
1 + 0.27

L

δinlet
Re
− 1

5
δinlet

] 5
6

(4.11)

uτ,recy
uτ,inlet

=

(
δrecy
δinlet

) 1
10

(4.12)

whereL is the distance between inlet station and recycle station,Reδ is the Reynolds

number based on boundary layer thickness.

4.2 Scaling ofk, ζ and T , ρ

To give complete inflow boundary condition in the LES/RANS hybrid scheme, we need

to specify, in addition to velocity, density, temperature,k andζ at the inlet station. Based
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on Morkovin’s assumption[53], the pressure fluctuations at modest high speed flow (M <

5.0) are negligible. Hence, pressure at inlet station of a flat plate can be set equal to the

freestream pressurep∞. Then from the equation of state, density only depends on the

temperature. In this case, the scaling ofk, ζ andT̃ plus the scaling of velocity presented in

last section can give the desired set of inflow boundary conditions.

The LES formulation does not include equations fork–ζ model, but these quantities

can be calculated as part of the solution, if desired. Because of this, both mean value and

fluctuations ofk andζ are rescaled and reintroduced into the inlet plane. The proper scaling

of these quantities can be derived from the governing equations in the log law layer[54].

In the log law layer, the energy equation reduces, for an insulated wall, to (c.f. Equa-

tion(5.77) in [3])

CpT̃

P rt
+
ũ2

2
+

k

σk
=

Cp
Prt

T̃w (4.13)

or

Cp
Prt

(
T̃ − T̃w

)
+
ũ2

2
+

k

σk
= 0 (4.14)

Thus, sincẽu scales withuτ , k must scale withu2
τ , and(T̃ − T̃w) must scale withu2

τ . If qw

is not zero, then the energy equation can be recast in the form given by Equation (5.83) in

[3], i.e.

d

dũ

(
CpT̃

P rt
+
ũ2

2
+

k

σk

)
= − qw

ρ̃wu2
τ

(4.15)
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Since

qw = −µCp
Pr

(
∂T̃

∂y

)
y=0

= −µCp
Pr

(
dT̃

dũ

)
ũ=0

(
dũ

dy

)
y=0

= −Cp
Pr

(
dT̃

dũ

)
ũ=0

τw (4.16)

It can be seen, from Equation(4.16), thatqw scales likeu3
τ .

Integration of Equation(4.15) is given by Equation(5.86) in [3]. It is seen from the

equation and the equation of state that, for a flat plate,

T̃

T̃w
=
ρ̄w
ρ̄

= 1− (γ − 1)PrtM
2
τ

[
1

2

(
ũ

uτ

)2

+
qw
ρ̄wu3

τ

(
ũ

uτ

)
+

(
k

σku2
τ

)]
(4.17)

where

Mτ =
uτ
aw

(4.18)

Thus, in the inner region(log law region) wherey+
inlet = y+

recy, the scaling rules are(
T̃

T̃w
− 1

)inn

inlet

= β2

(
T̃

T̃w
− 1

)inn

recy

(4.19)

(
T ′′

T̃w

)inn
inlet

= β2

(
T ′′

T̃w

)inn
recy

(4.20)

kinninlet = β2kinnrecy (4.21)(
ννwζ

u4
τ

)inn
inlet

=

(
ννwζ

u4
τ

)inn
recy

(4.22)

Note that for the scaling of temperature, only the scaling of fluctuations is used in the

rescaling-reintroducing procedure, since the inflow mean profile of temperature is fixed at

the inlet.
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In the outer region of boundary layer whereηinlet = ηrecy, we assume

(
T ′′

T̃w

)out
inlet

= β2

(
T ′′

T̃w

)out
recy

(4.23)

In this region, based on Equation(4.162) of [3], k andζ scale like

koutinlet = β2koutrecy (4.24)(
δνζ

u3
τ

)out
inlet

=

(
δνζ

u3
τ

)out
recy

(4.25)
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Chapter 5

Implementation

The LES/RANS hybrid schemes have been evaluated by comparing the results with two

experimental shock wave / boundary layer interaction databases . The first one corresponds

to the compression-expansion ramp experiment of Zheltovodovet al.[55; 56], while the

other, also available in [55], involves a compression ramp experiment by Settleset al. Both

cases have observable separation zones around the compression corner.

This chapter will introduce both configurations, inflow conditions, and grids. Also in

this chapter, the special computation procedure for simulating the flows with LES/RANS

hybrid schemes will be presented, which will prevent the separation zone from growing to

the extent that may affect inflow conditions. The numerical schemes for solving the system

of equations will be presented in Appendix B.

5.1 Zheltovodov 25 deg Compression-Expansion Ramp

The computational domain of this two dimensional configuration is shown in Figure5.1.

It consists of a8 cm long flat plate and a25 deg compression ramp, which is followed by

wedge-expansion corner. The hight of the ramp is1.5 cm.

