Abstract

Xudong Xiao: Large-Eddy Simulation/Reynolds-Averaged Navier-Stokes Hybrid Schemes
for High Speed Flows. (Under the direction of Dr. H. A. Hassan)

Three LES/RANS hybrid schemes have been proposed for the prediction of high speed
separated flows. Each method couples th€(Enstrophy) RANS model with an LES
subgrid scale one-equation model by using a blending function that is coordinate system
independent. Two of these functions are based on turbulence dissipation length scale and
grid size, while the third one has no explicit dependence on the grid. To implement the
LES/RANS hybrid schemes, a new rescaling-reintroducing method is used to generate
time-dependent turbulent inflow conditions. The hybrid schemes have been tested on a
Mach 2.88 flow over 25 degree compression-expansion ramp and a Mach 2.79 flow over 20
degree compression ramp. A special computation procedure has been designed to prevent
the separation zone from expanding upstream to the recycle-plane. The code is parallelized
using Message Passing Interface (MPI) and is optimized for running on IBM-SP3 parallel
machine.

The scheme was validated first for a flat plate. It was shown that the blending function
has to be monotonic to prevent the RANS region from appearing in the LES region. In the

25 deg ramp case, the hybrid schemes provided better agreement with experiment in the



recovery region. Grid refinement studies demonstrated the importance of using a grid inde-
pendent blend function and further improvement with experiment in the recovery region. In
the 20 deg ramp case, with a relatively finer grid, the hybrid scheme characterized by grid
independent blending function well predicted the flow field in both the separation region
and the recovery region. Therefore, with “appropriately” fine grid, current hybrid schemes

are promising for the simulation of shock wave/boundary layer interaction problems.
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Chapter 1

Introduction

Because of its frequent occurrence in engineering applications, turbulence has been the
subject of study for a long time. It is characterized by a three-dimensional, time-dependent,
and random flow field, where a large range of time scales and length scales exists. Although
it can be described by the Navier-Stokes equations, the analytical solution to turbulent
flow is not possible. Thus, Computational Fluid Dynamics(CFD) becomes a powerful tool
to predict turbulent flows. In general, there are three kinds of approaches for turbulence

simulation:

1. Direct Numerical Simulation(DNS);
2. Large-Eddy Simulation(LES);

3. Reynolds-Averaged Navier-Stokes(RANS).

In DNS, the Navier-Stokes equations are solved to determine the instantaneous flow
field. All length scales and time scales must be resolved. Hence, no modeling is needed.
Since the ratio of the largest length scdlefo the smallest, Kolmogorov length scalejs
of the order ofRe1, and the smallest grid size must be of orglethe number of grid nodes
for a three dimensional turbulence flow will be of the ordieri. Moreover, relative to the

largest time scale, the smallest time scale decreas&sas Hence, the overall cost of



DNS is of orderRe?®[1], which is computationally expensive. As a result, DNS is restricted
to flows with low-to-moderate Reynolds number, and thus is considered as a research tool
for turbulence 2], and not a general solver for engineering problems.

In the other extreme, RANS approaches model all scales and solve time-averaged equa-
tions. The resulting flow field is represented by the mean properties. Additional model
equations are solved for Reynolds stresses. If a turbulence viscosity model is used, the tur-
bulence viscosity, or eddy viscosity, can be obtained explicitly from an algebraic relation,
or implicitly by solving some partial differential equations of turbulence quantitieskhke
w, k— andk—¢ models. The Reynolds stresses can then be determined from the Boussinesq
assumption. In RANS approaches, the cost does not significantly increase with Reynolds
number, since all scales of turbulent motion are modeled. Because of its efficiency, RANS
approaches are dominant in current CFD applications. Various RANS models are now
available for different flows. But for the shock-induced boundary layer separatifams, “
less improvement has been made with turbulence models for such(flglyysage 261).

For LES, the spatially-filtered Navier-Stokes equations are solved. The large scales
of three-dimensional unsteady turbulent motion can be calculated directly, but the eddies
smaller than the grid size have to be modeled (subgrid scale(SGS) modeling). Since, exper-
imentally and theoretically, the energy-dissipating eddies (small eddies) can be considered
universal, the uncertainty of SGS modeling should be less than that of RANS. So LES
is believed to be more accurate than RANS, especially for separated flovwsfr wall-
bounded flows, LES grid requirement in the outer region of boundary layer is proportional

to Re®4, while in the inner layer, in order to resolve viscous sublayer streaks, the number

2



of grid points is proportional td?e!¥(Chapmand]). So the cost of LES with near-wall
resolution is between DNS and RANS. However, LES is still prohibitively expensive for
high speed flows.

Motivated by the limitations of LES and RANS, endeavors have been devoted in past
decades toward reducing the grid resolution requirements at the near-wall region for LES.
When the grid in the inner layer is too coarse, the effect of the wall layer must be mdileled|
Depending on the complexity of inner layer modeling, three major types of modeling tech-

niques have been developed, as shown in Figuke

Level 1. Equilibrium Laws 3\
(Deardorff 1970, Schumann 1975, Piomelli 1989, ...)

g Wall-Layer Models
> | Level 2 Two-Layer Models (TLM) > (Cabot & Moin 1999,
] (Balaraset al. 1994, Balaraset al. 1996, ...) Piomelli & Balaras 2002)
g
(e}
o
( DES

(Spalart et al. 1997, Y,

Nikitin et al. 2000,

Srelets 2001, ...)

| Level 3 LESRANSHybrid Schemes < RANSVLES

(Speziale 1996, 1998,
Arunajatesan & Sinha 2001,
Batten et al. 2002, ...)

Others

Figure 1.1 LES with inner layer modeling.

Most of the equilibrium laws compute the wall stress by using log law of the wall

at some distance away from the wall. Some examples can be found in Dedidorff]
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Schumann]], Piomelli[8], etc. As is known, the law of the wall is not valid for separated
flows. So it is difficult to extend this approach to more complex turbulent flows.

Rather than using simple relations from the law of the wall, two-layer models(TLM)
solve a simplified set of differential equations(i.e., boundary layer equations) in the near
wall region. This method was proposed by Balaras & Benn6teifid Balaraset al[10].

In this approach, the boundary layer equations are solved on a fine grid embedded in the
coarser LES grid. The exchange of boundary conditions between the two grids is somewhat
like that used in Chimera schenid]: the coarse LES grid provides free stream conditions

for inner layer simulation, and the wall stress calculated in the embedded mesh returns to
the coarse LES mesh as a wall boundary condition. Note that two grids and two sets of
equations are involved.

In the third level, the LES/RANS hybrid schemes use one grid (at least in the wall
normal direction) and solve a more complete set of equations — the RANS equations in
the near-wall region. Different turbulence models are applied to different regions. In the
vicinity of the wall, the RANS model is used, whereas, away from the wall, the eddy-
viscosity is calculated from LES SGS model.

Up till now, there are two major techniques among LES/RANS hybrid schemes. One
is the “Detached-Eddy Simulation”, advocated by Spagtwl[12] for the simulation of
massively separated flows. 18] DES, TLM and equilibrium laws models are considered
as “Wall-Layer Models”. Recent reviews of wall-layer models can be found in Cabot &

Moin[13] and Piomelli & Balarasj).



