
Abstract

UMBACH, AMY THERESE. Bayesian Imputation Methods to Measure Quality of
Life. (Under the direction of Dr. Sujit K. Ghosh)

The most widely used general health outcomes measure is the SF-36 Health Status

questionnaire. The SF-36 is a 36 item general health survey which evaluates eight

dimensions of health. This questionnaire is therapeutic non-specific. Often times,

an analysis is done to determine if a subject’s quality of life is better on one drug

than another. This can be beneficial to the patient when selecting a drug and to the

company when marketing a drug.

The SF-36 form is often used in clinical trials. One problem that is often encoun-

tered during a clinical trial is missing data. The industry standard for dealing with

missing data of this type might not be the best. The industry standard of evaluating

SF-36 data converts the data into eight score functions and treats the score functions

as continuous data, even though they are discrete. We take a Bayesian perspective

to obtain parameter estimates based on the posterior distribution of the model pa-

rameters. We employ Gibbs sampling to obtain simulation-based estimates. One of

the practical advantages of our proposed method is that the MCMC method can be

implemeted using WinBUGS. WinBUGS is a windows-based software package that is spe-

cialized for implementing MCMC-based analysis of full probability models. It allows

the user to easily construct models and is available on the World Wide Web.

In this thesis, we begin by presenting background information for modeling SF-36

health survey data. We then develop the method of estimating missing responses in

quality of life data, taking into account the ordering in the data. We present two

simulation studies to validate our proposed method. This method is applied to data

from a clinical trial conducted by GlaxoSmithKline Pharmaceutical company. The

trial is an open-label, multinational, parallel group study to evaluate the impact of



oral Naratriptan 2.5mg on migraines.

It has been observed that people in different countries respond differently to the

SF-36 questionnaire. In order to account for these differences, we conclude this thesis

by fitting an ordinal response model with varying cut-points. One benefit of this type

of model is that it allows one to compare treatments across countries.
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Chapter 1

Quality of Life

1.1 Introduction

Quality of life data are often used in clinical trials. The data are usually collected

through health surveys. Subjects are asked a number of questions about their health.

The questionnaires are usually administered at least twice during a study, once at

baseline and then at least one time while on drug. The data can then be analyzed to

determine if the subject’s quality of life is better on one drug than another. This can

be beneficial when marketing a drug.

One problem that is often encountered in clinical trials is missing data. Another

problem is that often the data are analyzed using statistical procedures that assume

the response is continuous when in fact it is categorical or ordinal. This is the case with

the SF-36 questionnaire (Ware et al., 1993). Thus, the underlying model assumptions

could be incorrect and hence may produce biased results. Also, by treating the data

as continuous, some information could be lost. For example, with many of the health

survey questionnaires, the data are ordinal. In the case of the SF-36 analysis, the

ordering information is not being used in the analysis.

The proposed research will involve developing a new method to estimate missing

responses in health survey data. To test and develop our method, we will be focusing
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on the SF-36 questionnaire. We then apply our method to data from a clinical trial

conducted by GlaxoSmithKline. We will be analyzing the data from the clinical trial

using statistical methods that treat the data as categorical. We will then compare

our results with the results from the current method of SF-36 analysis.

In Section 1.2, we give background information about the SF-36 questionnaire.

In Section 1.3, we review currently available literature and discuss the limitations

of the current research. In Chapter 2, we present the categorical response models.

We also give information about the data set from GlaxoSmithKline Pharmaceutical

company. We discuss the results of our preliminary analysis of the GlaxoSmithKline

data. This analysis was performed using data that contained no missing responses. In

Chapter 3, we present the ordinal response models. We discuss the imputation process

and present the imputation results for the Social Functioning subscale in Section

3.2. We compare the results from all the subscales to the results from the current

method which uses two levels of imputation, the question level and the subscale level.

The subscale imputation level uses Last Observation Carried Forward (LOCF) as

the imputation method. At the end of Chapter 3 we present the results from two

simulation studies to validate the imputation method. In Chapter 4, we present

the results from the ordinal response model with varying cut-points. At the end of

Chapter 4, we discuss future work.

The research that is presented in this thesis will be beneficial to health research.

The imputation procedure is better than the current method and it is easy to im-

plement. The use of varying cut-points allows one to compare treatment differences

across populations. Also, we present a better way to analyze health survey data that

takes into account the fact that the data is ordinal.
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1.2 The SF-36 Health Survey Questionnaire

The SF-36 Health Status Questionnaire is a 36-item multipurpose health sur-

vey. The survey measures eight health concepts. These eight subscales are (Ware et

al., 1993): Physical Functioning(PF), Role-Physical(RP), Bodily Pain(BP), General

Health(GH), Vitality(VT), Social Functioning(SF), Role-Emotional(RE), and Men-

tal Health(MH). The PF subscale consists of 10 questions and assesses limitations

in physical activities because of health problems. The RP subscale consists of four

questions and assesses limitations in usual role activities because of health problems.

In the context of these questions, role activities apply to everyday responsibilities.

Thus, the questions apply to people who work inside and outside the home. The BP

subscale consists of two questions and assesses the extent to which pain interferes with

everyday life, and the severity of the pain. The GH subscale consists of five questions

and assesses physical health status. The VT subscale consists of four questions and

assesses energy and fatigue. The SF subscale consists of two questions and assesses

the limitations in social activities due to physical or emotional problems. The RE

subscale consists of three questions and assesses limitations on usual role activities

because of emotional problems. The MH subscale consists of five questions and as-

sesses the major mental health dimensions of anxiety, depression, loss of emotional

control, and psychological wellbeing. A sample of the SF-36 form can be found in

Appendix A.

The SF-36 survey is one of the most widely used surveys to measure health out-

comes. One of the reasons that this has become one of the most widely used health

outcomes measure is because it is a generic measure. By a generic measure, we mean

that it can be used across age, disease, or treatment groups. Generic measures assess

health related quality of life outcomes. The SF-36 has been beneficial in comparing

specific and general populations, comparing the relative burden of disease, screening

patients, and differentiating the health benefits produced by a wide range of different
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treatments. The SF-36 survey is a standardized and validated tool for monitoring the

results of care and is used extensively in the USA and Europe. The eight subscales

have been measured in the general non-patient population and in medical patients

with a variety of conditions.

The questionnaire itself is public and can be found at www.sf-36.com. Also, a

blank questionnaire can be found in Appendix A. Figure 1.1 shows which questions

make up each subscale. The form is designed for use in a variety of settings. It can be

used in surveys of general and specific populations, health policy evaluations, clinical

trials, and clinical practice and research.

The form is designed to be administered in a variety of ways. It can be self-

administered by people 14 years of age and older, or administered by trained inter-

viewers in person or by telephone. This form is often used in the pharmaceutical

industry. As more and more drugs become available, the results from health outcome

measurements can assist a patient in deciding which drug to choose.

More than 1,000 articles documenting the use of the SF-36 have been published

through 1998. These publications have been summarized in an annotated bibliogra-

phy (Shiely, 1996). Among these references are a multitude of studies investigating

different diseases and conditions, as well as different treatments undergone in various

study designs. In the first SF-36 user manual, you can find information about the his-

tory and development of the SF-36, its psychometric evaluation, normative data, and

studies of reliability and validity (Ware et al., 1993). McDowell and Newell (1996)

offer one of the most complete independent accounts of SF-36 development.

The SF-36 has proven useful in measuring the health benefits produced by different

treatments. The usefulness of the SF-36 is illustrated in articles describing more than

130 diseases and conditions (Shiely, 1996). However, when there are a number of

missing observations, the current method of estimating missing responses might not

be the best method. The current method consists of two levels of imputation. The first

imputation level is described in the users manual (Ware et al., 1993). This method
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consists of imputing values for individual question responses withing a subscale if 50

% or less of the questions in that subscale are missing for the subject. The imputed

value is the mean of all the nonmissing question responses in that subscale for the

subject. If more than 50% of the observations in the subscale are missing then the

subscale score is set to missing. The second level of imputation consists of imputing

missing subscale values. The current method of imputing missing subscales that is

used in clinical trials is last observation carried forward.

The eight subscales that make up the SF-36 were selected from 40 concepts in-

cluded in the Medical Outcomes Study (MOS) (Stewart, 1992). Most of the SF-36

items come from instruments that have been in use since the 1970s and 1980s (Stew-

art, 1992). Some of these instruments are the Health Perceptions Questionnaire and

the General Psychological Well-Being Inventory (Ware, 2000). The MOS researchers

selected and adapted questionnaire items from these and other sources. They also

developed new measures. The resulting product was a 149-item Functioning and

Well-Being Profile (FWBP) (Stewart, 1992). This is the source of the items on the

SF-36. The wording and format for the questions was improved. The SF-36 form has

been translated in more than 40 languages.

The questionnaire has 36 questions. The number of possible answers for each

question ranges from two to six. The questions use ordinal scales. A patient is asked

a question about his or her health and is asked to choose one and only one response

from the two to six available. For some of the questions, a low value is given for a

negative response. For other questions, a high value is given for a negative response.

For example, Question 9e asks whether the person had a lot of energy in the past

4 weeks and assigns a value 1 if the answer is “Yes, all of the time”. Question 9g

asks whether the person felt worn out in the past 4 weeks and assigns a value of 1 if

the answer is “Yes, all of the time”. These responses cannot be compared directly.

Therefore, we rescored Question 9e. If the person answered “Yes, all of the time”,

a value of 5 was assigned. Thus, the rescoring consisted of taking the number of
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categories, adding one, and then subtracting the response value. The result is that

for all of the questions, the higher the value, the less negative the response. Eleven

questions were rescored in this manner. The result is that for all questions, the higher

the value, the better the quality of life. The following questions were rescored: 1, 2,

6, 7, 8, 9a, 9d, 9e, 9h, 11b, and 11d.

1.3 Literature Review

Missing data in health research is a major problem. Mean or median imputation

or last observation carried forward is frequently used. Multiple imputation is not yet

used extensively. Proschan, McMahon, and Shih (2001) state that in clinical trials

single imputation procedures are used due to their feasibility and simplicity. They also

stated that much of the survey literature for multiple imputation involves complicated

modeling using variables thought to be related to both the outcome and whether data

are missing and that this complicated modeling seems invalid to non-statisticians.

They discuss a method (WLP) proposed by Wittes et al. (1989) as a conservative

approach. The letters WLP stand for Wittes, Lakatos, and Probstfield. The WLP

method (opposite imputation) of dealing with missing binary data in clinical trials

takes the observed proportion of events in the opposite arm as the imputation value

for the proportion of events among missing data in one arm. The other WLP method

(pooled imputation) takes the proportion of events in the pooled-observed data from

both arms as the imputation value. They state that the WLP methods are the best

estimates under conservative assumptions. Also, the WLP procedures are robust

against deviations in the model. However, this is a single imputation method. Because

of the good statistical properties of multiple imputation, more and more research is

being done to discover ways to use multiple imputation techniques in health fields.

Zhou, Eckert, and Tierney (2001) used a cumulative logistic regression model to

predict the missing values for a missing patient satisfaction question. They used a
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cumulative logistic regression model since there were five ordered responses for each

satisfaction question. There were many explanatory variables in the model. Due to

the patterns of the missing data, multiple iterations of the procedure were necessary

in order to impute all of the missing values. They used a multiple imputation method

developed by Heitjan and Little (1991) and Rubin (1986). It is referred to as multi-

ple imputation using predictive mean matching. They also compared the results to

those using two single imputation methods and using only the complete data. All

the imputation methods gave similar results but differed from the results using only

the complete data. They attributed the lack in difference between single and mul-

tiple imputation methods to the fact that they were dealing with large numbers of

observations. Thus, there is a need for better multiple imputation methods that can

be applied to large data sets.

Gelman, King, and Liu (1998) use the Gibbs sampler to impute missing values.

The data were obtained from a study of public opinion changes in the 1988 U.S.

Presidential Election. The major purpose of the study was to examine changes in

voter intentions over time for different subgroups of the population. However, not

all of the questions were asked on all of the surveys. If imputations are available,

then for the political scientists, the analyses would be simpler. One logistic model

with all the variables could be fit to all the surveys. Without the imputations, not

all of the variables could be included in the model. The Gibbs sampler was used

to perform imputations at the single-survey level and parameters were estimated

using information from all the surveys. They compared the available case analysis to

the multiple-imputed analysis. They found that during the Republican convention,

available polls did not ask questions about income or ideology. Thus, when analyzing

the available case data, they had to skip these points. However, when the imputed

data were analyzed, it was found that the different subgroups appeared to be moving

together over time. The authors conclude that this makes sense politically. The

results of this research show that the Gibbs sampler can be beneficial in imputing
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missing responses in survey data when a large portion of the responses from post

baseline surveys are missing.

Paulino and Pereira (1995) develop a Bayesian approach to the problem of incom-

plete categorical data under an informative general censoring pattern. The solution is

based on Dirichlet priors for all the model parameters. The nonignorable model pro-

vides a general analysis of missing categorical data. However, it does not address one

particular problem. Provided that the Dirichlet prior is not questioned, the method

can be applied to any pattern of missing data without imposing any restrictions on the

missing data mechanism. The method is applied to data that consist of the degree of

sensitivity to dental caries, categorized into three risk levels: low, medium, and high.

The implementation of the method resulted in the development of computational

strategies for the evaluation of characteristics of interest as a main issue remaining

open. Soares and Paulino (2001) is a follow up to the Paulino and Pereira (1995)

paper. In this paper a Monte Carlo simulation approach based on an alternative

parameterization is used to overcome the computational difficulties. This simulation

method allows one to go beyond the computation of posterior expectations. This

paper presents one way to overcome some of the computational difficulties. How-

ever, there is a need to do further research to develop ways to implement multiple

imputation methods that are flexible and user friendly.

Due to the nice statistical properties of multiple imputation (Schafer, 1999) and

the lack of multiple imputation methods in practice, there is also a need to create

multiple imputation methods for missing data in surveys and health fields that are

easy to implement. We will extend the methods of Soares and Paulino to the case

of ordinal response models, where the cut-points are allowed to vary depending on

covariates. To impute missing values, we will be using Bayesian imputation methods.

In Chapters 3 and 4 we discuss the imputation process using Gibbs sampling. We use

WinBUGS to do the Gibbs sampling because it is free and easy to use. Thus, the mul-

tiple imputation method discussed in Chapters 3 and 4 could be easily implemented
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in health research.

1.3.1 Bayesian Imputation methods

We will be using Bayesian methods to impute missing values. We will first obtain

the joint distribution of the parameters and the missing data, given the observed data

and the modelling assumptions. Bayesian imputation of missing data is based on the

following idea: Initial estimates for the missing data will be obtained using the com-

plete data. By complete data, we mean subjects without any missing responses. These

initial imputations will be used as starting points for Gibbs sampling. Gibbs sampling

is a type of Markov Chain Monte Carlo (MCMC) simulation method. MCMC can be

used as a method for evaluating expectations of the form Eπ[f(θ)] =
∫

f(θ)π(θ)dθ.

In this expression, f(·) denotes a function of interest. In Monte Carlo integration,

samples are drawn from π(·). These samples denoted by (θ(t), t = 1, . . . , N) can be

used to approximate the desired expectation. The expectation is approximated using

E[f(θ)] ≈ 1

N

N∑
t=1

f(θ(t)). (1.1)

Thus, the population mean of f(θ) is estimated using a sample mean. By the strong

law of large numbers (SLLN), when the samples θ(t) are independent and identically

distributed, this approximation can be made fairly accurate by using a large sample

size N . One thing to note is that N is not a fixed data sample size. It is the number

of samples that you draw. Thus, it is controlled by the analyst. Unfortunately, many

complicated models will not allow independent random draws. The main idea behind

MCMC is to simulate realizations from a Markov chain having π(·) as its stationary

distribution. This is one way of generating θ(t). In this case the θ(t) are not indepen-

dent. The MCMC generates the θ(t) by drawing samples throughout the support of

π(·) in the correct proportions. There are a number of competing methods to sim-

ulate realizations from a Markov chain with π(·) as the stationary distribution. We

will restrict our attention to a special case of single component Metropolis-Hastings,
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the Gibbs sampler. The Gibbs sampler was given its name by Geman and Geman

(1984) in the context of image restoration. To describe the algorithm defining the

Gibbs sampler, we will first define the full conditional distribution. The full condi-

tional distribution π(θi|θ−i) is the distribution of the ith component of θ conditioning

on all the remaining components. Note, θ has the distribution π(·). Thus, the full

conditional distribution is:

π(θi|θ−i) =
π(θ)∫
π(θ)dθi

∝ π(θ). (1.2)

Given an arbitrary vector of starting values θ(0) = (θ
(0)
1 , . . . , θ

(0)
k ), the first iteration

of the Gibbs sampler proceeds by making random draws from the full conditional

distribution as follows:

θ
(1)
1 ∼ π(θ1|θ(0)

2 , . . . , θ
(0)
k )

θ
(1)
2 ∼ π(θ2|θ(1)

1 , θ
(0)
3 , . . . , θ

(0)
k )

...

