
Abstract

YOLUM, PINAR. Properties of Referral Networks: Emergence of Authority and Trust

(Under the direction of Munindar P. Singh).

Developing, maintaining, and disseminating trust in open environments is crucial.

We develop a decentralized approach to trust in the context of service location. Service

providers and consumers are modeled as autonomous agents participating in a multiagent

system that functions as a referral network. When a service is requested, an agent may

provide the requested service or give a referral to another agent. The agents can judge the

quality of service obtained. Importantly the agents can adaptively select their neighbors,

decide with whom to interact, and choose how to give referrals.

The agents’ actions lead to the evolution of the referral network. We study the emergent

properties of referral networks, especially those dealing with their quality, efficiency, and

structure. We first show how the exchange of referrals affect locating service providers,

then identify undesirable network structures and show under which conditions these net-

work structures emerge.

When agents refer and change neighbors in certain specific ways, based on link struc-

ture, some agents are identified to be substantially more popular or authoritative than others.

These asymmetric distributions of popularity and authoritativeness resemble those seen on



the Web. A referral corresponds to a customized link generated on demand by one agent

for another. Referrals thus yield a basis for studying the processes underlying authority,

especially as they affect the structure of the evolving social network of agents. Whereas

existing work takes an after-the-fact look at Web structure, we can study the emergence of

structure as it relates to the policies of the members.

Further, we propose a graph-based representation of services that can be applied in

conjunction with our referrals-based approach. This representation captures natural rela-

tionships among service domains and provides a simple means to accommodate the accrual

of trust placed in a given party. We study this representation in depth, especially in terms

of factors that apply to trust.

The properties uncovered through this dissertation can serve as guidelines to develop

robust referral systems that are both efficient and effective.
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Trust I seek, and I find in you
Every day for us something new
Open mind for a different view
And nothing else matters

—Metallica

To İlker
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Chapter 1

Introduction

The Web is moving from a collection of pages to a collection of distinct entities that provide

and use services. The entities can be people or businesses, each potentially supported by

an automated assistant. Each service can involve tasks that vary from serving information

such as Web pages to performing other complex tasks that involve carrying out transactions

or processing queries or even composing other services. The services are not merely dis-

tinguished by the domain or the tasks associated with them, but also in terms of any other

features of interest, such as the price or the speed of a task involved in the service. Hence,

a service is described as aggregating multiple features.

The entities that provide the services may differ in the resources they own, the service

types they provide, the way they carry out their services, and and the qualities of the ser-

vices for various features. Likewise, the entities who use or consume the services vary in

their needs and evaluations of services. This flexibility of operations and interactions can

only be realized if the entities are autonomous and heterogeneous. Hence, it is crucial to al-

low entities to retain their heterogeneity and enable them to operate autonomously [Singh,

2003].

The entities can exercise their autonomy to decide what actions they want to perform,
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with whom they want to interact, or how they want to carry out their tasks. From a service

consumer’s point of view, this implies that it can unilaterally set its own standards for the

quality of service it would like to receive and potentially restrict its interactions to those

that meet its standards. Similarly, just because a consumer wants to carry out interactions

with a provider does not mean that the provider has to agree. The service providers can au-

tonomously decide whom they want to serve or the quality of service they want to provide.

Providers can serve the different needs of the different consumers with a varying quality.

The above model is significantly and substantially different from traditional object-

oriented architectures where objects invoke methods on others and each object is expected

to respond in the previously agreed manner. The autonomy of the entities precludes in-

teractions through method invocation as in traditional programmatic interfaces. Instead,

entities exchange messages to request, negotiate, and fulfill information needs.

The entities can be heterogeneous. That is, entities can be diverse in their specifications

and adopt different strategies to carry out their interactions. This implies that, in general,

specifics of service implementations are not revealed to the consumers, nor to any other

external parties. Not knowing the service implementation makes it harder to judge the

quality of a service for two reasons. One, mechanisms based on a third-party evaluation of

a service implementation cannot be employed. Two, because each consumer is different,

a third party cannot evaluate service outcomes either. Consequently, each consumer must

evaluate the service it receives.

Because the services are autonomous and heterogeneous, finding the right service

providers is a significantly greater challenge in large scale open systems than in traditional

distributed systems. The scale and dynamism of such large systems imply that a participant

would not know and would not be able to keep up with all potentially relevant participants.

Truly open and large systems depart from traditional systems primarily in the absence of
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central servers, even directory servers. The openness of such systems implies that there

would be few regulatory restrictions for ensuring that the services offered are of a suitable

quality; i.e., there are no guarantees about the quality of service provided by the partici-

pants. Hence, only those servers whose quality of service is acceptable by the participant

will be relevant. Hence, it is crucial to locate useful participants and recognize them as

trustworthy.

1.1 Trust

To study trust more rigorously, it is necessary to understand various properties of trust.

Trust is established between a trustor and a trustee with respect to a context. For purposes

of the present research, the necessary aspects of context are reflected in the services being

sought and provided.

Trust is inherently for a purpose and spans multiple dimensions. A trustee may be

competent in some services but not in others. Accordingly, a trustor would (or would

not) trust a trustee for a particular service. For example, you may trust a travel agent

for your travel needs but not for your medical needs. That is, trust is not a property of

individual entities, but a property of relationships based on individual actions. To ascertain

the trustworthiness of another party, one must clearly formulate the service or individual

actions in question. Even when these are made explicit, two trustors who interact with the

same trustee may have different assessments of the trustee’s trustworthiness. This variance

could occur because of different evidence or different evaluations of the same evidence.

Security is an essential first step in establishing trust. Classical security techniques ad-

dress the problems of authentication, authorization, and nonrepudiation. These techniques
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help ensure that both the trustor and trustee are aware of whom they are dealing with. How-

ever, this certainly is not enough to establish trust between the entities. Knowing another

party’s identity and checking its authorizations does not guarantee that it will act in a man-

ner that is in your best interest or even in a manner that does not exploit your interests

unfairly.

More specifically, even after a consumer locates a provider and they agree to interact,

the risk remains that the provider may fail to meet the expectations of the consumer in

terms of service quality. Some possible reasons for this failure are that the service provider

may not be competent to perform the task, or it may be cheating on purpose. Independently

of the reason, once the consumer commits to interact with the provider, there is always the

risk of receiving an unacceptable quality of service. Interestingly, the risks that arise in

this context all result from the consumer’s commitment to interact with the provider. The

existence of a commitment with a potential risk of being violated or even poorly fulfilled

leads to the need for trust. Often, trust is seen as a remedy to decrease this risk [Luhmann,

2000].

Trust can be established through three major means: institutional, local, and social.

Institutional trust, or trust in authoritative institutions or organizations, is common in the

off-line world. People trust in the power of these institutions to stabilize their interactions

[Misztal, 1996, p. 26]. For example, if a business is registered with a government agency,

you might trust the agency to monitor the business as well as enforce restrictions or pro-

cedures that protect your benefits. These agencies make the trustee accountable for any

misdeeds [Dasgupta, 2000]. Also, institutional trust in an organization may arise because

of the organization’s prestige. Even if such an organization does not enforce any rules on

its members, a business could be trusted by others for belonging to the organization.
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Current distributed trust management approaches can be thought of as formalizing in-

stitutional trust, because they assume that digital certificates issued by various certificate

authorities lead to trust [Castelfranchi and Tan, 2001]. That is, these approaches usually

assume that trust is established merely through a chain of endorsements beginning with

some trusted authority [Grandison and Sloman, 2000; Kagal et al., 2001; Wong and Sycara,

1999]. However, only the most trivial level of trust (e.g., endorsements) can be established

through such a mechanism. For example, knowing that a Web site carries a digital cer-

tificate issued by another known site does not guarantee that the Web site will act in a

trustworthy manner.

For this reason, artificial intelligence approaches take an empirical stance on trust, at-

tempting to create trust based on evidence of some sort. The evidence could be local or

social. Local trust means considering previous direct interactions with a trustee (i.e., local

evidence), which often are the most valuable in creating trust for the following reasons.

One, since the trustor itself evaluates the interactions, the results are more reliable. Two,

the context in which the trustworthiness of the provider is evaluated is explicit and relevant

to the trustor. Social trust means trusting an entity based on information from others (i.e.,

social evidence). This information could be testimonies from individual witnesses or from

a reputation agency, regarding the trustee.

An important practical example is the reputation agency of eBay [2003], where, after

each transaction, the buyer can rate the seller. The reputation of a user is then defined as

an aggregate of the ratings that it has received from others (i.e., the raters). Even having a

high reputation of this sort is not a guarantee that the user is trustworthy. Many raters avoid

giving bad ratings or may mutually rate each other high [Dellarocas, 2000]. That is, the

ratings themselves may not reflect the actual experiences of the users.

Even when the ratings are reliable, an individual has no means to trust the raters. The
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context in which the ratings were given as well as the evaluation of the services could vary

by episode and by rater. The credentials of the information sources (witnesses or reputation

agencies) are crucial for interpreting this second-hand information correctly. Unless you

have established that the raters are trustworthy, their aggregate ranking would not be suffi-

cient to create trust. That is, in order to create trust through second-hand information, the

trustworthiness of the information sources must be established as well [Sztompka, 1999].

1.2 Referrals

A powerful way of ensuring that service providers and the information sources that recom-

mend them are trustworthy is by accessing them through referrals [Bonnell et al., 1984;

Kautz et al., 1997; Singh et al., 2001]. People commonly use referrals in real life to find

useful providers, while businesses use referrals from customers to find other potential cus-

tomers. Referrals have been used in computational settings, but their usage has been re-

stricted by rigid exchanges of the referrals. One widely used example is the domain name

system (DNS), where each unsuccessful lookup results in a referral to a server higher in

the name space hierarchy. The referrals of DNS are far from capturing the flexibility of

the referrals in human dealings. In real life, a party would give a referral based on specific

queries or even based on its relationship with the query originators. The quality of the

referrals given creates incentives for the querying party to trust (or not to trust) the referrer.

We claim that these flexible referrals are essential for locating trustworthy services, and

we propose that referrals form a key organizing principle for open systems. Consumers

can help each other find desired service providers by giving referrals to those providers that

have been useful for them. When a consumer interacts with a provider, it can judge the

quality of the services it receives as well as the quality of the referrals (if any) given for that
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service. By keeping track of the quality of the services and referrals, each consumer can

establish both local and social trust. More importantly, the consumers can adapt to one an-

other. For example, based on its interactions with others, each consumer can autonomously

decide who is most useful for its needs. The referrals through which consumers locate

providers create a referral network, where the nodes of the network are the consumers and

the producers. A consumer links to another party only if the other party has been useful

either by providing services or by providing referrals.

1.3 Peer-to-Peer Systems

At an architectural level, consumers and providers of services are all peers, interacting

without a need for a central server. Hence, our referrals-based architecture can be thought

of as a peer-to-peer (P2P) architecture. This is important because traditional client-server

architectures have become inadequate to handle the information needs of Web applications.

Most of the time, centralized servers do not readily scale to the size of the Web, and the

available computing resources of the clients are under-utilized. The asymmetric interaction

pattern of the client-server architectures is being replaced by the symmetric interactions of

P2P systems, where each peer acts as a client and a server, by requesting as well as serving

information.

Even though P2P architectures have been studied in the research community for many

years, P2P applications have started to appear only recently. Gnutella [2001] and Freenet

[2001] are two well-known P2P systems, geared for locating files. These systems allow

peers to search for files in a network by propagating queries to other peers (i.e., without a

centralized server) and to exchange files. Whereas current P2P systems are used for simple

applications such as file exchange, the true power of the P2P architecture will arise in more
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general settings, where the peers can be seen as providing services to one another, in open

and dynamic settings.

Current studies of P2P systems focus on lower level properties of the systems, such as

the naming schemes or bandwidth requirements. Our work emphasizes the higher level in-

teractions. In other words, even when all architectural constraints are satisfied, participants

still need to identify other useful participants with whom they can interact. For this rea-

son, P2P systems must include an approach through which peers can help each other find

trustworthy peers who offer high quality services. Even if some peers take on specialized

functions similar to directory servers, others have to establish that these specialized peers

are indeed trustworthy, e.g., to ensure that their service recommendations are not based on

ulterior motives, such as in the paid-placement search engines of today’s Internet, or that

any ulterior motives are factored in to determine a suitable service.

1.4 Web Structure

Recently, structural properties of the Web have attracted a lot of attention. Based on traces

of the Web, Albert et al. [1999] predict that the diameter of the Web, the average shortest

distance between any two Web pages, is only
���

. This result is important because such

a short diameter is the first step in showing that the Web is a small world network. A

network becomes a small world network when the average length between nodes is small,

yet clustering among the nodes is high [Watts, 1999]. Showing that the Web is a small world

network would have major implications, such as on how easily the Web can be searched.

Others [Broder et al., 2000; Barabási et al., 2000; Adamic and Huberman, 2000] study

in-degree distribution of the Web and come up with stochastic models that can generate

these distributions. The main variable of these models is the in-degree of a Web page.
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These models generally build on the idea that already popular pages are more likely to

attract newcomers than pages with low in-degree. This preferential attachment of links

explains the observation on the Web of the “rich gets richer” phenomenon.

These approaches seek to understand and model the development of the Web without

regard to an understanding of why links emerge. Hence, even though these models are

useful, none of them capture the process through which links are created. By contrast,

referrals provide an intuitive way to model the process through which the links among

participants emerge.

When the consumers in our model contact others or generate referrals, they do so with

respect to specific service requests. The links on the Web are created by individual parties

based on evaluation of other pages, where useful pages are discovered by following links

from other pages. Thus, the exchange of referrals mimics browsing behavior and reflects

the creation of links on the Web.

1.5 Organization and Summary of Contributions

We study a referrals-based architecture for locating services. This architecture has three

important properties. One, the participants can model others based on the quality of service

that they receive. Two, the participants can use these models to place varying levels of

trust in each other. Three, the participants can choose with whom they want to interact.

These properties are crucial in modeling open systems that consist of autonomous and

heterogeneous entities.

A further advantage of this architecture is that it can easily be extended to capture real-

life characteristics of Web services, e.g., relationships between services as applied to trust.

Effects of different characteristics of trust, such as previous interactions, local and social
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evidence, can be studied in this framework.

In this dissertation, our primary focus is on identifying properties of referral networks,

especially those related to the quality and structure of referral networks. The identification

of such properties is important because these properties can then be exploited to build

effective referral systems for real-life applications.

Chapter 2 introduces our referrals-based architecture for service location as well as

our experimental setup in detail. It shows how the referrals of parties induce a natural

structure on a system. An immediate consequence of this is that major application classes

correspond to different structures. Having a general approach enables us to potentially

capture key signatures of different applications and exploit additional properties of these

applications.

Chapter 3 studies three aspects of service location. One, it shows how communities

emerge as a result of referral exchange and how these communities can be used. Then,

it compares our approach to recent work on community mining, which involves centrally

collecting and reasoning about links to infer the most useful nodes (conventionally Web

sites). Our main result here is that following referrals from trusted parties helps locate

desired service providers better than contacting providers identified as authoritative based

on others’ needs.

Two, it discusses how the quality of the system is influenced by the manner in which

referrals are exchanged. We identify the effect of referrals on finding trustworthy service

providers in terms of efficiency and effectiveness. Three, it studies structural properties of

networks, particularly undesirable network topologies that lead to lower quality networks.

The interesting result here is that more referrals help find more answers but the manner in

which parties refer and change neighbors can lead to undesirable network structures that

disconnect them from others. That is, local actions do not always result in globally useful
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network structures.

Chapter 4 studies different aspects of the evolution of the structure of referral networks

with respect to recent work on Web structure. When parties refer and change neighbors

in certain specific ways, based on link structure some agents become considerably more

popular as well as more authoritative than others. These asymmetric distributions of pop-

ularity and authoritativeness are analogous to those seen on portions of the Web. That is,

some characteristic distributions of the Web can be captured through the specifications of

agent strategies and environment variables. The fact that such similar distributions can be

created, combined with the similarity between referrals and link generation on the Web,

suggest that the referrals approach may be used as a predictive model for the Web under

different assumptions. Accordingly, this chapter first studies the facts that create these

asymmetric distributions, and continues by showing how the system can be used to under-

stand the evolution of a network after perturbation.

Chapter 5 introduces a graph-based representation of services that captures the potential

relationships between service types. Using this representation, consumers can propagate

their levels of trust in service providers across service types. We first show that such a hier-

archical service representation can easily be combined with referrals to exploit the benefits

of both. Next, we show that referrals work well with such a hierarchical representation even

with limited information, since the consumers use their local information to find a provider

for a new service. The chapter continues with a sensitivity analysis of this representation

to identify factors that affect its performance.

Chapter 6 discusses the relevant literature with comparisons to our work, describes

directions for further research, and outlines how the findings of this dissertation may be

used to develop applications of referral systems.
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Chapter 2

Technical Framework

We begin with the framework of Singh et al. [2001], where a system is modeled as consist-

ing of principals who provide and consume services. The principals could be individuals or

businesses. Each principal may be offering a different level of trustworthiness in the tasks

that it carries out. Each principal is potentially interested in finding trustworthy principals

to interact with. Our notion of services is broad, but we discuss two main kinds of services

below. These correspond to knowledge management and e-commerce, respectively.

