
Abstract

MAY, JOHN PAUL. Approximate Factorization of Polynomials in Many Variables and

Other Problems in Approximate Algebra via Singular Value Decomposition Methods.

(Under the direction of Erich Kaltofen.)

Aspects of the problem of finding approximate factors of a polynomial in many vari-

ables are considered. The idea is that a polynomial may be the result of a computation

where a reducible polynomial was expected but due to introduction of floating point coef-

ficients or measurement errors the polynomial is irreducible. Introduction of such errors

will nearly always cause polynomials to become irreducible. Thus, it is important to

be able to decide whether the computed polynomial is near to a polynomial that factors

(and hence should be treated as reducible). If this is the case, one would like to be able to

find a closest polynomial that does indeed factor. Although this problem is computable

there is no known polynomial-time algorithm to find the nearest polynomial that factors.

This dissertation gives a method to find a lower bound on the distance to the nearest

polynomial that factors. If this lower bound is quite large, one can conclude that the

polynomial does not have approximate factors. As part of finding this bound, a linear

condition for irreducibility of polynomials from bivariate polynomials is generalized to

polynomials with many variables, and a general theory of low rank approximation to

extend bounds results to many different polynomial norms is given.

The singular value decomposition methods used to find the above lower bound can

be used to create another method to find a nearby polynomial that factors. This method

is studied, and is shown to be practical. Similar methods are also shown to work for

approximate greatest common divisor computation.

The results on bounding the distance to the nearest polynomial that factors can be

applied to functional decomposition of univariate polynomials. Results on functional

decomposition from the 1970’s together with approximate factorization results allow for

a method to compute a lower bound on the distance to the nearest polynomial that

has a non-trivial functional decomposition and a new algorithm to compute approximate

decompositions.

To my wife, family, and friends

ii

Biography

John P. May was born in Cardston, Alberta, Canada and grew up in various places

in the western US and Canada, but mostly Kindersley, Saskatchewan, Canada where

he attended Kindersley Composite School. After graduating from high school in June

of 1994, he moved to Oregon City, Oregon where he attended Clackamas Community

College for two years, earning an Associates of Arts in June of 1996. The following

September he attended the University of Oregon in Eugene, Oregon as a mathematics

major active in the undergraduate mathematics society there. During the summer of 1997

he participated in an NSF funded Research Experience for Undergraduates program at

Trinity University in San Antonio, Texas. Research done there would become the basis

for his undergraduate honors thesis completed under the supervision of Professor Richard

Koch. In June of 1998, he graduated cum laude with a Bachelor of Arts with mathematics

departmental honors. He continued on at the University of Oregon to earn a Masters

of Arts in mathematics in August of 1999 before moving on to the doctoral program

at North Carolina State University in Raleigh, North Carolina where he worked under

the supervision of Erich Kaltofen. He was awarded a Doctor of Philosophy in Pure

iii

iv

Mathematics in August of 2005. He is currently a post-doctoral researcher and lecturer

in the School of Computer Science at the University of Waterloo in Waterloo, Ontario.

Acknowledgments

This dissertation would not have been possible without the help and support of many

people. First and foremost, I am grateful to my advisor, Erich Kaltofen, for providing

guidance and support and always keeping things interesting. Without him constantly

challenging me none of this would have been possible. Next, I would like to thank my

committee for all their comments and suggestions. I would especially like to thank Mark

Giesbrecht for all the interesting conversation and thorough proofreading. I would also

like to thank: Denise Seabrooks, Brenda Curin, and all the support staff in the NC State

University Math department for all the little things that had to be done, everyone in

the Symbolic Computation Group at the University of Waterloo for their understanding

and support as I finished this dissertation way later than expected, Chris Kuster, Sandy

Johnson and Clarissa for their friendship and for putting me up for the summer, Dave

Bortz for his most excellent and enjoyable roommateness, Phil Jones for his adequate

roommateness, Eric Choate for being my road trip buddy, Bryan Sheldon, Greg Robbins

and others from the UNC Math department for letting me hang out in their offices when

I took classes over there, Will Turner, Wen-shin Lee, Markus Hitz, and Austin Lobo for

v

vi

knowing what it is like, and helping me get through it, and my numerous office-mates

and frequent lunch companions, including George Yuhasz, Jack Perry, Dmitry Morozov,

Mike Maclean, and Scott Pope, as well as many others, for good times and great tastes.

Finally, I thank my family: my parents for their love and support; without them, I would

never have been born let alone even dream it possible to go so far, my siblings, Seth,

Tricia, Beth, Kaytie and Ben, for all being crazy enough to let me feel almost normal,

and especially, my wife Jennifer for putting up with me through it all (even three years

in the south), I am not sure she thought it would ever get done.

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

2 Approximate Irreducibility 7

2.1 An Exact Irreducibility Test . 8

2.1.1 The Generalized Ruppert Theorem 8

2.1.2 The Ruppert Matrix . 12

2.2 Some Linear Algebra . 16

2.2.1 Euclidean Distance to the Nearest Rank Deficient Matrix 16

2.2.2 Other Norms . 17

2.3 The Lower Bounds . 20

2.3.1 The Structure of Rup(f) . 20

2.3.2 The Main Approximate Irreducibility Theorem 25

2.4 More Effective Noether Irreducibility Forms 34

vii

TABLE OF CONTENTS viii

3 Exact Factorization 40

3.1 A Multivariate Generalization of Gao’s Factorization Algorithm 40

3.1.1 Structure of the PDE Solutions 41

3.1.2 Counting the Factors . 43

3.1.3 Algorithm Description . 44

3.1.4 The Algorithm . 46

3.2 Exploiting Polynomial Structure . 47

3.3 Other Fields . 52

4 Approximate GCD Computation 53

4.1 Approximate Polynomial Division . 54

4.1.1 Least Squares Division . 54

4.1.2 SVD Based Division . 55

4.2 SVD Based Approximate Multivariate GCD 55

4.2.1 Algorithm Description . 55

4.2.2 The Algorithm . 62

4.2.3 Convergence of the Algorithm . 63

5 Approximate Factorization 67

5.1 The Factorization Algorithm and Experiments 67

5.1.1 Algorithm . 73

5.1.2 Multiple Factors . 75

5.1.3 Implementation and Experiments 76

TABLE OF CONTENTS ix

5.1.4 Iterative Refinement Implementation 80

6 Polynomial Decomposition 83

6.1 Improvements to Barton-Zippel . 84

6.2 Approximate Decomposability Testing 88

6.3 Approximate Decomposition . 91

7 Conclusion 97

References 100

List of Tables

5.1 Algorithm performance on benchmarks 77

5.2 Iterative refinement on most of the benchmarks from Table 5.1 81

x

List of Figures

2.1 The matrix of the linear equations in (2.6) for a

symbolic polynomial with degree two in x and y.

. 14

2.2 The block matrix structure of Rup(f) from Nagasaka (2004) 14

2.3 The structure of the Gi blocks of Rup(f) 15

2.4 The structure of the Hi blocks of Rup(f) 15

xi

Chapter 1

Introduction

It is possible to find reasonable partial solutions for a number of problems in approxi-

mate algebra using singular value decomposition (SVD) methods. In particular, in this

dissertation, approximate factorization, approximate irreducibility testing, approximate

greatest common divisor (GCD) computation, and approximate univariate decompos-

ability testing are shown to be handled well by these methods. In general one can use

SVD techniques to find approximate solutions to any problems that can be written as

homogeneous linear systems.

Several types of problems in approximate algebra will be considered in this disser-

tation. First is the full optimization problem. These are problems of the form: given

a set of polynomials F , find the nearest set of polynomials (possibly subject to some

restrictions) with a given property P (e.g. not relatively prime). Second, is what we

will call the soft approximate problem: given a set of polynomials F find a “nearby”

1

CHAPTER 1. INTRODUCTION 2

set with a given property P where “nearby” is intentionally vague. A slightly stronger

version of the soft problem is the ε-approximate problem: given a set of polynomials and

a tolerance ε, find a set of polynomials with property P that are not father away than ε

from the original set. SVD methods can be used to find solutions for many instances of

the soft approximation problem and a partial solution for the ε-approximation problem.

The three main problems considered herein are: 1. factorization, where one considers

F = {f}, a set containing one multivariate polynomial, and P, the property of f being

reducible, 2. GCD computation, where one considers F = {g, h}, a set of a pair of poly-

nomials, and P, the property of g and h begin relatively prime, and 3. decomposition,

where one considers F = {f}, the set of one univariate polynomial and P, the property

of f begin decomposable. In all cases, one wishes to also do additional computation as

well as finding the set of polynomials. For example, one usually wants to find the factors

of the nearest polynomial that is not irreducible. The SVD methods lend themselves

naturally this. In fact, the factors can be computed as intermediate steps.

The singular value decomposition of a matrix has much in common with the eigenvalue

decomposition and is described in detail in Golub and Van Loan (1996), for example. It

was shown by Eckart and Young (1936) that the SVD can be used to solve the following

approximate problem in linear algebra: given a matrix A, find the nearest (in the eu-

clidean distance) matrix Ã so that Ã has lower rank than A. In fact, one can find the

nearest matrix with any given lower rank. Many polynomial algebra problems can be

formulated as homogeneous linear systems and the SVD can be applied to these systems

CHAPTER 1. INTRODUCTION 3

to find approximate solutions to the given problem. Though it should be noted that the

linear systems arising in polynomial algebra tend to be highly structured, and the SVD

ignores that structure. Thus SVD techniques will seldom lead directly to solutions to the

optimization version of approximate problems. One of the first uses of SVD techniques

in approximate algebra was for the univariate GCD problem in Corless et al. (1995).

The need for new methods for factoring polynomials that are given inexactly seems

to have been first recognized in Kaltofen (1985, Section 6) (that also gave one of the

first polynomial time algorithms for multivariate factorization). The idea to handle

the inexact case as an optimization problems was first given in Kaltofen (1992, 2000)

and independently in Sasaki et al. (1991a). Approximate factorization of univariate

polynomials does not exist independently of numerical root finding over the complex

numbers because of the fundamental theorem of algebra (all polynomials have deg f

linear factors). For polynomials over the rational numbers, one optimization problem

arising factorization is finding the nearest polynomial with a real root. A polynomial-

time solution of the nearest real root problem was given in Hitz et al. (1999).

The multivariate optimization problem can be formulated as follows: given f ∈

C[x1, . . . , xn] that is irreducible, find the nearest polynomial f̃ that factors over C such

that deg f̃ ≤ deg f and ‖f − f̃‖ is minimal. Since this can be written as a non-linear

optimization problem in the unknown coefficients of a pair of factors, it is clearly possible

to compute f̃ although the computation time could grow exponentially with the norm of

f . Indeed, in Hitz et al. (1999) an algorithm is given that will compute nearest polyno-

CHAPTER 1. INTRODUCTION 4

mial f̃d that has a factor of total degree d using parametric least squares. Computing the

solution to the parametric least squares problem is done in polynomial-time in the length

of the input, but exponential in d. Other approximate factorization algorithms (Sasaki

et al., 1991b, 1992; Galligo and Watt, 1997; Huang et al., 2000; Sasaki, 2001; Galligo

and Rupprecht, 2001; Corless et al., 2001, 2002; Sommese et al., 2004; Gao et al., 2004)

consider the soft and ε approximate versions of factorization. Many of these previous

algorithms run in polynomial time, but generally only work when f is quite near to a

polynomial that factors. In this dissertation, an algorithm will be given that will find a

nearby polynomial that factors for any given input polynomial.

Since the approximate factorization optimization problem cannot be solved in poly-

nomial time, it is also useful to turn the problem around and look at approximate irre-

ducibility testing as first considered by Nagasaka (2002) and later improved in Kaltofen

and May (2003). The idea of approximate irreducibility testing is: when given an ir-

reducible polynomial and a tolerance ε, decide if it is possible to apply a perturbation

of size ε to make the given polynomial factorizable. One way to realize this test is to

compute a lower bound on the size of perturbation of the coefficients of the irreducible

polynomial that will leave it irreducible. Ideally one would compute the distance to the

nearest polynomial to f that factors. However, it is not clear that is any easier than

computing that polynomial directly. Computing a lower bound on that distance is quite

possible using SVD techniques.

Both the approximate factorization and approximate irreducibility testing problems

CHAPTER 1. INTRODUCTION 5

can be stated for various notions of degree and distance. The choice of norm is clearly

important, and it can be shown that the choice of degree is important as well. One can

choose to consider the multi-degree or vector degree of a polynomial, that is mdegf =

(degx1
f, . . . , deg xnf). This is the degree used in Gao (2003), for example. A more

common, and more restrictive degree choice is the total degree. If one looks for the

nearest factorizable polynomial with the same rectangular degree, it will, in general, be

farther away than the nearest factorizable polynomial with the same total degree. This

can be seen in Section 2.3.2 in Example 2.2. More generally, one can consider other

restrictions on the support of f̃ . This is done in Section 3.2.

The optimization version of the approximate GCD problem can be stated in a way

similar to the way we stated the approximate factorization problem. Given a relatively

prime pair of polynomials f and g, find f̃ and g̃ so that f̃ and g̃ are not relatively

prime, deg f̃ ≤ deg f , deg g̃ ≤ deg g and ‖f − f̃‖ + ‖g − g̃‖ is minimal. If the solution

is not unique, one may additionally require deg(gcd(f̃ , g̃)) be maximal (although, this

will still not guarantee uniqueness). There is a polynomial time algorithm that solves the

approximate GCD problem for univariate polynomials given in Karmarkar and Lakshman

Y. N. (1998), though in practice it seems to be slow. There has also been work on

algorithms to solve the soft problem of finding nearby polynomials that have a GCD

(Schönhage, 1985; Corless et al., 1995; Emiris et al., 1997; Rupprecht, 1999; Corless

et al., 2004; Zhi, 2003; Zeng, 2004). The QRGCD routine in Maple’s SNAP (Jeannerod

and Labahn, 2002) package is a good example of such an algorithm.

CHAPTER 1. INTRODUCTION 6

There is no polynomial time solution to the multivariate approximate GCD prob-

lem. There has been much work on the soft version of the problem (Ochi et al., 1991;

Sasaki and Sasaki, 1997; Zhi and Noda, 2000; Zhi et al., 2001; Zeng and Dayton, 2004).

This dissertation will present one algorithm for the soft version of this problem that

can also be used to consider the approximate relatively prime testing problem. A very

similar algorithm was discovered independently in Zeng and Dayton (2004). Using ideas

similar to the approximate irreducibility testing, a method can be devised for testing

approximate relative primeness. This problem has been studied for univariate polyno-

mials (Beckermann and Labahn, 1998b,a) but the multivariate problem seems to remain

largely unexamined.

Another polynomial problem we can consider is functional decomposition. That is,

given a univariate polynomial f , find g and h, not linear, so that f(x) = g(h(x)). The soft

version of the approximate decomposition of polynomials was first considered in Corless

et al. (1999) where two iterative algorithms are proposed. We consider the problem in a

different way: as a special case of approximate factorization. In doing so we can compute

lower bounds for the distance to the nearest polynomial which decomposes as well as

computing approximate decompositions.

Finally, we also briefly examine the problem of approximate polynomial division since

it is an important subproblem of both factorization and GCD computation.

Chapter 2

Approximate Irreducibility

The goal of this chapter is to establish a lower bound on the radius of irreducibility of

an irreducible polynomial f over C. The radius of irreducibility of f is the distance from

f to the nearest polynomial that factors. A lower bound can be established for several

norms and for the multi-degree f (and later, in Section 3.2, for total degree and other

restrictions of the support of f). It should be noted that there is an easy upper bound:

the radius of irreducibility can never be larger than ‖f‖. This is simply because any

given monomial (except the monomial 1) is reducible, so if f̄ is the sum of all but one of

the terms of f , then f − f̄ is reducible and clearly ‖f̄‖ ≤ ‖f‖.

In this chapter we will consider polynomials in K[x, y1, . . . , yn] in order to be indicative

of the fact than many of the proof techniques consider these multivariate polynomials as

univariate polynomials in x over the rational function field K(y1, . . . , yn).

7

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 8

2.1 An Exact Irreducibility Test

2.1.1 The Generalized Ruppert Theorem

Testing if a bivariate polynomial f is absolutely irreducible, that is irreducible over the

algebraic closure of the coefficient field of f , can be reduced to a linear problem in the

coefficients of f as seen in Ruppert (1999). We generalize this approach to all multivariate

polynomials.

To denote the rectangular multi-degree of f ∈ K[x, y1, . . . , ym], we will write mdeg f =

(d, e1, . . . , em). That is, degx f = d, and degyi
f = ei. This notion of degree can be

partially ordered: mdeg g ≤ mdeg f means that degx g ≤ degx f , and degyi
g ≤ degyi

f .

The inequality mdeg g < mdeg f will mean that at least one of the inequalities is strict.

We will use fx and fi,yj
as short hand for ∂f/∂x and ∂fi/∂yj respectively.

Theorem 2.1. Let f ∈ K[x, y1, . . . , ym] have multi-degree (d, e1, . . . , em), where K is a

field of characteristic 0. The polynomial f is absolutely irreducible if and only if the fol-

lowing system of partial differential equations has no polynomial solution (g, h1, . . . , hm):

∂

∂yi

g

f
=

∂

∂x

hi

f
, i = 1, . . . ,m (2.1)

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 9

under the constraints

degx(g) ≤ (d− 2) degyi
(g) ≤ ei i = 1, . . . ,m

degx(hj) ≤ d degyi
(hj) ≤


ei if i 6= j

ei − 1 if i = j

j = 1, . . . ,m

(2.2)

and g 6= 0.

Note that degree bounds (2.2) are specifically chosen to exclude the solution

(fx, fy1 , . . . , fyn).

Proof. First notice that if p is a non-constant factor of f then

(f
px

p
, f

py1

p
, . . . , f

pym

p
) (2.3)

is a non-trivial solution to (2.1) that satisfies the bounds (2.2), except for the bound on

the degree in x of g = f px/p. If f has more than one factor, any linear combination of

solutions such as (2.3) will satisfy (2.1).

We will prove “the polynomial f is absolutely irreducible only if (2.1) has no solution

of the form (2.2)” by proving the contrapositive by contradiction. By assuming f has

a non-trivial factorization over C, we will show it has solutions to (2.1) that satisfy the

bound (2.2).

