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 Let A be an algebraic system with product a*b between elements a and b in A.  It 

is of interest to compare the solvable length t with other invariants, for instance size, 

order, or dimension of A.  Thus we ask, for a given t what is the smallest n such that there 

is an A of length t and invariant n.  It is this problem that we consider for associative 

algebras, matrix groups, and Lie algebras.  We consider A in each case to be subsets of 

(strictly) upper triangular n by n matrices.  Then the invariant is n.  We do these for the 

associative (Lie) algebras of all strictly upper triangular n by n matrices and for the full n 

by n upper triangular unipotent groups.  The answer for n is the same in all cases.  Then 

we restrict the problem to a fixed number of generators.  In particular, using only 3 

generators and we get the same results for matrix groups and Lie algebras as for the 

earlier problem.  For associative algebras with 1 generator we also get the same result as 

the general associative algebra case.  Finally we consider Lie algebras with 2 generators 

and here n is larger than in the general case.  We also consider the problem of finding the 

dimension in the associative algebra, the general, and 3 generator Lie algebra cases.   
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CHAPTER 1: Introduction 
 

Let A be an algebraic system with product a*b between elements a and b in A.  

Define A1 = A*A and Ak+1 = Ak*Ak.  A is called solvable of length t if there exists a t 

such that At = 0 and At-1 is nonzero.  It is of interest to compare the solvable length t with 

other invariants, for instance size, order, or dimension of A.  Thus we ask, for a given t 

what is the smallest n such that there is an A of length t and invariant n.  It is this problem 

that we consider for associative algebras, matrix groups, and Lie algebras.  We consider 

A in each case to be subsets of (strictly) upper triangular n by n matrices.  Then the 

invariant is n.  We do these for the associative (Lie) algebras of all strictly upper 

triangular n by n matrices and for the full n by n upper triangular unipotent groups.  The 

answer for n is the same in all cases.  Then we restrict the problem to a fixed number of 

generators.  In particular, using only 3 generators and we get the same results for matrix 

groups and Lie algebras as for the earlier problem.  For associative algebras with 1 

generator we also get the same result as the general associative algebra case.  Finally we 

consider Lie algebras with 2 generators and here n is larger than in the general case.  We 

also consider the problem of finding the dimension in the associative algebra, the general, 

and 3 generator Lie algebra cases.  We begin with further discussion of the problem and 

it’s history.   

In 1913 [1] Burnside proposed the question, “What is the least among the orders 

of p-groups with a given soluble length?”  Recall that p-groups are defined as the groups 

of prime power order.  G has solvable length t if Gt = 0 and Gt-1 is non-zero.  In this 

discussion, t will denote the derived length of G.  Burnside started his work by showing 

that there were groups of order p3 and p6 with corresponding solvable lengths 2 and 3.  
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He then made a start on his famous question with finding the order of G to be |G| > p3(t-1) 

with solvable length t, but stated that it seems probable that for greater values of t the 

actual lower limit for the order exceeds p3(t-1) and in [2] he improves this order to |G| > 

p(t+1)(t+2)/2.  Continuing with Burnside’s question, early results in group theory are shown 

in a classic 1933 paper by Philip Hall [6].  Hall found the derived length of p-groups to 

be bounded between 
t-12 +t-1p  < |G| < 

(t-2) t-12 *(2 -1)p . 

In [7] Itˆo refined the upper bound of Hall’s and found the order of |G| < 
t-13*2p .  

Recently in [4], Evans-Riley, Newman & Schneider showed that for every integer t > 3 

and every prime p > 5 there is a group with solvable length t and order 
t2 -2p , |G| < 

t2 -2p , 

and  Schneider in [9] found that |G| > 
t-12 +3t-10p and Mann in [8] showed |G| > 

t-12 +2t-4p with 

solvable length t.  Schneider’s result is better for larger t and Mann’s is better for smaller 

t. 

There are many recent results in groups and we would like to see what is true in 

Lie algebras.  There are many similarities between groups and Lie algebras, in particular 

between groups of order pn where p is prime, and nilpotent Lie algebras of dimension n.  

Both have a derived series and a lower central series which end at the identity.  Also, in 

both cases, the derived series is contained in the lower central series (Lw ⊆ w2
L ). 

 The following examples help to explain the derived series and central series, 

where we let L be a Lie algebra.  Let L2 = [L, L], L3 = [L, L2] … Ln+1 = [L, Ln].  L is 

called a nilpotent if there exists an n such that Ln = 0.  L has class n if Ln+1 = 0 and Ln 

≠ 0.   
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Example 1.1  

L = (x, y, z) where [x, y] = z and [x, z] = [y, z] = 0.  L2 = (z) and L3 = 0 leaving L to have 

a class of 2. □ 

Example 1.2  

Let M = 5x5 strictly upper triangular matrix 

0 * * * *
0 0 * * *

M 0 0 0 * *
0 0 0 0 *
0 0 0 0 0

 
 
 =
 
 
 

 

then 2

0 0 * * *
0 0 0 * *

M = 0 0 0 0 *
0 0 0 0 0
0 0 0 0 0

 
 
 
 
 
 

 and 3

0 0 0 * *
0 0 0 0 *

M 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 
 
 =
 
 
 

 and 4

0 0 0 0 *
0 0 0 0 0

M 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 
 
 =
 
 
 

 and M5 = 0.  

Leaving M to have a class of 4. □ 

Define L1
 = [L, L], L2

 = [L1, L1], … Ln+1
 = [Ln, Ln].  L is solvable if there exists a t 

such that Lt = 0.  L has derived length t if Lt = 0 and Lt–1≠ 0.  

Example 1.3  

Using example 1.1 above we find L1 = (z) = L2 and L2 = 0.  L has a length of 2. □ 

Example 1.4  

Using example 1.2 we find that 1
2

0 0 * * *
0 0 0 * *

M = =M0 0 0 0 *
0 0 0 0 0
0 0 0 0 0

 
 
 
 
 
 

 and 2
4

0 0 0 0 *
0 0 0 0 0

M M0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 
 
 = =
 
 
 

and 

M3 = 0.  M has a length of 3. □ 

Example 1.5  

A is abelian and A1 = A2 = 0.  A has a length of 1 and a class of 1. □ 

Note: L1 = L2, L2 ⊆L4, L3 ⊆  L8 … Ln ⊆  n2L . 
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 There are some more similarities between groups and Lie algebras.  The center of 

a group G is Z(G) = {x\ xy = yx ∀ y ∈  G}, and the center of a Lie algebra L is Z(L) = {x\ 

[x, y] = 0 ∀ y ∈  L}.  For groups we use the computation of <x, y> = xyx-1y-1 and for Lie 

algebra we use the commutator multiplication where [A, B] = AB - BA.  In the case of 

strictly upper triangular nxn matrices we have Z(L) = {E1,n}.  Burnsides theorem applied 

to groups and Lie algebras would result with: if G (or L) is abelian, then G1 = e (L1 = 0), 

and if |G| = p2 (dimension of L = 2), then G1=e (L1 = 0).  So if G (or L) is to have length 2 

then |G| ≥  3 (dimension of L ≥  3).  (Such an L is L = <x, y, z> where [x, y] = z and [x, 

z] =[y, z] =0.  Then L1 = <z> and L2 = 0 leaving the length of L to be 2).   In [6] it is 

shown that for G to have length t and |G| = pn, then n ≥  2t-1 + t -1 leaving the following 

table: 

 
 

Table 1.6 Using Hall’s bound 2t-1 + t for length t 
t n 

2 3 

3 6 

4 11 

5 20 

 

The last entry of table 1.6 says for G4 ≠  e, G5 = e then |G| > p20.  The Lie algebra 

analogue, if it is true, would be L4 ≠  0 and L5 = 0 then dimension of L > 20.   In fact, it 

might be that in the group case 2t-1 + t-1 may not be big enough.  This may also be the 

case for the Lie algebras. 
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We will apply the ideas of the group results and investigate the bounds using 

strictly upper n x n triangular matrices in the case of associative algebras, matrix groups, 

and Lie algebras.  The aim is to find the smallest n for each derived length in these cases.   

In a related direction, we would like to find the least size n of the nxn matrices 

which have a derived length t.  For a given n, we use n-1 generators.  These generator 

elements come from diagonal d1, the diagonal directly above the main diagonal.  For 

derived length t we find n = 2t-1+1.  We consider the case of having less than n-1 

generators.  If we fix the number of generators, it is conceivable that for a given t the size 

of n might need to increase.  I have considered the following cases:  1 and n-1 generators 

for associative algebras; 3 and n-1 generators for matrix groups; 3 and n-1 generators for 

Lie algebras.   

The final problem in this collection is what can be done with just two generators 

for the Lie algebras.  There are group results due to Glasby [5] in this direction.  He 

studied unipotent groups of nxn upper triangular matrices for this problem.  He finds the 

size of n to be greater then (21/32)*2t with a given derived length t for the 2 generated 

case.    We conclude with finding the matching results for Lie algebras of nxn strictly 

upper triangular matrices. 
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CHAPTER 2: Associative Algebra General Case 
 

We are looking at the strictly upper triangular nxn matrices, N.  The derived series 

of N is defined as N1 = N*N and Nk+1 = Nk*Nk that we find using associative 

multiplication.  Evidently, Nt–1
 is generated by the set of all products of 2t–1 generator 

elements from N.  These generator elements will be chosen from diagonal d1, the 

diagonal directly above the main diagonal.  Letting Ei,j be the usual matrix unit with 1 in 

the (i,j) position and 0 elsewhere, the generators are E12, E23, …,En–1,n.  The N* are the 

matrices we find starting with the first diagonal, d1.  Hence, for N to have length t, N 

must have 2t–1 generator elements whose product is non–zero while each product of 2t 

elements is zero. 