In DES, the distance to the nearest wallin the Spalart-Allmaras one-equation modd][

destruction term is replaced with a new length scale
d = min(d, CpgsA) (1.1)
whereCpgs is @ model constant, anll the largest mesh spacing in all directions:
A =max(A,, Ay, A,) (1.2)

In the near wall regiond = d, the modified S-A model functions as the original model.
When it is far away from the wall] = CpgsA, and the model equation works as an SGS
stress model for LES. In this “LES region”, when the production and the destruction of
S-A model are balanced, it produces the eddy viscosity SA? [12], which is similar to
Smagorinsky SGS modéalp|.
In standard DES, the entire incoming boundary layer is simulated with RANS by using
a so-called “RANS grid”, where the mesh spacing parallel to the wall is so largé that
in the entire boundary layer. While in the separated regions , the mesh is refined in all
direction, then LES can be used. More mesh issues for DES can be fouh@.inBut
in Nikitin et al[17], DES approach is applied to the attached boundary layer in a plane
channel flow, where the RANS model in the inner layer is combined with LES at the outer
region of the boundary layer. With this approach, they reproduced the logarithmic profiles.
However, a so-called “DES buffer layer” or “grey region” showed up and resulted in the
logarithmic layer with a high intercept, and, in some cases, incorrect slope, in LES region.
Since the pioneering paper of Spaleirtal[12], DES has been applied to various flows,
e.g., Travinet al[18], Squireset al[19]. After noticing that S-A model is not superior
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to some more sophisticated models, and thus the DES with S-A model might fail in some
cases, Streletd()] extended the DES concept on a two-equation model, i.e., Menter’s shear-
stress transport(M-SST) model. And instead of the wall distance, the dissipation length
scale,vk/(*w), is used as a working parameter. A similar extension was developed by
Bush & Mani[21]. Encouraging results have been obtained from their researches.
The other type of LES/RANS hybrid scheme was proposed by Spezza2f], who

realized the shortcomings of existing LES SGS models and tried to bridge the gap between
DNS, LES and RANS. In his model, the turbulent stress was expressed as a product of

Reynolds stress and a damping function:

7 = [1 — exp(—=BA/Lk)]" Ti(ﬁ) (1.3)

where L is the Kolmogorov length scalé the grid size,ri(f)

the Reynolds stress, and

(£ andn are the model constants. With this damping function, RANS stress models can
be recovered in coarse grid, and LES can change to RANS computation smoothly. Similar
formula appeared in Arunajatesan and his co-worke&r<?5], and Zhanget al[26]. And

recently, the LNS approach of Batten al[27; 28] used an alternative to the damping

function, which they called “latency factor;,
o = min [L . VLES, L . VRANS] /L . VRANS (14)

whereL andV are length scale and velocity scale, respectively2Bj,[the L - Vg5 was
the kinematic eddy viscosity from Smagorinsky SGS mdd@)[Cs(L*)2S*, where the
LA is the mesh spacing. And the- Vz 4y is the kinematic eddy viscosity from fa—

model.



Note that aforementioned hybrid schemes compare different length scales, and decide
therefrom the LES or the RANS model to be used in a certain region. In most cases, the
grid size is one of the length scale to be compared with. Therefore the “RANS region”
and the “LES region” are grid-dependent. It is the user’s task to choose different models
to operate in different regions. An alternative to these length scale-type approaches is to
treat these two regions in a pre-determined man2@r30]. Fan and co-workers3[L; 32,
33| developed the “flow-dependent” blending function to couple the two-equation RANS
model with the LES SGS one-equation model. The working parameters of their blending
function are the wall distance and some quantities from model equations, rather than the
local grid spacing. Thus, users needn’t worry about grid issues.

For the hybrid schemes, one of the problems yet to be solved is the inflow boundary
conditions. Because of the LES component, the resulting flow field solved by LES/RANS
hybrid schemes has to be three-dimensional and time-dependent. Thus, the inflow bound-
ary condition must be time-dependent. Therefore, as is the case in LES, specification of
turbulentinflow conditions is also a challenge to LES/RANS hybrid schemes.

Generally, there are two approaches for simulating the turbulent inflow conditions. One
is based on random fluctuation84], [35], [36], et9. The instantaneous velocity field in

the inflow boundary is generated by

ui(y,Z,t) = Ul<y) +Lij¢j<y>zat) (15)



whereU; is the mean velocityl,;; defines a lower triangle matrix such that

R = LL" (1.6)

Ry = u'd (1.7)

v

and ¢; are three random variates, each of which has zero mean, unit variance and zero
covariance with other two variates.can be calculated using Cholesy factorization. Using
this procedure, the random fluctuations can statistically recover the turbulent stresses. Inthe
procedure of Le and Moig]7; 38|, the spectrum of fluctuation is defined in Fourier space
and the velocity fluctuation distribution is provided by an inverse Fourier transformation.
Because the random field is not governed by Navier-Stokes equations, it is not physical and
needs a lengthy development sect®f[ As was shown in32] by Fanet al, this approach

did not give good results for shock wave / boundary layer interaction problems.

Recently, Batteret al[28] “synthesized” the turbulence: the velocity fluctuations in
the overall flow field are generated from stochastic PDESs, which required three additional
equations to be solved. This may increase the overhead of computation and suffer from the
same difficulty as the other random fluctuation methods.

The other is the so-called rescaling-reintroducing method, which is used to simulate
the inflow turbulence over a flat plate. It utilizes the similarities in the turbulent boundary
layer, rescales the flow field at a downstream location and then reintroduces the results to
the inflow boundary. This method was originally developed by Spalart and Le@8§rd[
then modified by Lunét al[34]. Recently, it has been extended to compressible supersonic

flow by Urbin & Knight[40Q]. As shown in B4], it is more efficient than the methods based
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on random fluctuations. However, iB4] and [40], this approach was only applied to LES.
Furthermore, only constant-coefficient SGS model was used. Therefore, this method can
not be directly applied to LES/RANS hybrid schemes in which some model equations have
to be accounted for.

In this study, three LES/RANS hybrid schemes have been proposed and applied to
wall-bounded flows. In these schemes, thé RANS model is coupled with one-equation
subgrid scale LES model through blending functions. Both models and blending functions
have no dependence on the wall-distance. Two of the blending functions use grid size as
a working parameter. The third one is independent of the local grid spacing. Potentially,
these schemes are highly suited for flows characterized by a complex geometry. And based
on rescaling-reintroducing method, a method for generating inflow boundary conditions
for hybrid schemes has been implemented and validated. All the hybrid schemes have been
tested on supersonic compression ramp problems, since the shock wave/boundary layer
interaction has been a challenging problem for CFD.

The governing equations will be developed in Chapter 2. Chapter 3 presents the tur-
bulence closure method. The method for generating turbulent inflow boundary conditions
is discussed in Chapter 4. In Chapter 5, the configurations for testing hybrid schemes are
presented. This chapter also gives the special computation procedure for the application
of hybrid schemes to ramp problems. In Chapter 6, the results from different cases are

presented and discussed. Chapter 7 gives the concluding remarks.



Chapter 2
Governing Equations

In this chapter, the derivation of governing equations for LES and RANS is presented.
As will be shown, the two sets of governing equations have similar form. This feature
facilitates the coupling of LES and RANS such that the coupling can be done through

turbulence models.

2.1 Navier-Stokes Equations

The governing equations for the conservation of mass, momentum and energy in compress-

ible turbulent flows are:

dp | Opu

= 2.1
Opu; — Opu;u, op 07T

= — — 2.2
ot T o, oz, T o, (2.2)
opE  OpHu; 0

= — (Tiyu; —q 2.3
8t + 8952- ém( ijUj QZ) ( )

whereu; is the velocity,p the pressurey the density of the fluidE the total energy per

unit mass A the total enthalpy per unit masg;; the stress tensor, ang¢the heat flux.
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E, H andg; are defined as

1
1
H = C,T+ 5Pt (2.5)
puC, T
;= ——— 2.6
¢ Pr 0x; (2.6)

whereT' is the temperature. In current work, the fluid is assumed to be calorically perfect
gas.C, andC, are therefore constants.

For Newtonian flows7;; are defined as,

Tij = poij, (2.7)
with
oij = 255 — géijskk (2.8)
whereS;; is the strain-rate tensor,
=3 (5 + 52 @9

o;; is the deviatoric part of the strain-rate tengors the dynamic viscosity which can be
determined as a function of temperature using Sutherland’s law.

The equation of state = pRT and the assumption of constant Prandtl numBer
close the system.

But in LES and RANS, Equatio(1)—(2.3) are not the equations that are solved by
CFD codes. Instead, the filtered Navier-Stokes equations and Reynolds-Averaged Navier-
Stokes equations are solved in LES and RANS simulation, respectively.
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2.2 Filtering Operation

To get LES governing equations fiiering operation]] is defined to decompose the in-

stantaneous quantity into the sum of a filtered component and a residual component,

flrt) = f(r,t) + f'(r,t) (2.10)

The general filtering operation on any flow varialjles defined as

f(x,t) = /G(r,x)f(x —r,t)dr, (2.11)

where the integration is over the whole flow domaihjs a filter function, andf is the
filtered variable. The filteZ is chosen so as to eliminate the fluctuations whose length
scales are smaller than the mesh gt2ef2] so thatf represents the large scales of motion.