θ
(1)
j ∼ π(θj|θ(1)

1 , . . . , θ
(1)
j−1, θ

(0)
j+1, . . . , θ

(0)
k )

...

θ
(1)
k ∼ π(θk|θ(1)

1 , θ
(1)
2 , . . . , θ

(1)
k−1)

This completes a single cycle of the algorithm and defines a transition from θ(0) to

θ(1) = (θ
(1)
1 , . . . , θ

(1)
k ). Thus, after t such iterations, we have θ(t) = (θ

(t)
1 , . . . , θ

(t)
k ).

The result will be a sequence θ(1), θ(2), θ(3), . . . , θ(t) consisting of dependent draws. In

describing the algorithm above, we updated the components of θ(t) in a fixed order in

which each component is updated in each iteration. While a fixed order is usual, it

is not necessary. Often, the first portion of the simulated Markov chain is discarded

in order to reduce the effect of the starting values. The portion that is discarded is

referred to as the ‘burn-in’ iterations. Thus, if we let N denote the number of total

iterations and we let M denote the number of ‘burn-in’ iterations, then E[f(θ)] can
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be approximated using the ergodic average

f̄N =
1

N −M

N∑
t=M+1

f(θ(t)). (1.3)

The ergodic theorem ensures convergence of the ergodic average to the required ex-

pectation. The ergodic theorem states, if Eπ[f(θ)] < ∞, and the Markov chain is

ergodic, then P [f̄n → Eπ[f(θ)]] = 1, where Eπ[f(θ)] =
∫

f(θ)π(θ)dθ, the expectation

of f(θ) is taken with respect to π(·). In defining the algorithm, we only focused on

one chain. Raferty and Lewis (1992) created a method to diagnose convergence when

using a single chain. Geweke (1992) also created a convergence diagnostic based on

one chain. Running multiple chains is permissible. When multiple chains are run, the

chains are run simultaneously with different starting values. When running multiple

chains using BUGS (Spiegelhalter, 1996) or WinBUGS (Spiegelhalter, 1999), one should

check the Gelman and Rubin (1992) convergence diagnostic. CODA (Best, 1995) can

be used to obtain several graphical and numerical convergence diagnostics.
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Figure 1.1: SF-36 plot
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Chapter 2

Categorical Response Models

In this chapter, we present background information about modelling SF-36 health

survey data. We analyze data from a clinical trial conducted by GlaxoSmithKline

Pharmaceutical company using a multinomial model. We fit the model using the

complete data. The complete data consists of subjects that answered all 36 questions

for both baseline and Week 12.

2.1 Notations and assumptions

Before we present the models, we develop some notation that will be used through-

out this chapter.

Let pij = Probability that a subject chooses answer j on question i, where i = 1,

. . . , Ig and j = 1, . . . , Jg.

Let Nij = Number of subjects who answer j on question i, where i = 1, . . . , Ig and j

= 1, . . . , Jg.

For the SF-36 form:

g = 1, . . . , 8.

g = 1 = PF. I1 = 10 and J1 = 3.
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g = 2 = RP. I2 = 4 and J2 = 2.

g = 3 = RE. I3 = 3 and J3 = 2.

g = 4 = SF. I4 = 2 and J4 = 5.

g = 5 = BP. I5 = 2 and J5 = 5, 6.

g = 6 = MH. I6 = 5 and J6 = 6.

g = 7 = VT. I7 = 4 and J7 = 6.

g = 8 = GH. I8 = 5 and J8 = 5.

Ignoring the ordinal aspect of the response, a multinomial model can be used in

general. As a patient chooses one of the Jg categories, it is reasonable to assume that

Ni = (Ni1, . . . , NiJg) ∼ Multinomial(Ni, pi1, . . . , piJg), where Ni =
∑Jg

j=1 Nij, i

= 1, 2, . . . , Ig, and j = 1, 2, . . . , Jg.

We reparameterize the pij’s as

pij = µij∑Jg
j=1

µij
where i = 1, 2, . . . , Ig.

Where ln(µij) = a linear model involving αj and βi, where αj denotes the effect of

response j and βi denotes the effect of question i.

Equivalently, the above model can be expressed as a hierarchical Poisson model. We

will assume that,

Nij ∼ Poisson(µij), where i = 1, 2, . . . , Ig and j = 1, 2, . . . , Jg.

Where ln(µij) = a linear model involving αj and βi, where i = 1, 2, . . . , Ig, and j =

1, 2, . . . , Jg.

The assumptions are being given for two different models. The first model is a

multinomial model. The second model is a Poisson transformation model. It can

be shown that the likelihoods for both models are equivalent. Thus, by likelihood

principle, either model could be used for analysis. To show that the two likelihoods

are equivalent, we will first consider the multinomial likelihood. For simplification
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purposes, we will assume i = 1, 2,. . . , 36 and j = 1, 2,. . . , 5. The likelihood of the

multinomial model is given by,

L(α, β) =
36∏
i=1

(
5∏

j=1

p
Nij

ij

Nij!
)Nj!

Recall from the reparameterization that pij = µij∑5

j=1
µij

. Note that µi. =
∑5

j=1 µij.

∝
36∏
i=1

5∏
j=1

(
µij

µi.

)Nij .

Now we will use the fact that ln(µij) = αj + βi.

∝
36∏
i=1

e
∑5

j=1
Nij(αj+βi)

(
∑5

j=1 eαj+βi)Ni
. (2.1)

On the other hand, the Poisson transformation likelihood is given by:

L(α, β) =
36∏
i=1

(
5∏

j=1

µ
Nij

ij e−µij

Nij!
)

=
36∏
i=1

5∏
j=1

(µi1e
αj+βi)Nije−µi1eαj+βi

Nij!

∝
36∏
i=1

(µNi
i1 e

∑5

j=1
Nij(αj+βi)e−µi1

∑5

j=1
e(αj+βi)

)

Ni1!Ni2!Ni3!Ni4!Ni5!
.

Let µi1 have independent Gamma(a,b) distributions with mean a
b

and variance a
b2

.

Next we will write the joint distribution and integrate out µi1.

∝
36∏
i=1

e
∑5

j=1
Nij(αj+βi)(Ni + a)!

Ni1!Ni2!Ni3!Ni4!Ni5!(b +
∑5

j=1 e(αj+βi))Ni+a

Now letting a → 0, b → 0, we get

∝
36∏
i=1

e
∑5

j=1
Nij(αj+βi)

(
∑5

j=1 eαj+βi)Ni
. (2.2)

Since right hand side of Equation 2.1 equals that of Equation 2.2, then with certain

restrictions, the Multinomial Model and the Poisson Transformation model are equiv-

alent. Thus either model can be used in the analysis. When we use the model to
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analyze the data, we will expand the notation to include two other subscripts. The

subscript that will correspond to treatment is k, and the subscript that will corre-

spond to session is l. When considering the linear model, these are variables that can

be included in the model. The linear model consists of the main effects

1. αj = The effect of response j

2. βi = The effect of question i

3. λk = The effect of treatment k

4. γl = The effect of session l

and interactions effects,

1. (αβ)ij = The effect of response j while in question i

2. (αλ)kj = The effect of response j while in treatment k

3. (αγ)lj = The effect of response j while in session l

4. (βλ)ik = The effect of question i while in treatment k

5. (βγ)il = The effect of question i while in session l

6. (λγ)kl = The effect of treatment k while in session l

Appropriate parameterization is necessary to improve convergence and stability of the

samples in MCMC methods and for identifiability of parameters. In order to do this,

we will consider parameter restrictions. These assumptions are being used as part

of the model in order to avoid identifiability issues. Since we have fixed effects and

non-informative priors, we will be using corner constraints. According to the BUGS

manual (1995), this is an appropriate and common parameterization for this situation.

This is similar in spirit to the constraints used in SAS. For the main effects, we are

assuming β1 = 0, λ1 = 0, and γ1 = 0. For the interaction effects, we are assuming a
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value of zero for all corner points. For example, αβ1j = 0 for all values of j. Another

possibility, at the cost of increased computation time, is the sum to zero constraint.

2.2 Simulation Study

We created a data set consisting of 600 patients in two treatment groups. There

were 300 patients in each group.

In this data set, each question has five possible answers. We will assume the

questions are independent. This data set is used for estimation and testing. We

obtained the maximum likelihood estimates and the Bayes estimates for the data.

We ran 500 simulations and obtained the estimates, Monte Carlo standard errors,

and coverage probabilities for both the maximum likelihood estimates and the Bayes

estimates. The estimates are equal to the mean of the estimates from the 500 runs of

the simulation. The MC standard errors are equal to the the sample standard errors

for the estimates. The coverage probability is the proportion of times the true value

was captured in the confidence or credible interval. For the active treatment, the true

values of the pi’s follow: p1 = .0016, p2 = .0256, p3 = .1536, p4 = .4096, and p5 =

.4096. For the placebo treatment, the true values of the pi’s follow: p1 = .4096, p2 =

.4096, p3 = .1536, p4 = .0256, and p5 = .0016.

2.2.1 Maximum Likelihood Estimator

We compute the likelihood function for each treatment group. For simplification

purposes let
∑36

i=1 Nij = N.j and
∑36

i=1

∑5
j=1 Nij = N . Assuming the questions are

independent, the likelihood function is

L(p) =
∏36

i=1(
∏5

j=1

p
Nij
j

Nij !
)Nj! where p = (p1 . . . p5).

Taking into account the constraint that
∑5

j=1 pj = 1, the log-likelihood of p is given

by ln(p) = const. +
∑5

j=1 N.jlog pj.

The above function is maximized by p̂j = N.j

N
with variance estimate as
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V̂ar(p̂j) = p̂j(1−p̂j)

N
.

To obtain the 95% CI for pj, we use the fact that logit(p̂j) ∼Normal(logit(pj),
1

Npj(1−pj)
).

This is used to make the normal approximation more accurate. Thus, the 95% CI

for logit(pj) is logit(p̂j) ± 1.96
√

1
Np̂j(1−p̂j)

. From this 95% CI, we obtain the 95% CI

for pj. For simplification purposes, let CL = logit(p̂j) − 1.96
√

1
Np̂j(1−p̂j)

. Also, let

CU = logit(p̂j) + 1.96
√

1
Np̂j(1−p̂j)

. Thus, the 95% CI for pj is ( exp (CL)
1+exp (CL)

, exp (CU )
1+exp (CU )

).

For the simulated data set, the mle’s, standard error estimates, 95% CI’s, coverage

probability, and Monte Carlo standard errors are:

Table 2.1: Maximum Likelihood Estimates for Active Treatment

95% CI 95% CI Coverage
Parameter Estimate sd lower limit upper limit Probability

p1
1 .0016 .0004 .0010 .0026 .9440

MC Error 4.06E-04 4.90E-05 3.13E-04 4.96E-04
p1

2 .0256 .0015 .0228 .0288 .9480
MC Error 1.54E-03 4.44E-05 1.45E-03 1.62E-03

p1
3 .1537 .0035 .1471 .1607 .9580

MC Error 3.41E-03 3.15E-05 3.35E-03 3.47E-03
p1

4 .4094 .0047 .4002 .4187 .9540
MC Error 4.68E-03 8.28E-06 4.66E-03 4.69E-03

p1
5 .4096 .0047 .4004 .4189 .9340

MC Error 4.74E-03 8.37E-06 4.72E-03 4.75E-03
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Table 2.2: Maximum Likelihood Estimates for Placebo Treatment

95% CI 95% CI Coverage
Parameter Estimate sd lower limit upper limit Probability

p2
1 .4098 .0047 .4005 .4191 .9380

MC Error 5.00E-03 8.82E-06 4.98E-03 5.01E-03
p2

2 .4095 .0047 .4002 .4188 .9400
MC Error 5.02E-03 8.88E-06 5.00E-03 5.04E-03

p2
3 .1537 .0035 .1470 .1606 .9400

MC Error 3.76E-03 3.48E-05 3.69E-03 3.82E-03
p2

4 .0255 .0015 .0227 .0287 .9540
MC Error 1.44E-03 4.17E-05 1.36E-03 1.52E-03

p2
5 .0016 .0004 .0010 .0025 .9700

MC Error 3.73E-04 4.57E-05 2.87E-04 4.58E-04

From Tables 2.1 and 2.2, we observe that the parameter estimates are very similar

to the true values. One other important observation from Tables 2.1 and 2.2 is that

the coverage probabilities are close to 95% for all the parameters.

2.2.2 Bayes Estimator

We now turn to Bayesian analysis of the previous model. We choose to use

Jeffrey’s noninformative prior for p1, p2, p3, p4, and p5. In general, Jeffrey’s prior,

J(p), is proportional to [Expected Fisher information for p]
1
2 . For our example, J(p)

∝ N2

(p1p2p3p4p5)
1
2

= N2p
− 1

2
1 p

− 1
2

2 p
− 1

2
3 p

− 1
2

4 p
− 1

2
5 which is the kernal of a Dirichlet(1

2
, 1

2
, 1

2
, 1

2
, 1

2
)

distribution. Thus, we use a Dirichlet distribution with parameter (1
2
, 1

2
, 1

2
, 1

2
, 1

2
) for

our analysis. BUGS will be used to get the Bayes estimates for the parameters. The

posterior distribution is ∝ ∏5
j=1 p

N.j− 1
2

j . The Bayes estimator under squared error

loss is given by the posterior mean E[pj |data] =
N.j+

1
2

N+ 5
2

and the variance is given by

Var(pj |data) =
(N.j+

1
2
)(N+N.j+2)

(N+ 5
2
)2(N+ 7

2
)

.

For the simulated data set, the Bayes estimates, standard error estimates, 95% Cred-

ible Intervals, and Monte Carlo errors are:
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Table 2.3: Bayes Estimates for Active Treatment

95% CI 95% CI Coverage
Parameter Estimate sd lower limit upper limit Probability

p1
1 .0016 .0004 .0010 .0025 .9260

MC Error 4.05E-04 4.84E-05 3.11E-04 5.03E-04
p1

2 .0257 .0015 .0228 .0287 .9600
MC Error 1.54E-03 4.42E-05 1.45E-03 1.62E-03

p1
3 .1537 .0035 .1470 .1606 .9600

MC Error 3.41E-03 3.53E-05 3.34E-03 3.48E-03
p1

4 .4093 .0048 .4000 .4186 .9540
MC Error 4.67E-03 1.50E-05 4.65E-03 4.69E-03

p1
5 .4095 .0047 .4004 .4189 .9340

MC Error 4.73E-03 1.40E-05 4.72E-03 4.75E-03

Table 2.4: Bayes Estimates for Placebo Treatment

95% CI 95% CI Coverage
Parameter Estimate sd lower limit upper limit Probability

p2
1 .4096 .0047 .4004 .4189 .9380

MC Error 5.00E-03 1.35E-05 4.98E-03 5.01E-03
p2

2 .4094 .0047 .4001 .4187 .9440
MC Error 5.02E-03 1.49E-05 5.01E-03 5.04E-03

p2
3 .1536 .0035 .1468 .1607 .9460

MC Error 3.76E-03 3.52E-05 3.69E-03 3.82E-03
p2

4 .0256 .0015 .0227 .0286 .9580
MC Error 1.44E-03 4.08E-05 1.36E-03 1.51E-03

p2
5 .0016 .0004 .0010 .0025 .9600

MC Error 3.72E-04 4.47E-05 2.86E-04 4.60E-04

From Tables 2.3 and 2.4, we observe that the parameter estimates are very similar

to the true values. One other important observation from Tables 2.3 and 2.4 is that

the coverage probabilities are close to 95% for all the parameters. A t-test revealed

that there were no significant differences between the estimates based on mles and

the Bayes estimates. The above analysis gets complicated in the presence of missing

data. We presented the frequentist and Bayesian analysis for illustrative purposes
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only.

