
Abstract

Dozier, Richard Brent. Existence and Analysis of the Limiting Spectral Distribution

of Large Dimensional Information-Plus-Noise Type Matrices. (Thesis Director: Dr.

Jack Silverstein)

Let Xn be n £ N with i.i.d. complex entries having unit variance (sum of vari-

ances of real and imaginary parts equals 1), æ > 0 constant, and Rn an n £ N

random matrix independent of Xn. Assume, almost surely, as n !1, the empirical

distribution function (e.d.f.) of the eigenvalues of 1
N

RnR
§
n converges in distribution

to a nonrandom probability distribution function (p.d.f.), and the ratio n
N

tends to a

positive number. Then it is shown that, almost surely, the e.d.f. of the eigenvalues

of 1
N

(Rn + æXn)(Rn + æXn)§ converges in distribution to a nonrandom p.d.f. being

characterized in terms of its Stieltjes transform, which satisfies a certain equation.

It is also shown that, away from zero, the limiting distribution possesses a continu-

ous density. The density is analytic where it is positive and, for the most relevant

cases of a in the boundary of its support, exhibits behavior closely resembling that

of
p

|x° a| for x near a. A procedure to determine its support is also analyzed.
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1. Introduction

For any square matrix A with only real eigenvalues, let FA denote the empirical

distribution function (e.d.f.) of the eigenvalues of A (that is, FA(x) is the proportion

of eigenvalues of A ∑ x). The focus of this paper is on the limiting e.d.f. of the

eigenvalues of matrices of the form Cn = 1
N

(Rn + æXn)(Rn + æXn)§ where Xn is

n £ N containing i.i.d. complex entries with unit variance (sum of variances of real

and imaginary parts equals 1), æ > 0 is constant, Rn is an n £ N random matrix

independent of Xn, and n and N both converge to infinity but their ratio n
N

converges

to a positive quantity c, and F
1
N RnR§

n converges, almost surely, in distribution to a

nonrandom probability distribution function (p.d.f.) H. The aim of this paper is

twofold. First, we will show that, almost surely, FCn converges in distribution to a

nonrandom p.d.f. F , and second, we will derive analytic properties of F .

The matrix Cn can be thought of as the sample correlation matrix of N samples of

the form R·i+æX·i, where the n£1 vectors R·i are stationary ergodic with correlation

matrix Sn ¥ ER·1R
§
·1 and the X·i’s represent components of additive noise (variance

æ2 unknown) that corrupt the R·i’s. If the noise is centered (EX11 = 0), and N is

su±ciently large, then Cn provides a reasonable estimate of Sn + æ2I (I denoting the

identity matrix), which would reveal Sn, if Sn were known to be singular. However, if

n is large, then the number of samples needed to provide an adequate approximation

of Sn + æ2I is unattainable. The assumption n
N
! c > 0 models the situation of

sample size and vector dimension being on the same order of magnitude.

An area in which our results have significance is that of the detection problem in

array signal processing, that is, the problem of observing data collected at n sensors
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which receive signals transmitted from an unknown number of sources in a noise-filled

environment, and using this data to determine the number of sources. The importance

of such results to array signal processing is discussed in Silverstein and Combettes

[11], however, in a less general setting. In that paper certain internal independence

assumptions are imposed upon the signal matrix Rn, specifically, independence across

samples is assumed. In this paper we require only that, almost surely, the e.d.f.

of the eigenvalues of 1
N

RnR
§
n converges in distribution to some nonrandom p.d.f.

H, thus allowing the detection problem to be studied under more general settings.

Further details on the detection problem are presented later in chapter 8 along with

a discussion of the applicability of results in the theory of large dimensional random

matrices.

The main tool we use is the Stieltjes transform. For any p.d.f. G, the Stieltjes

transform of G is defined as the analytic function

mG(z) =

Z

1

∏° z
dG(∏), z 2 C+ ¥ {z 2 C : Im z > 0},

and G can be retrieved by the inversion formula

G{[a, b]} =
1

º
lim

¥!0+

Z b

a

Im mG(ª + i¥)dª,

where a, b are continuity points of G. Due to the inversion formula, convergence of a

tight sequence of p.d.f.’s is guaranteed by showing convergence of the corresponding

Stieltjes transforms on a countable subset of C+ possessing at least one accumulation

point in C+.

A property of Stieltjes transforms that will be needed later is that if G is any

p.d.f. with nonnegative support, then

Im zmG(z) =

Z

∏z2

|∏° z|2dG(∏) ∏ 0, (S.1)

for any z = z1 + iz2 2 C+.
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For p £ p matrix A with real eigenvalues ∏1,∏2, ...,∏p the Stieltjes transform of

FA,

mF A(z) =
1

p

p
X

i=1

1

∏i ° z
=

1

p
tr(A° zI)°1,

involves the resolvent of A and is well-suited for our analysis (tr denoting trace).

As mentioned earlier, we will provide results on both the existence and analysis

of the limiting e.d.f. of Cn. We deal with the existence issue by proving the following

theorem.

Theorem 1.1. Assume on a common probability space:

(a) For n=1,2,..., Xn = (Xn
ij), n £ N , Xn

ij 2 C+, i.d. for all n, i, j, independent

across i, j for each n, E|X1
11 ° EX1

11|2 = 1

(b) Rn is n£N independent of Xn with F
1
N RnR§

n
D°! H, a.s., (D denoting weak

convergence) where H is a nonrandom p.d.f.

(c) N = N(n) and cn = n
N
! c > 0 as n !1

(d) Cn = 1
N

(Rn + æXn)(Rn + æXn)§ where æ > 0.

Then FCn
D°! F , a.s., where F is a nonrandom p.d.f. whose Stieltjes transform

m = m(z) satisfies

m =

Z

dH(t)
t

1+æ2cm
° (1 + æ2cm)z + æ2(1° c)

(1.1)

for any z 2 C+.

From (S.1) we have for any t ∏ 0 and any z 2 C+

Im

µ

t

1 + æ2cm
° (1 + æ2cm)z + æ2(1° c)

∂

∑ °Im z < 0.

Therefore for any z 2 C+ the integral in (1.1) is well-defined.

The proof of Theorem 1.1 is covered in chapters 2, 3, and 4. Chapter 2 mirrors

Silverstein and Bai [9] in that justification is presented for restricting the assumptions

on the matrices Rn and Xn. Chapter 3 contains the bulk of the proof, and chapter 4

is devoted to showing that solutions, m, to equation (1.1) (with z 2 C+) are unique

if Im m > 0 and Im (1 + æ2cm)z > 0 (specifically, if m is the Stieltjes transform of a
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p.d.f. with nonnegative support). In chapters 5, 6, 7, and 8 we analyze the limiting

spectral distribution F . Namely, in chapter 5 we show that F has a density away

from zero which is analytic where it is positive. Chapter 6 provides a procedure for

determining the support of F , and chapter 7 contains an analysis of the behavior of

the density near certain points on the boundary of its support. In particular, it is

shown that near these boundary points the density is similar to a square root function.

Finally, in chapter 8 we provide an example with specific choices for H, c, and æ and

a discussion of the detection problem in array signal processing. For the example

given, the graph of the density is shown along with a histogram and scatterplot of

eigenvalues resulting from a simulation of the matrix Cn. The Appendix contains the

proof of a lemma from chapter 2.

Let Cn = 1
N

(Rn + æXn)§(Rn + æXn). The spectra of Cn and Cn diÆer by |n°N |

zero eigenvalues and are related by

FCn =
≥

1° n

N

¥

1[0,1) +
n

N
FCn (1.2)

(1B denoting the indicator function over the set B). Because of this, information on

the limit of FCn can be inferred from knowledge of F .

Notice that the eigenvalues of Cn are directly related to those of the N £n matrix

1
n
(R§

n +æX§
n)(R§

n +æX§
n)§ = N

n
Cn. With this fact it is straightforward to show that if

m satisfies (1.1) when c ∑ 1, then m will also satisfy (1.1) when c > 1. We therefore

assume, without loss of generality, that 0 < c ∑ 1.

Let mn(z) = mF Cn (z). Defining mn(z) = mFCn (z) we get from (1.2)

mn = °1° cn

z
+ cnmn, (1.3)

which will be used later for notational convenience.

4



2. Truncation and Centralization

The first step in proving Theorem 1.1 is similar to that of Silverstein and Bai [9], in

that, we truncate and centralize twice with regard to Xn, and, as in Silverstein [8], we

truncate Rn. The reason for these truncations and centralizations is to justify our later

replacing the matrices Xn and Rn with ones more suitable for analysis. We compare

the e.d.f.’s of these matrices by the following metric presented in Silverstein and Bai

[9]. Let {fi} be an enumeration of all continuous functions that take a constant 1
m

value (m a positive integer) on [a, b], where a, b are rational, 0 on (°1, a° 1
m

]
S

[b +

1
m

,1), and linear on each of [a° 1
m

, a], [b, b + 1
m

]. For probability measures F,G on

R the metric

D(F,G) ¥
1

X

i=1

Ø

Ø

Ø

Ø

Z

fidF °
Z

fidG

Ø

Ø

Ø

Ø

2°i

induces the topology of weak convergence, and, as noted in Silverstein and Bai [9],

for sequences {Fn}, {Gn} of probability measures on R, we have

lim
n!1

kFn °Gnk = 0 ) lim
n!1

D(Fn, Gn) = 0 (2.1)

where k · k denotes the sup-norm on bounded functions from R to R.

Note that for x, y 2 R, |fi(x)° fi(y)| ∑ |x° y|. Then, restating from Silverstein

and Bai [9], we have for e.d.f.’s F,G on the (respective) sets {x1, ..., xn}, {y1, ..., yn},

D2(F,G) ∑
√

1

n

n
X

j=1

|xj ° yj|
!2

∑ 1

n

n
X

j=1

(xj ° yj)
2. (2.2)

Before continuing, some needed results are presented.

For q 2 Cn and n £ N matrix A, kqk will denote the Euclidean norm, and kAk

the induced spectral norm on matrices, that is, the largest singular value of A. We
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also use the notation FA
sing to denote the e.d.f. of the square root of the eigenvalues

of AA§, which are the n largest singular values of A. The constants, denoted by K,

appearing henceforth in some of the expressions are nonrandom and may take on

diÆerent values from one appearance to the next.

Lemma 2.1 [Corollary 7.3.8 of Horn and Johnson [3]]. For r £ s matrices A and

B with respective singular values æ1 ∏ æ2 ∏ ... ∏ æq, ø1 ∏ ø2 ∏ ... ∏ øq, where

q = min{r, s}, we have

√

q
X

i=1

(æi ° øi)
2

!
1
2

∑ kA°Bk2,

where k · k2 is the Frobenius matrix norm.

Lemma 2.2 [Lemma 2.5 of Silverstein and Bai [9]]. For n£N matrices Q,Q,

kFQQ§ ° FQ Q
§
k ∑ 2

n
rank(Q°Q).

The following are well-known properties of matrices.

Matrix Properties.

(MP1) For n£ n A,B,

|trAB| ∑ (trAA§ trBB§)
1
2 ∑ nkAkkBk.

(MP2) For rectangular A, rank(A) ∑ the number of nonzero entries of A.

Proof of Theorem 1.1. Following Silverstein and Bai [9] we use the convention of

occasionally suppressing the variables’ dependence on n. All convergence statements

are as n ! 1. Let X̂ij = Xij1(|Xij |<
p

n) and Ĉn =
≥

1p
N

R + æX̂
¥ ≥

1p
N

R + æX̂
¥§

,

where X̂ =
≥

1p
N

X̂ij

¥

. It is shown in the Appendix that

kFCn ° F Ĉnk a.s.°! 0. (2.3)
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Let C̃n =
≥

1p
N

R + æX̃
¥≥

1p
N

R + æX̃
¥§

, where X̃ =
≥

1p
N

X̃ij

¥

=
≥

1p
N

X̂ij ° E 1p
N

X̂ij

¥

.