Some properties of the filtering operati@np3] are summarized as follows:

1. Normalization condition ofy. The filter function satisfies
/G(r,x)dr =1 (2.12)

2. The operations of filtering and differentiating w.r.t. time commute, i.e.

of _of

3. For homogeneous fiIter?% = 0, the operations of filtering and differentiating
J
w.r.t. position commute, i.e.

of of
—_— = 2.14

8xj 8@» ( )
Most commonly-used filtered functions are homogeneous. Some examples can be
found in [1], pp. 563.
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4. Different from Reynolds averages,
f#f  [#0 (2.15)
5. f depends on time. Therefore, an LES must be a time-dependent computation.

In order to eliminate terms that require modeling in the continuity equation, Favre-

averaging§3] is introduced:

=
[l
S

(2.16)

2.3 Filtered Compressible Navier-Stokes Equations

The filtering of Equatiorff.1)—(2.3) can be expressed in the conservation fakh|

o5 0

§+%(ﬁaj) = 0 (2.17)
J
o 0 . op 0 /=
Z (00 - — (pii) = — — (7. + 1565 2.1
at (puz) + ax] (pulu]) axl + 833] < 17 + TZ] > ( 8)

O (3E O (=i 0 (s 5GS ~ 5GS
ot < E) T 8;Bj ('OHUJ> o 833], <UZ(ZJ + Tij ) (QJ + Qj )) (219)
where is filtered density;i; are the components of Favre-filtered velocjty= pRT is

the filtered pressurel; and H are the filtered total energy and total enthalpy per mass,

respectively,
_ = I
pE = pC,T + o Pl + pk (2.20)
- -1
pH = pC,T + 5,5@@ + pk (2.21)
wherek is subgrid scale turbulence kinetic energy per mass

—_—

N —
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The filtered stresg;; is defined as
T,; = (1) (2.23)

where

du;  Ou; 2. iy

5y = e L 2.24
i Oz, + or; 3 7 0xy ( )
The subgrid scale stress;“*, is defined as
750% = —plugu; — ;1) (2.25)
The filtered heat fluxg;, is defined as
__u(T)C, dT
= — 2.2
@ Pr  0Ox; (2.26)
The subgrid scale turbulence heat flgx,“, is defined as
Q%% = p(Tu; — Tiy) (2.27)
To get Equationsa.17—(2.19), it is assumed thatfj]
- w(T)C, OT
A —_— 2.2
9 Pr 0Oz (2.29)
1

The subgrid scale stressg$”® and heat fluxQ5“® can not be computed directly and
thus have to be modeled. When an eddy viscosity SGS model is employed, these two terms

14



can be modeled as

- 2 _
7_56‘5' = M0y + gpk‘% (232)
sGs l%C%>aj%
. = — — 2.33
@ Pry Oz, ( )

where, is the eddy viscosity for LES anffr; ~ 0.89 is considered as a constant for

turbulent flows.

2.4 Reynolds-Averaged Navier-Stokes(RANS) Equations

The governing equations can be further simplified by using Reynolds averading he
resulting equation is so-called RANS. In this approach, the flow property can be decom-

posed into mean and fluctuating components

f=f+7f (2.34)

where f denotes any flow propertieg, is the fluctuation aroungf or the time-averaged

value of f, which is defined as

f= B / o f(x,t)dt (2.35)

T to
wherer is a period of time that is much longer than the time-scale of turbulent fluctuations.

The Favre-average for time-averaging is defined as

—

=t (2.36)
P
Therefore, the decomposition gfcan then be rewritten as
f=r+ (2.37)
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wheref” is the fluctuations imposed oh
Apply the Reynolds averaging procedure to the original Navier-Stokes equations, we

can obtain the RANS equations (c3j.for detailed derivation):

o 0 ..
0 0 ap 0 [
= (i = (hua) = — — (7. RANS 2.
ot (V) ¥ Gy (Pt) Jx; " 0z, (F-+7t) (2.39)
0 /. = 0 o 0 s RANS . RANS
g(ﬂE)Jra—scj(PH%) = a—xj@z (Z;+i4Y5) = (4 + Q475 ) (2.40)
In Equations?.39-(2.40,
TRANS = ! (2.41)
QIANS = purpy (2.42)
. 1 ——;
ok = ipug’u;' (2.43)

where7/i4N5 is Reynolds-stress tensap,*> denotes turbulent heat-flux vector, ahd
is the turbulence kinetic energl, and H are averaged total energy and total enthalpy per
unit mass, respectively.

Using Boussinesq approximation, and denoting the eddy viscosity,liie resulting
expression for the modeled Reynolds-stresses has the same form as Egugfhiony(,
can be obtained from model equations, such-as, k— models,etc The RANS and the
model equations close the system.

Note that the governing equations for the RANS [E@s3® — (2.39] and the LES
[Egs.R.17) — (2.19] have similar form. Therefore, both sets of equations can be solved

with a single numerical scheme.
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Chapter 3

LES/RANS Coupling

The governing equations of LES and RANS have the same form. There is no coupling
issue in the governing equations. The coupling of LES and RANS relies on how the eddy-
viscosity is calculated. In this study, it is implemented by “blending” one-equation LES
SGS turbulence model with two-equatiér¢ model through @lending functiopwhich
makes the turbulence model change smoothly from a RANS model in the near-wall region

to an LES SGS model far away from the wall.

3.1 Hybrid Turbulence Model

The hybrid LES/RANS turbulence modeling consists of two sets of model equations. One
is thek—( two-equation modeff6] for the RANS component. The other is the one-equation
SGS model for the LES part.

k— model has been successfully applied to different turbulent flows, including free
shear flows and wall-bounded shear flows, in both low speed and high speedi@ases|
47, 48]. lIts transitional extension predicts well the onset and extent of transition in two
and three dimensional transitional flow8] 50]. Because it is free of wall and damping

functions, it is a good candidate for the implementation of a hybrid scheme that has no
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explicit dependence on the geometry.

The £k and( equations in thé— model are defined a&f):

opk  Opuk O |, pe Ok
ot Oz, - Oz, 3 o) Ox;
ou; 1 u, Op OP D
— — — = — — 3.1
7ii Oz, Ck ,62 or; Ox; 1 T He (31
dp¢  Odpuy;¢ 0 9¢ py 02 (08); 082,
ot + 0z N Oz, M+ 8% + o, Oxj \Ox; O
_ 0, 8 — ok
~Cmig Py 8—1;1(umul) T o
J m
s s Pmithly B s
+<053ij + dej)pcszj Q) Rk + 5 C
2667—1]Vt B?pg ~
o ———Q0,Q; + 02 ——=>0,Q,5
Ti;\ Ok OC Q;
26€; BRIl J
+20s€itm < k > Ox; Oy, 5° + Q22
Q
+max[P, 0] — 25¢5, — C, M1 (3.2)
Tk
All model constants in above equations are documenteédn |
In this model, the kinematic eddy viscosity is given by:
/{52
V{,RANS = C (3.3)

whereC,, = 0.09.
For the LES component, the one-eq

opk  Opik

i,

uation subgrid scale (SGS) model is given by

]{33/2

ot | oz, 0w,

wherer;; is the SGS stress tensdy,is the grid size, and’; is a model constant. Here, we

— Cd + Diffusion (3.4)

A

assume that the diffusion term is the same as that in Equatihn(Two versions of grid

size are used in this work. The cell-volume based grid size is defined as,

Ay

=V (3.5)
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whereV is the volume of grid cell. The other choice Afis given by
A, =max (A, Ay, A,) (3.6)

whereA,, A,, andA, are the mesh spacings in three coordinate directions, respectively.

Under this one-equation model, the eddy-viscosity is calculated by
vires = CsVEA (3.7)

whereA is the same as that usedirequation. So it can ba,, or A,,.
For equilibrium conditions, where production equals dissipation, it follows from Equa-
tion(3.4) and Equatiorf.7) that

viLps ~ O, %NS (3.8)
d

which is equivalent to the Smagorinsky modél|.
To get an LES/RANS hybrid scheme, the one-equation SGS model, is blended with the

k-equation oft— model by a blending functiof. The resulting: equation is given by:

opk | Opik O K& N M_> %]
ot Oz, Or; [\3 ox) Ox;
ou;
i 5z,

3/2

k
~TCip—~ (39

1y Op OP ok
(1= == g
( )<Ckﬁ28IZaIZ+OITp+MC
¢ equation remains unchanged.