To make this clearer let T be the associative algebra of all strictly upper triangular 

nxn matrices.  Also let d1 represent the diagonal directly above the main diagonal, dj 

represents the diagonal j steps above the main diagonal, and dj’ represent the basis 

elements of the diagonal j steps above the main diagonal.  Clearly, T = d1 ⊕  d2 

⊕…⊕ dn–1.  Using matrix units, it is clear that the derived series is 

T1 = d2 ⊕  d3 ⊕…⊕ dn–1 

T2 = d 22  ⊕  d5 ⊕…⊕ dn–1 

M  

Tk = d k2  ⊕  d k+12  ⊕…⊕ dn–1 

Notice that Tt–1 ≠ 0 if and only if 2t–1 ≤  n–1 or n ≥  2t–1+1 (diagonal d t-12 has to exist).  If 

n ≥  2t–1+1 and n < 2t+1 then T has length t.  If n = 2t–1+1, then n is the least possible n for 

T to have derived length t.  In this case the dimension, the number, m, of matrix units in 
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T is n(n-1)
2

.  Since we are dealing with strictly upper triangular matrices we compute this 

dimension by starting with the size of the nxn matrix, 2n , minus the number of elements 

on the main diagonal, n, and then since we are only dealing with the upper half of the 

matrix we divide that number by 2.  Therefore, we have 
2n -n n(n-1)
2 2

= .  Letting n = 2t–

1+1, we find the dimension of T is 
t-1 t-1

t-1 t-2(2 1)2 (2 1)2
2
+

= + .  These results can be 

incorporated into Lemma 2.1. 

Lemma 2.1 For T to have length t, the smallest matrix size is n = 2t–1+1.  In this 

construction the dimension of T = t-1 t-2(2 1)2+ , and T has 2t–1 generators.  

We obtain the table: 

 

Table 2.2: Associative algebra general case results  
Length (t) Minimum Matrix 

size of T (n) 

Dimension of T 

(m) 

Number of 

Generators 

(Dimension of d1) 

2 3 3 2 

3 5 10 4 

4 9 36 8 

5 17 136 16 

t 2t–1+1 t-1 t-2(2 1)2+  2t–1 

 

 

Since T is a special case of general nilpotent algebras, we can also state Lemma 2.8. 
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Lemma 2.3 The minimum dimension for a nilpotent associative algebra to have derived 

length t is less than or equal to t-1 t-2(2 1)2+ .   

We can do much better than that.  The problems that arise are: 

1.) Reduce the upper bound found in Lemma 2.1.   

2.) For a fixed number of generators and a fixed length, find a good upper bound 

for the dimension. 

3.) Consider question 2 in the context of a subalgebra of T and find the minimum 

size of the matrices. 

We will consider these questions simultaneously in the next section. 
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CHAPTER 3: Associative Algebras with One Generator 
 

In the beginning problem, we started with a basis of the first diagonal as the 

generators and there were 2t–1 generators.  Now we look at the case were the generator is 

a combination of the basis for the first diagonal, F12 = E12 + E23 + … + En–1,n.  Using 

associative matrix multiplication with strictly upper triangular nxn matrices, we find the 

derived series of the matrix and answer the three main questions at the end of Chapter 2.  

Set F1,j+1 = E1,j+1 + E2,j+2 + … + En–j,n where F1,j+1 is the sum of the elementary matrices 

whose non–zero entries are on the diagonal dj.  To make this clear we start with an 

example. 

Example 3.1  

Let n = 5 and A be the subalgebra of T generated by the basis of d1. 

We have the 5x5 matrix starting with F12 = E12 + E23 + E34 + E45 

F12 = 

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 
 
 
 
 
 

 

 

Now we compute the derived series of the matrix.  The elements on d2 are F12 * F12 = (E12 

+ E23 + E34 + E45) * (E12 + E23 + E34 + E45) = F13 = E13 + E24 + E35.  Then the elements on 

d4, F13 * F13 = F15 = E15.  Note we also compute the elements of d4 by multiplying F12* 

F14.  Now we compute the rest of the products.  We compute elements of d3 by 

multiplying elements of d1 by the elements of d2, F12 * F13 = F14 = E14 + E25.  All other 

products between the other F’s are 0.  Now we have the derived series where A = <F12> 

⊕  <F13> ⊕  <F14> ⊕  <F15>, A1 = <F13> ⊕  <F14> ⊕  <F15>, A2 = <F15>, and A3 = 0.  

Thus A has the length 3 and <F12> ⊕  <F13>  ⊕  <F14>  ⊕  <F15> is a basis for A and has 
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dimension m = 4.  This is the least possible dimension a nilpotent algebra of length 3 can 

have since such an algebra must have a product of 4 elements that are not 0. □  

Example 3.2 

Let n = 9 and A be the subalgebra of T generated by F12. 

We have the 9x9 matrix starting with F12 = E12 + E23 + E34 + E45 + E56 + E67 + E78 + E89. 

F12 = 

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 

 

Now we compute the derived series of the matrix.  We start with computing the elements 

on d2 by multiplying F12 * F12 = F13 = E13 + E24 + E35 + E46 + E57 + E68 + E79.  Then use the 

elements of d2 to compute the elements of d4, F13 * F13 = F15 = E15 + E26 + E37 + E48 + E59.  

Then use the elements of d4 to compute the elements of d8, F15 * F15 = F19 = E19.  Also F12 

* F13 = F14 = E14 + E25 + E36 + E47 + E58 + E69 ∈d3.  By multiplying F12 * F15 or F13 * F14, 

we get F16 = E16 + E27 + E38 + E49 ∈d5.  By multiplying F12 * F16, F13 * F15, or F14 * F14, we 

get F17 = E17 + E28 + E39 ∈d6.  By multiplying F12 * F17, F13 * F16, or F14 * F15, we get F18 = 

E18 + E29 ∈d7.  All other products between the other F’s are 0.  Note that F1,s+1 ∈  ds.  

Now we have that A = <F12> ⊕  <F13> ⊕…⊕  <F19>, A1 = <F13> ⊕  <F14> ⊕…⊕  

<F19>, A2 = <F15>  ⊕  <F16> ⊕…⊕  <F19>, A3 = <F19>, A4 = 0.  Thus A has the length 4 

and <F12> ⊕  <F13> ⊕…⊕  <F19> is the basis for A and has dimension m = 8.  For 

length 4, this example gives the best possible results for each of the three problems we 

are considering. □ 
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In the general case we claim that F1,s+1∈  ds and that F1,p+1 * F1,q+1 = F1,p+q+1.  The 

first of these is by definition and for the second we note that 

Ei,i+p * Ej,j+q = 
i i+p+q,

0    if i+p  j 
E  if i+p = j 

≠






 

Of course F1,s+1∈  ds, where s = p+q.  Hence F1,p+1 * F1,q+1 =  (E1,p+1 + E2,p+2 + …. + En–p,n) 

* (E1,q+1 + E2,q+2 + …. + En–q,n) = E1,p+q+1 + E2,p+q+2 +… + En–(p+q),n = F1,p+q+1 = F1,s+1 ∈  

dp+q = ds.  Therefore, F12, F13, …,F1,n–1 are a basis for A and the dimension of A = n–1.  

Also 

A = <F12> ⊕  <F13> ⊕…⊕  <F1,n> 

A1 = <F13> ⊕  <F14> ⊕…⊕  <F1,n> 

A2 = <F15> ⊕  <F16> ⊕…⊕  <F1,n> 

M  

Ak
 = <F k1,2 1+ > ⊕  <F k

1, 2 2+ > ⊕…⊕  <F1,n> 

Theorem 3.3 Let A be the subalgebra of the algebra T of strictly upper triangular nxn 

matrices that is generated by F12.  Then the dimension of A is n–1. 

Theorem 3.4 There is a subalgebra A of T having length t and dimension 2t–1 if A has the 

size n = 2t–1 + 1.  A is generated by one element, F12.  This result is the best possible in 

that there is not a subalgebra of smaller dimension that has length t. 

From Theorem 3.4 we get this Corollary: 

Corollary 3.5 There is a nilpotent associative algebra having length t and dimension 2t–1 

and this algebra is generated by one element.  This result is the best possible in that there 

is not a subalgebra of smaller dimension that has length t. 
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Proof.  Let A be a subalgebra of T generated by one element, F12, where T has a size n.  

As usual F1,p+1 *  F1,q+1 = F1,p+q+1 = F1,s+1 ∈  ds if p+q+1 ≤  n and it is 0 otherwise.  Hence 

A = <F12> ⊕  <F13> ⊕…⊕  <F1,n> and dimension of A = n–1.  Furthermore, 

A1 = <F13> ⊕  <F14> ⊕…⊕  <F1,n> 

A2 = <F15> ⊕  <F16> ⊕…⊕  <F1,n> 

M  

Ak = <F1, k2 1+  > ⊕  <F1,
k

2 2+  >⊕…⊕  <F1,n> 

Hence At–1 ≠  0 if and only if 2t–1 ≤  n–1 or n ≥  2t–1+1 (if diagonal d t-12  exists).  If n ≥  

2t–1+1 and n < 2t+1 then A has length t.  If n = 2t–1+1, then n is the least possible n for A 

to have derived length t.  Now we know that the dimension of A is n–1, therefore when 

we want the smallest n of length t we let n = 2t–1+1 and the dimension of A is 2t–1. □ 

 

Table 3.6: Associative algebra results with one generator 
Length 

(t) 
Minimum Matrix 

Size of A (n) 
Dimension of A 

(m) 
1 2 1 

2 3 2 

3 5 4 

4 9 8 

5 17 16 

t n = t-12 1+  2t–1 

 

 

From our table we see that in order to obtain an algebra of length 4 we need to have a 9x9 

matrix to start with.  Now we compare the results when we start with one generator to 
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when we start with the n-1 elementary matrices directly above the main diagonal as 

generators (Lemma 2.1). 

