
ABSTRACT

DAVIS, JIMENA LAMANDA. Uncertainty Quantification in the Estimation of Probability
Distributions on Parameters in Size-Structured Population Models. (Under the direction of
Professor H.T. Banks.)

We consider ordinary least squares (OLS) parameter estimation problems in which

the underlying dynamics are described by partial differential equations and the unknown

parameter of interest is a probability distribution describing the variability of growth rates

across a size-structured population. The focus of our work is the development of an inverse

problem computational methodology for the estimation of functional parameters in the

presence of (model and data) uncertainty. Since this optimization problem involves both

an infinite-dimensional state space and an infinite-dimensional parameter space, computa-

tionally efficient approximation methods for both parametric and non-parametric versions

of the OLS inverse problem are developed and discussed. The approximation methods that

we present are applicable to a variety of inverse problems, including Type II problems in

which only aggregate or population level longitudinal data is available.

We compare computational and statistical results of a delta function approxi-

mation method, a spline based approximation method, and a standard parametric OLS

formulation. The latter uses an a priori probability distribution in the inverse problem

for estimation of distributions of growth rates in size-structured marine populations. After

summarizing the underlying theoretical framework, we present several numerical examples

as validation of the theory. Convergence as well as sensitivity of the estimates with respect

to noise in the data is discussed for both approximation methods.

A computational framework for quantification of uncertainty associated with the

estimated parameters is given and sample numerical findings are presented. We demonstrate

how to construct “functional” confidence bands that will aid in quantifying the uncertainty

in estimated probability distributions by extending the standard asymptotic theory for

finite-dimensional OLS estimators. Using our inverse problem methodology, we present

results for the estimation of growth rate distributions in size-structured marine populations

illustrating the strengths and weaknesses associated with the three different computational

schemes.
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and ĉ = 0.027 from exponential fit of (6.8) to average size shrimp data.. . . . . . . . . . . 132

Figure 6.20 Exponential fit of (6.4) to ABN average size shrimp data excluding December
4 with dx̄

dt = 0.047(x̄ + 0.028). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Figure 6.21 (left): Estimated probability density with confidence region; (right): Esti-
mated probability distribution with confidence band for ABN data excluding De-
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Chapter 1

Introduction

The importance of estimating time and spatially dependent function parameters

as coefficients in distributed parameter models has been recognized for some time [22].

This is especially true when one is trying to determine mechanistic-based terms in a model.

General theoretical and computational ideas (called function space estimation convergence

or FSPEC in [22]) for approximation schemes for such problems were developed some years

ago and now are used somewhat routinely by practitioners. A diverse range of examples

involving systems of the form

∂u

∂t
+ V · ∇u = ∇ · (D∇u)− µu

for the state variables u = u(t, x) is discussed in Chapter 7 of [22], where parameters to be

estimated are generally vector functions of the form q = (D, V, µ) and are to be chosen from

some set Q of admissible parameter functions. As summarized in [22], spatially dependent

coefficients D = D(x) are used in [26] to study the effects of bioturbation on volcanic ash

records in core samples from deep sea sediments. Functional coefficients are also needed in

the insect dispersal studies of [19, 21] where vegetation effects on dispersal lead to spatially

dependent advection V = V (x) and time-dependent emigration/immigration µ = µ(t) terms

are important in capture-mark-release flea beetle experiments (these are used to characterize

“initial disturbance” effects due to the trauma from capture, handling, etc.). Similar studies

involving time-dependent anemotaxis (V = V (t)) and emigation/immigration (µ = µ(t)) in

cabbage root fly dispersal [44] are described in [20].

In these problems one uses data {yk} for the parameter dependent model val-

ues u(τk; q) (where typically τk = (ti, xj) are time and/or spatial covariates) to estimate
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functions q ∈ Q. The data {yk} can be regarded as a realization of the observation process

Yk = u(τk; q0) + εk, k = 1, . . . , n,

where the εk are measurement or observation errors and q0 are underlying “true” parameters

(assumed to exist in theoretical formulations). This leads to estimates q̂ defined by

q̂ = arg min
q∈Q

n∑

k=1

[u(τk; q)− yk]2

and corresponding ordinary least squares (OLS) estimator

qOLS(Y ) = arg min
q∈Q

n∑

k=1

[u(τk; q)− Yk]2,

which is a Q-space valued random variable. The distribution of this infinite-dimensional

random variable is called the sampling distribution and is a probability distribution on Q.

It is of great interest since knowledge of this will lead to information about the uncertainty

associated with the estimates q̂. In finite-dimensional problems, there is a rather complete

asymptotic theory to provide such results (see Chapter 12 of [60]). The major focus of this

dissertation is the development of an infinite-dimensional analogue.

Another class of problems to which such an infinite-dimensional theory would be

immediately applicable is that involving estimation of parameters in the Fokker-Planck or

forward Kolmogorov equation [1, 41] for transition probabilities p(s, y; t, x) for the stochastic

diffusion process X(t) for a growth process

∂p

∂t
+

∂[a(t, x)p]
∂x

=
1
2

∂2[b(t, x)p]
∂x2

.

Here a(t, x), the “drift” or mean growth rate, and b(t, x), the “diffusion” or second moment

of the rate of increase, are the functional parameters q = (a, b) to be estimated. Because

the population density u(t, x), where growth is assumed to be a stochastic diffusion process,

also satisfies such an equation (see [53]), this model can be used as a stochastic alternative

(e.g., see [27]) to the Sinko-Streifer deterministic growth model [5, 46]

∂v

∂t
+

∂

∂x
(g(t, x)v) = −µ(t, x)v.

The estimation of time-dependent mortalities in these equations is important in recent prob-

lems for sublethal effects of pesticides [2, 3] in insect populations where constant parameters

µ prove inadequate in describing population life data.
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In this dissertation we consider another class of estimation problems where the

functions to be estimated are actually probability distributions or densities. This class of

problems arises when one assumes that a probability distribution describes the distribution

of growth rates g in the Sinko-Streifer deterministic growth model. Such formulations are

called Growth Rate Distribution (GRD) models [7, 8, 13, 14]. We consider approximation

methods for this general class of estimation or inverse problems wherein the quantity of

interest is a probability distribution. In particular we assume that we have a parameter (ω ∈
Ω) dependent system with model responses x(ω) describing in some manner a population of

interest. For data or observations, we are given a set of values {zl} for the expected values

E [xl(ω)|P ] =
∫

Ω
xl(ω)dP (ω)

with respect to an unknown probability distribution P describing the distribution of the

parameters ω over the population under investigation. We wish to use this data to choose

from a given family P(Ω) the distribution P ∗ that gives a best fit of the underlying model

to the data. Here we formulate an ordinary least squares (OLS) version of the problem, but

this is not essential to our results and one could equally well use a weighted least squares,

a maximum likelihood estimator, etc., approach. Thus we seek to minimize

J(P ) =
∑

l

|E [xl(ω)|P ]− zl|2

over P ∈ P(Ω).

Even for simple dynamics for xl, this is in general an infinite-dimensional op-

timization problem and approximations that lead to computationally tractable schemes

are desirable. That is, it is useful to formulate methods to yield finite-dimensional sets

PM (Ω) over which to minimize J(P ). Of course, we wish to choose these methods so that

“PM (Ω) → P(Ω)” in some sense. In this case we shall use the Prohorov metric [6, 29] of

weak star convergence of measures to assure the desired approximation results. A general

theoretical framework is given in [6] with specific results on the approximations we use here

given in [4, 24]. Briefly, ideas for the underlying theory are as follows. One argues continu-

ity of P → J(P ) on P(Ω) with the Prohorov metric (this is trivial in the cases considered

here). If Ω is compact (again, easily established in our case) then it is known that P(Ω) is

a complete metric space and is also compact when taken with the Prohorov metric. More-

over, if the approximation families PM (Ω) are chosen so that elements PM ∈ PM (Ω) can
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be found to approximate elements P ∈ P(Ω) in the Prohorov metric, then well-posedness

(existence, continuous dependence of estimates on data, etc.) can be obtained.

The data {zl} available (which, in general, will involve longitudinal or time evolu-

tion data) determines the nature of the problem. The most classical problem (which we shall

refer to as a Type I problem) is one in which individual longitudinal data is available for

members in the population. In this case there is a wide statistical literature (in the context

of hierarchical modeling, mixing distributions, mixed or random effects, mixture models,

etc.) [28, 34, 35, 36, 37, 48, 49, 50, 52, 57, 58, 61] which provides theory and methodology for

estimating not only individual parameters but also population level parameters and allows

one to investigate both intra-individual and inter-individual variability in the population

and data. In what we shall refer to as Type II problems one has only aggregate or population

level longitudinal data available. This is common in marine, insect, etc., catch and release

experiments [22] where one samples at different times from the same population but cannot

be guaranteed of observing the same set of individuals at each sample time. This type of

data is also typical in experiments where the organism or population member being studied

is sacrificed in the process of making a single observation (e.g., certain physiologically based

pharmacokinetic (PBPK) modeling [25, 39, 55] and whole organism transport model [22]).

In this case one may still have dynamic (i.e., time course) models for individuals, but no

individual data is available. Finally, the third class of problems which we shall refer to as

Type III problems involves dynamics which depend explicitly on the probability distribution

P itself. In this case one only has dynamics (aggregate dynamics) for the expected value

x̄(t) =
∫

Ω
x(t;ω)dP (ω)

of the state variable. No dynamics are available for individual trajectories x(t;ω) for a given

ω ∈ Ω. Such problems arise in viscoelasticity and electromagnetics as well as biology [6, 15,

16, 24, 42]. While the approximation methods we discuss in this dissertation are applicable

to all three types of problems, we shall illustrate the computational results in the context

of size-structured marine populations where the inverse problems are of Type II.

Finally, we note that in the problems considered here, one cannot sample directly

from the probability distribution being estimated and this again is somewhat different from

the usual case treated in some of the statistical literature, e.g., see [63, 64] and the references

cited therein.

In Chapter 2 we discuss the Growth Rate Distribution model, a generalization
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of the Sinko-Streifer model for size-structured populations. We also outline the standard

parametric approach as well as two computationally efficient approximation schemes (one

based on delta functions and one based on piecewise linear splines) for the Growth Rate

Distribution model in both forward and inverse problem calculations.

We present formulations for the standard parametric inverse problem as well as

the non-parametric inverse problems in Chapter 3. As explained in detail in Chapters 2 and

3, the original estimation problem for the infinite-dimensional parameter (probability distri-

bution) is reduced to a finite-dimensional problem via the approximation methods studied

here. Confidence intervals based on standard errors can be used to quantify the uncertainty

associated with estimates of the finite-dimensional parameters from each method. Thus, we

also give a summary of the finite-dimensional asymptotic distribution theory for which we

seek a function space analogue.

In order to gain information on the capabilities of the approximation methods,

we test the methods first with simulated data before applying the schemes to experimental

data. We compare the approximation methods based on the numerical results from our

computations with simulated data in Chapter 4 with respect to convergence and sensitivity

of the estimates obtained as well as stability of the inverse problem. We then summarize

results from both the parametric and non-parametric versions of the estimation problem

for the growth rate distribution of a size-structured mosquitofish population.

In Chapter 5 we discuss an extension of the asymptotic standard error theory

for finite-dimensional OLS estimators to functional parameters. We explain how to con-

struct functional confidence bands based on the confidence intervals we obtain for the

finite-dimensional parameters used in approximating the parameter of interest (probability

distribution) in the class of estimation problems that we consider in this dissertation. Com-

putational results with simulated data are presented to demonstrate how one can use these

confidence bands to quantify the uncertainty in estimated probability distributions.

We apply the inverse problem computational methodology that we have developed

to experimental data for a size-structured shrimp population cultivated in marine raceways

in Chapter 6. We outline a computational approach to aid in the design of experiments to

validate the Growth Rate Distribution model. Parameter estimation results for the growth

rate distribution given experimental data collected based on our design analysis demonstrate

the usefulness of our methodology in understanding the early growth dynamics of shrimp.

Finally, we offer some concluding remarks and future directions for this work in Chapter 7.



6

Chapter 2

Mathematical Model for

Size-Structured Populations

2.1 Introduction

In this chapter we present the Growth Rate Distribution model, a modification of

the Sinko-Streifer model, which we use to describe size-structured mosquitofish populations.

Mosquitofish have been used in the place of pesticides as a way to control mosquito pop-

ulations in rice fields by eating the water-borne mosquito larvae [30]. Biologists desire to

correctly predict the growth and decline of the mosquitofish population in order to determine

the optimal densities of mosquitofish to use in rice fields to control mosquito populations.

Thus, a mathematical model that accurately describes the mosquitofish population would

be beneficial in this application as well as in other problems involving population dynamics

and age/size-structured population data.

Based on data collected from rice fields, a reasonable mathematical model would

have to predict two key features characteristic of mosquitofish population data: dispersion

and bifurcation of the population density over time [7, 13, 14]. The data shown in Figure

2.1 exhibits these two features; that is, as time progresses, the population density spreads

out (dispersion) and the unimodal density becomes a bimodal density (bifurcation).

There have been various types of mathematical models developed in the literature

to model population dynamics [46]. One such model, the Sinko-Streifer model, groups

individuals together based on shared characteristics or behaviors. The Sinko-Streifer [62]
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Figure 2.1: Example of mosquitofish population data collected in rice fields from [7].
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model has been used widely to describe various age and size-structured populations [2,

3, 46]. However, it has been shown that the Sinko-Streifer model is not rich enough to

predict features typically observed in mosquitofish population data (see Figure 2.1). It

was suggested in [7] that these features are a result of variability in the growth rates of the

mosquitofish. Based on these ideas, the Growth Rate Distribution model was proposed in [7]

and developed in [13] to account for this variability by imposing a probability distribution

on the growth rates in the Sinko-Streifer model. We discuss the Growth Rate Distribution

model in the next section. In Section 2.3 we present computationally efficient approximation

methods for the Growth Rate Distribution model that can be used in the estimation of

probability distributions on parameters in size-structured population models.

2.2 Growth Rate Distribution Model: Modified Sinko-Streifer

Model

Before discussing the Growth Rate Distribution (GRD) model, which was first

introduced in [7] and developed in [13], we describe one version of the Sinko-Streifer (SS)

model. The Sinko-Streifer model (also known as the McKendrick-von Foerster model) is

used for modeling age and size-structured populations because it takes into account that

individuals in a population may have different characteristics or behaviors. The Sinko-

Streifer model for size-structured mosquitofish populations is given by the following partial

differential equation

vt(t, x; g) + (g(t, x)v(t, x; g))x = −µ(t, x)v(t, x; g), x < x < x̄, t > 0

v(0, x; g) = v0(x; g)

R(t) = g(t, x)v(t, x; g) =
∫ x̄

x
K(t, ξ)v(t, ξ; g)dξ.

(2.1)

We note that v(t, x; g) represents the size or population density (with units of number per

size class) of individuals with growth rate g at time t with size (length) x. The number of

mosquitofish in the population at time t with sizes between x and x̄ is

NSS(t) =
∫ x̄

x
v(t, x; g)dx.

The growth rate g(t, x) of individual mosquitofish in the population is given by the deter-

ministic growth model
dx

dt
= g(t, x). (2.2)
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The mortality rate of the mosquitofish is given by µ(t, x), while K(t, x) represents the

fecundity kernel. The initial condition at t = 0 is represented by the size density function

v0(x; g). The boundary condition R(t) at x = x, which is in terms of K(t, x), represents the

recruitment or birth rate. At x = x̄ the additional physical boundary condition

g(t, x̄) = 0

ensures the maximum size of the mosquitofish is x̄.

All individual mosquitofish of the same size x at the same time t are assumed to

have the same growth rate g(t, x) in the SS model. However, with this assumption, solutions

to (2.1) do not exhibit the dispersion and bifurcation of the mosquitofish population density

observed in the data as noted earlier. The Sinko-Streifer model cannot be used as is to model

the mosquitofish population because it does not predict dispersion or bifurcation of the

population in time under biologically reasonable assumptions [7]. To predict the features

of dispersion and bifurcation typical of the mosquitofish population, the SS model was

modified so that the individual growth rates of the mosquitofish vary across the population

and individuals with the same growth rate are assumed to be in the same subpopulation [7,

13, 14]. This assumption is more reasonable biologically based on further analysis of the

growth dynamics of the mosquitofish. Male mosquitofish typically grow to a maximum size

of 30mm, while female mosquitofish usually grow to a maximum size of 60mm. Therefore, it

is reasonable to assume that male and female mosquitofish grow at different rates with their

individual growth rates depending on additional parameters. The Growth Rate Distribution

model assumes that the population is actually made up of several subpopulations, where

individuals in the same subpopulation have the same growth rate and hence a distribution

of growth rates across the population. The population density u(t, x;P) in the GRD model

is given by

u(t, x;P) =
∫

g∈G
v(t, x; g)dP(g), (2.3)

where v(t, x; g) is the solution to (2.1) with growth rate g(t, x), G is the collection of ad-

missible growth rates, and P is a probability measure on G. In this model the number of

mosquitofish in the population between sizes x and x̄ at time t is given by

NGRD(t) =
∫ x̄

x
u(t, x;P)dx.

By modifying the SS model so that the growth rates of the mosquitofish vary among the

individuals in the population (instead of being the same for all mosquitofish in the popu-
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lation), the GRD model is obtained and has been shown to exhibit both dispersal in time

of the mosquitofish population and the development of a bimodal density from a unimodal

density [7, 8, 13, 14].

For our considerations, we assume that the admissible growth rates are size-

dependent only and have the form

g(x; b, γ) =





b(γ − x), x ≤ x ≤ γ,

0, otherwise,

where b represents the intrinsic growth rate and γ = x̄ represents the maximum size of the

mosquitofish. This choice is based on work in [7], where the idea of other properties related

to the growth rates varying among the mosquitofish is discussed. Under the assumption of

varying intrinsic growth rates and maximum sizes, we in fact assume that b and γ are both

random variables taking values in the compact sets B and Γ, respectively. A reasonable

assumption is that both are bounded closed intervals. The collection of admissible growth

rates is then characterized as

G = {g(x; b, γ)|b ∈ B, γ ∈ Γ} ,

where both B and Γ are bounded closed intervals (i.e., compact sets in R). Thus, G is

also compact in, for example, C[x,X], where X = max(Γ). Then P(G) is compact in the

Prohorov metric and we are in the framework outlined in Chapter 1. In the remainder of

this chapter as well as the following outline of the approximation methods in Section 2.3

and inverse problem formulations in Chapter 3, we chose a growth rate parameterized by

the intrinsic growth rate b with γ = 1, leading to a one parameter family of varying growth

rates g among the individuals in the population. However, these ideas easily extend to the

two parameter family as well. We also assume here that µ(t, x) = 0 and K(t, x) = 0 in

order to focus on only the distribution of growth rates; however, distributions could just as

well be placed on µ and K.

Before discussing the approximation methods, we derive the initial condition driven

solution to the SS model. Since the functions g(t, x), µ(t, x), and K(t, x) are known explic-

itly, we can determine the solution via the method of characteristics [38]. Figure 2.2 depicts

the (t, x) plane separated into two regions by the curve G(x) = T (x; 0; x) = X(t; 0, x) pass-

ing through (0, x), where X(t; t̂, x̂) is the function mapping t → x and T (x; t̂, x̂) is its inverse

mapping x → t. The characteristic curve passing through (t̂, x̂) in the (t, x) plane is denoted
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by (t,X(t; t̂, x̂)) and satisfies

d

dt
X(t; t̂, x̂) = g(t,X(t; t̂, x̂))

X(t̂; t̂, x̂) = x̂.

The solution to the SS model is valid only along the characteristic curve and is given by

the initial condition driven solution for t ≤ G(x) and by the recruitment driven solution for

t > G(x). The initial condition driven solution for t ≤ G(x) is given by

v(t, x; g) = v0(X(0; t, x); g) exp
{
−

∫ t

0
[gx(ξ, X(ξ; t, x)) + µ(ξ,X(ξ; t, x))]dξ

}
, (2.4)

and the recruitment driven solution for t > G(x) is given by

v(t, x; g) =
R(T (x; t, x))

g(T (x; t, x), x)
exp

{
−

∫ t

T (x;t,x)
[gx(ξ, X(ξ; t, x)) + µ(ξ,X(ξ; t, x))]dξ

}
. (2.5)

Since we assume there are no births into the population (K(t, x) = 0), then R(t) = 0 for

all t and the solution to the SS model in the region t > G(x) is given by v(t, x; g) = 0.

Figure 2.2: Regions in the (t, x) plane defining the solution to the Sinko-Streifer model.

We first determine the equation for the characteristic curve by solving

d

dt
X(t; t̂, x̂) = b(1−X(t; t̂, x̂))

X(t̂; t̂, x̂) = x̂.
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The solution is given by

X(t; t̂, x̂) = 1− (1− x̂) exp{b(t̂− t)}, (2.6)

and its inverse is given by

T (x; t̂, x̂) = t̂− 1
b

ln
(

1− x

1− x̂

)
. (2.7)

Therefore, G(x) = T (x; 0, x) is given by

G(x) = −1
b

ln
(

1− x

1− x

)
.

Substituting the appropriate parameter values in (2.4), we obtain the initial condition driven

solution

v(t, x; g) = v0(X(0; t, x); g) exp
{
−

∫ t

0
[gx(ξ,X(ξ; t, x)) + µ(ξ, X(ξ; t, x))]dξ

}

= v0(1− (1− x)ebt; g) exp
{
−

∫ t

0
−b dξ

}

= v0(1− (1− x)ebt; g)ebt

for t ≤ G(x) = −1
b ln

(
1−x
1−x

)
. Our computations with the GRD model (2.3) are very straight-

forward since we have an explicit solution for the SS model (2.1) for the examples we

consider.

2.3 Approximation Methods

We are interested in using the GRD model to describe size-structured marine

populations. Given some data, we would like to determine the growth rate distribution P ∗

that gives the best fit of the underlying model to the data. However, the general optimization

problem which we outline in Chapter 3 involves both an infinite-dimensional state space

(u) and an infinite-dimensional parameter space (the space P of probability measures)

which poses problems if one wants to use this model in inverse problem calculations. Thus,

approximation methods leading to efficient computations are important for this purpose.

We now briefly discuss the different approximation methods that we consider in the inverse

problem for the estimation of growth rate distributions of size-structured populations.
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2.3.1 Parametric Approach: PAR(M,N)

In the first method that we consider for this problem, we use the standard para-

metric approach based on the assumption that we have a priori knowledge about the exact

form of the probability distribution on the growth rates of the mosquitofish. If we assume

that the probability distribution P is (absolutely) continuous, then dP (b)
db = p(b), where

p(b) represents the probability density function (pdf) corresponding to P. The population

density from the GRD model (2.3) is then given by

u(t, x; θ) =
∫

B
v(t, x; g(x; b))p(b; θ)db, (2.8)

where θ represents the parameters that are associated with the a priori probability density

and distribution. We denote this approach by PAR(M, N), where M is one less than the

number of parameters in θ and N is the number of quadrature nodes used in approximating

the integral above with the composite trapezoidal rule [56]. We set M to one less than the

number of parameters in θ so when using the asymptotic standard error theory which is

outlined in Chapter 3 the correct factor is used in our computations.

Results for one of the computational examples in Chapter 4 were obtained with

simulated data (representative of typical mosquitofish data observed in rice fields such as

that in Figure 2.1) generated with a bi-Gaussian distribution on the growth rates. The

bimodality usually seen in the mosquitofish data has been attributed to the fact that male

and female mosquitofish grow to different maximum sizes. Previous simulations [7] demon-

strated that an assumption of a bi-Gaussian distribution on the growth rates leads to both

dispersion and bifurcation, qualitative features that are observed in mosquitofish data. The

following bi-Gaussian probability density function p, which is an average of two Gaussian

distributions, was used to create one of the data sets used in our computational tests

p(b; µb1 , σ
2
b1 , µb2 , σ

2
b2) =

exp
{
− (b−µb1

)2

2σ2
b1

}

2
√

2πσ2
b1

+
exp

{
− (b−µb2

)2

2σ2
b2

}

2
√

2πσ2
b2

, (2.9)

where the parameters (µb1 , µb2) and (σ2
b1

, σ2
b2

) represent the means and variances, respec-

tively, of a bi-Gaussian distribution on the intrinsic growth rates b. An example of a bi-

Gaussian density and distribution are shown in Figure 2.3. In terms of the parametric

method PAR(M, N), θ = (µb1 , σ
2
b1

, µb2 , σ
2
b2

), and we set M = 3 even though θ consists

of four parameters. Thus, the parameter θ is contained in RM+1
+ . We remark that being
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able to identify the form of the probability distribution a priori is required when using this

approach.
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Figure 2.3: Example of a bi-Gaussian probability density and distribution.

