ABSTRACT

MICLAUS, KELCI JO. Addressing Sources of Bias in Genetic Association Studies. (Under
the direction of Dr. Russ Wolfinger and Dr. Jason Osborne).

Genome-wide association studies (GWAS) have become a popular method for the
discovery of genetic variants associated with complex diseases or traits. As the size and
scope of these studies increase in order to obtain higher power for determining significant
associations, careful consideration of population structure becomes paramount. If individ-
uals in a study come from different ethnic or ancestral backgrounds, variation in allele
frequencies and disproportionate ancestry representation in cases and controls can lead
to inflated Type I error rates. Over the years, several methods for controlling population
stratification have been introduced, many of which rely on the use of multivariate dimension
reduction methods. An important aspect of population stratification is to determine which
loci exhibit evidence of population allele frequency differences. We introduce a method
based on Hardy-Weinberg Disequilibrium to find substructure-informative markers coupled
with the use of nonmetric Multidimensional Scaling (NMDS) in order to visualize popula-
tion structure in a sample. We extend the use of NMDS in conjunction with nonparametric
clustering to develop a test for association that corrects for population stratification. We
show that NMDS is a preferable visualization technique for detecting multiple levels of
relatedness within a set of individuals and that the subsequent test correction model is a
more powerful test under realistic scenarios. Recent research has shown that technical bias
due to differential genotyping errors between cases and controls can also inflate the Type 1
error rate, possibly an even more severe source of bias in GWAS. Current genotype calling
algorithms rely on processing samples in batches due to computational constraints as well
as concerns of differences in DNA collection, lab preparation and heterogeneous samples
that can skew results of genotype calls. This thesis also addresses possible bias caused
by differential genotyping due to batch size and composition effects for the widely used
BRLMM algorithm recommended for the Affymetrix GeneChip Human Mapping 500 K ar-
ray set. Samples obtained from the Wellcome Trust Case Control Consortium are utilized

to determine differential results due to genotype calling batch differences.
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Understanding and Controlling

Bias in Genetic Association Studies

1.1 Introduction

The field of statistical genetics has grown significantly over the last few decades,
particularly in the area of genetic disease association studies. Analysis of variability in Single
Nucleotide Polymorphisms (SNPs) has led to many significant findings of genes associated
with disease etiology. With technology making it affordable to carry out whole-genome as-
sociation scans, many studies genotype thousands of individuals and hundreds of thousands
of markers for analysis. Yet with the benefits of these large scale studies comes drawbacks
that include loss of power (due to the sheer amount of tests carried out) and spurious associ-
ation that may be caused by population stratification (resulting in an inflated false positive
rate). In order to increase power, it is becoming popular to do collaborative association
studies that combine samples from different studies. This must be done carefully to avoid
unwanted associations due to heterogeneity in the individuals as they may belong to sep-
arate populations with varying allele frequency patterns. Thus is it crucial for researchers
to understand and explore the structure of genetic data.

Much research has been devoted to unraveling the complex nature of genetic vari-
ation, in particular with population differences and individual classification. Findings show
that human genetic variation can in part be attributed to geographic structure and migra-

tion patterns where individuals within a close region will tend to be more genetically similar



[1]; yet increase in the frequency of intercontinental travel over the last few decades invari-
ably complicates this relationship. Differences in allelic frequencies due to racial and ethnic
backgrounds have been used for population classification in research studies [2]. Clearly
population variation has a large impact on the structure of genetic data, but it is not a
complete picture. Findings show that 85-90% of the total genetic variability can be found
between individuals within one of the major (Old World) continents (Africa, Asia, Europe);
while only 10-15% is accounted for by differences between such populations [1]. Therefore
it is necessary to not only quantify major population differences but more subtle individual
structure within populations.

Genetic distance measures such as Reynolds’ Distance (based on the coancestry
coefficient) [3] and Rogers’ Distance [4] are commonly used to compare allele frequencies
between known populations to obtain measures of how genetically different two or more
populations may be; yet many times a study is conducted where population membership
or possible relatedness of individuals is unknown. Genetic distance measures have not been
widely exploited for applications on individuals in order to visualize genetic structure. Cur-
rently, Principal Components Analysis (PCA) is a popular application for detecting genetic
structure in populations, yet the impact of the theoretical drivers of the method has not
been assessed. Applications of multivariate dimension reduction methods for quantifying
individual level genetic structure will be explored in Chapter 2, particularly Nonmetric Mul-
tidimensional Scaling (NMDS). Further application of NMDS combined with nonparametric
clustering analysis is used to propose a model for testing for genetic disease association while
controlling for the confounding effect of population stratification. Chapter 3 introduces the
new method and compares performance with established methods that are based on PCA
as well as Classical Multidimensional Scaling (CMDS).

Chapter 2 is comprised of the article ‘SNP Selection and Multidimensional Scaling
to Quantify Population Structure’ recently published in the journal Genetic Epidemiology
[5]. The article briefly summarizes common genetic distance measures used for measuring
population and individual genetic dissimilarity in order to obtain information about relat-
edness and clustering of individuals, and proposes the use of NMDS as a useful visualization
tool to better interpret genetic structure (and how it can introduce bias in association stud-
ies). Certain characteristics of NMDS suggest that it may give a more accurate visualization

of genetic patterns (on the individual level) compared to PCA. Applications of NMDS using



a dissimilarity matrix of individual genetic distances is evaluated using simulated and real
data. Additionally, a method for selecting ancestry informative markers based on the test
for Hardy-Weinberg Equilibrium (HWE) is proposed and developed in Chapter 2 through
theoretical and empirical study. This method is formulated in conjunction with the use of
NMDS as a visualization tool with supporting evidence as to why PCA may fail to provide
an adequate graphical summary when using SNPs based on HWE test results.

Chapter 3 contains an article where we extend the use of NMDS and propose a
formal model that controls population stratification bias in the case-control association test.
The contents of Chapter 3 are currently under review for journal publication. The NMDS
coordinates for each individual in a study are used as continuous covariates in a logistic
model to capture the effect of varying ethnic groups. Additionally, the coordinates are used
as input to perform nonparametric clustering in order to assign individuals to discrete clus-
ters, which are also used as covariates in the logistic model. The inclusion of the continuous
NMDS dimension coordinates aids in capturing more subtle genetic variation (both within
and between subpopulation groups) among individuals, while the discretized classification
covariate enhances the correction of PS bias on markers that show more dramatic genetic
differentiation than may have been captured by the markers used to form the NMDS di-
mensions. The model builds upon research done by Price et al. [6] in the development of
EIGENSTRAT (a correction method employing PCA) and the more recent work done by
Li and Yu [7] that makes use of Classical Multidimensional Scaling (CMDS) in a model to
adjust for population structure in association studies [7].

Chapter 4 presents research into understanding another source of bias in genome-
wide association studies (GWAS): differential bias due to inaccuracies in genotype calling.
The implementation of high-throughput microarray technologies for SNP discovery and
analysis has been a catalyst for successes with GWAS, which required the development of
multi-chip clustering algorithms for genotype calling in order to estimate probe effects and
allele signals for SNPs simultaneously [8]. As the size of the arrays used for genotyping
increases from 10,000 to 100,000 to 500,000 to 1,000,000 SNPs, genotype calling algorithms
continue to improve and advance [9, 10, 11, 12, 13]. Despite continuous improvements in
accuracy and SNP call rate, genotyping errors have been shown to cause spurious results
in association studies [14, 15, 16, 17]. Clayton et al. [14] reported that bias due to differen-

tial genotyping error between cases and controls can equal or even outweigh the effects of



population stratification in terms of inflation to the test statistic in association studies.

One of the most common platforms used for GWAS currently is the Affymetrix
GeneChip Human Mapping 500K array set, which was recently used by the Wellcome
Trust Case Control Consortium (WTCCC) GWA study of several complex diseases [18].
Affymetrix recommends the use of the Bayesian Robust Linear Model with Mahalanobis
distance classifier (BRLMM) [11] genotype calling algorithm with the Affymetrix 500K
array set, thus making BRLMM one of the most widely applied calling algorithms. Due to
computing restrictions and the scale of current GWAS that contain thousands of individuals,
calling algorithms (BRLMM included) must typically process individuals for genotype calls
in batches. Using data obtained from the WTCCC for coronary artery disease (CAD)
patients and a set of control individuals, we explore the effects that genotyping differences
due to batch size (the number of individuals processed at a time) and batch composition
(the distribution of cases and controls within a batch) have on the results of quality control
and association testing in GWAS for the Affymetrix 500K array set using the BRLMM
calling algorithm. We find that batch size and composition differences used for BRLMM
processing can result in 2 — 3% discordance in association results and so must be considered
for reliable, comparable results in GWAS analyses. This work is done in collaboration
with the Genome-Wide Association Working Group (GWAWG) of the MicroArray Quality
Control Consortium (MAQC) [19] in a continuing effort to better understand how technical
bias due to genotyping platforms and genotype calling algorithms can affect the results of
large-scale association studies.

The research in Chapters 1-4 provides novel approaches to visualizing genetic data,
proposes promising new methods for understanding, quantifying, and controlling (the po-
tential bias caused by) population structure, and addresses bias due to more subtle genetic
patterns that are a technical result of genotype calling differences within the BRLMM al-
gorithm for the common Affymetrix 500K array platform. Section 1.2 and Section 1.3
outline some existing methods and issues found in current research that pertain to genetic
data structure and sources of bias due to population stratification or introduced by geno-
type calling. This overview provides a better understanding of the area and enhances the

motivation for the research presented in this thesis.



1.2 Population Stratification Bias

This section gives a summary of past research pertaining to genetic heterogeneity
among populations and individuals. Methodologies used to control stratification effects
in disease association studies are also reviewed and discussed in order to give insight into
the use and interpretation of pattern visualization methods and subsequent population

stratification (PS) controlling association test methods.

1.2.1 Population Structure Among Individuals

Results from selected studies have highlighted genetic homogeneity of humans
globally, pointing out that much of the variation is found within populations and that the
structure among populations follows geographic continuity [1, 20]. This may be seen as un-
dermining the usefulness of distinct clusters in general; yet a power study done by Bamshad
et al. [20] showed that despite the overall homogeneity, individuals tend to cluster according
to their ancestral origins (most clearly when the population is comprised of highly differen-
tiated subpopulations). Moreover, the authors concluded that clustering analysis becomes a
powerful tool for detecting human population structure when certain criteria are optimized.
The results of their power study showed that the degree to which population structure can
be distinguished is dependent on the amount of variation between the populations studied
and their respective sample sizes; along with the number of markers used and how much
information pertaining to ancestry the chosen markers contain.

A common criterion of an informative marker for the detection of structure is
Fsp, which measures the amount of differentiation between populations. This measure is
one of the F statistics proposed for studying population genetics by Wright [21] and will be
discussed in more detail in Chapter 2. Bamshad et al. [20] corroborate the use of Fgr with
the conclusion that the power of a marker (to measure population structure) is a function
of Fgp. Thus with careful selection (in addition to a sufficient number) of loci, clustering
methods can yield positive results for detecting population structure in individuals.

There are two main clustering approaches utilized in the detection and quantifi-
cation of population structure among individuals. These two approaches consist of model-
based and distance-based clustering methods. The pros and cons of both methods have

been discussed in detail over the years. The most well-known and often cited model-based



method is Structure, which was proposed by Pritchard et al. [22]. Structure uses a Bayesian
approach to estimate the number of populations present in the data (K) and calculate
probabilities of ancestry for each individual (hence allowing for admixture). Based on the
posterior probabilities of membership; an individual is assigned to a cluster. The Bayesian
clustering model assumes that while the population sample may contain some markers in
Linkage Disequilibrium (LD) and Hardy-Weinberg Disequilibrium (HWD), there is linkage
equilibrium and HWE within subpopulations. The goal then is to group individuals into
subpopulations characterized by the allelic frequency patterns in order to minimize within
cluster HWD among alleles at a marker and LD between markers.

Despite the fact that distance-based methods are much simpler and easier to vi-
sualize, Pritchard et al. [22] advocated the use of a statistically sophisticated model-based
method under the reasoning that results of distance-based methods rely heavily on the cho-
sen distance measure and graphical method and hence are not suited for fine-scale analysis.
Structure has been shown to be an extremely useful tool and has been widely applied in
many studies pertaining to population genetics and case-control association [2, 20, 1]. The
downfall of Structure is computation cost and parametric assumptions. The method em-
ploys a Markov chain Monte Carlo (MCMC) method to obtain sample estimates of each
individual’s population membership and the allele frequencies for each marker in all popu-
lations. Due to the complexity of computation, the method is not feasible for studies that
employ a large amount of markers - the method cannot be performed with typical GWAS.
Additionally, the computation of allele frequencies are subject to the assumptions speci-
fied previously concerning HWE and linkage equilibrium! which may be violated in many
situations.

Due to the computational inefficiencies and parametric assumptions necessary in
Structure, recent research has turned back to nonparametric and distance-based methods
in order to address the issue of population structure in genetic studies (particularly for
GWAS). Gao and Starmer [23] proposed a clustering method “AW-clust” that uses the
Allele Sharing Distance (ASD) given in Equation 1.1 in a hierarchical clustering framework

to cluster individuals to subpopulations within a study. Following the authors’ notation,

!The updated version of Structure can now account for LD within a population due to admixture, yet
still does not perform optimally with background LD



using markers [ = 1,2, ..., L, the allele sharing distance for individuals 1 and 2 is defined as

L
1
Dasp =7 > d, (1.1)
=1

where

0 if two alleles are the shared at marker [
dy = 1 if one allele is shared at marker [

2 if no alleles are shared at marker [.

The method results in a hierarchical tree that the authors find to be flexible for
inference on K depending on the amount of resolution needed to address the particular
study involved. Using a random selection of 20,000 SNPs across the genome, the method was
successful at differentiating Chinese (CHB) and Japanese (JPT) individuals using HapMap
data with close to 100% accuracy. The method can also accommodate a study which may
for certain purposes wish to group CHB and JPT as one population of Asian individuals
by using a cutoff for K at a higher level of the tree. Thus the authors emphasize K to be
a variable instead of a fixed parameter that must be determined. The “AW-clust” method
is exemplary of the success of distance-based methods for population structure detection;
yet the variability of K may be seen as a downfall as it may be difficult to determine the
cutoff level within the hierarchical framework?. In some cases, other nonparametric and
nonhierarchical methods may be preferred.

Principal Components Analysis (PCA) has recently become a popular nonpara-
metric approach to quantify and visualize population heterogeneity. While PCA is by no
means a new method to genetic data analysis, it has experienced a resurgence in the pop-
ulation genetics realm much due to the development of the method EIGENSTRAT [6].
EIGENSTRAT is a method designed for GWAS to test for association while controlling
for population stratification (which will be discussed in more detail in Section 1.2.2) and is
built upon theory of eigenanalysis applied on the individual level by Patterson et al. [25]
and employed in the method SMARTPCA. The rational for the use of PCA to identify

*Note: Gao and Starmer [23] propose using the Gap Statistic [24] to provide an objective verification of
K.



population structure is based on the distributional theory of eigenvalues. The method nor-
malizes the genetic data and performs a singular value decomposition upon the covariance
matrix to obtain “continuous axes of genetic variation” [6] that contain the coordinates for
each individual based upon their genetic information in reduced dimensionality.

Patterson et al. [25] postulate that the first few axes of variation (principal compo-
nents) based on the largest eigenvalues will quantify subpopulations that (may) exist among
a population, which is supported with the following brief argument summarized from the
article. To define our data matrix G, let ¢;; denote the count of (variant) alleles for the 4"
individual, I** locus (i =1,2,...,N ,1=1,2,....L). The (i*",1*") element G in Equation 1.2

N .
represents the centered, normalized genetic information for the study, where pu; = % is

lth

the individual mean for the marker and p; = p;/2 is an estimate of the corresponding

allele frequency,
Gig= —2LHL (1.2)
C V(=)

The N-1 eigenvalues obtained from GG are ordered and Patterson et al. [25]
describes theory that states that the largest eigenvalue A; follows a Tracy-Widom (TW)
distribution. The motivation for the use of this distributional aspect springs from the fact
that in PCA, the principal (corresponding to the largest eigenvalue) eigenvector (el!l) from

GG will maximize the sum of squares,

N 2
5=3 (3 )

and describe the largest amount of variation. Likewise, the successive eigenvectors will also
maximize S conditional on orthogonality among the previous vectors. When substructure
is present in the data, alleles within a subpopulation will be more similar, with large dif-
ferences between populations, and will drive the coordinates of the principal components.
This will cause the sum of squares S to be large; hence the eigenvectors that maximize S
are representative of distinguishing groups of similar allele frequencies in the data (subpop-
ulations).

Therefore, the development of a formal statistical test for the largest eigenvalues
(using the TW distributional theory) is also formally testing for population structure and

the significant number of axes needed to quantify population heterogeneity. Following the



logic that each vector that maximizes S will represent the variability between subpopula-
tions, Price et al. [6] suggest that (if there are K subpopulations present) K — 1 axes will be
meaningful and significant for quantifying between subpopulation variance. Furthermore,
following principal components (el&], elE+1] ) will exhibit within-subpopulation variance
if present (or simply sampling error if subpopulations are homogeneous). The results pre-
sented by Patterson et al. [25] show highly accurate agreement between an unsupervised
PCA method and a supervised ANOVA means comparison using known population labels
in simulated sample data sets. They also provide evidence that not only can the method
display discrete clusters but also more gradual population heterogeneity that follows a cline
pattern. For smaller data sets where Structure was feasible, the results between SMART-
PCA and Structure were synonymous.

Another contribution from their work involved the ‘phase change phenomenon’,
where the ability to detect population differentiation can be quantified and determined

dependent on the number of individuals N, the number of markers L, and Fgp. Namely,

for two subpopulations with an equal number of samples, there exists a threshold:

1
Fsr = \/ﬁ
above which (Fsr > 1/v/NL) evidence of structure in the data is easily detectable, while
below this threshold population differentiation is not successful. This result was found to be
generalizable to other methods (Structure and even supervised ANOVA) in addition to the
proposed PCA method. Thus one can conclude that no matter how efficient the method is,
studies of population structure must consist of many markers and individuals, along with
well chosen markers to maximize Fgp in the data.

The recent work in developing PCA for use with population genetics has resulted in
SMARTPCA (and EIGENSTRAT for PS controlled association testing) becoming favored
over Structure as an easy-to-use, nonparametric tool that requires no prior knowledge or
assumptions for the data or the origins of individuals within a study. Early successes with
the method have prompted continued research into using dimension reduction techniques to
infer structure. Paschou et al. [26] have added to the research with the development of a SNP
selection tool based on PCA, again emphasizing the importance of using a well chosen subset

of SNPs with which to infer population heterogeneity (a fact that was downplayed in the
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proposal of SMARTPCA as the authors intended the method for genome-wide application?).
With reduction of costs for genotyping along with insight into loci that exhibit selection
forces in mind, Paschou et al. [26] developed a method that acts as a variable selection tool
to extract a subset of SNPs that produce principal components that are highly correlated
with the eigenvectors derived from the complete data set.

