
ABSTRACT

LEVY, LOUIS AGNEW. Multipliers for the Lower Central Series of Strictly Upper Trian-
gular Matrices. (Under the direction of Professor E. L. Stitzinger).

Lie algebra multipliers and their properties is a recent area of study. A multiplier

is the Lie algebra analogue of the Schur multiplier from group theory. By definition a

multiplier is central, so we only need to find its dimension in order to characterize it. We

will investigate how to find the dimensions of the multipliers for the lower central series of

strictly upper triangular matrices. The closed form result is a set of six polynomial answers

in two variables: the size of the matrix and the position in the series.
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Chapter 1

Introduction

Much has been shown in [1], [2], [3], [4], [5], [6], and [7] about Lie algebras and

their multipliers. We adopt the name multiplier to describe the Lie algebra analogue of the

Schur multiplier from group theory. Schur did much of his work in the early 20th century.

To learn more about the Schur multiplier, please see [8] for a very thorough collection of

Schur’s contributions to group theory. Here we will study multipliers for the lower central

series of strictly upper triangular matrices.

We begin with a few definitions. Suppose L is a finite dimensional Lie algebra over

a field with characteristic not equal to two.

Definition A pair of Lie algebras (C,M) is called a defining pair for L if

1. L ∼= C/M

2. M ⊂ Z(C) ∩ C2.

It is mentioned in [1] that if dim L = n then dim M ≤ 1
2n(n − 1). If M is maximal,

then dim M = 1
2n(n − 1) ⇔ L is abelian. Therefore L finite dimensional implies M finite

dimensional, which together give C finite dimensional. In [3] we see that dim(C) ≤ 1
2n(n+1).

Definition If (C,M) is a defining pair for L, then a C of maximal dimension is called a

cover for L. Likewise an M of maximal dimension is called a multiplier.

It is shown in [3] that for Lie algebras all covers are isomorphic. The multiplier is unique

since it is abelian, hence we denote it by M(L) and only need to find its dimension in order

to characterize it.



2

Definition If dim L = n, then define t(L) to be as in [1], that is t(L) = 1
2n(n − 1) −

dim M(L).

Notice t(L) = 0 ⇔ L is abelian. Moneyhun, Batten, Hardy, and Stitzinger have

completely classified Lie algebras where t(L) ≤ 8 in [1], [5], and [6]. Here the goal is to

find a formula for dim M(L) which will therefore also give a formula for t(L) for the lower

central series of strictly upper triangular matrices. For this family of Lie algebras we can

achieve t(L) arbitrarily large.
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Chapter 2

Strictly Upper Triangular Matrices

Consider the strictly upper triangular matrices of size n×n, which we will denote

as Stn. Again we assume the entries in these matrices are from a field whose characteristic

is not two. The cover and multiplier for Stn were found in [3]. The goal now is to find the

dimension of the multiplier for this Lie algebra if in addition to being strictly upper, these

matrices now have an additional k diagonals above the main diagonal which are all zero.

We would like to accomplish this for an arbitrary nonnegative integer k.

Let (C,M) be a defining pair for Stn, therefore C/M ∼= Stn and M ⊂ Z(C)∩C2.

We will use Eab to denote the usual matrix units that form a basis for Stn. Since C/M ∼=
Stn, each Eab in Stn also represents a coset in C/M . Let u : Stn → C denote the transversal

map from Stn back into C. Thus u(Eab) is some element in C, that belongs to the Eab

coset in C/M . Define Fab to be such that u(Eab) = Fab ∈ C. Also let J(x, y, z) = 0 denote

the Jacobi identity. We can completely describe the bracket operation as

[Fst, Fab] =

Fsb + y(s, t, a, b) if t = a

y(s, t, a, b) if t 6= a

where y(s, t, a, b) ∈ M . For brevity we often denote y(s, t, a, b) as ystab. Due to the anti-

symmetry of the bracket (alternating property) we establish that either s < a or s = a and

t < b. (Note: this is consistent with the convention established in [3]).

For the usual Stn, when we do not require any entries above the main diagonal

to be zero, this corresponds to our variable k being set to zero. As a consequence of being

strictly upper triangular, the matrix units Eab must be such that a < b, or a + 1 ≤ b.

If k = 1 (i.e. one diagonal above the main diagonal must be zero), then this forces
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a + 2 ≤ b. If k = 2, then the extra diagonal of zeros forces a + 3 ≤ b. In general if k

diagonals above the main diagonal are all zero then this requires a + (k + 1) ≤ b.

Following the model of [3], first make a change in the choice of Frt. Set

Grt =

Frt if t− r < 2(k + 1)

Frt + yr,t−(k+1),t−(k+1),t = [Fr,t−(k+1), Ft−(k+1),t] otherwise

As stated in [3], “Thus {G(r, t)} and {F (r, t)} are complete sets of images of matrix units[.]

Since the y′s are central, G(r, t) and F (r, t) induce the same multiplication in C.” After

much calculation we will remove all immediate (pre-existing) dependencies among the y′s

as well as all trivial y′s. With what remains we can conclude as [3] states, “These y′s are

completely arbitrary. We can assume them to be a set of linearly independent vectors and

no contradiction arises. In this case they would be a basis for a multiplier M .” In other

words M = M(L). Therefore we wish to count the number of remaining y′s that occur for

any values of n and k. Often times the absorbtion into Grt or use of the Jacobi identity can

reduce the number of y′s allowed to contribute to the multiplier’s dimension.

The initial result we get is that dim M(L) is equal to

k∑
i=1

i · (n− (2(k + 1) + i)) +
k∑

j=1

(k − j + 1) · (n− (2(k + 1) + k + j)) +

2(n− 2(k + 1)) +
k∑

j=0

k∑
i=0

(n− (2(k + 1) + i + j + 1))× (n− (2(k + 1) + i + j))
2

+

k∑
i=1

3i(i + 1)
2

· (n− ((k + 1) + i)) +
k∑

i=1

(
(k + 1)2 − i(i + 1)

2

)
· (n− ((k + 1) + k + i)) +

k∑
i=1

(k − (i− 1))(k − (i− 1) + 1)
2

· (n− ((k + 1) + 2k + i))

Notice that every sum involves some quantity being subtracted from n. This quantity

corresponds to a distance between positions within the matrices, hence this number cannot

exceed n. While developing this formula, we make the assumption that n is sufficiently

large to prevent any distances from exceeding n. When n − x appears in a sum, such an

expression arises to count multiplier elements produced by matrices with at least x+1 rows
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(and columns). As such if n − x ≤ 0 occurs, then the matrices are too small to produce

these multiplier elements. This means that any time n − x ≤ 0 shows up, it should be

replaced by zero. Also notice that if a particular i or j causes n − x ≤ 0, then further

incrementing of i or j will cause the same problem. Therefore sums should be terminated

early at the first occurence of the appearance of n− x ≤ 0. Notice in the previous formula

for dim M(L) that every sum will run through its entirety when n ≥ 4k + 3, so 4k + 3 is

the sufficiently large value of n we originally assumed. This will become more clear as we

develop the above formula.

Considering that specific values of n and k when n < 4k+3 will force modifications

to the formula, we will break this result into several cases based on how n and k interact

with each other. Once these cases are established we will be able to convert all results into

a more elegant polynomial form.

The complexity of the above formula comes from there being many different po-

tential relationships among the values of s, t, a, and b when computing [Gst, Gab], especially

as k gets larger and widens the necessary gap between both (s, t) and (a, b). This general

result will be easier to derive if we first investigate the patterns that show up when we look

at specific values of k. As such we begin with two examples; we will derive this formula as

it would simplify for the cases of k = 1 and 2. The logic for these examples is very similar

to the approach used to prove this formula in the general case for any value of k.
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Chapter 3

Example k = 1

Reminders: As before, let Fab denote the image of the matrix unit Eab under the

transversal map. In addition to being strictly upper triangular, since k = 1 we have one

additional diagonal above the main diagonal which is all zero. Since this implies that Fab

must be such that a + (k + 1) ≤ b, here we have a + 2 ≤ b. Also the change from Frt to Grt

simplifies to

Grt =

Frt if t− r < 4

Frt + yr,t−2,t−2,t = [Fr,t−2, Ft−2,t] otherwise

We divide our investigation of multiplier elements into two sections: elements

produced by [Grs, Gst] and elements produced by [Gst, Gab], where t 6= a.

3.1 [Grs, Gst]

Consider first the case where [Grs, Gst] = [Frs, Fst] = Frt + yrsst. Suppose that

t ≥ r + 7. If s = t − 2 then [Grs, Gst] = Frt + yrsst = Frt + yr,t−2,t−2,t = Grt. If s 6= t − 2,

then we wish to show yrsst = yr,t−2,t−2,t because this will give [Grs, Gst] = Grt. Since Frs is

defined, we know r + 2 ≤ s. Suppose first that s = r + 2 or s = r + 3, then Fs,t−2 is defined

since s + 2 ≤ r + 5 ≤ t− 2. Therefore J(Frs, Fs,t−2, Ft−2,t) = 0 ⇒ yrsst = yr,t−2,t−2,t. On

the other hand, when s > r +3 let c = r +2. Notice that Fcs is defined so J(Frc, Fcs, Fst) =

0 ⇒ yrsst = yrcct and J(Frc, Fc,t−2, Ft−2,t) = 0 ⇒ yrcct = yr,t−2,t−2,t, which together

give yrsst = yr,t−2,t−2,t. Thus [Grs, Gst] = Frt + yrsst = Frt + yr,t−2,t−2,t = Grt for any valid
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s when t ≥ r + 7.

On the other extreme suppose t = r + 4, (the minimum distance from r to t is 4).

In this case the only choice for s is s = r + 2 = t − 2. Therefore [Grs, Gst] = Frt + yrsst =

Frt + yr,t−2,t−2,t = Grt.

It remains to consider t = r + 5 and t = r + 6. We wish to equate yrsst and

yr,t−2,t−2,t whenever possible so that [Grs, Gst] = Frt + yrsst = Frt + yr,t−2,t−2,t = Grt.

Suppose t = r + 5. If s = r + 3 then s = r + 3 = t − 2 so yrsst = yr,t−2,t−2,t is

trivially satisfied. If s = r + 2, there are no Jacobi identities available to equate yrsst and

yr,t−2,t−2,t. Therefore [Gr,r+2, Gr+2,r+5] = Fr,r+5+yr,r+2,r+2,r+5 where yr,r+2,r+2,r+5 is some

non-trivial element in the multiplier.

Suppose t = r + 6. If s = r + 2 then J(Frs, Fs,t−2, Ft−2, t) = 0 gives yrsst =

yr,t−2,t−2,t and if s = r +4 then s = t− 2 so yrsst = yr,t−2,t−2,t is trivially satisfied. However

if s = r+3, there are no Jacobi identities available to equate yrsst and yr,t−2,t−2,t. Therefore

[Gr,r+3, Gr+3,r+6] = Fr,r+6 + yr,r+3,r+3,r+6 where yr,r+3,r+3,r+6 is some non-trivial element

in the multiplier.

In conclusion, the only non-trivial multiplier elements arising from [Grs, Gst] are

of the form yr,r+2,r+2,r+5 and yr,r+3,r+3,r+6. Please note that whenever Frt + yrsst 6= Grt

we can make a change in the choice of y′s to convert all F ′s to G′s. For instance let

ŷrsst = yrsst − yr,t−2,t−2,t in which case [Grs, Gst] = Frt + yrsst = Grt + ŷrsst. Regardless

of whether we use Frt or Grt we get the same number of yrsst
′s and ŷrsst

′s. Therefore it

is acceptable to count the occurences of either yrsst or ŷrsst to find the contribution to the

multiplier. For convenience, we will count the yrsst
′s.

3.2 [Gst, Gab], where t 6= a

Consider the second case where [Gst, Gab] = [Fst, Fab] = ystab since t 6= a. Due to

the antisymmetry of the bracket (alternating property), it is sufficient to consider only the

cases when s < a or s = a and t < b. This in mind, we do not need to consider s = b since

it violates s < a and the alternating property would put it back into the t = a case.

Thus [Gst, Gab] = [Fst, Fab] = ystab where ystab is some element in the multiplier,

M(L). Since no F is produced by the bracket operation and hence [Gst, Gab] = [Fst, Fab] ∈
M(L), we will work with the F ′s rather than the G′s as both produce the same elements

in M(L). We wish to find all the scenarios (relationships between the values of s, t, a, and
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b) where ystab = 0 versus ystab 6= 0. We begin by imposing an upper bound on the distance

between a and b as well as s and t for which ystab may be non-zero.

Lemma 3.2.1 If b ≥ a + 5 or t ≥ s + 5 then ystab = 0. So ystab 6= 0 only has the potential

to occur if both b ≤ a + 4 and t ≤ s + 4.

Proof Suppose b ≥ a + 5. If t 6= a + 2 then let c = a + 2. If t = a + 2 then choose

c = a + 3. The number line is shown in Figure 3.1. By construction c 6= t, a, b. Notice

s ≤ a < c ⇒ c 6= s. This gives c 6= s, t, a, b and therefore J(Fst, Fac, Fcb) = 0 ⇒ ystab = 0.

or

Figure 3.1: k = 1 : b ≥ a + 5

Similarly suppose t ≥ s + 5. If a 6= s + 2 then let c = s + 2. If a = s + 2 then

choose c = s + 3. The number line is shown in Figure 3.2. By construction c 6= s, t, a, but

we want to show c 6= b also.

or

Figure 3.2: k = 1 : t ≥ s + 5

Notice when s = a ⇒ t < b ⇒ c = s + 2 < s + 5 ≤ t < b. When s < a then

a + 2 ≤ b ⇒ s + 2 < a + 2 ≤ b (i.e. s + 3 ≤ b). Therefore either b > s + 3 ≥ c or

b = s + 3 ⇒ a = s + 1 ⇒ a 6= s + 2 so c = s + 2 6= b. Therefore in all cases c 6= b. This

gives c 6= s, t, a, b and therefore J(Fsc, Fct, Fab) = 0 ⇒ ystab = 0.

Lemma 3.2.2 If b = a + 4 then ystab = 0 ⇔ t 6= a + 2 or s < a (s 6= a). Similarly if

t = s + 4 then ystab = 0 ⇔ a 6= s + 2 or b 6= t.
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Proof (⇐) Suppose b = a+4. If t 6= a+2 then let c = a+2, so c 6= t, a, b and furthermore

s ≤ a < a+2 = c ⇒ c 6= s. Therefore c 6= s, t, a, b and J(Fst, Fac, Fcb) = 0 ⇒ ystab = 0. The

number line is shown in Figure 3.3. On the other hand if t = a+2 and s < a then let c = t−1,

which can be seen in Figure 3.4. In this case J(Fst, Ftb, Fat) = 0 ⇒ ystab = −ysbat and

J(Fsc, Fcb, Fat) = 0 ⇒ ysbat = 0 which together give ystab = 0.

Figure 3.3: k = 1 : b = a + 4, t 6= a + 2

Figure 3.4: k = 1 : b = a + 4, t = a + 2

(⇒) Suppose b = a + 4, t = a + 2, and s = a, as in Figure 3.5.

