
Abstract

WILLIAMS, VICKY. Root Multiplicities of the indefinite Kac-Moody algebras HC
(1)
n .

(Under the direction of Kailash C. Misra)

Victor Kac and Robert Moody independently introduced Kac-Moody algebras

around 1968. These Lie algebras have numerous application in physics and math-

ematics and thus have been the subject of much study over the last three decades.

Kac-Moody algebras are classified as finite, affine, or indefinite type. A basic problem

concerning these algebras is finding their root multiplicities. The root multiplicities of

finite and affine type Kac-Moody algebras are well known. However, determining the

root multiplicities of indefinite type Kac-Moody algebras is an open problem. In this

thesis we determine the multiplicities of some roots of the indefinite type Kac-Moody

algebras HC
(1)
n .

A well known construction allows us to view HC
(1)
n as the minimal graded Lie

algebra with local part V ⊕ g0 ⊕ V ′, where g0 is the affine Kac-Moody algebra C
(1)
n

and V, V ′ are suitable g0- modules. From this viewpoint root spaces of HC
(1)
n become



weight spaces of certain C
(1)
n -modules. Using a multiplicity formula due to Kang

we reduce our problem to finding weight multiplicities in certain irreducible highest

weight C
(1)
n -modules. We then use crystal basis theory for the affine Kac-Moody

algebras C
(1)
n to find these weight multiplicities.

With this strategy we calculate the multiplicities of some roots of HC
(1)
n . In

particular, we determine the multiplicities of the level two roots −2α−1−kδ of HC
(1)
2

for 1 ≤ k ≤ 10. We also show that the multiplicities of the roots of HC
(1)
n of the form

−lα−1 − kδ are n for l = k and 0 for l > k. In the process, we observe that Frenkel’s

conjectured bound for root multiplicities does not hold for the indefinite Kac-Moody

algebras HC
(1)
n .
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Chapter 1

Introduction

In 1968, Victor Kac [14] and Robert Moody [33] independently introduced a new

class of Lie algebras, which are know today as Kac-Moody algebras. For the past

thirty years, Kac-Moody algebras have been a rich area of study due to their nu-

merous applications to other areas of mathematics and physics. Kac-Moody algebras

are classified as finite, affine, or indefinite type. Root multiplicities in Kac-Moody

algebras of finite and affine type are well known. However, we know root multi-

plicities of indefinite type Kac-Moody algebras in only a few cases (for example see,

[6, 1, 2, 3, 15, 20, 19, 21, 24, 11, 10, 24, 25]). In this thesis we determine some root

multiplicities of the indefinite type Kac-Moody algebras HC
(1)
n .

A Kac-Moody algebra g associated with generalized Cartan matrix A = (aij)i,j∈I

(I an index set) affords a triangular decomposition g = g− ⊕ h⊕ g+, where g− is the

direct sum of negative root spaces, h is the Cartan subalgebra of g, and g+ is the

1



CHAPTER 1. INTRODUCTION 2

direct sum of positive root spaces. The multiplicity of any root α of g is equal to that

of −α. Thus we may choose to study either the negative or the positive roots; we

choose to study the multiplicities of negative roots of HC
(1)
n . We will review a few of

the basic concepts of Kac-Moody theory in chapter 2. For more details see [16].

The indefinite type Kac-Moody algebra g = HC
(1)
n is the the Kac-Moody alge-

bra associate with the indecomposable generalized Cartan matrix (for definition see

chapter 2)

A = (aij)i,j∈I =




2 −1 0 0 0 . . . 0 0 0 0

−1 2 −1 0 0 . . . 0 0 0 0

0 −2 2 −1 0 . . . 0 0 0 0

0 0 −1 2 −1 . . . 0 0 0 0

. . .

0 0 0 0 0 . . . −1 2 −1 0

0 0 0 0 0 . . . 0 −1 2 −2

0 0 0 0 0 . . . 0 0 −1 2




,

where the index set I = {−1, 0, . . . , n}. Let S = {0, 1, . . . n}, and let g0 be the

Kac-Moody algebra associated with the indecomposable generalized Cartan matrix

A = (ai,j)i,j∈S. Then, g0 is the affine Kac-Moody algebra C
(1)
n . The Lie algebra g

may be constructed as the minimal Z-graded Lie algebra with local part V ⊗g0⊗V ∗,

where V is the basic g0-module, V (Λ0), and V ∗ it’s restricted dual [6, 14, 1]. This
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construction allows us to view the root spaces of HC
(1)
n as weight spaces of appropriate

C
(1)
n -modules. Thus, we may use the representation theory of the affine Kac-Moody

algebras C
(1)
n to study root multiplicities of the indefinite Kac-Moody algebras HC

(1)
n .

We give the explicit construction of HC
(1)
n in chapter 3.

For an affine algebra, g0, the level of a weight λ is defined as λ(K) where K is

the cononical central element of g0. We define the level of the root α of g to be the

level of the weight α of g0. Root multiplicities of all level two roots of HA
(1)
1 were

computed in [6] and for all level two roots of E10 in [15]. Generalizing the results in

[4], using homology theory for Lie algebras Kang obtained two multiplicity formulas

- one closed form, the other recursive - for roots of a class of Kac-Moody algebras

which includes HC
(1)
n [18, 20, 19, 21]. Using this formula, Kang [20, 19] was able

to extend the results of [6]. Some multiplicities were found for roots of the algebras

HA
(1)
n in [24, 10], for roots of the algebras IAn(a, b) in [1, 2, 3], and for roots of the

algebras HG
(1)
2 , HD

(1)
4 in [11]. In each of these cases, a multiplicity formula analogous

to Kang’s was used. We review Kang’s multiplicity formula in chapter 4.

In [24], Kang and Melville chose g0 to be A
(1)
n and used Crystal Basis theory

to compute weight multiplicities for the appropriate A
(1)
n -modules. We use a simi-

lar method in this thesis. The quantized universal enveloping algebras (also known

as quantum groups), Uq(g), associated with the symmetrizable Kac-Moody algebras

g were introduced independently by Drinfel and Jimbo [5, 13]. These algebras are

related to solvable lattice models in statistical mechanics. In this context, the inde-
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terminate q of the quantized universal enveloping algebra corresponds to the temper-

ature parameter. Thus, it makes sense to expect nice behavior of the representation

space for these algebras at q = 0. A crystal basis of an integrable Uq(g)-module,

M , can be roughly thought of as a basis for M at q = 0. The notion of crystal

bases was first introduced by Kashiwara [27, 26]. Kashiwara showed the existence

and uniqueness of crystal basis for integrable representations of symmetrizable Kac-

Moody algebras. Kashiwara’s crystal bases are the same as the canonical bases at

q = 0 introduced by Lusztig [31, 32]. In 1988, Lusztig proved that the weight multi-

plicities of Uq(g)-modules are the same as those of g-modules for any symmetrizable

Kac-Moody algebra g [30]. We use the concrete realizations of the crystal bases for

integrable highest weight C
(1)
n -modules given in [22]. These realization are in terms

of certain combinatorial objects called “paths” which arise naturally in statistical

mechanics. A path can be thought of as an element of the semi-infinite produce

(· · · ⊗B ⊗B ⊗B) where B denotes the so called “perfect crystal” (see [23, 9]). We

use the path realizations to calculate weight multiplicities of certain highest weight

C
(1)
n -modules. We briefly review the combinatorial aspects of crystal basis theory in

chapter 5.

In chapter 6, we determine multiplicities of some roots of HC
(1)
n . More specifically,

we find the multiplicity of the level two root −2α−1 − 3δ of HC
(1)
n for any n and we

determine the multiplicities of the roots −2α−1 − kδ of HC
(1)
2 for 1 ≤ k ≤ 10. We

also show that for HC
(1)
n roots of the form −kα−1−kδ are of multiplicity n and show
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−lα−1 − kδ is not a root of HC
(1)
n for l > k. In [7] Frenkel conjectured a bound for

root multiplicities of hyperbolic Lie algebras. Kac, Moody, and Wakimoto showed

that Frenkel’s conjectured bound does not hold in E10 [15]. We observe that this

bound also fails for HC
(1)
n .



Chapter 2

Kac-Moody algebras

We begin this chapter by defining the basic objects of our study: Lie algebras over

the field of complex numbers and their representations. We then move to discuss

the specific type of Lie algebras we will investigate, Kac-Moody algebras. For more

details see [12] and [16].

Definition 2.1. A Lie algebra is a vector space g over C with an anti-symmetric,

bilinear operation [., .] : g × g → g (called the bracket) with the following property

(called the Jacobi identity):

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ g.

Example 2.1. The Lie algebra of trace zero 2 × 2 complex matrices with bracket

6
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[A,B] = AB −BA is know as sl(2, C). This Lie algebra has basis


e =


0 1

0 0


 , f =


0 0

1 0


 , h =


1 0

0 −1







and relations

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f

A Lie algebra is a non-associative algebra. However, each Lie algebra has a unique

universal enveloping algebra which is associative.

Definition 2.2. Let g be a Lie algebra. A universal enveloping algebra of g is a

pair (U(g), j) where U(g) is an associative algebra and j : g → U(g) is a Lie algebra

homomorphism satisfying the following universal property. If (A, φ) is another such

pair then there exists a unique associative algebra homomorphism ψ : U(g) → A such

that φ = ψ ◦ j.

The Poincare-Birkhoff-Witt theorem stated below gives a linear basis for U(g).

Theorem 2.1. Let g be a Lie algebra with ordered basis {xα|α ∈ Ω} and let (U(g), j)

be the universal enveloping algebra of g. Then, {xα1xα2 . . . xαn | n ≥ 0, α1 ≤ α2 · · · ≤ αn}

form a basis for U(g).

We wish to investigate the representation theory of Lie algebras.
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Definition 2.3. Let g be a Lie algebra over C and let V be a vector space over C.

1. A representation of g on V is a homomorphism φ : g → gl(V ).

2. V is a g module if there is a bilinear map from g×V into V given by (g, v) → g·v

such that [x, y] · v = x · (y · v)− y · (x · v) for all x, y ∈ g and v ∈ V .

Note, if φ is a representation of g on V then V is a g-module with module action

g · v = φ(g)v and conversely. For example, the adjoint map ad : g → gl(g) given by

ad(x) = adx for any x ∈ g, where adx(g) = [x, g] for all g ∈ g, is a representation of

g on g. In other words, g is a g-module under the adjoint action.

A representation of a Lie algebra g naturally extends to a representation of U(g).

Conversely, a representation of U(g) is also a representation of g. Therefore, the

representation theory of a Lie algebra and that of its universal enveloping algebra are

essentially equivalent.

We will study the representation theory of a certain class of Lie algebras know as

Kac-Moody algebras. The remainder of this chapter briefly introduces the concepts

of Kac-Moody theory. For a much more thorough treatment of the topic see [16].

A matrix A = (ai,j)i∈I is called a generalized Cartan matrix if it satisfies the

following conditions

aii = 2 for all i ∈ I

aij ∈ Z≤0 for i 6= j ∈ I

aij = 0 ⇔ aji = 0 for all i, j ∈ I,
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where I denotes the index set. A generalized Cartan matrix, A, is indecomposable

if, after any reordering of the indices, A can never be written in the form


B 0

0 C


.

Any indecomposable generalized Cartan matrix, A = (ai,j)i,j∈I={1,...,n}, is of one and

only one of the following types.

1. Finite type: There exists an n-dimensional column vector, θ, of positive integers

such that all the coordinates of Aθ are positive. In such a case, A is positive

definite.

2. Affine type: There exists an n-dimensional column vector, θ, of positive integers

such that Aθ=0. In such a case, A is positive-semidefinite of corank 1.

3. Indefinite type: There exists an n-dimensional column vector, θ, of positive

integers such that all the coordinates of Aθ are negative.

Let A = (ai,j)i,j∈I={1,...,n} be a generalized Cartan matrix of rank l. A realization

of A is a triple, (h, Π, Π̌), where h is a complex vector space, Π = {αi|i ∈ I} ⊂ h∗

and Π̌ = {α̌i|i ∈ I} = {hi|i ∈ I} ⊂ h such that

Π and Π̌ are both linearly independent sets ,

αj(hi) = 〈αj, hi〉 = aij (i, j ∈ I ) ,

n− l = dim(h)− n

The set Π is called the root basis and elements of Π are known as simple roots.
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Similarly, Π̌ is the co-root basis and its elements are the simple co-roots. Later,

we will refer to the following lattices (the root lattice and the positive root lattice,

respectively).

Q =
∑
i∈I

Zαi Q+ =
∑
i∈I

Z+αi

We introduce a partial ordering, ≥, on h∗: for α, β ∈ h∗, α ≥ β if and only if

α− β ∈ Q+.

With these few preliminary definitions, we are now in a position to define a Kac-

Moody algebra.

Definition 2.4. Let A be a generalized Cartan matrix, and let (h, Π, Π̌) be a realiza-

tion of A. Let g̃ = g̃(A) be the Lie algebra on generators ei, fi (i ∈ I), and h with

relations

[ei, fj] = δi,jhi (i, j ∈ I)

[h, h′] = 0 (h, h′ ∈ h) (2.1)

[h, ei] = 〈αi, h〉 ei (i ∈ I, h ∈ h)

[h, fi] = −〈αi, h〉 fi (i ∈ I; h ∈ h)

Let ξ be the unique maximal ideal of g̃ intersecting h trivially. The Lie algebra g(A) =

g̃(A)/ξ is the Kac-Moody algebra with generalized Cartan Matrix A.

The ei, fi ∈ g(A) (i ∈ I) are known as the Chevalley generators, and the subal-

gebra h of g(A) is known as the Cartan subalgebra. We define g+ as the subalgebra
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of g generated by the elements ei. Similarly, g− is the subalgebra of g generated by

the fi. For each i Let g(i) = Cei +Chi +Cfi. Then g(i) is isomorphic to sl(2, C), with

basis {ei, fi, hi} and relations,

[ei, fi] = hi [hi, ei] = 2ei [hi, fi] = −2fi.

A matrix An×n is symmetrizable if there exists an invertible diagonal matrix D =

diag(s1, . . . , sn) and a symmetric matrix B such that DB = A. For a symmetrizable

generalized Cartan matrix, A = (aij)i,j∈I with I = {1, . . . , n}, define the bilinear

form (.|.) on h = span{h1, . . . hn, d1, . . . , dn−rank(A)}, the Cartan subalgebra of g(A),

as follows.

(hi|h) = siαi(h) for i = 1, . . . , n and h ∈ h

(di|dj) = 0 for i, j = 1, . . . , n− rank(A) (2.2)

(hi|dj) = αi(dj) for i = 1, . . . , n and j = 1, . . . , n− rank(A).

So defined, (.|.) is an invariant, symmetric, non-degenerate, bilinear form. Further-

more, (.|.) can be uniquely extend to an invariant, symmetric, non-degenerate, bilinear

form on all of g. Let ν : h → h∗ be the linear map given by ν(h)(h′) = (h|h′). Since,

(.|.) is non-degenerate, ν is a vector space isomorphism. Thus, there is an invariant,

symmetric, non-degenerate, bilinear form on h∗ induced by (.|.). We use the same

notation for the bilinear form (.|.) on h and the induced bilinear form on h∗. Notice,
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(αi|αj) = bi,j for i, j ∈ I.

Every Kac Moody algebra, g(A), has an associated group of reflections known

as the Weyl group. For each i ∈ I, define the simple reflection ri on h∗ by ri(λ) =

λ− λ(hi)αi. The Weyl group, W , is the subgroup of End(h∗) generated by all simple

reflections. Any element ω ∈ W may be expressed as a product of simple reflections,

i.e. ω =
t∏

k=1

rik . If t is minimal amongst all such expressions we say ω is a reduced

expression and call t the length of ω (denoted l(ω)).

For each α ∈ h∗, we define the α-root space of g as follows.

Definition 2.5. Let g be a Kac-Moody algebra with Cartan subalgebra h. For α ∈ h∗,

define

gα = {x ∈ g| [h, x] = α(h)x for all h ∈ h}.

If α 6= 0 and gα 6= 0, we say α is a root of g, gα is the α root space, and dim(gα) is

the multiplicity of the root α.

Note that gαi
= Cei and g−αi

= Cfi. The Kac-Moody algebra g has the root

space decomposition

g =
⊕
α∈Q

gα.

All roots are either positive (i.e. α ∈ Q+) or negative (i.e. α ∈ Q− = −Q+). Let ∆,

∆+, and ∆− represent the set of roots, positive roots, and negative roots respectively.

Then, g+ =
⊕

α∈∆+
g ( resp. g− =

⊕
α∈∆− g) and we have the following triangular
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decomposition

g = g− ⊕ h⊕ g+.

The Chevalley involution, ζ : g → g given by

ζ(ei) = −fi, ζ(fi) = −ei, ζ(h) = −h for h ∈ h

is an automorphism. Since ζ(gα) = g−α, we conclude mult(α) = mult(−α) for all

α ∈ ∆.

