
ABSTRACT

LIU, NING. Spectral Clustering for Graphs and Markov Chains. (Under the direction of
Dr. William J. Stewart.)

Spectral graph partitioning based on spectral theory has become a popular clus-

tering method over the last few years. The starting point is the work of Fiedler who shows

that an eigenvector of the Laplacian matrix of an undirected graph (symmetric system)

provides the minimum cut of graph nodes. The spectral technique can also be applied to a

Markov chain to cluster states and, in general, is more broadly applicable to nonsymmetric

systems. Enlightened by these facts, we combine them to show that Markov chains, due

to two different clustering techniques they offer, are effective approaches for clustering in

more general situations. In this dissertation, we advance the state of the art of spectral

clustering and introduce a new algorithm to decompose matrices into blocks.

We first prove that the second eigenvector of the signless Laplacian provides a

heuristic solution to the NP-complete state clustering problem which is the dual problem

of graph partitioning. A new method for clustering nodes of a graph that have negative

edge weights is also proposed. Second, a connection between the singular vectors obtained

from an SVD decomposition and the eigenvectors from spectral algorithms on data clus-

tering is revealed. We show that the singular vectors of the node-edge incidence matrix

generate not only clusters on the nodes but also clusters on the edges. Third, relating spec-

tral clustering and state clustering of Markov chains, we present two clustering techniques

for Markov chains based on two different measures and suggest a mean of incorporating

both techniques to obtain comprehensive information concerning state clusters. Fourth,

we display the connection between spectral clustering and dimension reduction techniques

in statistical clustering. Also, the results obtained from spectral and statistical clustering

are shown to be related. Finally, we develop a new improved spectral clustering procedure

for decomposing matrices into blocks. This algorithm works well in several applications,

especially in problems of detecting communities in complex networks, where some existing

methods, e.g. MARCA and TPABLO, fail.

Spectral Clustering for Graphs and Markov Chains

by
Ning Liu

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fullfillment of the
requirements for the Degree of

Doctor of Philosophy

Operations Research and Computer Science

Raleigh, North Carolina

2010

APPROVED BY:

Dr. Laurie Williams Dr. Michael Devetsikiotis

Dr. William J. Stewart Dr. Harry G. Perros
Chair of Advisory Committee Co-Chair of Advisory Committee

ii

BIOGRAPHY

Ning Liu was born in Beijing, the capital of China, and grew up in a big family. He is the

only child of Jian Liu and Ling Wang. His father works for the government and his mother

is a doctor in a hospital.

In September of 2000, Ning Liu finished his study in the middle school and started

his college life in Beijing University of Aeronautics and Astronautics (Beihang University)

for four years. His major is Computer Science and Technology. In July of 2004, Ning

graduated with the bachelor of engineering. Then he came to US for graduate study in the

University of Memphis, Tennessee. In May of 2006, Ning was awarded a master of science

degree in Mechanical Engineering. Thereafter, he pursued the graduate study continuously

in the Department of Operations Research and Computer Science at North Carolina State

University toward his doctoral degree.

iii

ACKNOWLEDGMENTS

I want to first express my sincere thanks to my advisor, Dr. William J. Stewart, for his

guidance, time and effort he put into supervising this dissertation. Without his support, it

is really hard to complete all research work involved in my Ph.D. dissertation.

I am also grateful to my advisory committee members, Dr. Harry G. Perros, Dr.

Laurie Williams and Dr. Michael Devetsikiotis, for their valuable suggestions and guidance

on my dissertation.

I wish to give my special thanks to Dr. Shu-Cherng Fang for the discussion of my

part of research work. Also the same to Dr. Simon M. Hsiang.

As always, I enjoyed working in Department of Operations Research and Computer

Science at North Carolina State University with many my best friends.

Finally, I thank my parent and my family for their continual support.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Background . 2

1.3 Contributions . 4

1.4 Organization . 5

Chapter 2 Preliminary Mathematics . 6

2.1 Graph Theory . 6

2.2 Matrix Analysis and Linear Algebra . 9

2.2.1 Matrix Basics and Vectors . 9

2.2.2 Eigenvalues and Eigenvectors . 11

2.2.3 Singular Value Decomposition . 12

2.2.4 Quadratic Forms . 12

2.2.5 Nonnegative Matrices . 13

2.3 Markov Chains . 14

2.3.1 Discrete-Time Markov Chains (DTMC) 15

2.3.2 Continuous-Time Markov Chains (CTMC) 17

2.3.3 Some Properties of Stochastic Matrices 18

2.4 Multivariate Statistics . 18

2.5 Numerical Methods for Solving Eigenvalue Problems 21

Chapter 3 Spectral Graph Partitioning and Clustering 26

3.1 Introduction and Literature Review . 26

3.2 Minimum Cut in Spectral Clustering . 28

3.3 The Signless Laplacian for Graph Node Clustering 33

3.4 Spectral Graph Clustering with Negative Edge Weight 39

3.5 Singular Value Decomposition . 43

v

3.5.1 SVD on the Laplacian and Signless Laplacian Matrix 43

3.5.2 SVD on the Oriented Incidence Matrix 44

3.5.3 SVD on the Unoriented Incidence Matrix 45

3.6 Different Clustering Objectives . 49

3.7 The Signless Laplacian for Normalized Cut 51

Chapter 4 Spectral Clustering and Markov Chains 54

4.1 Introduction . 54

4.2 Indicators of State Clustering on Markov Chains 55

4.3 State Clustering on Markov Chains and Graphs 58

4.3.1 Markov Random Walks on Graphs 58

4.3.2 Some Interesting Facts . 61

4.4 Clustering Techniques for Markov Chains 66

4.5 More Examples . 69

Chapter 5 Spectral and Statistical Clustering 75

5.1 Factorial Method of Data Matrices . 76

5.1.1 Analysis of n Observations in Rp . 76

5.1.2 Analysis of p Variables in Rn . 80

5.1.3 Duality Relations Between X TX and XX T 81

5.1.4 Evaluating a Fitting . 82

5.2 Spectral Clustering and Factorial Method 84

5.2.1 Commonalities . 84

5.2.2 Differences . 86

5.3 Principal Components Analysis . 87

5.4 Graph Partitioning in Multivariate Statistical Analysis 90

Chapter 6 Heuristic Methods for Decomposing Real Unsymmetric Ma-

trices . 94

6.1 Introduction . 94

6.2 MARCA . 95

6.3 TPABLO Algorithms . 97

6.3.1 The Original PABLO Algorithm . 98

vi

6.3.2 TPABLO1 and TPABLO2 . 99

6.3.3 Implementation . 100

6.4 Spectral Clustering Procedures for Finding Blocks of Matrices 100

6.4.1 The Rayleigh Quotient and Courant-Fischer Theorem 101

6.4.2 Determining the Number of Clusters 102

6.4.3 Spectral Clustering using Two Clustering Techniques on Markov Chains103

6.4.4 Multiple Clustering using Multiple Eigenvectors 104

6.4.5 The Regular Clustering Algorithm 106

6.4.6 The Case of Large-Scale Data . 110

Chapter 7 Applications and Experimental Results 113

7.1 Software Change Impact Analysis . 113

7.2 NCD Markov Chains . 116

7.3 Community Networks . 118

Chapter 8 Conclusions . 123

Bibliography . 125

Appendix . 129

vii

LIST OF TABLES

Table 2.1 Special matrices and vectors. 10

Table A.1 Top 100 universities of ARWU in 2005. 129

viii

LIST OF FIGURES

Figure 2.1 Basic graphs with five vertices: a) a path, b) a cycle, c) a star, d) a

complete graph. 7

Figure 2.2 A graph G and its line graph L(G). 8

Figure 2.3 Basic digraphs: a) a path and b) a cycle. 9

Figure 3.1 A sample graph with six vertices. 37

Figure 3.2 A sample graph with negative edge weights. 42

Figure 4.1 A sample graph with six vertices. 60

Figure 4.2 Joint complete and star graph. 67

Figure 4.3 Peterson graph . 71

Figure 4.4 An example graph with eight vertices. 72

Figure 4.5 An example graph with eleven vertices. 73

Figure 5.1 Illustration in 3-dimensional space. 77

Figure 5.2 A sample graph with six vertices. 86

Figure 6.1 Using eigenvector v2 and v3 to partition a graph 102

Figure 6.2 An sample graph with twelve vertices. 108

Figure 6.3 A clique cycle graph with sixteen vertices. 109

Figure 7.1 Karate club network . 119

1

Chapter 1

Introduction

Clustering is an important problem with many applications and it has always

received much attention. The aim of clustering is to group objects together on the basis of

a similarity measure so as to explore intrinsic data structures. There are many clustering

algorithms and methods that have emerged over the years. Roughly speaking, they can

be divided into two classes, namely hierarchical and partitioning [13]. In many real world

systems, the data can be described as a network or graph, in which nodes represent the

objects of interest and edges represent the relationships between them. In this dissertation,

we mainly discuss graph partitioning techniques, which focus on clustering the nodes of a

graph [1, 18].

1.1 Motivation

It is well known that graph partitioning is an NP-complete problem [14] and hence

spectral graph partitioning is a heuristic approach to data clustering. Our starting point is

the work of Fiedler who in the early 70’s developed a spectral based partitioning method to

obtain the minimum cut on an undirected graph (symmetric system) i.e., minimizing the

total weight of cut edges. The eigenvector that results from the spectral decomposition,

called the Fiedler vector, allows the nodes of the graph to be partitioned into two subsets.

Stewart proposed a spectral method using the set of dominant eigenvectors of a Markov

chain to cluster states, almost at the same time that Fiedler proposed his spectral parti-

tioning. Stewart’s result is more widely suitable for nonsymmetric systems, and it uses a

2

distance from the steady state of a system to measure similarity among the states. In multi-

variate statistical analysis, some dimension reduction approaches are available, such as the

factorial method and principal components analysis, where several important eigenvectors

of a multivariate dataset capture the majority of data information.

All these results are somewhat orthogonal, but they involve the eigendecomposi-

tion of a data matrix, and the eigenvectors and eigenvalues provide meaningful clustering

information that helps us to group the objects in which we are interested. Due to this

reason, we wonder if there is an intrinsic connection behind these approaches through the

spectral property of a data structure. In fact, enlightened by the relation between results

from spectral clustering, Markov chains and dimension reduction techniques in multivariate

statistics, and combining them together, we have made some novel discoveries for improving

spectral clustering procedures and have developed a new method to decompose matrices

into blocks. In this dissertation, we shall address ourselves mainly to these problems.

1.2 Background

The starting point for applying spectral partitioning on a graph is to create a vector

space model or matrix representation of the graph, e.g., the Laplacian matrix. This provides

us with a matrix as an mathematical object for partitioning. Fiedler first derived well known

representations of the Laplacian to show the connection to the minimum cut problem [11].

The eigenvector corresponding to the second smallest eigenvalue, called the Fiedler vector,

provides a heuristic solution to the minimum cut problem. Another partitioning objective is

maximum association, i.e., maximizing the total weight of edges within clusters, which is the

dual problem of minimum cut. A more balanced and more popular objective is normalized

cut (balanced minimum cut) [34], which has been shown to be better than minimum cut

in obtaining desired partitions and can be minimized by solving the eigenvalue problem of

the normalized Laplacian matrix of a graph [34, 13]. All these graph partitioning problems

consider the case of graphs with nonnegative edge weight. The spectral based methods are

popular because they are easy to implement. They have been useful in many applications,

such as circuit layout [2], image segmentation [34] and so on.

The singular value decomposition (SVD) has also been applied to do the clustering

analysis. For example, Sherriff et al. [33] use the SVD on an analysis matrix to generate

3

clusters of files in a Software Change Impact Analysis. Elsewhere, the SVD has been per-

formed on a term-document matrix to cluster terms and documents [7, 28]. In multivariate

statistical analysis, the SVD can generate lower-dimensional representations of both obser-

vations and variables from a multivariate data matrix. The benefit of the SVD is that it can

be applied on a rectangular matrix rather than a square matrix. We shall take advantage

of this when using spectral graph partitioning to obtain clusters of both vertices and edges.

An interesting observation from Meila et al. [24] is that the spectral clustering

can be depicted in the framework of Markov random walks on a graph structure. Solving

the eigenvalue problem of the transition probability matrix of a Markov random walk on

a graph can achieve the normalized cut on this graph. Here the spectral clustering is

viewed as states clustering of Markov chains. A well known result proposed by Stewart

[35] shows that the right-hand eigenvectors belonging to the dominant eigenvalues of the

transition matrix of a Markov chain provide a means of grouping the states of the chain.

This clustering method is based on the distance measure of states from the steady state.

We shall incorporate these two techniques on Markov chains to obtain more comprehensive

information concerning clustering states.

Spectral clustering not only provides bi-partitioning result, i.e. two clusters of

graph nodes, but multiple clusters as well. Roughly, there are two classes of methods

available in spectral clustering for obtaining multiple clusters: (a) recursive bi-partitioning,

such as the Shi and Malik (SM) [34] algorithm and the Kannan, Vempala and Vetta (KVV)

[38] algorithm; (b) using multiple eigenvectors, such as the Ng, Jordan and Weiss (NJW)

[27] algorithm and the Meila-Shi [25] algorithm. In most algorithms, the number of clusters

is fixed and is given in advance. We shall propose a new clustering procedure that uses the

information in multiple eigenvectors to do a direct multiway partitioning without losing the

information of whole graph structure, and the number of clusters in our procedure is not

known a priori. One possible application of our spectral clustering method is to decompose

matrices into blocks, especially to find nearly-completely-decomposable (NCD) components

of Markov chains. Obtaining NCD blocks of a Markov chain makes computing the stationary

distribution of this chain more efficient. For this purpose, some effective methods already

exist, e.g., MARCA [36] and TPABLO [3] algorithms; they are less expensive in computation

and complexity than spectral clustering. However here we focus on matrix partitioning,

which is a more difficult problem than calculating the stationary distribution of a Markov

4

chain. We shall see that our spectral method can decompose matrices into meaningful

blocks in the situation of community complex networks [15] where MARCA and TPABLO

cannot.

Many systems in nature have the form of networks or graphs in which set of

nodes represent objects in a system and edges represent the interaction between nodes. For

many networks, such as social and biological networks, it is a common property that such

networks have communities in them, i.e. subsets of nodes having dense structure and strong

interaction between nodes within them, but weak interaction between subsets themselves

[15]. This property tells us that detecting the community structure in a network is similar to

clustering nodes of a graph. Since networks in real world can be represented by graphs with

dynamic interactions on them, we may apply the clustering techniques of Markov chains to

understand the community structure in complex networks.

1.3 Contributions

In this dissertation, we first introduce the signless Laplacian matrix [6] to model

the maximum association in spectral clustering, and show that the eigenvalues of the sign-

less Laplacian have important physical interpretations. Furthermore, we prove that the

normalized cut can also be minimized by solving the eigenvalue problem of the normalized

signless Laplacian matrix. In the case of a graph having negative edge weights, a matrix

constructed in the same way as the signless Laplacian can be used to obtain meaningful

clusters of nodes by computing the eigenvector corresponding to the largest eigenvalue.

Second, we show the relation between singular vectors used in clustering and eigen-

vectors in spectral clustering. This connection indicates that the clustering from an SVD is

based on a graph partitioning. Considering features of the SVD, we develop a new approach

of using the SVD technique on the node-edge incidence matrix of a graph, using the signless

Laplacian as a bridge, to obtain both node and edge clusters. We also show that this idea

can be extended to the generalized incidence structure matrix of two classes of states.

Third, we present two clustering measures based on two clustering techniques of

the states of Markov chains, namely, (a) the normalized cut measure and (b) the distance

measure of states from the steady state. We mainly discuss the clustering information

of graph nodes provided by the second clustering measure (b). This allows us to present

5

a novel result concerning clustering on graph nodes that is based on incorporating both

clustering techniques in Markov chains.

Fourth, we display the relation between spectral clustering and dimension reduc-

tion techniques of multivariate statistical analysis, e.g., the factorial method and principal

components analysis. Spectral clustering is a spectral case of the factorial method on node-

edge incidence matrix. We also present a way of using the graph partitioning technique to

analyze a multivariate data matrix, and this result is related to the result obtained from

principal components analysis.

Fifth, we propose a heuristic method to determine the number of clusters in a

graph based on the number of eigenvectors we choose to partition graph nodes. The choice of

important eigenvectors for clustering is controlled by the input of two parameters. Then we

develop a new regular spectral clustering algorithm. For large-scale data, a novel hierarchical

algorithm is presented. Our spectral procedure works well in detecting communities in real-

world networks.

