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1. Introduction.

An L∞ structure is a natural generalization of a graded Lie algebra. However,

whereas a Lie algebra has just a skew bilinear bracket [ , ] : V ⊗ V → V of degree

0, an L∞ structure can include an infinite number of skew multilinear “brackets”

ln : V ⊗n → V of degree 2 − n. Additionally, a Lie algebra need only satisfy a

standard Jacobi identity, while an L∞ algebra must satisfy an infinite number of

generalized Jacobi identities.

L∞ algebras, also known as “strongly homotopy Lie algebras”, first arose in the

study of deformation theory [15], and the maps ln in an L∞ algebra have natural

mathematical interpretations. If we look at the first few generalized Jacobi identities,

this idea should become clear. The nth generalized Jacobi identity is given by

Jn :=
n∑

p=1

(−1)p(n−p)ln−p+1 ◦ lp = 0.

We will now expand this simple formula for some small values of n, and watch some

familiar mathematical constructions appear, repeating formulations which were de-

veloped earlier in [10] and [11].

(1) The first generalized Jacobi identity J1 simply requires that l1 ◦ l1 = 0. In

other words, the degree one operator l1 is a differential.

(2) When n = 2, we have −l2 ◦ l1 + l1 ◦ l2 = 0. In other words, l2 is a chain map.

Additionally, the identity J2 = 0 can be viewed as a graded Leibniz formula,

as explained in Remark (20). The degree zero map l2 also has a natural

interpretation as a Lie bracket, which will become clear when we look at J3.

(3) The third generalized Jacobi identity says that l3 ◦ l1 + l2 ◦ l2 + l1 ◦ l3 = 0.

If l3 ≡ 0, then this reduces to the simpler equation l2 ◦ l2 = 0. This last

1



equation is actually the classical graded Jacobi identity, as will be expained

in more detail in Remark (14). If l3 6= 0, the situation becomes much more

interesting. A closer look at the formula l3◦ l1 + l2◦ l2 + l1◦ l3 = 0 reveals that

the degree −1 map l3 can actually be viewed as a cochain homotopy. It is this

point of view that gives rise to the term “strongly homotopy Lie algebra”.

Even if a bracket l2 fails to satisfy the usual Jacobi identity l2 ◦ l2 = 0,

appropriate maps l1 and l3 would allow l2 ◦ l2 to be homotopic to zero. For

a simple illustration of this, refer to Example (72).

(4) If we expand J4 = 0, we can interpret the degree −2 map l4 as a cochain

homotopy of a higher dimension. Furthermore, one can continue this process

indefinitely, constructing higher and higher homotopies.

L∞ structures have been a subject of recent interest in physics. In the gauge

theory model of Berends, Burgers, and van Dam [1], the interactions between massless

particles of high spin can be reformulated by giving the graded vector space of gauge

parameters, together with the fields, the structure of an L∞ algebra [7, 4]. L∞

structures also occur in closed string theory [17, 18], and in the study of D-Brane

superpotentials [12].

There is also some related research which classifies L∞ structures on Z2-graded

vector spaces [5, 6]. That work also includes some interesting results about the

possible deformations from one Z2-graded L∞ structure to another.

After giving some important definitions and background information in the next

chapter, we will then proceed to identify all possible L∞ structures which can be

constructed on a Z-graded vector space of dimension three or less. Although it is

possible to completely classify the Lie algebras which are concentrated in grade zero

in just a few pages [9], we will see that it it is quite a bit more complicated to

characterize arbitrarily graded low-dimensional L∞ structures. It is also worth noting

that although semisimple Lie algebras have long been well understood, nilpotent Lie

algebras have only been classified up to dimension seven [16].
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In the process of characterizing the low-dimensional L∞ structures, we will en-

counter many interesting cases, such as

• Structures which are not differential graded Lie algebras, but which do satisfy

the Jacobi identity up to homotopy, and which can in some cases be extended

to satisfy an infinite number of generalized Jacobi identities.

• Nontrivial operators which can be built on top of a classical Lie algebra,

yielding higher levels of structure.

• Ln structures on which it is possible to impose a variety of different higher

structures.

• Ln structures on which it is impossible to impose any higher Ln+1 structure.

The interested reader might also want to refer to the additional catalog of examples

of Ln and L∞ structures in an appendix at the end of this dissertation.
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2. Basic Definitions and Notation.

Throughout this paper, it is assumed that V = ⊕Vm is a Z-graded vector space

over a fixed field of characteristic zero. Since we are working with graded vector

spaces, the Koszul sign convention will be employed: whenever two objects of degrees

p and q are commuted, a factor of (−1)pq is introduced. For a permutation σ acting

on a string of symbols, let ε(σ) denote the total effect of these signs. We then define

χ(σ) = (−1)σε(σ), where (−1)σ is the sign of the permutation σ.

Remark 1. χ(σ) has the following properties, which can be easily verified:

(1) If a permutation σ just reorders a string of consecutive elements of odd

degree, then χ(σ) = 1.

(2) If a permutation σ just reorders a string of consecutive elements of even

degree, then χ(σ) = (−1)σ.

(3) If a permutation σ just transposes two (arbitrarily positioned) elements of

even degree, then χ(σ) = −1.

(4) If a permutation σ moves an element of even degree past a string of k elements

of arbitrary degree, then χ(σ) = (−1)k.

(5) If a permutation σ moves an element of odd degree past a string of k elements

of even degree, then χ(σ) = (−1)k.

(6) If a permutation σ moves a string of j even elements past a string of k

elements of arbitrary degree, then χ(σ) = (−1)jk.

Definition 2. A Z-graded vector space V = ⊕k∈ZVk is the direct sum of an

indexed family of subspaces Vk.
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Remark 3. We will usually list only the nonempty components of a graded vector

space V (e.g. V = V−10 ⊕ V−3 ⊕ V3).

Definition 4. A graded Lie algebra is a graded vector space V together with a

graded Lie bracket [ , ] : Vp ⊗ Vq → Vp+q such that

(1) [x, y] = −(−1)|x| |y|[y, x].

(2) [[x, y], z]− (−1)|y||z|[[x, z], y] + (−1)|x|(|y|+|z|)[[y, z], x] = 0.

Remark 5. It is an elementary exercise to verify that property (2) of a graded

Lie algebra is equivalent to a classical graded Jacobi identity [14], usually written

(−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|y||z|[z, [x, y]] = 0.

When we generalize the generalized Jacobi identity to allow the n-brackets which form

an L∞ structure, it naturally takes a form which is directly analogous to formula (2)

of Definition (4), where the inside brackets are moved to the front.

Definition 6. A (p, n− p) unshuffle is a permutation σ ∈ Sn such that

σ(1) < σ(2) < · · · < σ(p) and σ(p + 1) < σ(p + 2) < · · · < σ(n).

Definition 7. A map ln : V ⊗n → V has degree k if ln(x1 ⊗ x2 ⊗ · · · ⊗ xn) ⊂ VN ,

where N = k +
∑n

i=1 |xi|, where |xi| is the degree of xi.

Definition 8. A linear map ln : V ⊗n → V is skew symmetric if

ln(xπ(1) ⊗ · · · ⊗ xπ(n)) = χ(π)ln(x1 ⊗ · · · ⊗ xn) ∀ π ∈ Sn.

Definition 9. A skew symmetric linear map l : V ⊗n → V can be extended to a

map l : V ⊗n+k → V ⊗1+k by the rule,

l(x1 ⊗ · · · ⊗ xn+k) =
∑

σ is an (n,k)
unshuffle

χ(σ)l(xσ(1) ⊗ · · · ⊗ xσ(n))⊗ xσ(n+1) ⊗ · · · ⊗ xσ(n+k).
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Remark 10. The extension of a skew linear map need not be skew. For example:

l1(v⊗u⊗w) 6= −(−1)uvl1(u⊗v⊗w). However, it can be shown that the composition

ln−p+1 ◦ lp : V ⊗n → V is a skew symmetric linear map.

Definition 11. Let Jn : V ⊗n → V be defined by

Jn(x1 ⊗ x2 ⊗ · · · ⊗ xn) =
n∑

p=1

(−1)p(n−p)ln−p+1 ◦ lp(x1 ⊗ x2 ⊗ · · · ⊗ xn).

(using the notation of extended maps defined above).

Remark 12. For ease of computation, Jn(x1⊗ x2⊗ · · ·⊗xn) can be rewritten as

n∑
p=1

(−1)p(n−p)
∑

σ is (p,n−p)
unshuffle

χ(σ)ln−p+1(lp(xσ(1) ⊗ · · · ⊗ xσ(p))⊗ xσ(p+1) ⊗ · · · ⊗ xσ(n)).

Definition 13. The nth generalized Jacobi identity is the equation

Jn = 0.

Remark 14. If we denote l2(x ⊗ y) = [x, y] and consider the special case when

n = 3 and l3 = 0, the generalized Jacobi identity becomes the more familiar graded

Jacobi identity, since the equation

∑
σ is (2,1)
unshuffle

χ(σ)l2(l2(xσ(1) ⊗ xσ(2))⊗ xσ(3)) = 0

can be rewritten in bracket notation as

∑
σ is (2,1)
unshuffle

χ(σ)[[xσ(1), xσ(2))], xσ(3)] = 0,

which then expands to the usual graded Jacobi identity,

[[x1, x2], x3]− (−1)|x2||x3|[[x1, x3], x2] + (−1)|x1|(|x2|+|x3|)[[x2, x3], x1] = 0.

Remark 15. Note that ln−p+1◦ lp : V ⊗n → V is a skew linear map of degree 3−n.

Therefore, Jn is also a skew linear map of degree 3 − n. In particular, whenever an

element of even degree is repeated, the Jacobi identity is automatically satisfied.
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Definition 16. An Lm structure is a graded vector space V endowed with a

collection of linear maps {lk : V ⊗k → V, 1 ≤ k ≤ m} with deg(lk) = 2− k which are

skew symmetric and satisfy each Jacobi identity Jn = 0, 1 ≤ n ≤ m.

Remark 17. This is the “cochain version” of the definition of an Lm structure,

having deg(lk) = 2 − k. The definition for chain complexes is the same, but with

deg(lk) = k − 2. We will be working exclusively with the cochain version in this

paper.

Definition 18. An L∞ structure is a graded vector space V endowed with a

collection of linear maps {lk : V ⊗k → V, k ∈ N} such that Jn = 0 ∀ n ∈ N.

Definition 19. A differential graded (d.g.) Lie algebra is an L2 structure in

which l2 ◦ l2 = 0.

Remark 20. In an L2 structure, the identity J2 = 0 has a natural interpretation

as a graded Leibniz formula. In a structure in which l2 ◦ l2 = 0, it is appropriate to

think of l2 as a Lie bracket [ , ]. If we also think of the degree one map l1 as a differential

∂, then J2 = 0 expands to −∂([x, y]) + [∂(x), y]− (−1)|x| |y|[∂(y), x], which is equiva-

lent to a standard graded Leibniz formula[8, 13]: ∂([x, y]) = [∂(x), y]+(−1)x[x, ∂(y)].

Thus the previous definition is exactly equivalent to the usual definition of a differ-

ential graded Lie algebra.
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3. Preliminaries.

At the beginning of this chapter, we will consider L∞ structures on a space V

which contains only vectors of the same parity, meaning that either all of the vectors

are elements of even-graded components, or that all of the vectors are elements of

odd-graded components. On such a space of dimension three or less, we will show that

either all ln are forced to be zero, or l2 is the only nonzero operator, and V with the

l2 bracket is a classical graded Lie algebra. After proving some general lemmas, we

will then identify the possible L∞ structures on Z-graded vector spaces of dimension

two or less.

3.1. Spaces in which all vectors have the same parity

It is interesting to note that if V consists of just one component (of arbitrary dimen-

sion), one can only construct a nontrivial L∞ structure if the nonempty component

is of degree 0. Furthermore, the only possible L∞ structures on such a space of grade

zero are just the classical Lie algebras, extended by ln ≡ 0 ∀ n 6= 2.

Lemma 21. Suppose V = Vα is a graded vector space of arbitrary dimension, in

which all vectors are concentrated in a single component of grade α. Then

• If α 6= 0, then ln ≡ 0 ∀ n ∈ N.

• If α = 0, then every L∞ structure on V consists of an l2 bracket which

satisfies the classical Jacobi identity (l2 ◦ l2 = 0), with ln ≡ 0 ∀ n 6= 2.

Proof. ln(V n
α ) ⊂ Vαn+2−n = Vn(α−1)+2. Since ln can only be nonzero if it maps

into Vα, we require n(α−1)+2 = α. Note that this equation is not satisfied by α = 1!
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When α 6= 1, we have n = α−2
α−1

= 1− 1
α−1

. This is only an integer if α ∈ {0, 2}. Since

α = 2 gives n = 0 which is invalid, we see that ln can only be nonzero if α = 0. ¤

The next lemma shows that if a vector space contains only odd elements, then

all operators ln are forced to be trivial. It is true for odd graded vector spaces of

arbitrary dimension.

Lemma 22. If V contains only basis elements of odd degree, then ln = 0 ∀ n ∈ N.

Proof. Suppose that v1, . . . vn are arbitrary vectors of odd degrees α1 . . . αn.

ln(v1 ⊗ v2 ⊗ · · · ⊗ vn) ⊂ V2−n+α1+···+αn .

If n is odd,
∑n

i=1 αi is odd, which makes 2 − n + α1 + · · · + αn even. If n is even,∑n
i=1 αi is even, which also makes 2−n+α1+ · · ·+αn even. Since the output must go

into an evenly graded component, and all even components are zero, ln = 0 ∀ n. ¤

Lemma 23. Suppose that V contains exactly N basis elements, all of which are of

even degree. Then the following results are true.

(1) ln ≡ 0 for all odd n.

(2) ln ≡ 0 ∀ n > N .

(3) Jn ≡ 0 for all even n.

Proof. (1) When n is odd, ln must map into a component of odd degree,

and these are all zero.

(2) ln ≡ 0 ∀ n > N because of skewness, since some even element would be

repeated as in input to ln.

(3) The degree 3−n map Jn maps even input into an odd component whenever

n is even.

¤

From the simple yet useful facts listed above, the following lemma follows.
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Lemma 24. If dim(V ) ≤ 3, and V contains only even vectors, then the possible

L∞ structures on V are precisely the classical graded Lie algebras, with all operators

besides l2 being trivial.

Remark 25. If V is a four-dimensional space containing only even vectors, then

the possible L∞ structures on V are like those in the preceding lemma, except that

l4 can be defined arbitrarily. (since J4 ≡ 0 in this case).

3.2. Some basic lemmas

Before considering vector spaces of lower dimension, we will first prove a few necessary

lemmas, which will also be useful in later sections. The next two lemmas identify

which operators ln on a given vector space V = Vα⊕Vβ (where α and β have opposite

parity) can be nonzero. We will see that the only such spaces on which ln can be

defined to be nonzero for all n are V = V0 ⊕ V1 and V = V1 ⊕ V2. Lemma (27),

however, will show that there exist many degenerate cases with very sparse nonzero

structures.

Lemma 26. Suppose V = Vα ⊕ V1, where α is even.

• If V = V0⊕V1, the only possible nonzero ln are




ln(V0 ⊗ V ⊗n−1
1 ) ⊂ V1 ∀ n.

ln(V ⊗2
0 ⊗ V ⊗n−2

1 ) ⊂ V0 ∀ n.


.

• If V = V1 ⊕ V2, the only possible nonzero ln is ln(V ⊗n
1 ) ⊂ V2 ∀ n.

• If V = V1⊕Vα where α is an even number other than 0 or 2, then all operators

ln are trivial.

Proof. ln(V ⊗k
α ⊗ V ⊗n−k

1 ) ⊂ Vαk+n−k+2−n = Vk(α−1)+2, which is of the same

parity as k.

If k is even, this can only be nonzero if kα − k + 2 = α, which implies that

α = k−2
k−1

= 1 − 1
k−1

. This can only be an integer if k ∈ {0, 2}. If k = 0, this forces
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α = 2. Thus when α = 2, we can define ln(V ⊗n
1 ) to be nonzero for all n. If k = 2,

this forces α = 0. Thus when α = 0, we can define ln(V ⊗2
0 ⊗ V ⊗n

1 ) to be nonzero for

all n.

Similarly, if k is odd, ln(V ⊗k
α ⊗ V ⊗n−k

1 ) can only be nonzero if kα − k + 2 = 1,

which implies that α = k−1
k

= 1− 1
k
. This can only be an integer if k ∈ {0, 1}. Since

k is odd, we can only have nonzero ln(V ⊗k
α ⊗V ⊗n−k

1 ) when k = 1. If k = 1, this forces

α = 0. Thus when α = 0, we can define ln(V0 ⊗ V ⊗n−1
1 ) to be nonzero for all n. ¤

Lemma 27. Suppose V = Vα⊕Vβ, where α is even and β is an odd number other

than 1. Then for each value of k, ln(V ⊗k
α ⊗ V ⊗n−k

β ) can be nonzero for at most one

value of n. We list the special cases which are of interest in this paper below:




ln(V ⊗n
β ) ⊂ Vα when n = α−2

β−1
∈ N.

ln(Vα ⊗ V ⊗n−1
β ) ⊂ Vβ when n = 2− α

β−1
∈ N.

ln(V ⊗2
α ⊗ V ⊗n−2

β ) ⊂ Vα when n = 2− α
β−1

∈ N.




Proof. ln(V ⊗k
α ⊗ V ⊗n−k

β ) ⊂ Vαk+β(n−k)+2−n = Vn(β−1)+(α−β)k+2, which is of the

same parity as k.

If k is even, this can only be nonzero if n(β−1)+(α−β)k +2 = α, which implies

that n = βk−αk+α−2
β−1

= k + k−αk+α−2
β−1

. In particular, when k = 0, n = α−2
β−1

, and when

k = 2, n = 2− α
β−1

.

Similarly, if k is odd, ln(V ⊗k
α ⊗ V ⊗n−k

β ) 6= 0 =⇒ n(β − 1) + (α − β)k + 2 = β,

which implies that n = β−2−αk+βk
β−1

= 1 + k + (1−α)k−1
β−1

. In particular, when k = 1,

n = 2− α
β−1

, ¤

We will now calculate some generalized Jacobi identities on spaces with exactly

two nonzero components of opposite parity. Note that the following lemma is true

regardless of the dimension of each component.

Lemma 28. Suppose V = Vα ⊕ Vβ where α is even and β is odd. Then
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• If β = −1,




Jn(V ⊗n
−1 ) = 0 ∀ n 6= 2.

Jn(Vα ⊗ V ⊗n−1
−1 ) = 0 ∀ n 6= 2.

Jn(V ⊗2
α ⊗ V ⊗n−2

−1 ) = 0 ∀ n 6= 3 + α.

• If β = 1,




On V1 ⊕ Vα where α 6= 0, Jn ≡ 0 ∀ n ∈ N.

On V0 ⊕ V1, Jn ≡ 0 ⇐⇒ Jn(V ⊗2
0 ⊗ V ⊗n−2

1 ) ≡ 0.

Jn(V ⊗2
0 ⊗ V ⊗n−2

1 ) can be nonzero ∀ n ∈ N.

• If β 6= ±1,



Jn ≡ 0 ⇐⇒ Jn(V ⊗2

α ⊗ V ⊗n−2
β ) ≡ 0.

Jn(V ⊗2
α ⊗ V ⊗n−2

β ) = 0 ∀ n 6= 3− 2α
β−1

.

Proof. Jn(V ⊗n
β ) ⊂ Vβn+3−n = Vn(β−1)+3, which is odd. Jn(V ⊗n

β ) can only be

nonzero if n(β − 1) + 3 = β. Note that this equation cannot be satisfied by β = 1!

If β 6= 1, n(β − 1) + 3 = β =⇒ n = β−3
β−1

= 1 − 2
β−1

. This can only be an integer

if β ∈ {−1, 0, 2, 3}. Since β is odd, we need β ∈ {−1, 3}. But if β = 3, this makes

n = 0, which is not valid. When β = −1, this forces n = 2. Thus

β 6= −1 =⇒ Jn(V ⊗n
β ) = 0 ∀ n ∈ N and β = −1 =⇒ Jn(V ⊗n

−1 ) = 0 ∀ n 6= 2.

Jn(Vα ⊗ V ⊗n−1
β ) ⊂ Vα+β(n−1)+3−n = Vn(β−1)+α−β+3, which is even. Therefore,

Jn(Vα ⊗ V ⊗n−1
β ) can only be nonzero if n(β − 1) + α− β + 3 = α, which implies that

n(β − 1) + 3 = β, which is just like the equation in the previous paragraph. Thus

β 6=−1 =⇒ Jn(Vα⊗V ⊗n−1
β ) = 0 ∀ n ∈ N and β =−1 =⇒ Jn(Vα⊗V ⊗n−1

β ) = 0 ∀ n 6= 2.