In PCA dimension reduction, the resulting vectors that span the reduced subspace
are linear combinations of the marker columns. The SNP selection tool PCASNPS (the
name of the implemented software provided by the authors) works by ordering scores that
consist of the squared sum of coefficients (from the eigenvectors) for the top significant
principal components at each SNP column. The top few scores then correspond to the
columns of markers that most drive the coordinates that span the reduced subspace. To
determine the significant number of dimensions (vectors), the authors do not employ the
Tracy-Widom distribution as in SMARTPCA. Instead they propose the use of random
matrix theory to test iteratively if each component (and subsequent ones as ordered by the
eigenvalues) forms a matrix that is significantly distinct from a randomly generated matrix.

In the development of PCASNPS; it was shown that coupling PCA (using the entire
dataset) with a clustering tool (k-means was utilized in their work) results in almost 100%
classification accuracy in cases of both between continental groups and within continents.
It was also shown that using the subset of PCA correlated SNPs could also achieve the
same results. One study done on a worldwide data set showed that the use of just 30
PCA correlated markers produced the same results (near perfect clustering) as using the
over 9,000 original SNPs. Additionally, these selected SNPs performed equally well as SNP
selection based on an Fgp correlated measure, with a surprising finding of high amounts of
overlap between markers chosen by the two methods (many markers that did differ between
the methods were still found to be in LD with markers from the alternative method).

The results of the past research for population genetics outlined above indicates the
trend of turning to easy, nonparametric methods such as distance-based clustering and PCA
for understanding population structure in genetic data. The success of these methods is
also influencing tools for correcting for population stratification as outlined in the following

section; yet these methods do have downsides and drawbacks which will be discussed.

3When using this method in association studies, the authors do suggest (in the documentation of their
program) using a set of substructure informative SNPs known to be not linked to disease if the study consists
of less than 100,000 markers
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Table 1.1: Allelic Contigency Table For Case-Control Association Tests

Alleles at Marker M
A1 A2 Total
Case r+2ry 1+ 2r 2R
Control | s1+2s9  s1+ 2589 25
Total | n1+2ne nq+ 2ng 2N

1.2.2 Adjustment Methods for Stratification

Multiple methods have been introduced that not only quantify, but develop tests
to correct, adjust and control for population heterogeneity in association studies. Two
of the earliest methods are Genomic Control (GC) [27] and Structured Association (SA)
[28]. These two methods are representative of the two general approaches used to correct for
population substructure. The first approach is to scale the usual test statistic for association
by a factor that adjusts for the presence of population structure (GC is exemplary). The
second approach aims to estimate the number of existing subgroups and probability of
individuals belonging to a subgroup of the population, then carry out a test of association
contingent on subpopulation stratification (SA is exemplary).

The premise of adjusting for population stratification to reduce the false positive
rate in association studies was laid out by Devlin and Roeder [29]. Using the allelic contin-
gency table given in Table 1.1 with notation taken from Sasieni [30], the Armitage Trend

test [31] is expressed as

N[N (ry + 2r3) — R(ny + 2ns))?

T= R(N — R)[N(ny + 4n2) — (n1 + 2n2)%]’

(1.3)

If a population is truly homogeneous, under the null hypothesis that a marker is not
associated with disease, then T' ~ x;(0). In order to quantify bias and overdispersion due
to population structure, the variance of the trend test statistic was derived. The following is
an outline of their notation. Let a1, as,...,ax and by, bo, ..., bx represent the number of cases
and controls respectively for K subgroups existing within the population. If a population
exhibits structure (due to relatedness specifically), then subgroups show allelic correlation
within its members. This quantity is denoted F and is related to the fact that alleles

within related individuals may be identical by descent (IBD). Finally let p and g denote
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the probability of the A; and As allele respectively at marker M. Devlin and Roeder [29]
showed that the variance of T' (assuming R = S) under the null hypothesis that a marker

is not linked to disease is given by Equation 1.4,

K
Var(T) = 4Rpg(1+ F) + 4Fpq ¥ {ap(ar — 1) + be(by — 1) — 2axbi}. (1.4)
k=1

The derivation makes it clear that inflation of the variance is sensitive to correlation
within subgroups F as well as unequal representation of a subpopulation among the cases
and controls (ay # b). Genomic Control sought to estimate the inflation to the test statistic
for association and adjust the original test statistic for it; in contrast, Structured Association
incorporated the inferred population information obtained by the aforementioned software
program Structure into a likelihood-based test carried out by the software program STRAT
[28]. Advances to both approaches have been made over the last several years with the
majority focused on the latter approach.

While Genomic Control is a simple, easily applied solution to PS bias; a critical
assumption is a constant effect of population structure on the inflation of the test statistic
across the genome. Specifically, the amount of correlation of alleles (the value of F') must
be similar over all markers and populations. Weir et al. [32] found that there exists substan-
tial heterogeneity in the sample variance in allele frequencies among sampled populations
with large differences across chromosomes. Similar results over the years (on the complex-
ity of population differentiation across the genome) have led to more research devoted to
estimating population membership similar to the Structure method and subsequent test
corrections. Yu et al. [33] extended the use of Structure in a mixed model approach to test

disease association with the genotypes (X)) to disease (y) of the form
y=Xa+ QB+ Iu+e,

where Var(u) = 2K 03 and Var(e) = 02. The model uses the matrix of estimated genetic
information (population membership) as a fixed effect (Q, given by Structure) with an ad-
ditional random effect (u) quantifying genome-wide relatedness. The random effect adds a
matrix of the kinship coefficients (K) into the phenotypic covariance matrix to incorporate

multiple levels of relatedness (between and within subpopulations) into the PS correction
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model. The complexity of the Structure algorithm does not allow for application with large
GWAS and limits the mixed model approach. Zhao et al. [34] explored modifications to the
mixed model approach by replacing the @ matrix (originally the vectors containing proba-
bilities of ancestry from Structure) with principal component vectors to indicate ancestry,
similar to the EIGENSTRAT correction method.

The motivation behind EIGENSTRAT was discussed in Section 1.2.1. Using prin-
cipal components analysis to estimate ‘axes of variation’ corresponding to ancestry, the
subsequent test correction adjusts the genotype for the i** individual at marker M, using

coordinates a; for each eigenvector to obtain a weighted allele count
adj _
Cig = Cil — MG, (1.5)

where

D0 4iCig
Y= 'az
KA (A

is a weight derived from the regression of genotype on ancestry [6]. The adjustment is
similarly made on the phenotype or trait of interest (i.e. 0,1 disease indication). These
adjustments to genotype and phenotype are iteratively performed over all the eigenvectors
obtained from PCA used to infer ancestry. A generalized trend test of the form given in
Equation 1.6 is used for testing association while controlling for population stratification,
where t?ffj represents the adjusted trait value of interest and K " is the number of eigenvectors
used for adjustment:

2 ! dj ,adj 2
Xeigenst'r’at = (N - K - 1) X COTT(CG ’t7 j) ~ X1 (O) (16)

il 07l

Price et al. [6] note that their correction method is analogous to creating matched
case-control data to control inflation to the Type I error rate. EIGENSTRAT has become a
popular PS correction method and has been applied in many studies including the Wellcome
Trust Case Control Consortium [18]. It has been shown to be especially useful for discerning
continuous patterns of subtle variation in European American samples where little PS was
previously believed to exist [35]. One concern with EIGENSTRAT (and other PCA-based
dimension reduction methods) is distortion to the PC coordinates due to LD structure

among markers used to infer population structure, where variability from individuals with
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genotypic information in common across LD blocks may distort PCA results. PCA-based
approaches are also highly influenced by outliers and require either an outlier removal
process or a subset of representative samples to avoid principal components that only explain
such variability. Research presented in Chapter 2 offers a SNP selection tool based on HWD
that is more appropriately coupled with NMDS to select a set of markers better suited for
elucidating accurate patterns population structure.

Li and Yu [7] employ Classical Multidimensional Scaling (CMDS) in a method
that builds on EIGENSTRAT to better quantify not only subtle continuous patterns of an-
cestry but discrete ethnic/population groups. CMDS is a dimension reduction method that
performs spectral decomposition to obtain eigenvectors of a given similarity or dissimilarity
matrix. This can result in better quantification of population structure because a more ap-
propriate choice of distance (such as genetic distance measures) can be employed to obtain
individuals’ coordinates along axes that better represent relatedness. Li and Yu [7] show
that CMDS coordinates coupled with cluster indicators in a logistic regression setting pro-
vide improved control of Type I error rates. When using an inner product similarity metric,
CMDS coordinates are analogous to PCA. The notable feature in the CMDS method is to
use k-medoids clustering (where the number of clusters is chosen using the Gap statistic
[24]) to form a covariate in the model for capturing discrete population group variability.
The characterization of both continuous patterns (CMDS coordinates) and discrete patterns
(cluster membership from k-medoids) of population structure controls Type I error at the
nominal level in cases where EIGENSTRAT fails to do so, specifically in the case of discrete
populations and when testing highly differentiated SNPs. Li and Yu [7] explore the use of
other more genetic-oriented metrics, including a genotype-matching-based metric and an
allele sharing metric, which we show in Section 2.2.4 to be synonymous with Identity By
State (IBS) distance [36] as well as Gower’s [37] distance with a range standardization.

We advance the research for methods used to control PS in association studies
with the proposal of using Nonmetric Multidimensional Scaling (NMDS) coordinates cal-
culated from the IBS distance matrix, which offers improvements on both EIGENSTRAT
and CMDS for association testing in the presence of population stratification. The NMDS
method relies on obtaining Euclidean coordinates in a reduced dimension space by an iter-
ative optimization routine as opposed to singular value decomposition (SVD). This routine

aims to minimize differences in the reduced dimension with the full distance matrix and
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tends to produce a more representative picture of the true data instead of simply producing
coordinates that find the directions of maximal variance explained; this can allow for better
estimation of multiple levels of relatedness (PS) in the data. The downside of NMDS comes
in computational time in comparison with PCA as the optimization scheme can become
cumbersome when the dimension of the matrix exceeds more than a few thousand individ-
uals. More details on the NMDS algorithm are found in Chapters 2 and 3 as well as in
Appendix A.1.

Population structure is a multifaceted, complex problem. The inflation of false
positives is most simply attributed to differing allele frequencies that are inherent to sub-
groups in the population, along with variable disease susceptibility. Confounding effects
are not only seen when the population sampled is heterogeneous due to different ethnic
groups present; confounding may also be attributed to cryptic relatedness, where there is
correlation in the cases and/or controls (individual relatedness) that is unbeknownst to the
researcher. Spurious association can also arise due to population admixture, where indi-
viduals have differing proportions of ancestry from original subgroups; however a recent
study that modeled spurious association for both admixture and discrete subgroups found
admixture to be a less severe cause of spurious associations [38]. Many of the methods pro-
posed in the literature may be less desirable under different causes of population structure,
which has led to a heated debate over the last years as to which methods perform best.
In this dissertation we employ NMDS and nonparametric clustering to develop a method
for controlling PS bias in association studies due mainly to discrete populations or ethnic

groups, although NMDS can also be applied to admixed populations.

1.3 Differential Bias due to Genotype Calling

Population stratification has been a dominant concern for bias in genetic stud-
ies, although recently other concerns have come to light with the use of high throughput
microarray technologies for SNP data. For example, Price et al. [6] found that sometimes
principal components computed in the EIGENSTRAT method were highly correlated with
assay effect and genotype call rate. If these effects are confounded with case/control status
and the researcher unknowingly includes those principal components in the model, then a

loss of power will result. This highlights a source of bias in association studies that is due
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to technical errors in genotype calls, as mentioned in Section 1.1. Clayton et al. [14] found
that differential errors in genotype calls for cases and controls were responsible for more
than half of the 11.2% inflation to the test statistics (under the assumed null distribution for
approximately 6,000 nonsynonymous SNPs) in a Type 1 diabetes association study. Other
studies have reported similar results of bias due to genotyping errors [16, 39, 15, 17]. The
Affymetrix GeneChip Human Mapping 500K array set is currently one of the most com-
monly used high throughput genotyping SNP platforms and Affymetrix recommends the
use of the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM)
algorithm [11] for genotype determination.

The BRLMM algorithm begins by first normalizing and summarizing probe level
intensities for the two alleles at each marker (‘A’ allele and ‘B’ allele) without a background
correction in a SNP Robust Multiarray Average (RMA) process. BRLMM is an advance-
ment to RLMM [10] with the addition of a Bayesian step that employs a Dynamic Model
(DM) algorithm [9], an approach to call genotypes one chip and one SNP at a time, on a
sample of SNPs to obtain estimates of the ‘AA’, ‘AB’, and ‘BB’ genotype cluster centers and
variances. After quantile normalization and median polish summarization, the resulting 5S4
and Sp signals for the ‘A’ and ‘B’ alleles are transformed using the Cluster Center Stretch
(CCS) transformation to allow for optimal clustering without heterozygous dropout. The

CCS transformation is given as

Sa+Sp
asinh(T)

asinh (T X SA_SB)

CcCS = (1.7)

where T' is a tuning parameter found to be useful for balancing homozygote and heterozy-
gote clustering performance. The CCS transformed contrast is plotted against a strength

measure that quantifies the overall brightness of the probe intensities given as

Strength =log(Sa + Sp).

The Mahalanobis distances to clusters are then computed from each point z; (the SNP

intensity contrast for each sample) calculated as

V@i — ) TS5 i — ) (1.8)
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where f; is the cluster center for the 4 genotype (j = 1,2,3) cluster with covariance 2,
assumed to follow a multivariate normal distribution. Each point z; is assigned a genotype
by the minimum distance to a genotype cluster. The confidence of the genotype call for this
point (i.e. individual at the particular SNP) is based on the ratio of the smallest distance
to a cluster center (indicating the genotype assigned) and the next smallest distance. If the
confidence does not meet a specified threshold, the call for the individual at that SNP is
set to missing.

The simultaneous use of samples (i.e. the multi-chip aspect) of BRLMM is integral
to the algorithm as the number and composition of samples used for forming clusters can
produce differential results in terms of both genotype call and confidence assigned. This
multi-chip clustering aspect is common with other genotype calling algorithms currently
in use [18, 12, 13]. For this reason, it is imperative to understand the effect that batch
size and composition has on downstream association analysis. The final portion of our
work addresses the discordance that batch effects can introduce into large-scale association
studies using samples obtained from the WTCCC [18].

This thesis outlines and addresses two major sources of potential bias, and hence
discordance and lack of reproducibility, in genetic association studies: population strat-
ification and batch effects in genotype calling algorithms. The development of methods
for quantification, visualization, and appropriate test correction for population structure
in case-control association studies presented in Chapters 2 and 3 constitute an important
contribution to the set of analysis tools used for understanding the heritability of complex
genetic diseases. The evaluation of discordance and bias introduced by genotype calls from
the BRLMM algorithm in Chapter 4 highlights the necessity for proper handling and quality

control of genetic data in order to obtain reliable, reproducible results in GWAS.
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SNP Selection and
Multidimensional Scaling to

Quantify Population Structure

2.1 Introduction

Analysis of Single Nucleotide Polymorphism (SNP) variability has led to many
significant findings of genes associated with disease etiology. Technology now enables whole-
genome association scans for analysis; yet these large scale studies come with drawbacks
such as loss of power and inflated false positive rates due to population stratification. Col-
laborative studies are becoming common to increase power, a solution that may cause
spurious associations due to heterogeneity in individuals that may belong to separate pop-
ulations with structurally different allele frequency patterns. It is crucial for researchers to
understand, explore, and visualize the structure of the genetic data.

A plethora of methods [22, 27, 6, 23, 7] have been developed to control the con-
founding effect of population structure (PS) on disease association tests. An often sidelined
part of such methods is selection of substructure-informative SNPs for quantifying the effect
of PS. Devlin et al. [27] emphasized the use of “Null SNPs”! in Genomic Control to avoid
bias in the inflation factor, although in exploratory studies it is difficult to obtain such a

set. The current gold standard EIGENSTRAT [6], based on Principal Components Analysis

L«Null SNPs” refer to markers known to be unassociated to the disease of interest.
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(PCA), advocates independent SNPs to avoid linkage disequilibrium (LD) that may distort
the axes of variation. Patterson et al. [25] outline a correction method for EEGENSTRAT to
minimize distortion in PCA due to high correlation in adjacent SNPs based on multivariate
regression analysis for each marker in the SNP matrix; although recommend filtering out
loci with high LD in large data. A recent method using Classical Multidimensional Scaling
[7] corroborates the use of independent SNPs; yet in GWAS, obtaining independent markers
or running multiple regression analyses to correct for high adjacent LD is computationally
difficult. Other methods use randomly selected markers to infer structure [23].

Independent SNP sets (or an LD corrected SNP matrix) avoid distortion but do
not select differentiated SNPs. A common differentiation measure is Fgr [21]. Bamshad
et al. [20] concludes that the power of a marker (to exhibit PS) is a function of Fgr.
Patterson et al. [25] explain the “phase change phenomenon”, where the ability to detect
PS is dependent on the number of individuals N, markers L, and Fgp. Namely for two
populations, there is a threshold: Fgp = ﬁ, above which (Fsp > 1/ \/ﬁ) evidence
of structure in the data is detectable; otherwise differentiation is unsuccessful. Hence PS
studies must consist of well chosen markers to maximize Fgp in the data and the selection of
optimally informative markers must be addressed to quantify genetic heterogeneity among
individuals.

We propose SNP selection based on deviation from Hardy-Weinberg Equilibrium
(HWE) as a solution to confounding LD as well as choosing an informative SNP set. Markers
in HWD yield a set of differentiated SNPs as evidenced by Fgp calculation. Additionally
by partitioning the sources of LD, we show not all markers in LD confound PS inference
and that by selecting markers based on the test for HWE, we only exclude confounding LD
SNPs (thereby we are able to include markers in LD that actually signify stratification). The
motivation for using HWD as a selection tool lies in ease-of-use through the incorporation
of a standard test commonly performed in a study.

We also apply Non-metric Multidimensional Scaling (NMDS) [40] as a visualization
tool for evaluating population stratification. The use of NMDS builds upon work by Li and
Yu [7], which used Classical MDS (performing eigen-decomposition on a similarity matrix)
to adjust the association test by the MDS eigenvectors to encapsulate the effect of PS.
Unlike Classical MDS and PCA, NMDS does not return eigenvectors to form dimensions;

instead the method finds an optimal configuration of points in a reduced dimension by
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iteratively minimizing a stress function. Minimization of the function results in the optimal
coordination in the reduced dimension relative to the true distances between objects in a
given distance matrix. Simulation as well as examples with HapMap samples [41] show the
proposed SNP selection and NMDS visualization work well to differentiate populations in

a stratified sample.

