
ABSTRACT

BRINKLEY, JASON S. Generalized Estimators of the Attributable Benefit of an Optimal
Treatment Regime. (Under the direction of Professor Anastasios Tsiatis).

For many diseases where there are several treatment options it is often the case that

there is no consensus on the best treatment to give to individual patients. In such cases it

may be necessary to define a strategy for treatment assignment; that is, an algorithm which

dictates the treatment an individual should receive based on their measured characteristics.

Such a strategy or algorithm is also referred to as a treatment regime. The optimal treatment

regime is the strategy that would provide the most public health benefit by minimizing as

many poor outcomes as possible. Using a measure that is a generalization of attributable risk

and notions of potential outcomes, we derive two estimators for the proportion of events that

could have been prevented had the optimal treatment regime been implemented. Traditional

attributable risk studies look at the added risk that can be attributed to exposure of some

contaminant, here we will instead study the benefit that can be attributed to using the

optimal treatment strategy.

We will show how regression models can be used to estimate the optimal treatment

strategy and the attributable benefit of that strategy. While in some cases this is a very good

method of estimation, it can be unstable if the regression model is not correctly specified.

In trying to reduce the potential for bias a doubly robust estimator will be introduced that

offers some protection from model misspecification. We derive the large sample properties

of each estimator and explore the pros and cons of each via simulation studies.

As a motivating example we will apply our methods to an observational study of

3856 patients treated at the Duke University Medical Center with prior coronary artery

bypass graft surgery (CABG) and presented with further heart related problems requiring

a catheterization. The patients may be treated with either medical therapy alone (MED)

or a combination of medical therapy and percutaneous coronary intervention (PCI) without

general consensus on which is the best treatment for individual patients.
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Chapter 1

Introduction

Since its inception by Levin [6], attributable risk (AR) has become a widely used

measure of association between risk factors and disease status. Jewell [5] denotes the pop-

ulation attributable risk as the fraction of all disease cases that can be linked to exposure

from some factor. AR has been referred to by many other names (e.g. ’etiologic frac-

tion’ or ’attributable fraction’) and has a long history within the medical and epidemiology

communities.

Observational data can be used to assess the impact of various treatment strategies

on patient health outcomes, where a treatment strategy is defined as an algorithm which

dictates the treatment an individual should receive based on their characteristics. Further-

more, we define the optimal treatment strategy to be the strategy that will result in the

smallest proportion of poor outcomes (events) among the study population. In this thesis

we propose a generalization of the attributable risk measure which is defined as the frac-

tion of observed events that could have been prevented had the optimal treatment strategy

been implemented. In contrast to traditional AR studies where the goal is to measure the

added risk attributed to exposure of some contaminant, this measure is intended to study

the positive public health impact of a treatment strategy. As such we will refer to it as

attributable benefit (AB).

1.1 Example

Our motivating problem comes from the Duke Databank for Cardiovascular Dis-

eases (DDCD), a large database housed at the Duke University Medical Center (DUMC).
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Started in 1969, the DDCD collects data on the in-hospital clinical course of all patients

who undergo cardiac catheterization, an interventional cardiac procedure or coronary artery

bypass surgery at Duke University Medical Center. A wide variety of baseline patient in-

formation is collected and the DDCD attempts to collect follow-up data on patients with at

least one diseased vessel six months and one year after hospitalization and yearly thereafter.

Data are collected in the form of a mailed questionnaire or surveyed by phone for those who

do not respond to the mailing [1]. One of the largest and oldest such databases, the DDCD

provides essential information to cardiologists about the effectiveness of various treatments

on patient health.

In this manuscript, we are focused on the subset of patients with a previous coro-

nary artery bypass graft (CABG) surgery and requiring a later catheterization due to con-

tinued symptoms. For technical reasons, the vast majority of patients are not considered

to be candidates for a second CABG surgery and therefore their treatment options are

limited to either medical therapies (MED) or some combination of medical therapies and

percutaneous coronary intervention (PCI) which is also known as angioplasty. A question

of clinical interest is whether PCI provides some benefit (here in the form of lower 1-year

mortality rates) above optimal medical therapy for either the overall study population or

some subset defined by clinical characteristics.

In studying this question we will explore the effects that covariates such as patient

demographics (i.e., age and gender), health status (i.e., body mass index, pulse, patient and

family history of coronary artery disease), and cardiovascular measurements (i.e., ejection

fraction, number of diseased vessels) play as potential confounders. To see the benefit of

using our estimator we will compare estimators from models with zero, one, and several

confounding variables. The goal of which is to explore the impact of an optimal treatment

strategy while simultaneously examining the effects of confounding. The benefit of the

optimal treatment regime will be estimated by the proportion of one-year deaths that could

have been prevented if that optimal regime had been followed. The study population

includes 3856 individuals with a follow-up catheterization between the years 1986-2001 and

a history of CABG surgery.
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1.2 Methods

For simplicity we consider only the case where there are two treatment options

which will be labeled by the treatment indicator E = 0 or 1. We denote the event of

interest by the binary indicator D where D = 1 denotes poor outcome and D = 0 denotes

good outcome. Let X denote the vector of covariates measured on each individual that may

be used to determine which treatment they receive, we denote a treatment strategy g as a

function that maps values of X to 0 or 1. That is, g(x) denotes the treatment E (either 1

or 0) that will be assigned to an individual with covariates X = x.

The goals of this thesis are to define and estimate the optimal treatment strategy

gopt(x); i.e., the treatment strategy which results in the smallest probability of a poor

outcome, and to estimate the attributable benefit of using the optimal regime. We will show

that our proposed measure is a generalization of the standard attributable risk. We will

formally define the optimal treatment strategy and develop an estimator for attributable

benefit that is a function of an individuals covariates. In order to formally define the

parameter of interest and the required assumptions, we will use the ideas of potential

outcomes and causal inference as described by Neyman [7] and Rubin [8].

In studying the attributable benefit we will define two different estimators. The

first estimator will be based on utilizing an appropriate statistical model, while the second

estimator will utilize two different statistical models in a way to try and reduce bias. We will

examine the large sample properties of these estimators and two strategies for developing

confidence intervals are derived. The behavior of the proposed estimators are described in

simulation studies and each estimator will be applied to a real life example. Later we intend

to compare the merits and limitations of each estimator. We conclude with the limitations

of the current methods and possible avenues of future research.

The remainder of this chapter is devoted to introducing the concepts and notations

that will be important in discussing AB and its estimators. As such we will need to provide

overviews of attributable risk, statistical causality, optimal treatment regimes, m-estimation

and influence functions of m-estimators. These concepts are used extensively throughout

the thesis and some attention needs to be given to the ideas and notation used in each.
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1.3 Potential Outcomes and Statistical Causality

Using the ideas and notation developed by Rubin [8] we define the potential out-

comes D∗(1) and D∗(0) to denote the indicator of a poor outcome (event) for an arbitrary

individual in our population had they received treatment 1 or 0 (respectively). In actuality,

at most one of these potential outcomes can be observed for any given individual. In addi-

tion, we also collect baseline covariates X on these individuals. Consequently, the potential

outcomes for any individual will be defined as W = {D∗(1), D∗(0), X} and it is assumed

that there is some underlying population distribution for these potential outcomes.

In contrast, the observable data will be denoted by O = (D,E,X) where E denotes

the treatment (0 or 1) that was actually given to an individual, D denotes the outcome

indicator that resulted from that treatment, and X is a single or vector of baseline covariates

measured on the individuals. The key assumptions that will allow us to derive important

aspects of the distribution of the potential outcomes, which are not directly observable,

from the distribution of the observable data were proposed by Rubin [8].

The first assumption, also known as the Stable Unit Treatment Value Assumption

(SUTVA), states that the observed outcome for an individual is the same as the potential

outcome for the corresponding treatment that the individual received. In terms of the

current framework, the SUTVA assumption can be written as D = D∗(1)E+D∗(0)(1−E).

The second assumption is also referred to as the strong ignorability assumption or the no

unmeasured confounders assumption. This assumption states that the treatment E assigned

to an individual is independent of the potential outcomes {D∗(1), D∗(0)} conditional on the

covariates X. In an observational study the treatment that a physician chooses to give a

patient can be reasonably assumed to only be based on characteristics of the patient at

the time of treatment and not on the patient’s potential outcome (which of course is not

known at the time of treatment). Consequently, this second assumption will be tenable if

the key factors influencing the decision making process for a physician was captured in the

data X that were collected. If, however, there are additional factors beyond the data X

that influence treatment decisions, then this assumption may not hold. For the rest of this

paper we will assume both SUTVA and strong ignorability do indeed hold.

Under these assumptions, for example, we can compute the marginal probability
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P{D∗(0) = 1} from the distribution of the observed data as

P{D∗(0) = 1} = EX{P [D∗(0) = 1|X]}

= EX{P [D∗(0) = 1|X,E = 0]}

= EX{P (D = 1|X,E = 0)},

where we use the notation EX(·) to emphasize that this expectation is taken with respect

to the marginal distribution of X. Similarly, we can show that

P{D∗(1) = 1} = EX{P (D = 1|X,E = 1)}.

1.4 Attributable Risk

As stated earlier, attributable risk has long been a useful measure in the study

of the interaction between exposure and disease. Sometimes referred to as the population

attributable fraction or population etiologic fraction [2]; its this co-mingling of different

names and concepts that has led to a lot of confusion over using AR in practice. We will

consider attributable risk to be the proportion of disease cases that can be attributed to

exposure (E = 1), which can be written as

AR =
P (D = 1)− P (D = 1|E = 0)

P (D = 1)
. (1.1)

For most practical applications, the above estimate of AR is biased because it does

not take into account confounders that may affect both exposure and disease status. That

is to say there may be some variable, X, that plays an important role in someone’s exposure

and disease status. Therefore the real quantity of public health interest is a version of AR

that accounts for confounders. One popular way to write AR that is adjusted for with

multiple levels (say X = x1, ...xC) is from Whittemore [12]

AR =

P (D = 1)−
C∑
c=1

P (X = xc)P (D = 1|E = 0, X = xc)

P (D = 1)
(1.2)

which we will write as

AR =
P (D = 1)− EX{P (D = 1|E = 0, X)}

P (D = 1)
, (1.3)
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where the expectation is with respect to the variable X. While (1.2) is a popular way of

writing AR, note that the representation in (1.3) is more useful for dealing with continuous

covariates or an entire vector of confounders. AR has proven to be most popular in case-

control studies where the measure is most interpretable. Many methods for estimating

adjusted AR stem from use in such a design, such as taking weighted sums or rewriting AR

in terms of the relative risk measure and estimating that instead. The interested reader

may see Benichou [2] for a complete review of adjusted estimators for AR.

We will instead think of adjusted AR as given in (1.3) because we can apply

the SUTVA and no unmeasured confounders assumptions of statistical causality to write

adjusted AR as

AR =
P (D = 1)− P{D∗(0) = 1}

P (D = 1)
. (1.4)

In forming variance estimates and confidence intervals a wide range of methods

and transformations have been introduced. Recently Graubard and Fears [4] used influence

function theory to compute large sample variance estimates based on an estimate of AR

that uses statistical models. We will employ similar techniques in this work to show our

estimates are asymptotically normal with very few assumptions. Walter [2] suggested to

form intervals based on estimates of log(1−AR) = log[P{D∗(0) = 1}/P (D = 1)] for better

coverage.

1.5 Optimal Treatment Regime

We formally defined a treatment regime to be a function g which maps the values

of X to 0 or 1. Hence the treatment regime would assign treatment g(x) (either 0 or

1) to an individual whose covariates X = x. We also denote by G the class of all such

treatment regimes. We can now define the potential outcome for an arbitrary individual

in our population under the hypothetical situation that treatment regime g was being

implemented by D∗{g(X)} = D∗(1)I{g(X) = 1} + D∗(0)I{g(X) = 0} where I(·) denotes

the indicator function. The most simple strategies would be g0 or g1 where all patients were

given treatment 0 or 1 (respectively) regardless of the values of their covariates X.

We now define the optimal strategy as the one which would result in the smallest

probability of a poor outcome. That is,

gopt(X) = arg min
g∈G

(E[D∗{g(X)}]) .
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Under the SUTVA and no unmeasured confounders assumption, it is straightforward to

show that

E[D∗{g(X)}] = P{D∗{g(X)} = 1}

= EX [P (D = 1|E = 1, X)I{g(X) = 1}+ P (D = 1|E = 0, X)I{g(X) = 0}], (1.5)

and the optimal treatment regime is given by

gopt(X) = I{P (D = 1|E = 1, X)− P (D = 1|E = 0, X) ≤ 0}. (1.6)

That is, the optimal treatment regime would assign treatment 1 to an individual with

baseline covariates X if the conditional probability that D = 1 given E = 1 and X is smaller

than the conditional probability D = 1 given E = 0 and X; otherwise give treatment 0.

Now that we have some notation and insight into the optimal treatment regime,

we can formally define the parameter of interest. Recall the question of interest was how to

estimate the proportion of events that would have been prevented had the optimal strategy

been used? We define this quantity as attributable benefit of using the optimal treatment

regime. From the notation above we define ABopt as:

ABopt =
P (D = 1)− P{D∗(gopt) = 1}

P (D = 1)
(1.7)

= 1− P{D∗(gopt) = 1}
P (D = 1)

. (1.8)

Since P (D = 1) denotes the overall probability of failure in the population using

whatever is the current clinical practice, then ABopt denotes the proportion of these failures

that could have been prevented if treatment strategy gopt were used. Because P (D = 1)

can be estimated by the simple sample proportion D̄n =
n∑
i=1

Di/n without making any

additional assumptions, we will focus attention on estimating the optimal treatment gopt

and the proportion of events for that treatment strategy P{D∗(gopt) = 1} and then show

how these results can be used to derive the estimator and large sample properties for ABopt.