Jn(V ⊗2
α ⊗ V ⊗n−2

β ) ⊂ V2α+β(n−2)+3−n = Vn(β−1)+2(α−β)+3, which is odd. Thus

Jn(V ⊗2
α ⊗ V ⊗n−2

β ) can only be nonzero if n(β − 1) + 2(α − β) + 3 = β, or equiv-

alently, if 3β − 3− 2α = n(β − 1). If β = 1, this forces α = 0. If β 6= 1, this implies

that n = 3− 2α
β−1

. ¤

Finally, we’ll prove one other little lemma which will come in handy later.
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Lemma 29. Suppose V is a graded vector space with only one odd component Vγ,

and suppose that ln(V ⊗n
γ ) = 0 ∀ n ∈ N. Then if Vα is any other (even) component,

Jn(Vα ⊗ V ⊗n−1
γ ) ≡ 0 ∀ n ∈ N.

Proof. Since lp(V
⊗p
γ ) = 0, we have ln−p+1(lp(V

⊗p
γ )⊗Vα⊗V ⊗n−p−1

γ ) = 0. Now note

that lp(Vα ⊗ V ⊗p−1
γ ) ⊂ Vα+(p−1)γ+2−p = Vp(γ−1)+α−γ+2, which is an odd component.

Since the only odd component is Vγ , we have ln−p+1(lp(Vα ⊗ V ⊗p−1
γ )⊗ V ⊗n−p

γ ) = 0.

¤

3.3. L∞ structures on two-dimensional spaces

We will now identify all possible L∞ structures on spaces of dimension two or less.

Since our previous results have already characterized the possible structures on spaces

where all elements have the same parity, we now only need to consider a two-

dimensional space with elements of opposite parity.

Consider V = Vα ⊕ Vβ where α is even and β is odd, and each component is one-

dimensional. From Lemmas (26) and (27), we can list all possible nontrivial operators

ln which can be defined on such a space:


ln(V0⊗V ⊗n−1
1 ) ⊂ V1 can be nonzero on V = V0 ⊕ V1 for all n ∈ N.

ln(V ⊗n
1 ) ⊂ V2 can be nonzero on V = V1 ⊕ V2. for all n ∈ N.

ln(V ⊗n
β ) ⊂ Vα can be nonzero on V = Vα ⊕ Vβ only when n = α−2

β−1
∈ N.

ln(Vα⊗V ⊗n−1
β ) ⊂ Vβ can be nonzero on V = Vα ⊕ Vβ only when n = 2− α

β−1
∈ N.

By Lemma (28), such operators trivially form an L∞ structure whenever β 6= −1,

since Jn ≡ 0 on such a space whenever β 6= −1. Lemma (28) also tells us that

Jn ≡ 0 on V = Vα⊕V−1 for all n 6= 2. The next lemma finds necessary and sufficient

conditions for J2 ≡ 0 on V = Vα ⊕ V−1.

Lemma 30. Let V = Vα ⊕ V−1, where α is even. Then
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• If α /∈ {0,−2}, then l1 ≡ 0 and l2 ≡ 0 (forming a trivial L2 structure).

• If α = 0, then the possible L2 structures on V = Vα ⊕ V−1 are


l1(v−1) = a v0

l2 ≡ 0


 and




l1 ≡ 0

l2(v0 ⊗ v−1) = b v−1


 .

• If α = −2, then the possible L2 structures on V = Vα ⊕ V−1 are


l1(v−2) = a v−1

l2 ≡ 0


 and




l1 ≡ 0

l2(v−1 ⊗ v−1) = b v−2


 .

Proof. We will start by using the above table to determine the values of α which

allow l1 or l2 to be nonzero (since J2 involves only these operators). If l1(V−1) 6= 0,

1 = α−2
−1−1

=⇒ α = 0. If l2(V−1 ⊗ V−1) 6= 0, 2 = α−2
−1−1

=⇒ α = −2. If l1(Vα) 6= 0,

1 = 2− α
−1−1

=⇒ α = −2. If l1(Vα ⊗ V−1) 6= 0, 2 = 2− α
−1−1

=⇒ α = 0. Thus when

α /∈ {0,−2}, J2 ≡ 0 on V = Vα ⊕ V−1.

When α = 0, l1 and l2 can be defined in general by l1(v−1) = a v0 (zero otherwise),

and l2(v0 ⊗ v−1) = b v−1 (zero otherwise).

J2(v0 ⊗ v−1) = −l2(l1(v0)⊗ v−1) + l2(l1(v−1)⊗ v0) + l1(l2(v0 ⊗ v−1))

= 0 + l2(a v0 ⊗ v0) + l1(b v−1) = a b v0.

J2(v−1⊗v−1) = −2 l2(l1(v−1)⊗v−1)+l1(l2(v−1⊗v−1)) = −2 l2(a v0⊗v−1) = −2 a b v−1.

Thus we see that either a or b must be zero, which forces one of l1, l2 to be zero. It

is also easy to see that we have an L2 structure on V when one of l1, l2 is zero, so we

have necessary and sufficient conditions for an L2 structure on V = V0 ⊕ V−1.

When α = −2, l1 and l2 can be defined in general by l1(v−2) = a v−1 (zero

otherwise), and l2(v−1 ⊗ v−1) = b v−2 (zero otherwise).

J2(v−2 ⊗ v−1) = −l2(l1(v−2)⊗ v−1) + l2(l1(v−1)⊗ v−2) + l1(l2(v−2 ⊗ v−1) = 0.

J2(v−1 ⊗ v−1) = −2 l2(l1(v−1)⊗ v−1) + l1(l2(v−1 ⊗ v−1)) = 0 + l1(b v−2) = a b v−1.

Again, either a or b must be zero, which forces one of l1, l2 to be zero. ¤
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We can now classify all possible L∞ structures which are possible on a two di-

mensional graded vector space. It is interesting to note that V0 ⊕ V1 and V1 ⊕ V2 are

the only two-dimensional spaces on which it is possible to form an L∞ structure with

all operators ln 6= 0. Indeed, they are the only two-dimensional spaces on which it is

possible to define an L∞ structure with more than one nonzero operation.

Theorem 31. We identify all nonzero L∞ structures which can be built on a two

dimensional Z-graded vector space:

(1) On V0⊕V1, all L∞ structures are given by ln(v0⊗v⊗n−1
1 ) = cnv1 (cn arbitrary).

(2) On V1 ⊕ V2, all L∞ structures are given by ln(v⊗n
1 ) = cnv2 (cn arbitrary).

(3) On V−1 ⊕ V0, all L∞ structures can be divided into two types:

• l1(v−1) = c v0 and ln ≡ 0 ∀ n 6= 1.

• l2(v0 ⊗ v−1) = c v−1 and ln ≡ 0 ∀ n 6= 2.

(4) On V−2 ⊕ V−1, all L∞ structures can be divided into two types:

• l1(v−2) = c v−1 and ln ≡ 0 ∀ n 6= 1.

• l2(v−1 ⊗ v−1) = c v−2 and ln ≡ 0 ∀ n 6= 2.

(5) Other structures of the form Vα⊕ Vβ where α is even and β 6= 1 can contain

at most one nonzero operator, which must be one of the following:

• ln(v⊗n
β ) = c vα when n = α−2

β−1
∈ N.

• ln(vα ⊗ v⊗n−1
β ) = c vβ when n = 2− α

β−1
∈ N.

(6) On V = Vα ⊕ Vβ, where both α and β are even, all L∞ structures are given

by l2 which is a classical Lie bracket, with ln ≡ 0 ∀ n 6= 2.

Proof. Statements (1) and (2) follow from Lemmas (26), (27), and (28). State-

ments (3) and (4) follow from Lemma (30). Statement (5) follows from Lemma (27).

Statement (6) follows from Lemma (24). ¤

Remark 32. One can easily verify that all of the above structures are differential

graded Lie algebras.
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4. Two Components of Opposite Parity.

In this chapter, will find all possible L∞ structures on a three-dimensional graded

vector space V = Vα ⊕ Vβ, where α is even and β is odd. We will see that it is only

possible to construct an L∞ structure with an infinite number of nonzero ln when

β = 1, although there are many degenerate cases of L∞ structures with only one or

two nonzero operators. In particular, Theorem (34) will show that V0 ⊕ V1 can have

an infinite number of nonzero ln, and that there are nontrivial constraints involved

in constructing an L∞ structure on V0 ⊕ V1.

4.1. Two even vectors and one odd vector (of degree one)

In this section, we identify all possible Ln and L∞ structures on V = Vα ⊕ V1, where

α is even and Vα =< v, x > and V1 =< w >. The results can be summarized as

follows:

(1) If V = V1⊕V2, then any collection of operators ln(w⊗n) = anv + bnx trivially

forms an L∞ structure on V .

(2) If V = V0 ⊕ V1, we will show that there are two types of L∞ structure.

• ln(V0⊗V n−1
1 ) ≡ 0 ∀n ∈ N but ln(v⊗ x⊗w⊗n−2) ∈ V0 can be arbitrarily

assigned for each n ∈ N.

• lk(V0 ⊗ V n−1
1 ) 6= 0 for some k, but ln(v ⊗ x ⊗ w⊗n−2) ∈ V0 must be

assigned according to a recursion formula.

(3) On V = Vα ⊕ V1, where α /∈ {0, 2}, all ln must be zero, creating only trivial

L∞ structures.
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According to Lemma (28), if β = 1 and α 6= 0, then Jn ≡ 0 ∀ n ∈ N. Thus any

collection of skew linear operators ln of degree 2−n form an L∞ structure on V1⊕Vα

where α 6= 0. With most choices of α, all operators ln must be trivial anyway because

of the grading structure itself. Specifically, Lemma (26) tells us that if V = V1 ⊕ Vα

where α is an even number other than 0 or 2, then all ln are forced to be zero.

However, if V = V1 ⊕ V2, where V1 =< w > and V2 =< v, x >, one can define

an infinite number of nonzero operators on V by ln(w⊗n) = anv + bnx. According to

Lemma (28), these operators will then form an L∞ structure on V = V1 ⊕ V2 for any

choice of constants an, bn.

On V = V0⊕V1, however, Lemma (26) allows many more possibilities for nonzero

operators. In particular, Lemma (33) and Theorem (34) will show that nontrivial

constraints result when lk(V0 ⊗ V n−1
1 ) 6= 0 for some k.

Lemma 33. Suppose V = V0 ⊕ V1 where V0 =< v, x > and V1 =< w > has

operators defined by




ln(v ⊗ w⊗n−1) = (n− 1)! anw.

ln(x⊗ w⊗n−1) = (n− 1)! bnw.

ln(v ⊗ x⊗ w⊗n−2) = (n− 2)! cnv + (n− 2)! dnx.




Further, suppose that an, bn = 0 ∀ n < k but bk 6= 0, and denote m = n−k +1. Then

Jn(v ⊗ x⊗ w⊗n−2) = 0 if and only if n < k or

dm = (−1)m(m− k)am − cmak

bk

+

∑m−1
p=1(−1)p(m+k)[cpam+k−p+dpbm+k−p+(−1)p(m+k−2p)apbm+k−p]

−(−1)m(m+k)bk

.

Proof. ln−p+1 ◦ lp(v ⊗ x⊗ w⊗n−2) is equal to

17



(
n−2
p−2

)
ln−p+1(lp(v⊗x⊗w⊗p−2)⊗w⊗n−p)+(−1)p−1

(
n−2
p−1

)
ln−p+1(lp(v⊗w⊗p−1)⊗x⊗w⊗n−p−1)

+(−1)p
(
n−2
p−1

)
ln−p+1(lp(x⊗w⊗p−1)⊗v⊗w⊗n−p−1)+

(
n−2

p

)
ln−p+1(lp(w

⊗p)⊗v⊗x⊗w⊗n−p−2)

= (n−2)!
(n−p)!

ln−p+1(cpv⊗w⊗n−p)+ (n−2)!
(n−p)!

ln−p+1(dpx⊗w⊗n−p)

+ (−1)p (n−2)!
(n−p−1)!

ln−p+1(apx⊗ w⊗n−p)− (−1)p (n−2)!
(n−p−1)!

ln−p+1(bpv ⊗ w⊗n−p) + 0

= (n−2)! [cpan−p+1 + dpbn−p+1 + (−1)p(n− p)apbn−p+1 − (−1)p(n− p)bpan−p+1] w.

Since
∑n

p=1(−1)p(n−p)(−1)p(n − p)bpan−p+1 =
∑n

q=1(−1)q(n−q)(−1)q(q − 1)bn−q+1aq,

we have Jn(v ⊗ x⊗ w⊗n−2) = 0 if and only if

0 =
n∑

p=1

(−1)p(n−p) [cpan−p+1 + dpbn−p+1 + (−1)p ((n− p)− (p− 1)) apbn−p+1] .

Since an, bn = 0 ∀ n < k, Jn(v ⊗ x⊗ w⊗n−2) = 0 if and only if

0 =
n−k+1∑

p=1

(−1)p(n−p) [cpan−p+1 + dpbn−p+1 + (−1)p (n− 2p + 1)) apbn−p+1] .

Note that when n < k, Jn ≡ 0. When n ≥ k, though, the sum is nontrivial, and we

can solve for dn−k+1. Before pulling terms out of the sum, though, we can substitute

m = n− k + 1 to get a nicer formula in the end:

0 =
m∑

p=1

(−1)p(m+k) [cpam+k−p + dpbm+k−p + (−1)p(m + k − 2p)apbm+k−p] .

Now, we can remove the terms with p = m from the sum and solve for dm:

dm = (−1)m(m− k)am − cmak

bk

+

∑m−1
p=1 (−1)p(m+k) [cpam+k−p + dpbm+k−p + (−1)p(m + k − 2p)apbm+k−p]

−(−1)m(m+k)bk

.

¤

Theorem 34. Suppose that V = V0 ⊕ V1, where V0 =< v, x > and V1 =< w >.

Then the possible Ln structures on V can be characterized as follows.

(1) If lp(V0 ⊗ V ⊗p−1
1 ) ≡ 0 ∀ p ≤ n, then

{ lp(v ⊗ x⊗ w⊗p−2) = cpv + dpx ∀ p ≤ n },
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where cn and dn are arbitrarily chosen constants, form an L∞ structure on V .

(2) Otherwise, we can suppose without loss of generality that ∃k ≤ n such that

ap = bp = 0 ∀ p < k but bk 6= 0 (since if not, the basis vectors can simply be reordered).

Then the operators




lp(v ⊗ w⊗p−1) = (p− 1)! apw

lp(x⊗ w⊗p−1) = (p− 1)! bpw

lp(v ⊗ x⊗ w⊗p−2) = (p− 2)! cpv + (p− 2)! dpx




form an Ln structure on V = V0 ⊕ V1 if and only if

dm = (−1)m(m− k)am − cmak

bk

+

∑m−1
p=1(−1)p(m+k)[cpam+k−p+dpbm+k−p+(−1)p(m+k−2p)apbm+k−p]

−(−1)m(m+k)bk

for all m ≤ n− k + 1 (where an, bn, and cn are arbitrarily chosen constants).

Proof. By Lemma (26), the most general ln on V = V0 ⊕ V1 are given by




ln(v ⊗ w⊗n−1) = (n− 1)! anw

ln(x⊗ w⊗n−1) = (n− 1)! bnw

ln(v ⊗ x⊗ w⊗n−2) = (n− 2)! cnv + (n− 2)! dnx




.

Furthermore, Lemma (28) tells us that on V = V0 ⊕ V1,

Jn ≡ 0 ⇐⇒ Jn(v ⊗ x⊗ w⊗n−2) = 0.

If ap = bp = 0 ∀ p ≤ n, then the only possible nonzero lp requires both v and x as

input. This in turn forces Jm(v⊗ x⊗w⊗m−2) = 0 ∀ m ≤ n, which verifies that there

is an Ln structure on V .

Otherwise, we can suppose without loss of generality that ∃k ≤ n such that

ap = bp = 0 ∀ p < k but bk 6= 0 (since if not, the basis vectors can simply be

reordered). Then Lemma (33) completes the proof. ¤
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Corollary 35. Suppose that V = V0⊕ V1, where V0 =< v, x > and V1 =< w >.

Suppose V = V0 ⊕ V1 where V0 =< v, x > and V1 =< w >. There are two types of

L∞ structure on V :

• ln(v ⊗ x ⊗ w⊗n−2) = cnv + dnx where cn, dn can be arbitrarily chosen, but

ln(V0 ⊗ V ⊗n−1
1 ) = 0 ∀ n, or

• ∃ k such that bk 6= 0 and an, bn = 0 ∀ n < k (up to a reordering of the basis

vectors of V0), and




ln(v ⊗ w⊗n−1) = (n− 1)! anw.

ln(x⊗ w⊗n−1) = (n− 1)! bnw.

ln(v ⊗ x⊗ w⊗n−2) = (n− 2)! cnv + (n− 2)! dnx.




where an, bn, cn are arbitrary, but

dm = (−1)m(m− k)am − cmak

bk

+

∑m−1
p=1(−1)p(m+k)[cpam+k−p+dpbm+k−p+(−1)p(m+k−2p)apbm+k−p]

−(−1)m(m+k)bk

.

Remark 36. Using the notation of Theorem (34), an L2 structure on V = V0⊕V1

is a differential graded Lie algebra if and only if a2c2 + b2d2 = 0.

4.2. Two even vectors and one odd vector (β 6= 1)

In this section, we will consider Vα ⊕ Vβ, where α is even and β 6= 1 is odd. and

Vα =< v, x > and Vβ =< w >. According to Lemma (27), such a space can only

have ln 6= 0 for (at most) a few particular values of n. Specifically,


ln(V ⊗n
β ) ⊂ Vα when n = α−2

β−1
∈ N.

ln(Vα ⊗ V ⊗n−1
β ) ⊂ Vβ when n = 2− α

β−1
∈ N.

ln(V ⊗2
α ⊗ V ⊗n−2

β ) ⊂ Vα when n = 2− α
β−1

∈ N.



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Before finding the possible L∞ structures on such a space, we will first prove a

little technical lemma:

Lemma 37. Suppose Vα ⊕ Vβ, where β 6= 1 is odd and α = (β − 1)(2 − k) where

k ∈ N, and Vα =< v, x > and Vβ =< w >, and suppose that ln(V ⊗n
β ) = 0 ∀ n ∈ N.

Then the possible L∞ structures on V are

lk(v ⊗ w⊗k−1) = aw, lk(x⊗ w⊗k−1) = bw, lk(v ⊗ x⊗ w⊗k−2) = c v + d x.

where a c + b d = 0.

Proof. Since ln(V ⊗n
β ) = 0 ∀ n ∈ N, Jn(V ⊗n

β ) = 0 ∀ n ∈ N, and Lemma (29) also

forces Jn(Vα⊗V ⊗n−1
β ) = 0 ∀ n ∈ N. Thus we need only prove Jn(v⊗x⊗w⊗n−2) = 0.

Since k = 2− α
β−1

∈ N, Lemma (27) says that the most general ln are given by

lk(v ⊗ w⊗k−1) = aw, lk(x⊗ w⊗k−1) = bw, lk(v ⊗ x⊗ w⊗k−2) = c v + d x.

Since ln is only nonzero when n = k, the composition ln−p+1 ◦ lp can only be nonzero

when n − p + 1 = p = k. By Lemma (28), Jn 6= 0 =⇒ n = 3 − 2α
β−1

. Since

k = 2− α
β−1

, Jn 6= 0 =⇒ n = 2k − 1. When n = 2k − 1, Jn(v ⊗ x⊗ w⊗n−2) is equal

to (−1)k(n−k)lk ◦ lk(v ⊗ x⊗ w⊗n−2). But lk ◦ lk(v ⊗ x⊗ w⊗n−2) is equal to

(
n−2
k−2

)
lk(lk(v⊗ x⊗w⊗k−2)⊗w⊗n−k) + (−1)k−1

(
n−2
k−1

)
lk(lk(v⊗w⊗k−1)⊗ x⊗w⊗n−k−1)

+ (−1)k
(

n−2
k−1

)
lk(lk(x⊗ w⊗k−1)⊗ v ⊗ w⊗n−k−1)

=
(

n−2
k−2

)
lk((cv + dx)⊗ w⊗n−k) + (−1)k

(
n−2
k−1

) [
lk(ax⊗ w⊗n−k)− lk(bv ⊗ w⊗n−k)

]
.

Thus Jn = 0 =⇒ (
n−2
k−2

)
(c aw + d bw) + (−1)k

(
n−2
k−1

)
[a bw − b aw] = 0, which implies

that a c + b d = 0. ¤

The next lemma characterizes the possible nonzero L∞ structures on Vα ⊕ Vβ

when α is even, β 6= ±1 is odd, Vα =< v, x >, and Vβ =< w >. This is a very

degenerate case, since an L∞ structure on such a space can consist of at most one

nonzero operator (for some specific k).
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Lemma 38. Suppose V = Vα ⊕ Vβ where β 6= ±1. The possible L∞ structures on

V are as follows:

• If k = α−2
β−1

∈ N, lk(w
⊗k) = a v + b x forms the only possible L∞ structure.