2.2 SNP Selection Materials and Methods

SNPs with high Fgr values equate to markers that exhibit large allele frequency
differences as Fgp estimates are proportional to the sample variance for allele frequencies
among populations [32]. Values of Fs vary depending on the amount of existing population
differentiation. Yet the use of Fgr for SNP selection to define structure between groups
in a population is limited because calculation requires knowledge of group membership.
Alternatively, population structure and variable allele frequencies have a large impact on
deviation from Hardy-Weinberg proportions; which lends itself as a tool for selection of

informative SNPs by testing for HWD in the combined case/control sample.

2.2.1 Hardy-Weinberg Disequilibrium SNP Selection

Differing allele frequencies between groups result in a loss of heterozygosity (in
the population as a whole) termed the Wahlund effect [42]. An extreme exhibition of the
effect is with two groups where within one group, all individuals have the genotype ‘AA’ at
a locus; while in the other all samples carry ‘aa’. If the data are analyzed without regard to
group membership, there will be no heterozygosity in the population (a gross violation of
HWE). Now suppose K subpopulations have allele frequencies py (probability for allele ‘A’)
for k =1,2,..., K at a locus. Assume within each subpopulation, the locus exhibits HWE
with genotype frequencies of pi, 2pqr, and q,%, where g, = 1 — pi. For equal sample sizes
n, if these subpopulations were treated as one population; the expectation p, and variance
012) of the population allele frequency p are given as

K _ K
= p= =k=tPh g o2 = > ket Pk —p)? _ Zk=1pi _
D K D K K )
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The expected genotype frequencies for homozygote ‘AA’ can then be calculated by (2.1):

K 2
_ 2 k=1 P

E(AA) = Pay =

= p’+op. (2.1)

Similarly, for homozygote ‘aa’; F(aa) = (1 —p)? + 012,. The expected frequency for a

heterozygous individual is then calculated as:

E(Aa) = Pay — >t 2]9[1;(1 —PE) _ (ZkKI:(}Pk B ZkKlz{lpi)
= 20— (P’ +0yp))

= 2p(1—p) — 20,. (2.2)

These estimators show that difference in allele frequencies between subgroups di-
rectly impact Hardy-Weinberg proportions. Heterozygosity at a marker is reduced by 2012)
(while the homozygous frequencies are inflated); thus loci with group variation in allele

frequencies exhibit deviation from HWE.

2.2.2 Controlling the Confounding Effect of LD

Patterson et al. [25] discuss how LD can distort the PCA axes of variation used in
EIGENSTRAT; yet Price et al. [6] recommend using all markers for studies of more than
100,000 SNPs? based upon HapMap analysis of the Asian populations that shows the effect
of LD to be negligible for sets of over three million loci. Their analysis of the effect of LD in
practice is limited (they examined results for removing only adjacent markers at a maximum
of a ten locus range) as the behavior of LD is widely variable both among populations and
within different gene regions. Smaller scale studies that include areas of the genome where
LD extends much further than expected may still suffer from this distortion as PCA will
indiscriminately elucidate factors that contribute to genetic variation (whether this be from
LD /haplotype variation or PS). When markers from LD blocks are chosen, dissimilarity
between individuals may be driven by genotype patterns due to LD as opposed to PS. The
solution is an independent or LD corrected SNP set; yet LD may be created by PS and

so this excludes potentially informative markers. Peterson et al. [43] note that total LD

2Found in the online Supplemental Material of their work.
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(LDr) can be partitioned as
LDy =LDw + LDgc + LDcr,

representing components within populations (LDyy), between local populations (LDg¢),
and among continents (LDcr); where LDge and LDer are due only to allele frequency
variation among populations. Only LDy (blocks of LD common in populations with low
variation in allele frequencies) distorts the effect of PS. Markers in LD that exhibit high
allelic differences due to a subdivided population will also show evidence of HWD (Wahlund
Effect); by selecting markers based on the test of Hardy-Weinberg Equilibrium, we not
only can select independent substructure-informative markers but also markers in LD due
to population differentiation. Markers in confounding LD regions will not display allele
frequency differences (between groups) and will tend to be excluded from selection (assuming
other sources of HWD are minimal). The simulation study and examples from HapMap

data corroborate this behavior.

2.2.3 SNP Selection Using the Test for HWE

The goodness-of-fit test for HWE (HWT) is commonly performed in association
studies. The test may be done using control individuals as a quality control measure, using
cases (for evidence of disease-susceptible loci [44]), and/or using the combined set of cases
and controls. The HWT as a formal test for population admixture has had limited success,
though [45] showed that power of the HWT for PS detection is directly related to the degree
of population differentiation. Recently Lee [46] proposed the use of the HWT for a combined
panel of SNPs to better formally detect PS2. Here we do not require the HWT to formally
indicate PS, but use it simply as a selection tool of informative SNPs for further use with

methods suited for detection of PS. The HWD coefficient for allele ‘A’ used in the HW'T,
Da = Pap—p4

(PA 4 and p4 are the respective estimated genotype frequency of ‘AA’ and allele frequency

‘A’), will be large due to the Wahlund effect at informative SNPs; making the p-value small

3This promising research for the use of HWT supports our application of HWD for SNP selection.
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for testing Hy : D4 = 0 [47]. We use the p-value from the HWT for combined cases and
controls* to provide mounting evidence of informativeness of a marker for PS detection. We
refer to this use of the HWT as “HWD SNP selection” and explore cutoff values for the

p-value as well as performance through simulation.

2.2.4 Distance Metrics

Li and Yu [7] give a good outline of metrics for Classical MDS which can also
be employed with NMDS. We focus on general genetic distance metrics and show their
relationship in response to criticism that distance-based methods are sensitive to the choice
of distance metric. General metrics such as Gower’s [37] and Rogers’ [4] distances (whose
properties apply to individual level calculation) can be related linearly to genetic distances
such as the coancestry coefficient [48]. Allele Sharing Distance (ASD) [23] and Identical
By State (IBS) [36] are also applied on the individual level for genetic distance. We show
that these measures are synonymous under a range standardization and that distance-based
methods in this context are not hindered by metric choice as critics claim.

Rogers’ distance compares two populations based on allele frequencies. Let L be
the number of loci/markers, a; is the number of alleles at the Ith locus, pi; and g are the
allele frequencies for the j¥ allele, I** marker for population 1 and 2 respectively. Roger’s

distance is given by:

1 L 1 a;
_ L 2 2
Dr= 7 ; 5 > (v — ay)? (2.3)

j=1
Identity By State (IBS) is a commonly used measure to compute genetic similarity (Srps)

between two individuals in a population by evaluating the number of allele copies two

individuals have in common:
L

1
Sips = 5 zz; si(zi,m), (2.4)

where [ = 1,2, ..L is the number of loci over which to compute the sharing measure; x; and

I marker; and s; is a sharing function that

y; is the genotype for individuals 1 and 2 at the
takes values of 0 if no alleles are shared, 1 if individuals have one allele in common, and 2 if

the individuals share both alleles [36]. This formulation can be recoded with x; = (0, 1, 2)

4Preferably with a set of “Null SNPs” if possible
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in place of x; = (aa, Aa, AA) and likewise for y;. The sharing function is then expressed as
si(zy,y1) = 2 — |z — yi|. We wish to use the measure of IBS as a genetic distance; achieved
by subtracting S;pg from one to yield:
1 & 1 &
Dips = 1_EZ(2_’xl—yl|):ﬁ2‘$l_yl|~ (2.5)
=1 =1
By treating individuals as populations, Rogers’ distance yields an equivalent equation such
that Dr = Drps (See Equation A.2 in Appendix A).
Another general measure is Gower’s distance [37], which is similar to genotype
matching. Using the notation of x; and y;, the genetic data are treated as interval variables

and Gower’s distance is expressed by:

B SEO—|u—u)\ 1<
DG—1—< =l 7 )—L;m—yl\' (2.6)

Gower’s distance is equivalent to Allele Sharing Distance (ASD) given in (2.7) where d;
takes values of (0,1,2) if two, one or no alleles are shared at a marker [. With the z; and

y; notation, ASD becomes equal to Gower’s distance:

L L
1 1
Dysp = I E dy = I E |z — il = Dg. (2.7)
=1 =1

If we use a range standardization to Gower’s and ASD?, the range correction will be two.

Thus the relationship of the distances is given by (2.8).

L
Dasp Dg 1
5 5 5T ZE_I |z — 1BS R (2.8)

This relationship is often not recognized due to different formulations; our notation recon-
ciles the imposed differences in the metrics and supports the use of distance-based methods

for quantifying genetic relatedness.

5 Assuming all markers have at least one individual homozygous for the variant allele and for the common
allele
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2.2.5 Non-metric MDS Algorithm

The method by Li and Yu [7] computes a similarity matrix and uses the top
eigenvectors as covariates to control the effect of PS in association testing. The method
is a generalization of EIGENSTRAT where the decomposed matrix may no longer be a
correlation or covariance matrix but formed from a chosen similarity. This method, coined
“MDS”, is also known as Classical MDS or Principal Coordinates Analysis (PCoA). NMDS,
in contrast to both EIGENSTRAT and Classical MDS, does not return eigenvectors to

describe variability. Instead, NMDS fits an iterative measurement model of the form

N

T(Drs) =Dps+e€

to estimate optimal dimension coordinates for objects based on the observed distance matrix
for a specified number of dimensions (where 7'(D, ;) is the optimally transformed dissimi-
larity for objects r and s and D, is the Euclidean distance between the estimated NMDS
coordinates for objects r and s). The coordinates produced are the best fit possible to the
reduced dimension space (as measured by Euclidean distance) compared to the full distance
matrix by minimization of a Stress (here we use Stress formula 1 from Kruskal and Wish
[49]) function given in (2.9). At each iteration of the NMDS algorithm, coordinates are

estimated and the Stress or “Badness-Of-Fit” measure is evaluated.

Stressl = Z <(1g?zs%&)igz)2> . (2.9)

The algorithm converges and iteration ends when the change in BOF becomes sufficiently
small. Appendix A.1 gives more details on the NMDS algorithm.

NMDS can often visualize structure with the first two or three dimensions that
may not be captured with the first few eigenvectors from PCA or PCoA, thereby giving a
more “truthful” representation of the data in reduced dimension space as opposed to simply
pulling out the most variable factors. These qualities make NMDS an appealing method
for use in population structure visualization; particularly with the proposed HWD SNP

selection due to quality control concerns and other sources of deviation in HWD.
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2.3 Results

Simulation was used to study the empirical effects of SNP selection and NMDS
visualization. Subgroups were simulated with relatedness among individuals (F}) and vary-
ing allele frequencies at both null markers and a disease locus. While our methods do
not attempt to adjust the test for association (current unpublished research), case/control
status was generated using the disease locus and used in sampling to create imbalanced
proportions of subgroups in cases and controls to assess how our SNP selection methods
would perform in a disease association context. Additional (unpublished) simulations were
carried out without generating a disease and produced synonymous results. Fj describes
the correlation among individuals where high values correspond to low diversity. Creating
relatedness among groups of individuals stratifies those groups from other individuals so

that higher relatedness within groups yields more distinction between groups ©.

2.3.1 Simulation Details

Data were generated using Balding and Nichols [50] model similar to past studies
[6, 7]. Populations consisted of individuals from three subgroups (k = 1, 2, 3) with (F}) equal
to 0.025, 0.015, 0.005 respectively. Disease status was assigned using a causal locus with
additive penetrance rates and allele frequencies (g;) with probabilities 30%, 20%, and 25%
for the respective subgroups. Penetrance of disease (T}) within a subgroup took values of
0.2, 0.15, and 0.1 respectively. Following the model used by Tzeng et al. [51], the probability
of disease for an individual with no copies of the causal allele is fo = T}/(1 — 2qx — 2qxT)
with r, the additive risk, chosen as r = 1.5. A heterozygous individual has risk of f; = rfj,
while an individual homozygous for the causal allele has risk fo = 2rfy — fo.

Ten thousand loci were generated where 5,000 exhibit LD within subgroups to
assess the robustness of HWD SNP selection (to the LD effect). Allele frequencies were

generated as

(1= Fe)pwe (1 — Fr)(1 — p)
Beta ( i , . ) ,

where py, was generated as Uni form(0.1,0.55) for the 5,000 substructure-informative mark-

ers. To generate LD SNPs, p;; was chosen from a Uniform(0.35,0.45) and Fy, = 0.001 was

SIf F}, is chosen to be equal in all subgroups, this becomes an estimate of Fgr.
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set for all subgroups’. Two separate independent blocks of LD were created using the dise-
quilibrium coefficient D = myp — ma7p [47] , where given two markers with alleles ‘A’ and
‘a’ at locus 1 and ‘B’, ‘b’ at locus 2, map represents the frequency of observing alleles ‘A’
and ‘B’ together with individual allele frequencies represented by w4 and 7p for the respec-
tive alleles. For each block of LD, a single SNP was generated and used to conditionally
generate the alleles for LD markers. For example, if the allele of the SNP for LD Block 1 is

‘A’ then allele ‘B’ for an LD Marker is drawn from a

D
Binomial (1,plk + ) ,
Pik

otherwise it is drawn from

D
Binomial <1,plk - > .
1 — pi

Using our values for p;r, and D = 0.08, the blocks generated within the subgroups had an
average median p-value=0.037 for testing pairwise Linkage Disequilibrium?® effect .

The samples exhibit PS due to variation in allele frequencies, correlation structure,
and disease penetrance rates. While uncorrelated markers in the population were generated
in HWE and linkage equilibrium, samples do not exhibit this due to sampling regardless
of subgroup membership. LD generated by sampling in the 5,000 substructure-informative
markers will not have a confounding effect as it is created due to PS. One hundred pop-
ulations were generated to evaluate SNP selection and visualization where 500 cases and
500 controls were randomly selected in each population. For controls, an average percent-
age of 32.06%, 33.25%, and 34.69% belonged to subgroups 1, 2, and 3 respectively. The
case group had averages of 42.17%, 34.74%, and 23.09% of individuals belonging to the

respective subgroups.

2.3.2 Simulation Results

Figure 2.1 shows the p-values for the HWT at each marker over all 100 iterations

for substructure-informative SNPs and confounding LD SNPs plotted against the expected

"This allows for more realistic variation in confounding LD SNPs through random draws from the Beta
distribution

8 A more realistic simulation of LD compared to that done by Patterson et al. [25] which generated perfect
LD.
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Figure 2.1: Quantile plots of observed -logl0(p-values) from the test for Hardy-Weinberg
Equilibrium against expected -log10(p-values) for SNPs generated in regions of confounding
LD (right plot) and substructure-informative SNPs generated without LD (left plot). Under
the assumption of no HWD, the p-values should follow a uniform distribution (black line).

distribution of p-values. There is marked deviation for the substructure-informative SNPs;
supporting the use of HWD for informative SNP selection. Confounding LD markers show a
small deviation, which is expected given that Fj and random assignment of allele frequencies
influence the subgroups. The average median p-value for the substructure-informative SNP
set was 0.062(o = 0.003) compared to 0.373(c = 0.036) for the confounding LD SNP set.
To explore how well HWD SNP selection eliminates confounding SNPs, sets of
1,000 SNPs were chosen from markers that met a selection cutoff based on significance
levels of HWT (0.001,0.01,0.05,0.10,0.20). The proportions of markers from confounding
LD regions were calculated for the 100 populations. Table 2.1 shows that a cutoff of HWT
p < 0.01 allows only 9.1% of markers to be confounding on average?. To further explore the
performance of HWD SNP selection, 4 sets of 200 markers were randomly chosen (for each
population) that met the following criteria: SNPs that were in HWD with p < 0.01, SNPs in
HWE with p > 0.01, Randomly chosen SNPs (no criteria imposed), and Non-Confounding
Random SNPs (chosen from regions where no LD was generated in original populations).
Table 2.2 displays the average proportion of chosen confounding LD SNPs as well as the
average Fgr value for each SNP set. Selection of markers in HWD yields a significantly

more differentiated set than the contrasting selection methods including non-confounding

9Sample out of a panel of SNPs ten times larger than the set, half of which were confounding due to LD.
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Table 2.1: Average proportion (up, ,)and standard deviation (op,,) of LD confounding
SNPs chosen under HWD selection criteria

Selection Criteria | up,, op,p
HWT p <.001 | 0.023 0.008
HWT p < .01 | 0.091 0.019
HWT p < .05 | 0.199 0.029
HWT p < .10 | 0.264 0.028
HWT p < .20 | 0.336 0.025

Table 2.2: Average proportion (up, ) of LD confounding SNPs chosen and average Fsr
(1Fgy) under various SNP selection criteria with associated standard deviations op, ,, and

OFgp-

Selection Criteria WP, OP.p | MFgr OFgrp

SNPs in HWD (p < .01) 0.089 0.025 | 0.083 0.006
SNPs in HWE (p > .01) 0.605 0.037 | 0.033 0.002
Random SNPs 0.505 0.037 | 0.043 0.003
Random Non-Confounding SNPs 0 0 0.051 0.005

random selection (Fs7 = 0.083 vs. Fgp = 0.051). The effect of confounding LD present in
the SNP selection is evident from the significantly smaller Fgr for random markers (0.043)
as well.

To evaluate SNP selection methods in conjunction with NMDS, one population
(out of the 100 iterations) was randomly chosen for visualization. Using JMP® Genomics
Software, distance matrices using Gower’s distance with a range standardization (equivalent
to IBS and others as previously shown) for 1,000 individuals were calculated with each of
the aforementioned SNP sets. The distance matrices were then used as input for NMDS.
For each distance matrix, dimensions 1 through 5 were fit to the data. BOF and distance
correlation plots were evaluated (Figure A.1 in Appendix A) and a two-dimensional fit was
chosen'®. Figure 2.2 shows 95% density ellipses (for the three subgroups from the structured
population) for individual coordinates formed from 2-D NMDS using the four different SNP
set distance matrices. Clearly, HWD SNPs outperform the other SNP sets for quantifying

structure. The effect of confounding LD can be seen by contrasting randomly chosen SNPs

OData with clear structure will yield a BOF plot similar to the Scree plot, with the “elbow” of the plot
at the optimal dimension fit.
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and non-confounding randomly chosen SNPs.

MMDS Coordmate Display By SNP Selection Method

NCR RAN

Dimension 2
=
1

Dimension 2
=
1

Dimension 1 Dimension 1

Figure 2.2: 95% density ellipses for NMDS coordinates of one simulated population using
200 markers to infer PS by the four SNP selection criteria. Distance matrices were calculated
using Gower’s Distance and NMDS coordinates were computed for each of the SNP selection
methods (HWD SNPs, HWE SNPs, random SNPs (RAN), and random, non-confounding
SNPS (NCR)). Simulated subpopulations 1, 2, and 3 are marked in the corresponding
density ellipse.