 

Table 3.7: Comparison chart of associative algebras general case (T) and associative 
algebra with one generator (A): 

Length 
(t) 

Minimum Matrix 
Size of A and T  

(n) 

Dimension of T Dimension of A 

1 2 1 1 

2 3 3 2 

3 5 10 4 

4 9 36 8 

5 17 136 16 

t n = t-12 1+  t-1 t-2(2 1)2+  2t–1 
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CHAPTER 4: Matrix Group General Case 
 

We now consider the matrix group versions of the associative algebra results.  In 

this investigation, we work exclusively with subgroups M of the group of unipotent nxn 

upper triangular matrices, U.  Then U = I ⊕  d1 ⊕  d2 ⊕…⊕ dn–1, where the sum is a 

vector space direct sum and the di are the upper diagonals of U as in the last section.  We 

will consider the problem:  For a given length, find the minimum n necessary. 

Again using matrix units we compute the derived length where [A,B] = ABA-1B-1 

is the commutator.  Then U1 = <[A,B]; A,B ∈U> and Ud = <[A,B]; A,B ∈Ud-1>.  Then 

U 1 = I ⊕  d2 ⊕  d3 ⊕…⊕ dn–1 

U 2 = I ⊕  d 22  ⊕  d5 ⊕…⊕ dn–1 

M  

U k = I ⊕  d k2  ⊕  d k+12  ⊕…⊕ dn–1 

Notice that U t–1 ≠ 0 if and only if 2t–1 ≤  n–1 or n ≥  2t–1+1 (diagonal d t-12 has to exist).  

The least n for U to have length t, is n = 2t–1+1 and the dimension of U = t-1 t-2(2 1)2+ , just 

as in the associative case.  Hence I + E12, I +  E23, …,I + En–1,n are generators of U, hence 

U has 2t–1 generators. 

Lemma 4.1 For U to have length t, the smallest n = 2t–1+1, and U has 2t–1 generators. 
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CHAPTER 5: Matrix Groups with 3 Generators 
 

Now we consider a subgroup of U where there are three generators: F12, F23, and 

F34.  These generators are combinations of the elements on the first diagonal added to the 

identity matrix.  We use the following terms:  

Fij = I + 
j+3k n

i+3k,j+3k
k 0

E
≤

=
∑ where i = 1,2,3 and j > i.   

Using multiplication with unipotent strictly upper triangular nxn matrices, we can find 

the derived length of the group.  To make this clear we start with an example. 

Example 5.1 

Let n = 9 and let F12, F23, and F34 be generators of M in T.  Thus M ⊇  {F12, F23, F34} 

where F12 = I + E12 + E45 + E78, F23 = I + E23 + E56 + E89, and F34 = I + E34 + E67.   

F12 = 

1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 

 F23 = 

1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 

 F34 = 

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 

 

Now we compute the derived length of the group.  Compute the derived series starting 

with M to get M1 by the following multiplications: 

[F12,F23] = (F12 * F23)*( F12
–1 * F23

–1) =  

[(I + E12 + E45 + E78) * (I + E23 + E56 + E89)] * [(I – E12 – E45 – E78) * (I – E23 – E56 – E89)]= 

(I+E23+E56+E89+E12+E13+E45+E46+E78+E79)*(I-E23-E56-E89-E12+E13-E45+E46-E78+E79) =  

I + E13 + E46 + E79 = F13 

[F12,F34,] = (F12 * F34) * (F12
–1 * F34

–1) =  

[(I + E12 + E45 + E78)  * (I + E34 + E67)] * [ (I – E12 – E45 – E78) *  (I – E34 – E67)] =  
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(I + E12 + E45 + E78 + E34 + E67) * (I – E12 – E45 – E78 – E34– E67) = 

I - E35 - E68 = (F35)-1 

[F23,F34] = (F23 * F34) * (F23
–1 * F34

–1) =  

[(I + E23 + E56 + E89) * (I + E34 + E67)] * [(I – E23 – E56 – E89) * (I – E34 – E67)] = 

(I + E34 + E67 + E23 + E24 + E56 + E57 + E89) * (I – E34 – E67 – E23 + E24 – E56 + E57 – E89) = 

I + E24 + E57 = F24  

M1 ⊇  {F13, F24, F35} and we continue to find M2 ⊇  {F15, F26, F37} where F15 = I + E15 + 

E48, F26 = I + E26 + E59, and F37 = I + E37; and M3 ⊇{ F19} where F19 = I + E19; and M4 = 

0 since M ⊆  U and U4 = 0.  Hence M has length 4. □  

Lemma 5.2 The multiplication of [Fi,p+i,Fj,p+j] where i, j = 1,2,3 and i≠ j and p is not 

congruent to 0 mod 3 yields three possible results: 

Case 1: I if j is not congruent to p+i mod 3 and i is not congruent to p+j mod 3 

Case 2: Fi,2p+i if j≡p+i mod 3 and i is not congruent to p+j mod 3 

Case 3: (Fj,2p+j)-1 if i ≡  p+j mod 3 and j is not congruent to p+i mod 3 

Proof.  We will be computing [Fi,p+i,Fj,p+j] where i=1,2; j = 2,3; i<j and we assume that p 

is not congruent to 0 mod 3.  It will be useful to let Ha,b = Fa,b – I.  Then  

[Fi,p+i,Fj,p+j] =  

[(I + Hi,p+i) * (I + Hj,p+j)] * [(I - Hi,p+i) * (I - Hj,p+j)] =  

[I + Hj,p+j + Hi,p+i + Hi,2p+iδ (p+i-j mod 3,0)]*[I - Hj,p+j - Hi,p+i + Hi,2p+iδ (p+i-j mod 3,0)] = 

I * I +I * (-Hj,p+j) + I * (-Hi,p+i) + I * Hi,2p+iδ (p+i-j mod 3,0) + Hj,p+j * I  + Hj,p+j * (-Hj,p+j)  

+ Hj,p+j * (-Hi,p+i) + Hj,p+j * [Hi,2p+i δ (p+i-j mod 3,0)] + Hi,p+i * I  + Hi,p+i * (-Hj,p+j)  + Hi,p+i 

* (-Hi,p+i) + Hi,p+i * [Hi,2p+iδ (p+i-j mod 3,0)] + Hi,2p+iδ (p+i-j mod 3,0) * I + 
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[Hi,2p+iδ (p+i-j mod 3,0)] * (-Hj,p+j)  + [Hi,2p+iδ (p+i-j mod 3,0)] * (-Hi,p+i) + [Hi,2p+iδ (p+i-

j mod 3,0)] * [Hi,2p+iδ (p+i-j mod 3,0)].  We go through each of these multiplications: 

I * I  = I 

I * (-Hj,p+j) = -Hj,p+j this will cancel with its positive opposite  

I * (-Hi,p+i) = -Hi,p+i this will cancel with its positive opposite  

I * Hi,2p+iδ (p+i-j mod 3,0) = Hi,2p+iδ (p+i-j mod 3,0)  

Hj,p+j * I = Hj,p+j this will cancel with its negative opposite  

Hj,p+j * (-Hj,p+j) = 0 since p+j is not congruent to j mod 3  

Hj,p+j * (-Hi,p+i) = -Hj,2p+j δ (p+j - i mod 3,0)    

Hj,p+j * [Hi,2p+i δ (p+i-j mod 3,0)]  = 0, for if not,  

p+j ≡  i mod 3 and p+i ≡  j mod 3  

p ≡ i - j mod 3 and p≡ -i + j mod 3  

p ≡ i - j mod 3 and -p ≡ i – j mod 3  

p≡ -p mod 3   

2p≡0 mod 3  

which is a contradiction to our original assumption. 

Hi,p+i * I = Hi,p+i  this will cancel with its negative opposite 

Hi,p+i * (-Hj,p+j)  =  -Hi,2p+i δ (p+i - j mod 3,0) 

Hi,p+i * (-Hi,p+i) = 0 since p+i is not congruent to i mod 3 

Hi,p+i * [Hi,2p+iδ (p+i-j mod 3,0)]  = 0, since if p+i ≡ i mod 3 then p ≡  0 mod 3 which is a  

contradiction to our original assumption. 

Hi,2p+iδ (p+i-j mod 3,0) * I = Hi,2p+iδ (p+i-j mod 3,0)  

[Hi,2p+iδ (p+i-j mod 3,0)] * (-Hj,p+j) = 0, since if 2p+i ≡ j mod 3 then p+p+i-j ≡  0 mod 3,  
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but p is not congruent to 0 mod 3 and p+i-j≡0 mod 3 which is impossible.  

[Hi,2p+iδ (p+i-j mod 3,0)] * (-Hi,p+i) = 0, since if 2p+i ≡ i mod 3 then 2p≡0 mod 3 which  

is a contradiction to our original assumption. 

[Hi,2p+iδ (p+i-j mod 3,0)] * [Hi,2p+iδ (p+i-j mod 3,0)] = 0, since if 2p+i≡ i mod 3 then  

p ≡0 mod 3 which is a contradiction to our original assumption. 

Leaving: I + 2Hi,2p+iδ (p+i-j mod 3,0) - Hj,2p+jδ (p+j-i mod 3,0) - Hi,2p+iδ (p+i-j mod 3,0) 

=  I + Hi,2p+i δ (p+i - j mod 3,0) - Hj,2p+j δ (p+j - i mod 3,0) = 

Case 1: I if j is not congruent to p+i mod 3 and i is not congruent to p+j mod 3 

Case 2: I + Hi,2p+i = Fi,2p+i if j ≡p+i mod 3 and i is not congruent to p+j mod 3 

Case 3: I – Hj,2p+j = (Fj,2p+j)-1  if i ≡  p+j mod 3 and j is not congruent to p+i mod 3 

Note that i ≡  p+j mod 3 and j ≡p+i mod 3 cannot hold simultaneously, if they did then  

p+j ≡  i mod 3 and p+i ≡  j mod 3  

p ≡ i - j mod 3 and p≡ -i + j mod 3  

p ≡ i - j mod 3 and -p ≡ i – j mod 3  

p≡ -p mod 3   

2p≡0 mod 3  

which is a contradiction to our original assumption. □ 

Lemma 5.3 F1,2
k

+1, F2,2
k

+2, F3,2
k

+3 ∈  Mk. 