Two meshes are employed in this investigation. A coarse grid which consists of361×
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Figure 5.1: Zheltovodov 25 deg Ramp.

109 × 65 nodes, and a fine grid which consists of481 × 145 × 65 nodes. In both cases,

the physical size of the grid in thez-direction is equal to2.9δ, whereδ is boundary layer

thickness at inflow. Both grids are uniformly spaced in thex- andz-direction, and clustered

heavily towards the wall in they-direction. They+ ≤ 1 for the center of the first cell is

maintained at the inflow boundary. The whole domain is decomposed into12 × 4 × 2

equal-size blocks and solved on 96 processors using IBM-SP3 supercomputer.

The inflow conditions atx = −3.3 cm are presented in Table5.1. A boundary layer

code and a 2D RANS code were used to generate the desired boundary layer momentum

thickness,θ, at this position by calculating a supersonic flow over a flat plate. Therefore,

the resulting boundary layer thickness,δ, may be different from the experiment data. The

δ from the computation was used to decide the spanwise size of the grid.

The inflow boundary condition for the computation domain is generated by recycling
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Table 5.1: 25 Ramp Inflow Conditions @ x=-3.3 cm
M∞ 2.88

P∞(Pa) 11956
T∞(K) 114.8

ρ∞(kg/m3) 0.36
Re/meter 3.24× 107

θ(mm) 0.3
δ(mm) 4.1

and rescaling the information from they-z plane atx = −4.1 cm. Adiabatic and no-slip

boundary conditions are applied to the wall surface. Since the flow is statistically two

dimensional, periodic boundary condition is applied in thez-direction.

In this case, a time step of6 × 10−8 seconds is used for the simulation. Therefore,

10k iterations is equivalent to6 × 10−4 seconds physical time, which corresponds to2.3

characteristic times. One characteristic time is defined as the time it takes for a particle to

traverse the domain with free stream velocity.

5.2 Settles 20 deg Compression Ramp

The configuration of this ramp is shown in Figure5.2. A 20 cm flat plate is connected

to a20 deg ramp. The grid for this domain consists of449 × 129 × 65 nodes. Spanwise

size is also set as2.9δ. Similar to previous grids, equal mesh spacing is used in thex- and

z-direction, and the mesh spacing in they-direction is refined near the wall, withy+ ≤ 1

for the first cell center at the inflow boundary. It has been decomposed into14 × 3 × 2

blocks. The experimental data atx = −3.81 cm is listed in Table5.2. For this configura-

tion, recycle-plane is located atx = −10.3 cm. Similarly, adiabatic and no-slip boundary
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conditions are employed at the wall. Extrapolation condition is used at the outflow bound-

ary, and periodic boundary condition in thez-direction. A 2D RANS code was used to

match the experimental boundary layer thickness,δ.

In this case, the length of time step is1.2 × 10−7 seconds. Hence, 10k iterations can

simulate about 1.93 characteristic times.
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Figure 5.2: Settles 20 deg Ramp.

Table 5.2: 20 Ramp Inflow Conditions @ x=-3.81 cm
M∞ 2.79

P∞(Pa) 26001
T∞(K) 100.8

ρ∞(kg/m3) 0.77
Re/meter 7.2× 107

δ(cm) 2.7
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5.3 Computation Procedure

In Fan’s thesis [33], the LES/RANS computation was conducted from a 2D RANS solution.

In general, this approach may not succeed when a separation bubble is embedded in the

initial flow. This is because the energy of the incoming fluctuations may not be sufficient

at initial stage to prevent the growth of the separation bubble beyond the recycle-plane. To

prevent the problem, a different approach is employed. The steps employed are as follows:

1. Match experimental boundary layer data. In this step, a boundary layer code or a two

dimensional RANS code are used to calculate the flow over a flat plate. For example, for

the 20 deg ramp case, once the 2D RANS code finds the location where the boundary layer

thickness equals2.7 cm, the boundary layer data at20− 3.81 = 16.19 cm upstream of that

station will be taken as the inflow condition for computational domain of the 2D ramp.

2. Use the inflow boundary data from step 1 and two dimensional RANS code to

calculate the two dimensional steady RANS solutions. Note that step 1 and step 2 prepare

the initial flow field for the applications of LES/RANS hybrid schemes, which start from

step3.

3. Build up the turbulent fluctuations over flat plate. Only the grid on the flat plate

part is involved. The grid size is half the ramp grid size. The flow field over the flat plate

is initialized with the inflow boundary layer profile (obtained from step 1). Then random

perturbations are imposed on the whole domain to generate initial fluctuations. This step

is finished when large enough turbulence fluctuations are generated. For the 25 deg ramp

case, the criteria of “large enough” is that the maximumRMSmass flow fluctuation reaches
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0.08ρ∞u∞, while for the 20 deg ramp case, it is0.04ρ∞u∞. Figure5.3 is an example of

the resulting flow over the flat plate of 25 deg ramp case.