2.3.2 Non-parametric Approaches: DEL(M) and SPL(M,N)

As pointed out in the previous section, one must be able to identify the form of

the probability distribution using prior knowledge in order to use the parametric approach.

Knowledge of the form of the distribution leads to efficient computations when the parame-

ter set is relatively small. However, one may not be able to specify (correctly) the probability

distribution a priori which could result in poor fits to data or incorrect conclusions based on

good fits to data with a misspecified distribution [23]. Non-parametric approaches do not

require any assumptions with respect to the form of the probability distribution. Instead

of using a specific distribution in the GRD model (2.3), we use finite approximations to the

probability distribution. Based on work in [4] and [24] which we summarize in Chapter 3,

we are guaranteed convergence (in the Prohorov metric [6, 29]) of distributions with the

families of approximating functions that we now discuss.

The first approach, which has been discussed and used in [13] and [14], involves the

use of delta functions or Dirac delta measures. The population is assumed to consist of a fi-

nite collection of subpopulations with corresponding probabilities. We assume that the form

of the approximating probability distribution PM placed on the growth rates is piecewise

constant on the collection GM = {gM
k }M

k=0 of admissible growth rates gM
k (x; bM

k ) = bM
k (1−x)

for k = 0, 1, . . . , M. Figure 2.4 shows a delta function approximation to a bi-Gaussian dis-
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tribution. The stem plot is our representation of Dirac measures (delta functions) with

atoms at {bM
k } “approximating” the probability density shown in Figure 2.3. Notice the

difference in the scale in the plot of the probability density in Figure 2.3 versus the scale

in the plot of the approximate probability density shown in Figure 2.4. We will say more

about this later. The piecewise constant approximate probability distribution generated

with the delta function method is also shown in Figure 2.4 (we note the vertical lines are

not a part of the approximation of the probability distribution).
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Figure 2.4: Example of a delta function approximation of a bi-Gaussian probability density
and distribution.

For each subpopulation with growth rate gM
k , there is a corresponding probability

pM
k that an individual is in subpopulation k. The population density u(t, x; P ) in (2.3) is

then approximated by

u(t, x; {pM
k }) =

M∑

k=0

v(t, x; gM
k )pM

k , (2.10)

where v(t, x; gM
k ) is the subpopulation density from (2.1) with growth rate gM

k . We denote

the delta function approximation method as DEL(M), where M + 1 delta functions are

used in this approximation.

While it has been shown that DEL(M) provides a nice approximation to (2.3),

a better approach might involve techniques that will provide a smoother approximation

of (2.3) and faster convergence of the approximated probability distribution in the case

of continuous probability distributions on the growth rates. Using piecewise linear splines

in the place of delta functions we provide a much smoother approximation of (2.3) when

the “true” probability distribution on the growth rates of the mosquitofish is continuous.
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Assuming the form of the approximating probability distribution on the growth rates is

continuous, the second non-parametric approximation scheme involves the use of piecewise

linear spline functions to approximate the density P ′(b) = dP
db (b) = p(b). In Figure 2.5 we see

a plot of a spline approximation to the bi-Gaussian distribution in Figure 2.3. We note that

the approximate probability density is linear on each interval [bk, bk+1]. We also point out

that the scale in the plot of the approximate probability density in Figure 2.5 is the same

as the scale in the plot of the “true” probability density in Figure 2.3 which is explained

in the following chapters. Moreover, we observe a much smoother approximation of the

bi-Gaussian probability distribution when splines are used as noticed in Figure 2.5.
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Figure 2.5: Example of a spline function approximation of a bi-Gaussian probability density
and distribution.

Denoting this method as SPL(M, N), where M + 1 basis elements (splines) are

used to approximate the probability distribution on the growth rates, u(t, x;P) from (2.3)

is approximated by

u(t, x; {aM
k }) =

M∑

k=0

aM
k

∫

B
v(t, x; g(x; b))lMk (b)db, (2.11)

where g(x; b) = b(1− x) and pM
k (b) = aM

k lMk (b) is the probability density for individuals in

subpopulation k. N represents the number of quadrature nodes used to approximate the

integral in (2.11). The composite trapezoidal rule [56] was also used to approximate the

integral in (2.11) in the computations that were performed.

In the next chapter we examine the inverse problem for the estimation of the prob-

ability distribution P on the growth rates for size-structured populations. We outline the

different formulations of the inverse problem for the parametric and non-parametric meth-
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ods discussed in this chapter. We also summarize the theoretical background guaranteeing

convergence of the approximated distributions considered here.



18

Chapter 3

Parameter Estimation Problem

We discuss the parameter estimation problem for the growth rate distribution that

gives the best fit of the underlying GRD model to a given data set in this chapter. The

ordinary least squares (OLS) problem involves determining the probability distribution P ∗

that minimizes the cost functional

J(P ) =
Nt∑

i=1

Nx∑

j=1

|u(ti, xj ;P )− ûij |2 (3.1)

over the space of probability measures P, where u(ti, xj ; P ) is the solution to (2.3) and ûij

is the data as described in Chapter 4. Here Nt represents the number of time points and

Nx represents the number of size classes. We see that we must use approximation methods

in order to solve (3.1) since it involves both an infinite-dimensional state space (u) and

an infinite-dimensional parameter space (P). Using the approximation methods discussed

in Chapter 2, the original infinite-dimensional optimization problem in (3.1) is reduced to

a finite-dimensional problem. After outlining the three formulations of the approximate

inverse problem for PAR(M, N), DEL(M), and SPL(M, N), we summarize the asymptotic

standard error theory for finite-dimensional OLS estimators which is used to quantify the

uncertainty in the estimates obtained from these three methods.

3.1 Formulation of the Parametric Inverse Problem

We recall in the parametric version that the form of the probability distribution is

known and is parameterized by the vector θ ∈ RM+1
+ . Therefore, the OLS problem in (3.1)
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is reduced to the following OLS inverse problem

min
θ∈RM+1

+

J(θ) = min
θ∈RM+1

+

∑

i,j

|u(ti, xj ; θ)− ûij |2, (3.2)

which we solve for θ. We note that θ is in RM+1
+ since the components of θ correspond

to the means and variances associated with the probability distribution and must be pos-

itive because they are representative of the growth rate g. The OLS problem in (3.2) is

a constrained optimization problem, and we use MATLAB fmincon to find an estimate

θ̂ corresponding to the minimal value J(θ̂). Since this problem is constrained, we use the

active-set optimization algorithm option. After determining an optimal value for θ, we then

use this value in the a priori probability density function p to generate the estimated prob-

ability density. Since the following relation holds between a continuous probability density

function and its corresponding probability distribution

P (b) =
∫ b

−∞
p(ξ)dξ,

an estimate for the probability distribution P is computed by integrating the estimated

probability density p.

3.2 Formulation of the Non-parametric Inverse Problem

In Chapter 1 we briefly outlined the underlying theory which is fundamental to

the approximation methods and computational schemes used in determining estimates of

the probability distribution. We note that it is important to have a topology on the space

of probability measures P and continuity of P → J(P ) on P(Ω) for some set Ω as well as

compactness results for the theoretical arguments that are underlying this work. As already

stated, we make use of the Prohorov metric [6, 29] which is defined below.

Definition 3.2.1 Let P(Ω) be the set of probability measures on the Borel subsets of Ω,

where Ω is a complete metric space with metric d. For any closed subset S ⊂ Ω and ε > 0,

define Sε ≡ {ω ∈ Ω|d(ω̃, ω) < ε, ω̃ ∈ Ω}. The Prohorov metric ρ : P(Ω) × P(Ω) → R+ is

defined by

ρ(P1, P2) ≡ inf{ε > 0|P1[S] ≤ P2[Sε] + ε, S closed, S ⊂ Ω}.

Some well known properties of the Prohorov metric include
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• (P(Ω), ρ) is a complete metric space.

• If Ω is compact, then (P(Ω), ρ) is a compact metric space.

While the definition of the Prohorov metric ρ is not very intuitive, the following theorem [29]

proves to be very useful.

Theorem 3.2.1 Given Pk, P ∈ P(Ω), the following convergence statements are equivalent:

• ρ(Pk, P ) → 0.

• ∫
Ω h dPk(ω) → ∫

Ω h dP (ω) for all bounded, uniformly continuous functions h : Ω → R.

• Pk[A] → P [A] for all Borel sets A ⊂ Ω with P [∂A] = 0.

From this theorem, one notes that convergence in the ρ metric is equivalent to convergence

in distribution. When one considers P(Ω) ⊂ C∗
B(Ω), where C∗

B(Ω) denotes the topological

dual of the space CB(Ω) of bounded continuous functions on Ω, then convergence in the ρ

topology is equivalent to weak star convergence in P(Ω). Furthermore, as a result of the

equivalence relations in Theorem 3.2.1, we remark that ρ(Pk, P ) → 0 is equivalent to
∫

Ω
xl(ω)dPk(ω) →

∫

Ω
xl(ω)dP (ω),

or “convergence in expectation” since the above relation is equivalent to

E [xl(ω)|Pk] → E [xl(ω)|P ].

This establishes continuity of P → J(P ) in the ρ topology, and the existence of a solution

to the original parameter estimation problem can be ascertained from the continuity of

P → J(P ) and compactness of P(Ω) (which follows from compactness of Ω).

Once existence of a solution is established, computational issues must be addressed

since the parameter space (the probability measure space P) is infinite-dimensional. As

already noted in the Introduction, we seek methods where the finite-dimensional sets PM (Ω)

converge to P(Ω). Theoretical arguments exist for both the delta function approximation

method and the spline based approximation method providing us with two ways to choose

approximation families for this purpose. We summarize those arguments and outline the

inverse problem formulation in the next two sections for each non-parametric scheme.
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3.2.1 Delta Function Approximation Method: DEL(M)

The convergence argument for the approximating family consisting of delta func-

tions (Dirac delta measures) is given by the following theorem developed in [4].

Theorem 3.2.2 Let Ω be a complete, separable metric space with metric d, S be the class

of all Borel subsets of Ω and P(Ω) be the space of probability measures on (Ω,S). Let

Ω0 = {ωj}∞j=0 be a countable, dense subset of Ω. Then the set of P ∈ P(Ω) such that P has

finite support in Ω0 and rational masses is dense in P(Ω) in the ρ metric. That is,

P0(Ω) ≡


P ∈ P(Ω) : P =

k∑

j=0

pjδωj , k ∈ N, ωj ∈ Ω0, pj rational , pj ≥ 0,

k∑

j=0

pj = 1





is dense in P(Ω) relative to ρ where δωj is the Dirac measure with atom at ωj and N are

nonnegative integers.

Therefore, if we define the following finite-dimensional approximation PM (Ω) to the prob-

ability measure space P(Ω)

PM (Ω) =

{
P ∈ P(Ω)|P =

M∑

k=0

pM
k δωk

,
M∑

k=0

pM
k = 1

}
,

then PM (Ω) is a compact subset of P(Ω) in the ρ metric with PM (Ω) ⊂ PM+1(Ω). Further-

more, we note that as M → ∞ elements in PM (Ω) can be used to approximate elements

in P(Ω) as a result of P0(Ω) =
⋃∞

M=0 PM (Ω) being dense in P(Ω). It is important to point

out that this theory guarantees convergence of distributions, not densities, in the Prohorov

metric.

We note that the original parameter estimation problem in (3.1) is approximated

by the least squares problem

min
P∈PM (G)

J(P ) = min
P∈PM (G)

∑

i,j

|u(ti, xj ;P )− ûij |2 (3.3)

= min
P∈PM (G)

∑

i,j

(
u(ti, xj ;P )2 − 2u(ti, xj ; P )ûij + (ûij)2

)
,

where ûij is the data and PM (G) is the finite-dimensional approximation to P(G). The

finite-dimensional approximation PM (G) is given by

PM (G) =

{
P ∈ PM (G)|P (b) =

M∑

k=0

pM
k δbM

k
(b),

M∑

k=0

pM
k = 1

}
, (3.4)
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where δbM
k

(b) is the delta function with an atom at bM
k for gM

k (x; bM
k ) = bM

k (1−x). Further-

more, this least squares inverse problem (3.3) becomes a constrained quadratic program-

ming problem [13, 14]. Letting p be the vector that contains pM
k , 0 ≤ k ≤ M, when using

DEL(M) we define A as the matrix with entries given by

Akm =
∑

i,j

v(ti, xj ; gM
k )v(ti, xj ; gM

m ),

b as the vector with entries given by

bk = −
∑

i,j

ûijv(ti, xj ; gM
k ),

and c as the scalar

c =
∑

i,j

(ûij)2,

where 0 ≤ k, m ≤ M. The optimization problem in (3.3) reduces to finding a minimizer of

F (p) ≡ pTAp + 2pTb + c (3.5)

over PM (G). We remark that non-negativity constraints on the weights {pM
k } as well as the

last constraint in (3.4) are included in the programming of the inverse problem which we

solve with the MATLAB function quadprog.

3.2.2 Spline Based Approximation Method: SPL(M,N)

In our earlier discussion, we commented on the advantage of using piecewise lin-

ear splines versus delta functions in approximations of continuous probability distributions.

Banks-Pinter [24] developed the following theorem which is applicable when arguing con-

vergence of PM (G) to P(G) in the spline based approximation scheme.

Theorem 3.2.3 Let F be a weakly compact subset of L2(Ω), with Ω compact, and let PF (Ω)

be the family of probability distribution functions on Ω generated by F as a set of densities

PF (Ω) = {P ∈ P(Ω)|P ′ = p, p ∈ F}.

Then PF (Ω) is a ρ compact subset of (P(Ω), ρ) where ρ is the Prohorov metric on the set

P(Ω) of all probability density functions on Ω.
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As a result of this theorem, one can choose a piecewise linear spline approximation pM (ω)

to p(ω)

pM (ω) =
M∑

k=0

aM
k lMk (ω),

where {aM
k } are rational numbers with lMk representing the piecewise linear spline functions

such that pM → p ∈ L2(Ω) since F ⊂ L2(Ω). One can then show convergence of PM to P in

the ρ metric. Moreover, if FM = {h ∈ L2(Ω)|h(ω) =
∑M

k=0 aM
k lMk (ω)}, then

⋃
M PFM (Ω) is

dense in PF (Ω) in the Prohorov metric when PFM (Ω) = {P ∈ P(Ω)|P =
∫

p, p ∈ FM}. We

remark that this theory guarantees convergence of the distributions in the Prohorov metric

as well as convergence of the densities in L2 with appropriately chosen coefficients {aM
k }.

The least squares problem in the case of the spline based approximation method

is the same as that of the delta function approximation method in (3.3). However, the

finite-dimensional approximation PM (G) is given by

PM (G) =

{
P ∈ P(G)|P ′(b) =

M∑

k=0

aM
k lMk (b),

M∑

k=0

aM
k

∫

B
lMk (b)db = 1

}
(3.6)

for g(x; b) = b(1 − x). Again, the least squares inverse problem reduces to minimizing the

constrained quadratic programming problem in (3.5) over PM (G). For SPL(M,N), let p be

the vector that contains aM
k , 0 ≤ k ≤ M. Then the entries in the matrix A are

Akm =
∑

i,j

∫

B
v(ti, xj ; g)2lMk (b)lMm (b)db,

the entries in the vector b are

bk = −
∑

i,j

ûij

∫

B
v(ti, xj ; g)lMk (b)db,

and

c =
∑

i,j

(ûij)2,

where 0 ≤ k, m ≤ M. We note again that non-negativity constraints on {aM
k } as well as

the last condition in (3.6) are included in the programming of the inverse problem which is

carried out with MATLAB quadprog.
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3.3 Asymptotic Standard Error Theory for Finite-Dimen-

sional Parameters

We have discussed how the original infinite-dimensional inverse problem (3.1) is re-

duced to a finite-dimensional problem in each of the methods considered (θ in PAR(M,N),

{pM
k }M

k=0 for DEL(M), and {aM
k }M

k=0 for SPL(M, N)). We briefly outline the standard sta-

tistical framework for asymptotic distributions of finite-dimensional ordinary least squares

(OLS) estimators [36, 40, 45, 59, 60] which we use to determine information about the

reliability of the estimates of the finite-dimensional parameters from the approximation

methods.

We begin by considering the following nonlinear statistical model for the observa-

tion or measurement process

Yj = Y (τj) = f(τj ; θ0) + εj , j = 1, . . . , n, (3.7)

where τj is the jth covariate component of a vector in Rn, f(τj ; θ0) represents the solution to

the mathematical model, and θ0 is a vector in the constraint set Θ ⊂ RM+1 that represents

the “true” parameter value. We assume that the εj are i.i.d. with mean 0 and constant

variance σ2
0, where σ2

0 > 0 represents the “true” variance. Generally, θ0 and σ2
0 are not

known but are estimated by the parameters θ and σ2, respectively. Since εj is a random

variable, Yj is also a random variable with

E [Yj ] = f(τj ; θ0) and V ar[Yj ] = σ2
0.

As already noted, we consider ordinary least squares formulations of the inverse problem.

The following OLS estimator (which is also a random variable denoted here by θOLS =

θOLS(Y )) is used in the inverse problem for the estimation of θ :

θOLS ≡ arg min
θ∈Θ

n∑

j=1

(Yj − f(τj ; θ))
2 . (3.8)

The distribution of θOLS is called the sampling distribution and is very important because

it provides information about the uncertainty or reliability of the estimates obtained for a

particular realization of {Yj}. As n → ∞, the sampling distribution for a random variable

θOLS(Y ) is given by the multivariate normal distribution; i.e.,

θOLS(Y ) ∼ NM+1(θ0, σ
2
0[X T (θ0)X (θ0)]−1) ≈ NM+1(θ0, Σn

0 ),
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where X (θ) = X n(θ) = ∂F
∂θ (θ) = Fθ(θ) is the n× (M + 1) sensitivity matrix with elements

Xjk(θ) =
∂f(τj ; θ)

∂θk
,

and Σn
0 is an approximate covariance matrix defined below in (3.9). As we noted, θ0 is

generally unknown; however, we can determine an estimate θ̂ for θ0 using the OLS estimator.

For a particular realization (data set) {yj} the estimates θ̂ minimize

n∑

j=1

(yj − f(τj ; θ))
2 .

We can also compute an estimate for σ2
0 (which is also usually unknown) using the following

estimate σ̂2 :

σ2
0 ≈ σ̂2 =

1
n− (M + 1)

n∑

j=1

(
yj − f(τj ; θ̂)

)2
.

The estimates θ̂ and σ̂2 are used in computing an estimate of the covariance matrix Σn
0 :

Σn
0 ≈ Σ̂ = σ̂2[X T (θ̂)X (θ̂)]−1. (3.9)

We can then determine the standard errors for the estimates θ̂ by computing

SE(θ̂k) =
√

Σ̂kk, k = 0, . . . , M.

Confidence intervals for the finite-dimensional parameter θ̂ are constructed using the stan-

dard errors.

Before presenting the computational results demonstrating the confidence inter-

vals, we make a few comments about the covariance matrix Σ̂. We notice that determining

σ̂2 is very straightforward once we have computed an estimate θ̂. We simply multiply the

residual J(θ̂) by the factor 1
n−(M+1) to compute σ̂2. We must also compute X (θ̂) which can

be more difficult in general when dealing with nonlinear systems. In some cases, computing

X can be very straightforward when one is able to derive analytically the entries of X (θ)

based on f(τj ; θ). However, when this is not the case, there are other ways to compute X (θ)

including using forward differences or solving the corresponding sensitivity equations [12].

We are actually able to determine analytical expressions for the entries of the sensitivity

matrix in the computational examples considered here. Furthermore, the asymptotic dis-

tributional results are exact when f(τ ; θ) is linear in θ (see [36, 40, 45]) as opposed to only

being an approximation when f(τ ; θ) is nonlinear in θ since the results in the nonlinear case

are based on a linearization of f(τ ; θ).
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The endpoints of the confidence intervals are given by

θ̂k ± t1−α/2SE(θ̂k), k = 0, . . . , M

and are computed at the 100(1−α)% level where α ∈ [0, 1]. The confidence level parameters

are defined so that

P{θ̂k − t1−α/2SE(θ̂k) < θ0k < θ̂k + t1−α/2SE(θ̂k)} = 1− α

where t1−α/2 ∈ R+. The value t1−α/2 is a distribution value that is determined by the level

of significance α chosen [32]. After a level of significance is chosen (for example, α = 0.05 for

95% confidence intervals), we determine the corresponding t1−α/2 value from a statistical

table for the Student’s t-distribution. The confidence intervals constructed in this manner

provide us with a means of quantifying the uncertainty of the estimates obtained from

the estimation procedure constructed from a realization of Y. In the following chapter,

we present some computational results in which we have used this asymptotic standard

error theory to compute nodal confidence intervals corresponding to the finite-dimensional

parameters.
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Chapter 4

Computational Example:

Size-Structured Mosquitofish

Population

We compare computational and statistical results of the delta function approxima-

tion method, the spline based approximation method, and the parameterized OLS formula-

tion based on inverse problem calculations performed in MATLAB in this chapter. Before

applying the methods to experimental data, we used the methods with simulated data to

demonstrate the validity of the theoretical arguments presented in the previous chapter.

Convergence as well as sensitivity of the estimates with respect to noise in the data is dis-

cussed for both non-parametric approximation methods. We also compare the results from

the three schemes for the estimation of the distribution of growth rates with field data for

a size-structured mosquitofish population.

4.1 Analysis of Methods with Simulated Data

In order to obtain information on the strengths and weaknesses of the non-parametric

approximation methods, we first began by preparing simulated population density data in-

dependent of the two schemes DEL(M) and SPL(M, N) used in the inverse problem. Since

we were only concerned at this point with the estimation of the growth rate distribution P ∗,

we let µ = 0 and K = 0 in the Sinko-Streifer model. We then chose a “true” distribution
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P ∗ on the size-dependent growth rates g(x; b), where we assumed g(x; b) = b(1 − x) for

(x, x̄) = (0, 1) and b is the intrinsic growth rate of the mosquitofish as stated in the previous

outline. More specifically, we assumed that the intrinsic growth rate b of the mosquitofish is

a random variable with distribution P ∗. This allowed us to generate a collection of growth

rates Gn = {g1, g2, . . . , gn} corresponding to a partition Bn = {b1, b2, . . . bn}, where we took

n = 200 in order to get a good approximation of

u(t, x; P ∗) =
∫

G
v(t, x; g(x; b))dP ∗(g)

and Gn ⊂ G. Our simulated data ud(t, x; P ∗) was then created by first computing the

solution v(t, x; gi) of the Sinko-Streifer model for each individual gi using the method of

characteristics as discussed earlier and then computing

ud(t, x; P ∗) =
∫

Gn

v(t, x; g)dP ∗(g)

using the Gauss-Legendre integration method [56]. We took 50 uniformly spaced time obser-

vations, where the time interval was [0, 0.5]. The range of size values (x, x̄) was normalized

to (0, 1) and 50 uniformly spaced size values were used in this range for our simulated data.

For the initial size density, we used

v0(x; g) =





sin2(10πx), 0 ≤ x ≤ 0.1,

0, 0.1 < x ≤ 1.

We generated two data sets for our computations in this section: one with a “true” ap-

proximate truncated Gaussian probability distribution on the intrinsic growth rates b and

one with a “true” approximate truncated bi-Gaussian distribution on b. We use truncated

distributions on the intrinsic growth rates to ensure that the growth rates are always pos-

itive. Negative growth rates could result in negative sizes for the mosquitofish which are

not biologically reasonable. The particular parameter values and examples used here are

based on previous formulations discussed in [7] and [13]. Similar results that were obtained

for these examples were also discussed in [8].

4.1.1 Convergence of Estimated Probability Distributions from DEL(M)

and SPL(M, N)

The results in this section with simulated data sets with no noise demonstrate

convergence of distributions with the families of approximating functions that we discussed
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previously. For our first set of data, we placed an approximate truncated Gaussian distri-

bution on b with probability density function p(b; µb, σ
2
b )

p(b;µb, σ
2
b ) =

1√
2πσ2

b

exp
{
−(b− µb)2

2σ2
b

}

with mean µb = 4.5 and variance σ2
b = 0.25, where b ∈ B = [b, b̄]. We let b = µb − 3σb

and b̄ = µb + 3σb in order to include approximately 99% of the intrinsic growth rates.