An important result evident from the NMDS plot using HWD SNP selection is
the visualization of variation not only between subgroups, but within as well. Allelic vari-
ation comes not only from differences between individuals from separate subgroups; it is
also present among individuals within a subgroup. Recall the simulation of these three sub-
groups: the first subgroup (1) was generated to have most relatedness among individuals
(Fy, = 0.025), while subgroup 2 and 3 have progressively less relatedness among individuals
(Fy, = 0.015,0.005 respectively). HWD SNP selection is able to quantify this visually while
picking non-confounding random markers distinguishes the groups (not to the distinction

of HWD SNP selection), but does not reflect the amount of relatedness/variation present



31

within groups.

2.3.3 Empirical Relationship of Fs;y and HWD SNP Selection

An additional simulation was carried out where F} was set equal in all subgroups
in order to explore the empirical relationship between Fgp and the number of HWD SNPs.
Sets of 2,000 SNPs were generated for values of Fgr ranging from 0.005 to 0.20 and the
proportion of HWD SNPs with p < 0.01 was plotted in Figure 2.3. For smaller values
of Fgr (indicating very little differentiation), the HWT for deviation due to PS is not
powerful (corroborating [45]); although the power increases dramatically as the sample size
and differentiation increases. Additionally, for common GWAS, selecting 2% (the average
proportion of HWD SNPs for 1,000 individuals for Fgp values between 0.005 and 0.02 in
this simulation'!) from 500,000 SNPs yields 10,000 substructure-informative SNPs. Further
simulation of smaller Fg7 values from 0.0005 to 0.005 showed the proportion of HWD SNPs
to level off (not pictured) with an average proportion for 1,000 individuals in this range to

be 1.59%.

2.3.4 Application to HapMap Samples

To assess HWD SNP selection and NMDS visualization on real data, unrelated
individuals from the HapMap populations'? were combined. Proposed methods were applied
to SNPs from Chromosome 21. The HWD SNP set for visualization met the following
criteria; Test for HWE: p < 0.001, Minor Allele Frequency: maf > 0.10, Proportion of
missing data: propmiss < 0.05. These criteria yielded a set of 2918 SNPs; an additional
random set of 2918 SNPs with Minor Allele Frequency: maf > 0.10, and Proportion of
missing data: propmiss < 0.05 was used as well. Both PCA (the coordinates used in
EIGENSTRAT correction) and NMDS were implemented to visualize the resulting pattern
of variation (Figure 2.4). Both methods (for Random and HWD SNP selection) distinguish
CEU and YRI from the Asian populations, and HWD Selection gives more defined clusters
than random SNP selection for both methods. Weir et al. [32] notes that on Chromosome

21, the YRI population shows slightly more heterogeneity within the population (evidenced

HTncreasing the HWT p-value cutoff to 0.05 increased this average to 7.4%.
12HapMap populations are made up of 208 Yoruban (YRI), Japanese (JPT), Han Chinese (CHB), and
CEPH (CEU) individuals. Data downloaded was from the HapMap NCBI Build 35.
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Figure 2.3: Plot of the empirical relationship between Fgr values and proportion of SNPs
in HWD (p < 0.01). Two thousand SNPs were generated under the simulation scheme for
values of Fgr ranging 0.005 to 0.200 and evaluated for sample sizes of 250, 500, 1000, and
2000 individuals.

by within population Fsr estimates) compared to the other populations. This coincides
with both plots of individual coordinates from NMDS (right) in Figure 2.4, which shows
more variation existing within the YRI population (in contrast to PCA). This supports the
rationale behind the NMDS algorithm, which yields a more harmonious picture compared
to the full genetic distance matrix (while PCA only displays the variation that is captured
in the first two eigenvectors). It is of interest to see the effect of choosing HWD SNPs from
a homogeneous population to evaluate if such selection imposes heterogeneity. Unrelated
CEU individuals were utilized and SNPs from Chromosome 21 were selected by the criteria:
Test for HWE: p < 0.01, Minor Allele Frequency: maf > 0.01, proportion of missing data:
propmiss < 0.10. The PCA (EIGENSTRAT coordinates) and NMDS plots in Figure 2.5
show that HWD SNP selection with PCA visualization distorts the CEPH population, while
NMDS is robust to the low quality of the data and accurately depicts the CEPH population.
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Figure 2.4: PCA (left) and NMDS (right) display of the HapMap populations for Chro-
mosome 21. HWD SNP set used for visualization met the following criteria: Test for
HWE: p < 0.001, Minor Allele Frequency: maf > 0.10, Proportion of missing data:
propmiss < 0.05. Random SNP set met the criteria for minor allele frequency and propor-
tion of missing data only.

2.4 Discussion

HWD SNP selection yields an informative SNP set that reveals more differenti-
ation than random or non-confounding random SNPs. Simulations show that HWD SNP
selection is robust against SNPs that confound the effect of population structure. This is
preferable to independent SNP selection which suffers from computational constraints and
restricts selection of SNPs in LD due to PS. HWD SNP selection promises to be a more

powerful set for population differentiation as evidenced by Fgr calculations. Visualization
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Figure 2.5: PCA (left) and NMDS (right) display of the HapMap CEPH population for
Chromosome 21. SNP set used for visualization met the following criteria. Test for HWE:
p < 0.01, Minor Allele Frequency: maf > 0.01, Proportion of missing data: propmiss <
0.10.

using NMDS works well with HWD SNP selection by yielding a more faithful representation
of observed distances among individuals than PCA, which is a more “extreme” projection.
NMDS minimizes differences between Euclidean distance in the reduced dimension space
and the observed dissimilarities from the full distance matrix, whereas PCA coordinates
maximize explained variance in the reduced dimension (and thus may be more prone to
outlier influence and finding projections that inordinately pull apart the data). This dis-
tinction helps to assuage worries about Type I error in the context of finding differentiation
in a homogeneous population, which in turn would relate to an over-conservative correction
for PS in association testing. Additionally, this property of NMDS makes the method more
robust against other sources of HWD unrelated to population stratification, although data
quality is a large concern when using the HWT in this manner.

The influence of markers in HWD not attributable to PS will be negligible if
standards of data quality are upheld. In practice it is still recommended to first use the
HWT for quality control purposes as well as elimination of SNPs with inadequate call rates,
missing data, and rare alleles (excluded for substructure quantification). Such steps help
ensure HWD is reflective of allele frequency patterns among possible groups in the data.
Once data quality has been addressed, the HWT p-values from the combined case/control
set can be used for SNP selection to quantify PS. A cutoff based on the HWT p-value < 0.01
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works well with our simulated data and in HapMap samples; although depending on the
size and quality of the data, a more or less stringent cutoff may be used. If data quality
remains an issue, a less stringent cutoff and random sampling from the markers that meet
this cutoff may be used to obtain a manageable SNP set. An alternative cutoff may be
decided based on effect size or ranks of the test statistic to help avoid bias/influence due to
minor allele frequencies and p-value threshold concerns [52].

The data quality issues plague all methods for quantifying population structure (in
both SNP selection and association test correction). The proposed SNP selection method
helps to answer confounding problems encountered such as blocks of LD, as well as obtaining
a differentiated set of SNPs. The incorporation of nonmetric MDS complements the method
as a visualization technique. Additionally, NMDS shows promise for future use by building
upon research done for current association correction tests such as EIGENSTRAT and the

recently proposed (classical) MDS method.
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Population Stratification
Correction in Association Studies
Via Nonmetric Multidimensional

Scaling

3.1 Introduction

Techniques for correcting bias in genetic association studies due to population
stratification (PS) have been an active area of research in recent years. PS is the increase in
spurious associations in case-control genetic studies due to ancestral allelic variation. When
individuals from a common ethnic background are over-represented for the trait of interest,
Type I errors can occur at loci that exhibit allele frequency differences for that ethnic group
(in comparison to others). In order to achieve sufficient power for testing associations of
Single Nucleotide Polymorphisms (SNPs) in large scale studies, increasingly large sample
sizes are required; often resulting in a heterogeneous population sample. Genomic Control
(GC) [29] and Structure [28] are two of the earliest PS correction methods, since which
numerous studies have highlighted the complexity and impact of PS [53, 54, 55, 32, 56].
GC, which corrects the association test statistic by a fixed inflation factor across the genome,

has been shown to be too simplistic in many cases; whereas Structure is computationally
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difficult with large numbers of loci.

EIGENSTRAT is a recently popular approach that employs principal components
analysis (PCA) to capture and correct for genetic variation in samples [6], although it has
been shown to be insufficient in certain cases [57, 7]. A method that builds on EIGEN-
STRAT was introduced by Li and Yu [7] and uses classical multidimensional scaling (CMDS)
coupled with clustering to improve PS correction due to admixed and/or discrete popula-
tion structure. While PCA performs eigen-decomposition on a correlation or covariance
matrix, CMDS is a generalization that allows eigen-decomposition of a chosen similar-
ity /dissimilarity matrix! such that more appropriate genetic distance measures can be
used for dimension reduction to capture population structure. The correction model is
the defining distinction between EIGENSTRAT and CMDS. EIGENSTRAT uses principal
components as axes of variation to iteratively weight both phenotype and genotype with ad-
justments obtained from simple linear regression on the principal components, while CMDS
uses the coordinates as continuous covariates as well as an additional categorical covariate
(of individual classifications obtained from clustering) in a logistic model.

A drawback of EIGENSTRAT arises when select loci exhibit more allelic varia-
tion between population groups than captured by the axes of variation [7]; evidence that
EIGENSTRAT may be an insufficient correction in cases of data with discrete population
groups. Additionally, a recent study found data with discrete population groups to have
more severe spurious associations in contrast to data exhibiting admixture [38]. For this
reason, CMDS performs k-medoid clustering based on the principal coordinates and uses
the cluster assignments as an additional covariate in the correction model. Li and Yu [7]
show that their model corrects Type I error to the nominal level for highly differentiated
SNPs while EIGENSTRAT fails to do so under the discrete populations simulation frame-
work. The use of classical multidimensional scaling with hierarchical clustering has been
independently proposed to work very well for population structure inference by Gao and
Starmer [23].

Previous research has shown that nonmetric multidimensional scaling (NMDS)
yields a more faithful representation of genetic variation patterns across populations in
comparison to PCA (and consequently CMDS) [5], which chases directions of maximal

variability. We propose a modification of the CMDS model that instead uses coordinates

'Li and Yu [7] show that with an inner product similarity, CMDS and PCA are synonymous.
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obtained by the NMDS dimension reduction method as well as nonparametric clustering
techniques. Simulation results show that our method (referenced as ‘NMDS’) controls Type
T error as well as CMDS. Moreover NMDS is uniformly more powerful, with highly significant
differences in power for scenarios where a portion of the loci used to infer coordinates for
population variation are associated with the trait of interest. It has been a concern with
PS correction that the set of markers used to infer population structure may also capture
variability in the trait of interest, resulting in a loss of power and an increase in Type
IT errors. Through empirical analysis, NMDS is shown to be more robust for capturing
population structure in comparison to EIGENSTRAT and CMDS when a number of disease-
associated markers exist in the dataset.

The concern about over-correction and loss of power due to the influence of many
positively associated markers has largely been ignored under belief in the common variant-
common disease (CVCD) hypothesis. The debate that a handful of commonly found SNP
variants explain heritability of complex common disease (CVCD) as opposed to many
slightly deleterious rare variants (rare variant-common disease, RVCD)[58] has been shifting
as more and more studies highlight the importance of rare (MAF < 1—5%) SNPs in disease
etiology [59, 60, for example|. Associations of common SNPs have thus far only explained
a very small proportion of variance in traits and new sequencing technology can now accu-
rately capture low frequency SNPs that show promise for explaining more heritability [60].
Moreover, initial successes with common variant associations are shadowed by modest effect
sizes and low reproducibility. It is typical for studies to result in many highly significant
‘hits” whereas the ‘true associations’ are often much further down the list or ranked p-values
[52, 61]; thus a good recommendation for reproducibility studies is to follow up with thou-
sands of possibly associated markers [61]. Many loci may also exhibit moderate evidence of
trait association due to differential call rates for cases and controls due to genotyping batch
effects or laboratory effects when cases and controls are collected separately; Price et al.
[6] found evidence of this in a real data application where a top principal component was
highly correlated with plate assay effects. In light of these findings, it is critical to assume
there may be a large number of common and/or rare variants showing possible evidence of
association with complex diseases and methods employed to correct for PS must result in

a minimal loss of power for this scenario as well as appropriately control Type I error.
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3.2 Methods

The NMDS model proposed (adopted from the model framework in Li and Yu
[7]) for PS correction uses the coordinates computed for each individual in a study by
nonmetric MDS to account for continuous genetic variation as well as cluster assignments
using nonparametric density estimation to account for discrete subgroup membership. The
following sections outline the dimension reduction method, clustering details and subsequent

logistic modeling for testing association in the presence of confounding population structure.

3.2.1 Nonmetric Multidimensional Scaling

NMDS is an optimization routine that produces coordinates for N objects in a
reduced dimension space that most closely represents (in Euclidean space) an N x N sim-
ilarity or dissimilarity matrix. In this study we use Gower’s distance [37] as a genotype
matching dissimilarity metric computed for each pair of individuals across their SNP data.
Both Miclaus et al. [5] and Li and Yu [7] provide details of other metrics for quantifying
genetic relatedness that can be used with the NMDS algorithm. Gower’s distance (using a

range standardization) for a pair of individuals is calculated as

L
_ Sz — ) 1
Dg =1 ( 5T —M;\xl ull, (3.1)

where [ = 1,2,..L is the number of loci over which to compute the measure and x; and
y1 is the genotype for two respective individuals at the I marker. Optimized coordinates
representing population structure are obtained through minimization of a Stress (here we
use Stress formula 1 from Kruskal and Wish [49]) function given in (3.2). The iterative
NMDS process first finds an optimal transformation function 7'(-) through isotonic regres-
sion (on the estimated Euclidean coordinates which are initialized on the first iteration)
and then minimizes the Stress function with respect to Dy using the Gauss-Newton algo-
rithm. T'(D,) is the transformed dissimilarity for objects r and s and D, is the Euclidean

distance between the estimated NMDS coordinates for objects r and s in (3.2),

Stressl = Z <(1g?zs%&)igz)2> . (3.2)
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The algorithm converges and iteration ends when the change in the Stress function
becomes sufficiently small. More details of NMDS specific to genetic population structure
can be found in Miclaus et al. [5] as well as more general multidimensional scaling techniques
(including Classical MDS) in Kruskal and Wish [49] and Cox and Cox [40]. The number of
adequate dimensions can be chosen by analyzing the change in the badness-of-fit (Stressl
values) as well as the correlation between the estimated pairwise Euclidean distances and
true distances in the full matrix (similar to scree plots) [5]. If desired, the eigenvalues of
the dissimilarity matrix can be produced upon initialization and a significance test using
the Tracy-Widom distribution can be performed similar to EIGENSTRAT [25]. The most
significant distinction in optimization between NMDS and eigen-based methods like CMDS
and PCA is that NMDS seeks the coordinates that are the best fit possible in the specified
number of dimensions to relationships found in the full dimensional data, whereas CMDS
and PCA solely perform rotation and scaling of the matrix to extract axes in the direction of
the maximum variance explained. Principal components will only explain interesting facets
of the data when there is more signal in comparison to noise such that large variances
correspond with the signal (i.e. population structure) and may be unable to elucidate more
subtle patterns in noisy genetic data. Additionally, PCA-based methods are extremely
sensitive to outliers and EIGENSTRAT requires an outlier removal process to account for

this, which may exclude informative samples.

3.2.2 Nonparametric Clustering

Nonparametric density estimation is used for cluster assignment based on the
NMDS coordinates due to the flexibility and generality of the method [62, 63]. Many
clustering methods show bias toward certain specifications of clusters groups. Optimization
methods based on least-squares (such as k-means) are biased to finding clusters containing
the same number of observations, yet other methods may tend to find clusters of equal
size. Cluster methods based on nonparametric density estimation are the least biased in
general and more applicable for irregular data with varying size and shapes [62, 64] while
still providing good results for data with clusters of equal size and variance. Nonparametric
density estimation allows for the density function to be determined from the sample data and

thus imposes no fixed assumptions on the number or values of parameters. Nonparametric
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estimation is done by estimating the underlying kernel density of the data given as

o L (oo 3.3
ek (), (33

where K is the kernel (weight function) and h is a smoothing parameter that elucidates key

patterns in the data z1,...,zx ~ f (kernel density formula taken from Scott [63, pg. 125]).
We used the MODECLUS procedure in SAS/STAT software which implements

nonparametric clustering to obtain density estimates at each x; given as f; = +%- where
i A Nv;

n; is the number of points within a calculated neighborhood of z; and v; is the volume
of the neighborhood. Neighborhood or ‘sphere’ size is determined using hyper-spherical
uniform kernels with fixed or variable radii decided by the smoothing parameter specified
[64]. Neighborhoods are formed by a valley-finding method which joins observations into
clusters based on the nearest point with a higher estimated density. The number of ade-
quate clusters is chosen based on the smoothing parameter choice. Silverman [62] provides
recommendations for choice of smoothing parameter that are implemented in the MOD-
ECLUS procedure. We use the recommendation of a reference to a Gaussian distribution,
weighted by the number of variables v used for clustering (number of NMDS dimensions)

to prevent over smoothing, given as

29+2(y 4 2)T(0.5v + 1)] /() 5.4)

No?

2

where s ;

is the variance estimate for each variable v; (representing each NMDS dimension
vector used). A simpler approach is to specify an array of smoothing values and one can
visually inspect the fit through histogram plots. Figure 3.1 is an example of nonparametric
(kernel) density estimation for a univariate case. Further detail for nonparametric density
estimation and clustering can be found in Silverman [62], Scott [63] as well as the online
SAS documentation for the MODECLUS procedure.

The choice of clustering method is a flexible aspect of the proposed NMDS method.
The CMDS method uses a k-medoids algorithm (similar to k-means) and estimates the num-

ber of clusters via the Gap statistic [24], which evaluates the within-cluster dispersion for a

range of estimates for cluster number. For our simulations of populations with differentia-
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Figure 3.1: Histogram of a univariate distribution overlaid with a smoothed kernel density
fit.

tion measured as Fgr = 0.01, both methods performed equally well. Simulations with less
distinct populations (Fsp < 0.005) showed the nonparametric clustering with our smooth-
ing estimate to more accurately select the correct number of populations in contrast to
k-medoids. Further analysis (not covered in this work) may be necessary under varying
population sizes and unequal population membership counts to better hone the choice of

clustering method specific to genetic data.