If α is a root of a Kac-Moody algebra, g(A), of finite type the following statements

are true: there exists an ω ∈ W such that ω(α) = αi for some i ∈ I, mult(α) = 1,

and kα is a root if and only if k = ±1. These properties do not hold for all roots of

Kac-Moody algebras of affine or indefinite types. Let α be a root of a Kac-Moody

algebra, g. If α is ω-conjugate to a simple root we say α is a real root. Otherwise,

we say α is an imaginary root. The properties of imaginary roots differ drastically

from those of their real counterparts. For example, if α is an imaginary root of an

affine Lie algebra g then kα is also an imaginary root of g for all k ∈ Z. In addition,

imaginary roots have multiplicities greater than one.

The λ-weight space of the g-module V is defined in the same manner as the α-root

space of the Lie algebra g.



CHAPTER 2. KAC-MOODY ALGEBRAS 14

Definition 2.6. For any λ ∈ h∗ the λ weight space, Vλ, is defined as

Vλ = {v ∈ V |h · v = λ(h) · v for all h ∈ h}.

If Vλ 6= 0, we call λ a weight of V and dim(Vλ) the weight multiplicity of λ in V

(denoted multV (λ)).

A module,V , is called a weight module if V =
⊕

λ∈h∗ Vλ. When all weight spaces of a

weight module V are finite dimensional, we define the character of V as follows.

chV =
∑
λ∈h∗

(dimVλ)e
λ.

Let wt(V ) be the set of all weights of the module V . The category O has as objects

weight modules,V , over g with finite dimensional weight spaces for which there exists

a finite number of elements λ1, . . . , λs ∈ h∗ such that

wt(V ) ⊆ {µ ∈ h∗|µ ≤ λ1} ∪ · · · ∪ {µ ∈ h∗|µ ≤ λs}

and as morphisms g-module homomorphisms.

Important examples of g-modules in the category O are highest weight modules.

Definition 2.7. Let V be a weight module of g(A). V is a highest weight module if
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there exists a λ ∈ h∗ and a vλ ∈ V , vλ 6= 0, such that

ei · vλ = 0 for all i ∈ I

h · vλ = λ(h)vλ for all h ∈ h

V = U(g)vλ

In such a case, we call vλ a highest weight vector and λ the highest weight of V .

Example 2.2. Let g = sl(2, C) the Lie algebra described in example 2.1. Let V (λ) be

a finite dimensional irreducible highest weight module of sl(2, C) with highest weight

λ ∈ C, and highest weight vector v. Then, λ ∈ Z and V (λ) is (λ + 1) dimensional

with basis {vk}k=0..λ, where

vk =
fk(v)

k!
.

Again, let g be any Kac-Moody algebra. Let V be a highest weight g-module

with highest weight λ. Then V =
⊕

µ≤λ Vµ where each Vµ is finite dimensional and

dim(Vλ) = 1. For every λ in h∗ there exists a unique (up to isomorphism) type

of highest weight module called a Verma module. A g-module M(λ) with highest

weight λ is a Verma module if every other g-module with highest weight λ is a

quotient of M(λ). Not only is M(λ) unique but it also contains a unique proper

maximal submodule, M ′(λ). Let L(λ) = M(λ)/M ′(λ). Then L(λ) is an irreducible
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g-module with highest weight λ. In fact, every irreducible g-module in the category

O is isomorphic to L(λ) for some λ ∈ h∗.

We say V is an integrable g(A)-module if all ei and fi (i ∈ I) are locally nilpotent

on V . A weight, λ, of V is called integral if λ(hi) ∈ Z for i ∈ I. The set of all integral

weights is known as the weight lattice, denoted by P . Define the following subsets of

P , the set of all dominant integral weights and the set of all regular dominant integral

weights respectively.

P+ = {λ ∈ P |λ(hi) ≥ 0 for all i ∈ I}

P++ = {λ ∈ P |(λ, hi) > 0 for all i ∈ I}

The Category Oint consists of integrable g-modules in the category O such that all

weights of V are integral weights. Every g-module in the category Oint is completely

reducible and every irreducible g-module in Oint is isomorphic to a highest weight

module L(λ) with λ ∈ P+. We end our discussion of the category Oint with the

following information concerning weight multiplicities and the action of the Weyl

group for modules in this category. Let V ∈ Oint, λ ∈ wt(V ), and ω ∈ W . Then,

dim(Vλ) = dim(Vωλ).

We will also deal with the quantized universal enveloping algebra of a Kac-Moody

algebra, g, which we will denote Uq(g). Before defining the quantized universal en-
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veloping algebra, Uq(g), we introduce the following notations: ti = q(αi|αi)hi = qhi
i ,

b = 1− αj(hi), [k]i =
qk
i −q−k

i

qi−q−1
i

, e
(k)
i =

ek
i

[k]i!
, f

(k)
i =

fk
i

[k]!
, and [k]i! =

k∏
m=1

[m]i.

Definition 2.8. Uq(g) is the quantized universal enveloping algebra over C(q) associ-

ated with P , generated by the set
{
ei, fi, q

h|i ∈ I, h ∈ P ∗}, and satisfying the following

relations.

q0 = 1, qhqh′ = qh+h′

qheiq
−h = qαi(h)ei

qhfiq
−h = q−αi(h)fi

[ei, fj] = δij

(
ti−t−1

i

qi−q−1
i

)
b∑

k=0

(−1)ke
(k)
i eje

(b−k)
i = 0 for i 6= j

b∑
k=0

(−1)kf
(k)
i fjf

(b−k)
i = 0 for i 6= j.

Note,

lim
q→1

Uq(g) = U(g).

Example 2.3. We have considered the Lie algebra sl(2, C); now we will look at the

quantized universal enveloping algebra of sl(2, C), Uq(sl(2, C)). Uq(sl(2, C)) is the

associative algebra over C(q) with generators {e, f, t±1} and relations

tet−1 = q2e, tft−1 = q−2f, [e, f ] =
t− t−1

q − q−1
.
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We have seen that g(i) = Cei + Chi + Cfi is isomorphic to sl(2, C). It follows that

the quantized universal enveloping algebra Uq(g(i)) is isomorphic to Uq(sl(2, C)).

The representation theory of quantized universal enveloping algebras is essentially

parallel to that of Kac-Moody algebras. For more details see [9, 28]. We mention the

following fact which will be important for us in subsequent chapters.

Theorem 2.2 (see, for example, [9]). If λ ∈ P+ and Lq(λ) is the irreducible

highest weight Uq(g)-module with highest weight λ, then L1(λ) is isomorphic to the

irreducible highest weight module L(λ) over U(g) with highest weight λ. Hence, the

character of Lq(λ) over Uq(g) is the same as the character of L(λ) over U(g).



Chapter 3

Construction of HC
(1)
n

In the following section, we review the construction described in [6, 14, 1] and apply

this construction to the indefinite Kac-Moody algebra HC
(1)
n . Let I = {−1, 0, 1, . . . , n}

then HC
(1)
n is the Kac-Moody algebra associated with the generalized Cartan matrix

A = (aij)i,j∈I =




2 −1 0 0 0 . . . 0 0 0 0

−1 2 −1 0 0 . . . 0 0 0 0

0 −2 2 −1 0 . . . 0 0 0 0

0 0 −1 2 −1 . . . 0 0 0 0

. . .

0 0 0 0 0 . . . −1 2 −1 0

0 0 0 0 0 . . . 0 −1 2 −2

0 0 0 0 0 . . . 0 0 −1 2




(3.1)

19
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We begin by considering the Lie algebra g0 = C(1)
n . We construct two g0-modules, V

and V ∗, and a g0-module homomorphism ψ : V ∗ ⊗ V → g0. With these four ingre-

dients, we build a graded Lie algebra, g, which intersects its local part V ⊕ g0 ⊕ V ∗

trivially. Finally, we show g ∼= HC(1)
n .

The algebra g0 = C(1)
n is the affine Kac-Moody algebra g0(A0) associated with

the generalized Cartan matrix A0 = (aij)i,j∈S where S = {0, 1, . . . , n}. A0 has the

realization {h0, Π = {α0, α1, . . . , αn}, Π̌ = {h0, h1, . . . , hn}
}
. The center of g0 is one

dimensional and is spanned by K = h0 + h1 + · · ·+ hn ∈ h0. Let d ∈ h be such that

〈α0, d〉 = 1, and 〈αi, d〉 = 0 for i = 1, . . . , n

Then, {d, h0, h1, . . . , hn} form a basis for h0. The algebra g0 is generated by the

elements {ei}n
i=0, {fi}n

i=0, and the Cartan subalgebra, h0.

Let Λ0 ∈ h∗ be such that

〈Λ0, d〉 = 0, and 〈Λ0, hi〉 = δ0,i for i = 0, 1, . . . n (3.2)

and let V = V (Λ0) be the irreducible highest weight module over g0 with highest

weight Λ0. Let v0 represent the highest weight vector of weight Λ0 in V (Λ0). Then
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we have the following relations for i = 0, 1, . . . n.

hi · v0 = δ0,i · v0

d · v0 = 0 (3.3)

ei · v0 = 0

Using the module action given below, the restricted dual V ∗ = V (Λ0)
∗ is an irre-

ducible lowest weight g0-module with lowest weight Λ0.

〈g · v∗, v〉 = −〈v∗, g · v〉 ∀v∗ ∈ V (Λ0)
∗, v ∈ V (Λ0), g ∈ g0. (3.4)

Let v∗0 represent the lowest weight vector of V (Λ0)
∗. The following relations hold for

i = 0, 1, . . . , n.

hi · v∗0 = −δ0,i · v∗0

d · v∗0 = 0 (3.5)

fi · v∗0 = 0

The last ingredient we need for our construction is a homomorphism from V ∗ ⊗ V

to g0. This homomorphism makes use of the standard invariant, nondegenerate, sym-

metric, bilinear form,(.|.)h0 , given in (2.2). For reference, we describe (.|.)h0 explicitly

below.
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(hi|hj) = ajaij (i, j = 0, 1, . . . , n)

a0 = 1, a1 = 2, . . . , an−1 = 2, an = 1

(hi|d) = 0 (i = 1, . . . , n) (3.6)

(h0|d) = 1

(d|d) = 0.

As mentioned previously, the standard bilinear form on h0 may be uniquely extended

to an invariant, nondegenerate, symmetric, bilinear form on all of g0, which we will

denote (.|.)g0 .

We define the map ψ : V ∗ ⊗ V → g0 by

ψ(v∗ ⊗ v) = −
∑
i∈I

〈v∗, xi · v〉xi − 2 〈v∗, v〉K, (3.7)

where {xi|i ∈ I} is a basis for g0 which is orthonormal with respect to the bilinear

form (.|.)g0 . We claim ψ is a g0-module homomorphism. In proving our claim, we

make use of the following fact.

If [xm, xn] =
∑
t∈I

ct
m,nxt then ck

m,n = cm
n,k. (3.8)
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To see this consider,

([xm, xn]| xk) =

(∑
t∈I

ct
m,nxt

∣∣∣∣∣ xk

)

=
∑
t∈I

ct
m,n (xt| xk)

= ck
m,n

and

(xm |[xn, xk ]) =

(
xm

∣∣∣∣∣∑
t∈I

ct
n,kxt

)

=
∑
t∈I

ct
n,k (xm |xt )

= cm
n,k.

The invariance of the form (.|.)g0 implies ( [xm, xn]|xk) = (xm |[xn, xk] ). So that, ck
m,n

must equal cm
n,k.

Recall, {xi}i∈I is an orthonormal basis for g0. Then, [xm, xn] =
∑
t∈I

ct
m,nxt for some

ct
m,n in C. For any xj ∈ {xi}i∈I ,

ψ (xj · (v∗ ⊗ v)) = ψ(xj · v∗ ⊗ v) + ψ(v∗ ⊗ xj · v)

= −
∑
i∈I

〈xj · v∗, xi · v〉xi − 2 〈xj · v∗, v〉K

−
∑
i∈I

〈v∗, xi · xj · v〉xi − 2 〈v∗, xj · v〉K
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=
∑
i∈I

〈v∗, xj · xi · v〉xi + 2 〈v∗, xj · v〉K

−
∑
i∈I

〈v∗, xi · xj · v〉xi − 2 〈v∗, xj · v〉K( by (3.4))

=
∑
i∈I

〈v∗, xj · xi · v − xi · xj · v〉xi

=
∑
i∈I

〈v∗, [xj, xi] · v〉xi

=
∑
i∈I

〈
v∗,

∑
k∈I

ck
j,ixk · v

〉
xi

=
∑
i∈I

∑
k∈I

〈v∗, xk · v〉 ck
j,ixi

=
∑
i∈I

∑
k∈I

〈v∗, xi · v〉 ci
j,kxk

=
∑
i∈I

∑
k∈I

〈v∗, xi · v〉 ck
i,jxk( by (3.8))

while

xj · ψ(v∗ ⊗ v) = −
∑
i∈I

〈v∗, xi · v〉xj · xi − 2 〈v∗, v〉xj ·K

= −
∑
i∈I

〈v∗, xi · v〉 [xj, xi] , since [xj, K] = 0

=
∑
i∈I

〈v∗, xi · v〉 [xi, xj]

=
∑
i∈I

∑
k∈I

〈v∗, xi · v〉 ck
i,jxk.

Thus, ψ (xj · (v∗ ⊗ v)) = xj·ψ(v∗⊗v) for all xj, making ψ a g0-module homomorphism.

Now, we begin our construction of g. The space V (Λ0)⊕ g0 ⊕ V (Λ0)
∗ has a local

Lie algebra structure with the bracket defined below.
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[v∗, v] = ψ(v∗ ⊗ v) (3.9)

[g, v] = g · v (3.10)

[g, v∗] = g · v∗ (3.11)

for all v ∈ V (Λ0), v
∗ ∈ V (Λ0)

∗, and g ∈ g0. For j ≥ 1 define ĝ−j to be the space

spanned by all products of j vectors from V (Λ0), and define ĝj to be the space spanned

by all products of j vectors from V (Λ0)
∗. Then,

ĝ−1 = V (Λ0)

ĝ0 = g0

ĝ1 = V (Λ0)
∗.

and ĝ =
⊕
j∈=Z

ĝj is the maximal graded Lie algebra with local part

V (Λ0)⊕ g0 ⊕ V (Λ0)
∗. Notice, ĝ−=

⊕
j≥1

ĝ−j and ĝ+=
⊕
j≥1

ĝ+j are the free lie algebras

generated by V (Λ0) and V (Λ0)
∗ respectively. For all k > 1 define the subspaces

Jk = { x ∈ ĝk |[y1, [. . . [yk−1, x]] . . . ] = 0 ∀y1, . . . , yk−1 ∈ V (Λ0)}

J−k = { x ∈ ĝ−k |[y1, [. . . [yk−1, x]] . . . ] = 0 ∀y1, . . . , yk−1 ∈ V (Λ0)
∗}
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J± =
∑
k>1

J±k

J = J− ⊕ J+.

J± are ideals of ĝ and J is the largest graded ideal of ĝ which intersects the local part

of ĝ trivially.

Finally, we define

g = ĝ/J

=

(⊕
i>1

g−i

)
⊕ V (Λ0)⊕ g0 ⊕ V (Λ0)

∗ ⊕
(⊕

i>1

gi

)
(3.12)

where g±i = ĝ±i/J±i for i > 1

which is the minimal graded Lie algebra with local part V (Λ0)⊕ g0 ⊕ V (Λ0)
∗. Propo-

sition (3.1) below shows that g is isomorphic to HC(1)
n . In our construction, each

subspace g−j (respectively g+j) is a direct sum of irreducible highest weight (respec-

tively lowest weight) modules over g0. This fact allows us to view the root spaces of

HC(1)
n
∼= g as weight spaces of g0-modules. Therefore, we may use the representation

theory of the affine Kac-Moody algebra g0 = C(1)
n to find the root multiplicities of the

indefinite Kac-Moody algebra HC(1)
n .

Proposition 3.1. Consider the map φ from HC(1)
n to g given by

E−1 → v∗0 F−1 → v0 H−1 → −2K − d

Ei → ei Fi → fi Hi → hi (i = 0, 1, . . . , n)
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where {Ei}n
i=−1 , {Fi}n

i=−1, and h = span {Hi}n
i=−1 are the Chevalley generators and

Cartan subalgebra of HC
(1)
n respectively. The map φ : HC (1 )

n → g is an isomorphism.

Proof:

Recall, HC(1)
n = g(A) where A is given in (3.1). g(A) = g̃(A)/ξ, where ξ is the

unique maximal ideal of g̃(A) which intersects h trivially, and g̃(A) is the Lie algebra

on generators {Ei, Fi}n
i=−1 and h with defining relations given in (2.1). Since J is the

maximal graded ideal of ĝ which intersects the local part of ĝ trivially and φ is clearly

linear and bijective, we need only show the following.

