Abstract

WOOD, LISA MARIE. On the Solvable Length of Associative Algebras, Matrix
Groups, and Lie Algebras. (Under the direction of Ernest Stitzinger.)

Let A be an algebraic system with product a*b between elements a and b in A. It
is of interest to compare the solvable length t with other invariants, for instance size,
order, or dimension of A. Thus we ask, for a given t what is the smallest n such that there
is an A of length t and invariant n. It is this problem that we consider for associative
algebras, matrix groups, and Lie algebras. We consider A in each case to be subsets of
(strictly) upper triangular n by n matrices. Then the invariant is n. We do these for the
associative (Lie) algebras of all strictly upper triangular n by n matrices and for the full n
by n upper triangular unipotent groups. The answer for n is the same in all cases. Then
we restrict the problem to a fixed number of generators. In particular, using only 3
generators and we get the same results for matrix groups and Lie algebras as for the
earlier problem. For associative algebras with 1 generator we also get the same result as
the general associative algebra case. Finally we consider Lie algebras with 2 generators
and here n is larger than in the general case. We also consider the problem of finding the

dimension in the associative algebra, the general, and 3 generator Lie algebra cases.
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CHAPTER 1: Introduction

Let A be an algebraic system with product a*b between elements a and b in A.
Define A' = A*A and A" = A**A¥* A is called solvable of length t if there exists a t
such that A'= 0 and A"" is nonzero. It is of interest to compare the solvable length t with
other invariants, for instance size, order, or dimension of A. Thus we ask, for a given t
what is the smallest n such that there is an A of length t and invariant n. It is this problem
that we consider for associative algebras, matrix groups, and Lie algebras. We consider
A in each case to be subsets of (strictly) upper triangular n by n matrices. Then the
invariant is n. We do these for the associative (Lie) algebras of all strictly upper
triangular n by n matrices and for the full n by n upper triangular unipotent groups. The
answer for n is the same in all cases. Then we restrict the problem to a fixed number of
generators. In particular, using only 3 generators and we get the same results for matrix
groups and Lie algebras as for the earlier problem. For associative algebras with 1
generator we also get the same result as the general associative algebra case. Finally we
consider Lie algebras with 2 generators and here n is larger than in the general case. We
also consider the problem of finding the dimension in the associative algebra, the general,
and 3 generator Lie algebra cases. We begin with further discussion of the problem and
it’s history.

In 1913 [1] Burnside proposed the question, “What is the least among the orders
of p-groups with a given soluble length?” Recall that p-groups are defined as the groups
of prime power order. G has solvable length t if G'= 0 and G"' is non-zero. In this
discussion, t will denote the derived length of G. Burnside started his work by showing

that there were groups of order p> and p° with corresponding solvable lengths 2 and 3.



He then made a start on his famous question with finding the order of G to be |G| > p*

with solvable length t, but stated that it seems probable that for greater values of t the

3(t-1)

actual lower limit for the order exceeds p™ "’ and in [2] he improves this order to |G| >

pE D2 - Continuing with Burnside’s question, early results in group theory are shown

in a classic 1933 paper by Philip Hall [6]. Hall found the derived length of p-groups to

el (t2) syt
be bounded between p> ' <|G|< p® ¢ V.

In [7] It"o refined the upper bound of Hall’s and found the order of |G| < pmb1 )
Recently in [4], Evans-Riley, Newman & Schneider showed that for every integer t > 3

and every prime p > 5 there is a group with solvable length t and order pz‘ 2,16 < pzx 2,

and Schneider in [9] found that |G| > p* ***'* and Mann in [8] showed |G| > p> **with
solvable length t. Schneider’s result is better for larger t and Mann’s is better for smaller
t.

There are many recent results in groups and we would like to see what is true in
Lie algebras. There are many similarities between groups and Lie algebras, in particular
between groups of order p" where p is prime, and nilpotent Lie algebras of dimension n.
Both have a derived series and a lower central series which end at the identity. Also, in

both cases, the derived series is contained in the lower central series (LY < L )

The following examples help to explain the derived series and central series,
where we let L be a Lie algebra. Let L, =[L, L], Ls=[L, L,] ... Lps; =[L, L,]. Lis
called a nilpotent if there exists an n such that L, =0. L has classnifL,,; =0and L,

#0.



Example 1.1
L =(x,y, z) where [X, y] =z and [x, z] = [y, z] =0. L, =(z) and L3 = 0 leaving L to have

aclass of 2. O

Example 1.2
0****
00***
Let M = 5x5 strictly upper triangular matrix M=|0 0 0 * *
0000 *
00000
00 *** 000 ** 0000 *
000 ** 0000 * 00000
then M,=[0 000 *|and M;=/00000|and M,={000 0 0| and Ms=0.
00000 00000 00000
00000 00000 00000

Leaving M to have a class of 4. o
Define L'=[L, L], L*=[L',L"], ... L™"'=[L" L"]. L is solvable if there exists a t

such that L' = 0. L has derived length t if L'=0and L' # 0.

Example 1.3

Using example 1.1 above we find L' = (z) =L, and L>= 0. L has a length of 2. o

Example 1.4

=M, and M’ =

Using example 1.2 we find that M'= =M, and

SOoOOoOOoOOo
SOOoOOOo
SOOO %
SOoOOoOOoOOo
SOOoOOoOOo
SOOO %

SO * *
SO % * %
SOoOOoOoO O
SOOoOOoO O

M? = 0. M has a length of 3. O
Example 1.5
A is abelian and A' = A, = 0. A has a length of 1 and a class of 1. O

Note: L'=1,, L cLy, L’ c Lg...L" L.



There are some more similarities between groups and Lie algebras. The center of
a group G is Z(G) = {x\xy =yx Vy € G}, and the center of a Lie algebra L is Z(L) = {x\
[x,y]=0 Vy e L}. For groups we use the computation of <x, y>=xyx"'y" and for Lie
algebra we use the commutator multiplication where [A, B] = AB - BA. In the case of
strictly upper triangular nxn matrices we have Z(L) = {E; ,}. Burnsides theorem applied
to groups and Lie algebras would result with: if G (or L) is abelian, then G' = ¢ (L' = 0),
and if |G| = p2 (dimension of L = 2), then G'=e (L' = 0). So if G (or L) is to have length 2
then |G| > 3 (dimension of L > 3). (Such an L is L =<x, y, z> where [X, y] = z and [x,
z] =[y, z] =0. Then L' =<z> and L’=0 leaving the length of L to be 2). In [6]itis
shown that for G to have length t and |G| = p", then n > 2" + t -1 leaving the following

table:

Table 1.6 Using Hall’s bound 2! + t for length t

t n
2 3
3 6
4 11
5 20

The last entry of table 1.6 says for G* # e, G’ = e then |G| > p*. The Lie algebra
analogue, if it is true, would be L* # 0 and L° = 0 then dimension of L >20. In fact, it
might be that in the group case 2" + t-1 may not be big enough. This may also be the

case for the Lie algebras.



We will apply the ideas of the group results and investigate the bounds using
strictly upper n x n triangular matrices in the case of associative algebras, matrix groups,
and Lie algebras. The aim is to find the smallest n for each derived length in these cases.

In a related direction, we would like to find the least size n of the nxn matrices
which have a derived length t. For a given n, we use n-1 generators. These generator
elements come from diagonal d,, the diagonal directly above the main diagonal. For
derived length t we find n=2""+1. We consider the case of having less than n-1
generators. If we fix the number of generators, it is conceivable that for a given t the size
of n might need to increase. I have considered the following cases: 1 and n-1 generators
for associative algebras; 3 and n-1 generators for matrix groups; 3 and n-1 generators for
Lie algebras.

The final problem in this collection is what can be done with just two generators
for the Lie algebras. There are group results due to Glasby [5] in this direction. He
studied unipotent groups of nxn upper triangular matrices for this problem. He finds the
size of n to be greater then (21/32)*2" with a given derived length t for the 2 generated
case. We conclude with finding the matching results for Lie algebras of nxn strictly

upper triangular matrices.



CHAPTER 2: Associative Algebra General Case

We are looking at the strictly upper triangular nxn matrices, N. The derived series
of N is defined as N' = N*N and N*"! = N**N* that we find using associative
multiplication. Evidently, N"'is generated by the set of all products of 2" generator
elements from N. These generator elements will be chosen from diagonal d;, the
diagonal directly above the main diagonal. Letting E;; be the usual matrix unit with 1 in
the (i,j) position and 0 elsewhere, the generators are E», E»3, ...,Eqn1 5. The N" are the
matrices we find starting with the first diagonal, d;. Hence, for N to have length t, N
must have 2" generator elements whose product is non—zero while each product of 2'
elements is zero.

To make this clearer let T be the associative algebra of all strictly upper triangular
nxn matrices. Also let d; represent the diagonal directly above the main diagonal, d;
represents the diagonal j steps above the main diagonal, and d;” represent the basis
elements of the diagonal j steps above the main diagonal. Clearly, T=d; @ d,
@ ...®d, ;. Using matrix units, it is clear that the derived series is
T=d®d..0dy

T’=d, ®d;s ®...®d,

22

T'=d, ®d,, ®. 0d,

Notice that T""' #0 if and only if 2" < n—1 orn > 2"'+1 (diagonal d _, has to exist). If

2t—l
n > 2"'+1 and n < 2'+1 then T has length t. Ifn=2""+1, then n is the least possible n for

T to have derived length t. In this case the dimension, the number, m, of matrix units in



T is n(-1)

. Since we are dealing with strictly upper triangular matrices we compute this

dimension by starting with the size of the nxn matrix, n>, minus the number of elements

on the main diagonal, n, and then since we are only dealing with the upper half of the

matrix we divide that number by 2. Therefore, we have

'+1, we find the dimension of T is

incorporated into Lemma 2.1.

Q" +1)2"
2

2

n°-n _ n(n-1)

. Lettingn=2"

= (2" +1)2"*. These results can be

Lemma 2.1 For T to have length t, the smallest matrix size is n =2""'+1. In this

construction the dimension of T = (2" +1)2'?, and T has 2" generators.

We obtain the table:

Table 2.2: Associative algebra general case results

Length (t) Minimum Matrix Dimension of T Number of
size of T (n) (m) Generators
(Dimension of d;)
2 3 3 2
3 5 10 4
4 9 36 8
5 17 136 16
t 214+ (2 +1)2° 2"

Since T is a special case of general nilpotent algebras, we can also state Lemma 2.8.




Lemma 2.3 The minimum dimension for a nilpotent associative algebra to have derived
length t is less than or equal to (2" +1)2**.
We can do much better than that. The problems that arise are:
1.) Reduce the upper bound found in Lemma 2.1.
2.) For a fixed number of generators and a fixed length, find a good upper bound
for the dimension.
3) Consider question 2 in the context of a subalgebra of T and find the minimum
size of the matrices.

We will consider these questions simultaneously in the next section.



CHAPTER 3: Associative Algebras with One Generator

In the beginning problem, we started with a basis of the first diagonal as the
generators and there were 2" generators. Now we look at the case were the generator is
a combination of the basis for the first diagonal, Fi=E; + Ex3 + ... + Ep 1. Using
associative matrix multiplication with strictly upper triangular nxn matrices, we find the
derived series of the matrix and answer the three main questions at the end of Chapter 2.
Set Fiji1 =Eiji1 + Exjio + ... + Enjn where Fy 1 1s the sum of the elementary matrices
whose non—zero entries are on the diagonal d;. To make this clear we start with an
example.
Example 3.1
Letn =5 and A be the subalgebra of T generated by the basis of d;.