3.2.3 Statistical Model for PS Adjusted Association Analysis

The proposed correction model uses the computed NMDS coordinates and cluster
membership for all individuals as covariates in a logistic model. The logistic model can be
expressed as

logit(p) = X8+ M+ + Ch, (3.5)

where p is the probability of having the trait of interest. X, M, and C represent the NV x 1
SNP genotype vector, the N x K’ matrix of NMDS coordinates (where K " is the number
of dimensions selected), and the N x 1 vector containing cluster membership information
respectively. B, ¥, and 1 are the respective vectors of parameters in the corrective associ-
ation model. The inclusion of the cluster membership covariate has been shown by Li and
Yu [7] as a key advantage over EIGENSTRAT for correcting for PS in a discrete population
framework. The simplicity and ease of implementation of the correction model is an addi-

tional advantage; it can be easily expanded to include further phenotypic or environmental
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effects that may contribute to the trait as well as interactions. In Section 3.3.4, we extend
the model to include an interaction effect between genotype and cluster membership. This
interaction tests for differences in disease susceptibility at a SNP between different ethnic
populations and can provide insight of how genetic disease risk may vary among different

populations of individuals.

3.3 Results

To evaluate the performance of the NMDS method, simulations were done to ob-
tain Type I error and power estimates, with emphasis on the scenario when many SNPs may
show evidence of association with disease. NMDS is compared with CMDS and EIGEN-
STRAT. For all simulation scenarios, two dimensional coordinates were calculated for all
three methods based on scree plots and visualized best fit of the data. We do not ad-
dress the use of formal testing of eigenvalues for determining dimension, nor do we use the
recommendation by EIGENSTRAT to incorporate the first 10 principal components, as
this would bias the EIGENSTRAT method to return poor results in our scenario (extreme
over-correction due to the inclusion of SNPs associated with case/control status).

The Balding and Nichols [50] model was used to generate SNP data under the
discrete subpopulation framework similar to studies in Price et al. [6] and Li and Yu [7].
Additional simulations explore the effect of varying levels of relatedness among populations,
contrast nonparametric clustering with the k-medoids cluster method employed by CMDS,
and test the power in the NMDS method for finding interactions between SNP and ethnicity
associated with disease risk. Gower’s distance metrics and nonmetric MDS as well as the
EIGENSTRAT method are implemented using JMP Genomics®) Version 4.0 software (SAS
Institute Inc.) and nonparametric clustering is performed with the MODECLUS procedure
in the SAS/STAT package of SAS® Version 9.2 software. The CMDS method along with

Gap statistic calculation is computed using R software packages.

3.3.1 Disease Association Simulation Results

We generated independent sets of 10,000 SNPs for 500 cases and 500 controls from

two separate populations (with 80% cases and 40% of controls for the 1%¢ population and
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the rest taken from population 2)? to use for calculating coordinates via NMDS, CMDS,

and Eigenstrat. Population allele frequencies were randomly drawn as

o ~ Beta ((1 — Fst)pr (1 —Fsr)(1 —Pz)) ’

Fsp Fsr

where Fgp measures the degree of population differentiation [21]. We use a value of
Fsr = 0.01 representing divergence indicative of European populations. The ancestral
allele frequencies at each loci, p;, were sampled from the Uniform(0.1,0.9) distribution.
For each set, 100 random null SNPs (unassociated to case-control status under the Balding-
Nichols model with Fgr = 0.01) as well as 100 differentiated null SNPs (allele frequencies
of 0.90 in population 1 and 0.10 in population 2) were generated for testing Type I er-
ror. Disease associated SNPs for testing power were generated using the multiplicative risk
model adopted from Price et al. [6] where controls from population k were assigned 0, 1, or
2 copies of an allele under the Binomial(2, pj;) distribution while genotypes for cases were

drawn from a

Binomzial <2, Rpu(Rpue + (1 — pur)) ) ’

(1 = pix)? + 2Rpu (1 — pux) + R?pj,
where R is the relative disease risk for the causal allele and pj is the allele frequency at
each loci for populations k = 1, 2.

To address power issues when a portion of the data used to infer coordinates show
evidence of disease association, we analyzed groups of 10 generated SNP sets where the
10,000 SNPs contained 0%-10% associated SNPs under relative risk R = 1.3 (typical low
to moderate effect). Additional analysis was done on sets of 10,000 SNPs with 0%-5%
disease-associated SNPs when the relative risk was set to 1.5. At every percentage change
of SNP composition, 10 sets of 100 disease-associated, 100 random unassociated and 100
differentiated SNPs were tested under NMDS, CMDS, and EIGENSTRAT models. For
SNP sets with 1% or more disease-associated SNPs included in coordinate computation,
an additional 100 of those associated SNPs were tested to infer power as well. Significance
was determined on the p-values using a threshold of o = 0.05. The traditional Chi-squared
test with no PS correction was also computed and the Type I error and power rates for the

three categories of markers is given in Table 3.1.

20ther case-control proportions were also examined and yielded similar results to those found in Price
et al. [6] and Li and Yu [7] (results not shown).
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Table 3.1: Type I error and power rates (and associated standard errors) for the tradi-
tional Chi-squared test with no PS correction for random null, differentiated null, and
disease-associated SNPs for risk models with values of 1.3 and 1.5 relative risk. Significant
associations determined by p < 0.05.

SNP Type x? for R=1.3 x? for R=1.5
Random Null (Type I Error) 0.219 (0.013) 0.195 (0.013)
Differentiated Null (Type I Error) 1.000 (0.000) 1.000 (0.000)
Associated SNPS (Power) 0.652 (0.015) 0.884 (0.010)

Figure 3.2 and Figure 3.3 show the Type I error and power comparisons between
the three methods under the risk model for disease associated SNPs using R = 1.3 and
= 1.5 respectively. The proposed NMDS method as well as the CMDS method ade-
quately control Type I error for both random and differentiated (both appear to be slightly
conservative, yet not significantly so in this case) SNPs in all scenarios. EIGENSTRAT does
not sufficiently control Type I error at the nominal level for differentiated SNPs (agreeing
with findings of Li and Yu [7]), yet as the percent of disease associated SNPs increases, that
error rate decreases for both relative risk rates. This interesting finding appears to be in-
dicative of an overall loss of power for both true and false positive findings when associated
SNPs confound the estimation of population structure in the axes of variation.

Power is similar among the three methods when there is little to no SNPs that
show a positive association in the SNP set used to form the coordinates. For relative risk
equal to 1.3, CMDS and EIGENSTRAT have significantly lower power compared to NMDS
when around 6-8% markers of the SNP set included show evidence of disease association.
For SNPs generated with a relative risk of 1.5, the results are more dramatic; NMDS is
significantly more powerful with just 3% or more of associated markers used to form NMDS,
CMDS, and PCA coordinates. When testing the power of SNPs that are associated to the
trait as well as included in coordinate estimation (plots B of Figure 3.2 and Figure 3.3), the
decrease in power for CMDS and EIGENSTRAT is much more dramatic (a much steeper
negative slope) resulting in power estimates that show NMDS to have around a 20% power
increase over the other methods (42.4% for EIGENSTRAT, 37.1% for CMDS, and 61.3%
for NMDS) when 5% of SNPs included in dimension reduction calculation are show disease

association.
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Figure 3.2: Type I error and power results for NMDS (diamonds), CMDS (circles), and
EIGENSTRAT (triangles) for R = 1.3 under an increasing percentage of associated markers
used to form coordinates. Plots A and B show respective Type I error rates for the sets
of random unassociated SNPs and differentiated SNPs. Power comparisons for associated
SNPs not used to form dimension coordinates (plot C) as well as for those used in forming
the NMDS, CMDS, and PCA axes (plot D) are given. Shading around lines represent the
95% confidence intervals for each estimate. Significant associations determined by p < 0.05.

While the power decreases in NMDS as well (as expected), NMDS is more robust
to the influence of the disease associated SNPs while still capturing population structure.
Under the 10,000 SNPs generated for inferring axes to capture PS, significant power dif-
ferences occur when only a few hundred SNPs in the set show very modest effect sizes
with disease association; a common situation in association studies before stringent testing
thresholds are applied to declare a SNP significant (and possibly even more common under

the RVCD hypothesis).



47

0.16- 0.16-
A B
0.14- 014- 4
0.12- 012-
5 5
o 01— G o01- 4 A& 4
S p ~h—
g 0.08- g 0.08-
0.06— 0.06—- i %
—
0.04- 0.04- ) = P
0.02-—— | | | | | Bod——y 1 | | | |
0 0. 0.0z 0.03 0.04 0.05 0 0m n.oz 0.03 0.04 0.05
Fercent Disease 3PS Fercent Disease SMPs
0.9- "_";:_‘ﬁ.\ Cc 00— .-—=;=—.;_______~°\ D
\Q\\‘x‘ RH
™ "
B \\‘x Y
= \\‘.‘ ‘\0 = \:‘;\‘ S
o 0.7- Qo o 07— N o
z o = .
] ™, o
o , u_‘ o ™
0.6- b 06— &
\\ . ;
0.5- © 0.5- \\\
Uk
0.4+ 0.4- A
| | 1 | | | | | 1 | 1 t?
1] 0.m 0.0z 0.03 0.04 0.0a ] 0. 0.0z 003 0.04 0.05

Percent Disease SMNPs FPercent Disease SMNPs

0 —Method=CmMDE 5 —Method=Eigenstrat < — Method=MNMDS

Figure 3.3: Type I error and power results for NMDS (diamonds), CMDS (circles), and
EIGENSTRAT (triangles) for R = 1.5 under an increasing percentage of associated markers
used to form coordinates. Plots A and B show respective Type I error rates for the sets
of random unassociated SNPs and differentiated SNPs. Power comparisons for associated
SNPs not used to form dimension coordinates (plot C) as well as for those used in forming
the NMDS, CMDS, and PCA axes (plot D) are given. Shading around lines represent the
95% confidence intervals for each estimate. Significant associations determined by p < 0.05.

3.3.2 Varying Levels of Relatedness and Visualization

Further study was done where SNPs were generated for three populations un-
der the Balding-Nichols model with varying levels of relatedness (F} in place of Fgp for
k =1,2,3). Figure 3.4 shows the coordinates for nonmetric MDS and classical MDS (syn-
onymous to PCA here) calculated from 10,000 random SNPs (no disease-associated markers

included) for 500 individuals drawn from three populations with relatedness measures of
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Fi, = {0.03,0.02,0.005}. While CMDS simply finds the clustered populations, NMDS ac-
curately reflect the relatedness within populations by the varying sizes of the clusters. It is
quite common to find varying relatedness (common ancestry) of individuals within different
ethnicities; which is evident even from the HapMap populations [32]. This lack of sensitivity
to multiple levels of relatedness found in CMDS and PCA would have detrimental effects
when a possible disease of interest has strong epidemiological interactions with regional or

spatial influence.
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Figure 3.4: NMDS and CMDS display of 500 individuals sampled from 3 populations with
varying levels of relatedness (F}, = {0.03,0.02,0.005}).

3.3.3 Clustering Comparisons

Table 3.2: Percentage of sets correctly determining the number of clusters by the Gap
Statistic in conjunction with k-medoids vs. nonparametric clustering with the kernel ra-
dius determined by an estimated smoothing parameter. True data is composed of two
populations with Fgpr = 0.004

Clusters | K-medoids + Gap Nonparametric Clustering
1 27% 0%
2 73% 92%
3 0% 6%
4 0% 2%

An additional 100 sets of 10,000 SNPs were generated for two populations under
the Balding-Nichols model with Fgr = 0.004 to be indicative of population structure found
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in an European-American sample [6]. This simulation set is used to briefly compare the
nonparametric clustering method we employ against k-medoids with the Gap statistic used
in CMDS. For each set of SNPs, 1000 individuals were sampled and nonmetric MDS coor-
dinates for two dimensions were computed on the individual distance matrix using Gower’s
dissimilarity metric. Both nonparametric clustering and k-medoids were performed on the
NMDS coordinates for each set, with the number of clusters determined by our choice of
smoothing parameter and the Gap statistic respectively. Estimation of the Gap statistic
to choose the number of clusters for k-medoids followed the algorithm briefly described by
Li and Yu [7] and derived from Tibshirani et al. [24] in more detail. Table 3.2 shows the

results for the number of clusters determined over the 100 iterations.

lonparametric K
o1 * 1
2

Dimension 2
o]
1

Dimension 1

Figure 3.5: NMDS coordinate example of a dataset simulated with two discrete populations
with relatedness/differentiation measured by Fsr = 0.004. Nonparametric clustering on the
1000 individuals is indicated by color (two clusters) while k-medoids clustering with the Gap
statistic is notated by the symbol (only one cluster found).

The nonparametric clustering method found the correct number of clusters in
92% of the simulation runs in comparison to 73% for k-medoids with the Gap statistic

computation. Figure 3.5 highlights a case where nonparametric found two clusters while
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the Gap statistic only determined one cluster with k-medoids®. The remaining proportion
of datasets for k-medoids were determined to have only one cluster whereas nonparametric
clustering appeared to be over-sensitive in estimating the number of clusters. Under the
assumption that population stratification exists, over-estimation of the number of clusters

would be likely to have less dire consequences.

3.3.4 SNP-Ethnicity Interaction Association Results

A final simulation scheme was performed to exemplify how the proposed NMDS
correction model can be expanded to test for interactions of genotype with environment /ethnic
backgrounds contributing to trait susceptibility. Two populations were generated with
Fsr = 0.01 and again 10 sets of 10,000 SNPs were generated to infer NMDS coordinates as
well as 100 random null SNPs to evaluate Type I error and 100 causal SNPs to test power.
Two risk model scenarios were used to generate causal SNPs in the two populations where

causal SNPs were assigned alleles 0, 1, or 2 drawn from a

Binomial <2, Ripue(Repie + (1 — pu)) )

(1 — pu)? + 2Rppu (1 — piic) + Rip,

for the case population. To emulate an interaction effect that would correspond to a relative
risk of 1.3 with disease status, Ry = (1.15,1.5) values were used to generate alleles for the
cases in population 1 and 2. This translates to a 30% increase is disease risk given the
presence of the causal allele if an individual is from population 2 as opposed to population
1. An additional risk model of Ry = (1.0,1.5) was also tested to emulate an interaction
relative risk of 1.5 for disease. These scenarios show how the PS correction model can test
if disease susceptibility at a causal SNP changes between two discrete populations.

Under the proposed NMDS correction model, an additional parameter was added
to model the interaction of SNPxCluster. Figure 3.6 shows the power of testing that
interaction effect over a range of sample sizes. Results show that a much larger sample size
(around 3,000 to 4,000 individuals) is needed in order to obtain similar power for testing
disease interaction with population membership and genotype information. In well powered

studies with large sample sizes, this type of analysis is recommended when possible discrete

3Note that the resulting NMDS coordinates accurately represent two discrete populations with very little
relatedness among them such that the only defining population structure is distinguishing between the two
groups.
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Figure 3.6: Type I error and power for testing interaction effect of SNP*Cluster on disease.

population structure exists in order to determine if disease association across loci tested
differs among populations.

The value of the interaction test between population membership (such as ethnic
groups or even regional groups) and genotype is that it allows the researcher to primarily
determine if a disease exhibits varied regional susceptibility as well as lending more power
to further studies when testing SNP association. For example, if a study contains a small
number of individuals from a distinct ethnic background possessing loci that substantially
increase disease risk while a another larger sample of individuals from a different population
shows little genetic susceptibility; the main effect test averaged over both populations would
be difficult to interpret and could diminish the chances of a significant finding. An inter-
action test would signify further study of disease association to be carried out separately
for these populations. This is a plausible scenario where disease prevalence is negatively
correlated with subpopulation size. Findings from Gorrochurn et al. [65] show that this
scenario is one where population stratification is most damaging and give an example of a
small Jewish founder population that had 10-50 times higher allele frequency for mutations
related to breast cancer in comparison with the general population [66]. In such a case, the
main effect test would likely be powerless to detect the causal loci if individuals from the

founder population are sampled along with individuals for the general population.
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3.4 Discussion

Dimension reduction methods such as principal components analysis and multidi-
mensional scaling have become invaluable tools for quantifying genetic data, particularly for
elucidating structural patterns among individuals that may lead to bias in association stud-
ies. Simulation results show the proposed NMDS method to accurately correct for inflation
in false positive findings due to PS in case/control genetic association studies. Moreover, the
NMDS method is more robust to markers that may confound the detection of population
structure such as loci that show allelic variation that correlates with case/control status
and yields significantly higher power rates in this scenario.

In our simulations, the SNP set used to infer coordinates via the three dimension
reduction methods were solely proportions of trait-related SNPs to substructure-informative
SNPs. Many loci in a study will not exhibit allele frequency variation among populations
and so the proportion of associated markers in comparison to the full set of SNPs analyzed in
GWAS can be much smaller than percentages studied in our simulation scheme. Inclusion
of such (non-varying) SNPs can make effect of PS harder to detect and may allow the
associated markers to drive coordinate estimation even more than shown in our study.
While plots of components can be used to determine if the coordinates are over-correcting
for case/control status, such visualization may not be possible when individuals in a study
come from many populations.

The use of a covariate-based logistic model has been shown to work well for cor-
recting population stratification in past studies [67, 7] and is easily expanded to model
additional phenotypic covariates and interaction effects. Our research builds on this simple
correction model by improving the estimation of the covariates used to infer population
structure in terms of accuracy (to detect multiple levels of relatedness) as well as robust-
ness to over correcting for case/control status. The use of nonparametric clustering methods

enhances the model to be more sensitive to stratification caused by discrete populations.

3.5 Supplemental Information

Tables of Type I error and power estimates corresponding to the simulation results

presented in Figure 3.2, Figure 3.3, and Figure 3.6 can be found in Appendix B.



93

URLS: SAS/STAT online documentation for MDS and MODECLUS procedures can be

found at http://support.sas.com/documentation/onlinedoc/stat/index_proc.html.

JMP Genomics@®Software information is found at http://jmp.com/software/genomics.

Table B.1: Type I Error Estimates and Standard Deviations Under Relative Risk=1.3 for
CMDS, NMDS, and EIGENSTRAT corresponding to Figure 3.2.

Table B.2: Power Estimates and Standard Deviations Under Relative Risk=1.3 for CMDS,
NMDS, and EIGENSTRAT corresponding to Figure 3.2.

Table B.3: Type I Error Estimates and Standard Deviations Under Relative Risk=1.5 for
CMDS, NMDS, and EIGENSTRAT corresponding to Figure 3.3.

Table B.4: Power Estimates and Standard Deviations Under Relative Risk=1.3 for CMDS,
NMDS, and EIGENSTRAT corresponding to Figure 3.3.