Proof.  Base case: Let k = 1.  We start with F12, F23, F34 ∈M.  We find with the following 

multiplications of [F1,2, F2,3],  [F1,2 F3,4], and [F2,3, F3,4] and with lemma 5.2 we get F1,3, 

(F3,5)-1, and F2,4 respectively, where  F1,3, F2,4, F3,5 are elements of M1.   

Induction Hypothesis: let k = r where F1,2
r
+1, F2,2

r
+2, F3,2

r
+3 ∈  Mr 
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To show that when k = r+1 that F1,2
r+1

+1, F2, 2
r+1

+2, F3, 2
r+1

+3 ∈  Mr+1, we start with Mr+1 = 

[Mr,Mr] where F1, 2
r
+1, F2, 2

r
 +2, F3, 2

r
 +3 ∈  Mr.  We do the calculations  

[F1, 2
r
 +1, F2, 2

r
 +2] 

[F1, 2
r
 +1, F3, 2

r
 +3] 

[F2, 2
r
 +2, F3, 2

r
 +3] 

using lemma 5.2 to get F1, 2*2
r
 +1, (F3, 2*2

r
 +3)-1, and F2, 2*2

r
 +2, giving us F1, 2

r+1
 +1, F3, 2

r+1
 +3, 

and F2, 2
r+1

 +2 ∈  Mr+1. □ 

Theorem 5.4 M has length t if M has the matrix size n = 2t–1 + 1.  M is generated by 

three elements; F12, F23, F34.  This result is the best possible. 

Proof.  Let M be the matrix group of the nxn unipotent strictly upper triangular matrices 

U generated by the three elements, F12, F23, and F34.  M has a size n and is a unipotent 

strictly upper triangular matrix group.  If n ≥  2t–1+1 then Mt–1 ≠  0 (because F1,2
t–1

+1 is 

the smallest element of Mt–1).  If n ≥  2t–1+1 and n < 2t+1, then M has length t.  If       

n=2t–1+1, then n is the least possible n for M to have derived length t.  This number 

matches the least possible n for U to have derived length t.  Hence using three or more 

generators, n = 2t–1+1 is the smallest n for a unipotent group to have derived length t. □ 

 
Table 5.5: Matrix Group results with three generators 

Length 
(t) 

Minimum Matrix Size of 
M (n) 

1 2 

2 3 

3 5 

4 9 

5 17 

t n = t-12 1+  
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CHAPTER 6: Lie Algebra General Case 
 

We now consider the Lie algebra versions of the associative algebra results.   

We have four problems to consider: 

1.) Find a good upper bound for the dimension of nilpotent Lie algebras with 

derived length t.  In other words, for a given t, find as small an m as possible 

such that there is an algebra of dimension, m, with derived length, t. 

2.) Answer the same question when restricted to a fixed number of generators. 

3.) Answer the same question when the Lie algebras are subalgebras of strictly 

upper triangular matrices of size n (denoted again by T).  Here the 

multiplication is commutator multiplication. 

4.) For a given length, find the minimum n necessary. 

 

In this investigation, we work exclusively with subalgebras of T.  As before T = d1 ⊕  

d2 ⊕…⊕ dn–1 where the di are the upper diagonals of T.  Again using matrix units, we 

compute the derived series of T: 

T1 = d2 ⊕  d3 ⊕…⊕ dn–1 

T2 = d 22  ⊕  d5 ⊕…⊕ dn–1 

M  

Tk = d k2  ⊕  d k+12  ⊕…⊕ dn–1 

Notice that Tt–1 ≠ 0 if and only if 2t–1 ≤  n–1 or n ≥  2t–1+1 (diagonal d t-12 has to exist).  

The least n for T to have length t, is n = 2t–1+1 and the dimension of T = t-1 t-2(2 1)2+ , just 

as in the associative case.  Again E12, E23, …,En–1,n are the generators of T, hence T has 

2t–1 generators. 
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Lemma 6.1 For T to have length t, the smallest matrix size n = 2t–1+1, the dimension of T 

= t-1 t-2(2 1)2+ , and T has 2t–1 generators. 
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CHAPTER 7: Lie Algebras with 3 Generators 
 

In lemma 6.1 there are 2t–1 generators.  Now we look at the case where there are 

three generators: F12, F23, and F34.  These generators are combinations of the elements on 

the first diagonal.  We define:  

Fij = 
j+3k n

i+3k,j+3k
k 0

E
≤

=
∑ where i = 1,2,3 and j > i.   

Let L be generated by F12, F23, and F34. 

Using commutator multiplication, we find the derived series of the algebra.  To make this 

clear we start with an example. 

Example 7.1 

Let n = 9 and let F12, F23, and F34 be generators of L in T.  Let dj’ = L ∩ dj.  d1’ = <F12, 

F23, F34> where F12 = E12 + E45 + E78, F23 = E23 + E56 + E89; and F34 = E34 + E67. 

F12 = 

0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 

  F23 = 

0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 

  F34 = 

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 

 

Now we obtain the derived series of the algebra.  We start by finding the elements of d2
’. 

[F12,F23] = (F12 * F23) – (F23 * F12) =  

[(E12 + E45 + E78) * (E23 + E56 + E89)] – [(E23 + E56 + E89)* (E12 + E45 + E78)] =  

E13 + E46 + E79 = F13 ∈  L1
   

[F12,F34] = (F12 * F34) – (F34 * F12) =  

[(E12 + E45 + E78) * (E34 + E67)] – [(E34 + E67) * (E12 + E45 + E78)] =  

– E35 – E68  = –F35 ∈  L1
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[F23,F34] = (F23 * F34) – (F34 * F23) =  

[(E23 + E56 + E89) * (E34 + E67)] – [(E34 + E67) * (E23 + E56 + E89)] =  

E24 + E57 = F24 ∈  L1 

Resulting with d2’ = <F13, F24, F35>.  Then use these elements to find F15, F26, F37 ∈  L2 

where d4’ = <F15, F26, F37> and F15 = E15 + E48, F26 = E26 + E59, and F37 = E37.  Then use 

these elements to find F19 ∈  L3 where d8’ = < F19> and F19 = E19.  Clearly L4 = [L3, L3] = 

0 and L has derived length 4.  We have computed the linearly independent elements d1’, 

d2’, d4’, and d8’.  We find the other diagonals, starting with d3
’: 

[F12,F13] = (F12 * F13) – (F13 * F12) =  

[(E12 + E45 + E78) * (E13 + E46 + E79)] – [(E13 + E46 + E79) * (E12 + E45 + E78)] = 

0 

[F12,F24] = (F12 * F24) – (F24 * F12) = 

[(E12 + E45 + E78) * (E24 + E57)] – [(E24 + E57) * (E12 + E45 + E78)] = 

E14 + E47  – E25 – E58 = F14 – F25 

[F12,F35] = (F12 * F35) – (F35 * F12) = 

[(E12 + E45 + E78) * (E35 + E68)] – [(E35 + E68) * (E12 + E45 + E78)] = 

0 

[F23,F13] = (F23 * F13) – (F13 * F23)= 

[(E23 + E56 + E89) * (E13 + E46 + E79)] – [(E13 + E46 + E79) * (E23 + E56 + E89)] = 

0 

[F23,F24] = (F23 * F24) – (F24 * F23) = 

[(E23 + E56 + E89) * (E24 + E57)] – [(E24 + E57) * (E23 + E56 + E89)] = 

0 
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[F23,F35] = (F23 * F35) – (F35 * F23) = 

[(E23 + E56 + E89) * (E35 + E68 )] – [(E35 + E68) * (E23 + E56 + E89)] = 

E25 + E58 – E36 – E69 = F25 – F36  

[F34,F13] = (F34 * F13) – (F13 * F34) = 

[(E34 + E67) * (E13 + E46 + E79)] – [(E13 + E46 + E79) * (E34 + E67)] = 

E36 + E69 – E14 – E47 = F36 – F14  

[F34,F24] = (F34 * F24) – (F24 * F34) = 

[(E34 + E67) * (E24 + E57)] – [(E24 + E57) * (E34 + E67)] = 

0 

[F34,F35] = (F34 * F35) – (F35 * F34) = 

[(E34 + E67) * (E35 + E68) – [(E35 + E68) * (E34 + E67)] = 

0 

leaving d3’ = <[d1’,d2’]> = < F14 – F25, F25 – F36, F36 – F14> where F14 – F25 = E14 + E47 – 

E25 – E58, F25 – F36 = E25 + E58 – E36 – E69, and F36 – F14 = E36 + E69 – E14 – E47.  Notice 

that F36 – F14 = – (F25 – F36) – (F14 – F25), therefore, d3’ = < F14 – F25, F25 – F36>.  

Continuing this computation yields d5’ = <[d1’,d4’], [d2’,d3’]> = <F16, F27, F38> where F16 

= E16 + E49, F27 = E27, and F38 = E38.  d6’ = <[d1’,d5’], [d2’,d4’], [d3’,d3’]> = < F17 – F28, 

F28 – F39, F39 – F17> where F17 – F28 = E17 – E28, F28 – F39 = E28 – E39, and F39 – F17 = E39 

– E17, and since two of the elements in d6 are a combination of the other element, d6’ = < 

F17 – F28, F28 – F39>.  d7’ = <[d1’,d6’], [d2’,d5’], [d3’,d4’]> = < F18, F29> where F18 = E18 

and F29 = E29.  Now we have the derived series of L where L = d1’ ⊕  d2’ ⊕…⊕  d8’, L1 

= d2’ ⊕  d3’ ⊕…⊕  d8’, L2 = d4’ ⊕  d5’ ⊕…⊕  d8’, L3 = d8’, L4 = 0.  Thus L has the 
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length 4 and d1’ ⊕  d2’ ⊕…⊕  d8’ contains a basis for L, as demonstrated, and L has 

dimension 3+3+2+3+3+2+2+1 = 19. □ 

With Lie Algebras we are dealing with commutator multiplication where 

[Fi,p+i,Fj,q+j] = Fi,p+i * Fj,q+j – Fj,q+j * Fi,p+i.  Let s = p+q. 