• If k = 2− α
β−1

∈ N, then the most general skew maps of degree 2− n are

lk(v⊗w⊗k−1) = aw, lk(x⊗w⊗k−1) = bw, lk(v⊗x⊗w⊗k−2) = c v+d x.

These form an L∞ structure on V if and only if ac + bd = 0.

Proof. By Lemma (28), we know that Jn ≡ 0 ⇐⇒ Jn(V ⊗2
α ⊗ V ⊗n−2

β ) ≡ 0, and

that Jn(V ⊗2
α ⊗ V ⊗n−2

β ) = 0 ∀ n 6= 3 − 2α
β−1

. There are also strong constraints on the

possible operators ln, which we will now consider.

By Lemma (27), we can only define nonzero ln on V when α−2
β−1

∈ N or 2− α
β−1

∈ N.

If both conditions were true, this would imply that 2
β−1

∈ Z, which implies that

β ∈ {−1, 0, 2, 3}. Since β 6= ±1 is odd, this would force β = 3. If β = 3 and α−2
β−1

∈ N

and 2− α
β−1

∈ N, then α
2
− 1 ∈ N and 2− α

2
∈ N, which is impossible!

Suppose that k = α−2
β−1

∈ N. Then we can define lk(w
⊗k) = a v + b x, but this is

the only possible nonzero ln on the space! It is easy to see, though, that this does in

fact form a little L∞ structure on V .

If k = 2− α
β−1

∈ N, then Lemma (37). gives the possible L∞ structures on V . ¤

The next lemma shows that on V = V0 ⊕ V−1, we have an L∞ structure if and

only if we have an L2 structure. The constraints on l1 and l2 in order to form an L2

structure on V = V0 ⊕ V−1 are detailed in the next lemma.

Lemma 39. On V = V0⊕V−1, where V0 =< v, x > and V−1 =< w >, the possible

L∞ structures on V are as follows.

(1)




l1 ≡ 0, l2(v ⊗ w) = cw, ln ≡ 0 ∀ n > 2,

l2(x⊗ w) = dw,

l2(v ⊗ x) = k(d v − c x) for some k ∈ R.



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(2)




l1(w) = b x, l2(v ⊗ w) = cw, ln ≡ 0 ∀ n > 2,

l2(v ⊗ x) = c x.




(3)




l1(w) = a v l2(x⊗ w) = dw, ln ≡ 0 ∀ n > 2,

l2(v ⊗ x) = −e v.




(4)




l1(w) = a v + b x, l2(v ⊗ w) = b k w, ln ≡ 0 ∀ n > 2,

l2(x⊗ w) = −a k w,

l2(v ⊗ x) = k(a v + b x) for some k ∈ R.




Proof. According to Lemma (27), the most general ln on V = V0 ⊕ V−1 are

l1(w) = a v + b x, l2(v⊗w) = cw, l2(x⊗w) = dw, l2(v⊗ x) = e v + f x.

By Lemma (28), Jn = 0 ∀ n /∈ {2, 3}, but we need to check J2(w ⊗ w), J2(v ⊗ w),

J2(x⊗ w), and J3(v ⊗ w ⊗ x).

J2(w⊗w) = −2l2(l1(w)⊗w) + l1(l2(w⊗w) = −2l2(av + bx)w) = −2(ac + bd)w.

J2(v⊗w) = −l2(l1(v)⊗w) + l2(l1(w)⊗v) + l1(l2(v⊗w) = l2((av + bx)⊗v) + l1(cw)

= −b (ev + fx) + c (av + bx) = (−be + ac)v + b (−f + c)x.

J2(x⊗w) = −l2(l1(x)⊗w) + l2(l1(w)⊗x) + l1(l2(x⊗w) = l2((av + bx)⊗x) + l1(dw)

= a (ev + fx) + d (av + bx) = a (d + e)v + (af + bd)x.

J3(v⊗x⊗w) = l2◦l2(v⊗x⊗w) = l2(l2(v⊗x)⊗w)− l2(l2(v⊗w)⊗x) + l2(l2(x⊗w)⊗v)

= l2((ev + fx)⊗w)− l2(cw⊗x) + l2(dw⊗v)

= (ec + fd + cd− dc)w = (ec + fd)w.

Thus we have an L∞ structure on V if and only if all of the following are true:

ac + bd = 0, be = ac, b(c− f) = 0, a(d + e) = 0, af + bd = 0, ec + fd = 0.

This implies that there are just four cases which give an L∞ structure:

(1) If a = b = 0 and c, d are given, e = kd and f = −kc for some k ∈ R.
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(2) If a = 0 and b 6= 0, then d = e = 0 and c = f .

(3) If b = 0 and a 6= 0, then c = f = 0 and d = −e.

(4) If b 6= 0 and a 6= 0, then c = f and d = −e and ac + bd = 0.

¤

On V = V−2 ⊕ V−1, we also have an L∞ structure if and only if we have an L2

structure. However, this is a very degenerate case in which there is at most one

nonzero operator, as the next lemma shows.

Lemma 40. Suppose V = V−2 ⊕ V−1, and V−2 =< v, x > and V−1 =< w >. The

possible L∞ structures on V are as follows:

(1)




l1(v) = aw, ln = 0 ∀ n 6= 1,

l1(x) = bw.




(2)
{

l2(w ⊗ w) = c v + d x, ln = 0 ∀ n 6= 2.
}

Proof. According to Lemma (27), the most general ln on V = V−2 ⊕ V−1 are

l1(v) = aw l1(x) = bw l2(w ⊗ w) = c v + d x.

By Lemma (28), Jn = 0 ∀ n 6= 2, but we still need to check J2(w ⊗ w), J2(v ⊗ w),

and J2(x⊗ w).

J2(w ⊗ w) = −2l2(l1(w)⊗ w) + l1(l2(w ⊗ w) = 0 + l1(cv + dx) = (ac + bd)w.

J2(v ⊗ w) = −l2(l1(v)⊗ w) + l2(l1(w)⊗ v) + l1(l2(v ⊗ w) = −l2(aw ⊗ w)

= −acv − adx.

J2(x⊗ w) = −l2(l1(x)⊗ w) + l2(l1(w)⊗ x) + l1(l2(x⊗ w) = −l2(bw ⊗ w)

= −bcv − bdx.

Thus we have an L∞ structure on V if and only if all of the following are true:

ac = 0, ad = 0, bc = 0, bd = 0.
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If a = 0 and b = 0, we have l1 ≡ 0, but l2(w ⊗ w) can be freely defined. If a 6= 0 or

b 6= 0, then c = 0 and d = 0, forcing l2(w ⊗ w)=0. ¤

The following theorem summarizes all nonzero L∞ structures which can be built

on V = Vα ⊕ V−1, where α > 0 is even and Vα =< v, x > and V−1 =< w >. Note

that they are all degenerate cases, with at most two nonzero ln.

Theorem 41. We identify all possible L∞ structures which can be built on a space

V = Vα ⊕ V−1, where α > 0 is even and Vα =< v, x > and V−1 =< w >:

• On V = V0 ⊕ V−1, there are four possible types of L∞ structure.

(1)




l1 ≡ 0, l2(v ⊗ w) = cw, ln ≡ 0 ∀ n > 2,

l2(x⊗ w) = dw,

l2(v ⊗ x) = k(d v − c x) for some k ∈ R.




(2)




l1(w) = b x, l2(v ⊗ w) = cw, ln ≡ 0 ∀ n > 2,

l2(x⊗ w) = 0,

l2(v ⊗ x) = c x.




(3)




l1(w) = a v l2(x⊗ w) = dw, ln ≡ 0 ∀ n > 2,

l2(v ⊗ w) = 0,

l2(v ⊗ x) = −e v.




(4)




l1(w) = a v + b x, l2(v ⊗ w) = b k w, ln ≡ 0 ∀ n > 2,

l2(x⊗ w) = −a k w,

l2(v ⊗ x) = k(a v + b x) for some k ∈ R.




• On V = V−2 ⊕ V−1, there are two possible types of L∞ structure:

(1)




l1(v) = aw, ln = 0 ∀ n 6= 1,

l1(x) = bw.




(2)
{

l2(w ⊗ w) = c v + d x, ln = 0 ∀ n 6= 2.
}

• If α = 2k − 4 where k − 3 ∈ N, then the possible L∞ structures on V are

lk(v ⊗ w⊗k−1) = aw, lk(x⊗ w⊗k−1) = bw, lk(v ⊗ x⊗ w⊗k−2) = c v + d x

where a c + b d = 0.
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• If α < −2, then Vα ⊕ V−1 can just have an L∞ structure with a single non-

trivial operator: lm(V ⊗m
−1 ) = av + bx, where m = 1− α

2
.

Proof. According to Lemma (27), ln can only be nonzero on Vα ⊕ V−1 in very

particular cases: 


lm(V ⊗m
−1 ) ⊂ Vα when m = 1− α

2
∈ N.

lk(Vα ⊗ V ⊗k−1
−1 ) ⊂ V−1 when k = 2 + α

2
∈ N.

lk(V
⊗2
α ⊗ V ⊗k−2

−1 ) ⊂ Vα when k = 2 + α
2
∈ N.




If m = 1− α
2
∈ N and k = 2 + α

2
∈ N, then α ∈ {0,−2}. The possible structures on

V0 ⊕ V−1 follow from Lemma (39), and the possible structures on V−1 ⊕ V−2 follow

from Lemma (40).

If k = 2 + α
2
∈ N, and α /∈ {0,−2}, then m = 0, forcing ln(V ⊗n

−1 ) = 0 ∀ n ∈ N.

The possible L∞ structures on V then follow from Lemma (37).

If m = 1− α
2
∈ N and and α /∈ {0,−2}, then k = 0. which implies that the only

possible nonzero ln is lm(V ⊗m
−1 ) ⊂ Vα. It is clear that Jn must always be zero in this

case. ¤

4.3. Two odd vectors and one even vector

We now consider V = Vα ⊕ Vβ, where α is even and Vα =< v > and V1 =< u,w >.

Lemma (28) tells us that if β 6= −1, any skew linear operators ln on V gives an

L∞ structure. Furthermore, when β = −1, one need only check J2 to verify an L∞

structure on V = Vα ⊕ V−1.

According to Lemma (27), the only possible nonzero operators on Vα ⊕ V−1 are


ln(V ⊗n
−1 ) ⊂ Vα when n = 1− α

2
∈ N.

ln(Vα ⊗ V ⊗n−1
−1 ) ⊂ V−1 when n = 2 + α

2
∈ N.



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We only need to check J2 in spaces with nonzero l1 or l2, and these operators can

only be nonzero when α ∈ {0,−2}.

• On V0 ⊕ V−1, l1(V−1) ⊂ V0 and l2(V0 ⊗ V−1) ⊂ V−1.

• On V−2 ⊕ V−1, l1(V−2) ⊂ V−1 and l2(V−1 ⊗ V−1) ⊂ V−2.

Lemma 42. Suppose that V = V0 ⊕ V−1, where V0 =< v > and V−2 =< u, x >.

Then every L∞ structure on V is given by


l1(u) = av, l2(v ⊗ u) = cu + dw, ln ≡ 0 ∀ n > 2,

l1(w) = bv, l2(v ⊗ w) = eu + fw


 ,

where ae + bf = 0 and ae + bc = 0 and af + bd = 0.

Proof. The most general nonzero ln on V are given by

l1(u) = av, l1(w) = bv, l2(v ⊗ u) = cu + dw, l2(v ⊗ w) = eu + fw.

J2(v⊗u) = −l2(l1(v)⊗u)+ l2(l1(u)⊗ v)+ l1(l2(v⊗u)) = −l1(cu+ dw) = (ae+ bf)v.

J2(v⊗w) = −l2(l1(v)⊗w)+ l2(l1(w)⊗ v)+ l1(l2(v⊗w)) = l1(eu+ fw) = (ae+ bf)v.

J2(u⊗w) = −l2(l1(u)⊗w) + l2(l1(w)⊗ u) + l1(l2(u⊗w)) = −l2(av⊗w) + l2(bv⊗ u)

= a(eu + fw) + b(cu + dw) = (ae + bc)u + (af + bd)w.

Thus we have an L∞ structure on V if and only if

ae + bf = 0, ae + bc = 0, af + bd = 0.

¤

Lemma 43. Suppose that V = V−2⊕ V−1, where V−2 =< v > and V−1 =< u, x >.

Then every L∞ structure on V is given by

l1(v) = au + bw, l2(u⊗ u) = cv, l2(w ⊗ w) = dv, l2(u⊗ w) = ev,

where ae = 0 and be = 0 and ac = 0 and bd = 0.
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Proof. The most general nonzero ln on V are given by

l1(v) = au + bw, l2(u⊗ u) = cv, l2(w ⊗ w) = dv, l2(u⊗ w) = ev.

J2(v ⊗ u) = −l2(l1(v)⊗ u) + l2(l1(u)⊗ v) + l1(l2(v ⊗ u))

= −l2((au + bw)⊗ u) = acv + bev = (ac + be)v.

J2(v ⊗ w) = −l2(l1(v)⊗ w) + l2(l1(w)⊗ v) + l1(l2(v ⊗ w))

= −l2((au + bw)⊗ w) = aev + bdv = (ae + bd)v.

J2(u⊗ w) = −l2(l1(u)⊗ w) + l2(l1(w)⊗ u) + l1(l2(u⊗ w)) = l1(ev) = aeu + bew.

Thus we have an L∞ structure on V if and only if

ae = 0, be = 0, ac = 0, bd = 0.

¤
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5. Three Components (Two Even and One Odd).

In this chapter, we will identify all possible L∞ structures on V = Vα ⊕ Vβ ⊕ Vγ

where α, β are even, γ is odd, and each component is one-dimensional. We will first

consider the degenerate cases which have very sparse structures, and conclude that

the most interesting space with two even one-dimensional components and one odd

one-dimensional component is V = V0 ⊕ V1 ⊕ V2. This case will then be considered

in full detail at the end of the chapter, in Section (5.4).

5.1. Spaces in which the odd component is not of degree ±1

Here, we will identify all possible L∞ structures on V = Vα⊕ Vβ ⊕ Vγ , where α, β are

even and γ 6= ±1 is odd, and each component of V is one-dimensional. We’ll start

with some little technical lemmas. The following lemma is true whenever γ 6= 1. The

case when γ = −1 will be considered in a separate section because it allows some

additional special cases, as suggested by Lemma (45).

Lemma 44. Suppose V = Vα ⊕ Vβ ⊕ Vγ, where α and β are even, γ 6= 1 is odd,

and each component is one-dimensional. Let k = 2 − α
γ−1

, m = 2 − β
γ−1

, q = α−2
γ−1

,

and t = β−2
γ−1

. Then the most general possible operators on V are the following:


lk(vα ⊗ v⊗k−1
γ ) = a vγ and lk(vα ⊗ vβ ⊗ v⊗k−2

γ ) = b vβ when k ∈ N.

lm(vβ ⊗ v⊗m−1
γ ) = c vγ and lm(vα ⊗ vβ ⊗ v⊗m−2

γ ) = d vα when m ∈ N.

lq(v
⊗q
γ ) = e vα when q ∈ N.

lt(v
⊗t
γ ) = f vβ when t ∈ N.



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Proof. ln(vα ⊗ v⊗n−1
γ ) ∈ Vα+(n−1)γ+2−n = Vn(γ−1)+α−γ+2, which is odd. Thus

ln(vα ⊗ v⊗n−1
γ ) can only be nonzero if n(γ − 1) + α − γ + 2 = γ, which implies that

n = 2 γ−2−α
γ−1

= 2− α
γ−1

.

ln(vα ⊗ vβ ⊗ v⊗n−2
γ ) ∈ Vα+β+(n−2)γ+2−n = Vn(γ−1)+α+β−2γ+2, which is even. Thus

ln(vα ⊗ v⊗n−1
γ ) can only be nonzero if n(γ − 1) + α + β − 2γ + 2 ∈ {α, β}. But

n(γ − 1) + α + β − 2γ + 2 = α =⇒ n = 2− α
γ−1

. Similarily, it can only map to Vβ if

n = 2− β
γ−1

. The rest of the proof follows the same pattern! ¤

Lemma 45. Suppose 2 − α
γ−1

∈ N and α−2
γ−1

∈ N, where α, β, and γ are integers,

and γ is odd. Then γ = −1 and α ∈ {0,−2}.

Proof. Suppose 2 − α
γ−1

∈ N and α−2
γ−1

∈ N. Then 2
γ−1

∈ Z, which implies that

γ ∈ {−1, 0, 2, 3}. Since γ is odd, γ ∈ {−1, 3}. If γ = 3, then 2− α
3−1

≥ 1 and α−2
3−1

≥ 1,

which implies that 1 ≥ α
2

and α
2
≥ 2, which is impossible.

If γ = −1, then 2− α
−1−1

≥ 1 and α−2
−1−1

≥ 1, implying that α ≥ −2 and α ≤ 0. ¤

Lemma 46. Let = Vα ⊕ Vβ ⊕ Vγ, where γ 6= 1 is odd, and each component of V

is one-dimensional. Further, suppose that α = (2 − k)(γ − 1) for some k ∈ N, and

β = (2 −m)(γ − 1) for some m ∈ N, and suppose that ln(V ⊗n
β ) = 0 ∀ n ∈ N. Then

the possible L∞ structures on V are as follows (listing only the nonzero ln).

(1)
{

lm(vβ ⊗ v⊗m−1
−1 ) = c vγ, lm(vα ⊗ vβ ⊗ v⊗m−2

γ ) = d vα.
}

(2)
{

lk(vα ⊗ vβ ⊗ v⊗k−2
γ ) = b vβ, lm(vα ⊗ vβ ⊗ v⊗m−2

γ ) = d vα.
}

(3)




lk(vα ⊗ v⊗m−1
γ ) = a vγ, lk(vα ⊗ vβ ⊗ v⊗m−2

γ ) = b vβ

lm(vβ ⊗ v⊗m−1
γ ) = c vγ, lm(vα ⊗ vβ ⊗ v⊗m−2

γ ) = d vα,

where d = (−1)k(k−1)b c +(m+k−2)a c
(−1)m+1(m−1)a

.




Proof. Since k = 2− α
γ−1

and m = 2− β
γ−1

, where γ 6= 1, and ln(V ⊗n
β ) = 0 ∀ n,

we know from Lemma (44) that the most general ln on V are the following:


lk(vα ⊗ v⊗k−1
γ ) = a vγ. lk(vα ⊗ vβ ⊗ v⊗k−2

γ ) = b vβ.

lm(vβ ⊗ v⊗m−1
γ ) = c vγ. lm(vα ⊗ vβ ⊗ v⊗m−2

γ ) = d vα.



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Since ln(V ⊗n
γ ) = 0, Jn(V ⊗n

γ ) = 0 ∀ n ∈ N. By Lemma (29), Jn(Vα ⊗ V ⊗n−1
γ ) = 0 and

Jn(Vβ ⊗ V ⊗n−1
γ ) = 0 for all n. Thus it suffices to prove Jn(vα ⊗ vβ ⊗ v⊗n−2

γ ) = 0.

Furthermore, we need only check this when n = m + k − 1, since it will clearly be

zero for all other values of n in this space. Jm+k−1(vα ⊗ vβ ⊗ v⊗m+k−3
γ ) is equal to

(−1)k(m−1)+k−1
(

m+k−3
k−1

)
lm(lk(vα ⊗ v⊗k−1

γ )⊗ vβ ⊗ v⊗m−2
γ )

+ (−1)k(m−1)
(

m+k−3
k−2

)
lm(lk(vα ⊗ vβ ⊗ v⊗k−2

γ )⊗ v⊗m−1
γ )

+ (−1)m(k−1)+m−1
(

m+k−3
m−1

)
lk(lm(vβ ⊗ v⊗m−1

γ )⊗ vα ⊗ v⊗k−2
γ )

+ (−1)m(k−1)
(

m+k−3
m−2

)
lk(lm(vα ⊗ vβ ⊗ v⊗m−2

γ )⊗ v⊗k−1
γ )

= (−1)km+1 (m+k−3)!
(k−1)!(m−2)!

lm(avγ ⊗ vβ ⊗ v⊗m−2
γ ) + (−1)km+k (m+k−3)!

(k−2)!(m−1)!
lm(bvβ ⊗ v⊗m−1

γ )

+ (−1)km+1 (m+k−3)!
(m−1)!(k−2)!

lk(cvγ ⊗ vα ⊗ v⊗k−2
γ ) + (−1)km+m (m+k−3)!

(m−2)!(k−1)!
lk(dvα ⊗ v⊗k−1

γ ).