We have the 5x5 matrix starting with F1,=Ej;+ Ex3 + E34+ Ess

01000
00100
F»,=100010
00001
00000

Now we compute the derived series of the matrix. The elements on d, are F; * Fi, = (Ej2
+ Ea3+ Esg+ Eys) * (Ejo+ Eos + Ess + Egs) = Fi3= Ej3+ Eps + Ess. Then the elements on
d4, Fi3 * F13 =F;5= E;s5. Note we also compute the elements of d4 by multiplying F;,*
F14. Now we compute the rest of the products. We compute elements of d; by
multiplying elements of d; by the elements of d,, Fi» * Fi3=F4=Ej4+ E;s. All other
products between the other F’s are 0. Now we have the derived series where A = <F,>
® <Fi3> @ <F15> @ <Fi5>, Al =<F 3> ® <F1,> ® <F;s>, A’>=<F;5>, and A’ =0.

Thus A has the length 3 and <F,> @ <F;3> @ <F;,> © <F;s> is a basis for A and has



dimension m = 4. This is the least possible dimension a nilpotent algebra of length 3 can
have since such an algebra must have a product of 4 elements that are not 0. O

Example 3.2

Let n =9 and A be the subalgebra of T generated by Fj,.

We have the 9x9 matrix starting with F1o=E2+ Ex; + E34+ E4s+ Esg+ Eg7+ E75 + Ego.

Fi,=

SO DDODODOO O
SO oOoOoOoO
SO OooOoOo—O
SO~ OO
SO~ OO O
SO O— OO0 O
SOO—RODODOO O
SO OO OoOO O
S OODODOoOOOO

Now we compute the derived series of the matrix. We start with computing the elements
on d; by multiplying Fi; * Fj2 = Fi3=Ej3+ Exs+ Ess+ Es+ Es7+ Egs + E79. Then use the
elements of d; to compute the elements of d4, Fi3 * F13 =F 5= E s+ Exs+ E37+ E4g+ Eso.
Then use the elements of d4 to compute the elements of dg, Fis * Fi5s = Fj9 = Ej9. Also Fy,
*Fi3=Fi14= B4+ Ess + Esg + E47+ Esg + Ego €d3. By multiplying Fi» * Fisor Fi3 * Fig,
we get Fig=E ¢+ Ex7+ Esg+ Es9 €ds. By multiplying Fi2 * Fi6, Fi3* Fis, or Fia* Fia, we
get Fi7=E 7+ Exs+ E39 €dg. By multiplying Fi, * Fy7, Fi3* Fig, or Fi14* Fys, we get Fig=
Eis+ Ex9 €d;. All other products between the other F’s are 0. Note that F; ¢ € d..

Now we have that A = <F ;> @ <F;3> @ ...® <Fo>, Al=<F3> ® <F1,> @ ...®
<Fi1o>, A’=<F|5> @ <F¢&> ®...® <Fo>, A’ =<F ;o> A*=0. Thus A has the length 4
and <F;,> ® <F;3> @ ... ® <F;9> is the basis for A and has dimension m = 8. For
length 4, this example gives the best possible results for each of the three problems we

are considering. O

10



In the general case we claim that F; 11 € dg and that Fy ;1 * Fi g+1 = Fipigr1. The
first of these is by definition and for the second we note that

0 ifi+p # ]

L 0t Eiirprq if i+p =]

Of course Fi4+1 € dg, where s =p+q. Hence Fip+1 * Fi g1 = (Eips1 + Eopra+ ... + Eapn)
*(Eigr1 T Eograt ..o F Bagn) = Eiprgr1 T Eoprgro Tooo + Baprqun = Fiprqr1 = Figr1 €
dp+q = ds. Therefore, Fi», Fi3, ...,F1 1 are a basis for A and the dimension of A = n-1.
Also

A=<F> ® <F;3> ®...® <F >

A'=<F3> ® <Fi> ®..® <F >

A’=<F s> ® <Fi¢> ®...® <F >

AF=<F k> @ <F X, ,> @ .. ® <F >

Theorem 3.3 Let A be the subalgebra of the algebra T of strictly upper triangular nxn
matrices that is generated by Fj,. Then the dimension of A is n—1.

Theorem 3.4 There is a subalgebra A of T having length t and dimension 2" if A has the
sizen=2""+1. A is generated by one element, F1,. This result is the best possible in
that there is not a subalgebra of smaller dimension that has length t.

From Theorem 3.4 we get this Corollary:

Corollary 3.5 There is a nilpotent associative algebra having length t and dimension 2"
and this algebra is generated by one element. This result is the best possible in that there

is not a subalgebra of smaller dimension that has length t.

11



Proof. Let A be a subalgebra of T generated by one element, Fi,, where T has a size n.
Asusual Fipi1 * Fi g1 =Fipiqr1 = Fisa1 € dgif ptq+1 < nanditis 0 otherwise. Hence
A=<F> @ <F;3> @...® <F,,> and dimension of A =n-1. Furthermore,
A'=<F3> ® <Fi> ®..® <F >

A’=<F 5> ® <Fie> @...® <F >

AN =<F| k> ® <F| 5., >®..® <F >
Hence A"' # 0 if and only if 2" <n-lorn > 2"'+1 (if diagonal dzt_1 exists). Ifn >
2"'+1 and n < 2'+1 then A has length t. If n =2""+1, then n is the least possible n for A

to have derived length t. Now we know that the dimension of A is n—1, therefore when

we want the smallest n of length t we let n = 2'+1 and the dimension of A is 2. 0

Table 3.6: Associative algebra results with one generator

Length Minimum Matrix Dimension of A

(t) Size of A (n) (m)

1 2 1

2 3 2

3 5 4

4 9 8

5 17 16

t n=2"+1 2t

From our table we see that in order to obtain an algebra of length 4 we need to have a 9x9

matrix to start with. Now we compare the results when we start with one generator to

12



when we start with the n-1 elementary matrices directly above the main diagonal as

generators (Lemma 2.1).

Table 3.7: Comparison chart of associative algebras general case (T) and associative

algebra with one generator (A):

Length Minimum Matrix Dimension of T Dimension of A
(t) Size of Aand T
(n)

1 2 1 1

2 3 3 2

3 5 10 4

4 9 36 8

5 17 136 16

t n=2"4+1 (2 +1)27 27

13




CHAPTER 4: Matrix Group General Case

We now consider the matrix group versions of the associative algebra results. In
this investigation, we work exclusively with subgroups M of the group of unipotent nxn
upper triangular matrices, U. ThenU=1® d; @ d, © ... ® d,|, where the sum is a
vector space direct sum and the d; are the upper diagonals of U as in the last section. We
will consider the problem: For a given length, find the minimum n necessary.

Again using matrix units we compute the derived length where [A,B] = ABA'B™
is the commutator. Then U' =<[A,B]; A,B € U>and U =<[A,B]; A,B e U*'>. Then
U'=10dh®d . .0dy

U’=1@® d, ®ds @...0dy

Uk=1@d, ®d,, ®..0d,

Notice that U"™" #0 if and only if 2" < n—1 orn > 2"'+1 (diagonal d ., has to exist).

2t-1
The least n for U to have length t, is n =2""'+1 and the dimension of U= (2" +1)2*2, just

as in the associative case. Hence I + Ejp, [ + Ep3, ..., + E, 1, are generators of U, hence
U has 2" generators.

Lemma 4.1 For U to have length t, the smallest n = 2" '+1, and U has 2" generators.

14



CHAPTER 5: Matrix Groups with 3 Generators
Now we consider a subgroup of U where there are three generators: Fy,, F23, and
F34. These generators are combinations of the elements on the first diagonal added to the

identity matrix. We use the following terms:

jt3k<n

Fi=1+ Z Ei s Where1=1,2,3 and j > i.
k=0

Using multiplication with unipotent strictly upper triangular nxn matrices, we can find
the derived length of the group. To make this clear we start with an example.
Example 5.1

Let n =9 and let Fy,, F23, and F34 be generators of M in T. Thus M o {Fi,, Fa3, F34}

where Flz =1+ E12 + E45 + E78, F23 =1+ E23 + E56 + Egg, and F34 =1+ E34+ E67.

Fi,= Fo3 = Fss=

coococoocococo~
coCcoo0COoOO——
coocococo—~oo0
coococo~ocoo
cooco~—ocoo
coo—~ocoocoo
co—ococococoo
oO——ocooocoo
il = k=== =)
cococoocococo~—
coococoocoo—~O
cocooco——O
cocoo~ocoo
cooco~ococoo
coo~—OoOoOO
co—ococococoo
o—ocoocococoo
= l= == == =)
cococoocococo~
cococoocoo—~O
cocococo—oo
cocoo~—oo
cooco~oco0o0
coo~ocococoO
co——oococ0oOo
o—ocococococoo
—oo0o000oCOoO

Now we compute the derived length of the group. Compute the derived series starting

with M to get M' by the following multiplications:

[F12,F23] = (Fi2 * Fo3)*(Fia ' * Fp3 ) =

[(I+ Eix+ E4s+ Egg) * (I + Eo3+ Ese+ Ego)] * [(I = E12— E4s— E7g) * (I - Ea3— Es¢— Ego)]=

(I+E23+EsetEgotE1atE13+EastEagtErs+tE79) *(1I-E23-Es¢-Ego-E12+E13-EastEag-E7s+E79) =
[+Ei3+ Egt Ep=Fi3

[Fi2,F34] = (F12* F3) * (Fiy ' *Fyy ) =

[I+Ei2+Ess+Es) *(I+Ess+Ee7)] *[ (I-Ei2—Ess—Ez) * (I-E34—Ee7)] =

15



(I+Eix+ Ess+ Ess+ Esa+ E¢7) * (I - Ei2— Es4s— E7s— Ess— Ee7) =
I-Ess- Ees = (F3s)"
[F23,F34] = (Fo3 * F34) * (Fos ™ * Fay ) =
[(I+ Ez3+ Ese+ Ego) * (I+ Es4+ Ee7)] * [(I— E23— Ese— Ego) * (I - Es4— Ee7)] =
(I+Ess+ Ee7 + Eo3+ Eoa + Esg + Es7 + Ego) * (I — Ess— E¢7 — Eo3 + Eoa — Esg + Es7 — Ego) =
I+ Ex+Es;=Fxu
M! D {Fi3 Fa, F3s} and we continue to find M2 D {Fis, Fa6, F37} where Fis=1+ E;s+
E4s, Fog =1+ Eog+ Es9, and F37 =1 + E37; and M3 D { Fi9} where Fi9 =1+ Ejo; and M* =
0 since M < U and U*=0. Hence M has length 4. o
Lemma 5.2 The multiplication of [F; p+i,F; p+j] where 1, j = 1,2,3 and 1#j and p 1s not
congruent to 0 mod 3 yields three possible results:
Case 1: 11fj is not congruent to p+i mod 3 and i is not congruent to p+j mod 3
Case 2: Fjyp+i if j=p+i mod 3 and i is not congruent to p+j mod 3
Case 3: (Fj,2p+j)'1 if 1 = p+j mod 3 and j is not congruent to p+i mod 3
Proof. We will be computing [F; ,+;,Fjp+] where 1=1,2; j = 2,3; 1<j and we assume that p
is not congruent to 0 mod 3. It will be useful to let Hyp = Fap — 1. Then
[FipinFj pi] =
[T+ Hipi) * (T4 Hjpij)] * [(1- Hipri) * (I- Hypij)] =
[I + H;jp++ Hip+i + Hiop+i 0 (p+i-) mod 3,0)]*[I - H; p+j - Hip+i + Hizp+i 6 (p+i-j mod 3,0)] =
[# T41%* (-Hjp+j) + 1% (-Hipsi) + 1% Hizpti 6 (pti-j mod 3,0) + Hjpj* I + Hipj * (-Hjpsy)
+ Hjptj* (-Hip+i) + Hjpsj * [Hizp+i & (pti-j mod 3,0)] + Hipwi * I + Hipsi * (-Hjp+j) + Hipei