[φ(Ei), φ(Fi)] = δijφ(Hi) (i, j = −1, 0, 1, . . . , n)

[φ(H), φ(H ′)] = 0 (H,H ′ ∈ h)

[φ(H), φ(Ei)] = 〈αi, H〉φ(Ei) (i = −1, 0, 1, . . . , n; H ∈ h)

[φ(H), φ(Fi)] = −〈αi, H〉φ(Fi) (i = −1, 0, 1, . . . , n; H ∈ h).

Notice for i, j = 0, 1, . . . , n the above statements follow directly from the following

two facts:

1. φ(Ei) = ei φ(Fi) = fi φ(Hi) = hi (i = 0, 1, . . . , n).

2. The generalized Cartan matrix for g0 = C(1)
n is identical to the generalized Car-

tan matrix for HC(1)
n with column (-1) and row (-1) removed.
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We have reduced our task to showing the following relations.

[φ(E−1), φ(F−1)] = φ(H−1) (3.13)

[φ(E−1), φ(Fi)] = 0 (i = 0, 1, . . . , n) (3.14)

[φ(Ei), φ(F−1)] = 0 (i = 0, 1, . . . , n) (3.15)

[φ(H), φ(H ′)] = 0 (H,H ′ ∈ h) (3.16)

[φ(H), φ(E−1)] = 〈α−1, H〉φ(E−1) (H ∈ h) (3.17)

[φ(H), φ(F−1)] = 〈α−1, H〉φ(F−1) (H ∈ h) (3.18)

To show (3.13):

φ(E−1) = v∗0 and φ(F−1) = v0. Therefore we must use the homomorphism given

in (3.7) to compute their bracket. Let y−1 = 1√
2
(K + d) and y0 = 1√−2

(K − d). Also,

define {yi}n
i=1 as the orthonormal basis for the space H = span {h1, . . . hn}. We know

such a basis exists because the bilinear form given in (3.6), restricted to H, is an

inner product. Then, the set {yi}i=−1,0,1,...,n forms an orthonormal basis for h0. Let

{xi|i ∈ I} be the orthonormal basis for g0 ordered in such a way that xi = yi for

i = −1, 0, 1, . . . , n. Then we have
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[φ(E−1), φ(F−1)] = ψ(v∗0 ⊗ v0)

=
∑
i∈I

〈v∗0, xi · v0〉xi − 2 〈v∗, v〉K

= −
〈

v∗0,
1√
2
(K + d) · v0

〉(
1√
2
(K + d)

)
−

〈
v∗0,

1√−2
(K − d) · v0

〉 (
1√−2

(K − d)

)

−
n∑

i=1

〈v∗0, xi · v0〉xi

−2 〈v∗0, v0〉K

Let i ∈ {1, 2, . . . n}, and suppose 〈v∗0, xi · v0〉 6= 0. Then xi · v0 must be some none-

zero multiple of v0. Thus xi ∈ span {hi}i=1,2,...n. But, (3.3) shows that hi · v0 = 0 for

i = 1, 2, . . . n, a contradiction. Therefore 〈v∗0, xi · v0〉 = 0 for i = 1, 2, . . . n. Thus,

[φ(E−1), φ(F−1)] = −
〈

v∗0,
1√
2
(K + d) · v0

〉 (
1√
2
(K + d)

)
−

〈
v∗0,

1√−2
(K − d) · v0

〉(
1√−2

(K − d)

)
−2 〈v∗0, v0〉K

= −1

2
(K + d)− 1

−2
(K − d)− 2K (here we use (3.3))

= −2K − d

= φ(H−1)
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To show (3.14) and (3.15):

Recall, v∗0 is the lowest weight vector of V (Λ0)
∗, and thus we have the relations

give in (3.5). Therefore,

[φ(Ei), φ(F−1)] = [v∗0, fi] (i = 0, 1, . . . , n)

= −fi · v0

= 0.

This shows (3.14). Similarly (3.15) follows from (3.3).

To show (3.16) :

Let, H and H ′ be in h. Notice, φ(H−1) = −2h0−2h1−· · ·−2hn−1−2hn−d ∈ h0.

Clearly φ(Hi) ∈ h0 for i = 0, 1, . . . , n. Since H and H ′ are both linear combinations

of {H−1, H0, H1, . . . , Hn}, φ(H) and φ(H ′) must both be elements of h0. Therefore,

[φ(H), φ(H ′)] = 0

To show (3.17) and(3.18):

Let H = c−1H−1 + c0H0 + c1H1 + · · · + cnHn ∈ h where c−1, c0, c1, . . . , cn ∈ C

Then,

〈α−1, H〉φ(E−1) = 〈α−1, H〉 v∗0

= (2c−1 − c0)v
∗
0
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and

[φ(H), φ(E−1)] = [φ(H), v∗0]

= [c−1(−2h0 − 2h1 − · · · − 2hn − d), v0∗] + [c0h0, v
∗
0] +

c1 [h1, v
∗
0] + · · ·+ cn [hn, v

∗
0]

= 2c−1v
∗
0 − c0v

∗
0 (here we use(3.5))

= (2c−1 − c0)v
∗
0

This shows (3.17). The proof of (3.18) parallels the proof of (3.17), replacing φ(E−1) =

v∗0 with φ(F−1) = v0, and replacing the use of (3.5) with the use of (3.3).

We have now shown all relations (3.13) through (3.18) hold, proving our assertion.

We will now identify Ei, Fi, Hi with ei, fi, hi respectively.

¤



Chapter 4

Multiplicity formula

The purpose of the current chapter is to recall a multiplicity formula developed by

Kang which we will need later in determining root multiplicites of HC
(1)
n . For more

details about this material see [18, 20, 19, 21]. We will make use of ideas from homo-

logical algebra and will begin by recalling some pertinent definitions and theorems in

this subject.

Definition 4.1. A chain complex of g-modules is a family {Cn}n∈Z of g-modules

together with g-module maps dn : Cn → Cn−1 such that dn ◦ dn+1 ≡ 0. We call the

maps dn differentials. A chain complex, C, of g-modules is admissible if ∪{Cn}n∈Z

is itself a g-module.

Definition 4.2. Let {Cn}n∈Z be a chain complex of g-modules with differentials dn.

32
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The nth homology module of {Cn}n∈Z is given by.

Hn(C) = ker(dn)/im(dn+1)

Theorem 4.1. (Euler-Poincare Principle) Let {Cn}n∈Z be an admissible chain com-

plex of g-modules. Then

∑
k∈Z+

(−1)kch(Ck) =
∑
k∈Z+

(−1)kch(Hk(C))

Before we move on, let us fix our notation.

I = {−1, . . . , n} : the index set of the simple roots for g = HC(1)
n

∆ : the set of roots of g

∆± : the set of positive (resp. negative) roots of g

W : the Weyl group of g

P : the weight lattice of g

ρ ∈ P : the element of P satisfying ρ(hi) = 1 for i = −1, . . . , n

L(λ) : the highest weight g-module with highest weight λ
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S = {0, . . . , n} : the index set of simple roots of g0 = C
(1)
n

∆S : the set of roots of g0

∆S,± : the set of positive (resp. negative) roots of g0

WS : the Weyl group of g0

PS : the weight lattice of g0

L0(λ) : the highest weight g0-module with highest weight λ

∆±(S) : ∆±\∆S,±

W (S) : {w ∈ W |w∆− ∩∆+ ⊆ ∆+(S)}

Theorem 4.2. (Kostant’s Formula for Kac-Moody algebras) [8, 29] Let λ ∈ P . Then

· · · →
∧j

g− ⊗ L(λ)
dj−→

∧j
g− ⊗ L(λ) → · · · →

∧0
g− ⊗ L(λ)

d0−→ L(λ) → 0 → . . .

with,

dj ((c1 ∧ · · · ∧ cj)⊗ v) =

j∑
i=1

(−1)i(c1 ∧ · · · ∧ ĉi ∧ · · · ∧ cj)⊗ civ

+
∑
r<t

(−1)r+t [cr, ct] ∧ c1 ∧ · · · ∧ ĉr ∧ · · · ∧ ĉt ∧ · · · ∧ cj)⊗ v

for k ≥ 1, and dk = 0 for k ≤ 0.

is a g0-module complex. In addition, the homology modules, Hk(g, L(λ)) =ker(dn)/
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im(dn+1), of this complex are g0-modules and

Hk(g−, L(λ)) ∼=
∑

w∈W (S)
l(w)=k

L0(w(λ + ρ)− ρ)

Let C be the trivial g-module. We know by theorem 4.2 that

· · ·
∧j

g−
dj−→

∧j−1
g− → · · · →

∧1
g−

d1−→
∧0

g−
d0−→ C → 0 → . . . (4.1)

where

dj(c1 ∧ · · · ∧ cj) =
∑
r<t

(−1)r+t [cr, ct] ∧ c1 ∧ · · · ∧ ĉr ∧ · · · ∧ ĉt ∧ · · · ∧ ck

j ≥ 2, and dj = 0 for j ≤ 1

is a chain complex. Applying the Euler-Poincare principle to this complex yields the

following equality.

∞∑
k=0

(−1)kch
∧k

(g−) =
∞∑

k=0

(−1)kchHk(g−) (4.2)

First, let us consider the left hand side of this equality. Making use of the Weyl-
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Kac denominator identity, we see

LHS =
∞∑

k=0

(−1)kch
∧k

(g−) =
∏

α∈∆−(S)

(1− e(α))dimgα

Now consider the right hand side of equality (4.2).

RHS =
∞∑

k=0

(−1)kchHk(g−)

= (−1)0chH0(g−) +
∞∑

k=1

(−1)kchHk(g−)

= 1−
∞∑

k=1

(−1)k+1chHk(g−)

= 1−
∞∑

k=1

(−1)k+1
∑

w∈W (S)
l(w)=k

chL0(wρ− ρ) (Kostant’s formula, 4.2)

= 1−
∑

w∈W (S)
l(w)≥1

(−1)l(w)+1chL0(wρ− ρ)

= 1−
∑

w∈W (S)
l(w)≥1

(−1)l(w)+1
∑
τ∈h∗0

dimL0(wρ− ρ)τe(τ)

= 1−
∑
τ∈h∗0

∑
w∈W (S)
l(w)≥1

(−1)l(w)+1dimL0(wρ− ρ)τe(τ)

Let

Kτ =
∑

w∈W (S)
l(w)≥1

(−1)l(w)+1dimL0(wρ− ρ)τ (4.3)

Then,

RHS = 1−
∑
τ∈h∗0

Kτe(τ)
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Equating the right and left hand sides of equality 4.2 we arrive at

∏
α∈∆−(S)

(1− e(α))dimgα = 1−
∑
τ∈h∗0

Kτe(τ) (4.4)

Taking the log of both sides of 4.4 we obtain

∑
α∈∆−(S)

dimgα log(1− e(α)) = log

(
1−

∑
τ∈h∗

Kτe(τ)

)
(4.5)

Using the formal poser series expansion log(1− t) = −
∞∑

k=1

tk

k
the left hand side of 4.5

becomes

LHS = −
∑

α∈∆−(S)

dimgα

∞∑
k=1

1

k
e(kα)

= −
∑

α∈∆−(S)

∞∑
k=1

1

k
dimgαe(kα)

and the right hand side of 4.5 becomes

RHS = −
∞∑

k=1

1

k


∑

τ∈h∗0

Kτe(τ)


k
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Let {τi|i = 1, 2, . . . , } be an enumeration of the elements of h∗0.

RHS = −
∞∑

k=1

1

k

( ∞∑
i=1

Kτi
e(τi)

)k

= −
∞∑

k=1

1

k

∑
(n)=(ni)∑

ni=k

(
∑

ni)!∏
(ni!)

∏
Kni

τi
e(

∑
niτi) (multinomial expansion)

= −
∑
τ∈h∗0


 ∑

(n)=(ni)∑
niτi=τ

(
∑

ni − 1)!∏
(ni!)

∏
Kni

τi


 e(τ)

Let B(τ) =
∑

(n)=(ni)∑
niτi=τ

(
∑

ni − 1)!∏
(ni!)

∏
Kni

τi
. Then,

RHS = −
∑
τ∈h∗0

B(τ)e(τ)

Equating the right and left hand sides of 4.5 we see

∑
τ∈h∗0

B(τ)e(τ) =
∑

α∈∆−(S)

∞∑
k=1

1

k
dimgαe(kα)

Therefore,

B(τ) =
∑
τ=kα

α∈∆−(S)

1

k
dimgα

=
∑
τ=kα

α∈∆−(S)

(α

τ

)
dimgα
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Using Mobius inversion, we see for α ∈ ∆−(S),

dimgα =
∑
τ |α

µ
(α

τ

) τ

α
B(τ)

We summarize these results in the following theorem.

Theorem 4.3. Let g = HC
(1)
n and g0 = C

(1)
n . Let h (resp. h0) be the Cartan

subalgebra of g (resp. g0), and L(λ) (resp. L0(λ)) be the highest weight g-module

(resp. g0-module) with highest weight λ ∈ h(resp. λ ∈ h0). Let α ∈ ∆−(S), then

dim(gα) =
∑
τ |α

µ
(α

τ

) τ

α
B(τ)

where,

µ = the classical Mobius function

B(τ) =
∑

(niτi)∈T (τ)

(
∑

ni − 1)!∏
(ni!)

∏
Kni

τi

T (τ) =
{

(niτi)|ni ∈ Z≥0,
∑

niτi = τ
}

Kτi
=

∑
ω∈W (S)
l(ω)≥1

(−1)l(ω)+1dimL0(ωρ− ρ)τi



Chapter 5

Crystal basis theory

This chapter reviews the ideas of Crystal Basis Theory for Uq(g) modules. A crystal

base of a Uq(g)-module, V , may be roughly thought of as a base for the module

at q = 0. As mentioned previously (see theorem 2.2), the character of Lq(λ), the

highest weight Uq(g)-module of highest weight λ, is equal to the character of L(λ), the

highest weight g-module with highest weight λ. Thus, by using crystal basis theory to

calculate weight multiplicities in highest weight Uq

(
C

(1)
n

)
-modules we will determine

weight multiplicities in highest weight C
(1)
n -modules. These weight multiplicities are

the last piece of information we need in order to determine root multiplicities of

HC
(1)
n . We begin our discussion of Crystal Basis theory with a motivating example.

Next, we review the notions of Crystal Basis theory more thoroughly. Finally, we

review path realizations for crystal bases of highest weight modules over Uq(g), where

g is an affine Kac-Moody algebra. For more details concerning Crystal Basis theory

40
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see [9].

5.1 Motivation

Consider the three dimensional simple Lie algebra Uq(sl(2, C)) given in example (2.3).

Let V = span {v1, v2} be the two dimensional irreducible representation of Uq(sl(2, C))

defined by:

ev1 = 0, fv1 = v2, tv1 = qv1, t−1v1 = q−1v1

ev2 = v1, fv2 = 0, tv2 = q−1v2, t−1v2 = qv2.

(5.1)

Then the tensor product V ⊗ V has the Uq(sl(2, C))-module structure given below.

t(u1 ⊗ u2) = tu1 ⊗ tu2, t−1(u1 ⊗ u2) = t−1u1 ⊗ t−1u2

e(u1 ⊗ u2) = eu1 ⊗ t−1u1 + u1 ⊗ eu2

f(u1 ⊗ u2) = fu1 ⊗ u2 + tu1 ⊗ fu2

(5.2)

V ⊗ V is completely reducible and by the Clebsch-Gordan formula:

V ⊗ V ∼= V (2)⊕ V (0)

where V (2) is the three dimensional module with basis

{
v1 ⊗ v1, f(v1 ⊗ v1) = v2 ⊗ v1 + qv1 ⊗ v2, f

(2)(v1 ⊗ v1) = v2 ⊗ v2

}
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and V (0) is the one dimensional module with basis

{v1 ⊗ v2 − qv2 ⊗ v1} .

Here f (2)(v1 ⊗ v1) = 1
[2]

f 2(v1 ⊗ v1), and [2] =
q2 − q−2

q − q−1
. When q = 0, the basis for

V (2) and V (0) can be parameterized by pure tensors {v1 ⊗ v1, v2 ⊗ v1, v2 ⊗ v2} and

{v1 ⊗ v2} respectively. This indicates that it is natural to expect simple structure in

the limiting case q = 0. As will be seen in example 5.2,

{v1 ⊗ v1, v2 ⊗ v1, v2 ⊗ v2} and {v1 ⊗ v2} (5.3)

form the crystal base for V (2) and V (0) respectively.

5.2 Basic Concepts

We begin our discussion of crystal bases by giving some definitions. Let, F = C(q),

the field of rational functions in q with coefficients in C. Define the subring, A, of F

as follows,

A =

{
f(q)

g(q)

∣∣∣∣ f, g ∈ C[q] and g(0) 6= 0

}
.

The evaluation map ξ : A mod qA → C given by ξ(f(q)+ q ·g(q)) = f(0)+0 ·g(0) =

f(0) is an isomorphism.

Definition 5.1. Let V be a vector space over F . A local base at q = 0 of V is a pair
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(L, B) where

1. L is a free A-module such that V is generated by L as a vector space over F .

(i.e. V ∼= F ⊗A L).