Thus Jm+k−1(vα ⊗ vβ ⊗ v⊗m+k−3
γ ) = 0 if and only if

(m− 1)a c + (−1)k(k − 1)b c + (k − 1)c a + (−1)m(m− 1)d a = 0.

If a = 0, then we need b = 0 or c = 0 to have an L∞ structure. If a 6= 0, then we

have an L∞ structure if and only if d = (m+k−2)ac+(−1)k(k−1)bc
(−1)m+1(m−1)a

. ¤

Lemma 47. Let = Vα ⊕ Vβ ⊕ Vγ, where γ 6= 1 is odd, and each component of V

is one-dimensional. Further, suppose that β = (2−m)(γ − 1) for some m ∈ N, and

α = 2 + (q)(γ− 1) for some q ∈ N, and suppose that β−2
γ−1

/∈ N and 2− α
γ−1

/∈ N. Then

the only possible L∞ structures on V are as follows.

(1)
{
lm(vβ ⊗ v⊗m−1

γ ) = 0, lm(vα ⊗ vβ ⊗ v⊗m−2
γ ) = d vα, lq(v

⊗q
γ ) = e vα.

}
(2)

{
lm(vβ ⊗ v⊗m−1

γ ) = c vγ, lm(vα ⊗ vβ ⊗ v⊗m−2
γ ) = d vα, lq(v

⊗q
γ ) = 0.

}

Proof. By Lemma (44), the most general possible ln on this space are

lm(vβ ⊗ v⊗m−1
γ ) = c vγ, lm(vα ⊗ vβ ⊗ v⊗m−2

γ ) = d vα, lq(v
⊗q
γ ) = e vα.
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A moment’s reflection will show that Jn(v⊗n
γ ), Jn(vα⊗v⊗n−1

γ ), and Jn(vα⊗vβ⊗v⊗n−2
γ )

are always zero. Furthermore, Jn(vβ⊗v⊗n−1
γ ) can only be nonzero when n = m+q−1.

Jm+q−1(vβ ⊗ v⊗m+q−2
γ ) =

(
m+q−2

m−1

)
lq(lm(vβ ⊗ v⊗m−1

γ )⊗ v⊗q−1
γ ) = lq(c v⊗q

γ ) = c e vα.

Thus we have an L∞ structure on V if and only if c e = 0. ¤

Lemma 48. Let = Vα ⊕ Vβ ⊕ Vγ, where γ 6= ±1 is odd, and each component of V

is one-dimensional. Further, suppose that α = (2 − k)(γ − 1) for some k ∈ N, and

β = (2 −m)(γ − 1) for some m ∈ N. Then the possible L∞ structures on V are as

follows (listing only the nonzero ln, to save space).

(1)
{
lm(vβ ⊗ v⊗m−1

−1 ) = c vγ, lm(vα ⊗ vβ ⊗ v⊗m−2
γ ) = d vα.

}
(2)

{
lk(vα ⊗ vβ ⊗ v⊗k−2

γ ) = b vβ, lm(vα ⊗ vβ ⊗ v⊗m−2
γ ) = d vα.

}

(3)




lk(vα ⊗ v⊗m−1
γ ) = a vγ, lk(vα ⊗ vβ ⊗ v⊗m−2

γ ) = b vβ,

lm(vβ ⊗ v⊗m−1
γ ) = c vγ, lm(vα ⊗ vβ ⊗ v⊗m−2

γ ) = d vα,

where d = (−1)k(k−1)b c +(m+k−2)a c
(−1)m+1(m−1)a

.




Proof. Since we have k = 2 − α
γ−1

and m = 2 − β
γ−1

, where γ 6= −1, we know

from Lemma (45) that q = α−2
γ−1

/∈ N and t = β−2
γ−1

/∈ N. The rest of the proof follows

from Lemma (46). ¤

Lemma 49. Let = Vα ⊕ Vβ ⊕ Vγ, where γ 6= 1 is odd, and each component of V

is one-dimensional. Further, suppose that β = (2−m)(γ − 1) for some m ∈ N, and

α = 2 + (q)(γ − 1) for some q ∈ N. Then the only possible L∞ structures on V are

as follows.

(1)
{
lm(vβ ⊗ v⊗m−1

γ ) = 0, lm(vα ⊗ vβ ⊗ v⊗m−2
γ ) = d vα, lq(v

⊗q
γ ) = e vα.

}
(2)

{
lm(vβ ⊗ v⊗m−1

γ ) = c vγ, lm(vα ⊗ vβ ⊗ v⊗m−2
γ ) = d vα, lq(v

⊗q
γ ) = 0.

}
Proof. Since we have m = 2 − β

γ−1
and q = α−2

γ−1
, where γ 6= 1, we know from

Lemma (45) that q = α−2
γ−1

/∈ N and k = 2 − α
γ−1

/∈ N. The rest of the proof follows

from Lemma (47). ¤
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Lemma 50. Let = Vα ⊕ Vβ ⊕ Vγ, where γ 6= ±1 is odd, and each component of V

is one-dimensional. Further, suppose that α = (1 − q)(γ − 1) for some q ∈ N, and

β = (1− t)(γ − 1) for some t ∈ N. Then the only possible nonzero ln on V are

{
lq(v

⊗q
γ ) = e vα, lt(v

⊗t
γ ) = f vβ.

}

These operators form an L∞ structure on V , regardless of the values of e and f .

5.2. V = Vα ⊕ Vβ ⊕ V−1 (where α, β are even)

It requires a bit of extra effort to classify the L∞ structures on V = Vα ⊕ Vβ ⊕ V−1,

even though there are very few of them. This is because there are more combinations

of operators to check, as implied by Lemma (45). The following lemmas, which fill the

remainder of this section, identify all possible L∞ structures on V = Vα ⊕ Vβ ⊕ V−1.

Lemma 51. Suppose V = Vα⊕ Vβ ⊕ V−1, where α and β are even. Let k = 2 + α
2
,

m = 2 + β
2
, q = 1 − α

2
, and t = 1 − β

2
. Then the most general possible skew linear

operators of degree 2− n on V are the following:


lk(vα ⊗ v⊗k−1
−1 ) = a v−1 if k ∈ N. lm(vβ ⊗ v⊗m−1

−1 ) = c v−1 if m ∈ N.

lk(vα ⊗ vβ ⊗ v⊗k−2
−1 ) = b vβ if k ∈ N. lm(vα ⊗ vβ ⊗ v⊗m−2

−1 ) = d vα if m ∈ N.

lq(v
⊗q
−1) = e vα if q ∈ N. lt(v

⊗t
−1) = f vβ if t ∈ N.




Proof. Special case of Lemma (44). ¤

Lemma 52. Suppose V = Vα ⊕ Vβ ⊕ V−1, where α and β are even and positive.

Let k = 2 + α
2

and m = 2 + β
2
. Then the possible L∞ structures on V are as follows

(listing only the nonzero ln, to save space).

(1) { lm(vβ ⊗ v⊗m−1
−1 ) = c v−1, lm(vα ⊗ vβ ⊗ v⊗m−2

−1 ) = d vα }.
(2) { lk(vα ⊗ vβ ⊗ v⊗k−2

−1 ) = b vβ, lm(vα ⊗ vβ ⊗ v⊗m−2
−1 ) = d vα }.
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(3)




lk(vα ⊗ v⊗m−1
−1 ) = a v−1, lk(vα ⊗ vβ ⊗ v⊗m−2

−1 ) = b vβ,

lm(vβ ⊗ v⊗m−1
−1 ) = c v−1, lm(vα ⊗ vβ ⊗ v⊗m−2

−1 ) = d vα,

where d = (−1)k(k−1)b c +(m+k−2)a c
(−1)m+1(m−1)a

.




Proof. The result follows from Lemma (46). ¤

Lemma 53. Suppose V = Vα ⊕ Vβ ⊕ V−1, where α and β are even and α < −2

and β > 0. Then the only possible L∞ structures on V are as follows.

(1) { lm(vβ ⊗ v⊗m−1
γ ) = 0, lm(vα ⊗ vβ ⊗ v⊗m−2

γ ) = d vα, lq(v
⊗q
γ ) = e vα. }

(2) { lm(vβ ⊗ v⊗m−1
γ ) = c vγ, lm(vα ⊗ vβ ⊗ v⊗m−2

γ ) = d vα, lq(v
⊗q
γ ) = 0. }

Proof. Since α < −2, k = 2 + α
2

/∈ N, and q = 1 − α
2
∈ N. Since β > 0,

m = 2+ β
2
∈ N, and t = 1− β

2
/∈ N. The rest of the proof follows from Lemma(47). ¤

Lemma 54. Suppose V = Vα ⊕ Vβ ⊕ V−1, where α, β < −1 are even, and let

q = 1− α
2

and t = 1− β
2
. Then the only possible nonzero ln on V are

{ lq(v
⊗q
−1) = e vα, lt(v

⊗t
−1) = f vβ }.

These operators form an L∞ structure on V , regardless of the values of e and f .

Lemma 55. Suppose V = Vα⊕V0⊕V−1, where each component is one-dimensional,

and α > 0 is even. Let k = 2 + α
2
. Then the possible L∞ structures on V are as

follows (listing only the nonzero operators, to save space).

(1) { l2(vα⊗ v0) = d vα, lk(vα⊗ v0⊗ v⊗k−2
−1 ) = b v0. }

(2) { lk(vα⊗v⊗k−1
−1 ) = a v−1, lk(vα⊗v0⊗v⊗k−2

−1 ) = b v0. }
(3) { l1(v−1) = f v0, l2(vα⊗ v0) = d vα. }
(4) { l1(v−1)=fv0, lk(vα⊗v0⊗v⊗k−2

−1 )=b v0, lk(vα⊗v⊗k−1
−1 )=[(−1)k+1k b ]v−1.}

(5)




l2(v0 ⊗ v−1) = cv−1, l2(vα ⊗ v0) = dvα, lk(vα ⊗ v⊗k−1
−1 ) = av−1,

lk(vα ⊗ v0 ⊗ v⊗k−2
−1 ) =

( −ad− kac

(−1)k(k − 1)c

)
v0.



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Proof. Since α > 0, k = 2 + α
2
∈ N, and q = 1− α

2
/∈ N. Therefore, by Lemma

(51), the most general possible ln on V when α > 0 are




l1(v−1) = f v0. lk(vα ⊗ v⊗k−1
−1 ) = a v−1.

l2(v0 ⊗ v−1) = c v−1. lk(vα ⊗ v0 ⊗ v⊗k−2
−1 ) = b v0.

l2(vα ⊗ v0) = d vα.




Given these possible ln, ln−p+1 ◦ lp(v
⊗n
−1 ) can only be nonzero when p = 1, so

Jn(v⊗n
−1 ) = (−1)(1)(n−1)

(
n
1

)
ln(l1(v−1)⊗ v⊗n−1

−1 ) = (−1)n−1(n)ln(fv0 ⊗ v⊗n−1
−1 ).

But with the ln that we have, this can only be nonzero when n = 2:

J2(v
⊗2
−1) = −2l2(fv0 ⊗ v−1) = −2 c f v−1.

Similarly, ln−p+1(lp(vα ⊗ v⊗p−1
−1 ) ⊗ v⊗n−p

−1 ) can only be nonzero when p = k, and

ln−p+1(lp(v
⊗p
−1)⊗ vα ⊗ v⊗n−p−1

−1 ) can only be nonzero when p = 1. Thus

Jn(vα⊗v⊗n−1
−1 ) = (−1)k(n−k)

(
n−1
k−1

)
ln−k+1(a vn−k+1

−1 )+(−1)1(n−1)(n)ln(f v0⊗vα⊗v⊗n−2
−1 ).

Examining the summands again, we see that they can only be nonzero when n = k.

Completing the calculation, we get

Jk(vα ⊗ v⊗k−1
−1 ) =

(
k−1
k−1

)
a f v0 + (−1)k(k)b f v0 = f [ a + (−1)kk b ] v0.

Now, note that ln−p+1(lp(v0⊗v⊗p−1
−1 )⊗v⊗n−p

−1 ) can only be nonzero when p = 2, and

ln−p+1(lp(v
⊗p
−1)⊗v0⊗v⊗n−p−1

−1 ) = 0 ∀p (since v0 would be repeated). Thus Jn(v0⊗v⊗n−1
−1 )

is equal to (−1)2(n−2)
(

n−1
1

)
ln−1(c vn−1

−1 ), which can only be nonzero when n = 2. Thus

J2(vα ⊗ v−1) = c f v0.

ln−p+1(lp(vα⊗v0⊗v⊗p−2
−1 )⊗v⊗n−p

−1 ) can only be nonzero if (p = k and n−k+1 = 2),

or (p = 2 and n− 1 = k). ln−p+1(lp(vα ⊗ v⊗p−1
−1 )⊗ v0 ⊗ v⊗n−p−1

−1 ) can only be nonzero
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if p = k and n − p + 1 = 2, and ln−p+1(lp(v0 ⊗ v⊗p−1
−1 ) ⊗ vα ⊗ v⊗n−p−1

−1 ) can only be

nonzero when p = 2 and n− p + 1 = k. Thus we only need to check when n = k + 1:

Jk+1(vα ⊗ v0 ⊗ v⊗k−1
−1 ) = (−1)k(1)

(
k−1
k−2

)
l2(b v0 ⊗ v−1) + (−1)2(k−1)lk(d vα ⊗ v⊗k−1

−1 )

+ (−1)k(1)(−1)k−1
(

k−1
k−1

)
l2(a v−1 ⊗ v0)

+ (−1)2(k−1)(−1)
(

k−1
1

)
lk(c v−1 ⊗ vα ⊗ v⊗k−2

−1 )

= [(−1)k(k − 1)b c + a d + a c + (k − 1)a c ]v−1.

Therefore, we have an L∞ structure if and only if

c f = 0 and f [ a+(−1)kk b ] = 0 and (−1)k(k−1)b c +a d +k a c = 0.

If c = f = 0, we need a = 0 or d = 0. If c = 0 and f 6= 0, we need (a = 0 and b = 0)

or (d = 0 and a = (−1)k+1k b). If f = 0 and c 6= 0, we need b = −a d−k a c
(−1)k(k−1)c

. ¤

Lemma 56. Suppose V = Vα⊕V0⊕V−1, where each component is one-dimensional,

and α < −2 is even. Let q = 1 − α
2
. Then the possible L∞ structures on V are as

follows (listing only the nonzero operators, to save space).

• { l1(v−1) = f v0, lq(v
⊗q
−1) = e vα. }

• { l2(vα ⊗ v0) = d vα, lq(v
⊗q
−1) = e vα }

• { l2(v0 ⊗ v−1) = c v−1, l2(vα ⊗ v0) = d vα. }

Proof. Since α < −2, k = 2 + α
2

/∈ N, and q = 1− α
2
∈ N. Therefore, by Lemma

(51), the most general possible operators on V when α < −2 are

l1(v−1) = f v0, l2(v0⊗v−1) = c v−1, l2(vα⊗v0) = d vα, lq(v
⊗q
−1) = e vα.

ln−p+1(lp(v
⊗p
−1) ⊗ v⊗n−p

−1 ) can only be nonzero if p = 1 or p = q. If p = 1, we have

ln(f v0 ⊗ v⊗n−1
−1 ), which can only be nonzero if n = 2. If p = q, we have ln−q+1(e vα ⊗

v⊗n−q
−1 ), which is zero. Thus the only constraint of this type is

J2(v−1 ⊗ v−1) = −2l2(l1(v−1)⊗ v−1) = −2l2(f v0 ⊗ v−1) = −2c f v−1.
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Note that ln−p+1(lp(vα ⊗ v⊗p−1
−1 )⊗ v⊗n−p

−1 ) = 0 ∀p. Also, we can only have nonzero

ln−p+1(lp(v
⊗p
−1) ⊗ vα ⊗ v⊗n−p−1

−1 ) when p = 1, and ln(f v0 ⊗ vα ⊗ v⊗n−2
−1 ) can only be

nonzero when n = 2. Thus we have only one constraint of this type:

J2(vα ⊗ v−1) = l2(f v0 ⊗ vα) = −d f vα.

We can only have nonzero ln−p+1(lp(v0 ⊗ v⊗p−1
−1 ) ⊗ v⊗n−p

−1 ) when p = 2, but

ln−1(c v⊗n−1
−1 ) can be nonzero when n − 1 = 1 or n − 1 = q. Additionally, we can

only have nonzero ln−p+1(lp(v
⊗p−1
−1 ) ⊗ v0 ⊗ v⊗n−p

−1 ) when p = q and n − p + 1 = 2.

Therefore, we have constraints of this type when n = 2 and when n = q + 1:

J2(v0 ⊗ v−1) = l1(l2(v0 ⊗ v−1)) = l1(c v−1) = c f v0.

Jq+1(v0 ⊗ v⊗q
−1) = (−1)2(q−1)

(
q+1
1

)
lq(c v⊗q

−1) = (q + 1)c e vα.

We have ln−p+1(lp(vα⊗v⊗p−1
−1 )⊗v⊗n−p

−1 ) = 0 ∀p. Also, ln−p+1(lp(v
⊗p
−1)⊗vα⊗v⊗n−p−1

−1 )

can only be nonzero when p = 1 and n− p + 1 = 2. Thus our constraint here is

J2(vα ⊗ v−1) = l2(l1(v−1)⊗ vα) = l2(f v0 ⊗ vα) = −d f vα.

Finally, Jn(vα⊗ v0⊗ v⊗n−2
−1 ) = 0 ∀n. Therefore, for an L∞ structure on V , we require

that

c f = 0 and d f = 0 and ce = 0.

¤

Lemma 57. Let V = Vα ⊕ V−2 ⊕ V−1, where each component is one-dimensional,

and α > 0 is even. Let k = 2 + α
2
. Then the possible L∞ structures on V are as

follows (listing only the nonzero operators, to save space).

• { lk(vα ⊗ v⊗k−1
−1 ) = a v−1, lk(vα ⊗ v−2 ⊗ v⊗k−2

−1 ) = b v−2. }

•



lk(vα ⊗ v−2 ⊗ v⊗k−2
−1 ) = b v−2, lk(vα ⊗ v⊗k−1

−1 ) = (−1)k
(

k−1
2

)
bv−1,

l2(v
⊗2
−1) = f v−2.




•



lk(vα ⊗ v⊗k−1
−1 ) = a v−1, lk(vα ⊗ v−2 ⊗ v⊗k−2

−1 ) = (−1)k(2− k)a v−2,

l1(v−2) = c v−1.



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Proof. Since α > 0, k = 2 + α
2
∈ N, and q = 1− α

2
/∈ N. Therefore, by Lemma

(51), the most general possible operators on V when α > 0 are


l1(v−2) = c v−1. lk(vα ⊗ v⊗k−1
−1 ) = a v−1.

l2(v
⊗2
−1) = f v−2. lk(vα ⊗ v−2 ⊗ v⊗k−2

−1 ) = b v−2.




Since ln−p+1(lp(v
⊗p
−1)⊗ v⊗n−p

−1 ) can only be nonzero if p = 2 and n− p + 1 = 1,

J2(v
⊗n
−1 ) = l1(l2(v

⊗2
1 )) = l1(f v−2) = c f v−1.

Note that ln−p+1(lp(v−2 ⊗ v⊗p−1
−1 ) ⊗ v⊗n−p

−1 ) can only be nonzero when p = 1, and

n− p + 1 = 2, and ln−p+1(lp(v
⊗p
−1)⊗ v−2 ⊗ v⊗n−p−1

−1 ) = 0 ∀p. Thus

J2(v−2 ⊗ v−1) = −l2(l1(v−2)⊗ v−1) = c f v−2.

Since ln−p+1(lp(vα⊗v⊗p−1
−1 )⊗v⊗n−p

−1 ) can only be nonzero if p = k and n−p+1 = 2,

and since we can only have nonzero ln−p+1(lp(v
⊗p
−1) ⊗ vα ⊗ v⊗n−p−1

−1 ) when p = 2 and

n− p + 1 = k, we get a constraint when n = k + 1:

Jk+1(vα ⊗ v⊗k
−1) = (−1)k(1)l2(a v−1 ⊗ v−1) + (−1)2(k−1)

(
k−1
2

)
lk(f v−2 ⊗ vα ⊗ v⊗k−2

−1 )

= (−1)ka f v−2 −
(

k−1
2

)
b f v−2 = f [(−1)ka − (

k−1
2

)
b ]v−2.