* (-Hi’p-ﬁ) + Hi,p+i * [H172p+i bo) (p+i-j mod 3,0)] + Hi,2p+i bo) (p+i-j mod 3,0) *1+
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[Hizp+i 6 (p+i-j mod 3,0)] * (-Hjp+j) + [Hizp+i 6 (pti-j mod 3,0)] * (-Hipei) + [Hizp+i 6 (pHi-
jmod 3,0)] * [Hizp+i 0 (pti-j mod 3,0)]. We go through each of these multiplications:
I[*1 =1
I * (-Hj p+j) = -Hj p+j this will cancel with its positive opposite
I * (-Hip+i) = -Hip+i this will cancel with its positive opposite
I * Hisp+i 0 (pti-j mod 3,0) = Hj2p+i 0 (p+i-j mod 3,0)
H;p+ * I = H;+j this will cancel with its negative opposite
H;p+i * (-Hjp+j) = 0 since p+j is not congruent to j mod 3
H;p+i * (-Hip+i) = -Hj2p+j 0 (pj - i mod 3,0)
H;jp+i * [Higp+i O (pti-j mod 3,0)] =0, for if not,
ptj = imod 3 and p+i = jmod 3 >
p =i-jmod 3 and p=-i+jmod3 >
p=i-jmod3and-p =i—jmod3 >
p=-pmod3 >
2p=0mod 3
which is a contradiction to our original assumption.
Hip+i * I =Hip+ this will cancel with its negative opposite
Hip+i * (-Hjp+j) = -Hizp+i 0 (pi- j mod 3,0)
Hip+i * (-Hip+i) = 0 since p+i is not congruent to i mod 3
Hip+i * [Hip+i 0 (pti-j mod 3,0)] =0, since if p+i =1 mod 3 then p = 0 mod 3 whichis a
contradiction to our original assumption.
Hi2p+i 0 (p+i-j mod 3,0) * I = H; 2p+i 0 (p+i-j mod 3,0)

[Hizp+i 0 (p+1-) mod 3,0)] * (-H;,+j) = 0, since if 2p+i =j mod 3 then p+p+i-j = 0 mod 3,
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but p is not congruent to 0 mod 3 and p+i-j=0 mod 3 which is impossible.
[Hizp+i 0 (p+1-) mod 3,0)] * (-Hip+i) = 0, since if 2p+1 =1 mod 3 then 2p=0 mod 3 which
is a contradiction to our original assumption.
[Hi2p+i 0 (p+i-) mod 3,0)] * [Hizp+i 0 (pti-j mod 3,0)] = 0, since if 2p+i=i mod 3 then
p =0 mod 3 which is a contradiction to our original assumption.
Leaving: I + 2H; 5+ 6 (p+i-) mod 3,0) - H; 2,4 6 (ptj-1 mod 3,0) - Hi2p+i 0 (p+i-j mod 3,0)
= I+ Hip+i 6 (pti-jmod 3,0) - Hjzp+j 0 (ptj -1 mod 3,0) =
Case 1: I if j is not congruent to p+i mod 3 and 1 is not congruent to p+j mod 3
Case 2: I + Hiap+i = Figp+i if ] =p+1mod 3 and 1 is not congruent to p+j mod 3
Case 3: I - Hjop+j = (F"2p+j)-1 if 1 = p+j mod 3 and j is not congruent to p+i mod 3
Note that i = p+j mod 3 and j =p+i mod 3 cannot hold simultaneously, if they did then
ptj = imod 3 and p+i = jmod 3 2>
p =i-jmod 3 and p=-i+jmod 3 >
p=i-jmod3and-p =i—jmod3 >
p=-pmod3 >
2p=0 mod 3
which is a contradiction to our original assumption. O
Lemma 5.3 Fl,zkﬂ, F2’2k+2, F3,2k+3 e MK,
Proof. Base case: Let k = 1. We start with Fy,, Fa3, F34 e M. We find with the following
multiplications of [F,», F23], [F12F34], and [F23, F3 4] and with lemma 5.2 we get F 3,
(F3,5)'1, and F, 4 respectively, where Fi3, F»4, F3 5 are elements of M.

Induction Hypothesis: let k = r where F; 541, Foo's, Fao'+3 € M'
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To show that when k = r+1 that F1,2r+1+1, F, s, F;, ;s e M™ we start with M =
[M',M"] where F; 541, F2.2" 12, F3.2' 13 € M'. We do the calculations

[F1.2 +1, F2.2" +2]

[F1,2"+1, F3,2" 4]

[F2,2"+2, F3,2" 4]

using lemma 5.2 to get F1 2%" 41, (F3, 200 +3)", and Fa, 2%0" 1, giving us F1 2™ 11, F3 "™ 4,
and Fy, S, e M o

Theorem 5.4 M has length t if M has the matrix size n=2""+ 1. M is generated by
three elements; Fi,, Fa3, F34. This result is the best possible.

Proof. Let M be the matrix group of the nxn unipotent strictly upper triangular matrices
U generated by the three elements, F, F»3, and F34. M has a size n and is a unipotent
strictly upper triangular matrix group. Ifn > 2°'+1 then M"" # 0 (because F," '+ is
the smallest element of M "). Ifn > 2"'+1 and n <21, then M has length t. If
n=2""+1, then n is the least possible n for M to have derived length t. This number
matches the least possible n for U to have derived length t. Hence using three or more

generators, n = 2" '+1 is the smallest n for a unipotent group to have derived length t. o

Table 5.5: Matrix Group results with three generators

Length Minimum Matrix Size of

(t) M (n)

1 2

2 3

3 5

4 9

5 17

t n=2"+1
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CHAPTER 6: Lie Algebra General Case
We now consider the Lie algebra versions of the associative algebra results.
We have four problems to consider:

1.) Find a good upper bound for the dimension of nilpotent Lie algebras with
derived length t. In other words, for a given t, find as small an m as possible
such that there is an algebra of dimension, m, with derived length, t.

2.) Answer the same question when restricted to a fixed number of generators.

3) Answer the same question when the Lie algebras are subalgebras of strictly
upper triangular matrices of size n (denoted again by T). Here the
multiplication is commutator multiplication.

4.) For a given length, find the minimum n necessary.

In this investigation, we work exclusively with subalgebras of T. As before T=d; @
d; @ ... ®d,; where the d; are the upper diagonals of T. Again using matrix units, we
compute the derived series of T:
T'=d, ® d; @...®d

T’=d, ®d;s ®...®d,

22

T'=d, ®d,, ®.. 0d,

Notice that T"' #0 if and only if 2" < n—1 orn > 2"'+1 (diagonal d _, has to exist).

2t—l
The least n for T to have length t, is n = 2""'+1 and the dimension of T = (2" +1)2"?, just

as in the associative case. Again Ei,, E»3, ...,E; 1, are the generators of T, hence T has

2! generators.
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Lemma 6.1 For T to have length t, the smallest matrix size n = 2"'+1, the dimension of T

= (2" +1)2'2, and T has 2" generators.
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CHAPTER 7: Lie Algebras with 3 Generators

In lemma 6.1 there are 2" generators. Now we look at the case where there are
three generators: Fi», Fa3, and F34. These generators are combinations of the elements on

the first diagonal. We define:

j+3k<n

F; = z Ei5jia Wherei=1,2,3 and j > i.
k=0

Let L be generated by Fi», Fa3, and Fa.

Using commutator multiplication, we find the derived series of the algebra. To make this
clear we start with an example.

Example 7.1

Letn =9 and let Fi,, F»3, and F34 be generators of L in T. Letd;” =L nd;. di” =<Fia,

Fa3, F34> where Fi» = B+ E4s + E7g, Fo3 = Ex3 + Esg + Ego; and Fz4 = Es4 + Egs.

Fio = Fp3 = Fas =

SO O OO OoOoOO O
SO OO OoOoOoOoO—
SO O OO OoOoO O
SO O OO OoOoO O
SO OO O—OO O
SO OO ODOoOOoO O
SO O OO OoO O
SO OOODOoOOoOO O
SO DO OoDOO O
SO O OO OoOOO
SO O OO OoOOO
SO OO oo OoOo—O
SO OO ODOoOOoOOO
SO OO ODOoOoOOO
SO O O—LOOoOO O
SO OO ODOoOOoO O
SO OO ODOoOOoO O
OO OO OoOO O
SO O OO OoOOoO O
SO O ODODOoOOoO O
SO OO ODOoOOoO O
SO OO OoOOoO—LOO
SO OO ODOoOOoO O
SO OO ODOoOOoO O
SO O—ROOOO O
SO O OO OoOOO
SO OO ODOoOoOO O

Now we obtain the derived series of the algebra. We start by finding the elements of d; .
[F12,F23] = (F12 * Fa3) — (F23 * F1p) =
[(E12+ E4s+ E7s) * (E23+ Es¢+ Ego)] — [(Eas + Ese + Ego)* (E12 + Eas + Ezg)] =
E;3+Eg+Ep=F;e L'
[F12,F34] = (F12 * F34) — (F34 * F12) =
[(E12+ E4s+ Ezg) * (Esa+ E67)] — [(Esa+ E¢7) * (E12+ Eas + Ezg)] =

—Ejs5—Eeg =—F35 € L'
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[F23,F34] = (F23 * Fas4) — (F34 * F23) =
[(E23 + Ese+ Eso) * (Esa+ E¢7)]— [(E34 + Eg7) * (E23 + Es¢ + Ego)] =
Ey+Es;=Fy e L'
Resulting with d,” = <Fi3, Fa4, F35>. Then use these elements to find Fys, Fa, F37 € L?
where ds’ = <Fs, Fag, F37> and Fi5s = E{5s + Esg, Fog = Eog + Eso, and F37 = E3;. Then use
these elements to find Fio € L where dg’ = < F19> and F9 = Ey-. Clearly L= [L3, L3] =
0 and L has derived length 4. We have computed the linearly independent elements d;’,
dy’, ds’, and dg’. We find the other diagonals, starting with ds :
[F12,Fi3] = (Fi2 * F13) = (F13 * Fip) =
[(Ei2+ Ess+ Ezs) * (Ei3+ Ea+ E79)] — [(E13+ Ea6 + E79) * (E12+ Esas + E75)] =
0
[F12,F24] = (F12 * Fa4) — (F24 * F1p) =
[(E12+ Ess+ E7s) * (E2s+ Es7)] - [(E24+ Es7) * (E12+ E4s + Egg)] =
Eis+ E47 —Ezs —Esg=Fi4—Fas
[F12,F35] = (F12 * F35) — (F35 * F1p) =
[(Ei2+ Es4s+ Ezg) * (E3s+ Ees)] - [(Ess + Ees) * (E12+ Eas + E7g)] =
0
[F23,F13] = (F23 * F13) — (F13 * Fa3)=
[(E2s + Esg+ Esgo) * (Ei3+ Eas+ E79)] — [(E13 + Ea6+ E79) * (E23 + Es¢ + Ego)] =
0
[F23,F24] = (F23 * Fag) — (F24 * F23) =
[(E23 + Ese+ Esg) * (E2a+ Es7)]— [(E24 + Es7) * (Eo3 + Es¢ + Ego)] =