2. B is a base of the vector space L mod qL over F

Let g = g(A) be a symmetrizable Kac-Moody Lie algebra with realization {h ,

Π = {αi|i ∈ I} ⊂ h∗, Π̌ = {hi|i ∈ I} ⊂ h
}
, let P be the weight lattice of g, let Uq(g)

be the quantized universal enveloping algebra of g, and let Uq(g(i)) be the subalgebra

of Uq(g) generated by the set
{
ei, fi, t

±
i

}
. Recall, for each i ∈ I, Uq(g(i)) is isomorphic

to Uq(sl(2, C)).

Let M be an integrable Uq(g)-module. By Uq(sl(2, C)) representation theory, for

each i ∈ I, any element u ∈ Mλ can be uniquely written as u =
∑
k≥0

f
(k)
i uk, where

uk ∈ ker (ei)∩Mλ+kαi
. The endomorphism ẽi and f̃i on M given below are known as

the Kashiwara operators.

ẽi(u) =
∑
k≥0

f
(k−1)
i uk

f̃i(u) =
∑
k≥0

f
(k+1)
i uk,

(5.4)

for u ∈ Mλ.

Definition 5.2. A crystal base of an integrable Uq(g)-module, M , is a pair (L,B)
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such that:

(L,B) is a local base at q = 0

L =
⊕
λ∈P

Lλ, where Lλ = L ∩Mλ

B =
⋃

λ∈P

Bλ, where Bλ = B ∩ (Lλ/qLλ)

ẽiL ⊂ L, f̃iL ⊂ L

ẽiB ⊂ B ∪ {0}, f̃iB ⊂ B ∪ {0}

for b, b′ ∈ B, b′ = f̃ib if and only if b = ẽib
′.

The existence and uniqueness of crystal bases for integrable Uq(g)-modules follows

from the following theorem due to Kashiwara.

Theorem 5.1. Let L(λ) =
∑
l≥0

i1,...il∈I

Af̃i1 . . . f̃iluλ, and let

B(λ) =
{

f̃i1 . . . f̃iluλ mod qL(λ)
∣∣∣ l ≥ 0, il . . . ik ∈ I

}
\ {0}. Then, (L(λ),B(λ)) is a

crystal base of L(λ), the irreducible Uq(g)-module with highest weight λ.

Each crystal base is uniquely associated with a crystal graph, as described in the

definition below.

Definition 5.3. Let M be an integrable Uq(g)-module with crystal basis (L,B). The

crystal graph of M has B as its set of vertices. For each i ∈ I, we join b ∈ B to

b′ ∈ B with an i-colored arrow (b
i−→ b′) if and only if b′ = f̃ib (iff b = ẽib

′).

Example 5.1. Let V = span{v1, v2 = fv1} be the irreducible two dimensional

Uq(sl(2, C))-module given in (5.1). V is a highest weight module of highest weight
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1 and highest weight vector v1. Let,

L = Av1 ⊕ Afv1

B =
{
v̄1, ¯fv1

}
where x̄ = x + qL for all x ∈ L

Then, (L,B) forms a crystal basis for V , with crystal graph

v̄1 → ¯fv1

At this time, we take a moment to introduce some definitions and discuss some

general properties relating to crystal graphs. Let B be a crystal graph of an integrable

Uq(g)-module, M =
⊕

λ∈P (Mλ). For b ∈ Bλ we say b is of weight λ and write

wt(b) = λ. Define the maps εi and ϕi as follows.

εi(b) = max{n 6= 0, ẽ
(n)
i b 6= 0} (5.5)

ϕi(b) = max{n 6= 0f̃
(n)
i b 6= 0} (5.6)

εi(b) gives the number of i− colored arrows coming into the vertex b, ϕi(b) gives the

number of i − colored arrows coming out of the vertex b and ϕi(b) + εi(b) gives the

length of the i− string through b. Notice, ϕi(b)− εi(b) = 〈hi, wt(b)〉.
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One of the most useful combinatorial features of the crystal bases is their stability

under the tensor product.

Theorem 5.2. (Tensor Product Rule) Let Mj be an integrable Uq(g)-module and let

(L,B) be a crystal basis of Mj for j = 1, 2. Let, L = L1 ⊗A L2 and B = B1 × B2.

Then,

(L,B) is a crystal basis of M1 ⊗F M2 ẽi and

ẽi(b1 ⊗ b2) =




ẽib1 ⊗ b2 if ϕi(b1) ≥ εi(b2)

b1 ⊗ ẽib2 if ϕi(b1) < εi(b2)

f̃i(b1 ⊗ b2) =




f̃ib1 ⊗ b2 if ϕi(b1) > εi(b2)

b1 ⊗ f̃ib2 if ϕi(b1) ≤ εi(b2)

Example 5.2. Let g = Uq(sl(2, C)) and let V be the two dimensional irreducible

module we considered in example 5.1. Applying the tensor product rule to the crystal

graph of V given in 5.1 we obtain the crystal graph of V ⊗ V , shown in figure 5.1.

Looking at the crystal graph we see, as we expect, V ⊗V ∼= V (2)⊗V (0), where V (2) has

crystal basis
{
v̄1 ⊗ v̄1, ¯fv1 ⊗ v̄1, ¯fv1 ⊗ ¯fv1

}
, and V (0) has crystal basis

{
v̄1 ⊗ ¯fv1

}
,

which coincide with the bases given in (5.3).

There is a combinatorial rule using theorem 5.2 to determine the action of the

Kashiwara operators on multi-fold tensor products of crystal graphs (see [9]). Let
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v̄1 ⊗ v̄1
- ¯fv1 ⊗ v̄1

?
¯fv1 ⊗ v̄1

¯fv1 ⊗ ¯fv1

Figure 5.1: Crystal Graph V ⊗ V

Mj be an integrable Uq(g)-module with crystal bases (Lj,Bj) for j = 1, . . . , n and

let b = b1 ⊗ b2 ⊗ · · · ⊗ bn (bj ∈ Bj). Choose i ∈ I. Create the following sequence of

minuses and pluses.


 component 1︷ ︸︸ ︷− · · ·−︸ ︷︷ ︸

εi(b1)

+ · · ·+︸ ︷︷ ︸
ϕi(b1)

,

component 2︷ ︸︸ ︷− · · ·−︸ ︷︷ ︸
εi(b2)

+ · · ·+︸ ︷︷ ︸
ϕi(b2)

, . . . ,

component n︷ ︸︸ ︷− · · ·−︸ ︷︷ ︸
εi(bn)

+ · · ·+︸ ︷︷ ︸
ϕi(bn)


 (5.7)

Cancel out all (+−)-pairs in (5.7). (One may cancel across component boundaries.)

The resulting sequence is called the i − signature of b. Let k be the number corre-

sponding to the component in which the right most − appears in the i − signature

of b, and let p be the number corresponding to the component in which the left most

+ appears in the i− signature of b. The Kashiwara operators act on b as follows.

ẽib = b1 ⊗ · · · ⊗ ẽibk ⊗ · · · ⊗ bn (5.8)

f̃ib = b1 ⊗ · · · ⊗ f̃ibp ⊗ · · · ⊗ bn (5.9)
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5.3 Path Realizations

Let g be an affine Lie algebra over C generated by: {ei, fi|i ∈ I = {0, 1, . . . n}} ∪

{h|h ∈ h} where h is the Cartan subalgebra of g with dimension n + 2. Let Π =

{αi|i ∈ I} ⊆ h∗ and Π̌ = {hi|i ∈ I} ⊆ h be the set of simple roots and co-roots

respectively. We fix the symmetric bilinear form (.|.) on h∗ so that (αi|αi) ∈ Z>0,

for all i ∈ I. Let δ and K be the generators of the imaginary roots and center

respectively. Set hcl =
n⊕

i=0

Chi ⊆ h, and h∗cl =

(
n⊕

i=0

Chi

)∗
. Let cl : h∗ → h∗cl be the

canonical morphism. Then we have an exact sequence:

0 → Cδ → h∗ cl−→ h∗cl → 0

Choose and fix a map af : h∗cl → h∗ satisfying: cl ◦ af = id, and af ◦ cl(αi) =

αi, i 6= 0. Let Λi, i ∈ I, be the elements of af(h∗cl) ⊂ h∗ such that Λi(hj) = δi,j. Set

P =
n∑

i=0

ZΛi ⊕ Zδ and Pcl = cl(P ) ⊂ h∗cl, the affine weight lattice and classical weight

lattice respectively. Let P ∗ and P ∗
cl denote the respective dual lattices. Finally, let

Uq(g) and Uq(g(i)) be as defined in section 2. We also define the quantized universal

enveloping algebra U ′
q(g) to be the universal enveloping algebra over C(q) associated

with Pcl generated by
{
ei, fi, q

h|i ∈ I, h ∈ P ∗
cl

}
and satisfying relations (2.8).

Abstracting the properties of crystal bases we define a crystal.

Definition 5.4. Let Uq(g) be the quantized universal enveloping algebra of a Kac-

Moody algebra with realization (h, Π, Π̌) and weight lattice, P . A Uq(g)-crystal asso-
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ciated with g is P -weighted set, B, along with maps

εi : B → Z t {−∞}

ϕi : B → Z t {−∞}

ẽi : B → B t {0}

f̃i : B → B t {0}

wt : B → P

which satisfies the following properties.

ϕi(b)− εi(b) = 〈wt(b), hi〉 for all i ∈ I, b ∈ B

εi(ẽib) = εi(b)− 1 for b ∈ B such that ẽib 6= 0

ϕi(ẽib) = φi(b) + 1 for b ∈ B such that ẽib 6= 0

wt(ẽib) = wt(b) + αi for b ∈ B such that ẽib 6= 0

εi(f̃ib) = εi(b) + 1 for b ∈ B such that f̃ib 6= 0

ϕ(f̃ib) = φi(b)− 1 forb ∈ B such that f̃ib 6= 0

wt(f̃ib) = wt(b)− αi for b ∈ B such that f̃ib 6= 0

b2 = f̃ib1 ⇔ b1 = ẽib2 for b1, b2 ∈ B

ϕi(b) = −∞ ⇒ ẽib = f̃ib = 0 for b ∈ B
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For two crystals B1 and B2 we define the tensor product B1 ⊗ B2 as follows. The

underlying set is B1×B2. We write b1⊗b2 for (b1, b2) and understand b1⊗0 = 0 = 0⊗b2.

The action of ẽi and f̃i are analogous to the action given in (5.2). Note that if

B1 and B2 are P -weighted crystals then so is B1 ⊗ B2 and for b1 ⊗ b2 ∈ B1 ⊗ B2

wt(b1 ⊗ b2) = wt(b1) + wt(b2).

Set P+
cl = {λ ∈ Pcl|λ(hi) ∈ Z≥0 for all i ∈ I} and let

(
P+

cl

)
l
=

{
λ ∈ P+

cl |λ(K) = l
}

for all l ∈ Z. Let B be a classical crystal. For b ∈ B, set ε(b) =
n∑

i=0

εi(b)Λi, and

ϕ(b) =
n∑

i=0

ϕi(b)Λi. Note that wt(b) = ϕ(b)− ε(b).

Definition 5.5. A perfect crystal of level l, Bl, is a finite U ′
q(g)-crystal which satisfies

the following properties.

There exists a finite-dimensional U ′
q(g)-module with a crystal basis whose crystal

graph is isomorphic to Bl.

Bl ⊗ Bl is connected.

There exists a classical weight ,λ0 ∈ Pcl, with dim(Bλ0) = 1, such that wt(B) ⊂

λ0 +
∑

i6=0 Z≤0αi.

For any b ∈ B, 〈K, ε(b)〉 ≥ l.

For each λ ∈ Pcl of level l, there exists unique vectors bλ ∈ B and bλ ∈ B such that

ε(bλ) = λ and ϕ(bλ) = λ.
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Example 5.3. [22] For a fixed positive integer l a U ′
q

(
C

(1)
n

)
perfect crystal of level l

may be defined as follows

Bl =

{
b = (x1, . . . , xn, x̄n, . . . , x̄1)

∣∣∣∣∣xi, x̄i ∈ Z≥0, s(b) =
n∑

i=1

xi + x̄i ≤ 2l, s(b) even

}

with crystal path structure

f̃0(b) =




(x1 + 2, x2, . . . , xn, x̄n, . . . x̄1) x1 ≥ x̄1

(x1 + 1, x2, . . . , xn, x̄n, . . . x̄1 − 1) x1 = x̄1 − 1

(x1, x2, . . . , xn, x̄n, . . . x̄1 − 2) x1 ≤ x̄1 − 2

(5.10)

f̃i(b) =




(x1, . . . , xi − 1, xi+1 + 1, . . . , xn, x̄n, . . . x̄1) xi+1 ≥ x̄i+1

(x1, . . . , xn, x̄n, . . . , x̄i+1 − 1, x̄i + 1, . . . , x̄1) xi+1 < x̄i+1

(for 1 ≤ i ≤ n− 1)

f̃n(b) = (x1, . . . , xn − 1, x̄n + 1, . . . , x̄1)

ϕ0(b) = l − 1

2
s(b) + (x̄1 − x1)+ (5.11)

ε0(b) = l − 1

2
s(b) + (x1 − x̄1)+

ϕi(b) = xi + (x̄i+1 − xi+1)+

εi(b) = x̄i + (xi+1 − x̄i+1)+

(for 1 ≤ i ≤ n− 1)
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ϕn(b) = xn

εn(b) = x̄n

wt(b) =
n∑

i=0

(φi(b)− εi(b))Λi (5.12)

=
n∑

i=1

(xi − x̄i)(Λi − Λi−1)

Let us refocus our attention on devising a method to realize crystal graphs for

highest weight Uq(g)-modules. Throughout the sequel assume the following.

g is an affine algebra.

l is an element of Z+

Bl is a perfect crystal of level l.

λ is an element of
(
P+

cl

)
l

bλ is the unique vector in B such that ϕ(bλ) = λ

L(λ) is the highest weight Uq(g)-module of highest weight λ

B(λ) is the crystal graph of L(λ)

The following isomorphism theorem will be our main tool in developing a path real-

ization for B(λ) (see, for example, [9]) .
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Theorem 5.3. The map

Ψ : B(λ) → B(ε(bλ))⊗ B

given by uλ → uε(bλ) ⊗ bλ

where uλ, and uε(bλ) are the highest weight vectors of B(λ) and B(ε(bλ)) respectively,

is a strict isomorphism of crystals.

Repeated application of Theorem 5.3 gives a sequence of isomorphisms.

Ψ1 : B(λ) → B(λ1)⊗ B

given by : uλ → uλ1 ⊗ bλ

Ψ2 : B(λ) → B(λ2)⊗ B ⊗ B

given by uλ → uλ2 ⊗ bλ1 ⊗ bλ

. . . . . .

Φk : B(λ) → B(λk)⊗ B⊗k

given by uλ → uλk
⊗ bk−1 ⊗ · · · ⊗ b1 ⊗ b0

where, λ0 = λ, bk = bλk
, λk+1 = ε(bk). This sequence of isomorphisms leads to two
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other important sequences:

wλ = (λk)
∞
k=0 = (. . . , λk+1, λk, . . . , λ1, λ0) ∈

(
P+

cl

)∞
l

(5.13)

pλ = (bk)
∞
k=0 = (. . . , bk+1, bk, . . . , b1, b0) ∈ B⊗∞ (5.14)

The set
(
P+

cl

)
l
is finite, as is the set B. Therefore, there must exist an N > 0 such

that λN = λ0. Since the maps ϕ and ε are bijective, the following set of equalities

hold.

b0 = ϕ−1(λ0) = ϕ−1(λN) = bN

λ1 = ε(b0) = ε(bN) = λN+1

b1 = ϕ−1(λ1) = ϕ−1(λN+1) = bN+1

. . . = . . .

λj = λj+N

bj = bj+N

. . . = . . .

λN−1 = λ2N−1

bN−1 = b2N−1

Therefore, wλ and bλ defined in (5.13) and (5.14) respectively are periodic with the

same period, N > 0.
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Definition 5.6. The path pλ = (· · ·⊗bk⊗b1⊗b0), with λ0 = λ, bk = bλk
, λk+1 = ε(bk),

is called the ground-state path of weight λ.

Example 5.4. The ground state path of weight Λ0 in B1, the U ′
q

(
C

(1)
n

)
perfect crystal

of level one mentioned in example 5.3 is given below.

p = (· · · ⊗ 0⊗ 0),

where 0 = (0, 0, . . . , 0︸ ︷︷ ︸
2n times

).

Definition 5.7. A λ-path in B is any path p = (· · ·⊗pk+1⊗ pk⊗· · ·⊗p1⊗ p0) whose

elements agree with those of the ground state path of weight λ in B past some finite

index, k.

We collect all λ-paths in B into a set which we label P(λ). Theorem 5.4 below,

shows that P(λ) can be given a crystal-structure. Theorem 5.5, also given below,

then shows that P(λ) is a realization of the crystal base B(λ) for the highest weight

U ′
q(g)-module L(λ).