Table B.5: Type I Error and Power Estimates with Standard Deviations Under Relative
Risk Values 1.3 and 1.5 for the NMDS Model Testing for Disease Interaction with Causal
SNP and Population Membership corresponding to Figure 3.6.
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Evaluating the Effects of Batch
Composition and Size on BRLMM

Genotype Calls for the Affymetrix
500K Array

4.1 Background

The advent of high-throughput genotyping technologies has facilitated many suc-
cess stories for genome-wide association studies (GWAS) in finding genetic variants asso-
ciated with common complex diseases. As we gain understanding about common complex
disease heritability, the size and scope of GWAS continue to grow. Past results have shown
that significant associations found in GWAS are typically with common SNPs showing very
little to moderate effects with relative risks in the range of 1.1 to 1.3 [61]. One explanation
for lack of reproducibility in candidate gene studies and early GWAS was an inadequate
sample size to obtain the level of power necessary to capture a moderate effect [68]. GWAS
have since begun to rectify this issue with studies now containing thousands of individuals,
as well as adopting multi-tiered replication study designs. With such large-scale studies,
minimal errors can introduce bias that result in inflation of both the Type I and Type II

error rates, making adequate quality control essential to ensure reliability of GWAS results
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[61]. Population stratification and genotype error rates are two main sources of bias in
GWAS and have been shown to result in inflation of the test statistic by over 11%, where
more than half of that overdispersion could be attributed to bias introduced by inaccurate
genotype calls [14]. While clustering algorithms used to call genotypes continue to improve
in accuracy [9, 12, 13|, even miniscule errors can result in large biases due to a shifting
paradigm that has researchers looking to rare variants (with minor allele frequencies less
than 1-5%) to find associations with complex diseases, leading to new studies of now tens
of thousands of individuals [59].

The Affymetrix GeneChip Human Mapping 500K array set is a common geno-
typing platform used in many GWAS [18, 69, 70, 71, 72] . Hence the genotype calling
algorithm recommended by Affymetrix for use with the Affy 500K arrays, Bayesian Robust
Linear Model with Mahalanobis distance classifier (BRLMM) [11], one of the most widely
used algorithms for producing genotype calls. BRLMM is a multi-chip clustering algorithm
that assigns calls after a SNP RMA (Robust Multiarray Average) process of normalization,
transformation, and summarization of probe level intensities for the ‘A’ and ‘B’ alleles. The
ability to simultaneously call genotypes for a set of samples at multiple loci has been shown
to improve accuracy due to better estimation of genotype (AA, AB, BB) cluster centers [11].
One issue with a multi-chip approach is the introduction of batch effects on the resulting
genotype calls. Recent research has shown that discordant results can arise due to changes
in both batch size (the number of samples processed simultaneously through BRLMM at a
time) and batch composition (including or separating cases and controls and/or heteroge-
neous samples from different populations in batch sets) [14, 15, 17].

Using a sample of 816 cases for type 1 diabetes and 877 controls for 6,322 SNPs,
Clayton et al. [14] found that the clustering clouds for the three genotypes differed posi-
tionally for cases and controls and can result in ambiguous genotype calls when samples
are combined. Yet in their study, it is noted that calling cases and control separately may
also lead to overdispersion of the test statistic in association testing. Moreover, using high
thresholds in QC and only calling genotypes with high confidence can lead to differential
bias due to non-independence in genotypes set to missing; as well as possibly excluding
valuable data. Miyagawa et al. [39] also found that the effects of differential bias due to
genotype errors can be remedied with stringent QC (namely SNP call rate), but their QC
steps resulted in excluding approximately 250,000 SNPs from the Affymetrix 500K array
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in their study. Anney et al. [16] reported Type I error rates in a simulated case-control
association study up to 59% when up to 5% non-random missingness was generated in the
set of case subjects. Such findings indicate that while it may be inadvisable to call cases and
controls together (due to differences in data collection, DNA source and preparation etc..),
calling cases and controls separately can lead to differential bias that inflate the test for
association. Moreover, Plagnol et al. [15] state that allowing different a priori frequencies
for genotype clusters in calling algorithms between cases and controls conflicts with the null
hypothesis of no association with genetic markers and case-control status.

Hong et al. [17] used the 270 HapMap samples for the Affymetrix 500K array set
to evaluate batch size and composition effects on call rates and genotype call concordance.
Batch sizes of 30, 45, and 90 individuals were shown to have concordance rates for both
homozygous and heterozygous calls above 99.9% yet also showed significant differences in
sample and SNP call rate results. Similar findings were reported for batch composition
where batches were comprised of combinations of Asian, African, or European HapMap
samples. Hong et al. [17] also demonstrated that batch differences can be propagated to
association testing results by treating one of the HapMap populations as a ‘case’ and the
others as a ‘control’ to mimic a case-control study. A primary recommendation from the
study was use of larger batch sizes and homogeneous (in terms of ancestral population
background which are well known to have allele frequency differences) batch compositions.
Such results highlight the fact that batch effects can significantly influence the outcome of
a study and necessitate a better understanding of batch effect behavior in the BRLMM
algorithm extended to GWAS with thousands of individuals. In our study, we extend
the evaluations of BRLMM batch effects to better understand the implications on further
downstream analysis of a case-control study.

Using 3491 individuals obtained from the Wellcome Trust Case Control Consor-
tium (WTCCC) [18] for coronary artery disease, CAD (1991 individuals), and a set of
controls (1500 individuals) for the Affymetrix 500K array set, we determined how batch
size (on a larger scale) and composition! (using case and control sample combinations)
affects the results of common quality control steps in GWAS and subsequent association

testing. We show that both batch size and composition can greatly change the results of

!Note that here batch composition has a different interpretation from the study by Hong et al. [17] as
we are looking at cases and controls assumed to be from a homogeneous population as opposed to different
major world populations.
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GWAS in terms of the set of SNPs that pass QC as well as the set of SNPs determined to
be highly significant. Through evaluation of subject-specific differences in the probability
for a marker to pass QC and subject-specific differences in the probability for a SNP to be
deemed significant, our results show that batch size and composition and their interaction

have both practical and statistically significant effects on GWAS.

4.2 Results

Five datasets of genotype calls were generated under different levels of batch size
and composition for the WTCCC data (see Section 4.4): C500, C2000, C3500, S500,
and S2000, where the dataset label conveys the batch composition (Combined or Separate)
and size (500, 2000, 3500) used in the BRLMM algorithm. These datasets were then all
subjected to identical quality control steps and subsequent association testing. Results
of QC and testing were utilized in generalized linear mixed models to test if batch size
and composition (and their interaction) significantly changed the result of both QC SNP

exclusion and significant disease association.

4.2.1 Quality Control

Quality control to exclude both individuals and markers prior to association test-
ing was carried out for all the datasets. Figure 4.1 shows work-flows of the number of
individuals (top figure) and number of SNPs (bottom figure) excluded at each QC step.
The resulting number of individuals and SNPs given in the far right boxes for each dataset
was subsequently used for SNP association testing. For individual exclusion, there is a
slight trend in more individuals being excluded with a call rate less than 97% as batch size
increases for both combined and separate batch compositions. This trend was also followed
for the QC exclusion step for SNPs with a minor allele frequency less than 1% or a call rate
less than 95%. As batch size increased, many more SNPs were excluded due to low call rates
(minor allele frequency differences were negligible, results not shown), indicating that the
number of samples ran simultaneously through BRLMM seems to be negatively correlated

with the confidence? of the genotype call (the threshold for setting a SNP either to a geno-

2We define confidence as 1 minus the ratio of the distance of the closest genotype cluster over the second
closest cluster. See Section 4.4 for more detail.
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Figure 4.1: Results of quality control for excluding individuals (top figure) and SNPs (bot-
tom figure) from association analysis for each of the five datasets.
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type or missing). Quality control results for SNPs show that for batch composition, more
SNPS tended to have significant differences in call rate between cases and controls when
cases and controls were called in separate batches. From the bottom chart in Figure 4.1, a
much larger proportion of SNPs were found to have highly significant proportions of missing
data for cases vs. controls even after excluding markers with more than 5% missing calls
overall. The number of SNPs that passed QC steps indicated that as batch size increases,

our QC protocol excluded a larger amount of SNPs for both levels of batch composition.
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Figure 4.2: Five-way Venn diagram of the counts of SNPs excluded from each dataset as a
result of the QC process.

Batch effects not only influenced the number of SNPs that were excluded by QC;
the sets of SNPs excluded included thousands of discordant results. While the number of
SNPs dropped from a given batch set was approximately 110,000 to 116, 000; only 107,217
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loci in common were excluded in all 5 datasets. The proportion of discordant SNPs due to
QC between two batch sets is no greater than 2%, yet this translates to several thousand
markers that were dropped due to QC for genotype calls from one batch size and composition
formulation but were analyzed for significant associations in another. The Venn diagram in
Figure 4.2 shows the breakdown of all SNP counts that were either concordant or discordant

across batch sets.

4.2.2 Association Testing Results

Markers that survived QC were deemed significant using an o = 5.0 x 10~7 thresh-
old for the trend test for association with CAD status in each of the 5 batch sets. Figure 4.3
displays the p-values for SNP calls from C500, C2000, C3500, S500, and S2000. The top
plot in Figure 4.3 reports the — log 10(p-value) across the genome sorted by Chromosome
and Mb position and aids in understanding the overall trend in the behavior of the p-values
among the different batch sets. In all batch sets, several SNPs in the chromosome 9 region
were highly significant (similar to findings in the original WTCCC analysis). The results
for S500 indicate a genome-wide trend of higher p-values that is constant across all chro-
mosomes. C500 also shows similar results of slightly more inflated p-values in comparison
to the batch sets of C2000, S2000, and C3500 (which appears to have the lowest trend in p-
value magnitude). The bottom scatter-plot matrix in Figure 4.3 plots the pairwise p-values
for each batch set on the —log 10 scale for all SNPs that passed QC in both datasets. The
solid gray indicates the 45° angle and the dotted gray lines fall at the a = 5.0 x 1077 level
[18]. Points that fall off the diagonal line indicate SNPs with discordant p-values and any
SNPs in either of the two off-diagonal rectangles boxed in by the dotted lines are those that
result in differential significance decisions. There was very little discordance found between
the C2000 and C3500 batch sets while S500 has the most discordance in comparison with
all other datasets. Overall, discordant p-values tended to be more significant in data with
separated case-control batch composition and smaller batch sizes.

One of the main goals of this study was to evaluate how the list of SNPs that
are deemed statistically significant is influenced by batch variations for genotype calling
with the BRLMM algorithm. Figure 4.4 contains Venn diagrams representing the counts
of SNPs with a p < 5.0 x 10~7 for one batch set compared with results from another batch

set. Five pairwise comparisons were of interest to interrogate effects of batch size (C500
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Figure 4.3: Genome-wide scatter plots of p-values for each dataset (top figure) on the -log10
scale. Chromosomes are alternatingly colored for distinction. The bottom figure shows the
pairwise comparisons of the -log10(p-values) between C500, C2000, C3500, S500, and S2000
datasets. Points that fall off the diagonal line indicate discordant results, the dotted line is
the 5.0 x 1077 significance threshold. Only markers that passed QC in both datasets are
plotted.
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vs. C2000, C500 vs. C3500, and S500 vs. S2000) and composition (C500 vs. S500 and
C2000 vs. S2000). The areas of the circles that do not overlap show that with the same
data (allele intensities), different batch processing can produce highly discordant lists of

significant findings.
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Figure 4.4: Counts of concordant/discordant significant SNPs (p < 5.0 x 10~7) among
datasets. The Venn diagrams above the bars indicate the number of SNPs that were found
significant in either or both data sources for pairwise comparisons of: C500 vs. C2000,
C500 vs. C3500, S500 vs. S2000, C500 vs. S500, and C2000 vs. S2000. The bars below
the Venn diagrams represent the count of discordant significant SNPs for that Venn (i.e.
the area where the circles do not overlap), broken down by differences due to QC exclusion
or association testing. Bar color indicates the source of differential results and the color
legend corresponds to the order of the comparison labeled on the X-axis.

For each Venn diagram, the source of discordance (non-overlapping circles) can be
categorized as due to quality control (a SNP was excluded and hence missing in one dataset

but found significant in another) or due to differential test results (the SNP passed QC in
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both datasets but was only found significant in one batch set). The bars below the Venn
diagrams represent the source of discordance for that pairwise batch set comparison and
are broken down by color where black corresponds to the SNPs that were missing (excluded
due to QC) in the first dataset in the comparison label but found significant in the second
batch set. Light gray corresponds to discordant SNPs found significant in the first batch
set but QC excluded in the second. Dark gray indicates the significant SNPs in the second
batch set that were not significant in the first. Finally medium gray corresponds to SNPs
found significant in the first batch set in the comparison but not in the second. Using
the first bar on the left as an example, black (at the bottom of the bar) represents the
count of SNPs that were found significant in C2000 but were excluded due to QC in C500
(i.e. missing in 1% dataset listed on the X-axis label), light gray (second color from the
bottom) is the count of discordant SNPs that are significant in C500 but QC excluded in
C2000, the darker gray is the number of SNPs that were significant in C2000 but not in
C500 (differential testing) and the medium gray is the count of SNPs that were significant
in C500 but not in C2000. The medium and light gray portions of the bar correspond to
the SNP count in the left non-overlapping Venn diagram portion, while the black and dark
gray add up to the count found in the right non-overlapping portion of the Venn diagram
circle.

The largest amount of overall discordance was found between C500 and S500 and
also shows by far the largest amount of discordance due to association testing results. The
comparison S500 vs. S2000 shows the largest amount of discordance due to QC exclusion
where many SNPs that were found significant in S500 were excluded due to QC in S2000
(light gray). Comparisons of different batch sizes showed a much higher proportion of
discordance due to QC exclusion as opposed to test results in contrast to batch composition
comparisons. The discordance for C500 vs. C2000 and C500 vs. C3500 showed similar
patterns, indicating that an increase in the magnitude of the batch size differences beyond
2,000 did not appear to influence results. While C500 vs. S500 showed the most discordance,
C2000 vs. S2000 showed the least; hence the effect of batch composition was less severe (in
terms of the significant SNP list results) for a larger batch size and suggests an interactive
effect of batch size and composition. The take-away information obtained from Figure 4.4
is that BRLMM calls using larger batch sizes where cases and controls are combined within

batches leads to more conservative, yet more concordant, results for significant association.
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4.2.3 Stringent Call Rate Threshold Evaluation

Miyagawa et al. [39] found that stringent data cleaning (particularly SNP call rate
thresholds) could reduce the false positive rate to nominal levels (which eliminated over 50%
of SNPs in the study). We found that by increasing the SNP call rate necessary to pass QC
to 99% we could eliminate nearly all differential significant SNP results in the 5 datasets.
Table 4.1 gives a list of loci that were found to be significant at the chosen threshold of
5.0 x 10~7 for any of the datasets tested. All concordant significant SNPs are found on
chromosome 9 in the region of SNP rs1333049, the locus also reported by WTCCC. Of the
two SNPs with discordant significance results, rs7865618 was found to not be significant in
S2000 by the slightest of margins while rs16846351 was excluded due to QC in all but S500.
While these results may be encouraging that appropriate data cleansing will eliminate the
effects of genotyping errors, using such a stringent SNP call rate threshold forces 40-50% of
the data to be excluded from analysis; which is not optimal in association studies geared
toward discovery. Under the additional QC constraint, a little under 100,000 additional
SNPs did not pass quality control for each dataset leaving SNP counts of 305,984 for C500,
298,382 for C2000, 297,165 for C3500, 308,473 for S500, and 301,511 for S2000 that were

used in association analysis.

Table 4.1: List of p-values for concordant and discordant SNPs that were found significant in
at least one dataset with a p-value below 5.0 x 10~7 when using a SNP call rate threshold of
99% to pass quality control steps. ‘QC’ indicates that the SNP did not pass quality control
and was not tested for association and ‘*’ indicates a p-value that was not significant.

SNP Chr. Pos. (Mb) C500 C2000 C3500 S500 S2000

Concordant

rs10965219 9 22.04 1.2x1077 13x1077 85x1078% 19x1077 15x10°7

1rs9632884 9 22.06 1.7x1079 26x1072 25x1079 19x1079 34x107°

rs6475606 9 22.07 6.3x10710 38 %1070 7.6x10719 3.6x10710 7.3x 10710

rs4977574 9 22.09 1.6x10710 86x1071 9.0x1071 1.2x10719 1.3x10710

rs2891168 9 22.09 20x10710 11x1071° 1.5%x10719 1.3x10710 2.0x10710

rs1333048 9 22.12 70x10712 47x10712 79x10712 47x10712 7.6x 10712

rs1333049 9 22.12 21x10712 83x10713 21x10712 32x107'2 44x10712
Discordant

rs7865618 9 22.02 42%x1077 63x107™ 50x1077 38x1077 45x1077

rs16846351 1 224.91 QC QC QC 9.0 x 10714 QC
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4.2.4 Statistical Tests for Batch Effects

A generalized linear mixed model (GLMM) approach was used to estimate the
statistical effect that batch size and composition has on QC and association testing in
GWAS. In striving for a more simple balanced design without losing information on batch
size and composition, the C3500 batch set is not included in the models. Figures 4.1 and 4.2
clearly show differences in the counts of SNPs that pass QC among the batch sets. In order to
test those differences, we built a GLMM to model the probability of a SNP passing QC ( Y
coded as ‘0’ if the SNP passes QC and ‘1’ if the SNP is excluded in each dataset) dependent
on different levels of batch size, composition, and sizexcomposition. A SNP identifier is
incorporated as a random effect to account for correlation due to the fact that the same
SNP is genotyped in each of the batch sets. An additional GLMM was fit for modeling the
probability of a SNP deemed significant (Y2 = 1) using o = 1.0 x 107°, a threshold that was
used in the WTCCC original analysis as a second-tier cutoff for moderate significance that
could be recommended for follow-up replication studies. We also found this new threshold
to be a statistically appropriate cut-off by visual inspection of the quantile plots given in
Figure 4.5, which show that differential divergence from the expected distribution of p-values
for the batch sets begins around the o = 1.0 x 107 level (corresponding to — log 10(p) = 5).
We will refer to the GLMM for QC exclusion as Model I and the GLMM for SNP significance
as Model II; see Section 4.4 for further details on the implementation of the logistic models
with batch size and composition as fixed effects and SNP as a random effect.

A set of hypotheses were formed to test for subject-specific (i.e. SNP-specific)
differences between levels of batch size and composition. Table 4.2 gives the format of
the X3 design matrix and parameter vector for the fixed batch effect levels: C500, S500,
C2000, S2000. This table is useful for interpreting hypothesis tests given in Table 4.3.

Table 4.2: Format of the X 3 design matrix and parameter vector for fixed effects modeled
in the GLMMS. This table serves as a guide for forming hypothesis tests.