0
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[F23,F35] = (F23 * F3s) — (F35 * Fa3) =

[(E23+ Es¢ + Eso) * (E3s+ Ees )] — [(E3s + Egs) * (E23 + Ese + Eso)] =

Ezs + Ess — Es6 — Eeo = Fas — Fg
[F34,F13] = (F34 * F13) — (F13 * F34) =

[(E3s+ Ee7) * (Ei3+ Es6+ Eq9)] — [(E13+ Es6 + Eq9) * (Es4+ Ee7)] =

Esz6 + Ego — E14 — E47 = F36 — F14
[F34,F24] = (F34 * Faq) — (F24 * F34) =

[(Ess+ Ee7) * (E2a+ Es7)] - [(E2a + Es7) * (Esa+ Ee7)] =

0
[F34,F35] = (F34 * F3s5) — (F3s5 * F34) =

[(E3s+ Ee7) * (Ess+ Ees)— [(Ess+ Ees) * (Ezs+ Ee7)] =

0
leaving d3’ = <[d,’,d2’]> = < F14 — Fas, Fa5 — F3¢, F36 — F14> where Fiy — Fos = E14+ E47 —
Ezs— Esg, Fas — F36= Eps+ Esg — E3s— Ego, and F3s — F14= E36+ Ego — E14— E47. Notice
that F3¢ — F14 = — (F25 — F36) — (F14 — F25), therefore, d3” = < Fi4 — Fas, Fos — F36>.
Continuing this computation yields ds” = <[d,’,d4’], [d2’,d3’ > = <F16, F27, F35> where Fi¢
= Ei6+ Ea9, F27 = Ep7, and F3g = E3s. de” = <[d1’,d5’], [d2’,d4’], [d3°,d3°]> = < F17 — Fas,
Fag — F39, F39 — F17> where F17 — Fag= E17 — Eag, Fag — F39= Eag — E39, and F39 — F17= E39
— E7, and since two of the elements in d¢ are a combination of the other element, dg’ = <
F17 —Fag, Fog — F3o>. d7” = <[dy’,d¢’], [d2’,d5’], [d3°,ds’]> = < Fs, F20> where Fig = Ei3
and F»9 = E»9. Now we have the derived series of L where L=d;” @ d)” ©...® dg’, L

=y D dy @..@D dg’, L’ =dy ® ds’ ®...® dg’, L =dg’. L* = 0. Thus L has the
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length4 and d,” @ dy” @ ...® ds’ contains a basis for L, as demonstrated, and L has
dimension 3+3+2+3+3+2+2+1=19. O
With Lie Algebras we are dealing with commutator multiplication where

[Fip+i-Fiqt] = Fipti * Fiqij — Fiqij * Fipri. Lets=ptq.

Recall that:
Foov *F . = 0 , if i+p is not congruent to j mod 3
LpF T ah) Fi,p+q+i = Fi,s+i where i = 1,2,and 3, if i+p is congruent to j mod 3
and
" _ 0 , if gtj is not congruent to i mod 3
Fiq * Fipri =

Fj,qtp+j = Fj,s+j where j = 1,2,and 3, if q1j is congruent to i mod 3

Let M1 represent Fi,+; * Fj 4+ and let M2 represent F; 4+ * Fi,+i. In order for M1# 0, p+i
is congruent to j mod 3 or 3 divides p+i—j. In order for M2 # 0, gq+j is congruent to i mod
3 or 3 divides q+j—i.

Lemma 7.2 If both M1# 0 and M2# 0 then s is a multiple of 3 where d; is the diagonal
s steps above the main diagonal.

Proof. If both M1 # 0 and M2 # 0 then 3 divides p+i—j and g+j—i. Since q = s—p, q+j—i
= s—p+j—1=s—(p+i—j). Hence, s is a multiple of 3. O

Lemma 7.3 If s is a multiple of 3 then either both M1# 0 and M2# 0 or both M1 =0
and M2 = 0.

Proof. Lets be a multiple of 3. Assume that M1 0 (3 divides p+i—j) and M2 =0 (3

does not divide g+j—i) and s = p—q. Then 3 divides p+i—j = s—q+i— = s—(q+j—1). Since 3
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divides s, this shows that 3 divides q+j—i which is a contradiction. Similarly, we get the
same results if we start with M2 0 and M1 =0. o

Corollary 7.4 If s is not a multiple of 3, then one of the following holds where M1
represent (Fi,+; * F; ¢+j) and M2 represent (Fj g+ * Fipri): Ml# 0 & M2=0,M1 =0 &
M2#0,or M1 =0 & M2 =0.

Lemma 7.5 F ", F25°0, F35°3 € L (provided the second subscript < n).

Note that d,” = < Fy "4, F22° 12, F35°45>, therefore, we know that the diagonal we are
dealing with is never a multiple of 3.

Proof. Base Case: Let s = 1. We start with L, where d,” = <F,, F23, F3s>and Fi, = Ej» +
Es4s+ ...4 Eski1 302, Fo3 = Bz + Esg+ ...+ Esiio 3143, and Fag = Ess + Eg7 + ...+ B3 3104
where k starts at zero, and the terms are within the matrix size.

Then

[F12,F23] = (F12 * F23) — (F23 * F12) = Fi3

[F12,F34] = (F12 * F34) — (F34 * F12) = —F3s

[F23,F34] = (F23 * F34) — (F34 * F23) = Fa4

Hence dy’ = <Fy3, Faq, F35> and F1 541, F2o'h0, F3p's € LY

Induction Hypothesis: let s = k where F 1,2k+1, F 2,2k+2, F3,2k+3 e L*. We show that F1,2k+1+1,
Fz,zkﬂu, F3,2k+1+3 e L' We compute

[F1.251, F2250],

[F1.251, F323], and

[F22 2, F32"].

In [Fig%, Fi2] = (Fid%* Fio') — (FiS * Fiok) where i = 1,2; = 2,3; i <j, (Fi) *

Fj,2k+j) will be nonzero if 2%+ is congruent to j mod 3 and (F j’2k+j * Fi,2k+i) will be nonzero
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if 2k+j is congruent to i mod 3, but at no time will these results both be nonzero (corollary
7.4). One of them will be non-zero since either i-j is congruent to 2* mod 3 or j-i is
congruent to 2* mod 3.

Thus either (Fix"si * Fj2) = Fi 20" = Fi 2" or (Fj2" * Fila ) = Fj 205 =
Fj,2k+1+j- Therefore d,*” = <F1,2k+1+1, F2,2k+1+2, F3,2k+1+3> and F1,2k+1+1, F2,2k+1+2,
Fy X e LM o
Theorem 7.6 L has length t if L has the matrix size n=2"" + 1. L is generated by three
elements; Fi,, F23, F34. This result is the best possible for three generators.
Proof. Let L be the Lie subalgebra of the nxn strictly upper triangular matrices T
generated by three elements, F2, Fa3, F34. Ifn > 2"'+1 then L' # 0 (because Fy," '+ is
inL""). Ifn > 2"'+1 and n <21 then L has length t. If n =2""'+1, then n is the least
possible n for L to have derived length t. This number matches the least possible n for T

to have derived length t and thus L T. Hence for any number of generators > 3, n =2"

'+1 is the smallest n to obtain derived length t. -

Table 7.7: Lie Algebra results with three generators

Length Minimum Matrix Size of L

(U] (n)

1 2

2 3

3 5

4 9

5 17

t n=2"+1

We now look at the dimension of L.
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Lemma7.8L=d;" ® d)’ ®...®d, ;" where d;’ =L nd;. The dimension of d,’ =3 if s
is not congruent to 0 mod 3 and s#n—2 or n—1. The dimension of dy” =2 if s is congruent
to 0 mod 3 and s #n—2 or n—1. The dimension of d,.»” = 2 and dimension of d,_;” = 1.
Proof. We will first look at the dimension of dy” where s is not congruent to 0 mod 3,
hence s is not a multiple of 3. d,’ is computed from [d,’,dq’] where s = p+q, and we
calculate ds” with [Fp+i,Fjq+] = (Fip+i * Figs5) — (Fjqj * Fip+i) = Fiprqri = Fisei or =Fjpiqij =
Fis+i where i=1, 2, and 3, and ds’ = <F| 51, F2512, F3513>. Therefore, the dimension of ds’
is 3 when s is not congruent to 0 mod 3 and s# n—-2 or n—1.

Now we look at the dimension of d;” where s 1s congruent to 0 mod 3, hence s is a
multiple of 3. We compute dy” with the calculation [Fi p+i,F;j q+j] = (Fip+i * Fiq+) — Fjg+ *
Fip+i) = (Fip+qri — Fiprqr) = Figi — Fist)Op+ij. Ifi=1,p=1,j =2, q=s-1 this equals
Fioin—Faosn. f1i=2,p=1,j=3,q=s-1thisequals Foso—F353. Ifi=1,p=2,7=3,q
= s-2 this equals F; g1 — F353. Where ds” = <F s11 — Fasi2, Fosio — F3 13, Fisi1 — Faoi3>.
Only two of these are linearly independent hence dy” = <F; ¢+1 — Fa 512, Fo 510 — F3 613> and
the dimension of d,’= 2 when s is congruent to 0 mod 3 and s #n-2 or n—1.

The case of d,»” and d,;” are easily checked to be dy >’ = <Fi 1, F2n> where
Fin1=Ein1and Fo,=Es,and dy” = <F; > where F; , = E| , remembering that in the
last diagonal there is only one element in the matrix and in the second to last diagonal

there are 2 elements in the matrix. Hence, the results hold. O

(k-1)*8+3 if n=3k
Lemma 7.9 The dimension of L = 1 (k-1)*8+6 if n=3k+l
(k-1)*8+9 if n=3k+2

Proof. L=d," @ d,” ©...®d,;’, Dimension of L = 3+3+2+3+3+2...+2+1 where there

are n—1 terms in the sum. First consider the case when we have a matrix of size n=3k we
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know the matrix size is a multiple of 3 and that there are n—1 diagonals above the main
diagonal, breaking down to k—1 sets of consecutive diagonals that have dimension 8 =
(3+3+2), dy»” with dimension 2, and d, ;” with dimension 1. Making the total dimension
of L = (k—1)*8+3. In the case where n = 3k+1 break down to k—1 sets of diagonals that
have dimension 8, d,, 3> where n—3 is not a multiple of 3 because 3k+1-3 mod 3 is not 0
leaving d,, 3’ with dimension 3, d,, ,” with dimension 2, and d, ;” with dimension 1.
Making the total dimension of L = (k—1)*8+6. The last case where n = 3k+2 breaks
down to k—1 sets of diagonals that have dimension 8, d,4” where n—4 is not a multiple of
3 because 3k+2—4 mod 3 is not 0 leaves d,, 4” with dimension 3, d,, 3° where n—3 is not a
multiple of 3 because 3k+2—3 mod 3 is not 0 leaves d, 3’ with dimension 3, d, ,” with
dimension 2, and d,;” with dimension 1. Making the total dimension of L= (k—1)*8+9.0
We can use the 9x9 Lie Algebra, Example 7.1, to check this lemma. In the 9x9
example we showed that the dimension of L = 3+3+2+3+3+2+2+1 = 19. Using lemma
7.9 when n =9 we see we have the case n = 3k where k = 3 and find the dimension to be
the same as in our example (k-1) *8+3 = (3—1) *8+3 =19.
We now find the dimension of L in Theorem 7.6. Recall that for a given length t,
Theorem 7.6 gives that the minimum matrix size needed for L to have length tis n =
27 +1.
Proposition 7.10 Iftis even, then n = 3k (n=0 mod 3), and if t is odd then n = 3k+2
(n=2 mod 3).
Proof. Inducton d.