2.3 Application to GlaxoSmithKline data set

Our first step in developing the estimation of missing responses is to analyze the

data from a clinical trial by GlaxoSmithKline Pharmaceutical company. The trial

is an open-label, multinational, parallel group study to evaluate the impact of oral

Naratriptan 2.5mg on quality of life, indirect costs and patient satisfaction. The

study aimed to prospectively measure health related quality of life, indirect costs,

and patient satisfaction for patients treating their migraines with either Naratriptan

2.5mg oral or their own customary therapy. Data were collected in two parts. For the

first part, treatment lasted a duration of 12 weeks with patients treating all attacks.

The primary endpoint was to assess quality of life using non-migraine SF-36 Health

Survey. Patients aged 18-65 years, diagnosed as currently experiencing a migraine,

and who had last taken triptan 3 months prior to entry into the study and fulfilled

other entry criteria, were eligible for the study. The study was an open-label, parallel

group study conducted in six countries: Canada, Finland, Hungary, the Netherlands,

New Zealand, and Spain. Patients were either randomized to Naratriptan or cus-

tomary therapy to treat all attacks including mild, moderate, or severe. The first

phase lasted over a 3-month period. The first phase was followed by an optional

3-month open-label treatment period in which all patients participating received only

treatment with Naratriptan (Phase 2). For this section, we will only be using the

data from Phase 1. During the study, the SF-36 quality of life questionnaire was

completed at Weeks 1 (baseline) and 12 (end of Phase 1). Of the 966 patients who

were randomized into the study, 480 were assigned to take their own customary treat-

ment and 486 were assigned to take Naratriptan 2.5mg. Of these subjects, 478 in the

customary treatment group and 484 in the Naratriptan treatment group filled out

the SF-36 form at baseline. Treatment lasted a duration of 12 weeks with patients
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treating all attacks. Of the 966 patients, 955 used study medication to treat at least

one attack. We start by creating a data set that contains complete evaluable subjects.

To be considered a complete evaluable subject, a subject must have answered all 36

questions for both Baseline and Week 12. In this data set, there are 391 subjects

in Customary Therapy treatment group and 373 subjects in Naratriptan treatment

group. This data was analyzed to determine if there were significant differences in

the two treatment groups within each subscale.

2.4 Implementation of Bayes models

WinBUGS Version 1.3 was used to implement our Markov Chain Monte Carlo anal-

ysis. In order to submit a more efficient model in WinBUGS, the multinomial-Poisson

transformation will be used. All unknown α’s, β’s, γ’s, and λ’s are initially given in-

dependent noninformative priors. The choice that we used for all our parameters was

a normal flat prior. For each subscale, Gibbs sampling was used. In our Gibbs sam-

pling, we ran three chains consisting of 255,000 iterates. The first 5000 iterates from

each chain were discarded. These were considered a ‘burn-in’ period. Gelman-Rubin

statistic plots were monitored to verify that a sufficient ‘burn-in’ period was used.

Then, with the remaining iterates, every fifth value was used. Using every fifth value

is not a requirement. However, to compute MC error of posterior estimates from

WinBUGS, it is reasonable to use approximately independent samples from MCMC.

Thus 50,000 iterates were used from each chain giving a sample size of 150,000 for

analysis. For each model, it took an average of 200 seconds to run on a Pentium IV

PC. Within each subscale, three chains were run for each model. We started out with

a model consisting only of the main effects. Then insignificant terms were dropped

and interactions were tested. The deviance was also monitored. The deviance is

equal to -2log(likelihood). For a saturated model with all the main effects and all
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the interactions, the deviance = −2
∑

ijkl Nijkllog(
Nijkl

(
∑Jg

j=1
Nijkl)pijkl

). A final model was

selected for each subscale based on the lowest deviance. From the final model, the

posterior mean, sd, median, 95% credible interval, and MC error are reported.

2.4.1 Physical Functioning

The final model for this subscale took 140 seconds to run. The best fitting log-

linear model is: log(µjk) = αj + λk + (αλ)kj.

Since, λk and (αλ)kj were found significant in the model, we can conclude that treat-

ment has an effect on limitations in physical activities because of health problems.

The results of this model are:

parameter mean sd MC error 2.5% median 97.5%

α1 5.996 0.0500 3.821E-4 5.897 5.996 6.092
α2 7.463 0.0239 6.563E-5 7.415 7.463 7.509
α3 8.745 0.0126 3.368E-5 8.720 8.745 8.769
λ2 -0.205 0.0746 8.130E-4 -0.351 -0.205 -0.060

(αλ)2,2 0.091 0.0824 8.376E-4 -0.070 0.090 0.252
(αλ)2,3 0.240 0.0767 8.329E-4 0.091 0.240 0.390

deviance 61.15 3.457 1.370E-2 56.4 60.5 69.64
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2.4.2 Role Physical

The final model for this subscale took 140 seconds to run. The best fitting log-

linear model is: log(µjl) = αj + γl + (αγ)lj.

Since no terms involving λk were found significant in the model, we can conclude that

there is not sufficient evidence to say that treatment has an effect on limitations in

usual role activities because of physical health problems. The results of this model are:

parameter mean sd MC error 2.5% median 97.5%

α1 7.014 0.0300 9.854E-5 6.955 7.015 7.073
α2 7.572 0.0227 5.995E-5 7.527 7.572 7.616
γ2 -0.154 0.0442 1.666E-4 -0.241 -0.154 -0.068

(αγ)2,2 0.233 0.0542 2.077E-4 0.127 0.233 0.340
deviance 40.45 2.833 8.036E-3 36.93 39.81 47.6
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2.4.3 Role Emotional

The final model for this subscale took 140 seconds to run. The best fitting log-

linear model is: log(µjl) = αj + γl + (αγ)lj.

Since no terms involving λk were found significant in the model, we can conclude that

there is not sufficient evidence to say that treatment has an effect on limitations in

usual role activities because of emotional problems. The results of this model are:

parameter mean sd MC error 2.5% median 97.5%

α1 6.438 0.0400 1.508E-4 6.359 6.438 6.516
α2 7.418 0.0245 6.764E-5 7.370 7.418 7.466
γ2 -0.330 0.0618 3.014E-4 -0.451 -0.329 -0.209

(αγ)2,2 0.430 0.0706 3.465E-4 0.291 0.430 0.569
deviance 38.83 2.823 8.199E-3 35.32 38.19 45.98

2.4.4 Social Functioning

The final model for this subscale took 140 seconds to run. The best fitting log-

linear model is: log(µj) = αj.

Since no terms involving λk were found significant in the model, we can conclude that

there is not sufficient evidence to say that treatment has an effect on limitations in

social activities because of physical or emotional problems. The results of this model

are:

parameter mean sd MC error 2.5% median 97.5%

α1 3.597 0.1648 4.081E-4 3.262 3.602 3.907
α2 5.179 0.0750 1.859E-4 5.029 5.180 5.323
α3 6.404 0.0407 1.12E-4 6.324 6.405 6.483
α4 6.966 0.0307 7.868E-5 6.905 6.966 7.025
α5 7.069 0.0291 7.717E-5 7.012 7.070 7.126

deviance 43.42 3.158 7.774E-3 39.26 42.77 51.25
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2.4.5 Mental Health

The final model for this subscale took 143 seconds to run. The best fitting log-

linear model is: log(µjk) = αj + λk + (αλ)kj.

Since, λk and (αλ)kj were found significant in the model, we can conclude that treat-

ment has an effect on psychological distress and well-being. The results of this model

are:

parameter mean sd MC error 2.5% median 97.5%

α1 4.151 0.1255 1.480E-3 3.897 4.154 4.391
α2 5.138 0.0765 2.062E-4 4.986 5.139 5.286
α3 6.162 0.0459 1.221E-4 6.071 6.163 6.251
α4 6.655 0.0360 9.546E-5 6.584 6.655 6.725
α5 7.213 0.0271 7.163E-5 7.160 7.214 7.266
α6 6.970 0.0306 7.761E-5 6.910 6.97 7.030
λ2 -0.701 0.2165 4.354E-3 -1.128 -0.698 -0.284

(αλ)2,2 0.543 0.2441 4.392E-3 0.069 0.541 1.025
(αλ)2,3 0.513 0.2274 4.389E-3 0.074 0.511 0.963
(αλ)2,4 0.635 0.2226 4.381E-3 0.208 0.633 1.075
(αλ)2,5 0.719 0.2200 4.379E-3 0.295 0.716 1.154
(αλ)2,6 0.683 0.2206 4.372E-3 0.256 0.681 1.120

deviance 105.6 4.901 2.268E-2 97.97 104.9 116.9
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2.4.6 Vitality

The final model for this subscale took 148 seconds to run. The best fitting log-

linear model is: log(µjk) = αj + λk + (αλ)kj.

Since, λk and (αλ)kj were found significant in the model, we can conclude that treat-

ment has an effect on energy and fatigue. The results of this model are:

parameter mean sd MC error 2.5% median 97.5%

α1 4.505 0.1054 9.577E-4 4.294 4.507 4.707
α2 5.536 0.0628 1.63E-4 5.411 5.537 5.657
α3 6.481 0.0392 1.007E-4 6.403 6.481 6.557
α4 6.803 0.0333 8.833E-5 6.737 6.803 6.867
α5 6.902 0.0317 8.534E-5 6.840 6.902 6.964
α6 5.453 0.0656 1.768E-4 5.322 5.454 5.579
λ2 -0.471 0.1709 2.431E-3 -0.810 -0.500 -0.140

(αλ)2,2 0.266 0.1948 2.482E-3 -0.114 0.265 0.650
(αλ)2,3 0.371 0.1800 2.459E-3 0.022 0.370 0.728
(αλ)2,4 0.506 0.1772 2.466E-3 0.163 0.505 0.858
(αλ)2,5 0.470 0.1765 2.456E-3 0.127 0.469 0.820
(αλ)2,6 0.329 0.1959 2.492E-3 -0.052 0.328 0.716

deviance 104.6 4.911 1.93E-2 96.99 103.9 116.0
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2.4.7 General Health

The final model for this subscale took 274 seconds to run. The best fitting log-

linear model is: log(µjk) = αj + λk + γl + (αλ)kj.

Since, λk and (αλ)kj were found significant in the model, we can conclude that treat-

ment has an effect on general health perceptions. The results of this model are:

parameter mean sd MC error 2.5% median 97.5%

α1 4.114 0.0912 7.678E-4 3.931 4.115 4.288
α2 5.290 0.0515 1.375E-4 5.188 5.29 5.389
α3 6.123 0.0349 9.662E-5 6.054 6.123 6.191
α4 6.522 0.0294 7.934E-5 6.464 6.522 6.579
α5 6.325 0.0321 8.697E-5 6.261 6.325 6.387
λ2 -0.312 0.1386 1.752E-3 -0.585 -0.312 -0.040
γ2 0.000 0.0229 6.24E-5 -0.045 -0.000 0.045

(αλ)2,2 0.337 0.1556 1.788E-3 0.032 0.337 0.642
(αλ)2,3 0.305 0.1465 1.781E-3 0.018 0.305 0.594
(αλ)2,4 0.305 0.1438 1.776E-3 0.024 0.305 0.588
(αλ)2,5 0.176 0.1453 1.777E-3 -0.110 0.176 0.461

deviance 165.1 4.665 1.784E-2 157.9 164.4 175.9

For all of the subscales the response effect was significant. Thus we can conclude

that response has an effect on quality of life. However, we did not take into account the

natural ordering of the responses. Thus, we need to incorporate this information. We

can do this directly in the way we construct cumulative links in the ordinal response

model. This model is discussed in Chapter 3. First we discuss what happens if missing

values are ignored.

2.5 Missing Data

Schafer (1999) states that ignoring missing responses can be inefficient and may

introduce bias if the data are not missing at random. He also states that a multiple

imputation method can be highly efficient. Also one set of imputations may be used

for many analyses. Before we discuss the imputation method we will be using, we
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first need to investigate the missingness. As seen in Figure 2.1, the data seem to be

missing at random. There does not seem to be any type of pattern in these plots.

One thing to notice is that Week 12 has a greater percentage of missed values than

Baseline for some of the questions. It turns out that the percentage of times that

Week 12 is missed more than Baseline is about 58%.
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Figure 2.1: Plots of percent missing where the dashed line represents week 12 and
the solid line represents Baseline
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Chapter 3

Ordinal Response Model

3.1 Introduction

In Chapter 2 we fit a multinomial model to the data. However, the responses have

an underlying order. The higher the number, the better the quality of life. Due to

this natural ordering in the responses, we decided to fit an ordinal model to the data.

In this chapter we discuss the ordinal model. Also in Chapter 2, we discussed why

missing responses should not be ignored. In this chapter we discuss the imputation

process and present imputation results for missing responses. We also compare our

results to the results from the current method of analyzing the data that uses last

observation carried forward (LOCF) as the subscale imputation method. We conclude

this chapter by presenting the results from two simulations to validate the imputation

method.

First we develop some notation to be used throughout this chapter.

• Let Yi denote an underlying latent continuous response variable having cdf Gi(·).
Suppose −∞ = a0 < a1 < . . . < aJ = ∞ are the “cut-points”, such that Ri,

the observed ith ordinal response in the data, satisfies Ri = j if aj−1 < Yi ≤ aj,

where j = 1, . . . , J .
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• When the underlying response value Yi falls in the jth interval (aj−1, aj], then

P [Ri = j] = P [aj−1 < Yi ≤ aj] = Gi(aj)−Gi(aj−1).

In the presence of covariates, we assume that Gi(aj) = G(aj − β′xi) for some

link function G(·).

• The appropriate model for Ri applies link function G(·).
Possible cumulative link functions:

logit link, G(t) = [1 + e−t]−1,

probit link, G(t) = Φ(t), where Φ denotes the cdf of N(0,1),

log-log link, G(t) = 1− e−et
.

• Note that P [Ri = j] = G(aj − β′xi)−G(aj−1 − β′xi),

where j = 1, . . . , J such that −∞ = a0 < a1 < . . . < aJ = ∞.

• In our model, we take x′i = (question[i], treatment[i], session[i])′ and β′ =(QUES,

TRT, SESS) such that

β′xi =QUES[question[i]] + TRT[treatment[i]] + SESS[session[i]].

The likelihood function of β and (a1, . . . , aJ−1) is given by

L(β, a) =
∏I

i=1(G(aRi
− β′xi)−G(aRi−1 − β′xi)).

To choose between the link functions, we use the deviance = -2logL(β, a).

3.2 Discussion

3.2.1 Model fitting ignoring missing values

The purpose of this section is to choose the link function to be used throughout

this chapter and to show that results based on MLE and Bayes method are compat-

ible. SAS and BUGS were used to fit the ordinal models to the complete data using

both the logit link and the probit link. For BUGS, all unknown a’s, SESS’s, TRT’s,

and QUES’s are initially given independent noninformative priors. The choice that
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we used for all our parameters was an improper flat prior on the whole real line. Note

that the posterior distribution is proper. For each health subscale, Gibbs sampling

was used. In our Gibbs sampling, we ran three chains consisting of 10,000 iterates.

The first 4000 iterates from each chain were discarded. These were considered a

‘burn-in’ period. Thus 6000 iterates were used from each chain giving a sample size

of 18,000 for analysis. The Gelman Rubin diagnostic plots were examined to justify

the use of 4000 iterates as the ‘burn-in’. Figure 3.1 shows the estimate results with

the logit link from SAS and BUGS on the same plot. Appendix B lists the estimates

and their confidence intervals from SAS and BUGS. As seen in Figure 3.1, there is not a

significant difference between the two devices. The estimates from the two softwares

are on top of each other. The SAS results comparing the logit link and probit link are:

Logit Link Probit Link
Group Log Likelihood Log Likelihood

1 -7603.0560 -7638.6766
2 -3878.6821 -3878.6616
3 -2450.9023 -2450.8747
4 -3882.9301 -3885.2324
6 -10494.1380 -10487.7647
7 -9200.1049 -9193.3474
8 -10446.5128 -10464.5585

For most of the groups, either the logit link gives a better model or both models

are equivalent based on the log likelihood criteria. Thus the logit link was used for

all of the models.

3.2.2 Bayesian Imputation Method

In this section, we extend the method to analyze data with missing responses.

Gibbs sampling was used to impute values for the missing responses. If the logit link

is used then the steps are:
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1. Get initial estimates for the missing data and the parameters. For all param-

eters, except the aj parameters, initial values of zero were chosen. For the aj

parameters, a combination of negative and positive values were used in increas-

ing order. WinBUGS generated initial values for the missing responses.