Since rank(EX̂) ∑ 1, we have from Lemma 2.2

kF Ĉn ° F C̃nk ! 0. (2.4)

Write 1p
N

R in its singular value decomposition 1p
N

R = U§V . Let RÆ = U§ÆV

where §Æ is the matrix § with each singular value s replaced by s1(s∑Æ), for Æ > 0.

Let Q be any n£N matrix. If Æ2 is a continuity point of H, we have by Lemma

2.2 and assumptions (b), (c)

kF ( 1p
N

R+Q)( 1p
N

R+Q)§ ° F (RÆ+Q)(RÆ+Q)§k ∑ 2

n
rank

µ

1p
N

R°RÆ

∂

=
2

n

n
X

i=1

1(si>Æ) =
2

n

n
X

i=1

1(∏i>Æ2)
a.s.°! 2H{(Æ2,1)},

where the si’s are the n largest singular values of 1p
N

R and the ∏i’s are the eigenvalues

of 1
N

RR§, i.e., ∏i = s2
i . Let Æ ¥ Æn = ln(n). It follows that as n !1

kF ( 1p
N

R+Q)( 1p
N

R+Q)§ ° F (RÆ+Q)(RÆ+Q)§k a.s.°! 0. (2.5)

Let X ij = X̃ij1(|Xij |<ln(n)) ° EX̃ij1(|Xij |<ln(n)), X =
≥

1p
N

X ij

¥

, X ij = X̃ij °X ij,

and X =
≥

1p
N

X ij

¥

. Let s̃1 ∏ s̃2 ∏ ... ∏ s̃n and s1 ∏ s2 ∏ ... ∏ sn be the n largest

singular values of RÆ + æX̃ and RÆ + æX, respectively. Then using (2.2),(MP1), and

Lemma 2.1 we get

D2
≥

FRÆ+æX̃
sing , FRÆ+æX

sing

¥

∑ 1

n

n
X

j=1

(s̃j ° sj)
2 ∑ 1

n
æ2kXk2

2

=
1

n
æ2trX

§
X ∑ æ2

µ

1

n
tr

≥

X
§
X

¥2
∂

1
2

a.s.°! 0

by (3.6) of Silverstein and Bai [9]. It follows that

D
≥

F (RÆ+æX̃)(RÆ+æX̃)§ , F (RÆ+æX)(RÆ+æX)§
¥

a.s.°! 0. (2.6)
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Therefore, by (2.1), (2.3), (2.4), (2.5), and (2.6), in order to show that FCn
D°! F ,

it is su±cient to show that for any z 2 C+,

mF (RÆ+æX)(RÆ+æX)§ (z)
a.s.°! mF (z).

We may therefore add to the conditions of Theorem 1.1 the following:

(1) |X11| ∑ ln(n) ,

(2) EX11 = 0, E|X11|2 = 1,

(3) k 1
N

RR§k ∑ ln(n).
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3. Existence of the Limiting Distribution

Fix z = z1 + iz2 2 C+. The next four results are used to complete the proof of

Theorem 1.1.

Lemma 3.1. For n£ n A and n£ 1 vectors q, v where A and A + vv§ are invertible,

we have

q§ (A + vv§)°1 = q§A°1 ° q§A°1v

1 + v§A°1v
v§A°1.

Notice if q = v then

v§ (A + vv§)°1 =
1

1 + v§A°1v
v§A°1.

Proof. Let q§ (A + vv§)°1 ¥ r§ so that q§ = r§A + r§vv§. Multiplying by A°1 on the

right we get

q§A°1 = r§ + r§vv§A°1, (3.1.1)

and then multiplying by v on the right we get

q§A°1v = r§v + r§vv§A°1v = r§v
°

1 + v§A°1v
¢

.

Since q is arbitrary we must have 1 + v§A°1v 6= 0. Then

r§v =
q§A°1v

1 + v§A°1v
,

and hence by (3.1.1) we have

r§ = q§A°1 ° q§A°1v

1 + v§A°1v
v§A°1,

and the proof is complete.
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Lemma 3.2 [Lemma 3.1 of Silverstein and Bai [9]]. Let C = (cij), cij 2 C, be an

n£ n matrix with kCk ∑ 1, and Y = (X1, ..., Xn)T , Xi 2 C, where the Xi’s are i.i.d.

satisfying conditions (1) and (2). Then

E|Y §CY ° trC|6 ∑ Kn3(ln(n))12,

where the constant K does not depend on n, C, or on the distribution of X1.

Lemma 3.3 [Lemma 2.6 of Silverstein and Bai [9]]. Let z = z1 + iz2 2 C+ with A

and B n£ n, B Hermitian and r 2 Cn. Then

Ø

Øtr
°

(B ° zI)°1 ° (B + rr§ ° zI)°1
¢

A
Ø

Ø

=

Ø

Ø

Ø

Ø

r§(B ° zI)°1A(B ° zI)°1r

1 + r§(B ° zI)°1r

Ø

Ø

Ø

Ø

∑ kAk
z2

.

Lemma 3.4 [Lemma 2.3 of Silverstein and Bai [9]]. Let x, y be nonnegative numbers.

For rectangular matrices A,B of the same size,

FA+B
sing {(x + y,1)} ∑ FA

sing{(x,1)} + FB
sing{(y,1)}.

Using Lemma 3.2 we get 1
n
tr 1

N
XX§ a.s.°! 1 which yields the almost sure tightness

of {F 1
N XX§}. This together with Lemma 3.4 and assumption (b) gives us {FCn}

being almost surely tight, and therefore the quantity

± ¥ inf
n
Im (mF Cn (z)) ∏ inf

n

Z

z2dFCn(∏)

2(∏2 + z2
1) + z2

2

is positive almost surely.

For j = 1, 2, ..., N let xj(= xn
j ) and rj(= rn

j ) denote the j th column of X and R

respectively and define yj = 1p
N

(rj + æxj) so that Cn =
PN

j=1 yjy
§
j .

10



Note that RR§ =
PN

j=1 rjr
§
j , and since for each j = 1, 2, ..., N the matrix RR§ °

rjr
§
j =

PN
i6=j rir

§
i is positive semidefinite, then using condition (3) from the previous

chapter we get

krjk2 = krjr
§
jk ∑ kRR§k ∑ N ln(n). (3.1)

Define D = Cn ° zI, B = An ° zI, where

An ¥
µ

1

1 + æ2cnmn

∂

1

N
RR§ ° æ2zmnI,

and for j = 1, 2, ..., N let C(j) = Cn ° yjy
§
j and Dj = D ° yjy

§
j (= C(j) ° zI). Write

D + zI =
N

X

j=1

yjy
§
j .

Multiplying by D°1 on the right on both sides and using Lemma 3.1 we get

I + zD°1 =
N

X

j=1

1

1 + y§j D
°1
j yj

yjy
§
j D

°1
j .

Taking the trace on both sides and dividing by N we have

cn + zcnmn =
1

N

N
X

j=1

y§j D
°1
j yj

1 + y§j D
°1
j yj

= 1° 1

N

N
X

j=1

1

1 + y§j D
°1
j yj

.

From our definition (1.3) of mn, we see that

mn = ° 1

N

N
X

j=1

1

z(1 + y§j D
°1
j yj)

. (3.2)

Following the steps leading up to (2.3) of Silverstein [8] we get

1
Ø

Øz
°

1 + y§j D
°1
j yj

¢Ø

Ø

∑ 1

z2
. (3.3)

For j = 1, 2, ..., N , we make the following scalar definitions:

Ωj =
1

N
r§jD

°1
j rj, !j =

1

N
æ2x§jD

°1
j xj,

Øj =
1

N
r§jD

°1
j æxj, ∞j =

1

N
æx§jD

°1
j rj,

Ω̂j =
1

N
r§jD

°1
j B°1rj, !̂j =

1

N
æ2x§jD

°1
j B°1xj,

Ø̂j =
1

N
r§jD

°1
j B°1æxj, ∞̂j =

1

N
æx§jD

°1
j B°1rj.
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We begin the next stage of the proof by factoring the diÆerence of inverses and

expanding the middle factor to get

B°1 °D°1 = B°1(D °B)D°1 = B°1(Cn ° An)D°1

= B°1

µ

æ2cnmn

1 + æ2cnmn

1

N
RR§ +

1

N
æXR§ +

1

N
RæX§ +

1

N
æ2XX§ + æ2zmnI

∂

D°1

=
N

X

j=1

B°1

∑

æ2cnmn

1 + æ2cnmn

1

N
rjr

§
j +

1

N
æxjr

§
j +

1

N
rjæx§j +

1

N
æ2xjx

§
j +

1

N
æ2zmnI

∏

D°1

=
N

X

j=1

∑

æ2cnmn

1 + æ2cnmn

B°1 1

N
rjr

§
jD

°1 + B°1 1

N
æxjr

§
jD

°1 + B°1 1

N
rjæx§jD

°1

+B°1 1

N
æ2xjx

§
jD

°1 +
1

N
æ2zmnB°1D°1

∏

.

While using (3.2), we take the trace of both sides and divide by n to get

1

n
tr(An ° zI)°1 °mn =

1

n

N
X

j=1

∑

æ2cnmn

1 + æ2cnmn

1

N
r§jD

°1B°1rj +
1

N
r§jD

°1B°1æxj

+
1

N
æx§jD

°1B°1rj +
1

N
æ2x§jD

°1B°1xj

° 1

1 + 1
N

(rj + æxj)§D
°1
j (rj + æxj)

1

N
æ2trD°1B°1

∏

¥ 1

n

N
X

j=1

h

W n,j
1 + W n,j

2 + W n,j
3 + W n,j

4 °W n,j
5

i

. (3.4)

Let Æn,j = 1 + 1
N

(rj + æxj)§D
°1
j (rj + æxj) = 1 + Ωj + Øj + ∞j + !j.
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Since D°1 = (Dj + 1p
N

(rj + æxj)
1p
N

(rj + æxj)§)°1 we can use Lemma 3.1 to get

W n,j
1 =

1

Æn,j

µ

æ2cnmn

1 + æ2cnmn

∂∑

Æn,j 1

N
r§jD

°1
j B°1rj

° 1

N
(r§jD

°1
j (rj + æxj))

1

N
(rj + æxj)

§D°1
j B°1rj

∏

=
1

Æn,j

µ

æ2cnmn

1 + æ2cnmn

∂∑

(1 + ∞j + !j)Ω̂j ° (Ωj + Øj)∞̂j

∏

,

W n,j
2 =

1

Æn,j

∑

Æn,j 1

N
r§jD

°1
j B°1æxj

° 1

N
(r§jD

°1
j (rj + æxj))

1

N
(rj + æxj)

§D°1
j B°1æxj

∏

=
1

Æn,j

∑

(1 + ∞j + !j)Ø̂j ° (Ωj + Øj)!̂j

∏

,

W n,j
3 =

1

Æn,j

∑

Æn,j 1

N
æx§jD

°1
j B°1rj

° 1

N
(æx§jD

°1
j (rj + æxj))

1

N
(rj + æxj)

§D°1
j B°1rj

∏

=
1

Æn,j

∑

(1 + Ωj + Øj)∞̂j ° (∞j + !j)Ω̂j

∏

,

W n,j
4 =

1

Æn,j

∑

Æn,j 1

N
æx§jD

°1
j B°1æxj

° 1

N
(æx§jD

°1
j (rj + æxj))

1

N
(rj + æxj)

§D°1
j B°1æxj

∏

=
1

Æn,j

∑

(1 + Ωj + Øj)!̂j ° (∞j + !j)Ø̂j

∏

, and

W n,j
5 =

1

Æn,j

1

N
æ2trD°1B°1.