1.4 Organization

This dissertation is organized as follows. Chapter 2 reviews some preliminary

mathematics including graph theory, matrix analysis, Markov chains, multivariate analysis

and some numerical methods. Chapter 3 describes procedures of spectral clustering using

the Laplacian and signless Laplacian matrices, and a method of clustering nodes in the case

of a graph having negative edge weights. The SVD technique used to obtain both vertex

clusters and edge clusters is also discussed in this chapter. Chapter 4 talks about construct-

ing a transition probability matrix of a random walk from a graph for spectral clustering,

and two clustering measures on the states of Markov chains associated with two clustering

techniques. The relation between spectral clustering and dimension reduction techniques

in multivariate statistical analysis is discussed in Chapter 5. Some heuristic methods for

decomposing real unsymmetric matrices including MARCA, TPABLO and our new spec-

tral clustering procedures are presented in Chapter 6. In Chapter 7, we demonstrate some

applications and experiment results. One important application is studying communities

within complex networks. Finally, Chapter 8 provides the conclusions, and outlines future

research.

6

Chapter 2

Preliminary Mathematics

In this chapter, we introduce some preliminary mathematics including graph the-

ory, matrix analysis and linear algebra, Markov chains, multivariate statistics, and some

numerical methods, which are helpful for this dissertation.

2.1 Graph Theory

Many practical problems in this world involve graph theory, which is studied in

mathematics and computer science. A graph is a mathematical structure which displays

pairwise relations between objects of interest.

Definition 2.1.1 (Graph). A graph G consists of three sets: a set of vertices V (G), a set

of edges E(G) and a set of relations R(G). A relation associates an edge with two vertices,

called its endpoints. Two vertices are adjacent if they are the endpoints of an edge.

Definition 2.1.2 (Simple Graph). A loop is an edge having the same endpoints. Multiple

edges are edges sharing the same pair of endpoints. A simple graph is a graph without loops

and multiple edges.

For a simple graph, we treat each edge in its edge set as a pair of endpoints

(vertices). Thus we use a shorter notation G = (V, E) to represent a simple graph, where

V is the vertex set and E is the edge set. Unless otherwise stated, all graphs discussed in

this dissertation are simple graphs.

Example 2.1.1. Some basic graphs are shown below:

7

Figure 2.1: Basic graphs with five vertices: a) a path, b) a cycle, c) a star, d) a complete

graph.

A complete graph is a simple graph in which every two vertices are adjacent. A clique in a

graph is a vertex set in which vertices are pairwise adjacent.

Definition 2.1.3. If a vertex is an endpoint of an edge, then this vertex and this edge are

incident. In a graph without loops, the degree of a vertex is the number of incident edges.

Definition 2.1.4 (Subgraph). A subgraph S of a graph G has a vertex set V (S) ⊆ V (G),

a edge set E(S) ⊆ E(G) and a relation set R(S) ⊆ R(G). An induced subgraph H of a

graph G is a subgraph obtained by deleting a set of vertices of G.

The induced subgraph H of G contains the vertex set V (H) and all edges whose

endpoints are included in V (H).

Definition 2.1.5 (Connected Graph). A graph G is connected if each pair of vertices

in G is connected by a path; otherwise G is disconnected.

Definition 2.1.6 (Line Graph). The line graph of a graph G, denoted L(G), is a graph

whose vertices correspond to the edges of G; two vertices are adjacent in L(G) if and only

if their corresponding edges in G share a common endpoint.

An example of a graph G and its line graph L(G) is shown in Figure 2.2.

Definition 2.1.7 (Weighted Graph). A weighted graph is a graph whose edges are asso-

ciated with numerical labels.

An unweighted graph can also be seen as a graph with numerical labels 1 on

each edge. Many practical problems are modeled as weighted graphs. Spectral clustering

techniques partition the graph nodes of weighted graphs; in general only nonnegative edge

8

Figure 2.2: A graph G and its line graph L(G).

weights are considered. However numerical labels on the edges may be negative. In Section

3.4, we shall discuss spectral methods that can cluster nodes of a graph with negative edge

weights.

Definition 2.1.8 (Directed Graph). A directed graph or digraph G, consists of a set of

vertices V (G), a set of edges E(G) and a function assigning each edge an ordered pair of

vertices. The first vertex in this ordered pair is called the tail of the edge, and the second is

called the head. An edge is from its tail to its head.

Definition 2.1.9 (Simple Digraph). A loop in a digraph is an edge whose tail and head

are the same. Multiple edges are edges who have been assigned the same ordered pair of

endpoints. A simple digraph is a digraph with no multiple edges and at most one loop per

vertex.

From this definition, each edge in a simple digraph can be identified by its ordered

pair of endpoints.

Example 2.1.2. Figure 2.3 shows two basic digraphs: a path and a cycle.

In graph theory, many concepts involve the words “maximal” and “maximum”.

The difference between these two words is that, maximum means “largest size”, while

maximal means “no larger one includes this one”. For example, a maximum path is also

a maximal path, however a maximal path is not necessarily a maximum one.

Definition 2.1.10 (Weakly and Strongly Connected). A digraph G is weakly connected

if its underlying graph (get rid of direction from each edge) is connected. A digraph G is

9

Figure 2.3: Basic digraphs: a) a path and b) a cycle.

strongly connected if for each ordered pair of vertices s and t in G, there is a path from s

to t.

Definition 2.1.11 (Strongly Connected Component). The strongly connected compo-

nents (SCC) in a digraph G are its maximal strongly connected subgraphs.

The concept of strongly connected components is used in the algorithm MARCA,

a method for finding blocks structure of matrices, which is described in Section 6.2.

2.2 Matrix Analysis and Linear Algebra

This section is a review of some basic concepts from matrix analysis and linear

algebra, which will be widely used in this dissertation.

2.2.1 Matrix Basics and Vectors

A matrix is a rectangular array of scalars. For example, a matrix A with m rows

and n columns is

A =




a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn




,

where aij is a scalar in the position of row i and column j. A submatrix of a given matrix

A is a matrix obtained by deleting some rows and columns from A. Matrices having only

one single row or one single column are called row vectors or column vectors, respectively.

10

Example 2.2.1. Some special matrices and vectors are listed in Table 2.1

Table 2.1: Special matrices and vectors.
Matrix Am×n Definition
column vector n = 1

row vector m = 1
vector of ones (1, . . . , 1)T

square matrix m = n
diagonal matrix aij = 0 for i 6= j, and m = n
identity matrix I diagonal matrix with aii = 1 for all i
symmetric matrix aij = aji

orthogonal matrix AT A = AAT = I

Definition 2.2.1 (Rank). A set of vectors v1, . . . , vn is linearly independent if the only

solution of the scalars ci in the equation

c1v1 + c2v2 + · · ·+ cnvn = 0

is the trivial solution c1 = c2 = · · · = cn = 0. The rank of a matrix A, denoted as rank(A),

is the maximum number of linearly independent rows (columns) in A.

Given an m× n matrix A, the following statements about matrix rank are true.

• rank(A) ≤ min(m,n).

• rank(A) = rank(AT).

• rank(AT A) = rank(A) = rank(AAT).

Definition 2.2.2 (Trace). The trace of a matrix An×n is defined to be the sum of its

diagonal elements

trace(A) =
n∑

i=1

aii. (2.1)

Definition 2.2.3 (Euclidean Vector Norm). For a real vector xn×1, the Euclidean norm

of x is

‖x‖ = (
n∑

i=1

xi
2)1/2 = (xT x)1/2, (2.2)

and this is also called 2-norms, written as ‖x‖2.

11

Definition 2.2.4 (Angles). For two real nonzero vectors xn×1 and yn×1, the angle θ ∈
[0, π] between x and y is defined by the cosine:

cos θ =
xT y

‖x‖‖y‖ . (2.3)

2.2.2 Eigenvalues and Eigenvectors

Definition 2.2.5 (Eigenvalues and Eigenvectors). For a square matrix An×n, if there

are scalars λ and vectors vn×1 6= 0 satisfying the equation

Av = λv, (2.4)

then λ and v are called eigenvalues and eigenvectors of A, respectively. The set of distinct

eigenvalues is called the spectrum of A.

Let λ1, λ2, . . . , λn be the eigenvalues of An×n, then the following equation is true.

trace(A) =
n∑

i=1

λi. (2.5)

A generalized eigenvalue problem of a square matrix An×n is given by

Av = λBv, (2.6)

where B is an n× n matrix, and λ and v are generalized eigenvalues and eigenvectors of A

with respect to B.

Definition 2.2.6 (Similarity). Two n× n matrices A and B are similar if there exists a

nonsingular matrix P such that

P−1AP = B. (2.7)

Theorem 2.2.1. Similar matrices have the same characteristic polynomial, so they have

the same eigenvalues.

Theorem 2.2.2 (Jordan Decomposition). A real symmetric matrix An×n has real eigen-

values and a complete set of n orthogonal eigenvectors. This symmetric matrix A is orthog-

onally similar to a real-diagonal matrix D, such that

P T AP = D (2.8)

with P orthogonal, where the columns of P are the orthogonal eigenvectors of A, and the

diagonal elements of D are the corresponding eigenvalues.

12

2.2.3 Singular Value Decomposition

Theorem 2.2.3 (Singular Value Decomposition). For each Am×n of rank r, there are

orthogonal matrices Um×m, Vn×n and a diagonal matrix Dr×r = diag(σ1, σ2, . . . , σr) such

that

A = U


 Dr×r 0

0 0




m×n

V T with σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

The σi’s are called the nonzero singular values of A. The columns in U and V are called

left-hand and right-hand singular vectors for A, respectively.

The following statements are true.

• The nonzero eigenvalues of AT A and AAT are equal and positive.

• The nonzero singular values of A are the positive square roots of the nonzero eigen-

values of AT A and AAT .

• If A is symmetric with nonzero eigenvalues {λ1, λ2, . . . , λr}, then the nonzero sigular

values of A are {|λ1|, |λ2|, . . . , |λr|}.

• The right-hand and left-hand singular vectors of A are the orthogonal eigenvectors of

AT A and AAT , respectively.

2.2.4 Quadratic Forms

A quadratic form of a symmetric matrix An×n is xT Ax, where xn×1 is a vector.

The term xT Ax/xT x is called a Rayleigh quotient.

Theorem 2.2.4. The eigenvalues of a real symmetric matrix A are nonnegative if and only

if A can be factored into the form of A = BT B, where B is a square matrix; and A has all

positive eigenvalues if and only if B is nonsingular.

Definition 2.2.7 (Definiteness). A symmetric matrix A is called positive definite if its

eigenvalues are positive, and A is positive semidefinite if its eigenvalues are just nonnegative.

13

There is another way to define the definiteness of matrices. A matrix A is positive

definite if the corresponding quadratic form xT Ax > 0 for all x 6= 0, and A is positive

semidefinite if the corresponding quadratic form xT Ax ≥ 0 for all x 6= 0.

Theorem 2.2.5. For real symmetric matrices A and B with B positive definite, the max-

imum and minimum of xT Ax/xT Bx are given by the largest and smallest eigenvalues of

B−1A, respectively, such that

λ1 ≤ xT Ax

xT Bx
≤ λn, for all x 6= 0, (2.9)

where λ1 ≤ · · · ≤ λn are the eigenvalues of B−1A. The vector x that maximizes (minimizes)

xT Ax/xT Bx is the eigenvector of B−1A corresponding to the largest (smallest) eigenvalue.

If B = I the identity matrix, then the Rayleigh quotient satisfies

λ1 ≤ xT Ax

xT x
≤ λn, for all x 6= 0,

Theorem 2.2.6 (Courant-Fischer Theorem). Let V k denote a k dimensional subspace

of Rn and x ⊥ V k meaning that x ⊥ y for all y ∈ V k. Then the eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn of a symmetric matrix An×n are

λi = max
V i−1

(min
x⊥V i−1

x 6=0

xT Ax

xT x
) and λi = min

V n−i
(max
x⊥V n−i

x 6=0

xT Ax

xT x
) (2.10)

2.2.5 Nonnegative Matrices

Definition 2.2.8 (Nonnegative Matrix). A real matrix A is said to be a nonnegative

matrix of real-valued elements if each element aij ≥ 0. This is denoted as A ≥ 0. Similarly,

A is said to be positive if each element aij > 0, written as A > 0.

Definition 2.2.9 (Reducibility). An n×n matrix A is a reducible matrix if the following

equation is valid.

P T AP =


 X Y

0 Z


 , (2.11)

where P is a permutation matrix, and X and Z are both square. Otherwise A is an irre-

ducible matrix.

14

For nonnegative matrices, a primary result concerns the relation between the prop-

erties of A ≥ 0 and their spectral properties is called the Perron-Frobenius theory. Here we

present one part of Perron-Frobenius theorem which is used later in this dissertation.

Theorem 2.2.7 (Perron-Frobenius Theorem). Let An×n ≥ 0 be an irreducible matrix.

Then

• A has a real positive eigenvalue λ1, which is equal to its spectral radius.

• The spectral radius λ1 is a simple eigenvalue of A.

• The unique eigenvector v of A corresponding to λ1 is positive, i.e.,

Av = λ1v, v > 0.

There are no other nonnegative eigenvectors for A.

Nonnegative irreducible matrices can be divided into two important classes based

on the property of having only one or more eigenvalues on the spectral circle.

Definition 2.2.10 (Primitive Matrix). A nonnegative irreducible matrix A is a primitive

matrix if it has only one eigenvalue on its spectral circle. If A has more than one eigenvalues

on its spectral circle, then A is not primitive.

This concept of primitive and non-primitive matrices is related to the periodicity of Markov

chains described in the next section.

2.3 Markov Chains

In this section, we first introduce the concept of the Markov process which is one

of the most commonly used stochastic processes.

Definition 2.3.1 (Markov Process). A Markov process is a stochastic process that has

the Markov property. This is, let X(t) be a continuous-time stochastic process that de-

notes the state of a system at time t, then for all integers n and for any time sequence

t0, t1, . . . , tn, tn+1 with t0 < t1 < · · · < tn < tn+1, we have

Prob{X(tn+1) ≤ xn+1|X(t0) = x0, X(t1) = x1, . . . , X(tn) = xn}

= Prob{X(tn+1) ≤ xn+1|X(tn) = xn}.

15

This equation of conditional probabilities shows that the next state of the system depends

only on its current state and not on its past history. This memoryless property is called

the Markov property. If the transitions of X(t) are independent of time, then the Markov

process is said to be homogeneous.

When the state space of a Markov process is discrete, the process is called a Markov

chain. There are two types of Markov chains, discrete-time Markov chains (DTMC) and

continuous-time Markov chains (CTMC).

2.3.1 Discrete-Time Markov Chains (DTMC)

Definition 2.3.2 (Discrete-Time Markov Chain). For all numbers n and all states xn,

a Markov chain Xn is a discrete-time Markov chain if

Prob{Xn+1 = xn+1|X0 = x0, X1 = x1, . . . , Xn = xn}

= Prob{Xn+1 = xn+1|Xn = xn}.

In a DTMC, the states of a system are observed at a discrete set of times. When it is a

homogeneous DTMC, the transition probabilities are independent of the step n. We can

write the transition probability pij from state i to state j as

pij = Prob{Xn+1 = j|Xn = i}, for all n = 0, 1,

Definition 2.3.3 (Transition Probability Matrix). A transition probability matrix P

is a square matrix formed by placing transition probability pij in row i and column j, for

all i and j.

The elements of the matrix P have two properties:

• 0 ≤ pij ≤ 1;

• ∑
j pij = 1 for all i.

A matrix satisfying these properties is also said to be a stochastic matrix.

Now let us consider the probability that a homogeneous DTMC is in a given state

at a certain step. We use πi(n) to represent the probability that a DTMC is in state i at

step n, i.e.,

πi(n) = Prob{Xn = i}.

16

Thus, a row vector π(n) = (π1(n), π2(n), . . . , πi(n), . . .) gives the probability distribution on

the states of a DTMC chain at step n, and π(0) denotes the initial probability distribution

on the states.

Definition 2.3.4 (Stationary Distribution). Given the transition probability matrix P

of a DTMC, a real row vector z is a stationary distribution if and only if zP = z, where z

gives a probability distribution on states such that the element zi of z is the probability of

being in state i, i.e.,

0 ≤ zi ≤ 1 and
∑

i

zi = 1.

Hence

z = zP = zP 2 = · · · = zPn = · · · .

If an initial probability distribution is π(0) = z, then for all n, we have π(n) = z.

Definition 2.3.5 (Limiting Distribution). Let P be the transition probability matrix

of a homogenous DTMC, if the limit limn→∞ Pn exists, then the probability distribution

π = limn→∞ π(n) also exists, since

π = lim
n→∞π(n) = lim

n→∞π(0)Pn = π(0) lim
n→∞Pn,

where π(0) is an initial probability distribution. This limit π is said to be a limiting distri-

bution of the Markov chain.

The stationary distribution does not always mean the limiting distribution of a

Markov chain. A finite, irreducible Markov chain has a unique stationary distribution z,

but it may not have a limiting distribution. In order to ensure the existence and uniqueness

of the limiting distribution, the additional property of aperiodic is needed.