4. Start solving ramp problem. To initialize the flow field, the solutions from step 3

are combined with the steady RANS solution of the ramp. A snapshot of the combined

initial flow field is presented in Figure5.4. Note that the data in the last column of blocks

in Figure5.3, which include the grid and the flow properties, have been replaced with the

RANS solution.
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Figure 5.3: Turbulent fluctuations on flat plate: contour plot ofu.
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Chapter 6

Results and Analysis

This study is composed of two subtasks: the turbulent inflow boundary condition genera-

tion and the LES/RANS hybrid schemes. The comparison of different rescaling-reintroducing

schemes will be presented in section6.1. The rest of this chapter will present the results

from different hybrid schemes on two shock wave/boundary layer interaction problems.

6.1 Inflow Turbulence Generation Scheme and Monotonic

Blend Function

The inflow generation method has been tested for the flow over a flat plate.The dimension

of the domain is0.1m × 0.092m × 0.087m. The grid size is129 × 129 × 65. This grid,

with the exception of the extent of the flow in thez-direction, is almost the same as the one

on the flat plate part of the20 deg ramp. The entire domain is decomposed into8 × 4 × 2

blocks, when running on IBM-SP3 supercomputer. The recycle-plane is located at 6-cell

upstream of the outflow boundary. The free stream conditions are the same as those for the

20 deg ramp. The inflow boundary thickness,δ = 3.0 cm.

To validate the LES/RANS rescaling-reintroducing scheme introduced in Chapter 4 and

the monotonic blending function, the following four cases have been investigated.
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Case 1 Both mean and fluctuations of all properties are rescaled and reintroduced to

the inflow boundary. The monotonicity ofΓ is not enforced in this case.

Case 2 Use the same rescaling-reintroducing scheme as case 1. But a monotonicΓ

is used.

Case 3 Use the inflow turbulence generation method described in Chapter 4. The

monotonicity ofΓ is not enforced.

Case 4 Use the same rescaling-reintroducing scheme as case 3. AndΓ is monotonic.

In these cases, the blending functionΓ1 is used. The model constantα1 = 5 is used

so as to ensure that the transition from the RANS region to the LES region occurs above

the log law layer.Cs = 0.01 andCd = 0.01 are used for all cases of tests, and the ramp

problems, these are the values used in [31; 32].

All results presented in this section are taken from the recycle-plane. Two versions

of average value are presented in this section. For theRMSmass flow fluctuation, the

average is based on time average, i.e. Equation(4.2). TheRMSmass flow fluctuation is

approximated by √
〈ρu′′〉2 ≈

√
〈ρu〉2 − 〈ρu〉

2
(6.1)

Overbar denotes the time average.〈·〉, again, means the average in spanwise direction.

Other average values are calculated using the following weighted average formula[34]:

Un+1 =
∆t

tc
〈un+1〉+

(
1− ∆t

tc

)
Un (6.2)
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where∆t is the computational time step, andtc is the characteristic time scale of the averag-

ing interval.tc ≈ 5δ/U∞ is used. This formula can suppress starting transients quickly[34].

The history of boundary layer velocity profile of case 1 on the recycle-plane is shown

in Figure6.1, where averaged velocity profile does not reach statistical steadiness.
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Figure 6.1: Mean streamwise velocity profiles, case 1.

In case 2,Γ is forced to be monotonic using Equation(3.16). The velocity profiles after

each 10k iteration are presented in Figure6.2. Similar to case 1, boundary profiles are

not stabilized, which means a statistically steady turbulence flow is not available. Com-

paring case 1 with case 2, the incapability of generating desired mean inflow condition

for the downstream computation is due mainly to the inappropriate rescaling-reintroducing

method.

After fixing the inlet mean velocity and temperature profiles, we can see, from Fig-

ure6.3, that there is little change in velocity profiles during the 50k iterations.

Figure6.4 shows that theRMSmass flow fluctuation keeps increasing as the number
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Figure 6.2: Mean streamwise velocity profiles, case 2.
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Figure 6.3: Mean streamwise velocity profiles, case 3.

of iterations increases. Moreover, the eddy viscosity (Figure6.5) shows a similar behavior.

The reason for this can be found in Figure6.6, which shows the relation ofΓ vs wall
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Figure 6.4: Profiles ofRMSmass flow fluctuations, case 3.

distance. Fory/δ > 1, Γ decreases, which indicates a return to the RANS description. This

is not consistent with the LES/RANS hybrid approach. Therefore, in order to prevent such

a behavior,Γ should not be allowed to decrease in an increasing direction away from the

wall.

In case 4, monotonicity is introduced by using Equation(3.16). Since the inflow mean

profiles of velocity and temperature are fixed, the mean velocity profile on the recycle-plane

is not affected by the new version ofΓ, as is shown in Figure6.7.