Figure 3.5: k = 1 : b = a + 4, t = a + 2 = s + 2

There is no value of c such that Fac and Fcb are both defined while c 6= t. As such, there

are no Jacobi identities available to zero out ystab, thus ystab 6= 0.

(⇐) Suppose t = s + 4. If a 6= s + 2 then let c = s + 2, so c 6= s, t, a, but we want to

show c 6= b also. Notice when s = a then t < b so s < c < t < b ⇒ c 6= b. If s < a

then a + 2 ≤ b ⇒ c = s + 2 < a + 2 ≤ b ⇒ c 6= b. Therefore c 6= s, t, a, b and

J(Fsc, Fct, Fab) = 0 ⇒ ystab = 0. This can be seen on the number line in Figure 3.6.
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Figure 3.6: k = 1 : t = s + 4, a 6= s + 2

On the other hand if a = s + 2 and b > t then let c = a + 1, as in Figure 3.7.

Figure 3.7: k = 1 : t = s + 4, a = s + 2

In this case J(Fsa, Fat, Fab) = 0 ⇒ ystab = ysbat and J(Fsc, Fcb, Fat) = 0 ⇒ ysbat = 0

which together give ystab = 0. If a = s + 2 and b < t then s < s + 2 = a < a + 2 ≤ b < t ⇒
s + 4 < t and hence by Lemma 3.2.1, ystab = 0.

(⇒) Suppose t = s + 4, a = s + 2, and b = t, as in Figure 3.8.

Figure 3.8: k = 1 : b = t = s + 4, a = s + 2

There is no value of c such that Fsc and Fct are both defined while c 6= a. As such, there

are no Jacobi identities available to zero out ystab, thus ystab 6= 0.

Now that we have an upper bound on the distance from a to b and s to t for which

non-trivial ystab values may be produced, we continue our search by separating the variable

relationships into three cases. Either (1) s = a, (2) a > t, or (3) s < a < t.
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Case 1: s = a

For a fixed value of s, suppose s = a. Lemmas 3.2.1 and 3.2.2 discuss b ≥ s+4, so

consider b < s + 4. Let tmin = s + 2, thus denoting the minimum possible value of t. Since

s = a ⇒ t < b this gives tmin < b < s + 4 = tmin + 2. In other words b = tmin + j, where

j = 1.

Lemma 3.2.3 When b = tmin + 1, we get 1 new non-zero value for ystab.

Proof Since b = tmin + 1 we have b = s + 3 = a + 3. Additionally t < b ⇒ t < s + 3.

Therefore 6 ∃c such that Fac and Fcb are both defined, similarly 6 ∃c such that Fsc and Fct

are both defined. Therefore ystab 6= 0.

Also b = tmin + 1, t < b ⇒ t = tmin ⇒ t may take on only 1 value for this

fixed b, hence we get 1 distinct new non-zero value for ystab. Putting this together we have

b = tmin + 1 = s + 3 ⇒ t = s + 2 ⇒ y(s, s + 2, s, s + 3) 6= 0.

Case 2: a > t

Lemma 3.2.4 If a > t then ystab 6= 0 for all t and b such that both t < s + 4 and b <

a + 4. Otherwise ystab = 0 when a > t. That is y(s, t, a, a + 2), y(s, t, a, a + 3) 6= 0 when

t = s + 2, s + 3.

Proof If t ≥ s + 5 or b ≥ a + 5 then Lemma 3.2.1 ⇒ ystab = 0. If t = s + 4 or b = a + 4

then Lemma 3.2.2 ⇒ ystab = 0 since a > t ⇒ t 6= a + 2 and a 6= s + 2.

If t < s + 4 and b < a + 4 then there is no value of c, such that Fsc and Fct are

both defined for s < c < t. Similarly there is no value of c, such that Fac and Fcb are both

defined for a < c < b. Therefore the idea in Lemma 3.2.1, of using J(Fsc, Fct, Fab) = 0 or

J(Fst, Fac, Fcb) = 0 will not work here. Also, placing a c such that s < t < c < a < b will

not provide any helpful Jacobi identities, no matter how large the gap between t and a.

Thus ystab will always be non-zero in this case.
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Case 3: s < a < t

If b ≥ a + 5 or t ≥ s + 5 then Lemma 3.2.1 implies ystab = 0. If b = a + 4 then

Lemma 3.2.2 implies ystab = 0 since s < a. If t = s + 4 and a 6= s + 2 then Lemma 3.2.2

gives ystab = 0. If t = s + 4 and a = s + 2 ⇒ b ≥ a + 2 = s + 4 = t. When b > t then

Lemma 3.2.2 gives ystab = 0. When b = t then Lemma 3.2.2 gives ystab 6= 0.

Thus it is only left to consider t < s + 4 and b < a + 4. No such c exists, nor do

suitable Jacobi identities exist to zero out ystab when a+2 ≤ b ≤ a+3 and s+2 ≤ t ≤ s+3.

Therefore ystab 6= 0 when t = s + 2 or s + 3 and b = a + 2 or a + 3.

Collecting all this information, we get ystab 6= 0 when:

1. Lemma 3.2.2 result: b = a + 4, t = a + 2, and s = a.

2. Lemma 3.2.2 result: t = s + 4, a = s + 2 and b = t.

3. Lemma 3.2.3 result: s = a, b = tmin + 1 = s + 3, and t = tmin = s + 2.

4. Lemma 3.2.4 result: a > t, t < s + 4, and b < a + 4.

5. s < a < t, t = s + 2, s + 3, and b = a + 2, a + 3.



13

3.3 Counting the multiplier elements

We are interested in counting all the cases when ystab 6= 0. There are two types of

elements: (1) y(s, s+x1, s+x2, s+x3) where x1, x2, x3 are all fixed and (2) y(s, s+x1, a, a+x2)

where a > s + x1 and x1, x2 are both fixed. Remember that the numbers s + xi and a + x2

were subscripts of the G′s, and initially subscripts of the standard matrix units. Hence these

numbers represent positions in the original n × n matrices. If ever these numbers exceed

n, then the original matrix units were not available to work with, and so the corresponding

multiplier element(s) cannot be produced.

Type 1: y(s, s + x1, s + x2, s + x3)

Without loss of generality suppose x3 = max{x1, x2, x3}. As before, assume the

F ′s we are working with are images of n × n matrix units. The minimum value of s is 1

and the maximum value of s + x3 is n, thus the maximum value of s is n − x3. Therefore

y(s, s + x1, s + x2, s + x3) may assume n− x3 different values since s ∈ {1, 2, . . . , n− x3}.
If n − x3 ≤ 0 there is no contribution to the multiplier, M(L), since the necessary matrix

positions exceed the given number of positions n.

Notice also that the elements yrsst from the [Grs, Gst] case also fall into this cate-

gory since both s and t can be described by their distances from r.

Type 2: y(s, s + x1, a, a + x2) where a > s + x1

The minimum value of s is 1, so the minimum value of a is 2 + x1. The maximum

value of a + x2 is n, so the maximum value of a is n− x2. Therefore a may range in value

from 2+x1 up to n−x2, giving (n−x2)− (2+x1)+1 = n−x2−x1− 1 different values for

a when s = 1. If s = 2, the minimum value of a now increases by 1 to be 3 + x1, giving one

less possible value of a. If s = 3, the minimum value of a increases by 1 again, giving one

less possible value of a again. This pattern continues until a can assume only one value.

Thus as s increases, the number of possible values of a go from n− x2 − x1 − 1 down to 1,

giving
n−x2−x1−1∑

i=1

i possible values of y(s, s + x1, a, a + x2)
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n−x2−x1−1∑
i=1

i =
(n− (x2 + x1 + 1))(n− (x2 + x1))

2

As in Type 1, this type demands a distance of x2 + x1 + 1 between matrix positions, hence

if n ≤ x2 +x1 +1 there is no contribution to the multiplier, M(L), since the original matrix

units are not available to work with.

Using these two counting techniques, Table 3.1 lists all non-trivial yrsst and ystab

possibilities and the number of times they occur. Adding all of these together gives

dim M(L) = (n−6)+2(n−5)+5(n−4)+3(n−3)+(n−5)(n−6)+ (n−6)(n−7)+(n−4)(n−5)
2 .

Also, as stated above if any n−x term is negative, simply omit it from the formula because

the matrices will not be large enough to produce the corresponding matrix units and the

resulting multiplier elements they would have produced.

Table 3.1: Counting multiplier elements for k = 1

yrsst or ystab non-trivial Number of occurences
yr,r+2,r+2,r+5 n− 5
yr,r+3,r+3,r+6 n− 6
ys,s+2,s,s+4 n− 4

ys,s+4,s+2,s+4 n− 4
ys,s+2,s,s+3 n− 3
ys,s+2,a,a+2

(n−4)(n−5)
2

ys,s+2,a,a+3
(n−5)(n−6)

2

ys,s+3,a,a+2
(n−5)(n−6)

2

ys,s+3,a,a+3
(n−6)(n−7)

2

ys,s+2,s+1,s+3 n− 3
ys,s+2,s+1,s+4 n− 4
ys,s+3,s+1,s+3 n− 3
ys,s+3,s+1,s+4 n− 4
ys,s+3,s+2,s+4 n− 4
ys,s+3,s+2,s+5 n− 5
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Chapter 4

Example k = 2

Reminders: As before, let Fab denote the image of the matrix unit Eab under the

transversal map. In addition to being strictly upper triangular, since k = 2 we have two

additional diagonals above the main diagonal which are all zero. Since this implies that Fab

must be such that a + (k + 1) ≤ b, here we have a + 3 ≤ b. Also the change from Frt to Grt

simplifies to

Grt =

Frt if t− r < 6

Frt + yr,t−3,t−3,t = [Fr,t−3, Ft−3,t] otherwise

As in the k = 1 example we divide our investigation of multiplier elements into

two sections: elements produced by [Grs, Gst] and elements produced by [Gst, Gab], where

t 6= a.

4.1 [Grs, Gst]

Consider first the case where [Grs, Gst] = [Frs, Fst] = Frt + yrsst. Suppose that

t ≥ r + 11. If s = t− 3 then [Grs, Gst] = Frt + yrsst = Frt + yr,t−3,t−3,t = Grt. If s 6= t− 3,

then we wish to show yrsst = yr,t−3,t−3,t because this will give [Grs, Gst] = Grt. Since Frs

is defined, we know r + 3 ≤ s. Suppose first that s = r + 3, s = r + 4, or s = r + 5, then

Fs,t−3 is defined since s+3 ≤ r+8 ≤ t−3. Therefore J(Frs, Fs,t−3, Ft−3,t) = 0 ⇒ yrsst =

yr,t−3,t−3,t. On the other hand, when s > r + 5 let c = r + 3. Notice that Fcs is defined so

J(Frc, Fcs, Fst) = 0 ⇒ yrsst = yrcct and J(Frc, Fc,t−3, Ft−3,t) = 0 ⇒ yrcct = yr,t−3,t−3,t,
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which together give yrsst = yr,t−3,t−3,t. Thus [Grs, Gst] = Frt+yrsst = Frt+yr,t−3,t−3,t = Grt

for any valid s when t ≥ r + 11.

On the other extreme suppose t = r + 6, (the minimum distance from r to t is

6). In this case the only choice for s is s = t − 3. Therefore [Grs, Gst] = Frt + yrsst =

Frt + yr,t−3,t−3,t = Grt.

It remains to consider r + 7 ≤ t ≤ r + 10. We wish to equate yrsst and yr,t−3,t−3,t

whenever possible so that [Grs, Gst] = Frt + yrsst = Frt + yr,t−3,t−3,t = Grt.

Suppose t = r + 7, then r + 3 ≤ s ≤ r + 4. If s = r + 4 then s = r + 4 = t− 3 so

yrsst = yr,t−3,t−3,t is trivially satisfied. If s = r + 3, there are no Jacobi identities available

to equate yrsst and yr,t−3,t−3,t. Therefore [Gr,r+3, Gr+3,r+7] = Fr,r+7 + yr,r+3,r+3,r+7 where

yr,r+3,r+3,r+7 is some non-trivial element in the multiplier.

Suppose t = r + 8, then r + 3 ≤ s ≤ r + 5. If s = r + 5 then s = r + 5 = t− 3 so

yrsst = yr,t−3,t−3,t is trivially satisfied. If s = r+3 or s = r+4, there are no Jacobi identities

available to equate yrsst and yr,t−3,t−3,t. Therefore [Gr,r+3, Gr+3,r+8] = Fr,r+8+yr,r+3,r+3,r+8

and [Gr,r+4, Gr+4,r+8] = Fr,r+8 + yr,r+4,r+4,r+8 where yr,r+3,r+3,r+8 and yr,r+4,r+4,r+8 are

some non-trivial elements in the multiplier.

Suppose t = r + 9, then r + 3 ≤ s ≤ r + 6. If s = r + 6 then s = r + 6 = t − 3

so yrsst = yr,t−3,t−3,t is trivially satisfied. If s = r + 3 then J(Frs, Fs,t−3, Ft−3,t) = 0 ⇒
yrsst = yr,t−3,t−3,t. If s = r + 4 or s = r + 5, there are no Jacobi identities available

to equate yrsst and yr,t−3,t−3,t. Therefore [Gr,r+4, Gr+4,r+9] = Fr,r+9 + yr,r+4,r+4,r+9 and

[Gr,r+5, Gr+5,r+9] = Fr,r+9 + yr,r+5,r+5,r+9 where yr,r+4,r+4,r+9 and yr,r+5,r+5,r+9 are some

non-trivial elements in the multiplier.

Suppose t = r + 10, then r + 3 ≤ s ≤ r + 7. If s = r + 7 then s = r +

7 = t − 3 so yrsst = yr,t−3,t−3,t is trivially satisfied. If s = r + 3 or s = r + 4 then

J(Frs, Fs,t−3, Ft−3,t) = 0 ⇒ yrsst = yr,t−3,t−3,t. If s = r + 6 then let c = r + 3, in which

case J(Frc, Fcs, Fst) = 0 ⇒ yrsst = yrcct, that is yr,r+6,r+6,t = yr,r+3,r+3,t, but we just saw

from J(Fr,r+3, Fr+3,t−3, Ft−3,t) = 0 that yr,r+3,r+3,t = yr,t−3,t−3,t, which means yr,r+6,r+6,t =

yr,t−3,t−3,t. If s = r+5, there are no Jacobi identities available to equate yrsst and yr,t−3,t−3,t.

Therefore yrsst = yr,t−3,t−3,t for s = r + 3, r + 4, r + 6, r + 7, but [Gr,r+5, Gr+5,r+10] =

Fr,r+10 + yr,r+5,r+5,r+10 where yr,r+5,r+5,r+10 is some non-trivial element in the multiplier.

In conclusion, the only non-trivial multiplier elements arising from [Grs, Gst] are

of the form yr,r+3,r+3,r+7, yr,r+3,r+3,r+8, yr,r+4,r+4,r+8, yr,r+4,r+4,r+9, yr,r+5,r+5,r+9,

yr,r+5,r+5,r+10.
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As in the k = 1 example if we define ŷrsst such that [Grs, Gst] = Frt + yrsst =

Grt + ŷrsst, we get the same number of yrsst
′s and ŷrsst

′s, so it is sufficient to count the

occurences of yrsst.