Definition 2.3.6 (Periodicity). An irreducible DTMC is periodic if the number of tran-

sition steps required to return to a state i when starting from this state i (for all i) is a

multiple of some integer p > 1. The smallest p is called the period of the chain. If p = 1,

then the irreducible DTMC is aperiodic.

The limiting distribution of a finite, irreducible and aperiodic (ergodic) Markov

chain always exists and is unique. Furthermore, it is independent of the initial probability

distribution. If a Markov chain is periodic, then the limit π does not exist and this chain

does not have a limiting distribution.

17

2.3.2 Continuous-Time Markov Chains (CTMC)

Definition 2.3.7 (Continuous-Time Markov Chain). For all integers n and any time

sequence t0, t1, . . . , tn, tn+1 with t0 < t1 < · · · < tn < tn+1, a stochastic process {X(t), t ≥ 0}
is a continuous-time Markov chain if

Prob{X(tn+1) = xn+1|X(t0) = x0, X(t1) = x1, . . . , X(tn) = xn}

= Prob{X(tn+1) = xn+1|X(tn) = xn}.

The states of a CTMC are discrete, however this chain may change state at any point of

time.

For continuous-time Markov chains, an infinitesimal generator matrix Q is used

to represent its transitions. The element qij , i 6= j of Q is the rate at which the transitions

occur from state i to state j, and the diagonal element qii is equal to −∑
j 6=i qij . Therefore

the matrix Q satisfies ∑

j

pij = 0, for all i.

A finite, irreducible CTMC has a limiting distribution which is identical to the

stationary distribution of the Markov chain. The stationary distribution vector z can be

obtained by solving the linear system of equations

zQ = 0 and
∑

i

zi = 1.

The infinitesimal generator matrix Q of a CTMC can also be transformed to a stochastic

matrix P by using

P = Q∆t + I,

where I is the identity matrix and ∆t can be any value satisfying

0 < ∆t ≤ 1
maxi |qii| .

The stationary distribution vector z of this CTMC can also be determined by solving

zP = z and
∑

i

zi = 1.

18

2.3.3 Some Properties of Stochastic Matrices

A stochastic matrix Pn×n has the following properties:

• Every stochastic matrix P has a unit eigenvalue that is on its spectral circle.

• The modulus of eigenvalues of P must less than or equal to 1.

• If P represents an irreducible Markov chain, then it has a simple unit eigenvalue.

• The vector (1, 1, . . . , 1)T is a right-hand eigenvector of P corresponding to a unit

eigenvalue 1.

• A vector z is a stationary distribution vector of P if and only if it is a left-hand

eigenvector corresponding to a unit eigenvalue 1.

There is a result concerning the relation between the property of a stochastic

matrix and the periodicity of a Markov chain.

Result 2.3.1 ([26]). For an irreducible Markov chain, if its transition probability matrix

P is primitive, i.e., it has only one unit eigenvalue, then this Markov chain is aperiodic;

otherwise if P is non-primitive, i.e., there is more than one eigenvalue on the unit circle,

then this chain is periodic and the period is the number of eigenvalues on the unit circle of

P .

Therefore we can determine the periodicity of a Markov chain based on the eigenvalues of

its transition probability matrix.

2.4 Multivariate Statistics

Covariance and Correlation

The covariance is a measure of dependency between two random variables.

Definition 2.4.1 (Covariance). Given two real random variables X and Y , the covariance

of X and Y is defined

σXY = Cov(X, Y) = E(XY)− E(X)E(Y), (2.12)

where E(X) is the expectation of the random variable X.

19

If X and Y are independent, then we have E(XY) = E(X)E(Y). This is followed by

Cov(X, Y) = 0. If X and Y are identical, then the covariance becomes the variance

σ2
X = Var(X) = Cov(X, X) = E(X2)− E(X)2.

The covariance is dependent of the scale of measurement. If the variables are

measured in a different scale, then the value of the covariance between them will change.

For this reason, the concept of correlation is introduced.

Definition 2.4.2 (Correlation). The correlation of two random variables X and Y is

defined as

ρXY =
Cov(X, Y)√

Var(X)Var(Y)
=

σXY

σXσY
, (2.13)

where σX and σY are the standard deviations of X and Y , respectively.

The correlation is independent of the scale, and its value ρXY lies between −1 and +1. The

correlation is zero if and only if the covariance is zero, and in this case, these two variables

are uncorrelated. If X and Y are identical, then it is obvious that ρXX = 1.

Now let us move to a random variable X to higher dimensions, i.e., a multi-

variate random variable. If X is p-dimensional multivariate, then it is composed of p

one-dimensional random variables:

X = (X1, X2, . . . , Xp).

The expectation of the multivariate variable X is given by the vector

EX = (EX1, EX2, . . . , EXp).

Definition 2.4.3 (Covariance Matrix). The covariance matrix Σ of a p-dimensional

multivariate variable X is given by

Σ =




σ2
X1

σX1X2 . . . σX1Xp

σX2X1 σ2
X2

. . . σX2Xp

...
...

. . .
...

σXpX1 σXpX2 . . . σ2
Xp




, (2.14)

where σ2
Xi

= Var(Xi) and σXiXj = Cov(Xi, Xj) for i 6= j.

20

The covariance matrix of X provides the variance of X. The reason is as follows:

Var(X) = Cov(X, X)

= E[(X − EX)T (X − EX)]

= E[(X1 − EX1, . . . , Xp − EXp)T (X1 − EX1, . . . , Xp − EXp)]

=




σ2
X1

σX1X2 . . . σX1Xp

σX2X1 σ2
X2

. . . σX2Xp

...
...

. . .
...

σXpX1 σXpX2 . . . σ2
Xp




. (2.15)

It is not difficult to see that

Σ = E(XT X)− E(X)T E(X). (2.16)

Definition 2.4.4 (Correlation Matrix). The correlation matrix P of a p-dimensional

multivariate variable X is defined as

P =




1 ρX1X2 . . . ρX1Xp

ρX2X1 1 . . . ρX2Xp

...
...

. . .
...

ρXpX1 ρXpX2 . . . 1




, (2.17)

where ρXiXj is the correlation between Xi and Xj for i 6= j.

We can see that the correlation matrix P can be computed by dividing the ith row of the

covariance matrix Σ by σXi , and dividing the jth column of Σ by σXj .

The K-means Algorithm

The K-means algorithm is an efficient clustering method for partitioning n individuals with

high dimensions into k clusters. Each individual belongs to the cluster which has the nearest

centroid (mean).

Suppose there are n individuals xi ∈ Rp for i = 1, . . . , n, and we want to group

them into k disjoint subsets Sj , j = 1, . . . , k, so as to minimize the sum of squares:

k∑

j=1

∑

xi∈Sj

‖xi − µj‖2
2, (2.18)

21

where µj is the centroid of cluster Sj . The centroid µj is given by

µj =
1
|Sj |

∑

xi∈Sj

xi, (2.19)

where |Sj | is the number of individuals within cluster Sj .

The standard K-means algorithm consists of the following steps:

1. Specify the initial k cluster centroids µj , j = 1, . . . , k which may be selected randomly

or may be obtained by some heuristics.

2. Assign each individual xi to a cluster whose centroid is closest to it:

argmin
j
‖xi − µj‖2

2.

Assign xi to cluster Sj .

3. Compute the new k cluster centroids µj by Equation (2.19).

4. Repeat step 2 and 3 until there is no further change of clusters.

The assignment of individuals in step 2 will reduce the value of the sum of squares in

Equation (2.18), and this algorithm will finally converge.

The K-means algorithm can only converge to a local minimum. To find the global

minimum, it is better to run this algorithm procedure multiple times by using different

initial random cluster centroids and then choosing the lowest value of Equation (2.18).

2.5 Numerical Methods for Solving Eigenvalue Problems

In this section we introduce some numerical methods for obtaining a set of dom-

inant eigenvalues and the corresponding eigenvectors of a large matrix. The most efficient

methods are called projection methods; they consist of extracting approximations of the

exact eigensolutions from small-dimensional subspaces. There are mainly two objects that

need to be considered, namely,

• A small-dimensional subspace K from which the approximations are extracted,

• Another subspace L that sets constraints of generating the approximations from K
(orthogonality constraints are usually used).

22

Projection Processes for Eigenvalue Problems

For the eigenvalue problem of a matrix Pn×n

Px = λx,

we seek to obtain an approximation of λ and an approximation of x ∈ K with orthog-

onality constraints such that the residual Px − λx is orthogonal to a subspace L. Let

V = (v1, . . . , vm) and W = (w1, . . . , wm) be the bases of subspaces K and L, respectively

(m ¿ n), and letting x = V y, we have

W T (PV y − λV y) = 0

or

W T PV y = λW T V y. (2.20)

If W T V is close to the identity matrix, then the approximate eigenvalues of P are the

eigenvalues of the m×m matrix W T PV . The corresponding approximations of the eigen-

vectors are x = V y. Now we obtain m approximate eigenpairs of P . When the subspaces

K = L and V is an orthogonal basis of K, this projection process is said to be an orthogonal

projection process.

A Lopsided Simultaneous Iteration Algorithm (LOPSI)

The Lopsided simultaneous iteration algorithm is used to obtain one set of eigen-

values of largest modulus of a large sparse matrix and their corresponding left-hand or

right-hand eigenvectors. Each iteration of the simultaneous iteration method is carried out

with some trail vectors that converge to the eigenvectors associated with the dominant

eigenvalues of the matrix.

Let Pn×n be a real nonsymmetric matrix for which the right-hand eigenvectors

corresponding to the dominant eigenvalues are required. The Lopsided iteration algorithm

consists of a following sequence of steps:

1. Choose a set of m initial normalized trail vectors U = (u1, u2, . . . , um).

2. Premultiply U by P to obtain the resulting set of vectors V as V = PU .

3. Compute m×m matrices G = UT U and H = UT V .

23

4. Obtain an m×m interaction matrix B from the equation GB = H.

5. Solve the eigenvalues and right-hand eigenvectors of B. Here the eigenvalues of B are

approximations of the dominant eigenvalues of P .

6. Sort these eigenvalues and their corresponding right-hand eigenvectors of B. Let Z

be the matrix form of right-hand eigenvectors of B.

7. Calculate W = V Z, which gives improved right-hand eigenvectors of P .

8. Normalize W . If the convergence test is not satisfied, go Step 2; otherwise the algo-

rithm stops.

Lopsided iteration has been found to be simple and efficient in computer time and memory

space.

The Method of Arnoldi for Eigensolutions

The method of Arnoldi can be used to approximate the largest eigenvalues and

corresponding eigenvectors of a real nonsymmetric matrix Pn×n. The Arnoldi algorithm is

an orthogonal projection process onto the Krylov subspace Km for some vector v1

Km = span{v1, Pv1, P
2v1, . . . , P

m−1v1},

from which the approximations of eigensolutions are extracted. This method is attractive

for large sparse matrices.

The Krylov projection method starts with a nonzero normalized approximation

v1, and then the modified Gram-Schmidt orthogonalization procedure is used to construct

an orthonormal basis of the Krylov subspace. Let Vm = (v1, v2, . . . , vm) be the orthonormal

basis of the Krylov subspace; then Hm = V T
mPVm where Hm is an m×m upper Hessenberg

matrix, i.e., the nonzero elements are only in positions {i, j} with 1 ≤ i ≤ min(j+1,m), 1 ≤
j ≤ m. Approximations to some eigenvalues of P and the corresponding eigenvectors can

be obtained from the eigenvalues and eigenvectors of Hm. This basic Arnoldi algorithm for

eigensolutions is as follows:

1. Choose an integer m as the size of the Krylov subspace and an initial approximation

vector v1 having ‖v1‖2 = 1.

24

2. Generate the upper Hessenberg matrix Hm whose elements are hij :

For j = 1, 2, . . . , m

• Compute w = Pvj .

• For i = 1, 2, . . . , j

– Compute hij = vT
i w.

– Compute w = w − hijvi.

• Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j .

3. Compute approximations to the eigenvalues and eigenvectors of P :

• Solve eigenvalue problem: Hmy = λy. The eigenvalues λ are approximate eigen-

values of P .

• Compute approximate eigenvectors Vmy of P .

The Lanczos Algorithm

Let P be a real n × n sparse matrix. If n is large, the Lanczos method can also

be applied to approximate the extreme eigenvalues and eigenvectors of P . The algorithm

of Lanczos is a projection process onto the Krylov subspaces, i.e., the approximations to

exact eigensolutions of P are extracted from a small-dimensional Krylov subspace Km with

constraints on another Krylov subspace Lm.

The main idea of the Lanczos method is to transform P into a real m×m tridiag-

onal matrix Tm. Let Vm = (v1, . . . , vm) and Wm = (w1, . . . , wm) be the bases of subspaces

Km and Lm, respectively. If P is symmetric, the methods of Arnoldi and Lanczos are, in

fact, the same. The upper Hessenberg matrix Hm calculated in Arnoldi’s method turns

into a real symmetric tridiagonal matrix Tm such that Tm = V T
mPVm, where Vm is the

orthonormal basis of Km. This means that Vm = Wm in the Lanczos method. Approxima-

tions to a subset of the eigenvalues and the corresponding right-hand eigenvectors of P can

be obtained from the eigensolutions of Tm. If P is a nonsymmetric matrix, then a general

similarity transformation may be applied to reduce P to a tridiagonal matrix. Based on

this idea, we construct the bases Vm and Wm of the Krylov subspaces Km and Lm such that

W T
mVm = I, where I is an m×m identity matrix, and the expression W T

mPVm is equal to a

25

tridiagonal matrix Tm. Thus we can compute the eigensolution of Tmy = λy, and the values

λ and vectors Vmy are taken as approximations to a set of the eigenvalues and right-hand

eigenvectors of P .

The details of the procedures for Lanczos algorithms are described in [35].

26

Chapter 3

Spectral Graph Partitioning and

Clustering

3.1 Introduction and Literature Review

A graph G = (V, E), where V is a set of vertices and E is a set of edges, can be

partitioned into two disjoint subsets V1 and V2, V1 ∪ V2 = V , by deleting those edges that

connect a vertex in one of subsets to a vertex in the other subset. It is frequently desirable

that each subset have approximately the same number of vertices. There are many reasons

for seeking a graph partition: a common objective is to partition the graph in such a way

that the partition has minimum cost, e.g., minimum number of edges cut. In a weighted

graph this involves finding the particular set of edges which once eliminated, partitions the

graph in the desired manner and for which the sum of the weights on the removed edges

is as small as possible. In graph theoretic language, this is called the minimum cut. Given

two sets of vertices V1 and V2 which partition a graph, the numerical value assigned to the

cut, called the “cut value”, is given by

cut(V1, V2) =
∑

i∈V1,j∈V2

wij ,

where wij is the weight on the edge that connects vertex i to vertex j. In an unweighed

graph, wij is equal to 1 if there is an edge from vertex i to vertex j and is equal to 0

otherwise.

It turns out that a minimum cut partition is also the partition which maximizes the

27

total weight of the remaining edges within subsets. In certain applications it is important

to determine which parts of a graph have strong cohesion, i.e., the sum of total edge weight

in a subset, as represented by the strength of the edges that connect the vertices in the

different subsets. Thus the cohesion problem of how tightly certain states are clustered

together may be viewed as the dual of the minimum cut problem of a graph.

Since graph partitioning is an NP-complete problem [14], there are a number of

heuristic methods that can be used to find good approximations. Such methods include

the Fiduccia-Mattheyses (FM) [10] algorithm and the Kernighan-Lin (KL) [20] algorithm.

Both FM and KL provide a local minimum based on given initial partitionings [7].

Spectral graph partitioning is another heuristic approach for finding good solutions

to the minimum cut problem. It was introduced in the early 1970s [11], and popularized in

the early 1990s [30]. Spectral clustering methods are based on spectral graph theory [4, 5]

and generally consist of three stages:

(a) Construct a matrix representation based on a ‘distance’ between data points.

(b) Calculate an eigen-decomposition of this matrix and map each point into a lower-

dimensional representation using one or more eigenvectors.

(c) Group data points into clusters based on the lower-dimensional representation.

Fiedler was the first to use the eigenvalues and eigenvectors of the Laplacian matrix of a

graph to create tools for measuring algebraic connectivity. Fiedler has shown that the eigen-

vector of the Laplacian matrix corresponding to the second smallest eigenvalue (the so-called

Fiedler vector) provides a heuristic approach for determining the minimum cut of a graph

[11, 12]. Besides minimum cut and maximum association, there are a number of different

spectral graph clustering objectives including normalized cut [34] and ratio cut/association

[2]. Maximum association and minimum cut can be viewed as dual problems of each other

and computed at the same time [40, 8]. In recent research, multiple eigenvectors have been

used simultaneously to obtain a K-way partition, rather than a 2-way partition [34]. Gen-

erally, spectral partitioning gives better global solutions than the FM and KL algorithms

[7].