Finally, ln−p+1(lp(vα ⊗ v−2 ⊗ v⊗p−2
−1 ) ⊗ v⊗n−p

−1 ) can only be nonzero when p = k

and n − p + 1 = 1, and ln−p+1(lp(vα ⊗ v⊗p−1
−1 ) ⊗ v−2 ⊗ v⊗n−p−1

−1 ) = 0 ∀p . Also,

ln−p+1(lp(v−2 ⊗ v⊗p−1
−1 ) ⊗ vα ⊗ v⊗n−p−1

−1 ) = 0 can only be nonzero when p = 1 and

n− p + 1 = k, and ln−p+1(lp(v
⊗p
−1)⊗ vα ⊗ v−2 ⊗ v⊗n−p−2

−1 ) = 0 ∀p. Therefore, we get a

constraint when n = k:

Jk(vα ⊗ v−2 ⊗ v⊗k−2
−1 ) = l1(b v−2) + (−1)1(k−1)

(
k−2
1

)
lk(c v−1 ⊗ vα ⊗ v⊗k−2

−1 ))

= b c v−1 + (−1)k(k − 2)a c v−1 = c [b + (−1)k(k − 2)a ]v−1.

Therefore, for an L∞ structure, we require

c f = 0 and f [(−1)ka − (
k−1
2

)
b ] = 0 and c [b + (−1)k(k − 2)a ] = 0.
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¤

Lemma 58. Let V = Vα ⊕ V−2 ⊕ V−1, where each component is one-dimensional,

and α < −2 is even. Let q = 1 − α
2
. Then the possible L∞ structures on V are as

follows (listing only the nonzero operators, to save space).

• { lq(v
⊗q
−1) = e vα, l2(v

⊗2
−1) = f v−2. }

• { l1(v−2) = c v−1. }

Proof. Since α < −2, k = 2 + α
2

/∈ N, and q = 1− α
2
∈ N. Therefore, by Lemma

(51), the most general possible ln on V = Vα ⊕ V−2 ⊕ V−1 when α < −2 are

l1(v−2) = c v−1, lq(v
⊗q
−1) = e vα, l2(v

⊗2
−1) = f v−2.

Since ln−p+1(lp(v
⊗p
−1)⊗ v⊗n−p

−1 ) can only be nonzero if p = 2 and n− p + 1 = 1,

J2(v
⊗n
−1 ) = l1(l2(v

⊗2
1 )) = l1(f v−2) = c f v−1.

Note that ln−p+1(lp(v−2 ⊗ v⊗p−1
−1 ) ⊗ v⊗n−p

−1 ) can only be nonzero when p = 1, and

either n − p + 1 = 2 or n − p + 1 = q, and ln−p+1(lp(v
⊗p
−1) ⊗ v−2 ⊗ v⊗n−p−1

−1 )) = 0 ∀p.

Thus we get constraints when n = 2 and n = q:

J2(v−2 ⊗ v−1) = −l2(l1(v−2)⊗ v−1) = −l2(c v⊗2
−1) = c f v−2.

Jq(v−2 ⊗ v⊗q−1
−1 ) = lq(c v⊗q

−1) = c e v−2.

Finally, Jn(vα ⊗ v⊗n−1
−1 ) = 0 ∀ n, and Jn(vα ⊗ vβ ⊗ v⊗n−1

−1 ) = 0 ∀ n, since no nonzero

lp takes vα as input. Therefore, we have an L∞ structure on V = Vα ⊕ V−2 ⊕ V−1 if

and only if ce = 0 and cf = 0. ¤

Lemma 59. Let V = V−2 ⊕ V−1 ⊕ V0, where each component is one-dimensional.

Then the possible L∞ structures on V are as follows (listing only the nonzero opera-

tors, to save space).

• { l1(v−2) = a v−1, l2(v0 ⊗ v−1) = c v−1, l2(v−2 ⊗ v0) = d v−2. }
• { l1(v−1) = f v0. }
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Proof. Let k = 1, m = 2, and t = 1. The most general possible ln on V are

l1(v−2) = a v−1, l1(v−1) = f v0, l2(v0 ⊗ v−1) = c v−1, l2(v−2 ⊗ v0) = d v−2.

J1(v−2) = a f v0. J2(v−2 ⊗ v0) = −l2(a v−1 ⊗ v0) + l1(d v−2) = 0. J2(v−2 ⊗ v−1) =

l2(f v0 ⊗ v−2) = −f d v−2. J2(v0 ⊗ v−1) = l1(c v−1) = c f v−1. J3(v−2 ⊗ v−1 ⊗ v0) = 0.

Thus we need af = 0 and df = 0 and cf = 0. ¤

5.3. V = Vα ⊕ Vβ ⊕ V1 (where α, β are even)

The next lemma shows that if V = Vα ⊕ Vβ ⊕ V1 (where α, β are even), but V is not

V0⊕ V1⊕ V2, then any arbitrary collection of skew linear operators ln of degree 2− n

forms an L∞ structure on V .

Lemma 60. Suppose that V = Vα ⊕ Vβ ⊕ V1 where α and β are distinct even

numbers such that {α, β} 6= {0, 2}, and any set of skew linear operators ln of degree

2− n are defined on V . Then these operators form an L∞ structure on V .

Proof. First, suppose that α, β 6= 0. Since the only odd component is of degree

1, this forces ln(vα ⊗ v⊗n−1
1 ) ∈ Vα+1 = 0 and ln(vβ ⊗ v⊗n−1

1 ) ∈ Vβ+1 = 0. Similarly,

we have ln(vα ⊗ vβ ⊗ v⊗n−1
1 ) ∈ Vα+1 = 0 (since α + β is even, but cannot be equal

to either α or β). Given all of these constraints together, we see that ln is forced to

be zero whenever it receives at least one even vector as input, which in turn forces

Jn ≡ 0 ∀ n ≥ 2. One can easily verify that our assumptions about grading also force

l1 ◦ l1 = 0, which proves that Jn ≡ 0 ∀ n ∈ N when neither of the even components

is of grade zero.

Now suppose that β = 0, and α 6= 2. Then Jn(v⊗n
1 ) ∈ V3 = 0, since the only

odd component is of degree one. Similarly, Jn(vα ⊗ vβ ⊗ v⊗n−2
1 ) ∈ Vα+1 = 0. Also,

Jn(vβ⊗ v⊗n−1
1 ) ∈ V2 = 0 (by assumption). Finally, Jn(vα⊗ v⊗n−1

1 ) ∈ Vα+2, which can
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only be nonzero if α = −2. Since the above calculations include all inputs to the Jn

which do not repeat an even vector, we see that Jn ≡ 0 whenever α 6= −2.

However, when α = −2, Jn is also zero. This is because of the way that the

grading restricts ln:

• ln(v⊗n
1 ) ∈ V2, which is zero by assumption.

• ln(v−2 ⊗ v⊗n−1
1 ) ∈ V−1, which is zero by assumption.

This forces ln−p+1 ◦ lp(v−2 ⊗ v⊗n−1
1 ) to be zero, which forces Jn(vα ⊗ v⊗n−1

1 ) to be

zero. ¤

5.4. Proof of the case in which V = V0 ⊕V1 ⊕V2

In this section, we will show that there are exactly two types of L∞ structures on

V = V0 ⊕ V1 ⊕ V2. If we denote V0 =< v >, V1 =< w >, and V2 =< x >, then the

possible L∞ structures are as follows:

• A structure with maps




ln(v ⊗ w⊗n−1) = anw ∀ n ≥ 1

ln(v ⊗ w⊗n−2 ⊗ x) = cnx ∀ n ≥ 2


 , in which

an and cn are arbitrary chosen constants, but all other maps are zero. It will

be shown that any structure of this type which is L3 is also a differential

graded Lie algebra.

• A structure with maps




ln(v ⊗ w⊗n−1) = anw ∀ n ≥ 1

ln(w⊗n) = bnx ∀ n ≥ 1

ln(v ⊗ w⊗n−2 ⊗ x) = cnx ∀ n ≥ 2




, in which

some bn is nonzero and the remaining bn and all of the cn are arbitrarily

chosen, but each constant an is uniquely determined by the recursion formula,

an =
(

n−1
k

)
cn +

∑n−1
p=2 (−1)p(n+k)bn+k−p

[(
n+k−2

p−1

)
ap −

(
n+k−2

p−2

)
cp

]
(−1)n(n+k)+1

(
n+k−2

n−1

)
bk
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(where k is the least value such that bk is nonzero). It will be proven that

an L3 structure of this type is a differential graded Lie algebra if and only if

b1 = 0 or b2 = 0 or a2 = 0.

We will also provide necessary and sufficient conditions under which skew linear

maps form an Lm structure on V = V0 ⊕ V1 ⊕ V2, as well as necessary and sufficient

conditions for an L3 structure on this space to be a differential graded Lie algebra.

To accomplish these goals, we first need to establish some notation.

Let V = V0 ⊕ V1 ⊕ V2, where V0 =< v >, V1 =< w >, and V2 =< x >. Define

skew linear maps ln : V ⊗n → V of degree 2− n by

(1)




ln(v ⊗ w⊗n−1) = anw ∀ n ≥ 1

ln(w⊗n) = bnx ∀ n ≥ 1

ln(v ⊗ w⊗n−2 ⊗ x) = cnx ∀ n ≥ 2

ln(w⊗n−1 ⊗ x) = 0 ∀ n

ln(v⊗i ⊗ w⊗n−i−j ⊗ x⊗j) = 0 ∀ i, j > 1

where an, bn, cn are constants. Since cn is defined above only for n ≥ 2, we can define

c1 = 0 for the sake of convenience.

Remark 61. The above list (1) includes all possible skew linear maps of degree

2− n, by the following argument:

• ln(v⊗i ⊗ w⊗n−i−j ⊗ x⊗j) = 0 ∀ i, j > 1 because a repeated component of

even degree makes a skew map zero.

• ln(w⊗n−1 ⊗ x) ⊂ Vn−1+2+2−n = V3 which is zero.

The action of lk on the remaining generators is determined by its skewness.

In order to determine when these maps define an Lm structure on V , we need

to know when Jn = 0 ∀ n ≤ m. The following two lemmas establish the conditions

which force Jn = 0:
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Lemma 62. Given V = V0 ⊕ V1 ⊕ V2 with the skew linear maps defined in (1),

Jn = 0 if and only if Jn(v ⊗ w⊗n−1) = 0.

Proof. Since deg(Jn) = 3− n,

Jn(V ⊗i
0 ⊗ V ⊗n−i−j

1 ⊗ V ⊗j
2 ) ⊂ Vn−i−j+2j+3−n = V−i+j+3.

Thus Jn(V ⊗i
0 ⊗V ⊗n−i−j

1 ⊗V ⊗j
2 ) can only be nonzero if j− i+3 ∈ {0, 1, 2} (since these

are the only nonzero components of V ). Equivalently, Jn(V ⊗i
0 ⊗ V ⊗n−i−j

1 ⊗ V ⊗j
2 ) can

only be nonzero if j− i ∈ {−3,−2,−1}. But Jn(V ⊗i
0 ⊗V ⊗n−i−j

1 ⊗V ⊗j
2 ) = 0 whenever

i > 1 (since Jn is skew and a parameter of even degree would be repeated). Thus

Jn(V ⊗i
0 ⊗ V ⊗n−i−j

1 ⊗ V ⊗j
2 ) can only be nonzero when i = 1 and j = 0. ¤

Lemma 63. Given V = V0 ⊕ V1 ⊕ V2 with the maps defined in (1),

Jn(v ⊗ w⊗n−1) =
n∑

p=1

(−1)p(n−p)(−1)nbp

[
(−1)

(
n−1
n−p

)
an−p+1 +

(
n−1

p

)
cn−p+1

]
x.

Proof. Before calculating ln−p+1◦lp(v⊗w⊗n−1), it is helpful to consider the ways

in which a (p, n− p) unshuffle of v⊗w⊗n−1 could possibly rearrange the terms. Here,

there are only two possibilities, since ordering guarantees that the v must be placed

in either position 1 or position p + 1.

There are
(

n−1
p−1

)
unshuffles which place v in position 1. In each case, χ(σ) = +1,

since each of these permutations can be accomplished solely by commuting elements

of odd degree.

Similarly, there are
(

n−1
p

)
unshuffles which place v in position p + 1. In each case,

χ(σ) = (−1)p. This is because we can reorder the consecutive w terms (which does

not change the sign), and then simply shift v past p w terms.
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ln−p+1 ◦ lp(v ⊗ w⊗n−1) =
(

n−1
p−1

)
ln−p+1(lp(v ⊗ w⊗p−1)⊗ w⊗n−p)

+
(

n−1
p

)
(−1)pln−p+1(lp(w

⊗p)⊗ v ⊗ w⊗n−p−1)

=
(

n−1
p−1

)
ln−p+1(apw ⊗ w⊗n−p)

+
(

n−1
p

)
(−1)p(−1)n−pln−p+1(bpv ⊗ w⊗n−p−1 ⊗ x)

=
(

n−1
p−1

)
apbn−p+1x + (−1)n

(
n−1

p

)
bpcn−p+1x.

Since Jn =
∑n

p=1(−1)p(n−p)ln−p+1 ◦ lp, we have

Jn(v ⊗ w⊗n−1) =
n∑

p=1

(−1)p(n−p)
[(

n−1
p−1

)
apbn−p+1x + (−1)n

(
n−1

p

)
bpcn−p+1x

]
.

Thus Jn(v ⊗ w⊗n−1) is equal to

n∑
p=1

(−1)p(n−p)
(

n−1
p−1

)
apbn−p+1x +

n∑
p=1

(−1)p(n−p)(−1)n
(

n−1
p

)
bpcn−p+1x.

Substituting q = n− p + 1 in the first sum and re-indexing, this is equivalent to

n∑
q=1

(−1)(n−q+1)(q−1)
(

n−1
n−q

)
an−q+1bqx +

n∑
p=1

(−1)p(n−p)(−1)n
(

n−1
p

)
bpcn−p+1x.

Recombining the two sums, this is equivalent to

n∑
p=1

(−1)p(n−p)(−1)nbp

[
(−1)

(
n−1
n−p

)
an−p+1 +

(
n−1

p

)
cn−p+1

]
x.

¤

Remark 64. Thus in V = V0 ⊕ V1 ⊕ V2,

Jn = 0 ⇐⇒ 0 =
n∑

p=1

(−1)p(n−p)(−1)nbp

[
(−1)

(
n−1
n−p

)
an−p+1 +

(
n−1

p

)
cn−p+1

]
.

In particular, v is L1 (i.e. a differential graded vector space) if and only if 0 = a1b1.

Lemma 65. Suppose V = V0 ⊕ V1 ⊕ V2 with the skew linear maps defined in (1)

has an L∞ structure and a1 6= 0. Then bn = 0 ∀ n ∈ N.
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Proof. Suppose a1 6= 0. Then b1 = 0 (since the first Jacobi identity requires

that 0 = a1b1). Now we do an induction proof: Suppose bk = 0 ∀ k < n. The nth

Jacobi identity requires that

0 =
n∑

p=1

(−1)p(n−p)(−1)nbp

[
(−1)

(
n−1
n−p

)
an−p+1 +

(
n−1

p

)
cn−p+1

]
.

Since we’re supposing that bk = 0 ∀ k < n, this collapses to 0 = (−1)nbn(n − 1)a1.

But we also supposed that a1 6= 0, which forces bn = 0. ¤

If some constant bk is nonzero, then the following lemma proves that the constraint

Jn = 0 is equivalent to an explicit formula for an−k+1:

Lemma 66. Given V = V0 ⊕ V1 ⊕ V2 with the maps defined in (1), suppose that

1 ≤ k < n & bp = 0 ∀ p < k & bk 6= 0. Then Jn = 0 if and only if

an−k+1 =
(

n−k
k

)
cn−k+1 +

∑n−k
q=2 (−1)q(n−q)bn−q+1

[(
n−1
q−1

)
aq −

(
n−1
q−2

)
cq

]
(−1)k(n−k)+n

(
n−1
n−k

)
bk

.

Proof. We know that

Jn = 0 ⇐⇒ 0 =
n∑

p=1

(−1)p(n−p)(−1)nbp

[
(−1)

(
n−1
n−p

)
an−p+1 +

(
n−1

p

)
cn−p+1

]
.

Since bk 6= 0 by assumption, a1 = 0 by the preceding lemma. Thus when p = n,

an−p+1 = 0. Also, when p = n,
(

n−1
p

)
= 0. Thus we can change the upper limit of

the summation to n − 1. Furthermore, since bp = 0 ∀ p < k, the lower limit can be

changed to k. Thus Jn = 0 if and only if

0 =
n−1∑
p=k

(−1)p(n−p)bp

[
(−1)

(
n−1
n−p

)
an−p+1 +

(
n−1

p

)
cn−p+1

]
.

Removing the term with p = k from the summation, we get an equivalent equation:

(−1)k(n−k)bk

(
n−1
n−k

)
an−k+1 = (−1)k(n−k)bk

(
n−1

k

)
cn−k+1

+
n−1∑

p=k+1

(−1)p(n−p)bp

[
(−1)

(
n−1
n−p

)
an−p+1 +

(
n−1

p

)
cn−p+1

]
.
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Since we supposed that 1 ≤ k < n,
(

n−1
n−k

) 6= 0. Also bk 6= 0 by supposition. Thus the

previous equation is equivalent to the formula,

an−k+1 =

(
n−1

k

)
cn−k+1(

n−1
n−k

)

+

∑n−1
p=k+1(−1)p(n−p)bp

[
(−1)

(
n−1
n−p

)
an−p+1 +

(
n−1

p

)
cn−p+1

]
(−1)k(n−k)bk

(
n−1
n−k

) .

Substituting q = n− p + 1, we get

an−k+1 =

(
n−1

k

)
cn−k+1(

n−1
n−k

)

+

∑n−k
q=2 (−1)(n−q+1)(q−1)bn−q+1

[
(−1)

(
n−1
q−1

)
aq +

(
n−1

n−q+1

)
cq

]
(−1)k(n−k)bk

(
n−1
n−k

) .

Simplifying, we get

an−k+1 =
(

n−k
k

)
cn−k+1 +

∑n−k
q=2 (−1)q(n−q)bn−q+1

[(
n−1
q−1

)
aq −

(
n−1
q−2

)
cq

]
(−1)k(n−k)+n

(
n−1
n−k

)
bk

.

¤

Lemma 67. If bp = 0 ∀ p < n then V = V0 ⊕ V1 ⊕ V2, with the skew maps defined

in (1) is Ln.

Proof. Suppose 1 ≤ m ≤ n. We know that

Jm = 0 ⇐⇒ 0 =
m∑

p=1

(−1)p(m−p)(−1)mbp

[
(−1)

(
m−1
m−p

)
am−p+1 +

(
m−1

p

)
cm−p+1

]
.

If m < n, we have bp = 0 ∀ p ≤ m, and Jm = 0. So we only need to show that

Jn = 0.

Jn =
n∑

p=n

(−1)p(n−p)(−1)nbp

[
(−1)

(
n−1
n−p

)
an−p+1 +

(
n−1

p

)
cn−p+1

]

= (−1)nbn

[
(−1)

(
n−1

o

)
a1 +

(
n−1

n

)
c1

]
= (−1)n+1(n− 1)bna1.

If bn = 0, then this is zero. If bn 6= 0, we know from Lemma (65) that a1 = 0, which

makes the sum zero in all cases. Thus Jn = 0 ∀ m ≤ n. Therefore, V is Ln. ¤
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Now the following theorem provides necessary and sufficient conditions which

identify all possible Ln structures on V = V0⊕ V1⊕ V2. This also leads to a corollary

which specifies all possible L∞ structures on this space.

Theorem 68. Suppose that V = V0 ⊕ V1 ⊕ V2 has skew maps defined by


ln(v ⊗ w⊗n−1) = anw ∀ n ≥ 1

ln(w⊗n) = bnx ∀ n ≥ 1

ln(v ⊗ w⊗n−2 ⊗ x) = cnx ∀ n ≥ 2




.

V is Ln if and only if

• bp = 0 ∀ p < n or

• ∃ k such that 1 ≤ k < n & bp = 0 ∀ p < k & bk 6= 0 & ∀ 1 ≤ m ≤ n−k+1,

am =
(

m−1
k

)
cm +

∑m−1
p=2 (−1)p(m+k)bm+k−p

[(
m+k−2

p−1

)
ap −

(
m+k−2

p−2

)
cp

]
(−1)m(m+k)+1

(
m+k−2

m−1

)
bk

.

Proof. If bp = 0 ∀ p < n then we know from Lemma (67) that V is Ln. So

suppose otherwise.

Then ∃ k such that 1 ≤ k < n & bp = 0 ∀ p < k & bk 6= 0. Using Lemma (67)

again, we know that V is Lk. Thus Jq = 0 ∀ q ≤ k. Thus V is Ln if and only if

Jq = 0 ∀ k < q ≤ n, which by Lemma (66) is true if and only if

aq−k+1 =
(

q−k
k

)
cq−k+1 +

∑q−k
p=2(−1)p(q−p)bq−p+1

[(
q−1
p−1

)
ap −

(
q−1
p−2

)
cp

]
(−1)k(q−k)+q

(
q−1
q−k

)
bk

∀ k < q ≤ n. If we substitute m = q − k + 1, this formula becomes

am =
(

m−1
k

)
cm +

∑m−1
p=2 (−1)p(m+k−1−p)bm+k−p

[(
m+k−2

p−1

)
ap −

(
m+k−2

p−2

)
cp

]
(−1)k(m−1)+m+k−1

(
m+k−2

m−1

)
bk

.