4.2 [Gst, Gab], where t 6= a

Consider the second case where [Gst, Gab] = [Fst, Fab] = ystab since t 6= a. Due to

the antisymmetry of the bracket (alternating property), it is sufficient to consider only the

cases when s < a or s = a and t < b. This in mind, we do not need to consider s = b since

it violates s < a and the alternating property would put it back into the t = a case.

Thus [Gst, Gab] = [Fst, Fab] = ystab where ystab is some element in the multiplier,

M(L). Since no F is produced by the bracket operation and hence [Gst, Gab] = [Fst, Fab] ∈
M(L), we will work with the F ′s rather than the G′s as both produce the same elements

in M(L) when t 6= a. We wish to find all the scenarios (relationships between the values

of s, t, a, and b) where ystab = 0 versus ystab 6= 0. As in the previous example we begin by

imposing an upper bound on the distance between a and b as well as s and t for which ystab

may be non-zero.

Lemma 4.2.1 If b ≥ a + 7 or t ≥ s + 7 then ystab = 0. So ystab 6= 0 only has the potential

to occur if both b ≤ a + 6 and t ≤ s + 6.

Proof Suppose b ≥ a + 7. If t 6= a + 3 then let c = a + 3. If t = a + 3 then choose

c = a + 4. The number line is shown in Figure 4.1. By construction c 6= t, a, b. Notice

s ≤ a < c ⇒ c 6= s. This gives c 6= s, t, a, b and therefore J(Fst, Fac, Fcb) = 0 ⇒ ystab = 0.

or

Figure 4.1: k = 2 : b ≥ a + 7

Similarly suppose t ≥ s + 7. If a 6= s + 3 then let c = s + 3. If a = s + 3 then

choose c = s + 4. The number line is shown in Figure 4.2. By construction c 6= s, t, a, but

we want to show c 6= b also.
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or

Figure 4.2: k = 2 : t ≥ s + 7

Notice when s = a ⇒ t < b ⇒ c = s + 3 < s + 7 ≤ t < b and when s < a

then a + 3 ≤ b ⇒ s + 3 < a + 3 ≤ b (i.e. s + 4 ≤ b). Therefore either b > s + 4 ≥ c or

b = s + 4 ⇒ a = s + 1 ⇒ a 6= s + 3 so c = s + 3 6= b. Therefore in all cases c 6= b. This

gives c 6= s, t, a, b and therefore J(Fsc, Fct, Fab) = 0 ⇒ ystab = 0.

Lemma 4.2.2 If b = a + 6 then ystab = 0 ⇔ t 6= a + 3 or s < a (s 6= a). Similarly if

t = s + 6 then ystab = 0 ⇔ a 6= s + 3 or b 6= t.

Proof (⇐) Suppose b = a+6. If t 6= a+3 then let c = a+3, so c 6= t, a, b and furthermore

s ≤ a < a + 3 = c ⇒ c 6= s. Therefore c 6= s, t, a, b and J(Fst, Fac, Fcb) = 0 ⇒ ystab = 0.

The number line is shown in Figure 4.3.

Figure 4.3: k = 2 : b = a + 6, t 6= a + 3

On the other hand if t = a + 3 and s < a then let c = t− 1, as in Figure 4.4.

Figure 4.4: k = 2 : b = a + 6, t = a + 3

In this case J(Fst, Ftb, Fat) = 0 ⇒ ystab = −ysbat and J(Fsc, Fcb, Fat) = 0 ⇒ ysbat = 0

which together give ystab = 0.
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(⇒) Suppose b = a + 6, t = a + 3, and s = a, as in Figure 4.5.

Figure 4.5: k = 2 : b = a + 6, t = a + 3 = s + 3

There is no value of c such that Fac and Fcb are both defined while c 6= t. As such, there

are no Jacobi identities available to zero out ystab, thus ystab 6= 0.

(⇐) Suppose t = s + 6. If a 6= s + 3 then let c = s + 3, so c 6= s, t, a, but we want to

show c 6= b also. Notice when s = a then t < b so s < c < t < b ⇒ c 6= b. If s < a

then a + 3 ≤ b ⇒ c = s + 3 < a + 3 ≤ b ⇒ c 6= b. Therefore c 6= s, t, a, b and

J(Fsc, Fct, Fab) = 0 ⇒ ystab = 0. This can be seen on the number line in Figure 4.6.

Figure 4.6: k = 2 : t = s + 6, a 6= s + 3

On the other hand if a = s + 3 and b > t then let c = a + 1, as in Figure 4.7.

Figure 4.7: k = 2 : t = s + 6, a = s + 3

In this case J(Fsa, Fat, Fab) = 0 ⇒ ystab = ysbat and J(Fsc, Fcb, Fat) = 0 ⇒ ysbat = 0

which together give ystab = 0. If a = s + 3 and b < t then s < s + 3 = a < a + 3 ≤ b < t ⇒
s + 6 < t and hence by Lemma 4.2.1, ystab = 0.
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(⇒) Suppose t = s + 6, a = s + 3, and b = t, as in Figure 4.8.

Figure 4.8: k = 2 : b = t = s + 6, a = s + 3

There is no value of c such that Fsc and Fct are both defined while c 6= a. As such, there

are no Jacobi identities available to zero out ystab, thus ystab 6= 0.

Now that we have an upper bound on the distance from a to b and s to t for which

non-trivial ystab values may be produced, we continue our search by separating the variable

relationships into three cases. Either (1) s = a, (2) a > t, or (3) s < a < t.

Case 1: s = a

For a fixed value of s, suppose s = a. Lemmas 4.2.1 and 4.2.2 discuss b ≥ s+6, so

consider b < s + 6. Let tmin = s + 3, thus denoting the minimum possible value of t. Since

s = a ⇒ t < b this gives tmin < b < s + 6 = tmin + 3. In other words b = tmin + j, where

j ∈ {1, 2}.

Lemma 4.2.3 When b = tmin + j where j ∈ {1, 2} we get j new non-zero values for ystab.

Proof For either value of j we have b < s + 6 = a + 6. Additionally t < b ⇒ t < s + 6.

Therefore 6 ∃c such that Fac and Fcb are both defined, similarly 6 ∃c such that Fsc and Fct

are both defined. Therefore ystab 6= 0.

For b = tmin + j, t < b ⇒ t ∈ {tmin, . . . , tmin + j − 1} ⇒ t may take on

j different values for a fixed b, hence we get j distinct new non-zero values for ystab as t

fluctuates. Putting this together we have

j = 1 ⇒ b = tmin + 1 = s + 4 ⇒ t = tmin = s + 3 ⇒ y(s, s + 3, s, s + 4) 6= 0.

j = 2 ⇒ b = tmin +2 = s+5 ⇒ t = tmin, tmin +1 = s+3, s+4 ⇒ y(s, s+3, s, s+5)

and y(s, s + 4, s, s + 5) 6= 0.
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Case 2: a > t

Lemma 4.2.4 If a > t then ystab 6= 0 for all t and b such that both t < s+6 and b < a+6.

Otherwise ystab = 0 when a > t. That is y(s, t, a, a + 3), y(s, t, a, a + 4), y(s, t, a, a + 5) 6= 0

when t = s + 3, s + 4, s + 5.

Proof If t ≥ s + 7 or b ≥ a + 7 then Lemma 4.2.1 ⇒ ystab = 0. If t = s + 6 or b = a + 6

then Lemma 4.2.2 ⇒ ystab = 0 since a > t ⇒ t 6= a + 3 and a 6= s + 3.

If t < s + 6 and b < a + 6 then there is no value of c, such that Fsc and Fct are

both defined for s < c < t. Similarly there is no value of c, such that Fac and Fcb are both

defined for a < c < b. Therefore the idea in Lemma 4.2.1, of using J(Fsc, Fct, Fab) = 0 or

J(Fst, Fac, Fcb) = 0 will not work here. Also, placing a c such that s < t < c < a < b will

not provide any helpful Jacobi identities, no matter how large the gap between t and a.

Thus ystab will always be non-zero in this case.

Case 3: s < a < t

If b ≥ a + 7 or t ≥ s + 7 then Lemma 4.2.1 implies ystab = 0. If b = a + 6 then

Lemma 4.2.2 implies ystab = 0 since s < a. If t = s + 6 and a 6= s + 3 then Lemma 4.2.2

gives ystab = 0. If t = s + 6 and a = s + 3 ⇒ b ≥ a + 3 = s + 6 = t. When b > t then

Lemma 4.2.2 gives ystab = 0. When b = t then Lemma 4.2.2 gives ystab 6= 0.

Thus it is only left to consider t < s + 6 and b < a + 6. No such c exists, nor do

suitable Jacobi identities exist to zero out ystab when a+3 ≤ b ≤ a+5 and s+3 ≤ t ≤ s+5.

Therefore ystab 6= 0 when t = s + 3, s + 4, or s + 5 and b = a + 3, a + 4, or a + 5.
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Collecting all this information, we get ystab 6= 0 when:

1. Lemma 4.2.2 result: b = a + 6, t = a + 3, and s = a.

2. Lemma 4.2.2 result: t = s + 6, a = s + 3 and b = t.

3. Lemma 4.2.3 result: s = a, b = tmin + 1, tmin + 2 = s + 4, s + 5, and t < b.

4. Lemma 4.2.4 result: a > t, t < s + 6, and b < a + 6.

5. s < a < t, t = s + 3, s + 4, s + 5, and b = a + 3, a + 4, a + 5.

4.3 Counting the multiplier elements

We are interested in counting all the cases when yrsst and ystab cannot be elim-

inated. Notice that just as in the k = 1 example there are two types of elements: (1)

y(s, s + x1, s + x2, s + x3) where x1, x2, x3 are all fixed and (2) y(s, s + x1, a, a + x2) where

a > s + x1 and x1, x2 are both fixed. Recall that in the first, y(s, s + x1, s + x2, s + x3)

may assume n−w different values (provided that w = max{x1, x2, x3}) and in the second,

y(s, s + x1, a, a + x2) may assume 1
2(n− (x2 + x1 + 1))(n− (x2 + x1)) different values.

Using these two counting techniques, Tables 4.1 and 4.2 list all non-trivial yrsst

and ystab possibilities and the number of times they occur. Adding all of these together

gives dim M(L) = 3(n− 4) +9(n− 5) +10(n− 6) +7(n− 7) +5(n− 8) +3(n− 9) +(n− 10)

+ (n−6)(n−7)
2 +(n − 7)(n − 8) +3

2(n − 8)(n − 9) +(n − 9)(n − 10) + (n−10)(n−11)
2 . Also, as

stated before if any n− x term is not positive, simply omit it from the formula because the

original matrices will not be large enough to produce the corresponding matrix units and

the resulting multiplier elements they would have produced.

Table 4.1: Counting multiplier elements for k = 2, the [Grs, Gst] case

yrsst non-trivial Number of occurences
yr,r+3,r+3,r+7 n− 7
yr,r+3,r+3,r+8 n− 8
yr,r+4,r+4,r+8 n− 8
yr,r+4,r+4,r+9 n− 9
yr,r+5,r+5,r+9 n− 9
yr,r+5,r+5,r+10 n− 10
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Table 4.2: Counting multiplier elements for k = 2, the [Gst, Gab] case

ystab non-trivial Number of occurences
ys,s+3,s,s+6 n− 6

ys,s+6,s+3,s+6 n− 6
ys,s+3,s,s+4 n− 4
ys,s+3,s,s+5 n− 5
ys,s+4,s,s+5 n− 5
ys,s+3,a,a+3

(n−6)(n−7)
2

ys,s+3,a,a+4
(n−7)(n−8)

2

ys,s+3,a,a+5
(n−8)(n−9)

2

ys,s+4,a,a+3
(n−7)(n−8)

2

ys,s+4,a,a+4
(n−8)(n−9)

2

ys,s+4,a,a+5
(n−9)(n−10)

2

ys,s+5,a,a+3
(n−8)(n−9)

2

ys,s+5,a,a+4
(n−9)(n−10)

2

ys,s+5,a,a+5
(n−10)(n−11)

2

ys,s+3,s+1,s+4 n− 4
ys,s+3,s+1,s+5 n− 5
ys,s+3,s+1,s+6 n− 6
ys,s+3,s+2,s+5 n− 5
ys,s+3,s+2,s+6 n− 6
ys,s+3,s+2,s+7 n− 7
ys,s+4,s+1,s+4 n− 4
ys,s+4,s+1,s+5 n− 5
ys,s+4,s+1,s+6 n− 6
ys,s+4,s+2,s+5 n− 5
ys,s+4,s+2,s+6 n− 6
ys,s+4,s+2,s+7 n− 7
ys,s+4,s+3,s+6 n− 6
ys,s+4,s+3,s+7 n− 7
ys,s+4,s+3,s+8 n− 8
ys,s+5,s+1,s+4 n− 5
ys,s+5,s+1,s+5 n− 5
ys,s+5,s+1,s+6 n− 6
ys,s+5,s+2,s+5 n− 5
ys,s+5,s+2,s+6 n− 6
ys,s+5,s+2,s+7 n− 7
ys,s+5,s+3,s+6 n− 6
ys,s+5,s+3,s+7 n− 7
ys,s+5,s+3,s+8 n− 8
ys,s+5,s+4,s+7 n− 7
ys,s+5,s+4,s+8 n− 8
ys,s+5,s+4,s+9 n− 9
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Chapter 5

General Case

Recall that we let Fab denote the image of the matrix unit Eab under the transversal

map. Having Eab strictly upper triangular requires a + 1 ≤ b and having k superdiagonals

of zeros implies a+(k+1) ≤ b. (Note that the strictly upper triangular matrices correspond

to k = 0, one superdiagonal of zeros corresponds to k = 1, etc.) Accordingly we completely

describe the bracket as

[Fst, Fab] =

Fsb + y(s, t, a, b) if t = a

y(s, t, a, b) if t 6= a

where y(s, t, a, b) ∈ M(L) and we often abbreviate y(s, t, a, b) with ystab. Also recall that as

in the model of [3], we first make a change in the choice of Frt. Set

Grt =

Frt if t− r < 2(k + 1)

Frt + yr,t−(k+1),t−(k+1),t = [Fr,t−(k+1), Ft−(k+1),t] otherwise

We want to see how many different y′s exist for all possible brackets assuming the original

matrices are of size n× n with k superdiagonals of zeros. Presently assume n is sufficiently

large to define all desired computations; later we will relax this restriction.