Now consider how to estimate P{D∗(gopt) = 1} from the sample of observed data

(Di, Ei, Xi), i = 1, . . . , n assumed to be independent and identically distributed (i.i.d.).

Letting A(X) = I{P (D = 1|E = 1, X) − P (D = 1|E = 0, X) ≤ 0}, then D∗(gopt) =

D∗(1)A(X) +D∗(0){1−A(X)}, and by using equations (1.5) and (1.6), we obtain

P{D∗(gopt) = 1} = EX

[
P (D = 1|E = 1, X)A(X)+P (D = 1|E = 0, X){1−A(X)}

]
. (1.9)
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1.6 m-estimation and Influence Functions

Let Z1, ..., Zn be identically independently distributed (i.i.d.) random vectors with

density p(z, β); say we want to estimate β, a k-dimensional parameter. We define m(Z, β)

as a k × 1 array that satisfy the following properties:

1. Eβ{m(Z, β)} = 0

2. Eβ{mT (Z, β)m(Z, β)} <∞

3. Eβ{m(Z, β)mT (Z, β)} is positive definite for all β

where the expectations are taken with respect to the unknown β. We define the m-estimator

β̂n of the true value of β (call it β0) as the solution of the equation
n∑
i=1

m(zi, β̂n) = 0.

One method for finding the asymptotic variance of an m-estimator is through the

use of influence functions. Specifically an estimator β̂n of a vector value parameter β is

asymptotically linear if

n1/2(β̂n − β0) = n−1/2
n∑
i=1

ψβ̂n
(Zi) + op(1), (1.10)

where ψβ̂n
(Zi) is a mean zero random vector with finite variance matrix and op(1) are

terms that converge in probability to zero as n goes to infinity. The random vector ψβ̂n
(Zi)

is referred to as the influence function of the estimator β̂n. The representation given in

equation (1.10) immediately implies that the estimator is asymptotically normal; that is,

n1/2(β̂n − β0) → N
(
0, E(ψψT )

)
. Furthermore the asymptotic variance can be estimated

consistently using the sandwich estimator Ê(ψψT ) = n−1
n∑
i=1

ψβ̂n
(Zi)ψβ̂n

(Zi)T .

For this work we will be finding influence functions of transformations of certain

variables, and as such we should identify some common rules for influence functions of

transformations of variables. By a simple application of the delta method, when estimating

log(α), then ψlog(α̂)(Zi) = ψα̂(Zi)/α, and when estimating α1−α2, ψα̂1−α̂2(Zi) = ψα̂1(Zi)−
ψα̂2(Zi). The reader may see Tsiatis [11] for a complete overview of the theory of influence

functions. Here we will determine the influence function for estimators of several parameters

and show how the estimated influence functions will be used to derive the sandwich estimator

for the asymptotic variance of our attributable benefit estimators.
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1.6.1 Maximum Likelihood Estimators

Generally speaking, maximum likelihood estimators (MLE) and functions of MLE’s

are indeed m-estimators for their expectations (i.e. β̂n is an m-estimator for E{m(Z, β̂n)} =

m(Z, β0) where β̂n is the MLE of β). The estimators in this thesis will all be based on func-

tions of maximum likelihood estimators and as such are m-estimators.

Under suitable regularity conditions, the influence function of a m-estimator has

a particular form, note that

0 =
n∑
i=1

m(Zi, β̂n) =
n∑
i=1

m(Zi, β0) +
n∑
i=1

∂m(Zi, β∗n)
∂βT

(β̂n − β0)

where β∗n is between β̂n and β0.

Now note that by a Taylor series expansion we have

−n−1/2
n∑
i=1

m(Zi, β0) = n−1/2
n∑
i=1

∂m(Zi, β∗n)
∂βT

(β̂n − β0)

=

{
n−1

n∑
i=1

∂m(Zi, β∗n)
∂βT

}{
n1/2(β̂n − β0)

}
.

By Slutsky we can re-write

n1/2(β̂n − β0) =

{
n−1

n∑
i=1

∂m(Zi, β∗n)
∂βT

}−1{
n−1/2

n∑
i=1

m(Zi, β0)

}

= n−1/2
n∑
i=1

[
−E

{
∂m(Zi, β0)

∂βT

}]−1

m(Zi, β0) + op(1).

Thus the influence function is ψβ̂n
(Zi) =

[
−E

{
∂m(Zi, β0)/∂βT

}]−1
m(Zi, β0).

Consider this under the maximum likelihood framework; specifically the score function

Sβ(Zi, β) = ∂ log p(Zi, β)/∂βT . Then Eβ{S(Zi, β)} = 0 and
n∑
i=1

S(Zi, β̂n) = 0 so the

influence function for a maximum likelihood estimator β̂n is

ψβ̂n
(Zi) = E

{
−∂S(Zi, βo)

∂βT

}−1

S(Zi, β0)

Applying this to our current situation if Oi = (Di, Ei, Xi) with Di, Ei = 0, 1 ; if

p(Di, Ei, Xi, β) = {µ(Xi, Ei, β)}Di{1− µ(Xi, Ei, β)}1−Di
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then the influence function for β̂n is

ψβ̂n
(Oi) =

(
E

[
{∂µi(β)/∂β}{∂µi(β)/∂βT }

µi(β){1− µi(β)}

])−1 [ (∂µi(β)/∂β)
µi(β){1− µi(β)}

]
{Di−µi(β)}. (1.11)

1.6.2 Multiple m-estimators

Now that we have an idea of how influence functions are generated for a single

m-estimator, let us extend this idea to a case involving a vector of m-estimators. The

arguments in the previous section extended to cases involving a vector valued β. In some

cases it may be easier to partition the parameter of interest (β) into a set of parameters

(β1, ...βk), where each βj may also be vector valued but has a m-estimator that arises

naturally. That is to say that if we let m(Z, β1, ..., βk) = [m1, ...,mk]T be a vector of m-

estimators for a vector of unknowns (β1, ..., βk). Then it is important to note that while each

mj is the m-estimator for the parameter βj , it may or may not be a function of multiple

β’s, that is we may have mj = mj(β1, ..., βk). But we will assume that each mj has the

properties aforementioned for m-estimators. In this case ψβ̂ would be a vector of influence

functions for each of the unknown parameters, and we can denote

ψβ̂(Zi) = [ψβ̂1
(Zi), ..., ψβ̂k

(Zi)]T

=
{
E

[
∂m(Z, β1, ..., βk)

∂βT

]}−1

m(Z, β1, ..., βk)

=
{
E

[
∂m(Z, β1, ..., βk)
∂β1∂β2...∂βk

]}−1

m(Z, β1, ..., βk)

Where [∂m/∂β1∂β2...∂βk] is the matrix of partial derivatives expressed as

[
∂m

∂β1∂β2...∂βk

]
=


∂m1/∂β1 ∂m1/∂β2 ... ∂m1/∂βk

∂m2/∂β1 ∂m2/∂β2 ... ∂m2/∂βk

...

∂mk/∂β1 ∂mk/∂β2 ... ∂mk/∂βk

 .

From this representation if one needs the influence function for the jth β parameter for

variance estimates and confidence intervals, then just take the jth row of ψβ̂(Zi).
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Chapter 2

Regression Based Estimator

2.1 Introduction

In estimating ABopt it is now clear that we must first estimate P (D = 1|E,X).

We will do so by positing a statistical model where

P (D = 1|E,X) = µ(E,X, β). (2.1)

For simplicity, we will denote µi(β) = µ(Ei, Xi, β), µi(0, β) = µ(0, Xi, β), and µi(1, β) =

µ(1, Xi, β). Because D is a binary variable, a natural choice is to use logistic regression

models which allow us to study the impact of treatment, covariates, and their interaction.

For model (2.1) the parameter β can be estimated using maximum likelihood; that is, the

maximum likelihood estimator β̂n would be obtained by maximizing (in β)
n∏
i=1

{µi(β)}Di{1−

µi(β)}1−Di , thus we will denote µ̂i = µ(Ei, Xi, β̂n), µ̂i(1) = µ(1, Xi, β̂n), and µ̂i(0) =

µ(0, Xi, β̂n).

As a consequence, a natural estimator for P{D∗(gopt) = 1} would be P̂n{D∗(gopt) =

1} = Ên{D∗(gopt), β̂n} = n−1
n∑
i=1

[µ̂i(1)A(Xi, β̂n)+µ̂i(0){1−A(Xi, β̂n)}]. Where A(Xi, β̂n) =

I{µ̂i(1) ≤ µ̂i(0)}, from this we can estimate ABopt with

ÂBopt = 1− [P̂n{D∗(gopt) = 1}/D̄n]. (2.2)
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2.2 Large Sample Properties and Standard Errors

In this section we will demonstrate that ÂBopt is asymptotically normal and de-

rive an estimator for its asymptotic variance by finding its influence function. As stated

earlier, in order to find the estimated influence function for ÂBopt, it suffices to find the

estimated influence function of log[Ên{D∗(gopt), β̂n}]− log(D̄n). For the simple sample av-

erage estimator D̄n of E(D), the influence function is Di − E(D), the estimated influence

function is Di−D̄n, and the estimated influence function of log[D̄n] is (Di−D̄n)/D̄n. There-

fore deriving the influence function for ÂBopt amounts to finding the influence function for

Ên{D∗(gopt), β̂n}.
If we denote by β0 the true value of β from equation (2.1) then we note that

Ên{D∗(gopt), β0} = n−1
n∑
i=1

h(Xi, β0),

where

h(Xi, β) = µi(1, β)I{µi(1, β) ≤ µi(0, β)}+ µi(0, β)I{µi(1, β) > µi(0, β)}, (2.3)

is an empirical average of i.i.d random variables which converges to and has mean

E{h(Xi, β0)} = E{D∗(gopt)}.

Because of the indicator functions, h(Xi, β) may not be differentiable for all β,

hence we can not be guaranteed of the usual Taylor series expansion to derive the influence

function for Ên{D∗(gopt), β̂n}. Instead we note that

n1/2
[
Ên{D∗(gopt), β̂n} − E{D∗(gopt)}

]
=

n1/2
[
Ên{D∗(gopt), β0} − E{D∗(gopt)}

]
+ (2.4)

n1/2
[
Ên{D∗(gopt), β̂n} − Ên{D∗(gopt), β0}

]
. (2.5)

Because of (2.3), equation (2.4) is equal to

n−1/2
n∑
i=1

[h(Xi, β0)− E{h(Xi, β0)}] (2.6)

where E{h(Xi, β)} = E{D∗(gopt), β} and E{h(Xi, β0)} = E{D∗(gopt)}. Under suitable
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regularity conditions equation (2.5) can be written as

n1/2
[
Ên{D∗(gopt), β̂n} − Ên{D∗(gopt), β0}

]
=

∂E{D∗(gopt), β0}
∂βT

n1/2(β̂n − β0) + op(1).

Remark - We wish to note that whenever µ(1, x, β0) = µ(0, x, β0) then, by defi-

nition, h(x, β) ≥ h(x, β0) for all β in a neighborhood of β0, which for most models would

imply that h(x, β) is not differentiable as a function in β at β = β0. Consequently, if

P{µ(1, X, β0) = µ(0, X, β0)} > 0, then E{D∗(gopt), β} would not be differentiable in β at

β = β0 and hence the asymptotic theory would no longer hold. Therefore, we must be

careful to avoid such situations. For example, if the strong null hypothesis were true; i.e.,

suppose µ(1, x, β0) = µ(0, x, β0) for all values of x, then it doesn’t matter which treatment

is given to any patient and the issue of finding the optimal treatment regime is no longer

of interest. Therefore, to avoid this difficulty, we suggest that one first consider testing the

null hypothesis for no treatment difference and only if there is strong evidence of treatment

difference should one continue the exercise of deriving the optimal treatment regime and

its attributable benefit. Recall that standard results for the maximum likelihood estimator

can be used to show that n1/2(β̂n− β0) = n−1/2
n∑
i=1

ψβ̂n
(Oi, β0) + op(1), where ψβ̂n

(Oi) was

defined in (1.11).

Combining these results, we have

n1/2
[
Ên{D∗(gopt), β̂n} − E{D∗(gopt)}

]
=

n−1/2
n∑
i=1

(
h(Xi, β0)− E{h(Xi, β0)}+ [∂E{D∗(gopt), β0}/∂βT ]ψβ̂n

(Oi, β0)
)

+ op(1).

Let us denote the ith term in this summation; i.e., the influence function of

Ên{D∗(gopt), β̂n}, as qi = q(Oi, β0). Therefore, the estimated influence function is given

by

q̂i =

h(Xi, β̂n)− n−1
n∑
j=1

h(Xj , β̂n)

+
[
∂Ê{D∗(gopt), β0}/∂βT

]
ψβ̂n

(Oi, β̂n), (2.7)

where the gradient ∂E{D∗(gopt), β0}/∂βT is estimated using numerical derivatives; namely,

where the jth element of the vector ∂Ê{D∗(gopt), β0}/∂βT is obtained by a numerical deriva-

tive,

∂Ê{D∗(gopt), β0}/∂βT = [Ên{D∗(gopt), β̂n + εj1j} − Ên{D∗(gopt), β̂n − εj1j}]/2εj ,
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j = 1, ..., k, where k is the dimension of the parameter β, and 1j is a k-dimensional vector

where the jth element is 1 and all the other elements are 0. We chose εj = σ̂(β̂j)/100, where

σ̂(β̂j) is the estimated standard error of the jth element of β; however, we found that the

result was insensitive to the choice of εj as long as εj was small.