The singular value decomposition (SVD) has also been used to generate clusters

on graph nodes. For example, Sherriff et al. [33] perform the SVD on an analysis matrix

28

of change records in a software system to generate clusters in a Software Change Impact

Analysis. Elsewhere, the SVD had been applied on a term-document matrix to cluster

terms and documents [7, 28]. It is only natural to wonder if the clustering from an SVD is

also based on a graph partitioning and we show that the answer is in the affirmative. The

mathematical relationship between an SVD and an eigenanalysis [26, 16], exposes the fact

that the singular vectors obtained when SVD is used in clustering are closely related to the

eigenvectors from an eigenanalysis during spectral clustering. This leads us to suggest that

it is beneficial to consider the SVD of the node-edge incidence matrix since it can be used

to obtain edge clusters of a graph and not just vertex clusters.

3.2 Minimum Cut in Spectral Clustering

In this section, we first review the basic procedure of spectral clustering.

Definition 3.2.1. Given a finite, undirected graph G = (V, E) having n vertices, the adja-

cency matrix A of G is an n× n matrix, such that

aij =





wij , if i and j are adjacent,

0, otherwise.
(3.1)

The non-diagonal element aij of A is the weight wij of the edge {i, j} connecting

vertex i to vertex j, and the diagonal element aii is the weight on a loop (if any) on vertex

i. For a simple graph with no self-loops, the diagonal elements of A are all zero. For an

unweighted graph, the entries of A have the value 1 or 0 in position (i, j) according to

whether vertices i and j are adjacent or not. Thus, for a simple undirected graph, the

adjacency matrix is a symmetric matrix. We now introduce the Laplacian matrix of a

graph, since it plays an important role in spectral graph partitioning.

Definition 3.2.2. The Laplacian matrix L of a graph G is the n×n matrix whose elements

are as follows.

Lij =





∑
k wik, if i = j

−wij , if i 6= j, i and j are adjacent

0, otherwise.

(3.2)

29

Thus L is a symmetric matrix and from our previous definition of the adjacency

matrix A, it can be obtained as L = D−A, where D is a diagonal matrix whose ith diagonal

element is Dii =
∑

k wik.

Definition 3.2.3. The oriented incidence matrix of a graph G, denoted by BG, is an

n × m matrix having one row per vertex and one column per edge. The column of BG

corresponding to an edge from vertex i to j has zeros everywhere except in positions i and

j: the two nonzero elements in this column are given by √wij and −√wij and it matters

not which one has the negative sign.

For example, the matrix BG shown below displays three edges, connecting vertex

2 and vertex 3; vertex 1 and vertex 4; and finally connecting vertex 4 and vertex 5.

BG =




0
√

w14 0 . . .
√

w23 0 0 . . .

−√w23 0 0 . . .

0 −√w14
√

w45 . . .

0 0 −√w45 . . .
...

...
...

. . .




It is easy to show from the definitions that L = BGBG
T .

Theorem 3.2.1. The Laplacian matrix L of a graph G has a number of interesting prop-

erties, including:

1. L is symmetric positive semi-definite. As such its eigenvalues are all real and non-

negative. Furthermore the eigenvectors of L constitute a full set of n real orthogonal

vectors.

2. Le = 0, where e is a column vector whose elements are all equal to 1. Thus 0 is the

smallest eigenvalue of L and e is its corresponding eigenvector.

3. For any vector x, we have

xT Lx =
∑

{i,j}∈E

wij(xi − xj)2. (3.3)

30

Proof. Given the Laplacian matrix L of G:

1. Since L = BGBG
T , xT Lx = xT BGBG

T x = (BG
T x)T BG

T x = yT y ≥ 0, for all x

and therefore L is symmetric positive semi-definite. From matrix theory [16], the

eigenvalues of such matrices are non-negative and real; and the eigenvectors constitute

a full set of n orthogonal vectors.

2. From its definition, the sum of elements in each row of L is equal to 0. Hence it follows

that Le = 0, where e = (1, 1, . . . , 1)T .

3. Let k be the element of BG
T x that corresponds to edge {i, j}. Then

(BG
T x)k =

√
wij(xi − xj), (3.4)

and it follows that

xT Lx = xT BGBG
T x = (xT BG)1×m(BG

T x)m×1

=
∑

{i,j}∈E

wij(xi − xj)2.

Let us now focus on finding the minimum cut of a graph based on these properties

of the matrix L.

Definition 3.2.4. Given a partition of V into V1 and V2 (V1 ∪ V2 = V), a partition vector

p is defined as

pi =





+1, vertex i ∈ V1,

−1, vertex i ∈ V2.
(3.5)

Clearly we see that pT p = n. Given a Laplacian matrix L and a partition vector

p, we have, from Equation (3.3),

pT Lp =
∑

{i,j}∈E

wij(pi − pj)2.

31

Observe from Equation (3.5), that the weight of edges within each set V1 or V2 is not

counted in this sum, while the weight of each edge connecting a vertex of V1 to a vertex in

V2 is multiplied by a factor of 4. Given that we have defined the cut value as cut(V1, V2) =
∑

i∈V1,j∈V2
wij , it follows that pT Lp = 4 cut(V1, V2) and the Rayleigh quotient is thus

pT Lp

pT p
=

1
n
· 4 cut(V1, V2). (3.6)

Here we see that the minimum-cut problem has been translated into a new format, that

of finding an optimal partition vector p so as to minimize the Rayleigh quotient [7]. The

problem can be presented as

Minimize
pT Lp

pT p
,

such that pi = ±1, pT p = n, and (3.7)

|eT p| = 0 or 1, where eT = (1, 1, . . . , 1).

The constraint |eT p| = 0 or 1 ensures that we have two almost equally-sized subsets from

partitioning. This constraint will be dropped later in the spectral heuristic approach, as

will the constraint on p.

Theorem 3.2.2. The maximum and minimum of the Rayleigh quotient of the Laplacian

matrix L are the largest and smallest eigenvalues of L respectively:

λmax = max
x 6=0

xT Lx

xT x
and λmin = min

x 6=0

xT Lx

xT x
, (3.8)

where x is the eigenvector of L corresponding to λmax and λmin respectively.

Proof. The eigenvalues of a Laplacian matrix L are real and can be ordered as λ1 ≥ λ2 ≥
· · · ≥ λn. Also, since L is real-symmetric, it is orthogonally similar to a diagonal matrix [26].

Therefore there exist a matrix U such that UT LU = D = diag(λ1, λ2, . . . , λn), where D is a

diagonal matrix whose diagonal elements are the eigenvalues of L, and U is orthogonal, i.e.,

the columns of U constitute a complete orthonormal set of eigenvectors of L. Equivalently,

we may write L = UDUT . Setting y = UT x, we have

‖x‖2 = 1 ⇐⇒ ‖y‖2 = ‖UT x‖2 = (xT UUT x)1/2 = (xT x)1/2 = ‖x‖2 = 1,

32

since U is orthogonal and hence UT U = I. This leads to the following equivalent form of

the Rayleigh quotient

max
‖x‖2=1

xT Lx = max
‖x‖2=1

(UT x)T D(UT x)

= max
‖y‖2=1

yT Dy

= max
‖y‖2=1

n∑

i=1

λi|yi|2

≤ max
‖y‖2=1

λ1

n∑

i=1

|yi|2 = λ1 (3.9)

with equality when y = e1 = [1, 0, 0, . . . , 0]T , and x is an eigenvector of unit norm associated

with λ1. The expression for the smallest eigenvalue, λn, is obtained by writing

min
‖x‖2=1

xT Lx = min
‖x‖2=1

(UT x)T D(UT x)

= min
‖y‖2=1

yT Dy

= min
‖y‖2=1

n∑

i=1

λi|yi|2

≥ min
‖y‖2=1

λn

n∑

i=1

|yi|2 = λn (3.10)

with equality being satisfied at an eigenvector of unit norm associated with λn. Conse-

quently,

λ1 ≥ xT Lx

xT x
≥ λn for all x 6= 0.

The minimum value of the Rayleigh quotient is zero, which is the smallest eigen-

value of L corresponding to the eigenvector e. This partition vector indicates that all the

vertices of the graph are in the same set, which means nothing is cut. This is the trivial

partition. It is the second smallest eigenvalue (referred to as the Fiedler value) of L that

provides the optimal value, and its corresponding eigenvector (referred to as the Fiedler

33

vector) gives the real valued solution to our minimum cut problem. Notice that the reason

the Fiedler vector is not necessarily the solution to our original problem, Equation (3.7),

is the constraint of Equation (3.5) on p (that pi takes on two discrete values) and the con-

straint of obtaining two almost equally-sized subsets is not automatically satisfied. In fact,

relaxing these constraints is what makes this optimization problem easy to solve and lets

us get a better solution for decomposing a graph, since well-decomposed subsets based on

the minimum cut are not necessarily equally-sized.

Once the eigenvector corresponding to the second smallest eigenvalue has been

computed, we can partition the vertices into two subsets. In the ideal case, the eigenvector

takes on only two discrete values and the signs of the values tell us exactly how to partition

the graph. However, our eigenvectors assume continuous values and we need to choose a

splitting point to partition it into two parts. Here we take value zero. Naturally, there

are many other different ways of choosing such a splitting point. One can take the median

value as the splitting point or one can search for the splitting point such that the resulting

partition has the best cut value. A scientific way is to use the K-means clustering algorithm.

3.3 The Signless Laplacian for Graph Node Clustering

Sometimes we wish to determine clustering information for a graph G, i.e., to

determine which vertices in G have strong mutual cohesion. The problem of maximizing the

total weight within two clusters is the dual of the minimum cut problem. This clustering

objective is called maximum association. In this section, we propose a new method for

clustering nodes with the objective of maximum association, by introducing an eigenanalysis

of the signless Laplacian matrix M . We shall see that the clustering solution thereby

obtained coincides with the solution of the minimum cut problem. We now proceed through

the details of this dual problem and describe our approach to solving it.

Definition 3.3.1. Given a graph G = (V, E) and two clusters V1, V2 where V1 ∩ V2 = ∅
and V1 ∪ V2 = V , the maximum association is defined as

max
V1,V2

(assoc(V1) + assoc(V2)) = max
V1,V2

(
∑

i,j∈V1

wij +
∑

i,j∈V2

wij). (3.11)

34

The partition vector p has been defined in Equation (3.5) as

pi =





+1, vertex i ∈ V1,

−1, vertex i ∈ V2.

Equation (3.3) suggests how we might find the maximum total weight within clusters. If

we change the minus sign in Equation (3.3) and construct a matrix M to obtain

pT Mp =
∑

{i,j}∈E

wij(pi + pj)2, (3.12)

then we see that the edges connecting two subsets V1 and V2 do not contribute to the value

of this equation, but that the edges within each cluster contribute 4 times their weight. The

dual problem can then be solved, and the optimal p which maximizes pT Mp provides our

sought-after clustering information.

Definition 3.3.2. The unoriented incidence matrix of a graph G, denoted by IG, is an

n × m matrix having one row per vertex and one column per edge. The column of IG

corresponding to an edge from vertex i to j has zeros everywhere except in positions i and

j: the two nonzero elements are both √wij.

To obtain the matrix M , we need the unoriented incidence matrix IG of G. IG

can be obtained by taking the absolute value of each entry in the oriented incidence matrix,

which forces IG to be nonnegative. An example of IG is shown below

IG =




0
√

w14 0 . . .
√

w23 0 0 . . .
√

w23 0 0 . . .

0
√

w14
√

w45 . . .

0 0
√

w45 . . .
...

...
...

. . .




.

Given any vector x, let k be the element of IG
T x that corresponds to edge {i, j}. Then,

(IG
T x)k =

√
wij(xi + xj). (3.13)

35

If we now construct the matrix M = IGIG
T , then

xT Mx = xT IGIG
T x = (xT IG)1×m(IG

T x)m×1, for all x.

This implies that

xT Mx =
∑

{i,j}∈E

wij(xi + xj)2.

Replacing x with the partition vector p yields Equation (3.12). The matrix M is called the

signless Laplacian matrix [6].

Definition 3.3.3. The signless Laplacian matrix M of a graph G is the n×n matrix whose

elements are as follows.

Mij =





∑
k wik, if i = j

wij , if i 6= j, i and j are adjacent

0, otherwise.

It can also be obtained as M = D + A, where A is the adjacency matrix of the graph and

D is a diagonal matrix with diagonal entry Dii =
∑

k wik.

The Rayleigh quotient pT Mp/pT p provides a quantitative evaluation of the co-

hesion of vertices within clusters. We can maximize the Rayleigh quotient pT Mp/pT p to

obtain the two clusters. Indeed, since M = 2D−L, maximizing pT Mp/pT p is equivalent to

minimizing pT Lp/pT p in the minimum cut problem. The mathematical model of the graph

clustering problem in maximum association is

Maximize
pT Mp

pT p
,

such that pi = ±1, pT p = n. (3.14)

Theorem 3.3.1. All the eigenvalues of M are real and the right-hand eigenvector cor-

responding to the largest eigenvalue is the only eigenvector of M whose elements are all

nonzero and positive.

36

Proof. Since the matrix M is real-symmetric by definition, all its eigenvalues are real. The

graph G is an undirected, connected graph, which means the adjacency matrix A of G is

an irreducible matrix. Thus, the matrix M = D + A is also an irreducible matrix. By

the Perron-Frobenius theorem, since M is nonnegative and irreducible, there is only one

eigenvalue λmax on the spectral radius of M and the unique vector p defined by Mp = λmaxp

is the only positive eigenvector.

We already know that the eigenvalues of M can be depicted as the maximum,

minimum and intermediate values of the Rayleigh quotient. Since all the elements in the

eigenvector corresponding to the largest eigenvalue of M are positive, using this eigenvector

implies that all vertices are in one cluster which does not satisfy our objective of obtaining

two clusters. Therefore the second largest eigenvalue of M is the maximum value that we

want and it approximately estimates the value of the cohesion of vertices within the clusters

(maximum association); the associated eigenvector generates the clustering information

among these vertices. The clustering result indicated here coincides with the minimum cut

result.

This leads us to ask why we still need to model the dual problem if the results from

the dual and the original are the same. One significant reason is that the eigenvalues of

the signless Laplacian have important physical interpretations. They provide a quantitative

evaluation of the total weight of edges within clusters. Since the eigenvalues of the Laplacian

matrix provide a measure of the total weight of edges connecting clusters, the ratio of these

eigenvalues can be used to analyze and evaluate the effects of partitioning and clustering.

When we turn to applications in Chapter 7, and in particular to the application “Software

Change Impact Analysis” we shall see that the signless Laplacian matrix is used.

Example 3.3.1. Given an undirected graph G = (V, E) with six vertices and eight weighted

edges as shown in the figure below, we wish to find a partition with subsets of vertices V ∗
1 , V ∗

2

of V such that cut(V ∗
1 , V ∗

2) = minV1,V2{cut(V1, V2)}. In this simple example, it is easy to

see that the partition which generates the minimum cut is V1 = {1, 2, 3} and V2 = {4, 5, 6}.
The minimum cut value is 0.3.

This partition can be found from the Fiedler vector. To compute this vector, we

first need to get the Laplacian matrix. From their definitions, the adjacency matrix A and

Laplacian matrix L are

37

��
��
��
��
�H
HH

HH
H�
�
�
�
�
�
��

HHHHHHH

��
��
��
�

4

5

6

3

2

1

s
s

s

s

s
s 0.7

0.8

0.6

0.2

0.1

0.7

0.9

0.8

C
C
C
C
C
C
C
C
C
CC

minimum cut: cut value is 0.3

Figure 3.1: A sample graph with six vertices.

A =




0 0.9 0.7 0 0 0.1

0.9 0 0.8 0 0 0

0.7 0.8 0 0.2 0 0

0 0 0.2 0 0.6 0.8

0 0 0 0.6 0 0.7

0.1 0 0 0.8 0.7 0




,

L =




1.7 −0.9 −0.7 0 0 −0.1

−0.9 1.7 −0.8 0 0 0

−0.7 −0.8 1.7 −0.2 0 0

0 0 −0.2 1.6 −0.6 −0.8

0 0 0 −0.6 1.3 −0.7

−0.1 0 0 −0.8 −0.7 1.6




.

The Laplacian matrix L can also be obtained as L = BGBG
T , where

BG =




√
0.9 0

√
0.7

√
0.1 0 0 0 0

−√0.9
√

0.8 0 0 0 0 0 0

0 −√0.8 −√0.7 0
√

0.2 0 0 0

0 0 0 0 −√0.2
√

0.8
√

0.6 0

0 0 0 0 0 0 −√0.6
√

0.7

0 0 0 −√0.1 0 −√0.8 0 −√0.7




.