As in the cases k = 1 and k = 2, we divide our investigation of multiplier elements

into two sections: elements produced by [Grs, Gst] and elements produced by [Gst, Gab]

where t 6= a. In the latter we establish s < a or s = a and t < b.
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5.1 [Grs, Gst]

Consider [Grs, Gst] = [Frs, Fst] = Frt + yrsst = Grt + ŷrsst where ŷrsst = yrsst −
yr,t−(k+1),t−(k+1),t. As in the examples, we will count the number of occurences of yrsst since

this will be the same as the number of occurences of ŷrsst provided that we account for the

case when yrsst is absorbed into Grt and ŷrsst = 0, that is [Grs, Gst] = Grt and there is

no contribution to the multiplier. Notice that the requirements of s− r, t− s ≥ k + 1 give

t−r ≥ 2(k+1) or r+2(k+1) ≤ t. From the example k = 1 we noticed that given a fixed r,

we get all y′s trivial when t = r+2(k +1) = r+4 and t ≥ r+3(k +1)+k = r+7. However

for the cases in between when t = r + 5, r + 6 we get 1 non-trivial y in each case. Similarly

when k = 2 (and r fixed) we noticed we get all y′s trivial when t = r +2(k +1) = r +6 and

t ≥ r+3(k+1)+k = r+11. However for the cases in between when t = r+7, r+8, r+9, r+10,

the number of non-trivial y′s we attain are 1, 2, 2, 1 respectively. Fortunately this pattern

will continue. For a general k (and r fixed) we get all y′s = 0 when t = r + 2(k + 1) and

t ≥ r+3(k+1)+k. However as t traverses the 2k values between r+2(k+1) and r+3(k+1)+k

(i.e. t = r+2(k+1)+1, r+2(k+1)+2, . . . , r+3(k+1)+(k−1)) the number of non-trivial

y′s we attain are 1, 2, 3, . . . , k− 3, k− 2, k− 1, k, k, k− 1, k− 2, k− 3, . . . , 3, 2, 1 respectively.

The theorem below shows this, and also takes into account what happens as r changes.

Additionally, case 1 shows the first set of k ascending numbers 1, 2, 3, . . . , k−3, k−2, k−1, k

and case 2 shows the second set of k descending numbers k, k − 1, k − 2, k − 3, . . . , 3, 2, 1.

Theorem 5.1.1 As r, s, and t range over all values for which the bracket is defined, the

number of y′s produced from [Grs, Gst] is
k∑

i=1

i · (n− (2(k + 1) + i)) +
k∑

j=1

(k − j + 1) · (n−

(2(k + 1) + k + j)).

Proof In general if ∃c such that Frc and Fcs are both defined (i.e. r + (k + 1) ≤ c and

c + (k + 1) ≤ s) then the Jacobi identity J(Frc, Fcs, Fst) = 0 ⇒ yrsst = yrcct. Similarly if ∃c
such that Fsc and Fct are both defined (i.e. s + (k + 1) ≤ c and c + (k + 1) ≤ t) then the

Jacobi identity J(Frs, Fsc, Fct) = 0 ⇒ yrsst = yrcct.

Case 1: t = r + 2(k + 1) + i where 1 ≤ i ≤ k

We do not need to consider i = 0 because t = r + 2(k + 1) ⇒ s = r + (k + 1) =

t − (k + 1) ⇒ [Grs, Gst] = Grt. For any value of i in this range, the distance from r to

t is t − r = 2(k + 1) + i ≤ 2(k + 1) + k. In order to define Gab there must be at least
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k integers between a and b, or a + (k + 1) ≤ b. Given a distance from r to t of at most

2(k + 1) + k does not provide sufficient room to define either of the Jacobi identities above

(i.e. J(Frc, Fcs, Fst) = 0 or J(Frs, Fsc, Fct) = 0). While a number c may still be defined to

produce other Jacobi identities, none of these will involve yrsst and hence none of the y′s

resulting from the bracket operation [Grs, Gst] may be equated. Thus for each value of i

(from 1 to k) and a fixed r there will be i such distinct values for s and hence i distinct y′s

produced, namely yrsst where s is any integer from r + (k + 1) up to r + (k + 1) + i − 1.

Notice we have excluded the last possible case when s = r + (k + 1) + i because this also

means s = t− (k + 1), in which case [Grs, Gst] = Frt + yrsst = Grt, thus yrsst gets absorbed

into the Grt and is not counted. That is

if i = 1 then s = r + (k + 1) or s = r + (k + 1) + 1

if i = 2 then s = r + (k + 1) or s = r + (k + 1) + 1 or s = r + (k + 1) + 2

if i = 3 then s = r +(k +1) or s = r +(k +1)+1 or s = r +(k +1)+2 or s = r +(k +1)+3

etc.

In all of which we do not count the last case s = t− (k + 1) = r + (k + 1) + i where yrsst is

absorbed into Grt.

Now for a fixed number i, it is necessary to see how many y′s may be produced as

r varies. Notice that 1 ≤ r < r + 2(k + 1) + i = t ≤ n. Thus r is at least 1 and t is at most

n. In order words 1 ≤ r ≤ n − (2(k + 1) + i). Therefore r may assume n − (2(k + 1) + i)

different values, each producing a different set of i distinct values for yrsst as s varies. So

as r varies and i remains fixed, there are i · (n− (2(k + 1) + i)) different y′s.

In total this produces
k∑

i=1

i · (n− (2(k + 1) + i)) distinct values for yrsst as r, s and t vary.

Case 2: t = r + 2(k + 1) + i where k + 1 ≤ i

For convenience let j = i − k so that t = r + 2(k + 1) + k + j where j ≥ 1. As

stated in the previous case Gab may only be defined if there are k integers between a and b,

or a + (k + 1) ≤ b. Now the luxury exists to pick a c and a d so that Grc, Gcd, and Gdt are

all defined. For the rest of this case, we will allow c to vary and force d to be d = c+(k +1)

(thus depending on the choice of c). Thus we are using d in lieu of s when discussing new

values of s in yrsst and c in lieu of s when discussing old values of s in yrsst from case 1.

Enforcing the relationship between c and d, we are interested to count the number of c′s in

existence that will allow Grc, Gcd, and Gdt to all be defined. We know that the minimum
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value of c is r + (k + 1) in order to define Grc, but we need an upper bound also. Using the

fact that we need d ≤ t− (k + 1) in order to define Gdt means

d ≤ t− (k + 1) ⇒ c + (k + 1) ≤ t− (k + 1) ⇒ c ≤ t− 2(k + 1) (∗)

However t = r + 2(k + 1) + k + j

⇒ c ≤ (r + 2(k + 1) + k + j)− 2(k + 1) = r + k + j = r + (k + 1) + (j − 1)

⇒ c ≤ r + (k + 1) + (j − 1).

Therefore

if j = 1 then c = r + (k + 1)

if j = 2 then c = r + (k + 1) or c = r + (k + 1) + 1

if j = 3 then c = r + (k + 1) or c = r + (k + 1) + 1 or c = r + (k + 1) + 2

if j = 4 then c = r +(k +1) or c = r +(k +1)+1 or c = r +(k +1)+2 or c = r +(k +1)+3

etc.

So in general there are j different choices for the variable c which will allow Grc, Gcd, and

Gdt to all be defined.

Notice that the largest distance between r and t from case 1 occured when what we

are now calling j would be equal to zero (i.e. i = k). We found that there were k different

possible values of yrsst that could arise from [Grs, Gst] for a fixed r, because s can assume

k+1 different values (the largest of which does not get counted since yr,t−(k+1),t−(k+1),t gets

absorbed into Grt).

Case 2 now considers j ≥ 1. There is the potential for j new values of yrsst as

there are j new values of s for a fixed r (reminder: we call these yrddt) because there

are j additional integers between r and t and hence s may assume j more values in the

expression yrsst = yrddt which arise from the j additional brackets [Grs, Gst] = [Grd, Gdt].

Even though the potential is there, none of these y′s are new. The Jacobi identity (1)

J(Frc, Fcd, Fdt) = 0 ⇒ yrcct = yrddt. This means that each of the j new yrddt
′s can be

equated to its corresponding yrcct from the case 1 scenario. Even more fortunate is that c

is always at least k + 1 integers away from t − (k + 1), as shown earlier in (∗). Hence the

Jacobi identity (2) J(Frc, Fc,t−(k+1), Ft−(k+1),t) = 0 gives yrcct = yr,t−(k+1),t−(k+1),t for all

j possible values for c. Keep in mind that c ≤ t − 2(k + 1), however if c = t − 2(k + 1)

then d = t− (k +1) which would mean these two Jacobi identities (1) and (2) are the exact

same. So rather, we are only interested in the j − 1 different c values when c < t− 2(k + 1)
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and therefore ⇒ yrddt = yrcct = yr,t−(k+1),t−(k+1),t where c < c + (k + 1) = d < t− (k + 1)

and hence these j − 1 values of yrcct where c is as in case 1 can all be equated to

yr,t−(k+1),t−(k+1),t, which are all absored into Grt. This eliminates these j − 1 yrcct
′s from

our original count of k when j was zero.

Therefore for a fixed r there are k− (j−1) = k− j +1 values of y when 1 ≤ j ≤ k,

and if j > k, all the y′s are equal to each other and to yr,t−(k+1),t−(k+1),t hence producing

no non-trivial values for yrsst.

Now for a fixed number j (between 1 and k), it is necessary to see how many y′s

can be produced as r varies. Notice that 1 ≤ r < r + 2(k + 1) + k + j = t ≤ n. Thus r is at

least 1 and t is at most n. In other words 1 ≤ r ≤ n− (2(k + 1) + k + j). Therefore r may

assume n − (2(k + 1) + k + j) different values, each producing a set of k − j + 1 distinct

values for yrsst. So as r varies and j remains fixed, there are

(k − j + 1) · (n− (2(k + 1) + k + j)) different y′s.

In total this produces
k∑

j=1

(k − j + 1) · (n − (2(k + 1) + k + j)) distinct values for

yrsst as r and j vary, keeping in mind that if j > k we get zero y′s, hence it is sufficient to

sum up to j = k.

In total this produces
k∑

i=1

i · (n− (2(k + 1) + i)) +
k∑

j=1

(k − j + 1) · (n− (2(k + 1) + k + j))

different yrsst values.

Notice every part of both sums involve a term of the form n−x. As in the examples,

x denotes a distance between subscripts of the G′s and hence a distance between matrix

positions in the original n × n matrices. Therefore whenever n − x ≤ 0 occurs, it should

be replaced with a zero since the necessary matrix units were not available to produce the

corresponding multiplier elements.
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5.2 [Gst, Gab], where t 6= a

Recall that [Gst, Gab] = [Fst, Fab] = ystab where ystab is some element in the mul-

tiplier, M(L), since t 6= a and the y′s are central. As in the cases of k = 1, 2, since no F

results from the bracket operation, we will work with the F ′s rather than the G′s as both

produce the same elements in M(L) when t 6= a. Again we wish to find all the relationships

between the values of s, t, a, and b where ystab = 0 versus ystab 6= 0. As in the examples we

begin by imposing an upper bound on the distance between a and b as well as s and t for

which ystab may be non-zero.

Theorem 5.2.1 If b ≥ a + 2(k + 1) + 1 or t ≥ s + 2(k + 1) + 1 then ystab = 0. So ystab 6= 0

only has the potential to occur if both b ≤ a + 2(k + 1) and t ≤ s + 2(k + 1).

Proof Suppose b ≥ a + 2(k + 1) + 1. If t 6= a + (k + 1) then let c = a + (k + 1). If

t = a + (k + 1) then choose c = a + (k + 1) + 1. This can be seen in Figure 5.1. Where

b1 = a+2(k +1)+1, so b ≥ b1. By construction c 6= t, a, b. Notice s ≤ a < c ⇒ c 6= s. This

gives c 6= s, t, a, b and therefore J(Fst, Fac, Fcb) = 0 ⇒ ystab = 0.

Similarly suppose t ≥ s + 2(k + 1) + 1. If a 6= s + (k + 1) then let c = s + (k + 1).

If a = s + (k + 1) then choose c = s + (k + 1) + 1. This can be seen in Figure 5.2. Where

t1 = s + 2(k + 1) + 1, so t ≥ t1. By construction c 6= s, t, a, but we want to show c 6= b also.

or

Figure 5.1: b ≥ a + 2(k + 1) + 1

Notice when s = a ⇒ t < b ⇒ c = s + (k + 1) < s + 2(k + 1) + 1 ≤ t < b

so c 6= b. When s < a then a + (k + 1) ≤ b ⇒ s + (k + 1) < a + (k + 1) ≤ b (i.e.

b ≥ s + (k + 1) + 1). Therefore either b > s + (k + 1) + 1 ≥ c or b = s + (k + 1) + 1 ⇒
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or

Figure 5.2: t ≥ s + 2(k + 1) + 1

a = s + 1 (since a + (k + 1) ≤ b and s < a) ⇒ a 6= s + (k + 1) so c = s + (k + 1) 6= b.

Therefore in all cases c 6= b. (This assumed k 6= 0. If k = 0 then the result still holds

according to [3].) This gives c 6= s, t, a, b and therefore J(Fsc, Fct, Fab) = 0 ⇒ ystab = 0.

Theorem 5.2.2 If b = a + 2(k + 1) then ystab = 0 ⇔ t 6= a + (k + 1) or s < a (s 6= a).

Similarly if t = s + 2(k + 1) then ystab = 0 ⇔ a 6= s + (k + 1) or b 6= t.

Proof (⇐) Suppose b = a + 2(k + 1). If t 6= a + (k + 1) then let c = a + (k + 1), so

c 6= t, a, b and furthermore s ≤ a < a + (k + 1) = c ⇒ c 6= s. Therefore c 6= s, t, a, b and

J(Fst, Fac, Fcb) = 0 ⇒ ystab = 0. Please see Figure 5.3. On the other hand if t = a+(k +1)

and s < a then let c = t − 1, which is shown in Figure 5.4. In this case J(Fst, Ftb, Fat) =

0 ⇒ ystab = −ysbat and J(Fsc, Fcb, Fat) = 0 ⇒ ysbat = 0 which together give ystab = 0.

Figure 5.3: b = a + 2(k + 1), t 6= a + (k + 1)
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Figure 5.4: b = a + 2(k + 1), t = a + (k + 1)

.

(⇒) Suppose b = a + 2(k + 1), t = a + (k + 1), and s = a, as in Figure 5.5.

Figure 5.5: b = a + 2(k + 1), t = a + (k + 1) = s + (k + 1)

There is no value of c such that Fac and Fcb are both defined while c 6= t, nor is there a c

such that both Fsc and Fct can be defined. As such, there are no Jacobi identities available

to zero out ystab, thus ystab 6= 0.

(⇐) Suppose t = s + 2(k + 1). If a 6= s + (k + 1) then let c = s + (k + 1), so c 6= s, t, a, but

we want to show c 6= b also. Notice when s = a then t < b so s < c < t < b ⇒ c 6= b. If

s < a then a + (k + 1) ≤ b ⇒ c = s + (k + 1) < a + (k + 1) ≤ b ⇒ c 6= b. Therefore

c 6= s, t, a, b and J(Fsc, Fct, Fab) = 0 ⇒ ystab = 0. Please see Figure 5.6. On the other hand

if a = s + (k + 1) and b > t then let c = a + 1, which can be seen in Figure 5.7. In this

case J(Fsa, Fat, Fab) = 0 ⇒ ystab = ysbat and J(Fsc, Fcb, Fat) = 0 ⇒ ysbat = 0 which

together give ystab = 0.