Theorem 5.4. Let,

p ∈ P(λ),

b be the λ-ground state path, and

N > 0 be the smallest positive integer such that pk = bk for all k ≥ N .
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The maps wtcl : P(λ) → Pcl; ẽi, f̃i : P(λ) → P(λ) t {0}; and εi, ϕi : P(λ) → Z

(i ∈ I) given below define a crystal-structure on P(λ).

wtcl(p) = λN +
N−1∑
k=0

wtclpk

ẽi(p) = · · · ⊗ pN+1 ⊗ ẽi(pN ⊗ · · · ⊗ p0)

f̃i(p) = · · · ⊗ pN+1 ⊗ f̃i(pn ⊗ · · · ⊗ p0)

εi(p) = [ε(pN−1 ⊗ · · · ⊗ p0)− ϕi(bN)]+

ϕi(p) = ϕi(pN−1 ⊗ · · · ⊗ p0) + [ϕ(bn)− εi(pN−1 ⊗ · · · ⊗ p0)]+

Theorem 5.5. Let g be an affine algebra, λ ∈ (
P+

cl

)
l
, L(λ) be a highest weight U ′

q(g)-

module of highest weight λ, and B(λ) be the crystal base of L(λ). Then B(λ) and

P(λ) are isomorphic as U ′
q(g) crystals.

Example 5.5. Let g = C
(1)
2 . Then the (partial) path realization for the crystal graph

of B(Λ0) is given in figure 5.5.

Theorem 5.4 tells us how to calculate the classical weight of a path in P(λ). We

will also wish to calculate the affine weights of such paths. Before we explain how to

calculate such weights, we must introduce the following definition.

Definition 5.8. Let V be a finite dimensional U ′
q(g)-module, and let (L,B) be a

crystal basis for V . An energy function on B is a function H : B ⊗ B → Z such that
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24 25 26 27 28 29

Figure 5.2: A partial path realization of the C
(1)
2 -module L(Λ0).

for all i ∈ I and b1 ⊗ b2 in B ⊗ B such that ẽi(b1 ⊗ b2) ∈ B ⊗ B,

H(ẽi(b1 ⊗ b2)) =




H(b1 ⊗ b2) if i 6= 0

H(b1 ⊗ b2) + 1 if i = 0, ϕ0(b1) ≥ ε0(b2)

H(b1 ⊗ b2)− 1 if i = 0, ϕ0(b1) < ε0(b2)

Example 5.6. [22] Let Bl be the U ′
q

(
C

(1)
n

)
perfect crystal of level l described in
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example 5.3 . The function H : Bl ⊗Bl → Z given below is an energy function of Bl.

H(b⊗ b′) = max{θj(b⊗ b′), θ′j(b⊗ b′), ηj(b⊗ b′), η′j(b⊗ b′)|1 ≤ j ≤ n} (5.15)

Where,

θj(b⊗ b′) =

j−1∑
k=1

(x̄k − x̄′k) +
1

2
(s(b′)− s(b))+

θ′j(b⊗ b′) =

j−1∑
k=1

(x′k − xk) +
1

2
(s(b)− s(b′))+

ηj(b⊗ b′) = θj(b⊗ b′) + x̄j − xj

η′j(b⊗ b′) = θ′j(b⊗ b′) + x′j − x̄′j.

Theorem 5.6, stated below, uses energy functions to give a formula for calculating the

affine weight of a path p ∈ P(λ).

Theorem 5.6. Let p = (· · · ⊗ pk ⊗ · · · ⊗ p1 ⊗ p0) be a λ path in P(λ), and let

b = (· · · ⊗ bk ⊗ · · · ⊗ b1 ⊗ b0) be the ground state path of weight λ. Then, the affine

weight of p is given by the formula

wt(p) = λ +
∞∑

k=0

(wtcl(pk)− wtcl(bk))

−
( ∞∑

k=0

(k + 1)(H(pk+1 ⊗ pk)−H(bk+1 ⊗ bk))

)
δ
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Example 5.7. Consider crystal graph of the U ′
q

(
C

(1)
2

)
highest weight module L(Λ0)

drawn in example 5.2. Let p be the path labeled as number three in the example. Thus,

p = · · · ⊗ (0, 0, 0, 0)⊗ (0, 0, 0, 0)⊗ (1, 1, 0, 0).

We will calculate the affine weight of the path p in two different ways. First, we will

use the affine weight formula given in theorem 5.6 and second we will use the fact

that wt(f̃ib) = wt(b)− αi for b ∈ B(λ) (see definition 5.4).

wt(p) = Λ0 + (wtcl(1, 1, 0, 0)− wtcl(0, 0, 0, 0))

−(H(1, 1, 0, 0)⊗ (0, 0, 0, 0))−H ((0, 0, 0, 0)⊗ (0, 0, 0, 0)) δ

= Λ0 + wt((1, 1, 0, 0))−H ((1, 1, 0, 0)⊗ (0, 0, 0, 0)) δ

= Λ0 − Λ0 + Λ2 − δ

= Λ2 − δ

wt(p) = wt(f̃1f̃0(. . . (0, 0, 0, 0)⊗ (0, 0, 0, 0))

= Λ0 − α0 − α1

= Λ0 − (δ + 2Λ0 − 2Λ1)− (−Λ0 + 2Λ1 − Λ2)

= Λ2 − δ.
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In summary, using the notation we introduced at the beginning of this section,

dim(L(λ))µ = dimLq(λ)µ

= |B(λ)µ|

= |p ∈ P(λ)|wt(p) = µ|

where wt(p) is the affine weight of the path p.



Chapter 6

Root multiplicities of HC
(1)
n

In this chapter, we determine root multiplicities of of HC
(1)
n for roots of the form

−lα−1 − kδ. We use Kang’s multiplicity formula (see theorem 4.3) and the path

realizations of crystal bases for irreducible highest weight C
(1)
n -modules to obtain

these multiplicities.

6.1 Level One Root Multiplicities

We begin by considering multiplicities of level one roots in g = HC
(1)
n . If α is a root

of level one, the construction given in chapter 3 implies

dimgα = dimV (Λ0)α

61



CHAPTER 6. ROOT MULTIPLICITIES OF HC
(1)
N 62

where V (Λ0) is the highest weight g0 = C
(1)
n -module with highest weight Λ0. Therefore

we may call upon the ideas of chapter 5 to calculate multiplicities of level one roots

of g.

Example 6.1. In this example we determine the multiplicity of the root α = −α−1−δ

of the Kac-Moody algebra g = HC
(1)
2 . Using the techniques of chapter 5 we draw a

portion of the path realization, P(Λ0), of V (Λ0) as a U ′
q(g0)-module which we show

in figure 6.1. (We do not show any zero arrows after the first.) The paths in P(Λ0)

of weight α are the paths which follow exactly one 0-arrow, two 1-arrows, and one

2-arrow. We see these are the paths labeled eight and nine in the graph. Therefore,

dim(g)α = dimV (Λ0)α = 2.

Using the same techniques as in Example 6.1, we prove propositions 6.1, 6.2, and

6.3.

Proposition 6.1. Let g = HC
(1)
n for any n ∈ Z≥2, and let α = −α−1 − δ. Then,

dimgα = n.

Proof : Let P(Λ0) be the path realization of V (Λ0) as a U ′
q(g0) -module and let

p ∈ P(Λ0). Then p = (· · · ⊗ bk ⊗ · · · ⊗ b1 ⊗ b0), where each bi is an element of

the level one U ′
q

(
C

(1)
n

)
-perfect crystal B1 given in example 5.3. We wish to find the

number of paths in P(Λ0) of weight α. Thus, we are looking for the number of paths

following exactly one 0-arrow, two 1-arrows, two 2-arrows, . . . , two (n-1)-arrows, and

one n-arrow. The ground state path in P(Λ0) is (. . . ...⊗0⊗0). Referring to example
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1
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21

2 1

1

. . . .

Figure 6.1: A partial path realization of the module V (Λ0) as a U ′
q

(
C

(1)
2

)
-module.

(Zero arrows are not shown after the first.)

5.3, we see f̃i(0) does not exist for any i not equal to zero. Thus any p ∈ P(Λ0) with

weight α must be of the form

p = (· · · ⊗ 0⊗ 0⊗ x).

for some x = (x1, . . . , xn, x̄n, . . . x̄1) 6= 0 ∈ B1.

Using theorem 5.6, we calculate the weight of such a path. In our calculation we

use the classical weight formula given in example 5.3 and the energy function given
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in example 5.6.

wt(p) = Λ0 + wtcl(x)−H(0⊗ x)δ

= Λ0 + wtcl(x)− δ

= Λ0 +
n∑

i=1

(xi − x̄i)(Λi − Λi−1)− δ

Next, we determine which p ∈ P(Λ0) are of weight α.

{p ∈ P(Λ0)|wt(p) = α}

=

{
p = (· · · ⊗ 0⊗ 0⊗ x)|

n∑
i=1

(xi − x̄i)(Λi − Λi−1) = 0

}

= {p = (· · · ⊗ 0⊗ 0⊗ x)|xi − x̄i = 0 for i=1 to n }

(since {Λi − Λi−1}n
i=1 are linearly independent)

= {p = (· · · ⊗ 0⊗ 0⊗ x)|

xi = x̄i = 1 for some i = 1..n and xj = x̄j = 0 for all j 6= i}

(since x 6= 0 ∈ B1 ⇒ s(x) = 2)
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There are n such paths. Therefore,

dim gα = #p ∈ P(Λ0) with weight α

= n.

¤

Proposition 6.2. Let g = HC
(1)
n for any n ∈ Z≥2, and let α = −α−1 − 2δ. Then,

dimgα = n2 + n.

Proof : dimgα is simply the number of paths in P(Λ0) following exactly two 0-arrows,

four 1-arrows, four 2-arrows, . . . , four (n-1)-arrows, and two n-arrows. All such paths

must be of the form p = (· · · ⊗ 0⊗ 0⊗ y ⊗ x) for some y = (y1, . . . yn, ȳn, . . . , ȳ1) and

x = (x1, . . . , xn, x̄n, . . . x̄1) in B1. Using theorem 5.6 we calculate the weight of such

a path.

wt(p) = Λ0 + wtcl(x) + wtcl(y)− (
H(y ⊗ x) + 2H(0⊗ y)

)
δ

= Λ0 +
n∑

i=1

(xi + yi − x̄i − ȳi) (Λi − Λi−1)

− (
H(y ⊗ x) + 2H(0⊗ y)

)
δ
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Suppose p = (· · · ⊗ 0⊗ 0⊗ y ⊗ x) is of weight −α−1 − 2δ and y = 0. Then,

Λ0 − 2δ = wt(p)

= Λ0 +
n∑

i=1

(xi + yi − x̄i − ȳi) (Λi − Λi−1)

− (H(0⊗ x)) δ

We know {Λi − Λi−1}n
i=1 and {δ} are linearly independent. Therefore, H(0⊗x) must

equal 2. However, H(0⊗ a) = 1 for all a 6= 0 and H(0⊗ 0) = 0. Thus y 6= 0 and

Λ0 − 2δ = wt(p)

= Λ0 +
n∑

i=1

(xi + yi − x̄i − ȳi) (Λi − Λi−1)

− (
H(y ⊗ x)

)
δ − 2δ.

We conclude a path p = (· · · ⊗ 0⊗ y ⊗ x) in P (Λ0) is of weight Λ0 − 2δ if and only if

(xi + yi − x̄i − ȳi) = 0 for all i = 1..n and (6.1)

H(y ⊗ x) = 0. (6.2)

Notice, (6.2) implies x 6= 0 also. Table 6.1 lists all paths p = (· · ·⊗0⊗y⊗x) (y, x 6= 0)

in P (Λ0) with property (6.1) along with H(y⊗x) for the given y and x. In this table
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and throughout the remainder of this chapter we assume xi = x̄i = yi = ȳi = 0 unless

otherwise stated.

Label x y restrictions H(y ⊗ x)

Type 1 x̄i = 2 yi = 2 none 0

Type 2 x̄i=1
x̄j=1

yi=1
yj=1

i < j 0

Type 3 xi=1
x̄j=1

ȳi=1
yj=1

i < j 1

Type 4 xi=1
x̄j=1

ȳi=1
yj=1

i > j 0

Type 5 xi=1
x̄i=1

yj=1
ȳj=1

i 6= j 1

Type 6 xi=1
x̄i=1

yi=1
ȳi=1

none 0

Type 7 xi = 2 ȳi = 2 none 2

Type 8 xi=1
xj=1

ȳi=1
ȳj=1

i < j 2

Table 6.1: x, y 6= 0 in B1 such that (xi + yi − x̄i − ȳi) = 0

We collect those paths for which H(y ⊗ x) = 0 in table 6.2. Notice, these are the

only paths in P(Λ0) of weight Λ0 − 2δ.

x y restrictions count

x̄i = 2 yi = 2 none n
x̄i=1
x̄j=1

yi=1
yj=1

i < j (n)(n−1)
2

xi=1
x̄j=1

ȳi=1
yj=1

i > j (n)(n−1)
2

xi=1
x̄i=1

ȳi=1
yi=1

none n

Table 6.2: The paths (· · · ⊗ 0⊗ 0⊗ y ⊗ x) in P(Λ0) of weight Λ0 − 2δ
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Therefore,

dimgα = dimV (Λ0)α

= #p ∈ P(Λ0) with weight α

= n +
n(n− 1)

2
+

n(n− 1)

2
+ n

= n2 + n.

¤

Proposition 6.3. Let g = HC
(1)
n for any n ∈ Z≥2, and let α = −α−1 − 3δ. Then,

dimgα = 5n3+6n2+7n
3!

.

Proof: dimgα is simply the number of paths in P(Λ0) following exactly three 0-

arrows, six 1-arrows, six 2-arrows, . . . , six (n-1)-arrows, and three n-arrows. All such

paths are of the form

p = (· · · ⊗ 0⊗ 0⊗ z ⊗ y ⊗ x)

for some

z = (z1, . . . zn, z̄n, . . . z̄1),

y = (y1, . . . yn, ȳn, . . . , ȳ1), and

x = (x1, . . . , xn, x̄n, . . . x̄1)

in B1. Using theorem 5.6, we calculate the weight of such a path.
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wt(p) = Λ0 +
n∑

i=1

(xi + yi + zi − x̄i − ȳi − z̄i)(Λi − Λi−1)

− (
H(y ⊗ x) + 2H(z ⊗ y) + 3H(0⊗ z)

)
δ

We divide our search into two cases; Case I: z = 0 and Case II: z 6= 0.

Case I: Suppose wt(p) = Λ0 − 3δ and z = 0. Then

Λ0 − 3δ = wt(p)

= Λ0 +
n∑

i=1

(xi + yi − x̄i − ȳi)(Λi − Λi−1)

− (
H(y ⊗ x) + 2H(0⊗ y)

)
δ

If y = 0, then

Λ0 − 3δ = wt(p)

= Λ0 +
n∑

i=1

(xi − x̄i)(Λi − Λi−1)− δ,
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but this is impossible. We conclude y 6= 0 and

Λ0 − 3δ = wt(p)

= Λ0 +
n∑

i=1

(xi + yi − x̄i − ȳi)(Λi − Λi−1)

− (
H(y ⊗ x) + 2

)
δ.

Thus, a path p = (· · · ⊗ 0 ⊗ ⊗y ⊗ x) (y 6= 0) in P(Λ0) is of weight Λ0 − 3δ if

and only if

(xi + yi − x̄i − ȳi) = 0 for all i and (6.3)

H(y ⊗ x) = 1. (6.4)

In listing these properties we have called upon the fact that {Λi − Λi−1}n
i=1 and

{δ} are linearly independent.

Property (6.4) would clearly be met if x = 0. In this case, property (6.3) would

reduce to the following statement.

yi − ȳi = 0 for all i

Table 6.3 lists all paths of the form p = (. . . 0⊗y⊗0) for which wt(p) = Λ0−3δ.

We are still considering the case z = 0. We know y 6= 0 and we have accounted
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y restrictions count
yi=1
ȳi=1

none n

Table 6.3: Paths p = (. . . 0⊗ y ⊗ 0) in P(Λ0) for which wt(p) = Λ0 − 3δ

for those paths for which x = 0. The only paths left to consider in this case are

those of the form p = (· · · ⊗ 0 ⊗ y ⊗ x) for which both y and x are not equal

to 0. We have already listed all paths of this form with property (6.3) in table

6.1. We collect the paths with both properties (6.3) and (6.4) in table 6.4.

x y restrictions count
xi=1
x̄j=1

yj=1
ȳi=1

i < j (n)(n−1)
2

xi=1
x̄i=1

yj=1
ȳj=1

i 6= j (n)(n− 1)

Table 6.4: Paths p = (. . . 0⊗ y ⊗ x) (x 6= 0) for which wt(p) = Λ0 − 3δ

We have now exhausted the possibilities in Case I. Tables 6.3 and 6.4 lists all

paths of the form p = . . . (. . . 0⊗ y ⊗ x) for which wt(p) = Λ0 − 3δ.