The eigenvalue of L, in increased order, are

38

Eigenvalues =
(

0 0.1876 1.9832 2.2582 2.5487 2.6222
)

,

and the corresponding eigenvectors are the columns

Eigenvectors =




0.4082 −0.4080 0.0864 −0.4285 0.3379 0.6014

0.4082 −0.4401 0.1094 −0.0975 0.1841 −0.7644

0.4082 −0.3731 −0.1359 0.5501 −0.5755 0.2046

0.4082 0.3670 −0.5473 0.3544 0.5229 0.0091

0.4082 0.4514 0.7652 0.2025 0.0271 0.0483

0.4082 0.4027 −0.2778 −0.5810 −0.4966 −0.0990




.

The Fiedler value is λ2 = 0.1876 and the Fiedler vector (partition vector) is




−0.4080

−0.4401

−0.3731

0.3670

0.4514

0.4027




.

Therefore, if we use zero as the splitting point, the signs of components of the Fiedler

vector give the minimum cut, V1 = {1, 2, 3} and V2 = {4, 5, 6}, which coincides with the

result obtained previously.

It is obvious that the solution of the minimum cut problem also provides informa-

tion which may be used to group the vertices of the graph. Vertices 1, 2 and 3 constitute one

cluster, and vertices 4, 5 and 6 form another cluster. Each cluster has strong cohesion. We

can derive this same result by calculating the eigenvector of the signless Laplacian matrix

M . Using the definition M = D + A, we have

M =




1.7 0.9 0.7 0 0 0.1

0.9 1.7 0.8 0 0 0

0.7 0.8 1.7 0.2 0 0

0 0 0.2 1.6 0.6 0.8

0 0 0 0.6 1.3 0.7

0.1 0 0 0.8 0.7 1.6




,

with eigenvalues and associated eigenvectors given by

39

Eigenvalues =
(

0.6918 0.7581 0.8153 1.1043 2.8996 3.3309
)

,

Eigenvectors =




−0.3318 −0.2012 0.5223 0.4930 −0.1426 0.5597

0.1546 0.5654 −0.5136 0.1750 −0.1764 0.5752

0.1784 −0.4393 −0.0195 −0.6850 −0.1041 0.5429

−0.3566 0.5115 0.3130 −0.3852 0.5802 0.1677

−0.4591 −0.4137 −0.5880 0.1696 0.4830 0.1015

0.7045 −0.1182 0.1389 0.2828 0.6064 0.1509




.

The elements of the eigenvector (column) associated with the largest eigenvalue are all

non-zero and of the same sign, as guaranteed by the theory. If zero is chosen to be the

splitting point, this eigenvector shows that all the vertices of the graph are in one cluster: it

provides the trivial cluster. Instead we focus on the eigenvector corresponding to the second

largest eigenvalue. This vector gives the same clustering information as the Fiedler vector.

The second largest eigenvalue 2.8996 represents the relative quantitative evaluation of total

weight within clusters, but not the exact one. The term “relative” here is used according

to the Fiedler value λ2 = 0.1876, which represents the relative quantitative evaluation of

total weight of edges cut. Since the eigenvalues here are both relative, the ratio of these

two values has real meaning. For this small example, the exact total weight of edges within

clusters is 4.5, and the exact total weight of edges between the clusters (edges cut) is 0.3.

The proportion is 0.3/4.5 = 0.0667, which is very close to the ratio of the two eigenvalues

0.1876/2.8996 = 0.0647.

3.4 Spectral Graph Clustering with Negative Edge Weight

In a weighted graph, each edge is assigned with a numerical value, called its weight.

In this section, let us consider the spectral graph clustering for the case of a graph having

negative edge weights.

Given a weighted graph G, the adjacency matrix A of G is given by Equation (3.1)

aij =





wij , if vertex i and j are adjacent,

0, otherwise,

where wij is the weight on edge {i, j} and wij may be negative.

40

Definition 3.4.1. For a weighted graph G with negative edge weights, the vertex-edge in-

cidence matrix IG of G is an n×m matrix having one row per vertex and one column per

edge: for an edge with wij > 0, the corresponding column of IG has zeros everywhere except
√

wij in positions i and j; for an edge with wij < 0, the corresponding column of IG has

only nonzero elements
√|wij | and −√|wij | in positions i and j (the position of the negative

value is arbitrary).

An example of IG below illustrates three edges in G, connecting vertex 2 and

vertex 3; vertex 1 and vertex 4; and vertex 4 and vertex 5. The edge connecting vertex 4

and vertex 5 has a negative weight w45 < 0.

IG =




0
√

w14 0 . . .
√

w23 0 0 . . .
√

w23 0 0 . . .

0
√

w14

√
|w45| . . .

0 0 −
√
|w45| . . .

...
...

...
. . .




We may obtain an n × n symmetric matrix M = IGIG
T just as we did for the signless

Laplacian matrix. The matrix M can also be obtained as M = D + A, where A is the

adjacency matrix of G and D is a diagonal matrix whose diagonal element is dii =
∑

j |wij |.

Theorem 3.4.1. For any vector x,

xT Mx =
∑

wij>0

wij(xi + xj)2 +
∑

wij<0

|wij |(xi − xj)2. (3.15)

Proof. Let the kth element of the vector IG
T x be associated with edge {i, j}. Then from

the Definition 3.4.1 of IG, for edge wij > 0:

(IG
T x)k =

√
wij(xi + xj);

and for edge wij < 0

(IG
T x)k =

√
|wij |(xi − xj).

41

Since M = IGIG
T , it follows that

xT Mx = xT IGIG
T x

= (IG
T x)T (IG

T x)

=
∑

wij>0

wij(xi + xj)2 +
∑

wij<0

|wij |(xi − xj)2.

In the context of graph partitioning, we seek to partition of V into subsets V1 and

V2. Hence, a partition vector p is defined as in the Equation (3.5)

pi =





+1, vertex i ∈ V1,

−1, vertex i ∈ V2.

Then we have, from Equation (3.15),

pT Mp =
∑

wij>0

wij(pi + pj)2 +
∑

wij<0

|wij |(pi − pj)2.

It can be observed that the positive weight of edges within V1 or V2 is counted into this

sum, and the absolute value of the negative weight of edges connecting V1 and V2 is also

counted into this sum. However, positive edges connecting V1 and V2, and negative edges

within V1 or V2 are not counted. Therefore, to maximize pT Mp/pT p is to seek a partition

with more positive edges within subsets V1 or V2 and more negative edges cut between the

subsets.

If we obtain a matrix L = D − A similar to the construction of the Laplacian

matrix, then we have M = D + A = 2D − L. Since pT Dp/pT p is a constant, maximizing

pT Mp/pT p is equivalent to minimizing pT Lp/pT p.

Result 3.4.1. By Theorem 2.2.5, the vector p that maximizes the Rayleigh quotient pT Mp/pT p

is an eigenvector of M corresponding to the largest eigenvalue, and the vector q that mini-

mizes the Rayleigh quotient qT Lq/qT q is an eigenvector of L corresponding to the smallest

eigenvalue. Therefore, for a graph G with negative weights, vector p or q provides a same

heuristic solution of clustering vertices that is more positive edges within clusters and more

negative edges cut between clusters.

42

Example 3.4.1. A graph with negative edge weights is given as below:

��
��
��
��
�H
HH

HH
H�
�
�
�
�
�
��

HHHHHHH

��
��
��
�

4

5

6

3

1

2

s
s

s

s

s
s (6)

(5)

(4)

(−9)

(−8)

(8)

(3)

(7)

C
C
C
C
C
C
C
C
C
CC

Figure 3.2: A sample graph with negative edge weights.

The vertex-edge incidence matrix IG based on this graph is

IG =




√
3 0

√
7 0 0 0 0 0

√
3

√
8 0

√
8 0 0 0 0

0
√

8
√

7 0
√

9 0 0 0

0 0 0 0 −√9
√

5
√

4 0

0 0 0 0 0 0
√

4
√

6

0 0 0 −√8 0
√

5 0
√

6




.

The matrix M = IGIG
T , also can be obtained by M = D + A, is

M =




10 3 7 0 0 0

3 19 8 0 0 −8

7 8 24 −9 0 0

0 0 −9 18 4 5

0 0 0 4 10 6

0 −8 0 5 6 19




.

The eigenvalue of M , in decreasing order, are

Eigenvalues =
(

37.7194 23.8417 19.7604 8.9039 5.6920 4.0827
)

,

and the corresponding eigenvectors are the columns

43

Eigenvectors =




−0.2147 0.2288 0.1778 0.7217 0.4492 0.3837

−0.4635 −0.1823 0.6404 −0.3308 −0.2180 0.4299

−0.6517 0.5307 −0.0266 0.0287 −0.1830 −0.5087

0.4144 0.0253 0.6950 0.3155 −0.2167 −0.4450

0.1361 0.3224 0.2721 −0.5053 0.7266 −0.1422

0.3524 0.7268 −0.0208 −0.1180 −0.3772 0.4369




.

According to the first eigenvector associated with the largest eigenvalue, we can obtain

cluster {1,2,3} and cluster {4,5,6} based on the sign of the corresponding elements. The

partition here is to cut the negative edges and to obtain the minimum cut and maximum

association.

3.5 Singular Value Decomposition

The Singular Value Decomposition (SVD) is a powerful tool that finds application

in the analysis of a matrix. The SVD technique can be used to reveal clustering charac-

teristics and to obtain the minimum cut of a graph. In these applications we shall see

that the singular vector and eigenvector approaches coincide, and yield the same heuristic

result. We shall also introduce the possibility of applying the SVD to rectangle vector

space models (unoriented incidence matrices) to generate edge clusters of a graph; the

eigen-decomposition approach can be applied to square vector space model (Laplacian and

signless Laplacian matrices) only. In this section, we will proceed through the details in

three different cases. First is the SVD on the Laplacian and signless Laplacian matrices,

the second is the SVD on the oriented incidence matrix and the third is the SVD on the

unoriented incidence matrix. The weighted graphs of this section all have nonnegative edge

weights.

3.5.1 SVD on the Laplacian and Signless Laplacian Matrix

The Laplacian matrix L is symmetric by definition and therefore it is orthogonally

similar to a diagonal matrix. L has a complete orthogonal set of eigenvectors; L = UDUT ,

where U is an orthogonal matrix and D is a diagonal matrix whose elements are the eigen-

values of L. Since the eigenvalues of L are nonnegative, the singular value decomposition

44

and a decomposition by eigenanalysis are identical. This is why singular vectors can be

used to compute a heuristic solution for the minimum cut problem: they have exactly the

same interpretation as the eigenvectors. The signless Laplacian matrix M has the same

property. In other words, the singular values and singular vectors of M have a meaning

that is consistent with that of the eigenvalues and eigenvectors, respectively. However, it is

not always true that the SVD of a symmetric matrix is equivalent to its eigendecomposition.

The singular values in SVD are nonnegative, whereas the eigenvalues need not be.

3.5.2 SVD on the Oriented Incidence Matrix

The SVD has a significant advantage over an eigenanalysis in that the matrix

need not be square. A similarity transformation can be applied to a square matrix only,

whereas an SVD can be applied to a rectangular matrix. This property naturally raises

the question as to the results obtained when we apply the SVD to a rectangular incidence

matrix. The answer is that the singular vectors generated by the SVD can be used to

indicate the structure of clusters and thereby provide a heuristic solution to the minimum

cut problem. To see this, let us consider the oriented incidence matrix BG. Recall that BG

is an n ×m matrix having one row per vertex and one column per edge. Each column of

BG has zeros everywhere except in positions i and j with √wij and −√wij . If we apply

the SVD on BG, then

BG = Un×n


 Dr×r 0

0 0




n×m

V T
m×m, (3.16)

where Un×n and Vm×m are orthogonal matrices and Dr×r is a nonsingular diagonal matrix

with r < n. We shall return to this inequality momentarily. Since we know the Laplacian

matrix is L = BGBG
T , we have

L = BGBG
T

= U


 Dr×r 0

0 0




n×m

V T V


 Dr×r 0

0 0




T

n×m

UT

= USn×nUT , (3.17)

45

where the n× n matrix S is diagonal. Since L is symmetric, the formula above is actually

an eigen-decomposition of L: the matrix U contains the eigenvectors of L. This means that

the left-hand singular vectors for BG are a complete orthogonal set of eigenvectors for L.

This coincides with the fact that the left-hand singular vectors of the oriented incidence

matrix and eigenvectors of a Laplacian matrix provide vertex partitioning and clustering

information. Observe that the matrix S is singular, since the smallest eigenvalue of L,

namely zero, is included in the spectrum of S. Since each diagonal entry of D is the square

root of the diagonal entry of S, the inequality r < n must follow.

3.5.3 SVD on the Unoriented Incidence Matrix

The benefit of SVD is that not only does it provide clustering information on the n

vertices, but it can also be used to generate information relating to the m edges. We discover

that, to obtain clusters of edges, SVD should be applied to the unoriented incidence matrix

IG rather than BG. When applying the SVD to IG, we find

IG = U ′
n×n


 D′

r×r 0

0 0




n×m

V ′T
m×m (3.18)

where U ′ and V ′ are orthogonal and contain the left and right singular vectors respectively.

Since the signless Laplacian matrix M = IGIG
T , we have

M = IGIG
T

= U ′


 D′

r×r 0

0 0




n×m

V ′T V ′


 D′

r×r 0

0 0




T

n×m

U ′T

= U ′S′n×nU ′T , (3.19)

where the matrix S′ is diagonal. The left-hand singular vectors for IG are a complete orthog-

onal set of eigenvectors for M . This means that U ′ contains vertex clustering information.

On the other hand, the matrix V ′ contains edge clustering information. The reason is now

provided.

By Definition 2.1.6, the line graph of an undirected graph G, written L(G), is a

graph such that:

46

(a) each vertex of L(G) is an edge of G, and

(b) two vertices of L(G) are adjacent if and only if the corresponding edges in G have a

common endpoint (adjacent).

We can see that the line graph L(G) of a graph G is another graph that represents the

adjacencies between edges of G. The intuition here is that the clusters of edges in G can be

used to represent clustering information for vertices in L(G). Let us consider the unweighted

graph to prove why the right-hand singular vectors of the unoriented incidence matrix IG

provide edge clustering information in G, as well as information concerning the vertices of

L(G).

Given an unweighted graph G, the adjacency matrix A is known as

aij =





1, if vertex i and j are adjacent,

0, otherwise.

The unoriented incidence matrix IG of G has one row per vertex and one column per edge.

The column of IG corresponding to an edge from vertex i to j has zeros everywhere except

in positions i and j which contain a 1. The signless Laplacian has M = IGIG
T .

Theorem 3.5.1. [5] Let AL be the adjacency matrix of the line graph L(G) obtained from

a graph G without multiple edges or self-loops. Then E = IG
T IG is a nonnegative matrix

such that

E = AL + 2I, (3.20)

where I is identity matrix.

Proof. Each column of IG contains exactly two unit values, so the diagonal entries of

E = IG
T IG are all equal to 2. From the definition of IG, we can see that if two edges are

adjacent in G, then entry eij of E = IG
T IG corresponding to the ith and jth edge is equal

to 1; otherwise eij = 0. Since the edges of G are the vertices of L(G), E = AL + 2I is

established.

47

Notice that if we use the oriented incidence matrix BG instead of IG, then the

product BG
T BG is not a nonnegative matrix. The positions of negative values in this

product are arbitrary, so that we cannot use it to get clustering results.

To analyze the vertex clustering information in the line graph L(G), we need to

construct the signless Laplacian matrix ML of L(G) and to maximize the Rayleigh quotient

pT MLp/pT p, where p is the partition vector with values ±1. The mathematical model of

the L(G) clustering problem is:

Maximize
pT MLp

pT p,

such that pi = ±1, pT p = n. (3.21)

Since ML = DL +AL where DL is a diagonal matrix whose diagonal elements are the vertex

degrees of L(G), and E = AL + 2I, then ML = E + DL − 2I. Therefore Equation (3.21) is

equivalent to

Maximize
pT Ep

pT p
+

pT DLp− 2pT Ip

pT p
,

such that pi = ±1, pT p = n. (3.22)

It is easy to see that (pT DLp − 2pT Ip)/pT p is a constant. Therefore the p that maxi-

mizes pT Ep/pT p in Equation (3.22) is equivalent to that used to maximize pT MLp/pT p

in Equation (3.21). Since E is a symmetric nonnegative and irreducible matrix, by the

Perron-Frobenius theorem, the first eigenvector of E corresponding to the largest eigen-

value, is positive. Therefore, we can derive the second eigenvector of E which can be used

to cluster the vertices in L(G).