The hybrid eddy viscosity is then defined as:
ve = (1 =T)vyrans + T res (3.10)

which is used to calculate the turbulent stressgs
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3.2 Blending Functions

One of the objectives in this research is to look for a blending function without explicit
dependence on the wall distance. Recall that, in ld6&lleddies need to be modeled. In
other words, compared with the grid size, the size of the energy bearing eddies (integral
length scale) determines the manner in which turbulence is modeled. If this size is much
larger than grid size, then it can be mostly captured by using LES. Otherwise, RANS has

to be used. Since the dissipation length s¢ale
3/2
le = k—a

VG

is of the order of the integral length scdg[it can be used to construct the blending

(3.11)

function. With different choices of grid size, we have the following two blending functions,
calledI’; andI's:

Iy = tanh (I./on Ay)? (3.12)

and

'y = tanh (I /on A,)? (3.13)
Here,«; is a model constant. Note that, from Equat®), v, rans Can be expressed as
Virans = CulVk (3.14)

So Equationg.3) and @.7) yield that

1A VrEs

WhenI'; is used A = A,, is used in Equation8(7) and @3.9). WhenI'y is used A = A,
in those two equations.
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To preventl” from decreasing in the freestream region as a result of small valige of
I’ must be a non-decreasing function as the distance from the wall increases. One way to
implement this is to set:

5] = maz(T'[j],I'j — 1) (3.16)

wherej is the index of grid cell in the the direction normal to the wall. This mimics
blending functions used ir8[l][ 32] that have explicit dependence on wall distance.

To choose a proper constant, we need to analyze the length scale in the inner layer
and outer layer of turbulent boundary-layer.

From the law of the wal] we have:

uzﬁln (yuT) +C

K Vi

in log law region, where the friction velocity, = /7., /pw, k IS von Karman’s constant,
andC =~ 5.5.

By differentiating above equation w.rg, we have:

du  u,

dy Ky
Since, in this region, the turbulent stress< const, andk ~ const, theny, ~ ky.
But in log law region, Equatioi®(7) has different behavior, because length scalean be
constant in a structured grid. Therefore, Equator)(should be used in the outer region

of a boundary layer, where the turbulence length seabe which is function ofz.
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Above blending functiond;; andI';, depend on grid size. An alternative to the grid-
dependent blending functions is to use von Karman length Scale,

5
V3

I, =

(3.17)

where
S =1/Si; S (3.18)
ls is a measure of the real size of turbulent eddies. In log-law ldyex, y. Therefore,

l, can be considered as an indication of the distance away from the wall. Based on this,

another blending functiond;s, is defined as

Ls
I's = tanh(oél)\)2 (3.19)
where) is Taylor’'s microscale
A=Vk/C (3.20)

which lies in the inertial subrange — the range between the energy containing eddies and
the viscous range. ThuEz has no explicit dependence on the grid. In this research, when
I's isused, A = A, is used in Equation8(7) and @.9). EquationB.16) is also applied to

this blending function.
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Chapter 4
Turbulent Inflow Boundary Conditions

As described in foregoing chapters, the LES and therefore the LES/RANS hybrid scheme
are time-dependent computations. This requires the inflow boundary condition to be un-

steady.

In many baseline experiments for testing capability of high-speed turbulence modeling,
inflow boundary layer is developed over a flat plate ahead of various experimental models.
So, in this chapter, the method to provide turbulent inflow boundary conditions for the flow

over a flat plate suited for hybrid LES/RANS calculation is presented.

4.1 Rescaling-Reintroducing Procedure

The current inflow turbulence generation method can be considered as a variant of rescaling-
reintroducing method developed by Urlahal[40]. The procedure in40], which is illus-

trated in Figuret.1, consists of the following steps:
1. Getmean valueandfluctuationsfrom a downstream station, the recycle-plane;

2. Based on similarity, rescale above values;
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Recycle plane

v

Inletplane ===
Sl —
— —>

Rescale

Reintroduce |

Figure 4.1 Rescaling-reintroducing procedure.

3. Introduce the rescaled value at the inlet station as an updated inflow boundary con-

dition.

In [40], constant-coefficient SGS model and MILES model were employed. Thus, no
additional equations for closure of governing equations are required. For current LES/RANS
hybrid schemes, two extra model equations must be considered, and this will necessitate a
modification of the procedure ofi()].

Moreover, the need to match mean inflow conditions of experiments, such as momen-
tum thickness, skin frictiorgtc, requires the inflow mean velocity and temperature profiles

remain fixed. So the modified rescaling-reintroducing method can be described as:
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1. Fix the inflow mean profiles of velocity and static temperature. Mean static pressure
at inflow boundary is set equal o, the freestream static pressure, since we are
dealing with the flow over flat plate. Then, mean density profile is determined from

the equation of state.

2. Fluctuations of velocity and static temperature at recycle station is rescaled and su-

perimposed onto the inflow mean profiles.

3. Mean values and fluctuations bfand( can be rescaled and reintroduced.

The general rescaling-reintroducing procedure is described as follows using the velocity
for example.
Letu(z,y, z,t) denote instantaneous velocityardirection. It can be decomposed into

two components:

u(z,y,z,t) = Uz,y) +u"(z,y,2,1) (4.1)

Ues) = = [ (4.2)

whereU is the mean value, and’ the instantaneous fluctuatiof) stands for the average
over z-direction.

The multilayer scaling of a compressible boundary-layer makes use of an effective ve-
locity developed by van Driest. The effective velocity is related/tby the relation1]

U
Uer = I,

(4.3)

o (222U)U) — A\ A,
Sin 1 1 4+ sin 1 —_—
VAL +4A2 VAL + 442
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with

—1 T, 1+ 92
A= U= e (T, 2 g M

whereT,, andT,, are free stream and wall static temperature, respectivély,s the free
stream Mach number,~ Pr'/3 is the recovery factor, anBlr = 0.7 is the laminar Prandtl
number.

By using the effective velocity, two similarity laws of compressible boundary-layer are:

2?? = ufi(y"), law of the wall (4.4)

or UGy = usfa(n), defect law (4.5)

wheren = y/4 is nondimensional wall distance for outer laygt, = yu, /v, is nondi-

mensional wall distance for inner layéf;, is the effective velocity ot/.., the freestream

velocity. “inn” and “out” stand for inner and outer region of boundary layer, respectively.
According to the two similarity laws, we can have the following two transformations

for the fluctuations of velocity:
Unier = BUety Yigers +) (4.6)
Uinier = U ey (Mintet; %5 T) (4.7)
where S = et/ Urrecy, “inlet” and “recy” denote the inlet station and the recycle
station, respectively.

The wall-normal velocity fluctuation” and the spanwise velocity fluctuatiar’ are

scaled similarly.
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Then, the complete velocity fluctuations are the weighted average values of inner and

outer fluctuation profiles, which are given By][40]:

u" = 'Lbllmn[l - W(nmlet)] + U/'IOUtW(nmlet) (48)

inlet = “inlet inlet

where, the weight function is defined as

W(n) = % (1 + {tanh l“ f(;g)fi B] }) (4.9)

whereB = 0.2. Thus the weight function have a smooth swig$[40] aty/6 = 0.2.

With the fixed inlet mean velocity profiles, the complete inlet velocity is given by:
Uintet = Uinter + u;,nlet (410)

Other velocity components can be processed similarly.
B anddiniet/Orecy, @S suggested imf], can be derived from power ladf], U/U, =

(y/6)=. Forn = 9, we have

57‘68 L -3 6

o {1+0.27 Reé,f’} (4.11)
5inlet inlet inlet
T,rec 5rec %
Drreey (—y) (4.12)
Uz inlet 5inlet

where L is the distance between inlet station and recycle statits, is the Reynolds

number based on boundary layer thickness.

4.2 Scaling ofk, (andT, p

To give complete inflow boundary condition in the LES/RANS hybrid scheme, we need
to specify, in addition to velocity, density, temperatutregnd( at the inlet station. Based
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on Morkovin’s assumptio®[3], the pressure fluctuations at modest high speed flan(
5.0) are negligible. Hence, pressure at inlet station of a flat plate can be set equal to the
freestream pressune,. Then from the equation of state, density only depends on the
temperature. In this case, the scaling:pf and7 plus the scaling of velocity presented in
last section can give the desired set of inflow boundary conditions.

The LES formulation does not include equations fe model, but these quantities
can be calculated as part of the solution, if desired. Because of this, both mean value and
fluctuations oft and( are rescaled and reintroduced into the inlet plane. The proper scaling
of these quantities can be derived from the governing equations in the log lanbidyer|

In the log law layer, the energy equation reduces, for an insulated wall, to (c.f. Equa-

tion(5.77) in B])

+— =T, (4.13)

or

C, (e ay @k
P—H(T—Tw)+5+0—k_o (4.14)

Thus, sincei scales withu.,, & must scale withi2, and(7 — T,,) must scale withi2. If g,
is not zero, then the energy equation can be recast in the form given by Equation (5.83) in

[3], i.e.