Case II: Next we move to consider paths of the form p = . . . (. . . 0 ⊗ z ⊗ y ⊗ x)
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where z 6= 0. We require

Λ0 − 3δ = wt(p)

= Λ0 +
n∑

i=1

(xi + yi + zi − x̄i − ȳi − z̄i)(Λi − Λi−1)

− (
H(y ⊗ x) + 2H(z ⊗ y) + 3H(0⊗ z)

)
δ

= Λ0 +
n∑

i=1

(xi + yi + zi − x̄i − ȳi − z̄i)(Λi − Λi−1)

− (
H(y ⊗ x) + 2H(z ⊗ y) + 3

)
δ

If y = 0 then

Λ0 − 3δ = Λ0 +
n∑

i=1

(xi + yi + zi − x̄i − ȳi − z̄i)(Λi − Λi−1)

− (
H(y ⊗ x) + 2 + 3

)
δ.

Thus, depending on the value of x, either

Λ0 − 3δ = Λ0 +
n∑

i=1

(xi + yi + zi − x̄i − ȳi − z̄i)(Λi − Λi−1)− 6δ

or

Λ0 − 3δ = Λ0 +
n∑

i=1

(xi + yi + zi − x̄i − ȳi − z̄i)(Λi − Λi−1)− 5δ,
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but this is not possible. Therefore, y 6= 0. Now suppose x = 0.

Λ0 − 3δ = Λ0 +
n∑

i=1

(xi + yi + zi − x̄i − ȳi − z̄i)(Λi − Λi−1)

− (
H(y ⊗ x) + 2H(z ⊗ y) + 3

)
δ

= Λ0 +
n∑

i=1

(xi + yi + zi − x̄i − ȳi − z̄i)(Λi − Λi−1)

− (
2H(z ⊗ y) + 4

)
δ

meaning 2H(z⊗y)+4 = 3. However, H(z⊗y) is always a non-negative integer,

a contradiction. Hence, x 6= 0. We have now established that the only paths of

weight Λ0−3δ of the form (. . . 0⊗z⊗y⊗x) with z 6= 0 are paths for which y and

x are not equal to 0 also. We divide such paths into the following categories.

Category A: zk = z̄k for some k (k = 1, . . . , n).

Category B: xk = x̄k and zq 6= z̄q for some k and any q (k, q = 1, . . . , n).

Category C: yk = ȳk and zq 6= z̄q and xs 6= x̄s for some k and any q, s,

(k, q, s = 1, . . . , n).

Category D: yk 6= ȳk, zq 6= z̄q and xs 6= x̄s for any k, q, s (k, q, s = 1, . . . , n).

As we have done in the previous cases, we use the affine weight formula along

with the fact that {Λi − Λi−1}n
i=1 and {δ} are linearly independent to formulate

requirements for a path in a particular category to be of weight Λ0 − 3δ.



CHAPTER 6. ROOT MULTIPLICITIES OF HC
(1)
N 74

Category A: A path p = (. . . 0 ⊗ z ⊗ y ⊗ x) from category A is of weight

Λ0 − 3δ if and only if

xi + yi − x̄i − ȳi = 0 for all i = 1, . . . , n, (6.5)

H(y ⊗ x) = 0, and (6.6)

H(z ⊗ y) = 0. (6.7)

Using table 6.2 we collect all paths p = (. . . 0 ⊗ z ⊗ y ⊗ x) in Category

A with properties (6.5) and (6.6) and record our results in table 6.5. We

also list H(z ⊗ y) for each of these paths. Then, we collect those paths in

category A of weight Λ0 − 3δ in table 6.6.

x y restrictions H(z ⊗ y)

x̄i=1
x̄j=1

yi=1
yj=1

i < j

{
2 1 < j ≤ k

1 otherwise
xi=1
x̄j=1

ȳi=1
yj=1

i > j 1

xi=1
x̄i=1

ȳi=1
yi=1

none

{
0 i = k

1 otherwise

x̄i = 2 yi = 2 none

{
2 k ≥ i

1 otherwise

Table 6.5: Some paths in category A

x y z restrictions count
xi=1
x̄i=1

ȳi=1
yi=1

zk=1
z̄k=1

i = k n

Table 6.6: Paths from Category A for which wt(p) = Λ0 − 3δ
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Category B: A path p = (. . . 0 ⊗ z ⊗ y ⊗ x) from Category B is of weight

Λ0 − 3δ if and only if

yi + zi − ȳi − z̄i = 0 for all i = 1, . . . , n, (6.8)

H(y ⊗ x) = 0 and (6.9)

H(z ⊗ y) = 0. (6.10)

Using table 6.2 we collect all paths p = (. . . 0⊗ z ⊗ y ⊗ x) in Category B

with properties (6.8) and (6.10) and record our results in table 6.7. We

also list H(y⊗ x) for each path. We conclude that no paths in category B

are of weight Λ0 − 3δ.

y z restrictions H(y ⊗ x)

ȳi = 2 zi = 2 none

{
2 i ≤ k

1 otherwise

ȳi=1
ȳj=1

zi=1
zj=1

i < j

{
2 i < j ≤ k

1 otherwise
yi=1
ȳj=1

z̄i=1
zj=1

i > j 1

Table 6.7: Some paths in Category B
.

Category C: A path p = (. . . 0 ⊗ z ⊗ y ⊗ x) from Category C is of weight
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Λ0 − 3δ if and only if

xi + zi − x̄i − z̄i = 0 for all i = 1, . . . , n, (6.11)

H(y ⊗ x) = 0 and (6.12)

H(z ⊗ y) = 0. (6.13)

Using table 6.1 we collect all paths p = (. . . z ⊗ y⊗ x) in Category C with

property (6.11) and record our results in table 6.1. We also list H(y ⊗ x)

in this table. Note, H(z ⊗ y) = H(y ⊗ z) for each path in the table. We

list those paths from category C of weight Λ0 − 3δ in table 6.9.

x z restrictions H(y ⊗ x)

x̄i = 2 zi = 2 none

{
0 i ≥ k

1 otherwise

x̄i=1
x̄j=1

zi=1
zj=1

i < j

{
0 i ≤ k

1 otherwise
xi=1
x̄j=1

z̄i=1
zj=1

i < j 1

xi=1
x̄j=1

z̄i=1
zj=1

i > j

{
0 j ≤ k < i

1 otherwise

xi = 2 z̄i = 2 none

{
2 i ≥ k

1 otherwise

xi=1
xj=1

z̄i=1
z̄j=1

i < j

{
2 j ≤ k

1 otherwise

Table 6.8: Some paths in Category C

Category D: A path p = (. . . 0 ⊗ z ⊗ y ⊗ x) from Category D is of weight
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x y z restrictions count

x̄i = 2 yk=1
ȳk=1

zi = 2 i ≥ k n + (n)(n−1)
2

x̄i=1
x̄j=1

yk=1
ȳk=1

zi=1
zj=1

i<j
i≤k

(n)(n− 1) + (n)(n−1)(n−2)
3

xi=1
x̄j=1

yk=1
ȳk=1

z̄i=1
zj=1

j ≤ k < i (n)(n−1)
2

+ (n)(n−1)(n−2)
6

Table 6.9: Paths from Category C of weight Λ0 − 3δ

Λ0 − 3δ if and only if

xi + yi + zi − x̄i − ȳi − z̄i = 0 for all i = 1, . . . , n, (6.14)

H(y ⊗ x) = 0 and (6.15)

H(z ⊗ y) = 0. (6.16)

We list all paths p = (. . . 0⊗ z⊗y⊗x) in Category D with property (6.14)

in table 6.10. We include H(y ⊗ x) in our list. Table 6.11 then lists those

paths from table 6.10 with both properties (6.14) and (6.15). We include

H(z⊗ y) in our list. Finally, we record all the paths from category D with

weight Λ0 − 3δ in table 6.12.

We are now finished considering Case II.

All that is left to do in calculating dimgα is to count the number of Λ0 − paths of

weight Λ0 − 3δ. These paths are given in tables 6.3, 6.4, 6.6, 6.9, and 6.12.
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x y z restrictions H(y ⊗ x)

xi=1
x̄i=1

ȳj=1
ȳk=1

zi=1
zj=1

i 6= j 6= k

{
2 i > k, i > j

1 otherwise

xi=1
xj=1

yk=1
ȳi=1

z̄j=1
z̄k=1

i 6= j 6= k

{
2 i < k, j < k

1 otherwise
x̄j=1
x̄k=1

yi=1
yj=1

zk=1
z̄i=1

i 6= j 6= k 0

x̄j=1
x̄k=1

yk=1
ȳi=1

zi=1
zj=1

i 6= j 6= k

{
1 j > k, i > k

0 otherwise
xi=1
xj=1

ȳj=1
ȳk=1

zk=1
z̄i=1

i 6= j 6= k 2

xk=1
x̄i=1

yi=1
yj=1

z̄j=1
z̄k=1

i 6= j 6= k

{
1 j > k, i > k

0 otherwise

Table 6.10: Some paths from Category D

x y z restrictions H(z ⊗ y)

x̄j=1
x̄k=1

yi=1
yj=1

zk=1
z̄i=1

i 6= j 6= k

{
2 i < k, j < k

1 otherwise

x̄j=1
x̄k=1

yk=1
ȳi=1

zi=1
zj=1

i6=j<k or
j 6=k<i

{
1 i > k > j

0 otherwise
xk=1
x̄i=1

yi=1
yj=1

z̄j=1
z̄k=1

i6=j<k or
i<k<j

2

Table 6.11: Some paths from Category D

Therefore,

multg−α−1−3δ = dimV (Λ0)Λ0−3δ

= |{p ∈ P(Λ0)|wt(p) = Λ0 − 3δ}|

= n +
(n)(n− 1)

2
+ (n)(n− 1) + n + n +

(n)(n− 1)

2

+(n)(n− 1) +
(n)(n− 1)(n− 2)

3
+

(n)(n− 1)

2

+
(n)(n− 1)(n− 2)

6
+

(n)(n− 1)(n− 2)

3

=
5n3 + 6n2 + 7n

6
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x y z restrictions count
x̄j=1
x̄k=1

yk=1
ȳi=1

zi=1
zj=1

i < k, i 6= j 6= k (n)(n−1)(n−2)
3

Table 6.12: Paths from Category D with weight Λ0 − 3δ

¤

Propositions 6.1, 6.2, and 6.3 give root multiplicities of roots, −α−1−kδ, of HC
(1)
n

for fixed k and varying n. We would also like to investigate root multiplicities of roots,

−α−1 − kδ, for fixed n and varying k. We will consider roots in HC
(1)
2 of the form

−α−1 − kδ.

For any Kac-Moody Algebra of classical type, X = A,B,C,D, we have the fol-

lowing formula: ( see [16] chapter 12).

∞∑
k=1

multV (Λ)(λ− kδ)qk = φ(q)−nq
dim(Xn)−n(1+ȟ)

24∗(1+ȟ) bΛ
λ ,

where, V (Λ) is the highest weight X
(1)
n -module with highest weight Λ, φ is the Euler-

phi function, ȟ is the dual Coxter number associated with X
(1)
n , and bλ

Λ is the branching

function described in [16]. Let Λ = Λ0, λ = Λ0, and X
(1)
n = C

(1)
2 . Then dim(Xn) = 10
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, ȟ = 3, and bΛ
λ = bΛ0

Λ0
is given in [17] to be

bΛ0
Λ0

= χ
(1)
1,1

= q
−1
24 φ(q)−1 (f12,1 − f12,7) , where

fa,b =
∑
m∈Z

qa(m+ b
2a)

2

Therefore, if V (Λ0) is the highest weight C
(1)
n -module with highest weight Λ0 we have

the following formula,

∞∑
k=1

multV (Λ0)(Λ0 − kδ)qk =
∑
m∈Z

(
qm(12m+1) − q(2m+1)(4m+1)

)
φ−3(q) (6.17)

Notice (6.17) is a generating function for the multiplicity of Λ0 − kδ as a weight in

the highest weight C
(1)
n -module, V (Λ0), which leads to proposition 6.4.

Proposition 6.4. Let g = HC
(1)
2 . Then the multiplicity of the root −α−1 − kδ in g

is given by the coefficient of qk in the right hand side of expression (6.17).

In table 6.13 we use proposition 6.4 to give the multiplicities of −α−1 − kδ (1 ≤

k ≤ 10) as a root of HC
(1)
2 .
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k mult(−α−1 − kδ)
1 2
2 6
3 13
4 29
5 57
6 112
7 205
8 372
9 647
10 1110

Table 6.13: Multiplicities of roots −α−1 − kδ in HC
(1)
2

6.2 Level Two Root Multiplicities

In this section we wish to investigate multiplicities of roots,α = −2α−1−kδ, of HC
(1)
n .

In chapter 4, we gave a rather complicated formula for the multiplicity of a root α of

HC
(1)
n . Recall,

dim(gα) =
∑
τ |α

µ
(α

τ

) ( τ

α

)
B(τ).

Now α
2

is the only possible τ which divides α = −2α−1 − kδ. Thus, we may simplify

the multiplicity formula given above.

dimg−2α−1−kδ = B(−2α−1 − kδ)− δ(0),(k mod 2)

2
B

(
−α−1 − k

2
δ

)
,
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where

B(τ) =
∑

(niτi)∈T (τ)

(
∑

ni − 1)!∏
ni!

∏
κni

τi

κτi
=

∑
ω∈W (S)

(−1)l(ω)+1dimV (ωρ− ρ)τi
.

Next, we must calculate a sufficient number of ω ∈ W (S). We do so using the

following well known lemma and record our results in table 6.14.

Lemma 6.1. Suppose ω = ω′rj and l(ω) = l(ω′) + 1. Then, ω ∈ W (S) if and only if

ω′ ∈ W (S) and ω′(αj) ∈ ∆+(S).

length=l ω ∈ W (S), l(ω) = l ωρ− ρ, α-basis ωρ− ρ, Λ-basis level
1 r−1 −α−1 Λ0 1
2 r−1r0 −2α−1 − α0 2Λ1 − δ 2

Table 6.14: ωρ− ρ for ω ∈ W (S)

Let,

M1 =
∑
λi<ηi

λi+ηi=−2α−1−kδ

dimV (Λ0)λi
dimV (Λ0)ηi

M2 = dimV (2Λ1 − δ)−2α−1−kδ, and (6.18)

M3 = dimV (Λ0)−α−1− k
2
δ.

Then the multiplicity formula for a level two root −2α− kδ of HC
(1)
n becomes
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dimg−2α−1−kδ = M1 +
δ(0),(k mod 2)

2
M2

3 −M2 − δ(0),(k mod 2)

2
M3

= M1 −M2 +
δ(0),(k mod 2)

2
M3(M3 − 1) (6.19)

Example 6.2. In this example we calculate the multiplicity of the root −2α−1 − 2δ

of HC
(1)
n .

We will rely upon the multiplicity formula given in (6.19). Let us begin by calcu-

lating M1. First, we list all partitions, (λi, ηi) of −α−1 − 2δ into two distinct weights

in V (Λ0).

λi = row i of the matrix




1 0 0 0

1 1 0 1

1 1 1 0

1 1 1 1

1 1 2 0







α−1

α0

α1

α2




ηi = row i of the matrix




1 2 4 2

1 1 4 2

1 1 3 2

1 1 3 1

1 1 2 2







α−1

α0

α1

α2



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Using the path realization, P(Λ0), given in figure 6.1, we count the number of paths

with weights λi, and ηi for each i and list our results in table 6.2. Summing the entries

in the last column of table 6.2 leads us to conclude M1 = 10.

i # paths with weight λi # paths with weight ηi dimV (Λ0)λi
dimV (Λ0)ηi

1 1 6 6
2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1

Next, we must calculate M2. Notice,

dimV (2Λ1 − δ)−2α−1−2δ = dimV (2Λ1)−2α−1−δ

We must find the number of paths in the path realization P(2Λ1) following exactly

one 0-arrow, four 1-arrows, and two 2-arrows. We perform this calculation using the

MATLAB program, mult.m found in appendix A, and conclude M2 = 9. Finally, we

need to calculate M3. In example 6.1 we showed that

dimV (−α−1)−α−1−δ = 2
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Therefore, M3 = 2. We conclude

dimgα = 10− 9 +
1

2
(2)(2− 1) = 2.

Using the same technique as in example 6.2 we will find the multiplicity of the

root −2α−1 − 3δ of HC
(1)
n , for any n ≥ 2. (We will show in a later section that the

multiplicity of the root −2α−1 − 2δ of HC
(1)
n is n.)

Referring to equation 6.19 we see

dimg−2α−1−3δ = M1 −M2 (6.20)

where

M1 =
∑
λi<ηi

λi+ηi=α

dimV (−α−1)λi
dimV (−α−1)ηi

and (6.21)

M2 = dimV (−2α−1 − α0)−2α−1−3δ (6.22)

Our problem now consists of calculating weight multiplicities in certain highest weight

C
(1)
n -modules. We make use of crystal basis theory to calculate these multiplicities.