Suppose f factors as f = f1f2 over C. If f1,x = 0 or f2,x = 0 then (2.3) (using p = f1

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 10

or p = f2 respectively) satisfies (2.2) and we are done. Otherwise, if f1,x, f2,x 6= 0 then

we want to find a and b so that g = af2f1,x + bf1f2,x has degree less than (d − 2) in x.

Notice that

lcx(f2f1,x) = degx(f1) lcx(f1) lcx(f2),

and

lcx(f1f2,x) = degx(f2) lcx(f1) lcx(f2).

So, if we let a = degx(f2) 6= 0 and b = − degx(f1) 6= 0, the leading terms will cancel and

(af
f1,x

f1

+ bf
f2,x

f2

, af
f1,y1

f1

+ bf
f2,y1

f2

, . . . , af
f1,ym

f1

+ bf
f2,ym

f2

) (2.4)

is a solution, that satisfies the degree bounds. It is necessary to check that the first entry

is not 0. Without loss of generality, we can assume that f1 and f2 are relatively prime.

Proceeding by contradiction, let us assume that the first entry of (2.4) is 0, so we have

f2f1,x = −(b/a)f1f2,x. (2.5)

Since, f2 divides the left-hand side of (2.5), it must also divide the right-hand side of

(2.5). Since f1 and f2 are relatively prime, this implies that f2 divides f2,x. That implies

f2,x = 0. But we assumed f2,x 6= 0. Hence, by contradiction, (2.4) is a solution to (2.1)

and (2.2).

We will prove “the polynomial f is absolutely irreducible if (2.1) has no solution of

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 11

the form (2.2)” directly. Suppose f is irreducible, and hence square-free. Write f as a

product of distinct linear factors over the algebraic closure of C(y1, . . . , ym):

f = lcx(f)
d∏

i=1

x− αi , αi ∈ C(y1, . . . , ym).

Let us form the partial fraction decompositions of the rational functions in (2.1):

g

f
=

d∑
i=1

bi

x− αi

,
hj

f
=

d∑
i=1

cji

x− αi

+ hj

where hj ∈ C[y1, . . . , ym], bi =
g(αi, y1, . . . , ym)

f(αi, y1, . . . , ym)
∈ C(y1, . . . , ym), and cji ∈ C(y1, . . . , ym).

Now compute the partial fraction decompositions of the derivatives:

∂

∂yj

g

f
=

d∑
i=1

1

x− αi

∂bi

∂yj

+
bi

(x− αi)2

∂αi

∂yj

,

∂

∂x

hj

f
=

d∑
i=1

cji

(x− αi)2
.

If g and hi’s are a solution to (2.1) then the uniqueness of the partial fraction decom-

position implies that ∂bi

∂yj
= 0 for all i = 1 . . . d, and j = 1 . . . m. Hence, bi ∈ C for all

i = 1 . . . d.

Since f is irreducible, all the αi’s are algebraic conjugates. Hence, the formula for

the bi’s implies that they too are algebraic conjugates. But, the bi’s are all complex

numbers, so they must be equal. Thus bi = b ∈ C for i = 1 . . . d. The partial fraction

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 12

decomposition above becomes:

g

f
=

d∑
i=1

b

x− αi

= b
fx

f
.

Hence, g = bfx. But, if degx g < d − 1 = degx fx, then b must be 0. So, there is no

solution to (2.1) that satisfies (2.2) and g 6= 0.

It is not hard to show that for a solution (g, h1, . . . , hn), g = 0 implies that hi = 0,

for i = 1 . . . m. See the discussion in Section 3.1.1.

2.1.2 The Ruppert Matrix

Notice that each of the partial differential equations (2.1) can be rewritten using the

quotient rule to look like

f
∂g

∂yi

− g
∂f

∂yi

+ hi
∂f

∂x
− f

∂hi

∂x
= 0, (2.6)

which is 4dei

∏
j 6=i(2ej + 1) linear equations in the (2dei + ei − 1)

∏
j 6=i(ej + 1) unknown

coefficients of g and the his. Collecting all these linear equations we can form a matrix

which we will denote as Rup(f), the generalized Ruppert matrix of f , with dimensions

(
m∑

i=1

4dei

∏
j 6=i

(2ej + 1)

)
×

(
m∑

i=1

(2dei + ei − 1)
∏
j 6=i

(ej + 1)

)
,

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 13

or when m = 1, dimensions (4de1)× (2de1 + e1 − 1). Thus, testing irreducibility reduces

to a problem of linear algebra.

Corollary 2.2. Rup(f) is a full rank matrix over C if and only if f is an absolutely

irreducible polynomial.

Note that any polynomial basis can be used to construct the matrix Rup(f). For

example if a polynomial is obtained empirically, often it is given by its values at certain

evaluation points; in other words, it is given in terms of a Lagrange basis and converting

to a power basis can be very unstable numerically. Numerical issues notwithstanding,

our examples will be given in terms of the standard power basis, exclusively.

Example 2.1. Given the polynomial

ϕ = c2,2x
2y2 + c2,1x

2y + c1,2xy2 + c2,0x
2 + c0,2y

2 + c1,1xy + c1,0x + c0,1y + c0,0,

the matrix Rup(ϕ) is 12× 9 with zero rows removed (see Figure 2.1). If we specialize to

f = x2 + y2 − 1 we get a 12 × 9 matrix (with two zero rows) that has rank 9 since f is

absolutely irreducible. Note that the symmetry of f is not being exploited here.

For the two variable case, a general description of a block structure of the Ruppert

matrix is shown in Nagasaka (2004). If f =
∑

i,j ci,j xiyj then Rup(f) can be written as

shown in figure 2.2 with Gi and Hi block matrices with structure shown in figure 2.3 and

figure 2.4 respectively. The structure given in Nagasaka (2004) is written with a different

order for the monomials than that used for figure 2.1.

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 14

u0,0 v0,0 u0,1 u1,0 v1,0 u0,2 u1,1 v2,0 u1,2

1

y

x

y2

xy

x2

xy2

x2y

x3

x2y2

x3y

x3y2



−c0,1 c1,0 c0,0 0 −c0,0 0 0 0 0

−2 c0,2 c1,1 0 0 −c0,1 2 c0,0 0 0 0

−c1,1 2 c2,0 c1,0 −c0,1 0 0 c0,0 −2 c0,0 0

0 c1,2 −c0,2 0 −c0,2 c0,1 0 0 0

−2 c1,2 2 c2,1 0 −2 c0,2 0 2 c1,0 0 −2 c0,1 2 c0,0

−c2,1 0 c2,0 −c1,1 c2,0 0 c1,0 −c1,0 0

0 2 c2,2 −c1,2 0 0 c1,1 −c0,2 −2 c0,2 c0,1

−2 c2,2 0 0 −2 c1,2 c2,1 2 c2,0 0 −c1,1 2 c1,0

0 0 0 −c2,1 0 0 c2,0 0 0

0 0 −c2,2 0 c2,2 c2,1 −c1,2 −c1,2 c1,1

0 0 0 −2 c2,2 0 0 0 0 2 c2,0

0 0 0 0 0 0 −c2,2 0 c2,1



Figure 2.1: The matrix of the linear equations in (2.6) for a
symbolic polynomial with degree two in x and y.



Gn 0 · · · 0 0 ·Hn 0 · · · 0 0

Gn−1 Gn
. . .

... −Hn−1 Hn
. . .

...
...

... Gn−1
... 0

... 0 ·Hn−1
... 0

...

G1
...

. . . Gn (1− n) H1
...

. . . (n− 1) H1 0

G0 G1
. . . Gn−1 −n H0 (2− n) H1

... (n− 2) Hn−1 n Hn

0 G0
. . .

... 0 (1− n) H0
. . .

... (n− 1) Hn−1
...

. G1
... 0

... 0 ·H1
...

0 . . . 0 G0 0 · · · 0 −H0 H1


Figure 2.2: The block matrix structure of Rup(f) from Nagasaka (2004)

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 15

Gi =



0 0 · · · 0 0 0

ci,m−1 −ci,m
. . .

...
... 0

2 ci,m−2 0
. . . 0

...
...

... ci,m−2
. . . (2−m) ci,m 0

...
...

...
. . .

... (1−m) ci,m 0

m ci,0
...

. . .
...

... −m ci,m

0 (m− 1) ci,0
. . . 0

...
...

... 0
. . . ci,1 −ci,2

...

0
...

. . . 2 ci,0 0 −2 ci,2

0 0 · · · 0 ci,0 −ci,1


Figure 2.3: The structure of the Gi blocks of Rup(f)

Hi =



0 · · · 0

ci,m
...

...

ci,m−1
... 0

...
... ci,m

ci,1
... ci,m−1

ci,0
...

...

0
. . . ci,1

... · · · ci,0


Figure 2.4: The structure of the Hi blocks of Rup(f)

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 16

2.2 Some Linear Algebra

2.2.1 Euclidean Distance to the Nearest Rank Deficient Matrix

Given a matrix A ∈ Cµ×ν , the Frobenius norm of A is equal to the Euclidean norm of the

matrix considered as a vector and will be denoted as ‖A‖F . That is ‖A‖2
F =

∑
i,j |Ai,j|2.

It is a well known fact of matrix theory that ‖A‖F is also equal to the sum of the singular

values of A.

We now state a classic linear algebra theorem from Eckart and Young (1936), which

is proved for complex matrices in Stewart (1973b, Theorem 6.7).

Fact 2.3. Let A ∈ Cµ×ν be a matrix of rank r. If B ∈ Cµ×ν has rank strictly less than

r, then ‖A−B‖F ≥ σ(A), where σ(A) denotes the smallest positive singular value of the

matrix A. Furthermore, there exists B of rank r − 1 so that ‖A−B‖F = σ(A).

Let us now suppose that f is irreducible and both fM and f̃ = f − fM have the same

degree as f . Here f̃ denotes the perturbed polynomial and fM the perturbation. Hence

Rup(fM) and Rup(f̃) have the same dimensions as Rup(f), thus Rup(fM) = Rup(f − f̃)

is equal to Rup(f) − Rup(f̃). If f̃ is factorizable, then Rup(f̃) must be rank deficient.

Because Rup(f) is of full rank and Rup(f̃) is rank deficient, Fact 2.3 implies

‖Rup(fM)‖F ≥ σ(Rup(f)). (2.7)

Note that restricting fM to have the same degree as f is artificial, and we will introduce

notation later that will allow fM to have smaller degree.

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 17

It should be noted that although the estimate (2.7) is sharp for general matrices, due

to structure of the Ruppert matrices, it may be that

min
deg(f̃)≤deg(f)

rankRup(f̃)<rankRup(f)

‖Rup(f)− Rup(f̃)‖F � σ(Rup(f)).

It is not at all obvious how to find a sharp bound. There has been some interesting work

in Rump (2003) on finding sharp bounds for more elementary matrix structures. So there

is hope that it might be possible to find better bounds for the Ruppert structure as well.

2.2.2 Other Norms

This theory of nearest rank deficient matrices can be stated more generally in other norms

as well. We will write ‖A‖p,q for the matrix operator norm defined as maxx 6=0 ‖Ax‖p/‖x‖q

or equivalently as max‖x‖q=1 ‖Ax‖p. By the definition of the norm, it follows that for all x,

‖Ax‖p ≤ ‖A‖p,q‖x‖q.

In general, these norms seem to be non-trivial to compute. However, when p = q we get

the standard matrix operator norms, some of which can be computed quite easily. The

1-norm, for example, is the largest absolute column sum:

‖A‖1 = ‖A‖1,1 = max
j

{∑
i,j

|Ai,j|
}

.

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 18

The ∞-norm is the largest absolute row sum:

‖A‖∞ = ‖A‖∞,∞ = max
i

{∑
i,j

|Ai,j|
}

.

The 2-norm, ‖A‖2, is equal to the largest singular value of A. The height of a matrix

can also be represented as one of these norms.

Lemma 2.4. ‖A‖∞,1 = H(A) = maxi,j{|Ai,j|}.

Proof. Clearly H(A) ≤ ‖A‖∞,1 since if z is the unit vector with a 1 in the position of the

column containing the entry of largest absolute value, and zeros elsewhere, then ‖Az‖∞

is just the maximum of the absolute values of entries in that column.

Now if ‖x‖1 = 1, then

|(Ax)i| ≤
∑

j

|Ai,j||xj| ≤ max
j
{|Ai,j|}

∑
j

|xj| = max
j
{|Ai,j|}. (2.8)

So

‖A‖∞,1 = max
‖x‖1=1

‖Ax‖∞ ≤ max
i,j
{|Ai,j|} = H(A).

There seems to be no explicit formula for ‖A‖1,∞, but we can get an upper bound

that will be useful later.

Lemma 2.5. ‖A‖1,∞ ≤
∑

i,j |Ai,j|.

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 19

Proof. If ‖x‖∞ = 1, then

‖Ax‖1 =
∑

i

∣∣∣∑
j

Ai,jxj

∣∣∣ ≤∑
i

∑
j

|Ai,j||xj| ≤ max
j
{|xj|}

∑
i,j

|Ai,j| =
∑
i,j

|Ai,j|. (2.9)

Notice that the bound is achieved when A has, for example, all positive real entries and

it is possible to find small examples that have norm strictly less than the bound.

Following Campbell and Meyer (1979), we will write A† to indicate the Moore-Penrose

pseudo-inverse of A. That is, the unique matrix such that

(i) AA†A = A,

(ii) A†AA† = A†,

(iii) (AA†)H = AA† and

(iv) (A†A)H = A†A.

For a given matrix B, by BH we mean the Hermitian (conjugate transpose) of B. In

particular, we are interested in the following property of A† (see Campbell and Meyer

(1979, p. 9)): if x is in the row space of A then A†Ax = x.

The following is a slight variation of a theorem found in Campbell and Meyer (1979,

Prop. 10.4.2), which is a generalization of a theorem by Gastinel for invertible matrices

(Kahan, 1966, p. 775). This is essentially Fact 2.3 for operator norms.

Lemma 2.6. Suppose A has full rank and A has more rows than columns. If A − AM

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 20

has lower rank than A, then

‖AM‖p,q ≥ 1
/
‖A†‖q,p.

In this case AHA is invertible and A† = (AHA)−1AH.

Proof. If A−AM is rank deficient, then there is a z so that (A−AM)z = 0 or, Az = AMz.

Also note that since A has full rank, its row space contains all vectors of the appropriate

dimension, including z. Now compute:

‖AM‖p,q ≥ ‖AMz‖p

/
‖z‖q = ‖Az‖p

/
‖z‖q = ‖Az‖p

/
‖A†Az‖q

≥ ‖Az‖p

/
(‖A†‖q,p‖Az‖p) = 1

/
‖A†‖q,p.

The formula for A† is classical (see, for example, Campbell and Meyer (1979, Theo-

rem 1.3.2)).

Note that since Rup(f) always has more rows than columns, Lemma 2.6 applies.

2.3 The Lower Bounds

2.3.1 The Structure of Rup(f)

Before we establish the lower bound, we first will demonstrate a number of relationships

between the norms of f and the norms of Rup(f).

Lemma 2.7. All non-zero entries of Rup(f) are integer multiples of coefficients of f , or

are equal to 0. In fact, if f =
∑

ci,j1,...,jmxiyj1
1 . . . yjm

m then:

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 21

1. a given coefficient appears at most twice in any row of Rup(f);

2. a given coefficient appears at most m times in any column of Rup(f);

3. a given coefficient appears in at most

m∑
i=1

(
(2dei − d)

∏
j 6=i

(ej + 1)

)

(when m = 1, 2de1 − d) entries of Rup(f);

4. if (Rup(f))k,l = aci,j1,...,jm, then |a| ≤ max{d, e1, . . . , em}.

Proof. We will look at one of the partial differential equations from which Rup(f) is

derived:

f
∂g

∂yn

− g
∂f

∂yn

+ hn
∂f

∂x
− f

∂hn

∂x
= 0 (2.10)

where

g =
∑

ui,j1,...,jmxiyj1
1 . . . yjm

m , and h =
∑

vi,j1,...,jmxiyj1
1 . . . yjm

m .

A row of Rup(f) comes from the equation given by setting one of the coefficients of (2.10)

to zero. So, we examine the coefficient of a given xiyj1 . . . yjm in (2.10):

 ∑
k+s=i

ln+tn=jn+1
la+ta=ja, a 6=n

ck,l1,...,lm tn us,t1,...,tm

−

 ∑
k+s=i

ln+tn=jn+1
la+ta=ja, a6=n

ln ck,l1,...,lm us,t1,...,tm


+

 ∑
k+s=i+1
la+ta=ja

k ck,l1,...,lm vs,t1,...,tm

−

 ∑
k+s=i+1
la+ta=ja

ck,l1,...,lm s vs,t1,...,tm

 .

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 22

Clearly, a given ck,l1,...,lm can appear at most four times in this coefficient. Examination of

the indexes reveals that both ut,s1,...,sm corresponding to a given ck,l1,...,lm have the exact

same indexes (once k, l1, . . . , lm are fixed, so then must be s, t1, . . . , tm). Similarly for the

two vs,t1,...,tm corresponding to a given ck,l1,...,lm . Hence, ck,l1,...,lm appears at most twice

in any given row of Rup(f) either from the term (tn − ln) ck,l1,...,lm us,t1,...,tm , or the term

(k − s) ck,l1,...,lm vs,t1,...,tm . Since |k − s| ≤ d, and |tn − ln| ≤ en we have also proven that

each non-zero entry of Rup(f) is of the form a ck,l1,...,lm where |a| ≤ max{d, e1, . . . , em}.

Now let us look at how many times a given ck,l1,...,lm can appear in a column of Rup(f).

We will first look at how many times it can appear multiplied by a given us,t1,...,tm or

vs,t1,...,tm in (2.10). As we can see above there is only one possibility for each. Thus

ck,l1,...,lm appears at most once in each column of the part of the matrix corresponding to

each of the equations (2.10). There are m− 1 of these equations, so, ck,l1,...,lm appears as

most m − 1 in the columns corresponding to the coefficients of g, and at most once in

each of the columns corresponding to an hi.

Notice also, there is not a multiple of ck,l1,...,lm in every column. It appears in the

terms

(tn − ln) ck,l1,...,lm us,t1,...,tm xk+syl1+t1
1 . . . yln+tn−1

n . . . ylm+tm
m

and (k − s) ck,l1,...,lm vs,t1,...,tm xk+s−1yl1+t1
1 . . . ylm+tm

m .