T ~2
i (CPT+U_+£> I dw (415)

du \ Pr, 2 o P2
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Since
__nG, (0T
Qo = Pr \ oy
y=0
e (@) ()
Pr \ du o dy ) ,—o

C, (dT
_ a1
Pr ( di > T (4.16)

It can be seen, from Equatieh(6), thatg,, scales likeu>.
Integration of Equatiod(.15 is given by Equation(5.86) in3]. It is seen from the

equation and the equation of state that, for a flat plate,

T 5 1/a\> ¢ i k
— ==l (vy=1DPrM? |- — Y= 4.17
T, 7 (= VP [2 (u) T (w)%wi)] @17

where

M, =2 (4.18)

Qo

Thus, in the inner region(log law region) wheyg, , = Yr-e,» the scaling rules are

T nn ’f‘ nn
— -1 = B2=-1 4.19
inlet recy

T nn T inn

Tw inlet Tw recy
kinier = Bkree, (4.21)

VVwC nn VVwC nn
( : ) - ( : ) (4.22)

Ur inlet ur recy

Note that for the scaling of temperature, only the scaling of fluctuations is used in the
rescaling-reintroducing procedure, since the inflow mean profile of temperature is fixed at
the inlet.
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In the outer region of boundary layer whefg,.; = 7,cc,, We assume

T" out T" out
Tw inlet Tw recy

In this region, based on Equation(4.162) 8f; [k and( scale like

kner = Bkyeey (4.24)
(SVC out (5VC out
(u) _ (u) (4.25)
T inlet T recy
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Chapter 5
Implementation

The LES/RANS hybrid schemes have been evaluated by comparing the results with two
experimental shock wave / boundary layer interaction databases . The first one corresponds
to the compression-expansion ramp experiment of Zheltovedal[55; 56|, while the

other, also available irbp], involves a compression ramp experiment by Setted. Both

cases have observable separation zones around the compression corner.

This chapter will introduce both configurations, inflow conditions, and grids. Also in
this chapter, the special computation procedure for simulating the flows with LES/RANS
hybrid schemes will be presented, which will prevent the separation zone from growing to
the extent that may affect inflow conditions. The numerical schemes for solving the system

of equations will be presented in Appendix B.

5.1 Zheltovodov 25 deg Compression-Expansion Ramp

The computational domain of this two dimensional configuration is shown in Figdre
It consists of & ¢m long flat plate and @5 deg compression ramp, which is followed by
wedge-expansion corner. The hight of the ramp.iscm.

Two meshes are employed in this investigation. A coarse grid which considig of
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Figure 5.1 Zheltovodov 25 deg Ramp.

109 x 65 nodes, and a fine grid which consists4sfl x 145 x 65 nodes. In both cases,
the physical size of the grid in thedirection is equal t@.96, whered is boundary layer
thickness at inflow. Both grids are uniformly spaced inithandz-direction, and clustered
heavily towards the wall in thg-direction. They* < 1 for the center of the first cell is
maintained at the inflow boundary. The whole domain is decomposed o4 x 2
equal-size blocks and solved on 96 processors using IBM-SP3 supercomputer.

The inflow conditions atr = —3.3 c¢m are presented in Tabe1 A boundary layer
code and a 2D RANS code were used to generate the desired boundary layer momentum
thicknessg, at this position by calculating a supersonic flow over a flat plate. Therefore,
the resulting boundary layer thicknegsmay be different from the experiment data. The
o from the computation was used to decide the spanwise size of the grid.

The inflow boundary condition for the computation domain is generated by recycling
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Table 5.1 25 Ramp Inflow Conditions @ x=-3.3 cm

M. 2.88
P..(Pa) 11956
Too(K) 1148

poo(kg/m?) 0.36
Re/meter | 3.24 x 107

O(mm) 0.3
d(mm) 4.1
and rescaling the information from thez plane atr = —4.1 ¢m. Adiabatic and no-slip

boundary conditions are applied to the wall surface. Since the flow is statistically two
dimensional, periodic boundary condition is applied in thdirection.

In this case, a time step 6f x 10~® seconds is used for the simulation. Therefore,
10k iterations is equivalent 1 x 10~ seconds physical time, which correspondg
characteristic times. One characteristic time is defined as the time it takes for a particle to

traverse the domain with free stream velocity.

5.2 Settles 20 deg Compression Ramp

The configuration of this ramp is shown in Figse& A 20 cm flat plate is connected
to a20 deg ramp. The grid for this domain consists4df) x 129 x 65 nodes. Spanwise
size is also set a594. Similar to previous grids, equal mesh spacing is used in:tfaand
z-direction, and the mesh spacing in thrgirection is refined near the wall, witht < 1
for the first cell center at the inflow boundary. It has been decomposed4nto3 x 2
blocks. The experimental dataat= —3.81 cm is listed in Tables.2 For this configura-

tion, recycle-plane is located at= —10.3 cm. Similarly, adiabatic and no-slip boundary
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conditions are employed at the wall. Extrapolation condition is used at the outflow bound-
ary, and periodic boundary condition in thedirection. A 2D RANS code was used to
match the experimental boundary layer thicknéss,

In this case, the length of time stepli£ x 10~ seconds. Hence, 10k iterations can

simulate about 1.93 characteristic times.

o0 Jinflow boundary

0.15+ ‘

|
] I
] ! \
< o : outflow boundary _ g
i [

flat plate

recycle-plane

0.05+

‘ compression ramp

|

|

|

|

|

|
J2 T ohE T g1 " olE T 6 T obs T o ohg
X, m

Figure 5.2 Settles 20 deg Ramp.

Table 5.2 20 Ramp Inflow Conditions @ x=-3.81 cm
M, 2.79
P (Pa) 26001
T (K) 100.8
Poo(kg/m?) 0.77
Re/meter | 7.2 x 107
d(cm) 2.7
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5.3 Computation Procedure

In Fan’s thesis33], the LES/RANS computation was conducted from a 2D RANS solution.

In general, this approach may not succeed when a separation bubble is embedded in the
initial flow. This is because the energy of the incoming fluctuations may not be sufficient
at initial stage to prevent the growth of the separation bubble beyond the recycle-plane. To
prevent the problem, a different approach is employed. The steps employed are as follows:

1. Match experimental boundary layer data. In this step, a boundary layer code or a two
dimensional RANS code are used to calculate the flow over a flat plate. For example, for
the 20 deg ramp case, once the 2D RANS code finds the location where the boundary layer
thickness equal®.7 cm, the boundary layer data 2 — 3.81 = 16.19 ¢m upstream of that
station will be taken as the inflow condition for computational domain of the 2D ramp.

2. Use the inflow boundary data from step 1 and two dimensional RANS code to
calculate the two dimensional steady RANS solutions. Note that step 1 and step 2 prepare
the initial flow field for the applications of LES/RANS hybrid schemes, which start from
step3.

3. Build up the turbulent fluctuations over flat plate. Only the grid on the flat plate
part is involved. The grid size is half the ramp grid size. The flow field over the flat plate
is initialized with the inflow boundary layer profile (obtained from step 1). Then random
perturbations are imposed on the whole domain to generate initial fluctuations. This step
is finished when large enough turbulence fluctuations are generated. For the 25 deg ramp

case, the criteria of “large enough” is that the maximRMSmass flow fluctuation reaches
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0.08px0 s, While for the 20 deg ramp case, it(0904p,u~. Figure5.3is an example of
the resulting flow over the flat plate of 25 deg ramp case.

4. Start solving ramp problem. To initialize the flow field, the solutions from step 3
are combined with the steady RANS solution of the ramp. A snapshot of the combined
initial flow field is presented in Figurg.4. Note that the data in the last column of blocks
in Figure5.3, which include the grid and the flow properties, have been replaced with the

RANS solution.
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Figure 5.3 Turbulent fluctuations on flat plate: contour plotwof
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Chapter 6
Results and Analysis

This study is composed of two subtasks: the turbulent inflow boundary condition genera-
tion and the LES/RANS hybrid schemes. The comparison of different rescaling-reintroducing
schemes will be presented in secti®ri. The rest of this chapter will present the results

from different hybrid schemes on two shock wave/boundary layer interaction problems.