2. Generate Y
(t)
i ’s, where Y

(t)
i ∼ TL(x′iβ

(t−1), 1)I(a
(t−1)
Ri−1, a

(t−1)
Ri

) and

TL represents the truncated logistic distribution.

3. Update the a
(t)
j ’s, where a

(t)
j ∼ U(L

(t)
j , U

(t)
j ), L

(t)
j = max{Y (t)

i |R(t−1)
i = j}, and

U
(t)
j = min{Y (t)

i |R(t−1)
i = j − 1}.

4. Impute the R
(t)
i ’s as R

(t)
i =

∑J
j=1 jI(a

(t)
j−1 < Y

(t)
i ≤ a

(t)
j ).

5. Sample β(t). This needs to be done using a Metropolis-Hastings step since the

full conditional is not a standard distribution.

These steps using the logit link were carried out in WinBUGS using the code in

Appendix C.
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3.2.3 Social Functioning

This dataset consists of 3848 entries. There are 962 patients and each patient has

a response for each question at each session. This subscale consists of 2 questions.

There were 187 missing responses. Results from WinBUGS:

Table 3.1: Social Functioning Results

parameter mean sd MC error 2.5% median 97.5%

a[1] -4.312 0.1495 4.388E-3 -4.604 -4.309 -4.023
a[2] -2.567 0.0849 3.532E-3 -2.724 -2.569 -2.395
a[3] -1.008 0.0685 3.155E-3 -1.140 -1.009 -0.871
a[4] 0.457 0.0673 3.029E-3 0.325 0.455 0.591

QUES[1] 0.205 0.0614 1.560E-3 0.084 0.205 0.325
SESS[1] -0.291 0.0619 1.730E-3 -0.411 -0.291 -0.169
TRT[1] -0.050 0.0619 1.668E-3 -0.171 -0.049 0.072
resp[7] 4.102 0.9505 7.168E-3 2.0 4.0 5.0
resp[8] 4.020 0.9735 6.923E-3 2.0 4.0 5.0

resp[59] 4.115 0.9521 7.502E-3 2.0 4.0 5.0
resp[60] 4.009 0.9815 7.466E-3 2.0 4.0 5.0
resp[67] 4.151 0.9300 7.150E-3 2.0 4.0 5.0
resp[68] 4.032 0.9688 7.190E-3 2.0 4.0 5.0
resp[75] 4.135 0.9257 6.675E-3 2.0 4.0 5.0
resp[76] 4.032 0.9741 7.606E-3 2.0 4.0 5.0
resp[79] 4.133 0.9410 7.062E-3 2.0 4.0 5.0
resp[80] 4.033 0.9684 6.962E-3 2.0 4.0 5.0

response[95] 4.142 0.9419 7.525E-3 2.0 4.0 5.0
response[96] 4.045 0.9665 7.732E-3 2.0 4.0 5.0

response[147] 4.124 0.9436 7.041E-3 2.0 4.0 5.0
response[148] 4.028 0.973 6.683E-3 2.0 4.0 5.0
response[155] 4.118 0.9461 6.865E-3 2.0 4.0 5.0
response[156] 4.009 0.9788 7.240E-3 2.0 4.0 5.0
response[159] 4.107 0.9422 6.678E-3 2.0 4.0 5.0
response[160] 4.009 0.9673 7.281E-3 2.0 4.0 5.0
response[239] 4.141 0.9378 7.269E-3 2.0 4.0 5.0
response[240] 4.032 0.9634 7.298E-3 2.0 4.0 5.0
response[242] 3.853 1.0150 8.385E-3 2.0 4.0 5.0
response[295] 4.125 0.9383 6.556E-3 2.0 4.0 5.0
response[296] 4.006 0.9756 7.090E-3 2.0 4.0 5.0
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The tables will look similar for all the subscales. The density plots for some of

the missing parameters can be seen in Figure 3.2. The tables for the other subscales

can be seen in Appendix D. The plots of the imputation values can be seen in Figure

3.3. This figure consists of a bar plot for each subscale. The possible response values

for each subscale are listed on the x-axis. The height of each bar is the proportion

of times that particular response value was chosen as the imputed value. One thing

to note from Figure 3.3 is that for the Role Physical, the Role Emotional, and the

Social Functioning subscales, only one value was chosen for the imputed value.

With the current method of analyzing the data, the first thing that is done is

some rescoring of the questions. This can be somewhat complex depending on the

subscale. For a detailed description of the rescoring that is done, refer to the SF-36

Health Survey Manual (Ware 1993). Next as the data are analyzed, two imputation

levels of single imputation are carried out. The first level consists of imputing values

for individual question responses within a subscale. If 50% or less of the questions in

that subscale are missing then the missing responses are set to the mean of all the

non-missing responses. After this imputation is done, subscale scores are calculated

for each subject at each session. If more than 50% of the questions in that subscale

are missing then the subscale score is set to missing. Otherwise, a subscale score is

calculated by summing over all questions in that subscale and converting the sum

onto a scale from 0-100. Then, the second imputation is carried out. For subjects

with missing subscale scores, these are imputed using last observation carried forward

(LOCF) as the imputation method. Next, a change from baseline value is computed

for each subject for each subscale. The change from baseline value is the Week 12

value minus the Baseline value. Then, a mean score is calculated for each treatment

group by averaging the scores for all the subjects in that treatment group. These

scores are compared using a z-test. The results from the analysis carried out by

GlaxoSmithKline had a significant difference between the Naratriptan and Customary
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Therapy for one out of the seven subscales that we also analyzed. This subscale was

the Vitality subscale. Our results differed slightly from the GlaxoSmithKline results.

As seen in Table D.7, there was a difference between the two treatment groups for the

General Health subscale. This conclusion is based on the fact that the 95% credible

interval for the TRT parameter does not contain 0.

3.3 Simulation Study to Validate Imputation Method

We ran two simulations to test the imputation method. Both simulations were

performed in the same manner with one difference. For the first simulation, the true

value of TRT parameter was equal to 1. For the second simulation, the true value of

the TRT parameter was equal to 5 which corresponds to small and large differences

in treatment.

For the first simulation we created a data set consisting of 200 patients, 100 in

each treatment group. In the data set, there were five responses, two questions, and

one continuous covariate. The true values of the parameters are: BETA = 2, QUES =

1, TRT = 1, a1 = -2, a2 = -1, a3 = 1, and a4 = 2. In order to generate the data, the Yi

values are randomly drawn from a logistic distribution with location µi = xi∗BETA

+ treatment*TRT + question*QUES. Where the xi are generated from a standard

normal distribution, treatment takes on a value of 1 or 0, and question takes on a

value of 1 or 0. If the subject is in treatment 1 then the value of treatment is 1. If

the subject is in treatment 2 then the value of treatment is 0. For question 1, the

value of question is 1, and for question 2, the value of question is 0. Then, once Yi

has been generated, the observed Ri can be determined using the true aj values as

Ri =
∑5

j=1(j ∗ I[aj−1 < Yi ≤ aj]).

Once the data were generated, PROC GENMOD was used to fit the ordinal model

with logit link to the complete data. Next, a certain number of subjects were selected

from each treatment group and their observed response Ri values were removed.



38

PROC GENMOD was used to fit the ordinal model with logit link to the data,

ignoring the missing responses. Then, WinBUGS was used to fit the ordinal model

with logit link to the data, imputing the missing responses. The simulation was done

100 times for 10, 35, and 50 subjects being removed from each treatment group. T-

tests were done to compare the estimates to the true values of the parameters. The

estimates were obtained by taking the mean value from the 100 runs of the simulation.

The imputed results were compared to the true values from the complete data.

As seen in the tables(Appendices E and F), both devices gave good results. The

parameter estimates were similar to the true values for most of the parameters. For

example, refer to a4 at 10% missing in Appendix E. The true value is 2. The value

from SAS is equal to 1.99 and the value from WinBUGS is equal to 2.01. Both devices

gave estimates that were .01 units away from the true value on the average. In the

tables in Appendices E and F, the values in the “estimate” column were calculated by

taking the mean of the 100 parameter estimates from the 100 runs of the simulation.

The values in the “cov prob” column are equal to the proportion of times out of

the 100 runs of the simulation, that the true value was captured in the confidence

or credible interval. The “length” column refers to the length of the confidence or

credible interval. The values in this column are computed by taking the mean of the

100 confidence or credible interval lengths from the 100 runs of the simulation. The

MC Errors are equal to the the sample standard errors for the estimates. They are

computed by taking the square root of the sum of squared errors divided by n-1.

For a3, a4, QUES, and TRT in the first simulation, the parameter estimates from

WinBUGS and SAS were not significantly different from the true values for all levels

of missing. The results from the second simulation were comparatively worse. The

only parameter estimates that were not significantly different from the true values

for all levels of missing from WinBUGS and SAS were the estimates for a2. In addition

for SAS only, there were no significant differences between the true value and the

parameter estimates for a1 at all levels of missing.
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There was consistency between SAS and WinBUGS with regards to the coverage

probability. For example, refer to TRT at 10% missing in Appendix E. The coverage

probability for both SAS and WinBUGS was .94. For the coverage probabilities in

both simulations, sometimes SAS and WinBUGS were equivalent, sometimes SAS was

slightly higher, and sometimes WinBUGS was slightly higher. For the first simulation,

the probabilities were all greater than .90. The majority of the time, the coverage

probability was equal to .94, .95, or .96. For the second simulation, the majority of

the time, the coverage probability was equal to .93, .94, .95, or .96. Occassionally the

coverage probability dropped below .90. For example refer to a4 for 35% missing in

Appendix F. The coverage probability from WinBUGS is equal to .88. The parameter

estimates from WinBUGS with imputation were more efficient than the parameter esti-

mates from SAS. This gain in efficiency can be seen by comparing the average lengths

of the confidence and credible intervals. The average length of the credible intervals

were shorter than the average length of the confidence intervals for both simulations

at all levels of missing. For example, refer to a1 at 35% missing in Appendix E.

The average length of the confidence interval from SAS was 1.102 wheras the average

length of the credible interval from WinBUGS was .974.

For the first simulation, for 10% missing, the imputed value was equal to the real

value 50.95% of the time. For 35% missing, the imputed value was equal to the real

value 50.11% of the time. For 50% missing, the imputed value was equal to the real

value 50.79% of the time. Bar plots of the imputed values versus the real values can

be seen in Figures 3.4 - 3.6. The height of the bar corresponds to the proportion of

times that response value was chosen as the imputed value. In each figure, there is one

bar plot for each real value. For the second simulation, for 10% missing, the imputed

value was equal to the real value 68.25% of the time. For 35% missing, the imputed

value was equal to the real value 68.74% of the time. For 50% missing, the imputed

value was equal to the real value 68.54% of the time. Bar plots of the imputed values

versus the real values can be seen in Figures 3.7 - 3.9. Figures 3.4 - 3.9 show that for
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real values of 1, 3, and 5, the imputed value that is chosen is equal to the real value

more often than not. The bars for 1,3, and 5 are the highest.

The results from the two simulations showed that both SAS and WinBUGS perform

better when there are small treatment differences than when there are large treatment

differences. They also showed that there is not a significant difference between the

two devices in regards to the parameter estimates. However, using WinBUGS with

imputation will result in more efficient parameter estimates. In addition, it will

result in a complete data set that can be used for other analyses.
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Figure 3.1: Plot of SAS vs BUG estimates where the BUG estimate is a diamond and
the SAS estimate is a star
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Figure 3.3: Plots of Imputed Values
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Figure 3.4: Plot of Imputed Values for 10% Missing Where TRT = 1
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Figure 3.5: Plot of Imputed Values for 35% Missing Where TRT = 1
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Figure 3.6: Plot of Imputed Values for 50% Missing Where TRT = 1

1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

0
.4

True Value = 1

Value

1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

0
.4

True Value = 2

Value

1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

True Value = 3

Value

1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

True Value = 4

Value

1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

True Value = 5

Value



49

Figure 3.7: Plot of Imputed Values for 10% Missing Where TRT = 5
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Figure 3.8: Plot of Imputed Values for 35% Missing Where TRT = 5
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Figure 3.9: Plot of Imputed Values for 50% Missing Where TRT = 5
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Chapter 4

Ordinal Response Model with

Varying Cut-Points

4.1 Introduction

In Chapter 3 we fit an ordinal response model to the data. However, we did not

take into account the population differences. Due to the diversity among populations,

the probability of an individual responding in any given response category is different

across populations. Adjustments are needed to make survey results comparable across

populations. When categorical variables are involved, analyses must account for

differences in response category cut-points (aj). Cut-points are also likely to vary

within a cultural or sociodemographic group.

The World Health Organization (WHO) used a sample from the WHO Multi-

Country Study it conducted to demonstrate the assessment of the predictive validity

of the hierarchical ordered probit model (HOPIT) (WHO 2001). This model is a

modification of the standard ordinal response model with probit link. The modifica-

tion incorporates components that refer to estimation of cut-points using responses

to vignettes. A vignette is a question that the respondents are asked. The question

asks the respondents to evaluate their level of ability on a given domain. In the WHO
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study, the vignette assesses the respondents level of ability on the mobility domain.

The vignette has the same number of responses as the questions on the survey. The

purpose of the vignette is as a means of correction of the responses from the survey

which is a self-report survey. The correction makes the responses comparable across

populations. The vignette fixes the level of ability such that variations in categorical

responses are attributable to variations in response category cut-points. This intro-

duction of information in the form of responses to vignettes allows one to identify the

effects of a set of sociodemographic covariates (such as age, sex, country of residence,

etc.) on both the level of the underlying latent variable that is being estimated as

well as on the cut-points. In the WHO Multi-Country Study, there are six vignettes

for the domain of mobility, each designed to capture a different level of ability on this

domain. The sample showed that the HOPIT model seemed to perform well in terms

of predictive validity. We will be modifying our standard ordinal response model with

logit link in a similar manner.

It has been shown that people in different countries respond differently to the SF-

36 form. In order to investigate the differences between countries, we fit a separate

model for each country. The analysis was performed in WinBUGS. Plots of the cut-

points by country for each group can be seen in Figure 4.1. This figure shows that the

cut-points changed depending on the country. It also shows that the cut-points are

not significantly different for all countries. Thus, a separate cut point for each country

may not be needed. For example, refer to Figure 4.1 for Role Physical. It appears

that the cut-points for New Zealand, Hungary, Canada, and The Netherlands seem

to be similar. It also appears that the cut-points for Spain and Finland are slightly

different, with the cut-point for Spain being significantly different then the cut-points

for Hungary, Canada, and Finland. The conclusion of significant difference is drawn

from the fact that the credible intervals do not overlap. Tables 4.1 - 4.7 summarize the

findings. An X indicates that the two cut-points are significantly different for those

countries (in other words, their credible intervals do not overlap). For our example
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above, notice that in Table 4.2, the cut-point for Spain is significantly different than

the cut-points for Hungary, Canada, and Finland.

One important benefit of allowing the cut-points to vary depending on country is

that the treatment difference can be compared across countries. Another benefit of

using the varying cut-points is that it allows the information from similar countries

to be pooled together. This will be beneficial if not all responses are being selected

on the survey. For example, refer to Figure 4.1 for Mental Health. Notice that the a1

estimate for The Netherlands is not on this plot. This is because the response value

of 1 was never selected by people in The Netherlands for the Mental Health questions.

Thus the parameter estimate is extremely negative.

Here we extend our model in Chapter 3 to include the effect of varying cut-points.

• Lc = w, where w = 1, . . . W and c, the country number, takes on values of 1,

. . . , 6. W is equal to the number of cut-points needed.

• Let Yi denote an underlying latent continuous response variable. Suppose−∞ =

aw0 < aw1 < . . . < awJ = ∞ are the “cut-points”, such that Ri, the observed

ith ordinal response in the data, satisfies Ri = j if aw(j−1) < Yi ≤ awj | Lci
= w,

where w = 1, . . ., W, −∞ = aw0 < aw1 < . . . < awJ = ∞, and ci is the country

number for the ith ordinal response in the data.

• When the underlying response value Yi falls in the jth interval (aw(j−1), awj] |
Lci

= w, then P [Ri = j | Lci
= w] = P [aw(j−1) < Yi ≤ awj]P (Lci

= w) =

[Gi(awj)−Gi(aw(j−1))]νw. Thus, P [Ri = j] =
∑W

w=1[Gi(awj)−Gi(aw(j−1))]νw.

In the presence of covariates, we assume that Gi(awj) = G(awj − β′xi).