For the case that k = s = 0, (tn− ln) c0,l1,...,lm v0,t1,...,tm would have to be in the coefficient

of x−1yl1+t1
1 . . . ylm+tm

m so c0,l1,...,lm does not appear in the column corresponding to v0,t1,...,tm

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 23

for any la and tb. Similarly for the case when ln = tn = 0. The term

j ck,l1,...,j,...lm us,t1,...,j,...,tm xk+syl1+t1
1 . . . y2j−1

n . . . ylm+tm
m

appears in the polynomials fgyn and gfyn in (2.10), hence it cancels. So a given ck,l1,...,j,...lm

does not appear in the column corresponding to us,t1,...,j,...,tm . And, similarly, ck,l1,...,lm does

not appear in any column corresponding to vk,t1,...,tm .

Thus for a each n, the matrix for (2.10) has at most (2den − d)
∏

l 6=n(el + 1) entries

that contain ck,l1,...,j,...lm . So Rup(f) has at most

m∑
i=1

(
(2dei − d)

∏
j 6=i

(ej + 1)

)

occurrences of each coefficient of f .

In addition, since the all the terms containing y2ek−1
k in (2.10) must vanish we know

that
∑

i(2d
∏

i6=j(2ei + 1)) rows of Rup(f) will always be zero. So the dimensions of

Rup(f) are in fact:

(
m∑

i=1

(4dei − 2d)
∏
j 6=i

(2ej + 1)

)
×

(
m∑

i=1

(2dei + ei − 1)
∏
j 6=i

(ej + 1)

)
,

or (4de1 − 2d)× (2de1 + e1 − 1) when m = 1.

Suppose ϕ is a polynomial with symbolic coefficients with deg(ϕ) = deg(f). For

a perturbation fM with deg(fM) ≤ deg(f), we consider the matrix Rup(ϕ)
∣∣
ϕ=fM

, which

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 24

denotes the Ruppert matrix of ϕ with the symbolic coefficients set to their values in fM.

However, notice that Rup(ϕ)
∣∣
ϕ=fM

is only the same as Rup(fM) if fM has the same degree

as ϕ, otherwise the two matrices have different dimensions.

Lemma 2.8. Given ϕ,a polynomial with symbolic coefficients, and fM a polynomial with

the same or lower degree, the following bounds hold:

1. ‖Rup(ϕ)
∣∣
ϕ=fM

‖1 ≤ max{d, e1, . . . , em} ‖fM‖1

2. ‖Rup(ϕ)
∣∣
ϕ=fM

‖∞ ≤ (m− 1) max{d, e1, . . . , em} ‖fM‖1

3. ‖Rup(ϕ)
∣∣
ϕ=fM

‖∞,1 ≤ max{d, e1, . . . , em} ‖fM‖∞

4. ‖Rup(ϕ)
∣∣
ϕ=fM

‖2 ≤ ‖Rup(ϕ
∣∣
ϕ=fM

)‖F ≤
√

C max{d, e1, . . . , em} ‖fM‖2,

C =
∑m

i=1

(
(2dei − ei)

∏
j 6=i(ej + 1)

)
.

Note, for the two variable case, Nagasaka (2004) shows the right-hand side in part 4

can be replaced with:

1/6 n (m (m + 1) (2 m + 1) + (m− 1) (n + 1) (2n + 1)) ‖fM‖2 where (m, n) = mdeg(f).

Proof. We derive the bound on the 2-norm. The derivations of the other bounds are

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 25

similar.

‖Rup(ϕ)
∣∣
ϕ=fM

‖2
F =

∑
i,j

|
(
Rup(ϕ)

∣∣
ϕ=fM

)
i,j
|2 =

∑
i,j

|ai,jbki,j
|2

≤ max{a2
i,j}
∑
i,j

|bki,j
|2 ≤ (max{d, e1, . . . , em})2 C ‖fM‖2

2,

where bk is a coefficient of fM or is zero and C =
∑m

i=1

(
(2dei − ei)

∏
j 6=i(ej + 1)

)
is the

number of times a given bk can appear in Rup(ϕ) from Lemma 2.7.

2.3.2 The Main Approximate Irreducibility Theorem

Now we prove a theorem that translates an upper-bound on an operator norm of Rup(f)

in terms of a polynomial norm of f into a lower bound on the distance to the nearest

factorizable polynomial to f .

Theorem 2.9. Suppose that f ∈ C[x, y1, . . . , ym] is an irreducible polynomial, and

that f̃ ∈ C[x, y1, . . . , ym] is a polynomial of equal or lesser degree. Additionally suppose

that there exists C so that

‖Rup(ϕ)
∣∣
ϕ=fM

‖p,q ≤ C ‖fM‖r. (2.11)

If

‖f − f̃‖r < (C ‖Rup(f)†‖q,p)
−1. (2.12)

then f̃ is irreducible.

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 26

Note that the relationships in Lemma 2.8 give four bounds of the form (2.11).

Proof. Begin by assuming that f and f̃ have the same degree.

By (2.11) and (2.12) applied to fM = f − f̃ we have

‖Rup(f)− Rup(f̃)‖p,q = ‖Rup(ϕ)
∣∣
ϕ=fM

‖p,q ≤ C ‖fM‖r < ‖Rup(f)†‖−1
q,p. (2.13)

Now, since f is irreducible, Rup(f) is full rank by Theorem 2.1. Hence, Fact 2.6 with

(2.13) implies that Rup(f̃) is so close to Rup(f) it must also be full rank. Thus, f̃ is

irreducible, by Theorem 2.1.

We now assume that f̃ has smaller degree than f . In order to derive a contradiction,

let us assume now that f̃ = gh where g and h are non-unit factors, and

‖f − f̃‖r < (C ‖Rup(f)†‖q,p)
−1.

Now we can construct

˜̃f = (ε (xs + yt1
1 + . . . + ytm

m) + g) h = ε (xs + yt1
1 + . . . + ytm

m) h + f̃ ,

with s = degx(f)− degx(h) and ti = degyi
(f)− degyi

(h), and ε ∈ R>0 chosen so that

ε <
(C ‖Rup(f)†‖q,p)

−1 − ‖f − f̃‖r

‖(xs + yt1
1 + . . . + ytm

m)h‖r

.

Furthermore, we restrict ε so that ˜̃f has the same degree as f . This is possible because

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 27

there are at most m + 1 values of ε that can cause

ε (xs + yt1
1 + . . . + ytm

m) h + f̃

to have lower degree than f , while we have an infinite number of choices for ε that satisfy

the inequality. Thus, ˜̃f factors and has the same degree as f , but

‖f − ˜̃f‖r ≤ ‖f − f̃‖2 + ε ‖(xs + yt1
1 + . . . + ytm

m) h‖r < (C ‖Rup(f)†‖q,p)
−1,

which contradicts the first part of the proof.

Note that this theorem does not hold if we allow the degree of f̃ to be greater than

that f . For all f and ε > 0, f̃ = (ε x + 1)f is a polynomial of higher degree than f that

is reducible. But,

‖f̃ − f‖ = ‖ε x f‖ = ε ‖f‖

which, by choosing ε small enough, can be made arbitrarily small.

In practice, it is possible to get better bounds C than the ones given in Lemma 2.8

by forming the Ruppert matrix for the polynomial with symbolic coefficients having the

same degree as f , computing the desired norm of the symbolic matrix, and finding the

largest coefficient of a |ci,j| term. We use this technique in the following examples.

Example 2.2. (bounds vs. true distance.) Using the notation of Example 2.1, con-

sider again the absolutely irreducible polynomial f = x2+y2−1. Computing ‖Rup(ϕ)‖2
F ,

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 28

we get:

15 |c0,2|2 + 15 |c2,2|2 + 15 |c2,0|2 + 12 |c1,2|2 + 9 |c2,1|2

+ 6 |c1,1|2 + 15 |c0,0|2 + 12 |c1,0|2 + 9 |c0,1|2 .

The largest coefficient is 15 (the bound predicted in the theorem is 24), and the smallest

singular value of Rup(f) is σ(Rup(f)) =
√

15/2 −
√

7/2 ≈ 0.61361601757141, so a

perturbation that makes f singular must have 2-norm at least σ(Rup(f))
/√

15 = 1/2−
√

105/30 ≈ 0.1584349745.

This polynomial is small enough that it is possible to find the closest factorizable poly-

nomial (with real coefficients, and same total degree) by using parametric least squares

as in Hitz et al. (1999). This involves taking the equation

f − (a1 x + a2 y + a3)(x + b1 y + b2) = 0 (2.14)

and considering it as a set of linear equations in a1, a2, and a3. We can write this as a

linear system: Ma = F , where the matrix M has entries in R[b1, b2], and F is a vector

of the coefficients of f . Now the residual of the least squares solution of this system,

q = ‖F −M(MT M)−1MT F‖2,

is a rational function in b1 and b2. We can find a global minimum of q by taking the

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 29

partial derivatives of its numerator, q1 and q2, and solving Resb2(q1, q2) = 0. Once we have

a real solution b1 = α1, we can solve gcd(q1(α1, b2), q2(α1, b2)) = 0 for corresponding real

α2’s. We check all such pairs, and substitute the pair that leads to the smallest residual

back into M . We thus obtain a linear system over R from which we can compute the

least squares solution. Doing so, we find that closest reducible polynomials with real

coefficients and total degree 2 are at least distance 1 from f , for example,

f̃ = (x− 1)(x + 1).

The closest reducible polynomial with degree 2 in x and y is closer. For example, the

following f̃ is only distance 0.6727223250 away from f :

f̃ = (0.4906834y2 + 0.8491482x− 0.9073464)(x + 1.214778).

Finding the closest factorizable polynomial with complex coefficients is computationally

more difficult, since each parameter above turns into two parameters, one each for the

real and the imaginary parts.

We can compute lower bounds for other norms as well. After computing the pseudo-

inverse of Rup(f), a task that is accomplished handily with the MatrixInverse command

in Maple version 8 or later, we compute its various norms.

‖Rup(f)†‖1 = 5/2, ‖Rup(f)†‖∞ = 2, ‖Rup(f)†‖1,∞ ≤ 9.

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 30

The maximum multiple of an absolute column sum is 2. Looking at a symbolic Rup(ϕ)

we find that the maximum multiple of an absolute row sum is 3, less than the worst case

of 4 predicted above, and the maximum multiple of an entry is 2. Hence we get that the

∞-norm of a perturbation of f must be greater than 1/18 ≈ 0.05556, and the 1-norm

must be greater th an 1/5 = 0.2 (from the matrix 1-norm), and 1/6 ≈ 0.16667 (from the

matrix ∞-norm).

Example 2.3. (comparison with Nagasaka (2002).) Apply Theorem 2.9 to Na-

gasaka’s Example 1:

F = (x2 + yx + 2y − 1)(x3 + y2x− y + 7) + 0.2x.

Here, Rup(F) is a 47 × 32 matrix after removing the zero rows. Forming the symbolic

polynomial with the same degrees and computing its Frobenius norm, we get:

140|c0,1|2 + 140|c0,2|2 + 180|c0,3|2 + 92|c1,1|2 + 132|c1,3|2

+ 68|c2,1|2 + 92|c1,2|2 + 68c2,2|2 + 108|c2,3|2 + 68|c3,1|2

+ 92|c4,1|2 + 108|c3,3|2 + 68|c3,2|2 + 180|c5,3|2 + 140|c5,2|2

+ 132|c4,3|2 + 140|c5,1|2 + 92|c4,2|2 + 108|c3,0|2 + 108|c2,0|2

+ 132|c1,0|2 + 180|c0,0|2 + 180|c5,0|2 + 132|c4,0|2.

The largest coefficient is 180, so by Theorem 2.9, a perturbation with 2-norm at least

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 31

σ(Rup(F))
/√

180 is needed to make F reducible. Numerically computing the singular

value σ(Rup(F)) ≈ 1.030023214×10−2, we find σ(Rup(F))
/√

180 ≈ 7.677339751×10−4.

The norm ‖f‖2 ≈ 19.8504408, and dividing the absolute bound by this gives a relative

bound of 3.8676−5 compared to the bound Nagasaka computes: 5.53× 10−6.

In addition we find bounds for other norms as well. Computing the pseudo-inverse of

R(f) we get the norms

‖R(f)†‖1 ≈ 113.598, ‖R(f)†‖∞ ≈ 270.393,

‖R(f)†‖1,∞ ≤ 1192.372.

These lead to the bounds:

‖fM‖1 > 0.001760594950 and ‖fM‖∞ > 0.0001677328901

if f − fM is factorizable.

Recently, in Nagasaka (2004), a scheme was presented which removes redundant rows

from Rup(f) in order to achieve small (6%) improvements to the lower bounds for the

two variable examples presented above.

Example 2.4. (two polynomials in three variables) Consider the absolutely

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 32

irreducible polynomials

f1 = x2 + y2 + z2 − 1,

the sphere, and

f2 = 81 x4 + 16 y4 − 648.001 z4 + 72 x2y2 + 0.002 x2z2

+ .001 y2z2 − 648 x2 − 288 y2 − .007 z2 + 1296,

from Kaltofen (2000).

The largest coefficient of ‖Rup(ϕ1)‖2
2 (a 120 × 45 matrix) is 90, and the smallest

singular value of Rup(f1) is σ ≈ .852159217299423788 giving a lower bound on the

radius of irreducibility of 0.0898254685.

For the other polynomial, the largest coefficient of ‖Rup(ϕ2)‖2
2 (a 1008× 275 matrix)

is 2100, and the smallest singular value of Rup(f2) is σ ≈ 4.76613104337138402× 10−11

giving a lower bound of 1.04005506× 10−12. This bound seems quite small since f2 was

constructed from the factorizable polynomial

81 x4 + 16 y4 − 648 z4 + 72 x2y2 − 648 x2 − 288 y2 + 129,

that is only distance 7.416198487× 10−3 away from f2.

Remark 2.1. The singular values in the above examples were computed to machine

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 33

precision from matrices with floating point entries in MAPLE using the SingularValues

command which uses the NAG numerical library as its backend. To ensure that the

bounds were numerically accurate, the same singular values were computed again with

SingularValues but this time with matrices with rational number entries so that exact

techniques would be employed (i.e. the singular values would be computed as the roots

of a characteristic polynomial). Applying MAPLE’s numerical root finder (via evalf)

to these exact singular values, we find that they agree to 15 decimal digits with the ones

computed using purely numerical techniques.

For larger examples, computing the singular values exactly would not be practical.

Already, Example 2.3 has a characteristic polynomial that is degree 32 with coefficients

with 90 decimal digits. In this case, one should be sure to use a numerical singular value

implementation which is certified to be accurate.

It can been seen above that the Ruppert matrices get quite large very quickly (size of

Rup(f) grows linearly with the number of terms of f and exponentially in the number of

variables). Thus, computing lower bounds on the radius of irreducibility for polynomials

with many variables and large degrees can benefit greatly from algorithms that compute

the norms of ‖Rup(f)†‖ in ways which takes advantage of its structure. For example, the

smallest singular value of a matrix can be computed with an inverse power method which

is a black box iteration. That is, it does not need to know the entries of the matrix, it

just needs to be able to multiply by the matrix and its transpose both of which can be

done without explicitly constructing the Ruppert matrix.

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 34

It is not clear that there is any way to find a better radius of irreducibility in the

multivariate case by projecting to the two variable case. Note, however, that a lower

bound on the radius of irreducibility can also be computed from Noether irreducibility

forms as in Kaltofen (1995). Such bounds are much easier to compute but in general are

not as tight as the ones above. We discuss how to find these lower bounds in the next

section.

2.4 More Effective Noether Irreducibility Forms

For a fixed number of variables and a fixed total degree d, it is possible to compute

a set of polynomials with rational number coefficients which vanish when evaluated at

the coefficients of a rational multivariate polynomial of total degree d that is not abso-

lutely irreducible and that do not vanish when evaluated at the coefficients of a rational

multivariate polynomial of total degree d that is absolutely irreducible. Such a set of

polynomials are called a Noether Irreducibility Form named for Emmy Noether who

proved that such forms exist (Noether, 1922). Noether’s construction was analyzed in

Schmidt (1976) and shown to lead to impractically large forms. Later, Kaltofen (1995)

constructed new, smaller, more effective forms. Here we present forms which are even

more effective.

We shall derive new Noether irreducibility forms using Theorem 2.1. We will first

reduce the problem of constructing these forms to the case of two variables using the

following fact. This is done in part so that our forms will not grow as quickly with the

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 35

number of variables. First, suppose that

f =
∑

e1+...+en≤d

ce1,...,enxe1
1 · · ·xen

n ∈ K[x1, . . . , xn],

where K is a field of characteristic 0.

Fact 2.10. (Lemma 7 in Kaltofen (1995)) Let f be as above and

L = K(v1, . . . , vn, w2, . . . , wn, z2, . . . , zn),

where v1, . . . , vn, w2, . . . , wn, z2, . . . , zn are indeterminants. The bivariate polynomial

f̂(x, y) = f(x + y + v1, w2x + z2y + v2, . . . , wnx + zny + vn) ∈ L[x, y]

is irreducible over the algebraic closure of L if and only if f is irreducible over the algebraic

closure of K.

Note that in Kaltofen (1995), the substitution for x1 is x + v1, but the proof follows

through using x + y + v1 as given above. The advantage of the latter substitution is that

degx f̂ = degy f̂ = tdeg(f̂) = tdeg(f) where by tdeg we mean the total degree. This

allows us to formulate the following theorem using total degree even though Theorem 2.1

depends on the rectangular degrees.

Theorem 2.11. (cf. Theorem 7 in Kaltofen (1995)) There exists a finite set of

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 36

polynomials

Φt ∈ E := Z[. . . , be1,...,en , . . .], 1 ≤ t ≤ T

where the be1,...,en’s are indeterminants, so that

∀t : Φt(. . . , ce1,...,en , . . .) = 0 ⇐⇒ f is not absolutely irreducible or tdeg(f) < d.

Furthermore, for all t,

tdeg(Φt) ≤ 2d2 + d and ‖Φt‖1 ≤ (2d)4d2+3d+n.

Proof. The proof will closely follow the proof of Theorem 7 in Kaltofen (1995). First,

write

ϕ =
∑

e1+...+en≤d

be1,...,enxe1
1 · · ·xen

n ,

and

ϕ̂ = ϕ(x + y + v1, w2x + z2y + v2, . . . , wnx + zny + vn) ∈ L′[x, y]

where L′ = E(v1, . . . , vn, w2, . . . , wn, z2, . . . , zn).