However, to ensure that this approximate truncated Gaussian distribution was indeed a true

distribution, we had to scale the weights used in the Gauss-Legendre integration method so

that the following condition was satisfied
∫ b̄

b
p(b;µb, σb)db = 1, (4.1)

where p(b; µb, σb) is the probability density function corresponding to the “true” probability

distribution P ∗. Using the set of data generated with this approximate truncated Gaussian

distribution, we then performed the inverse problem using DEL(M) and SPL(M, N) to find

estimates of the “true” probability density and distribution (under the assumption that

the “true” probability distribution P ∗ was unknown) and then compared these estimates

to the known density and distribution. We reiterate that we do not make any assumptions

with respect to the specific form of the probability distribution with the non-parametric

approaches DEL(M) and SPL(M,N). As discussed earlier in Chapter 3, this inverse problem

is simplified to a quadratic programming problem for both DEL(M) and SPL(M, N) when

using least squares, where we minimize pTAp + 2pTb + c.

Overall, we found that both DEL(M) and SPL(M, N) produced good estimates

of the “true” Gaussian growth rate distribution using the simulated data; however, we

also found that in some cases SPL(M, N) resulted in poor estimates of the probability

distribution when M and N were not chosen correctly. This will be addressed in more

detail in the next section. In Figure 4.1, we have the results from the inverse problem using

DEL(16), DEL(48) and SPL(16,128). We see from the results in Figure 4.1 that the spline

based approximation method converges in distribution much faster than the delta function

approximation method for a given M, which we expect since the “true” distribution was

smooth and continuous. While the estimates of the probability distribution from DEL(16)

have not quite converged, the estimates of the probability distribution from SPL(16,128)

have converged completely to the “true” distribution. As M is increased, the estimated
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Figure 4.1: Estimated probability densities and distributions for Gaussian example using
(a) DEL(16), (b) DEL(48), (c) SPL(16,128).
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probability distributions from DEL(M) become better as seen in the results for M = 48

in Figure 4.1. We also note that along with convergence in distribution, SPL(M,N) also

provides convergence in density, whereas DEL(M) does not provide convergence in density.

This may be attributed largely to the difference in the formulations of these two methods.

DEL(M) requires
M∑

k=0

pM
k = 1,

where pM
k denotes the probability coefficients. On the other hand, SPL(M, N) requires

M∑

k=0

aM
k

∫

B
lMk (b)db = 1,

where pM
k (b) = aM

k lMk (b) is the probability density for an individual in subpopulation k

with lMk (b) representing the piecewise linear spline functions. Since the “true” density was

in fact smooth and continuous, one would not expect convergence in density when using

DEL(M) because it is much cruder in its approximation of (4.1). We remark that this

agrees fully with the underlying theory for convergence of distributions in the Prohorov

metric wherein convergence of densities is not guaranteed with DEL(M) as we discussed

in Chapter 3. These different formulations also explain the difference in the scale of the

approximated bi-Gaussian probability density from DEL(M) with the “true” bi-Gaussian

probability density (noted earlier in Chapter 2).

We also used a second set of data in the inverse problem with an approximate

truncated bi-Gaussian distribution on the intrinsic growth rates b. As mentioned before,

previous work in [7] suggested that this type of distribution leads to data which exhibits

two traits (dispersion and bifurcation) observed in actual mosquitofish field data [7, 13, 14].

To obtain a bi-Gaussian distribution, we took the average of two Gaussian distributions,

one with mean µb1 = 3.3 and variance σ2
b1

= 0.492 and the second with mean µb2 = 5.7 and

variance σ2
b2

= 0.492. The bi-Gaussian probability density function is given in (2.9). The

simulated data was prepared in the same way as described for the Gaussian example except

with b ∈ B = [b, b̄] = [µb1 − 3σb1 , µb2 + 3σb2 ].

The results for the inverse problem using this set of data are shown in Figure 4.2

for DEL(24), DEL(84), and SPL(24,128). Both methods do a good job of estimating the bi-

Gaussian probability distribution with the simulated data. Again, we see that SPL(M,N)

converges to the “true” distribution faster than DEL(M). Significantly more basis elements
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Figure 4.2: Estimated probability densities and distributions for bi-Gaussian example using
(a) DEL(24), (b)DEL(84), (c) SPL(24,128).
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are required for full convergence of the approximations from DEL(M) to the “true” bi-

Gaussian probability distribution. However, it should be noted that more basis elements

(larger values of M) were required in both methods to achieve the same level of accuracy

in approximating the bi-Gaussian probability distribution in comparison to the Gaussian

distribution. As mentioned earlier, the delta function approximation method only results

in convergence in distribution, whereas the spline based approximation method results in

both convergence in density and distribution.

4.1.2 Stability Issues of SPL(M,N)

In the computational examples discussed in the previous section, SPL(M,N) pro-

duced good approximations to both the Gaussian and bi-Gaussian densities and distribu-

tions. However, as we stated, obtaining good approximations when using SPL(M, N) was

very much dependent on choosing M and N appropriately. In fact, we found if M and

N were not chosen carefully, the estimates of the probability distributions from the inverse

problem using SPL(M, N) were not very good as a result of the problem becoming unstable.

However, by studying the condition number of the matrix A from the quadratic program-

ming problem, we found that this behavior could be readily explained. There are several

different ways in which the condition number κ(A) of a matrix A can be described [56]. In

terms of the norm ‖·‖ of a matrix, we have κ(A) = ‖A−1‖·‖A‖. An equivalent definition for

the condition number of a matrix A when using the 2-norm ‖·‖2 is also given as the ratio of

the largest singular value to the smallest singular value in the singular value decomposition

of the matrix A (see [56] for further discussion).

What is of most importance is the information one learns from studying the con-

dition number of a matrix. The matrix A is well-conditioned (well-behaved) if κ(A) is

relatively small. On the other hand, A is ill-conditioned (ill-behaved) if κ(A) is relatively

large. Thus, if κ(A) is very large, meaning A is ill-conditioned, the inverse problem be-

comes unstable which leads to poor approximations of the probability distribution P. We

note that the discussion here is limited to SPL(M,N) based on the fact that the matrix A
for the spline based method can become ill-conditioned for a given M based on the number

of quadrature nodes N used in the composite trapezoidal method used for integration pur-

poses as discussed earlier. However, the matrix A in DEL(M) does not change for a given

M due to the way in which the population density and A is obtained as discussed in the
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previous section. Since we must use a quadrature method to compute A for SPL(M,N),

we expect the number of quadrature nodes N used to have a role in determining κ(A).

In fact, if N is chosen too small for a given M, meaning the quadrature rule gives a very

coarse approximation to the actual integration, then we expect κ(A) to become larger, the

problem to become unstable, and the estimates of the probability distribution to become

poor.

To explore the validity of this argument, we computed the condition number of A
for M = 4, 20, 36, 68, 84, and 100 and N = 64, 128, 256, and 512 in both the Gaussian and

bi-Gaussian examples that were used above. Similar results were obtained with different

values of M and N and discussed in [8]. The resulting condition numbers of A for the

Gaussian example are given in Table 4.1. As we can see from the values in the table, when

M = 4, 20, and 36 the condition number κ(A) is relatively small for all listed values of N.

We found that the inverse problem resulted in good estimates of the Gaussian probability

distribution when using SPL(4, N), SPL(20, N) and SPL(36, N). On the other hand, at

M = 68, we began to see some significant differences in κ(A), as shown by the values

in Table 4.1. It can be noted that for M = 68, 84, and 100, κ(A) was very large when

using SPL(M, 64). However, there was a significant decrease in the condition number of A
when using SPL(M, N) for N = 128, 256, and 512 for these values of M. This difference

in condition numbers was also evident in the estimates of the probability distribution from

the inverse problem. For M = 68, 84, and 100, the estimates when using SPL(M, 64) were

worse than those obtained when using SPL(M, N) for all other listed values of N. We note

the estimates of the Gaussian probability distribution became better as the value of N was

increased for these fixed values of M.

Table 4.1: Condition numbers of A for Gaussian example when using SPL(M, N).
M N ≈ κ(A)
4 64,128,256,512 9.30
20 64,128,256,512 55
36 64,128,256,512 460
68 64 1017

68 128,256,512 105

84 64 1017

84 128,256,512 106

100 64 1033

100 128,256,512 106
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For the bi-Gaussian example, we also computed κ(A) for the same values of M

and N, and the results in this case are given in Table 4.2. The results obtained when us-

ing a “true” approximate truncated bi-Gaussian probability distribution were very similar

to the results obtained when using a “true” approximate truncated Gaussian probability

distribution. At M = 4, 20, and 36, κ(A) was relatively small (13.35, 57, and 130, respec-

tively, for each value of N). The inverse problem for these values of M was also stable,

and the estimates of the probability distribution in both cases were good. However, when

M = 68, 84, and 100, SPL(M, 64) results in very large condition numbers for A. The

estimates for the probability distribution using SPL(M, 64) were very poor in comparison

to the estimates obtained from SPL(M,N) for M = 68, 84, 100 and N = 128, 256, 512.

When SPL(M,N) was used in the inverse problem for the estimation of the bi-Gaussian

probability distribution for M = 68, 84, 100 and for values of N greater than 64, we saw a

significant decrease in the condition numbers of A (see values in Table 4.2) corresponding

to better approximations of the probability distribution.

Table 4.2: Condition numbers of A for bi-Gaussian example when using SPL(M, N).
M N ≈ κ(A)
4 64,128,256,512 13.35
20 64,128,256,512 57
36 64,128,256,512 130
68 64 1017

68 128,256,512 755
84 64 1017

84 128,256,512 103

100 64 1019

100 128,256,512 104

To summarize these computational results, in both the Gaussian and bi-Gaussian

case, when N > M, κ(A) was relatively low, which resulted in good estimates of the growth

rate probability distributions when using SPL(M, N). However, when using SPL(M,N),

for M ∼ N, the condition number of A was very large, resulting in an ill-posed inverse

problem and poor estimates of the probability distributions. For a fixed M, we observed

that as the value of N increased, the condition number of A decreased, which agrees with

results in [17, 18]. Therefore, we have shown by these computational efforts that we can

“regularize” the inverse problem when using SPL(M, N) by choosing proper ratios of M
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and N , which can be described as “regularization by discretization balance.” By using a

finer discretization in the quadrature method used in SPL(M,N), we were able to obtain

better results in the inverse problem involving the estimation of growth rate distributions.

4.1.3 Sensitivity of Estimated Probability Distributions from DEL(M)

and SPL(M, N)

We used simulated data with no noise in the previous section to show conver-

gence of the estimated probability distributions to the “true” distribution with both non-

parametric approximation methods. However, experimental data is usually corrupted by

noise, which can be a result of errors in collecting the data, errors in the instruments and

techniques used, etc. Along with verifying that both SPL(M,N) and DEL(M) produce

estimates which converge in distribution when simulated data with no noise is used in the

inverse problem, we also wanted to make some remarks about the sensitivity with respect

to noisy data of the estimates of the probability distributions from the two non-parametric

approximation schemes. Thus, we added random absolute noise to the simulated data used

in the previous two examples in the following way:

û(t, x; P ∗) = ud(t, x;P ∗) + η · ε,

where η represents the noise level constant and ε represents normally distributed random

values with mean 0 and variance 1. We then performed the inverse problem again using

η = 0.005, 0.025, 0.05 corresponding to 1%, 5%, and 10% absolute error, respectively, for

both the Gaussian and bi-Gaussian cases.

We begin by discussing the results of the inverse problem using the simulated data

with a “true” approximate truncated Gaussian distribution with the various noise level

constants. Both approximation methods, DEL(M) and SPL(M,N), performed decently in

the inverse problem with the varying percentages of absolute error. With only 1% absolute

error, both DEL(M) and SPL(M,N), with M and N chosen appropriately, resulted in

estimates that converged to the “true” growth rate probability distribution in very much the

same manner as previously noted in the Gaussian example with no noise. The performance

of these approximations methods was not greatly affected by the small amount of noise in the

data. With a slightly larger percentage of absolute error in the simulated data, SPL(M,N)

and DEL(M) were still able to produce good estimates of the probability distribution.
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However, the results from the inverse problem using η = 0.025 began to exhibit some small

effects in the estimates obtained from both DEL(M) and SPL(M, N).
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Figure 4.3: Estimated probability densities and distributions for Gaussian example using
DEL(24) (upper) and SPL(24,128) (lower) with 5% absolute error.

For example, in Figure 4.3, the approximated probability distributions for DEL(24)

and SPL(24,128) with 5% absolute error show slightly overestimated front tails. Moreover,

there are small perturbations in the estimated probability density from SPL(24,128) when

the data has 5% absolute error in comparison to very smooth estimated probability densities

when no noise was present in the data. With very noisy data, η = 0.05, SPL(M,N) and

DEL(M) still perform fairly well. From the results for DEL(24) and SPL(24,128), shown in

Figure 4.4, the noisier data resulted in only slightly poorer approximations in comparison

to those obtained with 5% absolute noise. As more absolute noise (as opposed to relative

noise) was added to the simulated data, the front and end tails of the estimated probability

distribution are more affected as a result of the oscillations seen in the estimated probability
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densities. Furthermore, the larger amount of noise produced more oscillatory behavior in

the approximated probability densities for both DEL(M) and SPL(M,N) which resulted

in poorer approximations of the corresponding probability distributions.
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Figure 4.4: Estimated probability densities and distributions for Gaussian example using
DEL(24) (upper) and SPL(24,128) (lower) with 10% absolute error.

We also tested the two non-parametric approximation methods for sensitivity to

error in the bi-Gaussian data with the same percentages of absolute error considered with

the Gaussian data. The results obtained from the inverse problem using DEL(M) and

SPL(M, N) with noisy data with a “true” approximate truncated bi-Gaussian distribution

were very similar to those obtained when using noisy data with a “true” approximate trun-

cated Gaussian distribution. Overall, the estimated probability distributions from DEL(M)

and SPL(M,N) were not largely affected by the various amounts of noise added to the sim-

ulated data. Both methods were able to produce good approximations of the probability

distributions in the presence of noise. With 1% absolute error in the data, the estimates of
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the growth rate distributions from DEL(M) and SPL(M, N) did not change significantly

from estimates obtained when there was no noise in the data. We were still able to obtain

convergence in distribution (with faster convergence when using SPL(M,N)) with both ap-

proximation methods. When the percentage of absolute error in the data was 5%, DEL(M)

and SPL(M, N) still performed well by producing good estimates of the bi-Gaussian prob-

ability distribution. The small amount of noise had some small effect on the estimates as

seen in Figure 4.5; in fact, we see that the front tails in both the estimate from DEL(32)

and SPL(32,128) for η = 0.025 are slightly largely than the tails for the “true” distribution.

When even more noise is present in the data, the estimated probability distributions became

slightly poorer for a fixed M and N. In Figure 4.6, the estimated probability densities and

distributions are shown for DEL(32) and SPL(32,128) for data with 10% absolute error.

It is clear from these plots that the estimates from DEL(M) and SPL(M,N) are indeed

affected by the noisier data. As in the Gaussian example, we observed some oscillatory

behavior in the estimated probability densities from these two approximation methods as

the amount of noise present in the data increased. Moreover, the front tails in the estimated

probability distributions are overestimated, whereas the end tails are underestimated for

both DEL(32) and SPL(32,128).

While we were still able to obtain convergence in distribution using both DEL(M)

and SPL(M,N), with M and N chosen carefully, our computational results demonstrated

that as more noise was added to both the Gaussian and bi-Gaussian data the estimates

of the growth rate distributions from both methods became slightly poorer for a fixed M

and N . SPL(M, N) produced probability distribution estimates that converged faster in

distribution than DEL(M) using both data with noise and without noise. This behavior,

as stated earlier, was expected since the “true” probability distributions in these numerical

examples are smooth and continuous. We remark again that while the computational

results for SPL(M, N) exhibited convergence in density as well as distribution, convergence

in density is generally not guaranteed and is not supported by the general theory in the

Prohorov metric [4, 14, 29] as observed in the computational results obtained with DEL(M).
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Figure 4.5: Estimated probability densities and distributions for bi-Gaussian example using
DEL(32) (upper) and SPL(32,128) (lower) with 5% absolute error.



41

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Known and Estimated Probability Density for DEL(32) − 10% Absolute Error

Intrinsic Growth Rates, b

P
ro

ba
bi

lit
y 

D
en

si
ty

 C
oe

ffi
ci

en
ts

 

 
Known
Estimated

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Known and Estimated Probability Distribution for DEL(32) − 10% Absolute Error

Intrinsic Growth Rates, b

P
ro

ba
bi

lit
y 

D
is

tr
ib

ut
io

n

 

 

Known
Estimated

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Known and Estimated Probability Density for SPL(32,128) − 10% Absolute Error

Intrinsic Growth Rates, b

P
ro

ba
bi

lit
y 

D
en

si
ty

 

 
Known
Estimated

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Known and Estimated Probability Distribution for SPL(32,128) − 10% Absolute Error

Intrinsic Growth Rates, b

P
ro

ba
bi

lit
y 

D
is

tr
ib

ut
io

n

 

 

Known
Estimated

Figure 4.6: Estimated probability densities and distributions for bi-Gaussian example using
DEL(32) (upper) and SPL(32,128) (lower) with 10% absolute error.
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4.1.4 Statistical Analysis of Non-parametric Approximation Methods

We next considered the sensitivity of the two approximation methods, DEL(M)

and SPL(M, N), with respect to noisy data in order to make some comments about the

uncertainty associated with the estimated growth rate distributions. We cannot physically

observe the entire population; however, we can include some measures (e.g., confidence in-

tervals) on the uncertainty of the estimates obtained from the two non-parametric approx-

imation methods when using only a sample from the population. The following analysis is

based on the asymptotic standard error theory for finite-dimensional parameters discussed

in Section 3.3.

Since we have already discussed in detail the assumptions of the statistical model,

we will define the variables and functions that are used in these examples and refer the reader

to Section 3.3 for further explanations. We note that {τj}n
j=1 corresponds to (tl, xm), l =

1, . . . , Nt,m = 1, . . . , Nx pairs where Nt corresponds to the number of time values and Nx

corresponds to the number of size values used with N = Nt · Nx. When using DEL(M),

θ0 ≈ θ = {pM
k }M

k=0 and θ0 ≈ θ = {aM
k }M

k=0 when using SPL(M, N). Recall that θ0 represents

the “true” parameter value (assumed to exist). For a particular realization or data set

{yj}n
j=1 we determine estimates of θ0 by finding solutions to the quadratic programming

problem (3.5) discussed in Chapter 3. Furthermore, we point out that

f(τj ; θ) =
M∑

k=0

v(τj ; gM
k )pM

k (4.2)

where gM
k (x; bM

k ) = bM
k (1− x) when considering DEL(M), while

f(τj ; θ) =
M∑

k=0

aM
k

∫

B
v(τj ; g)lMk (b)db (4.3)

where g(x; b) = b(1− x) for b in some compact set B when considering SPL(M, N).

We previously commented on the computation of the sensitivity matrix X (θ),

which is used to compute the estimated covariance matrix Σ̂ = σ̂2[X T (θ̂)X (θ̂)]−1. As noted

earlier, the elements of the n× (M + 1) matrix X (θ) are given by

Xjk(θ) =
∂f(τj ; θ)

∂θk
.

These are actually the sensitivity elements associated with this system. Since both (4.2)

and (4.3) are linear in θ, then computing the entries of the sensitivity matrix in this case is
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very straightforward. The entries in the sensitivity matrix X (θ) for DEL(M) are given by

Xjk(θ) =
∂f(τj ; θ)

∂θk
= v(τj ; gM

k ),

where θk = pM
k is the probability parameter associated with growth rate gM

k (x; bM
k ) =

bM
k (1− x). For SPL(M, N), the entries in the sensitivity matrix X (θ) are given by

Xjk(θ) =
∂f(τj ; θ)

∂θk
=

∫

B
v(τj ; g)lMk (b)db

where θk = aM
k and pM

k (b) = aM
k lMk (b) is the probability density for an individual in sub-

population k. We reiterate that the asymptotic distributional results given earlier are exact

in this case (see [36, 40, 45]) as opposed to only being an approximation when f(τj ; θ) is

nonlinear in θ.

We present next some findings on the sensitivity of DEL(M) and SPL(M, N) using

simulated data generated with a “true” approximate truncated bi-Gaussian distribution.

The endpoints of the confidence intervals for the parameter estimates θ̂ are given by

θ̂ ± t1−α/2SE(θ̂),

where t1−α/2 is a Student’s t-distribution value that is determined by the level of signifi-

cance that is chosen [32]. We chose to use α = 0.05 for a significance level of 95%, which

corresponds to t1−α/2 ≈ 1.96 when the number of samples is large, i.e. n ≥ 30. Based on the

confidence intervals, we can make statements about the estimation procedure constructed

from a realization of Y. If the resulting confidence intervals are relatively large in relation

to θ̂, then we are not very confident about the estimation procedure used to estimate θ0.

Table 4.3 displays the estimated probability density values and corresponding con-

fidence intervals for DEL(8) while Table 4.4 displays the results for SPL(8,128) in the pres-

ence of 5% and 10% absolute error. In Figures 4.7 and 4.8, we see the confidence intervals

corresponding to the estimated parameters (pM
k or aM

k ) with α = 0.05 for DEL(8) and

SPL(8,128), respectively, with simulated data with both 5% and 10% absolute error. We

plot the results of the delta function approximation method without the stems so that the

reader can see clearly the lower endpoints of the nodal confidence intervals corresponding

to the estimated pM
k values denoted by the circles in the figures. The simulated data used

in these computations was of the form discussed in the previous chapter. Based on the

significance level chosen, we can state that we are 95% confident that intervals constructed



44

Table 4.3: Estimated probability density values and confidence intervals for bi-Gaussian
example for DEL(8) with simulated data with 5% and 10% absolute error.

p8
k DEL(8) - 5% DEL(8) - 10%

p8
0 0.1724± 0.0192 0.1750± 0.0196

p8
1 0.1506± 0.0171 0.1487± 0.0175

p8
2 0.1665± 0.0149 0.1644± 0.0153

p8
3 0.1432± 0.0128 0.1386± 0.0131

p8
4 0.0948± 0.0115 0.1005± 0.0117

p8
5 0.1084± 0.0098 0.1058± 0.0100

p8
6 0.0953± 0.0090 0.0946± 0.0092

p8
7 0.0442± 0.0080 0.0482± 0.0082

p8
8 0.0246± 0.0072 0.0242± 0.0073
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Figure 4.7: Estimated probability densities with confidence intervals for bi-Gaussian exam-
ple using (a) DEL(8) with 5% absolute error and (b) DEL(8) with 10% absolute error.

Table 4.4: Estimated probability density values and confidence intervals for bi-Gaussian
example for SPL(8,128) with simulated data with 5% and 10% absolute error.

a8
k SPL(8,128) - 5% SPL(8,128) - 10%

a8
0 0.0204± 0.0154 0.0461± 0.0298

a8
1 0.0460± 0.0096 0.0453± 0.0186

a8
2 0.2447± 0.0082 0.2404± 0.0159

a8
3 0.2651± 0.0073 0.2506± 0.0142

a8
4 0.0896± 0.0065 0.1121± 0.0127

a8
5 0.2737± 0.0058 0.2592± 0.0112

a8
6 0.2475± 0.0051 0.2508± 0.0098

a8
7 0.0389± 0.0045 0.0397± 0.0087

a8
8 0.0000± 0.0063 0.0039± 0.0122
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Figure 4.8: Estimated probability densities with confidence intervals for bi-Gaussian ex-
ample using (a) SPL(8,128) with 5% absolute error and (b) SPL(8,128) with 10% absolute
error.

using the estimation procedures with DEL(M) and SPL(M,N) would “cover” θ0. We note

that for the fixed value M = 8 the confidence intervals corresponding to α = 0.05 when

using DEL(M) are relatively small in relation to the estimated θ̂ for data with both 5%

and 10% absolute error. Moreover, we see from Figure 4.7 that the resulting confidence in-

tervals for DEL(8) with 5% and 10% absolute error are approximately the same. Thus, for

M = 8, the delta function approximation method appears to be insensitive to noisy data.