Recall the SVD of the unoriented incidence matrix IG:

E = IG
T IG

= V ′


 D′

r×r 0

0 0




T

n×m

U ′T U ′


 D′

r×r 0

0 0




n×m

V ′T

= V ′S′m×mV ′T . (3.23)

48

where S′ is a diagonal matrix whose diagonal entries are nonnegative. Since E = IG
T IG is

positive semidefinite, the eigenvalues of E are nonnegative. Indeed, the right-hand singular

vectors for IG in V ′ are the orthogonal eigenvectors of the matrix E.

Result 3.5.1. The right-hand singular vectors of the unoriented incidence matrix IG of a

graph G provide clustering information for edges in graph G, represented by the vertices of

line graph L(G).

This conclusion can be directly extended to weighted graphs. We first have to

define the edge weights in the line graph L(G) of a weighted graph G.

Definition 3.5.1. Let e and f be two edges having weights we and wf respectively in a

weighted graph G. Then we can draw the line graph L(G) of G having vertex i and j

corresponding to the edge e and f in G respectively, and define the weight wij of the edge

{i, j} in L(G) as √wewf .

This definition shows that if two adjacent edges both have strong weight in G,

then the corresponding edge in L(G) also has strong weight.

Definition 3.5.2. The adjacency matrix AL of L(G), which can be used to depict the

adjacency degree of two edges in G, is

aij =




√

wewf , if vertex i and j are adjacent,

0, otherwise.
(3.24)

Given the unoriented incidence matrix IG of G, we have

E = IG
T IG = AL + 2D, (3.25)

where D is a diagonal matrix whose diagonal entries are the edge weights of G. Thus, based

on our previous discussion, the eigenvectors of E contain the node clusters in L(G), and it is

especially the eigenvector of E corresponding to the second largest eigenvalue that implies

that the right-hand singular vectors of IG contain the weighted edge clusters in G.

Summary

49

We can now summarize this new approach for clustering states. If, from the point

of view of the singular value decomposition of the node-edge unoriented incidence matrix,

there are two classes of states X and Y , we can then construct a rectangular matrix IG

with incidence structure that shows the relationship between X and Y . The matrix IG has

one row for each state of X and one column for each state of Y . The entry in row x and

column y is a nonnegative weight which shows the degree to which x and y are related.

To obtain information on how to best group two classes of states respectively into clusters,

we can use either the singular vectors of IG or the eigenvectors of IGIG
T and IG

T IG. This

approach can be applied to a term-document matrix as we now describe.

A collection of documents may be represented by a term-document matrix which

contains rows corresponding to the terms and columns corresponding to the documents.

The entry value in position (i, j) is the number of times term i appears in document j. If

we set terms as state X and documents as state Y , then the term-document matrix, like IG,

has incidence structure that show the relationship between X (terms) and Y (documents).

The terms and documents can also be viewed as the “vertices” and “edges” in a graph G

respectively. Then the term-document matrix has a similar structure as the node-edge in-

cidence matrix. The difference, however, is that the G is abstract: one single edge connects

multiple vertices rather than two, and one single vertex can communicate multiple vertices

only through one edge. In graph G, two edges may share more than one common vertex, so

that the degree of adjacency of two edges in G can be shown in the edge weight of the line

graph L(G). Therefore clustering the edges (documents) of G is equivalent to clustering

the vertices of L(G). This is the same conclusion we get when we discuss traditional graph

models. It follows that the SVD can be applied to a term-document matrix to develop a

spectral co-clustering algorithm for generating clusters of terms and documents simultane-

ously. The left and right singular vectors of an appropriately scaled term-document matrix

can be used to partition the terms and documents [7, 28].

3.6 Different Clustering Objectives

In the previous sections, all graph clustering techniques are based on the objective

of minimum cut and maximum association. It is already known that minimizing the cuts

and maximizing the associations can be achieved simultaneously. It is appropriate to ask if

50

minimum cut and maximum association are good clustering objectives? Actually there are

two limitations concerning minimum cut:

1. Minimum cut is noise-sensitive.

2. Minimum cut may not be the optimal cut.

Therefore, a number of different spectral graph clustering objectives have been proposed,

e.g., normalized cut and ratio cut/association.

Definition 3.6.1 (Normalized Cut [34]). The normalized cut objective is one of the

most popular graph clustering objectives and is a more “balanced” objective than minimum

cut. It is also called balanced minimum cut. It is expressed as

Ncut(V1, V2) = min
V1,V2

cut(V1, V2)
vol(V1)

+
cut(V1, V2)

vol(V2)
, (3.26)

where vol(Vi) is the total weight of edges originating from Vi, i = 1, 2.

Definition 3.6.2 (Normalized Association). The normalized association objective is

expressed as

Nassoc(V1, V2) = max
V1,V2

assoc(V1)
vol(V1)

+
assoc(V2)
vol(V2)

, (3.27)

where assoc(Vk) =
∑

i,j∈Vk
wij, k = 1, 2.

Since vol(Vi) = assoc(Vi) + cut(V1, V2) for i = 1, 2, we can see the normalized cut

is equivalent to the normalized association. They are the dual problems.

Definition 3.6.3 (Ratio Association [34]). The ratio association objective is expressed

as

Rassoc(V1, V2) = max
V1,V2

assoc(V1)
|V1| +

assoc(V2)
|V2| , (3.28)

where |Vi| is the size of set Vi for i = 1, 2.

Definition 3.6.4 (Ratio Cut [2]). The ratio cut objective is expressed as

Rcut(V1, V2) = min
V1,V2

cut(V1, V2)
|V1| +

cut(V1, V2)
|V2| . (3.29)

51

3.7 The Signless Laplacian for Normalized Cut

Shi et al. [34] have shown that the normalized cut can be modeled as

Minimize Ncut =
pT Lp

pT Dp
, (3.30)

such that pi = ±1, pT De = 0,

where L is the Laplacian matrix of a graph, D is a diagonal matrix whose ith diagonal

element is Dii =
∑

k wik and e is a vector of all ones. Equation (3.30) is the Rayleigh

quotient. Therefore, we can minimize Equation (3.30) by solving the generalized eigenvalue

problem of the Laplacian matrix L,

Lv = λDv, (3.31)

if p takes on real values. The second eigenvector v2 of Equation (3.31) corresponding to the

second smallest eigenvalue λ2 provides the solution for minimizing the normalized cut. The

λ2 evaluates the minimum normalized cut value.

If we premultiply D−1/2 on both side of Equation (3.31), then it can be rewritten

as

D−1/2LD−1/2x = λx, (3.32)

where x = D1/2v. The matrix D−1/2LD−1/2 is called the normalized Laplacian, denoted as

L [4, 13]. The Rayleigh quotient in Equation (3.30) can be also rewritten as

pT Lp

pT Dp
=

pT D1/2(D−1/2LD−1/2)D1/2p

pT D1/2D1/2p
=

yTLy

yT y
, (3.33)

where y = D1/2p. The normalized Laplacian L is symmetric positive semidefinite since the

Laplacian L is positive semidefinite [5].

Theorem 3.7.1 ([34]). The minimum of a normalized cut can be obtained by minimizing the

Rayleigh quotient of the normalized Laplacian matrix L in Equation (3.33). It is equivalent

to solving the eigenvalue problem of L

Lx = λx. (3.34)

52

If x2 is the eigenvector of L corresponding to the second smallest eigenvalue λ2, then the

vector D−1/2x2 provides the solution of minimizing the normalized cut.

Proof. Follows immediately from Equation (3.31), (3.32) and (3.33).

Theorem 3.7.2. If an eigenpair (λ, v) is a solution to the generalized eigenvalue problem

(3.31), then the pair (λ, v) is also a solution to the generalized eigenvalue problem of the

signless Laplacian M

Mv = (2− λ)Dv. (3.35)

Proof. Since the Laplacian L = D − A and the signless Laplacian M = D + A, we have

L = 2D−M . Given a pair (λ, v) which satisfies the generalized eigenvalue problem (3.31),

then

Lv = λDv ⇒ (2D −M)v = λDv

⇒ 2Dv −Mv = λDv

⇒ (2− λ)Dv = Mv

Definition 3.7.1. The normalized signless Laplacian matrixM is defined asM = D−1/2MD−1/2.

Theorem 3.7.3. The minimum of normalized cut can also be obtained by solving the eigen-

value problem of the normalized signless Laplacian matrix M

Mx = µx. (3.36)

If x2 is the eigenvector of M corresponding to the second biggest eigenvalue µ2, then the

vector D−1/2x2 provides the solution of minimizing the normalized cut.

53

Proof. It is already known that the eigenvector v2 of Equation (3.31) corresponding to

the second smallest eigenvalue λ2 provides the solution of the normalized cut. By Theorem

3.7.2, λ2 is shifted to 2 − λ2, so v2 is the eigenvector of Equation (3.35) corresponding to

the second largest eigenvalue 2− λ2.

If we premultiply D−1/2 on both side of Equation (3.35), then we have

D−1/2MD−1/2D1/2v = (2− λ)D1/2v

Mx = (2− λ)x

where x = D1/2v. Now the solution vector v2 can be obtained by v2 = D−1/2x2, where x2

is the eigenvector of M corresponding to the second largest eigenvalue 2− λ2.

54

Chapter 4

Spectral Clustering and Markov

Chains

4.1 Introduction

The main purpose of this chapter is to investigate the connection between spec-

tral clustering and Markov chains. The importance of Markov chains in modeling diverse

systems, including biological, physical, social and economic systems, has long been known

and is well documented. More recently, Markov chains have proven to be effective when ap-

plied to internet search engines such as Google’s PageRank model [19], and in data mining

applications wherein data trends are sought.

At the same time that Fiedler proposed his spectral graph partitioning method,

Stewart proposed a spectral based method that can be applied to a Markov chain in order

to separate its states into meaningful clusters, and which is more broadly applicable to

nonsymmetric systems. The right-hand eigenvectors belonging to the dominant eigenvalues

of the transition matrix of a Markov chain provide a means whereby the states of the chain

can be arranged into meaningful groups [35]. This approach uses distance from stationarity

as a measure of similarity among the states of a cluster.

Recently, it was observed by Meila et al. [24] that spectral clustering can be

depicted in the framework of Markov random walks on a graph structure. In the transition

matrix of a random walk, the right-hand eigenvectors corresponding to positive eigenvalues

close to 1 have been used by several authors to obtain spectral clustering [25], such as the

55

Ng, Jordan and Weiss (NJW) [27] algorithm and the Meila-Shi [25] algorithm. While this

may seem to unify the results of Fiedler and Stewart, this is not actually the case. Given

a stochastic transition probability matrix, the subdominant eigenvalue may be negative.

There is little information in the literature concerning eigenvectors which correspond to

negative eigenvalues close to −1. We shall see that such eigenvectors also provide important

clustering information based on the distance measure of individual state from the steady

state. We shall relate the techniques obtained from the two clustering approaches in Markov

chains to obtain a more comprehensive result for graph nodes.

The rest of this chapter is organized as follows. In Section 4.2 we review Stewart’s

results on state clustering on Markov chains. In Section 4.3 we introduce the construction of

a stochastic transition probability matrix of a random walk from a graph, in preparation for

spectral clustering. Then in Section 4.4, we present two clustering measures on the states

of Markov chains, namely, (a) the normalized cut measure and (b) the distance measure of

states from the steady state. This allows us to present a novel result concerning clustering

on graph nodes that is based on incorporating both clustering techniques in Markov chains.

More examples will be given in Section 4.5.

4.2 Indicators of State Clustering on Markov Chains

Spectral based methods may also be applied to a directed graph viewed as a

Markov chain for clustering purposes. In a Markov chain, the state transition probability

diagram can be viewed as a graph with directed edges. It is well known that when a Markov

chain is irreducible and aperiodic with a finite state space, its stochastic matrix has a single

eigenvalue on the unit circle, the eigenvalue 1, and the left-hand eigenvector corresponding

to this unit eigenvalue is the stationary distribution vector.

In 1974 Stewart [35] proved that the right-hand eigenvectors of a stochastic matrix

corresponding to the dominant eigenvalues, especially the one corresponding to the eigen-

value with the second largest modulus, which is closest to, but strictly less than, 1, provide

the information necessary to cluster states into meaningful groups. His approach is based

on the concept of distance of each state to the stationary distribution.

Definition 4.2.1. The steady state or equilibrium position of a system, represented by a

finite, irreducible, aperiodic Markov chain, is given by its stationary distribution vector,

56

i.e., the left-hand eigenvector corresponding to the unique unit eigenvalue of the single step

transition probability matrix P of the Markov chain.

When the system starts in a given state, it needs several (and often many) tran-

sition steps to reach this equilibrium position. The number of iterations, or the length of

time, required to reach the equilibrium position by the system started in a given state can

be regarded as the “distance” from that state to the equilibrium position. Such distance

measurements serve as a means of comparison among the states and provide a criterion for

clustering states.

We use the row vector

w
(1)
i = (0, 0, . . . , 1, . . . , 0),

with ith component equal to 1, to denote that the system is initially in state i. We shall as-

sume that the stochastic matrix P possesses a full set of n linearly independent eigenvectors.

Let x1, x2, . . . , xn be the left-hand eigenvectors of P and λ1, λ2, . . . , λn be the eigenvalues

of P in descending order of their modulus, then

xT
j P = λjx

T
j for all j = 1, 2, . . . , n. (4.1)

If writing w
(1)
i as a linear combination of these eigenvectors, we have the equation

w
(1)
i = ci1x

T
1 + ci2x

T
2 + · · ·+ cinxT

n (4.2)

where ci1, ci2, . . . , cin are the constants in the linear combination. It is known that repeated

postmultiplication of w
(1)
i by P yields convergence to the stationary distribution vector.

Therefore

w
(1)
i P = ci1x

T
1 P + ci2x

T
2 P + · · ·+ cinxT

nP (4.3)

= ci1x
T
1 + ci2λ2x

T
2 + · · ·+ cinλnxT

n = w
(2)
i , (4.4)

and after k transition steps,

w
(k+1)
i = ci1x

T
1 + ci2λ

k
2x

T
2 + · · ·+ cinλk

nxT
n . (4.5)

57

The system initially starts from some other state j 6= i is given by, after k steps,

w
(k+1)
j = cj1x

T
1 + cj2λ

k
2x

T
2 + · · ·+ cjnλk

nxT
n .

If we consider all possible starting states, we obtain




w
(k+1)
1

w
(k+1)
2
...

w
(k+1)
n




=




c11x
T
1 + c12λ

k
2x

T
2 + · · ·+ c1nλk

nxT
n

c21x
T
1 + c22λ

k
2x

T
2 + · · ·+ c2nλk

nxT
n

...

cn1x
T
1 + cn2λ

k
2x

T
2 + · · ·+ cnnλk

nxT
n




. (4.6)

Equation (4.6) in matrix form is

W(k+1) =




c11 c12 . . . c1n

c21 c22 . . . c2n

...
...

. . .
...

cn1 cn2 . . . cnn







1

λk
2

. . .

λk
n







xT
1

xT
2
...

xT
n




= CDkXT . (4.7)

This shows that λ2, . . . , λn and xT
1 , . . . , xT

n are fixed and only the constant coefficients, cij ,

differ for each w
(k+1)
i , i = 1, 2, . . . , n. The difference in the number of iterations taken

to reach steady state from each different possible starting state depends only on these

coefficients. If λ2 is of greater modulus than λ3, λ4, . . . , then for large k, λk
2 À λk

j for j ≥ 3.

This means the effect of the constant terms ci3, . . . , cin is negligible; it is, in particular, the

terms ci1 and ci2 for all i = 1, 2, . . . , n that contribute to the difference.

To calculate the matrix C, we take k = 0, so that the matrix

W (1) = (w(1)
1 , w

(1)
2 , . . . , w(1)

n)T ,

written in terms of the set of left-hand eigenvectors, is given as

W (1) = CXT

However, since W (1) is the identity matrix, we have

I = CXT ,

58

and therefore C = (XT)−1. Since we assume that P has a full set of n linearly independent

eigenvectors, C is, in fact, the matrix form of the set of right-hand eigenvectors of P . It

is obvious that e = (1, 1, . . . , 1)T is the right-hand eigenvector of P corresponding to the

unit eigenvalue. Therefore it is the second column of C, i.e., the right-hand eigenvector

of P corresponding to the eigenvalue with the second largest modulus, that provides an

appropriate measure of the relative “distance” of each state from the stationary distribution.

Based on this criterion, states whose corresponding component values in this vector are

relatively close together form a cluster of states.

This mathematical proof demonstrates that the right-hand eigenvectors of a stochas-

tic matrix provide information based upon which its states can be clustered. Therefore, the

spectral approach can be applied not only in the symmetric case, e.g., the Laplacian and

signless Laplacian matrices, but also in nonsymmetric cases under the framework of Markov

chains.

4.3 State Clustering on Markov Chains and Graphs

In this section, we show the relationship between the solution of spectral clustering

and the clustering result from the dominant right-hand eigenvectors of Markov chains.