Let {∆s} be the set of all maximal minors of the matrix Rup(ϕ̂). Define the set

S :=


τ ∈ E τ is a coefficient of a term in

v1, . . . , vn, w2, . . . , wn, z2, . . . , zn of some ∆s}.

 .

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 37

We shall define the set of irreducibility forms as follows:

{Φt = be1,...,enτ ∈ E | e1 + . . . + en = d, τ ∈ S}.

Now let us substitute the coefficients of f (the ce1,...,en ’s) for the indeterminants be1,...,en .

Note that one of our forms Φt(. . . , ce1,...,en , . . .) = 0 if and only if τ(. . . , ce1,...,en , . . .) = 0 for

τ ∈ S or ce1,...,en = 0 for all e1+. . .+en = d. The condition ce1,...,en = 0 for all e1+. . .+en =

d holds if and only if f does not have total degree d. Notice, τ(. . . , ce1,...,en , . . .) = 0 for all

τ ∈ S if and only if ∆s(. . . , ce1,...,en , . . .) = 0. This is true if and only if Rup(ϕ̂
∣∣
ϕ̂=f̂

) does

not have full rank. Now, if tdeg(f) = d, then degx f̂ = degx ϕ̂ = degy f̂ = degy ϕ̂ = d,

hence, Rup(f̂) = Rup(ϕ̂
∣∣
ϕ̂=f̂

). Thus, by Theorem 2.1, Rup(f̂) is rank deficient if and

only if f̂ factors over the algebraic closure of L which is true if and only if f factors over

C, by Fact 2.10.

Now we establish the bounds on Φt. Notice that all the coefficients of terms xiyj in ϕ̂

are linear in the be1,...,en ’s, hence the entries of Rup(ϕ̂) are also linear in the be1,...,en ’s by

Lemma 2.7. Thus, any minor of Rup(ϕ̂) will have total degree in the be1,...,en ’s at most

2d2 + d− 1, the number of columns of Rup(ϕ̂). Therefore the total degree of any Φt will

be at most 2d2 + d. To bound the 1-norm, note that each coefficient of ϕ̂ has 1-norm at

most d + n

n

 3d =: A ≤ (2d)d+n.

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 38

Therefore, a minor of Rup(ϕ̂) has 1-norm at most

A (2d2 + d− 1)(2d2 + d− 1)! ≤ (2d)d+n(2d2 + d− 1)2d2+d ≤ (2d)4d2+3d+n,

and ‖Φt‖1 must certainly be smaller than this as well.

The bounds

B := 2d2 + d and D := (2d)4d2+3d+n.

on these new Noether irreducibility forms lead to a separation bound for multivariate

polynomials. For the following, we will assume that f ∈ Z[x1, . . . , xn], though similar

results can be derived for f that have coefficients in Z[ξ] where ξ is an algebraic integer

over Q.

Fact 2.12. (Theorem 10 in Kaltofen (1995)) If f̃ ∈ C[x1, . . . , xn] has the same

total degree as f and

‖f − f̃‖∞ < 2−(d+m+1)D−1B−1(‖f‖∞ + 1)−D

then f̃ is irreducible.

The Noether forms in Kaltofen (1995) have bounds

D′ = 12d6 and B′ = (2d)12d7+(12n+36)d6

CHAPTER 2. APPROXIMATE IRREDUCIBILITY 39

which are much larger than the bounds in Theorem 2.11. It should be noted that the

forms in Kaltofen (1995) apply to fields of positive characteristic. While the new forms

in Theorem 2.11 are given for characteristic 0 they can be made to work in characteristic

p so long as p is large enough. Indeed, Gao (2003) shows that the reducibility test we

use will work when p > e1 (2d− 1) in the bivariate case.

The bounds (2.4) lead to very smaller separation bounds using the above fact:

‖f − f̃‖∞ < (2d)−(12d7+29nd6)(‖f‖∞ + 1)−12d6

.

Using the B and D from the new Noether forms in Theorem 2.11, we get a better bound:

‖f − f̃‖∞ < (2d)−(4d2+4d+2n+1)(‖f‖∞ + 1)−2d2−d. (2.15)

Using (2.15) on the two polynomials in Example 2.4 we get radii of irreducibility of

2.12 × 10−22 for the first polynomial and 2.32 × 10−191 for the second. While much

easier to compute, these are clearly worse than the bounds found using the theory in the

previous section.

Chapter 3

Exact Factorization

3.1 A Multivariate Generalization of Gao’s Factor-

ization Algorithm

In many cases, for efficiency, factoring polynomials in more that two variables is done

by evaluating away variables to reduce to the two variable case then lifting the results

via interpolation or Hensel lifting back to the original variables. In this chapter, we

consider a technique for factoring multivariate polynomials directly. This is done with

numerical and approximate factorization in mind. Since interpolation and lifting can be

very difficult numerically, we wish to have a factorization technique which avoids them.

40

CHAPTER 3. EXACT FACTORIZATION 41

3.1.1 Structure of the PDE Solutions

It is possible to explicitly write down the structure of the solutions to the PDE in (2.1)

when we additionally restrict that f must be square-free over C(y1, . . . , ym). The follow-

ing lemma is a direct generalization of the bivariate result found in Gao (2003).

Lemma 3.1. Suppose f = f1 · · · fr, and f is square-free over C(y1, . . . , ym). If the

polynomials (g, h1, . . . , hm) satisfy (2.1) and (2.2) then

g =
r∑

j=1

λj
f

fj

∂fj

∂x
and hi =

r∑
j=1

λj
f

fj

∂fj

∂yi

with λj ∈ C.

Proof. The assumption that f is square-free is enough to conclude (as in the proof of

Theorem 2.1) that the partial fraction decomposition of g looks like:

g

f
=

d∑
j=1

bj

x− αj

,

where the bjs are complex numbers and if αj and αk are roots of the same factor fi then

λi := bj = bk. Thus

g

f
=

r∑
i=1

λi

fi

∂fi

∂x
.

Since each hi appears in only one equation in (2.1) a different argument is needed for

their structure. If we consider the equation

∂

∂y1

g

f
=

∂

∂x

h1

f
(3.1)

CHAPTER 3. EXACT FACTORIZATION 42

over C(y2, . . . , ym)[x, y1], then the bivariate result in Gao (2003) shows that

h1 =
r∑

j=1

λj
f

fj

∂fj

∂y1

with λj ∈ C(y2, . . . , ym).

Similarly this holds for i 6= 1 as well.

Now we argue that if

g =
r∑

j=1

bj
f

fj

∂fj

∂x
and h1 =

r∑
j=1

cj
f

fj

∂fj

∂y1

with bj, cj ∈ C(y2, . . . , ym),

then if g and h1 also satisfy (3.1) then ai = bi for all i. In this case, (3.1) can be rewritten

as
r∑

j=1

bj
∂

∂y1

1

fj

∂fj

∂x
−

r∑
j=1

cj
∂

∂x

1

fj

∂fj

∂y1

= 0.

But,

∂

∂y1

1

fj

∂fj

∂x
=

∂

∂x

1

fj

∂fj

∂y1

so it can further be rewritten as

r∑
j=1

(bj − cj)
∂

∂y1

1

fj

∂fj

∂x
= 0. (3.2)

A look at the partial fraction decomposition

∂

∂y1

1

fj

∂fj

∂x
=

1

fj

∂2fj

∂xy1

− 1

f 2
j

∂fj

∂x

∂fj

∂y1

CHAPTER 3. EXACT FACTORIZATION 43

shows that (3.2) holds if and only if bj = cj. Thus, since bj ∈ C from the first part of the

proof, hi has the given structure.

3.1.2 Counting the Factors

It is worth noting that the bounds (2.2) exclude the “natural” solutions to the PDE,

namely

g =
f

fi

∂fi

∂x
, hj =

f

fi

∂fi

∂yj

, (3.3)

because degx g = d− 1. If we adjust the bounds (2.2) of the PDE to allow degx g = d− 1

then they become

degx(g) ≤ (d− 1) degyi
(g) ≤ ei i = 1, . . . ,m

degx(hj) ≤ d degyi
(hj) ≤


ei if i 6= j

ei − 1 if i = j

j = 1, . . . ,m

(3.4)

and we admit the solutions (3.3), and (it is not difficult to show) no other new independent

solutions, and by Lemma 3.1 solutions of this form are a linear basis for the set of solutions

to the PDEs. This gives an easy algorithm to count the number of factors of a polynomial

based on the following corollary.

Corollary 3.2. For a given f ∈ C[x, y1, . . . , yn] that is square-free over C(y1, . . . , yn) the

dimension (over C) of the solution space of the system of PDEs (2.1) with bounds (3.4)

is equal to the number of absolutely irreducible factors of f over C.

CHAPTER 3. EXACT FACTORIZATION 44

We realize Corollary 3.2 as an algorithm simply by writing the system of PDEs as

a matrix as before. This time the bounds of possible solutions are different, so for a

given polynomial f we will denote the matrix of the system (2.1) with bounds (3.4) as

Rup1(f). To count the factors of f , one has merely to find the dimension of the nullspace

(the nullity) of Rup1(f).

3.1.3 Algorithm Description

Using the structure of the solutions of the PDEs from Lemma 3.1, we can give a direct

generalization of the factorization algorithm in Gao (2003).

Since

fx =
r∑

i=1

f

fi

∂fi

∂x
,

if we have a solution

g =
r∑

i=1

λi
f

fi

∂fi

∂x
,

with all the λi distinct, then we can recover most of the factors of f by computing the

GCDs:

f̂ =
r∏

i=1

gcd(f, g − λi fx),

where f̂ is the product of all the factors of f that are not constant in x (i.e. the primitive

part of f over C(y1, . . . , ym)). Since we do not know the λis for a g computed from a

random null vector of Rup1(f), we look for the values λ that give a nontrivial GCD. One

method of finding such λs is to compute Resx(f, g − z fx) over C(y1, . . . , ym) then find

CHAPTER 3. EXACT FACTORIZATION 45

its roots (as a polynomial in z) that live in C. Another method for finding these λs by

constructing a matrix Ag whose eigenvalues are exactly the λs that give nontrivial GCDs

is given in Gao (2003, Theorem 2.8). In either case, we can choose a random projection

yi → αi ∈ C for a probabilistic method to find the λis very quickly. The following

Fact sketches Gao’s method to find the λis and gives a bound on the probability that a

randomly chosen solution will have distinct λis.

Fact 3.3. (Gao, 2003, Theorems 2.8 and 2.10) Given a bivariate polynomial f ∈ C[x, y],

suppose that [g1, h1], . . . , [gr, hr] (thought of as vectors of their coefficients) form a basis

for the nullspace of Rup1(f) over C.

Select si ∈ S ⊂ C uniform randomly and independently for all 1 ≤ i ≤ r, and let

g =
∑r

i=1 sigi.

There is a unique r × r matrix A = [ai,j] over C such that

ggi ≡
r∑

j=1

ai,jgjfx (mod f) in C(y)[x]. (3.5)

Furthermore, let Eg(x) = det(Ix − A), the characteristic polynomial of A. Then the

probability that

f =
∏

λ∈C : Eg(λ)=0

gcd(f, g − λfx) (3.6)

gives a complete factorization of f over C is at least 1− r(r − 1)/(2|S|).

Generalization to the multivariate case can be done with a straightforward extension

of Gao’s proofs.

CHAPTER 3. EXACT FACTORIZATION 46

3.1.4 The Algorithm

Algorithm 3.1 (FMP: Factor Multivariate Polynomial).

Input: A polynomial f ∈ C[x, y1, . . . , ym] such that f is square-free

Output: A list of factors of f over C[x, y1, . . . , ym]

Let degyi
(f) = ei > 1 and let S be a finite set S ⊂ C with |S| ≥

∏
i ei

1. Compute null vectors:

(a) Form the matrix Rup1(f) from the linear equations (2.1) and (3.4).

(b) Form a basis g1, . . . , gr of the null space of Rup1(f).

2. Compute a separable Eg

(a) Choose si ∈ S, uniform randomly and independently, and set g :=
∑r

i=1 sigi.

(b) Select randomly proper values for variable xi = αi, i 6= 1 that do not change

the degree (in x1) or the square-free property of f .

(c) For xi = αi, compute ai,j so that the remainders vanish:

rem(ggi −
r∑

j=1

ai,jgjfx, f) = 0.

(d) Let Eg(x) = det(Ix−A), where A = [ai,j]. If the roots λi, 1 ≤ i ≤ r of Eg are

not distinct go back to Step 2.1 (by 3.3 the probability that Eg has distinct

roots is high).

CHAPTER 3. EXACT FACTORIZATION 47

3. Compute factors via GCDs Compute fi = gcd(f, g − λifx) over C[x, y1, . . . , ym]

for 1 ≤ i ≤ r.

4. Output the factors f1, . . . , fr.

Note that step 3 can be replaced with a resultant computation as noted above.

3.2 Exploiting Polynomial Structure

Using information about the structure of solutions to the PDEs (2.1) given in Lemma 3.1

it is possible for Theorem 2.1 to be adapted to account for the structure of f . This

will allow us to apply the results of Theorem 2.9 with the additional requirement that

perturbations preserve the (Newton polytope of the) support of f .

The following is a direct generalization of Lemma 4 in Gao and Rodrigues (2003); the

proof is essentially the same.

Lemma 3.4. Let P (f) be the Newton polytope of f , where f is as in Lemma 3.1. Then

if (g, h1, . . . , hm) satisfies (2.1) and (2.2) then

P (x g) ⊆ P (f) and P (yi hi) ⊆ P (f).

Proof. Recall that P (a + b) ⊆ P (a) ∪ P (b) and P (a b) = P (a) + P (b), where ‘+’ is the

Minkowski sum of polytopes. Also, note that P (x ∂f/∂x) ⊆ P (f). Given the structure

CHAPTER 3. EXACT FACTORIZATION 48

of g in Lemma 3.1 we consider the polytopes of one of its summands:

P

(
xλj

f

fj

∂fj

∂x

)
= P

(
f

fj

)
+ P

(
x
∂fj

∂x

)
⊆ P

(
f

fj

)
+ P (fj) = P (f).

Therefore

P (x g) = P

(
r∑

j=1

xλj
f

fj

∂fj

∂x

)
⊆ P (f).

Similarly,

P (yi hi) = P

(
r∑

j=1

yiλj
f

fj

∂fj

∂yi

)
⊆ P (f).

If f has the structure P (f) ⊂ S, then Lemma 3.4 allows us to form a variant of the

Ruppert matrix which has only the rows corresponding to monomials in the convex hull

of S and columns corresponding to the monomials in the convex hull of the supports

of g and the his indicated in Lemma 3.4 (see figure 2.1). Let us denote this variant as

RupS(f). Then, given RupS(f), the nearest RupS(f̃) that is singular gives f̃ , a reducible

polynomial that has the structure S as well.

Now, even though we require f to be square-free in some of the previous results (i.e.

the ones that give explicit descriptions of the solutions g and hi) we have structured

irreducibility results that apply to all f . The only problem that could arise is that f̃ ,

the closest factorizable polynomial to f with P (f̃) = P (f), might not be square-free

or primitive in which case it could be that RupS(f̃) is full rank when Rup(f̃) is not.

This seems to be possible since if f is not square-free, it is possible for there to be very

CHAPTER 3. EXACT FACTORIZATION 49

different solutions to (2.1) than the ones given in Lemma 3.1. However, even if f̃ is not

square-free and primitive, the corresponding equations (2.1) and (2.2) still have solutions

of the form given in Lemma 3.1 (see the first part of the proof of Theorem 2.1). Loss

of the square-free condition breaks the proof that these are the only solutions, but the

proof that these are solutions still holds. Lemma 3.4 only describes the support of the

solutions given in Lemma 3.1 and does not depend on the fact that f is square-free or

primitive. So, for any f , if it is irreducible then RupS(f) is full rank and if f is not

irreducible then RupS(f) is not full rank. Thus we have the following structured version

of Theorems 2.1 and 2.9:

Corollary 3.5. Let f ∈ C[x, y1, . . . , ym], S = P (f), and RupS(f) be the matrix de-

scribed above (i.e. the matrix of the equations (2.1) and (2.2) with the supports of the

indeterminant polynomials restricted so that P (x g) = P (yi hi) = S). Then we have

1. RupS(f) is full rank if and only if f is absolutely irreducible

2. Suppose f is an irreducible polynomial, f̃ ∈ C[x, y1, . . . , ym] is a polynomial of equal

or lesser degree, P (f̃) ⊆ S, and there exists C so that

‖RupS(ϕ)
∣∣
ϕ=fM

‖p,q ≤ C ‖fM‖r.

If

‖f − f̃‖r < (C ‖RupS(f)†‖q,p)
−1.

then f̃ is irreducible.

CHAPTER 3. EXACT FACTORIZATION 50

If S is the set of all monomials with multi-degree less than or equal to mdeg(f) then

this Corollary is the same as the results in Chapter 2. If S is the set of all monomials with

total degree less than or equal to tdeg(f) then we get the results of Chapter 2 for total

degree as in the first example below. It also allows us to find lower bounds on distance to

nearest polynomials with more generally constrained support as in the second example

below.

Example 3.1. Let f = x2+y2−1 as in examples 2.1 and 2.2. Notice that mdeg f = (2, 2)

and that the computed Ruppert matrix for f considered all monomials t with mdeg t ≤

(2, 2) (a rectangular support). The support of f is actually smaller than the rectangle

since tdeg f = 2. So for f , the monomials inside the convex hull of its support is the set

S = {1, x, y, xy, x2, y2} (all monomials with tdeg t ≤ 2).

Using the above, we can compute a bound on the distance to the nearest factorizable

polynomial to f with total degree 2. We start with indeterminant g and h so that

mdeg g = mdeg(f)− 2, mdeg h = mdeg(f)− 1, x P (g) = S, and y P (h) = S. That is:

g = b1 + b2 y , h = c1 + c2 x + c3 y.

CHAPTER 3. EXACT FACTORIZATION 51

Plugging g and h into the pde (2.1) we arrive at the structured Ruppert matrix

RupS(f) =



0 −1 0 1 0

0 0 2 0 0

−2 0 0 0 0

0 1 0 1 0

0 0 0 0 2

0 −1 0 −1 0


which is almost half the size of Rup(f) (computed in example 2.1). The smallest singular

value of RupS(f) is ≈ 1.4142135624.