In comparison, we note for the fixed value M = 8 when using SPL(M, 128) the resulting

confidence intervals are relatively larger for data with 10% absolute error in comparison

to those for data with 5% absolute error. Thus, the confidence associated with the esti-

mator procedure based on SPL(M,N) appears to decrease as the percentage of absolute

error increases. However, the confidence intervals are still relatively small in relation to the

estimates θ̂. Therefore, as a result of these computations, we would infer that for this fixed

value of M, the spline based approximation method appears to be very slightly sensitive to

very noisy data.

The estimated probability density values and corresponding confidence intervals

for DEL(16) and SPL(16,128) in the presence of 5% and 10% absolute error are given in

Tables 4.5 and 4.6, respectively. In Figures 4.9 and 4.10, we see the confidence intervals

corresponding to the parameter estimates with α = 0.05 for DEL(16) and SPL(16,128)

with simulated data with both 5% and 10% absolute error. The endpoints of the confidence

intervals are constructed in the same way as discussed earlier. We can again state that we
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Figure 4.9: Estimated probability densities with confidence intervals for bi-Gaussian exam-
ple using (a) DEL(16) with 5% absolute error and (b) DEL(16) with 10% absolute error.

Table 4.5: Estimated probability density values and confidence intervals for bi-Gaussian
example for DEL(16) with simulated data with 5% and 10% absolute error.

p16
k DEL(16) - 5% DEL(16) - 10%

p16
0 0.0608± 0.0261 0.0663± 0.0136

p16
1 0.0508± 0.0119 0.0561± 0.0129

p16
2 0.0545± 0.0112 0.0564± 0.0121

p16
3 0.0743± 0.0106 0.0731± 0.0115

p16
4 0.0918± 0.0098 0.0824± 0.0106

p16
5 0.1015± 0.0092 0.1016± 0.0099

p16
6 0.0821± 0.0084 0.0848± 0.0091

p16
7 0.0643± 0.0080 0.0666± 0.0087

p16
8 0.0575± 0.0075 0.0524± 0.0081

p16
9 0.0578± 0.0069 0.0524± 0.0081

p16
10 0.0719± 0.0064 0.0537± 0.0075

p16
11 0.0884± 0.0067 0.0847± 0.0073

p16
12 0.0668± 0.0058 0.0637± 0.0063

p16
13 0.0383± 0.0052 0.0371± 0.0056

p16
14 0.0254± 0.0052 0.0281± 0.0056

p16
15 0.0106± 0.0043 0.0127± 0.0047

p16
16 0.0092± 0.0047 0.0111± 0.0050
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Figure 4.10: Estimated probability densities with confidence intervals for bi-Gaussian exam-
ple using (a) SPL(16,128) with 5% absolute error and (b) SPL(16,128) with 10% absolute
error.

Table 4.6: Estimated probability density values and confidence intervals for bi-Gaussian
example for SPL(16,128) with simulated data with 5% and 10% absolute error.

a16
k SPL(16,128) - 5% SPL(16,128) - 10%

a16
0 0.0488± 0.0266 0.1032± 0.0521

a16
1 0.0176± 0.0168 0.0328± 0.0329

a16
2 0.0558± 0.0147 0.0594± 0.0288

a16
3 0.1326± 0.0138 0.1365± 0.0269

a16
4 0.2409± 0.0129 0.2137± 0.0253

a16
5 0.2916± 0.0121 0.2999± 0.0238

a16
6 0.2423± 0.0114 0.2376± 0.0223

a16
7 0.1623± 0.0107 0.1759± 0.0210

a16
8 0.1231± 0.0101 0.1153± 0.0198

a16
9 0.1718± 0.0094 0.1527± 0.0184

a16
10 0.2529± 0.0086 0.2434± 0.0169

a16
11 0.0692± 0.0069 0.2876± 0.0163

a16
12 0.2300± 0.0076 0.2174± 0.0149

a16
13 0.1304± 0.0075 0.1290± 0.0146

a16
14 0.0519± 0.0062 0.0650± 0.0121

a16
15 0.0089± 0.0064 0.0237± 0.0126

a16
16 0.0082± 0.0096 0.0213± 0.0188
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are 95% confident that intervals constructed using the estimation procedures with DEL(M)

and SPL(M, N) would “cover” θ0. From Figure 4.9 we see that the confidence intervals

corresponding to α = 0.05 when using DEL(M) for M = 16 are relatively small in relation

to θ̂ for data with 5% and 10% absolute error much like those computed for M = 8. It can

also be noted in this case that the confidence intervals are approximately the same for both

sets of data. We arrive at the same conclusion for M = 16 as we did for M = 8; that is, the

delta function approximation method appears to be insensitive to noisy data. We now look

at the results for M = 16 when using SPL(M, 128) with data with 5% and 10% absolute

error. We observe for M = 16 as we did for M = 8 that the resulting confidence intervals

for SPL(16,128) are larger when the data is noisier. As discussed in the case for M = 8,

the spline based approximation method also appears to be slightly sensitive to noisy data

for M = 16 since the confidence intervals are relatively small in relation to the estimates of

the aM
k values.

To summarize, based on the standard error analysis discussed in this section and

computational results (those presented here as well as those obtained for M = 4) we can

conclude that DEL(M) appears to be insensitive to noisy data. Moreover, we can state

that we are confident about the estimated growth rate distributions obtained using this

method. We also conclude that SPL(M, N) appears to be slightly sensitive to noisy data.

Furthermore, we would feel certain about the estimated growth rate distributions obtained

using SPL(M,N) with data with small amounts of noise; however, we would infer that larger

amounts of noise in the data would lead to larger confidence intervals and less certainty in

the associated estimated growth rate distributions obtained using SPL(M, N).

4.2 Application of Methods to Inverse Problem with Exper-

imental Data

In this section we present and discuss the results of the inverse problem for the

estimation of growth rate distributions in size-structured mosquitofish populations using

the standard parametric approach, the delta function approximation method, and the spline

based approximation method. We use field data collected from rice paddies in the place of

the simulated data. Since the actual growth rate distribution of the mosquitofish observed

in the experiment is unknown, we must compare the field data to the estimated population
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data produced by the estimated growth rate distribution from each method in order to

compare the efficacy of these methods.

In the inverse problem calculations in this section, we assume that the growth

rate of the mosquitofish is now parameterized by both the intrinsic growth rates b and the

maximum size γ, where g(x; b, γ) = b(γ − x). The collection of growth rates is now given

by G = {g(x; b, γ)|b ∈ B, γ ∈ Γ}, where both B and Γ are bounded closed intervals. We

assume here, as we also assumed in our earlier computations, that µ = 0 and K = 0, so

that we can focus on the growth rate distribution only, but distributions could be placed

on µ and K as well. Mortality and fecundity were not thought to be important features of

the experimental data of [7, 14].

4.2.1 Experimental Data

The field data that we are using in the inverse problem was collected in an experi-

ment described in [14]. On June 28, 1982, four rice paddies were stocked with mosquitofish.

In order to measure emigration, an outflow trap was placed on each paddy. Fifteen traps

were used per paddy, and weekly measurements were taken. The length of the mosquitofish

ranged from 0 to 40mm, with the mosquitofish being grouped into size classes of 2mm for

a total of 20 size classes. The aggregate type data collected on Day 195, Day 202, Day

209, and Day 216 is used in the inverse problem calculations discussed in the following

subsections (see Figure 4.11). We define the size distribution frequency for size class j at

time ti as f i
j = ni

m,j/Nm, where ni
m,j is the number of mosquitofish measured at time ti

in size class j and Nm is the total number of mosquitofish measured. Our experimental

data was given in this form and is plotted versus the normalized model responses in all

figures in this section. For the model responses, the number in size class j at time ti is

given by
∫ xj+1

xj
u(ti, x; P )dx which, for ∆xj = xj+1 − xj small, may be approximated by

u(ti, xj ; P )∆xj . The corresponding data is denoted by dj(ti) and is given by Nmf i
j . Thus in

the inverse problem (3.1) we use data ûij = dj(ti)
∆xj

. The total population of mosquitofish is

divided into 512 subpopulations. In [14] the discretizations for the intrinsic growth rates b

are defined as

bj = 0.2 +
1
31
· 4.8 · j, j = 0, 1, . . . , 31,
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while the discretizations for the maximum sizes γ are defined as

γ0 =
16
38

, γ1 =
22
38

, γ2 =
24
38

,

γk =
16
38

+
1
15
· 22
38
· k, k = 3, . . . , 15.

As discussed in [14], the discretization for bj was chosen arbitrarily, while the values for γk

were chosen as a result of analyzing the collected data. The Day 195 data is interpolated

and used an approximation for the initial size density v0(x; g). Since this data set is used

as an approximation for v0(x; g), it cannot be used in the estimation of the growth rate

distributions. Therefore we are left with only three data sets to use in the inverse problem

computations. Hence, the experimental data consists of a total of 60 data points since we

have 20 size classes per day for three days.

4.2.2 Model Fits with PAR(M, N1, N2)

Based on previous work in [13] and [14] and our own numerical simulations with

simulated data, we know that a bi-Gaussian growth rate distribution results in population

density data with the two key features of dispersion and bifurcation. The experimental

data that we use in these computations exhibits these features as well, so we suspect that

the underlying growth rate distribution is bi-Gaussian. With that in mind, we chose to

use the standard parametric approach with a bi-Gaussian probability density function in

the growth rate distribution (GRD) model. The bi-Gaussian probability density function

p(b, γ) for the two parameter family of growth rates is given by

p(b, γ; b̄1, σ
2
b1 , b̄2, σ

2
b2 , γ̄1, σ

2
γ1

, γ̄2, σ
2
γ2

) =



exp
{
−(b−b̄1)2

2σ2
b1

}

2
√

2πσ2
b1

+
exp

{
−(b−b̄2)2

2σ2
b2

}

2
√

2πσ2
b2







exp
{−(γ−γ̄1)2

2σ2
γ1

}

2
√

2πσ2
γ1

+
exp

{−(γ−γ̄2)2

2σ2
γ2

}

2
√

2πσ2
γ2


 ,

where we have assumed b and γ to be independent bi-Gaussian random variables in compact

sets B = [0.2, 5] and Γ = [16
38 , 1], respectively, based on the values of bj and γk defined in [14].

The parameters (b̄1, b̄2) and (σ2
b1

, σ2
b2

) represent the means and variances, respectively, of a

bi-Gaussian distribution on the intrinsic rates b, while the parameters (γ̄1, γ̄2) and (σ2
γ1

, σ2
γ2

)

represent the means and variances of a bi-Gaussian distribution on the maximum sizes γ. We

define θ =
(
b̄1, σ

2
b1

, b̄2, σ
2
b2

, γ̄1, σ
2
γ1

, γ̄2, σ
2
γ2

)
. Since we are now considering a two parameter
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family of growth rates, the GRD model in the standard parametric approach that was

discussed in Chapter 2 is now given by

u(t, x; θ) =
∫

B

∫

Γ
v(t, x; g(x; b, γ))p(b, γ; θ)dγdb,

where again the admissible growth rate function is g(x; b, γ) = b(γ − x). The addition

of the parameter γ introduces another integral that must be approximated as well. This

approach is denoted as PAR(M, N1, N2) where M + 1 is the number of parameters in θ to

be estimated and N1 and N2 represent the number of quadratures used in the composite

trapezoidal rule [31] to approximate the double integral with respect to b and γ, respectively.

We estimate θ by solving the ordinary least squares problem in (3.2). Once the least squares

problem has been solved, we can use the optimal θ̂ in the bi-Gaussian probability density

function p(b, γ; θ) to determine the estimated population density u(t, x; θ̂).
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Figure 4.11: Field data versus estimated population for PAR(7,35,35).
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Figure 4.12: (a) Estimated probability density and (b) estimated probability distribution
for PAR(7,35,35).

The optimal results for the inverse problem using PAR(7,35,35) are shown in Figure

4.11. The optimal parameters θ̂ = (1.9749, 0.0388 × 10−3, 3.9132, 0.2228 × 10−3, 0.5265,

0.0122, 0.7208, 0.0372), with a residual J(θ̂) = 0.0074, were determined in 20.5490 seconds.

However, we see from the model fits-to-data in Figure 4.11 that the estimated population

density data does not fit the experimental data well. The model does a poor job of predicting

the population data for the smaller lengths observed. The bi-Gaussian estimated probability

density and probability distribution generated by the optimal θ̂ are shown in Figure 4.12.

For a fixed value of γ, we see clearly two distinct modes in the probability density of b.

Since the model with the assumption of a bi-Gaussian distribution on the growth rates does

not do a very good job of fitting the data, we also used the non-parametric approaches in

the inverse problem with the experimental data. The results of these calculations are in the

next two sections.

4.2.3 Model Fits with DEL(M1,M2)

We introduced the delta function approximation method, DEL(M), earlier when

the growth rate is parameterized by b only. Since we are now considering a growth rate

parameterized by b and γ, the approximated population density for u(t, x; P ) in (2.3) is now

given by

u(t, x; {pjk}) =
M1∑

j=0

M2∑

k=0

v(t, x; gjk(x; bj , γk))pjk,
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where v(t, x; gjk(x; bj , γk)) is the subpopulation density from (2.1) with growth rate gjk =

bj(γk − x) and pjk is the corresponding probability that an individual has growth rate gjk.

We will use the notation DEL(M1,M2) to denote the delta function approximation method

in this case, where M1 + 1 is the number of intrinsic growth rates bj and M2 + 1 is the

number of maximum sizes γk used in the approximation.
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Figure 4.13: Field data versus estimated population for DEL(31,15).

The addition of a second parameter in the growth rate g of the mosquitofish does

not change the least squares inverse problem

J(P ) =
∑

i,j

|u(ti, xj ;P )− ûij |2 =
∑

i,j

{u(ti, xj ; P )2 − 2u(ti, xj ; P )ûij + (ûij)2}

that we want to minimize over P ∈ PM1×M2(G) where ûij is the data and PM1×M2(G) is

the finite-dimensional approximation to P(G), which simplifies to a quadratic programming

problem for an appropriately defined

F (p) ≡ pTAp + 2pTb + c.
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Figure 4.14: (a) Estimated probability density and (b) estimated probability distribution
for DEL(31,15).

In Figure 4.13, we have the results from the inverse problem using DEL(31,15). These

results were obtained in 514.3600 seconds, and the corresponding residual J = 8.3169 ×
10−4. We see from the results shown in Figure 4.13 that the estimated population density

from DEL(31,15) gives a much better fit to the field data in comparison to the optimal

results obtained from PAR(7,35,35). The two key features of the data, dispersion and

bifurcation, are both exhibited in the estimated population. The corresponding estimated

probability density and distribution are shown in Figure 4.14. While no useful information

can be obtained from Figure 4.14(a), the estimated probability distribution in Figure 4.14(b)

appears to be bi-Gaussian in b for a fixed γ as well as in γ for a fixed b.

4.2.4 Model Fits with SPL(M1, N1,M2, N2)

The spline based approximation method, SPL(M, N), was also introduced earlier

for the one parameter family of growth rates. For the two parameter family of growth

rates that we are now considering, the approximated population density u(t, x; P ) to (2.3)

is given by

u(t, x; {ajk}) =
M1∑

j=0

M2∑

k=0

ajk

∫

B

∫

Γ
v(t, x; g(x; b, γ))lj(b)lk(γ)dγdb,

where g(x; b, γ) = b(γ−x) and pjk(b, γ) = ajklj(b)lk(γ) is the probability density for individ-

uals in population subgroup jk with lj and lk representing piecewise linear spline functions.

We note that B = [0.2, 5] and Γ = [16
38 , 1] for this method as well. The notation that we

employ here is SPL(M1, N1,M2, N2), where M1 + 1 and M2 + 1 are the number of basis
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elements used to approximate the growth rate probability distribution with respect to b and

γ, respectively, and N1 and N2 represent the number of quadrature nodes used in the com-

posite trapezoidal rule [31] for double integrals to approximate the integral in the expression

above with respect to b and γ.
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Figure 4.15: Field data versus estimated population for SPL(4,35,8,35).

The best results obtained using SPL(M1, N1,M2, N2) for the estimation of the

growth rate distribution of the field data are shown in Figure 4.15 for SPL(4,35,8,35). We

note that the results obtained using SPL(4,35,4,35) and SPL(4,35,6,35) were approximately

the same as those obtained using SPL(4,35,8,35) for Day 202 and Day 209. However, the

estimated population data obtained using SPL(4,35,8,35) gave a much better fit to the

data for Day 216 than the results obtained using SPL(4,35,4,35) and SPL(4,35,6,35). The

corresponding residual, J , for SPL(4,35,8,35) is 0.0054, and these results were obtained

in 1.8822 × 103 seconds, or approximately 32 minutes. The estimated probability density
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and distribution are shown in Figure 4.16. The resulting estimated probability distribution

appears to be bi-Gaussian in γ.
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Figure 4.16: (a) Estimated probability density and (b) estimated probability distribution
for SPL(4,35,8,35).

In comparison to the estimated population data produced by the estimated growth

rate distribution from DEL(31,15), the estimated population data produced by the esti-

mated growth rate distribution from SPL(4,35,8,35) does not give as good a fit to the field

data, as is seen in Figure 4.15. The delta function approximation method does a better job

of fitting the given field data in a more efficient way in comparison to the spline based ap-

proximation method. The optimal cost from SPL(4,35,8,35) is comparable to that obtained

from PAR(7,35,35). We see that the spline based approximation method does a better job

of estimating the frequencies for the smaller size classes and the peaks in the field data than

the parametric version. While the results from the spline based approximation method and

the standard parametric approach are very similar, the computational time required by

PAR(7,35,35) is much lower than the computational time required by SPL(4,35,8,35).

4.2.5 Confidence Intervals for Parameter Estimates from PAR(M,N1, N2)

and SPL(M1, N1, M2, N2)

As we did previously, we would like to also present here some results on the un-

certainty associated with the estimated growth rate distributions determined by the inverse

problem. The treatment in this section with the field data is very similar to the treatment

previously carried out with the simulated data. With respect to the optimal results given
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in this section, we were only able to perform a statistical analysis for PAR(7,35,35) and

SPL(4,35,8,35). We are unable to perform this analysis for DEL(31,15) because the field

data consists of 60 data points and the number of parameters determined by DEL(31,15) is

512; thus, the analysis in this case is invalid. Since we have explained in detail the underlying

statistical model that we are considering, we will omit these details here and define the func-

tions and variables that are used with respect to PAR(M,N1, N2) and SPL(M1, N1,M,N2).

First, we remark that {τi}n
i=1 corresponds to (tl, xm), l = 1, . . . , 3,m = 1, . . . , 20 pairs since,

as previously noted, the field data that we use in the inverse problem consists of three

days and twenty size classes (hence n = 60), θ = (b̄1, σ
2
b1

, b̄2, σ
2
b2

, γ̄1, σ
2
γ1

, γ̄2, σ
2
γ2

) when using

PAR(M, N1, N2), and θ = {ajk}j=M1,k=M2

j,k=0 when using SPL(M1, N1,M2, N2). We also note

when considering PAR(M, N1, N2),

f(τi; θ0) ≈
∫

B

∫

Γ
v(τi; g)p(b, γ; θ)dγdb,

where θ0 ≈ θ =
(
b̄1, σ

2
b1

, b̄2, σ
2
b2

, γ̄1, σ
2
γ1

, γ̄2, σ
2
γ2

)
. When considering SPL(M1, N1,M2, N2),

f(τi; θ0) ≈
M1∑

j=0

M2∑

k=0

ajk

∫

B

∫

Γ
v(τi; g)lj(b)lk(γ)dγdb

where θ0 ≈ θ = {ajk}. We will define M from our previous outline to be one less than

the number of parameters in θ for PAR(M,N1, N2) and (M1 + 1) · (M2 + 1) − 1 for

SPL(M1, N1,M2, N2). For the standard parametric version PAR(M, N1, N2), the entries

in the n× (M + 1) sensitivity matrix X (θ) are given by

Xim(θ) =
∂f(τi; θ)

∂θm
=

∫

B

∫

Γ
v(τi; g)

∂p(b, γ; θ)
∂θm

dγdb,

and we can analytically compute ∂p(b,γ;θ)
∂θm

,m = 0, . . . ,M, since p(b, γ; θ) is the known bi-

Gaussian pdf. The entries in the sensitivity matrix X (θ) for SPL(M1, N1,M2, N2) are again

straightforward and are given by

Xim(θ) =
∂f(τi; θ)

∂θm
=

∫

B

∫

Γ
v(τi; g)lj(b)lk(γ)dγdb

for m = j · (M2 + 1) + k, where j = 0, . . . ,M1 and k = 0, . . . ,M2. Using these facts, we

were able to estimate the covariance matrix Σ which is used in determining the standard

errors and confidence intervals for θ̂. As we stated before, the endpoints of the confidence

intervals are given by

θ̂ ± t1−α/2SE(θ̂),
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where t1−α/2 is a distribution value given in the Student’s t-distribution table (determined

by the level of significance chosen [32]). We also chose to use a significance level of α = 0.05

corresponding to the 95% confidence intervals computed in this section. From the statistical

table for the t-distribution, α = 0.05 corresponds to a t1−α/2 value of approximately 1.96

when the number of observations or data points is large, i.e., n ≥ 30, which is true in this

case.

In Table 4.7, the optimal parameter values for θ with the corresponding confidence

intervals are given for PAR(7,35,35). We see that the confidence intervals computed with

respect to b̄1, σ
2
b1

, b̄2, and σ2
b2

, i.e., the parameters associated with the intrinsic growth rate b,

are very large in comparison to the optimal estimates obtained for these parameters. There-

fore, we cannot be certain when reporting values for these particular parameters when using

PAR(7,35,35). However, we notice that the confidence intervals obtained for γ̄1, σ
2
γ1

, γ̄2, and

σ2
γ2

, i.e., those associated with the maximum size γ, are very small in comparison to the op-

timal values obtained using this method. Based on this analysis, we feel more certain about

the reliability of the estimates obtained for the parameters associated with the maximum

size γ because of the much smaller confidence intervals computed for these parameters.

Table 4.7: Estimated parameters for bi-Gaussian p(b, γ) and confidence intervals given field
data for PAR(7,35,35).

Parameter θ̂m ± 1.96SE(θ̂m)
b̄1 1.9749± 395.3664
σ2

b1
0.0388× 10−3 ± 3.1450

b̄2 3.9132± 139.7600
σ2

b2
0.2228× 10−3 ± 1.5226

γ̄1 0.5265± 0.8471× 10−4

σ2
γ1

0.0122± 0.2982× 10−4

γ̄2 0.7208± 0.1426× 10−3

σ2
γ2

0.0372± 0.8201× 10−4

For SPL(4,35,8,35), the optimal values for {ajk}, for j = 0, 1, . . . , 4 and k =

0, 1, . . . , 8, and the corresponding confidence intervals are given in Table 4.8. As clearly seen

by the values given in this table, the confidence intervals are very large (by a factor of ≈ 105)

in comparison to the estimated values for each component of θ̂. We are not very confident

about estimated growth rate distributions obtained using SPL(4,35,8,35) in the inverse

problem with this given data set. Moreover, we found that as the quantity (M1+1)·(M2+1)
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became larger (while still remaining smaller than n), X T (θ̂)X (θ̂) became nearly singular,

resulting in a very ill-conditioned covariance matrix Σ̂. This, in turn, resulted in larger

confidence intervals which suggested that the estimated growth rate distributions produced

by the spline based approximation method were even more unreliable with respect to the

given field data. Furthermore, we were unable to compute confidence intervals for the

(M1,M2) pairs (4, 10) and (10, 4) because the covariance matrix Σ̂ did not exist in these

cases (X T (θ̂)X (θ̂) was singular to machine accuracy).