4.3.1 Markov Random Walks on Graphs

The clusters of graph nodes in spectral clustering, described in Chapter 3, are

based on minimum cut, while the clusters of Markov chains states are clustered according

to distance from each state to the steady state. These two measures of clusters can be

connected in the framework of a random walk on a graph topology. An interesting obser-

vation from Meila et al. [24] is that spectral clustering/partitioning can be depicted in the

framework of Markov random walks on a graph. Solving the eigenvalue problem of the

transition probability matrix of a Markov random walk can determine the normalized cut

on this graph. In this section, spectral clustering is viewed as states clustering of Markov

chains.

Definition 4.3.1 (A Markov random walk on a graph G). The transition probability

pij from node i to node j is defined as

59

pij =
wij

deg(i)
, (4.8)

where wij is the weight of the edge {i, j} and deg(i) =
∑

j wij is the vertex degree.

Observe that, by Definition 4.3.1, the adjacency matrix A of a graph can be con-

verted to a transition probability matrix P of a Markov chain by setting

P = D−1A, (4.9)

where D is a diagonal matrix whose diagonal elements are the vertex degrees. Hence P

represents a random walk on a graph.

Using the Laplacian matrix L = D − A and the signless Laplacian matrix M =

D + A, we obtain the following relationships to P :

I − P = D−1L and I + P = D−1M. (4.10)

Theorem 4.3.1. If an eigenpair (λ, v) is a solution to the eigenvalue problem Pv = λv,

where P is given by Equation (4.9), then the pair (λ, v) is also a solution to the generalized

eigenvalue problems (1− λ)Dv = Lv and (1 + λ)Dv = Mv.

Proof. Given a pair (λ, v) which satisfies the eigenvalue problem Pv = λv, then, since

P = D−1A and L = D −A, we have [24]

Pv = λv ⇒ D−1Av = λv ⇒ D−1(D − L)v = λv

⇒ Iv −D−1Lv = λv

⇒ (1− λ)Dv = Lv. (4.11)

It is the same for the signless Laplacian matrix M = D + A,

Pv = λv ⇒ D−1Av = λv ⇒ D−1(M −D)v = λv

⇒ D−1Mv − Iv = λv

⇒ (1 + λ)Dv = Mv. (4.12)

60

��
��
��
��
�H
HH

HH
H�
�
�
�
�
�
��

HHHHHHH

��
��
��
�

4

5

6

3

2

1

s
s

s

s

s
s 0.7

0.8

0.6

0.2

0.1

0.7

0.9

0.8

Figure 4.1: A sample graph with six vertices.

It is already known that the eigenvectors of the generalized eigenvalue problem

(1− λ)Dv = Lv give a heuristic solution to the balanced minimum cut problem of a graph

[34, 7]. Therefore, from Theorem 4.3.1, we see that the right-hand eigenvectors of P also

provide a balanced cut solution, the same as the eigenvectors of the generalized eigenvalue

problem on M .

Example 4.3.1. Example 3.3.1 displays a graph with six vertices.

After constructing the matrix P of a random walk on this graph, we have

P =




0 0.5294 0.4118 0 0 0.0588

0.5294 0 0.4706 0 0 0

0.4118 0.4706 0 0.1176 0 0

0 0 0.1250 0 0.3750 0.5000

0 0 0 0.4615 0 0.5385

0.0625 0 0 0.5000 0.4375 0




.

The eigenvalues λ of P , in decreasing order, are

λ =
(

1 0.8815 −0.3300 −0.4435 −0.5651 −0.5429
)

,

and the corresponding right-hand eigenvectors v are the columns

61

v =




0.4082 0.3807 −0.4196 −0.3253 0.4452 0.3832

0.4082 0.4131 −0.1793 0.1126 −0.2099 −0.7335

0.4082 0.3455 0.5978 0.2598 −0.2487 0.4150

0.4082 −0.3962 0.5090 −0.2914 0.4763 −0.3226

0.4082 −0.4711 −0.3583 0.7647 0.2267 0.1162

0.4082 −0.4315 −0.2167 −0.3800 −0.6462 0.1593




.

The K-means clustering method on vector v2 corresponding to the second largest eigenvalue

λ2 = 0.8815 provides the balanced minimum cut solution V1 = {1, 2, 3} and V2 = {4, 5, 6}.

Now let us consider the problem of determining clusters from P , the probability

matrix of the random walk on a graph. Spectral clustering using P is based on the balanced

minimum cut, while state clustering on a Markov chain of P is based on a distance measure

from each state to the steady state. Now a question rises. Do these two kinds of clustering

results coincide in the right eigenvectors of P? The answer is not a simple “yes” or “no”;

instead it depends on the eigenvalues of P . State clustering on Markov chains proposed

by Stewart uses the right eigenvector of P corresponding to the eigenvalue with modulus

closest to 1. If the eigenvalue closest to the unit circle is positive, then it will be shifted

to the eigenvalue closest to 0 in the generalized eigenvalue problem of L in Equation (4.11)

and the corresponding eigenvector gives the balanced minimum cut on the graph. In this

case the two clustering results coincide. However if a negative eigenvalue of P is closest to

the unit circle, then it will be shifted to the eigenvalue closest to 2 in Equation (4.11), so the

corresponding eigenvector will not give the clustering information based on the balanced

minimum cut of a graph. Now the two clustering results can be different.

4.3.2 Some Interesting Facts

Before we discuss the details of clustering information given by the right-hand

eigenvectors of P , let us first look at some interesting facts concerning P . These properties

are true only for matrices P arising in the context of random walks on graphs as in Equation

(4.9), and not for all transition probability matrices.

62

Theorem 4.3.2. All the eigenvalues of a probability matrix P = D−1A arising in the

context of a random walk on a graph are real.

Proof. P = D−1A has a symmetric structure since D is diagonal and A, the adjacency

matrix, is symmetric. Also, since

D1/2PD−1/2 = D−1/2AD−1/2,

P and the symmetric matrix D−1/2AD−1/2 are similar. Similar matrices share the same

eigenvalues. Therefore all eigenvalues of P are real.

The Theorem 4.3.2 suggests an alternative way to calculate the eigenvalues of P ,

given that it is easier to compute the eigenvalues of a symmetric matrix D−1/2AD−1/2 than

a nonsymmetric P .

Result 4.3.1. Let λ be an eigenvalue of P generated from a random walk on a graph, and

let xR and xL be its corresponding right and left eigenvectors respectively, then

xR = D−1/2v and xL = D1/2v, (4.13)

where v is the eigenvector of the symmetric matrix D−1/2AD−1/2 corresponding to the

eigenvalue λ.

Proof. We have

PxR = λxR and P T xL = λxL.

First, let us focus on xR. Observe that

PxR = λxR ⇒ D−1AxR = λxR.

Now, if we premultiply by D1/2 on both sides, we have

D−1/2AD−1/2(D1/2xR) = λ(D1/2xR).

63

Therefore, the value λ and the vector D1/2xR are an eigenvalue/vector pair of D−1/2AD−1/2.

Second, let us move to xL. Observe that, since A is symmetric,

P T xL = λxL ⇒ AD−1xL = λxL.

Now if we premultiply D−1/2 on both sides, we have

D−1/2AD−1/2(D−1/2xL) = λ(D−1/2xL).

Therefore, the value λ and the vector D−1/2xL is an eigenvalue and corresponding eigen-

vector of D−1/2AD−1/2 respectively.

Thus xR and xL can be obtained from calculating the eigenvectors of D−1/2AD−1/2.

Let v be the eigenvector of D−1/2AD−1/2 corresponding to the eigenvalue λ. Then

xR = D−1/2v and xL = D1/2v.

Definition 4.3.2. The multiplication symbol × of two same dimensional vectors a × b

denotes element-by-element multiplication of a and b; thus a× b is a vector with ith element

equal to ai · bi for i = 1, . . . , n.

Result 4.3.2. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the n eigenvalues of P , and the corresponding

xR1 , xR2 . . . xRn and xL1 , xL2 . . . xLn be the n right and left eigenvectors of P respectively,

then

xLi = xRi × µ for i = 1 . . . n, (4.14)

where µ is the stationary distribution of P . A more generalized form is given by

xRi × xLj = xRj × xLi for i = 1 . . . n. (4.15)

64

Proof. Let di be the vertex degree on a diagonal position of the diagonal matrix D as-

sociated with vertex i, then we have d = [d1, d2 . . . dn]T . Also xR1 = e = [1, 1 . . . 1]T and

xL1 = µ, therefore by Result 4.3.1:

xR1 = D−1/2v1 and xL1 = D1/2v1,

where v1 is the eigenvector of D−1/2AD−1/2 associated with λ1. It is easy to show that

D−1/2v1 = d−1/2 × v1 and D1/2v1 = d1/2 × v1. Similarly,

xR2 = D−1/2v2 = d−1/2 × v2 and xL2 = D1/2v2 = d1/2 × v2.

Then

xR1 × xL2 = d−1/2 × v1 × d1/2 × v2 = d−1/2 × v2 × d1/2 × v1 = xR2 × xL1 .

Since xR1 = e and xL1 = µ, we have

xL2 = xR2 × µ.

This statement can be generalized to

xLi = xRi × µ for i = 1 . . . n.

In fact, it is not hard to justify the more generalized form

xRi × xLj = xRj × xLi ,

since

xRi × xLj = d−1/2 × vi × d1/2 × vj = d−1/2 × vj × d1/2 × vi = xRj × xLi

65

Example 4.3.2. An example of the adjacency matrix A is given by

A =




0 1 1 0 0 1

1 0 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 1

1 0 0 1 1 0




.

Using P = D−1A we obtain the probability matrix P :

P =




0 1/3 1/3 0 0 1/3

1/2 0 1/2 0 0 0

1/3 1/3 0 1/3 0 0

0 0 1/3 0 1/3 1/3

0 0 0 1/2 0 1/2

1/3 0 0 1/3 1/3 0




.

Then the eigenvalues and right, left eigenvectors of P are

λ =
(

1 0.5774 0 −0.3333 −0.6667 −0.5774
)

,

xR =




0.4082 0.3162 0.5000 −0.2132 0.5000 −0.3162

0.4082 0.5477 0.0000 0.6396 −0.0000 0.5477

0.4082 0.3162 −0.5000 −0.2132 −0.5000 −0.3162

0.4082 −0.3162 −0.5000 −0.2132 0.5000 0.3162

0.4082 −0.5477 −0.0000 0.6396 0.0000 −0.5477

0.4082 −0.3162 0.5000 −0.2132 −0.5000 0.3162




,

xL =




0.4523 0.3873 −0.5000 −0.2887 0.5000 0.3873

0.3015 0.4472 0.0000 0.5774 −0.0000 −0.4472

0.4523 0.3873 0.5000 −0.2887 −0.5000 0.3873

0.4523 −0.3873 0.5000 −0.2887 0.5000 −0.3873

0.3015 −0.4472 −0.0000 0.5774 0.0000 0.4472

0.4523 −0.3873 −0.5000 −0.2887 −0.5000 −0.3873




.

66

First we check that xLi = xRi × µ. For example

xR4 × xL1 = cxL4 =




−0.0964

0.1928

−0.0964

−0.0964

0.1928

−0.0964




where c = 0.334 is a constant.

Second we check that xRi × xLj = xRj × xLi . Again

xR4 × xL6 = cxL4 × xR6 =




−0.0826

−0.2860

−0.0826

0.0826

0.2860

0.0826




where c = −0.9045 is a constant.

4.4 Clustering Techniques for Markov Chains

After generating a random walk on a graph by setting P = D−1A, we can perform

a clustering analysis on P . If the Markov chain is ergodic, then spectral decomposition

on the transition probability matrix P provides two clustering measures of graph nodes

explained as below.

The first measure is based on the balanced minimum cut. If we sort the eigen-

values of the probability matrix P in descending order, the eigenvector associated with the

second largest (positive) eigenvalue, which is shifted to become the second smallest one in

the generalized eigenvalue problem Equation (4.11) and the second largest one in Equa-

tion (4.12), gives clusters of states based on the balanced minimum cut. There is much

research already available using the eigenvectors of P corresponding to positive eigenvalues

to perform spectral clustering [25].

The second measure is based on the “distance” from each state to the steady state.

If we sort the modulus of the eigenvalues in descending order, the eigenvector associated

67

with the second largest one (not necessarily positive) gives clusters of states based on this

distance measure. If the second largest one is positive, then both clustering measures

coincide; otherwise they are different. Previous research paid more attention to the first

and less with the second, because clustering using the first measure is very close to the

structure of real world networks, while the second is not. However the second measure is

also related to the graph structure and we cannot simply ignore its information.

Let us focus on the case of when the eigenvalue having the second largest modulus is

negative. How should we identify clustering information from its corresponding eigenvector?

Two aspects need to be considered. The first is the modulus of elements in this eigenvector.

Elements with small modulus in the eigenvector indicate the corresponding states are close

to the steady state; alternatively, they are in a group of states in which states are more

closely linked with each other. On the other hand, elements with large modulus indicate

the corresponding states are far from the steady state and belong to a group in which states

are not closely linked with each other. The second aspect is the numeric value of elements

in this eigenvector. If a value in one group of elements is closer to another group than other

values in the same group, this means the corresponding state has more chance to link states

in another group than other states in the same group.

A concrete example should help understanding these clustering techniques for

Markov chains.

Example 4.4.1. The figure below is an unweighted graph with 11 vertices. After formu-

lating the matrix P of a random walk on this graph, its second largest eigenvalue is found

to be λ1 = 0.8852 and the eigenvalue with second largest modulus is λ2 = −0.9336. The

corresponding eigenvectors are v1 and v2.

Figure 4.2: Joint complete and star graph.

68

v1,v2 =




−0.1423 0.0105

−0.1423 0.0105

−0.1423 0.0105

−0.1423 0.0105

−0.0770 −0.0707

0.2581 −0.3085

0.2581 −0.3085

0.2581 −0.3085

0.2581 −0.3085

0.2581 −0.3085

0.2285 0.2880




.

Based on the first clustering measure from v1, we obtain cluster 1 {vertices 1,...,5} and

cluster 2 {vertices 6,...,11}. Moving to the second clustering measure, we make two obser-

vations:

(a) Eigenvector v2 shows that the first five elements associated with cluster 1 have rel-

atively small modulus while others associated with cluster 2 have relatively large

modulus. This means that cluster 1 has a structure in which states are closely linked

between each other, while cluster 2 has the opposite structure. This observation can

be confirmed by the figure. The left part of figure is a clique and right part is a star.

(b) If we sort the values of elements in v2, then the value of vertex 5 is closer to cluster

2 than other vertices in cluster 1 while the value of vertex 11 is closer to cluster 1

than other vertices in cluster 2. This is reasonable, because vertex 5 and 11 have the

possibility of transitioning to the other cluster in a single step; they are the connecting

vertices between clusters. This can also be confirmed by the observation that vertex

5 in v2 has a modulus which is relatively large compared with other vertices in cluster

1; vertex 11 has relatively smaller modulus in cluster 2.

Therefore, the eigenvector associated with a negative eigenvalue whose modulus

is very close to 1 indicates firstly, the cluster structure and secondly, the role or position

of states (graph nodes) in each cluster. When we perform a clustering analysis on P , it

69

is appropriate to combine both clustering techniques, using not only the eigenvectors with

positive eigenvalues but also those with negative eigenvalues to obtain more comprehensive

information concerning each cluster of states.

There are two applications on Markov chains associated with these two types of

clustering techniques. One is the set of nearly completely decomposable (NCD) Markov

chains, and the other is the set of nearly periodic Markov chains. In NCD Markov chains,

there may be one or more positive eigenvalues very close to 1. In this case, the eigenvectors

corresponding to such eigenvalues provide the first measure of clustering information. In

nearly periodic Markov chains, there may be one or more negative eigenvalues with modulus

very close to 1. In this case, the corresponding eigenvectors provide the second measure of

clustering information. The advantage of using the transition probability matrix P of the

Markov chain to perform clustering analysis on graph nodes is that the spectral decompo-

sition of P not only provides the clusters of nodes in balanced minimum cut which are the

same from the Laplacian and the signless Laplacian matrix, but also provides additional

clustering information concerning each cluster’s structure and the role or position of graph

nodes in each cluster.

4.5 More Examples

Example 4.5.1. For some basic graphs, it does not make sense to cluster graph nodes, e.g.

cycle and complete graph, although the spectral clustering method on them also gives the

solution of normalized cut (balanced minimum cut). Let us first examine the spectrum of

the probability matrix P of Markov random walks on some basic graphs. Studying their

spectrums can help us to recognize patterns.

1. The cycle with n vertices (n-cycle). The eigenvalues of P formulated on n-cycle

are

λk = cos
2(k − 1)π

n
k = 1, . . . , n.

No matter whether n is odd or even, it makes no sense to cluster vertices on a cycle.

When n is even, the P has eigenvalue −1, which means that the Markov chain is

70

periodic, so the second clustering measure is not available; when n is odd, it is not

periodic.