Recall that: 

Fi,p+i * Fj,q+j = 0                                  , if i+p is not congruent to j mod 3
Fi,p+q+i = Fi,s+i where i = 1,2,and 3, if i+p is congruent to j mod 3      







 

and  

Fj,q+j * Fi,p+i = 0                                  , if q+j is not congruent to i mod 3
Fj,q+p+j = Fj,s+j where j = 1,2,and 3, if q+j is congruent to i mod 3      







 

Let M1 represent Fi,p+i * Fj,q+j and let M2 represent Fj,q+j * Fi,p+i.  In order for M1≠  0, p+i 

is congruent to j mod 3 or 3 divides p+i–j.  In order for M2≠  0, q+j is congruent to i mod 

3 or 3 divides q+j–i. 

Lemma 7.2 If both M1≠  0 and M2≠  0 then s is a multiple of 3 where ds is the diagonal 

s steps above the main diagonal. 

Proof.  If both M1 ≠  0 and M2 ≠  0 then 3 divides p+i–j and q+j–i.  Since q = s–p, q+j–i  

= s–p+j–i = s–(p+i–j).  Hence, s is a multiple of 3. □ 

Lemma 7.3 If s is a multiple of 3 then either both M1≠  0 and M2≠  0 or both M1 = 0 

and M2 = 0.   

Proof.  Let s be a multiple of 3.  Assume that M1≠  0 (3 divides p+i–j) and M2 = 0 (3 

does not divide q+j–i) and s = p–q.  Then 3 divides p+i–j = s–q+i–j = s–(q+j–i).  Since 3 
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divides s, this shows that 3 divides q+j–i which is a contradiction.  Similarly, we get the 

same results if we start with M2≠  0 and M1 = 0.  □ 

Corollary 7.4 If s is not a multiple of 3, then one of the following holds where M1 

represent (Fi,p+i * Fj,q+j) and M2 represent (Fj,q+j * Fi,p+i): M1≠  0 & M2 = 0, M1 = 0 & 

M2≠ 0, or M1 = 0 & M2 = 0. 

Lemma 7.5 F1,2
s
+1, F2,2

s
+2, F3,2

s
+3 ∈  Ls (provided the second subscript ≤  n).   

Note that d2
s’ = < F1,2

s
+1, F2,2

s
+2, F3,2

s
+3>, therefore, we know that the diagonal we are 

dealing with is never a multiple of 3. 

Proof.  Base Case: Let s = 1.  We start with L, where d1’ = <F12, F23, F34> and F12 = E12 + 

E45 + …+ E3k+1,3k+2, F23 = E23 + E56 + …+ E3k+2,3k+3, and F34 = E34 + E67 + …+ E3k+3,3k+4 

where k starts at zero, and the terms are within the matrix size.   

Then 

[F12,F23] = (F12 * F23) – (F23 * F12) = F13    

[F12,F34] = (F12 * F34) – (F34 * F12) = –F35    

[F23,F34] = (F23 * F34) – (F34 * F23) = F24   

Hence d2’ = <F13, F24, F35> and F1,2
1

+1, F2,2
1

+2, F3,2
1

+3 ∈  L1. 

Induction Hypothesis: let s = k where F1,2
k

+1, F2,2
k

+2, F3,2
k

+3 ∈  Lk.  We show that F1,2
k+1

+1, 

F2,2
k+1

+2, F3,2
k+1

+3 ∈  Lk+1.  We compute 

[F1,2
k

+1, F2,2
k

+2], 

[F1,2
k

+1, F3,2
k

+3], and 

[F2,2
k

+2, F3,2
k

+3]. 

In [Fi,2
k

+i, Fj,2
k

+j]  =  (Fi,2
k
+i * Fj,2

k
+j) – (Fj,2

k
+j * Fi,2

k
+i) where i = 1,2; j = 2,3; i < j, (Fi,2

k
+i * 

Fj,2
k

+j) will be nonzero if 2k+i is congruent to j mod 3 and (Fj,2
k

+j * Fi,2
k

+i) will be nonzero 
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if 2k+j is congruent to i mod 3, but at no time will these results both be nonzero (corollary 

7.4).  One of them will be non-zero since either i-j is congruent to 2k mod 3 or j-i is 

congruent to 2k mod 3.  

Thus either (Fi,2
k

+i * Fj,2
k

+j) = Fi, 2
k

+2
k

+i = Fi, 2
k+1

+i or (Fj,2
k

+j * Fi,2
k

+i ) = Fj, 2
k

+2
k

+j = 

Fj, 2
k+1

+j.  Therefore d2
(k+1)’ = <F1,2

k+1
+1, F2,2

k+1
+2, F3,2

k+1
+3> and  F1,2

k+1
+1, F2,2

k+1
+2, 

F3,2
k+1

+3∈Lk+1. □ 

Theorem 7.6 L has length t if L has the matrix size n = 2t–1 + 1.  L is generated by three 

elements; F12, F23, F34.  This result is the best possible for three generators. 

Proof.  Let L be the Lie subalgebra of the nxn strictly upper triangular matrices T 

generated by three elements, F12, F23, F34.  If n ≥  2t–1+1 then Lt–1 ≠  0 (because F1,2
t–1

+1 is 

in Lt–1).  If n ≥  2t–1+1 and n < 2t+1 then L has length t.  If  n  = 2t–1+1, then n is the least 

possible n for L to have derived length t.  This number matches the least possible n for T 

to have derived length t and thus L⊆T.  Hence for any number of generators ≥  3, n = 2t–

1+1 is the smallest n to obtain derived length t. �  

 
Table 7.7: Lie Algebra results with three generators 

Length 
(t) 

Minimum Matrix Size of L 
(n) 

1 2 

2 3 

3 5 

4 9 

5 17 

t n = t-12 1+  

 

We now look at the dimension of L.   
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Lemma 7.8 L = d1’ ⊕  d2’ ⊕…⊕ dn–1’ where di’ = L ∩ di. The dimension of ds’ = 3 if s 

is not congruent to 0 mod 3 and s≠ n–2 or n–1.  The dimension of ds’ = 2 if s is congruent 

to 0 mod 3 and s ≠ n–2 or n–1.  The dimension of dn–2’ = 2 and dimension of dn–1’ = 1. 

Proof.  We will first look at the dimension of ds’ where s is not congruent to 0 mod 3, 

hence s is not a multiple of 3.  ds’ is computed from [dp’,dq’] where s = p+q, and we 

calculate ds’ with  [Fi,p+i,Fj,q+j] = (Fi,p+i * Fj,q+j) – (Fj,q+j * Fi,p+i) = Fi,p+q+i = Fi,s+i or –Fj,p+q+j = 

Fi,s+i where i=1, 2, and 3, and ds’ = <F1,s+1, F2,s+2, F3,s+3>.  Therefore, the dimension of ds
’ 

is 3 when s is not congruent to 0 mod 3 and s≠ n–2 or n–1.    

Now we look at the dimension of ds’ where s is congruent to 0 mod 3, hence s is a 

multiple of 3.  We compute ds’ with the calculation [Fi,p+i,Fj,q+j] = (Fi,p+i * Fj,q+j) – (Fj,q+j * 

Fi,p+i) = (Fi,p+q+i  – Fj,p+q+j) = (Fi,s+i – Fj,s+j)δp+i,j.  If i = 1, p = 1, j = 2, q = s-1 this equals 

F1,s+1 – F2,s+2.  If i = 2, p = 1, j = 3, q = s-1 this equals F2,s+2 – F3,s+3.  If i = 1, p =2, j = 3, q 

= s-2 this equals F1,s+1  – F3,s+3.   Where ds’ = <F1,s+1 – F2,s+2, F2,s+2 – F3,s+3, F1,s+1  – F3,s+3>.  

Only two of these are linearly independent hence ds’ = <F1,s+1 – F2,s+2, F2,s+2 – F3,s+3> and 

the dimension of ds’= 2 when s is congruent to 0 mod 3 and s ≠ n–2 or n–1.   

The case of dn–2’ and dn–1’ are easily checked to be dn–2’ = <F1,n–1, F2,n> where 

F1,n–1 = E1,n–1 and F2,n = E2,n and dn–1’ = <F1,n> where F1,n = E1,n remembering that in the 

last diagonal there is only one element in the matrix and in the second to last diagonal 

there are 2 elements in the matrix.  Hence, the results hold. □ 

Lemma 7.9  The dimension of L = 
(k-1)*8+3 if n=3k
(k-1)*8+6 if n=3k+1
(k-1)*8+9 if n=3k+2







 

Proof.  L = d1’ ⊕  d2’ ⊕…⊕ dn–1’, Dimension of L = 3+3+2+3+3+2…+2+1 where there 

are n–1 terms in the sum.  First consider the case when we have a matrix of size n=3k we 
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know the matrix size is a multiple of 3 and that there are n–1 diagonals above the main 

diagonal, breaking down to k–1 sets of consecutive diagonals that have dimension 8 = 

(3+3+2), dn–2’ with dimension 2, and dn–1’ with dimension 1.  Making the total dimension 

of L = (k–1)*8+3.  In the case where n = 3k+1 break down to k–1 sets of diagonals that 

have dimension 8, dn–3’ where n–3 is not a multiple of 3 because 3k+1–3 mod 3 is not 0 

leaving dn–3’ with dimension 3, dn–2’ with dimension 2, and dn–1’ with dimension 1.  