Therefore, after simplification, we have

(3.4) =
1

n

N
X

j=1

1

Æn,j

∑

1

1 + æ2cnmn

(æ2cnmn ° !j ° ∞j)Ω̂j + Ø̂j

+
1

1 + æ2cnmn

(Ωj + Øj + 1 + æ2cnmn)∞̂j + !̂j °
1

N
æ2trD°1B°1

∏

13



¥ 1

n

N
X

j=1

1

Æn,j
dn,j.

For j = 1, 2, ..., N we make the following definitions

m(j) ¥ m
F

C(j) (z), m(j) ¥ °
1° cn

z
+ cnm(j),

Bj ¥
µ

1

1 + æ2cnm(j)

∂

1

N
RR§ ° æ2zm(j).

As noted below (2.5) of Silverstein [8], m(j) is the Stieltjes transform of a p.d.f. (on

[0,1)).

The following expressions hold for any j = 1, 2, ..., N and any n.

From (3.3) we get

1

|Æn,j| ∑
|z|
z2

, (3.5)

and since for any Hermitian matrix A, k(A° zI)°1k ∑ 1
z2

, we have

kD°1
j k ∑

1

z2
. (3.6)

By (S.1) we get

1

|1 + æ2cnmn|
∑ |z|

z2 + æ2cnIm zmn

∑ |z|
z2

(3.7)

and similarly

1

|1 + æ2cnm(j)|
∑ |z|

z2
. (3.8)

From Lemma 3.3 we have

max
j∑N

|mn °m(j)| ∑
1

nz2
. (3.9)

Suppose ∏ is an eigenvalue of 1
N

RR§ and ∏B = 1
1+æ2cnmn

∏ ° æ2zmn ° z is the

corresponding eigenvalue of B. Then (S.1) gives

|∏B| ∏ |Im ∏B| =

Ø

Ø

Ø

Ø

æ2cnIm mn

|1 + æ2cnmn|2
∏ + æ2Im zmn + z2

Ø

Ø

Ø

Ø

∏ z2.

Therefore

kB°1k =
1

|∏B
min|

∑ 1

z2
, (3.10)

14



and similarly

kB°1
j k ∑ 1

z2
. (3.11)

Using (3.7), (3.8), (3.9), (3.10), (3.11), and condition (3) we get

kB°1
j °B°1k = kB°1

j (B °Bj)B
°1k ∑ 1

z2
2

kB °Bjk

=
æ2cn|m(j) °mn|

z2
2

∞

∞

∞

∞

1

(1 + æ2cnmn)(1 + æ2cnm(j))

1

N
RR§ + zI

∞

∞

∞

∞

∑ æ2cn

nz3
2

µ

1

|1 + æ2cnmn||1 + æ2cnm(j)|

∞

∞

∞

∞

1

N
RR§

∞

∞

∞

∞

+ |z|
∂

∑ æ2cn

nz3
2

µ

|z|2

z2
2

ln(n) + |z|
∂

∑ K
ln(n)

n
. (3.12)

A simple application of Lemma 3.2 gives

Ekxjk12 ∑ Kn6(ln(n))12. (3.13)

The combination of (3.1), (3.6), (3.10), and the Cauchy-Schwarz inequality yields

|Ω̂j| ∑ K ln(n) and |Ωj| ∑ K ln(n).

The Cauchy-Schwarz inequality along with Lemma 3.2, Lemma 3.3, (3.6), (3.10),

(3.11), (3.12), (3.13), and (MP1) gives

E|!̂j °
1

N
æ2trD°1B°1|6 =

æ12

N6
E|x§jD°1

j B°1xj ° trD°1B°1|6

∑ K

N6
E|x§jD°1

j (B°1 °B°1
j )xj|6 +

K

N6
E|x§jD°1

j B°1
j xj ° trD°1

j B°1
j |6

+
K

N6
E|trD°1

j (B°1
j °B°1)|6 +

K

N6
E|tr(D°1

j °D°1)B°1|6

∑ K
(ln(n))6

N12
Ekxjk12 + K

(ln(n))12

N3
+ K

(ln(n))6

N6
+

K

N6

∑ K
(ln(n))18

N3
.

Using (3.6), Lemma 3.2, and Lemma 3.3 we get

E|!j ° æ2cnmn|6 =
æ12

N6
E|xjD

°1
j xj ° trD°1|6

15



∑ K

N6

°

E|x§jD°1
j xj ° trD°1

j |6 + E|tr(D°1
j °D°1)|6

¢

∑ K

N3
(ln(n))12 +

K

N6

∑ K
(ln(n))12

N3
.

From (3.1), (3.6), (3.11), (3.12), (3.13) Lemma 3.2, and the Cauchy-Schwarz in-

equality we have

E|∞̂j|12 ∑
K

N12
E|x§jD°1

j (B°1 °B°1
j )rj|12 +

K

N12
E

Ø

Ø|x§jD°1
j B°1

j rj|2
Ø

Ø

6

∑ K

N12
Ekxjk12krjk12kD°1

j k12kB°1 °B°1
j k12

+
K

N12
E|x§jD°1

j B°1
j rjr

§
jB

°1§
j D°1§

j xj|6

∑ K
(ln(n))18

N18
Ekxjk12 +

K

N12
E|x§jD°1

j B°1
j rjr

§
jB

°1§
j D°1§

j xj

°trD°1
j B°1

j rjr
§
jB

°1§
j D°1§

j |6

+
K

N12
E|r§jB°1§

j D°1§
j D°1

j B°1
j rj|6

∑ K
(ln(n))30

N12
+

K

N9
(ln(n))12EkD°1

j B°1
j rjr

§
jB

°1§
j D°1§

j k6

+
K

N12
EkB°1§

j D°1§
j D°1

j B°1
j k6krjk12

∑ K
(ln(n))30

N12
+ K

(ln(n))18

N3
+ K

(ln(n))6

N6

∑ K
(ln(n))30

N3
,

and similarly

E|Ø̂j|12 ∑ K
(ln(n))30

N3
.

Using (3.1), (3.6), Lemma 3.2, and the Cauchy-Schwarz inequality we have

E|∞j|12 =
æ12

N12
E

Ø

Ø|x§jD°1
j rj|2

Ø

Ø

6
=

æ12

N12
E|x§jD°1

j rjr
§
jD

°1§
j xj|6

∑ K

N12
E|x§jD°1

j rjr
§
jD

°1§
j xj ° trD°1

j rjr
§
jD

°1§
j |6

+
K

N12
E|r§jD°1§

j D°1
j rj|6

∑ K

N9
(ln(n))12EkD°1

j rjr
§
jD

°1§
j k6 +

K

N12
EkD°1

j k12krjk12
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∑ K
(ln(n))18

N3
+ K

(ln(n))6

N6

∑ K
(ln(n))18

N3
,

and similarly

E|Øj|12 ∑ K
(ln(n))18

N3
.

From the Cauchy-Schwarz inequality and the above bounds we get

E|Øj ∞̂j|6 ∑ K
(ln(n))24

N3
.

Therefore, using (3.7) with the above, we have as n !1

max
j∑N

max

Ω Ø

Ø

Ø

Ø

(æ2cnmn ° !j)Ω̂j

1 + æ2cnmn

Ø

Ø

Ø

Ø

,

Ø

Ø

Ø

Ø

∞j Ω̂j

1 + æ2cnmn

Ø

Ø

Ø

Ø

, |Ø̂j|, |∞̂j|,
Ø

Ø

Ø

Ø

Ωj ∞̂j

1 + æ2cnmn

Ø

Ø

Ø

Ø

,

Ø

Ø

Ø

Ø

Øj ∞̂j

1 + æ2cnmn

Ø

Ø

Ø

Ø

, |!̂j °
æ2

N
trD°1B°1|

æ

a.s.°! 0. (3.14)

We now concentrate on a realization for which (3.14) holds, {FCn} is tight, and

F
1
N RR§

converges in distribution to H. From (3.14) we get maxj∑N |dn,j| ! 0 as

n !1. Therefore, using (3.5),

1

n
tr(An ° zI)°1 °mn ! 0 as n !1.

Consider a subsequence {ni} on which mni ( bounded in absolute value by 1
z2

)

converges to a number m. We have Im m ∏ ± > 0. Let b = 1 + æ2cm and bn =

1 + æ2cnmn. Since Im zmni ∏ 0 then Im zm ∏ 0. From this we find for all t ∏ 0

Im

µ

t

b
° bz + æ2(1° c)

∂

∑ °z2 < 0,

and similarly

Im

µ

t

bni

° bniz + æ2(1° cni)

∂

∑ °z2 < 0.

Then
Ø

Ø

Ø

Ø

Ø

1
t

bni
° bniz + æ2(1° cni)

° 1
t
b
° bz + æ2(1° c)

Ø

Ø

Ø

Ø

Ø

17



=

Ø

Ø

Ø

Ø

Ø

Ø

t
bbni

(bni ° b) + z(bni ° b) + æ2(cni ° c)
≥

t
bni
° bniz + æ2(1° cni)

¥

°

t
b
° bz + æ2(1° c)

¢

Ø

Ø

Ø

Ø

Ø

Ø

∑ |z||bni ° b| + æ2|cni ° c|
z2
2

+
|bni ° b|
z2|bni|

Ø

Ø

Ø

Ø

t
b

t
b
° bz + æ2(1° c)

Ø

Ø

Ø

Ø

=
|z||bni ° b| + æ2|cni ° c|

z2
2

+
|bni ° b|
z2|bni|

Ø

Ø

Ø

Ø

1° °bz + æ2(1° c)
t
b
° bz + æ2(1° c)

Ø

Ø

Ø

Ø

∑ |z||bni ° b| + æ2|cni ° c|
z2
2

+
|bni ° b|
z2|bni|

µ

1 +
|bz| + æ2|1° c|

| t
b
° bz + æ2(1° c)|

∂

∑ |z||bni ° b| + æ2|cni ° c|
z2
2

+
|bni ° b|
z2æ2cni±

0

@1 +
|z|

≥

1 + æ2c
z2

¥

+ æ2|1° c|

z2

1

A ,

which converges to zero uniformly in t. Therefore as ni !1

1

ni

tr(Ani ° zI)°1 =

Z

1
t

bni
° bniz + æ2(1° cni)

dF
1

Ni
RR§

(t)

°!
Z

1
t
b
° bz + æ2(1° c)

dH(t).

Thus m satisfies (1.1).

Now, using the result from the next chapter we have that m is unique. Therefore,

with probability one, FCn converges in distribution to the p.d.f. F having Stieltjes

transform defined by (1.1), and the proof of Theorem 1.1 is complete.
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4. Unique Solution to (1.1)

We now prove that a certain type of solution to equation (1.1) is unique.

Theorem 4.1. Let z = z1+iz2 2 C+, m = m1+im2 2 C+, and m = m1+im2 2 C+

with Im (1 + æ2cm)z > 0, and Im (1 + æ2cm)z > 0. If both m and m satisfy (1.1),

then m = m.

Proof. Define b ¥ 1 + æ2cm = b1 + ib2 and b ¥ 1 + æ2cm = b1 + ib2 and suppose

that both m and m satisfy (1.1). We have m°m = (m°m)Æ, where

Æ = æ2c

Z t
bb + z

( t
b
° bz + æ2(1° c))( t

b ° bz + æ2(1° c))
dH(t).