Following example 2.2 we compute RupS(ϕ) for symbolic ϕ with P (φ) = S. Doing

so, we find the largest coefficient of ‖RupS(ϕ)‖2
2 is 10. So a lower bound on the distance

to the closest polynomial to f that has total degree 2 is 0.4472135954. Comparing to

example 2.2 we see that this structured bound is quite a bit larger than the unstructured

bound of 0.1584349745, which is expected. Also in example 2.2, we saw that the distance

from f to nearest polynomial with total degree 2 is 1 so this lower bound is not tight,

but not too bad.

Example 3.2. Let us look at an example with a smaller support. Let f = x3 y2+x2 y3−1

which has support S = P (f) = {1, xy, x2y2, x3y2, x2y3}. Then the structured g and h

are

g = b1 y + b2 xy2 + b3 xy3 and h = c1x + c2 x2y + c3 x3y + c4 x2y2

CHAPTER 3. EXACT FACTORIZATION 52

which lead to a RupS(f) which is 9× 7 (vs Rup(f)’s 20× 24). Its smallest singular value

is 1 and the largest coefficient of the 2-norm of RupS(ϕ) is 32 which leads to a lower

bound of 1/
√

32 ≈ 0.1767766953. As expected, the unstructured bound is much smaller

at 0.0380267374.

3.3 Other Fields

Although the results of this chapter are stated for the fields Q and C, some of them

certainly apply to other fields. First, all of these results directly apply to other fields

of characteristic 0. As is often the case, these results are also applicable for fields of

large positive characteristic. In Gao (2003) the bivariate version of the factorization

algorithm given above is shown to work in fields where the characteristic p is larger

than (2 degx(f)− 1) degy(f) with the conjecture that it also works so long as p is larger

than max{degx(f), degy f}. The proof of the bound (2 degx(f) − 1) degy(f) could be

generalized to the multivariate case, but the bound becomes quite large and it seems

clear that it is not efficient to use this algorithm in fields of non-zero characteristic. For

finite fields, in the case of more than two variables, it is probably best to use a substitution

to project down to two variables and later lift the results.

Chapter 4

Approximate GCD Computation

It is our goal to adapt the factorization algorithm from Chapter 3 to polynomials with

approximately given coefficients. In order to actually compute the factors in that algo-

rithm, we must be able to compute the GCD of two multivariate polynomials that in

turn will require computation of approximate division. Thus, if we wish to create an ap-

proximate factorization algorithm, we must first create an approximate GCD algorithm

and an approximate division algorithm. The algorithm presented in this chapter will use

the same SVD approach that will be used for the approximate factorization algorithm in

Chapter 5. Though we considered multiple norms in Chapter 2, we will restrict ourselves

to considering the 2-norm in the following chapters since our primary too, SVD, applies

to that norm only.

53

CHAPTER 4. APPROXIMATE GCD COMPUTATION 54

4.1 Approximate Polynomial Division

The simplest interesting problem in approximate polynomial algebra seems to be the

problem of polynomial “exact” division. Multiplication by a given polynomial is a linear

operation so we can represent multiplication of polynomials of total degree d by a given

f as C [d](f), the convolution matrix associated with f and d. Note that the convolution

matrix can be formed for other notions of degree (or polynomials with a given support),

but for simplicity of discussion we will use total degree exclusively in this chapter.

4.1.1 Least Squares Division

If we are given polynomials f and g with tdeg(g) ≥ tdeg(f) such that f does not divide

g exactly then we want to apply a perturbation so that f does divide g. If we fix the

coefficients of f then g̃, the closest polynomial to g that f divides, can be found by

solving the least squares problem:

min
tdeg(q)=tdeg(g)−tdeg(f)

‖f q − g‖2.

We can write g̃ exactly in terms of a convolution matrix, g̃ = C [tdeg(g)](f) (C [tdeg(g)](f))† g

(where we are being intentionally sloppy about the distinction between g as a polynomial

and g as a vector of its coefficients). One of the shortcomings of this approach is, although

it does solve the approximation problem completely, it does not allow for f to vary as

well (or instead of) g.

CHAPTER 4. APPROXIMATE GCD COMPUTATION 55

4.1.2 SVD Based Division

If we are allowed to perturb the coefficients of both f and g, then the above becomes

a total least squares (TLS) problem (perturbations are allowed in the right-hand side

vector as well as the entries of the matrix). In fact, since the matrix C [d](f) has a

very specific structure, approximate division becomes a structured total least squares

(STLS) problem. The TLS problem can be solved using low rank approximation using

the SVD ideas seen in Section 2.2. Unfortunately, in general, STLS can be only be solved

heuristically (c.f. Chu et al. (2003) for example).

The approximate division problem is actually a special case of the approximate GCD

problem where one is looking for a GCD of specified degree: deg f = max{deg f, deg g}.

Thus, we cannot necessarily expect to find a solution to the STLS division problem

independent of a solution to the STLS GCD problem.

4.2 SVD Based Approximate Multivariate GCD

4.2.1 Algorithm Description

An approximate version of Gao’s factorization needs not only an approximate multivari-

ate GCD algorithm but in fact requires one that will handle the case when the given

polynomials are quite far from having a common factor.

We first make some general comments on GCDs of arbitrary multivariate polynomials.

The following simple lemma is the key to our approximate GCD algorithm.

CHAPTER 4. APPROXIMATE GCD COMPUTATION 56

Lemma 4.1. Let g, h ∈ C[x1, . . . , xn], both nonzero. Let g1 = g/ gcd(g, h) and h1 =

h/ gcd(g, h). Then all the solutions u, v ∈ C[x1, . . . , xn] to the equation

ug + vh = 0 (4.1)

must be of the form

u = h1q, v = −g1q, (4.2)

where q ∈ C[x1, . . . , xn].

The proof of the lemma is straightforward since C[x1, . . . , xn] is a unique factorization

domain (think of (4.1) as u
v

= h
g

where u
v

is the unknown reduced rational function form

of h
g
). Note that the equation (4.1) is a linear system for the coefficients of u and v. To

make it a finite system, we need to restrict the degrees of u and v. There are several

ways to do this. For example, one can consider the total degree, the individual degrees

for each variable, or any weighted degree. Of the possible degree choices, we will consider

the total degree and require that

tdeg(u) ≤ tdeg(h)− 1, tdeg(v) ≤ tdeg(g)− 1. (4.3)

Then gcd(g, h) = 1 iff (4.1) and (4.3) have no nonzero solution for u and v.

For univariate polynomials, the coefficient matrix for the linear system (4.1) and (4.3)

is nothing but the well-known Sylvester matrix for g and h. In Corless et al. (1995) the

Sylvester matrix is used to get an approximate algorithm for the univariate GCD. For

CHAPTER 4. APPROXIMATE GCD COMPUTATION 57

multivariate polynomials, we still call the coefficient matrix corresponding to (4.1) and

(4.3) the Sylvester matrix for g and h. We shall apply it to multivariate GCDs. Note

that the cofactors g1 and h1 appear as the solution with the smallest degree; they are the

solution we are looking for.

In general, there is an explicit relation between the total degree of gcd(g, h) and the

dimension of the solution space to (4.1). To see this, note that the number of terms

xi1
1 · · ·xin

n with total degree ≤ d is the binomial number

β(d, n) =
(

d+n
n

)
.

Hence u has β(tdeg(h)− 1, n) coefficients and v has β(tdeg(g)− 1, n) coefficients. Thus

the number of variables for the linear system is

m = β(tdeg(g)− 1, n) + β(tdeg(h)− 1, n).

By (4.2) and (4.3), all the solutions for u and v are determined by q ∈ C[x1, . . . , xn] with

tdeg(q) ≤ `− 1,

where ` is the total degree of gcd(g, h). Hence the dimension of the solution space for u

and v is exactly

β(`− 1, n).

CHAPTER 4. APPROXIMATE GCD COMPUTATION 58

Therefore one can compute the rank p of the coefficient matrix and then determine `

directly from m− p = β(`− 1, n).

We will denote the Sylvester matrix of g and h as Syl1. To find the GCD we need to

find a basis for the nullspace of Syl1. In the case of exact arithmetic, the cofactors g1 and

h1 can be found by performing Gaussian elimination on the nullspace basis. The GCD can

then be found by division. Doing this numerically, we face two difficulties: First, Syl1 may

be full rank in exact arithmetic, and second, recovering the smallest degree polynomial

from the nullspace using Gaussian elimination is not stable numerically. To overcome

the first difficulty, we use singular value decomposition to find the nearest matrix with

(lower) rank p. The last m − p singular vectors form a basis for the nullspace of this

nearest low rank matrix. To determine what p should be, we look at the singular values

of Syl1. Typically, when determining rank numerically, one would specify a tolerance ε

and find a gap in the singular values:

σm ≥ · · · ≥ σm−p−1 > ε ≥ σm−p ≥ · · · ≥ σ1.

Such a gap is treated as the boundary such that everything larger is considered non-

zero while everything smaller is considered to be indistinguishable from zero. Given a

numerical tolerance on the coefficients of the polynomials g and h there are various ways

to derive such an ε, depending on what one is trying to achieve (see Corless et al. (1995)

for example).

We, however, do not wish to specify an ε in advance, instead we try to infer the “best”

CHAPTER 4. APPROXIMATE GCD COMPUTATION 59

ε from the largest gap (i.e. the largest ratio σi+1/σi) in the singular values. In Emiris

et al. (1997), it is shown that when given a tolerance ε it is possible to certify the degree

of the approximate GCD using gaps in the sequence τi = σ1(Syli(g, h)) instead of the

singular values of Syl1. The size of the gap needed to certify the degree is very large

however, and we have found that in practice the largest gap in the τis seems to give the

same degree as the largest gap in the σis most of the time.

Another approach is to evaluate g and h at all of their variables but one, and find the

“best” degree of the univariate GCD. Our experiments show that this seems to work well

when a small tolerance is given (in case one is going to use the GCD as a component in a

factorization algorithm, the tolerance could be inferred from the factorization problem),

but for larger tolerances does not work as well when inferring an ε from the singular

values, as above. The advantage of evaluating to find the degree is that the univariate

Sylvester matrix is a great deal smaller, so even if we have to compute SVDs for several

evaluations, it will be much faster than computing the SVD of the multivariate Sylvester

matrix.

The second difficulty, that of recovering the GCD from the nullspace of Syl1, can be

handled by removing rows and columns from Syl1. Once we have determined what the

numerical rank of Syl1 should be, and hence he degree of the approximate GCD of g

and h, we can take a sub-matrix of Syl1 found by using stronger degree restrictions (on

the unknown polynomials u and v) in the linear system ug + vh = 0 so that we have

a new Sylvester matrix Sylk that has a nullspace of dimension 1, where k is the degree

CHAPTER 4. APPROXIMATE GCD COMPUTATION 60

of gcd(g, h). In this case, the single basis vector for the nullspace will give a constant

multiple of the cofactors g1 and h1. This null-vector can be computed numerically with-

out computing the full SVD by using an iterative method. One such method that we

found to work well in practice can be found in Li and Zeng (2003). Once we have our

approximations of g1 and h1 we can compute an approximate GCD by doing approxi-

mate division. Since the approximate GCD could be computed from divided g1 in g or

h1 in h, ideally a modified division should be used that computes a d that minimizes

‖h−d h1‖2 +‖g−d g1‖2. A least squares style division can be easily modified to compute

such a d.

A very similar multivariate approximate GCD algorithm was proposed in Zeng and

Dayton (2004) but a pre-specified tolerance ε is required there. In addition, a Gauss-

Newton iteration step is introduced to improve the GCD further. In practice just a few

steps of iteration can improve the backward error by at least an order of magnitude and so

it is usually worth the extra computation, especially when the g and h started quite close

to a pair with a non-trivial GCD. For example, if g and h are nearly machine precision

distance from a pair with an exact GCD, the approximate GCD computed from the SVD

method is generally limited to about half of the machine precision, while Gauss-Newton

iteration can usually pick up several more digits of precision. Consider the following

CHAPTER 4. APPROXIMATE GCD COMPUTATION 61

example (from a private communication with Zhonggang Zeng):

g = 9 x4 y + 24 x3 y2 − 36 x2 y2 + 128 x y3 − 18 x3 y

− 48 y3 x2 − 64 y4 − 45 x3 + 60 x2 y − 180 x y + 80 y2 + 90 x2

and

h = 12 y3 x2 + 32 x y4 + 56.0000040 x y3 − 3 x3 y + 7 x2 y2 − (0.10× 10−5) x2 y

− 59.9999990 y2 x− 64 y5 − 79.9999840 y4 + 80.0000200 y3 + 99.9999800 y2

+ 15 x2 − 95 x y + 0.50× 10−5 x− 0.250× 10−4 y

that have an exact GCD of 5−x y− 4 y2. Using 16 digit hardware precision Zeng’s SVD

based code (implemented in MATLAB) finds an approximate GCD with about 8 digits

accuracy:

− 5.000000034500952 + .9999999999999999 x y

+ 4.000000023172650 y2 − 0.2223886833245011× 10−8 x

+ 0.1584772295651007× 10−7 y + 0.7429584859159186× 10−8 y2 x

After iterative refinement twice as many digits of accuracy in the approximate GCD are

CHAPTER 4. APPROXIMATE GCD COMPUTATION 62

obtained:

5.000000000000001− 1.000000000000000 x y − 4.000000000000001 y2.

Due to such easy improvements possible from iterative refinement, we integrated this

step into our approximate GCD algorithm as well.

4.2.2 The Algorithm

Algorithm 4.1 (AMVGCD: Approximate Multivariate GCD).

Input: g and h in C[x1, . . . , xn]

Output: d, a non-constant approximate GCD of g and h

1. Determine k, the degree of the approximate GCD of g and h in one of two ways

below:

(a) Form S = Syl1(g, h), the matrix of the linear system ug+vh = 0, where g, h ∈

C[x, y] with tdeg(u) < tdeg(h) and tdeg(v) < tdeg(g). Finding the largest gap

in the singular values of S and inferring the degree from the numerical rank

of S.

(b) Computing the degrees of the GCDs of several random univariate projections

of g and h by looking for the numerical rank of the corresponding univariate

Sylvester matrices.

CHAPTER 4. APPROXIMATE GCD COMPUTATION 63

2. Reform S as Sylk(g, h) that is, use tdeg(u) = tdeg(h)−k and tdeg(v) = tdeg(g)−k

as the constraints on u and v in the linear system in the first step. This new S will

have a dimension 1 nullspace.

3. Compute a basis for the nullspace of S by computing the singular vector corre-

sponding the smallest singular value of S. This vector gives a solution [u, v]T .

4. Find d, the approximate quotient of h and u (or g and v); alternately minimize

‖h− d u‖2
2 + ‖g + d v‖2

2, using least squares.

5. Use Gauss-Newton iteration to iteratively compute a local minimum ([u, v, d]) to

‖F (u, v, d)− [g, h]T‖2, where F (u, v, d) = [u d, v d]T .

If one wishes to specify a tolerance, then only the first step is affected. In that case

it is possible that in this step we could find that k = 0, in which case the method

would return d = 1, declaring g and h to be approximately relatively prime to the given

tolerance.

4.2.3 Convergence of the Algorithm

In this section we restrict ourselves to bivariate case (n = 2) for ease of notation and

discuss convergence of the algorithm without use of Gauss-Newton iteration. Discussion

of convergence of the Gauss-Newton iteration step can be found in Zeng and Dayton

(2004). Let us start with g̃ and h̃ relatively prime and normalized so that ‖h̃‖2 = ‖g̃‖2 =

1. Suppose that gcd(g, h) = d 6= 1, tdeg(g) = tdeg(g̃), tdeg(h) = tdeg(h̃), ‖g − g̃‖2 = ε1,

CHAPTER 4. APPROXIMATE GCD COMPUTATION 64

and ‖h− h̃‖2 = ε2. We will show that as ε1, ε2 → 0 that the computed approximate GCD

for g̃ and h̃ converges to d.

Let S = Sylk(g, h) where k is chosen so that S has rank p, and rank deficiency 1.

Then w = [u, v] is a basis for the nullspace of S, where u = h/d, and v = −g/d, and

without loss of generality we can assume that u is unit length. Let S̃ = Sylk(g̃, h̃). We

can bound the distance between these two Sylvester matrices:

‖S − S̃‖2
2 ≤ ‖S − S̃‖2

F = a1ε
2
1 + a2ε

2
2 = ε2

3,

where

a1 = β(tdeg(h)− k, 2) and a2 = β(tdeg(g)− k, 2)

depend only on k and the degrees of g and h.

We can use the SVD to find M so that:

min
Rank(M)=Rank(S)

‖S̃ −M‖2 = σm−p(S̃) ≤ ε3.

Note that M is not a Sylvester matrix and ‖M − S‖2 ≤ 2ε3. Now, M has a dimension 1

nullspace, so let w̃ = [ũ, ṽ] be the vector that spans the nullspace of M with ‖ũ‖2 = 1.

Theorem 6.4 in Stewart (1973a) (reformulated for our purpose in (Golub and Van Loan,

1996, section 8)) bounds the distance between w and w̃ in terms of ε3 so that as ε3 → 0,

ε4 = ‖w − w̃‖2 → 0. Thus for sufficiently small ε1 and ε2 we have tdeg(ũ) = tdeg(u).

In the following we will make repeated use of the multivariate factor coefficient bound

CHAPTER 4. APPROXIMATE GCD COMPUTATION 65

found in (Gelfond, 1960, pages 134-139): ‖f1‖2‖f2‖2 ≤ 2
P

i(degxi
f)‖f‖2, where f = f1f2.

Now, using least squares division, we compute d̃ as the polynomial that minimizes

ε5 = min
d̄ : tdeg(d̄)≤tdeg(d)

‖d̄ ũ− h̃‖2.