If a = s + (k + 1) and b < t then s < s + (k + 1) = a < a + (k + 1) ≤ b < t ⇒
s + 2(k + 1) + 1 ≤ t and hence by Theorem 5.2.1, ystab = 0.
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Figure 5.6: t = s + 2(k + 1), a 6= s + (k + 1)

Figure 5.7: t = s + 2(k + 1), a = s + (k + 1)

(⇒) Suppose t = s + 2(k + 1), a = s + (k + 1), and b = t, as shown in Figure 5.8.

Figure 5.8: b = t = s + 2(k + 1), a = s + (k + 1)

There is no value of c such that Fsc and Fct are both defined while c 6= a, nor is there a c

such that both Fac and Fcb can be defined. As such, there are no Jacobi identities available

to zero out ystab, thus ystab 6= 0.

As in the examples, k = 1, 2, now that we have an upper bound on the distance

from a to b and s to t for which non-trivial ystab values may be produced we continue our

search by separating the variable relationships into three cases. Either (1) s = a, (2) a > t,

or (3) s < a < t.
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Case 1: s = a

For a fixed value of s, suppose s = a. Theorems 5.2.1 and 5.2.2 discuss b ≥
s + 2(k + 1), so consider b < s + 2(k + 1). Let tmin = s + (k + 1), denoting the minimum

possible value of t. Since s = a ⇒ t < b this gives tmin < b < s+2(k+1) = tmin +(k+1).

In other words b = tmin + j, where j ∈ {1, 2, . . . , k}.

Theorem 5.2.3 When b = tmin + j where j ∈ {1, 2, . . . , k} we get j new non-zero values

for ystab.

Proof For any value of j we get b < s + 2(k + 1) = a + 2(k + 1). Additionally t < b ⇒
t < s + 2(k + 1). Therefore 6 ∃c such that Fac and Fcb are both defined, similarly 6 ∃c such

that Fsc and Fct are both defined. Therefore ystab 6= 0.

For b = tmin + j, t < b ⇒ t ∈ {tmin, tmin + 1, . . . , tmin + j − 1} ⇒ t may take

on j different values for a fixed b, hence we get j distinct new non-zero values for ystab as t

fluctuates. So the y′s are y(s, tmin, s, tmin + j), y(s, tmin + 1, s, tmin + j), . . . , y(s, tmin + j −
1, s, tmin + j).

Case 2: a > t

Theorem 5.2.4 If a > t then ystab 6= 0 for all t and b such that both t < s + 2(k + 1) and

b < a + 2(k + 1). Otherwise ystab = 0 when a > t.

Proof If t ≥ s + 2(k + 1) + 1 or b ≥ a + 2(k + 1) + 1 then Theorem 5.2.1 ⇒ ystab = 0.

If t = s + 2(k + 1) or b = a + 2(k + 1) then Theorem 5.2.2 ⇒ ystab = 0 since a > t ⇒
t 6= a + (k + 1) and a 6= s + (k + 1).

If t < s + 2(k + 1) and b < a + 2(k + 1) then there is no value of c, such that

Fsc and Fct are both defined for s < c < t. Similarly there is no value of c, such that Fac

and Fcb are both defined for a < c < b. Therefore the idea in Theorem 5.2.1, of using

J(Fsc, Fct, Fab) = 0 or J(Fst, Fac, Fcb) = 0 will not work here. Also, placing a c such that

s < t < c < a < b will not provide any helpful Jacobi identities, no matter how large the

gap between t and a. Thus ystab will always be non-zero in this case.
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Case 3: s < a < t

If b ≥ a + 2(k + 1) + 1 or t ≥ s + 2(k + 1) + 1 then Theorem 5.2.1 implies

ystab = 0. If b = a + 2(k + 1) then Theorem 5.2.2 implies ystab = 0 since s < a. If

t = s + 2(k + 1) and a 6= s + (k + 1) then Theorem 5.2.2 gives ystab = 0. If t = s + 2(k + 1)

and a = s + (k + 1) ⇒ b ≥ a + (k + 1) = s + 2(k + 1) = t. When b > t then Theorem

5.2.2 gives ystab = 0. When b = t then Theorem 5.2.2 gives ystab 6= 0.

Thus it is only left to consider t < s + 2(k + 1) and b < a + 2(k + 1). No such c

exists nor do any suitable Jacobi identities exist to zero out ystab when a + (k + 1) ≤ b ≤
a + 2(k + 1) − 1 and s + (k + 1) ≤ t ≤ s + 2(k + 1) − 1. Therefore ystab 6= 0 when b and t

lie within these intervals.

Collecting all this information, we get ystab 6= 0 when:

1. Theorem 5.2.2 result:

b = a + 2(k + 1), t = a + (k + 1), and s = a.

2. Theorem 5.2.2 result:

t = s + 2(k + 1), a = s + (k + 1) and b = t.

3. Theorem 5.2.3 result:

s = a and b = tmin + j where j ∈ {1, 2, . . . , k}.

4. Theorem 5.2.4 result:

a > t, t < s + 2(k + 1), and b < a + 2(k + 1).

5. s < a < t, t < s + 2(k + 1), and b < a + 2(k + 1).

5.3 Counting elements produced by [Gst, Gab], where t 6= a

We are interested to count all such cases when ystab 6= 0. As in the k = 1, 2

examples there are two types of elements: (1) y(s, s + x1, s + x2, s + x3) which produce

n − w multiplier elements when w = max{x1, x2, x3} and (2) y(s, s + x1, a, a + x2) where
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a > s + x1 which produce 1
2(n− (x2 + x1 + 1))(n− (x2 + x1)) multiplier elements. We now

use this to count the number of non-trivial values for ystab when t 6= a.

1. Theorem 5.2.2 result: b = a + 2(k + 1), t = a + (k + 1), and s = a

ystab = y(s, s + (k + 1), s, s + 2(k + 1)) which assumes n− 2(k + 1) values as s varies.

2. Theorem 5.2.2 result: t = s + 2(k + 1), a = s + (k + 1) and b = t

ystab = y(s, s + 2(k + 1), s + (k + 1), s + 2(k + 1)) which assumes n− 2(k + 1) values

as s varies.

3. Theorem 5.2.3 result: s = a and b = tmin + j where j ∈ {1, 2, . . . , k}

Recall: tmin = s + (k + 1) and s = a ⇒ t < b. So ystab = y(s, tmin + i, s, tmin + j)

where i < j. It is acceptable for t = tmin which gives i ∈ {0, 1, 2, . . . , j − 1} for

j ∈ {1, 2, . . . , k}. Therefore tmin+j = max{s, tmin+i, s, tmin+j} and since tmin+j =

s+(k +1)+ j this means that ystab will assume n− ((k +1)+ j) values as s varies, for

a fixed i and j. Also notice that for a fixed j, i may assume j different values (namely

i ∈ {0, 1, 2, . . . , j− 1}), thus we get n− ((k +1)+ j) values of ystab for each i. In total

this gives j × (n− ((k + 1) + j)) values for ystab as s and i vary but j remains fixed.

Since we get j × (n− ((k + 1) + j)) values of ystab for a fixed j, and j can range from

1 up to k, in total this produces
k∑

j=1

j × (n− ((k + 1) + j)) non-trivial values for ystab

in this situation.

4. Theorem 5.2.4 result: a > t, t < s + 2(k + 1), and b < a + 2(k + 1)

Let bmin = a + (k + 1) = the minimum possible value for b. So ystab = y(s, tmin +

i, a, bmin + j) = y(s, s + (k + 1) + i, a, a + (k + 1) + j) where i, j ∈ {0, 1, 2, . . . , k}.
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If we let x1 = (k + 1) + i and x2 = (k + 1) + j, then ystab = y(s, s + x1, a, a + x2)

and we know from our earlier discussion that this may assume (n−(x2+x1+1))(n−(x2+x1))
2

different values for a fixed x and y.

Also (n−(x2+x1+1))×(n−(x2+x1))
2 = (n−(2(k+1)+i+j+1))×(n−(2(k+1)+i+j))

2 . This fraction

corresponds to the number of non-trivial ystab values that arise for fixed i and j.

Since i and j can both range in value from 0 up to k, in total this produces

k∑
j=0

k∑
i=0

(n− (2(k + 1) + i + j + 1))× (n− (2(k + 1) + i + j))
2

non-trivial values for ystab in this situation.

5. s < a < t, t < s + 2(k + 1), and b < a + 2(k + 1)

This is the most difficult case to count. Even though ystab looks like y(s, s + x1, s +

x2, s + x3), sometimes t < b and other times b ≤ t. The former is more numerous,

but both will occur. The larger the value of k, the more common the latter becomes.

In fact the latter is slightly easier to count, so we will deal with this first. In order

to explain this it will be useful to mention both tmin = s + (k + 1) and tmax =

s + 2(k + 1) − 1. As the name implies, tmax is the largest possible value of t that

can occur. In order to more easily see what is happening, Figure 5.9 illustrates

this situation when k = 6. The numbers across the top refer to the distance on

the number line beyond s. Since s < a < t we note that a may take any value

s < a < tmax. Each ai corresponds to placing a, such that ai = s + i. We continue

to increase i until we reach tmax − 1. Since a + (k + 1) ≤ b ≤ a + 2(k + 1)− 1 we get

(a + 2(k + 1)− 1)− (a + (k + 1)) + 1 = k + 1 values of b for each a.

In the figure, the k + 1 possible values of b that correspond to ai are labeled as bi. To

reduce clutter each ai and its corresponding bi’s are written one line lower than ai−1

and its corresponding bi−1’s in the chart.
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Figure 5.9: Counting Example, k = 6 and s < a < t

(i) b ≤ t

We will now count the b ≤ t possibility. Since a and b have the same relationship as s

and t, that being a+(k+1) ≤ b ≤ a+2(k+1)−1 and s+(k+1) ≤ t ≤ s+2(k+1)−1,

and we have s < a < t, this means that ∀b, tmin < b and the smallest possible value b

may assume is tmin + 1.

If t = tmin then b ≤ t cannot occur.

If t = tmin + 1 then b ≤ t only occurs when b = t = tmin + 1. The restriction of

a + (k + 1) ≤ b ≤ a + 2(k + 1)− 1 then forces a = s + 1. Thus b ≤ t can only happen

one way.

If t = tmin + 2 then b ≤ t can occur when b ∈ {tmin + 1, tmin + 2}. As noted in the

previous case, b = tmin + 1 corresponds to one possibility (which must be counted

again because t has taken on a different value), but b = tmin + 2 corresponds to two

possibilities as a is either a = s + 1 or a = s + 2. So there are 1 + 2 possibilities in

this case.

If t = tmin + 3 then b ≤ t can occur when b ∈ {tmin + 1, tmin + 2, tmin + 3}. If

b = tmin +3 then a+(k+1) ≤ b ≤ a+2(k+1)−1 gives a ∈ {s+1, s+2, s+3}, giving

three new possibilities. If b 6= tmin + 3 then revert to the previous case. In total this
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implies there are 1 + 2 + 3 possibilities in this case.

So in general if t = tmin + i where 1 ≤ i ≤ k, then requiring a + (k + 1) ≤ b ≤
a+2(k+1)−1 gives a ∈ {s+1, s+2, s+3, . . . , s+i} when b = tmin+i. However when

b 6= tmin+i we revert to the previous case. In total this therefore gives 1+2+3+. . .+i =
i∑

j=1

j =
i(i + 1)

2
occurences of b ≤ t.

Note that tmax = s+2(k+1)−1 = tmin+k, so this continues until t = tmax = tmin+k.

If b ≤ t, then as shown earlier if t = s + x there are n− x possible values of ystab as s

varies. If t = tmin + i then t = s+(k +1)+ i, giving n− ((k +1)+ i) non-trivial values

of ystab for a fixed i. Since 1 ≤ i ≤ k we get a total of
k∑

i=1

i(i + 1)
2

· (n− ((k + 1) + i))

values of ystab here.

(ii) t < b

Thus now it only remains to count the non-trivial occurences of ystab for t < b within

this case (i.e. s < a < t < b). These actually come in 3 sets of k (three different

patterns), and will produce three summations each going from 1 up to k.

As previously mentioned, the smallest possible value of b is tmin +1 = s+(k +1)+1.

The largest possible b occurs when both a and the distance from a to b are as large

as possible. That is, the largest b is b = a + 2(k + 1) − 1 and a = tmax − 1. Since

tmax = s + 2(k + 1) − 1, we get the largest b to be b = (tmax − 1) + 2(k + 1) − 1 =

((s+2(k +1)−1)−1)+2(k +1)−1 = s+4(k +1)−3, which brings the total number

of potential b’s to (s+4(k +1)− 3)− (s+(k +1)+1)+1 = 3(k +1)− 3− 1+1 = 3k.

We will now consider the potential values of b, k at a time.

Suppose b ∈ {tmin + 1, tmin + 2, ..., tmin + k}.

If b = tmin + 1, then t < b implies t = tmin and a + (k + 1) ≤ b ≤ a + 2(k + 1) − 1

together with s < a imply a = s + 1. Thus, t < b can only happen one way. For the

example of k = 6, we are considering that b is in the column under the number 8.

If b = tmin+2, then t < b implies t ∈ {tmin, tmin+1} and a+(k+1) ≤ b ≤ a+2(k+1)−1
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together with s < a imply a ∈ {s+1, s+2}. Since a and t may each assume 2 values,

there are 22 arrangements of placing a and t, and thus 22 possibilities in this case. For

the example in k = 6, we are considering that b is in the column under the 9. Since

there are 2 b’s in this column, they are generated from the 2 a’s: a1, a2. Thus a can

be in column 1 or 2, and t can be in column 7 or 8.

If b = tmin + 3, then t < b implies t ∈ {tmin, tmin + 1, tmin + 2} and a + (k + 1) ≤ b ≤
a + 2(k + 1) − 1 together with s < a imply a ∈ {s + 1, s + 2, s + 3}. Since a and t

may each assume 3 values, there are 32 arrangements of placing a and t, and thus 32

possibilities in this case. For the example in k = 6, we are considering that b is in the

column under the 10. Since there are 3 b’s in this column, they are generated from

the 3 a’s: a1, a2, a3. Thus a can be in column 1, 2, or 3, and t can be in column 7, 8,

or 9.

This pattern continues.

If b = tmin +k = tmax, then t < b implies t ∈ {tmin, tmin +1, tmin +2, . . . , tmin +k−1}
and a + (k + 1) ≤ b ≤ a + 2(k + 1) − 1 together with s < a imply a ∈ {s + 1, s +

2, s + 3, . . . , s + k}. Since the largest a is a = s + k < s + (k + 1) = tmin, there is no

need to reduce the number of t’s to enforce the restriction of s < a < t. Since a and

t may each assume k values, there are k2 arrangements of placing a and t, and thus

k2 possibilities in this case. For the example in k = 6, we are considering that b is in

the column under the 13. Since there are k = 6 b’s in this column, they are generated

from the k = 6 a’s: a1, a2, . . . , a6. Thus a can be in column 1, 2, . . . , 6 and t can be in

column 7, 8, . . . , 12.

So in general if b = tmin + i where 1 ≤ i ≤ k there are i2 non-trivial occurences of

ystab for a fixed s when t < b. Since t < b, then as shown earlier if b = s + x3 there

are n− x3 possible values of ystab as s varies. If b = tmin + i then b = s + (k + 1) + i,

giving n− ((k + 1) + i) non-trivial values of ystab as s fluctuates and i remains fixed.