The principals are autonomous. That is, it is not appropriate to assume that a principal

will always respond to another principal by providing a service or a referral. When a prin-

cipal does respond, there are no guarantees about the quality of the service or the suitability

of a referral it provides. However, constraints on autonomy, e.g., due to dependencies and

obligations for reciprocity, are easily incorporated.

The principals are heterogeneous. The internals of their decision making are not known.

That is, the principals may not expose the way they give referrals or the way they evaluate

received services. Given the autonomy and heterogeneity of the principals, it is not ap-

propriate to assume that any principal should necessarily be trusted by others: a principal

unilaterally decides how to rate another principal.
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The above properties of principals can be captured computationally with the notion of

agents. Agents are persistent computations that can perceive, reason, act, and communicate

[Huhns and Singh, 1998a]. Agents can represent different principals and mediate their

interactions. That is, principals are seen in the computational environment only through

their agents. The agents carry out the book-keeping necessary for a principal to track its

ratings of other principals. Moreover, the agents can interact with one another to help their

principal find trustworthy parties.

In abstract terms, the principals and agents act in accordance with the following proto-

col. When a principal desires a service, or when its agent anticipates the need for a service,

the agent begins to look for a trustworthy provider for the specified service. The agent

queries some of its neighbors, which constitute a small subset of the agent’s acquaintances

that have been found useful in previous interactions. A queried agent may offer to perform

the specified service or, based on its referral policy, may give referrals to agents of other

principals. The referral policy of an agent specifies when the agent should give a referral

and whom to refer. The querying agent may accept a service offer, if any, and may pursue

referrals, if any.

Each agent maintains models of its acquaintances. Each model describes the expertise

(the quality of the services it provides), and the sociability (the quality of the referrals it

provides) of a given acquaintance. Both of these elements are adapted based on service rat-

ings from the agent’s principal. Using these models, an agent applies its neighbor selection

policy to decide which of its acquaintances to keep as neighbors. Key factors include the

quality of the service received from a given provider, and the resulting value that can be

placed on a series of referrals that led to that provider. In other words, the referring agents

are rated as well.
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The above framework accommodates the following important properties of open infor-

mation systems introduced in Chapter 1. One, the agents can be heterogeneous. An agent

can offer services or follow policies distinct from all others. Two, each agent operates

autonomously based on its local policies. Three, the agents can adapt. Each agent can

arbitrarily modify its offerings and their quality, its policies, and its choice of neighbors.

2.1 Applicable Domains

The above framework enables us to represent different application domains naturally. Two

important domains are e-commerce and knowledge management, which differ in their no-

tions of service and how the participants interact.

In a typical e-commerce setting, the service providers are distinct from the service

consumers. The service consumers lack the expertise in the services that they consume

and their expertise doesn’t get any better over time. However, the consumers are able to

judge the quality of the services provided by others. For example, you might be a consumer

for auto-repair services and never learn enough to provide such a service yourself, yet you

would be competent to judge if an auto mechanic did his job well. Similarly, the consumers

can generate difficult queries without having high expertise. For example, a consumer

can request a complicated auto-repair service without having intimate knowledge of the

domain.

Figure 2.1 shows an example configuration of service consumers and providers that

corresponds to a commerce setting. The nodes labeled
	

denote consumers and the nodes

labeled
"

denote service providers. Consumers are connected to each other as well as to

the service providers. These links are essentially paths that lead to service providers. In

this model, the service providers are dead ends: they don’t have outgoing edges, because
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Figure 2.1: A schematic configuration for e-commerce

they neither initiate queries nor give referrals. Thus, their sociability stays low. Their true

and modeled expertise may of course be high.

By contrast, in knowledge management, the idea of “consuming” knowledge services

would correspond to acquiring expertise in a given domain. A consumer might lack the

ability to evaluate the knowledge provided by someone who has greater expertise. How-

ever, agents would improve their knowledge by asking questions; thus their expertise would

increase over time. Following the same intuition, the questions an agent generates would

also depend on its expertise to ensure that the agent doesn’t ask a question whose answer it

already knows.

Figure 2.2 shows an example configuration of service consumers and providers that

corresponds to a knowledge management setting. In this setting, the consumers are not

necessarily distinct from the service producers. An agent may be knowledgable in one

domain and hence respond to queries regarding that domain. On the other hand, it might

be looking for information services in another domain. Hence, all the nodes are labeled

with
	

and denote consumers as well as producers. Each agent can generate and answer

queries, as well as give referrals. This implies that potentially all agents can have nontrivial
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Figure 2.2: A schematic configuration for knowledge management

expertise and sociability.

This dissertation will study the e-commerce domain in depth. The interests and ex-

pertise of the agents are represented as term vectors from the vector space model (VSM)

[Salton and McGill, 1983], each dimension corresponding to a different domain. That is,

each agent has an interest vector and an expertise vector with the same number of dimen-

sions. The interest vector,
���

of an agent
�

denotes how interested the agent is in different

domains. Similarly, the expertise vector,
 ��

of an agent
�

denotes how much expertise the

agent has in different domains. The value of each element of the vector is between � and
�
;

bigger values correspond to a higher interest or expertise for that domain. The interest and

expertise vectors of an agents are not correlated.

2.2 Key Metrics

Similarity. To capture the similarity between two agents (based on their interests or

expertise), we seek a formula that is commutative, i.e., agent
�

’s interest vector
���

should

be as similar to agent � ’s interest vector
���

as
�	�

is to
�	�

. A well-known similarity measure

is the cosine of the angle between two vectors, but the cosine of the angle between two
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vectors does not capture the effect of their length. Since the two vectors will always be in

the first quadrant, our formula does not need to consider the angle between the two vectors

explicitly. The following formula captures the Euclidean distance between two vectors and

normalizes it to get a result between � and
�
. (
���

and
���

are each of length � .)

� ��� ��������� 	�
�� � 
�
�	���� �����
� � � ��� (2.1)

Capability. The capability of an agent for a query measures how similar and how strong

the expertise of the agent is for the query [Singh et al., 2001]. Capability resembles cosine

similarity but also takes into account the magnitude of the expertise vector. This means

that agent that have expertise vectors with greater magnitude are more capable for the

given query vector. In Equation 2.2, � ( ������������� � � ) is a query vector,
 

( � � ������� � �!� ) is an

expertise vector and � is the number of dimensions these vectors have.

�#"  $� % �&(' � � � & � & 
) � % �&(' � � &�* (2.2)

We introduce and motivate further metrics as needed. The metrics developed here are

consolidated in Appendix A.

2.3 Referral Algorithms

Each agent is initialized with the same model for each neighbor; this initial model encour-

ages the agents to both query and generate referrals to their neighbors.

An agent that is generating a query follows Algorithm 1. Since there are no actual

principals in the simulations, the generation of queries is automated. More specifically, an

agent generates a query by slightly perturbing its interest vector, which denotes that the

agent asks a question similar to its interests (line 1). Next, the agent sends the query to a
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Algorithm 1 Ask-Query()

1: Generate query
2: Send query to matching neighbors
3: while (!timeout) do
4: Receive message
5: if (message.type == referral) then
6: Send query to referred agent
7: Add referral to referral graph
8: else
9: Add answer to answerset

10: end if
11: end while
12: for

� � �
to � answerset � do

13: Evaluate answer(
�
)

14: Update agent models
15: end for

subset of its neighbors (line 2). The main factor here is to determine which of its neighbors

would be likely to answer the query. We determine this through the capability metric.

An agent that receives a query acts in accordance with Algorithm 2. An agent answers a

question if its expertise matches a question. Again, since there are no principals to generate

the answers, the answer generation is also done by the agents. If the expertise matches the

question, then the answer is the perturbed expertise vector of the answering agent. When an

agent does not answer a question, it uses its referral policy to choose some of its neighbors

to refer.

Algorithm 2 Answer-Query()

1: if hasEnoughExpertise then
2: Generate answer
3: else
4: Generate referrals to neighbors
5: end if

Back in Algorithm 1, if an agent receives a referral to another agent, it sends its query
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to the referred agent (line 6) and adds a referral link to its referral graph (line 7). Simply

put, a referral graph is a directed graph where the nodes denote agents and an edge denotes

that the source of the edge has referred to the target of the edge. Each agent builds a referral

graph for each query it has generated. After an agent receives an answer, it evaluates the

answer by computing how much the answer matches the query (line 13). Thus, implicitly,

the agents with high expertise end up giving the correct answers. After the answers are

evaluated, the agent uses its learning policy to update the models of its neighbors (line

14). In the default learning policy, when a good answer comes in, the modeled expertise

of the answering agent and the sociability of the agents that helped locate the answerer

(through referrals) are increased. Similarly, when a bad answer comes in, these values are

decreased. At certain intervals, each agent has a chance to choose new neighbors from

among its acquaintances based on its neighbor selection policy. The number of neighbors

is fixed, so if an agent adds some neighbors it will have to drop some neighbors as well. We

tune the simulation so that an agent answers a query only when its expertise matches the

query, i.e., it is sure of the answer. This ensures that only the providers answer questions,

and the consumers generate referrals to find the providers.

Example 1 Figure 4.8 shows an example referral network, where the nodes denote agents.

Agent
�
’s neighbors are agents � and � , agent � ’s neighbors are agents � and � , and agent

� ’s neighbors are agents � and � . Agent
�

poses its query to its neighbors, agents � and

� . Agent � provides an answer, while agent � gives a referral to one of its own neighbors,

agent � . Agent
�

then sends its query to agent � .
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Figure 2.3: An example search through referrals

2.4 Real Applications

Algorithms 1 and 2 are the core of an existing P2P system, called MultiAgent Referral

System (MARS) [Yu, 2001]. Each MARS client accepts queries from its user, and follows

Algorithm 1 to find answers. Similarly, it handles incoming messages through Algorithm 2,

giving referrals to others or letting its user answer a query where applicable. Presently, each

user follows default policies for generating referrals and neighbor selection.

In real life applications [Mo, 2001; Yu and Singh, 2002a], the first line of Algorithm 1

1 would correspond to a user request or an agent’s anticipation of such a request. Line 13

would directly or indirectly evaluate the answer based on user feedback. Algorithm 2’s

“generate answer” (line 2) may access a user’s documents or, if necessary, interrupt the

user.
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2.5 Experimental Setup

This dissertation investigates the properties of e-commerce domain via a simulation. Study-

ing the systems through simulations enables us to study the mechanisms of the agent so-

cieties by giving us the necessary controls to adjust various policies and parameters. The

findings of the simulation can be used to suggest certain kinds of mechanisms and repre-

sentations for the agents themselves in real applications like MARS.

The simulations contain � � � agents, where between � % and � � % of the agents are

service providers in one domain, and the remaining agents are consumers. The reported

simulations contain interest and expertise vectors with � dimensions, where each dimension

maps to one domain. Consumers have high interest in getting different types of services,

but they have low expertise, since they don’t offer any services themselves. The interests of

the consumers are distributed evenly over the domains, and the interests can span multiple

domains.

Providers have high expertise but low sociability. Since there are no humans to generate

and evaluate queries, the interest vectors are used to generate queries and the expertise

vectors are used to generate answers. Answers are evaluated by the capability metric on

the query and answer vectors. As discussed above, each agent builds a referral graph to

reason about any received referrals. We limit the length of the longest path in referral

graphs. That is, a chain of referrals are followed up to this given number of hops, and then

dropped. We assume that as the length of the path increases, the expected trustworthiness

of the agents decrease.

Each agent has a fixed number of neighbors ( � to � ) and the same initial model for each

acquaintance. In the beginning of the simulation runs, each agent is assigned neighbors

randomly. During the course of the simulation, each agent interacts with other agents (i.e.,
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acquaintances) and updates the models of its acquaintances (both expertise and sociability)

based on the answers from the providers. After every two queries, agents can change their

neighbors as they see fit. The simulations are run for � to � � neighbor selections, depending

on the experiment. Further details of the experimental setup are given in Appendixes B and

C.
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Chapter 3

Emergence of Communities

Since communities exist in the physical world, it is to be expected that they will emerge

in the virtual world as well. On the Web, communities can help us in two ways: (1)

identifying interesting and important sites and topics, and (2) fine-tuning the experience

of each user by giving us a basis for making recommendations [Zhong et al., 2002]. For

these reasons, social network analysis and community mining have garnered much research

attention lately.

Communities can be used for two main classes of applications.

� Endogenous. The members of a community use the community to find services

(including information services). That is, the participants use a community

somewhat as people might use their personal network to decide what movie to

watch or what house to buy. Their personal network involves a part of the social

network that is closely related to them. Since the boundaries of communities

in real life are amorphous, the participants may not and need not be aware of

which specific community they are benefitting from.

� Exogenous. The community structure is used to make recommendations. For

example, a recommender system might use some features of a community to
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which a user belongs to recommend a movie for the user to watch. Conversely,

the recommendations might be made to the providers of services so they can

fine-tune their offerings for a particular community.

From a sociological standpoint, social network analysis has been one of the most in-

fluential methodologies to understand communities in the physical world [Wasserman and

Faust, 1994; Scott, 1991]. The underlying idea is to understand social relationships of vari-

ous kinds among people and to analyze those relationships to determine the communities in

which they participate. The relationships between people are a given—they are determined

by sociologists, e.g., through ethnographic studies. The graph-based analysis of these com-

munities consider the people as vertices of a graph and the edges as the social relationships

observed (e.g., kinship or friendship) between them. The sociological work is not directly

applicable in Web-based settings, because the underlying social relationships are not ex-

plicit. However, if the underlying relationships can be acquired or inferred, it provides a

useful intellectual basis for the computational work.

Influenced by the sociological approach, our referrals-based approach considers inter-

actions among the agents participating in a community. As a graph, its vertices are the

agents and the edges represent the neighborhood relation. Good interactions reinforce their

social relationships and bring them closer, whereas bad interactions weaken their social

relationships. The agents decide with whom to interact. Intuitively, agents will base their

decisions on specific feedback or generic policies set by their users, but in terms of its

interactions with other agents, each agent is autonomous.

Recently, several approaches have been developed to discern community structures

from Web pages [Kumar et al., 1999; Flake et al., 2002]. The Web is viewed as a graph

where the vertices are Web pages and the edges are hyperlinks from one page to another.

Communities are defined as patterns of self-similarity as in co-citations or highly clustered
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cohesive blocks. Large corpora of pages can thus be mined centrally to determine graph

structures to be interpreted as communities.

3.1 Community Analysis

We first give a conceptual analysis of link-based definitions and argue that these approaches

are not sufficient to describe real communities. Then, we provide a quantitative evaluation

and show that in fact it is not even necessary to mine communities to benefit from them.

Link-based definitions of communities use a form of co-citation. Perhaps the best

known of the existing approaches is that of Kumar et al. [1999]. This is reminiscent of

hubs and authorities in Hyperlink Induced Topic Search (HITS), a well-known Web page

ranking technique [Kleinberg, 1999]. The HITS algorithm assigns an authority value and a

hubness value to each node in the Web graph. A node has high authoritativeness if nodes

with high hubness values point to it. Similarly, a node has a high hubness value if it points

to authoritative nodes. Reflecting a similar intuition, Kumar et al. define communities

in terms of related sets of fans, which ideally point at lots of centers, and centers, which

are ideally pointed to by lots of fans. Kumar et al. propose that any community structure

should contain a bipartite core where the fans and centers constitute the two independent

sets. If all � fans point to a set of � center pages, then they are likely to share a common

topic and therefore be a community. Especially in the case of high � and � , the likelihood

of being a community is assumed to be higher. In addition, all other nodes that are pointed

by the fans, and all the nodes that point to at least two centers are added. In their experi-

ments, Kumar et al. use (3,3) bipartite cores. For example, in the graph in Figure 3.1, the

nodes
�

to � could denote a community, where the nodes
�

to � are the fans, and the nodes

� to � are the centers. These nodes constitute the bipartite core (shown in solid lines). The
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node
�

is added because it points to two centers ( � and � ) and the node � is added because

it is pointed to by a fan (
�
). These expansions are shown in dotted lines. Even though there

is a link between nodes � and
�
, node

�
is not added to the community. We refer to these

communities as bipartite communities.
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Figure 3.1: Nodes
�

to � form a bipartite community

There are four major limitations of link analysis as a basis for understanding commu-

nities:

� A link does not necessarily correspond to a social relationship. A definition of

communities based on links assumes that two pages have a “social” relation-

ship if one links to the other page. However, the connection between a link

on one’s page and a social relationship is tenuous at best, especially because

the semantics of the links between the nodes is not defined. For this reason,

although graphs can be extracted, it is not automatically obvious that these

graphs correspond to communities as we would intuitively consider them.

With reference to Figure 3.1, consider three consumers (nodes
�

to � ) interested
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in three distinct domains. Each one of them chooses the same three service

providers (nodes � to � ), each of whom provides a service in one domain.

These six nodes form a bipartite core since all three consumers point at all

three providers. It is not obvious why this structure would denote a community,

when the three service providers are not even providing the same service.