If t = 2 then matrix size is 2" +1 = 3 where n = 3k with k= 1. Note that 3 mod 3 = 0.
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If t = 3 then matrix size is 2"' +1 = 5 where k = 1 and we use n = 3k+2. Note that 5 mod
3=2. Wesee that 2" +1=3*2"" 4+ 2""+1 = 2"' +1 mod 3. Hence all even (odd) t have
their corresponding n’s congruent mod 3. O

Proposition 7.10 is easier to understand by looking at some examples. For the
even case we start with t = 2. Then 2*' +1 = 3*2*' +2*'+1 = 2*' +1 mod 3 = 3 mod
3 =0. To check this we take t = 4, where 2" +1=9 and 9 mod 3 is 0. Notice that when t
=2 and n =3, n=0 mod 3; and when t =4 and n = 9, n=0 mod 3 showing that the even t
have an n=0 mod 3. We can also show an odd example where we start with t = 3. Then
2212 4 1=3%2"" 4+ 2% +1 = 2% +1 mod 3 =5 mod 3 =2. To check this we take t =5,
where 2" +1 =17 and 17 mod 3 is 2. Notice that whent=3 and n= 15, n=2 mod 3; and
when t=5 and n = 17, n=2 mod 3 showing that the odd t have an n=2 mod 3.

Theorem 7.11 There is a three generator Lie Algebra (L) of derived length t and

t+2 _ t+2
if t is even and

dimension

if tis odd. These algebras are subalgebras of

T of matrix size 2" +1.

Proof. Foranyt,n= 2" +1 is the smallest matrix size which will support algebras L of
length t as seen earlier. If'tis even, n=0 mod 3 and n = 3k and the dimension of L is
8(k—1) + 3. Using both n=2""+1 and n = 3k we get the dimension of L is 8(k—1) + 3 =

t-1 2
2 3+1_1)+3: 22 -7

8(%—1) +3=8§( . Iftis odd, n=2 mod 3 and n = 3k + 2 and the

dimension of L is 8(k—1) + 9. Using both n=2""+1 and n = 3k + 2 we get the dimension

n-2 27 +1-2 22 -5

of L =8(k-1) +9 =8(—=~1)+9= 8(————-1)+9=

- U
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Table 7.12: Lie algebra results including dimension with three generators

Length Minimum Matrix | Dimension of L Dimension of L

(t) Size of L (tis even) (tis odd)

1 2 1

2 3

3 5 9

4 9 19

5 17 41

t n=2"+1 2% 7 2725

3 3

Table 7.13: Comparison chart with strictly upper triangular matrices general case
(T), Lie algebra with three generators (L), and associative algebra with one

generator (A)

Length Minimum Dimension of | Dimension of | Dimension of

© Siiwe(?lt‘,r::L) T L A

1 2 1 1 1

2 3 3 3 2

3 5 10 9 4

4 9 36 19 8

5 17 136 41 16

t n=2"+1 2" +1)2% ¢ even 2% -7 24!

2% -5

t odd

Remark for t, we have found the smallest n such that T has a subalgebra of length t. The

result is sharp. We have also found the dimension of these algebras. It is conceivable

that the dimension could be lower, we do not know if our bound is sharp. It is also
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possible that there are nilpotent N, not just subalgebras of T, for which the dimension

bound could be lowered.
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CHAPTER 8: Lie Algebras with 2 Generators

For a given t, we have found the smallest n such that there is a 3 generated
subalgebra of the strictly upper triangular nxn matrices which has derived length t. We
now consider the same problem for the 2 generated subalgebras.

We start by finding a lower bound for n.

Theorem 8.1 Ifn < %2‘ then T does not have a 2 generated subalgebra with derived

length t.
Proof. Let L be a 2 generated subalgebra of T. Let L = <A, B>. In order for the derived

length of Ltobet, L'=0and L' #0.
5 2 5 . t—1
When t =2 we find that n < §2 :E’ leavingn <3. Whenn=2wehave L™ =
L'=<[A, B]>=L,=0. Hence, T does not have a 2 generated subalgebra with derived
S
length t =2 whenn < §2 :

When t =3 we find thatn < 5. When L =<A, B>, L, =[A, B] + L;. Then:
L' =L"=[L", L] =[L,, Lo] =
[[A, B] +Ls, [A,B] + Ls] =
[Ls, [A, B] + Ls] =
[Ls, L] € Ls=0sincen < 5.
Hence T does not have a 2 generated subalgebra with derived length t =3 when n <

RPY
g
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Using induction, we assume L' L. s and compute L' = [L"', L""]

]cL =L Now L' L, s forallt. Ifn < §2t , then

cl[L L .
cl 5a0t3 7 s ot3 25+ 213 50t2

L5 3 0 leaving L' = 0. Hence, T does not have a 2 generated subalgebra of derived

length t when n < th . Therefore, in order for a 2 generated subalgebra to have derived

5 . .
length t, n > §2t , leaving us with a lower bound on n. 0

Let L be a Lie algebra generated by x and y and let ze L such that z can be
expressed as a product of the generators. Of all expressions of z as a product of
generators, let w(z) be the number of generators in the shortest such expression of z.
Then w(z) will be called the width of z.

Let F be a free Lie algebra generated by aand b. Let F SF'S5F”* 5 ... be the
derived series of F. The terms [a, b], [[a, b], a], [[a, b], b] are all in F' with [a, b] having
the shortest width, w([a, b]) = 2. The pairwise products of these elements are in F 2 with
the shortest width of any term being 5. These products are [[a, b], [[a, b], a]]; [[a, b], [[a,
b], b]]; and [[[a, b], a], [[a, b], b]]. The products of these elements have widths 10, 11
and 11 and are the shortest elements in F°. Taking products again, we obtain products of
width 21, 21, and 22. The new products are in F* and the shortest width is 21 =21 * 2+,
The shortest width in F° is at least 42 = 21 * 2°* which would be obtained by multiplying
two elements of width 21 from F*. This process continues and we find that the shortest
width in F* is at least 21 * 2%,

Theorem 8.2 Let F be a free Lie algebra with 2 generators. Then the term with the

shortest width in F*is [21 * 2] ([] represents the greatest integer function).
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Since any 2 generated Lie algebra L is the homomorphic image of F, the shortest
width element in L" is at least as wide as the shortest width element in F". The approach
we take is that for each derived length t, we construct a 2 generated Lie algebra of strictly
upper triangular matrices that meets the bound. The generator matrices A and B will be
sums of E;;:+; of the appropriate size with each E;;:; appearing in A or B but not both A

and B. Welet A €Tiq(a,,0,,...a ,)and B €Ti4(B,,B,,...8,,) where a;and B ; are

regarded as variables, and T, , denotes the nxn matrices with non-zero elements only on
the first diagonal along the main diagonal.

The following examples consider the cases for small values of t. Computations
have been aided by the use of Maple (see Appendix A). As usual, t will be the solvable
length, L is a subalgebra of T = T,, where n is the size of the matrices and j stands for the
width of the smallest non-zero term in L. We always need n=j + 1.

Example 8.3

Lett=2. Using s =1 in Theorem 8.2 we find that j=2 andn >3. Let A and B be
matrices of size n = 3 with non-zero entries only on the super diagonal and zero’s
elsewhere. Clearly for j =2 we use [A, B] or [B, A]. Let ca(x, y) = [y, x] and consider
c2(A, B) =[B, A] where

0o O 0Bt O
A=]100 o2|andB=|0 0 B2].
000 000

Expanding using Maple, we find c»(A, B)13 =B o2 — o B2. Let my=B;0 and let
Bi=ou=1 and o,;=B,=0, we find [c2(A, B)]i3 = 1. Hence, for n = 3 the Lie algebra

generated by A and B has t =2. From the result on free Lie algebras, n = 3 is the best
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possible result. That is, n = 3 is the smallest size matrix that contains a two generated Lie
algebra of solvable length 2.

Note: that the number of alphas, 1, in m, equals the number of A’s in c,(A, B) and the
number of betas, 1, in m; equals the number of B’s in ¢c,(A, B). O

Example 8.4

Lett=3. Using s =2 in Theorem 8.2 we find thatj =5 andn >6. Let A and B be
matrices of size n = 6. Let cs(x, y) = [[[y, x], X], [y, X]] and consider cs(A, B) = [[[B, A],
Al], [B, A]] where A and B have non-zero entries only on the super diagonal and zero’s
elsewhere and the elements of this diagonal for A are a, ... as and for B are f3; ... Bs.

Expanding using Maple, we find cs(A, B)1 ¢ = 3a3B100Ps0s — 2a3310004P5 —

4o Bafacts + 3oaon BaouaPs + aioPsPacts — oaProufs — BronosPsos + o PaosPaos.
Let ms=ot;0233B405 and let o = o = B3 = B4 = ais=1 and the remaining o’s and B’s be
zero, we find [cs(A, B)]is = 1. Hence, for n = 6 the Lie algebra generated by A and B has
t=3. From the result on free Lie algebras, n = 6 is the best possible result. Thatis,n=6
is the smallest size matrix that contains a two generated Lie algebra of solvable length 3.
Note: that the number of alphas, 3, in ms equals the number of A’s in c5(A, B) and the
number of betas, 2, in ms equals the number of B’s in c5(A, B). O

For the next case we also will use ¢s'(x, y) = [[[y, x], ¥], [y, X]] and consider cs'(A,
B) =[[[B, A], B], [B, A]] where A and B have non-zero entries only on the super
diagonal and zero’s elsewhere and the elements of this diagonal for A are a4, ... as and
for B are B; ... Bs.