Size  Composition Xp

500 Combined Gy + 51
500 Separated Gy + (2
2000  Combined (g + O3
2000  Separated Gy + B4
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Figure 4.5: Overlaid quantile plots show the distribution of p-values for each of the five
datasets on the —log 10 scale. The X-axis plots the expected p-value under the Uniform
distribution while the Y-axis is the observed p-values. The black solid line represents the
45° angle.

Using the GLMM framework, we tested seven hypotheses for both Model I and Model 1T
to estimate subject-specific differences (the difference in probability estimates between a
SNP genotyped by one batch set vs. that same SNP genotyped in another batch set). Two
overall main effect tests for Size and Composition, and a third hypothesis test for the
overall interaction of Size x Composition were performed. The remaining four tests are for
simple interaction effects to determine subject-specific differences across levels of batch size
at each level of batch composition and vice versa. The result of these tests for Model I and
IT are presented in Table 4.3.

Due to the extremely large sample size, the power to detect significant differences
is extremely high; thus we do not try to use a significance threshold to evaluate p-values
(although for Model II there were instances of p-values that are relatively large due to more
variability in the estimates as there was a much smaller proportion of data where Y, = 1).

Instead it is more informative to look at the direction and magnitude of the estimates; which
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Table 4.3: Estimates and p-values for contrasts (and the associated hypothesis tested) from
two GLMMs to test for significant subject-specific differences in QC exclusion and associ-
ation testing significance results between batch size and composition levels. The estimates
are in the form of the log odds ratios associated with the contrast. ‘Exclusion’ in the Mod-
eling Probability column indicates the random effects logistic modeling of probability that
a SNP was excluded due to QC from analysis (Model I) , while ‘Significance’ indicates the
modeling of probability that a SNP was deemed significant at p < 1.0 x 10~ (Model II).

Contrasts Hypothesis Tested Modeling Estimate P-value
Probability
: —300
L (B1—B3)+(B2—PB1) Exclusion -1.725 1.0 x 10
500 vs. 2000 Ho : 2 =0 Gignificance  0.912 1.8 x 10°13
. —23
. (B1—B2)+(Bs—Ba) _ Exclusion -0.196 2.1 x 10
Combined vs. Separate Ho : 2 =0 Significance  -0.415 8.1 x 10~
. —50
. ey L (B1—B3)—(B2—P1) _ Exclusion 0.292 9.7 x 10
Size x Composition Ho : g =Y Significance  -0.217 8.0 x 102
500 vs. 2000. Combined Hy: By — B =0 Exclusion -1.434 1.0 x 107300
' ’ 0- PP = Significance  0.695 2.3 x 1074
Exclusion -2.017 1.0 x 107300
500 vs. 2000, Separate Hy:06:—04=0

Significance ~ 1.129 2.2 x 10712

Exclusion 0.096 1.3 x 1073

Combined vs. Separate, 500 | Hyp: 1 — (B2 =0 Significance 0.632 9.5 % 10~6

Exclusion -0.488 1.7 x 10780

Combined vs. Separate, 2000 | Hy: 83— 84 =0 Significance 0,198 3.4 % 10-1

are the log odds ratio of the probabilities of Y; = 1 for the contrasts specified in the table.
For Model I, Table 4.3 reports a large negative estimate for the ‘500 vs. 2000’ Contrast
(—1.725 for the QC Exclusion modeling probability) which indicates there is a much higher
probability for a SNP to be excluded from QC in the batch sets of size 2000 than for the
same SNP to be excluded in the 500 batch size sets. The main effect contrast for ‘Combined
vs. Separate’ is also negative, yet is of a much smaller magnitude. More importantly, the
contrast Size x Composition shows strong evidence that there is an interactive effect of

batch size and composition that influences the probability of a locus being excluded due
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to QC. The following simple interaction effect contrasts show that there is a large subject-
specific difference in probabilities for batch sizes of ‘500 vs. 2000’ when batch composition is
separate (—2.017 compared to —1.434 estimate when ‘500 vs. 2000, Combined’). For simple
interaction effect batch composition contrasts, there is very little evidence of subject-specific
differences in QC results for the ‘Combined vs. Separate’ contrast at batch size of 500 (0.096
estimate with a p-value =.0013). The ‘Combined vs. Separate’ simple interaction effect for
size 2000 reported more evidence of differences, indicating that separated batch composition
at a batch size of 2000 has a higher probability of a SNP not passing QC; referring back to
Figure 4.1, these differences are caused by more SNPs with a lower call rate and more SNPs
with significant trends in missing data between cases and controls. The contrast estimates
for Model I, modeling the probability of QC exclusion, show that batch size differences have
a larger effect on quality control results than does batch composition; although the effect
of batch size is slightly less severe for a combined batch composition.

Estimates are generally smaller in magnitude for Model II (Modeling Probability
is notated as Significance in the table) compared to Model I, evidence that batch effects
influence the results of QC much more strongly than association test results. For Model
II, the batch ‘Sizex Composition’ interaction is relatively insignificant at a p = .08. Batch
size differences again result in the most subject-specific differences in the probability of
a SNP being significant (0.912 log odds ratio for ‘500 vs. 2000’ batch size contrast with
p = 1.8x10713) with more significant SNPs expected to be found at a batch size of 500. The
batch composition main effect contrast indicates a higher probability of significant findings
for the separated composition as compared to combined batch sets (—0.415 log odds ratio).
The simple interaction effects corroborate these results.

It is important to note that while the estimates for the hypotheses tested in
our models showed strong evidence of highly differential results, the subset of discordant
outcomes for SNPs across the 4 batch sets was still very low. Overall concordance for
the outcome of a SNP to pass QC or to be excluded from analysis in all 4 batch sets
was 489,931/500,568 = 97.88%. Overall concordance for association testing (using the
1.0 x 1075 threshold to assign a significant result) was 382,480/393,143 = 97.29% when
including differential QC results. For SNPs that passed QC in all 4 batch sets, overall con-
cordance in association testing was 382,480/382,506 = 99.993%. In smaller scale studies,

these concordance rates would be encouraging. Yet when over 500,000 SNPs are tested, dis-
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cordance of up to 2-3% can dramatically change the outcome of association testing (largely
due to differential QC results) as this translates to thousands of markers influenced by batch

effects.

4.3 Discussion

We show that batch size and composition considerations can produce discordant
results in terms of quality control decisions as well as the final list of significantly associated
SNPs for GWAS data using the WTCCC CAD disease dataset as an example. Figure 4.1
and Figure 4.2 make it clear that increasing batch size from sets of 500 individuals called
by the BRLMM algorithm to sets of 2,000 or 3,500 results in more SNPs being excluded
from analysis under typical quality control thresholds, as well as differential sets of SNPs
that pass QC. Additionally, batch composition differences results in more discordant results
at a batch size of 500 as opposed to 2,000. Subsequent testing of association with disease
status is also highly affected by batch changes, in large part due to the differential SNPs
that passed QC but also due to different trends in the magnitude of p-values as seen in
Figure 4.3. These discordant results in quality control and p-value results propagate to
the list of SNPs that are deemed significant for the different batch sets as evidenced in
Figure 4.4.

Using generalized linear mixed models, we show that batch size and composition
effects have a highly significant impact on results of GWAS and while stringent quality
control could eliminate much of the discordance, it would also result in a drastic loss of
potentially useful data. These results indicate that careful consideration to the implemen-
tation of the BRLMM algorithm with the Affymetrix 500K array set should be taken to
ensure more reproducible concordant results. The Wellcome Trust Case Control Consor-
tium also found issue with the BRLMM algorithm and proposed a new calling algorithm
CHIAMO in the course of their work [18]; which was used to process their samples in one
single batch. Other recent research by Carvalho et al. [12] and Lin et al. [13] propose the
use of modified normalization and summarization steps for better genotype calls with the
method CRLMM. Another algorithm called Birdseed that is tailored for the Genome-Wide
Human SNP Array 6.0 has also been introduced by Affymetrix (see their website for further
details), although it is still recommended to use BRLMM for the 500K array set. More re-
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search and study is needed to evaluate how batch considerations affect the results of these
alternative genotype calling algorithms. Alternatively, a promising focus is on better clus-
tering methods adapted to allow for differences in genotype clusters in cases and controls as
proposed by Plagnol et al. [15], as such methods could help alleviate bias that is introduced
due to batch processing.

Differences in batch size and composition when using the BRLMM algorithm for
genotype calling can drastically change the results of a GWA study and are a potential
source for lack of reproducibility. Batches containing more individuals (a larger size) with
cases and controls combined resulted in more conservative, concordant association testing
results with the CAD case-control samples from the WTCCC, indicating there is a lower
probability of making Type I Errors with such a batch schema. Alternatively, the exclusion
of more loci from analysis due to QC could result in increases in Type II errors as a SNP
that may have been associated is not even tested due to QC thresholds. The opposite
is true for smaller batch sizes with cases and controls separated, where positive findings
are more likely to be spurious associations (as evidenced by higher instances of discordant
findings in our study). Imposing strict quality control measures can eliminate discordance
in association results due to batch variation, but also eliminates a large portion of data that
could have been informative. Thus there is a trade-off between high accuracy at the cost of
losing potentially informative data and increased discovery of possible variants associated
with disease that may contain a higher number of false positives.

Significance rules based on p-value cutoffs are not designed to be reproducible,
but rather to control Type I and Type II errors, so some discordance evident in Figure 4.4
may be due simply to the fact that we are determining significance by a p-value-based
criterion. A similar issue of discordance arose in the context of gene expression in the
MAQC I project [19]. A primary conclusion of that work was that filtering on both p-
value and fold change criterion can lead to more reproducible results. This suggests that
adding a criterion such as the absolute difference of the numerator of the association test
statistic (e.g. the Cochran-Armitage [31] x?) to current p-value filtering rules could enhance
concordance and/or reproducibility of genome-wide association testing results.

Decisions on batch size and composition should be based on the researcher’s goals,
discovery or accurate reproducibility, as well as careful attention to DNA collection and

preparation. It is recommended to use a combined batch composition in studies where cases
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and controls are prepared by similar labs and randomly assigned to plates for processing
to avoid differential bias due to varying patterns of missing data in cases and controls
(although a test for this as a quality control step alleviates some of the bias) or to employ
methods such as those developed by Plagnol et al. [15]. In all follow-up, collaborative, and
replication studies it is paramount to use a common genotype calling algorithm and batch
schema to have comparable results. Another possible approach would be to analyze the
allele probe intensities directly to avoid genotype calling errors. Future research into the
behavior of batch effects in other popular calling algorithms such as Birdseed, CRLMM, and
CHIAMO is necessary for researchers to make an informed choice for genotyping platform

and genotype calling algorithm and is currently under study by the MAQC GWAWG.

4.4 Materials and Methods

4.4.1 WTCCC Data

The raw data was obtained from the Wellcome Trust Case Control Consortium, an
organization of several research groups aimed at better understanding genetic variants and
complex disease heritability through GWA studies. The CEL files of the 1500 individuals
from the UK Blood Service Control Group and the 1991 CEL files of individuals that are
cases for coronary artery disease (CAD) on the Affymetrix GeneChip Human Mapping 500K
array were used to form batches for processing in the BRLMM genotype calling algorithm.
The Affymetrix 500K array set consists of two arrays, Nsp and Sty, with approximately
262,000 and 238,000 SNPs on each, respectively.

4.4.2 BRLMM Genotype Calling
Algorithm

BRLMM is a multi-chip genotype calling algorithm that estimates cluster centers
and variances for each genotype A/A, A/B, and B/B. The genotype call and associated
confidence score is then decided using Mahalanobis distance to the cluster centers. The
confidence score for the genotype call is derived by the ratio of dj/de where d; is the
smallest distance to a genotype cluster (resulting call) and ds is the distance to the next

closest cluster [11]. In this work, we refer to the confidence of the call as 1 — d;/ds so
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that higher confidences indicate that the genotype call is more likely to be accurate. If this
confidence falls below a certain threshold, the genotype call is set to missing [11]. The ‘B’ in
BRLMM is a Bayesian step that employs the use of DM [9], a single-chip algorithm that calls
genotypes one SNP at a time on a sample of SNPs to estimate priors for the cluster centers
and variances. The BRLMM algorithm has been shown to produce higher call rates and
improve accuracy in comparison to DM, and has now become the recommended algorithm

by Affymetrix for their 100K and 500K array sets.

Implementation

BRLMM calling was performed using the Affymetrix Power Tools (APT) version
1.10.2 that is available for download from http://www.affymetrix.com/. BRLMM is imple-

mented in the ‘apt-probeset-genotype’ application of the package and all default parameters,
except those to control batch size to match our experimental design, were used (which in-
cluded the use of 0.5 as the confidence threshold for reporting a SNP call as missing). Chip
description files (CDF) for Nsp and Sty arrays were used for genotype calling and were
downloaded from the Affymetrix website as well. Genotype calls were done for the Nsp and
Sty arrays separately and tab-delimited text files of calls were outputted for each array and

batch.

4.4.3 Batch Effect Schema

Several runs of the BRLMM algorithm were performed under the experiment de-
signed to estimate batch effects due to size and composition differences (i.e. the number
of CEL files processed simultaneously and the case-control status of the samples processed
within a batch). Three levels of batch size were used: 500, 2000, and 3500 samples (ap-
proximately) in each batch. Two levels of batch composition were employed: Separated (S)
with cases and controls in different batches, and Combined (C) with a 1.25:1 ratio of cases
to controls were randomly assigned to batches. For the final analysis, five different datasets
of genotype calls for the 3491 samples were used and notated as follows: C500 contained
genotypes called from BRLMM in 7 batches consisting of 285 cases and 215 controls for a
combined batch composition of size 500, C2000 genotypes were called in two batches of

995 cases + 750 controls, C3500 was created with one single batch of the 3491 samples,



73

S500 used 4 batches of 500 cases and 3 batches of 500 controls, and S2000 consisted of one
batch of 1991 cases and one batch of 1500 controls. Note that due to the unequal number
of 1991 cases, the batches may have contained one more or less samples for that scenario.
This design allows for the quantification of the effect of both batch size and composition as
well as the interaction of the two effects. Due to the fact that our design is unbalanced with
the inclusion of C3500, this dataset is not used in the formal statistical models we form to
test significant changes in QC exclusion and significant test results; although it is utilized

to elucidate trends in results due to increasing batch sizes.

4.4.4 Quality Control and Association Analysis Methods

Each text file produced by BRLMM was imported into JMP Genomics Statistical
Discovery Software from SAS Institute for analysis. The genotype data for all batches
over the Nsp and Sty arrays were merged and formatted into a wide dataset with rows
corresponding to individuals and columns as markers. SNP annotation data was downloaded
from the Affymetrix website. For each dataset the following QC steps were carried out.
To eliminate low quality chips, individuals with a call rate less than 97% were excluded,
further individuals were dropped if their average heterozygosity was below 25% or exceeding
30% (empirical threshold used in the original data analysis by the WTCCC [18]). After
low quality individuals were dropped, SNP quality control consisted of three steps. First
markers with either a minor allele frequency (MAF) less than 1% or with a call rate of less
than 95% were excluded. Remaining markers were then filtered using a x? one degree of
freedom trend test of significant differences in the proportion of missing data between cases
and controls. Finally SNPs that failed the test for Hardy-Weinberg Equilibrium (HWE) in
the set of controls were also eliminated from further analysis. Significant results for the test
of a trend in missing data between cases and controls and the HWE test were determined
using o = 5.7 x 1077, an empirical threshold used by the original WTCCC study. See
Figure 4.1 for all counts of individuals and loci excluded for C500, C2000, C3500, S500, and
S2000 data.

The SNPs that passed QC were tested for significant associations with disease
status, coronary artery disease, by the Cochran-Armitage trend test [31] for additive allele
effects for each of the five datasets. SNPs were classified as significant if the p-value from

the one degree of freedom y? test was less than 5.0 x 10~7 (a commonly used threshold for
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uncorrected p-values [18, 68])and differential SNPs for batch sets were compared. To study
the effect of stringent quality control measures, a second statistical association analysis was
performed for SNPs that passed all previous QC steps as well as had a call rate no less
than 99%. The set of SNPs that were significant at o = 5.0 x 10~7 were again evaluated

for differences among the five batch sets.

4.4.5 Generalized Linear Mixed Models to Test Batch Effects

Generalized Linear Mixed Models (GLMMs) were performed using the NLMIXED
procedure in SAS/STAT version 9.2 in order to estimate subject-specific batch size compo-
sition and size x composition effects for modeling the probability of a SNP passing quality
control and for modeling the probability of a SNP being deemed significant. The model is

given as
Pr(Y; = 1|x)

1 —— =X Z 4.1
where X is the design matrix for fixed effects (batch size and composition) and Z is the
design matrix for the random effect, SNP (to account for the 4 responses at each unique
SNP that was genotyped in the 4 batch sets C500, S500, C2000, S2000). The SNP random

2 is the covariance

effect is assumed to follow a v; ~ Normal(0,02) distribution, where o

within each unique SNP. A logit link function was used to model the probability that a
marker passes QC dependent on the batch effects (Model I) where the response is coded as

0 for each SNP that passed QC steps
1 for each SNP that is excluded due to QC.

Y, =

Model IT models the probability of a SNP being deemed significant given a batch size and

composition using the response Y5 coded as

0 for each SNP that passed QC but is not significant

Y, =
1 for each SNP found signficant at p< 1.0 x 107°.

For Model II, SNPs that did not pass QC in a batch set were set to missing for Y5 and if
the SNP was excluded from all batch sets by QC it was not used in the model.
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Conclusions and Avenues for

Future Research

5.1 Bias Due to Population Structure

Population structure can result in bias in genetic association studies when dif-
fering allele frequency patterns exist at loci due to ancestry and there is disproportionate
sampling of cases and controls across population groups. In Chapter 2 we show that SNPs
with evidence of Hardy-Weinberg disequilibrium form a substructure-informative SNP set
that better quantifies population structure than using randomly selected loci. HWD SNP
selection is also shown to work well in avoiding the confounding influence that blocks of
linkage disequilibrium may have on inferring structure among individuals. Visualization us-
ing nonmetric multidimensional scaling with HWD SNP selection provides a more faithful
representation of population structure than PCA as evidenced by simulated applications
as well as examples using HapMap data. PCA, which produces coordinates that maximize
explained variance, is prone to the influence of outliers as well as producing projections
that can inordinately separate the data; whereas NMDS finds coordinates that most closely
represent the relationships between individuals in a full distance matrix (as measured using
Identity-By-State distance in our studies). This important distinction also helps NMDS
to avoid producing coordinates that over-estimate the amount of population differentiation
that exists. NMDS is also shown to better quantify multiple levels of population structure

that exist both between and within population groups.