Note that k < q ≤ n ⇐⇒ 1 < q − k + 1 ≤ n− k + 1. Thus V is Ln if and only if

am =
(

m−1
k

)
cm +

∑m−1
p=2 (−1)p(m+k)bm+k−p

[(
m+k−2

p−1

)
ap −

(
m+k−2

p−2

)
cp

]
(−1)m(m+k)+1

(
m+k−2

m−1

)
bk

∀ 1 < m ≤ n− k + 1. ¤
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Corollary 69. Suppose that V = V0 ⊕ V1 ⊕ V2, with the skew maps defined in

(1) is Ln. Then V is Ln+1 if and only if

• bp = 0 ∀ p < n + 1 or

• ∃ k such that 1 ≤ k < n + 1 & bp = 0 ∀ p < k & bk 6= 0 and

an−k+2 =
(

n−k+1
k

)
cn−k+2 +

∑n−k+1
p=2 (−1)p(n+2)bn+2−p

[(
n

p−1

)
ap −

(
n

p−2

)
cp

]
(−1)n(n−k)+1

(
n

k−1

)
bk

.

Corollary 70. V = V0⊕V1⊕V2 with the skew maps defined in (1) is L∞ if and

only if

• bp = 0 ∀ p ∈ N or

• ∃ k ∈ N such that bp = 0 ∀ p < k & bk 6= 0 & ∀ m ∈ N,

am =
(

m−1
k

)
cm +

∑m−1
p=2 (−1)p(m+k)bm+k−p

[(
m+k−2

p−1

)
ap −

(
m+k−2

p−2

)
cp

]
(−1)m(m+k)+1

(
m+k−2

m−1

)
bk

.

The following result gives necessary and sufficient conditions under which an L3

structure on V = V0 ⊕ V1 ⊕ V2 is a differential graded Lie algebra.

Theorem 71. Suppose that V = V0 ⊕ V1 ⊕ V2 with the maps defined in (1) is

an L3 structure. Then V is a differential graded Lie algebra if and only if b1 = 0 or

b2 = 0 or a2 = 0.

Proof. Recall that a differential graded (d.g.) Lie algebra is an L2 structure in

which l2 ◦ l2 ≡ 0. In this space, l2 ◦ l2 ≡ 0 ⇐⇒ l2 ◦ l2(v ⊗ w⊗2) = 0, by the argument

used in Lemma (62).

l2 ◦ l2(v ⊗ w⊗2)

= l2(l2(v ⊗ w)⊗ w)− (−1)1l2(l2(v ⊗ w)⊗ w) + (−1)0l2(l2(w ⊗ w)⊗ v)

= 2l2(a2w ⊗ w) + l2(b2x⊗ v) = 2a2b2x− b2c2x = (2a2 − c2)b2x.

Thus V is a d.g. Lie algebra if and only if (2a2 − c2)b2 = 0. Note that when b2 = 0,

this condition makes V a d.g. Lie algebra.
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To prove the rest, we need to use the fact that V is L3. Recall that in this space,

Jn = 0 ⇐⇒ 0 =
n∑

p=1

(−1)p(n−p)(−1)nbp

[
(−1)

(
n−1
n−p

)
an−p+1 +

(
n−1

p

)
cn−p+1

]
.

Therefore, V is L3 if and only if the following 3 constraints hold:

0 = a1b1 (since J1 = 0).

0 = b1a2 − b1c2 − b2a1 (since J2 = 0).

0 = b1(a3 − 2c3) + b2(2a2 − c2) + b3a1 (since J3 = 0).

Suppose b2 6= 0 and b1 = 0. By plugging into the second Jacobi constraint, we get

a1 = 0 (since b2 6= 0). Plugging a1 = 0 and b1 = 0 into the third constraint, we get

b2(2a2 − c2) = 0, which makes V is a d.g. Lie algebra.

So suppose b2 6= 0 and b1 6= 0 and a2 = 0. From the first constraint, a1 = 0.

Plugging a1 = a2 = 0 into the second Jacobi constraint, we get b1c2 = 0. Thus c2 = 0

(since b1 6= 0). Since a2 = 0 and c2 = 0, (2a2− c2)b2 = 0, and V is a d.g. Lie algebra.

Finally, suppose b2 6= 0 and b1 6= 0 and a2 6= 0. From the first constraint, a1 = 0.

Plugging a1 = 0 into the second Jacobi constraint, we get 0 = b1(a2 − c2). Thus

c2 = a2 (since b1 6= 0). Then (2a2−c2)b2 = (2a2−a2)b2 = a2b2 6= 0 (since we assumed

that both a2 and b2 are nonzero). Thus V is not a d.g. Lie algebra in this case. ¤

Example 72. Let V = V0 ⊕ V1 ⊕ V2 where

l1(v) = 0 l2(v ⊗ w) = w l3(v ⊗ w ⊗ w) = −w

l1(w)= x l2(w ⊗ w) = x l3(w ⊗ w ⊗ w) = 0

l2(v ⊗ x) = x l3(v ⊗ w ⊗ x) = 0

In the notation of (1), a1 = b3 = c3 = 0, b1 = a2 = b2 = c2 = 1, and a3 = −1. This

example is L3 since a1, a2, and a3 satisfy the formula in Theorem (68). However, it
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is not a differential graded Lie algebra since

l2 ◦ l2(v⊗w⊗w) = l2(l2(v⊗w)⊗w)− (−1)1l2(l2(v⊗w)⊗w)+ (−1)0l2(w⊗w)⊗ v)

= l2(w ⊗ w) + l2(w ⊗ w) + l2(x⊗ v) = x + x− x = x.

Suppose that we extend this example by defining l4:

l4(v ⊗ w⊗3) = a4w l4(w
⊗4) = b4x l4(v ⊗ w⊗2 ⊗ x) = c4x

Then by Corollary (69), this structure is L4 if and only if a4 = 3c4 − 1. ¤

Example 73. Let V = V0 ⊕ V1 ⊕ V2 where

V0 =< v > V1 =< w > V2 =< x >

Define skew linear maps ln : V ⊗n → V of degree 2− n by

ln(v ⊗ w⊗n−1) = 0 ln(w⊗n) = x ln(v ⊗ w⊗n−2 ⊗ x) = 0 ∀ n ∈ N

In the notation of (1), an = cn = 0 and bn = 1 ∀ n ∈ N, and it is easy to see that

the conditions of corollary (70) are satisfied. Therefore, this is an L∞ structure on

V . Furthermore, it is a differential graded Lie algebra since a2 = 0. Note that in this

simple example, we have a differential graded Lie algebra in which the higher maps

(ln where n > 2) are also nonzero. ¤
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6. Three Components (Two Odd and One Even).

In this chapter, we will identify all possible non-trivial L∞ structures on a graded

vector space V = Vα ⊕ Vβ ⊕ Vγ =<vα > ⊕ <vβ > ⊕ <vγ >, where α is even and β, γ

are odd, and each component is one-dimensional. Since we have two components of

odd degree, we can assume that γ 6= 1 without loss of generality.

At first, it might seem like the nonzero skew linear operators of degree 2 − n on

V would be difficult to define, since we now have two odd basis vectors which can be

repeated. However, the next three lemmas show that for each value of n, there are

at most three types of inputs to ln which could map to nonzero components.

Lemma 74. Suppose ln(Vα ⊗ V ⊗k
β ⊗ V ⊗n−k−1

γ ) and ln(Vα ⊗ V ⊗m
β ⊗ V ⊗n−m−1

γ ) map

to the same component of V , where 0 ≤ k,m < n. Then k = m.

Proof. If ln(Vα⊗V ⊗k
β ⊗V ⊗n−k−1

γ ) and ln(Vα⊗V ⊗m
β ⊗V ⊗n−m−1

γ ) map to the same

component, then α + kβ + (n− k − 1)γ + 2− n = α + mβ + (n−m− 1)γ + 2− n,

which implies that kβ − kγ = mβ −mγ. Thus (k−m)(β − γ) = 0. Since β 6= γ, this

forces k = m. ¤

Lemma 75. Suppose ln(V ⊗k
β ⊗ V ⊗n−k

γ ) and ln(V ⊗m
β ⊗ V ⊗n−m

γ ) map to the same

component of V , where 0 ≤ k,m < n. Then k = m.

Proof. Similar to the proof of Lemma (74). ¤

Lemma 76. Suppose 0 < q < n. Then ln(Vα ⊗ V ⊗q
β ⊗ V ⊗n−q−1

γ ) ⊂ Vβ if and only

if ln(Vα ⊗ V ⊗q−1
β ⊗ V ⊗n−q

γ ) ⊂ Vγ.

51



Proof.

ln(Vα ⊗ V ⊗q
β ⊗ V ⊗n−q−1

γ ) ⊂ Vβ ⇐⇒ α + qβ + (n− q − 1)γ + 2− n = β

⇐⇒ α + (q − 1)β + β + (n− q)γ − γ + 2− n = β

⇐⇒ α + (q − 1)β + (n− q)γ + 2− n = γ

⇐⇒ ln(Vα ⊗ V ⊗q−1
β ⊗ V ⊗n−q

γ ) ⊂ Vγ.

¤

Lemma 77. Suppose V = Vα ⊕ Vβ ⊕ Vγ, where α is even and β, γ are odd. Then

the most general nonzero skew linear operators of degree 2− n on V are

• ln(v⊗k
β ⊗ v⊗n−k

γ ) = anvα when n = k + α+k(1−β)−2
γ−1

∈ N.

• ln(vα ⊗ v⊗k
β ⊗ v⊗n−k−1

γ ) = bnvβ when n = k + 1 + (k−1)(1−β)−α
γ−1

∈ N.

• ln(vα ⊗ v⊗k
β ⊗ v⊗n−k−1

γ ) = cnvγ when n = k + 2 + k(1−β)−α
γ−1

∈ N.

Proof. ln(V ⊗k
β ⊗ V ⊗n−k

γ ) ⊂ Vkβ+(n−k)γ+2−n = Vn(γ−1)+k(β−γ)+2, which is even.

n(γ − 1) + k(β − γ) + 2 = α =⇒ n = α−kβ+kγ−2
γ−1

=⇒ n = k + α+k(1−β)−2
γ−1

.

ln(Vα ⊗ V ⊗k
β ⊗ V ⊗n−k−1

γ ) ⊂ Vα+kβ+(n−k−1)γ+2−n = Vn(γ−1)+k(β−γ)+α−γ+2, which is

odd. ln(Vα⊗V ⊗k
β ⊗V ⊗n−k−1

γ ) ⊂ Vβ if and only if n(γ−1)+k(β−γ)+α−γ+2 = β, which

is true if and only if n = β−kβ+kγ−α+γ−2
γ−1

= k + 1 + β−kβ−α+k−1
γ−1

= k + 1 + (k−1)(1−β)−α
γ−1

.

Similarly, ln(Vα⊗V ⊗k
β ⊗V ⊗n−k−1

γ ) ⊂ Vγ if and only if n(γ−1)+k(β−γ)+α−γ+2 = γ,

which is true if and only if n = 2γ−kβ+kγ−α−2
γ−1

= k + 2 + k(1−β)−α
γ−1

. ¤

Remark 78. The operators defined in Lemma (77) are well-defined for every n

which satisfies the criteria stated, since Lemmas (74) and (75) guarantee that a given

operator ln cannot map to the same component for multiple values of k. However,

Lemma (77) does not necessarily define an, bn, cn for all n ∈ N, since the necessary

criteria might not be satisfied for certain values of n. We can remedy that by defining

the unassigned constants to be zero in such cases. Specifically,

• If n 6= k + α+k(1−β)−2
γ−1

∀ 0 ≤ k ≤ n, then define an = 0.
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• If n 6= k + 1 + (k−1)(1−β)−α
γ−1

∀ 0 ≤ k < n, then define bn = 0.

• If n 6= k + 2 + k(1−β)−α
γ−1

∀ 0 ≤ k < n, then define cn = 0.

Theorem 79. Suppose V = Vα ⊕ Vβ ⊕ Vγ, where α is even and β, γ are odd, and

each component is one-dimensional. Then the possible L∞ structures on V consist of




ln(v⊗k
β ⊗ v⊗n−k

γ ) = anvα when n = k + α+k(1−β)−2
γ−1

∈ N.

ln(vα ⊗ v⊗k
β ⊗ v⊗n−k−1

γ ) = bnvβ when n = k + 1 + (k−1)(1−β)−α
γ−1

∈ N.

ln(vα ⊗ v⊗k
β ⊗ v⊗n−k−1

γ ) = cnvγ when n = k + 2 + k(1−β)−α
γ−1

∈ N.




,

where either an = 0 ∀ n ∈ N or bn = cn = 0 ∀ n ∈ N.

Proof. If an = 0 ∀ n, then the only possible nonzero ln require vα as input.

Since these operators do not return vα, the composition ln−p+1 ◦ lp would then require

two vα. But if the even vector vα is repeated, it also forces the composition to zero

because of skewness.

To prove the remainder of the theorem, suppose that ak 6= 0 but ap = 0 ∀ p < k.

First, we observe that by Lemma (77), if ap 6= 0 , then ∃ i such that 0 ≤ i ≤ p and p =

i+ α+i(1−β)−2
γ−1

, and if bq 6= 0, then ∃ j such that 0 ≤ j < q and q = j +1+ (j−1)(1−β)−α
γ−1

.

Now suppose that b1 6= 0. Since ak 6= 0, there exists i such that k = i+ α+i(1−β)−2
γ−1

.

Since ap = 0 ∀ p < k,

Jk(v
⊗i
β ⊗v⊗k−i

γ )=
(

k
i

)(
k−i
k−i

)
l1(lk(v

⊗i
β ⊗v⊗k−i

γ ))=
(

k
i

)
l1(ak(vα)=

(
k
i

)
b1akvβ.

Since ak 6= 0, we have b1 = 0. A similar calculation shows that c1 = 0. Now we can

do a little induction proof.

Suppose that bq = cq = 0 ∀ q < m, but bm 6= 0. Then ∃ j such that 0 ≤ j < m

and m = j + 1 + (j−1)(1−β)−α
γ−1

. Thus Jm+k−1(v
⊗i+j
β ⊗v⊗m+k−1−i−j

γ ) is equal to

m+k−1∑
p=1

(−1)p(m+k−1−p)

p∑
r=1

(
i+j
r

)(
m+k−1−i−j

p−r

)
lm+k−p(lp(v

⊗r
β ⊗ v⊗p−r

γ )⊗ v⊗j
β ⊗ v⊗m+k−1−j−p

γ ).
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Note that if lp(v
⊗r
β ⊗ v⊗p−r

γ ) 6= 0, then lp(v
⊗r
β ⊗ v⊗p−r

γ ) = apvα. Since ap = 0 ∀ p < k,

we only need sum for p ≥ k. Furthermore, the induction hypothesis states that

lm+k−p(lp(v
⊗r
β ⊗v⊗p−r

γ )⊗v⊗j
β ⊗v⊗m+k−1−j−p

γ ) = 0 when m+k−p < m, or equivalently,

when k < p. Since this just leaves p = k, Jm+k−1(v
⊗i+j
β ⊗v⊗m+k−1−i−j

γ ) is equal to

(−1)k(m−1)

k∑
r=1

(
i+j
r

)(
m+k−1−i−j

k−r

)
lm(lk(v

⊗r
β ⊗ v⊗k−r

γ )⊗ v⊗j
β ⊗ v⊗m−1−j

γ ),

which is equal to

(−1)k(m−1)

k∑
r=1

(
i+j
r

)(
m+k−1−i−j

k−r

)
lm(akvα ⊗ v⊗j

β ⊗ v⊗m−1−j
γ ),

which is equal to (−1)k(m−1)
∑k

r=1

(
i+j
r

)(
m+k−1−i−j

k−r

)
bmakvβ (since i was originally cho-

sen so that lm would map the input to Vβ). Since ak = 0, this forces bm = 0. A

similar calculation forces cm = 0 as well. ¤

Here is an example of a three-graded space which can have an infinite number of

nonzero ln, which are defined for only certain values of n.

Example 80. Let α = −2, β = 3, and γ = −3. Given m ∈ N, we can define

skew linear operators of degree 2− n by

• l3m+1(v
⊗2m
3 ⊗ v⊗m+1

−3 ) = a 3m+1 v−2.

• l3m(v−2 ⊗ v⊗2m
3 ⊗ v⊗m−1

−3 ) = b 3m v3.

• l3m(v−2 ⊗ v⊗2m−1
3 ⊗ v⊗m

−3 ) = c 3m v−3.

In order for these ln to form an L∞ structure, though, we need either an = 0 ∀ n ∈ N

or bn = cn = 0 ∀ n ∈ N.

6.1. V = V−1 ⊕V0 ⊕V1 where each is 1-dimensional

In this section, we will show that there are exactly two types of L∞ structures on

V = V−1 ⊕ V0 ⊕ V1. If we denote V−1 =< u >, V0 =< v >, and V1 =< w >, then the

possible L∞ structures are as follows:
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• A structure with maps




ln(u⊗ v ⊗ w⊗n−2) = anu ∀ n ≥ 2

ln(v ⊗ w⊗n−1) = cnw ∀ n ≥ 1


 , in which

an and cn are arbitrarily chosen constants, but all other maps are zero.

• A structure with maps
{

ln(u⊗ w⊗n−1) = bnv ∀ n ≥ 1
}

, in which bn are

arbitrarily chosen constants, but all other maps are zero.

It can also be shown that every L3 structure on V = V−1 ⊕ V0 ⊕ V1 is a differential

graded Lie algebra (even when l3 is nonzero). To accomplish these goals, we first need

to establish some notation.

Let V = V−1 ⊕ V0 ⊕ V1, where V−1 =< u >, V0 =< v >, and V1 =< w >. Define

skew linear maps ln : V ⊗n → V of degree 2− n by

(2)




ln(u⊗ v ⊗ w⊗n−2) = anu ∀ n ≥ 2

ln(u⊗ w⊗n−1) = bnv ∀ n ≥ 1

ln(v ⊗ w⊗n−1) = cnw ∀ n ≥ 1

ln(w⊗n) = 0 ∀ n

ln(u⊗i ⊗ v⊗j ⊗ w⊗n−i−j) = 0 ∀ i, j > 1

where an, bn, cn are constants. Since an is defined above only for n ≥ 2, we can define

a1 = 0 for the sake of convenience.

Remark 81. The above list includes all possible skew linear maps of degree 2−n,

by an argument similar to the one in the preceding section.

In order to determine when these maps define an Lm structure on V , we need to

know when Jn = 0 ∀ n ≤ m. The following three lemmas establish when Jn = 0.

Lemma 82. Given V = V−1 ⊕ V0 ⊕ V1 with the skew maps defined in (2), Jn = 0

if and only if

Jn(u⊗2 ⊗ w⊗n−2) = 0 & Jn(u⊗ v ⊗ w⊗n−2) = 0 & Jn(u⊗ w⊗n−1) = 0.

55



Proof. Similar to Lemma (62). ¤

Lemma 83. Given V = V−1 ⊕ V0 ⊕ V1 with the skew maps defined in (2),

Jn(u⊗ w⊗n−1) =
n∑

p=1

(−1)p(n−p)

(
n− 1

p− 1

)
bpcn−p+1w.

Proof. Similar to Lemma (63). ¤

Lemma 84. Given V = V−1 ⊕ V0 ⊕ V1 with the skew maps defined in (2),

Jn(u⊗2 ⊗ w⊗n−2) =
n−1∑
p=1

(−1)p(n−p)(−2)

(
n− 2

p− 1

)
bpan−p+1u.

Proof. Before calculating ln−p+1 ◦ lp(u
⊗2 ⊗ w⊗n−2), it is helpful to consider the

ways in which a (p, n− p) unshuffle of u⊗2 ⊗w⊗n−2 could possibly rearrange the two

u terms.

• If both u are on the left, ln−p+1(lp(u
⊗2 ⊗ w⊗p−2)⊗ w⊗n−p) = ln−p+1(0) = 0.

• If both u are on the right, ln−p+1(lp(w
⊗p)⊗ u⊗2 ⊗w⊗n−p−2) = ln−p+1(0) = 0.

Thus we only need to consider unshuffles σ which put one u on each side. Because

of ordering, these are the unshuffles such that either (σ(1) = 1 & σ(p + 1) = 2) or

(σ(1) = 2 & σ(p + 1) = 1).