6.1 Inflow Turbulence Generation Scheme and Monotonic

Blend Function

The inflow generation method has been tested for the flow over a flat plate.The dimension
of the domain i9).1m x 0.092m x 0.087m. The grid size isl29 x 129 x 65. This grid,
with the exception of the extent of the flow in thalirection, is almost the same as the one
on the flat plate part of the0 deg ramp. The entire domain is decomposed &nto4 x 2
blocks, when running on IBM-SP3 supercomputer. The recycle-plane is located at 6-cell
upstream of the outflow boundary. The free stream conditions are the same as those for the
20 deg ramp. The inflow boundary thicknesgss 3.0 ¢m.

To validate the LES/RANS rescaling-reintroducing scheme introduced in Chapter 4 and
the monotonic blending function, the following four cases have been investigated.
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Case 1 Both mean and fluctuations of all properties are rescaled and reintroduced to
the inflow boundary. The monotonicity ofis not enforced in this case.
Case 2 Use the same rescaling-reintroducing scheme as case 1. But a moriotonic
is used.
Case 3 Use the inflow turbulence generation method described in Chapter 4. The
monotonicity ofl" is not enforced.
Case 4 Use the same rescaling-reintroducing scheme as case 3. Bnmdonotonic.
In these cases, the blending functibnis used. The model constant = 5 is used
SO as to ensure that the transition from the RANS region to the LES region occurs above
the log law layer.C; = 0.01 andC; = 0.01 are used for all cases of tests, and the ramp
problems, these are the values usedih B2).
All results presented in this section are taken from the recycle-plane. Two versions
of average value are presented in this section. FoRikS mass flow fluctuation, the
average is based on time average, i.e. Equati@n( The RMSmass flow fluctuation is

approximated by

\ (pu”)? =) (pu)® — (pu) (6.1)

Overbar denotes the time average, again, means the average in spanwise direction.

Other average values are calculated using the following weighted average f@4fula[

A A
Uttt = —t(u”+1> + (1 - —t) u" (6.2)
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whereAt is the computational time step, ahds the characteristic time scale of the averag-
inginterval.t. ~ 55/U,, is used. This formula can suppress starting transients qua§ly[
The history of boundary layer velocity profile of case 1 on the recycle-plane is shown

in Figure6.1, where averaged velocity profile does not reach statistical steadiness.
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Figure 6.1 Mean streamwise velocity profiles, case 1.

In case 2] is forced to be monotonic using EquatiBri6). The velocity profiles after
each 10k iteration are presented in Fig6t8 Similar to case 1, boundary profiles are
not stabilized, which means a statistically steady turbulence flow is not available. Com-
paring case 1 with case 2, the incapability of generating desired mean inflow condition
for the downstream computation is due mainly to the inappropriate rescaling-reintroducing
method.

After fixing the inlet mean velocity and temperature profiles, we can see, from Fig-
ure6.3 that there is little change in velocity profiles during the 50k iterations.

Figure 6.4 shows that th&RMSmass flow fluctuation keeps increasing as the number
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Figure 6.3 Mean streamwise velocity profiles, case 3.

of iterations increases. Moreover, the eddy viscosity (Figuseshows a similar behavior.

The reason for this can be found in Figuses, which shows the relation df vs wall
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Figure 6.4 Profiles ofRMSmass flow fluctuations, case 3.

distance. Foy/0 > 1, I" decreases, which indicates a return to the RANS description. This

is not consistent with the LES/RANS hybrid approach. Therefore, in order to prevent such
a behavior]" should not be allowed to decrease in an increasing direction away from the
wall.

In case 4, monotonicity is introduced by using Equatiohf). Since the inflow mean
profiles of velocity and temperature are fixed, the mean velocity profile on the recycle-plane
is not affected by the new version Bf as is shown in Figur6.7.

Figure6.8 presents th&@MSmass flow fluctuation profiles of this case. The maximum
value of the quantity increases in the first 40k iterations. Then, it decreases. But the
behavior beyond /6=1 is stabilized after 20k iteration.

Figure 6.9 shows the distribution of. Compared to Figuré.6, the profiles ofl" do

not change as the number of iterations increases. Similar behavipy @@n be seen in
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Figure 6.5 Profiles of mean eddy viscosity, case 3.

Figure6.1Q These indicate the statistical steadiness.
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Figure 6.7. Mean streamwise velocity profile, case 4.

Figure 6.11 compares the mean streamwise velocity. The results after 40k and 50k

iterations are in good agreement with the solution from the boundary layer code, except in
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Figure 6.9: Profiles of blending functiofr, case 4.

the “grey region”[L7], which lies between the RANS regioir (= 0) and the LES region

(I' = 1). Similar to the results of Nikitiret al[17], the slope and the intercept of log law
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Figure 6.10 Profiles of mean eddy viscosity, case 4.
profile in the LES region is different from that in the RANS region. The good agreement
with the solution of the boundary layer code in the near wall region can also be found in
thek profile in Figure6.12
Figure6.13and Figures.14are contour plots of instantaneous temperature on:the

andy-z planes, respectively. The turbulence structure is apparent in both figures.

6.2 25 Ramp Flow

The instantaneous streamwise velocity distribution from a run of 40k iterations is shown
in Figure6.15 The large size of eddies in the incoming boundary layer is evident. Other
features in this flow include the leading shock wave generated by the flow separation around

the compression corner and an embedded shock wave due to the flow reattachment to the
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ramp surface.
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Figure 6.13 Instantaneous temperatureziry plane, case 4.
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Figure 6.14 Instantaneous temperatureytx plane, case 4.

The time-averaged data presented in this section are collected at the end of 40k iter-

ations. Unless indicated otherwise, the average quantities are averaged over the last 10k

48



iterations. Ther’-coordinates appearing in most of the figures are measured from an ori-

gin at the compression corner along the surface of the model, whether horizontal or at an

anglepsq].

6.2.1 Effects of Starting Procedure

All 25 deg ramp computations follow the procedure introduced in Seéti@rnrhe solution
on the flat plate is prepared usihg with «; = 5.0. The RMSmass fluctuations on the
recycle-plane over every 10k iterations are shown in Figut& After 30k iterations, the
RMSmass flow fluctuation can be considered as stabilized.

The skin friction(Figure6.17) and the time-averaged wall pressure(Figar&8 in-
dicate that the flow separation has little influence on the recycle-plane and the region
upstream of it. Thus, the inflow turbulence is not disturbed by the separation bubble.
Figure6.19and Figure6.20show the differences among the LES/RANS hybrid scheme,
RANS and experimental data. Whé&h scheme is used, the size of the separation zone,
indicated by negative skin friction, is much smaller than that predicted by the RANS. But
the initial separation shock wave, indicated by the drog’pfand the initial rise of wall
pressure, is moved upstream in the LES/RANS solution. In the recovery region, the pre-
dicted skin friction is much larger than the RANS solution This phenomenon might be due
to the small LES region above the ramp surface resulting from current blending function

I.
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6.2.2 I'yvsI';on coarse grid

As discussed earlier, the small LES region might be the reason for the somewhat poor
prediction of separation and the skin friction in the recovery region. In order to get a larger
LES zone to improve the prediction in the separation region and the recovery régjon,
is replaced byA,, buta; = 5 remains unchanged. In this casg, > I';, as is seen in
Figure6.21

Figure6.22and Figures.23compare the the mean skin friction and mean wall pressure,
respectively. The skin friction results show that streamwise size of the separation zone has
been improved by using,, although it is still not better than RANS solution. This can
be also found from the wall pressure distribution. But the wall pressure rifg gase

is not as rapid as the RANS result. This indicates the thickness of separation zone is not

53



— — — - r,=tanh(l/54,)", 40k
r,=tanh(l./54,)?, 40k

1
E — - u’, rz /. o5
09 e i
- /s 1
= / b
08f f’ 1
- 7 -120
07F ! ]
06F T
- —15
L 05 1 s
0.4F ]
- —10
0.3} |
0.2 o 5
01F i
:qﬂ"' Lol Ll
10° 10°

Figure 6.21 25 Ramp: Blending function profiles on recycle-plahieysT';.

well-predicted.
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Figure 6.22 25 Ramp: Skin friction distributior;; vsI's.