Since 1 ≤ i ≤ k we get a total of
k∑

i=1

i2 · (n − ((k + 1) + i)) values of ystab here as s

and i both change.

Now as b exceeds tmin + k, a has the potential of being tmin or larger, which will
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reduce the number of acceptable values for t since s < a < t is in effect.

Suppose that b ∈ {tmin + k + 1, tmin + k + 2, ..., tmin + 2k}.

In such case tmax < b, so the requirement of t < b is automatic.

If b = tmin +k +1, as with the smaller values of b, the criterion that a+(k +1) ≤ b ≤
a+2(k+1)−1 together with s < a imply a ∈ {s+1, s+2, s+3, . . . , s+k, s+(k+1)}.
Notice that tmin = s + (k + 1), so extra caution is in order to ensure s < a < t is

maintained. If a 6= s + (k + 1) then any of the k + 1 possible values of t meet the

s < a < t criterion. (Note: k + 1 possible values comes from tmin ≤ t ≤ tmax, or

s+(k+1) ≤ t ≤ s+2(k+1)−1, in total giving tmax− tmin +1 = k+1 possible values

of t). On the other hand if a = s + (k + 1) = tmin, then t can be any value except

tmin, giving k values (one fewer) of t now that follow s < a < t. In other words we

can say that each of the k + 1 values of a can match up with any of the k + 1 values

of t, with this one exception thus yielding (k + 1)2 − 1 possibilities in this case. For

the example in k = 6, we are considering that b is in column 14, so a is in any column

1 to 7 (k + 1 columns).

If b = tmin + k + 2 = s + 2(k + 1) + 1, then a + (k + 1) ≤ b ≤ a + 2(k + 1)− 1 implies

a ∈ {s+2, s+3, s+4, . . . , s+k, s+(k +1), s+k +2}. If a is any value s+2, . . . , s+k

then a < tmin, hence there are k + 1 possible values of t for each of these a’s. As in

the last case if a = s + (k + 1) = tmin, we lose the possibility of t = tmin, likewise if

a = s+k +2 = tmin +1 we lose the possibilities of t = tmin, tmin +1 due to s < a < t.

Hence each possible a with each possible t produces (k + 1)2 combinations with 1 + 2

exceptions. Therefore we get (k + 1)2 − (1 + 2) possibilities in this case. For the

example in k = 6, we are considering that b is in column 15, so a is any column 2

through 8 (k + 1 columns).

This pattern continues.

If b = tmin+k+k then a+(k+1) ≤ b ≤ a+2(k+1)−1 implies a ∈ {s+k, . . . , s+k+k}.
If a = s + k < tmin then a can match up with any of the k + 1 possible values of t. If

a = s+k+1 = tmin we lose one potential t, that being t = tmin. If a = s+k+2 we lose

t = tmin, tmin+1. Continuing this until a = s+k+k, we lose t = tmin, . . . , tmin+k−1.



41

So in total we get the (k+1)2 original possibilities, but lose 1+2+3+ . . .+k = k(k+1)
2

combinations, thus giving (k + 1)2 − k(k+1)
2 possibilities in this case. For the example

in k = 6, we are considering that b is in column 19, so a is any column 6 to 12 (k + 1

columns).

So in general if b = tmin +k+ i, where 1 ≤ i ≤ k then a+(k+1) ≤ b ≤ a+2(k+1)−1

implies a ∈ {s + i, . . . , s + k + i}. As before each a such that a < tmin = s + (k + 1)

can match up with any of the k + 1 possible values of t. For the largest value of

a, a = s + k + i we lose i potential values of t (t = s + k + 1, . . . , s + k + i), for

the second largest value of a, a = s + k + (i − 1) we lose i − 1 potential values of t

(t = s + k + 1, . . . , s + k + (i − 1)), and so on until we lose only one potential value

of t. In total we lose 1 + 2 + . . . + i = i(i+1)
2 values of t, bringing the total number of

possibilities to (k + 1)2 − i(i+1)
2 . Since b = tmin + k + i = s + (k + 1) + k + i we get

n− ((k +1)+ k + i) non-trivial values of ystab for a fixed i as s varies. Since 1 ≤ i ≤ k

we get a total of
k∑

i=1

(
(k + 1)2 − i(i + 1)

2

)
· (n− ((k +1)+ k + i)) values of ystab here.

Suppose that b ∈ {tmin + 2k + 1, tmin + 2k + 2, ..., tmin + 3k}.

In such case tmax < b, so the requirement of t < b is automatic.

If b = tmin +2k +1 then a+(k +1) ≤ b ≤ a+2(k +1)− 1 together with s < a < tmax

imply a ∈ {s + k + 1, . . . , s + 2k}. Notice now that the upper bound of a < tmax is

being utilized. Given tmax = tmin + k = s + (k + 1) + k = s + 2k + 1 together with

a < tmax yield s + 2k is the largest possible a. Thus for b = tmin + 2k + 1 we get k

possible values of a, rather than k + 1. This can be seen in the k = 6 example. If b is

in column 20, there are only 6 b’s (k of them) in this column rather than 7 (or k + 1)

like there are in column 19. The largest possible a, a = s + 2k = tmax − 1, yields

only one possible value of t, namely t = tmax. The second largest possible value of a,

a = s+2k−1 = tmax−2, yields two possible values of t, that is t = tmax, tmax−1. This

continues until the minimum value of a, a = s + k + 1 = tmax− k when t may take on

any of k possible values, t = tmax, tmax−1, . . . , tmax−k+1. So as a moves from largest

to smallest, the potential number of t’s go from 1 to k, giving 1 + 2 + . . . + k = k(k+1)
2

possibilities in this case.

If b = tmin +2k +2 then a+(k +1) ≤ b ≤ a+2(k +1)− 1 together with s < a < tmax
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imply a ∈ {s + k + 2, . . . , s + 2k}. As in the previous case, the largest possible a,

a = s + 2k corresponds to 1 possible values of t. The second largest a corresponds

to 2 possible values of t. This continues until the minimum value of a, when a =

s + k + 2 = tmax− (k− 1) which produces k− 1 possible values of t. So as a traverses

this list, the number of t’s goes from 1 to k − 1, giving 1 + 2 + . . . + (k − 1) = (k−1)k
2

possibilities in this case.

This pattern continues.

If b = tmin + 3k then a + (k + 1) ≤ b ≤ a + 2(k + 1)− 1 together with s < a < tmax

imply a = s + 2k = tmax − 1. This also forces t = tmax, giving only one possible

non-trivial value to ystab. In the example of k = 6, we are considering that b is in

column 25, which forces a and t to be in columns 12 and 13 respectively.

So in general if b = tmin+2k+i, where 1 ≤ i ≤ k then a+(k+1) ≤ b ≤ a+2(k+1)−1

implies a ∈ {s+k+i, . . . , s+2k} There are (s+2k)−(s+k+i)+1 = k−i+1 = k−(i−1)

possible values for a. The minimum a gives k− (i− 1) possible t′s and the maximum

a gives one t, meaning in total we get 1 + 2 + . . . + (k− (i− 1)) = (k−(i−1))(k−(i−1)+1)
2

possibilities as a and t move (for a fixed i). Since b = tmin+2k+i = s+(k+1)+2k+i

we get n− ((k + 1) + 2k + i) non-trivial values of ystab for a fixed i as s varies. Since

1 ≤ i ≤ k we get a total of
k∑

i=1

(k − (i− 1))(k − (i− 1) + 1)
2

· (n− ((k + 1) + 2k + i))

values of ystab here.

This exhausts all possibilities, as we have considered all 3k possible values of b. As

stated earlier, the largest possible value of b is b = s + 4(k + 1) − 3. Notice that

b = s + 4(k + 1)− 3 = s + (k + 1) + 3(k + 1)− 3 = tmin + 3(k + 1)− 3 = tmin + 3k,

which was the final b considered in this case.

In summary when we put all of this together including both [Grs, Gst] and [Gst, Gab]

we get the total number of non-trivial yrsst, ystab values as all subscripts vary to be

dim M(L) =
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k∑
i=1

i · (n− (2(k + 1) + i))+

k∑
j=1

(k − j + 1) · (n− (2(k + 1) + k + j))+

2(n− 2(k + 1))+
k∑

j=1

j × (n− ((k + 1) + j))+

k∑
j=0

k∑
i=0

(n− (2(k + 1) + i + j + 1))× (n− (2(k + 1) + i + j))
2

+

k∑
i=1

i(i + 1)
2

· (n− ((k + 1) + i))+

k∑
i=1

i2 · (n− ((k + 1) + i))+

k∑
i=1

(
(k + 1)2 − i(i + 1)

2

)
· (n− ((k + 1) + k + i))+

k∑
i=1

(k − (i− 1))(k − (i− 1) + 1)
2

· (n− ((k + 1) + 2k + i))

Notice the 4th, 6th, and 7th line all sum from 1 to k and subtract the same quantity from n.

Thus we may simplify this formula to be dim M(L) =
k∑

i=1

i · (n− (2(k + 1) + i))+
k∑

j=1

(k − j + 1) · (n− (2(k + 1) + k + j))+

2(n− 2(k + 1))+
k∑

j=0

k∑
i=0

(n− (2(k + 1) + i + j + 1))× (n− (2(k + 1) + i + j))
2

+

k∑
i=1

3i(i + 1)
2

· (n− ((k + 1) + i))+
k∑

i=1

(
(k + 1)2 − i(i + 1)

2

)
· (n− ((k + 1) + k + i))+

k∑
i=1

(k − (i− 1))(k − (i− 1) + 1)
2

· (n− ((k + 1) + 2k + i))
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Notice that every term above involves n− w for some w. Just as in the examples

of k = 1 and k = 2, this number w represents either the distance from r to t in the element

yrsst or the distance from either s to t or s to b in the element ystab. As a reminder, each

yrsst and ystab are produced from [Grs, Gst] and [Gst, Gab] respectively. Also each Gij is a

convenient element change from Fij , the image of the matrix unit Eij under the transversal

map. Therefore whenever n ≤ w (n−w ≤ 0) occurs, n is too small to produce the distance

of w between positions in the matrices creating the multiplier elements being counted. As

such any negative n− w should be replaced with zero.

In the case discussed in [3], the strictly upper triangular matrices were examined

without requiring that there be diagonals of zeros above the main diagonal. As such, that

case corresponds to k = 0 here. In this formula any sum going from i = 1 to k is eliminated

in the case of k = 0. Only the double sum and the 2(n − 2(k + 1)) survive. Thus when

k = 0 this formula simplifies to

2(n− 2(0 + 1)) +
(n− (2(0 + 1) + 0 + 0 + 1))× (n− (2(0 + 1) + 0 + 0))

2
=

2(n− 2) +
(n− 3)(n− 2)

2
, which is consistent with the formula for dim M(L), found in [3].
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Chapter 6

Sample dim M(L) and t(L)

computations

In the event k ≥ 1, even if k = 1 and n is some fixed constant, computing this sum

is quite an arduous task. To avoid these tedious calculations, we have coded the formula

into Matlab which will calculate everything and give dim L,dim M(L), and t(L). The user

need only enter the values of n and k. Each sum is written as a for-loop. In the event some

i or j causes a term in the sum that looks like n− x to be nonpositive, notice that further

incrementing i or j will also cause this problem. Hence if a particular value of i or j causes

n− x ≤ 0 then that particular sum should be terminated at that point (hence the “break”

statements), as n is not large enough to produce the remaining non-zero ystab values. Also

notice that the last two sums each pick up where the previous leaves off, hence if the second

or third to last sums terminate early then all remaining sums should not run at all. To

account for this, the code also includes a flag to prevent superfluous sums from running.

Notice that in order for everything to run to its final step (and get a ystab of every possible

type) that n must be at least 4k + 3, however the code will work for any n and k. The

Matlab code is available in section 8.1.

Here are a few examples runs:

1. If k = 1 then we would like n to be at least 4k + 3, so everything runs. Let n = 8.

The program produces the output

>> multiplier
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If a strictly upper triangular matrix is of size nxn and k denotes
the number of diagonals above the main diagonal which are zero.
Note that k must be at least zero.
Enter a value for k = 1
You may enter any positive integer for n, however
to get elements of every type n must be at least

7

Enter a value for n = 8
dim M(L) =

56
dim L =

21

t(L) =
154

2. Again, the program will work for any n, even if not all possible ystab values are

produced. Let k = 2 and n = 7.

>> multiplier
If a strictly upper triangular matrix is of size nxn and k denotes
the number of diagonals above the main diagonal which are zero.
Note that k must be at least zero.
Enter a value for k = 2
You may enter any positive integer for n, however
to get elements of every type n must be at least

11

Enter a value for n = 7
dim M(L) =

37
dim L =

10

t(L) =
8

3. In the event k = 2 and n = 4 the restriction of a + (k + 1) ≤ b (or a + 3 ≤ b) means

the Lie algebra L has only one independent element: E14, which the transversal map

takes to F14 in C. Therefore L is abelian and [F14, F14] = 0 is the only possible bracket

involving F ′s. So dim M(L) = 0.
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>> multiplier
If a strictly upper triangular matrix is of size nxn and k denotes
the number of diagonals above the main diagonal which are zero.
Note that k must be at least zero.
Enter a value for k = 2
You may enter any positive integer for n, however
to get elements of every type n must be at least

11

Enter a value for n = 4
dim M(L) =

0
dim L =

1

t(L) =
0

L is abelian

4. A slightly less extreme abelian case, suppose k = 1 and n = 4. Since now a+2 ≤ b, the

Lie algebra L corresponds to 3 elements in C: F13, F14, F24. Considering all possible

brackets gives

[F13, F14] = y1314

[F13, F24] = y1324

[F14, F24] = y1424

No bracket produces an F , thus each bracket only produces an element in the multi-

plier. Also any possible Jacobi identity will trivially give zero without any information

about the y’s emerging. Hence dim M(L) = 3.

>> multiplier
If a strictly upper triangular matrix is of size nxn and k denotes
the number of diagonals above the main diagonal which are zero.
Note that k must be at least zero.
Enter a value for k = 1
You may enter any positive integer for n, however
to get elements of every type n must be at least

7
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Enter a value for n = 4
dim M(L) =

3
dim L =

3

t(L) =
0

L is abelian

5. If k = 1 and n = 5 then C contains F13, F14, F15, F24, F25, F35. The possible brackets

are

[F13, F14] = y1314

[F13, F15] = y1315

[F13, F24] = y1324

[F13, F25] = y1325

[F13, F35] = F15 + y1335 = G15

[F14, F15] = y1415 = 0

[F14, F24] = y1424

[F14, F25] = y1425

[F14, F35] = y1435

[F15, F24] = y1524 = 0

[F15, F25] = y1525 = 0

[F15, F35] = y1535

[F24, F25] = y2425

[F24, F35] = y2435

[F25, F35] = y2535

We get y1415 = 0 from J(F13, F35, F14) = 0, y1524 = 0 from J(F13, F35, F24) = 0, and

y1525 = 0 from J(F13, F35, F25) = 0.
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Thus counting the y’s shows dim M(L) = 11. Therefore t(L) = 1
2(dim L)(dim L−1)−

11 = 1
2(6)(5)− 11 = 4.