There are
(

n−2
p−1

)
unshuffles such that (σ(1) = 1 & σ(p + 1) = 2). In each

case, χ(σ) = +1, since each of these permutations can be accomplished solely by

commuting elements of odd degree. Similarly, there are
(

n−2
p−1

)
unshuffles such that

(σ(1) = 2 & σ(p + 1) = 1), each with χ(σ) = +1. Thus

ln−p+1 ◦ lp(u
⊗2 ⊗ w⊗n−2) = 2

(
n−2
p−1

)
(+1)ln−p+1(lp(u

⊗w⊗p−1)⊗ u⊗ w⊗n−p+1)

= 2
(

n−2
p−1

)
ln−p+1(bpv ⊗ u⊗ w⊗n−p+1)

= 2
(

n−2
p−1

)
bp(−1)ln−p+1(u⊗ v ⊗ w⊗n−p+1)

= (−2)
(

n−2
p−1

)
bpan−p+1u.

56



Thus

Jn(u⊗2 ⊗ w⊗n−2) =
n∑

p=1

(−1)p(n−p)(−2)
(

n−2
p−1

)
bpan−p+1u.

Since a1 = 0, we get

Jn(u⊗2 ⊗ w⊗n−2) =
n−1∑
p=1

(−1)p(n−p)(−2)
(

n−2
p−1

)
bpan−p+1u.

¤

Lemma 85. Given V = V−1 ⊕ V0 ⊕ V1 with the skew maps defined in (2),

Jn(u⊗ v ⊗ w⊗n−2) =
n∑

p=1

(−1)p(n−p)bn−p+1

[(
n− 2

p− 2

)
ap −

(
n− 2

p− 1

)
cp

]
v.

Proof. Denote x1 ⊗ · · · ⊗ xn = u ⊗ v ⊗ w⊗n−2. Consider the different ways in

which a (p, n− p) unshuffle σ could possibly arrange the u and v terms:

• If both u and v are on the left, ln−p+1(lp(u ⊗ v ⊗ w⊗p−2) ⊗ w⊗n−p) is equal

to ln−p+1(apu ⊗ w⊗n−p) = apbn−p+1v. There are
(

n−2
p−2

)
such unshuffles, with

χ(σ) = +1 in each case.

• If u is on the left and v is on the right, ln−p+1(lp(u⊗w⊗p−1)⊗v⊗w⊗n−p−1) =

ln−p+1(bpv
⊗2 ⊗ w⊗n−p−1) = 0

• If v is on the left and u is on the right, ln−p+1(lp(v⊗w⊗p−1)⊗u⊗w⊗n−p+1) =

ln−p+1(cpw ⊗ u ⊗ w⊗n−p+1) = cpbn−p+1v. There are
(

n−2
p−1

)
of these, with

χ(σ) = −1.

• If both are on the right, lp(w
p) = 0.

Thus

Jn(u⊗ v ⊗ w⊗n−2) =
n∑

p=1

(−1)p(n−p)
[(

n−2
p−2

)
apbn−p+1v −

(
n−2
p−1

)
cpbn−p+1v

]
.

¤
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Thus Jn = 0 if and only if the following 3 constraints hold:

0 =
n∑

p=1

(−1)p(n−p)

(
n− 1

p− 1

)
bpcn−p+1 (from u⊗ w⊗n−1).

0 =
n−1∑
p=1

(−1)p(n−p)

(
n− 2

p− 1

)
bpan−p+1 (from u⊗2 ⊗ w⊗n−2).

0 =
n∑

p=1

(−1)p(n−p)bn−p+1

[(
n− 2

p− 2

)
ap −

(
n− 2

p− 1

)
cp

]
(from u⊗ v ⊗ w⊗n−2).

The following lemma shows that if any constant bk is nonzero, then this forces

many other constants aq, cq to be zero in any Lm structure on V = V−1 ⊕ V0 ⊕ V1.

Lemma 86. Suppose 1 ≤ k ≤ m and bk 6= 0 and bp = 0 ∀ p < k. Then V =

V−1⊕ V0⊕ V1 with the skew linear maps defined in (2) is Lm if and only if aq = cq =

0 ∀ q ≤ m− k + 1.

Proof. Since bp = 0 ∀ p < k, Jn = 0 if and only if

0 =
n∑

p=k

(−1)p(n−p)
(

n−1
p−1

)
bpcn−p+1 & 0 =

n−1∑
p=k

(−1)p(n−p)
(

n−2
p−1

)
bpan−p+1

& 0 =
n−k+1∑

p=1

(−1)p(n−p)bn−p+1

[(
n−2
p−2

)
ap −

(
n−2
p−1

)
cp

]
.

Substituting q = n− p + 1, this is equivalent to

0 =
n−k+1∑

q=1

(−1)(n+1)(q−1)
(

n−1
n−q

)
bn−q+1cq & 0 =

n−k+1∑
q=2

(−1)(n+1)(q−1)
(

n−2
n−q

)
bn−q+1aq

& 0 =
n−k+1∑

p=1

(−1)p(n−p)bn−p+1

[(
n−2
p−2

)
ap −

(
n−2
p−1

)
cp

]
.

Suppose aq = cq = 0 ∀ q ≤ m − k + 1 and n ≤ m. Then Jn = 0 ∀ n ≤ m (since

all of the above sums are clearly zero in that case). Thus V is Lm.

Now suppose that V is Lm. Since we assumed 1 ≤ k ≤ m, V is Jk. When we

plug n = k into

0 =
n−k+1∑

q=1

(−1)(n+1)(q−1)
(

n−1
n−q

)
bn−q+1cq,
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the expression simplifies to 0 = bkc1. Since bk 6= 0 by assumption, c1 = 0. Also, we

know a1 = 0 because of the way that the skew maps were defined.

Now we can do induction: Suppose 2 ≤ i ≤ m− k + 1 & aq = cq = 0 ∀ q < i. We

will now show that ai = ci = 0, which will complete the proof! Since i ≤ m− k + 1,

i + k − 1 ≤ m. Thus Ji+k−1 = 0. Thus we can plug n = i + k − 1 into

0 =
n−k+1∑

q=1

(−1)(n+1)(q−1)
(

n−1
n−q

)
bn−q+1cq & 0 =

n−k+1∑
q=2

(−1)(n+1)(q−1)
(

n−2
n−q

)
bn−q+1aq.

Since we assumed that aq = cq = 0 ∀ q < i, this simplifies to

0 = (−1)(k)(i−1)
(

i+k−2
k−1

)
bkci & 0 = (−1)(k)(i−1)

(
i+k−3
k−1

)
bkai.

But the binomial expressions are nonzero since i ≥ 2, and bk 6= 0 by assumption.

Thus ci = 0 and ai = 0. ¤

Now we get to the main results, which follow easily from the lemmas. Theorems

(87) and (88) give necessary and sufficient conditions under which skew linear maps

form an Lm structure on V = V−1 ⊕ V0 ⊕ V1, and Corollary (89) provides necessary

and sufficient conditions for an L∞ structure.

Theorem 87. Suppose V = V−1 ⊕ V0 ⊕ V1 has skew linear maps defined by


ln(u⊗ v ⊗ w⊗n−2) = anu ∀ n ≥ 2

ln(u⊗ w⊗n−1) = bnv ∀ n ≥ 1

ln(v ⊗ w⊗n−1) = cnw ∀ n ≥ 1




. V

is Lm if and only if

• bp = 0 ∀ p ≤ m or

• ∃ k ∈ N such that 1 ≤ k ≤ m and bp = 0 ∀ p < k and bk 6= 0 and

aq = cq = 0 ∀ q ≤ m− k + 1.
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Proof. Jn = 0 if and only if

0 =
n∑

p=1

(−1)p(n−p)
(

n−1
p−1

)
bpcn−p+1 & 0 =

n−1∑
p=1

(−1)p(n−p)
(

n−2
p−1

)
bpan−p+1

& 0 =
n∑

p=1

(−1)p(n−p)bn−p+1

[(
n−2
p−2

)
ap −

(
n−2
p−1

)
cp

]
.

If bp = 0 ∀ p ≤ m, then Jn = 0 ∀ p ≤ m (since all of the above sums are clearly zero).

Thus V is Lm.

Now suppose that V is Lm & ∃ b k 6= 0 such that k ≤ m. Then ∃ k such that

1 ≤ k ≤ m & bp = 0 ∀ p < k & bk 6= 0. Thus by the preceding lemma, V is Lm if

and only if aq = cq = 0 ∀ q ≤ m− k + 1. ¤

Theorem 88. Suppose V = V−1⊕V0⊕V1 is an L∞ structure with the skew linear

maps defined in (2). If ∃m ∈ N such that bm 6= 0, then an = cn = 0 ∀ n.

Proof. A simple induction argument. ¤

Corollary 89. Given the skew linear maps defined in (2), every L∞ structure

on V = V−1 ⊕ V0 ⊕ V1 has one of the following forms:

• bn = 0 ∀ n but the constants an, cn are arbitrary

• bm 6= 0 for some m but all constants an, cn are zero

The following result shows that every L3 structure on V = V−1 ⊕ V0 ⊕ V1 is a

differential graded Lie algebra.

Theorem 90. Suppose V = V−1⊕V0⊕V1 is an L3 structure with the skew linear

maps defined in (2). Then this structure is a differential graded Lie algebra.

Proof. Recall that a differential graded (d.g.) Lie algebra is an L2 structure

in which l2 ◦ l2 ≡ 0. In the space V−1 ⊕ V0 ⊕ V1, we have l2 ◦ l2 = 0 if and only if
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l2 ◦ l2(u
⊗2 ⊗ w) = l2 ◦ l2(u⊗ v ⊗ w) = l2 ◦ l2(u⊗ w⊗2) = 0.

l2 ◦ l2(u
⊗2 ⊗ w)

= l2(l2(u⊗ u)⊗ w)− (−1)1l2(l2(u⊗ w)⊗ u) + (−1)0l2(l2(u⊗ w)⊗ u)

= l2(0) + l2(b2v ⊗ u) + l2(b2v ⊗ u) = 0− 2l2(b2u⊗ v) = −2b2a2u.

l2 ◦ l2(u⊗ v ⊗ w)

= l2(l2(u⊗ v)⊗ w)− (−1)0l2(l2(u⊗ w)⊗ v) + (−1)1l2(l2(v ⊗ w)⊗ u)

= l2(a2u⊗ w)− l2(b2v ⊗ v)− l2(c2w ⊗ u) = a2b2v − 0 + c2b2v.

l2 ◦ l2(u⊗ w⊗2)

= l2(l2(u⊗ w)⊗ w)− (−1)1l2(l2(u⊗ w)⊗ w) + (−1)0l2(l2(w ⊗ w)⊗ u)

= 2l2(b2v ⊗ w) + 0 = 2b2c2w.

Thus V is a d.g. Lie algebra if and only if b2a2 = 0 and b2c2 = 0. If b2 = 0, then

clearly V is d.g. Lie.

If b2 6= 0, then ∃ k such that k ≤ 2 and bk 6= 0 and bp = 0 ∀ p < k. Because of this

and the fact that V is L3, Theorem (87) requires that aq = cq = 0 ∀ q ≤ 3 − k + 1.

Since k ≤ 2, this forces a2 = c2 = 0, which again makes V d.g. Lie. ¤
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7. Appendix.

Here is an additional catalog of some other interesting examples of Ln and L∞

structures on V = V0 ⊕ V1. This is an informal collection, and all of the calculations

here are done by brute force. Nevertheless, it is useful to know a variety of small

examples when exploring more elaborate theories. Most of the toy structures in this

appendix were constructed as a response to specific questions from other mathemati-

cians about whether such a structure was possible. It is in this spirit that I hope that

this little bestiary will be enjoyed.

Example 91. Here, we give a simple L∞ Structure in which V0 is a nonabelian

Lie algebra and V1 is a Lie module. Let V0 =< v1, v2 >, and V1 =< wi > be a vector

space of arbitrary dimension. Define skew linear operators on V = V0 ⊕ V1 by




ln(vi ⊗ wj1 ⊗ · · · ⊗ wjn−1) =
∑

k

Akwk

ln(vi1 ⊗ vi2 ⊗ wj1 ⊗ · · · ⊗ wjn−2) = vi1 − vi2


 .

In this example, ln−p+1 ◦ lp ≡ 0, which follows from the following calculations:

ln−p+1 ◦ lp(vi1 ⊗ vi2 ⊗ wj1 ⊗ · · · ⊗ wjn−2)

=
(

n−2
p−2

)
ln−p+1(lp(vi1 ⊗ vi2 ⊗ w-terms)⊗ w-terms)

+ (−1)p−1
(

n−2
p−1

)
ln−p+1(lp(vi1 ⊗ w-terms)⊗ vi2 ⊗ w-terms)

+ (−1)p
(

n−2
p−1

)
ln−p+1(lp(vi2 ⊗ w-terms)⊗ vi1 ⊗ w-terms)

+
(

n−2
p−1

)
ln−p+1(lp(w-terms)⊗ vi1 ⊗ vi2 ⊗ w-terms),
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which is equal to

(
n−2
p−2

)
ln−p+1((vi1 − vi2)⊗ w-terms)

+ (−1)p−1
(

n−2
p−1

)
ln−p+1(

∑
k

Akwk ⊗ vi2 ⊗ w-terms)

+ (−1)p
(

n−2
p−1

)
ln−p+1(

∑
k

Akwk ⊗ vi1 ⊗ w-terms)

=
(

n−2
p−2

)
ln−p+1(vi1 ⊗ w-terms)− (

n−2
p−2

)
ln−p+1(vi2 ⊗ w-terms)

+ (−1)p
(

n−2
p−1

) ∑
k

Akln−p+1(vi2 ⊗ w-terms)

− (−1)p
(

n−2
p−1

) ∑
k

Akln−p+1(vi1 ⊗ w-terms)

=
(

n−2
p−2

) ∑
k

Akwk −
(

n−2
p−2

) ∑
k

Akwk

+ (−1)p
(

n−2
p−1

) ∑
k

Ak
∑
m

Amwm − (−1)p
(

n−2
p−1

) ∑
k

Ak
∑
m

Amwm

= 0.

Similarly, ln−p+1 ◦ lp(vi1 ⊗ vi2 ⊗ vi3 ⊗wj1 ⊗· · ·⊗wjn−3) = 0. Thus ln−p+1 ◦ lp is zero for

all n ∈ N. Therefore, we have an L∞ structure on V . In particular, since l2 ◦ l2 = 0,

V0 is a Lie algebra and V1 is a Lie module.

Remark 92. This is one of the first L∞ structures that I found on V0 ⊕ V1. It

occurred to me later that the choice of Ak has no real effect on the problem... The key

point that really makes this example work is that we picked one particular element

w =
∑

k Akwk in V1, and then consistently assigned ln(v ⊗ w-terms) = w. So the

choice of Ak really just amounts to a choice of basis for V1.

Remark 93. If instead we had defined ln(vi1 ⊗ vi2 ⊗wj1 ⊗ · · · ⊗wjn−2) = 0, then

this would have been an example of an L∞ structure in which V0 is an abelian Lie

algebra.
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Example 94. Now, we will construct an L∞ Structure in which V0 is an abelian

Lie algebra, but V1 is not a Lie module. In this example, we show how the operators

ln can be recursively defined in order to get the desired result. It is amusing to note

that if we are given any abelian Lie algebra V0 and any V1 with dim(V1) ≥ dim(V0),

then the following construction creates a nontrivial L∞ structure on V0 ⊕ V1. Let

V0 =< vi > be a vector space of arbitrary dimension, and let V1 =< wi > be a vector

space with dim(V1) ≥ dim(V0). Define skew linear operators on V = V0 ⊕ V1 by




l1(vi) = wi, l2(vi ⊗ vj) = 0, ln(vi ⊗ vj ⊗ w-terms) = 0, ∀ n ≥ 3,

l2(vi ⊗ wj) = wi + wj, ln(vi ⊗ w-terms) = Cnwi, ∀ n ≥ 3.




The Cn will be will be determined recursively by the calculations below, but first we’ll

verify that the structure is L2:

l1 ◦ l2(vi⊗vj)− l2 ◦ l1(vi⊗vj) = l1(0)− (l2(l1(vi)⊗ vj)− l2(l1(vj)⊗ vi))

= 0− l2(wi ⊗ vj) + l2(wj ⊗ vi)

= wj + wi − (wi + wj) = 0.

Now we’ll see what C1 needs to be in order to make the structure L3:

l1 ◦ l3(vi ⊗ vj ⊗ wk) = 0.

l2 ◦ l2(vi ⊗ vj ⊗ wk) = l2(l2(vi⊗vj)⊗ wk)− l2(l2(vi⊗wk)⊗vj) + l2(l2(vj⊗wk)⊗vi)

= 0− l2((wi + wk)⊗ vj) + l2(wj + wk)⊗ vi)

= (wj + wi) + (wj + wk)− (wi + wj)− (wi + wk)

= −wi + wj.

l3 ◦ l1(vi ⊗ vj ⊗ wk) = l3(wi ⊗ vj ⊗ wk)− l3(wj ⊗ vi ⊗ wk)

= −C3wj + C3wi.
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Thus J3(vi ⊗ vj ⊗ wk) = 0 ⇐⇒ −wi + wj − C3wj + C3wi = 0 ⇐⇒ C3 = 1. It is also

easy to see that J3(vi ⊗ vj ⊗ vk) = 0. Thus we have an L3 structure when C3 = 1.

Now consider the case when n ≥ 4.

ln ◦ l1(vi ⊗ vj ⊗ wk1 ⊗ · · · ⊗ wkn−2)

= ln(wi ⊗ vj ⊗ wk1 ⊗ · · · ⊗ wkn−2)− ln(wj ⊗ vi ⊗ wk1 ⊗ · · · ⊗ wkn−2)

= −Cnwj + Cnwi = Cn(wi − wj).

ln−1 ◦ l2(vi ⊗ vj ⊗ wk1 ⊗. . .⊗ wkn−2) =
∑

a

(−1)ln−1(l2(vi ⊗ wka)⊗ vj ⊗ w-terms)

+
∑

a

(+1)ln−1(l2(vj ⊗ wka)⊗ vi ⊗ w-terms)

=
∑

a

(−1)ln−1(wi + wka)⊗ vj ⊗ w-terms)

+
∑

a

(+1)ln−1(wj + wka)⊗ vi ⊗ w-terms)

= 2(n− 2)Cn−1wj − 2(n− 2)Cn−1wi

= −2(n− 2)Cn−1(wi − wj).

l2 ◦ ln−1(vi ⊗ vj ⊗ wk1 ⊗ · · · ⊗ wkn−2) = (−1)n−2l2(ln−1(vi ⊗ w-terms))⊗ vj)

− (−1)n−2l2(ln−1(vj ⊗ w-terms))⊗ vi)

= (−1)n−2l2(Cn−1wi ⊗ vj)

− (−1)n−2l2(Cn−1wj ⊗ vi)

= (−1)n−1Cn−1(wj + wi)

− (−1)n−1Cn−1(wi + wj) = 0.

l1 ◦ ln(vi ⊗ vj ⊗ wk1 ⊗ · · · ⊗ wkn−2) = 0.
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In the case where 3 ≤ p ≤ n− 2,

ln−p+1 ◦ lp(vi ⊗ vj⊗wk1 ⊗. . .⊗ wkn−2)

= (−1)p−1
(

n−2
p−1

)
ln−p+1(lp(vi ⊗ w-terms)⊗ vj ⊗ w-terms)

− (−1)p−1
(

n−2
p−1

)
ln−p+1(lp(vj ⊗ w-terms)⊗ vi ⊗ w-terms)

= (−1)p−1
(

n−2
p−1

)
ln−p+1(Cpwi ⊗ vj ⊗ w-terms)

− (−1)p−1
(

n−2
p−1

)
ln−p+1(Cpwj ⊗ vi ⊗ w-terms)

= (−1)p
(

n−2
p−1

)
Cn−p+1Cpwj − (−1)p

(
n−2
p−1

)
Cn−p+1Cpwi

= (−1)p+1
(

n−2
p−1

)
Cn−p+1Cp(wi − wj).

Thus Jn(vi ⊗ vj ⊗ wk1 ⊗ · · · ⊗ wkn−2) is equal to

=
n∑

p=1

(−1)p(n−p)ln−p+1 ◦ lp(vi ⊗ vj ⊗ wk1 ⊗ · · · ⊗ wkn−2)

(−1)1(n−1)ln ◦ l1(vi ⊗ vj ⊗ wk1 ⊗. . .⊗ wkn−2)

+ (−1)2(n−2)ln−1 ◦ l2(vi ⊗ vj ⊗ wk1 ⊗. . .⊗ wkn−2)

+
n−2∑
p=3

(−1)p(n−p)ln−p+1 ◦ lp(vi ⊗ vj ⊗ wk1 ⊗. . .⊗ wkn−2)

+ (−1)(n−1)(1)l2 ◦ ln−1(vi ⊗ vj ⊗ wk1 ⊗. . .⊗ wkn−2)

+ (−1)n(0)l1 ◦ ln(vi ⊗ vj ⊗ wk1 ⊗. . .⊗ wkn−2)

= (−1)n−1Cn(wi − wj)− 2(n− 2)Cn−1(wi − wj)

+
n−2∑
p=3

(−1)p(n−p)(−1)p+1
(

n−2
p−1

)
Cn−p+1Cp(wi − wj) + 0 + 0.