� The structures may be interpreted differently in different settings. For example,

consider the two application domains discussed in Section 2.1. An independent

set of service providers is common in e-commerce: the service providers are

not looking for services themselves, so they do not point to each other. In

knowledge management, on the other hand, every agent is potentially looking

for services (i.e., knowledge in this case). In other words, having an indepen-

dent set of agents can have several implications, such as different evaluation of

services, being unaware of each other, and so on. Hence, the structures alone

may not be sufficient to accurately represent communities.

� Co-citation as a relationship seems to be almost incidental among the parties so

related, whereas one would expect socially related parties to locate each other,

potentially by traversing the network. With co-citation the participants are not

aware of each other. For example, nodes � and � may not know they are in

the same community. That is, node 2 cannot locate node 3 to send its queries.

Hence, communities based on co-citation cannot be used for endogenous ap-

plications.

� Conceptually, communities are discovered in a central manner. Each node has

to expose all of its links and a central server has to put together a graph to

later mine the communities. However, this indicates a grave risk of violating

the privacy of the potential participants, because some nodes would want to
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keep some of its links private. Clearly, mining can work best for only static

Web pages, which the participants have made available publicly. Each link is

interpreted as an endorsement. However, this approach fails to apply when par-

ticipants decide not to reveal their endorsements publicly. Conversely, the ben-

eficiary of any recommendation may prefer they come from parties it knows.

There are three major advantages of the referrals approach.

1. Agents can provide semantics to the edges in the graph. In other words, because

agents maintain models of others, they are able to annotate their links to other agents

in terms of those models. For example, an agent
�

may believe that agent � is the

best source for information on travel and agent � is the best source for information

on cooking.

2. Unlike link-based communities, two agents are part of the same community because

of their interactions with each other, rather than their interactions with others. Agents

are aware of whom they are dealing with, and they choose whose service recommen-

dations they will take.

3. No formal community needs to be identified for an agent to function correctly. Com-

munities emerge around each agent. Each agent automatically exploits them and

evolves them as it goes about its business. However, for link-based approaches, first

the link structure needs to be mined by a central entity and communities have to be

identified. Only then may the communities be used. Unlike link-based approaches,

in our referral-based approach no central authority need know what the communities

are.

However, in order to perform our analysis, we mine the communities. Doing so enables

us to compare our approach to the link analysis approach.
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3.1.1 Methodology

Comparing referrals approaches with link analysis in quantitative terms is potentially tricky,

because link analysis is applied on static Web pages, whereas referrals apply between

agents providing and seeking services. There is no widespread practical deployment of

such service location schemes. However, a comparison is possible when we consider how

links are created. The creation of links on the Web is based on micro evaluations and de-

cisions by independent players. This process of neighbor selection is mimicked well by

adaptive referrals.

In mining communities, two properties are worth considering.

� Communities may not have clear-cut boundaries. Previous approaches view

communities as crisp structures in that an agent is either a member of a com-

munity or not. On the other hand, a community may have many members who

differ in their level of membership in the community. Accordingly, our ap-

proach is based on ranking members of a community based on their level of

membership. An agent may belong to several communities in varying degrees.

� Strength of the links matter. For instance, in some cases, to conclude that the

agent is part of a community, it might be enough to show that it has one strong

link to a member of a community, whereas if the agent has weaker links to

community members, more links might be required.

We consider mining communities of service consumers for different domains. As an

example, consider the travel domain. There may be several travel agents represented as ser-

vice providers. Some service consumers are interested in finding travel agents and query

other service consumers to locate the providers. The service consumers who help find the

travel agents are found to be sociable by the travelers, since the sociable agents’ referrals

help in locating the providers. Since sociable agents are more influential in locating the
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service providers, we use sociability of the agents to rank their involvement in the commu-

nity. A consumer belongs more strongly to a community if more consumers find him to be

sociable. Note that sociability is subjective. For instance, agent
�

may view agent � as

sociable, whereas a third agent may not. When this is the case, the agent who is part of the

community has a bigger say. In other words, if
�

is part of the community, it can judge � ’s

contribution better than someone outside the community, or someone less involved in the

community. In this regard, members of the community decide who should be in the com-

munity [Yolum and Singh, 2003b]. This recursive definition is inspired by the PageRank

algorithm.

PageRank. PageRank is a metric used by Google to rank Web pages that are returned for a

query [Brin and Page, 1998]. The PageRank of a Web page measures its authoritativeness.

Informally, a Web page has a high PageRank only if it is pointed to by Web pages with

high PageRanks, i.e., if other authoritative pages view this page as authoritative. We use

the same metric to measure the authoritativeness of agents. The PageRank of an agent is

calculated using Equation 3.1, where
��� ��


denotes the PageRank of agent
�
,
� �

denotes

agents that have
�

as a neighbor, and
� 	

denotes the set of agents that are neighbors of � .

In addition to accumulating PageRanks from incoming edges, each node is assumed to get

a minimum PageRank of
� � � � 


, where
�

is taken to be � � � � as in the original paper [Brin

and Page, 1998].
��� �#
 � ���

	������
� � � 


� � 	 �	�
� � � � 


(3.1)

Referral Communities. The PageRank calculations for the Web are performed on a di-

rected unlabeled graph. Here, we build on this idea to mine communities. As mentioned

above, the neighborhood relations among the agents induce a directed graph, where each
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node denotes an agent. An edge
� � % � 
 exists if agent � values agent � ’s expertise, socia-

bility, or both. This valued expertise or sociability may be in one or more domains. We

extend the representation as follows. First, the graph structure is enhanced by adding labels

to the edges of the graph, where the label on an edge
� � % � 
 denotes � ’s sociability from � ’s

point of view (in our notation, this is ��� � � ) for one domain. � may model � ’s sociability

for different domains. In other words, � might find � sociable for one domain, but not

sociable for many other domains. Second, the sociability rank for each agent is calculated

per domain as given in Equation 3.2. Below,
" � �#


denotes the sociability rank of agent
�
,

���
denotes agents that have

�
as a neighbor,

� 	
denotes neighbors of � , � 	 � � denotes the

sociability of � for � .

" � �#
 � � �
	������ � " � � 
��

� 	 � �
% � ����� � 	 � � 
 �

� � � � 

(3.2)

In PageRank calculations, at each iteration, each node distributes its PageRank to its neigh-

bors equally. Here, on the other hand, each node distributes its sociability rank based on

the sociability weights on the edges.

Example 2 Consider an agent � with neighbors
�
, � , and � such that � 	 � � � � � � , � 	 � � � � � � ,

and � 	 � � � � � � . Then, � will contribute
�
	 �

�
	 �
���
	 * ���
	 * � � � � �
to
�
’s sociability rank, whereas

only
�
	 *�
	 �
���
	 * ���
	 * � � � � �

to � and � each.

The above definition of communities captures two important notions. One, members of

the communities implicitly decide on the other members. Two, the members are chosen

based on how helpful they have been to others. This implies that an agent may belong to

a community more strongly than a second agent even though both agents have the same

neighbors.

Example 3 Figure 3.2 shows part of a referral network, where agents
�

and � are pointing

at the same set of agents � , � , and � . However, agent
�

is being pointed to by more agents
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Figure 3.2: Agent
�

is ranked higher than agent �

because it has been found sociable by more agents. Therefore, the ranking of agent
�

is higher than that of agent � , which denotes that agent
�

belongs more strongly to the

community than agent � .

3.1.2 Metrics

We define the quality of a network to be the ease with which agents find useful service

providers. We study two variations of quality: direct quality and � th best quality. Both

metrics calculate the quality from a single agent’s point. The quality of the network is then

defined as the average over all agents.

Direct Quality. The direct quality viewed by an agent reflects, via Equation 2.2, the

usefulness of the neighbors of the agent, given its interest and their expertise. That is, we

estimate the likelihood of the neighbors themselves giving good answers to the questions.

Quality. Next, we take into account an agent’s neighbors and other agents. Here, we mea-

sure how well the agent’s interest matches the expertise of all other agents in the system,
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scaled down with the number of agents it has to pass to get to the agent. That is, the farther

away the good agents are from the agent, the less their contribution to the quality seen by

the agent. The contribution of agent � to agent
�

’s quality is given by:

� � "  �
��� ��� � � % � 
 (3.3)

where the ��� ��� � � % � 
 is the shortest path length between agents
�

and � .

For a small population, it is reasonable to assume that each agent can potentially reach

all other agents to which it is connected. But in a large population, an agent will be able to

reach only a small fraction of the population. For this reason, instead of averaging over all

agents, we take the � th best measure. That is, we measure the quality obtained by an agent

via its � th best connection in the network. The choice for � is tricky. If � is too big, each

agent’s quality is equally bad. On the other hand, if � is too small, the quality will reflect

the quality of the agent’s neighbors as in the direct quality metric. For the results reported

below, we use the � th best metric to measure an agent’s quality and take � to be twice the

number of neighbors the agent has.

3.1.3 Results

We evaluate our approach by comparing it to bipartite communities. To generate bipartite

communities, we find bipartite cores of size (6,3). We expand each core by adding all the

nodes pointed to by the fans and all the nodes that point to at least two centers. Then, we

run the HITS algorithm (mentioned in Section 3.1) to find the authorities and hubs. A node

has high authoritativeness if nodes with high hubness values point to it. Similarly, a node

has a high hubness value if it points to many authoritative nodes. Since the communities

are targeted for locating services, the nodes with high hubness values are expected to be

most useful to others. For this reason, we use the hubness values to rank the nodes of the
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community.

Correlation First, we calculate the correlation between bipartite and referral communities

using Spearman correlation, given in Equation 3.4 [Kendall, 1945].

A correlation value of
�

shows that the members of the communities are ranked the

same in both approaches, whereas a correlation value of
� �

shows that the members of the

two communities are ranked in reverse order. Correlation values around � denote that the

rankings are not correlated.

Below,
	

and 
 denote two communities,
	 �

and 
 � denote the rank of agent
�

in

communities
	

and 
 , respectively, and � denotes the size of the communities. When

comparing the two communities, the community size, � is taken to be the size of the bipar-

tite community found. The top � agents from our ranking are then taken for comparison.

$ � 	&% 
 
 � � � � % �� ' � � 	 � � 
 � 
 *� � � * � ��
 (3.4)

We choose
� � communities for comparison. The choice for the communities is arbi-

trary, except that the chosen communities vary in their size, where the smallest community

has � � members and the largest community has � � � . The average correlation among the

communities is
� � � � � , with the correlation values varying from

� � � � to
� � � � . The fact

that there is no positive correlation between the communities means that the rankings of

the two communities do not agree. Based on preliminary studies on the distribution of the

correlations, we conjecture that as the size of the communities increase, the ranking of the

communities become less correlated; i.e., the absolute value of $ � 	&% 
 
 approaches � .

Quality The community of service consumers for a service should be able to locate the

service providers easily. The quality metric captures this intuition. Below, we compare

referral and bipartite communities in in terms of their total quality.
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Figure 3.3: Quality comparison of bipartite and referral communities

Figure 3.3 gives a histogram of this comparison. The � axis shows the communities,

labeled with letters. The � axis shows the total quality of the communities. The solid lines

denote bipartite communities and the dashed lines denote referral communities. Eight of

the referral communities outperform bipartite communities in their quality. Only referral

communities � and
�

receive a slightly worse quality than the corresponding bipartite

community.

Finding higher quality communities is especially important for exogenous applica-

tions [Domingos and Richardson, 2001]. For example, if a service provider is promoting

a new product, the set of customers that are likely to use it are the ones that can actually

locate the provider in the first place. Hence, the new product should be targeted to the

community that yields the higher quality in terms of locating providers.

One-size doesn’t fit all We study the authorities of a community in terms of how well they

serve the query needs of the community members. On one side, for a bipartite community,

we rank the members based on their authority from the HITS algorithm. From the commu-

nity, we make five agents generate queries and pose them to the top four authorities. On
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the other side, we make the agents look for answers to the same queries through a referral

process as shows in Figure 3.4.

Consider the community of Figure 3.4. After running HITS, agents � and � are found

to be authorities. In the case for bipartite communities, agent
�

generates a query and poses

it to � and � . For the referral communities, it poses the query to its choice of neighbors, in

this case to agent � who gives a referral to agent
�

(bold lines).
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Figure 3.4: Referral process based on the community of Figure 3.1

Figure 3.5 plots the number of good answers for each agent. Four of the five agents

get more good answers by following referrals, rather than by posing their query to the

authorities. The last agent gets an equal number of good answers with both approaches.

Observation 1 Authorities that are optimized for everybody’s needs are not always ef-

fective for individual needs. On the other hand, when agents follow referrals from their

personal network, they can find a greater number of useful answers.
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Figure 3.5: Comparison of good answers

3.2 Performance Evaluation

Naturally, the performance of the referral approach is affected by the individual policies

used by the agents. Our focus is not on finding optimal strategies for the agents. Instead, we

are interested in the emergent global properties of the system. The properties we emphasize

are the structure of the networks and their effectiveness. For both cases, we evaluate the

influence of these properties on the ability to locate services with some simplistic referral

and neighbor selection policies.

We study how the referrals affect the quality of the systems using three referral policies

that vary primarily in their level of selectivity [Yolum and Singh, 2003a].

1. Refer all neighbors. Agents refer all of their neighbors; agents are not selective about

whom they refer. This is a special case of the matching policy with the capability

threshold set very low. This resembles Gnutella’s search process where each node

forwards an incoming query to all of its neighbors if it doesn’t already have the

requested file [Kan, 2001].
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2. Refer all matching neighbors. The referring agent calculates how capable each neigh-

bor will be in answering the given query (based on the neighbor’s modeled expertise).

Only neighbors scoring above a given capability threshold are referred. By increas-

ing the threshold, the selectivity of the referrals is increased as well.

3. Refer the best neighbor. Refer the best matching neighbor. This is similar to

Freenet’s routing of request messages, where each Freenet client forwards the re-

quest to the agent that is most likely to have the requested information [Langley,

2001].

3.2.1 Effectiveness

The effectiveness of a system measures how easily agents find useful providers. We mea-

sure effectiveness using the � th best quality metric. Intuitively, the way agents give refer-

rals influences the quality of the system because referrals are the only way to discover new

service providers.

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Q
ua

lit
y

Threshold to refer

All Matching (10% Experts)
All Matching (20% Experts)
All Matching (25% Experts)
Best Neighbor (10% Experts)
Best Neighbor (20% Experts)
Best Neighbor (25% Experts)

Figure 3.6: Effectiveness of referral policies
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We study the performance of different policies by varying the capability threshold.

Figure 3.6 plots this threshold versus the quality of the network for different policies. In

Figure 3.6, the lines marked All Matching show Refer all matching policy for varying

thresholds on the � axis. The case where the referral threshold is set to � � �
denotes the

Refer all policy. The lines marked BestNeighbor plot the Best Neighbor policy, which is

independent of the threshold.

Among the three policies, Refer all performs the worst for all three populations. As

seen in Figure 3.6, when agents use this policy, the quality never becomes more than � � � � � .

The Best Neighbor policy performs better than Refer all matching policy for small values of

the capability threshold (e.g., � � � ). For thresholds greater than � � � , the Refer all matching

policy performs better than the Best Neighbor policy, where the best threshold increases

with the percentage of experts in the society.

Observation 2 Exchanging more referrals does not guarantee that the quality of the net-

work will be high. The structure of the network can prevent consumers from locating some

of the service providers.

3.2.2 Efficiency

Each agent in the referral network is autonomous and may well have unique policies to

take care of different operations such as answering a question or referring a neighbor. Thus,

getting at a node closer to a target provider does not guarantee that the search is progressing.

For example, in Figure 2.1
	 * may ask

	��
but if

	��
is not responsive, then the search path

becomes a dead-end. Hence, the quality metrics introduced above are optimistic; in actual

usage, a provider may not respond and other agents may not produce helpful referrals.

Hence, a high quality network does not necessarily mean that the agents will reach the
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services they are close to. To illustrate this point, we measure the efficiency of finding

answers. Efficiency is defined as the ratio of the correct answers received to the number of

agents contacted. Figure 3.7 plots the capability threshold versus the efficiency for different

referral policies.
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Figure 3.7: Effect of selectivity on efficiency

Refer all matching with high thresholds (e.g., � � � , � � � ) have the least efficiency. Since

these policies are selective, few referrals are given. Hence, most of the time, the agents

cannot find good answers, reducing the overall efficiency. On the other hand, an approxi-

mately equal number of good answers are found with both Refer all and Refer all matching

with smaller thresholds, but because Refer all matching is more selective, fewer referrals

are generated, resulting in fewer agents being contacted. For this reason, Refer all matching

with small thresholds produces higher efficiency than Refer all.

Observation 3 When few referrals are exchanged, good answers are not found. When

more referrals are exchanged, good answers are found at the expense of contacting too

many agents. Hence, it is better to be less selective in exchanging referrals to increase
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chances of finding good answers.