Now that we have derived the influence function for Ên{D∗(gopt), β̂n}, we note

that the ith influence function for log[Ên{D∗(gopt), β̂n}]− log(D̄n), call it ψi, can be written

as

ψi =
h(Xi, β0)− E{h(Xi, β0)}+ [∂E{D∗(gopt), β0}/∂βT ]ψβ̂n

(Oi, β0)

E{D∗(gopt), β0}
− Di − E(D)

E(D)
.

If we further posit a regression model such as logistic regression,

logit[P (Di = 1|Xi, Ei)] = βT f(Xi, Ei) = βT fi

where fi is a k × 1 vector, then note that

µi(β) = P (Di = 1|Xi, Ei) = 1− {1 + exp(βT fi)}−1.

Substituting, we have

ψβ̂n
(Oi, β) =

(
E

[
fif

T
i exp(βT fi)

{1 + exp(βT fi)}2

])−1

fi

{
Di −

exp(βT fi)
1 + exp(βT fi)

}
.

Likewise we should point out that if we denote fi(0) = f(Xi, 0) and fi(1) = f(Xi, 1) then

h(Xi, β) = min
(

exp{βT fi(0)}
[1 + exp{βT fi(0)}]

,
exp{βT fi(1)}

[1 + exp{βT fi(1)}]

)
.

For this scenario we will estimate the influence function for the ith individual, ψi,

from observed data with the quantity

ψ̂i =
∆1i + ∆2i

∆3
−∆4i,
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where

∆1i = h(Xi, β̂n)− n−1
n∑
i=1

h(Xi, β̂n),

∆2i =
∂Ê{D∗(gopt), β̂n}

∂β̂Tn

n−1
n∑
i=1

[
fif

T
i exp(β̂Tn fi)

{1 + exp(β̂Tn fi)}2

]−1
 fi

{
Di −

exp(β̂Tn fi)

1 + exp(β̂Tn fi)

}
,

∆3 = n−1
n∑
i=1

h(Xi, β),

∆4i =

Di − n−1
n∑
i=1

Di

n−1

n∑
i=1

Di

.

2.2.1 Confidence intervals

Now that we have derived an estimated influence function for log[Ên{D∗(gopt), β̂n}]−
log(D̄n), the estimated variance, using the sandwich variance estimator, is given by

V̂ = ˆV ar(log[Ên{D∗(gopt), β̂n}]− log(D̄n))

= n−1
n∑
i=1

(
∆1i + ∆2i

∆3
−∆4i

)(
∆1i + ∆2i

∆3
−∆4i

)T
.

We consider two different methods for constructing (1 − α) confidence intervals

for ABopt. The first involves exponentiating the (1 − α)th ∗ 100% confidence interval for

log[E{D∗(gopt), β0}]− log{E(D)} to obtain the following interval

1− exp

[
log

(
n∑
i=1

h(Xi, β̂n)/
n∑
i=1

Di

)
± zα/2

√
V̂

]
,

where zα/2 denotes the (1− α/2)th quantile of a standard normal distribution.

While the second confidence interval is a by-product of the delta theorem, for which we

have

ÂBopt ± zα/2

(
n∑
i=1

h(Xi, β̂n)/
n∑
i=1

Di

)√
V̂ .

It is not immediately clear if one interval is superior to the other, though it has been

suggested that the back-transformed intervals are superior. We will explore this through

simulation in the next section.
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2.3 Simulation Studies

We report results of several simulations, each based on 10000 Monte Carlo data

sets. For simplicity we consider data in the simplest case, of the formOi = (Di, Ei, Xi) where

Di is binary disease status, Ei is treatment, and Xi will be one potentially confounding

covariate generated from a N(0, 1) distribution. For each given Xi we generated a Bernoulli

treatment indicator Ei from the logistic regression model:

logit{P (Ei = 1|Xi)} = α0 + α1Xi, (2.8)

and a Bernoulli disease indicator Di from the logistic regression model:

logit{P (Di = 1|Ei, Xi)} = β0 + β1Ei + β2Xi + β3EiXi. (2.9)

Thus different choices of β = {α0, α1, β0, β1, β2, β3} will lead to different ω =

{P (E = 1), P (D = 1), P (D∗(0) = 1), P (D∗(1) = 1), P (D(gopt) = 1)}, therefore different

combinations of the model parameters allow us to study the different items of interest.

From model (2.9), one can see that the parameter β3, the parameter associated with the

interaction, will be essential for finding scenarios where there is no one dominant treatment.

Once the data were generated, estimates of (β0, β1, β2, β3) were found for each

Monte Carlo dataset using SAS logistic procedure (estimates and standard errors were

output using the ODS delivery system). The generated data and logit model estimates

were then input into SAS IML where ÂBopt,∆1i,∆2i,∆3,∆4i, i = 1, . . . , n, and confidence

intervals were calculated for each Monte Carlo dataset.

One important point in the influence function calculation is in estimating the

derivative ∂E{D∗(gopt), β}/∂βT with a numeric approximation. Recall that we chose εj to

be a 100th of a standard error of each parameter estimate. Under a wide variety of examples

(including those listed in table 2.1), h(X, β̂n) was found to be monotone in a neighborhood of

size .01σ̂(β̂n) for each of the parameters, thus making the numeric approximation possible.

In the simulation 1 scenario where there is no interaction (β3 = 0), treatment 0 dominates

treatment 1 and ABdom (the attributable benefit of the dominant treatment) and ABopt

are the same. When one treatment dominates, a closed form derivative can be calculated

and simulations show that for simulation 1, the numeric approximation and the closed form

derivative agreed up to 4 decimal places.
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Table 2.1 illustrates 8 different examples with different combinations of model

parameters. We depict the true β and ω values along with estimates of ÂBopt , Monte

Carlo standard error, delta-theorem standard error and confidence intervals for both back-

transformed and delta-theorem methods averaged over all 10000 Monte Carlo samples.

Sample sizes of n = 1000 were used in all examples; however, we found that the cover-

age probabilities were accurate in smaller sample sizes, except in those cases where the

probabilities in ω fell below 10%.

Examining table 2.1 we see that the Monte Carlo average of the estimates for

ÂBopt were indeed very close to the true values as was the Monte Carlo standard error and

the average of the delta-theorem standard errors. Both sets of confidence intervals provided

very good coverage with probabilities around 0.95. In most cases the back-transformed

interval had better coverage than its delta-theorem counterpart.

From these examples we see the importance of ABopt as a measure of a regime’s

benefit when there are even small interactions between treatment and confounders. We

also want to point out that in simulations 4 and 8 the observed proportion of deaths were

smaller than either regimes g0 and g1 which resulted in a negative ABdom. In these particular

simulation scenarios the better treatment was more likely to be given as a function of X and

hence the observed proportion of deaths was smaller than a strategy which gave everyone

either treatment alone. This further illustrates that ABopt is a more appropriate measure

of public health benefit associated with treatment strategies.

In addition to the simulations listed in table 2.1 additional simulations were per-

formed to look at various aspects of model and regime misspecification. Simulations with

multiple covariates had similar results to the single covariate case in showing the effective-

ness of ABopt as a measure of public health interest. Model overfitting was studied in the

multiple covariate case and confidence intervals from overfit models maintained good cover-

age for the true ABopt, as expected the overfit models did lose efficiency versus the correct

model.

One particular simulation of note is when simulation 2 was ran but the model was

underfitted by not having an important interaction term. That is, the data were generated as

specified in table 2.1 simulation 2, but the model that was fit was logit{P (Di = 1|Ei, Xi)} =

β0 + β1Ei + β2Xi. In this particular scenario, the proportion of deaths from the dominant

treatment was only slightly larger than the optimal treatment regime resulting in similar

AB’s (i.e., ABdom = .577, ABopt = .588). However, when the incorrect model was fit
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Table 2.1: Simulation Results; BT represent back-transformed confidence intervals while
DT represents delta-theorem based confidence intervals

Simulation 1 2 3 4 5 6 7 8
n 1000 1000 1000 1000 1000 1000 1000 1000
Reps 10000 10000 10000 10000 10000 10000 10000 10000
α0 -1.25 -1.25 -1.25 -1.25 -1.25 -1.25 -1 1
α1 2 2 2 2 0 -2 -1 3
β0 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 1 -3
β1 1.25 1.25 1.25 1.25 1.25 1.25 1 -1
β2 1.1 1.1 1.1 1.1 1.1 1.1 1 1
β3 0 2 -1 -2 -2 -2 -1 -3

P (E = 1) 0.318 0.318 0.318 0.318 0.223 0.318 0.303 0.613
P (D = 1) 0.184 0.263 0.122 0.09 0.143 0.222 0.786 0.019
P (D∗(0) = 1) 0.111 0.111 0.111 0.111 0.111 0.111 0.697 0.069
P (D∗(1) = 1) 0.267 0.363 0.223 0.2545 0.2545 0.2545 0.881 0.068
P (D(gopt) = 1) 0.111 0.108 0.1 0.068 0.068 0.068 0.691 0.014
ABdom 0.396 0.577 0.094 -0.231 0.223 0.5 0.113 -2.475
ABopt 0.396 0.588 0.184 0.244 0.523 0.693 0.121 0.298

ÂBopt 0.3953 0.5897 0.1982 0.2548 0.5277 0.6934 0.1251 0.3407
ŜE(ÂBopt)mc 0.0799 0.0584 0.0605 0.047 0.0538 0.0442 0.0168 0.1049
ŜE(ÂBopt)dt 0.0786 0.0578 0.0593 0.048 0.0536 0.0445 0.0169 0.1061

BT Lower 95% 0.2195 0.4587 0.072 0.1549 0.4098 0.5924 0.0914 0.0896
BT Upper 95% 0.5310 0.6885 0.3055 0.3421 0.6218 0.7692 0.1574 0.5161
BT Coverage 0.9415 0.9428 0.9477 0.9529 0.9492 0.9473 0.9579 0.9557

DT Lower 95% 0.2413 0.4764 0.082 0.1612 0.4226 0.6062 0.092 0.1328
DT Upper 95% 0.5493 0.703 0.3144 0.3478 0.6328 0.7806 0.1581 0.5486
DT Coverage 0.9384 0.9352 0.942 0.9479 0.9418 0.944 0.9568 0.9290
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without the interaction term, then such a model can only choose a single treatment to be

optimal and, in this case, the estimated attributable benefit for that dominant treatment

had a mean of .458 rather than the true .577. Thus a misspecified model not only cannot

find the optimal treatment regime, but it also results in a biased estimator for the treatment

regime it does choose as optimal.

2.4 Example

Our motivating example comes from the Duke Databank for Cardiovascular Dis-

eases (DDCD), a large database housed at the Duke University Medical Center (DUMC)

with nearly 40 years of baseline and follow-up data on patients undergoing cardiac catheter-

ization. In this manuscript, we are focused on the subset of patients with a previous CABG

surgery and requiring a later catheterization due to continued symptoms. The only treat-

ment options for the subgroup of patients studied are either medical therapy (MED) or

some combination of medical therapy and percutaneous coronary intervention (PCI), also

known as angioplasty. A question of clinical interest is whether PCI provides some benefit

(e.g., lower 1-year mortality rates) above optimal medical therapy for either the overall

study population or some subset defined by clinical characteristics.

In studying this question we will explore the effects that covariates play as poten-

tial confounders. To see the benefit of using our estimator we will compare estimators from

models with zero, one, and several confounding variables. The goal of which is to explore

the impact of an optimal treatment strategy while simultaneously examining the effects of

confounding. The benefit of the optimal treatment regime will be estimated by the pro-

portion of one-year deaths that could have been prevented if that optimal regime had been

followed. The study population includes 3856 individuals with a follow-up catheterization

between the years 1986-2001 and a history of CABG surgery.

Table 2.2 provides the number of deaths within 1 year of the follow-up catheter-

ization and a comparison of patient characteristics between the PCI and MED treatment

groups. We see a larger proportion of first year deaths for those with medical therapy alone

(7.83%) than a combination of medical therapy and angioplasty (5.27%). We will define

treatment in terms of a patient obtaining the poorer naive treatment. That is E = {0 if

the patient received angioplasty and medical therapy, 1 if the patient received only medical

therapy}, we do this so that the optimal treatment regime defaults to the MED group. In



20

Table 2.2: Treatment versus Death within One Year
Treatment No Death Death Total
PCI + Medical Therapy 1295 72 1367
Medical Therapy 2294 195 2489
Total 3589 267 3856

trying to find the optimal treatment regime we used logistic regression models to predict

the probability of death at or before 1 year. In this example, we will assume that the

optimal treatment regime will come from the “best” model of one year death rates based

on treatment and covariates.

For this discussion we will consider many different models, starting with the sim-

plest model: first year deaths modeled as a function of treatment with no confounding

variables. Table 2.3 has several different logistic regression outputs, starting with treat-

ment as the sole predictor in model 1. With the complete data we have an estimate of

the probability of first year death P̂ (D = 1) = 0.0692. Under this model the treatment

regime would be g0, because without interactions the model will favor a combination of an-

gioplasty and medical therapy. From the data we calculate an estimate of ÂBopt = 0.2393

with confidence intervals {0.0787, 0.3720} (back-transformed method) and {0.0936, 0.3851}
(delta method).