Using the triangle and Cauchy-Schwarz inequalities we get

|Æ| ∑ æ2c

Z t
|b||b|dH(t)

Ø

Ø

t
b
° bz + æ2(1° c)

Ø

Ø

Ø

Ø

t
b ° bz + æ2(1° c)

Ø

Ø

+æ2c|z|
Z

dH(t)
Ø

Ø

t
b
° bz + æ2(1° c)

Ø

Ø

Ø

Ø

t
b ° bz + æ2(1° c)

Ø

Ø

∑
√

Z æ2c t
|b|2 dH(t)

Ø

Ø

t
b
° bz + æ2(1° c)

Ø

Ø

2

!
1
2
√

Z æ2c t
|b|2 dH(t)

Ø

Ø

t
b ° bz + æ2(1° c)

Ø

Ø

2

!
1
2

+|z|
√

Z

æ2cdH(t)
Ø

Ø

t
b
° bz + æ2(1° c)

Ø

Ø

2

!
1
2
√

Z

æ2cdH(t)
Ø

Ø

t
b ° bz + æ2(1° c)

Ø

Ø

2

!
1
2

¥ (g(b))
1
2 (g(b))

1
2 + |z|(G(b))

1
2 (G(b))

1
2 . (4.1)
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Note that g(b), g(b) ∏ 0 and G(b), G(b) > 0.

The following statements are valid for both b and b.

From (1.1) we get

b1 = 1 + b1g(b) + (æ2(1° c)°Re bz)G(b) (4.2)

b2 = b2g(b) + (Im bz)G(b). (4.3)

Writing Im bz = b1z2 + b2z1, (4.3) implies

b1 = b2
1° g(b)° z1G(b)

z2G(b)
. (4.4)

Since (4.2) can be written as

b1(1° g(b) + z1G(b)) = (1 + æ2(1° c)G(b)) + b2z2G(b)

we replace b1 using (4.4) and get

b2((1° g(b))2 ° |z|2G2(b)) = (1 + æ2(1° c)G(b))z2G(b) > 0

(recall c ∑ 1).

Therefore,

(1° g(b))2 ° |z|2G2(b) > 0. (4.5)

Since G(b), b2, and Im bz are positive, we get from (4.3) that g(b) < 1, and hence

(4.5) implies

0 < |z|G(b) < 1° g(b). (4.6)

We now have

g(b) < 1° |z|G(b) and g(b) < 1° |z|G(b). (4.7)

For real numbers x and y with x, y 2 [0, 1] it is easy to show that

(1° x)
1
2 (1° y)

1
2 ∑ 1° (xy)

1
2 (4.8)
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with equality holding if and only if x = y.

To complete the theorem’s proof we use (4.1), (4.7), and (4.8) to get

|Æ| ∑ (g(b))
1
2 (g(b))

1
2 + |z|(G(b)G(b))

1
2

< (1° |z|G(b))
1
2 (1° |z|G(b))

1
2 + |z|(G(b)G(b))

1
2

∑ 1° (|z|G(b))
1
2 (|z|G(b))

1
2 + |z|(G(b)G(b))

1
2 = 1.

Therefore |Æ| < 1, and hence m = m.
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5. Existence of a Density

In this chapter we establish the following result.

Theorem 5.1. For all x 2 R ° {0}, limz2C+!x mF (z) ¥ m(x) exists. The function

m is continuous on R ° {0}, and F has a continuous derivative f on R ° {0} given

by f(x) = 1
º
Im m(x). Furthermore, if Im m(x) > 0 (f(x) > 0) for x 6= 0, then m(x)

is a solution to (1.1) for z = x, and the density f is analytic about x.

We note that it is shown in Silverstein [8] that, almost surely, F
1
N æ2XnX§

n converges

in distribution to a nonrandom p.d.f. F§ whose Stieltjes transform m§ = mF§(z), for

z 2 C+, satisfies the equation

m§ =
1

æ2(1° c° czm§)° z
=

1

°(1 + æ2cm§)z + æ2(1° c)
,

which is equation (1.1) with H = 1[0,1) (1B denoting the indicator function over the

set B). Therefore, by uniqueness of solution (Theorem 4.1), we have m§ = mF (for

H = 1[0,1)), and hence F = F§. This function has an explicit expression (Marčenko

and Pastur [5]), satisfying all properties to be investigated in this paper. Therefore

for the remainder of this paper we may assume H 6= 1[0,1).

We see from equation (1.1) that if c # 0, we get for any z 2 C+

mF (z) °!
Z

dH(t)

(t + æ2)° z
,

which is the Stieltjes transform of the p.d.f. of a random variable Y +æ2, where Y has

distribution H. In terms of the aforementioned application to array signal processing,

the condition c # 0 corresponds to the situation when the number of samples, N , is

significantly larger than the number of sensors, n which is equivalent to n being
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fixed and N approaching infinity. Assuming Xn to be centered and the samples

independent, we can conclude by the strong law of large numbers that Cn ! Sn+æ2I,

almost surely; however, if we assume for each N there is a new set of N samples, we

may only use the weak law of large numbers to get convergence in probability. Both

cases coincide with our result on mF as c # 0.

Two theorems from Silverstein and Choi [10] that will be needed are the following.

Theorem 5.2 [Theorem 2.1 of Silverstein and Choi [10]]. Let F be a p.d.f. and

x 2 R. Suppose Im mF (x) ¥ limz2C+!x Im mF (z) exists. Then F is diÆerentiable

at x, and its derivative is 1
º
Im mF (x).

Theorem 5.3 [Theorem 2.2 of Silverstein and Choi [10]]. Let X be an open and

bounded subset of Rn, let Y be an open and bounded subset of Rm, and let f : X ! Y

be a function, continuous on X. If, for all x0 2 @X, limx2X!x0 f(x) = f(x0), then f

is continuous on all of X.

As indicated in Theorem 5.1, once existence of m is verified, we immediately have

continuity of m and existence of the density f by Theorems 5.2 and 5.3. To prove

the existence of m and the analyticity of f , we rely on a series of lemmas which will

be stated and proved throughout this chapter.

For notational convenience we will often write equation (1.1) in terms of the

variable b = 1 + æ2cm in which case we have the equation

b = 1 + æ2c

Z

dH(t)
t
b
° bz + æ2(1° c)

. (1.10)

Therefore, when we say that such a b satisfies (1.10), the meaning is understood to

be that the corresponding variable m satisfies (1.1). At times we will also write

bF = 1 + æ2cmF to make a reference to the Stieltjes transform mF .
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Let z = z1 + iz2 2 C+, and let m = mF (z) and b = b1 + ib2 = 1 + æ2cm. Recall

from the previous chapter the functions g(b) and G(b) given by

g(b) =

Z æ2c t
|b|2 dH(t)

Ø

Ø

t
b
° bz + æ2(1° c)

Ø

Ø

2

G(b) =

Z

æ2cdH(t)
Ø

Ø

t
b
° bz + æ2(1° c)

Ø

Ø

2 .

Note that G(b) > 0, and since H 6= 1[0,1), we have g(b) > 0. It is clear that (4.2)

through (4.6) hold true for b since it is a solution to (1.10) with Im bz > 0. These

equations will be used often in establishing our results for this chapter.

We now prove the following lemma.

Lemma 5.1. Let z = z1 + iz2 2 C+, m = mF (z), and b = b1 + ib2 = 1 + æ2cm. Then

we have the following three results:

(a) b1 > 0,

(b) |m| <

µ

1

æ2c|z|

∂
1
2

,

(c) If limzn!x b ¥ b = b1 + ib2 exists for {zn} Ω C+ and x 2 R°{0}, then b1 > 0.

Proof. For simplicity of notation we suppress the subscript n in the proof of (c).

First, to prove (a), suppose 1° g(b)° z1G(b) ∑ 0. Since g(b) < 1 we get

0 < (1° g(b))2 ∑ z2
1G

2(b) < |z|2G2(b),

a contradiction of (4.6). Therefore 1 ° g(b) ° z1G(b) > 0, and since b2 > 0, z2 > 0,

and G(b) > 0 we have b1 > 0 by (4.4).

To prove (b) we first note that since 0 < g(b) < 1, (4.6) gives

0 < G(b) <
1

|z| . (5.1)

Then using the Cauchy-Schwarz inequality we get

|m| ∑
Z

dH(t)
Ø

Ø

t
b
° bz + æ2(1° c)

Ø

Ø

∑
√

Z

dH(t)
Ø

Ø

t
b
° bz + æ2(1° c)

Ø

Ø

2

!
1
2
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=

µ

G(b)

æ2c

∂
1
2

<

µ

1

æ2c|z|

∂
1
2

Finally, for part (c) we note that part (b) gives |b| < 1. Solving (4.2) and (4.3)

for G(b) we find

G(b) =
b2

Im (b2z ° bæ2(1° c))
=

1

Re bz + b1
Im bz

b2
° æ2(1° c)

=
1

2b1z1 ° b2z2 + b2
1

z2
b2
° æ2(1° c)

. (5.2)

Since F is proper we have
z2

b2
=

µ

æ2c

Z

dF (∏)

|∏° z|2

∂°1

is bounded as z ! x. Then if

b1 = 0 and c < 1 we get

lim
z!x

G(b) ¥ G =
1

°æ2(1° c)
< 0,

a contradiction since (5.1) gives

0 ∑ G ∑ 1

|x| . (5.3)

If c = 1, then, as z ! x, G(b) goes unbounded, again contradicting (5.3). Therefore,

b1 > 0 and the proof is complete.

In the next lemma we show that mF (z) has a unique limit as z ! x 2 R° {0}.

Lemma 5.2. Let {zn}, {ẑn} Ω C+ with zn and ẑn both converging to x 2 R° {0} as

n !1. If m = mF (zn) ! m and m̂ = mF (ẑn) ! m̂ as n !1, then m = m̂.

Proof. The result is obvious for x < 0 since mF is analytic outside the support of F .

Therefore, we assume x > 0. We let b = b1+ib2 = 1+æ2cm and b̂ = b̂1+ib̂2 = 1+æ2cm̂

and define the functions g(b̂) and G(b̂) in the same way that g(b) and G(b) are defined

with the exception that b and z are replaced by b̂ and ẑ, respectively.

To prevent the confusion of multiple subscripts, we will suppress the dependence

on n of the sequence terms zn, ẑn and write zn = z = z1 + iz2 and ẑn = ẑ = ẑ1 + iẑ2.
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We now take the diÆerence m° m̂ =
(z ° ẑ)Øn

1° Æn

where

Æn = æ2c

Z t

bb̂
+ z

µ

t
b
° bz + æ2(1° c)

∂µ

t

b̂
° b̂ẑ + æ2(1° c)

∂dH(t)

and

Øn =

Z

b̂dH(t)
µ

t
b
° bz + æ2(1° c)

∂µ

t

b̂
° b̂ẑ + æ2(1° c)

∂ .

Using the Cauchy-Schwarz inequality, (5.1), and Lemma 5.1 (b), we get for all n

|Øn| ∑
|b̂|(G(b)G(b̂))

1
2

æ2c
∑ 1 + æ2c|m̂|

æ2c(|z||ẑ|) 1
2

∑
1 +

≥

æ2c
|ẑ|

¥
1
2

æ2c (|z||ẑ|)
1
2

∑ K < 1.

Therefore |m° m̂| ∑ K|z ° ẑ|
|1° |Æn||

, and consequently we need only show that |Æn| stays

uniformly away from 1.

Following the procedure from the previous chapter, we use the triangle and Cauchy-

Schwarz inequalities to get

|Æn| ∑ (g(b))
1
2 (g(b̂))

1
2 + |z|(G(b)G(b̂))

1
2 . (5.4)

Therefore, since g(b), g(b̂), G(b), and G(b̂) are bounded, we can choose a subsequence

{nj} for which Ænj , g(b), g(b̂), G(b), and G(b̂) converge, and we define their respective

limits as Æ, g, ĝ, G, and Ĝ.