Expanding using Maple, we find cs'(A, B)1 6 = 3B3B1002Ps0ts — 4P3B100014P5 —

2B3a1BaBacts + 3B30u1BrowaPs — PiPaczPacs + BiP2aizosPs + BrazPsosPs — o PaPsasPs. Let
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ms'=B1Br03014P5 and let B; =Po=as=04=Ps=1 and the remaining a’s and 3’s be zero, we
find [cs'(A, B)]16=1.
Note: that the number of alphas, 2, in ms' equals the number of A’s in cs5'(A, B) and the
number of betas, 3, in ms' equals the number of B’s in cs'(A, B).
Example 8.5
Lett=4. Using s =3 in Theorem 8.2 we find that j=10andn >11. Let A and B be
matrices of sizen=11. Let cio(X, y) = [c5'(X, ¥), ¢s(x, )] = [[[[y, x], ¥], [y, x1], [[[y, x],
x], [y, x]]] and consider cio(A, B) = [¢s'(A, B), cs(A, B)] =[[[[B, A], B], [B, A]], [[[B, A],
A], [B, A]]] where A and B have non-zero entries only on the super diagonal and zero’s
elsewhere and the elements of this diagonal for A are a, ... oo and for B are By ... Bio.
Expanding using Maple, we find [c19(A,B)]i,11 contains B1B20a30uP50607BsBoct10
and many other terms, all different from this one. Let m;o=pB2a304Psas0t7BsBoctio and
let B1=Br=03=04=Ps=0c=07=Ps=Po=0t10=1 and the remaining o’s and ’s be zero, we find
[c10(A,B)]i11 = 1. Hence, for n =11 the Lie algebra generated by A and B has t =4.
From the result on free Lie algebras, n = 11 is the best possible result. Thatis,n=11is
the smallest size matrix that contains a two generated Lie algebra of solvable length 4.
Note: that the number of alphas, 5, in m;y equals the number of A’s in ¢;o(A, B) and the
number of betas, 5, in mj( equals the number of B’s in ¢ 9(A, B). O
Example 8.6
Lett=15. Using s =4 in Theorem 8.2 we find that j =21 and n >22. Let A and B be
matrices of size n = 22 with non-zero entries only on the supper diagonal and zero’s

elsewhere. Let

terml(X, Y) = [[[[Y7 X], X]: X]’ [Y7 X]]
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term2(x, y) = [[[[y, x], x], y], [y, ]

term3(x, y) = [[[[y, xI, y1, y1, [y, x]]

and

ca(x, y) = [[terml(x, y), cs(x, y)].c10(X, y)]

c21' (X, y) = [term2(x, y), ¢s(X, y)].c10(X, y)]

ca" (X, y) = [term3(x, y), ¢s(x, y)].c10(x, ¥)]

and consider ¢y1(A, B)=[[term1(A,B), c5(A,B)],ci0(A, B)] =

[[[[[[B, A], A], A], [B, A] ], [[[B, A], A], [B, Alll, [[[[B, A], B], [B, A]], [[[B, A], A], [B, A]]]].
We first look at term1(A,B) = [[[[B, A], A], A], [B, A]] where A and B are 7x7 matrices of
the usual super diagonal form, we expand using Maple and we find [term1(A,B)]; 7
contains o a03B4P506 and many other terms, all different from this one. We consider
cs(A.B) =[[[B, A], A], [B, A]] where A and B are 6x6 matrices of the usual super
diagonal form, we expand using Maple and we find [cs(A,B)]; ¢ contains a0233B4005 and
many other terms, all different from this one (see example 8.4). We consider
ci0(A,B)=[[[[B, A], B], [B, Al], [[[B, A], A], [B, A]]] where A and B are 11x11 matrices
of the usual super diagonal form, we expand using Maple and we find [c;o(A,B)]i.11
contains [3;Bras0sBsasa7BsPoctio and many other terms, all different from this one (see
example 8.5).

To build A and B of size 22, we are guided by the above discussion. In the upper
7x7 block we put the A and B dictated from calculation using term 1; that is, we let
o=o=0;3=P4s=Ps=0s=1 and the rest of the super diagonal terms be 0. For the next 5
terms we use the computations for cs; namely o =0,=B3=Bs=as=1, but add 6 to the

subscript to put them in the correct part of A and B. Hence a=as=Bo=P10=0t;1=1 and the
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rest are 0. For the last part we use the calculations from c;p and add 11 to the subscripts
giving B1o=Pi3=a14=a15=P16=ct17=a15=P19=P20=021=1 and the rest are 0. Substituting A
and B into term1(x,y), cs(x,y) and cjo(X,y) yields = 1 in postions (1,7), (7,12), and (12,22)
in the respective matrices. Then c;;(A,B) has 1 (actually -1) in the (1,22) position and
zeros elsewhere. This can also be described as in the next paragraph.

To build the matrices of size 22, term1(A,B) has ajo03B4B506 in the (1,7)
position, cs(A,B) has a;0BoP 100t in the (7,12) position, and co(A,B) has
Bi2BisaiaoisPieatizaisPioPaoatz; in the (12,22) position. The large A and B matrices have
been built in 3 steps. In the first 6 supper diagonal positions we put the a’s and 3’s found
in term1(A,B). In the next 5 positions we put the term found in c¢s(A,B) where the
subscripts have been increased by 6. In the last 10 positions we use the term found in
c10(A,B) with the subscripts increased by 11. Then [c21(A,B)]122 has the product of these
terms as one of many summands. Let
my =0t 02 03PaPsosaroigBoB oot PP izotiactisPisatizoisPioPaoctzr and let these values for
o’s and B’s be 1 and the remaining o’s and ’s be zero, we find [c21(A,B)]122 = -1.
Hence, for n = 22 the Lie algebra generated by A and B has t =5. From the result on free
Lie algebras, n = 22 is the best possible result. That is, n =22 is the smallest size matrix
that contains a two generated Lie algebra of solvable length 5.

Note: that the number of alphas, 12, in m,; equals the number of A’s in ¢3;(A, B) and the
number of betas, 9, in my; equals the number of B’s in ¢;1(A, B). -

Similar computations are carried out for ¢»;'(A,B) and c,,"(A,B) with the results
again being that [c21'(A,B)]i22 =1 and [c21"(A,B)]122 = 1 for the right choices of a’s and

’s. Note that the number of A’s in ¢3;'(A,B) is 11 and the number of A’s in ¢;;"(A,B) is
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10, thus the number of A’s in ¢3;(A,B), ¢21'(A,B), and ¢;"(A,B) is congruent to 0, 1, and
2 mod 3 respectively. O

Theorem 8.7 T has a 2 generated subalgebra of derived length t if n= [21*2"°] + 1 and n
is the smallest possible size for T.

Proof. The cases t <5 has been shown in the previous examples. Theorem 8.2 shows
that for any t the shortest width of an element in F* is [21 *25'4]. For such an element to be
non-zero n >[21*2°*] + 1. Since s =t-1, n > [21*2"°] + 1 is the smallest possible n. It
remains to show that we can find an example that shows that n = [21%2%°] + 1.

To construct these examples we need some preliminary lemmas. Let A and B be
enlarged (2n-1 x 2n-1) matrices each of which is the sum of elementary matrices E; i+,
such that each E;;1; is a summand in A or B but not both. Let m,.; denote an element in
the free Lie Algebra on two generators, o and 3, such that m,.; is a single term with n-1
factors. We compute the c¢,.;(A,B) elements using [A,B] = AB-BA and when expanded,
each associative product consists of n-1 terms of the E;;;;. In order for one of these
products to be E; ,, the terms must be E; » Ez3...E,.1 4 and similarly for —E;,. Any terms
containing E;;;; where i >n will not contribute to the scalar in the (1,n) position.

The following descriptions of A and B are needed for the next two lemmas: Let
A and B, be the upper nxn blocks of matrix A and B respectively, and let A, and B; be
the lower nxn blocks of matrix A and B respectively.

Note: A and B are (2n-1 x 2n-1) size matrices, so the blocks of A; and A, overlap in row

n and column n. For example, if we look at the case where n =2 we have

}

SO O
SO~
S — O

i (0 2) nd a3 ) where A(
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Lemma 8.8 c, ;(A,B) has the same element in the (1,n) position as does c¢,.1(A;,B)).
Lemma 8.9 c,,.;(A,B) has the same element in the (n, 2n-1) position as does c,.1(A2,B).
Suppose that c,.1(A,B) has A as a factor r times. In order that the coefficient of
Ei . is not 0 when we expand c,.1(A,B) the E; .1, i<n must be distributed such that r come
from A and the remainder from B. Ifr #| { Ei;+1 / Ei i1 from A, i<n}| then the coefficient
of Ei is 0 in the ¢,.1(A,B). In our example 8.3 we had the matrix calculation of [B,A]
where A and B had size n=3, and the c,(A,B) yielding E; 3 was m, = 310, where the
number of o’s equaled the number of A’s in the calculation and the number of 3’s
equaled the number of B’s in the calculation. In particular, if m,.;' and m,;" have a
different number of o’s as factors, then the coefficient of E; , must be 0 in one of them
(at least). Similar remarks hold for the coefficient of E, 2p.1.
Lemma 8.10 If E; , has a non-zero coefficient in c,.1(A,B), then |{Ei;+1 / i<n, E;j+; in A}
= the number of times « is a factor of m,.;.
Similar if E; , has a non-zero coefficient in ¢,.1(A,B), then |{E;;+; / i<n, E;;+; in B}| = the
number of times 3 is a factor of my,_;.
Lemma 8.11 If E, »,.; has a non-zero coefficient in ¢,.1(A,B), then |{E;;i; / i<n, E; ;s in
A}| = the number of times a is a factor of my,;.
Similar if E; 25.1 has a non-zero coefficient in c,.1(A,B), then [{E;;: / i<n, Ei;j+; in B}| =
the number of times f is a factor of my;.
Lemma 8.12 If E; , has a non-zero coefficient in c,.;(A,B) then E, , has a zero coefficient
in ¢,.1' (A,B) if the number of times a is a factor of m,.; and m,,.;' are different. The same
remark holds for E, 2n.1.

In example 8.6, whent =5
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c21(A, B) = [[terml, ¢cs(A, B)],c10(A, B)] =

[[[[[[B, A], A], A], [B, A] ], [[[B, A], A], [B, Alll, [[[[B, A], B], [B, A]l, [[[B, A], A], [B, A]]]]
c21' (A, B) = [term2, cs(A, B)],cio(A, B)] =

[[[[[[B, A], A], B], [B, A] ], [[[B, A], A], [B, A]]l, [[[[B, A, B], [B, A]l, [[[B, A], A, [B, A]ll]
c21"(A, B) = [term3, cs(A, B)],cio(A, B)] =

[[[[[[B, A], B], B], [B, A] ], [[[B, A], A], [B, Alll, [[[[B, Al, B], [B, All, [[[B, A], A], [B, A]]]] .
where each matrix has the size 22. We chose the o’s and ’s that yield the E; ;= £ 1.
They are:

my; = o003 B4PBsosoroisBoProctii BraPrzotiacisPisaiztisBioPaocial,

where the number of o’s = 12;

my;' = o 02B3B4PsosarrosBoProctii BraPrzoiacisPreaizaisPioPaocian,

where the number of o’s = 11; and

my;" :[31[32[33(140t5[360€7(18[39[310(111B12B130t140t15[3160t170t18[319[3200€21,

where the number of o’s = 10.

Individually for each case m;;, my;' and my,;" the alphas show which entries above
the main diagonal of matrix A are 1’s with the rest of the entries being 0 and the betas
show which entries above the main diagonal of matrix B are 1’s with the rest of the
entries 0 in order for each case to yield a coefficient of 1 or —1 for E; ;. We note that if
we choose the a’s and ’s from my; we will get E| 2, to have coefficient 1 but my;' and
my;" will both have coefficient 0 for E; 1.