We can bound ε5:

ε5 = ‖d̃ ũ− h̃‖2 ≤ ‖d(ũ− u)− (h̃− h)‖2 ≤ ‖d(ũ− u)‖1 + ε2 ≤ ‖d‖1‖ũ− u‖1 + ε2

≤
(

k+2
2

)1/2‖d‖2

(
tdeg(h)−k+2

2

)1/2‖ũ− u‖2 + ε2 ≤ a4 ε4 + ε2,

where

a4 = 2degx(h)+degy(h) ‖h‖2

(
k+2
2

)1/2(tdeg(h)−k+2
2

)1/2

via the multivariate factor coefficient bound. Now,

‖(d− d̃)u‖2 = ‖h− d̃ ũ− d̃(u− ũ)‖2 ≤ ‖h− h̃ + (h̃− d̃ ũ)‖2 + ‖d̃(u− ũ)‖2

≤ ‖h− h̃‖2 + ‖h̃− d̃ ũ‖2 + ‖d̃(u− ũ)‖1 ≤ ε2 + ε5 + ‖d̃‖1‖u− ũ‖1

≤ 2ε2 + a4ε4 +
(

k+2
2

)1/2‖d̃‖2

(
tdeg(h)−k+2

2

)1/2
ε4,

CHAPTER 4. APPROXIMATE GCD COMPUTATION 66

where ‖d̃‖2 is bounded as follows:

‖d̃‖2 ≤ 2degx(h)+degy(h)‖d̃ ũ‖2 ≤ 2degx(h)+degy(h)(‖h̃‖2 + ‖d̃ ũ− h̃‖2)

≤ 2degx(h)+degy(h)(‖h̃‖2 + ε2 + a4ε4).

Thus, using the multivariate factor coefficient bound again, we have that

‖d− d̃‖2 ≤ 2degx(h)+degy(h)(2ε2 + a5ε4),

where a5 is a constant (depending only on the degrees and norms of g̃ and h̃) which can

be derived explicitly from the previous two estimates. So, as ε1, ε2 → 0, then ε3 → 0 so

(as shown above) ε4 → 0 and hence ‖d − d̃‖2 → 0. It should be noted that in practice,

we seem to always be able to compute d̃ very much closer than given bound. This

suggests that it might be possible to compute a better bound for ‖d − d̃‖2, one that is

not exponential in the degree of g and h.

Chapter 5

Approximate Factorization

In this chapter we adapt the factorization algorithm given in Chapter 3 for approximate

factorizing using many of the same ideas as those used for the approximate GCD in

Chapter 4.

5.1 The Factorization Algorithm and Experiments

In order to apply the factorization algorithm FMP given in Section 3.1.4 to approximate

polynomials we must be able to solve the following problems:

1. compute the approximate GCDs of bivariate polynomials: gcd(f, g − λifx),

2. reduce the polynomial f so that gcd(f, fx) = 1 approximately,

3. determine the numerical dimension of G, and

4. compute an Eg that has no cluster of roots.

67

CHAPTER 5. APPROXIMATE FACTORIZATION 68

For the first problem, Chapter 4 provides a robust algorithm to compute the approx-

imate GCDs of multivariate polynomials. The second problem is also handled by way of

the approximate GCD; we can compute the approximate GCD of f and fx. Then with

an approximate division, f/ gcd(f, fx), we may, heuristically, reduce to the case where

gcd(f, fx) = 1 approximately. Details on this approach follow below in Section 5.1.2.

To solve the third problem, we proceed similarly to the discussion in Section 4.2; we

can determine the numerical dimension of G by the SVD of the matrix Rup1(f). Let

σi be the ith singular value of Rup1(f). If a tolerance ε is given, then the numerical

dimension of G is the r such that

· · · ≥ σr+2 ≥ σr+1 > ε ≥ σr ≥ · · · ≥ σ1.

However, if we do not know the relative error in the coefficients of f , it is difficult to

provide a tolerance ε that is consistent with the error in the data. As before, if we have

no tolerance given, we infer a tolerance from the largest gap in the singular values. That

is, we choose ε = σr so that σr+1/σr is as large as possible. Looking back to Chapter 2,

the singular value σr bounds the distance from f to a polynomial f̃ that has r absolutely

irreducible factors:

min
deg f̃=(m,n)

dim Nullspace(Rup1(f̃))=r

‖Rup1(f)− Rup1(f̃)‖2 ≥ σr.

CHAPTER 5. APPROXIMATE FACTORIZATION 69

This inferred tolerance σr can also be used in estimating the degree of multivariate

approximate GCD by using it as a tolerance when projecting to univariate GCD problems,

as was mentioned in Section 4.2.

For the fourth problem, suppose we have obtained approximate basis g1, . . . , gr of

G from the singular vectors corresponding to the last r singular values of Rup1(f). It

is easy to see that ‖Rup1(f)gi‖2 ≤ σi ≤ σr. So the gis form an approximate basis for

G with tolerance σr. Following construction of the matrix Ag as described in Fact 3.3,

we find a random element of G by choosing s1, . . . , sr ∈ S ⊂ C uniform randomly and

let g =
∑r

i=1 sigi and substitute arbitrary values of αi ∈ C for yi with the property

that f(x, α1, . . . , αm) remains square-free. The matrix Ag can be formed in the following

manner: first reduce the polynomials ggi and gjfx modulo f (evaluated at yk = αk) for

1 ≤ i, j ≤ r by using approximate division of univariate polynomials Zhi (2003); then

solve the least squares problem:

min ‖rem(ggi − (ai,1g1fx + · · ·+ ai,rgrfx), f)‖2

to find the value of unknown elements ai,j. Let Eg(λ) = det(Iλ− A), the characteristic

polynomial of Ag. We compute all the numerical roots λ1, . . . , λr of the univariate poly-

nomial Eg over C as the eigenvalues of Ag, and find the smallest distance between these

roots:

min dist(g) = min{|λi − λj|, 1 ≤ i < j ≤ r}.

CHAPTER 5. APPROXIMATE FACTORIZATION 70

If the distance is small then numerically Eg has a cluster of roots, and we should choose

another set of sis and try to find a separable Eg. In practice, since Fact 3.3 says g should

give a separable Eg with high probability, we compute a number of random gs and keep

the g with the largest min dist(g).

In Chapter 3 the absolutely irreducible factors are obtained from g by computing

GCDs over algebraic extension fields given by the irreducible factors of Eg. In our case,

all the roots of Eg are given as numerical values in C. Hence there is no need to deal

with field extensions, and we can compute directly in C. We compute the multivariate

approximate GCDs f̃i = gcd(f, g−λifx) according to the method in Section 4.2 for each

numerical root λi of Eg and we obtain a proper approximate factorization of f over C:

f ≈
∏r

i=1 f̃i.

One we have computed an approximate factorization, there are a number of ways to

improve it. First, we can compute a scaling c that minimizes the backward error of the

approximate factorization:

min
c∈C

‖f − c
r∏

i=1

f̃i‖2/‖f‖2.

The factorization can be improved further by solving a minimization problem (for exam-

ple the one in Huang et al. (2000)) or by setting up a minimization problem to which we

can apply Gauss-Newton iteration, similar to what was done to refine the approximate

GCD in Zeng and Dayton (2004). First note that the optimization version of the approx-

imate factorization problem is finding a least squares solution to the non-linear system

CHAPTER 5. APPROXIMATE FACTORIZATION 71

of the form F (v1, . . . , vr) = f where vi ∈ C[x, y1, . . . , ym] and

F (v1, . . . , vr) =

[
C [tdeg(v2···vr)](v1) · · ·C [tdeg(vr)](vr−1) vr

]
.

Here C [k](v) denotes the matrix of the linear map multiplication with polynomials of

total degree k as described in Section 4.1. Clearly there is a solution when f = f1 · · · fr

and vi = fi; otherwise we will solve

min
vi

‖F (v1, . . . , vr)− f‖2.

There exists such a minimum at one or more of the points where

(DF (v1, . . . , vr))
H F (v1, . . . , vr) = 0

(DF denotes the Jacobian of F). When formulated this way, it is easy to see that we can

apply Gauss-Newton iteration to attempt to find the solution. That is, given an initial

[v0
1, v

0
2, . . . , v

0
r] we refine with the update

[vi+1
1 , . . . , vi+1

r] = [vi
1, . . . , v

i
r]− (DF (vi

1, . . . , v
i
r))

† F (vi
1, . . . , v

i
r).

CHAPTER 5. APPROXIMATE FACTORIZATION 72

Given the description of F above, the product rule gives that the Jacobian of F is a block

matrix of the form:

DF (v1, . . . , vr) = [C [tdeg(v1)](v2 v3 · · · vr) C [tdeg(v2)](v1 v3 · · · vr) . . . C [tdeg(vr)](v1 v2 · · · vr−1)]

which has full rank (so long as not all the vi’s are 0) since every matrix C [k](v) has full

rank (so long as v 6= 0).

As with any type of Newton method, if the initial input [v0
1, v

0
2, . . . , v

0
r] is close enough

and DF is not rank deficient at the least squares solution, then the iteration will converge

to the least squares solution according to Kelley (1999, Theorem 2.4.1):

Fact 5.1. Let w0 = [v0
1, . . . , v

0
r] be the initial point and w? = [v?

1, . . . , v
?
r] be a local

minimum for F . If DF is full rank then there exist K > 0 and δ > 0 so that if ‖w0−w?‖ <

δ then the error of the Gauss-Newton iteration update at step k (ek) satisfies:

‖ek‖2 < K (‖ek−1‖2
2 + ‖F (w?)− f‖2 ‖ek−1‖2).

Although, as with the GCD, it is possible to bound the distance of the output of the

SVD method for factorization from the closest approximate factorization, that bound

is quite large (exponentially large in the degree). We need a much tighter bound in

order to prove something about when the output of the SVD method will be within the

basin of attraction of the global minimum. Finally, it is worth mentioning that Fact 5.1

implies that Gauss-Newton iteration converges at a quadratic rate if the nearby local

CHAPTER 5. APPROXIMATE FACTORIZATION 73

minimum is an exact factorization of f . Otherwise, iteration converges at a linear rate

that is inversely proportional to the error of the factorization at the global minimum

(‖F (w?) − f‖2). In practice, the iteration converges in very few steps (≈ 7 for most

polynomials tested).

5.1.1 Algorithm

Algorithm 5.1 (AFMP: Approximate Factoring Multivariate Polynomials).

Input: A polynomial f ∈ C[x, y1, . . . , ym] such that f and fx are approximately

relatively prime, that is f is approximately square-free and has no approximate factors

in C[y1, . . . , ym] (see section 5.1.2 below).

Output: A list of approximate factors fi and an optimal scaling c.

Let S be a finite set S ⊂ C with |S| ≥ tdeg(f)2.

1. Compute approximate nullspace solutions:

(a) Form the matrix Rup1(f);

(b) Compute the singular value decomposition of the Ruppert matrix, and find

the last tdeg(f) + 1 singular values σi;

(c) Find the biggest gap in the singular values and decide the numerical dimension

r of G, assuming r ≥ 2;

(d) Form a basis g1, . . . , gr of G from the last r right singular vectors of Rup1(f).

CHAPTER 5. APPROXIMATE FACTORIZATION 74

2. Compute an Eg with well spaced roots:

(a) Evaluate at randomly selected values for the variables yi = αi that do not

change the degree or the square-free property of f ;

(b) For k from 1 to K do (K = 4 seems to work well in practice)

i. Pick si,k ∈ S randomly, and set gk =
∑r

i=1 si,k gi

ii. Compute ai,j,k that minimize the norm of the univariate remainder:

min ‖rem(gk gi −
r∑

j=1

ai,j,kgjfx, f)‖2;

iii. Let Egk
(x) = det(Ix − A), where [Agk

]i,j = [ai,j,k]. Compute the numer-

ical roots λi,k, 1 ≤ i ≤ r of Egk
(the numerical eigenvalues of Agk

) and

set min distk = min1≤i<j≤r{|λi,k − λj,k|};

(c) Let g = gk where min distk is minimal.

3. Compute factors via approximate GCDs:

Compute fi = gcd(f, g − λifx) over C[x, y] for 1 ≤ i ≤ r.

4. Solve optimizations to refine the factorization:

(a) Apply Gauss-Newton iteration to improve the approximate factors;

(b) Compute minc∈C ‖f − c
∏r

i=1 fi‖2/‖f‖2.

Remark 5.1. It should be clarified how an implementation should obtain the degree of

the GCD in Step 3. It is fastest to project to univariate problems using a tolerance ε

CHAPTER 5. APPROXIMATE FACTORIZATION 75

in Step 1 of Algorithm AMVGCD in Section 4.2.1. The use of σr as the tolerance for

the approximate GCD is not accurate due to the large norm of the projected univariate

polynomials, and must be increased (e.g. multiplied by the ratio of the norm of the

projected polynomial to the norm of the original polynomial) to obtain suitable GCDs.

Remark 5.2. It is clear that output polynomials can not be guaranteed to be approxi-

mately irreducible. For example, in the case that the input does not lie near a factorizable

polynomial then the approximate GCDs may place a factor near a reducible polynomial.

One may, of course, always achieve approximate irreducibility certification by applying

the tests given in Chapter 2 to the produced factors and apply the algorithm again if

necessary.

5.1.2 Multiple Factors

In the case that f is quite close to a polynomial that is not square-free, our factorization

algorithm does not work well. This is related to the fact that the exact algorithm does

not work at all on polynomials with repeated factors. In that case Rup1(f) has many

extraneous null vectors that do not correlate with factors (at least, not in the same way).

When an irreducible polynomial is near a repeated factor polynomial, the approximate

null vectors and numerical rank of Rup1(f) exhibit some of these same problems. An-

other, similar but lesser problem is the removal of approximate factors in C[y1, . . . , ym],

that essentially amounts to a univariate approximate GCD computation.

One method to deal with the non-square-free case is to compute fsqfr, the approxi-

CHAPTER 5. APPROXIMATE FACTORIZATION 76

mate quotient of f and the approximate GCD of f and fx. Then compute the distinct

approximate factors of fsqfr ≈ f1 · · · fr using our algorithm. Finally, determine powers

for each factor by looking for gaps in the sequence αi,j = σ1(S1(fi, ∂x,jf)).

We can only definitively call f approximately square-free if all of the nearest polyno-

mials that factor are square-free. We cannot compute the nearest polynomial that factors,

but we can bound the distance to the nearest polynomial that factors using the singular

values of Rup1(f) as in Kaltofen and May (2003), and similarly bound the distance to

the nearest polynomial that is not square-free using the singular values of S1(f, fx). If

the two bounds are very close we have to compute the factorization both ways and use

the one with smaller backwards error.

In Zeng and Dayton (2004) a different method is proposed, that is based entirely on

multivariate approximate GCDs and that generalizes the univariate algorithm in Zeng

(2003). Experimentally, the two approaches seem to work similarly well (compare the

example 14 from the table below to the ASFF example in Zeng and Dayton (2004)).

5.1.3 Implementation and Experiments

The AFMP algorithm and its variants in Maple have been implemented in Gao et al.

(2004) without using any Gauss-Newton iteration to improve approximate GCDs or the

final factorization. Experiments with that implementation are shown in Table 5.1. Tim-

ings are given for some well known or randomly generated examples on a Pentium 4 at

2.0 Ghz for Digits = 10 in Maple 9 under Linux. Here σr and σr+1 are singular values

CHAPTER 5. APPROXIMATE FACTORIZATION 77

Ex. deg(fi)
σr+1

σr

σr

‖Rup1(f)‖2
coeff.
error

backward
error

time(sec)

1 2,3 11 10−3 10−2 1.08e–2 14.631

2 5,5 109 10−10 10−13 8.30e–10 5.258

3 10,10 105 10−6 10−7 1.05e–6 85.96

4 7,8 107 10−8 10−9 1.41e–8 19.628

5 3,3,3 108 10−10 0 1.29e–9 9.234

6 6,6,10 103 10−6 10−5 2.47e–4 539.67

7 9,7 486 10−4 10−4 2.14e–4 43.823

8 4,4,4,4,4 273 10−6 10−5 1.31e–3 3098

9 3,3,3 1.70 10−3 10−1 7.93e–1 29.25

10 12,7,5 658 10−6 10−5 1.56e–4 968

11 12,7,5 834 10−6 10−5 3.19e–4 1560

12 12,7,5 8.34 10−4 10−3 8.42e–3 4370

13 5,(5)2 103 10−5 10−5 6.98e–5 34.28

14 (5)3,3,(2)4 107 10−9 10−10 2.09e–7 73.52

15 5,5 104 10−5 10−5 1.72e–5 332.99

15a 2,2 109 10−10 10−4 1.02e–9 13.009

16 18,18 104 10−7 10−6 3.75e–6 3173

17 18,18 104 10−7 10−6 4.10e–6 4266

18 6,6 106 10−8 10−7 2.97e–7 30.034

Table 5.1: Algorithm performance on benchmarks

around the biggest gap—the given values are orders of magnitude; coeff. error indicates

the noise imposed on the input, namely the relative 2-norm coefficient error to the orig-

inal product of polynomials. The time is that for the entire factorization in seconds of a

single run; the timings can vary significantly (up-to a factor of 4) with the randomization.

The 23 test cases and the Maple implementation can be found online at http://

www.mmrc.iss.ac.cn/~lzhi/Research/appfac.html or http://www.math.ncsu.edu/

~kaltofen/ (click on the “Software” link).

In Table 5.1:

CHAPTER 5. APPROXIMATE FACTORIZATION 78

• Example 1 is from Nagasaka (2002) where an approximate factorization with back-

ward error 0.000753084 is also given (although this is slightly smaller than the

backward error computed in the table the given factorization does not seem to have

been generated with any sort of general technique and no timing was reported);

• Examples 2 and 3 are from Sasaki (2001); Sasaki’s algorithm takes 430ms and

2080ms on a SPARC 5 (CPU: microSPARC Π, 70 MHz) and produced backward

errors of 10−9 and 10−5, respectively;

• Example 4 is from Corless et al. (2001); the backward error for their approximate

factorization is reported as 0.47× 10−4, compared to ours of backward error 0.14×

10−7 (no timings were reported);

• Example 5 is from Corless et al. (2002), which is the factorization of an exact

polynomial of degree 9 (here their and our backward errors are about the same; no

timings were reported);

• Examples 6 to 13 and 15 to 17 were constructed by choosing factors with random in-

teger coefficients in the range −5 ≤ c ≤ 5 and then adding a perturbation; for noise

we choose a relative tolerance 10−e, then randomly choose a polynomial that has

the same degree as the product, 25% as many terms (5% for Example 10 and 99%

for Example 17) and coefficients in [−10e, 10e]; finally, we scale the perturbation so

that the relative error is 10−e;

• Examples 10, 11 and 12 approximately factorize the same polynomial with pertur-

CHAPTER 5. APPROXIMATE FACTORIZATION 79

bations of different noise level and sparseness;

• Example 13 and 14 have repeated factors denoted with exponents in the degrees

column;

• Example 14 is Zeng’s ASFF example in Zeng and Dayton (2004). The forward

errors of the factors we compute are about 10−8, similar to Zeng’s forward error.