Thus Jn(vi ⊗ vj ⊗ wk1 ⊗ · · · ⊗ wkn−2) = 0 if and only if

(−1)n−1Cn − 2(n− 2)Cn−1 +
n−2∑
p=3

(−1)pn+1
(

n−2
p−1

)
Cn−p+1Cp = 0.
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But then it is possible to solve for each Cn in terms of prior constants:

Cn = (−1)n

[
−2(n− 2)Cn−1 +

n−2∑
p=3

(−1)pn+1
(

n−2
p−1

)
Cn−p+1Cp

]
.

Thus Jn(vi ⊗ vj ⊗ wk1 ⊗ · · · ⊗ wkn−2) = 0 if and only if each constant Cn is defined

according to the above formula (where C1 = 1). As far as the other generators are

concerned, it is simple to show that Jn(vi⊗ vj ⊗ vk ⊗wk1 ⊗ · · · ⊗wkn−3) = 0. Thus if

we define the Cn as specified, all generalized Jacobi identities will be satisfied, making

this an L∞ structure.

Example 95. Here, we have an L∞ structure in which V0 is not a Lie algebra.

Let V0 =< v1, v2, v3 > and V1 =< w >. Define skew operators on V = V0 ⊕ V1 by


l1(v1) = w l2(v1⊗v2) = v1, l3(v1⊗v3⊗w) = v1, l4(v2⊗v3⊗w⊗w) = 2v1,

l2(v1⊗v3) = v2, l3(v2⊗v3⊗w) = −v2,

l2(v2⊗w) = −w.




Define ln ≡ 0 ∀ n > 4.

l1 ◦ l2(v1⊗v2)− l2(l1(v1)⊗v2) + l2(l1(v2)⊗v1) = l1(v1)− l2(w⊗v2) = w − w = 0.

l1 ◦ l2(v1⊗v3)− l2(l1(v1)⊗v3) + l2(l1(v3)⊗v1) = l1(v2)− 0 = 0.

l1 ◦ l2(v2⊗v3)− l2(l1(v2)⊗v3) + l2(l1(v3)⊗v2) = 0− 0 + 0.

Thus we have an L2 structure. The following calculations prove that it’s an L3

structure as well. Note, however, that since l2 ◦ l2(v1 ⊗ v2 ⊗ v3) 6= 0, V0 is not a Lie

algebra in the usual sense.

l1 ◦ l3(v1⊗v2 ⊗v3) = 0.

l2 ◦ l2(v1⊗v2 ⊗v3) = l2(l2(v1⊗v2)⊗v3)− l2(l2(v1⊗v3)⊗v2) + l2(l2(v2⊗v3)⊗v1)

= l2(v1 ⊗ v3)− l2(v2 ⊗ v2) + 0 = v2 − 0 = v2.

l3 ◦ l1(v1⊗v2 ⊗v3) = l3(w ⊗ v2 ⊗ v3) = −v2.

67



To finish showing that it’s an L3 structure, we can just show that Jn(vi⊗vj⊗w) = 0.

Without loss of generality, we can assume i < j in the following calculation:

l1 ◦ l3(vi ⊗ vj ⊗ w) = l1(δi1δj3v1 − δi2δj3v2) = δi1δj3w.

l2 ◦ l2(vi ⊗ vj ⊗ w) = l2(l2(vi⊗vj)⊗w)− l2(l2(vi⊗w)⊗vj) + l2(l2(vj⊗w)⊗vi)

= l2((δi1δj2v1 + δi1δj3v2)⊗ w) + l2(δi2w ⊗ vj)− l2(δj2w ⊗ vi)

= −δi1δj3w + δi2δj2w − δj2δi2w = −δi1δj3w.

l3 ◦ l1(vi ⊗ vj ⊗ w) = l3(δi1w ⊗ vj ⊗ w) = 0.

To show that this is an L∞ structure, we’ll first need to show that it’s L4, then L5,

then L6, then L7. This is rather tedious, but I suppose that it needs to be done. A

lot of annoying calculation is necessary here, since examples in which V0 is not a Lie

algebra in the usual sense seem to lack the sort of pleasing symmetry which makes

things work well. Anyway, we can start by verifying that it’s an L4 structure:

l1 ◦ l4(v1⊗v2 ⊗v3 ⊗w) = 0.

l2 ◦ l3(v1⊗v2 ⊗v3 ⊗w) = l2(l3(v1⊗v3 ⊗w)⊗v2)− l2(l3(v2⊗v3 ⊗w)⊗v1)

= l2(v1⊗v2) + l2(v2⊗v1) = 0.

l3 ◦ l2(v1⊗v2 ⊗v3 ⊗w) = l3(l2(v1⊗v2)⊗v3 ⊗w)− l3(l2(v1⊗v3)⊗v2 ⊗w)

+ l3(l2(v2⊗w)⊗v1 ⊗v3)

= l3(v1 ⊗v3 ⊗w)− l3(v2⊗v2 ⊗w)− l3(w ⊗v1 ⊗v3)

= v1 − 0− v1 = 0.

l4 ◦ l1(v1⊗v2 ⊗v3 ⊗w) = l4(w⊗v2 ⊗w ⊗w) = 0.

l1 ◦ l4(vi⊗vj ⊗w ⊗w) = l1(δi2δj32v1) = 2δi2δj3w.
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l2 ◦ l3(vi⊗vj ⊗w ⊗w) = 2l2(l3(vi⊗vj ⊗w)⊗w) = 2l2(δi1δj3v1 − δi2δj3v2)⊗w)

= 2δi2δj3w.

l3 ◦ l2(vi⊗vj ⊗w ⊗w) = l3(l2(vi ⊗ vj)⊗ w ⊗ w)− 2l3(l2(vi ⊗ w)⊗ vj ⊗ w)

+ 2l3(l2(vj ⊗ w)⊗ vi ⊗ w)

= l3((δi1δj2v1 + δi1δj3v2)⊗ w ⊗ w) + 2l3(δi2w ⊗ vj ⊗ w)

− 2l3(δj2w ⊗ vi ⊗ w) = 0.

l4 ◦ l1(vi⊗vj ⊗w ⊗w) = l4(l1(vi)⊗vj ⊗w ⊗w)− l4(l1(vj)⊗vi ⊗w ⊗w)

= l4(δi1w⊗vj ⊗w ⊗w) = 0.

Now we show that it’s an L5 structure:

l1 ◦ l5(v1⊗v2⊗v3⊗w⊗2) = 0.

l2 ◦ l4(v1⊗v2⊗v3⊗w⊗2) = 0.

l3 ◦ l3(v1⊗v2⊗v3⊗w⊗2) = 2l3(l3(v1⊗v3⊗w)⊗v2⊗w)− 2l3(l3(v2⊗v3⊗w)⊗v1⊗w)

= 2l3(v1⊗v2⊗w) + 2l3(v2⊗v1⊗w) = 0.

l4 ◦ l2(v1⊗v2⊗v3⊗w⊗2) = l4(l2(v1⊗v2)⊗v3⊗w⊗2)− l4(l2(v1⊗v3)⊗v2⊗w⊗2)

− 2l4(l2(v2⊗w)⊗v1⊗v3⊗w)

= l4(v1⊗v3⊗w⊗2)−l4(v2⊗v2⊗w⊗2)+2l4(w⊗v1⊗v3⊗w)=0.

l5 ◦ l1(v1⊗v2⊗v3⊗w⊗2) = 0.

l1 ◦ l5(vi⊗vj⊗w⊗3)=0.

l2 ◦ l4(vi⊗vj⊗w⊗3) =3l2(l4(vi⊗vj⊗w⊗2)⊗w) = 3l2(δi2δj32v1⊗w)=0.

l3 ◦ l3(vi⊗vj⊗w⊗3) =3l3(l3(vi⊗vj⊗w)⊗w⊗2)=3l3((δi1δj3v1−δi2δj3v2)⊗w⊗2)=0.
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l4 ◦ l2(vi⊗vj ⊗w⊗3) = l4(l2(vi⊗vj)⊗w⊗3)− 3 l4(l2(vi⊗w)⊗vj⊗w⊗2)

+ 3 l4(l2(vj⊗w)⊗vi⊗w⊗2)

= l4((δi1δj2v1 + δi1δj3v2)⊗w⊗2) + 3 l4(δi2w⊗ vj⊗ w⊗2)

− 3 l4(δj2w⊗ vi⊗ w⊗2) = 0.

l5 ◦ l1(vi⊗vj ⊗w⊗3) = 0.

To show that it’s an L6 structure, we only need to check l3 ◦ l4 and l4 ◦ l3, since all of

the other compositons are definitely zero.

l3 ◦ l4(v1⊗v2⊗v3⊗w⊗3) = 3 l3(l4(v2⊗v3⊗w⊗2)⊗v1⊗w) = 3 l3(2v1⊗v1⊗w) = 0.

l4 ◦ l3(v1⊗v2⊗v3⊗w⊗3) = 3 l4(l3(v1⊗v3⊗w)⊗v2⊗w⊗2)

− 3 l4(l3(v2⊗v3⊗w)⊗v1⊗w⊗2)

= 3 l4(v1⊗v2⊗w⊗2) + 3 l4(v2⊗v1⊗w⊗2) = 0.

l3 ◦ l4(vi⊗vj⊗w⊗4) =
(
4
2

)
l3(l4(vi⊗vj⊗w⊗2)⊗w⊗2) = 6 l3(δi2δj32v1⊗w⊗2) = 0.

l4 ◦ l3(vi⊗vj⊗w⊗4) = 4l4(l3(vi⊗vj⊗w)⊗w⊗3) = 0.

Finally, to show that it’s an L7 structure, we only need to check l4 ◦ l4.

l4 ◦ l4(v1⊗v2⊗v3⊗w⊗4) =
(
4
2

)
l4(l4(v2⊗v3⊗w⊗2)⊗v1⊗w⊗2)

= 6 l4(2v1⊗v1⊗w⊗2) = 0.

l4 ◦ l4(vi⊗vj⊗w⊗5) =
(
5
2

)
l4(l4(vi⊗vj⊗w⊗2)⊗w⊗3)

=
(
5
2

)
l4(δi2δj32v1⊗w⊗3) = 0.

For n ≥ 8, ln−p+1 ◦ lp ≡ 0. Thus we have an L∞ structure!

Example 96. Here, we have a small L3 structure in which V0 is not a Lie algebra.

Let V0 =< v1, v2, v3 > and V1 =< w1, w2, w3 >. Define skew linear operators on
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V = V0 ⊕ V1 by




l1(v1) = w1, l2(v1 ⊗ v2) = v1, l3(v1 ⊗ v3 ⊗ w2) = v2.

l1(v2) = w2, l2(v1 ⊗ v3) = v2, l3(v2 ⊗ w1 ⊗ w2) = w1.

l1(v3) = w3, l2(v1 ⊗ w2) = w1, l3(v2 ⊗ w1 ⊗ w3) = w2.

l2(v1 ⊗ w3) = w2, l3(v3 ⊗ w1 ⊗ w2) = w2.




As usual, we’ll do some preliminary calculations to show that this structure is L2:

l1 ◦ l2(v1⊗v2)− l2 ◦ l1(v1⊗v2) = l1(v1)− (l2(l1(v1)⊗ v2)− l2(l1(v2)⊗ v1))

= w1 − l2(w1 ⊗ v2) + l2(w2 ⊗ v1) = w1 + 0− w1 =0.

l1 ◦ l2(v1⊗v3)− l2 ◦ l1(v1⊗v3) = l1(v2)− (l2(l1(v1)⊗ v3)− l2(l1(v3)⊗ v1))

= w2 − l2(w1 ⊗ v3) + l2(w3 ⊗ v1) = w2 + 0− w2 =0.

l1 ◦ l2(v2⊗v3)− l2 ◦ l1(v2⊗v3) = 0− (l2(l1(v2)⊗ v3)− l2(l1(v3)⊗ v2))

= −l2(w2 ⊗ v3) + l2(w3 ⊗ v2) = 0− 0 =0.

The next three sets of calculations show that the structure is L3. Note that since

l2 ◦ l2(v1 ⊗ v2 ⊗ v3) = v2, V0 does not satisify the standard Jacobi identity. Thus V0

is not a Lie algebra.

l1 ◦ l3(v1 ⊗ v2 ⊗ v3) = 0.

l2 ◦ l2(v1 ⊗ v2 ⊗ v3) = l2(l2(v1⊗v2)⊗v3)− l2(l2(v1⊗v3)⊗v2) + l2(l2(v2⊗v3)⊗v1)

= l2(v1 ⊗ v3)− l2(v2 ⊗ v2) + 0 = v2.

l3 ◦ l1(v1 ⊗ v2 ⊗ v3) = l3(w1 ⊗ v2 ⊗ v3)− l3(w2 ⊗ v1 ⊗ v3) + l3(w3 ⊗ v1 ⊗ v2)

= 0− l3(v1 ⊗ v3 ⊗ w2) + 0 = −v2.
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l1 ◦ l3(v1 ⊗ v2 ⊗ wi) = 0.

l2 ◦ l2(v1 ⊗ v2 ⊗ wi) = l2(l2(v1⊗v2)⊗ wi)− l2(l2(v1⊗wi)⊗v2) + l2(l2(v2⊗wi)⊗v1)

= l2(v1 ⊗ wi)− l2(δi2w1 + δi3w2)⊗ v2) + 0

= (δi2w1 + δi3w2)− 0 = δi2w1 + δi3w2.

l3 ◦ l1(v1 ⊗ v2 ⊗ wi) = l3(w1 ⊗ v2 ⊗ wi)− l3(w2 ⊗ v1 ⊗ wi)

= −l3(v2 ⊗ w1 ⊗ wi) + l3(v1 ⊗ w2 ⊗ wi)

= −(δi2w1 + δi3w2) + 0.

l1 ◦ l3(v1 ⊗ v3 ⊗ wi) = l1(δi2v2) = δi2w2

l2 ◦ l2(v1 ⊗ v3 ⊗ wi) = l2(l2(v1⊗v3)⊗ wi)− l2(l2(v1⊗wi)⊗v3) + l2(l2(v3⊗wi)⊗v1)

= l2(v2 ⊗ wi)− l2(δi2w1 + δi3w2)⊗ v3) + 0

= 0 + δi2l2(v3 ⊗ w1) + δi3l2(v3 ⊗ w2) = 0 + 0.

l3 ◦ l1(v1 ⊗ v3 ⊗ wi) = l3(w1 ⊗ v3 ⊗ wi)− l3(w3 ⊗ v1 ⊗ wi)

= −l3(v3 ⊗ w1 ⊗ wi) + l3(v1 ⊗ w3 ⊗ wi)

= −δi2w2 + 0.

l1 ◦ l3(v2 ⊗ v3 ⊗ wi) = 0.

l2 ◦ l2(v2 ⊗ v3 ⊗ wi) = l2(l2(v2⊗v3)⊗ wi)− l2(l2(v2⊗wi)⊗v3) + l2(l2(v3⊗wi)⊗v2)

= 0 + 0 + 0.

l3 ◦ l1(v2 ⊗ v3 ⊗ wi) = l3(w2 ⊗ v3 ⊗ wi)− l3(w3 ⊗ v2 ⊗ wi)

= −l3(v3 ⊗ wi ⊗ w2) + l3(v2 ⊗ wi ⊗ w3)

= −δi1w2 + δi1w2 = 0.

Example 97. Here, we will examine a small L3 structure in which V0 is an abelian

Lie algebra, but V1 is not a Lie module. Let V0 =< v1, v2 > and V1 =< w1, w2, w3 >,
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and define skew linear operators on V = V0 ⊕ V1 by


l1(v2) = w2, l2(v2 ⊗ w1) = w1, l3(v1 ⊗ w2 ⊗ w3) = −w1,

l2(v1 ⊗ w3) = w1.




Now we’ll do some quick calculations to verify that it’s an L3 structure:

l1 ◦ l2(v1⊗v2)− l2 ◦ l1(v1⊗v2) = l1(0)− (l2(l1(v1)⊗ v2)− l2(l1(v2)⊗ v1))

= 0− l2(0) + l2(w2 ⊗ v1) = 0.

l1 ◦ l3(v1 ⊗ v2 ⊗ wi) = 0.

l2 ◦ l2(v1 ⊗ v2 ⊗ wi) = l2(l2(v1⊗v2)⊗ wi)− l2(l2(v1⊗wi)⊗v2) + l2(l2(v2⊗wi)⊗v1)

= 0− l2(δi3w1 ⊗ v2) + l2(δi1w1 ⊗ v1)

= δi3l2(v2 ⊗ w1) + 0 = δi3w1.

l3 ◦ l1(v1 ⊗ v2 ⊗ wi) = l3(w1 ⊗ v2 ⊗ wi)− l3(w2 ⊗ v1 ⊗ wi) = −l3(w2 ⊗ v1 ⊗ wi)

= l3(v1 ⊗ w2 ⊗ wi) = −δi3w1.

Thus we see that this is an L3 structure in which V0 is an abelian Lie algebra, but

V1 is not a Lie module, since l2 ◦ l2(v1 ⊗ v2 ⊗ w3) = w1 6= 0.

Example 98. Now, we will look at a tiny L3 structure in which V0 is a nonabelian

Lie algebra, but V1 is not a Lie module. Let V0 =< v1, v2 > and V1 =< w >. Define

skew linear operators on V = V0 ⊕ V1 by


l1(v1) = w, l2(v1 ⊗ v2) = v1, l3(v2 ⊗ w ⊗ w) = w.

l1(v2) = w, l2(v1 ⊗ w) = w.




This would seem to be the smallest possible example of this type, since when V0 is

one-dimensional, the “module action” condition is always (trivially) satisfied!

l1 ◦ l2(v1 ⊗ v2)− l2 ◦ l1(v1 ⊗ v2) = l1(v1)− (l2(l1(v1)⊗ v2)− l2(l1(v2)⊗ v1))

= w − l2(w ⊗ v2) + l2(w ⊗ v1) = w + 0− w = 0.
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l1 ◦ l3(v1 ⊗ v2 ⊗ w) = 0.

l2 ◦ l2(v1 ⊗ v2 ⊗ w) = l2(l2(v1⊗v2)⊗ w)− l2(l2(v1⊗w)⊗v2) + l2(l2(v2⊗w)⊗v1)

= l2(v1 ⊗ w)− l2(w ⊗ v2) + 0 = w − 0 = w.

l3 ◦ l1(v1 ⊗ v2 ⊗ w) = l3(w ⊗ v2 ⊗ w)− l3(w ⊗ v1 ⊗ w) = −l3(v2 ⊗ w ⊗ w) + 0 = −w.

Thus we have an L3 structure. Note that the preceding calculations demonstrate that

V1 is not a Lie module over V0, since l2 ◦ l2(v1 ⊗ v2 ⊗ w) 6= 0.

Remark 99. It is possible to extend the above example to an L∞ structure by

defining ln(v2 ⊗ w⊗n−1) = Cnw, where each constant Cn is defined recursively as a

function of its predecessor. Simply let C3 = 1, and then assign Cn = (−1)n−1(n −
3)Cn−1. The details of the proof are left as an exercise for any interested reader.

Remark 100. This example was used in the paper in [4] to explore the the gauge

theory model of Berends, Burgers, and van Dam in a very specific context.

Example 101. Finally, we will give an extremely simple example of a case in

which it is impossible to extend a given L∞ structure in order to create an Ln+1

structure (even if all of the higher operators are defined to be zero). Let V0 =<

v1, v2, v3 > and V1 =< w >. Define skew operators on V = V0 ⊕ V1 by


l1(v1) = 0, l2(v1 ⊗ v2) = v2,

l1(v2) = 0, l2(v1 ⊗ v3) = v1,

l1(v3) = 0, l2(v2 ⊗ v3) = 0.




Note that since l1 ≡ 0, this structure is trivially L2.

l2 ◦ l2(v1 ⊗ v2 ⊗ v3) = l2(l2(v1⊗v2)⊗ v3)− l2(l2(v1⊗v3)⊗v2) + l2(l2(v2⊗v3)⊗v1)

= l2(v2 ⊗ v3)− l2(v1 ⊗ v2) + 0 = 0− v2 = −v2.
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Thus we see that V0 is not a Lie algebra in the usual sense. Since we have a trivial

differential in this example, l1 ◦ l3 ≡ 0 and l3 ◦ l1 ≡ 0. Therefore, there is no possible

way to define an operator l3 which would make this an L3 structure.
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