>> multiplier
If a strictly upper triangular matrix is of size nxn and k denotes
the number of diagonals above the main diagonal which are zero.
Note that k must be at least zero.
Enter a value for k = 1
You may enter any positive integer for n, however
to get elements of every type n must be at least

7

Enter a value for n = 5
dim M(L) =

11
dim L =

6

t(L) =
4

6. Consider now the case where k = 1 and n = 6. Computing all possible bracket

operations produces Table 6.1. We place a ∗ wherever we would have [x, x] or violate

s < a or s = a, t < b. All the zeros come from some Jacobi identity.

Table 6.1: Bracket Operation [Fst, Fab], when k = 1 and n = 6

F13 F14 F15 F16 F24 F25 F26 F35 F36 F46

F13 ∗ y1314 y1315 0 y1324 y1325 0 G15 G16 + y1336 y1346

F14 ∗ ∗ 0 0 y1424 y1425 0 y1435 y1436 G16

F15 ∗ ∗ ∗ 0 0 0 0 y1535 0 0
F16 ∗ ∗ ∗ ∗ 0 0 0 0 0 0
F24 ∗ ∗ ∗ ∗ ∗ y2425 y2426 y2435 y2436 G26

F25 ∗ ∗ ∗ ∗ ∗ ∗ 0 y2535 y2536 y2546

F26 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 y2646

F35 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ y3536 y3546

F36 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ y3646

F46 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Counting the y’s reveals that dim M(L) = 22 and so t(L) = 1
2(10)(9)− 22 = 23.
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>> multiplier
If a strictly upper triangular matrix is of size nxn and k denotes
the number of diagonals above the main diagonal which are zero.
Note that k must be at least zero.
Enter a value for k = 1
You may enter any positive integer for n, however
to get elements of every type n must be at least

7

Enter a value for n = 6
dim M(L) =

22

dim L =
10

t(L) =
23

Calculating the values of dim M(L) and t(L) by hand can be very tedious, espe-

cially as n and k grow large. To further illustrate the usefulness of the Matlab program, we

have used it to compute dim M(L) and t(L) in the case where n = 100. (Please see Tables

6.2 and 6.3.) We let k take on all values 0 through 48. We omit the cases where k ≥ 49

because L is abelian. When L is abelian, dim M(L) = 1
2(dim L)(dim L− 1) and t(L) = 0.
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Table 6.2: dim M(L) and t(L) for n = 100 and 0 ≤ k ≤ 24

k dim L dim M(L) t(L)
0 4,950 4,949 12,243,826
1 4,851 18,916 11,744,759
2 4,753 41,237 11,251,891
3 4,656 71,075 10,765,765
4 4,560 107,620 10,286,900
5 4,465 150,089 9,815,791
6 4,371 197,726 9,352,909
7 4,271 249,802 8,898,701
8 4,171 305,615 8,453,590
9 4,071 364,490 8,017,975
10 3,971 425,779 7,592,231
11 3,871 488,861 7,176,709
12 3,771 553,142 6,771,736
13 3,671 618,055 6,377,615
14 3,571 683,060 5,994,625
15 3,471 747,644 5,623,021
16 3,371 811,321 5,263,034
17 3,271 873,632 4,914,871
18 3,171 934,145 4,578,715
19 3,071 992,455 4,254,725
20 2,971 1,048,184 3,943,036
21 2,871 1,100,981 3,643,759
22 2,771 1,150,522 3,356,981
23 2,671 1,196,510 3,082,765
24 2,571 1,238,675 2,821,150
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Table 6.3: dim M(L) and t(L) for n = 100 and 25 ≤ k ≤ 48

k dim L dim M(L) t(L)
25 2,471 1,276,774 2,572,151
26 2,371 1,310,591 2,335,759
27 2,271 1,339,937 2,111,941
28 2,171 1,364,650 1,900,640
29 2,071 1,384,595 1,701,775
30 1,971 1,399,664 1,515,241
31 1,871 1,409,776 1,340,909
32 1,771 1,414,877 1,178,626
33 1,671 1,414,939 1,028,216
34 1,571 1,409,955 889,485
35 1,471 1,399,951 762,209
36 1,371 1,384,981 646,139
37 1,271 1,365,126 541,002
38 1,171 1,340,494 446,501
39 1,071 1,311,220 362,315
40 971 1,277,466 288,099
41 871 1,239,421 223,484
42 771 1,197,301 168,077
43 671 1,151,349 121,461
44 571 1,101,835 83,195
45 471 1,049,056 52,814
46 371 993,336 29,829
47 271 935,026 13,727
48 171 874,504 3,971
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Chapter 7

Polynomial Closed Form

The current formula for dim M(L) is a collection of sums, and works well for

implementation in Matlab when the user inputs specific values of n and k. Considering

that the open form requires continuous adjustment based on the choices of n and k and

that calculation by computer is convenient but by hand is extremely long, we welcome an

alternative. A closed form, or a polynomial in n and k, would be nice to have as well. In

order to achieve a closed form, some manipulation is necessary. Remember that in each

sum, the quantity subtracted from n denotes the distance between positions within an n×n

matrix. Such a distance is required so that the respective multiplier elements, ystab, may

be produced (e.g. if the distance from s to b is being subtracted from n then the original

matrices must have at least b− s+1 rows and columns for this multiplier element to exist).

The initial calculation of dim M(L) went under the assumption that n is sufficiently large

to produce every type of multiplier element (so that n − x will always be positive, though

nonnegative would work too). In the event that n − x ≤ 0 appears in a sum, then the

corresponding Fst and Fab that would have produced this multiplier element do not both

exist. As such, this portion of the summation should be replaced with zero. Also notice

that in each sum as the index of summation increases, so does the quantity subtracted from

n, therefore when n ≤ x occurs, the sum should be terminated early (as later elements in

the sum will cause the same problem). Fortunately the Matlab code accounts for this, as it

is decorated with “if” statements that constantly run checks. In order to get a closed form,

the potential for the sums to terminate early must be accounted for earlier with a general

n and k rather than specific values (like Matlab uses).

Calculation of this closed form will be much more convenient if all sums are indexed
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by the quantity subtracted from n. Doing this will cause the upper bound of a sum to

be n when it must terminate early. Also, the presence of the double sum poses some

difficulty. First we will rewrite the double sum more conveniently, and second we will

reindex everything.

7.1 Double sum to single sum conversion

Consider
k∑

j=0

k∑
i=0

(n− (2(k + 1) + i + j + 1))× (n− (2(k + 1) + i + j))
2

To assist in converting this into single sums, let α = i + j + 1. Since 0 ≤ i, j ≤ k

we observe that α may take on any values between 1 and 2k + 1. If for instance α = 1 then

i = j = 0. If α = 2 then either i = 1, j = 0 or i = 0, j = 1. Table 7.1 lists all relationships

between i, j, and α.

Table 7.1: Double to single sum reindexing

α number of times α = i + j + 1 (i, j) pairs that produce α
is in the double sum

1 1 (0,0)
2 2 (1,0), (0,1)
3 3 (2,0), (1,1), (0,2)
4 4 (3,0), (2,1), (1,2), (0,3)
...

...
...

k k (k − 1,0), (k − 2,1),. . .,(0,k − 1)
k + 1 k + 1 (k,0), (k − 1,1),. . .,(0,k)
k + 2 k (k,1), (k − 1,2),. . .,(1,k)
k + 3 k − 1 (k,2), (k − 1,3),. . .,(2,k)
k + 4 k − 2 (k,3), (k − 1,4),. . .,(3,k)

...
...

...
2k + 1 1 (k,k)

Case 1: 1 ≤ α ≤ k

(n−(2(k+1)+i+j+1))×(n−(2(k+1)+i+j)) = (n−(2(k+1)+α))×(n−(2(k+1)+α−1))
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appears in the double sum α times.

Case 2: k + 1 ≤ α ≤ 2k + 1

Let β = α− (k + 1), so 0 ≤ β ≤ k and the second half of Table 7.1 becomes Table 7.2.

Table 7.2: Double to single sum reindexing, descending occurences

α β number of times α = i + j + 1 (i, j) pairs that produce α
is in the double sum

k + 1 0 k + 1 (k,0), (k − 1,1),. . .,(0,k)
k + 2 1 k (k,1), (k − 1,2),. . .,(1,k)
k + 3 2 k − 1 (k,2), (k − 1,3),. . .,(2,k)
k + 4 3 k − 2 (k,3), (k − 1,4),. . .,(3,k)

...
...

...
...

2k + 1 k 1 (k,k)

Notice (n− (2(k + 1) + i + j + 1))× (n− (2(k + 1) + i + j)) = (n− (3(k + 1) + β))× (n−
(3(k + 1) + β − 1)) appears in the double sum (k + 1)− β times.

Therefore putting all this together gives
k∑

j=0

k∑
i=0

(n− (2(k + 1) + i + j + 1))× (n− (2(k + 1) + i + j))
2

=
k∑

α=1

α

2
·(n−(2(k+1)+α))×

(n− (2(k + 1) + α− 1))+
k∑

β=0

(k + 1)− β

2
· (n− (3(k + 1) + β))× (n− (3(k + 1) + β − 1))

Therefore for sufficiently large n, dimM(L) =
k∑

i=1

i · (n− (2(k + 1) + i))+

k∑
i=1

(k − i + 1) · (n− (2(k + 1) + k + i))+

2(n− 2(k + 1))+
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k∑
α=1

α

2
· (n− (2(k + 1) + α))× (n− (2(k + 1) + α− 1))+

k∑
β=0

(k + 1)− β

2
· (n− (3(k + 1) + β))× (n− (3(k + 1) + β − 1))+

k∑
i=1

3i(i + 1)
2

· (n− ((k + 1) + i))+

k∑
i=1

(
(k + 1)2 − i(i + 1)

2

)
· (n− ((k + 1) + k + i))+

k∑
i=1

(k − (i− 1))(k − (i− 1) + 1)
2

· (n− ((k + 1) + 2k + i))

with the exception of the newest result, we let all sums be indexed over i.

7.2 Reindexing all sums

1. Consider
k∑

i=1

i · (n− (2(k + 1) + i))

Let j = 2(k + 1) + i, which makes the sum

3k+2∑
j=2k+3

(j − 2k − 2) · (n− j)

2. Consider
k∑

i=1

(k − i + 1) · (n− (2(k + 1) + k + i))

Let j = 2(k + 1) + k + i, which makes the sum

4k+2∑
j=3k+3

(4k + 3− j) · (n− j)

3. Consider
k∑

α=1

α

2
· (n− (2(k + 1) + α))× (n− (2(k + 1) + α− 1))

Let j = 2(k + 1) + α, which makes the sum

3k+2∑
j=2k+3

j − 2k − 2
2

· (n− j) (n− j + 1)
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4. Consider
k∑

β=0

(k + 1)− β

2
· (n− (3(k + 1) + β))× (n− (3(k + 1) + β − 1))

Let j = 3(k + 1) + β, which makes the sum

4k+3∑
j=3k+3

4k + 4− j

2
· (n− j) (n− j + 1)

5. Consider
k∑

i=1

3i(i + 1)
2

· (n− ((k + 1) + i))

Let j = (k + 1) + i, which makes the sum

2k+1∑
j=k+2

3
2
· (j − k − 1)(j − k) (n− j)

6. Consider
k∑

i=1

(
(k + 1)2 − i(i + 1)

2

)
· (n− ((k + 1) + k + i))

Let j = (k + 1) + k + i = 2k + 1 + i, which makes the sum

3k+1∑
j=2k+2

(
(k + 1)2 − (j − 2k − 1)(j − 2k)

2

)
· (n− j)

7. Consider
k∑

i=1

(k − (i− 1))(k − (i− 1) + 1)
2

· (n− ((k + 1) + 2k + i))

Let j = (k + 1) + 2k + i = 3k + 1 + i, which makes the sum

4k+1∑
j=3k+2

1
2
· (4k + 2− j)(4k + 3− j)(n− j)

Therefore for sufficiently large n, dim M(L) =
2k+1∑

j=k+2

3
2
· (j − k − 1)(j − k) (n− j) +

2(n− (2k + 2))+
3k+1∑

j=2k+2

(
(k + 1)2 − (j − 2k − 1)(j − 2k)

2

)
· (n− j)+

3k+2∑
j=2k+3

(j − 2k − 2) · (n− j) +
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3k+2∑
j=2k+3

j − 2k − 2
2

· (n− j) (n− j + 1)+

4k+1∑
j=3k+2

1
2
· (4k + 2− j)(4k + 3− j)(n− j)+

4k+2∑
j=3k+3

(4k + 3− j) · (n− j) +

4k+3∑
j=3k+3

4k + 4− j

2
· (n− j) (n− j + 1)

7.3 Observations

1. If n ≥ 4k + 3 then n is sufficiently large and every sum will run through its entirety.

It remains to consider what happens when n < 4k + 3 and not all pieces above are

needed.

2. For a fixed k, n must be at least k + 1 (otherwise the matrices do not have k “super-

diagonals”). The above confirms this, as n must be at least k + 2 for any of the sums

to run at all. If n = k + 1 then L = 0, so no calculation is necessary.

3. Eab (and hence Fab) is defined ⇔ a + (k + 1) ≤ b. Also

[Fst, Fab] =

Fsb + y(s, t, a, b) if t = a

y(s, t, a, b) if t 6= a

In order for Frs and Fst to both be defined, r + (k + 1) ≤ s and s + (k + 1) ≤ t, so if

r = 1, then s ≥ k + 2 and t ≥ 2k + 3. Therefore if n < 2k + 3

⇒ [Frs, Fst] is never defined,

⇒ [Fst, Fab] = y(s, t, a, b), ∀s, t, a, b.

⇒ [Est, Eab] = 0, ∀s, t, a, b.

⇒ L is abelian.

⇒ dim M(L) = 1
2(dim L)(dim L− 1) and t(L) = 0.

Notice dim L =
n−(k+1)∑

i=1

i =
1
2
(n− (k + 1))(n− (k + 1) + 1)
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So, L is abelian ⇒ dim M(L) = 1
8(n− k − 1)(n− k)(n− k + 1)(n− k − 2).

4. If L is abelian (n < 2k + 3) then only the first sum can run, and it must terminate at

min{n, 2k + 1}. This sum will simplify to 1
2(dim L)(dim L− 1).

5. To accurately describe dim M(L) for any n and k, the sum
g(k)∑

j=f(k)

(. . .) should be

replaced with zero if n < f(k) and
min{g(k),n}∑

j=f(k)

(. . .) if n ≥ f(k).

7.4 Polynomials: dim M(L) and t(L)

The final point in the previous section breaks the calculation of dim M(L) into

several cases. We will develop polynomials for all nonnegative k values. We will return to

k = 0, 1 soon, but first we focus on a fixed k ≥ 2 where we establish the following cases.