From (5.4) and (4.6) we get for all j

|Ænj | < (1° |z|G(b))
1
2 (1° |ẑ|G(b̂))

1
2 + |z|(G(b)G(b̂))

1
2 , (5.5)

and then taking the limit we have

|Æ| ∑ (1° xG)
1
2 (1° xĜ)

1
2 + x(GĜ)

1
2 . (5.6)

If G 6= Ĝ, then applying (4.8) to (5.7) we get the strict inequality

|Æ| < 1° (xGxĜ)
1
2 + x(GĜ)

1
2 = 1

as desired.
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For the rest of the proof, we assume that G = Ĝ.

From (5.2) we see that G(b) converges if and only if
z2

b2
converges. Therefore,

z2

b2

and similarly
ẑ2

b̂2

must converge, and we call their respective limits y and ŷ.

Solving (4.3) for g(b) gives

g(b) = 1° Im bz

b2
G(b) = 1°

µ

b1
z2

b2
+ z1

∂

G(b).

We solve for g(b̂) the same way and substitute the results into (5.4) to get

|Ænj | ∑
µ

1°
µ

b1
z2

b2
+ z1

∂

G(b)

∂
1
2
µ

1°
µ

b̂1
ẑ2

b̂2

+ ẑ1

∂

G(b̂)

∂
1
2

+ |z|(G(b)G(b̂))
1
2 .

Defining b = b1 + ib2 = 1 + æ2cm we take the limit and use (4.8) to get

|Æ| ∑ (1° (b1y + x)G)
1
2 (1° (b̂1ŷ + x)G)

1
2 + xG

∑ 1°
≥

(b1y + x)
1
2 (b̂1ŷ + x)

1
2 ° x

¥

G. (5.7)

By Lemma 5.1 (c), we have b1 > 0 and b̂1 > 0. Therefore if either y > 0 or ŷ > 0, we

have (b1y + x)
1
2 (b̂1ŷ + x)

1
2 > x, and hence |Æ| < 1 by (5.7).

Suppose y = ŷ = 0. Then (5.2) gives

1

2b1x° æ2(1° c)
= G = Ĝ =

1

2b̂1x° æ2(1° c)
,

and hence b1 = b̂1.

If b2 = b̂2 = 0, we are done. Suppose that either b2 > 0 or b̂2 > 0. Define

knj(t) ¥
Ø

Ø

Ø

Ø

t

bb̂

Ø

Ø

Ø

Ø

+ |z|°
Ø

Ø

Ø

Ø

t

bb̂
+ z

Ø

Ø

Ø

Ø

for t ∏ 0.

Since Im
1

bb̂
=
°(b1b̂2 + b2b̂1)

|bb̂|2
! °(b1b̂2 + b2b̂1)

|bb̂|2
< 0 as j !1, then z and

1

bb̂
are

noncolinear for j large. Therefore, since knj(t) is the residual of the triangle inequality,

we have for large j, knj(t) ∏ 0 for t ∏ 0 with knj(t) = 0 if and only if t = 0.

Define

∞nj ¥ æ2c

Z

knj(t)dH(t)
Ø

Ø

Ø

Ø

t
b
° bz + æ2(1° c)

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

t

b̂
° b̂ẑ + æ2(1° c)

Ø

Ø

Ø

Ø

.
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Since knj(t) ∑
Ø

Ø

Ø

Ø

t

bb̂

Ø

Ø

Ø

Ø

+ |z|, we have

∞nj ∑ æ2c

Z

Ø

Ø

Ø

Ø

t

bb̂

Ø

Ø

Ø

Ø

+ |z|
Ø

Ø

Ø

Ø

t
b
° bz + æ2(1° c)

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

t

b̂
° b̂ẑ + æ2(1° c)

Ø

Ø

Ø

Ø

dH(t)

∑ (g(b))
1
2 (g(b̂))

1
2 + |z|(G(b)G(b̂))

1
2 ∑ 1

for all j. Therefore by Fatou’s lemma we get

∞ ¥ æ2c

Z

limj!1 knj(t) dH(t)
Ø

Ø

Ø

Ø

t
b
° bx + æ2(1° c)

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

t

b̂
° b̂x + æ2(1° c)

Ø

Ø

Ø

Ø

∑ lim inf
j!1

∞nj ∑ 1.

Since H is proper, H 6= 1[0,1), and b, b̂ are finite we get ∞ > 0.

Going back to the definition of Æ we follow similar steps as before to derive

|Ænj | ∑ æ2c

Z

Ø

Ø

Ø

Ø

t

bb̂

Ø

Ø

Ø

Ø

+ |z|° knj(t)
Ø

Ø

Ø

Ø

t
b
° bz + æ2(1° c)

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

t

b̂
° b̂ẑ + æ2(1° c)

Ø

Ø

Ø

Ø

dH(t)

∑ (g(b))
1
2 (g(b̂))

1
2 + |z|(G(b)G(b̂))

1
2 ° ∞nj

< (1° |z|G(b))
1
2 (1° |ẑ|G(b̂))

1
2 + |z|(G(b)G(b̂))

1
2 ° ∞nj .

Then

|Æ| ∑ lim inf
j!1

≥

(1° |z|G(b))
1
2 (1° |ẑ|G(b̂))

1
2 + |z|(G(b)G(b̂))

1
2 ° ∞nj

¥

∑ lim inf
j!1

≥

(1° |z|G(b))
1
2 (1° |ẑ|G(b̂))

1
2 + |z|(G(b)G(b̂))

1
2

¥

° lim inf
j!1

∞nj

= 1° lim inf
j!1

∞nj

∑ 1° ∞ < 1.

Therefore in every case we have m = m̂, and hence the proof is complete.

By Theorems 5.2 and 5.3 and Lemmas 5.1 (b) and 5.2 we now have the existence

and continuity of both m and f on R° {0}. Moreover, when f(x) > 0 we have

Im

µ

t

b(x)
° b(x)x° æ2(1° c)

∂

∑ °Im b(x)x < 0

28



for all t ∏ 0, and therefore, by dominated convergence, m(x) satisfies (1.1) for z = x.

Therefore, the only part of Theorem 5.1 that remains to be shown is the analyticity

of f .

We now complete the proof of Theorem 5.1 with the following lemma.

Lemma 5.3. If x0 2 (0,1) and f(x0) > 0, then f is analytic near x0.

Proof. Let b = b1 + ib2 = 1+æ2cm(x0). For z 2 C+ and any m 2 C+ satisfying (1.1),

we get

m

1 + æ2cm
=

Z

dH(t)

t° (b2z ° bæ2(1° c))
= mH(b2z ° bæ2(1° c)), (5.8)

where mH(·) denotes the Stieltjes transform of H and b = 1 + æ2cm. Let w ¥

b2x0°bæ2(1°c). Since the denominator in (5.2) is bounded, we can tighten inequality

(5.3) to get

0 < G ∑ 1

x0
. (5.9)

From (5.2) we get Im w = b2
G

, and since b2 = ºæ2cf(x0) > 0 we have Im w > 0, and

hence mH is analytic near w.

First, suppose that m0
H(w) 6= 0. Then in a neighborhood of w, the analytic inverse

m°1
H exists. It is clear that for z near x0 and b near b, we have w ¥ b2z ° bæ2(1° c)

near w. Therefore, if b is near b and b satisfies equation (1.10) for z near x0, then we

have

1

æ2c

µ

1° 1

b

∂

= mH(b2z ° bæ2(1° c)) = mH(w), (5.10)

and hence

z =
1

b2
m°1

H

µ

1

æ2c

µ

1° 1

b

∂∂

+
1

b
æ2(1° c). (5.11)

Let z(b) be the right hand side of (5.11). In a neighborhood of b, z(b) is clearly

analytic, and we will show that it is also one-to-one.
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For complex numbers b, b̂ near b and z close enough to x0 so that Im bz > 0 and

Im b̂z > 0, define the function

Æ = æ2c

Z t

bb̂
+ z

µ

t
b
° bz + æ2(1° c)

∂µ

t

b̂
° b̂z + æ2(1° c)

∂dH(t).

Note that for t ∏ 0,

Im

µ

t

b
° bz + æ2(1° c)

∂

= °tIm b

|b|2 ° Im bz ∑ °Im bz < 0,

and similarly for b̂. Therefore the integrand of Æ is bounded since for any t ∏ 0
Ø

Ø

Ø

t

bb̂
+ z

Ø

Ø

Ø

Ø

Ø

Ø

Ø

t
b
° bz + æ2(1° c)

Ø

Ø

Ø

Ø

Ø

Ø

Ø

Ø

t

b̂
° b̂z + æ2(1° c)

Ø

Ø

Ø

Ø

∑
t

|bb̂| + |z|
Ø

Ø

t
b
° bz + æ2(1° c)

Ø

Ø Im b̂z

∑ 1

|b̂|Im b̂z

Ø

Ø

Ø

Ø

t
b

t
b
° bz + æ2(1° c)

Ø

Ø

Ø

Ø

+
|z|

(Im bz)(Im b̂z)

=
1

|b̂|Im b̂z

Ø

Ø

Ø

Ø

1° °bz + æ2(1° c)
t
b
° bz + æ2(1° c)

Ø

Ø

Ø

Ø

+
|z|

(Im bz)(Im b̂z)

∑ 1

|b̂|Im b̂z

√

1 +
|b||z| + æ2(1° c)

Ø

Ø

t
b
° bz + æ2(1° c)

Ø

Ø

!

+
|z|

(Im bz)(Im b̂z)

∑ 1

|b̂|Im b̂z

µ

1 +
|b||z| + æ2(1° c)

Im bz

∂

+
|z|

(Im bz)(Im b̂z)
< K,

and hence Æ is well-defined and, in fact, continuous in the variables b, b̂, and z. Define

Æ to be the value of Æ when b = b̂ = b and z = x0, that is,

Æ = æ2c

Z t
b2

+ x0
≥

t
b
° bx0 + æ2(1° c)

¥2dH(t).

Define

k(t) ¥
Ø

Ø

Ø

Ø

t

b2

Ø

Ø

Ø

Ø

+ x0 °
Ø

Ø

Ø

Ø

t

b2 + x0

Ø

Ø

Ø

Ø

and

∞ ¥ æ2c

Z

k(t)
Ø

Ø

Ø

t
b
° bx0 + æ2(1° c)

Ø

Ø

Ø

2dH(t).

Now, Im 1
b2

= ° b1b2
|b|2 < 0, and therefore 1

b2
and x0 are noncolinear. Since k is the

residual of the triangle inequality, we have k(t) ∏ 0 for t ∏ 0 with k(t) = 0 if and
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only if t = 0. Therefore since H 6= 1[0,1), we have ∞ > 0, and since (4.3) gives

1° g = x0G, we get, as in the proof of Lemma 5.2,

|Æ| ∑ æ2c

Z

Ø

Ø

Ø

t
b2

+ x0

Ø

Ø

Ø

Ø

Ø

Ø

t
b
° bx0 + æ2(1° c)

Ø

Ø

Ø

2dH(t) = æ2c

Z t
|b|2 + x0 ° k(t)

Ø

Ø

Ø

t
b
° bx0 + æ2(1° c)

Ø

Ø

Ø

2dH(t)

= g + x0G° ∞ = 1° ∞ < 1.