By forward error we mean the relative 2-norm coefficient vector distance of a com-

puted approximate factor to the nearest originally chosen factor, before noise was

added to the product. For the examples our implementation produced forward

errors that are of the same magnitude of the stated backward errors, with the

exception of Example 9 where the degrees of the produced approximate factors

are 4 and 5, hence the forward error is, in some sense, infinite. The approximate

factorization is poor because better backward error can obtained simply by set-

ting terms to 0. Polynomials with 10% relative noise are not handled well by our

implementation.

• Example 15 and 15a are polynomials in three variables; 15a is from Kaltofen (2000);

• Example 18 is a polynomial with complex coefficients, where the real and imaginary

parts of the coefficients of the factors were chosen random integers in [−5, 5]. Noise

was added to the real and imaginary parts of all terms;

The implementation reported in Gao et al. (2004) also successfully found the approximate

factors of four examples, provided by Jan Verschelde, which arise in the engineering of

CHAPTER 5. APPROXIMATE FACTORIZATION 80

Stewart-Gough platforms (see Sommese et al. (2004)). The input polynomials in 2 and 3

variables of degree 12 have small absolute coefficient error, 10−16, and have approximate

factors of multiplicities 1, 3 and 5. The trivariate approximate factors were computed via

sparse numerical interpolation using the techniques of Giesbrecht et al. (2004), (which is

possible in this example because the forward error in the approximate factor coefficients is

near machine precision). The running times, no more than 200 seconds with a backward

error of no more than 7.62 · 10−9, appear much faster than what Sommese et al. (2004)

report for their solution, though this is part due to the advantage gained by using the

sparse interpolation code reported in Giesbrecht et al. (2004).

5.1.4 Iterative Refinement Implementation

To demonstrate the potential for improvement using iterative refinement, we created a

basic Maple implementation to perform iterative refinement for factorizations of polyno-

mials in two variables. This code was applied to several of the examples from the previous

section and the results compiled in Table 5.2. The only two variable example omitted

is 14 which is problematic due to not being content-free. The other non-square-free ex-

ample, 13, is content-free, and the iteration works just fine. The improved factorization

found by this method still has a squared factor even though the refinement iteration

does not treat the identical factors differently than non-identical factors. It should be

noted that refinement was not used on the approximate GCD computations performed

in the AFMP algorithm, only on the factorization. Experiments seem to indicate that

CHAPTER 5. APPROXIMATE FACTORIZATION 81

Ex. deg(fi)
coefficient

error
error

w/o iter
error

w/ iter iterations improvement

1 2,3 10−2 1.08e-2 1.02e-3 7 10.6×
2 5,5 10−13 4.64e-10 4.90e-14 2 9468×
3 10,10 10−7 1.05e-6 2.87e-7 3 3.6×
4 7,8 10−9 1.41e-8 2.38e-9 2 5.9×
5 3,3,3 0 1.20e-9 1.03e-14 2 99613×
6 6,6,10 10−5 2.47e-4 7.24e-6 4 34×
7 9,7 10−4 2.14e-4 7.07e-5 4 3.0×
8 4,4,4,4,4 10−6 1.31e-3 8.56e-6 4 153×
9 3,3,3 10−1 7.93e-1 1.42e-1 16 5.6×

10 12,7,5 10−6 1.56e-4 8.02e-6 4 19.5×
11 12,7,5 10−6 3.19e-4 7.66e-6 4 41.7×
12 12,7,5 10−4 8.42e-3 7.66e-4 6 11.0×
13 5,(5)2 10−5 1.72e-5 6.53e-6 3 10.7×
16 18,18 10−6 3.75e-6 6.55e-7 3 5.6×
17 18,18 10−6 4.10e-6 6.61e-7 3 6.2×
18 6,6 10−7 3.00e-7 6.03e-8 2 4.9×

Table 5.2: Iterative refinement on most of the benchmarks from Table 5.1

using refinement on the approximate GCD computations leads to better pre-refinement

factorizations, but that the Gauss-Newton iterations converge to the same factorization

as when refinement was not used in the GCD computations.

Timings are not included in Table 5.2 since the iterative refinement code runs many

times faster than the factoring code (less than 10% of the time of the original factoriza-

tion). The next to last column indicates the number of Gauss-Newton iterations that

were run before convergence – further iteration did not improve the factorization. No-

tice that the number of iterations increases as the backward error of the solution found

(i.e. the number in the fifth column) increases (as discussed in the paragraph following

Fact 5.1). The last column indicates the factor by which the backwards error was im-

CHAPTER 5. APPROXIMATE FACTORIZATION 82

proved by iterative refinement. Our experiments seem to indicate that refinement will

tend improve backward error by about one order of magnitude. The improvement can

be quite a bit more pronounced if the original polynomial was within machine precision

of being factorizable. In example 9, the factorization found before refinement had back-

ward error worse than 2.37e-1, the backward error of the trivially factorizable polynomial

f(x, y) − f(0, y), while that is beaten slightly after refinement. As can be seen by the

number of iterations, when ‖noise‖ ≈ 10−1 it is still very difficult to get good results.

Chapter 6

Polynomial Decomposition

Given a polynomial f ∈ Q[x], we consider the problem of determining if f decomposes,

that is, determining if there exists g, h ∈ Q[x], both of at least degree 2, such that

f(x) = g(h(x)) = (g◦h)(x). The polynomial h is called a right composition factor of f . If

f does decompose, we want to be able to compute its decomposition into indecomposable

factors. We will consider approximate versions of these problems.

In this section we present a series of results on polynomial decomposition, including a

new analysis of an older decomposition algorithm. Though not optimal, this new analysis

will allow us to compute approximate polynomial decompositions by reducing them to

approximate bivariate factorization problems.

83

CHAPTER 6. POLYNOMIAL DECOMPOSITION 84

6.1 Improvements to Barton-Zippel

The first known algorithm to compute the decomposition of a polynomial, given in Barton

and Zippel (1976, 1985), relied on the following theorem of Fried and MacRae:

Fact 6.1 (Fried and MacRae (1969)). Let x, y be independent indeterminants over

Q and f, h ∈ Q[x]. Then h(x) − h(y) divides Φ(f) = (f(x) − f(y))/(x − y) if and only

if f(x) = g(h(x)) for some g ∈ Q[x].

This theorem leads directly to the decomposition algorithm from Barton and Zippel

(1985):

Algorithm 6.1.

Input: A polynomial f ∈ Q[x].

Output: g, h ∈ C such that f = g ◦ h, or f is indecomposable.

1. Form Φ(f) = (f(x)− f(y))/(x− y);

2. Factor Φ(f) completely over C[x, y]; if Φ(f) is irreducible, f is indecomposable;

3. Examine the factors for polynomials of the form Φ(h) (if there are no irreducible

factors of the right form, examine factors of two irreducible factors and so on);

4. If no factors of the form Φ(h) exist then f is indecomposable; otherwise, we have

found a factor h from which we can compute g.

Note that in step 4 computing g from a given h is merely a matter of solving the

CHAPTER 6. POLYNOMIAL DECOMPOSITION 85

system:

f −
deg f−deg h∑

i=0

gi h
i = 0 (6.1)

which is a system of linear equations in g0, g1, . . . , gdeg f−deg h, the coefficients of g.

The running times of steps 1, 2, and 4 of Algorithm 6.1 are clearly polynomial in the

degree of f . The need to possibly check what could be exponentially many combinations

of factors of f in step 3 prevents the algorithm from having polynomial running time.

However, we can get around this exponential time step using the following stronger

version of Fact 6.1 which was apparently unknown to Barton and Zippel in 1985.

Fact 6.2 (Fried (1970)). Let f ∈ Q[x] be indecomposable of degree n > 1. Suppose

that n is not an odd prime and it is not the case that f(x) = αDn(a, x + b) + β for

α, β, a, b ∈ Q, where a = 0 if n = 3.

If f(x) is indecomposable, then (f(x)− f(y))/(x− y) is absolutely irreducible.

The notation Dn(a, x) refers to a Dickson polynomial. The Dickson polynomials

can be defined as the compositions of Chebyshev polynomials, linear polynomials, and

polynomials of the form xm. More explicitly, for any n ≥ 0 and any a ∈ Q define the nth

Dickson polynomial as

Dn(x, a) =

bn/2c∑
i=0

n

n− i

(
n− i

i

)
(−a)ixn−2i,

CHAPTER 6. POLYNOMIAL DECOMPOSITION 86

which expands to

Dn(a, x) =


xn − naxn−2 + n(n− 3)/2 · a2xn−4 + · · ·+ 2(−a)n/2 for n even;

xn − naxn−2 + n(n− 3)/2 · a2xn−4 + · · ·+ n(−a)(n−1)/2x for n odd.

A nice proof of Fact 6.2 can be found in Turnwald (1995).

For decomposition, Fact 6.2 implies that if f is not of prime degree and Φ(f) factors,

then f decomposes. Also, if h is an indecomposable composition factor of f then Φ(h)

is absolutely irreducible unless h is a Dickson polynomial. Thus, searching combinations

of factors of Φ(f) will not be necessary unless f has only Dickson polynomials as right

composition factors. That case is not a problem though, since we can detect if a poly-

nomial f has Dickson polynomials as right composition factors simply by examining the

first three coefficients of f as follows:

Lemma 6.3. If f is monic, and has a Dickson polynomial composition factor of prime

degree q ≥ 3 then f has the form:

f = xn + nb xn−1 +

(
n(n− 1)

2
b2 − n a

)
xn−2 + · · ·

Proof. If f ∈ Q[x] is monic and f = g ◦Dq(a, x + b) then g is monic as well (since Dq is

monic). If q ≥ 3 is prime, then

Dq(a, x + b) = xq + q b xq−1 +

(
q(q − 1)

2
b2 − q a

)
xq−2 + · · ·

CHAPTER 6. POLYNOMIAL DECOMPOSITION 87

so

g(Dq(a, x + b)) =

(
xq + q b xq−1 +

(
q(q − 1)

2
b2 − q a

)
xq−2 + · · ·

)k

+ · · ·

= xq k + k (q b xq−1) (xq)k−1 +
k(k − 1)

2
(q b xq−1)2 (xq)k−2

+ k

(
q(q − 1)

2
b2 − q a

)
xq−2 (xq)k−1 + · · ·

= xn + nb xn−1 +
n(n− q)

2
b2 xn−2 +

(
n(q − 1)

2
b2 − n a

)
xn−2 + · · ·

= xn + nb xn−1 +

(
n(n− 1)

2
b2 − n a

)
xn−2 + · · ·

Thus we have the following improved version of the Barton-Zippel algorithm over Q.

Algorithm 6.2.

Input: A polynomial f ∈ Q[x].

Output: g, h ∈ C such that f = g ◦ h, or f is indecomposable.

1. Form Φ(f) = (f(x)− f(y))/(x− y);

2. Factor Φ(f) completely; if Φ(f) is irreducible, f is indecomposable;

3. Examine the irreducible factors for polynomials of the form Φ(h);

4. (a) If no such h found, for each prime number q which divides deg f compute h

CHAPTER 6. POLYNOMIAL DECOMPOSITION 88

of the form h(x) = Dq(a, x + b) with

b = fn−1/n, a =
1

n

(
n(n− 1)

2
(fn−1/n)2 − fn−2

)

where

f = xn + fn−1 xn−1 + fn−2 xn−2 + . . .

It will be possible to solve for g in (6.1) given one such h;

(b) If such an h is found, compute g from the system (6.1).

Algorithm 6.2 is clearly polynomial time since the factor combination of Algorithm 6.1

has been eliminated and step 4a involves trying fewer than deg f possibilities for q.

Algorithm 6.2 is not that useful for the exact decomposition problem. A faster poly-

nomial time algorithm from Kozen and Landau (1989) and a nearly linear time algorithm

in von zur Gathen (1990) have been known for over 15 years. However, Algorithm 6.2

reduced to a structured linear problem which allows us to apply many of the techniques

from previous chapters to the approximate version of the decomposition problem.

6.2 Approximate Decomposability Testing

The relationship between decomposition and bivariate factorization presented in the pre-

vious section make it trivial to transform decomposition into a linear problem.

For a given f =
∑d

i=0 ci x
i ∈ Q[x] (d not prime), we know f decomposes if and only

CHAPTER 6. POLYNOMIAL DECOMPOSITION 89

if

Φ(f) = (f(x)− f(y))/(x− y) =
d∑

i=1

ci

∑
j+k=d−1

xiyj (6.2)

factors in C[x, y]. And, Φ(f) has factors if and only if the matrix Rup(Φ(f)) does not

have full rank. We can bound the distance of an indecomposable f to a decomposable

polynomial by bounding the distance of Rup(Φ(f)) to a matrix of lower rank as we did

in Chapter 2.

Corollary 6.4. If f ∈ Q[x] is an indecomposable polynomial, and f̃ ∈ Q[x] is a decom-

posable polynomial with f̃(0) = f(0) and deg f̃ ≤ deg f then

‖f − f̃‖2 ≥
σ(Rup(Φ(f)))

d2
√

2d2 − d

Proof. Since Φ(f) is irreducible and Φ(f̃) is not, and degx Φ(f) = degy Φ(f) = d we

have, from Theorem 2.9,

‖Φ(f)− Φ(f̃)‖2 ≥
σ(Rup(Φ(f)))

d
√

2d2 − d
.

Looking at (6.2) it is easy to see that:

‖Φ(f)− Φ(f̃)‖2 = ‖Φ(f − f̃)‖2 ≤ d ‖(f − f̃)− (f − f̃ mod x)‖2 = d ‖f − f̃‖2.

Thus

‖f − f̃‖2 ≥
σ(Rup(Φ(f)))

d2
√

2d2 − d
.

CHAPTER 6. POLYNOMIAL DECOMPOSITION 90

Now we have the ability to compute a radius of indecomposability about any inde-

composable polynomial and, as with irreducibility, this gives a simple algorithm to test

the indecomposability of an approximate polynomial when a tolerance on the coefficients

is specified.

Note that, as with factorization, if we omit the degree bound, it is possible to find a

decomposable polynomial which is arbitrarily close to f , for example f ◦(εx2+x). It may

be that the degree bound in Corollary 6.4) is too tight; approximate decompositions up to

degree 2 deg f − 1 may still be meaningful. However, we will consider only approximate

decompositions of the same degree or smaller.

Example 6.1. Let us begin with a decomposable polynomial with a large noise term

added to it (making it indecomposable):

f = (4 x2 + 3 x− 1) ◦ (x2 − x + 1) + .02 x3 = 4 x4 − 7.98 x3 + 15 x2 − 11 x + 6.

Then we compute

Φ(f) = −11 + 15 y − 7.98 y2 + 4 y3 + (15− 7.98 y + 4 y2) x + (−7.98 + 4 y) x2 + 4 x3

and the matrix R(Φ(f)) which is 27× 20. Computing the largest coefficient of ‖R(Φ)‖2

we get 200 (compared to the bound d2 (2d2− d) = 7168 from Corollary 6.4). Computing

the smallest singular value of Rup(Φ(f)), we find a lower bound on the distance from f

CHAPTER 6. POLYNOMIAL DECOMPOSITION 91

to the nearest polynomial which decomposes (in the 2-norm) is 0.0001914703496. Thus,

any polynomial with constant coefficient 6 which is closer than the bound must also be

decomposable.

6.3 Approximate Decomposition

In the same way that approximate irreducibility testing can be used for approximate de-

composability testing we can build an algorithm to compute approximate decompositions

of polynomials.

For most polynomials that are nearly decomposable it is probably best to use the

fast algorithms described in Corless et al. (1999). However, those algorithms are not

guaranteed to converge. In the case that they do not, we can use a straightforward

application of the factoring algorithm in Chapter 5 to Φ(f) creates an approximate

version of Algorithm 6.2.

Algorithm 6.3.

Input: An indecomposable polynomial f ∈ Q[x].

Output: g, h ∈ C such that f ≈ g ◦ h.

1. Form Φ(f) = (f(x)− f(y))/(x− y);

2. Compute an approximate decomposition of Φ(f) over C[x, y]; discard all factors p

such that tdeg p + 1 does not divide deg f – if no factors remain, skip to step 5;

3. For each remaining factor compute its distance to a factor of the form Φ(h):

CHAPTER 6. POLYNOMIAL DECOMPOSITION 92

(a) For j from 0 to tdeg φi, compute the standard deviation of the coefficients of

the terms of total degree j (a measure of how far those coefficients are from

being equal);

(b) Choose the maximum of the deviations over all values of j – this is the distance;

4. Choose the factor φ with the smallest distance and form h =
∑d

i=1 cix
i where ci is

the average of the coefficients of the terms of φ with total degree i − 1; use h to

compute a least squares solution g to the system (6.1);

5. Find a and b as in Algorithm 6.2 step 4a, and compute a corresponding gs by least

squares for possible choice of q

6. return the g, h pair with the smallest value of ‖f − g ◦ h‖2

In practice, if f is a perturbed decomposable polynomial then the approximate factors

of Φ(f) tend to contain polynomials very close to the form Φ(h). However, there is no

guarantee on how close the approximate factors will come to having this form. For a

slower algorithm, one can compute a decomposition for all the factors instead of the

“best” on in Step 3 and use the one which gives an approximate decomposition closest

to the the original polynomial.

If one finds that an approximate factorization of Φ(f) does not have any factors of

the right degree, it is possible to modify the approximate GCD algorithm used in the

approximate factorization to produce factors of a predetermined degree (by choosing what

the numerical rank of the Sylvester matrix should be, rather than trying to compute what

CHAPTER 6. POLYNOMIAL DECOMPOSITION 93

it should be). In this way one can always find an approximate decomposition without a

Dickson polynomial as a right decomposition factor though the backward error may be

quite bad in some cases.

It is also straightforward to improve the computed approximate decomposition with

a Gauss-Newton iteration in the same way approximate GCD and factor computations

were computed in the previous chapters. Doing so should lead to modest improvements

in backward error, much like the improvements seen for factorization. The iteration from

Corless et al. (1999) could also be used to improve a decomposition computed from our

algorithm.