1. Case 1: k + 2 ≤ n < 2k + 3

L is abelian, hence dim M(L) = 1
2(dim L)(dim L− 1) = 1

8(n− k − 1)(n− k)(n− k +

1)(n− k − 2)

t(L) = 0

2. Case 2: n = 2k + 3, . . . , 3k + 1

dim M(L) =

 2k+1∑
j=k+2

3
2
· (j − k − 1)(j − k)(n− j)

 + 2(n− (2k + 2))+

n∑
j=2k+2

(
(k + 1)2 − (j − 2k − 1)(j − 2k)

2

)
· (n− j)+

n∑
j=2k+3

(j − 2k − 2) · (n− j) +

n∑
j=2k+3

j − 2k − 2
2

· (n− j) (n− j + 1)

3. Case 3: n = 3k + 2
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dim M(L) =

 2k+1∑
j=k+2

3
2
· (j − k − 1)(j − k)(n− j)

 + 2(n− (2k + 2))+

3k+1∑
j=2k+2

(
(k + 1)2 − (j − 2k − 1)(j − 2k)

2

)
· (n− j)+

3k+2∑
j=2k+3

(j − 2k − 2) · (n− j) +

3k+2∑
j=2k+3

j − 2k − 2
2

· (n− j) (n− j + 1)

4. Case 4: n = 3k + 3, . . . , 4k + 1

dim M(L) =

 2k+1∑
j=k+2

3
2
· (j − k − 1)(j − k)(n− j)

 + 2(n− (2k + 2))+

3k+1∑
j=2k+2

(
(k + 1)2 − (j − 2k − 1)(j − 2k)

2

)
· (n− j)+

3k+2∑
j=2k+3

(j − 2k − 2) · (n− j) +

3k+2∑
j=2k+3

j − 2k − 2
2

· (n− j) (n− j + 1)+
n∑

j=3k+2

1
2
· (4k + 2− j)(4k + 3− j)(n− j)+

n∑
j=3k+3

(4k + 3− j) · (n− j) +
n∑

j=3k+3

4k + 4− j

2
· (n− j) (n− j + 1)

5. Case 5: n = 4k + 2

dim M(L) =

 2k+1∑
j=k+2

3
2
· (j − k − 1)(j − k)(n− j)

 + 2(n− (2k + 2))+

3k+1∑
j=2k+2

(
(k + 1)2 − (j − 2k − 1)(j − 2k)

2

)
· (n− j)+

3k+2∑
j=2k+3

(j − 2k − 2) · (n− j) +

3k+2∑
j=2k+3

j − 2k − 2
2

· (n− j) (n− j + 1)+
4k+1∑

j=3k+2

1
2
· (4k + 2− j)(4k + 3− j)(n− j)+

n∑
j=3k+3

(4k + 3− j) · (n− j) +
n∑

j=3k+3

4k + 4− j

2
· (n− j) (n− j + 1)
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6. Case 6: n ≥ 4k + 3

No sums terminate early, hence the original calculation of dim M(L) may be used.

Now we use the help of Maple to expand the sums into polynomials. (The Maple code is

available in section 8.2.)

1. Case 1: k + 2 ≤ n < 2k + 3

L is abelian, hence dim M(L) = 1
2(dim L)(dim L− 1) = 1

8(n− k − 1)(n− k)(n− k +

1)(n− k − 2)

t(L) = 0

2. Case 2: n = 2k + 3, . . . , 3k + 1

dim M(L) = −4− 3
2nk3 + 2n− 13

4 k− 2nk− 4nk2 + 15
4 k3 + 27

8 k2 + 1
2n2k2 + n2k + 9

8k4

t(L) = 4 + nk3 − 7
4n + 3k + 9

4nk − 1
8n2 + 13

4 nk2 − 1
4n3 − 7

2k3 − 7
2k2 + 1

4n2k2

−1
2n3k − 1

4n2k − k4 + 1
8n4

3. Case 3: n = 3k + 2

dim M(L) = −4 + 2n− 27
4 k + 5

4nk + 5
4nk2 − 21

4 k3 − 55
8 k2 + 1

4n2k2 + 1
4n2k − 9

8k4

= 11
4 k + 27

8 k2 + 15
4 k3 + 9

8k4

t(L) = 4− 1
2nk3 − 7

4n + 13
2 k − nk − 1

8n2 − 2nk2 − 1
4n3 + 11

2 k3 + 27
4 k2 + 1

2n2k2

−1
2n3k + 1

2n2k + 5
4k4 + 1

8n4

= 7
8k4 + 9

4k3 + 17
8 k2 − 5

4k

4. Case 4: n = 3k + 3, . . . , 4k + 1

dim M(L) = −1− 3
2nk3− 1

2n+ 17
4 k−5nk+ 1

2n2−4nk2+ 15
4 k3+ 63

8 k2+ 1
2n2k2+n2k+ 9

8k4
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t(L) = 1 + nk3 + 3
4n− 9

2k + 21
4 nk − 5

8n2 + 13
4 nk2 − 1

4n3 − 7
2k3 − 8k2

+1
4n2k2 − 1

2n3k − 1
4n2k − k4 + 1

8n4

5. Case 5: n = 4k + 2

dim M(L) = −2 + 55
6 nk3 + 19

12n− 49
12k + 20

3 nk − 23
24n2 + 16nk2 + 5

12n3 − 275
12 k3 − 371

24 k2

−7
2n2k2 + 2

3n3k − 4n2k − 229
24 k4 − 1

24n4

= 17
4 k + 47

8 k2 + 35
4 k3 + 25

8 k4

t(L) = 2− 29
3 nk3 − 4

3n + 23
6 k − 77

12nk + 5
6n2 − 67

4 nk2 − 2
3n3 + 139

6 k3 + 46
3 k2

+17
4 n2k2 − 7

6n3k + 19
4 n2k + 29

3 k4 + 1
6n4

= −2k + 13
2 k2 + 23

2 k3 + 7k4

6. Case 6: n ≥ 4k + 3

dim M(L) = −1− 3
2nk3− 1

2n+ 17
4 k−5nk+ 1

2n2−4nk2+ 15
4 k3+ 63

8 k2+ 1
2n2k2+n2k+ 9

8k4

t(L) = 1 + nk3 + 3
4n− 9

2k + 21
4 nk − 5

8n2 + 13
4 nk2 − 1

4n3 − 7
2k3 − 8k2 + 1

4n2k2

−1
2n3k − 1

4n2k − k4 + 1
8n4

When k = 1 only cases 1, 3, 5, 6 are applicable (n < 5, n = 5, n = 6, n ≥ 7

respectively), and the above polynomials simplify to our original formula for k = 1 that we

developed in the first example before we found a general formula for any k. When k = 0

only cases 1 and 6 are applicable (n < 3 and n ≥ 3 respectively). These two polynomials

simplify to the results found for k = 0 in [3]. Suppose we fix a value for k. As n grows

large we remain in case 6 and the formula for t(L) becomes a degree four polynomial in

n. Since the leading term is positive we can attain t(L) arbitrarily large. For example

if k = 1, then case 6 simplifies to say that when n ≥ 7 the formula for t(L) will be

t(L) = 1
8n4 − 3

4n3 − 5
8n2 + 41

4 n− 16, which grows arbitrarily large since it behaves like 1
8n4

for large values of n.
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Chapter 8

Computer Code

8.1 Matlab code

function multiplier;

disp(’If a strictly upper triangular matrix is of size nxn and k denotes’);
disp(’the number of diagonals above the main diagonal which are zero.’);
disp(’Note that k must be at least zero.’);
k = input(’Enter a value for k = ’);
minimum_value = 4*k+3;
disp(’You may enter any positive integer for n, however’);
disp(’to get elements of every type, n must be at least ’)
disp(minimum_value);
n=1;

n = input(’Enter a value for n = ’);

if k > n-1 %invalid because an nxn has n-1 superdiagonals
disp(’Invalid values for n and k’)
return

end

total = 0;

flag = 1;

for i=1:k %inner match (t=a)
if n-(2*(k+1)+i) < 0

flag = 0;
break %stop if n is too small
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end
total=total+i*(n-(2*(k+1)+i));

end

if flag %only continue counting inner match
for j=1:k %if n is large enough

if n-(2*(k+1)+k+j) < 0
break %stop if n is too small

end
total=total+(k-j+1)*(n-(2*(k+1)+k+j));

end
end

flag = 1;

if n-2*(k+1) >= 0
total = total+2*(n-2*(k+1));

end

for i=1:k
if n-((k+1)+i) < 0 %stop counting if n is too small

flag = 0;
break

end
total=total+(3/2)*(i^2+i)*(n-((k+1)+i));

end

%only continue counting s<a<t<b if n is large enough

if flag
for i=1:k

if n-((k+1)+k+i) < 0
flag = 0;
break %stop counting when n is too small

end
total=total+(((k+1)^2)-i*(i+1)/2)*(n-((k+1)+k+i));

end
end

%only continue counting s<a<t<b if n is large enough
if flag

for i=1:k
if n-((k+1)+2*k+i) < 0

break
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end
total=total+(1/2)*(k-(i-1))*(k-(i-1)+1)*(n-((k+1)+2*k+i));

end
end

for j=0:k
for i=0:k

if n-(2*(k+1)+i+j+1) >= 0
total=total+(1/2)*(n-(2*(k+1)+i+j+1))*(n-(2*(k+1)+i+j));

end
end

end

disp(’dim M(L) =’);
disp(total);

if k+1 < n
L = (1/2)*(n-(k+1))*(n-k);

else
L = 0;

end

disp(’dim L =’);
disp(L);
disp(’t(L) =’);
disp((1/2)*L*(L-1)-total);

if (1/2)*L*(L-1)-total == 0
disp(’L is abelian’);

end
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8.2 Maple code

L := 1
2 · (n− k − 1) · (n− k) :

upperBound := 1
2 · L · (L− 1) :

#Case 1, n < 2k + 3

# L is abelian, dimM(L) = upperBound and t(L) = 0

# Case 2, n = 2k + 3, . . . , 3k + 1

x1 := sum
(

3
2 · (j − k − 1) · (j − k) · (n− j), j = (k + 2)..(2 · k + 1)

)
+2 · (n− (2 · k + 2)) :

x2 := sum
((

(k + 1)2 − 1
2 · (j − 2 · k − 1) · (j − 2 · k)

)
· (n− j), j = (2 · k + 2)..n

)
:

x3 := sum ((j − 2 · k − 2) · (n− j), j = (2 · k + 3)..n) :

x4 := sum
(

1
2 · (j − 2 · k − 2) · (n− j) · (n− j + 1), j = (2 · k + 3)..n

)
:

ML := x1 + x2 + x3 + x4 :

simplify(ML);

−4− 3
2nk3 + 2n− 13

4 k − 2nk − 4nk2 + 15
4 k3 + 27

8 k2 + 1
2n2k2 + n2k + 9

8k4

simplify(upperBound−ML);

4 + nk3 − 7
4n + 3k + 9

4nk − 1
8n2 + 13

4 nk2 − 1
4n3 − 7

2k3 − 7
2k2 + 1

4n2k2

−1
2n3k − 1

4n2k − k4 + 1
8n4

# Case 3, n = 3k + 2

x2 := sum(
(
(k + 1)2 − 1

2 · (j − 2 · k − 1) · (j − 2 · k)
)
· (n− j),

j = (2 · k + 2)..(3 · k + 1)) :

x3 := sum ((j − 2 · k − 2) · (n− j), j = (2 · k + 3)..(3 · k + 2)) :

x4 := sum
(

1
2 · (j − 2 · k − 2) · (n− j) · (n− j + 1), j = (2 · k + 3)..(3 · k + 2)

)
:

ML := x1 + x2 + x3 + x4 :
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simplify(ML);

−4 + 2n− 27
4 k + 5

4nk + 5
4nk2 − 21

4 k3 − 55
8 k2 + 1

4n2k2 + 1
4n2k − 9

8k4

simplify(upperBound−ML);

4− 1
2nk3 − 7

4n + 13
2 k − nk − 1

8n2 − 2nk2 − 1
4n3 + 11

2 k3 + 27
4 k2 + 1

2n2k2

−1
2n3k + 1

2n2k + 5
4k4 + 1

8n4

# Case 4, n = 3k + 3, . . . , 4k + 1

x5 := sum
(

1
2 · (4 · k + 2− j) · (4 · k + 3− j) · (n− j), j = (3 · k + 2)..n

)
:

x6 := sum ((4 · k + 3− j) · (n− j), j = (3 · k + 3)..n) :

x7 := sum
(

1
2 · (4 · k + 4− j) · (n− j) · (n− j + 1), j = (3 · k + 3)..n

)
:

ML := x1 + x2 + x3 + x4 + x5 + x6 + x7 :

simplify(ML);

−1− 3
2nk3 − 1

2n + 17
4 k − 5nk + 1

2n2 − 4nk2 + 15
4 k3 + 63

8 k2 + 1
2n2k2 + n2k + 9

8k4

simplify(upperBound−ML);

1 + nk3 + 3
4n− 9

2k + 21
4 nk − 5

8n2 + 13
4 nk2 − 1

4n3 − 7
2k3 − 8k2

+1
4n2k2 − 1

2n3k − 1
4n2k − k4 + 1

8n4

# Case 5, n = 4k + 2

x5 := sum
(

1
2 · (4 · k + 2− j) · (4 · k + 3− j) · (n− j), j = (3 · k + 2)..(4 · k + 1)

)
:

x6 := sum ((4 · k + 3− j) · (n− j), j = (3 · k + 3)..n) :

x7 := sum
(

1
2 · (4 · k + 4− j) · (n− j) · (n− j + 1), j = (3 · k + 3)..n

)
:

ML := x1 + x2 + x3 + x4 + x5 + x6 + x7 :

simplify(ML);

−2 + 55
6 nk3 + 19

12n− 49
12k + 20

3 nk − 23
24n2 + 16nk2 + 5

12n3 − 275
12 k3 − 371

24 k2

−7
2n2k2 + 2

3n3k − 4n2k − 229
24 k4 − 1

24n4
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simplify(upperBound−ML);

2− 29
3 nk3 − 4

3n + 23
6 k − 77

12nk + 5
6n2 − 67

4 nk2 − 2
3n3 + 139

6 k3 + 46
3 k2

+17
4 n2k2 − 7

6n3k + 19
4 n2k + 29

3 k4 + 1
6n4

# Case 6, n ≥ 4k + 3

x6 := sum ((4 · k + 3− j) · (n− j), j = (3 · k + 3)..(4 · k + 2)) :

x7 := sum
(

1
2 · (4 · k + 4− j) · (n− j) · (n− j + 1), j = (3 · k + 3)..(4 · k + 3)

)
:

ML := x1 + x2 + x3 + x4 + x5 + x6 + x7 :

simplify(ML);

−1− 3
2nk3 − 1

2n + 17
4 k − 5nk + 1

2n2 − 4nk2 + 15
4 k3 + 63

8 k2 + 1
2n2k2 + n2k + 9

8k4

simplify(upperBound−ML);

1 + nk3 + 3
4n− 9

2k + 21
4 nk − 5

8n2 + 13
4 nk2 − 1

4n3 − 7
2k3 − 8k2 + 1

4n2k2

−1
2n3k − 1

4n2k − k4 + 1
8n4
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