Suppose we have b and b̂ both satisfying (1.10) for the same z, where b, b̂ are close

to b and z is close enough to x0 so that Im bz > 0 and Im b̂z > 0. Then we can

write b° b̂ = (b° b̂)Æ, and by continuity of Æ and the fact that |Æ| < 1, we must have

|Æ| < 1 for all of these b, b̂ and z su±ciently close to b and x0, respectively. Therefore,

b = b̂. Then the function z(b) is one-to-one near b and hence has an analytic inverse

b(z) for z near x0. By Theorem 4.1 we must have b(z) = 1 + æ2cmF (z) for z 2 C+,

and hence mF extends analytically onto an interval about x0. Therefore we get

m(x) =
1

X

n=0

an(x° x0)
n

for x near x0 and some an 2 C, and hence

f(x) =
1

º

1
X

n=0

Im an(x° x0)
n. (5.12)

Now, suppose m0
H(w) = 0. We form the function u of the two complex variables

b, z by

u(b, z) = mH(b2z ° bæ2(1° c))° 1

æ2c

µ

1° 1

b

∂

which is analytic near (b, x0) 2 C2. Then we have u(b, x0) = 0. Taking the derivative

with respect to b we get

@u

@b
(b, x0) = m0

H(w)(2bx0 ° æ2(1° c))° 1

æ2cb2 = ° 1

æ2cb2 6= 0.

By the implicit function theorem (Krantz [4] p.54) there is a unique analytic solution

b(z) in a neighborhood of x0 such that b(x0) = b. Since mF is an analytic solution to

(1.1) in C+, we must have b(z) = 1 + æ2cmF (z) by uniqueness of b(z), and hence mF
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extends analytically to an interval about x0, and again we have (5.12). Therefore,

f(x) is analytic where it is positive, and the proof is complete.
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6. The Support of F

Let SF and SH denote the support of F and H, respectively. Clearly, by definition

of F and H, we have SF Ω [0,1) and SH Ω [0,1). We begin our analysis of SF

with the following result.

Theorem 6.1. F has no mass at 0.

Proof. The method we will use to prove the lemma was previously used in Silverstein

and Choi [10].

For any p.d.f. G we have

lim
y#0

iymG(iy) = °G{0} + lim
y#0

Z

(0,1)

iy

∏° iy
dG(∏) = °G{0},

by dominated convergence, and therefore, if G{0} > 0, we must deduce that |mG(iy)|!

1 as y # 0.

Suppose F{0} > 0. From (1.1) we have

iym(iy) =

Z

iy
t

1+æ2cm(iy) ° (1 + æ2cm(iy))iy + æ2(1° c)
dH(t).

Since F{0} > 0 we find, for any t ∏ 0, as y # 0

iy
t

1+æ2cm(iy) ° (1 + æ2cm(iy))iy + æ2(1° c)
! 0

æ2cF{0} + æ2(1° c)
= 0,

and since
Ø

Ø

Ø

Ø

Ø

iy
t

1+æ2cm(iy) ° (1 + æ2cm(iy))iy + æ2(1° c)

Ø

Ø

Ø

Ø

Ø

∑ y

Im iyb(iy)
=

1

b1(iy)
< 1,

by Lemma 5.1 (a), we have, by dominated convergence, limy#0 iym(iy) = 0, a contra-

diction. Therefore, F{0} = 0.
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The fact that F{0} = 0 gives no information on whether or not 0 2 SF . Simula-

tions have shown that either case can occur, depending on H and the values of c and

æ.

A method to identify the support of F is presented next.

First, we give a lemma that will be used in the proof of Theorem 6.3.

Lemma 6.1. If b,b 2 R are positive and both satisfy (1.10) for z = x 2 R, x < 0,

then b = b.

Proof. First, note that for t ∏ 0, b > 0, and x < 0 we have

1

| t
b
° bx + æ2(1° c)|

=
1

t
b
+ b|x| + æ2(1° c)

∑ 1

b|x| < 1,

and therefore the integral in (1.10) is well-defined for both b and b. We write b°b =

(b° b)Æ, where

Æ = æ2c

Z t
bb + x

( t
b
° bx + æ2(1° c))( t

b ° bx + æ2(1° c))
dH(t).

Again, following the procedure from chapter 4, we use the Cauchy-Schwarz and tri-

angle inequalities to obtain

|Æ| ∑ (g(b))
1
2 (g(b))

1
2 + |x|(G(b)G(b))

1
2 . (6.1)

From (4.2) we get b(1 ° g(b) + xG(b)) = 1 + æ2(1 ° c)G(b) > 0, and since b > 0 we

have

g(b) < 1 + xG(b) = 1° |x|G(b) (6.2)

and similarly for b. Substituting this into (6.1) and using (4.8) we find

|Æ| < (1° |x|G(b))
1
2 (1° |x|G(b))

1
2 + |x|(G(b)G(b))

1
2

∑ 1° (|x|G(b)|x|G(b))
1
2 + |x|(G(b)G(b))

1
2 = 1.

Therefore, b = b, and the proof is complete.

Suppose we have x 2 R° {0}. If x 2 Sc
F , we have that m(x) is real, continuous,

and increasing, and therefore so is m°1(x). Let b(z) = b1(z)+ ib2(z) = 1+æ2cmF (z).
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Since b(z) is a well-defined, analytic function for z in a neighborhood of x, we have

that the function w(z) ¥ b2(z)z°b(z)æ2(1°c) is also well-defined and analytic in such

a neighborhood. In the next theorem, we will show that w(x) 2 Sc
H , and therefore

we may write the inverse of m, expressed in terms of b 2 R, as

x(b) =
1

b2
m°1

H

µ

1

æ2c

µ

1° 1

b

∂∂

+
1

b
æ2(1° c).

Theorem 6.2. If x 2 Sc
F , then w(x) 2 Sc

H .

Proof. Let (l1, l2) Ω [L1, L2] Ω Sc
H and choose x0 2 (l1, l2). Since x0 2 Sc

F , mF (z) is

analytic in a neighborhood V of x0 with V \ R Ω (l1, l2), and therefore w(z) is also

analytic in V . Note that w(z) = z+2æ2cmF (z)z+(æ2c)2m2
F (z)z°æ2(1°c)°æ2cæ2(1°

c)mF (z). Let ≥ = u+ iv, where u 2 R is fixed and v !1. Since mF (≥) ! 0, mF (≥)≥

is bounded, and m2
F (≥)≥ ! 0, we have w(≥) ! 1, and hence w(z) is nonconstant.

Therefore, by the open mapping theorem, w(V ) is an open set.

For z 2 C+ we have b(z) 2 C+, and therefore w(z) 2 C+ by (5.2). Therefore, by

(1.1) and Lemma 5.1 (a), we get for any z 2 C+

mF (z)

1 + æ2cmF (z)
= mH(w(z)) =

Z

dH(t)

t° w(z)
,

which gives

Im mH(w(z)) = Im w(z)

Z

dH(t)

|t° w(z)|2 =
Im mF (z)

|1 + æ2cmF (z)|2 . (6.3)

Let w0 2 w(V ) \ R be arbitrary. Take a sequence {wj} Ω w(V ) \ C+ such that

wj ! w0. There exists a sequence {zj} Ω V for which wj = w(zj) for each j. For any

z 2 V we have b(z) = b(z), and consequently, w(z) = w(z). Therefore, {zj} Ω C+.

Since the zj’s are bounded, there exists a subsequence {zjk
} Ω {zj} that converges

to some z0 2 V . If z0 2 C+, then G(b(z0)) > 0 and b2(z0) > 0, and therefore (4.4)

gives Im w(z0) = Im w0 > 0, a contradiction. Then we must have z0 2 R, and hence

z0 2 Sc
F . Therefore Im mF (z0) = 0. If z0 6= 0, Lemma 5.1 (c) gives b(z0) > 0. If

z0 = 0 we may assume, without loss of generality, that 0 2 [L1, L2], and therefore we
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have

b(z0) = 1 + æ2c

Z

dF (∏)

∏° z0
= 1 + æ2c

Z

(L2,1)

dF (∏)

∏
> 1.

Therefore, in either case, b(z0) > 0, and (6.3) gives

lim
k!1

Im mH(w(zjk
)) =

Im mF (z0)

|b(z0)|2
= 0.

Hence by Theorem 5.2, H is diÆerentiable at w0 and its derivative is 0. Since w0 is

arbitrary in w(V )\R, we have w(V )\R Ω Sc
H , and therefore w(x0) 2 Sc

H , and since

x0 is arbitrary in Sc
F , the proof is complete.

So far we have shown that if we have an x outside the support of F , the corre-

sponding w(x) is outside the support of H, and we have an expression for the inverse

of m. Therefore, if we graph the inverse x(b) and identify an interval of points in

Sc
F on the vertical axis, x(b) will be increasing on that interval, but does the pres-

ence of an interval on the vertical axis for which x(b) is increasing always yield an

interval in Sc
F ? The answer is yes, if b > 0, as Theorem 6.3 will show. To prove this

semi-converse we proceed as follows.

Suppose we have (l1, l2) Ω [L1, L2] Ω Sc
H . Then mH(·) is increasing on (l1, l2)

and maps (l1, l2) onto some interval (d1, d2). Now,
1

æ2c

µ

1° 1

b

∂

is an increasing

function of b from (0,1) onto (°1,
1

æ2c
). Since b ∑ 0 does not correspond to our

Stieltjes transform by Lemma 5.1 (a),(c) , we may assume (l1, l2) is chosen so that

(d1, d2) Ω (°1,
1

æ2c
). Therefore there is an interval (k1, k2) Ω (0,1) such that the

mapping

b 7! 1

æ2c

µ

1° 1

b

∂

(6.4)

is a one-to-one correspondence from (k1, k2) to (d1, d2). Therefore m°1
H

µ

1

æ2c

µ

1° 1

b

∂∂

is well-defined from (k1, k2) to (l1, l2), and hence we define

x(b) =
1

b2
m°1

H

µ

1

æ2c

µ

1° 1

b

∂∂

+
1

b
æ2(1° c) (6.5)
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for b 2 (k1, k2). The next theorem will show that at a point b 2 (k1, k2) for which

x0(b) > 0, we have x(b) 2 Sc
F , and b = 1 + æ2cmF (x(b)).

Theorem 6.3. Let b 2 (k1, k2) and x0(b) > 0. Then x(b) 2 Sc
F and b = 1 +

æ2cmF (x(b)).

Proof. Let (k1, k2) Ω (k1, k2) be an interval on which x0(b) > 0. Fix b 2 (k1, k2).

If x(b) < 0, we immediately have x(b) 2 Sc
F , and by Lemma 6.1 we must have

b = 1 + æ2cmF (x(b)). Therefore we assume x(b) ∏ 0. Let D be an open set in C

such that D \ R = (k1, k2). Since x is analytic on (k1, k2), we may write x(b) in a

power series expansion centered at b, and therefore, for b 2 D, the function

z(b) ¥ x(b) +
1

X

j=1

x(j)(b)

j!
(b° b)j (6.6)

is the analytic extension of x onto D. Using (6.6) we write z(b) = x(b) + x0(b)(b °

b) + µ(b) where µ(b) = o(b ° b). Since x0(b) > 0, it is clear that we may choose

b̂ = b̂1 + ib̂2 2 D \ C+ su±ciently close to b to ensure that z(b̂) 2 C+, and since

b̂z(b̂) = b̂x(b) + x0(b)b̂(b̂ ° b) + b̂µ(b̂) and x(b) ∏ 0 we have Im b̂z(b̂) = b̂2(x(b) +

x0(b)(2b̂1 ° b)) + Im b̂µ(b̂) > 0 for b̂ 2 D \C+ close enough to b. Therefore we have

Im z(b̂) > 0, Im b̂z(b̂) > 0, and

z(b̂) =
1

b̂2
m°1

H

µ

1

æ2c

µ

1° 1

b̂

∂∂

+
1

b̂
æ2(1° c). (6.7)

Hence, by Theorem 4.1, b̂ is the unique solution to (1.10) for z = z(b̂), that is, b̂ =

1+æ2cmF (z(b̂)). Therefore, bF = 1+æ2cmF extends analytically onto a neighborhood

B of b and its inverse is given by (6.7).