• In our model, we take x′i = (question[i], treatment[i], session[i])′ and β′ =(QUES,

TRT, SESS) such that β′xi =QUES[question[i]] + TRT[treatment[i]] + SESS[session[i]].

The likelihood function of β and a′ = (a11, . . . , a1(J−1), a21, . . . , a2(J−1), . . . , aw1, . . . , a(w)J−1)
′

is given by
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L(β, a) =
∏m

i=1

∑W
w=1(G(a(Lw)(Ri) − β′xi)−G(a(Lw)(Ri−1) − β′xi))νw.

4.1.1 Imputation

In this section, we extend the method to analyze data with missing responses.

Gibbs sampling was used to impute values for the missing responses using the logit

link. The steps are:

1. Get initial estimates for the missing data and the parameters. For the Lc pa-

rameters initial values were chosen between 1 and W. For all other parameters,

except the awj parameters, initial values of zero were chosen. For the awj pa-

rameters, a combination of negative and positive values were used in increasing

order within each w. WinBUGS generated initial values for the missing responses.

2. Generate Y
(t)
i ’s where Y

(t)
i ∼ TL(x′iβ

(t−1), 1)I(a
(t−1)
(Lci )(R(i−1))

, a
(t−1)
(Lci )(Ri)

) and TL

represents the truncated logistic distribution.

3. Update the a
(t)
wj’s, where a

(t)
wj ∼ U(L

(t)
wj, U

(t)
wj ),

where L
(t)
wj = max{Y (t)

i |R(t−1)
i = j, L(t−1)

ci
= w}, and

U
(t)
wj = min{Y (t)

i |R(t−1)
i = j − 1, L(t−1)

ci
= w}.

4. Update the ν(t)
w ’s, where (ν

(t)
1 , . . . , ν

(t)
W ) ∼Dirichlet(1+

∑6
c=1 I(L(t−1)

c = 1), . . . , 1+
∑6

c=1 I(L(t−1)
c = W ).

5. Update the L(t)
c ’s as

L(t)
c =

∑W
w=1 ν

∗(t)
wi I[L(t−1)

ci
= w] where

ν
∗(t)
wi =

[Gi(awj)
(t)−Gi(a

(t)

w(j−1)
)]ν

(t)
w∑W

d=1
[Gi(a

(t)
wj−Gi(a

(t)

w(j−1)
)]ν

(t)
d

.

6. Impute the R
(t)
i ’s as

R
(t)
i =

∑J
j=1

∑W
w=1 jI(a

(t)
w(j−1) < Y

(t)
i ≤ a

(t)
wj)I(L(t)

ci
= w).

7. Sample β(t). This needs to be done using a Metropolis-Hastings step since the

full conditional is not a standard distribution.
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Before these steps using the logit link were carried out in WinBUGS using the

code in Appendix G, the following was done. First, Figure 4.1 was examined to

determine how many cut-points were needed for each subscale. For example, for the

Role Physical subscale, it appears that three cut-points are needed. New Zealand,

Hungary, Canada, and The Netherlands seem to be grouped together. Spain and

Finland appear to need their own cut-points. Next we fit an ordinal model to the

data with varying cut-point variables using the code in Appendix G. For this step

we used one more cut-point than we thought was necessary. In other words if we

thought three cut-points were needed, we fit the model with W = 4. Then, the model

was examined to determine if the correct number of cut-points was being used. By

monitoring the Lc variable in WinBUGS, one can determine how many independent

values are being chosen. This is how many cut-points are needed. As seen in Table

H.2, Lc has three distinct values (1,2,3). Thus, three cut-points are needed for the

Physical Functioning subscale. Upon examining the Lc values, if it was determined

that the W being used was not correct, the model was re-run using one less cut-point.

This was continued until the correct number of cut-points was being used.

Once the correct number of cut-points was identified, the final models were fit.

The imputation using the new model with logit link was carried out in WinBUGS using

the code in Appendix G. We fit one chain consisting of 10,000 iterates. We used a

‘burn-in’ of 5000. Thus, a sample size of 5000 was used for analysis. The tables of

the results can be seen in Appendix H. By comparing the table parameter estimates

in Appendix H to the values in Figure 4.1, one will see that the parameter estimates

are similar. For example, refer to Table H.2 and Figure 4.1 Role Physical. In Figure

4.1 Role Physical, the estimate for New Zealand is approximately -.6, the estimate

for Hungary is approximately -.9, the estimate for Canada is approximately -.7, and

the estimate for The Netherlands is approximately -.5. All of these are similar to the

parameter estimate in Table H.2 of -.596. Thus, we can conclude that we are able to

get correct cut-point parameter estimates without having to fit a separate model for
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each country. Therefore, we only need to fit one model per subscale which allows us

to compare treatments across populations.

Recall that one benefit of fitting only one model per subscale is that is allows the

information from similar countries to be pooled together. As seen in Table H.5 for

the model with varying cut-points, the parameter estimate for a1 for people in The

Netherlands is -5.008. This is a more reasonable estimate than the estimate from

fitting a separate model for The Netherlands. The estimate from the separate model

for the Netherlands was extremely negative.

The plots of the imputation values can be seen in Figure 4.2. When comparing

the imputation plots (Figure 4.2) to the imputation plots from the model in Chapter

3 (Figure 3.3) there are a few major differences. For the Role Physical subscale,

values of 1 and 2 are selected in the new model. In Chapter 3, only the value of 2 was

selected. For the Social Functioning subscale, values of 4 and 5 are selected in the new

model. In Chapter 3, only the value of 4 was selected. Thus, one can conclude that

allowing the cut-points to vary, will result in better imputed values. The imputed

values are better because they take into account the differences in the countries. For

example, in Chapter 3, for the Social Functioning subscale, all imputed values were

4. During the exploratoy analysis, when a separate model was fit for each country,

the imputed values were 4 for all countries except Finland. For Finland, the majority

of the values were 5. When the model with varying cut-points was fit to the data, for

the Social Functioning subscale, values of 4 and 5 were selected. The times that a 5

was selected were for subjects from Finland.

Recall that the results from the analysis carried out by GlaxoSmithKline had a

significant difference between the two treatment groups for the Vitality Subscale. Our

results differed slightly from the GlaxoSmithKline results. As seen in Table H.7, there

was a difference between the two treatment groups for the General Health subscale.

This conclusion is based on the fact that the credible interval does not contain 0.
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4.2 Benefits of Using WinBUGS

At the end of Chapter 3, we presented the results from two validation simulations.

Both showed that SAS and WinBUGS gave similar parameter estimates. The valida-

tion simulations also showed that using WinBUGS with imputation will result in more

efficient parameter estimates. Another benefit to using WinBUGS is that you end up

with a complete set of data. Due to the nature of the drug approval process, it may

be necessary to continue to analyze the data using the current industry standard. By

using the imputation methods presented in this paper, you will have a complete set

of data with good imputation values from a multiple imputation method that you

can use for the analysis.

One result that comes from using WinBUGS to analyze the data is density plots for

the imputed values. An example of these plots can be seen in Figure 3.2. These plots

can be examined to determine how probable the imputed value is.

Another benefit to using WinBUGS is that it can be used to fit the model with

varying cut-points that was discussed in Section 4.1. SAS cannot be used to fit

this model in the same way. As you fit the model using WinBUGS, the program will

determine how many cut-points are needed and which countries belong to each group.

If you wanted to fit the model in SAS, you would have to examine the by country

plots yourself and determine how many cut-points are needed and which countries

belong to each group. This becomes more difficult as the number of cut-points and

the number of countries increase. There exist many advantages to using the model

with varying cut-points. Fitting this model will allow you to compare treatment

differences across populations. It also results in reasonable parameter estimates if

some response choices are not present in the data, as was seen with response 1 for

the Mental Health questions for people from The Netherlands.
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4.3 Future Work

The methods presented in this paper are for health surveys with the same number

of responses for all questions in a subscale. The SF-36 health survey, has one subscale

that does not follow this pattern. The subscale has two questions in it, one of the

questions has 5 possible choices, the other one has 6. This subscale was not included

in the work presented here. This next phase of this research will need to develop a

way to handle this problem. Also, the methods develped in this paper were tested on

the SF-36 health survey. There are many therapeutic specific health surveys currently

being used in clinical trials. The methods presented here need to be tested on some

of the other health surveys.

We assumed that the data was missing at random. The next phase of this research

will need to consider that the data is not missing at random. This will involve joint

modeling of the data and the pattern of missing.
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Table 4.1: Physical Functioning Cut-point Summary

Par Country NZ SP HG CD FN HL

a[1] NZ X
SP X
HG X
CD X
FN X
HL

a[2] NZ
SP
HG
CD X
FN X
HL

Table 4.2: Role Physical Cut-point Summary

Par Country NZ SP HG CD FN HL

a[1] NZ X
SP X X X
HG
CD X
FN
HL

Table 4.3: Role Emotional Cut-point Summary

Par Country NZ SP HG CD FN HL

a[1] NZ
SP
HG X X X
CD
FN
HL
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Table 4.4: Social Functioning Cut-point Summary

Par Country NZ SP HG CD FN HL

a[1] NZ
SP
HG X
CD X
FN
HL

a[2] NZ X
SP
HG X
CD
FN
HL

a[3] NZ X
SP X
HG X
CD X
FN X
HL

a[4] NZ X
SP X
HG X
CD
FN X X
HL
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Table 4.5: Mental Health Cut-point Summary

Par Country NZ SP HG CD FN HL

a[1] NZ X X
SP X
HG X X X
CD X
FN X
HL

a[2] NZ X X
SP X X
HG X X X
CD
FN
HL

a[3] NZ X X
SP X X X
HG X X X
CD
FN
HL

a[4] NZ X
SP X X X
HG X X X
CD
FN
HL

a[5] NZ
SP X X X
HG
CD
FN X
HL
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Table 4.6: Vitality Cut-point Summary

Par Country NZ SP HG CD FN HL

a[1] NZ X
SP X
HG X X X
CD
FN
HL

a[2] NZ
SP
HG X
CD X
FN X
HL

a[3] NZ X
SP X
HG X
CD X
FN X
HL

a[4] NZ X
SP X
HG X
CD X
FN X
HL

a[5] NZ X
SP X
HG X X X
CD
FN
HL



64

Table 4.7: General Health Cut-point Summary

Par Country NZ SP HG CD FN HL

a[1] NZ X X X
SP X
HG X X X
CD
FN
HL

a[2] NZ X
SP X X
HG X X X
CD
FN
HL

a[3] NZ X X
SP X X X
HG X X
CD X
FN
HL

a[4] NZ X X
SP X X X
HG X X X
CD
FN
HL
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Figure 4.1: Plots of Cut-Points
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Figure 4.2: Plots of Imputed Values
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Appendix A

SF-36 Questionnaire

SF-36 Health Survey Scoring Demonstration

This survey asks for your views about your health. This information will help you
keep track of how you feel and how well you are able to do your usual activities.
Answer every question by selecting the answer as indicated. If you are unsure about
how to answer a question, please give the best answer you can.

1. In general, would you say your health is:

Fair Poor
◦ ◦

2. Compared to one year ago, how would you rate your health in general now?

Much Somewhat About Somewhat Much
better better the worse worse
now now same now now
◦ ◦ ◦ ◦ ◦

3. The following questions are about activities you might do during a typical day.
Does your health now limit you in these activities? If so, how much?
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Yes, Yes, No, not
limited limited limited
a lot a little at all

a. Vigorous activities, such as running, lifting
heavy objects, participating in strenuous sports ◦ ◦ ◦
b. Moderate activities, such as moving a table,
pushing a vacuum cleaner, bowling, or playing golf ◦ ◦ ◦
c. Lifting or carrying groceries ◦ ◦ ◦
d. Climbing several flights of stairs ◦ ◦ ◦
e. Climbing one flight of stairs ◦ ◦ ◦
f. Bending, kneeling, or stooping ◦ ◦ ◦
g. Walking more than a mile ◦ ◦ ◦
h. Walking several blocks ◦ ◦ ◦
i. Walking one block ◦ ◦ ◦
j. Bathing or dressing yourself ◦ ◦ ◦

4. During the past 4 weeks, have you had any of the following problems with your
work or other regular daily activities as a result of your physical health?

Yes No
a. Cut down on the amount of time you spent on
work or other activities ◦ ◦
b. Accomplished less than you would like ◦ ◦
c. Were limited in the kind of work or other activities ◦ ◦
d. Had difficulty performing the work or other
activities (for example, it took extra effort) ◦ ◦

5. During the past 4 weeks, have you had any of the following problems with your
work or other regular daily activities as a result of any emotional problems (such as
feeling depressed or anxious)?

Yes No
a. Cut down on the amount of time you spent on work
or other activities ◦ ◦
b. Accomplished less than you would like ◦ ◦
c. Didn’t do work or other activities as carefully as usual ◦ ◦

6. During the past 4 weeks, to what extent has your physical health or emotional
problems interfered with your normal social activities with family, friends, neighbors,
or groups?

Not at all Slightly Moderately Quite a bit Extremely
◦ ◦ ◦ ◦ ◦
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7. How much bodily pain have you had during the past 4 weeks?

None Very mild Mild Moderate Severe Very severe
◦ ◦ ◦ ◦ ◦ ◦

8. During the past 4 weeks, how much did pain interfere with your normal work
(including both work outside the home and housework)?

Not at all A little bit Moderately Quite a bit Extremely
◦ ◦ ◦ ◦ ◦

9. These questions are about how you feel and how things have been with you during
the past 4 weeks. For each question, please give the one answer that comes closest to
the way you have been feeling. How much of the time during the past 4 weeks

All Most A good Some A None
of of bit of of little of
the the the the of the the
time time time time time time

a. Did you feel full of pep? ◦ ◦ ◦ ◦ ◦ ◦
b. Have you been a very
nervous person? ◦ ◦ ◦ ◦ ◦ ◦
c. Have you felt so down
in the dumps that nothing
could cheer you up? ◦ ◦ ◦ ◦ ◦ ◦
d. Have you felt calm and
peaceful? ◦ ◦ ◦ ◦ ◦ ◦
e. Did you have a lot of
energy? ◦ ◦ ◦ ◦ ◦ ◦
f. Have you felt downhearted
and blue? ◦ ◦ ◦ ◦ ◦ ◦
g. Did you feel worn out? ◦ ◦ ◦ ◦ ◦ ◦
h. Have you been a happy
person? ◦ ◦ ◦ ◦ ◦ ◦
i. Did you feel tired? ◦ ◦ ◦ ◦ ◦ ◦

10. During the past 4 weeks, how much of the time has your physical health or emo-
tional problems interfered with your social activities (like visiting friends, relatives,
etc.)?

All of Most of Some of A little of None of
the time the time the time the time the time

◦ ◦ ◦ ◦ ◦
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11. How TRUE or FALSE is each of the following statements for you?