Suppose that in our original nxn size matrices, A and B are determined from m,,,
A' and B' are determined from m,;', and A" and B" are determined from my;". When we

consider the case when t = 6 we expand A and B to 2n-1 x 2n-1 matrices. We use A; and
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Bi to represent nxn blocks of the 2n-1 x 2n-1 matrices A and B respectively. We let A; be
the nxn matrix A determined from m,; and B be the nxn matrix B determined from my,
A, be the nxn matrix A' determined from m,;' and B, be the nxn matrix B' determined
from my;', and Aj be the nxn matrix A" determined from m,;" and B; be the nxn matrix
B" determined from my;".

The elementary matrices (A’s and B’s) for t = 5 with size n = 22 are enlarged as
to size 2n—1 = 43 whereas the enlarging of E; i+ becomes E,:in+i+1. Formally, let Wi = {j
/ Ejj+1 1s a summand for A; } with i=1, 2, 3 and X; = {j / E;;+ is a summand for B; } with

i=1, 2, 3. In the following the elementary matrices are 2n—1 by 2n—1.

Let A= Z Et z E o imi > B= z Ejnt z E, i > and ca(x,y) =

iew, ieW, = iex,
[c21(X,y),c21' (X,¥)]. Then [c42(A,B)]143 = £ E| 43, and the number of alphas in my; is 23,
where my; represent the a’s and 3’s chosen so that [c42(A,B)]143= £ 1.

Using A and B we are assured a * 1 in the E; 43 position for the following reason:
The coefficient of E; 5 is 1 in c31(A, B) (from the t = 5 example 8.6), and the coefficient
of E| 2, by lemma 8.12,is 0 in c31' (A,B). The coefficient of E; 43 is 1 in ¢2;'(A,B), and
the coefficient of Ejy 43, by lemma 8.12, is 0 in c31(A, B). This leaves a 1 in the E; 43

position.

Let A'= Z Ein t z E lini»B'= Z Ent Z E i o and ca'(x,y) =

iew, ieW, ieX, ieX,
[c21"(X,Y), c21(x,¥)]. Then [c42'(A', B')]143 = % Ej 43, and the number of alphas in my,' is
22, where my, represent the o’s and 3’s chosen so that [c4,'(A',B')]143= £ 1.
Using A' and B' we are assured a 1 in the E, 43 position for the following reason:

The coefficient of Ej 2, 1s 1 in ¢,"(A, B), and the coefficient of E; 25, by lemma 8.12, is
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0 in c21(A,B). The coefficient of Ex 43 is 1 in ¢21(A,B), and the coefficient of E»; 43, by

lemma 8.12, is 0 in ¢2;"(A, B). This leaves a 1 in the E; 43 position.

Let A" = Z Ei,i+1 + z En-1+i,n+i » B" = z Ei,i+1 + z En-1+i,n+i » and C42”(X’Y) =

ieW, ieW, ieX, ieX,
[c21'(X,y), c21"(X,y)]. Then [c42"(A", B")]143 = £ Ej 43, and the number of alphas in my," is
21, where my," represents the alpha’s and beta’s to obtain [c4," (A", B")]143 = £ 1.

Using A" and B" we are assured a * 1 in the E, 43 position for the following
reason: The coefficient of E; 2 is 1 in ¢3;'(A, B), and the coefficient of E; »», by lemma
8.12,1is 0in c2;"(A,B). The coefficient of Ex 43 is 1 in ¢31"(A,B), and the coefficient of
E2s.43, by lemma 8.12, is 0 in ¢3;'(A, B). This leaves a 1 in the E; 43 position.

With these results, we look at the number of alphas occurring in my4,", m4;', and
my, where the number of alphas is congruent to 0, 1, and 2 modulo 3 respectively. The
same remark held for m,;, my;', and my;", in the later case t = 5. Thus a recursive process
follows in which going from t to t+1 when t > 5, we obtain n=21(2"°) + 1, the smallest n

such that L has a derived length of't.
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APPENDIX

We are always trying to get the smallest n such that G has length t. Set j = j(t) where

j represents the number of terms needed for the length to be t.

We start out with t = 2 and we want to find the smallest amount of terms so that G"1
exists and G"2 = 0. We note that the smallest about of terms is j = 2 where we can use
either [A, B] or [B, A] yielding the smallest n, n = 3, for the length t = 2.

We will use the c2(A,B) = [B, A] and look at the [1, 3] position to make sure it exists.

> restart:with(linalg):

Warning, new definition for norm

Warning, new definition for trace
> A:=matrix(3,3,0):
> for i from 1 by 1 to 2 do A[i,i+1] :=alpha(i): od:

> print(A);

0 «fl) 0
0 0 a2
0 0 0

> B:=matrix(3,3,0):
> for i from 1 by 1 to 2 do B[i,i+1] :=beta(i): od:

> print(B);
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> BA:=evalm((B&*A)- (A&*B)):
get [B,A] position 1,3
> BA13:=simplify(BA[1,3]);
BA13 :=5(1) a(2) — (1) 5(2)
Let m2 = (1) a(2) where m2 is an element of [B, A] sub in values of 1’s and 0’s as
appropriate and check to make sure position 1,3 of [B,A] exits

> beta(l):=1:alpha(2):=1:alpha(1):=0:beta(2):=0:

> print(BA13);

This shows that we have found the smallest n, n = 3, where G has length 2. G"1 exists
and G"2 = 0 and j = 2. Notice we choice [B, A] but [A, B] would have yield the same results.

Note that the number of alphas in m2, 1, equals the number of A’s in ¢2(A, B) = [B, A]

and the number of betas in m2, 1, equals the number of B’s in ¢2(A, B)

We now go on to when t =3 and we have to find the least amount of terms needed to
make G2 exist and G"3 = 0. We know that G™1 has two 2 term combos but we cannot
use them to get a 4 term combo because the multiplications will cancel themselves out so
we need to use a combo of a two term element of G"1 and a 3 term element of G™1 to find

the smallest number of terms. The smallest number of terms j = 5 is found using either the
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2 term combo [A, B] or [B, A] and the 3 term combos [[A, B, B|,[[B, A], B],[[A,B], A], or

3 3

B, A], A]. Note that [[A, B], B] = [[B, A, B] and [[A, B], A] = [[B, A], A] and [A, B] =

3

[B, A] so we choose the 5 term combos to be [[[B, A], A], [B, A] ] and [[[B, A], B], [B, A]]

3

yielding j = 5 and the smallest n, n=6, for the length t = 3.

We will use the 5 term combo of [[[B, A], A],[B, A]] and call it ¢5(A,B)

We are interested in looking at the [1, 6] position to make sure it exists. We will get

c5[A, B] = [[[B,A], A], [B, A]] and check the [1, 6] position.

> restart:with(linalg):

Warning, new definition for norm

Warning, new definition for trace
> A:=matrix(6,6,0):
> for i from 1 by 1 to 5 do A[i,i+1] :=alpha(i): od:

> print(4);
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> B:=matrix(6,6,0):
> for i from 1 by 1 to 5 do B[i,i+1] :=beta(i): od:

> print(B);

0 0 0 0 0 0

> BA:=evalm((B&*A)- (A&+*B)): BAA:=evalm((BA&*A)- (A&*BA)):

BAABA:=evalm((BAA&*BA)- (BA&*BAA)):
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look at position 1,6 of ¢c5[A,B] = [[[B, A, A], [B, A]]

> BAABA16:=simplify(BAABA[1,6]);

BAABAI16 := 3a(3) B(1) a(2) B(4) a(5) — 2a(3) B(1) (2) a(4) B(5)

—4a(3)a(1)8(2) 8(4) a(5) +3a(3) a(1) 5(2) a(4) 5(5)
+a(1)a(2) 8(3) B(4) a(5) — (1) a(2) B(3) a(4) B(5) — B(1) a(2) a(5) B(3) e(4)
+ (1) B(2) a(5) B(3) a(4)

let m5” = (1) 2(2) B(3) B(4) a(5)

where m5’ is an element of c5(A,B) = [[[B, A, A], [B, AJ]. We choose our alphas and

betas based on m5’
> alpha(1):=1:alpha(2):=1:beta(3):=1:beta(4):=1:alpha(5):=1:
> beta(1):=0:beta(2):=0:alpha(3):=0:alpha(4):=0:beta(5):=0:

sub in the values to get the [1,6] entry of [[[B, A], A], [B, A]]

3

> print(BAABA16);

This shows that we have found the smallest n, n = 6, where G has length 3. G2 exists
and G"3 =0 and j = 5.

Note that the number of alphas in mb’, 3, equals the number of A’s in c5(A, B) = [[[B,
Al, A}, [B, A]] and the number of betas in m5’, 2, equals the number of B’s in ¢5(A, B)

To go to the next case of t = 4 we need to first do the other case for when t = 3 and we
have 5 terms using [[[B, A], B], [B, A]]. We get m5 which is an element of [[[B, A], B], [B,

Al]

> restart;with(linalg):
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Warning, new definition for norm

Warning, new definition for trace
> A:=matrix(6,6,0):
> for i from 1 by 1 to 5 do A[i,i+1] :=alpha(i): od:

> print(4);

> B:=matrix(6,6,0):
> for i from 1 by 1 to 5 do B[i,i+1] :=beta(i): od:

> print(B);
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> BA:=evalm((B&*A)- (A&+*B)): BAB:=evalm((BA&*B)- (B&*BA)):

BABBA:=evalm((BAB&*BA)- (BA&*BAB)):

get the [1,6] position of [[[B, A], A], [B, A]]

> BABBA16:=simplify(BABBA[1,6]);

BABBA16 :=3((3) 5(1) a(2) 5(4) a(5) — 4 5(3) B(1) (2) a(4) B(5)
—25(3) (1) 5(2) B(4) a(5) +35(3) (1) 5(2) a(4) 5(5)
— B(1)6(2) a(3) 5(4) a(5) + 5(1) B(2) a(3) a(4) B(5) + (1) a(2) 5(5) (3) B(4)
—a(1)5(2) 5(5) «(3) 5(4)

choose mb = (1) 5(2) a(3) a(4) 5(5) where mb is an element of [[[B, A], B], [B, A]]

> beta(l):=1:beta(2):=1:alpha(3):=1:alpha(4):=1:beta(5):=1:

> alpha(1):=0:alpha(2):=0:beta(3):=0:beta(4):=0:alpha(5):=0:

sub in the values to get the [1,6] entry of [[[B, A, B], [B, A]]

> print (BABBA16);
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Note that the number of alphas in m5, 2, equals the number of A’s in [[[B, A], B], [B,
Al] and the number of betas in m5, 3, equals the number of B’s in [[[B, A], B], [B, A]] also

note that the number of alphas and betas are different for the 2 different cases for t = 3.

Now we will do the case where t = 4. We would like to find the smallest n such that
G 3 exists and G"4 = 0. Since G"2 had two terms of 5 that are different we know that G3
smallest length of terms will be 10. We will use the two cases m5 and m5’ (both with 5
terms) and both from G2 to get the 10 term case, m10. For j = 10, the number of terms, we
know that n = 11 and we will show that [1, 11] position exists and that n = 11 is the smallest
matrix such that t = 4. We are interested in the [1,11] position and will use c10(A,B) =
[[[B, A], B], [B, AJ],c5(A,B)] = [[[[B, A], B, [B, A]], [[[B, A], A, [B, AJ]] to show this.