Comparison of the mean eddy viscosity distribution is shown in Fi§L#¢ The hybrid
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Figure 6.23 25 Ramp: Wall pressure distributioni; vsT';.

scheme usingdy; is characterized by much larger eddy viscosity than that 4th

Figure 6.25 compares the mean axial velocity profile at different stations, where
stands fory — Y-

The velocity in Figures.25are the absolute value atcomponent nondimensionalized
by the edge velocity from the experimental measurements. The profiles in the separation
region show that both hybrid schemes can not reproduce the experimental data. However,
in theT'; scheme, where the LES region is larger, the inner backflow structure is resolved
in two stations upstream of the compression corner, whilscheme does not show this
structure in velocity profiles. The backflow size and the peak of backflow velocity predicted
by I'; scheme are smaller than the RANS results. This reduced backflow thickness is
consistent with the slow pressure rise shown earlier.

Comparingl’; with I'; case, because the initial separation shock wave extends further
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upstream, the boundary layerlof is thicker than that of 5, and therefore the wall pressure
level of I'; around the compression corner is higher than that pas shown in Figuré.23

At the station downstream of the cornerE& 0.5 ¢m), neither of hybrid schemes is able
to predict the backflow, whereas RANS solution predicts this structure, although the size is
not as large as experimental measurements.

In the recovery region, Figu&23 shows that the the hybrid schemes do a much better
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job than the RANS solution in the near-wall region. This is similar to what Fan f@3hd[
In the outer region of the boundary-layer, both LES/RANS hybrid schemes have similar

behavior, and underpredict the velocity.

6.2.3 Effect ofa; onI'y scheme

Once the RANS model and the grid have been decided, the model const@determines
the behavior of the blending function. Large will delay the transition from RANS to
LES, and therefore has large RANS region, as shown in Fig@@ One side effect of this
is that the maximum of blending function can not readh which means a complete LES
region does not exist far away from the wall.

In the case ofy; = 5, the transition between the RANS region and the LES region takes
place between™ = 10 andy™ = 200. Thisy+ range contains the buffer zone between
viscous sublayer and the log law layer. Therefore, the mean velocity profile6f5.0 is
not calculated as well as that @f = 10. The log law layer is better recovered by the case
wherea; = 10, as presented in Figu&27.

As a result of increasing;, theI'; with oy = 10.0 predicts smaller separation zone
around the corner, as shown in Figg&8 However, the initial separation shock wave
position, which is also shown in the wall pressure distribution, Figu, is slightly
affected.

Due to the larger RANS regiony; = 10 case gives even higher skin friction than

a1 = 5 on the ramp surface.
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Figure 6.26 25 Ramp: Profiles of blending function on recycle-plaing,
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Figure 6.27. 25 Ramp: Mean velocity profiles on recycle-plahg,

Figure 6.30 compares the mean axial velocity profile in different stations.afA$n-

creases, the hybrid scheme has the trend to improve the velocity prediction in the outer
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Figure 6.29 25 Ramp: Wall pressure distribution;.

region at the station upstream of the compression corner(Fggéa) by matching the ex-

perimental data and increasing the boundary layer thickness. The latter leads to the higher
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pressure rise in the separation region, as shown in Fig@& However, it loses the back-
flow structure in the inner region. In the recovery region, biotrschemes give similar
results: similar profile shape at = 1.25 ¢m and good prediction in the near-wall region

at the remaining stations.

6.2.4 Grid Refinement Study

Note that bothl’; andI'; are grid dependent. Their behavior on different grids should
be investigated. On the other hand, comparisons of skin friction between different hybrid
schemes indicate that hybrid schemes always generate large skin friction, which is not
consistent with their smaller eddy viscosity when compared to the RANS solution. One
reason behind this might be grid related. Therefore, above two factors necessitate the grid
refinement study. Moreover, the grid-independent blending fundiigmust be evaluated
using different grid sizes.

The 2D RANS solutions on the two grids are compared in Figus& Both grids yield
essentially identical RANS results, except for a slightly larger separation zone in the refined
grid. This might be due to the smaller numerical dissipation associated with the fine mesh.

In this section, the time-averaged data on refined grid are collected from No. 20k to
No. 40k iteration. The RANS solutions to which the LES/RANS results are compared are

those obtained from the refined grid.
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Figure 6.32 25 Ramp: Skin friction distributionl,; = tanh <5ZT> .

I'y scheme

On both gridsI'; = tanh (55&))2 is used to conduct the numerical experiments. On the
flat plate ahead of the compression corner, FiguB2 shows that higher skin friction is
predicted on the fine mesh, which means the inflow turbulent boundary layer is more ener-
getic. As a result of this, the separation zone shrinks on the refined mesh. In the remaining
region, both skin friction distributions are comparable. The evidence of the increasing
energy among the boundary layer can be found fromRNMSmass flux fluctuations on

the recycle-plane (Figur@ 33. In most of the inner region of the boundary layer, RS

value on the refined grid is greater than that from the coarse mesh. As shown inG=Rylire

the grid refinement tends to increase the LES region usjregheme. Thus, increasing of

LES region will also enhance the turbulence fluctuations.
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The skin friction results also indicate that not too much improvement results from grid
refinement. The mean velocity profiles are presented in Fi§uB& In the separation
region, the results from refined grid are worse than those from coarse mesh: the size of the
backflow region becomes smaller, and the velocities above the backflow region are greater
than those from coarse grid and are further away from the experimental data. This behavior
is a result of the higher energy level in the boundary layer.

Thus, the blending function, is sensitive to the grid refinement. It appears thais
grid dependent.

The results in the recovery region are somewhat encouraging. The velocity profiles
from the refined grid match the entire experimental data very well. Significantimprovement

occurs in the outer region of the boundary layer.

I's scheme

I'; is defined as a blending function without explicit grid dependence. This independence
of grid is supported by the results from skin friction distribution(Figar&g and the wall
pressure distribution(Figu& 37).

The most persuasive results are the mean velocity profile and the blending function pro-
file on the recycle-plane, which are presented in FiguB8 Compared with the previous
blending functions, this one recovers the perfect log layer in both grids. There is no “grey
region” phenomenon! Two coincident blending function (in transient region) profiles re-
flect the property of grid independence. The smaller value of blending function in the outer

region on the refined mesh might be a result of smaller size of resolved eddies.
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Figure 6.35 25 Ramp: Comparison of velocity profilds, = tanh (51&)) .
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But the good performance df; scheme on the flat plate section is not a sufficient
condition for improve downstream prediction, as illustrated in FiguB8 In the stations
upstream of the corner, this scheme can not resolve the backflow structure as vgll as
scheme does. And at the station immediately downstream of the corner, this scheme, like
the other schemes, cannot reproduce the backflow either. In the recovery region, all the
velocity profiles are close to the experimental data. Likewise, the hybrid scheme on the

refined mesh works better in the outer region.

6.3 20 Ramp Flow

In this flow, I's = tanh (2153)2 is employed. The instantaneous streamwise velocity on

the z-y plane is presented in Figuf4Q The turbulence structure in the incoming flow,
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generated by the rescaling-reintroducing method, is visible. The typical structures of this
flow include the separation bubble around the corner, and the embedded shock emanating
from the flow reattachment.

The statistical information were collected for an additional 12k iterations, after 47k
iterations from the combined initial solution of LES/RANS on the flat plate and RANS on
the ramp.

Figure6.42compares the skin friction from hybrid scheme with the experimental data,
the RANS solution and Fan’s SST hybrid scheme solu8@h[which is calculated by
using current rescaling-reintroducing method to generate the inflow turbulence. In this and
subsequent figures; is defined along the surface with the origin at the ramp apexyand
is defined as the normal distance to the wall.

Compared with RANS result, current hybrid scheme has a smaller size of separation,
which is comparable to Fan’s results. But it is still larger than the experimental measure-
ment. As far as the drop in skin friction is concerned, the decreaSg of current hybrid
scheme starts farther downstream than Fan’s results, which indicates a delayed initial sep-
aration shock wave. However, the position of the separation shock waxe4.0 cm, is
still upstream of the experimental one. The initial rise of wall pressure in Figdiealso
reveals this situation.

In the incoming boundary layer, current scheme gives the smallest skin friction, which
implies the LES region is too large. Figuset3shows the profile of blending function on
the recycle-plane. The transition from the RANS region to the LES regiornis at 100,

which is almost at the lower boundary of log layer. If the switch between two regions can
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be moved farther away from the wall, then the RANS region can become larger and the skin
friction prediction can be improved. And the initial separation shock wave can be pushed
further downstream.