We analyze the combined results on effectiveness and efficiency in three cases. First,

with higher thresholds of Refer all matching policy, the agents can potentially reach the

experts, but since referrals are given highly selectively, most of the time they cannot get

referrals to locate the experts and pose their queries. Second, with smaller thresholds of

Refer all matching, not only can the agents reach the experts, but since the referrals are

less selective, they can locate the experts and get good answers. This is also the case for

the Best neighbor policy, although with this policy the number of good answers received is

smaller. The third case is the most interesting one. With Refer all, agents get good answers

although the quality of the network is poor.

When the agents exchange more referrals (using Refer all), we would expect agents to

be able to locate experts better and get closer to them. If the agents get good answers, then

they are finding the experts, yet their ability to reach the experts (measured in quality) is

still lower than all other policies. The reason for this is that the agents are close to a few

experts which ensures that they get good answers. On the other hand, they are isolated

from many other useful providers. That is, the structure of the referral network may evolve

in ways that isolate some of the experts from the agents. The next section studies these

possible undesirable structures in greater depth.

3.3 Structure

At certain intervals during the simulation, each agent has an opportunity to modify its se-

lection of neighbors based on its acquaintance models. A neighbor selection policy governs

how neighbors are added and dropped. Such policies can strongly influence the structure

of the referral network.
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What would happen if each agent chose the best service providers as neighbors? Or

would it be better to choose agents with higher sociability rather than higher expertise?

At one extreme, if each agent chooses the best providers it knows as neighbors, then the

network would acquire several stars each centered on an agent who is the best provider

for the agents whose neighbor it is. On the other hand, if everybody becomes neighbors

with agents that have slightly more expertise than themselves the structure will tend to be a

tree, similar to an organizational hierarchy. To evaluate how the neighbor selection policies

affect the structure, we compare three policies by which an agent selects the best � of its

acquaintances to become its neighbors.
�

denotes the weight of the sociability in choosing

a neighbor.

� Weighted average. Sort acquaintances in terms of a weighted average of socia-

bility and how their expertise matches the agent’s interests.

� Providers. Sort acquaintances by how their expertise matches the agent’s in-

terests. (
�

is set between � and � � �
.)

� Sociables. Sort acquaintances in terms of sociability. (
�

is set between � � �
and

�
.)

The neighbor selection policies shape the structure of the network. The emerging network

structures may sometimes be undesirable, mainly because they may cause some agents

to be unreachable by others. Essentially, this can happen even when the agents are each

locally taking the best action. In other words, an agent’s neighbors could be a good match

for the agent, yielding high direct quality. But, if the agent cannot reach others, the quality

of this agent as well as the quality of the network will still be low.

Consider an extreme case, where each agent has only one neighbor. Agent
�

and agent �
establish a reciprocal relation. Although each of them could be a good match for the other,

they become isolated from the rest of the agents. Although, locally they might have made a
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correct decision, globally the quality of the whole network will go down. Figure 3.8 plots

the direct quality metric versus the quality metric for different neighbor selection policies.

When the direct quality of the network increases, the quality does not necessarily increase.

Observation 4 High direct quality does not guarantee a high global quality. That is, having

useful neighbors does not guarantee that agents can locate all useful service providers.
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Figure 3.8: High direct quality does not guarantee high quality

3.3.1 Bipartite Graphs

Consider a bipartite graph. A graph
�

is bipartite if it consists of two independent sets, i.e.,

two sets of pairwise non-adjacent vertices. When the simulation is started, we know that

there is one independent set, the group of service providers. Since these do not have out-

going edges, no two service providers can have an edge between them. Thus the providers

form an independent set. Now, if the consumers also form an independent set, then the

graph will be bipartite. Essentially, the consumers’ forming an independent set means that

all the neighbors of all the consumers are service providers. Notice that if this is the case,

43



then the consumers will not be able to exchange referrals. If the graph becomes bipartite,

the system loses all the power of referrals and all consumers begin operating on the sole

basis of their local knowledge.
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Figure 3.9: A configuration where consumers cannot exchange referrals

We observe that the quality of a bipartite graph is stable and suboptimal. Since the

service providers do not have outgoing edges, they will not refer any new agents. Thus, the

consumers will not get to know new agents, and will not be able to change their neighbors,

making the graph stable. However, for each agent there will be many other agents that it

cannot reach. Configurations of the same population that allow reachability to other agents

will have better quality. Thus, the quality of the bipartite graph is not optimal.

Even if the graph is not bipartite, the structure could be very close to a bipartite graph.

Let’s say that the graph would be bipartite if a few edges were taken out from the graph.

This is still dangerous, since the graph might quickly evolve into a bipartite graph. Ac-

cordingly, we study the neighbor selection policies to see if they can cause the graph to

turn into a bipartite graph. We use the number of edges needed to be removed as a metric

for determining the how close the graph is to becoming bipartite. In general, detecting if a

graph is bipartite is easy. On the other hand, determining the number of edges that it varies
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from a bipartite graph is NP-complete [Garey and Johnson, 1979]. Here, however, the se-

mantics of the nodes serve to ease this problem. More specifically, one of the independent

sets is already known, i.e., the set of providers. Let ' denote the number of edges between

the consumers. When ' is smaller, the graph is closer to a bipartite graph. If there are no

edges between consumers ( ' = � ), then the graph is bipartite.

Figure 3.10 plots ' after every two neighbor changes for Providers policy for a particu-

lar run. After each neighbor change, the number of consumers that point to other consumers

drop, since each agent finds useful providers to point to. Eventually, the number of edges

between the consumers is only
�
.

We observe that when each agent exercises the Providers policy, if there are more

providers than the number of neighbors an agent can have, then the graph converges to

a bipartite graph. While this is the case for the Providers policy, the same effect does not

hold for Weighted Average or Sociables policies, since with these policies consumers may

choose some other highly sociable consumers as neighbors.
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Figure 3.10: The number of edges among consumers decreases
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Observation 5 When choosing neighbors, if agents prefer only expertise (use Providers

policy), then the network can evolve into a bipartite graph, which prevents the consumers

from exchanging referrals.

3.3.2 Weakly-Connected Components

A weakly-connected component of a graph is a maximal subgraph that would be connected

when the edges are treated as undirected [West, 2001]. That is, different components have

disjoint vertices and are mutually disconnected. Consequently, consumers can at best find

service providers in their own components. This means that if there is more than one

weakly-connected component in a graph, then there is at least one consumer who will

not be able to find at least one service provider. Since the consumers are the only sociable

agents, consumers who will choose to be neighbors with other consumers only. In the worst

case, this results in the providers being totally isolated from the consumers. We observe

that in a population where each agent exercises the Sociables policy, the graph ends up with

more than one weakly-connected component, as shown in Figure 3.11.
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Figure 3.11: A configuration where some consumers cannot reach some providers
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Observation 6 When agents use the Sociables policy, the network can become discon-

nected. This may prevent the consumers from locating some of the service providers.

3.3.3 Clustering

Watts defines the cliquishness of a graph as the likelihood of the neighbors of an agent being

neighbors with each other [1999]. The cliquishness coefficient for each agent
�

measures

the ratio of actual edges among its neighbors to the possible edges among the neighbors,

as shown in Equation 3.5. Below,
� �

denotes the set consisting of node
�
’s neighbors.

� �
denotes all the edges between the nodes in

� �
.

� � ��
 � � ��� �
� ��� � � � ��� � � � 
 (3.5)

The cliquishness of a graph is then defined as the average �
� �#


of all the nodes in the graph.

Interest clustering denotes how similar the neighbors of an agent are in terms of their

interests. We use an interest clustering coefficient, similar in motivation to Watts’ cliquish-

ness coefficient. Instead of counting edges between the nodes, we use Equation 2.1 to

measure how similar the interests of two agents are.

The interest clustering ( � ��
 measures how similar the interest vectors of an agent
�
’s

neighbors (including
�

itself) are to each other. The average of all the agents’ interest

clustering coefficients constitutes the interest clustering of the graph. ( � ��
 is high if the

neighbors of
�

are neighbors with each other and even higher if they have similar interests.

In Equation 3.6,
���

denotes the set of agents that contain
�

and
�
’s neighbors, and

� �
denotes

edges between nodes in
���

.

( � �#
 � %�� ��� ��� ��� � � � � � �
� ��� � � � � � � � � 
 (3.6)

Figure 3.12 plots the interest clustering after every two neighbor changes. Each plot

corresponds to a different neighbor selection policy. The interest clustering of the graph
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Figure 3.12: Increase in interest clustering over neighbor changes

increases when the agents put greater emphasis on sociability when choosing neighbors.

Observation 7 When agents value expertise more (follow the Providers policy), the inter-

est clustering is small since (1) there are few edges between the experts and (2) the interests

of the consumers are not necessarily similar to the interests of the experts. On the other

hand, when sociability is valued more, agents with similar interests are more likely to be-

come neighbors. The agents with similar interests may have located useful providers that

match their own interests. These providers may also be useful for the given agent. Thus,

the agents with similar interests can give well-targeted referrals, and thus be considered

sociable.

Next, we study the correlation between interest clustering and quality. Figure 3.13 plots

the quality of the network for different values of interest clustering. Each plot corresponds

to a different neighbor selection policy. The data are plotted after every second neighbor

change.

We observe that interest clustering decreases with an increase in quality. An increase in
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Figure 3.13: Quality versus interest clustering

quality indicates that some consumers are getting closer to the capable service providers.

This decreases the interest clustering since now all those clustered consumers can get to

the service provider through referrals and no longer need to be neighbors with other similar

consumers. Consider a group of travelers who are not aware of a qualified travel agent. As

soon as one of them discovers a qualified agent, the quality of the network will increase.

Further, when requested, it will refer this new travel agent to its neighbors. The neighbors

may eventually point to the travel agent instead of another traveler. This will decrease the

interest clustering of that particular group of travelers.

Observation 8 Becoming neighbors with agents with similar interests does not guarantee

finding useful service providers.

Interest clustering has an interesting consequence: congestion. Informally, an agent in

the network is congested when its in-degree is significantly higher than others. The idea

of congestion here is similar to the one in computer networks. The main difference is that
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in computer networks the congestion is measured by the difference of out-degree and in-

degree. If there are more packets coming into a node than are leaving the node, then the

node will be congested [Tanenbaum, 1996]. However, here we are not concerned about the

out-degree, since the out-degree is not representative of how much of the incoming traffic

is handled properly.

In Figure 3.14, the � axis shows the in-degree and the � axis shows the number of

agents. Each box corresponds to the number of agents that have an in-degree greater than

the given in-degree value. The dashed lined box shows the initial distribution. That is,

initially approximately � � agents have an in-degree greater than
� � , but none of the agents

have an in-degree greater than � � . The remaining agents have an in-degree below
� � and

hence not shown in the graph. Contrast this with the distribution after interest clustering

takes place, shown with solid boxes. There are five agents whose in-degree is greater than

� � and two of these even have in-degree greater than
� � . We observe that increasing interest

clustering increases congestion.
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Figure 3.14: Distribution of in-degree before and after clustering

Naturally, while some nodes are getting high in-degree, others have remarkably low
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in-degree. This raises questions about the in-degree distribution. What are the factors that

affect in-degree distribution? How do the authorities emerge? We study these questions in

the Chapter 4.
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Chapter 4

Emergence of Authorities

Two well-known algorithms for identifying authorities on the Web, PageRank and HITS,

have been introduced in Chapter 3. These algorithms assume that links between pages

indicate some sort of an endorsement. This assumption leads to the heuristic that a metric

such as the PageRank of a page measures the page’s authoritativeness. That is, a Web page

has a high PageRank only if it is pointed to by Web pages with high PageRanks, i.e., if other

authoritative pages view this page as authoritative. After the Web is mined to generate a

graph, these algorithms are used to find authorities.

Even though identification of authorities is useful, these approaches do not provide a

view of why and how authorities emerge. That is, the process that creates the authorities has

not been studied. Current stochastic models of the Web (e.g, [Albert et al., 1999; Pennock

et al., 2002]) are geared toward capturing the growth of the Web in terms of evolving in-

degree distributions. But, since they do not capture the reasoning by each creator of a link,

other emerging notions, such as authoritativeness or trust, cannot be captured.

Our referrals-based approach for finding trustworthy service providers gives us a direct

means to model the evolution of a social network. We can consider the various repre-

sentations and strategies or policies used by the agents along with distributions of true
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authoritativeness and relate these to each other. Our study of the processes of linkage and

referrals gives us a basis for understanding how authoritativeness emerges. In addition to

its theoretical value, understanding the process has two major consequences. One, the pro-

cess can be used to predict the evolution of the system. Two, better mechanisms can be

designed for identifying and benefitting from authorities.

The remainder of this chapter is organized as follows. Section 4.1 analyzes different in-

degree distributions that result from different agent policies. Section 4.2 studies factors that

affect the distribution of PageRanks. Section 4.3 studies the ways PageRank distributions

can evolve after perturbing the population, based on neighbor selection policies.

4.1 Evolution of In-degree Distributions

We perform a series of experiments to determine the in-degree distribution of the graph

as induced by neighbor relations. Initially, each agent has an in-degree between � and
� � .

By exchanging referrals, agents learn about experts and sociable agents. Hence, after each

neighbor change, the in-degree of experts and sociables increases, whereas the in-degree of

the less qualified agents decreases. In populations where the number of qualified agents is

low, this distribution of in-degree would imply that the few qualified agents will have high

in-degree and the remaining non-qualified agents will have low in-degree, if any. This type

of distribution suggests a power law distribution.

A network exhibits a power law distribution if the rank of each node is proportional to a

power of its in-degree. The ranks are assigned based on the in-degree of the nodes; the node

that has the highest in-degree gets the first rank, the node with the second highest in-degree

gets the second rank, and so on. The nodes with equal in-degree are listed arbitrarily.

Equation 4.1 gives the generic form of the power law distribution, where
�

denotes a
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node,
� � ��


denotes the in-degree of
�
,

� � ��

denotes the rank of node

�
, � is a constant, and

� is the power law exponent.
� � ��
 � �

��� �#
��
(4.1)

The power law distribution of two variables captures the linear relation between the loga-

rithms of these two variables such that � denotes the slope of the line and ������� denotes the

� -intercept (Equation 4.2).

	�

� � � �#
 � 	�

�
� � � 	�

� � � ��


(4.2)
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Figure 4.1: Log(in-degree) versus log(rank)

Power law distributions are shown to hold for distribution of business firm sizes [Axtell,

2001], the city populations in the U.S. [Marsili and Zhang, 1998], distribution of words

in natural languages [Zipf, 1949], as well as distributions of in-degree and out-degree of

the Internet [Faloutsos et al., 1999] and the Web [Albert et al., 1999; Huberman, 2001].

Recently, Pandurangan et al. [2002] showed that the distribution of the PageRanks on the

Web follows a power law as well.
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Figure 4.1 shows a plot of data points and the line fit for a population which has
� � %

service providers and
� � % service consumers, where the service consumers are distributed

equally over possible domains. The data set contains the ����� of the in-degree and the ��� �
of the rank of � � � agents. The least squares method is used to find the line that best fits

these data points. As is customary, the square of the correlation coefficient (
� * ) is used to

decide whether a population obeys a power law distribution. The
� * denotes how well the

estimated line fits to the data [Walpole and Myers, 1978].

We first use our model to study the in-degree distributions. We consider the evolution

of in-degrees under the Providers and Sociables neighbor selection policies. Weighted

Average policy (with
�

= � � � ) is similar to the Sociables policy, so we do not consider it as

a separate case.

4.1.1 Providers

When agents use the Providers neighbor selection policy, each consumer replaces its initial

neighbors that are consumers with any useful providers it finds. Thus, there is a rapid

increase in the in-degree of providers. The providers that are located first are propagated

through the system, accumulating higher and higher in-degree. Meanwhile, many agents

still have low in-degree, either because they do not have any expertise to serve others or they

are providers waiting to be discovered. Power law distribution of in-degree emerges when

some but not all consumers have found the providers. The few providers that are discovered

earliest have high in-degree, while the remaining providers have lower in-degree because

they are in the process of being discovered, and many consumers have low in-degree.

If the referring policy encourages referrals (e.g., Refer all), then all the consumers locate

the providers after a few queries. This is analogous to the case when the graph turns into

a bipartite graph, as was discussed in Section 3.3.1. After the graph turns into a bipartite
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graph, the in-degree distribution no longer follows a power law. At this stage, almost all

consumers have in-degree zero, and the possible in-degrees are shared among the providers

with a linear distribution, as shown in Figure 4.2.

Observation 9 When agents prefer expertise and exchange many referrals, each consumer

locates as many providers as possible. Hence, the possible in-degree is shared only among

the providers.

On the other hand, if the referral policy prescribes selective referring, then some of the

consumers do not find as many providers as their allowed number of neighbors. They

continue to point at their original neighbors. When this is the case, then the power law

distribution remains (Figure 4.3).

Observation 10 When agents prefer expertise but do not exchange many referrals, only a

few providers are located by most consumers. Most consumers and most providers have

low in-degree, while only a few providers have high in-degree.
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Figure 4.3: Power law distribution of in-degree for Providers policy with selective referrals

4.1.2 Sociables

When agents follow the Sociables policy, providers as well as sociable consumers that point

at the providers increase their in-degree. The consumers that initially point at experts have

an advantage; they will be considered sociable by the agents that point to them early on.