Choose a sequence {zj} Ω z(B) \ C+ such that zj ! z(b) (= x(b)). Then we

have bF (zj) = 1 + æ2cmF (zj) ! bF (z(b)) = b, and consequently Im mF (zj) ! 0 as

j ! 1. By Theorem 5.2, F is diÆerentiable at x(b), and it’s derivative is 0. Since

b 2 (k1, k2) is arbitrary we have F 0(x) = 0 for all x = x(b) 2 (x(k1), x(k2)), and

therefore these x’s are outside SF . Moreover, mF is analytic in C+ [ (x(k1), x(k2)),

37



and therefore b = 1 + æ2cmF (x(b)) for any b 2 (k1, k2) for which x0(b) > 0, and this

completes the proof.

As a result of Theorems 6.2 and 6.3, we now have a method whereby we may

graphically identify the support of F . The first step of the procedure is to choose an

open interval IH Ω Sc
H such that IH is not in Sc

H , that is, IH is not a subset of a larger

interval in Sc
H . On IH , mH is increasing and maps to an interval (d1, d2). Since the

function (6.4) maps positive values of b onto (°1, 1
æ2c

), we take only those intervals

IH for which (d1, d2) ¥ (d1, d2) \ (°1, 1
æ2c

) is nonempty, and disregard any IH for

which this intersection is empty. Let (k1, k2) be the pre-image of (d1, d2) under the

mapping given in (6.4). Therefore, m°1
H

µ

1

æ2c

µ

1° 1

b

∂∂

is well-defined from (k1, k2)

to ĨH ¥ {t 2 IH : mH(t) 2 (d1, d2)}, and hence we may graph the function x(b) given

by (6.5) for b 2 (k1, k2). We then identify all intervals on the vertical axis where the

graph of x is increasing. By Theorem 6.3, we know that these intervals are outside

SF , and therefore we remove them from R, and SF must be contained in what is

left. We continue in this manner for every interval IH Ω Sc
H . Let D be the resulting

set. Since, by Theorem 6.2, every x 2 Sc
F corresponds (via w(x)) to a point in Sc

H ,

we must have D = SF . Also, for each interval IF Ω Sc
F , there is only one interval

IH Ω Sc
H for which our procedure produces IF . In other words, the intervals outside

SF that are being removed from R in the above procedure will not overlap each other.

To see this, we note that (6.5) gives

m°1
H

µ

1

æ2c

µ

1° 1

b

∂∂

= b2x(b)° bæ2(1° c). (6.8)

By Theorem 6.3, for each x 2 IF , there is a unique b, namely b = 1 +æ2cmF (x), such

that x = x(b). Therefore, IF uniquely determines the range of the left-hand side of

(6.8), which is an interval in Sc
H . Consequently, once we eliminate an interval from

being in SF , we will never again encounter any portion of this interval in subsequent

steps of the procedure.
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7. Behavior Near a Boundary Point

We now focus on the behavior of the density f near boundary points of SF . Let

a be a left end-point of SF , and let ≤ > 0 be su±ciently small so that (a° ≤, a) Ω Sc
F .

Therefore, by the previous chapter, there exists an interval (l1, l2) Ω Sc
H from which

we can construct a well-defined, analytic function x(b) given by the representation in

(6.5), for b in some interval (k1, k2) Ω (0,1), such that (a ° ≤, a) is in the range of

x(b) and x0(b) is positive over these range values. We now assume that [a° ≤, a] is in

the range of x(b), and, in particular, we define b§, ba 2 (k1, k2) so that x(b§) = a ° ≤

and x(ba) = a. Therefore b§ < ba, and x(b) is defined on both sides of ba.

Note that our assumption may not occur for certain choices of H. It may be the

case that limb"ba x(b) exists, but x(b) is not defined at ba, which can possibly occur

if b2
aa ° baæ

2(1 ° c) 2 @SH and m0
H(w) exists as w ! b2

aa ° baæ
2(1 ° c). However,

our assumption is valid, for example, when H is discrete, since m0
H will not exist on

@SH . This constitutes the most relevant cases of application of our model. A non-

discrete H would only be considered if it approximates the population eigenvalues in

an analytically tractable manner.

Since x(b) is analytic with x0(b) > 0 for all b 2 (b§, ba) and a is a left end-point

of SF , we must have x0(ba) = 0, and the next theorem will imply that ba is a relative

maximum of x.

Theorem 7.1. For some ± > 0 for which ba + ± < k2 we have x0(b) < 0 for all

b 2 (ba, ba + ±).

Proof. Suppose x(j)(ba) is the first non-vanishing derivative of x(b) at ba. Then for all

b in some interval (ba, ba +±) Ω (ba, k2), x(j)(b) is of one sign, and therefore each of the
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first j ° 1 derivatives do not change sign in this interval. If x0(b) > 0 on (ba, ba + ±)

then we would have (x(ba), x(ba + ±)) = (a, x(ba + ±)) Ω Sc
F , and consequently, a

would be an isolated point in SF , an impossibility since F has a continuous density

on R ° {0}. Therefore we must have x0(b) < 0 for all b 2 (ba, ba + ±), and the proof

is complete.

Let k§ 2 (ba, k2) be such that x0(b) < 0 for all b 2 (ba, k
§). Define the interval

(l1, l2) Ω (l1, l2) to be the image of (b§, k§) under the mapping m°1
H

µ

1

æ2c

µ

1° 1

b

∂∂

.

For z 2 C+ let bF (z) ¥ 1 + æ2cmF (z). Write limz2C+!x bF (z) ¥ b(x) = b1(x) + ib2(x)

for x 2 R° {0}. We have (b1(a), b2(a)) = (ba, 0). Choose ± su±ciently small so that

for x 2 (a, a + ±) we have b1(x) 2 (b§, k§) and b2
1(x)x° b1(x)æ2(1° c) 2 (l1, l2).

We argue that f(x) = 1
æ2cº

b2(x) > 0 for all x 2 (a, a + ±). Suppose x0 2 (a, a + ±)

is such that b2(x0) = 0. Letting b̂ = b1(x0), we have x(b̂) = x0. It is obvious that

b̂ 6= ba, and if b̂ 2 (b§, ba), then x0 < a, a contradiction. Therefore b̂ 2 (ba, k
§), and

hence, x0(b̂) < 0. For any b 2 (ba, k
§) we have from (1.10)

b = 1 + æ2cbmH(b2x(b)° bæ2(1° c)),

and therefore diÆerentiating implicitly with respect to b we get

x0(b) =
1° æ2cb2m0

H(b2x(b)° bæ2(1° c))(2bx(b)° æ2(1° c))

æ2cb4m0
H(b2x(b)° bæ2(1° c))

< 0. (7.1)

Since b is real, we have

æ2cb2m0
H(b2x(b)°bæ2(1°c)) = æ2cb2

Z

dH(t)

(t° (b2x(b)° bæ2(1° c))2

= æ2c

Z

dH(t)
°

t
b
° bx(b) + æ2(1° c)

¢2 = G(b),

and therefore (7.1) yields

x0(b) =
1°G(b)(2bx(b)° æ2(1° c))

b2G(b)
< 0. (7.2)
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Let z = z1 + iz2 2 C+ and b(z) = b1(z) + ib2(z) ¥ bF (z). From (5.2) we get

z2

b2(z)
=

1°G(b(z))(2b1(z)z1 ° æ2(1° c)) + b2(z)z2G(b(z))

b2
1(z)G(b(z))

> 0. (7.3)

Letting z ! x0 we have b(z) ! b̂ and therefore (7.3) gives

1°G(b̂)(2b̂x0 ° æ2(1° c))

b̂2G(b̂)
∏ 0,

a contradiction of (7.2). Therefore, b2(x0) > 0, and hence f(x) > 0 for all x 2

(a, a + ±).

Theorem 7.2. x00(ba) < 0.

Proof. Since x0(ba) = 0, we have, by Theorem 7.1, that ba is a relative maximum of

x. Therefore, x00(ba) ∑ 0. Since the first non-vanishing derivative of a function at a

relative extreme must be of even order, we will assume x00(ba) = 0 and x000(ba) = 0,

and proceed to show a contradiction.

Let w ¥ b2x(b) ° bæ2(1 ° c), wa ¥ b2
aa ° baæ

2(1 ° c), d ¥ 2bx(b) ° æ2(1 ° c),

da ¥ 2baa° æ2(1° c), and define

Aj =

Z

dH(t)

(t° wa)j
for j = 2, 3, 4

so that m0
H(wa) = A2, m00

H(wa) = 2A3, and m000
H(wa) = 6A4. Writing (1.10) as

1

æ2c

µ

1° 1

b

∂

= mH(w),

and diÆerentiating implicitly with respect to b three times results in the following

three equations

1

æ2cb2
= m0

H(w)(d + b2x0(b))

°2

æ2cb3
= m00

H(w)(d + b2x0(b))2 + m0
H(w)(2x(b) + 4bx0(b) + b2x00(b))

6

æ2cb4
= m000

H(w)(d+b2x0(b))3+3m00
H(w)(d+b2x0(b))(2x(b)+4bx0(b)+b2x00(b))

+m0
H(w)(6x0(b) + 6bx00(b) + b2x000(b)).
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Now, we evaluate these equations at the point ba and use the assumption that the

first three derivatives of x are zero to get the following three equations in terms of

the Aj’s

daA2 =
1

æ2cb2
a

d2
aA3 + aA2 = ° 1

æ2cb3
a

d3
aA4 + 2adaA3 =

1

æ2cb4
a

.

Note that the first equation implies da > 0. Solving for A3 and A4 we get

A3 = ° 1

æ2c

µ

a

d3
ab

2
a

+
1

d2
ab

3
a

∂

and

A4 =
1

æ2c

µ

2a2

d5
ab

2
a

+
2a

d4
ab

3
a

+
1

d3
ab

4
a

∂

.

Writing wa = daba ° b2
aa and A3 =

R

t
(t°wa)4 dH(t)° waA4 we get

0 <

Z

t

(t° wa)4
dH(t) = waA4 + A3 =

°2a3b4
a

æ2cd5
ab

4
a

,

a contradiction since a and da are both positive. Therefore, x00(ba) < 0.

We now show that the density f resembles a square root function in a neighbor-

hood to the right of a.

Since m0
H(wa) 6= 0, there exists a neighborhood W Ω C of wa on which mH is one-

to-one, and hence has an analytic inverse. Let B Ω C and U Ω C be neighborhoods

of ba and a, respectively. Define

W0 ¥ {w 2 C : w = b2z ° bæ2(1° c) for b 2 B and z 2 U}.

Choose B and U su±ciently small so that B \ R Ω (k1, k2), W0 Ω W and W0 \ R Ω

(l1, l2). Then m°1
H

µ

1

æ2c

µ

1° 1

b

∂∂

is an analytic mapping from B to W0. For b 2 B

define

z(b) =
1

b2
m°1

H

µ

1

æ2c

µ

1° 1

b

∂∂

+
1

b
æ2(1° c).
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Therefore, if b 2 B \ R, we have z(b) = x(b), and hence z0(ba) = x0(ba) = 0 and

z00(ba) = x00(ba) < 0. By Theorem 10.32 of Rudin [6], there is a neighborhood V Ω B

of ba and a function ¡, analytic in V , such that

z(b)° a = (¡(b))2 for all b 2 V, (7.4)

¡0 has no zero in V , and ¡ is an invertible mapping of V onto a disc centered at the

origin. We then have ¡(ba) = 0, ¡0(ba) 6= 0, and computing the first two derivatives

on both sides of (7.4) we get

z0(b) = 2¡(b)¡0(b)

and

z00(b) = 2[¡0(b)]2 + 2¡(b)¡0(b).

Therefore

0 > z00(ba) = 2[¡0(ba)]
2, (7.5)

and hence ¡0(ba) must be purely imaginary. Write 1
¡0(ba) = iÆ, where Æ 2 R is nonzero.