Making the total dimension of L = (k–1)*8+6.  The last case where n = 3k+2 breaks 

down to k–1 sets of diagonals that have dimension 8, dn–4’ where n–4 is not a multiple of 

3 because 3k+2–4 mod 3 is not 0 leaves dn–4’ with dimension 3, dn–3’ where n–3 is not a 

multiple of 3 because 3k+2–3 mod 3 is not 0 leaves dn–3’ with  dimension 3, dn–2’ with 

dimension 2, and dn–1’ with dimension 1.  Making the total dimension of L= (k–1)*8+9.□   

We can use the 9x9 Lie Algebra, Example 7.1, to check this lemma.  In the 9x9 

example we showed that the dimension of L = 3+3+2+3+3+2+2+1 = 19.  Using lemma 

7.9 when n = 9 we see we have the case n = 3k where k = 3 and find the dimension to be 

the same as in our example  (k-1) * 8 + 3 =  (3–1) * 8 + 3 = 19.   

We now find the dimension of L in Theorem 7.6.  Recall that for a given length t, 

Theorem 7.6 gives that the minimum matrix size needed for L to have length t is n = 

t-12 1+ . 

Proposition 7.10   If t is even, then n = 3k (n≡0 mod 3), and if t is odd then n = 3k+2 

(n≡2 mod 3). 

Proof.  Induct on d. 

If t = 2 then matrix size is t-12 1+  = 3 where n = 3k with k = 1.  Note that 3 mod 3 = 0. 
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If t = 3 then matrix size is t-12 1+  = 5 where k = 1 and we use n = 3k+2.  Note that 5 mod 

3 = 2.  We see that t-1+22 1+ ≡3* t-1 t-12 2 +1+ ≡ t-12 1+  mod 3.  Hence all even (odd) t have 

their corresponding n’s congruent mod 3. □  

Proposition 7.10 is easier to understand by looking at some examples.  For the 

even case we start with t = 2. Then 2-1+22 1+  ≡  3* 2-1 2-12 2 +1+  ≡  2-12 1+  mod 3 = 3 mod 

3 = 0.  To check this we take t = 4, where t-12 1+ = 9 and 9 mod 3 is 0.  Notice that when t 

= 2 and n = 3, n≡0 mod 3; and when t = 4 and n = 9, n≡0 mod 3 showing that the even t 

have an n≡0 mod 3.  We can also show an odd example where we start with t = 3.  Then 

3-1+22 1+ ≡3* 3-1 3-12 2 +1+ ≡  3-12 1+  mod 3 = 5 mod 3 = 2.  To check this we take t = 5, 

where t-12 1+  = 17 and 17 mod 3 is 2.  Notice that when t = 3 and n = 5, n≡2 mod 3; and 

when t = 5 and n = 17, n≡2 mod 3 showing that the odd t have an n≡2 mod 3.  

Theorem 7.11 There is a three generator Lie Algebra (L) of derived length t and 

dimension 
t+22 7

3
−  if t is even and 

t+22 5
3
−  if t is odd.  These algebras are subalgebras of 

T of matrix size t-12 1+ . 

Proof.  For any t, n = t-12 1+  is the smallest matrix size which will support algebras L of 

length t as seen earlier.  If t is even, n≡0 mod 3 and n = 3k and the dimension of L is 

8(k–1) + 3.  Using both n = t-12 1+  and n = 3k we get the dimension of L is 8(k–1) + 3 = 

8( n
3

–1) + 3 =
t-12 18( 1) 3
3
+

− + = 
t+22 7

3
− .  If t is odd, n≡2 mod 3 and n = 3k + 2 and the 

dimension of L is 8(k–1) + 9.  Using both n = t-12 1+  and n = 3k + 2 we get the dimension 

of L = 8(k–1) + 9 = n 28( 1) 9
3
−

− + = 
t-12 1 28( 1) 9

3
+ −

− + = 
t+22 5

3
− .  � 
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Table 7.12: Lie algebra results including dimension with three generators 
Length 

(t) 
Minimum Matrix 

Size of L 
 

Dimension of L  
(t is even) 

Dimension of L  
(t is odd) 

1 2  1 

2 3 3  

3 5  9 

4 9 19  

5 17  41 

t n = t-12 1+  t+22 7
3
−  

t+22 5
3
−  

 

 
Table 7.13: Comparison chart with strictly upper triangular matrices general case 

(T), Lie algebra with three generators (L), and associative algebra with one 
generator (A) 

Length 
(t) 

Minimum 
Matrix 

Size(T,A,L) 

Dimension of 

T 

Dimension of 

L 

Dimension of 

A 

1 2 1 1 1 

2 3 3 3 2 

3 5 10 9 4 

4 9 36 19 8 

5 17 136 41 16 

t n = t-12 1+  t-1 t-2(2 1)2+  
t  even 

t+22 7
3
−  

t odd  
t+22 5

3
−  

t-12  

 

 

Remark for t, we have found the smallest n such that T has a subalgebra of length t.  The 

result is sharp.  We have also found the dimension of these algebras.  It is conceivable 

that the dimension could be lower, we do not know if our bound is sharp.  It is also 
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possible that there are nilpotent N, not just subalgebras of T, for which the dimension 

bound could be lowered. 
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CHAPTER 8: Lie Algebras with 2 Generators 
 

For a given t, we have found the smallest n such that there is a 3 generated 

subalgebra of the strictly upper triangular nxn matrices which has derived length t.  We 

now consider the same problem for the 2 generated subalgebras.  

We start by finding a lower bound for n.   

Theorem 8.1 If n ≤  t5 2
8

 then T does not have a 2 generated subalgebra with derived 

length t.   

Proof. Let L be a 2 generated subalgebra of T.  Let L = <A, B>.  In order for the derived 

length of L to be t, Lt = 0 and Lt–1 ≠ 0.   

When t = 2 we find that n ≤  25 52
8 2

= , leaving n < 3.  When n = 2 we have Lt–1 = 

L1 = <[A, B]> = L 2 = 0.  Hence, T does not have a 2 generated subalgebra with derived 

length t = 2 when n ≤  t5 2
8

. 

When t = 3 we find that n ≤  5.  When L = <A, B>, L2 = [A, B] + L3.  Then: 

  Lt–1 = L2 = [L1, L1] = [L2, L2] = 

[[A, B] + L3, [A, B] + L3] =  

[L3, [A, B] + L3] =  

[L3, L2] ⊆   L5 = 0 since n ≤  5.   

Hence T does not have a 2 generated subalgebra with derived length t = 3 when n ≤  

t5 2
8

. 
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Using induction, we assume Lt–1⊆ t-35 * 2
L and compute Lt = [Lt–1, Lt–1] 

⊆ [ t-35 * 2
L , t-35 * 2

L ] ⊆ t-32(5 * 2 )
L  = t-25 * 2

L .  Now Lt–1⊆ t-35 * 2
L for all t.  If n ≤  t5 2

8
, then 

t-35 * 2
L = 0 leaving Lt–1 = 0.  Hence, T does not have a 2 generated subalgebra of derived 

length t when n ≤  t5 2
8

.  Therefore, in order for a 2 generated subalgebra to have derived 

length t, n > t5 2
8

, leaving us with a lower bound on n. □ 

Let L be a Lie algebra generated by x and y and let z∈L such that z can be 

expressed as a product of the generators.  Of all expressions of z as a product of 

generators, let w(z) be the number of generators in the shortest such expression of z.  

Then w(z) will be called the width of z. 

Let F be a free Lie algebra generated by a and b.  Let F ⊃ F1⊃ F2 ⊃  … be the 

derived series of F.  The terms [a, b], [[a, b], a], [[a, b], b] are all in F1 with [a, b] having 

the shortest width, w([a, b]) = 2.  The pairwise products of these elements are in F2 with 

the shortest width of any term being 5.  These products are [[a, b], [[a, b], a]]; [[a, b], [[a, 

b], b]]; and [[[a, b], a], [[a, b], b]].  The products of these elements have widths 10, 11 

and 11 and are the shortest elements in F3.  Taking products again, we obtain products of 

width 21, 21, and 22.  The new products are in F4 and the shortest width is 21 = 21 * 24–4.  

The shortest width in F5 is at least 42 = 21 * 25–4 which would be obtained by multiplying 

two elements of width 21 from F4.  This process continues and we find that the shortest 

width in Fs is at least 21 * 2s–4. 

Theorem 8.2 Let F be a free Lie algebra with 2 generators.  Then the term with the 

shortest width in Fs is  [21 * 2s–4] ([] represents the greatest integer function). 
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Since any 2 generated Lie algebra L is the homomorphic image of F, the shortest 

width element in Ln is at least as wide as the shortest width element in Fn.  The approach 

we take is that for each derived length t, we construct a 2 generated Lie algebra of strictly 

upper triangular matrices that meets the bound.  The generator matrices A and B will be 

sums of Ei,i+1 of the appropriate size with each Ei,i+1 appearing in A or B but not both A 

and B.  We let A ∈T1,n( 1 2 n-1α ,α ,...α ) and B ∈T1,n( 1 2 n-1β ,β ,...β ) where α i and β j are 

regarded as variables, and T1,n denotes the nxn matrices with non-zero elements only on 

the first diagonal along the main diagonal. 

The following examples consider the cases for small values of t. Computations 

have been aided by the use of Maple (see Appendix A).  As usual, t will be the solvable 

length, L is a subalgebra of T = Tn where n is the size of the matrices and j stands for the 

width of the smallest non-zero term in Lt-1.  We always need n = j + 1. 

Example 8.3 

Let t = 2.  Using s = 1 in Theorem 8.2 we find that j = 2 and n ≥ 3.  Let A and B be 

matrices of size n = 3 with non-zero entries only on the super diagonal and zero’s 

elsewhere.  Clearly for j = 2 we use [A, B] or [B, A].  Let c2(x, y) = [y, x] and consider 

c2(A, B) = [B, A] where  

A = 
1

2
0 α 0
0 0 α
0 0 0

 
 
 
 

 and B = 
1

2
0 β 0
0 0 β
0 0 0

 
 
 
 

.   