After a few queries, these agents receive high in-degree right away due to their sociability.

Many other consumers do not point to providers at the beginning of the simulation, and

hence are not considered sociable.

C
1

C
2

C
3

S
4

Figure 4.4: An example network

The agents that initially point at the providers gain the most in-degree, since they are

recognized as sociables, and are being pointed to by more and more agents. The consumers

that learn about the providers after several queries are not considered to be as social as the

initial sociables. Here again, the distribution moves from a power law distribution toward a
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linear distribution, where the in-degree is shared among initially-sociable agents. Figure 4.5

shows the distribution when the referrals are not selective.
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Figure 4.5: In-degree distribution for Sociables policy with non-selective referrals

For example, let agent
	 � point to agent

	 * , a consumer who does not initially point to

any of the providers, as in Figure 4.4. If the referrals are not selective (e.g., Refer all), when

agent
	 � sends a query to agent

	 * , agent
	 * will refer all of its neighbors, who in turn

will refer all of their neighbors, until the maximum referral graph length is reached. When

agent
	 � finds a provider, the agent

	 �
who gives the final referral to the found provider

"
� will get the highest increment in terms of sociability. Agent

	 � will replace agent
	 *

with agent
	��

, since
	��

has been more useful. Hence, with Refer all policy, agents who are

initially sociable (e.g., agent
	 �

) will increase their sociability, and thus their in-degree.

Observation 11 When agents prefer sociables and exchange many referrals, only the con-

sumers who are initially close to providers get high in-degree. The remaining agents either

have no in-degree or low in-degree.

On the other hand, if the referrals are selective (e.g., Refer all matching), agent
	 �
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will not necessarily locate agent
	 �

in the beginning of the simulation. Hence, it will not

replace agent
	 * with agent

	��
right away. Meanwhile, if agent

	 * learns about a provider

that is beneficial for agent
	 � , then agent

	 � will increase agent
	 * ’s sociability more than

anyone else’s sociability. Even if agent
	 � learns about agent

	 �
later on, it will not prefer

agent
	��

over agent
	 * . In other words, when the referrals are selective, there will be a few

agents (e.g., agent
	��

) that will have high in-degree because they start sociable. But, others

(e.g, agent
	 * ) will also be likely to accumulate some in-degree after they discover useful

providers. Figure 4.6 shows the distribution when the referrals are selective. Selective

referrals allow local sociables to emerge over time. Hence, with selective referring, the

consumers that do not start with an advantage of knowing providers can still end up with

other consumers pointing at them.
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Figure 4.6: Power law distribution for Sociables policy with selective referrals

Observation 12 When agents prefer sociables but do not exchange many referrals, only

a few consumers stand out as sociables. These agents get a substantially higher in-degree

than the rest of the agents. The in-degree distribution follows a power-law.
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4.2 Distribution of PageRanks

Some agents are identified as authoritative as a result of their being chosen as neighbors by

other authoritative agents. Presumably, authoritative agents are the most desirable to inter-

act with. In general, agents with high expertise or high sociability would be candidates for

becoming authorities. We measure the authoritativeness of each agent using the PageRank

metric (Equation 3.1) We study four factors that influence the PageRank distributions: the

percentage of actual experts in the network, adaptability of the agents, and the referral and

neighbor selection policies.

4.2.1 Percentage of Experts

Intuitively, the percentage of agents with high expertise plays a crucial role in the distribu-

tion of PageRanks. For example, when there are too many experts in the system, we expect

that the PageRanks will tend to be shared among them. Having a small number of experts

may ensure that experts with high authoritativeness will emerge. To study this point, we

vary the percentage of the experts in the system. We study three populations with 5%, 10%,

and 20% experts in them.

Figure 4.7 shows a histogram of PageRank distribution for three populations for Page-

Rank values � � � and higher. The solid lines denote the population with � % experts, the

dashed lines denote the population with
� � % percent experts, and the dotted lines denote

the population with � � % experts. When the percentage of experts is high, the PageRanks

are clustered for small PageRank values. For example, when the population has � � % ex-

perts, the number of agents having PageRank greater than � � � is higher than for the other

two populations. For the greater values of the PageRank, the converse holds. For example,

the only population that allows PageRank greater than � � is the � % expert population.
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Figure 4.7: PageRank distributions for varying percentage of experts

Observation 13 There is an implicit competition among the experts. When there are too

many experts, they end up sharing the incoming edges. Therefore, only a few receive a

relatively high PageRank. When there are a few experts, those experts tend to dominate

more clearly.

Since the population with �
�

percent experts provide a broader distribution of PageRanks,

we use this population for the following experiments.

4.2.2 Referral Policies

Next we study the effect of referral policies in the emergence of authorities. After each

simulation run, the agents are ranked based on their PageRank. Figure 4.8 shows the Page-

Rank distribution of the top 50 agents (out of a total of 400). If the agents use the Refer

all policy, few authorities with high PageRanks emerge. For example, the
� � th agent in the

Refer all policy gets a PageRank greater than the first agent in two instances of the Refer

all matching policy (with thresholds � � � and � � � ). Further, the Refer all policy creates a
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Figure 4.8: PageRank distributions for referral policies

large variance among the PageRank distributions. For example, while the first agent gets

a PageRank of � � , the � � th agent gets a PageRank of only � � � � . Contrast this with Refer

all matching policy with a threshold of � � � , where the first agent gets a PageRank of � � � �

whereas the � � th agent gets a PageRank of
� � � � . The distribution of PageRanks using the

Best neighbor policy falls between the distributions for Refer all and Refer all matching

with high thresholds. In other words, when agents use the Best neighbor policy, the highest

PageRank is not as high as the Refer all policy ( � � ) but the PageRank variance between the

first and the � � th agent is still quite large.

Observation 14 Whereas more authorities emerge through Refer all matching policies,

Refer all policy causes emergence of authorities whose level of authoritativeness is higher.

Intuitively, the explanation for the above is that the Refer all policy is highly effective in

disseminating information about the experts. Agents are thus more likely to encounter the

experts and more likely to recognize their authoritativeness, thereby yielding high Page-

Ranks for some of them.
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4.2.3 Adaptability

Throughout the simulation, after every few queries, each agent has an opportunity to

choose new neighbors from among its acquaintances. Since agents learn about other agents

through the answers they receive, changing neighbors allow them to point at agents that are

expected to be more useful to them. This enables us to study the evolution of PageRanks,

since PageRanks of the agents change as a result of the neighbor changes.
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Figure 4.9: Change in PageRank distribution as agents adapt

Figure 4.9 plots the distribution of PageRanks after several neighbor changes. The

plots correspond to the number of agents that achieve a PageRank higher than the value

given on the � axis. To reduce clutter, we have omitted PageRanks smaller than
�
. After

the first neighbor change, most agents have a PageRank between
�

and � . As the agents

change their neighbors and point to the ones that are more useful to them, some authorities

emerge. This is reflected in the graph by the increased number of agents that get a higher

PageRank. After the final neighbor change, there are agents with PageRanks greater than

� � .
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Observation 15 As agents change neighbors, they do learn about the authorities and show

a preference for linking to them.

4.2.4 Neighbor Selection Policies

Figure 4.10 plots the distribution of PageRanks with respect to neighbor selection policies.

Again, the � axis shows PageRanks and the � axis denotes the number of agents that

achieve a PageRank greater than the PageRank shown on the � axis. The five plots corre-

spond to Providers, Sociables, and three Weighted average neighbor selection policies with

different weights.
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Figure 4.10: PageRank distributions for neighbor selection policies

All curves, except the one for Sociables policy, are similar to each other. In all four

cases, the number of authorities that emerge is few. But the level of their authoritativeness

is high. For example, for the Providers policy, while only � � agents get a PageRank above
�
, five of them get a PageRank above � � . Increasing the effect of the sociability slightly

increases the number of agents with medium authority while slightly decreasing the number
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of agents with high authority. For example, with Weighted Average policy, when sociability

and expertise are weighted equally, the number of agents that get a PageRank above
�

is

� � , while four of them get a PageRank above � � .

The Sociables policy does not follow this distribution. Initially, when not too many

experts have been discovered, choosing neighbors based only on sociability does not help

agents find service providers. Hence, when agents follow the Sociables policy in the be-

ginning, most agents get average PageRanks (e.g.,
� � � agents get a PageRank around

�
).

Observation 16 For strong authorities to emerge, it is important that the agents put a high

value on the ability to produce high quality of service. If, at the outset, the agents prefer

sociables, there is little grounding in quality. Consequently, it is difficult to find good

providers and thus strong authorities do not emerge.

Although only sociability does not help any agent to become authoritative in the begin-

ning, once the network has stabilized, sociability helps as there is a basis for good referrals

to be given and there is value in those who can give good referrals.

4.3 PageRank Distributions Under Perturbation

The factors mentioned in the previous section influence the PageRank distributions. As

expected, the agents that get the most PageRanks are agents with high expertise or high

sociability. Now, we manually modify the models of a few of the agents in the system

to measure the consequences of the perturbation (vis à vis the existing PageRanks, which

characterize the entrenched players) on the resulting population.

For example, what happens when an agent with a high expertise begins providing poor

quality of service? Conversely, if an agent gains expertise over time, can it acquire high

PageRanks and get a high ranking?
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First, we run the simulation until the referral network stabilizes, i.e., there are no more

neighbor changes. Then, we pick four agents that have ranked in the top � � and switch

their expertise values with four agents with low expertise. This will ensure that the four

previously expert agents will start giving low quality service. Rather than choosing the top

four agents, we choose four agents from the top � � (ranked
�
st, � th,

� � th, and � � th). This

will allow us to see the impact of the initial position in the rankings.

We are interested in how the PageRank distribution and the ranking of these eight agents

will change. Intuitively, we would expect the PageRanks to drop for the previously expert

agents and to increase for the agents who have now become experts. To give a more com-

plete analysis, we look at two orthogonal setups. In the first setup, agents use the Sociables

neighbor selection policy, whereas in the second setup the agents use the Providers neigh-

bor selection policy.

4.3.1 Agents Prefer Sociables

We first study the four agents that have started giving low quality of service (after their

expertise is decreased). Figure 4.11 plots the evolution of PageRanks for two previous ex-

perts, agent
�

and agent � � . Interestingly, when agents prefer to be neighbors with sociable

agents, the PageRanks of the two agents ( � th and � � th) are affected more than those of the

other two agents. More precisely, the absolute PageRanks as well as the rankings of these

two agents drop.

The agent that has ranked � th is now ranked at
� � and the agent that was ranked � � th

is now ranked at � � . However, the other two agents (
�

and
� � ) are not affected by the fact

that they have started offering lower quality of service. Both their absolute PageRank and

ranking stay almost the same with minor shifts between neighbor changes. This is unex-

pected. Looking closely at others’ models of these agents, we see that even though agents
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Figure 4.11: Evolution of PageRanks for two previous experts

�
and

� � have low expertise, they are still being kept as neighbors for their sociability. In

other words, now that agents
�

and
� � cannot provide adequate answers, they start giving

good referrals. This is reason enough for other agents pointing at these to keep them as

neighbors. In other words, agents
�

and
� � keep their PageRanks because of their neigh-

bors. On the other hand, since agents � and � � do not have equally useful neighbors, there

is no reason for other agents to point at them. What we see here is that when agents gain

enough PageRank, they can maintain their ranking even after they lose their expertise as

long as they maintain useful neighbors.

Meanwhile, the four agents who have now started offering good services can increase

their PageRanks only slightly; the greatest increase in PageRank was of
�
. Since the other

agents weight sociability more than expertise, these four agents are not being chosen as

neighbors as much as might have been expected, even though these agents have high ex-

pertise now.

Observation 17 Even though an agent loses its expertise, it may still be viewed as an
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authority because of its sociability.

4.3.2 Agents Prefer Experts

The previous section explained how the PageRank distribution can evolve when the agents

prefer sociable neighbors. In this section, we look at the converse case: how does the

distribution evolve if the agents choose experts over sociables?
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Figure 4.12: Evolution of PageRanks for two new experts

Again, we look at the four agents who have stopped providing high quality of service.

This time, all of their PageRanks, and hence their ranking, drop slowly. The interesting

cases occur for the other four agents who have now started providing high quality of service.

Figure 4.12 plots the evolution of PageRanks for two of the agents.

Agent � � �
cannot improve its PageRank at all. The reason for this is that only a few

other agents point at it. Therefore, it is not referred to other agents. Over all, even though

this agent has higher expertise than most of the agents that rank above it, it cannot get

enough PageRank to improve its relative ranking.
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This is not the case for agent
� �

. It gets discovered by other agents and hence can

substantially increase its PageRank. However, there is a limit to this increase. That is, even

though it accumulates a high PageRank, it cannot make it to the top ten. This is caused

by the stability of the other agents’ neighbors. Most other agents have already found good

service providers for their needs, so they rarely change neighbors.

Observation 18 Even though an agent gains expertise, it may never be viewed as an au-

thority since its initial position in the network may be poor, i.e., not well-connected.

4.3.3 Does the Winner Take All?

As noted above, the distributions of in-degrees, out-degrees, and PageRanks all follow

power law distributions. These distributions suggest some sort of preferential attachment

wherein Web links are likelier to be made to those pages that already have a high in-degree

or PageRank. Hence, the mottos “the rich get richer” and the “winner takes all” are used

to describe this phenomenon. However, Pennock et al. [2002] recently discovered that the

reality is closer to a combination of preferential and uniform attachment, meaning that the

winner doesn’t always “take all”.

Our referrals-based approach allows us to model the process through which the links

among agents emerge. Thus, we can explicitly model the various policies through which

the referrals are generated and through which the agents update their sets of neighbors. This

enables us to capture various shades of trust formally. Specifically, from the above exper-

iments, we conclude that authorities with high PageRanks emerge when (1) there are few

experts in the system, (2) agents exchange more referrals, and (3) agents change neighbors

based on other agents’ expertise and sociability. The PageRank distribution then evolves

based on how these authoritative agents maintain their quality of service. This evolution
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is highly influenced by whether agents prefer sociables or experts. When agents prefer so-

ciables, agents who have gained high PageRanks can sometimes keep their PageRank even

without providing high quality of service. On the other hand, when experts are chosen over

sociables, the agents with high PageRanks must continue to offer high quality of service in

order to maintain their PageRanks.

Similarly, when sociables are preferred, there is little chance for newcomer experts to

get high PageRanks since they are not pointed to by any sociable agents. Preference for

experts relaxes this case but still does not guarantee high PageRanks for newcomers. These

findings lead us to conjecture more broadly that in environments where sociability domi-

nates (with respect to expertise), the winner will take all, whereas in settings where exper-

tise dominates, the winner may not take all. If new services emerge and draw away some

of the demand then there will be greater churn in the rankings of the top-most authorities.
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Chapter 5

Emergence of Trust

Previous agent approaches for trust emphasize either its local or its social aspects [Barber

and Kim, 2001; Sen and Sajja, 2002]. The referrals-based approach provides a treatment

for both local and social trust. Local trust is established as a result of evaluation of services

and referrals. That is, an agent trusts another agent that provides a useful answer or a useful

referral for a particular query. Social trust is accomplished through referrals. By following

referrals from agents that it trusts, each agent can locate other trustworthy parties for its

needs.

Here, we propose a graph-based representation for services that enhances the treatment

of local trust. The representation helps agents to reason about their interactions with others

locally and in a more systematic way than the existing vector approach. This representation

enables us to address two properties of trust that are not adequately addressed by current

approaches. One, trust often builds up over interactions. That is, you might trust a stranger

for a low-value transaction, but would only trust a known party for a high-value transaction.

Two, trust often flows across service types. That is, you might assume that a party who is

trustworthy in one kind of dealings will also be trustworthy in related kinds of dealings.

The rest of this chapter is organized as follows. Section 5.1 introduces a graph-based
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representation for agents to model others. Section 5.2 describes our experimental setup.

Section 5.3 compares this graph-based representation with a vector representation in terms

of efficiency and effectiveness. Section 5.4 discusses and experimentally evaluates factors

that are related to performance.

5.1 Graph-Based Service Representation

We consider a setting with a fixed number of service types. Service providers offer one or

more of these services. Some of these services may be related, i.e., being a good provider

for one may imply being a good provider for another. Conversely, some services may be

unrelated to each other.

In the previous chapters, the set of services was represented through a vector space

model, where each element in the vector corresponds to a different domain and the weight

of the element denotes the fitness of the service for that domain. The vector representation

is simple and quite effective if the elements are independent, since a vector representation

does not capture any relationships between vector elements.

S1

S2

S3

S4

$1 Transactions

$10 Transactions

$100 Transactions

$1000 Transactions

{P1, P , P , P , P2 3 4 5}

{P1, P , P2 3}

{P1, P2}

{P1}

Figure 5.1: A totally-ordered service graph

Figure 5.1 shows a simple graph. Here, each node represents transactions of different
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values.
" � denotes transactions worth � �

,
" * denotes transactions worth � � � , and so on.