Let ± > 0 be small enough so that f is positive over (a, a+±) and (a, a+±) Ω U\R.

Fix x 2 (a, a + ±). Since m(x) satisfies (1.1) for z = x we immediately have

x° a = [¡(b(x))]2.

Since x > a, we may take the square root of both sides to get

¡(b(x)) =
p

x° a,

where we assume that ¡(b(x)) is the positive root. Let ° be the inverse of ¡ on V .

Then °(0) = ba and °0(0) = 1
¡0(ba) = iÆ, and expanding ° about 0 we have

b(x) = °(
p

x° a) = °(0) + °0(0)
p

x° a + (higher order terms)

= ba + iÆ
p

x° a + (higher order terms).

Therefore

b2(x) =
p

x° a(Æ + (higher order terms )),
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and hence, for x 2 (a, a + ±), we have expressed f(x) = 1
æ2cº

b2(x) as an analytic

function of
p

x° a. This is a stronger result than what was proven for the density

in Silverstein and Choi [10], although the same method used here may be applied to

that case and yield the same strong result.

The a we used was a left end-point of SF . If a were a right end-point of SF , the

analysis would diÆer only slightly from what we have done here. In that case we

assume that ba is a relative minimum of x(b), and therefore (7.5) becomes

0 < z00(ba) = 2[¡0(ba)]
2,

giving that ¡0(ba) is nonzero and real. Write 1
¡0(ba) = Æ. Let ± > 0 be small enough

so that f is positive over (a° ±, a) and (a° ±, a) Ω U \ R. Fixing x 2 (a° ±, a), we

again have

x° a = [¡(b(x))]2,

and hence, since x < a, we get

¡(b(x)) = i
p

|x° a|,

where the square root is assumed to be positive. Again letting ° be the inverse of ¡

on V we have °(0) = ba and °0(0) = Æ. Expanding ° about 0 we get

b(x) = °(i
p

|x° a|) = °(0) + i°0(0)
p

|x° a| + (higher order terms)

= ba + iÆ
p

|x° a| + (higher order terms),

and therefore

b2(x) =
p

|x° a|(Æ + (higher order terms)).
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8. An Example and Application

In this chapter we graphically analyze the limiting density and the procedure for

finding SF for a particular example of F . We compare the results of a simulation to

our density graph, and use the comparisons to analyze the problem of signal detection

in array signal processing.

As noted earlier, F is nonrandom and only depends on the distribution H and

the constants c and æ. We construct our example by letting c = .1 and æ = 1 and

taking H to be discrete with mass .2, .4, and .4 at the respective values 0, 3, and 10.

In chapter 6 we described a method by which SF may be obtained. From each

interval IH Ω Sc
H we construct a well-defined function x given (in terms of b =

1 + æ2cm) by

x(b) =
1

b2
m°1

H

µ

1

æ2c

µ

1° 1

b

∂∂

+
1

b
æ2(1° c) (8.1)

for b in some interval (k1, k2) Ω (0,1) prescribed by IH . We graph this function and

remove the intervals along the vertical axis where the graph is increasing. We repeat

this procedure for each interval IH Ω Sc
H , and the set of points that have not been

removed from the vertical axis will be SF .

For our example, Sc
H is composed of the four intervals I(i) = (°1, 0), I(ii) = (0, 3),

I(iii) = (3, 10), and I(iv) = (10,1), and therefore we have four functions given by (8.1).

The graphs of these four functions (given as x(m)), obtained using Newton’s method,

are shown in Figure 1 (a). The thick lines on the vertical axis represent SF . As

noted in chapter 6, we see that the intervals on the vertical axis where the graphs are

increasing do not overlap each other from one function to the next.
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Fig1.

Once we have obtained SF it is a simple matter of applying Newton’s method

to equation (1.1) with z = x and m = m(x) to numerically obtain the density

f(x) = 1
º
Im m(x) for each x 2 SF . Figure 1 (b) shows the graph of the limiting

density f . Note that when positive, f is a smooth function, and, at the boundary of

its support, f goes down vertically to the x-axis, thus behaving in a similar fashion

to a square root.
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Recall that when c # 0, F will converge to the distribution of a random variable

Y + æ2, where Y has distribution H. For our example, as c # 0, F will converge to

the discrete distribution having mass .2, .4, and .4 at the respective points 1, 4, and

11. It is evident that our choice of c = .1 is small enough to see the mass beginning

to accumulate around 1, 4, and 11.

In Figure 2 we have overlaid the density graph with a histogram and a scatterplot

of the eigenvalues of a simulation of the matrix Cn. We choose n = 200 so that,

since c = .1, N = 2000. We construct Rn in a deterministic manner so that the

e.d.f. of the eigenvalues of 1
N

RnR
§
n is exactly H, and let the entries of Xn be i.i.d.

standardized Gaussian. We see that the histogram of the eigenvalues of Cn follows

the shape of the density and the scatterplot, with each eigenvalue marked by the

symbol ‘±’, stays close to SF . The eigenvalues exhibit a clear separation into three

distinct groups clustering near the points 1, 4, and 11. In fact, the distribution of the

eigenvalues among the three groups is, from left to right, .2, .4, and .4. That is, of

the 200 eigenvalues, 40 are in the first group, 80 are in the second group, and 80 are

in the last group.

Fig2.
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We use this example to illustrate the connection to the detection problem in array

signal processing, where an array of n sensors receives signals transmitted by an un-

known number q < n of sources with unknown locations in a noise-filled environment.

The goal is mainly to identify the number of sources (signal detection) and their di-

rection of arrival (DOA). The model is given by an n£N matrix Yn = Rn + æXn in

which the columns represent N “snapshots” (samples) of the received signals. The

matrix Rn represents the pure signal information and contains values detailing sensor

orientation, the signal values at the source, and components such as steering vectors

which provide information on the unknown direction of arrival of the signals. The

signals are commonly assumed to be stationary ergodic processes. The matrix Xn

represents additive noise (variance æ2 unknown) that contaminates the signal during

transmission and processing. The entries of Xn are assumed to be i.i.d. standardized

random variables. If the population matrix Sn + æ2I (Sn ¥ E 1
N

RnR§
n) were known,

or at least adequately approximated, then using the MUSIC (multiple signal classi-

fication) algorithm, as presented in Schmidt [7], one could determine the number of

sources and, depending on the accuracy of the approximation, their direction of ar-

rival. The sample covariance matrix Cn = 1
N

YnY
§
n is used to estimate the population

matrix; however, as stated in the introduction, if the number of sensors, n, is large

then it may not be possible to collect enough samples to adequately estimate it. In

this case, limiting results on the eigenvalues of Cn can aid in the detection problem:

determining the number of sources. As noted in Schmidt [7], if q < n then Sn is

singular with n° q zero eigenvalues. Therefore the n° q smallest eigenvalues of the

matrix Sn + æ2I are equal to æ2. These are called the “noise” eigenvalues, and the q

larger eigenvalues are called the “signal” eigenvalues. Therefore, obtaining the value

of q, the number of sources, can be accomplished by determining the multiplicity of

the noise eigenvalues. From this it is clear that limiting results on the eigenvalues of

the sample covariance matrix Cn can play an important role in signal detection. In-

deed, if it can be shown that, for large n, the eigenvalues of Cn display this “splitting”
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into groups of smaller and larger eigenvalues with the correct number of eigenvalues

in each group corresponding to the noise and signal eigenvalues, then determining

the number of sources can be accomplished with fewer samples than needed to ap-

proximate the population matrix itself. It will only require enough samples for the

eigenvalues of Cn to separate into distinct, separate clusters.

Results of this type were proven for a diÆerent class of matrices in Bai and Sil-

verstein [1], [2] with the first paper showing that, for n large, no eigenvalues appear

where they should not, i.e., outside the support of the limiting distribution, and the

second paper showing that, for n large, each interval of the support contains the cor-

rect number of eigenvalues. As yet, there are no such results proven for our limiting

distribution, but from simulations it appears that similar results hold true for our

case as well.

In the simulation above the number of sensors is 200, sample size is 2000, the

(unknown) number of sources is 160, and æ2 = 1. Since Rn was artificially constructed

so that 1
N

RnR§
n has only two distinct nonzero eigenvalues, our example is limited in

its comparison to an actual signal detection problem. Even so, this example is useful

for illustrative purposes. The scatterplot shows a clear separation of the 40 noise

eigenvalues from the 160 signal eigenvalues. The value c = .1 is certainly small enough

to see the separation of the support of F into disjoint intervals. In fact, by analyzing

the density for diÆerent values of c, we discover that the separation of the smaller

eigenvalues from the larger ones occurs when c is approximately .37555. Therefore,

for a particular value of n, it would take less than 3n samples for separation of the

support to occur. This number is substantially smaller than the number of samples

required to adequately approximate the population matrix Sn+æ2I using conventional

multivariate inference methodology.

Further research is needed to make rigorous the mathematical arguments for exact

eigenvalue separation in our information-plus-noise model.
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Appendix

Here we prove (2.3) which states that

kFCn ° F Ĉnk a.s.°! 0 as n !1.

First, we define pn ¥ P (|X11| ∏
p

n) and note that since E|X11|2 < 1 we have

pn = o(1)
n

.

Now, to prove (2.3) we will need the following theorem.

Theorem A.1. Let X1, X2, ..., Xn be i.i.d. Bernoulli with p ¥ P (X1 = 1) < 1
2 . Then

for any ≤ > 0 such that p + ≤ ∑ 1
2 we have

P

µ

1

n

n
X

i=1

Xi ° p ∏ ≤

∂

∑ e
° n≤2

2(p+≤) .

Proof. For t > 0

P

µ

1

n

n
X

i=1

Xi ° p ∏ ≤

∂

∑ e°tn(p + ≤)E
h

et
Pn

i=1 Xi

i

=
≥

pet(1° (p + ≤)) + (1° p)e°t(p + ≤)
¥n

.

Minimizing over t we get

P

µ

1

n

n
X

i=1

Xi ° p ∏ ≤

∂

∑
"

µ

1° p

1° (p + ≤)

∂1°(p+≤) µ

p

p + ≤

∂p+≤
#n

¥ en√(p, ≤),

where √ is defined by

√(p, ≤) = (1° (p + ≤)) ln

µ

1 +
≤

1° (p + ≤)

∂

+ (p + ≤) ln

µ

1° ≤

p + ≤

∂

.

Now, using the Taylor series

ln(1° x) =
1

X

k=1

xk

k
for |x| < 1,
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we get

√(p, ≤) = °
1

X

k=2

≤k

k

µ

1

(p + ≤)k°1
+

(°1)k

(1° (p + ≤))k°1

∂

.

Since p+ ≤ ∑ 1
2 , the terms in the sum are all nonnegative, and therefore, dropping all

but the first term, we get

√(p, ≤) ∑ ° ≤2

2

µ

1

p + ≤
+

1

1° (p + ≤)

∂

< ° ≤2

2(p + ≤)

and the theorem is proven.

We now prove (2.3) by first noting that for ≤ > 0 we get from Lemma 2.2 and

(MP2)

P

µ

kFCn ° F Ĉnk ∏ ≤

∂

∑ P

µ

2

n

X

i,j

1(|Xij |∏
p

n) ∏ ≤

∂

= P

µ

1

Nn

X

i,j

1(|Xij |∏
p

n) ° pn ∏
≤

2n
° pn

∂

.

Since pn = o(1)
n

, for any ≤ 2 (0, 1
2) we can apply Theorem A.1 to get for all n large

P

µ

kFCn ° F Ĉnk ∏ ≤

∂

∑ e°
n≤
16

when pn < ≤
4n

. Therefore P
≥

kFCn ° F Ĉnk ∏ ≤
¥

is summable, and hence kFCn °

F Ĉnk a.s.°! 0 as n !1 which proves (2.3).
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