Definitely Mostly Don’t Mostly Definitely
true true know false false

a. I seem to get sick
a little easier than
other people ◦ ◦ ◦ ◦ ◦
b. I am as healthy as
anybody I know ◦ ◦ ◦ ◦ ◦
c. I expect my health
to get worse ◦ ◦ ◦ ◦ ◦
d. My health is excellent ◦ ◦ ◦ ◦ ◦
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Appendix B

SAS vs BUGS Parameter

Estimates

Table B.1: SAS vs BUGS Parameter Estimates

Group Software Parameter Estimate lower limit upper limit

1 BUG a1 -5.5620 -5.9120 -5.2710

1 SAS a1 -5.5192 -5.8282 -5.2102

1 BUG a2 -3.5360 -3.8720 -3.2580

1 SAS a2 -3.4950 -3.7923 -3.1977

1 BUG trt -0.0807 -0.1682 0.0058

1 SAS trt -0.0797 -0.1670 0.0075

1 BUG sess -0.0067 -0.0930 0.0803

1 SAS sess -0.0056 -0.0928 0.0815

1 BUG ques1 -3.7260 -4.0690 -3.4360

1 SAS ques1 -3.6844 -3.9903 -3.3784

1 BUG ques2 -1.9320 -2.2800 -1.6280

1 SAS ques2 -1.8934 -2.2124 -1.5745

1 BUG ques3 -1.8170 -2.1710 -1.5120
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1 SAS ques3 -1.7772 -2.0985 -1.4560

1 BUG ques4 -2.6610 -3.0110 -2.3660

1 SAS ques4 -2.6223 -2.9321 -2.3126

1 BUG ques5 -0.8964 -1.2740 -0.5552

1 SAS ques5 -0.8622 -1.2128 -0.5116

1 BUG ques6 -2.3910 -2.7360 -2.0900

1 SAS ques6 -2.3512 -2.6635 -2.0388

1 BUG ques7 -1.8840 -2.2350 -1.5810

1 SAS ques7 -1.8462 -2.1664 -1.5261

1 BUG ques8 -1.1710 -1.5320 -0.8440

1 SAS ques8 -1.1338 -1.4734 -0.7942

1 BUG ques9 -0.3887 -0.7858 -0.0123

1 SAS ques9 -0.3554 -0.7364 0.0255

2 BUG a1 -0.8072 -0.9347 -0.6770

2 SAS a1 -0.8098 -0.9416 -0.6781

2 BUG trt -0.0193 -0.1248 0.0865

2 SAS trt -0.0211 -0.1277 0.0854

2 BUG sess -0.2336 -0.3384 -0.1279

2 SAS sess -0.2346 -0.3412 -0.1279

2 BUG ques1 0.1739 0.0244 0.3270

2 SAS ques1 0.1727 0.0200 0.3255

2 BUG ques2 -0.2947 -0.4404 -0.1520

2 SAS ques2 -0.2961 -0.4437 -0.1486

2 BUG ques3 0.1134 -0.0358 0.2610

2 SAS ques3 0.1109 -0.0409 0.2627

3 BUG a1 -1.5070 -1.6700 -1.3490

3 SAS a1 -1.5064 -1.6671 -1.3457
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3 BUG trt -0.0750 -0.2104 0.0592

3 SAS trt -0.0761 -0.2142 0.0621

3 BUG sess -0.4345 -0.5725 -0.2956

3 SAS sess -0.4359 -0.5749 -0.2970

3 BUG ques1 0.2605 0.0838 0.4395

3 SAS ques1 0.2605 0.0832 0.4379

3 BUG ques2 -0.3731 -0.5357 -0.2099

3 SAS ques2 -0.3721 -0.5356 -0.2086

4 BUG a1 -4.5360 -4.9100 -4.2090

4 SAS a1 -4.5170 -4.8614 -4.1726

4 BUG a2 -2.7000 -2.8830 -2.5220

4 SAS a2 -2.6969 -2.8774 -2.5165

4 BUG a3 -1.1110 -1.2440 -0.9764

4 SAS a3 -1.1109 -1.2505 -0.9713

4 BUG a4 0.3749 0.2442 0.5077

4 SAS a4 0.3727 0.2382 0.5072

4 BUG trt -0.1238 -0.2541 0.0076

4 SAS trt -0.1241 -0.2543 0.0060

4 BUG sess -0.2437 -0.3728 -0.1142

4 SAS sess -0.2449 -0.3751 -0.1146

4 BUG ques1 0.1690 0.0407 0.2995

4 SAS ques1 0.1679 0.0377 0.2981

6 BUG a1 -4.2960 -4.5220 -4.0750

6 SAS a1 -4.2839 -4.5094 -4.0585

6 BUG a2 -2.7630 -2.9040 -2.6260

6 SAS a2 -2.7571 -2.8986 -2.6156

6 BUG a3 -1.4260 -1.5420 -1.3100
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6 SAS a3 -1.4212 -1.5376 -1.3048

6 BUG a4 -0.2678 -0.3743 -0.1581

6 SAS a4 -0.2650 -0.3746 -0.1553

6 BUG a5 1.5050 1.3900 1.6200

6 SAS a5 1.5054 1.3895 1.6213

6 BUG trt -0.1343 -0.2157 -0.0504

6 SAS trt -0.1330 -0.2158 -0.0503

6 BUG sess -0.2357 -0.3192 -0.1529

6 SAS sess -0.2340 -0.3168 -0.1511

6 BUG ques1 0.5978 0.4682 0.7280

6 SAS ques1 0.5983 0.4696 0.7271

6 BUG ques2 2.0090 1.8680 2.1520

6 SAS ques2 2.0082 1.8676 2.1488

6 BUG ques3 -0.5731 -0.6993 -0.4470

6 SAS ques3 -0.5716 -0.6988 -0.4443

6 BUG ques4 0.9686 0.8388 1.1010

6 SAS ques4 0.9688 0.8382 1.0995

7 BUG a1 -3.8010 -3.9980 -3.6010

7 SAS a1 -3.7945 -3.9872 -3.6018

7 BUG a2 -2.2920 -2.4290 -2.1540

7 SAS a2 -2.2901 -2.4222 -2.1581

7 BUG a3 -0.8964 -1.0160 -0.7759

7 SAS a3 -0.8952 -1.0092 -0.7811

7 BUG a4 0.3877 0.2700 0.5061

7 SAS a4 0.3882 0.2764 0.5001

7 BUG a5 2.5740 2.4280 2.7210

7 SAS a5 2.5731 2.4330 2.7132
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7 BUG trt -0.0906 -0.1811 0.0026

7 SAS trt -0.0902 -0.1806 0.0002

7 BUG sess -0.3499 -0.4432 -0.2590

7 SAS sess -0.3496 -0.4404 -0.2589

7 BUG ques1 0.1442 0.0136 0.2711

7 SAS ques1 0.1447 0.0183 0.2711

7 BUG ques2 -0.1159 -0.2444 0.0145

7 SAS ques2 -0.1157 -0.2427 0.0112

7 BUG ques3 0.6872 0.5568 0.8207

7 SAS ques3 0.6873 0.5590 0.8156

8 BUG a1 -3.3800 -3.5520 -3.2060

8 SAS a1 -3.3700 -3.5379 -3.2021

8 BUG a2 -1.6940 -1.8140 -1.5710

8 SAS a2 -1.6884 -1.8076 -1.5691

8 BUG a3 -0.3065 -0.4148 -0.1927

8 SAS a3 -0.3024 -0.4109 -0.1939

8 BUG a4 1.2890 1.1760 1.4050

8 SAS a4 1.2908 1.1790 1.4026

8 BUG trt 0.0726 -0.0076 0.1557

8 SAS trt 0.0746 -0.0068 0.1561

8 BUG sess -0.0517 -0.1331 0.0299

8 SAS sess -0.0504 -0.1318 0.0310

8 BUG ques1 -0.4631 -0.5872 -0.3378

8 SAS ques1 -0.4605 -0.5839 -0.3370

8 BUG ques2 0.7638 0.6304 0.8975

8 SAS ques2 0.7648 0.6332 0.8965

8 BUG ques3 0.3607 0.2332 0.4895
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8 SAS ques3 0.3625 0.2350 0.4900

8 BUG ques4 0.7530 0.6213 0.8872

8 SAS ques4 0.7541 0.6224 0.8858
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Appendix C

WinBUGS

C.1 Implementation Using WinBUGS

For implementing Gibbs sampling we will be using WinBUGS. WinBUGS is a windows
based software package that is specialized for implementing MCMC-based analysis of
full probability models. WinBUGS provides a graphical interface to the BUGS language.
It allows the user to easily construct models and is available on the World Wide Web.
To implement a graphical model using WinBUGS, the model must be constructed and
a distribution must be assigned to each node. The model is then checked by WinBUGS
to see that it is syntactically correct. The observed data is then read in. Next, the
model is compiled. When BUGS compiles the model, it is building data structures that
are needed to carry out the Gibbs sampling. The model is also checked for consistency
with the data. Initial values for the nodes must be loaded, then the MCMC simulation
can be run. The simulated values will need to be checked for convergence. When
compiling the model in WinBUGS, the user is asked the number of chains. An integer
is entered and this denotes how many chains you want to run simultaneously. The
Sample Monitor Tool has two open slots labelled ”beg” and ”end” which can be used
to specify which iterations should be included in the calculation of any summary
statistics. By specifying the ”beg” equal to m + 1, you are denoting the first m
iterations as the ’burn-in’. There is also an open slot labelled ”thin”. By putting
a number greater than 1, you are not using all the updated components in each
iteration. There is also an open slot labelled ”thin” in the Model Update Tool. By
making this value greater than 1, you are not updating all the components in each
iteration.

C.2 WinBUGS Code

#
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Model {

#

for (m in 1:M) {

for (j in 1 : J-1) {

#

# Cumulative probability of better response than j

#

logit(Q[m, j]) <- (a[j] - mu[m] )

}

#

# Probability of response = j

#

p[m, 1] <- Q[m, 1]

for (j in 2 : (J-1))

{ p[m, j] <- Q[m, j ] - Q[m, j-1] }

p[m, J] <- 1 - Q[m, (J-1)]

# response[m] ~ dcat(p[m, ])

#

# Fixed effects

#

# logistic mean for group i in period t

mu[m] <- QUES [question[m]] + TRT [treatment[m]]

+ SESS [session[m]]

}

#priors

#

#code from Dr. Ghosh for ranked alpha

for (j in 1 : (J-1)){

alphastar[j] ~ dflat()

a[j] <- ranked(alphastar[], j) }

QUES[I] <- 0

for (i in 2 : (I-1)) {

QUES[i] ~ dflat() }

TRT[K] <- 0

for (k in 2 : (K-1)) {

TRT[k] ~ dflat() }

SESS[L] <- 0

for (l in 2 : (L-1)) {
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SESS[l] ~ dflat() }

}

################

#data for group 1

################

list( M=19240,J=3,I=10,K=2,L=2)

#inits

list(alphastar=c(-1.5,1.5), QUES=c(0,0,0,0,0,0,0,0,0,NA), TRT=c(0,NA),

SESS=c(0,NA))

list(alphastar=c(-2.5,2.5), QUES=c(-3,-3,-3,-3,-3,-3,-3,-3,-3,NA),

TRT=c(-3,NA), SESS=c(-3,NA))

list(alphastar=c(-3.5,3.5), QUES=c(3,3,3,3,3,3,3,3,3,NA), TRT=c(3,NA),

SESS=c(3,NA))

################

#data for group 2

################

list( M=7696,J=2,I=4,K=2,L=2)

#inits

list(alphastar=c(1.5), QUES=c(0,0,0,NA), TRT=c(0,NA), SESS=c(0,NA))

list(alphastar=c(2.5), QUES=c(-3,-3,-3,NA), TRT=c(-3,NA),

SESS=c(-3,NA))

list(alphastar=c(3.5), QUES=c(3,3,3,NA), TRT=c(3,NA), SESS=c(3,NA))

################

#data for group 3

################

list( M=5772,J=2,I=3,K=2,L=2)

#inits

list(alphastar=c(1.5), QUES=c(0,0,NA), TRT=c(0,NA), SESS=c(0,NA))

list(alphastar=c(2.5), QUES=c(-3,-3,NA), TRT=c(-3,NA), SESS=c(-3,NA))

list(alphastar=c(3.5), QUES=c(3,3,NA), TRT=c(3,NA), SESS=c(3,NA))
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################

#data for group 4

################

list( M=3848,J=5,I=2,K=2,L=2)

#inits

list(alphastar=c(-1.5,-.5,.5,1.5), QUES=c(0,NA), TRT=c(0,NA),

SESS=c(0,NA))

list(alphastar=c(-2.5,-1,1,2.5), QUES=c(-3,NA), TRT=c(-3,NA),

SESS=c(-3,NA))

list(alphastar=c(-3.5,-1.5,1.5,3.5), QUES=c(3,NA), TRT=c(3,NA),

SESS=c(3,NA))

################

#data for group 6

################

list( M=9620,J=6,I=5,K=2,L=2)

#inits

list(alphastar=c(-1.5,-1,-.5,1,2), QUES=c(0,0,0,0,NA), TRT=c(0,NA),

SESS=c(0,NA))

list(alphastar=c(-2.5,-1.5,-.5,1.5,3), QUES=c(-3,-3,-3,-3,NA),

TRT=c(-3,NA),

SESS=c(-3,NA))

list(alphastar=c(-3.5,-2,-.5,2,4), QUES=c(3,3,3,3,NA), TRT=c(3,NA),

SESS=c(3,NA))

################

#data for group 7

################

list( M=7696,J=6,I=4,K=2,L=2)

#inits

list(alphastar=c(-1.5,-1,-.5,1,2), QUES=c(0,0,0,NA), TRT=c(0,NA),

SESS=c(0,NA))

list(alphastar=c(-2.5,-1.5,-.5,1.5,3), QUES=c(-3,-3,-3,NA),
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TRT=c(-3,NA),

SESS=c(-3,NA))

list(alphastar=c(-3.5,-2,-.5,2,4), QUES=c(3,3,3,NA), TRT=c(3,NA),

SESS=c(3,NA))

################

#data for group 8

################

list( M=9620,J=5,I=5,K=2,L=2)

#inits

list(alphastar=c(-1.5,-.5,.5,1.5), QUES=c(0,0,0,0,NA), TRT=c(0,NA),

SESS=c(0,NA))

list(alphastar=c(-2.5,-1,1,2.5), QUES=c(-3,-3,-3,-3,NA),

TRT=c(-3,NA), SESS=c(-3,NA))

list(alphastar=c(-3.5,-1.5,1.5,3.5), QUES=c(3,3,3,3,NA), TRT=c(3,NA),

SESS=c(3,NA))
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Appendix D

Imputation Results

Table D.1: Physical Functioning

parameter mean sd MC error 2.5% median 97.5%

a[1] -5.206 0.1305 7.883E-3 -5.450 -5.206 -4.940

a[2] -3.289 0.1262 7.798E-3 -3.519 -3.289 -3.029

QUES[1] -3.484 0.1295 7.438E-3 -3.729 -3.484 -3.220

QUES[2] -1.810 0.1362 7.488E-3 -2.067 -1.811 -1.534

QUES[3] -1.678 0.1378 7.512E-3 -1.940 -1.678 -1.396

QUES[4] -2.452 0.1326 7.498E-3 -2.702 -2.453 -2.181

QUES[5] -0.851 0.1499 7.562E-3 -1.136 -0.853 -0.544

QUES[6] -2.187 0.1333 7.459E-3 -2.440 -2.187 -1.915

QUES[7] -1.739 0.1369 7.470E-3 -2.002 -1.739 -1.463

QUES[8] -1.121 0.1440 7.456E-3 -1.394 -1.121 -0.828

QUES[9] -0.320 0.1616 7.473E-3 -0.633 -0.322 0.011

SESS[1] -0.102 0.0395 6.318E-4 -0.180 -0.101 -0.024

TRT[1] -0.022 0.0389 5.977E-4 -0.098 -0.022 0.054

deviance 19550 5.217 1.173E-1 19540 19550 19560
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Table D.2: Role Physical

parameter mean sd MC error 2.5% median 97.5%

a[1] -0.702 0.0609 2.398E-3 -0.825 -0.702 -0.584

QUES[1] 0.188 0.0700 1.688E-3 0.050 0.188 0.325

QUES[2] -0.305 0.0681 1.684E-3 -0.437 -0.304 -0.171

QUES[3] 0.123 0.0696 1.679E-3 -0.013 0.122 0.260

SESS[1] -0.276 0.0488 9.958E-4 -0.371 -0.276 -0.180

TRT[1] 0.065 0.0483 9.058E-4 -0.029 0.064 0.159

deviance 9453 3.4440 5.645E-2 9448 9452 9461

Table D.3: Role Emotional

parameter mean sd MC error 2.5% median 97.5%

a[1] -1.433 0.0753 2.813E-3 -1.583 -1.433 -1.291

QUES[1] 0.241 0.0808 1.760E-3 0.084 0.241 0.400

QUES[2] -0.372 0.0757 1.763E-3 -0.521 -0.372 -0.223

SESS[1] -0.447 0.0638 1.370E-3 -0.574 -0.446 -0.324

TRT[1] -0.042 0.0635 1.237E-3 -0.166 -0.043 0.083

deviance 6050 3.16 0.04801 6045 6049 6057
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Table D.4: Social Functioning