To begin to see the effect of confounding, model 2 introduces a statistically signif-

icant covariate (p < 0.05). This model again favors g0 as the regime of choice and we find

ÂBopt = 0.1572 with confidence intervals {−0.0197, 0.3034} (back-transformed method) and

{−0.0034, 0.3177} (delta method). We see an 8% drop in risk reduction with the addition

of a single confounder, and note the agreement between the ABopt confidence intervals and

logistic model p-value for treatment effect. For model 3, forward and backward selection

regression techniques were used to arrive at the “best” model for this data. Ejection frac-

tion values were missing for 561 patients, 420 of which had angioplasty and medical therapy

as their treatment. In order to keep all observations in the analysis an indicator variable

was defined for presence or absence of ejection fraction value, then an interaction term was

used in the model to determine the effect of an ejection fraction measurement. Note that if

a patient did not have an ejection fraction measurement then the indicators value is zero.

This is an important aspect to the results because this model now has different confounders

working in both directions; that is some confounders result in a higher probability of dying
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within the first year of treatment, while others lower that probability.

Model 3 has an estimate ÂBopt equal to 0.2157 with 95% confidence intervals

{0.0356, 0.3621} (back-transformed method) and {0.0536, 0.3777} (delta method). There-

fore the “best” model for this data has ABopt estimates very close to the naive model, but

there would have been no way to know apriori that the confounders would have worked in

opposing directions. Model 3 again favors the optimal treatment regime where every patient

is treated with a combination of angioplasty and medical therapy. To examine the effect of

extraneous variables in the model we consider model 4 which has a non-significant interac-

tion term added (interacting treatment with congestive heart failure status). Model 4 had

an estimate of ÂBopt = 0.1950 with confidence intervals {.0066, 0.3476} (back-transformed

method) and {0.0257, 0.3642} (delta method). So we see that adding an insignificant vari-

able to the model lowered ÂBopt by roughly 2% while increasing the delta theorem standard

error. Therefore, we conclude from this analysis that all patients should be treated with a

combination of angioplasty and medical therapy.
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Table 2.3: Logistic Regression Models, analysis performed with SAS 9.1 logistic procedure.

Response: Death Within First Year

Model 1 DF Estimate SE Wald χ2 P-value
Intercept 1 -2.8896 0.1211 569.52 < .0001
Treatment 1 0.4245 0.1422 8.91 0.0028
Model 2 DF Estimate SE Wald χ2 P-value
Intercept 1 -3.2386 0.1345 579.68 < .0001
Treatment 1 0.2654 0.1448 3.36 0.0668
Congestive Heart Failure 1 1.0518 0.1301 65.36 < .0001
Model 3 DF Estimate SE Wald χ2 P-value
Intercept 1 -4.8861 0.4385 124.16 < .0001
Treatment 1 0.3999 0.1601 6.24 0.0125
Congestive Heart Failure 1 0.6040 0.1420 18.10 < .0001
Number of Disease Vessels 1 0.3487 0.1013 11.86 0.0006
Mitral Insufficiency 1 0.2744 0.0619 19.64 < .0001
Pulse 1 0.0182 0.0042 18.81 < .0001
I(EJFX Present) 1 0.2215 0.2744 0.65 0.4194
Ejection Fraction*I(EJFX Present) 1 -0.0231 0.0049 22.08 < .0001
Model 4 DF Estimate SE Wald χ2 P-value
Intercept 1 -4.9472 0.4446 123.82 < .0001
Treatment 1 0.5454 0.2163 6.36 0.0117
Congestive Heart Failure 1 0.8205 0.2545 10.40 0.0013
Number of Disease Vessels 1 0.3468 0.1014 11.71 0.0006
Mitral Insufficiency 1 0.2765 0.0620 19.90 < .0001
Pulse 1 0.0180 0.0042 18.32 < .0001
I(EJFX Present) 1 0.2225 0.2738 0.66 0.4165
Ejection Fraction*I(EJFX Present) 1 -0.0235 0.0049 22.68 < .0001
Treatment*CHF 1 -0.3048 0.2987 1.04 0.3075
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Chapter 3

Doubly Robust Estimator

3.1 Introduction

So far we have limited our discussion to talking about estimating two types of

attributable benefit, the first is ABopt, the benefit associated with the optimal treatment

regime. The second is ABdom, the benefit associated with giving all patients the dominant

treatment. The definition of an optimal treatment regime is based on correctly specifying

the outcome regression (disease) model as a function of covariates and treatment. However,

as we pointed out in the previous section, even a misspecified regression model may lead

to a treatment regime that is beneficial even if it is not optimal. Therefore it would be

important to be able to estimate the attributable benefit unbiasedly for such treatment

regimes.

In this section we begin by considering the attributable benefit associated with an

arbitrary binary treatment regime g(X), which will be defined as

ABg = 1− P [D∗{g(X)} = 1]
P (D = 1)

.

The focus of this thesis is on estimating P [D∗{g(X)} = 1] and so far we have put forth one

method that only considers outcome regression models to estimate the unknown quantity

from observed data Oi = (Di, Ei, Xi). For a given treatment regime, our current estimate

of P [D∗{g(X)} = 1] is n−1
n∑
i=1

[µi(1, β̂n)g(Xi) + µi(0, β̂n){1 − g(Xi)}]. The work done in

the last chapter shows that the regression based estimator is consistent for the quantity

of interest and asymptotically normal, given the underlying assumption that we have the

appropriate model. That is to say that the entire methodology is predicated on having the
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correct statistical model. We have already seen through simulation that if we do not have

the correct model there will be biased estimates of ABg. We now turn our attention to

deriving an estimator that may offer protection from such misspecification.

3.1.1 Inverse Propensity Weights

One way of deriving an unbiased estimator for P [D∗{g(X)} = 1] without having

to specify an outcome regression model for µ(Xi, Ei) = P (D = 1|E,X) is by the use

of an inverse propensity score weighted estimator, which we will refer to as an inverse

propensity estimator for short. The propensity score is defined as the probability of receiving

a treatment given covariates; i.e., P (E = 1|X). We start by positing a statistical model

where

P (E = 1|X) = πE(X,α). (3.1)

Because E is a binary variable for treatment, a natural choice is to use logistic regres-

sion models which allow us to study the impact of covariates and their interaction. For

model (3.1) the parameter α can be estimated using maximum likelihood; that is, the max-

imum likelihood estimator α̂n would be obtained by maximizing (in α)
n∏
i=1

{πE(X,α)}Ei{1−

πE(X,α)}1−Ei .

Using standard results from causal inference [8], the inverse propensity score

weighted estimator for P{D∗(1) = 1} is given as

P̂n{D∗(1) = 1} = n−1
n∑
i=1

EiDi

πE(X, α̂n)

where πE(X, α̂n) is the estimate of πE(X,α) at the maximum likelihood estimator α̂n. What

we want is an estimate of P [D∗{g(X)} = 1], so we will define the following indicator function

C(g) that will denote agreement between the treatment observed and the treatment sug-

gested by some strategy g. That is, C(g) = {1 if g(X) = t and patient received treatment

t, 0 otherwise} (where t = 0, 1). Specifically, we can write C(g) as

C(g) = g(X)E + {1− g(X)}(1− E).

In order to estimate P [D∗{g(X)} = 1] with an inverse propensity estimator we

need P{C(g) = 1|X} which is

πC(g)(Xi) = P{C(g) = 1|Xi}

= {πE(Xi, α)}g(Xi) + {1− πE(Xi, α)}{1− g(Xi)}. (3.2)
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Recall that

D∗{g(X)} = D∗(1)g(X) +D∗(0){1− g(X)},

and the assumption of no unmeasured confounders states that E is conditionally indepen-

dent of {D∗(0), D∗(1)} given X. As D∗{g(X)} is a function of {D∗(0), D∗(1), X} and

C{g(X)} is a function of E,X then no unmeasured confounders implies C{g(X)} is con-

ditionally independent of D∗{g(X)} given X. This conditional independence will play an

important role in the development of new estimators for P [D∗{g(X)} = 1].

We therefore propose the inverse propensity estimator of P [D∗{g(X)} = 1] to be

P̂n[D∗{g(X)} = 1] = n−1
n∑
i=1

C{g(Xi)}Di

πC(g)(Xi, α̂n)
, (3.3)

where πC(g)(Xi, α̂n) is the estimate of πC(g)(X,α) for the ith patient at the maximum

likelihood estimator α̂n. The question now is whether this estimator is consistent for the

quantity of interest? Under the assumption that the model for propensity score, πE(x, α) is

correctly specified; i.e., P (E = 1|X) = π0(X) = πE(X,α) for some α (which we will denote

by α0), then under SUTVA we have C{g(Xi)}Di = C{g(Xi)}D∗{g(Xi)} and C{g(X)} is

conditionally independent of D∗{g(X)} given X then (3.3) converges to

E

[
C{g(X)}D
πC(g)(X,α0)

]
= E

[
C{g(X)}D∗{g(X)}

πC(g)(X,α0)

]
= E

(
E

[
C{g(X)}D∗{g(X)}

πC(g)(X,α0)
|X,D∗{g(X)}

])
= E

(
D∗{g(X)}
πC(g)(X,α0)

E [C{g(X)}|X,D∗{g(X)}]
)

= E

(
D∗{g(X)}
πC(g)(X,α0)

E [C{g(X)}|X]
)

= E

(
D∗{g(X)}
πC(g)(X,α0)

πC(g)(X,α0)
)

If we now assume 0 < P (E = 1|X) < 1 for all values ofX (so πC(g)(X,α0)/πC(g)(X,α0) = 1)

then

E

[
C{g(X)}D
πC(g)(X,α)

]
= E [D∗{g(X)}] = P [D∗{g(X)} = 1].

Thus we have a way to estimate P [D∗{g(X)} = 1] that is free of any potential misspeci-

fication of P (D = 1|E,X), but inverse propensity estimators have some well documented

problems of their own; most notably is when, for some value of X, P (E = 1|X) is very close
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to 0 or 1. If P (E = 1|X) is very small then the corresponding inverse weight is very large

and often leads to unstable estimators. From a real-world standpoint, if this conditional

probability reaches 0 or 1 then we cannot assess the relative contribution of treatments 1 or

0 for individuals with covariate values where one or the other treatments were given with

certainty.

Another issue in using such an estimator in this format is that we may have indeed

dealt with misspecification of P (D = 1|E,X), but we now have the same potential problem

in misspecifying P (E = 1|X). Lastly, if the outcome regression model were correctly

specified, then the outcome regression estimator proposed in the previous chapter is a

maximum likelihood estimator for P [D∗{g(X)} = 1] and hence should perform better than

an estimator that ignores their dependence.

3.2 A Doubly Robust Estimator for P [D∗{g(X)} = 1]

It is well known that one can improve the performance of inverse propensity es-

timators by augmenting them with additional terms that involve the outcome (disease)

regression model resulting in the so-called doubly robust estimator [11]. Generally speak-

ing, a doubly robust estimator for P [D∗{g(X)} = 1] will augment the inverse propensity

estimator with a term involving P (D = 1|E,X) in such a way that the new estimator is

consistent for P [D∗{g(X)} = 1] as long as models for either P (E = 1|X) or P (D = 1|E,X)

are correct. Named doubly robust for its dual layers of protection from misspecification,

such an estimator would reduce bias from potentially misspecified models and uses infor-

mation gained from the relationship between E and X as well as between D and (E,X) [9]

[11].

In laying the groundwork for discussing model misspecification note that there

exist some true values for P (E = 1|X) and P (D = 1|E,X) which we will refer to as π0(X)

and µ0(E,X) respectively. In developing the methodology, statistical models are posited

for the propensity score πE(X,α) and for the outcome regression µ(E,X, β) in terms of

unknown parameters α and β, respectively, which may or may not be correctly specified.

We will estimate these parameters from data using maximum likelihood estimators which

we denote by α̂n and β̂n, respectively. Note that under suitable regularity conditions,

the resulting estimators will converge to some constants; i.e., α̂n → α∗ and β̂n → β∗,

where α∗ and β∗ are some constants whether the models are correctly specified or not. If
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the estimated propensity model is correctly specified then πE(X,α∗) = π0(X) and if the

estimated outcome regression model is correctly specified then µ(E,X, β∗) = µ0(E,X).

If the propensity score or outcome regression models are misspecified then πE(X, α̂n) or

µ(E,X, β̂n) will not converge to the desired quantities.

From the posited models we can note that πC(g)(X,α) = P{C(g) = 1|X} and

from chapter (2)

P{D = 1|C(g) = 1, X} = h(X,β) = g(X)µ(1, X, β) + {1− g(X)}µ(0, X, β),

where h(X,β) is now defined in terms of a general treatment regime g. We can now define

λ = λ(α, β) =

E

[
C(g)D

πC(g)(X,α)
−
C(g)− πC(g)(X,α)

πC(g)(X,α)
h(X,β)

]
= (3.4)

E

[
C(g)D

πC(g)(X,α)
−
C(g)− πC(g)(X,α)

πC(g)(X,α)
{g(X)µ(1, β) + {1− g(X)}µ(0, β)}

]
. (3.5)

From this we now propose a doubly robust estimator for P [D∗{g(X)} = 1] from observed

data Oi = (Di, Ei, Xi) as

λ̂n = n−1
n∑
i=1

Ci(g)Di

πCi(g)(Xi, α̂n)
−
Ci(g)− πC(g)(Xi, α̂n)

πC(g)(Xi, α̂n)

{g(Xi)µi(1, β̂n) + {1− g(Xi)}µi(0, β̂n)}, (3.6)

where α̂n and β̂n are maximum likelihood estimates of α and β respectively. We will now

demonstrate that this estimator is indeed double robust.

Claim: λ̂n is doubly robust for P [D∗{g(X)} = 1], that is λ̂n converges to P [D∗{g(X)} = 1]

if either πE(X,α∗) = π0(X) or µ(E,X, β∗) = µ0(E,X).