Table 4.8: Estimated probability density values p(b, γ) and confidence intervals given field
data for SPL(4,35,8,35).

ajk θ̂m ± 1.96SE(θ̂m) ajk θ̂m ± 1.96SE(θ̂m) ajk θ̂m ± 1.96SE(θ̂m)
a00 1.0000± 0.4245× 105 a01 1.0000± 0.6404× 105 a02 0.0000± 0.7277× 105

a03 0.0000± 1.0735× 105 a04 0.0000± 3.1710× 105 a05 0.0000± 7.1776× 105

a06 0.0000± 8.7419× 105 a07 0.0000± 3.0799× 105 a08 0.0000± 0.2847× 105

a10 1.0000± 0.2878× 105 a11 0.1525± 0.3884× 105 a12 0.7181± 0.0999× 105

a13 0.0000± 0.4497× 105 a14 0.0620± 0.1099× 105 a15 1.0000± 0.5300× 105

a16 1.0000± 0.1159× 105 a17 1.0000± 0.1826× 105 a18 0.0000± 0.0721× 105

a20 0.0000± 0.1106× 105 a21 1.0000± 0.5037× 105 a22 1.0000± 0.4524× 105

a23 0.8275± 0.2581× 105 a24 0.0000± 0.0555× 105 a25 0.6864± 0.1384× 105

a26 0.0000± 0.1537× 105 a27 0.1591± 0.0115× 105 a28 0.0000± 0.0340× 105

a30 0.0000± 0.3470× 105 a31 0.9352± 0.2464× 105 a32 1.0000± 0.3213× 105

a33 0.6130± 0.2102× 105 a34 0.0000± 0.0946× 105 a35 0.0000± 0.0683× 105

a36 0.4924± 0.0181× 105 a37 0.2598± 0.0278× 105 a38 0.0000± 0.0011× 105

a40 0.5786± 0.7387× 105 a41 0.0000± 0.1237× 105 a42 0.0000± 0.1336× 105

a43 0.0000± 0.2196× 105 a44 0.0000± 0.1207× 105 a45 0.0000± 0.1020× 105

a46 0.0000± 0.0372× 105 a47 0.0000± 0.0172× 105 a48 0.1682± 0.0005× 105

Overall, we found that the estimated growth rate distributions using DEL(31,15)

produced the best fit to the field data in comparison to both SPL(4,35,8,35) and PAR(7,35,35).

The model fits obtained with PAR(7,35,35) were very much comparable to those obtained

with SPL(4,35,8,35) in a more efficient manner in terms of computational time. From

the statistical analysis carried out for the estimates obtained from SPL(4,35,8,35) and

PAR(7,35,35), we observed that for this inverse problem the estimates obtained from the

spline based approximation method are not very reliable (as a result of the very large

confidence intervals). We are more certain about the parameters related to γ when using

PAR(7,35,35) than the parameters related to b. Furthermore, based on the fit-to-data and

required computational time, the delta function approximation provided the best estimates
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of the growth rate distribution for the mosquitofish field data given in this example; how-

ever, as previously noted, we are unable to make any remarks about the reliability of these

estimates.
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Chapter 5

Quantifying Uncertainty in

Estimated Probability

Distributions

In the previous chapter, we demonstrated how to construct nodal confidence in-

tervals for the finite-dimensional parameters (i.e., {pM
k }M

k=0, {aM
k }M

k=0, θ) using the standard

asymptotic theory for OLS estimators. The finite-dimensional parameters that we deter-

mined by solving the inverse problem were at the level of the probability density. As shown

in Chapter 4, we constructed estimates of the parameter of interest in our original problem

(the probability distribution) by using the estimates of the probability density obtained from

the inverse problem. While we can use the standard error theory that has already been es-

tablished to quantify the uncertainty associated with the estimates of the finite-dimensional

parameters, we cannot apply this same theory to the estimated probability distributions

which are in an infinite-dimensional setting. Since asymptotic standard error theory does

not exist for problems with functional parameters, we would like to develop the mathemat-

ical and asymptotic statistical theory for OLS problems where the parameter of interest

is a probability distribution. In this chapter we derive the mean and variance of the OLS

estimator for the functional linear regression model and discuss the results of a Monte Carlo

simulation study providing computational evidence of “true” functional confidence bands

for infinite-dimensional parameters. We also outline how to construct confidence bands for

estimated probability distributions by extending the nodal confidence intervals derived from
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the standard error theory for finite-dimensional OLS problems. Computational results with

simulated data with PAR(M, N), DEL(M), and SPL(M, N) are presented illustrating the

concept of confidence bands.

5.1 Function Space Analogue of Asymptotic Standard Error

Theory

5.1.1 Least Squares Estimation for Functional Linear Regression Models

We consider the following statistical model for the scalar observation process Yj

Y (τj) =
∫ T

0
k(τj , s)β0(s)ds + εj , j = 1, . . . , n, (5.1)

where the “true” parameter β0(s) is a scalar function in L2(0, T ) (assumed to exist) and

k(τj , s) is also a scalar function in L2(0, T ). We also assume that the εj are i.i.d. with

E [εj ] = 0 and V ar[εj ] = σ2
0 > 0. We note that (5.1) can be rewritten as

Yj =
∫ T

0
kj(s)β0(s)ds + εj , j = 1, . . . , n.

Let X : L2(0, T ) → Rn be defined as

Xβ =
∫ T

0
k(s)β(s)ds, (5.2)

where k(s) is a n× 1 vector of scalar functions. Then the statistical model in (5.1) for the

random variable Y can be expressed as

Y = Xβ0 + ε, (5.3)

where ε ∈ Rn is a random variable with E [ε] = 0 and V ar[ε] = σ2
0In (In represents the

n× n identity matrix). Since Y is also a random variable, the expected value of Y is Xβ0

and the variance of Y is σ2
0In. As is the case in finite dimensions, β0 and σ2

0 are usually

unknown. Therefore, we would like to construct an ordinary least squares (OLS) estimator

B of β0 in order to compute an estimate β̂ for a realization (data set) {yj} that can be used

in approximating the sampling distribution of the OLS estimator B which is also a random

variable. As already noted in the Introduction, the sampling distribution is of importance

because of its role in quantifying the uncertainty associated with estimates β̂.
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The least squares problem that we consider is formulated as

J(β) = (Y −Xβ)T (Y −Xβ), (5.4)

which we seek to minimize for β ∈ L2(0, T ). We can determine a solution to (5.4) by taking

the derivative of J(β) with respect to β and setting it equal to zero. The derivative of J

with respect to β is actually the directional derivative of J at β in the direction ϕ, where

ϕ ∈ L2(0, T ) [12]. Thus, for all ϕ ∈ L2(0, T ),

0 =
∂J(β)

∂β
[ϕ]

= (Y −Xβ)T ∂(Y −Xβ)
∂β

[ϕ] +
∂(Y −Xβ)T

∂β
[ϕ](Y −Xβ).

Before carrying out these computations, we derive the following useful relations.

First, we compute the adjoint X∗ which is a mapping from Rn to L2(0, T ). The

adjoint operator is defined by the equation

〈Xβ, ξ〉Rn = 〈β, X∗ξ〉L2(0,T ), where ξ ∈ Rn.

Therefore,

〈Xβ, ξ〉Rn = ξ •Xβ

= ξT Xβ

= ξT

∫ T

0
k(s)β(s)ds

=
∫ T

0
ξT k(s)β(s)ds

=
∫ T

0
β(s)kT (s)ξ ds

= 〈β,X∗ξ〉L2(0,T ),

which implies

X∗ξ = kT (s)ξ.

As a result of (5.2), we note

(Xβ)T =
∫ T

0
β(s)kT (s)ds.

Using this relation, we have the following for ϕ ∈ L2(0, T )

∂(Xβ)T

∂β
[ϕ] =

∫ T

0
ϕ(s)kT (s) = (Xϕ)T .
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Thus,
∂(Xβ)T

∂β
[ϕ](Y −Xβ) = (Xϕ)T (Y −Xβ) = 〈Xϕ, Y −Xβ〉Rn .

We now return to the problem of solving ∂
∂β J(β)[ϕ] = 0 for all ϕ ∈ L2(0, T ). For

all ϕ ∈ L2(0, T ), we have

0 =
∂

∂β
J(β)[ϕ]

= (Y −Xβ)T ∂(Y −Xβ)
∂β

[ϕ] +
∂(Y −Xβ)T

∂β
[ϕ](Y −Xβ)

= −(Y −Xβ)T ∂(Xβ)
∂β

[ϕ]− ∂(Xβ)T

∂β
[ϕ](Y −Xβ)

= −〈Y −Xβ, Xϕ〉Rn − 〈Xϕ, Y −Xβ〉Rn

= −〈Xϕ, Y −Xβ〉Rn − 〈Xϕ, Y −Xβ〉Rn

= −2〈Xϕ, Y −Xβ〉Rn

= −2〈ϕ,X∗(Y −Xβ)〉L2(0,T ).

Since

−2〈ϕ,X∗(Y −Xβ)〉L2(0,T ) = 0 ∀ϕ ∈ L2(0, T ),

then

X∗(Y −Xβ) = 0,

which gives us the normal equations

X∗Xβ = X∗Y. (5.5)

If X∗X is invertible, then the least squares estimator is given by

B = (X∗X)−1X∗Y, (5.6)

and the least squares estimate β̂ for a particular realization y is

β̂ = (X∗X)−1X∗y.

We note that this is the function space analogue of the normal equations for finite-dimensional

parameters derived in [59].

When Xβ = Y has more than one solution, we can use Theorem 1 of Section 6.1

in Luenberger [51] to determine the solution of the least squares problem. The theorem is

stated as follows:
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Theorem 5.1.1 Let G and H be Hilbert spaces and let A ∈ B(G,H) with range closed in

H. Then the vector x of minimum norm satisfying Ax = y is given by x = A∗z where z is

any solution of AA∗z = y.

Since X ∈ B(L2(0, T ),Rn), the range of X is closed because it is a subspace of the finite-

dimensional space Rn. Hence, by the theorem given above, the solution to our least squares

problem is given by

B = X∗Z,

where Z is any solution of

XX∗Z = Y.

If XX∗ is invertible, then the least squares estimator can be expressed as

B = X∗(XX∗)−1Y (5.7)

with the least squares estimate for a specific data set y

β̂ = X∗(XX∗)−1y.

We can rewrite the solutions in (5.6) and (5.7) in terms of the pseudoinverse X†

of X. In the first case, if X∗X is invertible, we note the following property in [51]

X† = (X∗X)−1X∗,

so the solution to the least squares problem is

B = (X∗X)−1X∗Y = X†Y.

Likewise, if XX∗ is invertible, then X† = X∗(XX∗)−1 (see [51]), so the solution to the least

squares problem is

B = X∗(XX∗)−1Y = X†Y.

Lastly, we show that the expected value of the estimator in (5.6) and (5.7) is equal

to the “true” parameter β0. When X∗X is invertible, then

E [B] = E [(X∗X)−1X∗Y ]

= (X∗X)−1X∗Xβ0 since E [Y ] = Xβ0

= β0.



66

By a similar computation when XX∗ is invertible, we see that

E [B] = E [X∗(XX∗)−1Y ]

= X∗(XX∗)−1Xβ0 since E [Y ] = Xβ0

= X∗(X∗)−1X−1Xβ0

= β0.

Therefore, in both cases B is an unbiased estimator of β0.

The two cases examined above are special cases of the more general problem of

finding a solution to Y = Xβ. We now show that the estimator B = X†Y, where X† is the

pseudoinverse of X, is an unbiased estimator of β0 in general. The following definition given

in [51] will be useful for the general case where G and H are Hilbert spaces and A ∈ B(G,H)

with R(A) closed.

Definition 5.1.1 Among all vectors x1 ∈ G satisfying

‖Ax1 − y‖ = min
x
‖Ax− y‖,

let x0 be the unique vector of minimum norm. The pseudoinverse A† of A is the operator

mapping y into its corresponding x0 as y varies over H.

Using this definition with X ∈ B(L2(0, T ),Rn) and again noting that R(X) is closed since

it is a subspace of Rn, B is the unique function of minimum norm among all β1 ∈ L2(0, T )

of

‖Xβ1 − Y ‖ = min
β∈L2(0,T )

‖Xβ − Y ‖.

Furthermore, the pseudoinverse operator X† maps Y into its corresponding B as Y varies

over Rn.

We use the following theorem from Section 3.4 in Luenberger [51] to determine

the solution of Y = Xβ.

Theorem 5.1.2 If M is a closed linear subspace of a Hilbert space H, then H = M ⊕M⊥

and M = M⊥⊥.

As a result of this theorem, we can write L2(0, T ) as the direct sum of the nullspace of X

and the orthogonal complement of the nullspace of X

L2(0, T ) = N (X)⊕N (X)⊥,
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and Rn can be written as the direct sum of the range of X and the orthogonal complement

of the range of X

Rn = R(X)⊕R(X)⊥.

The pseudoinverse X† is defined as the operator that maps elements fromR(X) intoN (X)⊥

and elements from R(X)⊥ to the null vector θ. Therefore, X† is the inverse operator of X

restricted to N (X)⊥.

By Theorem 5.1.2 we can write any Y ∈ Rn as

Y = Ŷ + Yp, where Ŷ ∈ R(X) and Yp ∈ R(X)⊥. (5.8)

Thus,

X†Y = X†(Ŷ + Yp) = X†Ŷ ,

so Ŷ is the best approximation to Y ∈ R(X). We let

B = X†Y.

Then, using (5.8) we see that

B = X†Y = X†(Ŷ + Yp) = X†Ŷ .

Since Ŷ ∈ R(X), then X† maps Ŷ into its corresponding B by Definition 5.1.1 and

XB = Ŷ .

Moreover, we note that B ∈ N (X)⊥ and is the minimum norm solution of Xβ1 = Ŷ .

We now show that B is an unbiased estimator of β0; that is, the expected value of

B is equal to β0. We assume that E [Ŷ ] = Xβ0, where Ŷ ∈ R(X). Then,

E [B] = E [X†Y ]

= E [X†Ŷ ] since B = X†Y = X†Ŷ

= X†Xβ0 since E [Ŷ ] = Xβ0

= β0,

since X† is the inverse operator of X restricted to N (X)⊥.

We must also compute the variance of the estimator B in order to specify its

sampling distribution. We start with the general case where

B = X†Y.
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Recalling the fact that

V ar(ε) = σ2
0In,

we have

V ar[B] = E [(B − β0)2]

= E [(β0 + X†ε− β0)2] since B = X†Y = X†(Xβ0 + ε) = β0 + X†ε

= E [(X†ε)2]

= E [(X†ε)(X†ε)T ]

= E [X†εεT (X†)∗]

= X†E [εεT ](X†)∗

= σ2
0X

†(X†)∗ since E [εεT ] = V ar[ε] = σ2
0In.

Now, considering the special case when X∗X is invertible, we recall that X† =

(X∗X)−1X∗, so

V ar[B] = σ2
0X

†(X†)∗

= σ2
0(X

∗X)−1X∗((X∗X)−1X∗)∗

= σ2
0(X

∗X)−1X∗X(X∗X)−1

= σ2
0(X

∗X)−1.

Likewise, we note in the special case when XX∗ is invertible, then X† = X∗(XX∗)−1 and

V ar[B] = σ2
0X

†(X†)∗

= σ2
0X

∗(XX∗)−1(X∗(XX∗)−1)∗

= σ2
0X

∗(XX∗)−1(XX∗)−1X

= σ2
0X

∗(X∗)−1X−1(X∗)−1X−1X

= σ2
0X

−1(X∗)−1

= σ2
0(X

∗X)−1.

The variance of the estimator B depends on the “true” variance σ2
0 which is gener-

ally not known. Therefore, we will need to construct an estimator for the variance σ2
0. The

estimator in the finite-dimensional case depends on the trace operator and the dimension of

the parameter to be estimated; however, since the parameter to be estimated in this frame-

work is infinite-dimensional, our computations will require the trace operator in functional
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space. Furthermore, we need to make use of the Central Limit Theorem in functional space

in order to approximate the sampling distribution of the estimator B based on a realization

of Y.

5.1.2 Construction of Confidence Bands from Confidence Intervals

To construct confidence bands for the estimated probability distributions, we use

the confidence intervals obtained for the finite-dimensional parameters. We will first dis-

cuss how we construct confidence bands when using the standard parametric approach

PAR(M, N). When using PAR(M, N), we use an a priori probability density in the GRD

model (2.3), which we assume is continuous. After using the standard error theory to com-

pute a confidence interval for θ, we construct a confidence band for the estimated probability

distribution by using the endpoints of the confidence interval in the known probability den-

sity function (pdf). We note that the 95% confidence region for the estimated probability

density is formed by plotting

p− = p(b; θ̂ − 1.96SE(θ̂)) and p+ = p(b; θ̂ + 1.96SE(θ̂)),

where θ̂ represents the estimates of θ that solve the OLS problem (3.2). Then, using the

fact that the probability density function p also represents the derivative of the probability

distribution function P, we construct the upper edge of the confidence band for the estimated

probability distribution by using the portions of p− and p+ that lie above the estimated

probability density when this function is increasing (i.e., the slope is positive). When the

estimated probability density is decreasing and the slope is negative, the portions of p−
and p+ that lie below the estimated probability density are used to construct the upper

edge of the confidence band. We use this same technique to create the lower edge of the

confidence band by using the portions of p− and p+ that lie below (above) the estimated

probability density when the slope is positive (negative). We integrate over these values

and then normalize by an appropriate factor so that the lower and upper edges forming the

confidence band are “true” distributions (integrate to 1).

When using the non-parametric approaches, DEL(M) and SPL(M, N), the con-

fidence intervals computed using the standard error theory correspond to the weights,

{pM
k }M

k=0 and {aM
k }M

k=0, used in the approximations. In some cases, the lower endpoints

of the confidence intervals for these estimated weights may be negative, which violates

the non-negativity condition required of probability densities (see results for SPL(8,128) in
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Figure 4.8). Thus, before constructing the confidence band for the estimated probability

distribution, we first truncate any negative values to zero in order to have a “true” density.

If the estimated probability density is monotone and increasing, the upper (lower) edge of

the confidence band for the estimated distribution is constructed by integrating over the

upper (lower) confidence interval endpoints and normalizing by an appropriate factor so

that the upper (lower) edge of the confidence band is a “true” probability distribution. In

the case that the estimated probability density is not monotone (which is the case in the

examples considered here), the construction of the confidence bands using DEL(M) and

SPL(M, N) again depends on the slope of the estimated probability densities. The tech-

nique employed in these cases mimics that described when using PAR(M, N). The upper

(lower) edge of the confidence band is created by integrating over the upper (lower) confi-

dence interval endpoints when the slope of the estimated probability density is positive and

the lower (upper) confidence interval endpoints when the slope is negative. We again nor-

malize by an appropriate factor so that both edges of the confidence band for the estimated

probability distribution are also “true” distributions. We will illustrate these methods in

two examples using simulated size-structured mosquitofish population data.

5.2 Computational Results with Gaussian Example

In the results presented in this section, we note that the data was generated using

the same parameter values (µb = 4.5, σ2
b = 0.25) given earlier with the known approximate

truncated Gaussian probability distribution. The results in this section were all obtained

with the same data set with 20% absolute noise. A larger percentage of absolute noise

was added to the simulated data for the results in this section so one could differentiate

visually between the estimated probability distributions and the confidence bands when

using the parametric approach. Results with the confidence bands were also obtained with

10% absolute noise; however, the confidence bands were much tighter around the estimated

probability distributions.

5.2.1 Results with PAR(M, N)

Using the method outlined above, we obtained the following results with PAR(1,128)

from the inverse problem using the simulated data with 20% absolute noise. The optimal

cost for this set of results is 14.0615, while the estimate of σ̂2 is 0.0056. We computed
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the condition number of X T (θ̂)X (θ̂), which is used in calculating the standard errors for

the finite-dimensional parameter θ, and obtained a value of 1.2833. Table 5.1 contains the

optimal estimate of θ as well as the corresponding 95% confidence intervals. The plots

of the known and estimated probability densities along with p− and p+ are shown on the

left in Figure 5.1, and the plots of the known and estimated probability distributions and

corresponding confidence band are shown on the right in Figure 5.1. We observe that the

estimated probability distribution is indeed contained in the small area bounded by the

confidence band constructed with the technique outlined above.

Table 5.1: Estimated parameters (µ̂b, σ̂
2
b ) and confidence intervals for Gaussian example

with 20% absolute error when using PAR(1,128).
µ̂b ± 1.96SE(µ̂b) σ̂2

b ± 1.96SE(σ̂2
b )

4.5062± 0.0163 0.2774± 0.0146
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Figure 5.1: Estimated probability density with confidence region and probability distri-
bution with confidence band for Gaussian example using PAR(1,128) with 20% absolute
error.

5.2.2 Results with DEL(M)

The next set of results from the parameter estimation problem were obtained using

DEL(M) for various values of M. In Table 5.2, the optimal cost J(θ̂), estimated variance

σ̂2, and condition number κ(X T (θ̂)X (θ̂)) for M = 4, 8, 12, 16, 24, and 32 are given. The

estimated probability densities with the corresponding 95% confidence intervals and the

estimated probability distributions with the corresponding confidence bands for these values
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of M are in Figures 5.2 through 5.7. We see that the estimated probability distribution

converges to the true probability distribution as M is increased. The optimal cost J(θ̂)

and the estimated variance σ̂2 decrease as the number of parameters M that we estimate

increases. While the estimated probability distribution converges to the known distribution

as M is increased, the confidence bands appear to converge nicely until M becomes too

large and the problem becomes over-parametrized. The increase in the condition numbers

of X T (θ̂)X (θ̂) that are shown in Table 5.2 is relatively smaller as M is increased from 4 to

24; however, there is a significant increase in κ(X T (θ̂)X (θ̂)) as M is increased from 24 to

32. Therefore, we note from the computational results obtained here that the confidence

bands appear to be converging nicely while the number of parameters is reasonable.

Table 5.2: Optimal cost values, σ̂2, and condition numbers of X T (θ̂)X (θ̂) for Gaussian
example with 20% absolute error when using DEL(M).

M J(θ̂) σ̂2 κ(X T (θ̂)X (θ̂))
4 67.8765 0.0272 2.6236
8 35.5805 0.0143 3.0244
12 23.0116 0.0093 3.7123
16 16.0959 0.0065 4.7307
24 13.8528 0.0056 10.3792
32 13.8392 0.0056 44.7902
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Figure 5.2: Estimated probability density with confidence intervals and probability distri-
bution with confidence band for Gaussian example using DEL(4) with 20% absolute error.
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Figure 5.3: Estimated probability density with confidence intervals and probability distri-
bution with confidence band for Gaussian example using DEL(8) with 20% absolute error.
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Figure 5.4: Estimated probability density with confidence intervals and probability dis-
tribution with confidence band for Gaussian example using DEL(12) with 20% absolute
error.
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Figure 5.5: Estimated probability density with confidence intervals and probability dis-
tribution with confidence band for Gaussian example using DEL(16) with 20% absolute
error.
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Figure 5.6: Estimated probability density with confidence intervals and probability dis-
tribution with confidence band for Gaussian example using DEL(24) with 20% absolute
error.
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Figure 5.7: Estimated probability density with confidence intervals and probability dis-
tribution with confidence band for Gaussian example using DEL(32) with 20% absolute
error.
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5.2.3 Results with SPL(M,N)

The final set of computational results for the Gaussian example were obtained

using SPL(M, 128) for M = 4, 8, 12, 16, 24, and 32. Since we added absolute noise instead

of relative noise to the simulated data used in the inverse problem calculations shown here,

the tails of the estimated probability density functions (pdfs) are very poor. We see in Table

5.3 the decreasing optimal cost values as the value of M is increased. The estimates of σ̂2

decrease when M is increased from 4 to 8 but have essentially converged as M is increased

from 8 up to 32. Figures 5.8 through 5.13 display the estimated probability densities and

distributions along with the 95% confidence intervals and confidence bands. We notice

that the estimated probability distributions converge to the known probability distribution

quickly (for much smaller values of M in comparison to DEL(M)). As the number of

parameters is increased, the condition number κ of X T (θ̂)X (θ̂) also increases. Moreover,

there are very significant increases in κ(X T (θ̂)X (θ̂)) as M is increased from 16 to 24 and

from 24 to 32. Again, we are able to use this behavior in understanding the confidence

bands that are obtained for these values of M. The confidence bands initially appear to be

converging nicely as M is increased. However, the confidence bands grow larger as M is

increased too much and the problem becomes over-parametrized. This example illustrates

that we are able to construct confidence bands for the estimated probability distributions

using our scheme which appear to converge nicely for appropriately chosen values of M.

Table 5.3: Optimal cost values, σ̂2, and condition numbers of X T (θ̂)X (θ̂) for Gaussian
example with 20% absolute error when using SPL(M, 128).