> restart;with(linalg):

Warning, new definition for norm

Warning, new definition for trace
> A:=matrix(11,11,0):
> for i from 1 by 1 to 10 do A[i,i+1] :=alpha(i): od:

> print(4);
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>

>

>

0

0

0

B:=matrix(11,11,0):

for i from 1 by 1 to 10 do B[i,i+1] :=beta(i):

print (B);
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od:




0

0

0

0

0

> BA:=evalm((B&*A)- (A&+*B)): BAA:=evalm((BA&*A)- (A&*BA)):

BAB:=evalm( (BA&*B)- (B&*BA)):

> BAABA:

> BABBA:

> c10AB:

=evalm( (BAA&*BA)- (BA&*BAA)):

=evalm( (BAB&*BA)- (BA&*BAB)):

=evalm( (BABBA&*BAABA)- (BAABA&*BABBA)):

3

Get the [1,11] position of [[[B, A], B], [B, A]l, [[[B, A, A], [B, A]]]
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simplify(c10AB[1,11]);

> ¢10AB111:
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—a(1)8(2) 8(5) a(3) 5(4) (6) a(7) 5(8) B8(9) a(10)
+a(1) (2) 5(5) a(3) 5(4) a(6) (7) 5(8) (9) 5(10)
+a(1) 8(2) 5(5) a(3) 5(4) 5(6) (7) a(10) 5(8) (9)
—a(1) 5(2) 8(5) a(3) 5(4) (6) 5(7) a(10) 5(8) a(9)

we choose m10 based on m5 and mb’

m10 = mb5(move 5 positions up) mh’ =

B(1) B(2) a(3) a(4) B(5) a(6) a(7) B(8) B(9) a(10) which is and element of c10(A, B)
choosing the alphas and betas based on m10

> beta(l):=1:beta(2):=1:alpha(3):=1:alpha(4):=1:beta(5):=1:

alpha(6):=1:alpha(7):=1:alpha(10):=1:beta(8):=1:beta(9):=1:

> alpha(1):=0:alpha(2):=0:beta(3):=0:beta(4):=0:alpha(5):=0:

beta(6):=0:beta(7):=0:alpha(8):=0:alpha(9) :=0:beta(10):=0:

sub in the entries to get the [1,11] position of c10(A, B) = [[[[B, A], B], [B, A]],[[[B, A],
AlL[B, Al

> print(c10AB111);

1

This shows that we have found the smallest n, n = 11, where G has length 4. G"3 exists
and G"4 =0 and j = 10.

Note that the number of alphas in m10, 5, equals the number of A’s in c10(A, B) = [[[[B,
Al, B], [B, A]],[[[B, A], A],[B, A]]] and the number of betas in m10, 5, equals the number of

B’s in c10(A, B).

We now go on to when t = 5 and we have to find the least amount of terms needed
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to make G"4 exist and G5 = 0. We know that G"3 has only 1 term with length 10 so
we cannot use only this to get a combo of length 20 because the multiplications will cancel
themselves out. We need to use a combo with length 11 of G"3 and then the 10 term element

from G"3 to find the smallest number of terms. The smallest number of terms j = 21 is
found using the 10 term combo c10[A,B] = [[[[B, A], B], [B, A]],c5(A,B)] = [[[[B, A], B], [B,

All, [[[B, Al], A], [B, A]]] and then a 11 term combo. For the 11 term combo we will use the

5 term combo c5(A,B)

[[[B, A], A], [B, A]] and find a 6 term combo. We find a 6 term

combo by using a combo of 4 and a combo of 2. There are three 4 term combos [[[B, A], A],

3

Al, [[[B, A], A], B], and [[[B, A], B], B] (note that [[[B, A], A], A] = [[[A, B, B], B] and [[[B

3 3 3

A], A], B] = [[[A, B], B], A] and [[[B, A, B], B] = [[[A, BJ, A], A]). For the 2 term combo

3

we use [B, A] (note that [A, B] = [B, A]). The different 6 term combos (using the 3 different
4 terms and the one 2 term) yield terml = [[[[B, A], A|, A], [B, A]], term2 = [[[[B, A], A],
B], [B, A]], and term3 = [[[[B, A], B], B], [B, A]]. We will use the following combination (a
6 term 5 term and then 10 term = 21) to yield the smallest n when t = 5,

c21(A, B) = [[term1, c5(A, B)],c10(A, B)] = [[[[[[B, A], A], A, [B, A] ], [[[B, A, A], [B,
AllJ, [[[1B, A, B, [B, All, [[[B, A, Al, [B, All]]

Note the other 21 combos are

¢21(A, B) = [term2, c5(A, B)|,c10(A, B)] = [[[[[[B, Al, A}, B, [B, A] ], [[[B, A], A], [B,

3

AllJ, [[[1B, A, B, [B, All, [[[B, A, Al, [B, All]]

¢*21(A, B) = [term3, ¢5(A, B)],c10(A, B)] = [[[[[[B, Al, B], B], [B, A ], [[[B, A, A], [B,

AllJ, [[[1B, A, B, [B, All, [[[B, A, Al, [B, All]]
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> restart;with(linalg):

Warning, new definition for norm

Warning, new definition for trace

> A:=matrix(22,22,0):

> for i from 1 by 1 to 21 do A[i,i+1] :=alpha(i):

> print(4);
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od:



>

>

>

0,a(1),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ]
0,0, (2),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,a(4),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,a(5),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,a(6),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,(7),0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,8),0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,a(9),0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,a(10),0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,a(11),0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,12),0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,(13),0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,(14),0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,a(15),0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,(16),0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,(17),0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,a(18),0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,a(19),0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,a(20),0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,a(21)
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B:=matrix(22,22,0):
for i from 1 by 1 to 21 do B[i,i+1] :=beta(i): od:

print(B);
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0,ps(1),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ]
0,0, p3(2),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0, 5(3),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,p34),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0, 5(5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0, 8(6),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,p(7,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,03(8),0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,45(9),0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0, p5(10),0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,p(11),0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,8(12),0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0, 5(13),0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,53(14),0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5(15),0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3(16),0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,p3(17),0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,53(18),0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5(19),0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /3(20),0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 5(21)
6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

c21(A, B) = [[terml, c5(A, B)|,c10(A, B)] = [[[[[[B, A], A], A], [B, A] |, [[[B, A], A}, [B,

AllJ, [[[1B, A, B, [B, All, [[[B, A, Al, [B, All]]

find terml first

> BA:=evalm((B&+*A)- (A&+*B)): BAA:=evalm((BA&*A)- (A&*BA)):
BAAA:=evalm((BAA&*A)- (A&*BAA)): BAAABA:=evalm( (BAAA&*BA)-

(BAZ*BAAA) ) :

66



> terml:=BAAABA:

find c5(A,B)= [[[B, A, Al, [B, AJ]

3

> cb:=evalm( (BAA&*BA)- (BA&*BAA)):

find c10[A,B] = [[[B, A, B], [B, All.c5(A,B)] = [[B, A, B}, [B, AJ], [[B, Al, A], [B, A]]
> BAB:=evalm((BA&*B)- (B&*BA)):
> BABBA:=evalm((BAB&*BA)- (BA&*BAB)):

> c¢10:=evalm((BABBA&*c5)~- (cb&*BABBA)):
do multl = term1 * ¢5(A, B)

> multl:=evalm((termi&+*c5)- (cb&+*terml)):
then do (term1*c5(A,B)) * c10(A, B)

> ¢21l:=evalm((multi1&*c10)- (c1l0&*multl)):

we choose m21 based on term1 (move 6 positions up) m5’ and then (move 11 positions
up) m10

term 1 yields (1) (2) a(3) 8(4) B(5) (6)

6 positions up from m5’ yields a(7)(8) 5(9) 4(10) a(11)

11 positions up from m10 yields

5(12)8(13)a(14)a(15)3(16)(17)(18)5(19) 5(20)ax(21)

Yielding m21 =

a(1)a(2)a(3)8(4)B(5)a(6)a(7)(8)B(9)8(10)(11)5(12) 3(13)ex(14)(15)

B(16)a(17)a(18)8(19)3(20)a(21)

> E122:=simplify(c21[1,22]):

choosing the alphas and betas based on m21
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> alpha(1l):=1:alpha(2):=1:alpha(3):=1:beta(4):=1:beta(5):=1:
alpha(6):=1:alpha(7):=1:alpha(8):=1:beta(9):=1:beta(10):=1:
alpha(11):=1:beta(12):=1:beta(13):=1:alpha(14):=1:alpha(15):=1:
beta(16) :=1:alpha(17):=1:alpha(18):=1:beta(19):=1:beta(20):=1:
alpha(21):=1:

> beta(l):=0:beta(2):=0:beta(3):=0:alpha(4):=0:alpha(5):=0:
beta(6) :=0:beta(7):=0:beta(8):=0:alpha(9):=0:alpha(10) :=0:
beta(11) :=0:alpha(12):=0:alpha(13):=0:beta(14) :=0:beta(15) :=0:
alpha(16) :=0:beta(17) :=0:beta(18) :=0:alpha(19) :=0:alpha(20) :=0:

beta(21) :=0:
Sub in the entries to find the (1,22) position of c21(A, B) = [[term1, ¢5(A, B)],c10(A, B)]
= [[lll[B, A], A], Al, [B, A]], [[[B, A, Al, [B, All], [[[[B, Al, B, [B, A]], [[[B, A, Al, [B, Al]]]
> print(E122);
—1
This shows that we have found the smallest n, n = 22, where G has length 5. G4 exists

and G"5 =0 and j = 21.

Note that the number of A’s in c21(A, B) = [[terml, c5(A, B)],c10(A, B)] = [[[[[[B, A],
Al, A], [B, Al ], [[[B, A], A], [B, AJ]], [[[[B, A], B], [B, A]], [[[B, A], A], [B, A]]]] equals the
number of alphas in m21

m2l =

a(1)a(2)a(3)8(4)8(5)a(6)c(T)ex(8)8(9)5(10)e(11)5(12) 5(13) e (14)x(15)

B(16)a(17)(18)5(19)5(20)x(21)

and the number of B’s in ¢21 equals the number of betas in m21.

Note the number of alphas.
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For the term m21 which is an element of c21(A, B) = [[terml, c¢5(A, B)],c10(A, B)] =
[[llB, Al, A, A], [B, Al ], [[[B, A, A}, [B, A]]], [[[[B, A], B], [B, A]], [[[B, Al, A, [B, A]]]] we
have 12 alphas.

For the term m21’ which is an element of ¢’21(A, B) = [term2, c5(A, B)],c10(A, B)] =
[[llB, Al, A, B, [B, A] ], [[[B, A}, A, [B, A]l], [[I[B, A, B, [B, All, [[[B, A], A], [B, A]]]] we
have 11 alphas.

For the term m21” which is an element of ¢’21(A, B) = [term3, ¢5(A, B)],c10(A, B)] =
[[ll[B, A, B, B, [B, A] ], [[[B, A], A, [B, All], [[[[B, A], B, [B, AJl, [[[B, A], A, [B, A]]]] we
have 10 alphas.

Notice that the number of alphas in m21, m21”, and m21’ is congruent to 0, 1, 2 module

3 respectively.
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