parameter mean sd MC error 2.5% median 97.5%

a[1] -4.312 0.1495 4.388E-3 -4.604 -4.309 -4.023

a[2] -2.567 0.0849 3.532E-3 -2.724 -2.569 -2.395

a[3] -1.008 0.0685 3.155E-3 -1.140 -1.009 -0.871

a[4] 0.456 0.0673 3.029E-3 0.325 0.455 0.591

QUES[1] 0.205 0.0614 1.560E-3 0.084 0.205 0.325

SESS[1] -0.291 0.0619 1.730E-3 -0.412 -0.291 -0.169

TRT[1] -0.049 0.0619 1.668E-3 -0.171 -0.049 0.072

deviance 9466 3.767 7.684E-2 9461 9466 9475

Table D.5: Mental Health

parameter mean sd MC error 2.5% median 97.5%

a[1] -4.192 0.1033 3.615E-3 -4.394 -4.189 -3.990

a[2] -2.666 0.0669 3.108E-3 -2.799 -2.666 -2.537

a[3] -1.334 0.0565 2.908E-3 -1.444 -1.335 -1.224

a[4] -0.187 0.0535 2.770E-3 -0.289 -0.188 -0.080

a[5] 1.538 0.0560 2.730E-3 1.429 1.537 1.650

QUES[1] 0.565 0.0609 1.972E-3 0.445 0.564 0.685

QUES[2] 1.945 0.0651 1.931E-3 1.819 1.945 2.074

QUES[3] -0.566 0.0599 2.014E-3 -0.682 -0.567 -0.449

QUES[4] 0.936 0.0616 1.973E-3 0.815 0.936 1.058

SESS[1] -0.296 0.0388 9.541E-4 -0.373 -0.295 -0.221

TRT[1] -0.058 0.0388 9.014E-4 -0.134 -0.058 0.017

deviance 25590 4.731 9.440E-2 25580 25590 25600
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Table D.6: Vitality

parameter mean sd MC error 2.5% median 97.5%

a[1] -3.660 0.0840 2.933E-3 -3.824 -3.660 -3.495

a[2] -2.193 0.0586 2.658E-3 -2.310 -2.192 -2.081

a[3] -0.799 0.0497 2.430E-3 -0.898 -0.798 -0.702

a[4] 0.463 0.0498 2.382E-3 0.366 0.463 0.561

a[5] 2.567 0.0629 2.455E-3 2.444 2.567 2.692

QUES[1] 0.103 0.0579 1.718E-3 -0.012 0.103 0.215

QUES[2] -0.131 0.0582 1.707E-3 -0.244 -0.131 -0.018

QUES[3] 0.657 0.0585 1.660E-3 0.542 0.656 0.770

SESS[1] -0.373 0.0419 9.679E-4 -0.457 -0.373 -0.291

TRT[1] -0.005 0.0414 8.487E-4 -0.086 -0.004 0.076

deviance 22320 4.469 7.920E-2 22320 22320 22330
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Table D.7: General Health

parameter mean sd MC error 2.5% median 97.5%

a[1] -3.191 0.0743 2.935E-3 -3.340 -3.190 -3.044

a[2] -1.594 0.0564 2.816E-3 -1.707 -1.593 -1.485

a[3] -0.243 0.0525 2.736E-3 -0.351 -0.242 -0.142

a[4] 1.324 0.0540 2.706E-3 1.216 1.325 1.428

QUES[1] -0.416 0.0585 2.027E-3 -0.530 -0.416 -0.302

QUES[2] 0.753 0.0615 1.990E-3 0.631 0.753 0.872

QUES[3] 0.376 0.0603 1.995E-3 0.256 0.377 0.492

QUES[4] 0.772 0.0620 1.984E-3 0.650 0.772 0.892

SESS[1] -0.084 0.0382 8.971E-4 -0.160 -0.083 -0.009

TRT[1] 0.107 0.0384 8.787E-4 0.032 0.107 0.182

deviance 25280 4.47 9.135E-2 25280 25280 25290
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Appendix E

Validation Simultation Results

Where TRT = 1

cov
Parameter device miss estimate sd prob length t p-val

a1 TRUE -2

a1 SAS 0 -2.0455 0.2249 0.94 0.882 -2.024 0.0430

Error SAS 0 0.2118 0.0090

a1 SAS 10 -2.0518 0.2375 0.99 0.931 -2.179 0.0294

Error SAS 10 0.2233 0.0102

a1 BUG 10 -2.0792 0.2300 0.94 0.906 -3.438 0.0006

Error BUG 10 0.2204 0.0134

a1 SAS 35 -2.0646 0.2811 0.96 1.102 -2.296 0.0217

Error SAS 35 0.2681 0.0139

a1 BUG 35 -2.0893 0.2498 0.94 0.974 -3.567 0.0004

Error BUG 35 0.2533 0.0158

a1 SAS 50 -2.0243 0.3180 0.96 1.247 -0.764 0.4449

Error SAS 50 0.3242 0.0191

a1 BUG 50 -2.0727 0.2606 0.95 1.017 -2.784 0.0054



95

Error BUG 50 0.2620 0.0164

a2 TRUE -1

a2 SAS 0 -1.0375 0.1985 0.93 0.778 -1.890 0.0588

Error SAS 0 0.2116 0.0067

a2 SAS 10 -1.0444 0.2095 0.92 0.821 -2.117 0.0342

Error SAS 10 0.2198 0.0074

a2 BUG 10 -1.0495 0.2028 0.91 0.795 -2.436 0.0148

Error BUG 10 0.2178 0.0105

a2 SAS 35 -1.0333 0.2476 0.93 0.971 -1.345 0.1786

Error SAS 35 0.2723 0.0102

a2 BUG 35 -1.0447 0.2199 0.94 0.862 -2.030 0.0423

Error BUG 35 0.2439 0.0130

a2 SAS 50 -1.0434 0.2814 0.94 1.103 -1.542 0.1232

Error SAS 50 0.3005 0.0129

a2 BUG 50 -1.0565 0.2304 0.94 0.905 -2.449 0.0143

Error BUG 50 0.2508 0.0148

a3 TRUE 1

a3 SAS 0 0.9836 0.1965 0.94 0.770 -0.833 0.4050

Error SAS 0 0.1956 0.0055

a3 SAS 10 0.9701 0.2070 0.96 0.811 -1.446 0.1482

Error SAS 10 0.1959 0.0062

a3 BUG 10 0.9893 0.2018 0.95 0.789 -0.528 0.5972

Error BUG 10 0.1963 0.0135

a3 SAS 35 0.9958 0.2450 0.93 0.961 -0.170 0.8649

Error SAS 35 0.2737 0.0097

a3 BUG 35 0.9933 0.2171 0.94 0.850 -0.306 0.7596

Error BUG 35 0.2289 0.0151
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a3 SAS 50 0.9791 0.2782 0.97 1.091 -0.752 0.4520

Error SAS 50 0.2570 0.0110

a3 BUG 50 0.9934 0.2275 0.98 0.892 -0.290 0.7718

Error BUG 50 0.2142 0.0146

a4 TRUE 2

a4 SAS 0 1.9885 0.2139 0.97 0.838 -0.538 0.5903

Error SAS 0 0.2159 0.0070

a4 SAS 10 1.9743 0.2252 0.97 0.883 -1.141 0.2538

Error SAS 10 0.2181 0.0077

a4 BUG 10 2.0100 0.2201 0.97 0.862 0.454 0.6500

Error BUG 10 0.2220 0.0143

a4 SAS 35 1.9927 0.2665 0.94 1.044 -0.274 0.7844

Error SAS 35 0.2938 0.0124

a4 BUG 35 2.0155 0.2369 0.93 0.926 0.654 0.5130

Error BUG 35 0.2485 0.0171

a4 SAS 50 1.9851 0.3031 0.98 1.188 -0.492 0.6225

Error SAS 50 0.2876 0.0134

a4 BUG 50 2.0190 0.2479 0.97 0.966 0.763 0.4452

Error BUG 50 0.2352 0.0153

QUES TRUE 1

QUES SAS 0 1.0066 0.2061 0.96 0.808 0.320 0.7491

Error SAS 0 0.2127 0.0044

QUES SAS 10 1.0076 0.2175 0.96 0.853 0.347 0.7284

Error SAS 10 0.2117 0.0050

QUES BUG 10 1.0207 0.2135 0.96 0.837 0.970 0.3320

Error BUG 10 0.2130 0.0080

QUES SAS 35 1.0095 0.2565 0.92 1.006 0.371 0.7110
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Error SAS 35 0.2771 0.0076

QUES BUG 35 1.0139 0.2284 0.96 0.895 0.607 0.5440

Error BUG 35 0.2410 0.0084

QUES SAS 50 1.0060 0.2923 0.94 1.146 0.204 0.8386

Error SAS 50 0.3116 0.0099

QUES BUG 50 1.0220 0.2399 0.97 0.941 0.915 0.3601

Error BUG 50 0.2497 0.0086

TRT TRUE 1

TRT SAS 0 0.9827 0.2062 0.93 0.808 -0.838 0.4021

Error SAS 0 0.2101 0.0044

TRT SAS 10 0.9668 0.2176 0.94 0.853 -1.526 0.1269

Error SAS 10 0.2220 0.0051

TRT BUG 10 0.9859 0.2124 0.94 0.832 -0.662 0.5081

Error BUG 10 0.2190 0.0067

TRT SAS 35 0.9840 0.2570 0.94 1.007 -0.622 0.5340

Error SAS 35 0.2575 0.0066

TRT BUG 35 1.0074 0.2285 0.93 0.896 0.322 0.7472

Error BUG 35 0.2324 0.0085

TRT SAS 50 0.9682 0.2930 0.97 1.149 -1.083 0.2788

Error SAS 50 0.2878 0.0097

TRT BUG 50 1.0004 0.2405 0.94 0.941 0.018 0.9853

Error BUG 50 0.2417 0.0078

BETA TRUE 2

BETA SAS 0 2.0278 0.1500 0.96 0.588 1.851 0.0641

Error SAS 0 0.1472 0.0079

BETA SAS 10 2.0312 0.1585 0.95 0.621 1.967 0.0492

Error SAS 10 0.1585 0.0091
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BETA BUG 10 2.0562 0.1554 0.95 0.610 3.609 0.0003

Error BUG 10 0.1587 0.0090

BETA SAS 35 2.0308 0.1868 0.96 0.732 1.645 0.0999

Error SAS 35 0.1829 0.0123

BETA BUG 35 2.0617 0.1671 0.98 0.655 3.687 0.0002

Error BUG 35 0.1652 0.0103

BETA SAS 50 2.0201 0.2137 0.96 0.838 0.939 0.3476

Error SAS 50 0.2128 0.0171

BETA BUG 50 2.0499 0.1744 0.92 0.684 2.857 0.0043

Error BUG 50 0.1691 0.0104
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Appendix F

Validation Simultation Results

Where TRT = 5

cov
Parameter device miss mean sd prop length t p-val

a1 TRUE -2

a1 SAS 0 -2.0160 0.2625 0.92 1.029 -0.608 0.5435

Error SAS 0 0.2814 0.0158

a1 SAS 10 -2.0168 0.2771 0.94 1.086 -0.605 0.5453

Error SAS 10 0.3070 0.0173

a1 BUG 10 -2.0572 0.2684 0.93 1.055 -2.126 0.0335

Error BUG 10 0.2969 0.0195

a1 SAS 35 -2.0614 0.3304 0.93 1.295 -1.853 0.0639

Error SAS 35 0.3658 0.0270

a1 BUG 35 -2.0907 0.2932 0.91 1.150 -3.085 0.0020

Error BUG 35 0.3082 0.0218

a1 SAS 50 -2.0348 0.3775 0.96 1.480 -0.918 0.3585

Error SAS 50 0.3786 0.0311

a1 BUG 50 -2.0826 0.3089 0.96 1.214 -2.665 0.0077
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Error BUG 50 0.3218 0.0233

a2 TRUE -1

a2 SAS 0 -0.9933 0.2264 0.94 0.887 0.296 0.7669

Error SAS 0 0.2374 0.0098

a2 SAS 10 -0.9889 0.2389 0.98 0.936 0.464 0.6425

Error SAS 10 0.2469 0.0105

a2 BUG 10 -1.0043 0.2306 0.94 0.904 -0.186 0.8523

Error BUG 10 0.2455 0.0134

a2 SAS 35 -0.9982 0.2832 0.92 1.110 0.064 0.9491

Error SAS 35 0.3236 0.0171

a2 BUG 35 -1.0047 0.2504 0.93 0.982 -0.189 0.8502

Error BUG 35 0.2776 0.0178

a2 SAS 50 -0.9963 0.3248 0.96 1.273 0.113 0.9101

Error SAS 50 0.3196 0.0189

a2 BUG 50 -1.0043 0.2655 0.95 1.038 -0.160 0.8730

Error BUG 50 0.2679 0.0176

a3 TRUE 1

a3 SAS 0 1.0514 0.2240 0.93 0.878 2.294 0.0218

Error SAS 0 0.2587 0.0098

a3 SAS 10 1.0593 0.2368 0.92 0.928 2.503 0.0123

Error SAS 10 0.2684 0.0108

a3 BUG 10 1.0666 0.2308 0.90 0.905 2.879 0.0040

Error BUG 10 0.2740 0.0144

a3 SAS 35 1.0402 0.2794 0.95 1.095 1.436 0.1510

Error SAS 35 0.3181 0.0158

a3 BUG 35 1.0684 0.2466 0.89 0.966 2.767 0.0057

Error BUG 35 0.2885 0.0182



101

a3 SAS 50 1.1099 0.3230 0.94 1.266 3.397 0.0007

Error SAS 50 0.3549 0.0189

a3 BUG 50 1.0937 0.2625 0.94 1.028 3.562 0.0004

Error BUG 50 0.2866 0.0189

a4 TRUE 2

a4 SAS 0 2.0499 0.2474 0.93 0.970 2.016 0.0438

Error SAS 0 0.2678 0.0119

a4 SAS 10 2.0640 0.2617 0.95 1.026 2.441 0.0146

Error SAS 10 0.2660 0.0129

a4 BUG 10 2.0954 0.2567 0.93 1.006 3.707 0.0002

Error BUG 10 0.2794 0.0170

a4 SAS 35 2.0455 0.3085 0.92 1.209 1.472 0.1411

Error SAS 35 0.3411 0.0193

a4 BUG 35 2.0948 0.2736 0.88 1.072 3.456 0.0005

Error BUG 35 0.3106 0.0210

a4 SAS 50 2.0904 0.3558 0.92 1.395 2.536 0.0112

Error SAS 50 0.3788 0.0236

a4 BUG 50 2.1181 0.2911 0.94 1.144 4.047 <.0001

Error BUG 50 0.2865 0.0205

QUES TRUE 1

QUES SAS 0 1.0597 0.2570 0.94 1.007 2.323 0.0202

Error SAS 0 0.2700 0.0098

QUES SAS 10 1.0734 0.2716 0.91 1.064 2.700 0.0069

Error SAS 10 0.3009 0.0114

QUES BUG 10 1.0888 0.2663 0.90 1.043 3.330 0.0009

Error BUG 10 0.2903 0.0123

QUES SAS 35 1.0578 0.3200 0.95 1.255 1.803 0.0713



102

Error SAS 35 0.3432 0.0150

QUES BUG 35 1.0834 0.2848 0.93 1.118 2.925 0.0034

Error BUG 35 0.3074 0.0154

QUES SAS 50 1.0961 0.3681 0.89 1.443 2.607 0.0091

Error SAS 50 0.4287 0.0209

QUES BUG 50 1.1009 0.3016 0.95 1.183 3.341 0.0008

Error BUG 50 0.3258 0.0163

TRT TRUE 5

TRT SAS 0 5.0900 0.4134 0.96 1.621 2.171 0.0299

Error SAS 0 0.3982 0.0322

TRT SAS 10 5.1118 0.4382 0.96 1.718 2.544 0.0110

Error SAS 10 0.4291 0.0371

TRT BUG 10 5.1981 0.4313 0.95 1.695 4.578 <.0001

Error BUG 10 0.4231 0.0368

TRT SAS 35 5.0821 0.5146 0.98 2.017 1.589 0.1121

Error SAS 35 0.4708 0.0480

TRT BUG 35 5.2025 0.4627 0.95 1.812 4.359 <.0001

Error BUG 35 0.4678 0.0427

TRT SAS 50 5.2000 0.6002 0.93 2.353 3.308 0.0009

Error SAS 50 0.6141 0.0727

TRT BUG 50 5.2734 0.4932 0.91 1.934 5.514 <.0001

Error BUG 50 0.4813 0.0515

BETA TRUE 2

BETA SAS 0 2.0398 0.1844 0.96 0.723 2.151 0.0315

Error SAS 0 0.1897 0.0136

BETA SAS 10 2.0478 0.1950 0.96 0.765 2.442 0.0146

Error SAS 10 0.2053 0.0154
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BETA BUG 10 2.0841 0.1913 0.93 0.749 4.383 <.0001