Because, under suitable regularity conditions, α̂n → α∗ and β̂n → β∗ then λ̂n →
λ(α∗, β∗) [3]. Therefore to prove the claim we must show that λ(α∗, β∗) is equal to

P [D∗{g(X)} = 1] if either πE(X,α∗) = π0(X) or µ(E,X, β∗) = µ0(E,X). We begin
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by noting that under SUTVA

λ(α∗, β∗) = E

[
C(g)D

πC(g)(X,α∗)
−
C(g)− πC(g)(X,α∗)

πC(g)(X,α∗)
h(X,β∗)

]
= E

[
C(g)D∗(g)
πC(g)(X,α∗)

−
C(g)− πC(g)(X,α∗)

πC(g)(X,α∗)
h(X,β∗)

]
= E

[
C(g)D∗(g)
πC(g)(X,α∗)

−
C(g)− πC(g)(X,α∗)

πC(g)(X,α∗)
h(X,β∗) +D∗(g)−D∗(g)

]
= E

[
D∗(g) +

C(g)− πC(g)(X,α∗)
πC(g)(X,α∗)

{D∗(g)− h(X,β∗)}
]

= E{D∗(g)}+ E

[
C(g)− πC(g)(X,α∗)

πC(g)(X,α∗)
{D∗(g)− h(X,β∗)}

]
.

To prove the claim it is now enough to show that

E

[
C(g)− πC(g)(X,α∗)

πC(g)(X,α∗)
{D∗(g)− h(X,β∗)}

]
= 0

if either πE(X,α∗) = π0(X) or µ(E,X, β∗) = µ0(E,X). First assume that only πE(X,α∗) =

π0(X), then because of the no unmeasured confounders assumption E {C(g)|D∗(g), X} =

E {C(g)|X} = πC(g)(X,α∗) and we have

E

[
C(g)− πC(g)(X,α∗)

πC(g)(X,α∗)
{D∗(g)− h(X,β∗)}

]
=

E

(
E

[
C(g)− πC(g)(X,α∗)

πC(g)(X,α∗)
{D∗(g)− h(X,β∗)}|D∗(g), X

])
=

E

(
D∗(g)− h(X,β∗)
πC(g)(X,α∗)

[
E{C(g)|D∗(g), X} − πC(g)(X,α

∗)
])

= 0

as E {C(g)|D∗(g), X} = πC(g)(X,α∗).

Now assume that µ(E,X, β∗) = µ0(E,X), then again by the no unmeasured con-

founders assumption E{D∗(g)|X,C(g)} = E{D∗(g)|X} = h(X,β∗) and we have

E

[
C(g)− πC(g)(X,α∗)

πC(g)(X,α∗)
{D∗(g)− h(X,β∗)}

]
=

E

(
E

[
C(g)− πC(g)(X,α∗)

πC(g)(X,α∗)
{D∗(g)− h(X,β∗)}|X,C(g)

])
=

E

(
C(g)− πC(g)(X,α∗)

πC(g)(X,α∗)
E [D∗(g)− h(X,β∗)|X,C(g)]

)
= 0
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as E{D∗(g)|X,C(g)} = h(X,β∗). Thus we have now shown is that as long as we specify

a correct model for either propensity score, P (E = 1|X), or outcome regression ,P (D =

1|E,X), then (3.6) is consistent for the quantity of interest.

In estimating α and β from data recall in the previous section we posited a regres-

sion model such as logistic regression,

logit[P (Di = 1|Xi, Ei)] = βT f(Xi, Ei) = βT fi,

where fi is a k × 1 vector. Therefore, we can write

h(Xi, β) = g(Xi)
exp{βT fi(0)}

[1 + exp{βT fi(0)}]
+ {1− g(Xi)}

exp{βT fi(1)}
[1 + exp{βT fi(1)}]

and consequently the regression based estimator of ABg; namely,

ÂB
R
g = 1−

{
n∑
i=1

h(Xi, β̂n)/
n∑
i=1

Di

}
(3.7)

is a consistent estimator of ABR
g , where

ABR
g = 1− [E{h(X,β∗)}/P (D = 1)].

Suppose we also posit a logistic regression model for P (E = 1|X), that is

logit[P (Ei = 1|Xi)] = αT fp(Xi) = αT fpi

where fpi is a kp × 1 vector. Then the doubly robust estimator of ABg is given by

ÂB
DR
g = 1−

{
λ̂n/D̄n

}
(3.8)

which is a consistent estimator of ABDR
g , where

ABDR
g = 1− [E{λ(α∗, β∗)}/P (D = 1)].

Note that ABDR
g is equal toABg if either the model for propensity score or outcome

regression is correctly specified, whereas, ABR
g is equal to ABg only if the model for outcome

regression is correctly specified.
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3.3 Large Sample Properties and Standard Errors

In this section we will demonstrate that ÂB
DR
g is asymptotically normal and derive

an estimator for its asymptotic variance by finding its influence function. We will impose

similar techniques as used in the previous chapter, instead of finding influence functions

for α, β, and λ separately; here we will derive a vector of influence functions that we can

use to find the large sample variance of the quantity of interest. The ultimate goal will be

estimating the influence function for log(λ̂n)−log(D̄n), and constructing confidence intervals

similar to those derived in the previous chapter. First we need to find the influence function

of λ̂n denoted here by ψλ̂n
(Oi).

Consider the following (1 + kp + k)× 1 vector

m∗(Di, Ei, Xi, λ, α, β) = [m∗1,m
∗
2,m

∗
3]T ,

where m∗1,m
∗
2,m

∗
3 are defined as

m∗1 =
CiDi

πC(Xi, α)
− Ci − πC(Xi, α)

πC(Xi, α)
h(Xi, β)− λ(α, β)

m∗2 = fp(Xi){Ei − πE(Xi, α)}

m∗3 = f(Xi, Ei){Di − µ(Ei, Xi, β)}.

Note for maximum likelihood estimators α̂n and β̂n that n−1
n∑
i=1

m∗(Di, Ei, Xi, λ̂n, α̂n, β̂n) =

[0] where [0] is a (1 + kp + k) × 1 vector of zeros, thus m∗ is a vector of m-estimators and

as such we have already stated that the influence functions for λ, α, β an be expressed as

ψ(Oi) = [ψλ̂n
(Oi), ψα̂n(Oi), ψβ̂n

(Oi)]T

=
{
E

[
∂m∗

∂λ∂α0 . . . ∂αkp∂β0 . . . ∂βk

]}−1

m∗(Di, Ei, Xi, λ, α, β), (3.9)

where
[
∂m∗/∂λ∂α0 . . . ∂αkp∂β0 . . . ∂βk

]
is the matrix of partial derivatives expressed as

[
∂m∗

∂λ∂α0 . . . ∂αkp∂β0 . . . ∂βk

]
=


∂m∗1/∂λ ∂m∗1/∂α0 ... ∂m∗1/∂βk

∂m∗2/∂λ ∂m∗2/∂α0 ... ∂m∗2/∂βk

∂m∗3/∂λ ∂m∗3/∂α0 ... ∂m∗3/∂βk

 .
Recall that m∗2 and m∗3 are column vectors with kp and k rows accordingly, the partial

derivatives of which are simply the partial derivatives of each element in the column vector.

When we examine
[
∂m∗/∂λ∂α0 . . . ∂αkp∂β0 . . . ∂βk

]
we find it has a specific structure, m∗2
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is only a function of α, thus ∂m∗2/∂λ = ∂m∗2/∂β0 = ... = ∂m∗2/∂βk = 0. Likewise note

m∗3 is only a function of β, thus ∂m∗2/∂λ = ∂m∗2/∂α0 = ... = ∂m∗2/∂αkp = 0. Lastly the

way we have constructed m∗1 note that ∂m∗1/∂λ = −1. The partial derivatives involving m∗1
are the most complex since m∗1 is a function of λ, α and β. Given the success of numeric

derivatives in the last chapter, we will employ a similar technique here and estimate these

partial derivatives with numeric derivatives, that is

∂m∗1(λ, α, β)/∂αT = [m∗1(λ, α̂n + τr1r, β)−m∗1(λ, α̂n − τr1r, β)]/2τr (3.10)

∂m∗1(λ, α, β)/∂βT = [m∗1(λ, α, β̂n + εj1j)−m∗1(λ, α, β̂n − εj1j)]/2εj , (3.11)

where r = 1, ..., kp and j = 1, ..., k with kp and k the dimensions of α and β respectively,

1r is a kp-dimensional vector where the rth element is 1 and all the other elements are 0.

Likewise 1j is a k-dimensional vector where the jth element is 1 and all the other elements

are 0. Similar to the last chapter we chose τr = σ̂(α̂r)/100 and εj = σ̂(β̂j)/100, where

σ̂(α̂r) and σ̂(β̂j) are the estimated standard errors of the rth and jth elements of α and β

respectively.

Now that we have defined ψ(Oi), we are only concerned with the first element so

after calculating an estimate for the vector denoted in (3.9) we only need the first element.

Recall that the main objective to this is to estimate the influence function for log(λ̂n) −
log(D̄n). For the scenario where we have posited logit models stated earlier, we can now

estimate this influence function with the quantity

ψ̂i =
ν1i

ν2
− ν3i,

where

ν1i = ψλ̂n
(Di, Ei, Xi, )

ν2 = n−1
n∑
i=1

CiDi

πC(Xi, α̂n)
− Ci − πC(Xi, α̂n)

πC(Xi, α̂n)
h(Xi, β̂n)

ν3i = (Di − D̄n)/D̄n

with

πC(Xi, α̂n) = πE(Xi, α̂n)g(Xi) + {1− πE(Xi, α̂n)}{1− g(Xi)}.



32

3.3.1 Confidence intervals

Now that we have derived an estimated influence function for log(λ̂n) − log(D̄n),

the estimated variance, using the sandwich variance estimator, is given by

V̂DR = n−1
n∑
i=1

(
ν1i

ν2
− ν3i

)(
ν1i

ν2
− ν3i

)T
.

As before we consider two different methods for constructing (1 − α) confidence

intervals for ABDR
g . The first involves exponentiating the (1 − α)th × 100% confidence

interval for log[λ̂n]− log(D̄n) to obtain the following interval

1− exp
[
log
(
λ̂n/D̄n

)
± zα/2

√
V̂DR

]
,

where zα/2 denotes the (1 − α/2)th quantile of a standard normal distribution. While the

second confidence interval is a by-product of the delta theorem, for which we have

ÂB
DR
opt ± zα/2

(
λ̂n/D̄n

)√
V̂DR.

We will explore the merits of each confidence interval through simulation in a later section.

3.3.2 Example

For illustration of the calculation of the influence function for λ̂n let’s take a simple

example with Oi = (Di, Ei, Xi) and

logit[P (E = 1|X)] = α0 + α1X

logit[P (D = 1|E,X)] = β0 + β1E + β2X

Under this scenario we have

m∗(Di, Ei, Xi, λ, α, β) =



m∗1

{Ei − πE(Xi, α)}
Xi{Ei − πE(Xi, α)}
{Di − µ(Ei, X, β)}
Ei{Di − µ(Ei, X, β)}
Xi{Di − µ(Ei, X, β)}


.
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And[
∂m∗

∂λ∂α0 . . . ∂αkp∂β0 . . . ∂βk

]
= −

1 ∂m∗1/∂α0 ∂m∗1/∂α1 ∂m∗1/∂β0 ∂m∗1/∂β1 ∂m∗1/∂β2

0 ∂πE(α)/∂α0 ∂πE(α)/∂α1 0 0 0

0 Xi∂πE(α)/∂α0 Xi∂πE(α)/∂α1 0 0 0

0 0 0 ∂µi(β)/∂β0 ∂µi(β)/∂β1 ∂µi(β)/∂β2

0 0 0 Ei∂µi(β)/∂β0 Ei∂µi(β)/∂β1 Ei∂µi(β)/∂β2

0 0 0 Xi∂µi(β)/∂β0 Xi∂µi(β)/∂β1 Xi∂µi(β)/∂β2


As stated earlier we can see something of a pattern in ∂m∗/∂λ∂α0 . . . ∂βk, beyond

the first row the partial derivative matrix is made up of blocks of derivatives that involve just

α or just β and zero everywhere else. For this example note ∂πE(α)/∂αr and ∂µi(β)/∂βj are

straightforward logit model calculations (i.e. ∂πE(α)/∂α0 = πE(Xi, α){1−πE(Xi, α)}), and

∂m∗1/∂α0, ..., ∂m
∗
1/∂β2 are estimated in the manner using the numeric derivatives described

earlier. Software can be used to estimate this partial derivative for each person in the

sample, then average and invert to have an estimate of the expected value of the matrix of

partial derivatives. We then take that estimate and multiply by m∗(Di, Ei, Xi, λ, α, β) and

then pick off the first element to obtain the ith influence function for λ̂n. The calculation

of the quantities ν2 and ν3i are straightforward, giving way to an estimate for the influence

function of log[λ̂n]− log(D̄n), from which we can construct confidence intervals.
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Chapter 4

AB Estimators Under Estimated

Treatment Regimes

4.1 Estimating Optimal Treatment Regimes

It was stated in the introduction that this body of work has two goals, to estimate

the optimal treatment strategy from observed data and to measure that strategies public

health impact by estimating its attributable benefit. So far in our study of a doubly robust

estimator of attributable benefit, we have only discussed assessing the benefit of a known

treatment strategy. That is to say that if we have a known treatment strategy, we can

estimate its attributable benefit with double protection. In clinical practice the treatment

strategy that is most important is gopt(X) which in almost every situation is not known and

has to be estimated from data. We have already stated that we will estimate the optimal

treatment strategy via statistical modeling, recall from earlier that we posited a model

P (D = 1|E,X) = µ(E,X, β)

and from there we conclude that the optimal treatment strategy would be

gopt(X) = I{µ(1, X, β) ≤ µ(0, X, β)}.