Figure6.8presents theRMSmass flow fluctuation profiles of this case. The maximum

value of the quantity increases in the first 40k iterations. Then, it decreases. But the

behavior beyondy/δ=1 is stabilized after 20k iteration.

Figure6.9 shows the distribution ofΓ. Compared to Figure6.6, the profiles ofΓ do

not change as the number of iterations increases. Similar behavior forµt can be seen in
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Figure 6.5: Profiles of mean eddy viscosity, case 3.

Figure6.10. These indicate the statistical steadiness.
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Figure 6.6: Profiles of blending functionΓ, case 3.
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Figure 6.7: Mean streamwise velocity profile, case 4.

Figure 6.11 compares the mean streamwise velocity. The results after 40k and 50k

iterations are in good agreement with the solution from the boundary layer code, except in

44



y/δ

R
M

S
(<

ρu
’>

)/
ρ ∞

U
∞

0.5 1 1.5 2

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
10k
20k
30k
40k
50k
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Figure 6.9: Profiles of blending functionΓ, case 4.

the “grey region”[17], which lies between the RANS region (Γ = 0) and the LES region

(Γ = 1). Similar to the results of Nikitinet al.[17], the slope and the intercept of log law
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Figure 6.10: Profiles of mean eddy viscosity, case 4.

profile in the LES region is different from that in the RANS region. The good agreement

with the solution of the boundary layer code in the near wall region can also be found in

thek profile in Figure6.12.

Figure6.13and Figure6.14are contour plots of instantaneous temperature on thex-y

andy-z planes, respectively. The turbulence structure is apparent in both figures.

6.2 25 Ramp Flow

The instantaneous streamwise velocity distribution from a run of 40k iterations is shown

in Figure6.15. The large size of eddies in the incoming boundary layer is evident. Other

features in this flow include the leading shock wave generated by the flow separation around

the compression corner and an embedded shock wave due to the flow reattachment to the
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ramp surface.
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The time-averaged data presented in this section are collected at the end of 40k iter-

ations. Unless indicated otherwise, the average quantities are averaged over the last 10k
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iterations. Thex′-coordinates appearing in most of the figures are measured from an ori-

gin at the compression corner along the surface of the model, whether horizontal or at an

angle[55].

6.2.1 Effects of Starting Procedure

All 25 deg ramp computations follow the procedure introduced in Section5.3. The solution

on the flat plate is prepared usingΓ1 with α1 = 5.0. TheRMSmass fluctuations on the

recycle-plane over every 10k iterations are shown in Figure6.16. After 30k iterations, the

RMSmass flow fluctuation can be considered as stabilized.

The skin friction(Figure6.17) and the time-averaged wall pressure(Figure6.18) in-

dicate that the flow separation has little influence on the recycle-plane and the region

upstream of it. Thus, the inflow turbulence is not disturbed by the separation bubble.

Figure6.19and Figure6.20show the differences among the LES/RANS hybrid scheme,

RANS and experimental data. WhenΓ1 scheme is used, the size of the separation zone,

indicated by negative skin friction, is much smaller than that predicted by the RANS. But

the initial separation shock wave, indicated by the drop ofCf and the initial rise of wall

pressure, is moved upstream in the LES/RANS solution. In the recovery region, the pre-

dicted skin friction is much larger than the RANS solution This phenomenon might be due

to the small LES region above the ramp surface resulting from current blending function

Γ1.
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6.2.2 Γ1 vsΓ2 on coarse grid

As discussed earlier, the small LES region might be the reason for the somewhat poor

prediction of separation and the skin friction in the recovery region. In order to get a larger

LES zone to improve the prediction in the separation region and the recovery region,∆m

is replaced by∆v, but α1 = 5 remains unchanged. In this case,Γ2 ≥ Γ1, as is seen in

Figure6.21.

Figure6.22and Figure6.23compare the the mean skin friction and mean wall pressure,

respectively. The skin friction results show that streamwise size of the separation zone has

been improved by usingΓ2, although it is still not better than RANS solution. This can

be also found from the wall pressure distribution. But the wall pressure rise inΓ2 case

is not as rapid as the RANS result. This indicates the thickness of separation zone is not
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Figure 6.21: 25 Ramp: Blending function profiles on recycle-plane,Γ1 vsΓ2.
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Figure 6.22: 25 Ramp: Skin friction distribution,Γ1 vsΓ2.

Comparison of the mean eddy viscosity distribution is shown in Figure6.24. The hybrid
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Figure 6.23: 25 Ramp: Wall pressure distribution,Γ1 vsΓ2.

scheme usingΓ1 is characterized by much larger eddy viscosity than that withΓ2.

Figure 6.25 compares the mean axial velocity profile at different stations, wherey′

stands fory − ywall.