M J(θ̂) σ̂2 κ(X T (θ̂)X (θ̂))
4 14.2128 0.0057 9.2919
8 13.9665 0.0056 16.0090
12 13.9244 0.0056 24.4291
16 13.8604 0.0056 37.4285
24 13.8385 0.0056 88.4467
32 13.8167 0.0056 215.7808
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Figure 5.8: Estimated probability density with confidence intervals and probability distri-
bution with confidence band for Gaussian example using SPL(4,128) with 20% absolute
error.
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Figure 5.9: Estimated probability density with confidence intervals and probability distri-
bution with confidence band for Gaussian example using SPL(8,128) with 20% absolute
error.
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Figure 5.10: Estimated probability density with confidence intervals and probability distri-
bution with confidence band for Gaussian example using SPL(12,128) with 20% absolute
error.
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Figure 5.11: Estimated probability density with confidence intervals and probability distri-
bution with confidence band for Gaussian example using SPL(16,128) with 20% absolute
error.
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Figure 5.12: Estimated probability density with confidence intervals and probability distri-
bution with confidence band for Gaussian example using SPL(24,128) with 20% absolute
error.
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Figure 5.13: Estimated probability density with confidence intervals and probability distri-
bution with confidence band for Gaussian example using SPL(32,128) with 20% absolute
error.
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5.3 Computational Results with bi-Gaussian Example

In this section, we discuss and present computational results for the inverse prob-

lem with data generated using the bi-Gaussian distribution with subpopulation means

µb1 = 3.3 and µb2 = 5.7 and equal subpopulation variances σ2
b1

= σ2
b2

= 0.492 that we

discussed earlier. We also added 20% absolute noise to the simulated data and used the

same data set in all of the inverse calculations with PAR(M, N), DEL(M), and SPL(M,N).

5.3.1 Results with PAR(M, N)

The following results were obtained from computations carried out in MATLAB

with PAR(3,128). The optimal cost for this set of results is 14.6131, while the estimate

of σ̂2 is 0.0059. We also computed the condition number of X T (θ̂)X (θ̂), which is used

in computing the standard errors for the finite-dimensional parameter θ, and obtained a

value of 35.0084. Table 5.4 contains the optimal estimate of θ as well as the corresponding

confidence intervals based on the standard error theory in Chapter 3. In Figure 5.14 the plots

of the known and estimated probability densities along with p− and p+ are shown on the left

as well as the plots of the known and estimated probability distributions and corresponding

confidence band on the right. We note that the estimated probability distribution lies within

the confidence band constructed using the technique that we outlined.

Table 5.4: Estimated parameters (µ̂b1 , σ̂
2
b1

, µ̂b2 , σ̂
2
b2

) and confidence intervals for bi-Gaussian
example with 20% absolute error when using PAR(3,128).

µ̂b1 ± 1.96SE(µ̂b1) σ̂2
b1
± 1.96SE(σ̂2

b1
) µ̂b2 ± 1.96SE(µ̂b2) σ̂2

b2
± 1.96SE(σ̂2

b2
)

3.2247± 0.0697 0.5767± 0.2597 5.7050± 0.0507 0.5844± 0.1840
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Figure 5.14: Estimated probability density with confidence region and probability distri-
bution with confidence band for bi-Gaussian example using PAR(3,128) with 20% absolute
error.
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5.3.2 Results with DEL(M)

We now present some of the results obtained using DEL(M) for various values of

M in the estimation problem using the bi-Gaussian data set with 20% absolute noise. The

optimal cost values, estimates of σ̂2, and condition numbers κ of X T (θ̂)X (θ̂) can be found

in Table 5.5 for M = 8, 12, 16, 24, 32, 48, and 64. Figures 5.15 through 5.21 show the esti-

mated probability densities and 95% confidence intervals as well as the estimated probability

distributions and confidence bands. As the value of M is increased, we observe the optimal

cost and estimate of σ2
0 decrease, which we expect because we are allowing more degrees of

freedom. The estimated probability distribution converges to the known distribution as M

is increased. However, we also note from Table 5.5 that as M is increased, κ(X T (θ̂)X (θ̂))

increases. Once M becomes too large, the problem becomes over-parametrized and ill-

conditioned (exhibited by the larger condition numbers of X T (θ̂)X (θ̂)), and we observe the

confidence bands become larger. As M is increased from 8 to 32, the confidence bands

appear to be converging nicely; however, when M is increased from 32 to 48 and from 48 to

64, we no longer observe nice convergence of the confidence bands. However, by examining

the condition number of X T (θ̂)X (θ̂), we can better understand the behavior of the confi-

dence bands, which appear to converge nicely until the problem becomes over-parametrized

(beyond M = 32).

Table 5.5: Optimal cost values, σ̂2, and condition numbers of X T (θ̂)X (θ̂) for bi-Gaussian
example with 20% absolute error when using DEL(M).

M J(θ̂) σ̂2 κ(X T (θ̂)X (θ̂))
8 40.3022 0.0162 15.6702
12 31.0134 0.0125 16.2206
16 25.8105 0.0104 16.9203
24 19.8538 0.0080 19.0560
32 16.4280 0.0067 22.1191
48 14.4454 0.0059 53.5280
64 14.1326 0.0058 105.5634
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Figure 5.15: Estimated probability density with confidence intervals and probability dis-
tribution with confidence band for bi-Gaussian example using DEL(8) with 20% absolute
error.
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Figure 5.16: Estimated probability density with confidence intervals and probability dis-
tribution with confidence band for bi-Gaussian example using DEL(12) with 20% absolute
error.
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Figure 5.17: Estimated probability density with confidence intervals and probability dis-
tribution with confidence band for bi-Gaussian example using DEL(16) with 20% absolute
error.
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Figure 5.18: Estimated probability density with confidence intervals and probability dis-
tribution with confidence band for bi-Gaussian example using DEL(24) with 20% absolute
error.
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Figure 5.19: Estimated probability density with confidence intervals and probability dis-
tribution with confidence band for bi-Gaussian example using DEL(32) with 20% absolute
error.
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Figure 5.20: Estimated probability density with confidence intervals and probability dis-
tribution with confidence band for bi-Gaussian example using DEL(48) with 20% absolute
error.
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Figure 5.21: Estimated probability density with confidence intervals and probability dis-
tribution with confidence band for bi-Gaussian example using DEL(64) with 20% absolute
error.
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5.3.3 Results with SPL(M,N)

We also obtained computational results for the inverse problem with SPL(M, 128)

using the same data set with 20% absolute noise for various values of M. For M = 8, 12,

16, 24, and 32, we report the optimal cost values J(θ̂), the estimates σ̂2, and the condi-

tion numbers of X T (θ̂)X (θ̂) in Table 5.6. The figures displaying the estimated probability

densities with the nodal 95% confidence intervals as well as the estimated probability dis-

tributions with the functional confidence bands for these values of M are shown in Figures

5.22 through 5.26. We observe the same type of behavior in the confidence bands here as

noted when using DEL(M).

Table 5.6: Optimal cost values, σ̂2, and condition numbers of X T (θ̂)X (θ̂) for bi-Gaussian
example with 20% absolute error when using SPL(M, 128).

M J(θ̂) σ̂2 κ(X T (θ̂)X (θ̂))
8 14.6181 0.0059 22.4873
12 14.4995 0.0058 31.3596
16 14.4422 0.0058 40.2284
24 14.4240 0.0058 63.5889
32 14.3928 0.0058 91.0741

As M is increased, there is a small decrease in the optimal cost. The decrease

in the estimate of the variance of the system σ̂2 is so small that it is not noticeable when

reported to only four significant digits. We also note the increase in κ(X T (θ̂)X (θ̂)) as M is

increased, and again, we can use this to explain the behavior we observe in the confidence

bands constructed for these values of M. The confidence bands appear to be converging

nicely as M is increased from 8 to 16. However, the confidence bands begin to grow larger

as M is increased beyond 16 which is also accompanied by a much larger increase in the

condition number of X T (θ̂)X (θ̂) for the values of M above 16. Over-parametrization of the

inverse problem does not only affect the estimates obtained but the confidence bands as

well. However, for appropriately chosen values of M, we observe very nice convergence of

the confidence bands constructed using the technique outlined above for the approximation

methods DEL(M) and SPL(M, N).
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Figure 5.22: Estimated probability density with confidence intervals and probability distri-
bution with confidence band for bi-Gaussian example using SPL(8,128) with 20% absolute
error.
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Figure 5.23: Estimated probability density with confidence intervals and probability distri-
bution with confidence band for bi-Gaussian example using SPL(12,128) with 20% absolute
error.
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Figure 5.24: Estimated probability density with confidence intervals and probability distri-
bution with confidence band for bi-Gaussian example using SPL(16,128) with 20% absolute
error.
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Figure 5.25: Estimated probability density with confidence intervals and probability distri-
bution with confidence band for bi-Gaussian example using SPL(24,128) with 20% absolute
error.
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Figure 5.26: Estimated probability density with confidence intervals and probability distri-
bution with confidence band for bi-Gaussian example using SPL(32,128) with 20% absolute
error.
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Other examples illustrating this behavior can be found in [9]. Moreover, the ideas

outlined here can also be adopted to treat many other (non probability density) functional

parameter estimation problems including those described in the Introduction.

5.4 Monte Carlo Simulations - Convergence of Confidence

Bands

We derived the mean and variance of the OLS estimator for the functional regres-

sion model in Section 5.1. We also discussed a scheme to construct confidence bands for

probability distributions in function space based on the confidence intervals obtained for

the finite-dimensional parameters and presented several numerical examples demonstrating

our technique in Sections 5.2 and 5.3. Although we must still determine an estimator for

the variance σ2
0 in the functional statistical model (5.1) and complete the theoretical ar-

guments for the asymptotic sampling distribution for functional parameters, those efforts

will be investigated further in future work. We focus instead on providing computational

results from Monte Carlo simulations supporting the analysis carried out for the mean of

the infinite-dimensional OLS estimator and suggesting the existence of “true” functional

confidence bands for infinite-dimensional parameters.

Our Monte Carlo study consisted of a series NMC of inverse problem calculations

with the non-parametric approximation methods DEL(M) and SPL(M,N). We generated

NMC different realizations {yj}n
j=1 of the observation process described by (3.7) by adding

randomly sampled noise to the solution of the GRD model (2.3) where the mean and

variance of the “true” distribution P ∗ represented by θ0 are fixed. Recall the observation

process is described by

Yj = f(τj ; θ0) + εj , j = 1, . . . , n,

where f(τj ; θ0) is the solution of the mathematical model and θ0 ∈ Θ ⊂ RM+1. For each

different data set generated with random absolute noise, we determine a realization of

the OLS estimator θOLS . That is, we compute NMC estimates of the finite-dimensional

parameter θ ({pM
k }M

k=0 for DEL(M) and {aM
k }M

k=0 for SPL(M, N)) used to approximate θ0

in the statistical model. Each estimate of the finite-dimensional parameter θ at the density

level corresponds to an estimate approximating the probability distribution that we seek in

the original parameter estimation problem.
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As we discussed in Section 3.3, for a single realization we can approximate the

sampling distribution of the finite-dimensional OLS estimator θOLS with a multivariate

normal distribution with mean θ̂ and covariance σ̂2(X T (θ̂)X (θ̂))−1, where θ̂ and σ̂2 are

estimates based on a given data set. Using the standard asymptotic theory for finite-

dimensional OLS estimators, we developed a technique to construct confidence bands for the

estimated probability distributions based on the nodal confidence intervals for a specific data

set. Since we obtain NMC estimates of the probability distribution from the Monte Carlo

simulations, we can determine the sample mean and sample variance of the approximate

probability distributions for a fixed value of M when considering DEL(M) and SPL(M,N).

The sample mean and sample variance can then be used to construct a confidence band

for the average estimated probability distribution based on the results of the Monte Carlo

runs. From the results of these two different approaches, we can determine if the sample

means of the estimated probability distributions are converging to the “true” probability

distribution which would validate our analytical arguments in Section 5.1. The confidence

bands constructed from the Monte Carlo simulations would also provide computational

evidence as to whether or not the approximate confidence bands are converging to some

“true” functional confidence band as M tends to ∞. Furthermore, we can compare the

confidence bands based on the Monte Carlo simulations to the confidence bands constructed

from the confidence intervals based on the asymptotic standard error theory for finite-

dimensional parameters for a single realization or data set in order to gain more insight on

the behavior observed and discussed in Sections 5.2 and 5.3. We present results addressing

these issues in the following two sections for both a Gaussian and bi-Gaussian example.

5.4.1 Results with Gaussian Example

In this section we present the results of 5000 Monte Carlo simulations with 20%

absolute noise added to data (previously described in Chapter 4) generated with a “true”

approximate truncated Gaussian distribution with mean µb = 4.5 and variance σ2
b = 0.25

on the intrinsic growth rates b. The first set of results shown in Figures 5.27 through 5.29

were computed with the delta function approximation method DEL(M) for M = 4, 8, 12,

16, 24, and 32. The estimates of {pM
k }M

k=0 and corresponding probability distributions PM

for these values of M were determined by solving the quadratic programming problem in

(3.5). We remark that this problem is minimized over the set given in (3.4). After carrying
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out 5000 inverse problem calculations, we computed the sample mean and sample variance

of the estimated probability distributions for each value of M. The resulting averages of

the estimated probability distributions are shown on the left in Figure 5.27. We observe

the sample means of the estimated probability distributions converging nicely to the “true”

probability distribution as M is increased from 4 to 32. The same behavior is also observed

in the resulting estimated probability distributions for the various values of M for a single

realization or data set as seen in the plot on the right in Figure 5.27.
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Figure 5.27: (a) Monte Carlo averages of estimated PM and (b) estimated PM correspond-
ing to a single realization for Gaussian example using DEL(M) for M = 4, 8, 12, 16, 24,
32.

The upper and lower edges of the 95% confidence bands for the Monte Carlo

simulations are constructed by adding and subtracting 1.96 ·σMC to the sample mean where

σMC is the sample standard deviation or square root of the sample variance from the Monte

Carlo runs. The lower and upper edges of the 95% confidence bands based on these results

are shown in the top two plots in Figure 5.28. As M is increased from 4 up to 32 the lower

edges of the 95% confidence bands (on the left) and the upper edges of the 95% confidence

bands (on the right) both appear to be converging nicely to functions representing the

edges of the “true” 95% functional confidence band. This behavior is in contrast to the

behavior observed in the numerical results in Section 5.2 as well as the lower and upper

edges of the confidence bands shown in the bottom of Figure 5.28 constructed with the

scheme based on the nodal asymptotic based confidence intervals for a single data set. As

we previously noted, the confidence bands constructed from the confidence intervals for the

finite-dimensional estimates converge nicely until the problem becomes over-parametrized.
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Figure 5.28: Lower and upper edges of 95% confidence bands for Monte Carlo (upper) and
nodal based asymptotic theory (lower) for Gaussian example using DEL(M) for M = 4, 8,
12, 16, 24, 32.
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Figure 5.29: 95% confidence band for (a) Monte Carlo and (b) nodal based asymptotic
theory for Gaussian example using DEL(32).
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Once M is too large, the 95% confidence bands based on the nodal confidence intervals

grow larger and the condition numbers of X T (θ̂)X (θ̂) increase as a result of using too

many elements which was also noticed in the examples reported in Section 5.2. We see

a much tighter confidence band from the Monte Carlo simulations for DEL(32) in Figure

5.29 in comparison to the much larger confidence band based on the confidence intervals

for DEL(32) for a single data set. These results suggest that one must be careful when

using the confidence bands that are obtained by extending the asymptotic standard error

theory in the finite-dimensional case for statistical analysis since wider confidence bands

are indicative of less reliable estimates of the probability distribution.

The next set of results in Figures 5.30 through 5.32 were obtained with the spline

based approximation method SPL(M, 128) for 5000 Monte Carlo simulations with the same

data set used in the calculations with DEL(M). We also used the same values of M = 4, 8,

12, 16, 24, and 32. In this case we minimized (3.5) over the finite-dimensional set in (3.6)

and determined estimates for the coefficients {aM
k }M

=0 as well as the approximating continu-

ous probability distributions PM . The results of the 5000 Monte Carlo runs were similar to

those obtained with DEL(M). In Figure 5.30 the sample means of the estimated probability

distributions converge to the “true” Gaussian probability distribution supporting the the-

oretical arguments in Section 3.3. We note again (as in previously discussed examples) the

much faster convergence of the estimated probability distributions when using the scheme

with piecewise linear splines in both plots in Figure 5.30 in comparison to the delta function

approximation method.

Using the sample means and sample variances of the Monte Carlo runs, we also

constructed the lower and upper edges of the 95% confidence bands that are shown in

the top of Figure 5.31. The behavior of the bands shown here is also suggestive of the

existence of “true” functional confidence bands. As M is increased from 4 to 32 we observe

nice convergence behavior in both the lower and upper edges of the 95% confidence bands

(again at a much faster rate than those of DEL(M)). In fact, there is little noticeable

difference in the edges for M = 8, 16, 24, and 32. However, when comparing the confidence

bands from the Monte Carlo simulations to those constructed from the nodal asymptotic

based confidence intervals we see significant differences. Although the confidence bands

based on extending the asymptotic standard error theory shown in the bottom of Figure

5.31 appear to converge initially for the smaller values of M, the bands grow noticeably

larger when M is increased to 24 and 32. We again remark that this behavior is readily
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Figure 5.30: (a) Monte Carlo averages of estimated PM and (b) estimated PM correspond-
ing to a single realization for Gaussian example using SPL(M, 128) for M = 4, 8, 12, 16,
24, 32.
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Figure 5.31: Lower and upper edges of 95% confidence bands for Monte Carlo (upper) and
nodal based asymptotic theory (lower) for estimated probability distributions for Gaussian
example SPL(M, 128) for M = 4, 8, 12, 16, 24, 32.
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Figure 5.32: 95% confidence band for (a) Monte Carlo and (b) nodal based asymptotic
theory for Gaussian example using SPL(32,128).

explained by studying the condition number κ of X T (θ̂)X (θ̂) which increased significantly

as M was increased from 16 to 24 and 24 to 32 in the previous numerical example in Section

5.2. Furthermore, it is clear from Figure 5.32 that our scheme is highly sensitive to over-

parametrization in the inverse problem as noticed by the much larger confidence band for

SPL(32,128) created with the technique discussed earlier in this chapter.

5.4.2 Results with bi-Gaussian Example

The results in this section were obtained from 5000 Monte Carlo simulations

with 20% absolute noise added to data generated with a “true” approximate truncated

bi-Gaussian distribution with subpopulation means µb1 = 3.3 and µb2 = 5.7 and equal sub-

population variances σ2
b1

= σ2
b2

= 0.492 on the intrinsic growth rates b which was used in

previous examples in Chapter 4. In the first set of results in Figures 5.33 through 5.35, we

used DEL(M) with M = 8, 12, 16, 24, 32, 48 and 64. We reiterate that the estimates of

{pM
k }M

k=0 for DEL(M) and the corresponding probability distributions PM were found by

minimizing the quadratic programming problem in (3.5) over the finite-dimensional approx-

imate probability measure space (3.4). We calculated the sample mean and sample variance

of the estimated probability distribution for each value of M after performing the inverse

problem 5000 times. The sample means for the values of M considered in this example

appear to be converging to the “true” probability distribution based on the plot on the left

in Figure 5.33. These computational results also support the analysis carried out in the
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previous section. Furthermore, we notice the same convergence behavior in the estimated

probability distributions PM as M is increased from 8 to 64 for a single data set in the

right plot in Figure 5.33.
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Figure 5.33: (a) Monte Carlo averages of estimated PM and (b) estimated PM correspond-
ing to a single realization for bi-Gaussian example using DEL(M) for M = 8, 12, 16, 24,
32, 48, 64.

In the top of Figure 5.34 we see the lower and upper edges of the 95% confidence

bands constructed from the sample means and sample standard deviations of the Monte

Carlo simulations. We observe the lower edges of the 95% confidence bands (top left) and

upper edges of the 95% confidence bands (top right) both converging to some “true” lower

and upper edges of a functional confidence band as M is increased from 8 up to 64. The

difference in the convergence properties of the edges of these confidence bands in comparison

to the edges of the confidence bands constructed from our proposed scheme in the bottom

of Figure 5.34 as well as in the computational results in Section 5.3 should also be noted.

The confidence bands based on the asymptotic standard error theory for finite-dimensional

parameters appear to behave nicely for small values of M ; however, the confidence bands

grow larger when too many elements are used in the approximation. As a result of over-

parametrization of the problem, the condition number of X T (θ̂)X (θ̂) increases significantly

which further highlights the problem of using large values of M as discussed in Section

5.3. The confidence bands from the 5000 Monte Carlo runs are very suggestive of “true”

confidence bands despite the behavior of the confidence bands constructed from the nodal

confidence intervals (see Figure 5.35 for a comparison of the confidence bands for DEL(64)).
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Figure 5.34: Lower and upper edges of 95% confidence bands for Monte Carlo (upper) and
nodal based asymptotic theory (lower) for bi-Gaussian example using DEL(M) for M = 8,
12, 16, 24, 32, 48, 64.
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Figure 5.35: 95% confidence band for (a) Monte Carlo and (b) nodal based asymptotic
theory for bi-Gaussian example using DEL(64).
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The last set of results in this section were obtained from SPL(M, 128) for M =

8, 12, 16, 24, and 32 for 5000 Monte Carlo runs with the same data used in the com-

putations with DEL(M). After determining estimates of the coefficients {aM
k }M

k=0 for the

approximate probability density and distribution from the quadratic programming problem,

we again computed the sample means and sample variances of the estimated probability

distributions PM for the various values of M. It is clear from the results in Figure 5.36

that the sample means of the estimated probability distribution as well as the estimated

probability distributions for one data set converge for the values of M considered in this ex-

ample. Moreover, the spline based approximation method provides much faster convergence

in comparison to the delta function approximation method.
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Figure 5.36: (a) Monte Carlo averages of estimated PM and (b) estimated PM correspond-
ing to a single realization for bi-Gaussian example using SPL(M, 128) for M = 8, 12, 16,
24, 32.

We also observe very nice convergence of the upper and lower edges of the 95%

confidence bands from the Monte Carlo simulations in the top of Figure 5.37 for M = 8,

12, 16, 24, and 32. As M is increased from 8 up to 32 both the lower and upper edges

of the 95% confidence bands appear to be converging to the lower and upper edges of the

“true” 95% functional confidence band. In comparison to the lower and upper edges of the

confidence bands in the lower two plots in Figure 5.37 and the confidence bands reported

previously in Section 5.3, we see again that the results from the Monte Carlo simulations

are much different. However, as we have previously pointed out, the confidence bands

determined from the nodal asymptotic based confidence intervals are very much dependent

upon using the appropriate number of elements in the approximation of the probability
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distribution. When the value of M used in the parameter estimation problem is too large,

the widths of the resulting confidence bands are much larger than when small values of M

are used. These larger confidence bands are illustrative of the growing condition numbers of

X T (θ̂)X (θ̂) which is used in determining the confidence intervals for the finite-dimensional

parameters. Therefore, one must be aware of the effects that over-parametrization can have

on the confidence bands constructed from the nodal confidence intervals such as that seen

when comparing the confidence band from the Monte Carlo runs with those based on the

finite-dimensional asymptotic standard error theory for M = 32 in Figure 5.38.
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Figure 5.37: Lower and upper edges of 95% confidence bands for Monte Carlo (upper) and
nodal based asymptotic theory (lower) for bi-Gaussian example SPL(M, 128) for M = 8,
12, 16, 24, 32.

In summary, the results from both the Gaussian and bi-Gaussian examples demon-

strate that the sample means of the estimated probability distributions from the Monte

Carlo runs converge to the “true” probability distributions as M →∞, thereby confirming
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Figure 5.38: 95% confidence band for (a) Monte Carlo and (b) nodal based asymptotic
theory for bi-Gaussian example using SPL(32,128).

the theoretical analysis for the OLS estimator for the functional linear regression model.

We also observe convergence of the lower and upper edges of the 95% confidence bands

from these simulations which suggests the existence of “true” functional confidence bands.