Then we can estimate the optimal treatment strategy by making an estimate of µ(E,X, β),

which we have already done from logistic regression models and maximum likelihood.

In chapter (2) we denote the “best” estimate of µ(E,X, β) with µ(E,X, β̂n) and

simulation studies showed that the regression estimator of attributable benefit has good
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coverage when the outcome regression model is correctly specified; that is, when the true

outcome regression P (D = 1|E,X) = µ0(E,X) is contained in the model µ(E,X, β). How-

ever, as we have demonstrated through simulation studies, the treatment regime that is

estimated using a misspecified outcome regression model may often have good attributable

benefit even if the outcome regression model is misspecified. The difficulty is that the es-

timator of attributable benefit for such a regime may be substantially biased if one uses a

misspecified outcome regression estimator. This motivates us to use a two-stage method to

obtain a treatment regime and an estimator of its attributable benefit. In the first stage we

posit an outcome regression model µ(E,X, β) and define the treatment regime of interest as

g(X, β̂n) = I{µ(1, X, β̂n) ≤ µ(0, X, β̂n)}, where β̂n is the maximum likelihood estimator of

β. In the second stage we estimate the attributable benefit of g(X, β̂n) by using the double

robust estimator derived in chapter (3).

4.2 Doubly Robust Estimation of AB from µ(E,X, β̂n)

In chapter (3) we form the doubly robust estimator which will be better equipped

for separating the problems of treatment strategy and attributable benefit estimation. So far

we know that if we are given a specific treatment strategy (including the optimal treatment

regime) then we can estimate its AB with doubly robust protection. Now let’s suppose that

we don’t know the optimal treatment strategy and we estimate it using µ(E,X, β̂n). Then

we write the function C(E,X, β̂n) that denotes agreement between the observed and the

treatment suggested by g(X) as

C(E,X, β̂n) = I{µ(1, X, β̂n) ≤ µ(0, X, β̂n)}E + I{µ(1, X, β̂n) > µ(0, X, β̂n)}(1− E).

Likewise we estimate the function πC(g)(Xi) with

π̂C(g)(Xi, α̂n, β̂n) = {πE(Xi, α̂n)}I{µ(1, X, β̂n) ≤ µ(0, X, β̂n)}

+ {1− πE(Xi, α̂n)}I{µ(1, X, β̂n) > µ(0, X, β̂n)}. (4.1)

Recall from chapter (2) that the model based estimate of h(Xi, β) (equation (2.3)) is

h(Xi, β̂n) = µi(1, β̂n)I{µi(1, β̂n) ≤ µi(0, β̂n)} + µi(0, β̂n)I{µi(1, β̂n) > µi(0, β̂n)}. From here

we estimate λ̂n and ABopt with

λ̂n(α̂n, β̂n) = n−1
n∑
i=1

C(E,X, β̂n)Di

π̂C(g)(Xi, α̂n, β̂n)
−
C(E,X, β̂n)− π̂C(g)(Xi, α̂n, β̂n)

π̂C(g)(Xi, α̂n, β̂n)
h(Xi, β̂n) (4.2)
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ÂB
DR
opt = 1−

{
n∑
i=1

λ̂n/

n∑
i=1

Di

}
.

Variance estimates and confidence intervals will be calculated by methods discussed in the

previous chapter. That is to say that we estimate the quantities derived in chapter (3) with

observed data by estimating α̂n for α, β̂n for β, and I{µi(1, β̂n) ≤ µi(0, β̂n)} for gopt(Xi).

The only difference between the calculations in chapters 3 and what we will use here is due

to the fact that the strategy g in chapter 3 is fixed where g is now β-dependent and this

will need to be accounted for when computing the portion of the gradient matrix that uses

numerical derivatives.

4.3 Simulation Studies

We report results of several simulations, each based on 10000 Monte Carlo data

sets. We will use much of the same setup from chapter (2), we have data of the form

Oi = (Di, Ei, Xi) where Di is binary disease status, Ei is treatment, and (X1i, X2i) will be

confounding covariates generated from a N(0, 1) distribution independent of one another.

For each given ith patient we generated a Bernoulli treatment indicator Ei from the logistic

regression model:

logit{P (Ei = 1|Xi)} = α0 + α1X1i + α2X2i + α3X1iX2i, (4.3)

and a Bernoulli disease indicator Di from the logistic regression model:

logit{P (Di = 1|Ei, Xi)} = β0 + βEEi + β1X1i + β2X2i + β3EiX1i + β4EiX2i. (4.4)

Once the data were generated, estimates of the model parameters were found for each Monte

Carlo dataset using SAS logistic procedure (estimates and standard errors were output using

the ODS delivery system). The generated data and logit model estimates were then input

into SAS IML where estimates for ABopt, standard errors, and confidence intervals were

calculated for each Monte Carlo dataset. As in previous simulations we will use numeric

derivatives in our standard error estimates that include a εj of 100th of a standard error of

each parameter estimate.

We will perform simulations in two broad categories; first we run simulations

with one covariate to explore the doubly robust estimator of ABopt under some of the

scenarios put forth in chapter (2). In these first round of simulations we can note that
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α2 = α3 = β2 = β4 = 0. In each case we have specified the correct model so we expect that

the doubly robust estimator will not perform as well as a regression estimator. The second

set of simulations will explore the two covariate case where will compare the regression

estimator with the doubly robust estimator under a set of misspecified models.

4.3.1 One Covariate Simulations

Table 4.1 illustrates 3 examples with different combinations of model parameters,

these examples are among the ones used to illustrate the effectiveness of the regression based

estimator of ABopt. We depict the true model parameters values along with estimates of

ÂB
DR
opt , Monte Carlo standard error, delta-theorem standard error and confidence intervals

for both back-transformed and delta-theorem methods averaged over all 10000 Monte Carlo

samples. We also include the median of the delta-theorem standard error of ÂB
DR
opt , sample

sizes of n = 1000 were used in all examples.

Examining table 4.1 we first notice the extreme skewness of ŜE(ÂB
DR
opt )dt, the

average of the delta-theorem based standard error estimates of ÂB
DR
opt , some of this is due

to low propensity scores. Recall that we stated in chapter (3) that we needed to add an

additional assumption that 0 < P (E = 1|X) < 1 and if the P (E = 1|X) becomes too small

then inverse weights become large and estimators based on such methods can become biased.

No restrictions were place on the data in table 4.1 in order to make fair comparisons between

ÂB
DR
opt and ÂB

R
opt. Considering the coverage probabilities for both the back-transform and

delta-theorem based intervals, it is clear that only a few Monte Carlo datasets produced

biased standard error estimates.

Instead of considering the average delta-theorem standard error estimate, let us

look at the median standard error estimate of the Monte Carlo datasets. Comparing this to

the average shows that the distribution of standard errors is indeed skewed, but note that

the median delta-theorem standard error estimate is fairly close the Monte Carlo standard

error of ÂB
DR
opt generated by finding the standard deviation of ÂB

DR
opt from each Monte

Carlo simulation.

In comparing the quality of the doubly robust estimator to the model based esti-

mator of ABopt we will look at the asymptotic relative efficiency (ARE) [3] of one estimator

to the other. Generally speaking the relative efficiency of one estimator to another is the
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Table 4.1: Simulation Results; BT represent back-transformed confidence intervals while
DT represents delta-theorem based confidence intervals

Simulation 1 2 3
n 1000 1000 1000
Reps 10000 10000 10000
α0 -1.25 -1.25 -1
α1 2 2 -1
β0 -2.5 -2.5 1
β1 1.25 1.25 1
β2 1.1 1.1 1
β3 0 2 -1
ABdom 0.396 0.577 0.113
ABopt 0.396 0.588 0.121

ÂB
DR
opt 0.3983 0.5928 0.1239

ŜE(ÂB
DR
opt )mc 0.1129 0.0846 0.0238

ŜE(ÂB
DR
opt )dt 0.1012 0.2960 0.1627

Median(ÂB
DR
opt )dt 0.0932 0.0777 0.0298

BT Lower 95%∗ -1.3 x 1031 -2.0 x 1062 -3976.43
BT Upper 95% 0.5634 0.7792 0.3000
BT Coverage 0.9379 0.9502 0.9585

DT Lower 95% 0.2001 0.0127 -0.1949
DT Upper 95% 0.5966 1.173 0.4428
DT Coverage 0.9312 0.9413 0.9586

ARE 0.5008 0.4765 0.4983

*Due to skewed variance estimates, some back-transform confidence interval estimates are

biased
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ratio of their variances. Therefore we define

ARE =

 ŜE(ÂB
DR
opt )mc

ŜE(ÂB
R
opt)mc


2

where ŜE(ÂB
R
opt)mc can be found for each simulation in table 2.1. Recall that the simula-

tions listed in table 4.1 are scenarios designed for the model based estimator to function at

its best so it is no surprise to see a loss of efficiency in a doubly robust estimator when the

model is correctly specified and low propensities could bias estimates. But even in these

scenarios we learn that a doubly robust estimator for an estimated treatment strategy was

close to the truth and confidence intervals had good coverage.

Recall the motivation for a doubly robust estimator came from an example where

the model was not correctly specified. In shifting our focus to cases where the doubly

robust estimator may be more appropriate we start by putting a bound on propensities.

To keep inverse weights low we will restrict estimates of P (E = 1|X) to fall between

(0.10, 0.90). Consider now an example where data is generated from the following propensity

and outcome regression models:

logit{P (Ei = 1|Xi)} = −1.25−Xi

and

logit{P (Di = 1|Ei, Xi)} = −3 + 0.25Ei + 1.1Xi − 1.5EiXi.

Under this set of models P (E = 1) = 0.3022, P (D = 1) = 0.0603, P (D∗(0) = 1) = 0.0451,

P (D∗(1) = 1) = 0.0702, and P (D(gopt) = 1) = 0.0343.



Table 4.2: Simulation Results; BT represent back-transformed confidence intervals while DT represents delta-theorem based
confidence intervals

With Without With Without With Without
Simulation Interaction Interaction Interaction Interaction Interaction Interaction
n 2000 2000 2000 2000 2000 2000
Reps 10000 10000 10000 10000 10000 10000
ABdom 0.4329 0.4329 0.4329 0.4329 0.4329 0.4329
ABopt 0.2512 0.2512 0.2512 0.2512 0.2512 0.2512

Median of DR
Regression Estimator DR Estimator MC Samples

ÂBopt 0.4390 0.1846 0.4445 0.2521 0.4466 0.2519
ŜE(ÂBopt)mc 0.0760 0.0550 0.1219 0.0573
ŜE(ÂBopt)dt 0.0751 0.0550 0.6118 0.0572 0.1381 0.0569

BT Lower 95% 0.2698 0.0694 -1.16x1036 0.1311 0.0150 0.1309
BT Upper 95% 0.5679 0.2855 0.7540 0.3561 0.7279 0.3561
BT Coverage 0.9396 0.7152 0.9617 0.9480
DT Lower 95% 0.2918 0.0769 -0.7546 0.1401 0.0888 0.1398
DT Upper 95% 0.5862 0.2923 1.6436 0.3641 0.7745 0.3640
DT Coverage 0.9302 0.7541 0.9461 0.9469

40
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Listed in table 4.2 are the results of simulations where the data generated from the

framework specified above and logit models were estimated with and without the interaction

term in the outcome regression model. With the working model misspecified then estimates

of AB will be trying to estimate ABdom instead of the true ABopt. As in earlier simulations

we see that the regression based estimator does very well when the model is correctly

specified but has poor coverage for both back-transform and delta-theorem based confidence

intervals when the model is not correctly specified. When the interaction term is left out

there is indeed bias in the estimation of the benefit of the dominant treatment.

By contrast we see the doubly robust estimator has excellent coverage for both

intervals whether there was misspecification or not, even though AB estimates were esti-

mating ABdom and not ABopt, the doubly robust estimator had better coverage for what

it was intending to estimate. Again we see a skewness in the standard error estimates and

medians are provided to show that a typical simulation run resulted in a delta-theorem

standard error estimate that was close to the Monte Carlo standard error of ÂB
DR
opt . We

also see through the medians of the doubly robust estimator’s confidence intervals that

efficiency is still a potential problem because even with samples of size 2000 there is still a

very wide confidence interval range.

4.3.2 Two Covariate Simulations

Returning to the general framework put forth in equations (4.3) and (4.4), we

turn our attention to simulations involving more than confounding variable. The early

simulations show that both estimators have good coverage for the true value of AB and

we know that in cases where the correct model is specified that the model based estimator

is far more efficient. The two covariate framework allows for a higher degree of model

misspecification so that we can see what the effects of leaving out important variables can

do to estimating attributable benefit. As such our approach will be similar to what was

done in table 4.2, we will put forth one particular true model and study the effects of fitting

an incorrect model to data generated from the truth. Consider now an example where data

is generated from the following propensity and outcome regression models:

logit{P (Ei = 1|Xi)} = −2 +X1i − 1.5X2i + 0.5X1iX2i

and

logit{P (Di = 1|Ei, Xi)} = −1 + 0.75Ei +X1i +X2i − EiX1i − EiX2i.
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Under this set of models P (E = 1) = 0.338, P (D = 1) = 0.358, P (D∗(0) = 1) = 0.305,

P (D∗(1) = 1) = 0.438, and P (D(gopt) = 1) = 0.249.