In the following examples, step 5 of the algorithm is omitted.

Example 6.2. Beginning with the same polynomial as in Example 6.1

f = (4 x2 + 3 x− 1) ◦ (x2 − x + 1) + .02 x3,

we feed Φ(f) into the approximate factorization algorithm (with iterative improvement)

and get the following factorization:

Φ(f) ≈ (3.328611061− 3.334456909 x− 3.334456909 y) (−3.304470928 + 1.196214923 x

+ 1.196214923 y − 1.199266070 x2 − 0.0004743182219 xy − 1.199266070 y2)

CHAPTER 6. POLYNOMIAL DECOMPOSITION 94

The first factor is closer to the form Φ(h) than the second, and so monic best fit h is

h(x) = −0.998246836550386 x + x2

which we then make monic to give a neater decomposition. Using least squares to solve

for the best corresponding g, we get

g = 6 + 11.0166611850816842 x + 4 x2

Composing, we get

g(h(x)) = 4 x4 − 7.985974692 x3 + 15.00264817 x2 − 10.99734718 x + 6

which is relative distance 0.0003282568052744 from the original f .

As with factoring, if the smallest singular value of Rup(Φ(f)) is quite large then it

may be trivial to find a closer decomposition than the one produced by the algorithm.

Most trivial approximate decompositions have relative backward error of about 1. For

example, setting the coefficients of all the odd power terms to 0 will given a polynomial

which has a right composition factor of x2. For a randomly generated polynomial, not

close to one that decomposes, this may be the best we can do.

CHAPTER 6. POLYNOMIAL DECOMPOSITION 95

Example 6.3. Begin with a random polynomial

f = x6 − 0.640 x5 − 1.62 x4 + 0.520 x3 + 0.800 x2 + 0.740 x− 1.80.

In this case, we can easily construct

f̃ = (−1.80 + 0.800 x− 1.62 x2 + x3) ◦ x2.

which has a backwards error of 0.37494846.

Approximate factorization gives a factorization consisting of one factor of degree 1

and one of degree 4 and having a relative backwards error of 0.16416249664. The degree

1 factor is closer to having the form Φ(h) and the degree 4 factor would lead to a

decomposition of higher degree than f so we use the degree 1 factor:

f2 = −0.0608141094394855 + 0.999999999958777 y + x

to compute the monic approximate decomposition factor

h = −0.0608141094407389 x + x2.

Using this h to find g gives an approximate decomposition

f̃ = x6 − 0.182442 x5 − 1.65840 x4 + 0.202833 x3 + 0.752193 x2 − 0.0461194 x− 1.80

CHAPTER 6. POLYNOMIAL DECOMPOSITION 96

with a relative backward error of 0.326648519, only very slightly better than the trivial

approximate decomposition given above.

Chapter 7

Conclusion

We have demonstrated several algorithms using SVD-based methods that provide rea-

sonable partial solutions for a number of problems in approximate algebra. In particular,

we discussed approximate factorization, approximate irreducibility testing, approximate

greatest common divisor computation, and approximate decomposition computations.

We presented algorithms that use SVD techniques to find solutions to the soft approxi-

mate factorization and GCD problems. We also used the SVD to derive bounds on the

distance to nearest polynomials that factor, and nearest non-relatively prime polynomial

pairs that in turn lead to tests of approximate irreducibility and approximate relative

primeness.

As mentioned in the introduction it is possible to apply these same ideas to find

solutions to the soft approximation versions of any problem that can be formulated as

a homogeneous linear system. One future avenue of work is to identify such problems

97

CHAPTER 7. CONCLUSION 98

and implement SVD based algorithms for them. A few problems that may possibly be

tackled this way are approximate division and GCRD of Ore polynomials, GCRD of

matrix polynomials, and functional decomposition of univariate polynomials.

The dimensions of the matrices for the multivariate factorization and GCD problems

grow linearly with the number terms of polynomials, that means exponentially in the

number of variables. In order to deal with very sparse problems with many variables

we often need to project down to the dense two variable case (as was done with the

Verschelde problem mentioned in Chapter 5). If the numerical errors are small the

results in Giesbrecht et al. (2004) work quite well. But if errors much larger than machine

precision appear, then this interpolation no longer works well. An optimization version

of sparse interpolation is needed here.

It is clear from theory and experiments that SVD techniques cannot possibly solve the

full optimization version of these approximate problems, since it ignores the structure in

the linear systems derived from these algebraic problems. In fact, SVD based approximate

factorization does not even find a factorization in a basin of attraction of factorization

that achieves the global minimum. That is, iterative refinement (by Gauss-Newton) will

still not lead to the global minimum, in general.

Solving the full optimization version of one of these problems is actually an instance

of the structured total least squares (STLS) problem (for the given matrix structure in

question). There is currently no practical way to solve STLS in general, though solutions

have been sought in many disciplines. There are, however, heuristics that can find ap-

CHAPTER 7. CONCLUSION 99

proximations of STLS solutions better than those found using regular SVD techniques.

As presented in Botting (2004) an implementation of a heuristic to compute Rieman-

nian SVD can find closer approximate solutions to the structured total least squares

(STLS) problems arising in approximate algebra. The implementation presented in Bot-

ting (2004) is quite a bit slower than any of the SVD-based methods presented herein,

but it is also completely general. It can handle any type of linear matrix structure (that

is, optimization over a linear subspace of Cn×n). Very promising avenues of future work

are using the approximate solutions to the corresponding STLS problems to compute

approximate factorizations and approximate decompositions and optimizing those types

of heuristics to specific matrix structures in order get implementations with speeds com-

parable to those of SVD-based algorithms.

References

D. R. Barton and R. Zippel (1976). A polynomial decomposition algorithm. In
SYMSAC ’76: Proceedings of the third ACM symposium on Symbolic and algebraic
computation, pages 356–358. ACM Press, New York, NY, USA.

D. R. Barton and R. Zippel (1985). Polynomial Decomposition Algorithms. Journal
of Symbolic Computation, 1: 159–168.

B. Beckermann and G. Labahn (1998a). A fast and numerically stable Euclidean-
like algorithm for detecting relative prime numerical polynomials. Journal of Symbolic
Computation, 26(6): 691–714. Special issue on Symbolic Numeric Algebra for Polyno-
mials S. M. Watt and H. J. Stetter, editors.

B. Beckermann and G. Labahn (1998b). When are two numerical polynomials rel-
atively prime? Journal of Symbolic Computation, 26(6): 691–714. Special issue on
Symbolic Numeric Algebra for Polynomials S. M. Watt and H. J. Stetter, editors.

B. Botting (2004). Structured Total Least Squares for Approximate Polynomial Oper-
ations. Master’s thesis, School of Computer Science, University of Waterloo.

S. L. Campbell and C. D. Meyer, Jr. (1979). Generalized Inverses of Linear Trans-
formations. Pitman Publ. Ltd., London.

M. T. Chu, R. E. Funderlic, and R. J. Plemmons (2003). Structured low rank
approximation. Linear Algebra and Applications, 366: 157–172.

R. M. Corless, A. Galligo, I. S. Kotsireas, and S. M. Watt (2002). A geometric-
numeric algorithm for absolute factorization of multivariate polynomials. In Mora
(2002), pages 37–45.

R. M. Corless, P. M. Gianni, B. M. Trager, and S. M. Watt (1995). The singular
value decomposition for polynomial systems. In A. H. M. Levelt (editor), Proc. 1995
Internat. Symp. Symbolic Algebraic Comput. ISSAC’95, pages 96–103. ACM Press,
New York, N. Y.

R. M. Corless, M. Giesbrecht, D. Jeffrey, and S. M. Watt (1999). Approxi-
mate Polynomial Decomposition. In Samuel S. Dooley (editor), ACM International

100

REFERENCES 101

Symposium on Symbolic and Algebraic Computation, pages 213–220. ACM, Vancouver,
Canada.

R. M. Corless, M. W. Giesbrecht, M. van Hoeij, Ilias S. Kotsireas, and S. M.
Watt (2001). Towards Factoring Bivariate Approximate Polynomials. In Mourrain
(2001), pages 85–92.

R. M. Corless, S. M. Watt, and L. Zhi (2004). QR Factoring to Compute the GCD
of Univariate Approximate Polynomials. IEEE Transactions on Signal Processing,
52(12): 3394–3402.

C. Eckart and G. Young (1936). The approximation of one matrix by another of
lower rank. Psychometrika, 1(3): 211–218.

I. Z. Emiris, A. Galligo, and H. Lombardi (1997). Certified Approximate Univariate
GCDs. J. Pure Applied Algebra, 117 & 118: 229–251. Special Issue on Algorithms
for Algebra.

M. Fried (1970). On a conjecture of Schur. Mich. Math. Journal, 17: 41–55.

M. D. Fried and R. E. MacRae (1969). On the invariance of chains of Fields. Ill. J.
Math., 13: 165–171.

A. Galligo and D. Rupprecht (2001). Semi-numerical determination of irreducible
branches of a reduced space curve. In Mourrain (2001), pages 137–142.

A. Galligo and S. Watt (1997). A numerical absolute primality test for bivariate
polynomials. In W. Küchlin (editor), ISSAC 97 Proc. 1997 Internat. Symp. Symbolic
Algebraic Comput., pages 217–224. ACM Press, New York, N. Y.

S. Gao (2003). Factoring multivariate polynomials via partial differential equations.
Math. Comput., 72(242): 801–822.

S. Gao, E. Kaltofen, J. P. May, Z. Yang, and L. Zhi (2004). Approximate
factorization of multivariate polynomials via differential equations. In Gutierrez (2004),
pages 167–174.

S. Gao and V. M. Rodrigues (2003). Irreducibility of polynomials modulo p via
Newton polytopes. J. Number Theory, 101: 32–47.

J. von zur Gathen (1990). Functional Decomposition of Polynomials: the tame case.
Journal of Symbolic Computation, 9: 281–299.

A. O. Gelfond (1960). Transcendental and algebraic numbers. Translated from the 1st
Russian ed. by Leo F. Boron. Dover, New York.

REFERENCES 102

M. Giesbrecht, G. Labahn, and Lee, W.-s. (2004). Symbolic-Numeric Sparse In-
terpolation of Multivariate Polynomials (Extended Abstract). In Proc. Ninth Rhine
Workshop on Computer Algebra (RWCA’04), University of Nijmegen, the Netherlands,
pages 127–139. Full paper under preparation.

G. H. Golub and C. F. Van Loan (1996). Matrix Computations. Johns Hopkins
University Press, Baltimore, Maryland, third edition.

J. Gutierrez (Editor) (2004). ISSAC 2004 Proc. 2004 Internat. Symp. Symbolic Alge-
braic Comput. ACM Press, New York, N. Y.

M. A. Hitz, E. Kaltofen, and Lakshman Y. N. (1999). Efficient Algorithms for
Computing the Nearest Polynomial With A Real Root and Related Problems. In
S. Dooley (editor), Proc. 1999 ACM International Symposium on Symbolic and Al-
gebraic Computation (ISSAC’99), pages 205–212. ACM Press, New York, N. Y.

Y. Huang, W. Wu, H. J. Stetter, and L. Zhi (2000). Pseudofactors of Multivariate
Polynomials. In C. Traverso (editor), Internat. Symp. Symbolic Algebraic Comput.
ISSAC 2000 Proc. 2000 Internat. Symp. Symbolic Algebraic Comput., pages 161–168.
ACM Press, New York, N. Y.

C.-P. Jeannerod and G. Labahn (2002). The SNAP package for arithmetic with
numeric polynomials. In A. M. Cohen, X.-S. Gao, and N. Takayama (editors),
Proc. First Internat. Congress Math. Software ICMS 2002, Beijing, China, pages 61–
71. World Scientific, Singapore.

W. Kahan (1966). Numerical Linear Algebra. Canadian Math. Bull., 9: 757–801.

E. Kaltofen (1985). Fast parallel absolute irreducibility testing. Journal of Symbolic
Computation, 1(1): 57–67. Misprint corrections: J. Symbolic Comput. vol. 9, p. 320
(1989).

E. Kaltofen (1992). Polynomial factorization 1987-1991. In I. Simon (editor), Proc.
LATIN ’92, volume 583 of Lect. Notes Comput. Sci., pages 294–313. Springer Verlag,
Heidelberg, Germany.

E. Kaltofen (1995). Effective Noether irreducibility forms and applications. J. Comput.
System Sci., 50(2): 274–295.

E. Kaltofen (2000). Challenges of Symbolic Computation My Favorite Open Problems.
Journal of Symbolic Computation, 29(6): 891–919. With an additional open problem
by R. M. Corless and D. J. Jeffrey.

E. Kaltofen and J. P. May (2003). On Approximate Irreducibility of Polynomials in
Several Variables. In Sendra (2003), pages 161–168.

REFERENCES 103

N. K. Karmarkar and Lakshman Y. N. (1998). On Approximate GCDs of Univariate
Polynomials. Journal of Symbolic Computation, 26(6): 653–666. Special issue on
Symbolic Numeric Algebra for Polynomials S. M. Watt and H. J. Stetter, editors.

C. T. Kelley (1999). Iterative Methods for Optimization. Number 18 in Frontiers in
Applied Mathematics. SIAM, Philadelphia.

D. Kozen and S. Landau (1989). Polynomial Decomposition Algorithms. Journal of
Symbolic Computation, 7: 445–456.

T. Y. Li and Zhonggang Zeng (2003). A rank-revealing method and its application.
Manuscript available at http://www.neiu.edu/~zzeng/papers.htm.

T. Mora (Editor) (2002). ISSAC 2002 Proc. 2002 Internat. Symp. Symbolic Algebraic
Comput. ACM Press, New York, N. Y.

B. Mourrain (Editor) (2001). ISSAC 2001 Proc. 2001 Internat. Symp. Symbolic Alge-
braic Comput. ACM Press, New York, N. Y.

K. Nagasaka (2002). Towards certified irreducibility testing of bivariate approximate
polynomials. In Mora (2002), pages 192–199.

K. Nagasaka (2004). Towards More Accurate Separation Bounds of Empirical Poly-
nomials. SIGSAM Bulletin, 38(4): 119–129. Formally Reviewed Communication.

E. Noether (1922). Ein algebraisches Kriterium f ur absolute Irreduzibilit at. Math.
Ann., 85: 26–33.

M.-A. Ochi, M. Noda, and T. Sasaki (1991). Approximate Greatest Common Di-
visors of Multivariate Polynomials and its Application to Ill-conditioned Systems of
Algebraic Equations. J. Inf. Proces, 12: 292–300.

S. M. Rump (2003). Structured Perturbations Part I: Normwise Distances. SIAM
Journal on Matrix Analysis and Applications, 25(1): 1–30.

W. M. Ruppert (1999). Reducibility of Polynomials f(x,y) Modulo p. J. Number
Theory, 77: 62–70.

D. Rupprecht (1999). An Algorithm for Computing Certified Approximate GCD of n
Univariate Polynomials. J. Pure Applied Algebra, 139: 255–284.

T. Sasaki (2001). Approximate multivariate polynomial factorization based on zero-sum
relations. In Mourrain (2001), pages 284–291.

T. Sasaki, M., M. Kolár̆, and M. Sasaki (1991a). Approximate Factorization of
Multivariate Polynomials and Absolute Irreducibility Testing. Japan J. of Industrial
and Applied Mathem., 8(3): 357–375.

REFERENCES 104

T. Sasaki, T. Saito, and T. Hilano (1992). Analysis of Approximate Factorization
Algorithm I. Japan J. of Industrial and Applied Mathem., 9(3): 351–368.

T. Sasaki and M. Sasaki (1997). Polynomial Remainder Sequence and Approximate
GCD. ACM SIGSAM Bulletin, 31: 4–10.

T. Sasaki, M. Suzuki, M. Kolár̆, and M. Sasaki (1991b). Approximate Factor-
ization of Multivariate Polynomials and Absolute Irreducibility Testing. Japan J. of
Industrial and Applied Mathem., 8(3): 357–375.

W. M. Schmidt (1976). Equations over finite fields. An elementary approach. Number
536 in Springer Lect. Notes Math. Springer Verlag, New York, N.Y.

A. Schönhage (1985). Quasi-GCD computations. J. Complexity, 1: 118–137.

J. R. Sendra (Editor) (2003). ISSAC 2003 Proc. 2003 Internat. Symp. Symbolic Alge-
braic Comput. ACM Press, New York, N. Y.

A. J. Sommese, J. Verschelde, and C. W. Wampler (2004). Numerical Factor-
ization of Multivariate Complex Polynomials. Theoretical Comput. Sci., 315(2–3):
651–669. Special issue on Algebraic and Numerical Algorithms.

G. W. Stewart (1973a). Error and Perturbation Bounds for Subspaces Associated
with Certain Eigenvalue Problems. SIAM Review, 15(4): 727–764.

G. W. Stewart (1973b). Introduction to Matrix Computations. Academic Press, Inc.,
New York.

G. Turnwald (1995). On Schur’s conjecture. J. Austral. Math. Soc. Ser. A, 58(3):
312–357.

Z. Zeng (2003). A Method Computing Multiple Roots of Inexact Polynomials. In Sendra
(2003), pages 266–272.

Z. Zeng (2004). The approximate GCD of inexact polynomials Part I: a univariate
algorithm. Manuscript, 8 pages.

Z. Zeng and B. H. Dayton (2004). The approximate GCD of inexact polynomials
Part II: a multivariate algorithm. In Gutierrez (2004).

L. Zhi (2003). Displacement Structure in Computing Approximate GCD of Univariate
Polynomials. In Z. Li and W. Sit (editors), Proc. Sixth Asian Symposium on Com-
puter Mathematics (ASCM 2003), volume 10 of Lecture Notes Series on Computing,
pages 288–298. World Scientific, Singapore.

L. Zhi, K. Li, and M.-T. Noda. (2001). Approximate GCD of Multivariate Polynomials
using Hensel lifting. MMRC Preprint, 7 pages.

REFERENCES 105

L. Zhi and M.-T. Noda (2000). Approximate GCD of Multivariate Polynomials. In
X.-S. Gao and D. Wang (editors), Proc. Fourth Asian Symposium on Computer
Mathematrics (ASCM 2000), Lecture Notes Series on Computing, pages 9–18. World
Scientific, Singapore.