Lemma 6.2. Let V (Λ0) be the highest weight C
(1)
n -module with highest weight Λ0.
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Then ∑
λi<ηi,ηi 6=Λ0

λi+ηi=−2α−1−3δ

dimV (Λ0)λi
· dimV (Λ0)ηi

= 5n3 − 3n2 + 2n

Proof:

In table 6.15 we l list all possible possible λi and ηi such that λi + ηi = 2Λ0 − 3δ.

t λ
(t)
i,j = Λ0 + µ− δ, η

(t)
i,j = Λ0 + ν − 2δ restrictions

µ given below ν given below
1 2(Λi − Λi−1) −2(Λi − Λi−1) i = 1..n
2 −2(Λi − Λi−1) 2(Λi − Λi−1) i = 1..n
3 (Λi − Λi−1) + (Λj − Λj−1) −(Λi − Λi−1)− (Λj − Λj−1) i = 1..n

j = 1..n
i > j

4 −(Λi − Λi−1)− (Λj − Λj−1) (Λi − Λi−1) + (Λj − Λj−1) i = 1..n
j = 1..n
i > j

5 (Λi − Λi−1)− (Λj − Λj−1) −(Λi − Λi−1) + (Λj − Λj−1) i = 1..n
j = 1..n
i 6= j

6 0 0 none

Table 6.15: λ
(t)
i,j and η

(t)
i,j such that λ

(t)
i,j + η

(t)
i,j = 2Λ0 − 3δ

For fixed i and j, dimV (Λ0)λi,j
= 1 for classes t = 1 − 5 and dimV (Λ0)λ

(6)
i,j

= n.
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Thus,

∑
λi<ηi,ηi 6=Λ0

λi+ηi=−2α−1−3δ

dimV (Λ0)λi
· dimV (Λ0)ηi

=
∑

(λ
(t)
i,j

,η
(t)
i,j

)

t=1..6

dimV (Λ0)λ
(t)
i,j
· dimV (Λ0)η

(t)
i,j

=
∑

(λ
(t)
i,j

,η
(t)
i,j

)

t=1..5

dimV (Λ0)λ
(t)
i,j
· dimV (Λ0)η

(t)
i,j

+dimV (Λ0)Λ0−δ · dimV (Λ0)Λ0−2δ

=
5∑

t=1

dimV (Λ0)η
(t)
i,j + n · dimV (Λ0)Λ0−2δ

=
5∑

t=1

dimV (Λ0)η
(t)
i,j + n · (n2 + n)

(see proposition (6.2))

Next, we find the number of Λ0-paths in P(Λ0) with weights η
(t)
i,j for t = 1..5.

Combining this information with the above equation, we will prove our lemma.

Consider η
(3)
i,j = Λ0− (Λi−Λi−1)− (Λj−Λj−1)−2δ. All paths of weights η

(3)
i,j must

follow exactly two zero arrows and thus be of the form (· · · ⊗ 0 ⊗ y ⊗ x) for some

x, y ∈ B1.

η
(3)
i,j = Λ0 − (Λi − Λi−1)− (Λj − Λj−1)− 2δ

= wt(· · · ⊗ 0 · · · ⊗ 0⊗ y ⊗ x)

= Λ0 +
n∑

k=1

(xk + yk − x̄k − ȳk)(Λk − Λk−1)

− [
H(y ⊗ x) + 2H(0⊗ y)

]
δ

= Λ0 +
n∑

k=1

(xk + yk − x̄k − ȳk)(Λk − Λk−1)−
[
2 + H(y ⊗ x)

]
δ
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So that,

0 = (Λi − Λi−1) + (Λj − Λj−1) +

n∑
k=1

(xk + yk − x̄k − ȳk)(Λk − Λk−1)

+
[
H(y ⊗ x)

]
δ

Therefore a path p = (. . . 0⊗ y ⊗ x) is of weight η
(3)
ij if and only if

(xi + yi − x̄i − ȳi) = −1, (6.23)

(xj + yj − x̄j − ȳj) = −1, (6.24)

(xk + yk − x̄k − ȳk) = 0(for all k 6= i, j) and (6.25)

H(y ⊗ x) = 0, (6.26)

since {Λk − Λk−1}n
k=1, and {δ} are linearly independent. Table 6.16 lists all paths

(· · · ⊗ 0⊗ 0⊗ y ⊗ x) have properties (6.23) through (6.26).

Using similar techniques we find the number of paths η
(t)
i,j for t = 1 . . . 5 and record

our results in table 6.17.
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x, y restrictions count

yj = 1 ȳi = 1 i, j = 1..n

x̄j = 2 i > j (n)(n−1)
2

yj = 1 ȳj = 1 i, j = 1..n

x̄i = 1 x̄j = 1 i > j (n)(n−1)
2

yk = 1 ȳi = 1 i, j, k = 1..n

x̄j = 1 x̄k = 1 k > i > j (n)(n−1)(n−2)
6

yk = 1 ȳk = 1 i, j, k = 1..n

x̄i = 1 x̄j = 1 i > j, k > j (n)(n−1)(n−2)
3

k 6= i
yk = 1 yj = 1 i, j, k = 1..n

x̄i = 1 x̄k = 1 i > j (n)(n−1)(n−2)
2

k 6= i, k 6= j

Table 6.16: paths, (· · · ⊗ 0⊗ 0⊗ y ⊗ x), with weights η
(3)
i,j

t number of paths with weight ηt
i,j

1 n2

2 n2

3 (n)(n− 1)2

4 (n)(n− 1)2

5 2(n2)(n− 1)

Table 6.17: number of paths with weight η
(t)
i,j

Therefore,

∑
λi<ηi,ηi 6=Λ0

λi+ηi=−2α−1−3δ

dimV (Λ0)λi
· dimV (Λ0)ηi

=
5∑

t=1

dimV (Λ0)η
(t)
i,j + n(n2 + n)

= n2 + n2 + (n)(n− 1)2 + (n)(n− 1)2

+2(n)2(n− 1) + (n)(n2 + n)

= 5n3 − 3n2 + 2n.
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¤

Lemma 6.3. Let V (2Λ1) be the highest weight C
(1)
n -module with highest weight 2Λ1.

Then we have the following formula.

dimV (2Λ1)2Λ0−2δ = 5n3 − 3n2 + 2n.

Proof : Let P(2Λ1) be the path realization of the highest weight C
(1)
n -module V (2Λ1).

Let p ∈ P(2Λ1) be of weight 2Λ0 − 2δ. Notice, 2Λ1 − (2Λ0 − 2δ) = 2α0 + 6α1 + · · ·+

6αn−1 + 3αn. Therefore p must follow two 0-arrows, six 1-arrows, . . . , six (n-1)-

arrows, and three n-arrows. The ground state path of weight 2Λ1 is (. . . 2⊗ 2) where

2 = (2, 0, . . . , 0︸ ︷︷ ︸
2(n− 1) times

, 2). The only f̃i for which f̃i(2) exists is f̃1. Thus,

p = (. . . 2⊗ s⊗ r ⊗ w ⊗ z ⊗ y ⊗ x)

for some s, r, w, z, y, x in B2, the perfect C
(1)
n perfect crystal of level two given in
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example 5.3. We require

2Λ0 − 2δ = wt(p)

= 2Λ1 −
n∑

i=1

(xi + yi + zi + wi + ri + si

−x̄i − ȳi − z̄i − w̄i − r̄i − s̄i)(Λi − Λi−1)

− [
H(y ⊗ x) + 2H(z ⊗ y) + 3H(w ⊗ z)

+ 4H(r ⊗ w) + 5H(s⊗ r) + 6H(2⊗ s)] δ

We know {Λi − Λi−1}n
i=1 and {δ} are linearly independent, and we know H(a⊗ b) is

a non-negative integer for all a, b ∈ B2. Therefore,

H(w ⊗ z) = H(r ⊗ z) = H(s⊗ r) = H(2⊗ s) = 0. (6.27)

First let us consider the implications of the statement H(2⊗ s) = 0. Referring to

the definition of H given in example 5.6, we notice

0 = H(2⊗ s)

≥ θ′1(2⊗ s)

=
1

2
(4− s(s))

Thus, s(s) must be greater than or equal to four. s ∈ B2, meaning s(s) must be less

than or equal to four. Hence, s(s)=4.
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Next notice

0 = H(2⊗ s)

≥ θ2(2⊗ s)

= 2− s̄1

Thus s̄1 ≥ 2. We conclude,

if H(2⊗ s) = 0 then s(s) = 4 and s̄1 ≥ 2. (6.28)

Next let us consider the implications of the statement H(2⊗s) = 0 and H(s⊗r) =

0. By statement (6.28) we know that s(s) = 4 and s̄1 ≥ 2. Notice,

0 = H(s⊗ r)

≥ θ′1(s⊗ r)

=
1

2
(4− s(r))

Thus, s(r) = 4. Next consider

0 = H(s⊗ r)

≥ η1(s⊗ r)

= 2− s1
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Thus, s1 ≥ 2. Combining this fact with the restrictions given in (6.28), we see s is

completely determined. We conclude,

if H(2⊗ s) = 0 and H(s⊗ r) = 0 then s = 2 (6.29)

Combining (6.29) and (6.27), we see

s = r = w = 2, s(z) = 4, and z̄1 ≥ 2. (6.30)

We now realize any path p ∈ P(2Λ1) is of weight 2Λ0 − 2δ if and only if where

s(z) = 4, z̄1 ≥ 2, and

2Λ0 − 2δ = 2Λ1 +
n∑

i=1

(xi + yi + zi − x̄i − ȳi − z̄i)(Λi − Λi−1)

− (
H(y ⊗ x) + 2H(z ⊗ y)

)
δ (6.31)

Calling upon the fact that {Λi − Λi−1} and {δ} are linearly independent, we re-

state (6.31) as follows

x̄1 + ȳ1 + z̄1 − x1 − y1 − z1 = 2 (6.32)

x̄i + ȳi + z̄i − xi − yi − zi = 0 for all i = 2 . . . n (6.33)

H(z ⊗ y) = 1 and H(y ⊗ x) = 0 or (6.34)

H(z ⊗ y) = 0 and H(y ⊗ x) = 2
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We divide our search into the following cases:

Case 1: s(z) = 4, s(y) = 4, s(x) = 4

Case 2: s(z) = 4, s(y) = 4, s(x) = 2

Case 3: s(z) = 4, s(y) = 4, s(x) = 0

Case 4: s(z) = 4, s(y) = 2, s(x) = 4

Case 5: s(z) = 4, s(y) = 2, s(x) = 2

Case 6: s(z) = 4, s(y) = 2, s(x) = 0

Case 7: s(z) = 4, s(y) = 0, s(x) = 4

Case 8: s(z) = 4, s(y) = 0, s(x) = 2

Case 9: s(z) = 4, s(y) = 0, s(x) = 0

In all cases, z must meet the following requirement,

z = q + w where q̄1 = 2, and s(q) = s(w) = 2 (6.35)

We wish to count the number of paths from each case of weight 2Λ0 − 2δ. That is

we wish to find the number of paths in each case for which all requirements (6.35),

(6.32), (6.33), and (6.34) hold.

No paths from case 4 are of weight 2Λ0 − 2δ. To see this let p be a path in Case

4. Then p = (· · · ⊗ 2 ⊗ z ⊗ y ⊗ x) ,with s(z) = 4, s(y) = 2, and s(x) = 4. Using
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the energy function definition give in 5.6, we see H(z ⊗ y) ≥ θ′1(z ⊗ y) = 1. Then

requirement (6.34) forces H(y ⊗ x) = 0. But H(y ⊗ x) ≥ θ1(y ⊗ x) = 1. Therefore,

no paths from Case 4 are of weight 2Λ0− 2δ. Similarly, Cases 6,7,8,and 9 do not lead

to any paths of weight 2Λ0 − 2δ. Let us consider the remaining cases.

Case 1: Let p be a path from case 1. Then, p = (· · ·⊗2⊗ z⊗ y⊗x) ,with s(z) = 4,

s(y) = 4, s(x) = 4. A path p from case I of weight 2Λ0 − 2δ must be from one

of the following two categories.

Case I, Category A:

z = q + y′

where q̄1 = 2 and s(q) = s(y′) = 2

y = x′ + y′′

where x′ is the corresponding entry to y′ in table 6.1

x = x′′ + a

where x′′ is the corresponding entry to y′′ in table 6.1

and ak = āk = 1 with s(a) = 2
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Case I, Category B:

z = q + y′

where q̄1 = 2 and s(q) = s(y′) = 2

y = y′′ + a

where ak = āk = 1 with s(a) = 2

x = x′′ + x′

where x′′ is the corresponding entry to y′′ in table 6.1

and x′ is the corresponding entry to y′ in table 6.1

First we will show categories A and B contain all the possible paths in case I of

weight 2Λ0 − 2δ. Suppose p′ = (· · · ⊗ 2⊗ z ⊗ y ⊗ x) is a path in Case I which is not

in category A or in category B. Furthermore, suppose z1 = 0. Then η1(z ⊗ y) = 2

which contradicts (6.34). Thus z1 = 1 or z1 = 2 (since s(z)=4). Suppose z1 = 2. If

ȳ1 ≥ 2 then p′ will be in category A and if x̄1 ≥ 2 then p′ will be in category B. Thus

(6.32) implies ȳ1 = 1,x̄1 = 1,y1 = 0, and x1=0. Now, η1(y ⊗ x) = ȳ1 − y1 = 1 which

means H(y ⊗ x) = 2 and H(z ⊗ y) = 0 (refer to 6.34). But, θ2(z ⊗ y) = z̄1 − ȳ1 = 1,

a contradiction. Hence, z1 6= 2. Suppose z1 = 1 and zk = 1 (or z̄k = 1) for some

k = 2 . . . n. Notice, η1(z ⊗ y) = z̄1 − z1 = 1. Thus (6.34) implies H(z ⊗ y) = 1 and

H(y⊗x) = 0. Also notice, θ2(z⊗y) = 2− ȳ1, which implies ȳ1 is greater than or equal
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to one. Now, if ȳk ≥ 1 (or yk ≥ 1) then p′ will be a member of category A. Thus,

(6.33) implies x̄k ≥ 1 (or xk ≥ 1). Notice θ2(y ⊗ x) = ȳ1 − x̄1, meaning x̄1 ≥ ȳ1 ≥ 1.

We conclude p′ is an element of category B. Hence, any path which falls under case

I must be in either category A or category B.

Next, we determine which paths in category A and which new paths in category

B are of weight 2Λ0 − 2δ.

Case I Category A: Let us consider those paths p = (· · · ⊗ 2⊗ z ⊗ y ⊗ x) where

z, y, and x are as described Case I, Category A above. Suppose that y′ and

x′ are of type one in table 6.1. That is y′i = 2 and x̄′i = 2 for some i. Notice,

η1(z ⊗ y) = z̄1 − z1 = 2 − y′1. We know H(z ⊗ y) < 2 and thus conclude

i = 1. Therefore, if y′ and x′ are of type one we are looking for p of the form

p = (. . . 2⊗ z ⊗ y ⊗ x) with

z : z̄1 = z1 = 2

y = b + y′′

where b̄1 = 2, s(b) = 2. (6.36)

x = x′′ + a

where x′′ is the corresponding entry to y′′ in table 6.1

and ak = āk = 1 with s(a) = 2

H(z⊗y) = 0 for all such paths. Thus a path from Case I, category A with x′, y′
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y′′, x′′ of type restrictions count

one i 6= 1 (n)(n− 1)

two i 6= 1 (n)(n−1)(n−2)
2

three

{
j = 1 i 6= 1, i ≤ k or

j 6= 1 j < i

(n−1)+
(n−1)(n−2)

2

+
(n)(n−1)(n−2)

2

four k < i < j (n)(n−1)(n−2)
6

five

{
i = k i 6= j or

i < k i < j

(n)(n−1)+
(n)(n−1)(n−2)

3

+
(n)(n−1)

2

(i ≤ k to avoid double counting)
six i = j = k to avoid double counting n

seven never 0
eight never 0

Table 6.18: Paths in Case I, Category A with x′ and y′ of type one which are of
weight 2Λ0 − 2δ

of type one is of weight 2Λ0 − 2δ if and only if

z, y, and x are as in (6.36) (6.37)

H(y ⊗ x) = 2 (6.38)

We list all paths from Case I, Category A with x′ and y′ of type one meeting

both requirements (6.37) and (6.38) in table 6.18.