Table 4.3 shows the results of several simulations of data fit from the framework

proposed above. In the first simulation the correct model was specified estimating the

ABopt, as before we see better coverage and efficiency in the regression based estimator.

In simulation 2 both the interaction terms were not included in the model, and thus the

misspecified model is estimating ABdom. Here we see better coverage from the doubly robust

estimator, but the regression estimator’s coverage was not as bad as in the one covariate

scenario. So even though simulation 2 points to the doubly robust estimator being more

accurate, the undercoverage is not very large and the regression estimates are not too bad.

Note that the standard error estimates of the doubly robust and regression estimators are

closer than in previous simulations. In simulation 3 we misspecify the propensity model

by leaving out a mild interaction term which only affects doubly robust estimates, again

we see the model based estimator dominate since the correct outcome regression model is

specified, but the doubly robust estimator has good coverage.

Simulation 4 is an important one in that the misspecified model only leaves out

one of the interaction terms in the outcome regression model, thus with one interaction

term still in the outcome regression model the treatment regime whose benefit is being

estimated is neither the optimal treatment strategy nor the one where everyone receives the

dominant treatment. This is the first time we have encountered a treatment strategy whose

benefit is neither ABopt nor ABdom, let’s call this treatment strategy g and thus its benefit

is ABg. Note that the true value of ABg is in between ABopt and ABopt, which in this

setup is to be expected. The regression based estimate of ABg is biased and has terrible

coverage , coverage probabilities for back-transformed and delta-theorem based intervals are

0.1262 and 0.1358 respectively. By contrast we see the coverage probabilities for the same

sets of intervals are 0.9440 and 0.9484 respectively, showing that doubly robust estimates

well equipped to handle misspecification. In simulation 5 the misspecification involves both

propensity and outcome regression models by leaving out all important interaction terms, for

the regression based estimator this yields the same results as in simulation 2. In examining

the doubly robust estimates from simulation 5 we still see better coverage from confidence

intervals, although this is not guaranteed from the underlying assumptions.
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Table 4.3: Simulation Results; BT represent back-transformed confidence intervals while
DT represents delta-theorem based confidence intervals
Simulation 1 2 3 4 5

Correct Without Without Without Without
Model β3, β4 α3 β4 α3, β3, β4

n 2000 2000 2000 2000 2000
Reps 10000 10000 10000 10000 10000
AB estimated Optimal Dominant Optimal Other Dominant
AB true 0.3046 0.1468 0.3046 0.2688 0.1468

Regression Estimator

ÂBopt 0.3067 0.1352 0.3067 0.2106 0.1352
ŜE(ÂBopt)mc 0.0262 0.0231 0.0262 0.0188 0.0231
ŜE(ÂBopt)dt 0.0258 0.0227 0.0258 0.0185 0.0227
BT Lower 0.2542 0.0896 0.2542 0.1735 0.0896
BT Upper 0.3555 0.1785 0.3555 0.2461 0.1785
BT Coverage 0.9461 0.9051 0.9461 0.1262 0.9051
DT Lower 0.2561 0.0908 0.2561 0.1744 0.0908
DT Upper 0.3573 0.1796 0.3573 0.2469 0.1796
DT Coverage 0.9446 0.9117 0.9446 0.1358 0.9117

Doubly Robust Estimator

ÂBopt 0.3067 0.1455 0.3067 0.2579 0.1526
ŜE(ÂBopt)mc 0.0361 0.0242 0.0400 0.0298 0.0260
ŜE(ÂBopt)dt 0.1095 0.0238 0.1242 0.0727 0.0254
Median{ŜE(ÂBopt)dt} 0.0371 0.0238 0.0440 0.0300 0.0250
BT Lower -0.2596 0.0974 -14.13 0.0689 0.1012
BT Upper 0.4491 0.1910 0.4762 0.3739 0.2010
BT Coverage 0.9632 0.9457 0.9667 0.9440 0.9438
DT Lower 0.0921 0.0988 0.0632 0.1155 0.1027
DT Upper 0.5213 0.1922 0.5502 0.4003 0.2025
DT Coverage 0.9601 0.9464 0.9661 0.9484 0.9394



Figure 4.1: Histograms of both estimators and their standard errors under simulation 1 with sample size n=5000.
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Overall we see a lot less variability in coverage in the doubly robust estimator

in misspecified models than the regression estimator. There does seem to be a trade-

off in efficiency and a skewness to variance estimates. To further explore this skewness,

simulation 1 was repeated with a sample size of n= 5000. We see from the histograms

listed in figure 4.1 that both the regression based and doubly robust estimators of AB are

normally distributed, and while the regression based standard error is normal there is a

definite skew to the doubly robust standard errors. A closer examination of the doubly

robust estimator’s standard errors can be found in figure 4.2. Even after heavily truncating

the standard errors we still see a distinct skew to the data that not even a log transformation

can balance out.

4.4 Example

We return to data collected from the Duke Databank for Cardiovascular Diseases

(DDCD) to apply the doubly robust estimator to that dataset. Recall from chapter 2 that

the DDCD contains nearly 40 years of baseline and follow-up data on patients undergoing

cardiac catheterization. From this databank we focus on a subset of n=3856 patients

who have already went through a prior cardiac artery bypass graft (CABG) and required

later catheterization due to continued symptoms. We stated that for these patients the

only treatment options were either medical therapy (MED) or a combination of medical

therapy and percutaneous coronary intervention (PCI). Recall that the variable to indicate

treatment assignment gave a value to 0 for those in the PCI group and 1 for those in the MED

group, this was done so that the default treatment (in case P (D = 1|E = 0, X) = P (D =

1|E = 1, X)) would be the one with value 1. That is to say if patients are equally likely to

die under both treatment strategies then that patient should receive medical therapy only.

Using several covariates we explored different models in table 2.2, we arrived at

“best” model for this data was model 3 that had covariates congestive heart failure, number

of diseased vessels, mitral insufficiency, pulse, and ejection fraction. Recall that 561 patients

were missing a value for ejection fraction and 420 of those patients were in the PCI treatment

group. Since an overwhelming majority of missing ejection fraction patients were given one

particular treatment we concluded that the missing data was not missing at random and

decided to add that data to our model by adding an indicator function of whether ejection

fraction was missing or not.
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Figure 4.2: Histograms of delta-theorem doubly robust estimator standard errors and cor-
responding log transformed values, standard errors truncated at 0.035.
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Table 4.4: Logistic Regression Models, analysis performed with SAS 9.1 logistic procedure.

Response: Death Within First Year DF Estimate SE Wald χ2 P-value
Intercept 1 -4.8861 0.4385 124.16 < .0001
Treatment 1 0.3999 0.1601 6.24 0.0125
Congestive Heart Failure 1 0.6040 0.1420 18.10 < .0001
Number of Disease Vessels 1 0.3487 0.1013 11.86 0.0006
Mitral Insufficiency 1 0.2744 0.0619 19.64 < .0001
Pulse 1 0.0182 0.0042 18.81 < .0001
I(EJFX Present) 1 0.2215 0.2744 0.65 0.4194
Ejection Fraction*I(EJFX Present) 1 -0.0231 0.0049 22.08 < .0001

Response: Treatment (MED=1) DF Estimate SE Wald χ2 P-value
Intercept 1 -1.9441 0.2445 63.23 < .0001
Congestive Heart Failure 1 0.5819 0.0853 46.52 < .0001
Number of Disease Vessels 1 -0.2088 0.0492 18.03 < .0001
Mitral Insufficiency 1 0.1558 0.0475 10.76 0.0010
Pulse 1 0.0133 0.0027 24.66 < .0001
I(EJFX Present) 1 2.3080 0.1821 160.61 < .0001
Ejection Fraction*I(EJFX Present) 1 -0.0024 0.0028 0.72 0.3950

In table 4.4 we see the parameter estimates and corresponding statistics for this

constellation of covariates that form the “best” outcome regression model. In addition to

the outcome regression model we also present the logistic regression analysis of a propensity

model that determines treatment based on these same covariates. This model favors the

optimal treatment regime where every patient is treated with a combination of angioplasty

and medical therapy. Recall from earlier work with the regression based estimator of ABopt,

for this model ÂB
R
opt = 0.2157 with confidence intervals {0.0356, 0.3621} (back-transformed

method) and {0.0536, 0.3777} (delta method). The delta theorem based standard error of

ÂB
R
opt is 0.0827. By contrast the doubly robust estimator of ABopt yields an estimate of

ÂB
DR
opt = 0.1741 with confidence intervals {−0.0356, 0.3401} (back-transformed method)

and {−0.0118, 0.3599} (delta method). The delta theorem based standard error of ÂB
DR
opt

is 0.0948.

From these results we can draw several sharp contrasts between the estimators,

most notable is the differences in the estimates themselves. We saw in simulation that in

cases where the regression model was specified correctly, both estimates were close to the
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Table 4.5: Logistic Regression Models, analysis performed with SAS 9.1 logistic procedure.

Response: Death Within First Year DF Estimate SE Wald χ2 P-value
Intercept 1 -5.0792 0.4564 123.86 < .0001
Treatment 1 0.3581 0.1598 5.02 0.0250
Congestive Heart Failure 1 1.1714 0.2972 15.53 < .0001
Number of Disease Vessels 1 0.3287 0.1020 10.38 0.0013
Mitral Insufficiency 1 0.2742 0.0622 19.42 < .0001
Pulse 1 0.0178 0.0042 17.87 < .0001
I(EJFX Present) 1 0.7036 0.3562 3.90 0.0482
Ejection Fraction*I(EJFX Present) 1 -0.0231 0.0050 24.96 < .0001
I(EJFX Present)*CHF 1 -0.7305 0.3340 4.78 0.0287

Response: Treatment (MED=1) DF Estimate SE Wald χ2 P-value
Intercept 1 -2.2025 0.2566 73.69 < .0001
Congestive Heart Failure 1 1.5436 0.2136 52.20 < .0001
Number of Disease Vessels 1 -0.2332 0.0503 21.53 < .0001
Mitral Insufficiency 1 0.1485 0.0472 9.91 0.0016
Pulse 1 0.0126 0.0027 21.94 < .0001
I(EJFX Present) 1 2.8264 0.2151 172.61 < .0001
Ejection Fraction*I(EJFX Present) 1 -0.0043 0.0029 2.25 0.1340
I(EJFX Present)*CHF 1 -1.1385 0.2310 24.29 < .0001

“true” value. For this problem we see a difference in ABopt estimates of 0.0416, a substantial

difference given both estimators are supposed to be unbiased if the true model is correctly

specified and one considers that the standard errors under both estimation techniques were

between 0.08 and 0.10. The doubly robust estimators intervals suggest that the true ABopt

may indeed be zero, where as the regression estimators intervals suggest significant benefit

in treating everyone with medical therapy and angioplasty (PCI). These differences lead one

to conclude that the outcome regression model may be misspecified and some important

terms were left out. Recall that standard model selection techniques (backward and forward

variable selection) were employed in our search for the “best” model. Given the large

number of covariates that were potentially confounding variables, an assumption was made

to include only main effects and interactions between treatment and significant main effects

in our selection process. That is to say that model selection techniques were restricted to

main effects and then those main effects were tested for interactions with treatment.

Expanding the search for confounding covariates we find at least one more con-
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founding variable in the form of an interaction between the indicator of ejection fraction

and whether the patient has experienced congestive heart failure. Examining table 4.5

we have added this new confounder to our models and form new estimates of ABopt with

ABR
opt = 0.1957 with delta theorem standard error 0.0832 which yields a confidence interval

of {0.0325, 0.3588}. From doubly robust estimation we have ABDR
opt = 0.1686 with delta

theorem standard error 0.0940 which yields a confidence interval of {−0.0157, 0.3529}.
After examining both the output from both estimators we see that using doubly ro-

bust techniques provided valuable insight into this problem. As an estimator of attributable

benefit it seemed to perform well in real life data analysis, for this case we see that adding

one significant covariate to our models dropped the regression based estimator by 0.02 but

the corresponding doubly robust estimator fell by only 0.0055. Even though no formal ar-

guments have been made to determine if the doubly robust estimator performs better than

the model based estimator; in simulation and real data where confounders were left out of

the propensity and outcome regression models we have seen better performance and less

sensitivity to adjustments in estimated models from the doubly robust estimator. Lastly

the reader should recall that to reduce bias in inverse propensity weights, an assumption

was made to keep 0 < P (E = 1|X) < 1; the propensities from models formed with this

data all fell between (0.10, 0.93) therefore no data were excluded from the analysis due to

low propensity scores.
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Chapter 5

Discussion

In this thesis we have introduced the notion of attributable benefit associated

with a treatment strategy. This measure can be of public health interest and represents the

fraction of events that could have been prevented by using a particular treatment regime.

Similar in spirit to adjusted attributable risk, but has a very different interpretation and

can handle a wider variety of treatment strategies. This measure is most useful in the case

where one treatment may not be superior to another for all patients.

We have developed two estimators of attributable benefit, the first uses an out-

come regression model to estimate the proportion of disease cases that would have occurred

had a particular strategy been used (referred to as P{D∗(g) = 1}). The second estima-

tor uses propensity scores models and outcome regression models to form an estimate of

P{D∗(g) = 1} that provides doubly robust protection from model misspecification. No-

tions from statistical causality were used to lay the ground work for using both estimators

and standard errors were calculated using large sample theory through the use of influ-

ence functions. Two types of confidence intervals were obtained for both estimators; the

back-transformed interval and the delta method interval.