The list next to each node represents the trustworthy providers for that node. The agents

trusted for a node are a subset of the agents trusted for the lower node. That is, if you trust

someone for a � � � transaction, you trust him for a � �
transaction as well (e.g.,

� �
). The

reverse need not hold. You might trust many for transactions of � �
but probably only a few

for � � � � � transactions (e.g.,
� � ).

Here, we propose to represent the services using a graph. The graph representation is

more expressive than a vector representation because it can capture relationships between

service types that a vector representation cannot. For example, a service provider that has

been found to be trustworthy for one type of service can be considered for another type of

service based on how well the services relate.

A service graph is simply a graph whose nodes map to service types. Any two services

that are related are joined by an edge. Here an edge � � � % � 	 � indicates that a provider who

can perform � � well may also be able to perform � 	
well. The extent of the relation between

the services is given through the weights on the edges. The weights can range between

� and
�
. The bigger the weight, the more relates the services are. Conceptually, a graph

represents how the services relate to each other in terms of difficulty. If there exists a

directed path between two service types � � and � 	
, then a provider of � 	

can also perform

� � to some degree. Figure 5.2 illustrates an example service graph, with nine service types.

Any service provider who can perform
" � can also perform all other services in the service

graph.

When an agent needs a provider for a service for which it knows of no providers, it

can potentially ask others as before or promote a provider that it has used for another ser-

vice. Promotions provide a systematic way to reuse previous experiences with the service

providers. A provider is tried for a new service only if it has performed well for another
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Figure 5.2: An example service graph

service, and if performing well in the first service indicates that the provider may perform

well for the second service. The likelihood of a service provider in a lower node to perform

a service in the upper node is represented by weights on the edges. For example, the weight

� � � from
" � to

" � means that a provider of
" � will likely be providing

" � half the time.

Notice that a service graph is maintained by each agent to autonomously capture its

experiences. Thus, each agent may have a different weight for the same pair of services.

The weights are adjusted independently by each agent. After delivering a service, a service

provider is rated by the consumer. The rating reflects the satisfaction of the consumer.

These ratings are used by the consumer to decide if this service provider will be used again

or referred to other consumers. Service providers with low ratings are replaced with service

providers that can potentially receive higher ratings.

Algorithm 3 outlines which service providers an agent promotes to service � . When

promoting a provider from � � to � 	
, two factors are considered: the trustworthiness of the

provider for � � , and how related � � and � 	
are. We calculate the trustworthiness of the

provider � at � � (
��� �

) through its ratings at � � and the number of interactions for � � . The
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strength of the relation between � � and � 	
is given by the edge weight, � �
	 .

� � �
	�� ��� � 
�� �
(5.1)

The product of the edge weight with the average ratings projects how much the agent can

reproduce its ratings in � 	
, as given in Equation 5.1. If this projected value is greater than a

promotion threshold
�
, then the agent can be promoted to perform � 	

(line 4).

Algorithm 3 promoteLocally(� )

1: for
� � �

to � nodes � do
2: for � � �

to � providers(i) � do
3: � = providers(

�
)( � )

4: if (
��� ��� � � 	 � �

) then
5: if (numberOfInteractions(� ) � �

) then
6: Add � to promotedProviders
7: end if
8: end if
9: end for

10: end for
11: return promotedProviders

In the extreme case, if � �
	 � � (the services are not correlated), then the service provider

is not expected to perform well in � 	
even if it performs well in � � . Conversely, if a provider

is not trusted for � � (
��� � � � ), then the provider will never be promoted to � 	

irrespective

of how correlated the two services are. A third factor considered is the number of previous

interactions with the provider at � � (line 5). An agent may require to promote providers

only after a certain number of interactions has occurred.

The weights that denote the relation between two services are estimated by each agent.

That is, each agent can update the weights in its own service graph based on its own experi-

ences. Hence, two agents can have different weights for the same edge. The graph weights

are updated after promoting a provider and testing it for the higher service. The weights are
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tuned using a simple linear update mechanism. If a promotion from � � to � 	
is successful,

i.e., if the provider gets a good rating in � 	
as well, then � � 	 is increased. Similarly, � �
	 is

decreased when a promoted provider gets a bad rating in � 	
. The increase (or decrease) in

the weight is proportional to the new rating of the service provider in � 	
.

5.2 Experimental Setup

The experiments use
� � � service consumers. The number of service providers is � � and

the number of service types is
�
. Initially, each agent knows two randomly chosen service

providers. We experiment with different starting service graphs. After a service graph is

generated, the edges on the graphs never change, but the weights can be updated by each

agent as seen fit. Each agent is neighbors with three randomly picked agents. Each query

denotes the desired service type, e.g.,
" � , " � , and so on. Note that not all service providers

offer all the services. The key property we want to capture in modeling the distribution of

the service providers for different services is that in real life, we would expect more service

providers to offer the easier services than the harder ones. Hence, the number of providers

would decrease as the service gets more specialized. With this intuition, the experiments

are set up such that most of the service providers can perform services that are lower down

in the service graph, whereas only a few of them can perform harder services, e.g.,
" � , the

most specialized service in Figure 5.2. We capture this intuition by decreasing the number

of providers approximately by half between two consecutive nodes. For example, when

the number of service providers is set to 32 and number of service types set to nine, while

15 service providers offer service
" � only

�
of them provide

" �
. The number of service

providers for each type of service for this graph is given in Figure 5.3.

The second modeling characteristic we capture is the distribution of the requests for
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Figure 5.3: Distributions of the service providers

different services, that is, the differences in the frequency of requests for a particular service

from the service consumers. Again in real life, we would expect most requests to be for

services with intermediate difficulty rather than for very easy or very hard services. For this

reason, we use a normal distribution to model the frequency of the incoming requests. For

example, for the service graph given in Figure 5.2, this distribution implies that services
" � and

" � get the least number of requests, whereas services
" �

,
"

� , and
"��

get the most

requests.

For these experiments, the service providers provide services consistently. That is, a

service provider that has provided a service will again perform the same service. For each

experiment, we report averages from three simulation runs (additional runs yield similar

results).
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5.3 Comparison of Representations

We compare the service graph representation with the vector representation in terms of

effectiveness and efficiency. A representation is effective if it allows agents to find the

desired service providers. A representation is efficient if it allows the service providers

to be found with as few messages as possible. In order to compare the effectiveness and

the efficiency of the two approaches, the simulations are run with an identical setup. Each

agent generates 30 queries and may change neighbors after every 3 queries. The agents

with service graphs use the graph in Figure 5.2 as the initial service graph.

Effectiveness is measured by the percentage of the queries that have resulted in finding

a useful service provider. That is, the ratio of queries that lead to useful service providers

to all the generated queries is calculated. We study the effectiveness after every five queries

for the service graph approach and the vector approach. To give a more detailed analysis,

two cases of the vector approach, one with referrals, one without referrals, are considered.
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Figure 5.4: Effectiveness of the representations

Figure 5.4 plots the average effectiveness of all 100 agents after every five queries.
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During the first five queries, the agents that use a vector with referrals perform no better

than the agents without the referrals. Agents that employ a service graph (dotted line)

achieve higher effectiveness percentage than both of the vector approaches. Between the

fifth and the twentieth queries, the effectiveness of the agents that use a vector with referrals

increases considerably. Even though the agents with the service graphs still achieve higher

effectiveness rates, now the difference between the vector (with referrals) and the service

graph is quite small.

The performance of the vector approach increases as the agents learn about their neigh-

bors and change their neighbors accordingly. After the � � th query, both approaches achieve

an effectiveness rate of
� � �

. However, when referrals are not employed, the effectiveness

of the agents barely increases (solid lines). The average effectiveness for the no-referral

case oscillates between � �
�

and
� � �

. Having no referrals presents two disadvantages to

the agents. One, obviously they can pose their queries only to their neighbors, and incompe-

tent neighbors cannot provide answers. Two, since there are no referrals, the agents interact

with few other agents and learn about only a small part of the society. Hence, when they

change their neighbors, the set of agents they choose from is small and pseudo-random.

Next, we compare the average number of agents contacted per query (over 30 queries).

Figure 5.5 plots this efficiency value for both approaches. The agents that use a service

graph contact fewer than one agent on average. Moreover, this number consistently drops

as they generate more queries. The agents that use a vector approach with referrals con-

tact slightly more than three agents on average even after they generate many queries. The

agents that use a vector without referrals contact fewer than three agents on average but,

as for the graph approach, the number of contacted agents drops as the number of queries

increase. Overall, for the vector representation the addition of referrals increases the num-

ber of contacted agents for the benefit of increased effectiveness, whereas the service graph
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Figure 5.5: Efficiency of the representations

outperforms the vector representation in both effectiveness and efficiency.

Observation 19 Consumers can locate trustworthy service providers more effectively and

more efficiently with a service graph representation than with a vector representation.

5.4 Evaluation

We study how the initial setting, promotion threshold, and the number of previous interac-

tions affect promotion accuracy and effectiveness in finding trustworthy service providers.

5.4.1 Control Variables

Initial Setting The initial environments can differ in two main ways. The first factor is

how much the neighbors can help each other in finding service providers, since providers

can be found through referrals as well as through promotions. To study the performance of
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the service graph representation, we seek to reduce the effect of referrals and prior knowl-

edge of an agent. Therefore, we use a setting where each agent only knows of two providers

for service
" � . This setting forces agents to promote the providers and test them for other

services. In addition, at least in the beginning, agents cannot give well-targeted referrals

for other services, since none of them knows of a trustworthy provider for other services.

The second factor is related to how much the agents are initially willing to try new

service providers. This factor, termed trust prejudice, captures whether an agent is willing

to trust newcomers [Jonker and Treur, 1999]. We capture this intuition through the initial

graph weights. For example, if initially all the weights are
�
, then the agents are willing to

try out all new service providers in all types of services. Conversely, when the weights are

all � , the agents have the prejudice that none of the agents can be trusted.

Service graphs are evaluated using three initial settings. In the homogeneous setting,

each agent starts with the service graph shown in Figure 5.2. In the trusting setting, the

graph edges are the same but the weights are higher (meaning the agents trust others more).

In the heterogeneous setting, each agent starts with random weights on random edges of its

choice.

Promotion Threshold The estimated weight between two services is adjusted based

on previous promotions between the two services. Intuitively, the promotion threshold

denotes how much risk an agent is willing to take in its promotions. If the threshold for

promoting is low, then the agents will promote more providers, but might find out that more

of these providers cannot perform the service. On the other hand, if the agents are reluctant

to promote, then they might miss a chance to find a provider for a desired service. (In

Algorithm 3,
�

refers to the promotion threshold.)

Number of interactions The overall rating of a provider for a service should be reliable.

It is widely accepted that the number of previous interactions increases the accuracy of
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the trust assessment [Falcone and Castelfranchi, 2001]. That is, the average rating may

not be representative if the total number of interactions are few. In other words, a service

provider with a ranking of 0.7 over three interactions might be trusted more than a provider

with a ranking of 0.8 over one interaction. More formally, previous interactions with a

provider allows an agent to derive a confidence interval for the provider’s performance for

the service. Statistically, when fewer data points are considered, the range of the confidence

interval will be larger than that of the case with more data points [Hinkle et al., 1979]. This

is the intuition behind building trust over interactions.

In our approach, agents use the number of interactions as a gating factor. Only those

providers that have proved sufficiently trustworthy in another service, which is sufficiently

closely related to the service under consideration, and such that the agent has interacted

with these providers often enough to trust them adequately, are considered for promotions.

(In Algorithm 3,
�

refers to the required number of interactions.)

5.4.2 Results

Promotion Accuracy Intuitively, high promotion accuracy captures the fact that only

trustworthy service providers are promoted up the graph. Promotion errors are measured

by the average number of wrong promotions performed by the agents.

Figure 5.6 plots the promotion error for varying promotion thresholds. For all three

curves, the error drops when the promotion threshold increases. That is, when agents take

fewer risks, they make fewer mistakes. The heterogeneous setting has higher weights for

more edges than the other two setups, and hence allows more promotions. For this reason,

it is more prone to errors.
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Figure 5.6: Effect of initial setting on promotion accuracy

Observation 20 When promotions are made selectively, agent make fewer promotion er-

rors.

Next, we study the effect of number of interactions on promotion error. For each value

of the promotion threshold, we plot the average promotion error. Figure 5.7 shows three

plots for the homogeneous setting, corresponding to one, two, and three required inter-

actions prior to promotion. The promotion error decreases with the number of previous

interactions. For a threshold of � � � � , for example, when the required number of previous

interactions is just one, the promotion error is almost � . When the number of interactions

is increased to two, the error drops below � . When the number of interactions is further

increased to three, the error becomes less than � . In all three curves, increasing the promo-

tion threshold decreases the promotion error, though the improvement is more significant

for fewer interactions.

Observation 21 Increasing the number of previous interactions decreases the promotion

error.
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Figure 5.7: Effect of previous interactions on promotion accuracy

Effectiveness Recall that effectiveness measures how often consumers find trustworthy

providers for the desired services. Thus, achieving a high promotion accuracy is not enough

for good performance. The agents should also achieve high effectiveness.

Again, we first look at the effect of initial setting on the effectiveness. Figure 5.8 plots

three effectiveness curves for the three initial settings. This time the random setup achieves

higher effectiveness than the other two setups. Since the random setup assigns weights

to many edges, and hence allows more promotions, many providers—useful or not—are

promoted and tested, resulting in a provider almost always being found.

Figure 5.9 plots three effectiveness curves for varying values of the promotion threshold

using the homogeneous initial setting. Again, each curve corresponds to a case where

a different number of previous interactions is required. Independent of the number of

interactions, if the threshold is high, the effectiveness is very low. Interestingly, for smaller

values of the threshold, we see that agents achieve a higher level of effectiveness (find

more trustworthy agents to interact with) if the number of interactions is lower. This is the
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Figure 5.9: Effect of the previous interactions on effectiveness
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opposite of the curves for the promotion accuracy, where we saw that a greater number of

interactions decreases the promotion error. In other words, high promotion accuracy rarely

coexists with high effectiveness. For example, in Figure 5.7 when the number of previous

interactions is set to three (with threshold � � � � ), the promotion error is below
�
. However,

effectiveness for the same setup is not even � � �
.

Observation 22 There is a trade-off between finding more trustworthy agents and promot-

ing only the trustworthy agents.

The reason for the inverse relation between promotion accuracy and the effectiveness

is that if the consumers are cautious and promote reluctantly up the graph, they might miss

many useful promotions, leading to sub-optimal effectiveness.
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Figure 5.10: Effectiveness and promotion error trade-off for homogeneous setup

Figure 5.10 plots this performance value based on Figure 5.7 and Figure 5.9. Neither

extremes of the promotion threshold ( � � � � and � � � � ) achieve high performance. The lower

threshold suffers from high promotion error, while the high thresholds lacks effectiveness.
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Figure 5.11: Effectiveness and promotion error trade-off for heterogeneous setup

Optimal performance lies in the middle values of the promotion threshold. Among these,

the performance is always better when the number of interactions is either
�

or � . This

suggests that the third interaction does not add much value to the performance. Among the
�

and � interaction cases, except for one value of the threshold ( � � � � ), the � interaction case

outperforms the
�

interaction case. Similarly, Figure 5.11 plots the performance for the

heterogeneous setup. Again, the performance is lower on the boundary thresholds and the

optimal performance lies in the middle. Because the initial weights of the heterogeneous

setup are high, the optimal performance is shifted towards higher thresholds. In general,

these results suggest that it is better to be less cautious, trust more, and make some mistakes

to be able to exploit a wider range of promotions.
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Chapter 6

Discussion

Our approach takes an adaptive, agent-based stance on peer-to-peer computing. Our philo-

sophical claim is that referrals are essential for locating services. Referrals capture the

manner in which people normally help each other find trustworthy authorities [Nardi et al.,

2000]. This is an important motivation for referral systems. Whereas the importance of

referrals have been known in the real world, referral systems have come around recently.

Next, we review some of these systems as well as other work related to our approach.

6.1 Related Work

Multiple Intelligent Node Document Servers (MINDS) was the earliest agent-based refer-

ral system [Bonnell et al., 1984]. Each node in the MINDS system is allocated a set of

documents. Nodes help each other find documents in the network. Gradually, nodes learn

how the documents are distributed in the network as well as the relevance preferences of

individual users. Kautz et al. [1997] model social networks statically as graphs and study

various aspects of their performance, such as the accuracy of the referrals, or the distance
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between a referrer and a questioner. Our work, on the other hand, tries to uncover the struc-

tural properties of the network to design mechanisms that will improve the quality of the

network.

Yu and Singh [2003] study referral networks in the context of scientific collaborations.

They study different aspects of referral networks, in particular how the neighbor set size and

referral graph depth affect locating agents accurately. Yu and Singh represent the referral

process through weighted graphs, where weights are attached to both agents and referrals.

They develop a method to minimize referral graphs so that agents only follow the most

promising referrals, i.e., referrals with high weights.

Next, we discuss the literature on P2P systems, Web structure, and trust with respect to

our approach.

6.1.1 P2P Systems

Plaxton et al. [1997] design a randomized algorithm to search for possibly replicated ob-

jects in a distributed environment. The algorithm tries to minimize the cost of an object

access by essentially minimizing the distance between the peer that is looking for the ob-

ject and the peer that hosts the object. Each peer keeps a set of shared objects. The access

scheme allows read, insert and delete operations on these objects.