The velocity in Figure6.25are the absolute value ofu-component nondimensionalized

by the edge velocity from the experimental measurements. The profiles in the separation

region show that both hybrid schemes can not reproduce the experimental data. However,

in theΓ2 scheme, where the LES region is larger, the inner backflow structure is resolved

in two stations upstream of the compression corner, whileΓ1 scheme does not show this

structure in velocity profiles. The backflow size and the peak of backflow velocity predicted

by Γ2 scheme are smaller than the RANS results. This reduced backflow thickness is

consistent with the slow pressure rise shown earlier.

ComparingΓ1 with Γ2 case, because the initial separation shock wave extends further
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Figure 6.24: 25 Ramp: Mean eddy viscosity distribution,Γ1 vsΓ2.

upstream, the boundary layer ofΓ1 is thicker than that ofΓ2, and therefore the wall pressure

level ofΓ1 around the compression corner is higher than that ofΓ2, as shown in Figure6.23.

At the station downstream of the corner(x′ = 0.5 cm), neither of hybrid schemes is able

to predict the backflow, whereas RANS solution predicts this structure, although the size is

not as large as experimental measurements.

In the recovery region, Figure6.25b shows that the the hybrid schemes do a much better
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Figure 6.25: 25 Ramp: Comparison of velocity profiles,Γ1 vsΓ2.
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job than the RANS solution in the near-wall region. This is similar to what Fan found[33].

In the outer region of the boundary-layer, both LES/RANS hybrid schemes have similar

behavior, and underpredict the velocity.

6.2.3 Effect ofα1 on Γ2 scheme

Once the RANS model and the grid have been decided, the model constantα1 determines

the behavior of the blending function. Largeα1 will delay the transition from RANS to

LES, and therefore has large RANS region, as shown in Figure6.26. One side effect of this

is that the maximum of blending function can not reach1.0, which means a complete LES

region does not exist far away from the wall.

In the case ofα1 = 5, the transition between the RANS region and the LES region takes

place betweeny+ = 10 andy+ = 200. This y+ range contains the buffer zone between

viscous sublayer and the log law layer. Therefore, the mean velocity profile ofα1 = 5.0 is

not calculated as well as that ofα1 = 10. The log law layer is better recovered by the case

whereα1 = 10, as presented in Figure6.27.

As a result of increasingα1, theΓ2 with α1 = 10.0 predicts smaller separation zone

around the corner, as shown in Figure6.28. However, the initial separation shock wave

position, which is also shown in the wall pressure distribution, Figure6.29, is slightly

affected.

Due to the larger RANS region,α1 = 10 case gives even higher skin friction than

α1 = 5 on the ramp surface.
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Figure 6.27: 25 Ramp: Mean velocity profiles on recycle-plane,Γ2.

Figure6.30compares the mean axial velocity profile in different stations. Asα1 in-

creases, the hybrid scheme has the trend to improve the velocity prediction in the outer
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Figure 6.28: 25 Ramp: Skin friction distribution,Γ2.
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Figure 6.29: 25 Ramp: Wall pressure distribution,Γ2.

region at the station upstream of the compression corner(Figure6.30a) by matching the ex-

perimental data and increasing the boundary layer thickness. The latter leads to the higher
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pressure rise in the separation region, as shown in Figure6.29. However, it loses the back-

flow structure in the inner region. In the recovery region, bothΓ2 schemes give similar

results: similar profile shape atx′ = 1.25 cm and good prediction in the near-wall region

at the remaining stations.

6.2.4 Grid Refinement Study

Note that bothΓ1 and Γ2 are grid dependent. Their behavior on different grids should

be investigated. On the other hand, comparisons of skin friction between different hybrid

schemes indicate that hybrid schemes always generate large skin friction, which is not

consistent with their smaller eddy viscosity when compared to the RANS solution. One

reason behind this might be grid related. Therefore, above two factors necessitate the grid

refinement study. Moreover, the grid-independent blending function,Γ3, must be evaluated

using different grid sizes.

The 2D RANS solutions on the two grids are compared in Figure6.31. Both grids yield

essentially identical RANS results, except for a slightly larger separation zone in the refined

grid. This might be due to the smaller numerical dissipation associated with the fine mesh.

In this section, the time-averaged data on refined grid are collected from No. 20k to

No. 40k iteration. The RANS solutions to which the LES/RANS results are compared are

those obtained from the refined grid.
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Figure 6.30: 25 Ramp: Comparison of velocity profiles,Γ2
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Figure 6.31: 25 Ramp: Comparison of 2D RANS solutions
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.