76

In Chapter 3 we extend the use of NMDS coordinates to develop an association
testing model that incorporates the coordinates as covariates to better control for population
stratification in disease association studies. Nonparametric clustering was also employed to
classify individuals to groups for better quantification and control of bias due to discrete
population group membership. When loci exhibit more extreme population differentiation
than evidenced by the coordinates produced from PCA or multidimensional scaling meth-
ods (CMDS and NMDS), the EIGENSTRAT method is unable to control Type I error at
the nominal level; meanwhile the covariate models using CMDS and NMDS correct the
bias appropriately. In a realistic simulation study, NMDS is shown to be significantly more
powerful when multiple associated loci in the set of SNPs used to infer structure exist,
providing evidence that NMDS coordinates are more robust to the contamination of mark-
ers that elucidate case-control structure as opposed to population structure. The use of
nonparametric clustering in our NMDS method is also shown to be more sensitive to subtle
structure in comparison with k-medoids clustering using the Gap statistic employed in the
CMDS model.

The NMDS model we propose is a simple, easily applied model for testing for SNP
association in the presence of population structure. The NMDS coordinates are shown to
adjust for structure both between and within population groups. This provides promise
for NMDS application when possible relatedness exists between individuals. Association
studies, particularly those studying plants, that contain samples with complex pedigree
structures as well as population structure (such as different species for crop studies) have
favored the use of the ‘Q+K’ mixed model approach proposed by Yu et al. [33] and modified
by Zhao et al. [34]. Such a model, which uses coordinates from PCA as a fixed effect and
an estimated kinship matrix to define a random effect, is favored in studies where multiple
levels of relatedness exist and may influence disease behavior. Our research with NMDS
suggests that substituting NMDS coordinates as a fixed effect in this mixed model may
provide more accurate, less biased results and is an avenue for future research.

Another promising area of research is application of clustering tools and NMDS
visualization to better quantify structure on the marker level (i.e. LD patterns across the
genome). It is well known that patterns of linkage disequilibrium show high variation across
the genome as well as across different populations of individuals. Understanding the struc-

ture that exists between markers and integrating that knowledge with association results
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can aid in the discovery of biological pathways and systems that explain the heritability of

complex genetic diseases.

5.2 Bias Due to Genotype Calling

The analysis in Chapter 4 shows that another source of bias and unreliable results
of association studies is batch processing differences in genotype calling algorithms. The
novel approaches we employ to quantify batch effects in GWAS indicate that it is crucial to
carefully consider batch size and composition when using the BRLMM algorithm for GWAS,
particularly if the goals of the study include comparative analysis with previous findings
for a certain disease. More research into differential errors produced by current genotype
calling algorithms for the various SNP platforms is necessary to ensure high quality findings
and reliable results. Research into alternative analysis techniques for GWAS such as tools
to analyze the allele intensity signals directly (avoiding genotype calling algorithms) could
potentially eliminate such errors. New technologies such as next-generation sequencing plat-
forms may also help solve issues of genotype errors, although at this time such applications
are not usually cost effective in comparison to current microarray technologies.

While bias in association studies is an ever-present concern, the research presented
in this thesis contributes to better visualization and correction for bias due to population
structure as well as addresses issues of technical bias due to genotype call algorithms. Such
contributions help advance the use of GWAS for producing dependable, replicable results

that aid in unraveling the complex nature of genetic diversity in organisms across the globe.
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A

Chapter 2 Supplementary Detalils

Here we provide details for Chapter 2: ‘SNP Selection and Multidimensional Scal-
ing to Quantify Population Structure’ which correspond to the Appendix A and the Online
Supplemental Material provided for the corresponding article published in Genetic Epi-
demiology

A.1 MDS Algorithm

There are many MDS algorithms for optimization of a stress function. We use
Stress Formula 1 and associated algorithm by Kruskal and Wish [49] implemented in SAS®)
Software via PROC MDS. The distinction of Metric MDS versus Non-metric MDS is the
transformation of the original dissimilarities. Metric MDS restricts the transformation to
be reflective of the scale of the metric (i.e. linear or absolute) while NMDS finds an optimal
monotone transformation; which allows a wider choice of dissimilarity metrics.

We employ a two-part alternating iterative algorithm to minimize the Stress func-
tion over both T'(D,s) and D, for all objects r = 1,...,N and s = 1,...,N. The first
component uses isotonic (monotonic) regression (Cox and Cox [40], pp. 47-51 ) with the

monotonicity constraint of preserving the rank order of the original dissimilarities D,.g:

Drs < Dtu = T(Drs) < T(Dtu)
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in order to obtain an optimal T'(-) for the model

A~

T(Drs) =Dps+e

where the Euclidean reduced dimension coordinates D, are initialized by a weighted average
of the data matrix. The second component minimizes the Stressl function (Equation 2.9)
by the Gauss-Newton algorithm using the gradient of Stressl with respect to D,; which
has been shown to exist and is continuous everywhere (Cox and Cox [40], pp. 58-60).
Other alternative (to the gradient method) algorithms include ASCAL (Alterna-
tive Least squares SCALing) and SMACOF (Scaling by Majorizing a COmplicated Func-
tion) (Cox and Cox [40], pp. 152-161) which may give slightly different coordination results

due to different Stress functions and methods.

A.2 Supplemental Material

A.2.1 Rogers’ Distance Manipulation

Recall the formula for computing Rogers’ distance given by Equation 2.3.

IIMh
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This equation can be simplified when applied to a bi-allelic locus with a; = 2, using the fact

that pp =1 —py1 and g2 = 1 — qi1.
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Moreover, in the case of computing Roger’s distance between individuals, p;; and ¢;1 can be

further simplified to p;; = x;/2 and g1 = y;/2, where x; and y; are once again the copies of



89

allele ‘a’ that Individual 1 and Individual 2 have respectively. This is true because generally
(at the I*" locus) p;1 = ny1/2n, where n is the number of individuals in the population and
ny1 is the number of copies of allele ‘a’ in said population. For a population with n = 1
individual, p;; will take values of 0/2 , 1/2 , 2/2 corresponding to the number of copies
of allele ‘a’ the individual has out of the total number possible at the I locus. With the
transformation of the allele frequencies, it is clear that Roger’s distance is equivalent to IBS

distance:
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A.2.2 Plots of Fit Statistics for NMDS

The Badness-of-Fit (BOF) criterion as well as the distance correlation measure are
useful statistics for evaluating the dimension choice for NMDS. The BOF measure is the
value of Stressl at the completion of the optimization process, while distance correlation
measures how correlated the observed distances are with the fitted Euclidean distances from
the NMDS coordinates for a given dimension. Many multivariate texts attempt to create a
rule to determine an adequate fit based on values of BOF, yet this is difficult to standardize
for all data and visual interpretation similar to the scree plot (as in PCA) is often more
appropriate. The fit plots for our simulated data under the four SNP set criteria are given
by Supplementary Figure A.1. If the data (SNP set) captures existing structure in the
data, the BOF will be low as structured data can be better explained in reduced dimension
as opposed to unstructured data. Hence, to pick dimensionality, evaluating the change in
BOF across dimensions is key. When a clear “elbow” in the BOF plot is not discernible,
the distance correlation plot helps in optimal dimension choice and is conceptually more
meaningful.

With our simulation, HWD SNP selection has the most clear choice of 2D visu-
alization as evidenced by the top two plots in Supplementary Figure A.1; which is also an
indication of the structure in the data captured by the HWD SNPs chosen. The rule of
thumb proposed with EIGENSTRAT postulates that if there exist K discrete populations,
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K — 1 axes will be required to capture significant PS variability. This can also be said of
NMDS for optimal visualization, but no longer be required as NMDS will still attempt to
capture the structure with fewer than K — 1 dimensions. This distinction marks a favorable
property of NMDS in comparison with methods based on eigen-analysis as NMDS will still
incorporate meaningful variability that may not be captured by the requested number of
principal components; hence NMDS is well suited for visualization (which becomes difficult

past two or three dimensions).

A.2.3 Confounding Effect of Systematic LD

In the creation of LD blocks in our simulation study, the assumption was made
that the blocks are generated independently (emulating blocks across chromosomes where
it is assumed there is no LD structure between SNPs from separate blocks). In other
words, LD was simulated assuming there was not systematic pattern of LD across the SNP
set. Alternatively if there exists LD (common in all subpopulations) across many markers
contribute to the same pattern of genotype frequencies for individuals, this will not only
confound the identification of population structure but impose a structure in the data itself
based on grouping individuals with similar genotypes across the markers in LD.

An alternative simulation was designed where two LD blocks were simulated in
reference to a single locus so that not only were SNPs within each LD block correlated,
but also between the two LD blocks. This would be similar to the scenario of an unknown
disease locus in LD with two separate regions of a gene with the same correlation pattern.
Under this simulation (with 5,000 SNPs that are in systematically structured LD and 5,000
substructure-informative loci) we again sampled 200 markers for 1000 individuals randomly
as well as 200 markers using HWD SNP selection with a p-value cutoff of 0.01. The resulting
NMDS as well and PCA (EIGENSTRAT correction) plots are given in S Figure A.2 and
clearly show that HWD SNP selection still correctly distinguishes the three subpopulations
while randomly chosen SNPs display structure due to LD generation instead of population
stratification. The principal components plots show similar results to NMDS and appear

to better distinguish Subgroup 3 from the other subgroups on the 2"¢ component.
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Figure A.1: Badness-of-Fit and distance correlation plots for calculations of NMDS coordi-
nates of 1 randomly drawn simulated population consisting of 1000 individuals (500 cases,
500 controls) using 200 markers to infer substructure population by the four SNP selection
criteria. Distance matrices were calculated using Gower’s Distance and MDS coordinates
were computed for each of the SNP selection methods (HWD SNPs, HWE SNPs, random
SNPs (RAN), and random, non-confounding SNPS (NCR)).
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Figure A.2: NMDS (top) and PCA (bottom) Dimensions using 200 HWD (p < 0.01) chosen
markers (left) and randomly chosen markers (right) for a simulated population of 1000
individuals (500 cases, 500 controls). Markers were chosen from a set of 10,000 generated

SNPs, half of which were generated with two blocks of LD under a systematic pattern.
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Table B.1: Type I Error estimates and associated standard errors for EIGENSTRAT,
NMDS, and CMDS (corresponding to power estimates for risk model R=1.3). Values in

this table correspond to plots C and D in Figure 3.2.

Disease SNP %

SNP Type

EIGENSTRAT

Classical MDS

Non-metric MDS

0%

1%

2%

3%

4%

5%

6%

%

8%

9%

10%

Random Null
Differentiated Null

Random Null
Differentiated Null

Random Null
Differentiated Null

Random Null
Differentiated Null

Random Null
Differentiated Null

Random Null
Differentiated Null

Random Null
Differentiated Null

Random Null
Differentiated Null

Random Null
Differentiated Null

Random Null
Differentiated Null

Random Null
Differentiated Null

0.053 (0.007)
0.127 (0.011)

0.049 (0.007)
0.116 (0.01)

0.042 (0.006)
0.106 (0.01)
0.046 (0.007
0.096 (0.009

(

(

0.046 (0.007

0.093 (0.009
(

0.047 (0.007
0.091 (0.009

0.05 (0.007)
0.091 (0.009

0.055 (0.007
0.082 (0.009

)
)
)
0.042 (0.006)
0.073 (0.008)
)
)
)
)

T = — =

0.062 (0.008
0.063 (0.008

0.048 (0.007
0.052 (0.007

o~~~ o~~~ —~ —

0.051 (0.007
0.033 (0.006

0.053 (0.007
0.037 (0.006

0.045 (0.007
0.038 (0.006

0.045 (0.007
0.038 (0.006

0.039 (0.006
0.040 (0.006

)
(0.006)
(0.007)
(0.006)
(0.007)
(0.006)
(0.007)
(0.006)
(0.006)
(0.006)
0.044 (0.006)
0.038 (0.006)
0.048 (0.007)
0.038 (0.006)
(0.007)
(0.006)
(0.007)
(0.006)
(0.007)
(0.006)
(0.007)
(0.006)

0.057 (0.007
0.037 (0.006

0.051 (0.007
0.041 (0.006

0.058 (0.007
0.039 (0.006

0.052 (0.007
0.040 (0.006

0.054 (0.007)
0.037 (0.006)

0.051 (0.007)
0.038 (0.006)

0.048 (0.007)
0.037 (0.006)

0.047 (0.007)
0.035 (0.006)

0.040 (0.006)
0.039 (0.006)

0.049 (0.007)
0.035 (0.006)

0.048 (0.007)
0.039 (0.006)

0.057 (0.007)
0.036 (0.006)

0.041 (0.006)
0.043 (0.006)

0.053 (0.007)
0.040 (0.006)

0.046 (0.007)
0.042 (0.006)




Table B.2: Power estimates and associated standard errors for EIGENSTRAT,
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NMDS,

and CMDS with relative risk, R=1.3. ‘Power*®’ indicates the power estimates of associated
SNPs that were also used in forming the coordinates in the respective dimension reduction

techniques.

‘Power’ reflects the estimates for associated SNPs not used in the NMDS,

CMDS, and PCA coordinate estimation. Values in this table correspond to plots A and B

in Figure 3.2.

Disease SNP % | SNP Type | EIGENSTRAT Classical MDS Non-metric MDS
0% Power 0.656 (0.015) 0.644 (0.015) 0.648 (0.015)
1% Power 0.650 (0.015) 0.654 (0.015) 0.652 (0.015)

Power* 0.637 (0.015) 0.640 (0.015) 0.646 (0.015)
2% Power 0.638 (0.015) 0.640 (0.015) 0.642 (0.015)
Power* 0.651 (0.015) 0.639 (0.015) 0.636 (0.015)
3% Power 0.641 (0.015) 0.633 (0.015) 0.639 (0.015)
Power* 0.633 (0.015) 0.622 (0.015) 0.630 (0.015)
1% Power 0.647 (0.015) 0.635 (0.015) 0.647 (0.015)
Power* 0.629 (0.015) 0.625 (0.015) 0.629 (0.015)
5% Power 0.648 (0.015) 0.649 (0.015) 0.651 (0.015)
Power* 0.623 (0.015) 0.621 (0.015) 0.640 (0.015)
6% Power 0.613 (0.015) 0.613 (0.015) 0.638 (0.015)
Power* 0.561 (0.016) 0.581 (0.016) 0.607 (0.015)
™% Power 0.532 (0.016) 0.554 (0.016) 0.604 (0.015)
Power* 0.489 (0.016) 0.538 (0.016) 0.602 (0.015)
8% Power 0.499 (0.016) 0.475 (0.016) 0.566 (0.016)
Power* 0.418 (0.016) 0.420 (0.016) 0.496 (0.016)
9% Power 0.425 (0.016) 0.416 (0.016) 0.498 (0.016)
Power* 0.326 (0.015) 0.317 (0.015) 0.434 (0.016)
10% Power 0.402 (0.016) 0.370 (0.015) 0.497 (0.016)
Power* 0.290 (0.014) 0.272 (0.014) 0.401 (0.016)
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Table B.3: Type I Error estimates and associated standard errors for EIGENSTRAT,
NMDS, and CMDS (corresponding to power estimates for risk model R=1.5). Values in
this table correspond to plots C and D in Figure 3.3.

Disease SNP % | SNP Type EIGENSTRAT Classical MDS Non-metric MDS
0% Random Null 0.041 (0.006) 0.038 (0.006) 0.040 (0.006)
Differentiated Null |  0.139 (0.011) 0.039 (0.006) 0.037 (0.006)
1% Random Null 0.046 (0.007) 0.046 (0.007) 0.048 (0.007)
Differentiated Null |  0.103 (0.01) 0.037 (0.006) 0.040 (0.006)
2% Random Null 0.055 (0.007) 0.050 (0.007) 0.047 (0.007)
Differentiated Null |  0.087 (0.009) 0.037 (0.006) 0.037 (0.006)
3% Random Null 0.043 (0.006) 0.051 (0.007) 0.046 (0.007)
Differentiated Null | 0.100 (0.009) 0.045 (0.007) 0.043 (0.006)
4% Random Null 0.049 (0.007) 0.049 (0.007) 0.043 (0.006)
Differentiated Null |  0.099 (0.009) 0.039 (0.006) 0.036 (0.006)
5% Random Null 0.046 (0.007) 0.054 (0.007) 0.050 (0.007)
Differentiated Null |  0.059 (0.007) 0.043 (0.006) 0.032 (0.006)

Table B.4: Power estimates and associated standard errors for EIGENSTRAT, NMDS,
and CMDS with relative risk, R=1.5. ‘Power*’ indicates the power estimates of associated
SNPs that were also used in forming the coordinates in the respective dimension reduction
techniques. ‘Power’ reflects the estimates for associated SNPs not used in the NMDS,
CMDS, and PCA coordinate estimation. Values in this table correspond to plots A and B
in Figure 3.3.

Disease SNP % | SNP Type | EIGENSTRAT Classical MDS Non-metric MDS
0% Power 0.936 (0.008) 0.934 (0.008) 0.937 (0.008)
1% Power 0.936 (0.008) 0.940 (0.008) 0.943 (0.007)

Power* 0.917 (0.009) 0.917 (0.009) 0.922 (0.008)
2% Power 0.933 (0.008) 0.933 (0.008) 0.935 (0.008)
Power* 0.897 (0.01) 0.903 (0.009) 0.913 (0.009)
3% Power 0.869 (0.011) 0.879 (0.01) 0.916 (0.009)
Power* 0.793 (0.013) 0.818 (0.012) 0.880 (0.01)
4% Power 0.735 (0.014) 0.698 (0.015) 0.812 (0.012)
Power* 0.590 (0.016) 0.576 (0.016) 0.757 (0.014)
5% Power 0.614 (0.015) 0.509 (0.016) 0.710 (0.014)
Power* 0.424 (0.016) 0.371 (0.015) 0.613 (0.015)
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Table B.5: Power and Type I error estimates (and associated standard errors) for the
SNP*Cluster interaction test under various sample sizes. Values correspond to Figure 3.6.

Number of Samples

SNP Type

Estimate (R=1.3)

Estimate (R=1.5)

500

1000

2000

3000

4000

Type I Error
Power

Type I Error
Power

Type I Error
Power

Type I Error
Power

Type I Error
Power

0.048 (0.007)
0.122 (0.010)

0.039 (0.006
0.208 (0.013

(
(
(
(
0.065 (0.008
(
(
(
(
(

_ e O

0.367 (0.015

0.066 (0.008)
0.526 (0.016)

0.054 (0.007)
0.657 (0.015)

0.053 (0.007)
0.254 (0.014)

0.041 (0.006)
0.404 (0.016)

0.058 (0.007)
0.679 (0.015)
(

0.058 (0.007)
0.848 (0.011

(0.011)
0.06 (0.008)
0.927 (0.008)