In addition to the entries, each peer maintains a neighbor table and a pointer list. The

neighbor table is divided into levels that hold primary, secondary, and reverse neighbors.

The pointer list holds pointers to the copies of the objects on the network. When searching

for a peer that has a copy of the desired object, the peers on the path from the origin to

the destination exchange information about the upper bounds on the costs of likely candi-

dates. Thus, each peer constantly updates its list of pointers to reflect the newly discovered

replicas.
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When a peer inserts a replica of an object, it contacts its reverse neighbors to inform

them of the replica and the replica’s cost. If this replica is cheaper than what the neighbors

had before, then the neighbors update their pointer tables and propagate the information

on the neighbor chain. Similarly, when a peer deletes an object, it contacts its neighbors

to signal the deletion. The peers that have this object are obliged to delete it. That is, the

autonomy of the peers is restricted.

The intuition of Plaxton et al.’s algorithm has been reformulated in recent peer-to-peer

network architectures [Stoica et al., 2001; Ratnasamy et al., 2001; Rowstron and Druschel,

2001a; Aberer, 2001]. These systems all model the network as a distributed hash table

where a deterministic protocol maps keys to peers. Thus, given the key of an item, there is

one unique peer that is responsible for holding it. First, we we review these systems more

in detail, and then compare them to our approach.

Stoica et al. [2001] develop Chord, a distributed look-up protocol that maps keys to

peers in a P2P system. Chord uses a variant of consistent hashing to balance the load on

the peers, i.e., to ensure that each peer gets approximately the same number of entries.

Each peer is assigned an identifier by hashing its IP address and the peers are ordered in an

identifier circle. If the identifier of peer � equals the hash value of key � , or if � follows

the peer whose identifier equals the hash value of � , then � is called successor of � and

becomes responsible for key � .

Each peer keeps track of the peers that comes before and after itself. In addition, each

peer has a finger table with at most � entries, where � is the number of bits in each key.

The
�
th entry (

�
th finger) in the finger table shows the peers that are the successor of keys

that are �
� � � bigger than the peer identifier. When a request for a key comes in, a peer

checks its finger table to find the peer that is responsible for the key. If it cannot find such

a peer, it forwards the request to the peer whose identifier is closest to the key. Assuming
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that the circle never gets disconnected, this search technique ensures that the peer that owns

the requested key is always found. When a new peer enters the system, it is assumed that it

knows at least one other peer. Through that peer, it learns its predecessor peer as well as its

finger table. Some keys that used to be mapped to other peers are now owned by this new

peer. Thus, other peers in the system must now update their finger tables to account for this

new peer.

Ratnasamy et al. [2001] design an indexing scheme that maps keys to the peers that

carry the file name associated with the key. This indexing scheme is termed a content-

addressable network (CAN). A CAN allows insert, look-up, and delete operations. The

whole network is envisioned as a big hash table where each peer is responsible for main-

taining a small zone. The entry space is a
�
-dimensional Cartesian coordinate space on a

�
-torus. A � key, file � entry maps onto a point

�
in this coordinate space. The peer that

owns the zone to which
�

belongs is responsible for this entry. In addition to the entries in

its zone, each peer maintains a list of neighbor zones and their addresses. When looking up

a key, a peer first checks to see if the key falls into its zone. If that’s the case, the file that

maps to this key is returned. Otherwise, the peers sends the request to the neighbor whose

coordinates are the closest to the key.

The system is self-organizing, in that zones are assigned to peers at run time. When a

new peer enters the system, one of the existing zones is divided into two so that one half

can be maintained by the old resident and the other half by the new peer. After such a split

takes place, the neighbors of the zone are notified of the split so that each peer can update

its neighbor tables. Similarly, when a peer becomes unavailable, one of the adjacent peers

takes over the zone that was left behind. Possible extensions to this general framework are

multiple coordinate spaces that increase information availability, overloading of zones by

allowing a zone to be owned by multiple peers, accommodating multiple hash functions
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that enable an entry to be mapped onto several points in the coordinate space (to increase

fault tolerance), and several metric optimizations such as joining a large zone rather than a

purely random zone, or minimizing the distance between neighbors in the network.

Rowstron and Druschel [2001a] design Pastry, a layer that enables object location and

routing in peer-to-peer systems and PAST [Rowstron and Druschel, 2001b], a system im-

plemented on top of Pastry. Pastry is quite similar to CAN in its design. Again, systems

that need to locate and route objects can use Pastry as an underlying layer. The objects are

located by routing queries based on the prefixes of the keys, similar in spirit to Plaxton et

al.’s algorithm. However, rather than minimizing a generic cost function, Pastry exploits

local proximity by minimizing a scalar proximity metric.

Each peer in the Pastry system has a unique identifier called a node id. The peer that

receives a message and a key forwards both of these information to the peer whose node id

is closest to the message key (among all peers that are online at the time). Among possible

peers whose ids are close to the message key, the Pastry system always chooses the peer

with the smallest distance between the initial peer and the destination peers. Thus, at each

step the message travels the minimum possible distance. Of course, this does not neces-

sarily guarantee that the overall distance that the message travels is the shortest possible

path.

Each Pastry peer maintains a routing table, a neighborhood set, and a leaf set. The

routing table contains � rows, where the
�
th row contains the node ids of the peers that

differ from the current row in the (
�
�

�
)th bit. The neighborhood set contains the node ids

and IP addresses of the � closest peers. The leaf set holds the node ids of the agents that

are in a certain upper and lower proximity of the original peer’s id. When a message needs

to be routed, the peer first checks its leaf set to see if any node ids there match the message

key. If that’s the case, the message is forwarded to that peer. Otherwise, the peer searches
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its routing table to find the peer which is closest to the message key. If such a peer is not

found, then the message is forwarded to a peer whose id is at least as close to the key as

this peer, but whose node id is greater than the current peer’s id.

The system accommodates arrivals and departures of peers. When a new peer arrives,

it is assumed to know at least one other peer. There is a special join operation that enables

the new peer to get the state tables of peers whose ids are closer to the node id of this

new peer. A peer is said to have failed when its immediate neighbors cannot communicate

with it anymore. The failed peers in the leaf sets have to be replaced with other peers.

To find peers to make this replacement, a peers asks for the leaf set of the peer that has

the greatest node id on the side of the failed peer. The leaf set is updated based on the

leaf set of this peer. Both the routing table and the leaf set are used for locating peers,

whereas the neighborhood set is used to exchange information about nearby peers. Each

peer periodically pings its neighbors to see if they are still alive. If not, it requests the

neighborhood sets of one of its live neighbors to find out about new peers and to update its

own neighborhood set.

Fiat and Saia [2002] develop a censorship-resistant content-addressable network using

the content-addressable network of Plaxton et al. The aim of this system is to enable access

to most data items even after half of the nodes are removed from the network. The network

is organized as a butterfly network with each node called a supernode. Every supernode

is assigned a set of nodes. The supernodes at the bottom of the butterfly (bottommost

supernodes) carry the data items. A query starts from a set of topmost supernodes and is

performed in parallel. From a topmost supernode, the query follows the middle supernodes

to get to one of the bottommost supernodes. If this bottommost supernode contains the data

item, then the item is returned through the same path.

Aberer [2001] develops P-Grid, an access structure for P2P systems. Similar in spirit to
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the content-addressable networks, P-Grid is based on peers owning part of the key space.

Initially, each peer is assumed to own the whole space. When two peers meet, they divide

the space in two. Thus, as the peers organize, each peer owns only a part of the key space.

Contrary to the content-based networks, when a peer goes offline, it does not hand over its

key space to the other peers. Although this keeps the network traffic low, that part of the

network is not reachable unless it has been replicated by another peer.

There are major differences between these distributed-hash table approaches and our

referrals approach.

� These systems do not preserve the autonomy of the peers. Since the keys are

assigned to peers rather than allowing the peers to choose the ones they want,

the peers in these systems are not autonomous. It is assumed that whenever a

peer receives a query it will act in the predefined manner.

� Each peer in these systems has a table that aids the search when the item being

sought does not reside at this peer. This is similar to our neighbors concept.

However, in our approach, each peers models those it interacts with in terms of

expertise or sociability. Hence, in our approach, each agent can contact only

those neighbors that are likely to answer a given query.

� These systems assumes that all peers are trustworthy which is a major assump-

tion for open systems. The peers in these systems do not model others based

on their quality of service. In our approach, each agent can build models of

others and contact only those that are likely to answer a query based on prior

interactions or referrals from trusted parties.

� These systems are not adaptive. In our approach every agent can change its
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neighbors if it finds other agents that are better matches for itself. The afore-

mentioned systems lack this adaptability. First, the routing is defined determin-

istically. Second, peers cannot change their neighbors, unless the neighbors go

off-line. That is, even if a peer is not satisfied with the quality of the service it

receives, it still needs to contact the same peer for a query.

The Cooperative File System (CFS) [Dabrek et al., 2001] is a system that uses Chord as

a lower layer. Each file in CFS is divided into blocks and each block is stored on a different

server. There are two reasons for this division. First, this ensures better load balance among

servers. Second, there might be servers that have little storage, and thus cannot keep any

large files. By dividing the files into blocks, even the servers with small capacities can be

utilized.

The CFS system has two layers. The first layer is the Chord layer, which takes care

of mapping from blocks to servers. The layer on top of Chord is called the DHash layer,

which is responsible for distributing and replicating blocks on different servers. DHash

automatically replicates each block on the � servers that follow the original server in the

successor list. Hence, when the actual server is down or busy, the peers can go to one of

the � successor servers and get the block. In addition to this, at the end of each search

operation, the block that is sought is cached at all intermediate peers. That is, the block is

cached by all the peers that have helped locate it. The idea is that these peers are likely to

be contacted to find the same block. Hence, in addition to the � replications of each block,

there are numerous cached copies in different peers. When a block is updated, it is easy to

update the � replicas since they lie on the � successor servers, whereas it not clear how all

the cached copies are located and updated.

OceanStore [Kubiatowicz et al., 2000; Rhea et al., 2001] is yet another global storage

application that uses a peer-to-peer network. Two features of OceanStore that set it apart
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from other storage systems are partial handling of untrusted peers and exploitation of lo-

cality. Contrary to other storage systems, OceanStore has an access control that regulates

the reading and writing of data items. In other words, only some of the peers can read and

write certain items in the system. Unlike CFS, data items can reside on any server in the

system. The search for an item is performed in two steps. First, a probabilistic algorithm is

used to search the nearby peers. If the desired item is not located close by, then the second

algorithm, which is a variant of Plaxton et al.’s algorithm, is used.

OceanStore allows modification of replicas by multiple parties, e.g., two peers can

modify two different replicas. To cope with possible inconsistencies, a conflict resolu-

tion scheme is used. Each replica of a data item is considered as primary or secondary.

The difference between these two is that the primary replicas exist on trusted peers and

always have the correct version of the data item, whereas the secondary peers may have

out-of-date versions of the item. All requests for updates to an item go to the primary tier

of peers, which communicate through a Byzantine agreement protocol to decide on the

order of updates. Meanwhile, the peers that request the updates start to send the updated

version of the item to the secondary peers. After the peers of the primary tier finalize the

data item, they distribute it to all the secondary peers.

Similar to the censorship-resistant network of Fiat and Saia, OceanStore has a mech-

anism to enable fault tolerance, named deep archival storage. It employs erasure codes,

which divide a given entry into � fragments and then transform these � entries into a de-

sired number of entries, say � � . When the item needs to be reconstructed, any � fragments

are sufficient. This means that even if some of the peers that host the fragments are down,

the item can be reconstructed. Here again, fault tolerance is achieved at the expense of vi-

olating peers’ autonomy. Both these systems assume that any file fragment can be readily

placed in any peer, regardless of the peers’ choice.
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6.1.2 Web Structure

Watts [1999] showed that a social network becomes a small world when the clustering is

high but the characteristic path length is small. In Watts’ work, the clustering happens as

a result of a random function: some edges are relocated randomly after beginning with an

initial ring structure. Here, we do not enforce any initial starting structure; we let each

agent change its outgoing edges by applying its neighbor selection policies. The initial

ring structure in Watts’ experiments guarantees that the graph starts with a high clustering

coefficient. In our case, if we break down clustering into pieces, such as interest clustering,

specialty clustering, and so on, then the ring structure may not guarantee high interest

clustering.

Adamic et al. [2001] study different local search algorithms in power-law networks

to exploit the advantages of having nodes with high out-degrees. The variations on their

local search strategies is similar to our choice of referral policies. One of their strategies is

to send the message to the neighbor with the most outgoing edges, assuming each node is

aware of the number of outgoing edges of their neighbors. This resembles our concept of

sociability. In their approach, a peer with high out-degree is chosen because it will allow

the message to get to more peers. In our case, we are not concerned about maximizing the

number of agents (on the contrary) but trying to ensure that each message reaches agents

with sufficient expertise. Thus, sending messages to highly sociable agents ensures that

these sociable agents will find the agents with sufficient expertise.

Foner [1997] develops a matchmaking system, Yenta, to find (and make introductions

between) people with similar interests. Yenta is based on building clusters of similar people

using local knowledge. Once these clusters are built, then each person can query its own

cluster to find answers. The implicit assumption here is that there will exist an expert in

the cluster of people with similar interests. For this reason, the simulation results consider
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factors that increase the speed of clustering.

Wang develops an approach for organizing agents into communities based on the sim-

ilarity of their interests and expertise [2002]. Initially, each agent registers with a middle

agent randomly. Based on the queries received from the agents, the middle agents exchange

agents to ensure that agents that have the same interests and expertise are handled by the

same middle agent. In both Foner’s approach and Wang’s approach, it is assumed that clus-

tering improves the efficiency of locating agents. When the agents’ interests and expertise

are more diverse, we believe that our observation of clustering does not favor quality, will

dominate.

Ng et al. [2001] study the stability of PageRank and HITS algorithms and propose

variants of these algorithms that offer more stability with respect to the addition or deletion

of vertices. They take a graph-theoretic stance and simply recalculate the given metrics.

Their results are of course valuable in judging the stability of the different algorithms. By

contrast, however, we consider the processes explicitly. Thus we can address the question

of how the links will evolve.

Several recent approaches try to improve the current PageRank algorithm. Haveliwala

[2002] develops an approach where the PageRanks of the pages are influenced by the cur-

rent query. Instead of generating one PageRank vector, several PageRank vectors are gen-

erated based on a predefined set of topics. Then, the query is mapped to one of the topics

and the related PageRank vector is used to compute the rankings. In some respects, our ap-

proach exhibits a similar intuition in that neighbors are contacted and referrals are given in

a highly topic-sensitive manner. However, we consider the PageRank computations based

on the neighborhood relation—an agent’s neighbors are the acquaintances that it values the

most, all things considered.

Overall, we believe that a process-centric view as we discussed in Chapter 4 does not
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detract from the previous studies, but adds additional depth and understanding of how net-

works evolve in cooperative settings, but under local control. It also suggests how to apply

various policies to maximize the quality of a given network of agents. This is of an im-

mediate value for smaller networks, (for instance, for knowledge management by locating

experts [Yu and Singh, 2003]), and of a longer-term value in understanding the evolving

Web at large.

6.1.3 Trust

Lattice-based access control models have been used in computer security to regulate in-

formation flow [Sandhu, 1993]. Each node in the lattice denotes a different set of security

privileges, called security classes. The more sensitive security classes are placed higher

in the lattice. The flow of information is only allowed from the lower security classes to

the higher ones. Thus, even though the less confidential information from lower security

classes can be carried to the upper security classes, no confidential information flows down.

This is similar to how we handle service types. Providers that can perform services higher

up in the service graph can also perform lower services. In addition, we promote providers

from lower service types to higher ones based on the providers’ performance on the lower

services.

Wille [2001] uses concept lattices for knowledge discovery in databases. The data

objects are classified into meaningful concepts based on common attributes. The concepts

then are arranged in a line diagram, which represents the concepts and the subconcept

relationships among concepts. This representation is a structured way to visualize and

analyze information.

McDonald [2001] develops a centralized expertise recommender system (ER) to be

used in a computer supported collaborative environment. Each user enters a topic area and
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keywords to find an expert in the system. ER then returns a set of contacts who have exper-

tise in these areas. Different heuristics are used based on the domain. The two heuristics

are for technical development and technical support. The heuristic for technical develop-

ment identifies the last person who has made changes to the specified code. The heuristic

for technical support finds people who have dealt with similar problems before, based on

the logs.

McDonald’s approach differs from our approach in a number of ways. First, our ap-

proach is decentralized in that each agent searches the network itself (with help from its

neighbors) without needing a centralized server. Second, we allow queries to span multiple

domains (the dimension of the interest vector) and do not employ domain-based heuristics.

In a system where the number of domains is large, finding domain-specific heuristics is

hard. Further, there is no established method to combine these heuristics.