In comparing these results to those obtained based on our technique of extending the nodal

asymptotic based confidence intervals constructed in finite dimensions, we found that the

confidence bands from our scheme are very much dependent on the number of elements used

in the approximations. Over-parametrization of the parameter estimation problem results

in larger confidence intervals which in turn results in larger confidence bands suggesting

less reliable estimates of the probability distribution. However, the computational results

presented in this chapter illustrate the usefulness of our technique in quantifying the uncer-

tainty in the estimation of functional parameters as long as one is also aware of the effects

that over-parametrization can have on the estimates from the inverse problem as well as

the measures of uncertainty associated with these estimates.
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Chapter 6

Computational Example:

Size-Structured Shrimp Population

6.1 Problem Description

In this chapter we present results for the inverse problem for the estimation of

growth rate distributions in size-structured shrimp populations. The efforts discussed here

are motivated by previous work on a hybrid model of the shrimp biomass/countermeasure

production system developed and discussed in [5]. One of the goals of this joint project

with Advanced Bionutrition Corporation (ABN) was the development of a model for a

system where one uses shrimp as a scaffold organism to produce large amounts of vaccine in

response to bio-toxic attacks on populations. Being able to accurately model the dynamics

of the size-structured shrimp population is important since the output of the biomass model

will serve as input to the vaccine production model.

Variability in size has been observed in experimental data shown in Figures 6.1

and 6.2 for the early growth of shrimp collected from two different raceways at the Shrimp

Mariculture Research Facility, Texas Agricultural Experiment Station in Corpus Christi,

TX. Although the initial sizes of the shrimp were very similar, a great deal of variability

was observed in the aggregate type longitudinal data as time progressed. Therefore, a

reasonable model for this population would need to account for the variability in the size

distribution data which is perhaps a result of variability in the individual growth rates

across the population [33].
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Figure 6.1: Histograms for longitudinal data for Raceway 1.
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Figure 6.2: Histograms for longitudinal data for Raceway 2.
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The GRD model (2.3) represents one approach to accounting for uncertainty in

growth rates by imposing a probability distribution on the growth rates in the SS model

(2.1). As we noted in Chapter 2, the individuals in the population grow according to a

deterministic growth rate function (2.2), but different individuals in the population may

have different parameter dependent growth rates in the GRD model. The population is

assumed to consist of subpopulations with individuals in the same subpopulation having

the same growth rate. The growth uncertainty of individuals in the population is the result

of variability in growth rates among the subpopulations. This modeling approach may

be most applicable when the growth of individuals is assumed to be the result of genetic

variability, such as in [33].

However, a second approach that has been studied as well is based on the as-

sumption that individual growth is a Markov diffusion stochastic process which leads to

the Fokker-Planck or forward Kolmogorov model for the shrimp population density [1, 27,

41, 53]. The growth process for each individual is stochastic, and each individual grows

according to a stochastic growth model. In the Fokker-Planck model, the uncertainty in

growth of individuals is the result of the growth stochasticity of each individual. This mod-

eling approach may be most applicable when the variability in growth rate of individuals is

believed to be the result of changes in environmental factors, such as [43, 47, 54]. Theoret-

ical arguments in [10] demonstrate that the population density from the GRD model is the

same as the population density obtained from the Fokker-Planck model when equivalent

levels of variability are used in both models. Numerical results were also presented in [11] to

further validate the theoretical analysis of [10]. Therefore, one can use the computationally

“easier” approach to model the population of interest when appropriately chosen forms of

variability can be determined. Based on these studies, we chose to use the GRD model (2.3)

to incorporate uncertainty in the growth rates in the size-structured population model for

the early growth of shrimp.

6.2 Experimental Design

In this section we outline an approach for determining the sampling size and the

number of sampling time points one needs to obtain reliable estimates for probabilistic

growth rate parameters in the GRD model. We also present some computational results

demonstrating the effect of the bin size used in inverse problem calculations on parameter
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estimates and model predictions.

Before discussing the results, we first describe the simulated data used in these

calculations. The experimental data to be used in the inverse problem calculations will

be aggregate type longitudinal data (similar to the data shown in Figures 6.1 and 6.2).

Individual shrimp are randomly sampled from the population at each time point; however,

there is no guarantee that the same set of individuals are sampled at different time points.

The simulated data that we use in the calculations in this section will also be aggregate

longitudinal data.

We assume that the mortality rate µ(t, x) and reproduction rate K(t, x) in (2.1)

are both zero because we only consider the early growth dynamics of the shrimp. We also

assume that the growth rate function has the form

dx

dt
= g(x) = b(x + c), (6.1)

where b represents the intrinsic growth rate of the individuals and c is a fixed constant.

This growth rate function was shown to be reasonable in [10] where the average size (weight

in grams) data for fifty randomly sampled shrimp was fit with the exponential function

corresponding to the solution of (6.1). To satisfy the assumption of varying growth rates

in the GRD model, we assume that the intrinsic growth rate is a random variable taking

values in a compact set B = [b, b̄] with probability density function p(b). Here, we chose it

to be a truncated normal (Gaussian) distribution with mean µb and standard deviation σb,

denoted by N[b,b̄](µb, σ
2
b ). This choice was based on previous analysis that demonstrated that

an assumption of a normal distribution on the intrinsic growth rates leads to a lognormal

distribution in size, which is typical of data collected on shrimp populations such as those

in Figures 6.1 and 6.2. Therefore, the population density in (2.3) is given by

u(t, x;µb, σb) =
∫ b̄

b
v(t, x; b)p(b; µb, σb)db =

∫ b̄

b
v(t, x; b)

1
σb

φ
(

b−µb
σb

)

Φ
(

b̄−µb
σb

)
− Φ

(
b−µb

σb

)db, (6.2)

where φ is the probability density function of the standard normal distribution and Φ is its

corresponding cumulative distribution function.

While individual shrimp are randomly sampled and weighed at each time point,

the data used in the inverse problem calculations is the total number of shrimp in each size

class. Let ∆x be the length of the size class interval that we choose for each size class bin.

Then the total number of population NGRD(t, x; θ) in each size class bin is approximated
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by

NGRD(t, x; θ) ≈ u(t, x; θ)∆x, (6.3)

where θ = (µb, σb), and u(t, x; θ) is obtained from (6.2).

Let the sampling time points be given by tk, k = 1, 2, . . . , Nt. At each time point

tk, we independently draw Ns samples from N[b,b̄](µb, σ
2
b ); that is, we obtain Ns samples of

intrinsic growth rates bk
i , i = 1, 2, . . . , Ns. We also independently draw Ns samples of initial

sizes xk
0,i from a uniform distribution on the interval [x0, x̄0], where x0 and x̄0 are some

constants. Let sk
i represent the size of shrimp at time tk with intrinsic growth rate bk

i and

initial size xk
0,i. Then by solving (6.1), we have

sk
i = (xk

0,i + c) exp(bk
i tk)− c.

For convenience, we reorder {sk
i } in increasing order and reorder {bk

i } in the same order as

{sk
i }. To avoid introducing more notation, we continue to use the same notation; that is,

sk
1 ≤ sk

2 ≤ · · · ≤ sk
Ns

.

We then group sk
i , i = 1, 2, . . . , Ns into size classes based on ∆x. For example, if |sk

1 − sk
2| <

∆x, then sk
1 and sk

2 are in the same size class. Suppose that we have Nk
x size classes at

time tk after we group {sk
i }. We use [xk

j , x
k
j + ∆x) to denote size class j, j = 1, 2, . . . , Nk

x

and zk
j to represent the total number of population in size class j at time tk (so,

∑Nk
x

j=1 zk
j =

Ns, k = 1, 2, . . . , Nt). The center point xk
j +∆x/2 of size class j is used in the computations

to estimate the parameters (µb, σb) in order to eliminate any left bias by using xk
j or right

bias by using xk
j + ∆x. Then the estimate θ̂ = (µ̂b, σ̂b) of the underlying “true” parameters

θ0 = (µ0
b , σ

0
b ) (assumed to exist) can be calculated by

θ̂ = arg min
θ∈Θ

J(θ) = arg min
θ∈Θ

Nt∑

k=1

Nk
x∑

j=1

|NGRD(tk, xk
j + ∆x/2; θ)− zk

j |2,

where Θ is some closed set in R2
+.

6.2.1 Effect of Sampling Size and Frequency on Parameter Estimation

Problem

We carried out a series of inverse problem calculations in order to determine the

influence of the sampling size (Ns) and the number of sampling time points (Nt) on the
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quality of the parameter estimation. The sampling frequency varies from twice a week, once

a week to once every two weeks, while sampling size Ns varies from 25, 50, 75 to 100. We

consider these sampling frequencies and sizes to determine minimal effort experiments to

provide data sufficient to accurately estimate variability (i.e., θ0 = (µ0
b , σ

0
b )) in the growth

rates of the shrimp. A sampling period of 6 weeks was used in all of the following simulations.

We also considered different σ0
b values in order to determine the effect of the amount of

variability in the growth rates on the sampling size and sampling frequency necessary for

the experiments. The true standard deviation σ0
b used to generate the simulated data was set

to σscale ·µ0
b , where σscale = 0.1, 0.5, and 0.9. Therefore, we have a total of 36 scenarios. The

following parameter values were used in the inverse problem calculations: ∆x = 0.01, c =

0.1, µ0
b = 0.045, σ0

b = σscale · µ0
b , b = 0.001, b̄ = 0.2, x0 = 0, x̄0 = 0.02. We used

the following function for the initial condition v0(x; g) :

v0(x; g) =





Ns
2ε if x0 − ε < x < x0 + ε,

0, otherwise,

where ε = 0.01. The inverse problem calculations were performed 500 times for each

scenario with different sets of {bk
i }Ns,Nt

i=1,k=1 sampled from the truncated normal distribution

on [b, b̄] with mean µ0
b and standard deviation σ0

b and {xk
0,i}Ns,Nt

i=1,k=1 sampled from a uniform

distribution on [x0, x̄0]. The estimated value for θ0 in the jth (j = 1, 2, . . . , 500) inverse

problem of the lth (l = 1, 2, . . . , 36) scenario is denoted as θ̂j,l = (µ̂j,l
b , σ̂j,l

b ).

Figure 6.3 displays the results obtained when σscale = 0.1. The upper two plots

show the average relative errors of µ̂b and σ̂b, while the 95% confidence bounds for µ̂b and σ̂b

are in the lower two plots of Figure 6.3. The average relative errors RE(µ̂b)l and RE(σ̂b)l

of µ̂b and σ̂b, respectively, in each scenario is given by

RE(µ̂b)l =
1

500

500∑

j=1

|µ̂j,l
b − µ0

b |
µ0

b

and RE(σ̂b)l =
1

500

500∑

j=1

|σ̂j,l
b − σ0

b |
σ0

b

, for l = 1, 2, . . . , 36.

We obtain the 95% confidence bounds for µ̂j,l
b and σ̂j,l

b , j = 1, . . . 500, for each scenario by

computing the value where 2.5% of the estimated parameters (µ̂b, σ̂b) are below and above

based on the results of the 500 inverse problem calculations. While the sampling size Ns

and sampling frequency do not have an effect on the estimation of µb in this example, we

observe that there is an effect on the estimation of σb. The average relative error of σ̂b

decreases as we increase either Ns or Nt. Furthermore, the reduction in the average relative
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error resulting from an increase in the sampling size Ns from 25 to 50 is greater than the

reduction caused by an increase in Ns from 50 to 75 and 75 to 100. These results suggest

that a sampling size of 25 is not large enough to obtain reliable estimates of the variability

in the growth rates.
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Figure 6.3: (upper): Relative errors of µ̂b and σ̂b; (lower): 95% confidence bounds for the
estimates corresponding to µ̂b and σ̂b with σscale = 0.1.

The lower plots in Figure 6.3 depicting the 95% confidence bounds for µ̂b also show

that for this example with σscale = 0.1 the sampling size and frequency have minimal effect

on the estimates µ̂b based on the very tight bounds around the “true” mean µ0
b . However,

we observe a decrease in the width of the confidence bounds for σ̂b as Ns is increased from

25 to 50 and essentially no change in the width as Ns is increased from 50 to 75 and 75 to

100. This also suggests that Ns = 25 is not enough to obtain a reliable estimate of σb.
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A σscale value of 0.5 was used in the simulations that produced the results in

Figure 6.4. We note in this case that the estimates of µb and σb are both affected by the

sampling size and frequency. The average relative error of µ̂b and σ̂b both decrease as Ns

is increased. The decrease in the average relative error is very significant as Ns is increased

from 25 to 50 for both parameters; however, the reduction in the average relative error for

both parameters is not as dramatic when Ns is increased from 50 to 75 and from 75 to 100.

We would again infer from these results that a sampling size of at least 50 is necessary in

order to obtain reliable estimates of (µb, σb).
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Figure 6.4: (upper): Relative errors of µ̂b and σ̂b; (lower): 95% confidence bounds for the
estimates corresponding to µ̂b and σ̂b with σscale = 0.5.

The resulting 95% confidence bounds for µ̂b and σ̂b when σscale = 0.5 are shown in

the lower plots of Figure 6.4. As already noted, the estimation of both parameters depends
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on Ns and Nt. The decrease in the width of the confidence bounds for µ̂b is more significant

as Ns is increased from 25 to 50 in comparison to the decrease in the width when Ns is

increased from 50 to 75 and 75 to 100. We also observe the same type of behavior in the

width of the confidence bounds for σ̂b. The reduction in the width of the confidence bounds

for σ̂b is much smaller as Ns is increased from 50 to 75 and 75 to 100 versus the decrease in

width as Ns is increased from 25 to 50. While a sampling size Ns of 25 appears to be too

small, a sampling size of 50 seems to be sufficient to obtain reasonably accurate estimates

of the variability in the growth rates.
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Figure 6.5: (upper): Relative errors of µ̂b and σ̂b; (lower): 95% confidence bounds for the
estimates corresponding to µ̂b and σ̂b with σscale = 0.9.

The final sets of results in Figure 6.5 were computed with σscale = 0.9. The average

relative errors for µ̂b and σ̂b depicted in the upper plots in Figure 6.5 show that the reliability
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of both parameters is influenced by the sampling size and frequency. As the previous results

suggested, a sampling size of 25 is not adequate for the parameter estimation problem

based on the magnitude of the average relative error for Ns = 25 in comparison to the

average relative errors obtained for Ns = 50, 75, and 100. We also note that the decrease

in the average relative error of σ̂b is not as large when Ns is increased from 50 up to

100 in comparison to a much greater decrease when Ns is increased from 25 to 50. These

results suggest that there is not a significant improvement in the reliability of the parameter

estimates when a sampling size larger than 50 is used. We also observe from the lower plots

in Figure 6.5 that the effect of Ns on the width of the 95% confidence bounds of µ̂b and

σ̂b decreases as Nt is increased. As in the previous two cases considered, the width of the

confidence bounds for both parameters decreases the most when Ns is increased from 25

to 50 which also seems to suggest that reliable estimates of (µb, σb) can be obtained with a

sampling size Ns of 50.

Based on these simulations, we conclude that the sampling size Ns has an effect

on the reliability of the results of the parameter estimation problem. When the standard

deviation σ0
b is small relative to the mean µ0

b , the effect on the accuracy of the estimates

µ̂b is minimal; however, this effect is more noticeable as the magnitude of σ0
b is increased.

The influence of the sampling size Ns is much more evident in the estimation of σb for

each of the values considered here. We also conclude that the results when sampling once

a week are comparable to those obtained when sampling twice a week. The most desirable

experiment involved using a sampling size Ns of 100 once a week; however, there appears

to be little loss in accuracy in estimating the variability in growth rates if one uses a sample

size Ns = 50. Finally, our computations suggest that experiments with a sampling size of

only Ns = 25 would not be adequate even when one increases the sampling frequency to

twice a week.

6.2.2 Effect of Sampling Size and Bin Size on Model Predictions and

Parameter Estimates

We also carried out numerical simulations with simulated data to investigate the

effect of the bin size ∆x in relation to the sampling size Ns on the parameter estimation

results as well as the model predictions. In this section we also compare the results from

computations with a fixed bin size versus variable bin sizes (fixed number of bins Nb) for
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a fixed sampling size in the estimation problem. Since the “true” growth rate distribution

of shrimp observed in experiments is unknown, the accuracy of the parameter estimates is

determined by how well the model fits the data. The discussion of the results for the inverse

problem with simulated data in this section will emphasize the importance in choosing

the appropriate bin size ∆x with respect to the sampling size Ns in the inverse problem

calculations.

In the first set of results we used a fixed ∆x with two different Ns values to illustrate

the significance of using the proper bin size relative to the sample size for accurate model

predictions. Using simulated data generated with a truncated normal distribution with

mean µ0
b = 0.045 and standard deviation σ0

b = 0.5 · µ0
b = 0.0225, we obtained the following

results from the inverse problem with a fixed bin size ∆x of 0.01. A sampling size Ns of 50

was used with a sampling frequency of once a week for six weeks. Using our inverse problem

techniques, we computed good parameter estimates (µ̂b, σ̂b) with small relative errors (see

Table 6.1) which would suggest that the model does a good job of fitting the data. However,

the model does not provide good fits to the data as time progresses based on the plots shown

in Figure 6.6. The model appears to do a good job of predicting the population data during

the first two weeks but fails to predict the heights seen in the data during the final four

weeks. It is clear from Figure 6.6 that the model does a good job qualitatively; however,

as a result of the quantitative comparisons of the model predictions to the data, the model

fits do not support our initial findings based on the numerical results in Table 6.1.

Table 6.1: Estimated parameters (µ̂b, σ̂b) and relative errors for inverse problem with sim-
ulated data with Ns = 50, b ∼ N[0.001,0.2](0.0450, 0.02252), and ∆x = 0.01.

Ns µ̂b RE(µ̂b) σ̂b RE(σ̂b)
50 0.04817 0.07044 0.02400 0.06667

We then generated simulated data with a sampling size of 5000 and a truncated

normal distribution on the intrinsic growth rates with mean µ0
b = 0.045 and standard

deviation σ0
b = 0.0225. The estimated parameters along with the corresponding relative

errors that were computed with the fixed bin size ∆x = 0.01 are in Table 6.2.

Table 6.2: Estimated parameters (µ̂b, σ̂b) and relative errors for inverse problem with sim-
ulated data with Ns = 5000, b ∼ N[0.001,0.2](0.0450, 0.02252), and ∆x = 0.01.

Ns µ̂b RE(µ̂b) σ̂b RE(σ̂b)
5000 0.04495 0.00111 0.02253 0.00133
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Figure 6.6: Simulated population data, snapshot zk
j , and model predicted population

NGRD(t, x; θ̂) with optimal parameter θ̂ for t = 7, 14, 21, 28, 35, 42 days with sample
size Ns = 50.
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Figure 6.7: Simulated population data, snapshot zk
j , and model predicted population

NGRD(t, x; θ̂) with optimal parameter θ̂ for t = 7, 14, 21, 28, 35, 42 days with sample
size Ns = 5000.
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Based on the very small relative errors, we would also conclude in this example

that we have obtained good estimates of the true parameters (µ0
b , σ

0
b ). Moreover, we would

assume that the model predictions would fit the data very well. Figure 6.7 shows the model

predictions versus the simulated data for six weeks with a sampling size of 5000. We see that

the model does a very good job both qualitatively and quantitatively. Unlike the previous

example with Ns = 50, the model provides good fits to the entire data set when Ns = 5000.

These results demonstrate the effect of the bin size relative to the sampling size

Ns on the accuracy of the model predictions. While the parameter estimates obtained for

(µ0
b , σ

0
b ) with both sampling sizes were good, the model predictions with a sample size of

50 were not as accurate as those obtained with a sample size of 5000. As noted earlier, the

accuracy of (µ̂b, σ̂b) will depend on the model fits to data when experimental data is used

since the “true” underlying distribution of the growth rates is unknown and relative errors

can not be computed. Therefore, using an appropriately chosen bin size ∆x is critical in

the parameter estimation problem with experimental data.

To further investigate the effect of ∆x on the accuracy of the model predictions

and parameter estimates, we considered using a fixed bin size ∆x versus a fixed number of

bins Nb (variable bin size) in the parameter estimation problem with simulated data for a

fixed sampling size. A sampling size Ns of 50 with a sampling frequency of once a week

for six weeks is used in the following results. The simulated data was generated with a

truncated normal distribution with mean µ0
b = 0.045 and standard deviation σ0

b = 0.0225.

Using the same data set, we computed results with a fixed bin size ∆x = 0.01 and with a

fixed number of bins Nb = 10. The bin size for each time point when a fixed number of bins

is used is given by

∆x(tk) =
x̄(tk)− x(tk)

Nb
,

where x̄(tk) is the largest size sampled at time tk and x(tk) is the smallest size sampled at

time tk. The parameter estimates (µ̂b, σ̂b) along with the relative errors for both scenarios

are given in Table 6.3. While we obtain comparable estimates of the mean µ0
b , we note that

the estimated standard deviation σ̂b is better when using a fixed number of bins versus a

fixed bin size. We observe from the model predictions versus the data in Figure 6.8 that as

time evolves the model is not able to predict the peaks present in the data when the fixed

bin size ∆x = 0.01 is used. However, the model predictions obtained with the fixed number

of bins Nb = 10 (varying bin size) are more accurate as seen in Figure 6.9. The model does
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Figure 6.8: Simulated population data, snapshot zk
j , and model predicted population

NGRD(t, x; θ̂) with optimal parameter θ̂ for t = 7, 14, 21, 28, 35, 42 days with fixed bin size
∆x = 0.01.
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Figure 6.9: Simulated population data, snapshot zk
j , and model predicted population

NGRD(t, x; θ̂) with optimal parameter θ̂ for t = 7, 14, 21, 28, 35, 42 days with fixed number
of bins Nb = 10.
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a much better job of fitting the data when a fixed number of bins are used versus a fixed

bin size. We infer from the results shown in Figure 6.8 that the fixed bin size ∆x = 0.01 is

too small which leads to the increased number of size classes with a frequency equal to one

seen in the simulated data that are not present with the fixed number of bins Nb = 10.

Table 6.3: Estimated parameters (µ̂b, σ̂b) and relative errors for inverse problem with sim-
ulated data with b ∼ N[0.001,0.2](0.045, 0.02252).

µ̂b RE(µ̂b) σ̂b RE(σ̂b)
∆x = 0.01 0.04471 0.00644 0.01965 0.12667
Nb = 10 0.04485 0.00333 0.02146 0.04622

Similar results were obtained when we repeated the inverse problem calculations

500 times. Using a fixed bin size that is too small results in model predictions that are

not very accurate during the early growth process of the shrimp when the sampling size

Ns is relatively small. Although the plots in Figure 6.9 demonstrate the benefits of fixing

the number of bins, one must still be careful when selecting the number of bins to use in

computations because choosing a value that is too small or too large can bias the data

as well and affect the model predictions. Furthermore, we also found that a larger fixed

bin size ∆x can result in better model predictions. The results shown here demonstrate

the importance in using the appropriate number of bins Nb or bin size ∆x in ratio to the

sampling size Ns to obtain good model fits and parameter estimates in inverse problem

calculations.

6.3 Parameter Estimation Results with Experimental Data

We present the results of the inverse problem for the estimation of the growth

rate distribution of a size-structured shrimp population using data collected from ABN

in this section. The experiments were based on the design calculations discussed in Sec-

tion 6.2. Data was collected during the early growth of shrimp initially in the post-larval

stage starting on December 4, 2007. Fifty shrimp were randomly sampled and measured

once a week under relatively constant tank conditions (density, temperature, feeding, etc.)

through December 31, 2007 resulting in a data set with five longitudinal size distribution

observations. As noted earlier, we must compare the experimental data to the estimated

population data generated by using the optimal parameter θ̂ in (6.3) since the actual growth

rate distribution of the shrimp observed is unknown. The following results were obtained
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via computations carried out in MATLAB with

∆x = 0.02, b = 10−6, b̄ = 10−1.

Before presenting the results, we define the parameters from the asymptotic stan-

dard error theory for finite-dimensional parameters [36, 40, 45, 60] which we outlined in

detail in Chapter 3. Recall the OLS estimator θOLS(Y ) used in the inverse problem for the

estimation of θ = (µb, σb) is given by

θOLS(Y ) ≡ arg min
θ∈Θ

n∑

j=1

(Yj − f(τj ; θ))2.

Since the observations Yj are random variables, then the OLS estimator θOLS(Y ) is also a

random variable, and as n → ∞, the sampling distribution for θOLS(Y ) is a multivariate

normal distribution with mean E [θOLS(Y )] ≈ θ0 and covariance V ar[θOLS(Y )] ≈ Σn
0 ≈

σ2
0[X T (θ0)X (θ0)]−1. The n× 2 sensitivity matrix X (θ) has entries

Xjk(θ) =
∂f(τj ; θ)

∂θk
.