Error BUG 10 0.2012 0.0148

BETA SAS 35 2.0678 0.2313 0.93 0.907 2.922 0.0035

Error SAS 35 0.2436 0.0206

BETA BUG 35 2.0836 0.2059 0.94 0.808 4.048 <.0001

Error BUG 35 0.2176 0.0170

BETA SAS 50 2.0708 0.2673 1.00 1.048 2.635 0.0084

Error SAS 50 0.2259 0.0256

BETA BUG 50 2.1114 0.2195 0.94 0.860 5.056 <.0001

Error BUG 50 0.2132 0.0191
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Appendix G

WinBUGS Code

#

Model {

#

for (m in 1:M) {

for (c in 1:C) {

for (j in 1 : J-1) {

#

# Cumulative probability of better response than j

#

logit(Q[m,c, j]) <- (a[latent[c],j] - mu[m] )

}

#

# Probability of response = j

#

p[m,c,1] <- Q[m, c,1]

for (j in 2 : (J-1))

{ p[m, c, j] <- Q[m, c, j ] - Q[m,c, j-1] }

p[m,c, J] <- 1 - Q[m,c, (J-1)]}



105

#

# Fixed effects

#

# logistic mean for group i in period t

mu[m] <- QUES [question[m]] + TRT [treatment[m]]

+ SESS [session[m]]

response[m] ~ dcat(p[m,country[m], ])

}

for (c in 1:C) {

latent[c] ~ dcat(prob[]) }

#priors

for (w in 1:W){

probstar[w] ~ dflat()

prob[w] <- ranked(probstar[], w)}

for (w in 1:W){

for (j in 1 : (J-1)){

alphastar[w,j] ~ dflat()

a[w,j] <- ranked(alphastar[w,], j) } }

QUES[I] <- 0

for (i in 1 : (I-1)) {

QUES[i] ~ dflat() }

TRT[K] <- 0

for (k in 1 : (K-1)) {

TRT[k] ~ dflat() }

SESS[L] <- 0

for (l in 1 : (L-1)) {
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SESS[l] ~ dflat() }

}

################

#data for group 1

################

list( M=19240,J=3,I=10,K=2,L=2,C=6,W=3)

#inits

list(alphastar=structure(.Data=c(-1.5,1.5,

-1.5,1.5,

-1.5,1.5), .Dim=c(3,2)),

QUES=c(0,0,0,0,0,0,0,0,0,NA), TRT=c(0,NA), SESS=c(0,NA),

latent=c(1,1,1,2,3,1), probstar=c(.15,.35,.50))

################

#data for group 2

################

list( M=7696,J=2,I=4,K=2,L=2,C=6,W=3)

#inits

list(alphastar=structure(.Data=c(1.5,1.5,1.5), .Dim=c(3,1)),

QUES=c(0,0,0,NA), TRT=c(0,NA), SESS=c(0,NA),

latent=c(1,2,1,1,3,1), probstar=c(.15,.35,.5))

################

#data for group 3

################

list( M=5772,J=2,I=3,K=2,L=2,C=6,W=2)

#inits

list(alphastar=structure(.Data=c(1.5,1.5), .Dim=c(2,1)),

QUES=c(0,0,NA), TRT=c(0,NA), SESS=c(0,NA),

latent=c(1,1,1,2,2,2), probstar=c(.25,.75))

################

#data for group 4

################
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list( M=3848,J=5,I=2,K=2,L=2,C=6,W=2)

#inits

list(alphastar=structure(.Data=c(-1.5,-.5,.5,1.5,

-1.5,-.5,.5,1.5), .Dim=c(2,4)),

QUES=c(0,NA), TRT=c(0,NA), SESS=c(0,NA),

latent=c(1,1,1,1,2,1), probstar=c(.25,.75))

################

#data for group 6

################

list( M=9620,J=6,I=5,K=2,L=2,C=6,W=3)

#inits

list(alphastar=structure(.Data=c(-1.5,-1,-.5,1,2,

-1.5,-1,-.5,1,2,

-1.5,-1,-.5,1,2), .Dim=c(3,5)),

QUES=c(0,0,0,0,NA), TRT=c(0,NA), SESS=c(0,NA),

latent=c(1,2,3,1,1,1), probstar=c(.15,.35,.5))

#################

# data for group 7

################

list( M=7696,J=6,I=4,K=2,L=2,C=6,W=2)

#inits

list(alphastar=structure(.Data=c(-1.5,-1,-.5,1,2,

-1.5,-1,-.5,1,2), .Dim=c(2,5)),

QUES=c(0,0,0,NA), TRT=c(0,NA), SESS=c(0,NA),

latent=c(1,1,1,1,2,2), probstar=c(.3,.7))

#################

# data for group 8

################

list( M=9620,J=5,I=5,K=2,L=2,C=6,W=2)

#inits

list(alphastar=structure(.Data=c(-1.5,-.5,.5,1.5,
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-1.5,-.5,.5,1.5), .Dim=c(2,4)),

QUES=c(0,0,0,0,NA), TRT=c(0,NA), SESS=c(0,NA),

latent=c(1,1,2,1,1,1),probstar=c(.4,.6))
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Appendix H

Final Model Imputation Results

Table H.1: Physical Functioning

parameter mean sd MC error 2.5% median 97.5%

a[1,1] -6.648 0.2070 1.698E-2 -7.064 -6.653 -6.245

a[1,2] -4.004 0.1472 1.570E-2 -4.263 -4.007 -3.715

a[2,1] -5.461 0.1662 1.672E-2 -5.773 -5.465 -5.134

a[2,2] -3.360 0.1460 1.612E-2 -3.613 -3.370 -3.067

a[3,1] -4.896 0.1457 1.606E-2 -5.136 -4.903 -4.608

a[3,2] -3.104 0.1414 1.589E-2 -3.337 -3.114 -2.827

QUES[1] -3.559 0.1442 1.536E-2 -3.817 -3.564 -3.275

QUES[2] -1.843 0.1505 1.552E-2 -2.118 -1.845 -1.544

QUES[3] -1.710 0.1519 1.547E-2 -1.985 -1.716 -1.410

QUES[4] -2.496 0.1464 1.531E-2 -2.760 -2.499 -2.207

QUES[5] -0.875 0.1603 1.543E-2 -1.172 -0.879 -0.557

QUES[6] -2.226 0.1466 1.524E-2 -2.489 -2.228 -1.942

QUES[7] -1.770 0.1500 1.532E-2 -2.039 -1.774 -1.471

QUES[8] -1.148 0.1568 1.524E-2 -1.435 -1.152 -0.833
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QUES[9] -0.341 0.1728 1.530E-2 -0.662 -0.347 0.006

SESS[1] -0.098 0.0394 1.053E-3 -0.176 -0.099 -0.023

TRT[1] -0.028 0.0397 1.204E-3 -0.106 -0.029 0.048

L[1] 3 0 1.414E-12 3 3 3

L[2] 2 0 1.414E-12 2 2 2

L[3] 3 0 1.414E-12 3 3 3

L[4] 3 0 1.414E-12 3 3 3

L[5] 1 0 1.414E-12 1 1 1

L[6] 2 0 1.414E-12 2 2 2

deviance 19210 5.821 0.2227 19200 19200 19220
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Table H.2: Role Physical

parameter mean sd MC error 2.5% median 97.5%

a[1,1] -0.026 0.0913 4.863E-3 -0.211 -0.026 0.143

a[2,1] -1.572 0.0850 4.526E-3 -1.743 -1.566 -1.406

a[3,1] -0.596 0.0650 4.394E-3 -0.727 -0.597 -0.468

QUES[1] 0.198 0.0724 3.275E-3 0.054 0.199 0.340

QUES[2] -0.319 0.0691 3.122E-3 -0.456 -0.321 -0.184

QUES[3] 0.129 0.0726 3.372E-3 -0.015 0.130 0.267

SESS[1] -0.274 0.0509 1.697E-3 -0.372 -0.274 -0.176

TRT[1] 0.077 0.0500 1.608E-3 -0.021 0.078 0.174

L[1] 2.990 0.1438 3813E-3 3 3 3

L[2] 1 0 1.414E-12 1 1 1

L[3] 3 0 1.414E-12 3 3 3

L[4] 3 0 1.414E-12 3 3 3

L[5] 2 0 1.414E-12 2 2 2

L[6] 3 0 1.414E-12 3 3 3

deviance 9132 3.998 0.1076 9127 9132 9142
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Table H.3: Role Emotional

parameter mean sd MC error 2.5% median 97.5%

a[1,1] -0.854 0.0889 3.866E-3 -1.025 -0.855 -0.683

a[2,1] -1.591 0.0715 4.205E-3 -1.728 -1.590 -1.449

QUES[1] 0.247 0.0788 2.615E-3 0.089 0.247 0.398

QUES[2] -0.377 0.0739 2.787E-3 -0.525 -0.377 -0.231

SESS[1] -0.463 0.0640 2.046E-3 -0.585 -0.461 -0.338

TRT[1] -0.039 0.0632 1.964E-3 -0.163 -0.040 0.083

L[1] 2 0 1.414E-12 2 2 2

L[2] 2 0 1.414E-12 2 2 2

L[3] 1 0 1.414E-12 1 1 1

L[4] 2 0 1.414E-12 2 2 2

L[5] 2 0 1.414E-12 2 2 2

L[6] 2 0 1.414E-12 2 2 2

deviance 5960 3.34 0.09996 5955 5959 5968
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Table H.4: Social Functioning

parameter mean sd MC error 2.5% median 97.5%

a[1,1] -4.107 0.1485 7.218E-3 -4.399 -4.105 -3.819

a[1,2] -2.419 0.0846 5.363E-3 -2.582 -2.416 -2.258

a[1,3] -0.813 0.0662 4.742E-3 -0.947 -0.810 -0.687

a[1,4] 0.611 0.0653 4.463E-3 0.483 0.614 0.7338

a[2,1] -6.359 0.8101 2.896E-2 -8.362 -6.303 -5.046

a[2,2] -3.438 0.2026 8.914E-3 -3.852 -3.435 -3.041

a[2,3] -1.997 0.1210 6.295E-3 -2.225 -1.998 -1.755

a[2,4] -0.087 0.0910 4.792E-3 -0.257 -0.085 0.0957

QUES[1] 0.202 0.0605 2.290E-3 0.085 0.202 0.323

SESS[1] -0.291 0.0603 2.637E-3 -0.410 -0.290 -0.177

TRT[1] -0.046 0.0603 2.460E-3 -0.168 -0.045 0.068

L[1] 1 0 1.291E-12 1 1 1

L[2] 1 0 1.291E-12 1 1 1

L[3] 1 0 1.291E-12 1 1 1

L[4] 1 0 1.291E-12 1 1 1

L[5] 2 0 1.291E-12 2 2 2

L[6] 1 0 1.291E-12 1 1 1

deviance 9325 4.765 0.1479 9318 9324 9336
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Table H.5: Mental Health

parameter mean sd MC error 2.5% median 97.5%

a[1,1] -4.857 0.2557 1.076E-2 -5.394 -4.841 -4.352

a[1,2] -3.179 0.1293 7.780E-3 -3.435 -3.177 -2.918

a[1,3] -2.125 0.0920 6.552E-3 -2.317 -2.126 -1.949

a[1,4] -0.799 0.0715 5.369E-3 -0.941 -0.801 -0.658

a[1,5] 1.232 0.0708 4.980E-3 1.101 1.233 1.379

a[2,1] -3.362 0.1160 6.054E-3 -3.588 -3.356 -3.139

a[2,2] -2.164 0.0769 5.232E-3 -2.313 -2.166 -2.016

a[2,3] -0.773 0.0598 4.793E-3 -0.895 -0.773 -0.652

a[2,4] 0.285 0.0574 4.686E-3 0.169 0.284 0.395

a[2,5] 1.726 0.0638 4.587E-3 1.600 1.727 1.854

a[3,1] -5.008 0.1902 8.861E-3 -5.381 -4.994 -4.647

a[3,2] -2.866 0.0833 5.789E-3 -3.036 -2.866 -2.701

a[3,3] -1.434 0.0616 5.323E-3 -1.555 -1.434 -1.307

a[3,4] -0.198 0.0543 4.624E-3 -0.303 -0.198 -0.085

a[3,5] 1.642 0.0569 4.310E-3 1.537 1.637 1.758

QUES[1] 0.609 0.0568 3.096E-3 0.497 0.609 0.720

QUES[2] 1.994 0.0628 3.137E-3 1.870 1.994 2.118

QUES[3] -0.587 0.0581 3.274E-3 -0.699 -0.588 -0.473

QUES[4] 0.978 0.0581 3.155E-3 0.866 0.978 1.092

SESS[1] -0.297 0.0392 1.768E-3 -0.373 -0.297 -0.218

TRT[1] -0.058 0.0385 1.429E-3 -0.131 -0.058 0.019

L[1] 3 0 1.414E-12 3 3 3

L[2] 2 0 1.414E-12 2 2 2

L[3] 2 0 1.414E-12 2 2 2

L[4] 3 0 1.414E-12 3 3 3
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L[5] 1 0 1.414E-12 1 1 1

L[6] 3 0 1.414E-12 3 3 3

deviance 25200 6.24 0.2155 25190 25200 25210



116

Table H.6: Vitality

parameter mean sd MC error 2.5% median 97.5%

a[1,1] -3.741 0.1178 6.932E-3 -3.967 -3.746 -3.499

a[1,2] -2.041 0.0816 7.389E-3 -2.214 -2.038 -1.872

a[1,3] -0.562 0.0810 8.272E-3 -0.778 -0.557 -0.423

a[1,4] 0.706 0.0751 7.379E-3 0.525 0.713 0.847

a[1,5] 3.006 0.0937 5.848E-3 2.839 3.004 3.207

a[2,1] -3.587 0.1203 9.107E-3 -3.815 -3.588 -3.340

a[2,2] -2.350 0.0835 7.608E-3 -2.499 -2.352 -2.163

a[2,3] -1.035 0.0727 7.335E-3 -1.153 -1.042 -0.839

a[2,4] 0.250 0.0607 5.772E-3 0.144 0.245 0.376

a[2,5] 2.261 0.1028 1.009E-2 1.969 2.269 2.436

QUES[1] 0.097 0.0586 3.443E-3 -0.012 0.096 0.218

QUES[2] -0.136 0.0585 3.385E-3 -0.246 -0.136 -0.017

QUES[3] 0.660 0.0601 3.524E-3 0.543 0.659 0.782

SESS[1] -0.369 0.0420 2.073E-3 -0.453 -0.369 -0.286

TRT[1] -0.004 0.0425 2.181E-3 -0.085 -0.005 0.081

L[1] 1 0 1.414E-12 1 1 1

L[2] 1 0 1.414E-12 1 1 1

L[3] 2 0 1.414E-12 2 2 2

L[4] 1 0 1.414E-12 1 1 1

L[5] 1.942 0.2337 2.749E-2 1 2 2

L[6] 2 0 1.414E-12 2 2 2

deviance 22170 9.779 0.9708 22160 22170 22200
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Table H.7: General Health

parameter mean sd MC error 2.5% median 97.5%

a[1,1] -3.719 0.1203 5.682E-3 -3.944 -3.715 -3.476

a[1,2] -1.827 0.0675 4.870E-3 -1.958 -1.826 -1.702

a[1,3] -0.185 0.0554 4.626E-3 -0.298 -0.184 -0.076

a[1,4] 1.281 0.0568 4.603E-3 1.159 1.283 1.390

a[2,1] -2.864 0.0804 5.220E-3 -3.025 -2.860 -2.715

a[2,2] -1.406 0.0605 4.986E-3 -1.531 -1.405 -1.292

a[2,3] -0.285 0.0541 4.632E-3 -0.391 -0.283 -0.179

a[2,4] 1.377 0.0568 4.750E-3 1.266 1.380 1.484

QUES[1] -0.419 0.0579 3.618E-3 -0.531 -0.420 -0.303

QUES[2] 0.756 0.0617 3.533E-3 0.632 0.757 0.877

QUES[3] 0.378 0.0599 3.503E-3 0.260 0.378 0.496

QUES[4] 0.775 0.0620 3.539E-3 0.656 0.775 0.896

SESS[1] -0.083 0.0378 1.530E-3 -0.158 -0.083 -0.009

TRT[1] 0.113 0.0371 1.383E-3 0.039 0.113 0.186

L[1] 2 0 1.414E-12 2 2 2

L[2] 1 0 1.414E-12 1 1 1

L[3] 2 0 1.414E-12 2 2 2

L[4] 2 0 1.414E-12 2 2 2

L[5] 1 0 1.414E-12 1 1 1

L[6] 1 0 1.414E-12 1 1 1

deviance 25170 5.161 0.1598 25160 25170 25180