Γ2 scheme

On both grids,Γ2 = tanh
(

lε
5∆v

)2

is used to conduct the numerical experiments. On the

flat plate ahead of the compression corner, Figure6.32shows that higher skin friction is

predicted on the fine mesh, which means the inflow turbulent boundary layer is more ener-

getic. As a result of this, the separation zone shrinks on the refined mesh. In the remaining

region, both skin friction distributions are comparable. The evidence of the increasing

energy among the boundary layer can be found from theRMSmass flux fluctuations on

the recycle-plane (Figure6.33). In most of the inner region of the boundary layer, theRMS

value on the refined grid is greater than that from the coarse mesh. As shown in Figure6.34,

the grid refinement tends to increase the LES region usingΓ2 scheme. Thus, increasing of

LES region will also enhance the turbulence fluctuations.
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The skin friction results also indicate that not too much improvement results from grid

refinement. The mean velocity profiles are presented in Figure6.35. In the separation

region, the results from refined grid are worse than those from coarse mesh: the size of the

backflow region becomes smaller, and the velocities above the backflow region are greater

than those from coarse grid and are further away from the experimental data. This behavior

is a result of the higher energy level in the boundary layer.

Thus, the blending functionΓ2 is sensitive to the grid refinement. It appears thatα1 is

grid dependent.

The results in the recovery region are somewhat encouraging. The velocity profiles

from the refined grid match the entire experimental data very well. Significant improvement

occurs in the outer region of the boundary layer.

Γ3 scheme

Γ3 is defined as a blending function without explicit grid dependence. This independence

of grid is supported by the results from skin friction distribution(Figure6.36) and the wall

pressure distribution(Figure6.37).

The most persuasive results are the mean velocity profile and the blending function pro-

file on the recycle-plane, which are presented in Figure6.38. Compared with the previous

blending functions, this one recovers the perfect log layer in both grids. There is no “grey

region” phenomenon! Two coincident blending function (in transient region) profiles re-

flect the property of grid independence. The smaller value of blending function in the outer

region on the refined mesh might be a result of smaller size of resolved eddies.
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But the good performance ofΓ3 scheme on the flat plate section is not a sufficient

condition for improve downstream prediction, as illustrated in Figure6.39. In the stations

upstream of the corner, this scheme can not resolve the backflow structure as well asΓ2

scheme does. And at the station immediately downstream of the corner, this scheme, like

the other schemes, cannot reproduce the backflow either. In the recovery region, all the

velocity profiles are close to the experimental data. Likewise, the hybrid scheme on the

refined mesh works better in the outer region.

6.3 20 Ramp Flow

In this flow, Γ3 = tanh
(
ls

25λ

)2
is employed. The instantaneous streamwise velocity on

thex-y plane is presented in Figure6.40. The turbulence structure in the incoming flow,
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generated by the rescaling-reintroducing method, is visible. The typical structures of this

flow include the separation bubble around the corner, and the embedded shock emanating

from the flow reattachment.

The statistical information were collected for an additional 12k iterations, after 47k

iterations from the combined initial solution of LES/RANS on the flat plate and RANS on

the ramp.

Figure6.42compares the skin friction from hybrid scheme with the experimental data,

the RANS solution and Fan’s SST hybrid scheme solution[33], which is calculated by

using current rescaling-reintroducing method to generate the inflow turbulence. In this and

subsequent figures,x′ is defined along the surface with the origin at the ramp apex, andy′

is defined as the normal distance to the wall.

Compared with RANS result, current hybrid scheme has a smaller size of separation,

which is comparable to Fan’s results. But it is still larger than the experimental measure-

ment. As far as the drop in skin friction is concerned, the decrease ofCf in current hybrid

scheme starts farther downstream than Fan’s results, which indicates a delayed initial sep-

aration shock wave. However, the position of the separation shock wave,x′ ≈ 4.0 cm, is

still upstream of the experimental one. The initial rise of wall pressure in Figure6.41also

reveals this situation.

In the incoming boundary layer, current scheme gives the smallest skin friction, which

implies the LES region is too large. Figure6.43shows the profile of blending function on

the recycle-plane. The transition from the RANS region to the LES region is aty+ = 100,

which is almost at the lower boundary of log layer. If the switch between two regions can
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be moved farther away from the wall, then the RANS region can become larger and the skin

friction prediction can be improved. And the initial separation shock wave can be pushed

further downstream.

Figure6.44and Figure6.45present the velocity profiles at a series of locations. The

velocity in these two figures is the component parallel to the wall, divided by the measured

edge velocity. Atx′ = −3.81 cm, current hybrid scheme matches the experimental very

well. However, due to the inaccurate initial separation shock wave, the velocity is under-

predicted in the near-wall region.

Because of the improved prediction of separation shock wave position over Fan’s scheme,

Γ3 scheme gives better result around the corner. This also leads to significant improvements

in the recovery region. At all five stations, the solutions fromΓ3 scheme coincide with the

experimental data, in both inner and outer regions.
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Chapter 7

Conclusions

In this study, the rescaling-reintroducing method for generating turbulent inflow condi-

tion has been extended to the LES/RANS hybrid schemes. By using monotonic blending

functions, the modified rescaling-reintroducing method is capable of generating turbulence

structures. In the meantime, it is able to maintain the desired mean inflow profiles.