Simulation studies were performed to examine both the regression based and dou-

bly robust estimators of attributable benefit under a variety of scenarios. In comparing both

estimators we find that while each estimator has its own merits, no definitive conclusion can

be made as to whether one estimator is better than the other. We found through simulation

that the regression based estimator, ÂB
R
g , was a more efficient estimator than the doubly

robust estimator, ÂB
DR
g when the model for outcome regression was correctly specified.

When the correct outcome regression model was specified then both estimators had good
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coverage probabilities, but ÂB
R
g became unstable and coverage is poor if important terms

are left out of the outcome regression model.

In addition, both estimators were applied to a real-life dataset from the Duke

Databank for Cardiovascular Disease in an attempt to answer a question of clinical impor-

tance. Standard model selection techniques (backward and forward variable selection) were

employed to find the “best” outcome regression model for the data. Early in the analysis it

was decided to use only main effects of confounders and interactions between treatment and

confounders with significant main effects as possible covariates in the outcome regression

model. Confidence intervals of ABopt from ÂB
R
opt suggested that there was significant ben-

efit to employing a strategy that favored using the dominant treatment (a combination of

medical therapy and angioplasty) for all patients. Later estimates and confidence intervals

of ABopt from ÂB
DR
opt suggested that the outcome regression model was misspecified and

a significant interaction term between two confounders was added to the model. In the

end although the two estimators gave results in the same direction and estimates that were

within a half a standard error of each other, the attributable benefit was not statistically

significant based on the doubly robust estimator at the 0.05 level whereas the outcome

regression estimator was statistically significant.

Since neither method yielded a superior estimator of attributable benefit, per-

haps there is merit in calculating both ÂB
R
g and ÂB

DR
g and using agreement between the

estimates as a diagnostic indicator of whether the outcome regression model is correctly

specified. This diagnostic indicator may be better suited in the form of z-scores, from the

asymptotic theory developed earlier we can note

Z1 =
ÂB

R
g

SE{ÂBR
g }

and

Z2 =
ÂB

DR
g

SE{ÂBDR
g }

follow a N(0, 1) distribution. From the DDCD example the outcome regression model

without the interaction (I(EJFX Present)*CHF) term, Z1 = 2.61 and Z2 = 1.84 (using

delta-theorem standard errors). While no formal analysis has been put forth to study the

relationship between Z1 and Z2, it is obvious in this case that there was a discrepancy

between the two estimators.
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5.1 Limitations and Future Work

We acknowledge a difficulty of the asymptotic theory under the null hypothesis of

no treatment effect, that is P (D = 1|E = 1, X) = P (D = 1|E = 0, X) for all X. Though

if this null hypothesis were true then estimating AB may not be of interest. We suggest

that this methodology be used only after the data analyst is comfortable that there is a

significant treatment effect. We have not studied the statistical properties of such a two-

stage approach, where at the first stage a formal test is conducted to establish whether there

is evidence of a treatment difference, and only if there is significant treatment difference do

we consider estimating attributable benefit for an optimal treatment regime. This would

be interesting for future research.

The cases discussed so far involved only two treatments but the methodology can

be extended to many treatment cases. In the case where there are r treatments then we

define h(Xi, β) =
r∑
j=1

µi(j, β)I[µi(j, β) = min
0≤r2≤j

µi(r2, β)]I[µi(j, β) < min
j<r2<r

µi(r2, β)]. The

corresponding optimal treatment regime would assign treatment based on which treatment

has the smallest value of µi(j, β) and if many treatments have the same value of µi(j, β) then

the largest numbered treatment is assigned. The outcome regression estimates of ABopt and

confidence intervals follow exactly as discussed earlier, though it is unclear whether doubly

robust estimates will also follow in the same manner.

Calculations of standard errors of estimators or ABg can be quite tedious, and

should only be attempted with the use of computer software. A SAS macro has been de-

veloped that will produce estimates and standard errors of ABR
opt for any logistic regression

model that can be specified in the SAS logistic procedure. The code for this macro has

been added as an appendix to this thesis, a macro is being developed that gives estimates

and standard errors of ABDR
opt , but at the time of this publication is not ready for general

use. We acknowledge that the widespread use of such methods will not be achieved until

adequate software is developed and available for public use.

Lastly, no framework for hypothesis testing has been given in this manuscript. Can

we test whether there is significantly more attributable benefit from one regime to another

(both based on the same model)? For example say we have the correct statistical model and

one calculates ABopt and ABdom. One may ask whether there is significantly more benefit

from using a treatment regime that adjusts for patients according to their covariates versus
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a more static regime where everyone gets the better treatment. In addressing that question

we believe the measure of interest is E{D∗(gopt)} − E{D∗(gdom)}. This is also potential

avenue of future work.
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Appendices
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/*********************************************************************
|
| Program Name: AB opt covariate simulation
|
| Program Version: 1.0
|
| Program Purpose: Calculates AB for the optimal treatment regime from a
| prespecified model. User must preload data into SAS work folder.
|
| SAS Version: 8 or 9
|
| Created By: Jason Brinkley
| Date: 27-Mar-2008
|
|*********************************************************************
| Change Log
|
| Modified By:
| Date of Modification:
|
| Modification ID:
| Reason For Modification:
|
**********************************************************************/

/*Instructions:
Load data into SAS work folder. Data must be of form: Binary Disease,
Binary Exposure/Treatment, Continuous or Binary Covariates. For discrete
variable input, analyst needs to make binary indicators for each level
of covariate and input those binary indicators instead of discrete
variables.User must create interaction variables in the dataset before
running macro. Analyst needs to use model selection techniques to find
"best" model before running macro.

Macro inputs are as follows:

alpha - Confidence level for intervals
(i.e. 95% intervals mean alpha=0.05)

Data - name of dataset in work folder

D - Binary outcome/disease variable
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E - Binary exposure/treatment variable

X - one or many covariates. Continuous or Binary only.
Interactions between covariates go here.

X2 - Which covariates/exposure interactions are included in the model
(i.e. if E*X is significant then put X here)

Int - User created interaction variables in model
(i.e. if E*X is significant, analyst creates variable EX=E*X
and it goes here)

Out - Name of output dataset for further manipulation

Interaction - Indicator of whether there is covariate/exposure
interactions in the model (0 = no interactions, 1 = interactions).
IF THERE ARE COVARIATE/COVARIATE INTERACTIONS ONLY THEN PUT 0 HERE.

*/

%Macro AB_opt_reg(alpha, Data, D, E, X, X2, Int, Out, Interaction);

*Different logit models whether there is interactions;

%IF &Interaction = 0 %Then %Do;
proc logistic descending data=&Data;
model &D = &E &X;
ods output ParameterEstimates = ParameterEstimates;
run;
%End;

%IF &Interaction = 1 %Then %Do;
proc logistic descending data=&Data;
model &D = &E &X &Int ;
ods output ParameterEstimates = ParameterEstimates;
run;
%End;

quit;

*Betas from logit models to be used in AB analysis;
Data Betas;
set ParameterEstimates;
Keep Data Variable Estimate StdErr;
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run;

*Output file in html with given filename;
ods html body=&Output_file;

Proc iml;

*********************************************************************
* influence function for AB is calculated in 4 parts
* using P_Dstar0, IF1, IF2, IF3;
*
*********************************************************************;

*Output files step, initializing variables;
P_Dopt=0;
P_D=0;
Lower_BT=0;
Upper_BT=0;
AB_opt_hat = 0;
ln_ratio = 0;
lower_DT =0;
upper_DT = 0;
se_ab=0;

*Load data;
use sample;
read all var {&X} into X;
read all var {&E} into E;
read all var {&D} into D;
read all var {&X2} into X2;

if &Interaction = 1 then read all var {&Int} into int;

*Calculate estimates for P(D=1);
P_D=(sum(D))/(nrow(D));

*IF3 calculation;
IF3=(D-P_D)/P_D;

Use Betas;
read all var{estimate} into B;
read all var{stderr} into StdErrB;
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*bound needed for numeric derivatives;
bound = .01 * StdErrB;
bound2= bound;
r = nrow(B);
n=nrow(D);

Outvar = n||P_Dopt || P_D || AB_opt_hat ||ln_ratio || Lower_BT ||Upper_BT
||Lower_DT || Upper_DT ||SE_AB ;

cname = {"Sample Size" "Prob D optimal" "Prob Disease" "AB opt hat"
"ln(ratio)" "Lower BT" "Upper BT" "Lower DT" "Upper DT" "Delta SE" };

create out from Outvar [ colname=cname ];

*f, f_0, and f_1 are different whether there are interactions or not;
I=j(n,1);
if &Interaction=0 then f=T(I||E||X);
if &Interaction=1 then f=T(I||E||X||Int);

I1=j(n,1);
*I2 is a vector of zeros;
I2=I1-I1;
if &Interaction=0 then f_0=T(I1||I2||X);
if &Interaction=1 then f_0=T(I1||I2||X||I2);

if &Interaction=0 then f_1 = T(I1||I1||X);
if &Interaction=1 then f_1 = T(I1||I1||X||X2);

E_opt = E;

*create E_opt, E_opt chooses level with lowest chance of poor outcome.
If the chance of a poor outcome is the same then macro defaults to trt 1;

do k = 1 to n;
E_opt[k,] = 0;
M1 = exp(T(B)*f_0[,k]);
M2 = 1/(1+exp(T(B)*f_0[,k]));
M=M1*M2;

W1 = exp(T(B)*f_1[,k]);
W2 = 1/(1+exp(T(B)*f_1[,k]));
W=W1*W2;
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if W < M then E_opt[k,]=1;
end;

*X2 may be a subset of X variables;

if &Interaction=1 then EoptX = E_opt#X2;

if &Interaction=0 then f_opt = T(I1||E_opt||X);
if &Interaction=1 then f_opt = T(I1||E_opt||X||EoptX);

avg1 =0;

*P_Dopt calculation and IF1 calculation;

M1 = exp(T(B)*f_opt);
M2 = 1/(1+exp(T(B)*f_opt));
M=M1#M2;
avg1=M[,:];

IF1=M-avg1;
IF1=T(IF1);

P_Dopt=avg1;

*IF2 Calculation;

Avg2=0;

ncol = nrow(f);
Temp = I(ncol);

*avg is a matrix of zeros;
Avg3=T(Temp - Temp);

*numeric derivatives;
row_vector = j(1,r,1);
LowB = B*row_vector;
UpB = LowB;

*need these for the numeric derivatives later;
do v = 1 to r;
LowB[v,v] = B[v,]-bound[v,];
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UpB[v,v] = B[v,]+bound[v,];
bound2[v,]=.5*(1/bound[v,]);
end;

*numeric Derivative loop;
ND1 = B;
ND2 = B;

Do v = 1 to r;
NM1 = exp(T(LowB[,v])*f_opt);
NM2 = 1/(1+exp(T(LowB[,v])*f_opt));
NM3 = sum(NM1#NM2)/n;
ND1[v,1] = NM3;

NM4 = exp(T(UpB[,v])*f_opt);
NM5 = 1/(1+exp(T(UpB[,v])*f_opt));
NM6=sum(NM4#NM5)/n;

ND2[v,1]= NM6;
end;

*ND is numeric approximation for partial mu/partial beta;
ND = (ND2 - ND1)#bound2;

Do k = 1 to n;
Q1=f[,k]*T(f[,k]);
Q2 = exp(T(B)*f[,k]);
Q3 = (1+exp(T(B)*f[,k]))*(1+exp(T(B)*f[,k]));
Q3=1/Q3;
Q4=(Q2*Q3)*Q1;
Avg3 = Avg3 + Q4;
end;

Avg3 = Avg3/n;
Avg3 = inv(Avg3);
IF2 = T(ND)*Avg3*f;
IF2 = T(IF2);

R1 = exp(T(B)*f);
R2 = 1/(1+exp(T(B)*f));
R=T(R1#R2);
IF2 = IF2 # (D-R);
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*Put all the pieces together to get IF;
IF = ((IF1+IF2)/p_dopt)-IF3;
V = T(IF) * IF;
V = V / ((n-1)*(n-1));
V = sqrt(V);

*V is estimate of the standard error of ln(PDstar0=1)-ln(P D=1);

Ratio=P_Dopt/P_D;
AB_opt_hat = 1-ratio;
ln_ratio =log(ratio);

*Confidence Intervals;
alpha=&alpha;
z = probit(1-(alpha/2));

*Back Transform 95% Confidence Interval;
Lower_BT =1-exp(ln_ratio + (z* V));
Upper_BT=1-exp(ln_ratio - (z*V));

*Delta Theorem 95% Confidence Interval;
Lower_DT = AB_opt_hat - (z*ratio*V);
Upper_DT = AB_opt_hat + (z*ratio*V);
SE_AB = ratio*V;

*Output needed values;
Outvar = n || P_Dopt || P_D || AB_opt_hat ||ln_ratio || Lower_BT ||
Upper_BT||Lower_DT || Upper_DT ||SE_AB ;
append from Outvar;

run;

*********************************************************************
*
* Start of analysis for output
*
*********************************************************************;

Data &out;
set out;

label
Sample_Size = ’Sample Size’
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ln_ratio_ = ’Log{P(D)/P(D_opt)}’
Prob_D_optimal = ’Probability D optimal’
Prob_Disease = ’Probability of Disease’
AB_opt_hat = ’AB opt hat’
Lower_BT = ’Backtransformed Lower 95% C.I.’
Upper_BT = ’Backtransformed Upper 95% C.I.’
Lower_DT = ’Delta Thm Lower 95% C.I.’
Upper_DT = ’Delta Thm Upper 95% C.I.’

Delta_SE = ’Delta Thm Standard Error’;
run;

Proc Print data=Out label;
run;

quit;
quit;

%MEND;