Expanding using Maple, we find c2(A, B)1,3 = β1 α2 – α1 β2.  Let m2=β1α2 and let 

β1=α2=1 and α1=β2=0, we find [c2(A, B)]1,3 = 1.  Hence, for n = 3 the Lie algebra 

generated by A and B has t = 2.  From the result on free Lie algebras, n = 3 is the best 
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possible result.  That is, n = 3 is the smallest size matrix that contains a two generated Lie 

algebra of solvable length 2. 

Note: that the number of alphas, 1, in m2 equals the number of A’s in c2(A, B) and the 

number of betas, 1, in m2 equals the number of B’s in c2(A, B).  □ 

Example 8.4  

Let t = 3.  Using s = 2 in Theorem 8.2 we find that j = 5 and n ≥ 6.  Let A and B be 

matrices of size n = 6.  Let c5(x, y) = [[[y, x], x], [y, x]] and consider c5(A, B) = [[[B, A], 

A], [B, A]] where A and B have non-zero entries only on the super diagonal and zero’s 

elsewhere and the elements of this diagonal for A are α1, … α5 and for B are β1 … β5.   

Expanding using Maple, we find c5(A, B)1,6 = 3α3β1α2β4α5 – 2α3β1α2α4β5 – 

4α3α1β2β4α5 + 3α3α1β2α4β5 + α1α2β3β4α5 – α1α2β3α4β5 – β1α2α5β3α4 + α1β2α5β3α4.  

Let m5=α1α2β3β4α5 and let α1 = α2 = β3 = β4 = α5=1 and the remaining α’s and β’s be 

zero, we find [c5(A, B)]1,6 = 1.  Hence, for n = 6 the Lie algebra generated by A and B has 

t = 3.  From the result on free Lie algebras, n = 6 is the best possible result.  That is, n = 6 

is the smallest size matrix that contains a two generated Lie algebra of solvable length 3. 

Note: that the number of alphas, 3, in m5 equals the number of A’s in c5(A, B) and the 

number of betas, 2, in m5 equals the number of B’s in c5(A, B). □ 

For the next case we also will use c5'(x, y) = [[[y, x], y], [y, x]] and consider c5'(A, 

B) = [[[B, A], B], [B, A]] where A and B have non-zero entries only on the super 

diagonal and zero’s elsewhere and the elements of this diagonal for A are α1, … α5 and 

for B are β1 … β5.    

Expanding using Maple, we find c5'(A, B)1,6 = 3β3β1α2β4α5 – 4β3β1α2α4β5 – 

2β3α1β2β4α5 + 3β3α1β2α4β5 – β1β2α3β4α5 + β1β2α3α4β5 + β1α2β5α3β4 – α1β2β5α3β4.  Let 
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m5'=β1β2α3α4β5 and let β1 =β2=α3=α4=β5=1 and the remaining α’s and β’s be zero, we 

find [c5'(A, B)]1,6 = 1.   

Note: that the number of alphas, 2, in m5' equals the number of A’s in c5'(A, B) and the 

number of betas, 3, in m5' equals the number of B’s in c5'(A, B). 

Example 8.5 

Let t = 4.  Using s = 3 in Theorem 8.2 we find that j = 10 and n ≥ 11.  Let A and B be 

matrices of size n = 11.  Let c10(x, y) = [c5'(x, y), c5(x, y)] =  [[[[y, x], y], [y, x]], [[[y, x], 

x], [y, x]]] and consider c10(A, B) = [c5'(A, B), c5(A, B)] = [[[[B, A], B], [B, A]], [[[B, A], 

A], [B, A]]] where A and B have non-zero entries only on the super diagonal and zero’s 

elsewhere and the elements of this diagonal for A are α1, … α10 and for B are β1 … β10.   

Expanding using Maple, we find [c10(A,B)]1,11  contains β1β2α3α4β5α6α7β8β9α10 

and many other terms, all different from this one.  Let m10=β1β2α3α4β5α6α7β8β9α10 and 

let β1=β2=α3=α4=β5=α6=α7=β8=β9=α10=1 and the remaining α’s and β’s be zero, we find 

[c10(A,B)]1,11 = 1.  Hence, for n = 11 the Lie algebra generated by A and B has t = 4.  

From the result on free Lie algebras, n = 11 is the best possible result.  That is, n = 11 is 

the smallest size matrix that contains a two generated Lie algebra of solvable length 4. 

Note: that the number of alphas, 5, in m10 equals the number of A’s in c10(A, B) and the 

number of betas, 5, in m10 equals the number of B’s in c10(A, B). □ 

Example 8.6  

Let t = 5.  Using s = 4 in Theorem 8.2 we find that j = 21 and n ≥ 22.  Let A and B be 

matrices of size n = 22 with non-zero entries only on the supper diagonal and zero’s 

elsewhere.  Let 

term1(x, y) = [[[[y, x], x], x], [y, x]]  
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term2(x, y) = [[[[y, x], x], y], [y, x]] 

term3(x, y) = [[[[y, x], y], y], [y, x]] 

and 

c21(x, y) =  [[term1(x, y), c5(x, y)],c10(x, y)]  

c21' (x, y) = [term2(x, y), c5(x, y)],c10(x, y)] 

c21'' (x, y) = [term3(x, y), c5(x, y)],c10(x, y)] 

and consider c21(A, B)=[[term1(A,B), c5(A,B)],c10(A, B)] =  

[[[[[[B, A], A], A], [B, A] ], [[[B, A], A], [B, A]]], [[[[B, A], B], [B, A]], [[[B, A], A], [B, A]]]].  

We first look at term1(A,B) = [[[[B, A], A], A], [B, A]] where A and B are 7x7 matrices of 

the usual super diagonal form, we expand using Maple and we find [term1(A,B)]1,7 

contains α1α2α3β4β5α6 and many other terms, all different from this one.  We consider 

c5(A,B) = [[[B, A], A], [B, A]] where A and B are 6x6 matrices of the usual super 

diagonal form, we expand using Maple and we find [c5(A,B)]1,6 contains α1α2β3β4α5 and 

many other terms, all different from this one (see example 8.4).  We consider 

c10(A,B)=[[[[B, A], B], [B, A]], [[[B, A], A], [B, A]]] where A and B are 11x11 matrices 

of the usual super diagonal form, we expand using Maple and we find [c10(A,B)]1,11 

contains β1β2α3α4β5α6α7β8β9α10 and many other terms, all different from this one (see 

example 8.5). 

To build A and B of size 22, we are guided by the above discussion.  In the upper 

7x7 block we put the A and B dictated from calculation using term 1; that is, we let 

α1=α2=α3=β4=β5=α6=1 and the rest of the super diagonal terms be 0.  For the next 5 

terms we use the computations for c5; namely α1=α2=β3=β4=α5=1, but add 6 to the 

subscript to put them in the correct part of A and B.  Hence α7=α8=β9=β10=α11=1 and the 
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rest are 0.  For the last part we use the calculations from c10 and add 11 to the subscripts 

giving β12=β13=α14=α15=β16=α17=α18=β19=β20=α21=1 and the rest are 0.  Substituting A 

and B into term1(x,y), c5(x,y) and c10(x,y) yields ± 1 in postions (1,7), (7,12), and (12,22) 

in the respective matrices.  Then c21(A,B) has ±1 (actually -1) in the (1,22) position and 

zeros elsewhere.  This can also be described as in the next paragraph.   

To build the matrices of size 22, term1(A,B) has α1α2α3β4β5α6 in the (1,7) 

position, c5(A,B) has α7α8β9β10α11 in the (7,12) position, and c10(A,B) has 

β12β13α14α15β16α17α18β19β20α21 in the (12,22) position.  The large A and B matrices have 

been built in 3 steps.  In the first 6 supper diagonal positions we put the α’s and β’s found 

in term1(A,B).  In the next 5 positions we put the term found in c5(A,B) where the 

subscripts have been increased by 6.  In the last 10 positions we use the term found in 

c10(A,B) with the subscripts increased by 11.  Then [c21(A,B)]1,22 has the product of these 

terms as one of many summands.  Let 

m21=α1α2α3β4β5α6α7α8β9β10α11β12β13α14α15β16α17α18β19β20α21 and let these values for 

α’s and β’s be 1 and the remaining α’s and β’s be zero, we find [c21(A,B)]1,22 = -1.  

Hence, for n = 22 the Lie algebra generated by A and B has t = 5.  From the result on free 

Lie algebras, n = 22 is the best possible result.  That is, n = 22 is the smallest size matrix 

that contains a two generated Lie algebra of solvable length 5. 

Note: that the number of alphas, 12, in m21 equals the number of A’s in c21(A, B) and the 

number of betas, 9, in m21 equals the number of B’s in c21(A, B).  � 

 Similar computations are carried out for c21'(A,B) and c21''(A,B) with the results 

again being that [c21'(A,B)]1,22 = 1 and [c21''(A,B)]1,22 = 1 for the right choices of α’s and 

β’s.  Note that the number of A’s in c21'(A,B) is 11 and the number of A’s in c21''(A,B) is 
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10, thus the number of A’s in c21(A,B), c21'(A,B), and c21''(A,B) is congruent to 0, 1, and 

2 mod 3 respectively. □ 

Theorem 8.7 T has a 2 generated subalgebra of derived length t if n =  [21*2t-5] + 1 and n 

is the smallest possible size for T. 

Proof.  The cases t ≤ 5 has been shown in the previous examples.  Theorem 8.2 shows 

that for any t the shortest width of an element in Fs is [21*2s-4].  For such an element to be 

non-zero n ≥ [21*2s-4] + 1.  Since s = t-1, n ≥  [21*2t-5] + 1 is the smallest possible n.  It 

remains to show that we can find an example that shows that n = [21*2t-5] + 1. 