Yu and Singh [2002b] develop an approach for distributed reputation management

where the reputation of an agent is computed based on testimonies of the witnesses us-

ing the Dempster-Shafer theory of evidence. They show how this model can be used to

detect agents who are non-cooperative or agents who abuse their reputation by slowly de-

creasing their level of cooperativeness. Since the witnesses are found through referrals, Yu

and Singh’s approach captures social trust. Local evaluations are captured through belief

functions, but relationships among service types are not captured. In our approach, we can

capture relationships among service types using service graphs.

Barber and Kim [2001] propose an approach wherein agents use a belief revision al-

gorithm to combine evidence they receive from other agents. In addition to providing

evidence, each agent specifies its level of confidence in the evidence. Barber and Kim’s

approach captures social trust, but contrary to our approach, the trustworthiness of agents

who provide evidence are not considered. Their approach does not consider local evidence,
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i.e., the previous interactions of the trustor with the trustee. In our approach, it is easier to

handle local evidence as local policies of individual agents.

Pujol et al. [2002] calculate the reputation of an agent based on its position in its social

network. The social networks are built based on the link structure induced by the Web

pages of the users. An agent gets a high reputation only if the agents that point to it also

have high reputation, similar to the notion of authority exploited in search engines such

as Google. Pujol et al. test their approach to find the reputations of authors where the

reputation of an author is defined as the number of citations received. Even though each

agent can calculate its own reputation based only on local information (i.e., the agents that

point at it), a central server is needed to access others’ reputations. This approach does not

capture local trust, since direct interactions are not taken into account. It captures social

trust since the reputation of an agent is derived through how other agents have linked to it,

but has no means to correct that based on local observations of an agent. In other words,

the link structure is static and the positions of the agents do not change based on their

interactions. In our approach, we allow agents to change neighbors using the neighbors’

ability to give referrals as a heuristic. This allows us to rate the sources.

Sabater and Sierra [2002] develop a system for reputation management where reputa-

tions are derived based on direct interactions as well as the social relations of the agents.

They use the number of interactions and the variance in ratings to derive the trustworthi-

ness of the agent through direct interactions. To assess the trustworthiness through indirect

interactions, Sabater and Sierra use fuzzy inference to combine evidence from multiple

witnesses. In this regard, their approach captures both social and local trust. On the other

hand, Sabater and Sierra do not offer a mechanism to propagate trust across related services

as we have done in this dissertation.

Currently, we propagate trust based on a provider’s trustworthiness for a single service.
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However, sometimes it would help to combine the trustworthiness of the provider in several

services. For example, if a service is composed of several smaller services, the trustworthi-

ness of the provider in all the subservices will affect the trustworthiness of the provider in

the composed service. This problem is also acknowledged by Sabater and Sierra [2002].

Sen and Sajja [2002] develop a reputation-based trust model used for selecting proces-

sor agents for processor tasks. Similar to our notion of service providers, each processor

agent can offer varying performance. Agents are looking for trustworthy processor agents

to interact with using only evidence from their peers. Sen and Sajja propose a probabilistic

algorithm to find the number of agents to query to guarantee finding a trustworthy party.

In our framework, we model the peers based on their prior performance and choose whom

to ask for help based on these models. Thus, agents also decide the trustworthiness of the

information source. However, in Sen and Sajja’s framework, these models are not captured.

All peers are treated the same, independent of their previous behavior. This approach does

not handle local trust, since previous interactions of an agent with processor agents are not

taken into account.

The above approaches derive the trustworthiness of agents based on previous direct or

indirect interactions. Our approach emphasizes the propagation of trust to related contexts

as seen fit by an agent. In this respect, our graph representation complements the above

approaches. Once the trustworthiness of an agent is derived, our approach can decide how

this can be reused in other contexts.

6.2 Directions

We describe two directions for further research.
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6.2.1 Incentives

Creating incentives for answering queries could help to model the system more realistically.

Recall that with the default answering policy an agent tries to answer each incoming ques-

tion. If it cannot answer a question, it refers neighbors as dictated by the referral policies.

In real life, we would expect different answering policies to be employed. At one extreme,

an agent might try to answer all questions in order to aggressively disseminate its views.

The agents who generate inaccurate answers or referrals are inherently punished since the

other agents who receive these wrong answers will eventually decrease the expertise or so-

ciability of that agent. In other words, if an agent talks too much without enough expertise,

it will start getting fewer questions. Thus, the system discourages this type of an answering

policy. At the other extreme, an agent may not answer questions since there might not be

any incentives for providing services or referrals. Hence, it is possible to not provide any

services to anybody but still receive good quality services. This is a common problem that

plagues many existing peer-to-peer systems as well. A recent study on a partial trace of

Gnutella network showed that
� � �

of the users on the network are free-riders. That is,

they do not share any files themselves but use the system to download files from others

[Adar and Huberman, 2000]. Obviously this is not desirable.

One way to cope with this problem is to model the network as a market where there is

a benefit in answering questions and referring the right agents as well as a cost for asking

questions. Each agent in this model is a utility-maximizer. Thus, in order to ask questions,

each agent has to also answer questions or make referrals. Market-oriented approaches

have been applied before to create incentives for sharing [Golle et al., 2001]. A second

approach is based on reciprocity. In its tightest definition, a relation between two agents is

reciprocal if each agent considers the other a neighbor. The role of reciprocity in solving

the incentives problem is intuitively plausible. If an agent does not help others, it will not
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be helped. Reciprocity has been used in different disciplines like multiagent systems [Sen,

1996], anthropology, and social networks [Scott, 1991] to increase the cooperation among

agents. A broader definition of reciprocity is based on an agent helping other agents in the

group in which it is involved. Recent work in multiagent systems based on this broader

definition of reciprocity involves studying the evolution of social rationality among agents

[Hales and Edmonds, 2003]. It would be interesting to study incentives in our framework,

especially its effect on the quality and the structure of the network.

6.2.2 Caching

In this dissertation, we have focused on services that can only be provided by some speci-

fied service providers. On the other hand, many information services can easily be cached

from service providers and served to others. We have developed a caching technique, Mar-

mara, that works with our referrals-based framework [Yolum and Singh, 2002]. In Mar-

mara, cache entries are coupled with metadata, thereby allowing the use of heuristics and

flexible queries for more informed searches. The entries that are of interest to more agents

are replicated at more peers, providing on-demand performance improvement and fault tol-

erance. Our initial results show that when caching is employed, agents find good answers

more easily [Udupi et al., 2003]. We defer deeper studies of these topics to future research.

6.3 Design Rules

Building applications of referral systems requires many design decisions. The properties

identified through simulations as done in this dissertation can be used as design rules for

real-life applications of referral systems. Here, we outline some possible usage of the

properties observed in this dissertation.
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As shown in Chapter 3, neither too many referrals nor too few referrals create high

quality referral networks (Observations 2 and 3). Hence, in a referral system, it would

be intuitive to encourage referrals but ensure that not an excessive number of referrals is

exchanged. Similarly, some undesirable network structures have been identified (Obser-

vations 5 and 6). A referral system could monitor if the network is evolving into these

topologies and take further steps to prevent the network from exhibiting these properties.

Chapter 4 shows that using certain agent strategies, the in-degree distribution and the

PageRank distributions can exhibit a power law. Depending on the application, power law

distributions may be desired. A power law distribution of PageRanks shows that agents

actually identify others as authoritative. That is, actually useful agents are identified and

used by the others to find information. This is certainly important and could be enforced in

a referral system. Conversely, for example, for a knowledge management domain, a power

law distribution would indicate that some agents answer substantially more queries than

others. This overloading may not be desirable in such a setting. A referral system can then

apply checks to avoid power law distribution of in-degrees.

A referral system should be robust enough to handle the problem of boot-strapping,

i.e., enabling new agents to find parties to interact with as well as informing others of

newcomers. For example, in the current simulations, if an agent is initially not pointed

to by others, it cannot be located afterwards. A referral system can employ heuristics to

ensure that agents become aware of each other.

As shown in Chapter 5 through Observation 19, service graphs can efficiently and ef-

fectively applied in conjunction with referrals. Again, the observed trade-offs between

promotion error and effectiveness can be incorporated into a real system to ensure that

agents only try a few reliable service providers that they trust for a new service.

The identification of such properties of referral networks brings us closer to enabling
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referral systems that can efficiently and effectively operate in open and dynamic environ-

ments.
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Appendix A

List of Metrics

Capability:
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Sociability Rank:
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Spearman’s Correlation:
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Interest Clustering:

( � �#
 � % � ��� ��� ��� � � � � � �
� ��� � � � � � � � � 
 (A.7)

118



Appendix B

Simulation Parameters

The following parameters are used to configure the simulation test bed.

� TOTAL NUMBER OF AGENTS specifies the number of agents in a given sim-

ulation. The default value is � � � .

� NUMBER OF DIMENSIONS specifies the number of dimensions the interest

and the expertise vectors have. For the cases where sociability is represented

as a vector, sociability vector also has this many dimensions. The default value

is � .

� PERCENTAGE OF EXPERTS specifies the percentage of experts in at least

one domain. By default, each expert has high expertise in exactly one domain,

and there are an equal number of experts for each domain. The default value is

�
�

.

� MAXIMUM PERTURBATION PERCENTAGE FOR GENERATING QUERY

defines the maximum amount the interest vector will be perturbed to gener-

ate a query. The default value is � � � � .
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� MAXIMUM PERTURBATION PERCENTAGE FOR GENERATING ANSWER

defines the maximum amount the expertise vector will be perturbed to gen-

erate an answer. The default value is � , which means that the expertise vector

of the answering agent will constitute the answer.

��� is the learning coefficient which is used to update the sociability of an agent
�

that has given a referral. For a referral that leads to a good answer, the socia-

bility of the agent is increased as in Equation B.1 [Yu et al., 2003]. The default

value for � is � � � � . Here, � denotes the length of the referral path starting from

the agent that poses the query to the agent that answers the query. � denotes

the distance of agent
�

from the query originator. Two agents may have both

given referrals that help to eventually locate a service provider. Between these

two agents, the sociability of the agent that is closer to the service provider is

increased more.
" ��� " �

�
� � � " � 
 �
�
�
�

(B.1)

If the agent
�

gives a referral that leads to a bad answer, then the sociability of

agent
�

is decreased as shown in Equation B.2 [Yu et al., 2003].

" ��� " � � " � �
�
�
�

(B.2)

��� is the learning coefficient which is used to update the expertise of an answer-

ing agent. When agent
�

returns an answer
� �

to an agent � , agent � uses the

following formula to update
�
’s expertise.

 � � � � � � 
  !� � � � � (B.3)

That is, we assume the answer
� �

represents the expertise of agent
�

and hence

use this value to adjust the estimated expertise of agent
�
. If the given answer
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is high, then the expertise of agent � increases. If the given answer is low, then

the expertise of the agent decreases. The default value for � is � � � � .

� PERCENTAGE DECAY FOR NO ANSWER ( � ) is a coefficient used to penalize

an agent that does not answer a query. The default value is � � � � . The expertise

of the agent is decreased to
� � �

� 
 times its actual value.

� SIMILARITY THRESHOLD FOR ASKING NEIGHBOR is the threshold that

determines whether a neighbor will be contacted for a query. After the capa-

bility metric is applied to the query and the modeled expertise of the neighbor,

it is compared to this threshold. If the value exceeds the threshold, then the

neighbor is contacted. The default value is � � � �
. Having a small value ensures

that at least most of the neighbors will be contacted.

� SIMILARITY THRESHOLD FOR ANSWERING QUESTIONER is

the threshold that determines whether an agent should answer a query it re-

ceives. The agent applies the capability metric to the incoming query and its

own expertise vector. If the resulting value is above the threshold, then the

agent answers the query. The default value for this threshold is � � � . This value

ensures that only agents with high expertise attempt to answer the query.

� SIMILARITY THRESHOLD FOR REFERRING is the threshold used by the

Refer all and Refer all matching policies. When the threshold is taken to be

� � �
, the Refer all policy is in effect. Other thresholds apply to the Refer all

matching policy. The default referral policy is Refer all matching with the

SIMILARITY THRESHOLD FOR REFERRING set to � � � .

�
�

denotes the weight of sociability in choosing neighbors. The neighbor se-

lection policies use this weight. When
�

is set to � , only the expertise of the
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neighbors is considered. When
�

is set to
�
, only sociability of the neigh-

bors is considered. The default neighbor selection policy is Weighted average,

where
�

is set to � � � .

� SIMILARITY THRESHOLD FOR EVALUATING ANSWER is a threshold

used for evaluating an answer. When an agent receives an answer to its query,

it applies the capability metric to the query and the answer. If this value is

above the threshold, then the answer is considered useful. The default value is

� � � .

� NUM NEIGHBOR SET CHANGES denotes how many times each agent can

change its neighbors. By default experiments are run until the agents stop

changing their neighbors, i.e., until each agent is satisfied with its neighbors.

� NUM QUESTIONS PER NEIGHBOR SET denotes how many queries are al-

lowed before a neighbor change. The default value is � .

� WAITING LIMIT FOR MESSAGES denotes the time-out after which the

agents stop accepting answers and generate a new query. The default value

is
� % � � � milliseconds.

� MAXIMUM REFERRAL CHAIN LENGTH denotes the maximum number of re-

ferrals that will be followed on one path. The default value is � .
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Appendix C

Simulation Experiments

Here, we report additional details of the experiments. The results reported in the experi-

ments are the average of three runs with different random number generator seeds.

� Community Comparisons: The experiments shown in Figures 3.3 and 3.5 com-

pare communities that are drawn from different populations that use neighbor

selection policies of Providers, Weighted average or Sociables. In all cases, the

NUM NEIGHBOR SET CHANGES is set to � � . The remaining values are set to

their default.

� Efficiency and Effectiveness: The experiments shown in Figures 3.6 and 3.7

compare referral policies in terms of effectiveness and efficiency, respectively.

The figures show the cases where each agent has � neighbors for
� � , � � , and

� � percent providers. The MAXIMUM REFERRAL CHAIN LENGTH for the

shown experiments is � and the simulations are terminated after agents stop

changing neighbors. With this setup, agents change neighbors no more than �

times. The experiments have been repeated for the following case: Each agent

has � neighbors instead of � and the MAXIMUM REFERRAL CHAIN LENGTH

is set to � . The number of neighbor changes needed for the system to stabilize
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is then
�

neighbor changes. The results of the experiments are similar.

� Clustering: In the clustering experiments, each agent has � neighbors and the

experiments are run for � � neighbor changes. Since there is no change after

the
� � th neighbor change, Figure 3.12 plots the first

� � neighbor changes. The

experiments use the Refer all matching with threshold � � � as the referral pol-

icy and compare different neighbor selection policies. Figure 3.13 uses the

same setup but only plots the first � neighbor changes, since that is enough to

illustrate the possible inverse relation between quality and clustering.

� In-degree Distributions: The reported in-degree distribution experiments use

�
�

experts, but have been repeated with
� � �

and � � �
experts; the results are

similar.

� The experiment shown in Figure 4.2 uses the Providers neighbor

selection policy and the Refer all referral policy.

� The experiment shown in Figure 4.2 uses the Providers neighbor se-

lection policy and Refer all matching referral policy with the thresh-

old set to � � � . A threshold of � � � yields similar results.

� The experiment shown in Figure 4.5 uses the Sociables neighbor

selection policy and Refer all referral policy.

� The experiment shown in Figure 4.6 uses the Sociables neighbor se-

lection policy and Refer all matching referral policy with the thresh-

old set to � � � . Higher thresholds yield similar results. Similarly, re-

placing the Sociables policy with Weighted average, with
�

set to

� � � , realizes the same distributions.

� PageRank Distributions: Using the default referral and neighbor selection poli-

cies, Figure 4.7 plots the PageRank distribution for �
�

,
� � �

, and � � �
experts.
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The experiments are run until the PageRank distributions stabilize. The stabi-

lization happens at most after the
� � th neighbor change. Hence, these simu-

lations are run for
� � neighbor changes. For each neighbor change, the Page-

Rank calculations are iterated, until the difference between two consecutive

PageRank iterations is not greater than � � � � �
for any of the agents. The calcu-

lations of PageRanks using eigenvectors yield the same ranking but different

PageRank values since the eigenvector method normalizes the PageRank val-

ues. Figure 4.8 plots the PageRank distribution for the three referral policies,

using �
�

experts. The remaining parameters are set to their default value. Fig-

ure 4.9 plots the PageRank distribution after every two neighbor changes for

the Weighted average neighbor selection policy, using �
�

experts. Figure 4.10

plots the PageRank distribution for different neighbor selection policies, using

�
�

experts. For the PageRank evolution experiments (Figures 4.11 and 4.12),

the simulation is run with default parameters and policies. Then, the described

perturbations are made.

� Service Graphs: The experiments discussed in Chapter 5 contain
� � � agents,

whose expertise and interest span
�

dimensions. Each agent has three neigh-

bors. The remaining parameters are set to their default values. The same ex-

periments have been repeated with
� � dimensions and � � service providers,

and the results are similar.

The simulation test bed is easily configurable to allow the study of other properties of

referral networks. For example, a study on the learning aspects of referral networks could

study the learning parameters � and � to understand the effects of different rates of learning

or even different learning algorithms.
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