Using this method, three wall-distance free LES/RANS hybrid schemes have been

tested on Zheltovodov’s 25 deg ramp and Settles’ 20 deg ramp problems. To prevent the

initial growth of separation bubble when the initial flow is obtained from a RANS solution,

a special starting procedure has been implemented. Through this procedure, the fully de-

veloped turbulent inflow over flat plate is combined with the downstream RANS solution to

initialize the whole flow field for ramp problems. The application of the procedure shows

that it can effectively keep initial separation shock wave from reaching the recycle-plane,

and therefore the inflow generation section can work properly without the downstream in-

fluence.

The tests on 25 deg ramp case demonstrate that theΓ2 scheme can produce better back-

flow structure upstream of the compression corner than other hybrid schemes. And via the

grid refinement study,Γ3 shows its grid independence and recovers the smooth and contin-

uous log law layer profile. However, all three hybrid schemes suffer from poor predictions
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in the separation region, which include inaccurate backflow structure and smaller separa-

tion size. Nevertheless, in the recovery region, all hybrid schemes do show improvements

over the RANS simulation, especially in the near-wall region. And the grid refinement

extends the improvement to the outer region.

In the simulation of 20 deg ramp flow, comprehensive improvements over RANS and

Fan’s hybrid scheme are obtained usingΓ3 scheme. In both the separation region and the

recovery region,Γ3 scheme well predicts the velocity profiles in the near-wall region and in

the outer region. By adjusting the model constant, it is hopeful to get further improvement

in the incoming flow and in the positioning of initial separation shock wave.

Comparing the inflow boundary layer thickness and the grid size used in these two

similar experimental configurations, the grid for 20 deg ramp case is relatively finer than

the other one. And based on the observation from the grid refinement study in 25 deg

ramp case, current LES/RANS hybrid schemes, orΓ3 scheme if not all of them, are likely

to replace RANS and become an effective tool to simulate shock wave / boundary layer

interaction problems on “appropriately” fine mesh.
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Appendix A

Numerical Scheme

The governing equations for current LES/RANS hybrid schemes can be expressed in the

computational spaceξ, η andς as

1

J

∂U

∂t
+

∂

∂ξ
(F− Fv) +

∂

∂η
(G−Gv) +

∂

∂ς
(H−Hv) =

1

J
S (A.1)

wheret is the time,U the vector of conservative variables,F, G, H the inviscid flux

vectors,Fv, Gv, Hv the viscous flux vectors,S the source terms in governing equations

andJ the Jacobian of the coordinate transformation

J = det
∂(ξ, η, ς)

∂(x, y, z)
(A.2)

The vector of conservative variables are given by

U =



ρ̄

ρ̄ũ

ρ̄ṽ

ρ̄w̃

ρ̄Ẽ

ρ̄k

ρ̄ζ



(A.3)
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and the vector of fluxes

F =
1

J
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(A.4)
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J
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(A.5)
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H =
1

J
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J
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ξxi(T̃i1 + τi1)

ξxi(T̃i2 + τi2)
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µ
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σk
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(A.7)
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Gv =
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J
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J
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ςxi [ũj(T̃ij + τij)− q̃i −Qi]

ςxi

(
µ
3

+ µt
σk

)
∂k
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(A.9)

where

U = ξxiũi (A.10)

V = ηxiũi (A.11)

W = ςxiũi (A.12)

The second-order-accurate time integration of equation(A.1) was obtained by implicit
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planar ILU subiterations, which may be represented as follows

D∆W
(n)
i,j,k + A+∆W

(n)
i+1,j,k + A−∆W

(n)
i−1,j,k +

B+∆W
(n)
i,j+1,k + B−∆W

(n)
i,j−1,k +

C+∆W
(n)
i,j,k+1 + C−∆W

(n)
i,j,k−1

=
1

∆tJ
(U(n−1) −UN) +

1

2
(R(n−1) + RN) (A.13)

wherei, j, andk are the indices of a gird cell,W is the vector of primitive variables

W =



ρ̄

ũ

ṽ

w̃

T̃

k

ζ



(A.14)

and

W(0) = WN (A.15)

W(n) = W(n−1) + ∆W(n−1), n = 1, 2, · · · (A.16)

WN is theW at theN time level, andW(n) is the result aftern subiterations, which will

converge toWN+1.
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R is the summation of the fluxes, which is defined by

R = Fi+ 1
2
,j,k − Fi− 1

2
,j,k −

(
Fv,i+ 1

2
,j,k − Fv,i− 1

2
,j,k

)
+

Gi,j+ 1
2
,k −Gi,j− 1

2
,k −

(
Gv,i,j+ 1

2
,k −Gv,i,j− 1

2
,k

)
+

Hi,j,k+ 1
2
−Hi,j,k− 1

2
−
(
Hv,i,j,k+ 1

2
−Hv,i,j,k− 1

2

)
+

1

J
Si,j,k (A.17)

whereA±, B±, C± andD are the coefficient matrices

D =
∂R

∂W i,j,k
+

1

J
(
1

τ
+

1

∆t
) (A.18)

A± =
∂R

∂W i±1,j,k
(A.19)

B± =
∂R

∂W i,j±1,k
(A.20)

C± =
∂R

∂W i,j,k±1
(A.21)

τ is the pseudo time step, while∆t is the physical time step.