Next suppose that y′ and x′ are of type two in table 6.1. Furthermore, suppose

y′1 6= 1. Then, y′1 = 0 and η1(z ⊗ y) = 2 − 0 = 2. Yet, we know H(z ⊗ y) < 2,

a contradiction. Therefore, y′1 = 1 and consequently x̄′1 = 1. Now, notice

H(z ⊗ y) ≥ η1(z ⊗ y) = 2 − 1 = 1. We know H(z ⊗ y) is equal to zero or

one. Thus, H(z ⊗ y) = 1 and H(y ⊗ x) = 0 . Finally, suppose x̄1 = 0. Then,
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θ2(y ⊗ x) = ȳ1 − 0 = ȳ1. However, this is impossible since ȳ1 ≥ x̄′1 = 1. Thus

x̄1 ≥ 1. Therefore, either

Case I, Category A(i):

z : z̄1 = 2, z1 = 1, zk = 1(k = 2, . . . n)

y = b + y′′

where b̄1 = 1, b̄k = 1, s(b) = 2

x = x′′ + a

where x′′ is the corresponding entry to y′′ in table 6.1

and a1 = ā1 = 1 with s(a) = 2

or

Case I, Category A(ii):

z : z̄1 = 2, z1 = 1, zj = 1(j = 2, . . . n)

y = b + y′′

where b̄1 = 1, b̄j = 1, s(b) = 2

x = x′′ + a

where x′′ is the corresponding entry to y′′ in table 6.1(x̄′′1 6= 0).

and ak = āk = 1(k 6= 1) with s(a) = 2.
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We list those paths from Case I, Category A(i) (resp. (ii)) for which H(z⊗y) = 1

and H(y ⊗ x) = 0 in table 6.19 (resp. 6.20). These paths are exactly the paths

from Case I, Category A(i) (resp. (ii)) of weight 2Λ0 − 2δ.

y′′, x′′ of type restrictions count

one i=1
k=2...n

n− 1

two i=1
j,k=2...n

(n− 1)2

three never 0
four never 0
five never 0
six never 0

seven never 0
eight never 0

Table 6.19: Paths from Case I, Category A(i) of weight 2Λ0 − 2δ

y′′, x′′ of type restrictions count

one j = 2 . . . n (n− 1)2

(x̄1 = 2, y1 = 2) k = 2 . . . n
two i, j, k = 2 . . . n (n− 1)2 + (n− 1)2(n− 2)+(

x̄1=1,x̄i=1
y1=1,yi=1

) {
i ≤ j or

k < j and j < i
(n−1)(n−2)(n−3)

6

three never 0
four never 0
five never 0
six never 0

seven never 0
eight never 0

Table 6.20: Paths from Case I, Category A(ii) of weight 2Λ0 − 2δ

We have considered paths from Case I, Category A where y′, x′ are of types

one and two. If y′, x′ are of types three through eight no paths from Case I,

Category A will be of weight 2Λ0−2δ. (This can be checked using the methods
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we used in the previous cases). Thus, tables 6.18, 6.19, and 6.20 contain all

paths from Case I, Category A of weight 2Λ0− 2δ. We find the total number of

paths in Case I, Category A of weight 2Λ0 − 2δ by summing the last columns

of these three tables. There are 13n3−9n2+2n
6

paths from Case I, Category A of

weight 2Λ0 − 2δ.

Case I, Category B: Using similar methods it can be shown that there are

4n3−5n2+n
2

paths from Case I, Category B of weight 2Λ0 − 2δ.

Therefore, 25n3−24n2+5n
6

of the paths from Case I are of weight 2Λ0 − 2δ. We have

used a similar method to find the number of paths from each of the remaining cases

of weight 2Λ0− 2δ. Due to the tedious nature of the calculations we will list only the

results here.

Paths from Case count

one 25n3−24n2+5n
6

two 3n2−3n
2

three n
four 0

five 5n3−3n2+10n
6

six 0
seven 0
eight 0
nine 0

Table 6.21: Number of paths of weight 2Λ0 − 2δ for cases one through nine
.

Summing the last column of table 6.21, we prove our lemma.
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dimV (2Λ1)2Λ0−2δ = {#p ∈ P(2Λ1)|wt(p) = 2Λ0 − 2δ}

=
25n3 − 24n2 + 5n

6
+

3n2 − 3n

2

+n +
5n3 − 3n2 + 10n

6

= 5n3 − 2n2 + 3n

¤

Proposition 6.5. Let g = HC
(1)
n for any n ∈ Z≥2 and let α = −2α−1 − 3δ. Then,

dimgα =
5n3 + 6n2 + 7n

3!

Proof : Referring to (6.20) we see that

dimg−2α−1−3δ = M1 −M2,

where

M1 =
∑
λi<ηi

λi+ηi=α

dimV (−α−1)λi
dimV (−α−1)ηi

and (6.39)

M2 = dimV (−2α−1 − α0)−2α−1−3δ (6.40)
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Notice,

M1 = mult(Λ0)Λ0mult(Λ0)Λ0−3δ +
∑

λi<ηi,ηi 6=Λ0
λi+ηi=−2α−1−3δ

dimV (Λ0)λi
· dimV (Λ0)ηi

(6.41)

Clearly, mult(Λ0)Λ0 = 1. Using proposition 6.2 and lemma 6.2, equation 6.41 reduces

to

M1 =
5n3 + 6n2 + 7n

6
+ 5n3 − 3n2 + 2n. (6.42)

Realizing dim(2Λ1 − δ)2Λ0−3δ = dim(2Λ1)2Λ0−2δ, we may use lemma 6.3 to calculate

M2.

M2 = 5n3 − 3n2 + 2n. (6.43)

Therefore,

dimg−2α−1−3δ = M1 −M2

=
5n3 + 6n2 + 7n

6
+ 5n3 − 3n2 + 2n

−(5n3 − 3n2 + 2n)

=
5n3 + 6n2 + 7n

6

¤

In section 6.1 we not only gave formulas for roots, α = −α−1 − kδ, of HC
(1)
n for

fixed k and varying n, we also gave a formula for the multiplicity of α for fixed n
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(n = 2) and varying k. While we have not yet found a formula for the multiplicity of

roots α = −2α−1 − kδ in HC
(1)
2 for varying k, we have calculated such multiplicities

for k equal to two through ten. We record our results in table 6.22.

k M1 M2 M3 mult(−2α−1 − kδ)
2 10 2 9 2
3 45 0 32 13
4 139 6 97 57
5 469 0 264 205
6 1228 13 661 645
7 3396 0 1556 1840
8 7939 29 2477 4868
9 19570 0 7448 12122
10 42497 57 15386 28704

Table 6.22: The multiplicity of −2α−1 − kδ as a root of HC
(1)
2

6.3 General Observations

In this section we state some general observations concerning root multiplicities of

HC
(1)
n .

Proposition 6.6. Let g = HC
(1)
n and let α = −lα−1 − kδ. Then

dim(g)α =




n if l = k

0 if l > k
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Proof : Let g = HC
(1)
n and let k ∈ Z. Notice,

r−1(−kα−1 − kδ) = −kα−1 − kδ − (−kα−1 − kδ)(h−1)α−1 (6.44)

= −kδ + k (−1 + α−1(h−1) + δ(h−1)) α−1

= −kδ + k(−1 + 2 + (−1 + 0 + · · ·+ 0))α−1

= −kδ

Therefore,

dim(g)−kα−1−kδ = dim(g)r−1(−kα−1−kδ)

= dim(g)−kδ

= dim(g)−δ

= dim(g)r−1(−α−1−δ)

= dim(g)−α−1−δ

= n (see proposition 6.1)

Next, we show dim(g)−lα−1−kδ = 0 for l > k. Calculation (6.44) shows us −kδ is a

root of g for all k. Consider the α−1 string through −kδ. This string is of length,

−kδ(h−1) = k.
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α−1−kδ is not a root of g, since the coefficients of the simple roots are of mixed signs.

Thus, the α−1 string through−kδ consists of roots of the form {−lα−1−kδ|0 < l ≤ k}.

We conclude, dim(g)−lα−1−kδ = 0 for l > k.

¤

In [7], Frankel made the following conjecture: For any hyperbolic Kac-Moody

algebra g, with Cartan matrix A,

dim(gα) ≤ p(rank(A)−2)

(
1− (α|α)

2

)
, (6.45)

Let g = HC
(1)
n and α = −lα−1 − kδ. (6.45) becomes

dim(HC(1)
n )−lα−1−kδ ≤ p(n)

(
1− (−lα−1 − kδ| − lα−1 − kδ)

2

)

= p(n)

(
1− l2(α−1|α−1) + 2kl(α−1|δ) + k2(δ|δ)

2

)
= p(n) (1− l(l − k))

Thus, Frenkel’s conjecture says

dimg−2α−1−3δ ≤ p(n)(3)

=
n3 + 9n2 + 8n

6

However, we have shown that mult(−2α−1− 3δ) = 5n3+6n2+7n
6

> p(n)(3), since (5n3 +
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6n2 = 7n) − (n3 + 9n2 + 8n) = (4n + 1)(n − 1) > 0 for n ≥ 2. Therefore, Frenkel’s

conjecture does not hold for g = HC
(1)
n and α = −2α−1 − 3δ (n ≥ 2). In fact,

Frenkel’s conjectured bound does not hold for any of the roots we have considered

except for those of the form −kα−1− kδ. In table 6.3 we re-state the multiplicities of

the roots {−2α−1 − kδ|2 ≤ k ≤ 10} of HC
(1)
n along with Frenkel’s conjectured bound

for each root.

k mult(−2α−1 − kδ) Frenkel’s conjectured bound
2 2 2
3 13 10
4 57 36
5 205 110
6 645 300
7 1840 752
8 4868 1770
9 12122 3956
10 28704 8470

Table 6.23: The multiplicity of −2α−1 − kδ as a root of HC
(1)
2
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Appendix A

MATLAB Code

In this appendix we include the MATLAB code we used to find M2 in example 6.2.

We would like to point out that this code can be used to find the multiplicity of any

weight α − a0α0 + · · · + −anαn in any highest weight C
(1)
n -module of highest weight

Λ, simply by making the appropriate changes to the final program, mult.m.

A.1 phi.m

function y= phi(index,x,lev); This function returns phi i of x, where x is an element

of the C
(1)
n perfect crystal of level, lev.

function y= phi(index,x,lev);

n=length(x)/2;

A=[x(1:n);fliplr(x(n+1:2*n))];

if index == 0

113
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y=lev -0.5*sum(x)+subplus(A(2,1)-A(1,1));

end;

if 0 < index & index < n

y=A(1,index) + subplus(A(2,index+1)-A(1,index+1));

end;

if index ==n

y=A(1,n);

end;

A.2 epsilon.m

function y=epsilon(index,x,lev); This function works similarly to function phi, but

for epsilon index

function y=epsilon(index,x,lev)

n=length(x)/2;

A=[x(1:n);fliplr(x(n+1:2*n))];

%subplus(x) is a function which returns x if x>0 and 0 otherwise

if index == 0

y=lev-0.5*sum(x)+subplus(A(1,1)-A(2,1));

end;

if 0 < index & index < n

y= A(2,index) + subplus(A(1,index+1)-A(2,index+1));
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end;

if index ==n

y=A(2,n);

end;

A.3 tensorrule.m

function B=tensorrule(index, A,lev,n); This function can be used in conjunction with

identify action to see which element of a multi-fold tensor,A, of elements of the C
(1)
n

perfect crystal of level n ftilde index acts upon. The function tensorrule returns

phi index of the ith element in the sequence in B(i,2) and epsilon index of the ith

element in the tensor product in B(i,2).

function B=tensorrule(index, A,lev,n);

y=length(A);

B=zeros(y/(2*n),2);

for i=1:y/(2*n)

B(i,1)=phi(index,A(2*n*(i-1)+1:(2*n*i)),lev);

B(i,2)=epsilon(index, A(2*n*(i-1)+1:(2*n*i)),lev);

end;



APPENDIX A. MATLAB CODE 116

A.4 identify action.m

function action=identify action(A); This function takes in ,A, the output from the

function tensorrule.m Tensorrule acts on a multi-fold tensor (each element as a row)

and returns a matrix A where A(i,2) is phi index(the ith element in the multi-fold

tensor) and A(i,1) is epsilon index(the ith element in the multi-fold tensor). The

function action then uses the multi-fold tensor product rule to determine which ele-

ment of the multi-fold tensor ftilde index will act upon and assigns the row number

of this element to the variable action. If there should be no action, it returns the

number 0.1.

function action=identify_action(A);

[a,b]=size(A);

j=1;

for j=1:a

[x,y]=size(A);

A=[A;0,0];

A(:,2)=[0;A(1:x,2)];

for i=1:x+1

num=A(i,1)-A(i,2);

if num >= 0

A(i,1)=num;

A(i,2)=0;
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else

A(i,1)=0;

A(i,2)=-1*num;

end;

end;

j=j+1;

end;

A=A(:,1);

test=find(A>0);

[a,b]=size(test);

if b==0

action=0.1;

else action=test(a,b);

end;

A.5 one move.m

function [paths,arrows]=one move(A, ground state path, prev path arrows, goalar-

rows, lev, n); This function starts at one path, A, of the path realization of the path

P (λ), the C
(1)
n -highest weight module of highest weight λ. The function first checks to

see if we need to go any further. That is, it reads in goalarrows, the number of arrows

we whish to follow, and checks to see if prev path arrows, the number of arrows the
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previous path follows is less than our goal. If so it lets the modified root vectors for the

arrows we still must consider act on the path and returns [results,path] where results

is a matrix containing the emanating paths from the path A, and path is a matrix

which records which f-arrow leads to which emanating path. Here, ground state path

is the ground state path of weight λ and lev is the level of the weight λ.

function [paths,arrows]=

one_move(A,ground_state_path,prev_path_arrows,goalarrows,lev,n);

arrows=zeros(0,n+1);

y=length(A);

b=length(ground_state_path);

paths=zeros(0,y+b);

for k=1:n+1

c=zeros(1,n+1);

c(1,k)=1;

if prev_path_arrows(k)<goalarrows(k)

B=A;

num=identify_action(tensorrule(k-1,A,lev,n));

if num ~= 0.1;

B((2*n*(num-1)+1):(2*n*num))=ftilde(k-1,

A(2*n*(num-1)+1:2*n*(num)));

add=[B,ground_state_path];
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paths=[paths;add];

arrows=[arrows;c];

end;

end;

end;

A.6 next move.m

function [paths,arrows]= next move(oldpaths, oldarrows, ground state path, goalar-

rows, lev, n); This function takes in a row of paths, which we name oldpaths, in

P(lambda), the path realization of the C
(1)
n highest weight module with highest weight

λ. Here ground state path is the ground state path of weight lambda and lev is the

level of λ, oldarrows is a matrix each row of which tells the number of arrows the

path represented by the corresponding path follows, and goalarrows represents num-

ber of arrows the paths we are eventually looking for (see program mult.m) follow.

The function returns the next row of the path realization, which we call paths, and

a matrix whose rows represent the number of arrows the corresponding row in the

matrix paths follows.

function [paths,arrows]=

next_move(oldpaths,oldarrows,ground_state_path,goalarrows,lev,n);

y=length(ground_state_path);

[x2,y2]=size(oldpaths);
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newpaths=zeros(0,y2+y);

newarrows=zeros(0,n+1);

for i=1:x2;

A=oldpaths(i,:);

current_arrows=oldarrows(i,:);

[paths,arrows]=

one_move(A,ground_state_path,current_arrows,goalarrows,lev,n);

[c,d]=size(arrows);

mult=ones(c,1);

addition=mult*current_arrows;

newarrows=[newarrows;(addition+arrows)];

newpaths=[newpaths;paths];

end;

% Next we remove unneeded repeating of ground state path

% at the end of the paths

test=[ground_state_path;newpaths(:,y2+1-2*n:y2+y-2*n)];

test=sum(abs(diff(test)));

if test==0

newpaths=newpaths(:,1:y2);

end;

% some of our rows in newpaths may be repeats here we remove the
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% repeated paths

[a,b]=size(newpaths);

if a>1

[sorted,index]=sortrows(newpaths);

D=sum(abs(diff(sorted)),2);

f=find(D~=0);

rows=[index(f);index(a)];

paths=[newpaths(rows,:)];

arrows=newarrows(rows,:);

else

paths=newpaths;

arrows=newarrows;

end;

A.7 crystal path.m

function [final paths]=crystal path(ground state path,goalarrows,lev,n); This func-

tion finds all paths which follow goalarrows arrows in the path realization P (λ) of

the highest weight C
(1)
n -module with highest weight λ. Here ground state path is the

ground state path of weight lambda and lev is the level of lambda. Each path which

follows exactly goalarrows arrows appears as one row of final paths.

function [final_paths]=crystal_path(ground_state_path,goalarrows,lev,n);
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prev_path_arrows=zeros(1,n+1);

[A,B]=one_move(ground_state_path,ground_state_path,prev_path_arrows,

goalarrows,lev,n);

for i=1:sum(goalarrows)-1;

[A,B]=next_move(A,B,ground_state_path,goalarrows,lev,n);

end;

final_paths=A;

A.8 mult.m

A program to find the multiplicity of the weight −2α−1 − δ in P (2Λ1) note any such

path must follow exactly one zero-arrow, four one-arrows, and two two-arrows.

root=[2,2,4,2];

ground_state_path=zeros(1,4);

ground_state_path(1)=2;

ground_state_path(4)=2;

arrows=[1,4,2]’;

final_paths=crystal_path(ground_state_path,arrows,2,2);

[x,y]=size(final_paths);

mult=x