To construct these examples we need some preliminary lemmas.  Let A and B be 

enlarged (2n-1 x 2n-1) matrices each of which is the sum of elementary matrices Ei,i+1 

such that each Ei,i+1 is a summand in A or B but not both.  Let mn-1 denote an element in 

the free Lie Algebra on two generators, α and β, such that mn-1 is a single term with n-1 

factors.  We compute the cn-1(A,B) elements using [A,B] = AB-BA and when expanded,  

each associative product consists of n-1 terms of the Ei,i+1.  In order for one of these 

products to be E1,n, the terms must be E1,2 E2,3…En-1,n and similarly for –E1,n.  Any terms 

containing Ei,i+1 where i ≥ n will not contribute to the scalar in the (1,n) position.     

The following descriptions of A and B are needed for the next two lemmas:  Let 

A1 and B1 be the upper nxn blocks of matrix A and B respectively, and let A2 and B2 be 

the lower nxn blocks of matrix A and B respectively. 

Note: A and B are (2n-1 x 2n-1) size matrices, so the blocks of A1 and A2 overlap in row 

n and column n.  For example, if we look at the case where n = 2 we have  

A1 = ( )0 1
0 0  and A2 = ( )0 1

0 0  where  A = 
0 1 0
0 0 1
0 0 0

 
 
 
 

. 
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Lemma 8.8 cn-1(A,B) has the same element in the (1,n) position as does cn-1(A1,B1). 

Lemma 8.9 cn-1(A,B) has the same element in the (n, 2n-1) position as does cn-1(A2,B2). 

Suppose that cn-1(A,B) has A as a factor r times.  In order that the coefficient of 

E1,n is not 0 when we expand cn-1(A,B) the Ei,i+1, i<n must be distributed such that r come 

from A and the remainder from B.  If r ≠ | { Ei,i+1 / Ei,i+1 from A, i<n}| then the coefficient 

of E1,n is 0 in the cn-1(A,B).  In our example 8.3 we had the matrix calculation of [B,A] 

where A and  B had size n=3, and the c2(A,B) yielding E1,3 was m2 = β1α2  where the 

number of α’s equaled the number of A’s in the calculation and the number of β’s 

equaled the number of B’s in the calculation.  In particular, if mn-1' and mn-1''  have a 

different number of  α’s as factors, then the coefficient of E1,n must be 0 in one of them 

(at least).  Similar remarks hold for the coefficient of En,2n-1. 

Lemma 8.10 If E1,n has a non-zero coefficient in cn-1(A,B), then |{Ei,i+1 / i<n, Ei,i+1 in A}| 

= the number of times α is a factor of mn-1. 

Similar if E1,n has a non-zero coefficient in cn-1(A,B), then |{Ei,i+1 / i<n, Ei,i+1 in B}| = the 

number of times β is a factor of mn-1.  

Lemma 8.11 If En,2n-1 has a non-zero coefficient in cn-1(A,B), then |{Ei,i+1 / i<n, Ei,i+1 in 

A}| = the number of times α is a factor of mn-1.   

Similar if En,2n-1 has a non-zero coefficient in cn-1(A,B), then |{Ei,i+1 / i<n, Ei,i+1 in B}| = 

the number of times β is a factor of mn-1. 

Lemma 8.12 If E1,n has a non-zero coefficient in cn-1(A,B) then E1,n has a zero coefficient 

in cn-1' (A,B) if the number of times α is a factor of mn-1 and mn-1' are different.  The same 

remark holds for En,2n-1. 

 In example 8.6, when t = 5 
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c21(A, B) =  [[term1, c5(A, B)],c10(A, B)] =  

[[[[[[B, A], A], A], [B, A] ], [[[B, A], A], [B, A]]], [[[[B, A], B], [B, A]], [[[B, A], A], [B, A]]]] 

c21' (A, B) = [term2, c5(A, B)],c10(A, B)] =  

[[[[[[B, A], A], B], [B, A] ], [[[B, A], A], [B, A]]], [[[[B, A], B], [B, A]], [[[B, A], A], [B, A]]]] 

c21''(A, B) = [term3, c5(A, B)],c10(A, B)] =  

[[[[[[B, A], B], B], [B, A] ], [[[B, A], A], [B, A]]], [[[[B, A], B], [B, A]], [[[B, A], A], [B, A]]]] . 

where each matrix has the size 22.  We chose the α’s and β’s that yield the E1,22 = ± 1.  

They are: 

m21 = α1α2α3β4β5α6α7α8β9β10α11β12β13α14α15β16α17α18β19β20α21,  

where the number of α’s = 12; 

m21' = α1α2β3β4β5α6α7α8β9β10α11β12β13α14α15β16α17α18β19β20α21,  

where the number of α’s = 11; and 

m21'' =β1β2β3α4α5β6α7α8β9β10α11β12β13α14α15β16α17α18β19β20α21,  

where the number of α’s = 10. 

Individually for each case m21, m21' and m21'' the alphas show which entries above 

the main diagonal of matrix A are 1’s with the rest of the entries being 0 and the betas 

show which entries above the main diagonal of matrix B are 1’s with the rest of the 

entries 0 in order for each case to yield a coefficient of 1 or –1 for E1,22.  We note that if 

we choose the α’s and β’s from m21 we will get E1,22 to have coefficient 1 but m21' and 

m21'' will both have coefficient 0  for E1,22.  

Suppose that in our original nxn size matrices, A and B are determined from m21, 

A' and B' are determined from m21', and A'' and B'' are determined from m21''.  When we 

consider the case when t = 6 we expand A and B to 2n-1 x 2n-1 matrices.  We use Ai and 



43 43

Bi to represent nxn blocks of the 2n-1 x 2n-1 matrices A and B respectively.  We let A1 be  

the nxn matrix A determined from m21 and B1 be the nxn matrix B determined from m21, 

A2 be the nxn matrix A' determined from m21' and B2 be the nxn matrix B' determined 

from m21', and A3 be the nxn matrix A'' determined from m21'' and B3 be the nxn matrix 

B'' determined from m21''. 

The elementary matrices (A’s and B’s) for t = 5 with size n = 22 are enlarged as 

to size 2n–1 = 43 whereas the enlarging of Ei,i+1 becomes En+i,n+i+1.  Formally, let Wi = {j 

/ Ej,j+1 is a summand for Ai } with i=1, 2, 3 and Xi = {j / Ej,j+1 is a summand for Bi } with 

i=1, 2, 3.    In the following the elementary matrices are 2n–1 by 2n–1.   

Let A = 
1

i,i+1
i W

E
∈
∑ + 

2

n-1+i,n+i
i W

E
∈
∑ , B = 

1

i,i+1
i X

E
∈
∑ + 

2

n-1+i,n+i
i X

E
∈
∑ , and c42(x,y) = 

[c21(x,y),c21' (x,y)].  Then [c42(A,B)]1,43 = ± E1,43, and the number of alphas in m42 is 23, 

where m42 represent the α’s and β’s chosen so that [c42(A,B)]1,43 = ± 1. 

Using A and B we are assured a ± 1 in the E1,43 position for the following reason: 

The coefficient of E1,22 is 1 in c21(A, B) (from the t = 5 example 8.6), and  the coefficient 

of E1,22,  by lemma 8.12, is  0 in c21' (A,B).  The coefficient of E22,43 is 1 in c21'(A,B), and 

the coefficient of E22,43, by lemma 8.12, is 0 in c21(A, B).  This leaves a 1 in the E1,43 

position.  

Let A' = 
3

i,i+1
i W

E
∈
∑ + 

1

n-1+i,n+i
i W

E
∈
∑ , B' = 

3

i,i+1
i X

E
∈
∑ + 

1

n-1+i,n+i
i X

E
∈
∑ , and c42'(x,y) = 

[c21''(x,y), c21(x,y)].  Then [c42'(A', B')]1,43  = ± E1,43, and the number of alphas in m42' is 

22, where m42 represent the α’s and β’s chosen so that [c42'(A',B')]1,43 = ± 1. 

Using A' and B' we are assured a ± 1 in the E1,43 position for the following reason: 

The coefficient of E1,22 is 1 in c21''(A, B), and  the coefficient of E1,22,  by lemma 8.12, is  
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0 in c21(A,B).  The coefficient of E22,43 is 1 in c21(A,B), and the coefficient of E22,43, by 

lemma 8.12, is 0 in c21''(A, B).  This leaves a 1 in the E1,43 position.   

Let A'' = 
2

i,i+1
i W

E
∈
∑ + 

3

n-1+i,n+i
i W

E
∈
∑ ,  B'' = 

2

i,i+1
i X

E
∈
∑ + 

3

n-1+i,n+i
i X

E
∈
∑ , and c42''(x,y) = 

[c21'(x,y), c21''(x,y)].  Then [c42''(A'', B'')]1,43 = ± E1,43, and the number of alphas in m42'' is 

21, where m42'' represents the alpha’s and beta’s to obtain [c42''(A'', B'')]1,43 = ± 1. 

Using A'' and B'' we are assured a ± 1 in the E1,43 position for the following 

reason: The coefficient of E1,22 is 1 in c21'(A, B), and  the coefficient of E1,22,  by lemma 

8.12, is  0 in c21''(A,B).  The coefficient of E22,43 is 1 in c21''(A,B), and the coefficient of 

E22,43, by lemma 8.12, is 0 in c21'(A, B).  This leaves a 1 in the E1,43 position. 

With these results, we look at the number of alphas occurring in m42'', m42', and 

m42 where the number of alphas is congruent to 0, 1, and 2 modulo 3 respectively.  The 

same remark held for m21, m21', and m21'', in the later case t = 5.  Thus a recursive process 

follows in which going from t to t+1 when t ≥ 5, we obtain n = 21(2t–5) + 1, the smallest n 

such that L has a derived length of t. � 
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