A planar Gauss-Seidel method is used to solved equation(A.13), which consists of back-

ward sweep and forward sweep inξ (or i) direction:

Step 1 backward sweep inξ direction

D
(n)
i ∆W

(n+ 1
2

)

i = ωb

[
R(W

(n)
i )−A+∆W

(n+ 1
2

)

i+1

]
W

(n+ 1
2

)

i = W
(n)
i + ∆W

(n+ 1
2

)

i (A.22)

Step 2 forward sweep inξ direction

D
(n+ 1

2
)

i ∆W
(n)
i = ωf

[
R(W

(n+ 1
2

)

i )−A−∆W
(n+1)
i−1

]
(A.23)

W
(n+1)
i = W

(n+ 1
2

)

i + ∆W
(n+1)
i (A.24)
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Here,ωb andωf are under-relaxation coefficients, subscripti indicates the operations and

variables in ai-plane,R(W(n−1)) is the RHS of equation(A.13) andDi∆W
(n)
i stands for

Di∆W
(n)
i = D∆W

(n)
i,j,k + B+∆W

(n)
i,j+1,k + B−∆W

(n)
i,j−1,k +

C+∆W
(n)
i,j,k+1 + C−∆W

(n)
i,j,k−1 (A.25)

To solve (A.22) and (A.23), coefficient matrixDi was factorized using incomplete-LU

(ILU) factorization.

To achieve second-order accuracy in spatial directions, LDFSS[58] and second-order

ENO scheme[59] were used to calculate inviscid fluxes, and the derivatives in viscous

fluxes were discretized using central differences.
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Appendix B

Speedup Test of Parallel Code

The code used in this work was originally developed by Dr. J. R. Edwards. It was par-

allelized using Message Passing Interface (MPI) and optimized for the IBM SP3 parallel

machine. The data communication module of this code was modified by current author

using non-blocking message passing.

The speedup test was conducted in the LES/RANS inflow generation computation. The

grid size for this problem is129 × 129 × 65. The computation domain was decomposed

into 32, 64 and 128 blocks, respectively, as presented in Table.B.1. To get load-balancing,

each block had the same size and was mapped into one processor, respectively. Because of

the planar ILU scheme, which requires large size of memory, the code cannot run in 8 or

16 blocks.

Table B.1: The decomposition of the whole domain
# of blocks Decomposition Scheme# of grid nodes in each block

32 8× 4× 1 17× 33× 65
64 8× 4× 2 17× 33× 33
128 8× 8× 2 17× 17× 33

In each test, the code started timing right before it entered the main loop of iterations

and stopped timing after it finished 250 main iterations. The time consumed in the ini-

tialization of computations was not considered. The number of subiterations was set to be
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always 4 in the test. The non-blocking communication scheme was used for the message

passing between adjacent blocks. In order to get stable timing results, the code was running

in the mode of 4-process-per-node. The test results are shown in TableB.2 and FigureB.1.

The “speedup” in TableB.2 is defined as

speedup =
tw,32

tw,N
(B.1)

Table B.2: The Results of Speedup Test
# of processors,N wall clock time(sec),tw # of iteration/sec Speedup

32 3325 75.19× 10−3 1.00
64 1527 163.72× 10−3 2.18
128 764 327.22× 10−3 4.35
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Figure B.1: Speedup Results

Note that thespeedupof 64- and 128-block cases are better than the theoretical 2 and
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Table B.3: L2 usage and the communication time
# of processors, N # of loads per L2 miss communication time(processor 0)

wall clock time
32 1137.38 195/3325
64 1425.15 106/1527
128 3566.10 93/764

4, respectively. Thus, we got thesuperlinearspeedup. Under the current hardware envi-

ronment, it can be explained as follows[60].

The superlinear speedup is mainly due to cache effects. On RISC(like SP1) processors,

the chip performance is largely determined by getting good cache reuse. As the program

is spread over more processors, the more of code is running out of cache. TableB.3 lists

the L2 usage and the communication time for the three cases. As the number of blocks

increases, the the efficiency of L2 cache increases. For the 128-block case, the L2 cache

reuse increases so much that it offsets the communication losses.

1Each processor on the SP Power3 has 8 MB of L2 cache
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