Figure6.44 and Figure6.45 present the velocity profiles at a series of locations. The
velocity in these two figures is the component parallel to the wall, divided by the measured
edge velocity. Atr’ = —3.81 em, current hybrid scheme matches the experimental very
well. However, due to the inaccurate initial separation shock wave, the velocity is under-
predicted in the near-wall region.

Because of the improved prediction of separation shock wave position over Fan’s scheme,
I'; scheme gives better result around the corner. This also leads to significant improvements
in the recovery region. At all five stations, the solutions frbgrscheme coincide with the
experimental data, in both inner and outer regions.
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Chapter 7

Conclusions

In this study, the rescaling-reintroducing method for generating turbulent inflow condi-
tion has been extended to the LES/RANS hybrid schemes. By using monotonic blending
functions, the modified rescaling-reintroducing method is capable of generating turbulence
structures. In the meantime, it is able to maintain the desired mean inflow profiles.

Using this method, three wall-distance free LES/RANS hybrid schemes have been
tested on Zheltovodov’s 25 deg ramp and Settles’ 20 deg ramp problems. To prevent the
initial growth of separation bubble when the initial flow is obtained from a RANS solution,

a special starting procedure has been implemented. Through this procedure, the fully de-
veloped turbulent inflow over flat plate is combined with the downstream RANS solution to
initialize the whole flow field for ramp problems. The application of the procedure shows
that it can effectively keep initial separation shock wave from reaching the recycle-plane,
and therefore the inflow generation section can work properly without the downstream in-
fluence.

The tests on 25 deg ramp case demonstrate thatteeheme can produce better back-
flow structure upstream of the compression corner than other hybrid schemes. And via the
grid refinement study’; shows its grid independence and recovers the smooth and contin-

uous log law layer profile. However, all three hybrid schemes suffer from poor predictions
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in the separation region, which include inaccurate backflow structure and smaller separa-
tion size. Nevertheless, in the recovery region, all hybrid schemes do show improvements
over the RANS simulation, especially in the near-wall region. And the grid refinement
extends the improvement to the outer region.

In the simulation of 20 deg ramp flow, comprehensive improvements over RANS and
Fan’s hybrid scheme are obtained usingscheme. In both the separation region and the
recovery regionl'; scheme well predicts the velocity profiles in the near-wall region and in
the outer region. By adjusting the model constant, it is hopeful to get further improvement
in the incoming flow and in the positioning of initial separation shock wave.

Comparing the inflow boundary layer thickness and the grid size used in these two
similar experimental configurations, the grid for 20 deg ramp case is relatively finer than
the other one. And based on the observation from the grid refinement study in 25 deg
ramp case, current LES/RANS hybrid schemed,pscheme if not all of them, are likely
to replace RANS and become an effective tool to simulate shock wave / boundary layer

interaction problems on “appropriately” fine mesh.
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Appendix A

Numerical Scheme

The governing equations for current LES/RANS hybrid schemes can be expressed in the

computational spacg n andg as

10U 0 0 0 1
4~ (F-F)+— (G- ~(H-H)=-= Al

wheret is the time, U the vector of conservative variableB, G, H the inviscid flux

vectors,F,, G,, H, the viscous flux vectors§ the source terms in governing equations

andJ the Jacobian of the coordinate transformation

0 n,s)
J = det ) (A.2)

The vector of conservative variables are given by

U= i (A.3)




and the vector of fluxes
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where

V o= i (A.11)

W = G (A.12)

The second-order-accurate time integration of equatidi(was obtained by implicit
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planar ILU subiterations, which may be represented as follows

DAW” L+ A+AWZHJ L+ A AW gt

n)
B+sz( J+1.k

+ B~ AW” 1k T

CTAW, . +C AW, |

1 _ L,
- A—U(U(" 1)—UN)+§(R( U+ RY) (A.13)

wherei, j, andk are the indices of a gird celWV is the vector of primitive variables

W= (A.14)

.

and

wo = wV (A.15)

W(n) _ W(n—l) + AW(n_l), n = 1’ 27 Ce (A16)

W2 is theW at theN time level, andW ™ is the result after, subiterations, which will

converge toW "N +1,
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R is the summation of the fluxes, which is defined by

R = Fin—Fitn— (Fv,z'%uyk - Fv,i_%,j,k> +

Y
Gijrin = Gig-1n — (Gv,z‘,j+%,k - Gv,z‘,j—;k) +
H ey —Hijp 1 — (Hv,i,j,iwré - Hv,z',j,k—§> +
1

jSi,j,k (A.17)

whereA*, B+, C* andD are the coefficient matrices

At = g—@iﬂ’j’k (A.19)
B = g—gmﬂ’k (A.20)
c*t = g—@iﬁmﬂ (A.21)

7 is the pseudo time step, whilkt is the physical time step.
A planar Gauss-Seidel method is used to solved equétid8), which consists of back-

ward sweep and forward sweepérgor ¢) direction:
Step 1 backward sweep i direction

DIWAW T — o [RWT) — ATAW! TP

7

wie = W AW (A.22)

Step 2 forward sweep irg direction
1 nal "
D" AW = |[R(W! +2))—A*AW§_§”] (A.23)
wt) W(n+§)+AW§n+1) (A.24)

7 i
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Here,w, andw; are under-relaxation coefficients, subsciiptdicates the operations and

variables in a-plane, R(W™-1) is the RHS of equatiod(13) andD,AW'™ stands for

DAW" = DAW®, + B*AW",,  + B AW®™ | 4

I 4,j+1, 4=

ctAw™

Z,j,k—‘r

L+ CTAW, (A.25)

To solve A.22) and (A.23), coefficient matrixD; was factorized using incomplete-LU
(ILU) factorization.

To achieve second-order accuracy in spatial directions, LDE$3hd second-order
ENO scheméf9] were used to calculate inviscid fluxes, and the derivatives in viscous

fluxes were discretized using central differences.
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Appendix B
Speedup Test of Parallel Code

The code used in this work was originally developed by Dr. J. R. Edwards. It was par-
allelized using Message Passing Interface (MPI) and optimized for the IBM SP3 parallel
machine. The data communication module of this code was modified by current author
using non-blocking message passing.

The speedup test was conducted in the LES/RANS inflow generation computation. The
grid size for this problem i329 x 129 x 65. The computation domain was decomposed
into 32, 64 and 128 blocks, respectively, as presented in Eallelo get load-balancing,
each block had the same size and was mapped into one processor, respectively. Because of
the planar ILU scheme, which requires large size of memory, the code cannot run in 8 or

16 blocks.

Table B.1: The decomposition of the whole domain

# of blocks| Decomposition Schemg# of grid nodes in each block
32 8x4x1 17 x 33 x 65
64 8 x4 x2 17 x 33 x 33
128 8 X 8xX2 17 x 17 x 33

In each test, the code started timing right before it entered the main loop of iterations
and stopped timing after it finished 250 main iterations. The time consumed in the ini-

tialization of computations was not considered. The number of subiterations was set to be
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always 4 in the test. The non-blocking communication scheme was used for the message
passing between adjacent blocks. In order to get stable timing results, the code was running
in the mode of 4-process-per-node. The test results are shown inB&aded FigureB.1.

The “speedup” in Tabl®.2 is defined as

b
speedup = t—?’z (B.1)
w,N

Table B.2 The Results of Speedup Test

# of processorsyV | wall clock time(sec)t,, | # of iteration/seg Speedup
32 3325 75.19 x 1073 1.00
64 1527 163.72 x 1073 2.18
128 764 327.22 x 1073 4.35
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Figure B.1: Speedup Results

Note that thespeedupf 64- and 128-block cases are better than the theoretical 2 and
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Table B.3 L2 usage and the communication time

# of processors, N # of loads per L2 misg SXMMHnCeion TTeE(brocessorg
32 1137.38 195/3325
64 1425.15 106/1527
128 3566.10 93/764

4, respectively. Thus, we got tlseiperlinearspeedup. Under the current hardware envi-
ronment, it can be explained as follow§].

The superlinear speedup is mainly due to cache effects. On RISC(lifigp®Ressors,
the chip performance is largely determined by getting good cache reuse. As the program
is spread over more processors, the more of code is running out of cache BTabgts
the L2 usage and the communication time for the three cases. As the number of blocks
increases, the the efficiency of L2 cache increases. For the 128-block case, the L2 cache

reuse increases so much that it offsets the communication losses.

1Each processor on the SP Power3 has 8 MB of L2 cache
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