For the application considered here, we note that we are able to compute the entries of the

sensitivity matrix explicitly. Since

f(τj ; θ0) ≈ NGRD(τj ; θ),

the entries in the sensitivity matrix X (θ) are given by

Xjk(θ) =
∂f(τj ; θ)

∂θk
=

∂

∂θk
NGRD(τj ; θ)

≈ ∆x

∫ b̄

b
v(τj ; g)

∂p(b; θ)
∂θk

db,

where θ = (µb, σb) and p(b; θ) is the probability density function (pdf) for the truncated

normal distribution. We also chose to use α = 0.05 which corresponds to a significance level

of 95% and a t1−α/2-value of approximately 1.96 when n is greater than or equal to 30.

6.3.1 Results with Complete December Data Set

In the first set of results we considered the entire data set collected in December,

and we began by fitting the exponential function

x̄(t) = a exp(bt)− c (6.4)
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to the data {(tk, x̄k
d)} where a, b, and c are all unknown parameters and x̄k

d is the average

size of shrimp observed at time tk. This exponential function was determined by solving the

deterministic growth model of the form

dx̄(t)
dt

= b(x̄(t) + c), (6.5)

where b and c are assumed to be fixed constants. The optimal parameters corresponding to

the fit with (6.4) shown in Figure 6.10 are

â = 0.049, b̂ = 0.043, ĉ = 0.036.
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Figure 6.10: Exponential fit of (6.4) to complete ABN average size shrimp data set with
dx̄
dt = 0.043(x̄ + 0.036).

We then used the optimal value ĉ in our inverse problem calculations for the

estimation of (µb, σb) with the entire December 2007 data. The data from December 4,

2007 (see Figure 6.11) is interpolated and used as an approximation for the initial size

density v0(x; g) in the SS model (2.1). Therefore, it can not be used in the estimation of the

growth rate distribution, and we are left with four data sets to use in the inverse problem.

The estimated parameters (µ̂b, σ̂b) along with the confidence intervals for each of

these parameters are in Table 6.4. These results have an optimal cost J(θ̂) of 574.8315, and

the estimated variance of the statistical model is σ̂2 = 17.4191. We observe from the plots

in Figure 6.11 that the model predictions do not fit the data well. The model does a decent

job of fitting the data on December 11 but is shifted to the left of the observations for the

final three time points. Moreover, the estimates (µ̂b, σ̂b) are not very reliable based on the

magnitude of the associated confidence intervals relative to the estimated parameter values.
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Figure 6.11: Longitudinal data on shrimp weight from ABN on December 4, 11, 18, 24, and
31 versus model predicted population density NGRD(t, x; θ̂) with θ̂ = (0.0010, 0.0324) and
ĉ = 0.036 from exponential fit of (6.4) to average size shrimp data.
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Table 6.4: Estimated parameters (µ̂b, σ̂b) and confidence intervals for inverse problem with
complete December data set using ĉ = 0.036 from exponential fit of (6.4) to average size
shrimp data.

µ̂b ± 1.96SE(µ̂b) σ̂b ± 1.96SE(σ̂b)
0.0010± 0.0535 0.0324± 0.0313

In [10] the authors outline and compare the two previously mentioned approaches

(a probabilistic formulation corresponding to the Growth Rate Distribution model versus a

stochastic formulation corresponding to the Fokker-Planck model) for modeling variability

in the growth process of size-structured populations. As established in [10], the population

density from these two approaches is the same when comparable levels of uncertainty are

used in both formulations. Hence, we chose to use the computationally “easier” GRD

model (2.3) for our purposes. The shortcomings of the deterministic growth model (6.5)

in modeling populations exhibiting a great deal of variability was also discussed in [10]

with several different approaches for including uncertainty in the growth process also being

described. One such approach is based on considering the following probabilistic growth

model
dx(t; b)

dt
= b(x(t; b) + c), b ∈ B, (6.6)

where a distribution is placed on the intrinsic growth rates taking values in B and c is

assumed to be a fixed affine growth term. If a normal distribution with mean µb and

variance σ2
b is used to describe the distribution of the intrinsic growth rates, then the

exponential function corresponding to probabilistic growth model (6.6) is given by

x(t; b) = (x(0; b) + c) exp(bt)− c, (6.7)

where b ∼ N (µb, σ
2
b ). Moreover, it was shown that the probabilistic growth model results

in the following exponential function for the mean of the stochastic process for the size of

the individuals

x̄(t) = (x̄(0) + c) exp
(

µbt +
1
2
σ2

b t
2

)
− c (6.8)

which corresponds to the time-varying mean growth dynamics

dx̄(t)
dt

= (µb + σ2
b t)(x̄(t) + c). (6.9)

As an alternative to the deterministic form (6.5), we also chose to fit the average size

shrimp data with (6.8) where µb, σb, and c are the parameters to be estimated and x̄(0) is
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the average size shrimp data for the initial start time. The fit, shown in Figure 6.12, was

generated with the following estimated parameters:

µ̂b = 0.045, σ̂b = 0.003, ĉ = 0.029.

The data from December 4 was used as an approximation for the initial size density v0(x; g)

in these computations as well. We used the estimated values of µ̂b and σ̂b from the ex-

ponential fit to the average size shrimp data as initial starting points for the optimization

calculations to determine the growth rate distribution of the shrimp population. The op-

timal value of c was also used in our inverse problem calculations for the growth rate

distribution parameters.
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Figure 6.12: Exponential fit of (6.8) to complete ABN average size shrimp data set with
dx̄
dt = (0.045 + 0.0032t)(x̄ + 0.029).

The optimal cost corresponding to the optimized parameters in Table 6.5 is 563.9064.

We computed a value of 17.0881 for the estimate of the variance σ2
0 of the statistical model.

The results in this case are very similar to those in the previous case as can be seen by

the model fits to data shown in Figure 6.13. We observe the same behavior in the model

predictions versus the observations in the final three time points with the model predictions

being shifted to the left of the data. The width of the confidence intervals for the estimates

(µ̂b, σ̂b) also demonstrate how unreliable these parameter values are as well.

It is clear from the results in this section that the model is not able to provide a

good fit to the entire data set from December. While the model predictions do exhibit the

lognormal behavior characteristic of the observations, the model does a poor job of fitting

the data quantitatively. The exponential fits to the average size shrimp data in Figures
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Figure 6.13: Longitudinal data on shrimp weight from ABN on December 4, 11, 18, 24, and
31 versus model predicted population density NGRD(t, x; θ̂) with θ̂ = (0.0018, 0.0363) and
ĉ = 0.029 from exponential fit of (6.8) to average size shrimp data.
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Table 6.5: Estimated parameters (µ̂b, σ̂b) and confidence intervals for inverse problem with
complete December data set using ĉ = 0.029 from exponential fit of (6.8) to average size
shrimp data.

µ̂b ± 1.96SE(µ̂b) σ̂b ± 1.96SE(σ̂b)
0.0018± 0.0627 0.0363± 0.0377

6.10 and 6.12 suggest that the problem in fitting the data could potentially be a result of

the data sampled on December 11. The average size shrimp data point for December 11

lies the farthest away from the exponential curves produced by (6.4) and (6.8). Therefore,

we reconsidered the inverse problem for the estimation of the growth rate distribution for

the shrimp population with the data from December 4, 18, 24 and 31 in an effort to obtain

better parameter estimates and model fits to the data.

6.3.2 Results Excluding December 11 Data

In an attempt to provide better fits to the shrimp population data, we excluded

the data from December 11 in the parameter estimation problem for the growth rate dis-

tribution. The exponential function (6.4) generated by the deterministic growth model was

used to fit the average size shrimp data for December 4, 18, 24, and 31. The estimated

parameters generating the solid line shown in Figure 6.14 are

â = 0.043, b̂ = 0.046, ĉ = 0.026.

We note from Figure 6.14 that (6.4) provides a good fit to the average size shrimp data

excluding the point for December 11.

Given the optimal value of c from the exponential fitting, we carried out the inverse

problem calculations for the mean µb and standard deviation σb of the truncated normal

distribution. We also interpolated the December 4 data and used it as an approximation to

the initial size density v0(x; g) in (2.1). Since we excluded the data from December 11, only

the three data sets from December 18, 24, and 31 are used in estimating the growth rate

distribution parameters. We obtained an optimal cost of 87.4619 and an estimated variance

σ̂2 of 3.1236 for these computations, which are much smaller than the values computed in

the previous calculations in Section 6.3.1. The estimated parameters (µ̂b, σ̂b) are in Table

6.6 along with the corresponding confidence intervals.

The widths of the confidence intervals for both parameters are much smaller in

comparison to those computed when the entire data set is considered. We are more confident
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Figure 6.14: Exponential fit of (6.4) to ABN average size shrimp data excluding December
11 with dx̄

dt = 0.046(x̄ + 0.026).

Table 6.6: Estimated parameters (µ̂b, σ̂b) and confidence intervals for inverse problem with
ABN data excluding December 11 using ĉ = 0.026 from exponential fit of (6.4) to average
size shrimp data.

µ̂b ± 1.96SE(µ̂b) σ̂b ± 1.96SE(σ̂b)
0.0369± 0.0027 0.0159± 0.0030

about the estimates obtained in this case based on the relatively small confidence intervals.

We were able to use the confidence intervals corresponding to the estimated mean and

standard deviation of the truncated normal distribution to construct a confidence band for

the estimated probability distribution on the growth rates using techniques discussed in

Chapter 5 for the standard parametric approach. These results are shown in Figure 6.15

with the estimated probability density and confidence region on the left and the estimated

probability distribution and confidence band on the right. The confidence band gives us a

measure of the uncertainty associated with the infinite-dimensional parameter (probability

distribution) that is of most interest in this application. Due to the width of this confidence

band, we are fairly confident about the reliability of the estimated probability distribution.

Moreover, we note from the model predictions versus the data in Figure 6.16 that

the model does a much better job of fitting the data on December 18, 24, and 31 when the

data from December 11 is excluded. The model overall does a good job of predicting the

key features of the size distribution for these three weeks.

We also used (6.8) corresponding to the probabilistic growth model (6.6) to fit the

average size shrimp data with the data from December 11 excluded. The exponential fit
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Figure 6.15: (left): Estimated probability density with confidence region; (right): Estimated
probability distribution with confidence band for ABN data excluding December 11 using
ĉ = 0.026 from exponential fit of (6.4) to average size shrimp data.
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Figure 6.16: Longitudinal data on shrimp weight from ABN on December 4, 18, 24, and
31 versus model predicted population density NGRD(t, x; θ̂) with θ̂ = (0.0369, 0.0159) and
ĉ = 0.026 from exponential fit of (6.4) to average size shrimp data.
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shown in Figure 6.17 corresponds to the optimal parameters

µ̂b = 0.046, σ̂b = 0.001, ĉ = 0.027.

The estimated parameter values for µb and c in this case are very close to the estimated

parameter values of b and c when (6.4) was used to fit the data. We see that (6.8) also

provides a good fit to the average size shrimp data in the absence of the December 11 data

point.
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Figure 6.17: Exponential fit of (6.8) to ABN average size shrimp data excluding December
11 with dx̄

dt = (0.046 + 0.0012t)(x̄ + 0.027).

The estimates for (µb, σb) for the truncated normal distribution were obtained

from the inverse problem calculations with the optimal value of c. The parameter estimates

(µ̂b, σ̂b) are relatively close to the previously estimated parameters in Table 6.6, and in fact,

the confidence intervals in Table 6.7 have the same width (centered differently) as those in

Table 6.6.

Table 6.7: Estimated parameters (µ̂b, σ̂b) and confidence intervals for inverse problem with
ABN data excluding December 11 using ĉ = 0.027 from exponential fit of (6.8) to average
size shrimp data.

µ̂b ± 1.96SE(µ̂b) σ̂b ± 1.96SE(σ̂b)
0.0360± 0.0027 0.0158± 0.0030

We computed an optimal cost for these results of 88.0090 and an estimated variance

σ̂2 = 3.1432, which are also very close to the values in the previous case in this subsection.

These results also support our previous assertions. The estimated parameters obtained by

excluding the data from December 11 are much more reliable than those obtained when the
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entire data set from December is used in the parameter estimation problem. The small width

observed in the confidence band associated with the estimated probability distribution in

Figure 6.18 validates our claims as well.
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Figure 6.18: (left): Estimated probability density with confidence region; (right): Estimated
probability distribution with confidence band for ABN data excluding December 11 using
ĉ = 0.027 from exponential fit of (6.8) to average size shrimp data.

In Figure 6.19 we see similar results to those shown in Figure 6.16 with there being

a very small difference in the model predictions on December 18. As previously remarked,

the model does a very good job of fitting the data for December 18, 24, and 31 when

the data from December 11 is excluded from the inverse problem calculations. The model

predictions exhibit the lognormal behavior seen in the observations and provide reasonably

accurate quantitative fits to the data.

While we were able to obtain reliable parameter estimates and good model pre-

dictions by excluding the data from December 11, we also chose to investigate the effects of

the initial data in this problem by excluding the data from December 4 and using the data

from December 11 as an approximation to the initial size density v0(x; g). The results in this

section suggest that perhaps there was a change in the environmental conditions, such as

feeding or temperature, which affected the growth of the shrimp. However, the poor model

fits in Section 6.3.1 where the entire data set from December is considered could also be

the result of using the wrong initial conditions. Therefore, we reconsidered the parameter

estimation problem for the growth rate distribution with the data collected on December

11, 18, 24, and 31, and the results follow in the next section.



132

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

20

25

30

35

40

45
ABN Data − December 4

Size of Shrimp

F
re

qu
en

cy

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

2

4

6

8

10

12

14

16

18

Size of Shrimp

F
re

qu
en

cy

ABN Data versus Estimated Population Data − December 18

 

 

ABN Data
Estimated Pop.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

2

4

6

8

10

12

Size of Shrimp

F
re

qu
en

cy

ABN Data versus Estimated Population Data − December 24

 

 

ABN Data
Estimated Pop.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

6

7

8

9

Size of Shrimp

F
re

qu
en

cy

ABN Data versus Estimated Population Data − December 31

 

 

ABN Data
Estimated Pop.

Figure 6.19: Longitudinal data on shrimp weight from ABN on December 4, 18, 24, and
31 versus model predicted population density NGRD(t, x; θ̂) with θ̂ = (0.0360, 0.0158) and
ĉ = 0.027 from exponential fit of (6.8) to average size shrimp data.
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6.3.3 Results Excluding December 4 Data

We now present results for the inverse problem for the growth rate distribution of

the size-structured shrimp population considering the data from December 11 - 31 in order

to determine if using the interpolated December 11 data as an approximation for v0(x; g)

will result in better model predictions. Under the assumption of the deterministic growth

model of (6.5), Equation (6.4) was used to fit the average size shrimp data excluding the

data point for December 4. The exponential function in (6.4) fits the average size shrimp

data well as shown in Figure 6.20 with the optimal parameter values of

â = 0.058, b̂ = 0.047, ĉ = 0.028.
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Figure 6.20: Exponential fit of (6.4) to ABN average size shrimp data excluding December
4 with dx̄

dt = 0.047(x̄ + 0.028).

The inverse problem for (µb, σb) was performed with the optimal value of c com-

puted from the exponential fitting to the average size shrimp data. As already noted, we

interpolated the data from December 11 and used it as an approximation to the initial size

density. We were left with the final three data sets from December 18, 24, and 31 for the

parameter estimation problem. The optimal parameter values for the mean and standard

deviation of the truncated normal distribution along with the computed confidence inter-

vals are in Table 6.8. We note that the optimal cost J(θ̂) = 121.4561 and the estimated

variance of the statistical model σ̂2 = 4.3377. Although these values are larger than the val-

ues obtained when the data from December 4 was used as an approximation to the initial

condition, the results are still significantly better than those obtained with the entire data

set.
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Table 6.8: Estimated parameters (µ̂b, σ̂b) and confidence intervals for inverse problem with
ABN data excluding December 4 using ĉ = 0.028 from exponential fit of (6.4) to average
size shrimp data.

µ̂b ± 1.96SE(µ̂b) σ̂b ± 1.96SE(σ̂b)
0.0441± 0.0077 0.0294± 0.0123

We also observe slightly larger confidence intervals corresponding to the estimated

parameters µ̂b and σ̂b. These larger confidence intervals result in the larger confidence band

for the estimated probability distribution seen in Figure 6.21. Thus, there is more un-

certainty in the parameter estimates obtained in this case in comparison to the estimates

obtained when the data from December 11 was excluded in Section 6.3.2. We are more

confident about the reliability of the estimates obtained for (µb, σb) in Section 6.3.2 based

on the smaller width of the confidence intervals and bands.
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Figure 6.21: (left): Estimated probability density with confidence region; (right): Estimated
probability distribution with confidence band for ABN data excluding December 4 using
ĉ = 0.028 from exponential fit of (6.4) to average size shrimp data.

Although the optimal cost was slightly larger in this case, the model predictions

shown in Figure 6.22 are similar to those in Section 6.3.2. The model still does a good job

of predicting the key features of the shrimp population data when the data from December

11 is used versus the data from December 4. It appears that using the December 11 data

instead of the December 4 data does not result in any improvements in the model fits to

data.
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Figure 6.22: Longitudinal data on shrimp weight from ABN on December 11, 18, 24, and
31 versus model predicted population density NGRD(t, x; θ̂) with θ̂ = (0.0441, 0.0294) and
ĉ = 0.028 from exponential fit of (6.4) to average size shrimp data.
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In our final set of computations, we fit the average size shrimp data with the data

point from December 4 excluded with (6.8) taking into account the probabilistic nature of

b. There is some noticeable difference in the estimated parameter values

µ̂b = 0.038, σ̂b = 0.003, ĉ = 0.059

determined to give the best fit shown in Figure 6.23. However, we note that the exponential

fit in Figure 6.23 is comparable to that shown in Figure 6.20.
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Figure 6.23: Exponential fit of (6.8) to ABN average size shrimp data excluding December
4 with dx̄

dt = (0.038 + 0.0032t)(x̄ + 0.059).

Table 6.9: Estimated parameters (µ̂b, σ̂b) and confidence intervals for inverse problem with
ABN data excluding December 4 using ĉ = 0.059 from exponential fit of (6.8) to average
size shrimp data.

µ̂b ± 1.96SE(µ̂b) σ̂b ± 1.96SE(σ̂b)
0.0289± 0.0051 0.0215± 0.0065

The results of the inverse problem calculations for the mean µb and standard

deviation σb of the truncated normal distribution are in Table 6.9 along with the confidence

intervals. We computed an optimal cost of 106.6413 and an estimated variance σ̂2 of 3.8086

which are slightly better than the previous results in this section. We point out that the

confidence intervals for the estimated mean in Table 6.9 do not intersect with those in

Table 6.8, but the confidence intervals for σ̂b do intersect. However, we still infer from

the results shown here that the parameter estimates obtained in absence of the data from

December 4 are not as reliable as those obtained in the previous section where the data from

December 11 was omitted. The confidence band associated with the estimated probability
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Figure 6.24: (left): Estimated probability density with confidence region; (right): Estimated
probability distribution with confidence band for ABN data excluding December 4 using
ĉ = 0.059 from exponential fit of (6.8) to average size shrimp data.
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Figure 6.25: Longitudinal data on shrimp weight from ABN on December 11, 18, 24, and
31 versus model predicted population density NGRD(t, x; θ̂) with θ̂ = (0.0289, 0.0215) and
ĉ = 0.059 from exponential fit of (6.8) to average size shrimp data.



138

distribution in Figure 6.24 also suggests that we are not as confident about the reliability of

this estimated probability distribution in comparison to the estimates presented in Section

6.3.2.

The model predictions in Figure 6.25 are very similar to the previous results.

We observe nice model fits to the data which validates the model’s ability to accurately

describe the growth dynamics of the shrimp. The results presented in this section suggest

that there was perhaps some change in the environmental conditions between December 4

and December 11 which resulted in very poor model predictions when the entire data set

was used in the parameter estimation problem. Although we were able to use the data from

December 11 as an approximation to the initial size density to compute good fits to the

data, the best numerical and statistical results were obtained when the data from December

11 was excluded from the inverse problem calculations. These results were illustrative of the

types of issues that can be addressed with mathematical and statistical tools when using

models to describe real world applications.
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Chapter 7

Conclusions and Future Directions

We have presented computational and statistical results for both parametric and

non-parametric versions of the inverse problem for the estimation of probability distributions

arising in problems with aggregate or population level observations. One non-parametric

approximation scheme, DEL(M), is at the level of the distribution being sought, while

the other non-parametric approximation scheme, SPL(M, N), is at the level of the density

(tacitly assumed to exist in the underlying theory [24]) associated with the distribution.

Several computational examples with simulated data in the context of functional growth

rate estimation in size-structured population models are presented in order to validate the

underlying theory that we discussed guaranteeing convergence of distributions. The most

recently developed scheme, SPL(M, N), and the standard parametric OLS formulation are

used with experimental data for mosquitofish populations and compared to earlier findings

with the DEL(M) scheme. While the mathematical and statistical methodologies presented

here were used in the context of size-structured population models, the ideas are widely

applicable to other areas of applications in biology as well as in viscoelastic materials and

in electromagnetic interrogation of dielectric materials.

The results discussed here demonstrate some of the strengths and weaknesses asso-

ciated with each of the methods considered. When the form of the probability distribution

is known a priori, the parametric approach PAR(M, N) is the better method to use be-

cause the number of parameters to be estimated is typically small so computations are

usually not very expensive. We also observed much tighter confidence bands around the

estimated probability distributions in the computational examples considered in this disser-

tation; hence, we are fairly confident about the reliability of estimates obtained with this



140

method. However, the accuracy of the parameter estimates relies heavily on one’s ability

to correctly specify the form of the probability distribution a priori.

In contrast, the non-parametric approaches are a better choice when one cannot

(correctly) identify the form of the probability distribution. The delta function approxima-

tion method DEL(M) is very easy to implement and computationally inexpensive; however,

a large number of elements is usually necessary for convergence of the estimated probabil-

ity distributions. The underlying theory [4] guarantees convergence of distributions, not

densities, in the Prohorov metric. Therefore, estimates of the probability densities are

very misleading in terms of accuracy of corresponding estimated probability distributions.

While the spline based method SPL(M,N) provides a much smoother approximation of

continuous probability distributions in comparison to DEL(M), it is more computationally

expensive. With appropriate choices for the weights {aM
k }, convergence of distributions in

the Prohorov metric (with significantly fewer elements than DEL(M)) is guaranteed as well

as convergence of the approximating densities in L2 [24]. Lastly, over-parametrization of

the inverse problem with the non-parametric approaches can not only result in oscillations

in the estimated densities but larger confidence bands as well. As a result, we feel less

certain about the reliability of the estimated probability distributions obtained with these

non-parametric methods.

We demonstrated how to construct “functional” confidence bands for estimated

probability distributions in size-structured mosquitofish populations in both parametric and

non-parametric settings with several computational examples. However, one would like to

fully develop the mathematical and asymptotic statistical theory for OLS problems with

functional parameters, such as the probability distributions studied here and the time- and

spatial-dependent functional parameters discussed in the Introduction. We derived an OLS

estimator for functional parameters in the functional linear regression model and determined

its mean and variance. However, the variance was shown to depend on the “true” variance

σ2
0, which is generally unknown. Therefore, future work involves constructing an estimator

for σ2
0 which will require the trace operator in functional space. Moreover, we also need to

determine an appropriate form of the Central Limit Theorem for functional space in order

to outline in detail the asymptotic sampling distribution for OLS estimators for infinite-

dimensional parameters. We are currently working on the development of this fundamental

theory in an alternate weak L2 setting for densities.

In the final computational example presented here, we also used the Growth Rate
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Distribution (GRD) model for size-structured shrimp populations whose size distribution

data exhibited a great deal of variability. We outlined a computational methodology that

proved to be useful in designing experiments that were carried out to validate the GRD

model. We were able to determine the sampling size and frequency sufficient for reliable

estimates of the variability in the growth rates of size-structured shrimp populations. Using

our inverse problem methodology, we were able to successfully estimate the growth rate

distribution from experimental data collected during the early growth of shrimp populations

at ABN based on our design calculations. In the future we propose considering different

parametric and non-parametric approaches in the GRD model in order to improve the model

predictions for the early growth dynamics of shrimp.
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