2. The path with n vertices (n-path). The eigenvalues of P are

λk = cos
(k − 1)π

n− 1
k = 1, . . . , n.

P has eigenvalue -1 and the Markov chain is periodic. The second clustering measure

is not available.

3. The star graph with n vertices. The eigenvalues of P are

λ1 = 1, λn = −1, λk = 0 for k = 2, . . . , n− 1.

The star graph possesses a structure that should not be divided. The P here is

periodic.

4. The complete graph with n vertices. The eigenvalues of P

λ1 = 1, λk = − 1
n− 1

for k = 2, . . . , n.

The complete graph also possesses a structure that should not be divided, so it makes

no sense to cluster the states of such a graph.

5. The Petersen graph. It is a famous graph with 10 vertices in graph theory and is

illustrated in Figure 4.3. The eigenvalues of P are

λ1 = 1, λi =
1
3

for i = 2, . . . , 6, λj = −2
3

for j = 7, . . . , 10.

The Petersen graph also possesses a structure that should not be divided.

6. Two cycles with m and n vertices connected by one edge. The first clustering

measure works well on this kind of graph and we obtain two clusters (cycles), no

matter what values of m and n are chosen. When both m and n are even, the Markov

chain is periodic, and the clustering result is based on the normalized cut.

71

Figure 4.3: Peterson graph

7. Two cycles with m and n vertices connected by one center. If m and n

are both even, then the Markov chain is periodic. In this case, the eigenvalues of P

are in ± pair and at least one is zero. No matter what m and n are, the eigenvector

corresponding to the second largest eigenvalue provides two clusters (cycles). If m = n,

then the element of this eigenvector corresponding to the center is zero, else if m 6= n,

then it is not zero but very small because of its central position in the network.

8. Two stars with m and n vertices connected by one center. No matter what

m and n are, the Markov chain is periodic. The eigenvalues of P are

λ1 = 1, λ2 = a, λm+n = −a, λm+n+1 = −1,

λk = 0 for k = 3, . . . , m + n− 1,

where a is a positive value close to 1. The eigenvector corresponding to λ2 provides

two clusters (stars). If m = n, then the element of this eigenvector corresponding to

the center is zero, otherwise it is not zero but very small.

9. Two complete graphs with m and n vertices connected by one center.

No matter what m and n are, the Markov chain is not periodic. The eigenvector

corresponding to the second largest eigenvalue of P provides two clusters (cliques).

If m = n, then the element of this eigenvector corresponding to the center is zero,

otherwise it is not zero but very small.

10. An m-complete graph connected with an n-cycle by a center or connected

with an n-star by a center. The Markov chain is not periodic. The eigenvector

72

corresponding to the second largest eigenvalue of P provides two clusters. The element

of this eigenvector corresponding to the center is small. If the eigenvalue with second

largest modulus is negative, then the elements of the corresponding eigenvector that

are associated with nodes in m-complete graph have small modulus, and the elements

associated with nodes in n-cycle or star have large modulus, and the element associated

with the center node is in the middle.

Example 4.5.2. This is a graph with eight vertices in Figure 4.4. After formulating the P

of this graph, its second largest eigenvalue is λ2 = 0.8206. Therefore we use v2 to cluster
graph vertices into two groups. Since λ8 = −0.9455 has the second largest modulus, its
corresponding eigenvector v8 should be analyzed.

Figure 4.4: An example graph with eight vertices.

v2,v8 =




0.4230 −0.0630

0.4230 −0.0630

0.2712 0.1821

−0.2173 0.4130

−0.1783 −0.3905

−0.2173 0.4130

−0.4219 0.4686

−0.5142 −0.4957




.

The K-means method on v2 gives cluster 1 {1,2,3} and cluster 2 {4,5,6,7,8}. The first three

elements in v8 have small modulus and last five have large modulus. This means cluster

1 has a structure in which vertices are closely linked with each other, but not for cluster

73

2. Vertex 3 in v8 has relative larger modulus than those in cluster 1; and vertex 5 in v8

has relative small modulus relative to others in cluster 2, because vertex 3 and 5 are the

connecting points.

Example 4.5.3. This is a graph with eleven vertices in Figure 4.5. After formulating
the P of this graph, λ2 = 0.9328 is its second largest eigenvalue. Therefore we use v2 to
cluster vertices into two groups. λ11 = −0.9653 has the second largest modulus and its
corresponding eigenvector is v11.

Figure 4.5: An example graph with eleven vertices.

v2,v11 =




−0.2700 0.3132

−0.2895 −0.3245

−0.2700 0.3132

−0.2142 −0.2802

−0.0595 0.1849

−0.0638 −0.1916

0.1116 −0.0637

0.1578 0.0264

0.1700 −0.0211

0.1578 0.0264

0.1601 0.0083




.

The K-means method on v2 gives cluster 1 {1,2,3,4,5,6} and cluster 2 {7,8,9,10,11}. The

first six elements in v11 corresponding to cluster 1 have large modulus and last five elements

have small modulus. This makes sense because cluster 1 has a relative sparse structure

while cluster 2 has a relative dense structure.

74

In this chapter, we present two clustering techniques of Markov chains. One tech-

nique is spectral clustering in the framework of a Markov random walk generated on a

graph. The clustering of this technique is based on a measure of normalized cut. We exam-

ine some interesting facts that are true only for transition probability matrices arising in the

context of random walks on graphs. The other technique is using dominant eigenvectors of

a probability matrix to cluster states into meaningful groups based on a distance measure

of states from the steady state.

75

Chapter 5

Spectral and Statistical Clustering

The data with which we deal in spectral clustering is an n×m matrix corresponding

to a graph with n nodes and m edges. The spectral decomposition of this matrix is a

preprocessing step to project the high-dimensional representation of nodes into a lower

dimension. The lower dimensional representation of graph nodes may be an eigenvector or

a singular vector.

In multivariate statistical analysis, we analyze the multivariate random variable

X, which is composed of p one-dimensional random variables:

X = (X1, X2, . . . , Xp).

Given n observations of X, each observation xi has p dimensions:

xi = (xi1, xi2, . . . , xip),

and is a vector in Rp. Therefore the dataset of X in high dimensions can be described in

an n× p matrix X . There are some dimension reduction techniques available for analyzing

X , such as the factorial method and principal components analysis. These techniques also

involve the eigendecomposition of a matrix. Hence we have some justification in thinking

that spectral clustering may be related to these techniques in statistical clustering. Later in

this chapter, we shall see that spectral clustering has a connection to the factorial method

and principal components analysis.

In Section 5.1, we first go through the details of the factorial method of data

76

matrices, then we discuss the commonalities and differences between spectral clustering

and the factorial method in Section 5.2. The idea of principal components analysis will be

reviewed in Section 5.3. Finally, in Section 5.4, we relate the clustering result from principal

components analysis to that from spectral clustering.

5.1 Factorial Method of Data Matrices

The idea of the factorial method is to reduce the dimension of a multivariate

data set in the sense of a least-squares criterion. This involves the decomposition of data

matrices by factors. We can then perform the clustering analysis on the lower-dimensional

representation of the data set.

The data matrix X composed of n observations of p variables can be viewed in

two ways:

1. Each observation (row by row) is a vector xi
T = (xi1, xi2, . . . , xip) ∈ Rp. Therefore

matrix X is represented by n points in p dimensions.

2. Each variable (column by column) is a vector xj = (x1j , x2j , . . . , xnj)T ∈ Rn. There-

fore matrix X is represented by p points in n dimensions.

5.1.1 Analysis of n Observations in Rp

We first consider each row of X , i.e., X is represented by n points in Rp. The

factorial method is to project each point xi, i = 1, . . . , n, into a space of lower dimension.

Let us begin at finding a subspace of dimension 1. This means we want to find a

straight line L1 through the origin with all points are projected onto this line in the least-

squares sense. To find this line, we define its direction as a vector d1 ∈ Rp and ‖d1‖ = 1.

The projection point of a point xi ∈ Rp on L1 is defined as pxi ∈ Rp. Hence, this problem

is translated into finding a d1 that minimizes

n∑

i=1

‖xi − pxi‖2. (5.1)

Since ‖xi − pxi‖ is the distance between points xi and pxi , and pxi is the projection point

of xi on L1, then by the Pythagorean theorem,

77

‖xi − pxi‖2 = ‖xi‖2 − ‖pxi‖2. (5.2)

This equation is illustrated in Figure 5.1 with a space of dimension 3. Now the minimization

Figure 5.1: Illustration in 3-dimensional space.

problem of (5.1) is equivalent to the maximization of
∑n

i=1 ‖pxi‖2. If the angle between

vector xi and line L1 is θ, then we have

cos θ =
xi

T d1

‖xi‖‖d1‖ .

Since ‖d1‖ = 1,

‖pxi‖ = ‖xi‖| cos θ| = |xi
T d1|.

For n observations, we write




‖px1‖
‖px2‖

...

‖pxn‖




=




|x1
T d1|

|x2
T d1|
...

|xn
T d1|




.

78

Since




x1
T d1

x2
T d1

...

xn
T d1




= Xd1,

the maximization of
∑n

i=1 ‖pxi‖2 is reformulated to maximize the quadratic form (Xd1)T (Xd1):

max
‖d1‖=1

d1
TX TXd1. (5.3)

X TX is a symmetric matrix. Theorem 2.2.5 provides the solution of this maximization

problem.

Theorem 5.1.1 ([17]). The maximum of Equation (5.3) is given by the largest eigenvalue λ1

of the matrix X TX , and the associated vector d1 is the eigenvector v1 of X TX corresponding

to λ1.

The straight line L1 given by the direction v1 ∈ Rp (the first eigenvector of X TX)

is what is needed to project the data set X into dimension 1 using the least-square criterion

(5.1). The projection coordinates of n points onto L1 are X v1. In the factorial method,

X v1 and v1 are called the first factorial variable (or the first factor) and the first factorial

axis respectively [17]. For each observation xi, and v1 = (v11, v21, v31, . . . , vp1)T the first

factor is a linear combination of the original p variables

xi1v11 + xi2v21 + xi3v31 + · · ·+ xipvp1.

The first factor contains the most important information of data. We can perform a clus-

tering analysis, e.g., K-means, on the first factor to cluster n points (observations).

Suppose now we want to find a subspace of dimension 2, i.e. a plane through the

origin, to fit the n points in Rp. A plane through the origin can be determined by two

orthogonal unit vector d1 and d2 with ‖d1‖ = 1 and ‖d2‖ = 1 (d1 and d2 here represent the

directions of two straight lines). If we set the coordinates of the projection point pxi of each

point xi onto this plane (onto directions d1 and d2) are pi1 and pi2, then we have

79

pi1 = xi
T d1 and pi2 = xi

T d2. (5.4)

Based on the previous discussion of least-square criterion, we want to find d1 and d2 so as to

minimize the function (5.1). This is equivalent to maximizing
∑n

i=1 ‖pxi‖2. From Equation

(5.4) and

‖pxi‖2 = p2
i1 + p2

i2,

from the Pythagorean theorem, we may write in matrix form

n∑

i=1

‖pxi‖2 =
n∑

i=1

p2
i1 +

n∑

i=1

p2
i2

= (Xd1)T (Xd1) + (Xd2)T (Xd2). (5.5)

The problem can now be formulated as

Maximize d1
T (X TX)d1 + d2

T (X TX)d2 (5.6)

such that ‖d1‖ = ‖d2‖ = 1 and d1
T d2 = 0.

Theorem 5.1.2 ([17]). The vectors d1 and d2 that maximize problem (5.6) are the eigen-

vectors v1 and v2 of X TX corresponding to the largest and second largest eigenvalues λ1

and λ2 of X TX respectively. The maximum of (5.6) is λ1 + λ2.

The unit vector v2 represents a second line L2. The projection coordinates of

n points onto a 2-dimensional plane (onto L1 and L2) are X v1 and X v2. Eigenvector v2

is called the second factorial axis, and X v2 is called the second factor. The data of n

observations in Rp is reduced to R2. The clustering algorithms can be applied on the first

and the second factors together to cluster the n observations.

To project n observations of data into a q-dimensional subspace (q < p) in the

sense of least-square criterion, the best subspace we want is obtained by the first q or-

thogonal eigenvectors v1, v2, . . . , vq of X TX corresponding to the first q largest eigenvalues

80

λ1, λ2, . . . , λq. This follows the same argument as before. The projection coordinates of n

points onto q-dimensional subspace are X v1,X v2, . . . ,X vq. Eigenvector vi is the ith factorial

axis and X vi is called the ith factor for i = 1, . . . , q.

5.1.2 Analysis of p Variables in Rn

The data matrix X can also be viewed as p points (variables) in Rn. Each point is

xj = (x1j , x2j , . . . , xnj)T . To analyze these p variables or carry out the clustering on them,

we want to reduce the dimension of each point, i.e., to project each point into a subspace

of lower dimension in the least-square sense. The method here is the same as above.

If we want to find a straight line (dimension 1) to fit p points, we set the direction

of this line as d1 ∈ Rn with ‖d1‖ = 1. Then the coordinate of the projection pxj of point xj

on this line is xj
T d1. To obtain the least square of (5.1) is equivalent to finding a d1 such

that

p∑

j=1

‖pxj‖2 =
p∑

j=1

(xj
T d1)2

is maximized. Since

p∑

j=1

(xj
T d1)2 = (X T d1)T (X T d1),

this is equivalent to finding a unit vector d1 so as to maximize d1
T (XX T)d1.

Theorem 5.1.3 ([26]). The unit vector d1 maximizing d1
T (XX T)d1 is the eigenvector u1

of XX T corresponding to the largest eigenvalue of XX T .

The coordinates of p points on this line are X T u1, called the first factor. The first

factor of each variable xj in Rn is a linear combination of the original coordinate of xj with

coefficients by the vector u1 = (u11, u21, u31, . . . , un1)T :

x1ju11 + x2ju21 + x3ju31 + · · ·+ xnjun1.

Finally the first factor can be the input to clustering algorithms.

81

To fit p variables into a q-dimensional subspace (q < n), following the same ar-

gument, the best subspace in the least square sense is given by the first q eigenvectors

u1, u2, . . . , uq of XX T corresponding to the first q largest eigenvalues. X T uk provides the

kth factor of p variables, k = 1, 2, . . . , q.

5.1.3 Duality Relations Between X TX and XX T

The data X is an n×p matrix. We set r = rank(X) = rank(XX T) = rank(X TX) ≤
min(n, p). For k < r, we have the eigenvalue problem

X TX vk = λkvk,

where vk is an eigenvector of X TX corresponding to the eigenvalue λk. Multiplying by X
on both side gives

XX T (X vk) = λk(X vk).

Now X vk is an eigenvector of XX T corresponding to the eigenvalue λk.

Similarly, for the eigenvalue problem of XX T

XX T uk = λkuk,

and by multiplying by X T on both side,

X TX (X T uk) = λk(X T uk).

Now X T uk is an eigenvector of X TX corresponding to the eigenvalue λk.

Hence we obtain the relationship

vk = ck1X T uk and uk = ck2X vk,

where ck1 and ck2 are the constants. Since ‖vk‖ = ‖uk‖ = 1, then

ck1 = ck2 =
1√
λk

.

82

Theorem 5.1.4 (Duality Relations [17]). For k < r = rank(X), the matrices X TX and

XX T share the same nonzero eigenvalues λk, and the corresponding eigenvectors vk and uk

have the relationship

vk =
1√
λk
X T uk (5.7)

uk =
1√
λk
X vk. (5.8)

To analyze n observations of X using the factorial method, we need to obtain the

kth factor that is given by X vk. From equation (5.8), we have the kth factor

X vk =
√

λkuk. (5.9)

Result 5.1.1. Equation (5.9) means that the eigenvector uk of the n×n matrix XX T can be

used directly as the kth factor to analyze n observations. For instance, the first eigenvector

u1 of XX T can be treated as the first factor of n observations.

To analyze p variables of X using the factorial method, we need to obtain the kth

factor that is given by X T uk. From equation (5.7), we have the kth factor

X T uk =
√

λkvk. (5.10)

Result 5.1.2. Equation (5.10) means that the eigenvector vk of p×p matrix X TX can also

be used directly as the kth factor to analyze p variables. For instance, the first eigenvector

v1 of X TX can be treated as the first factor of p variables.

Note that vk and uk are also the singular vectors given by the SVD of X . Therefore

the SVD can be applied on the data set n×p matrix X to obtain the factors of n observations

and p variables.

5.1.4 Evaluating a Fitting

In the factorial method, we usually project n observations in Rp of X into a 2-

dimensional plane by obtaining the first factor z1 = X v1 and the second factor z2 = X v2,

where v1 and v2 are the eigenvectors of X TX corresponding to the largest and the second

largest eigenvalues λ1 and λ2. Then the representation of n observations on the plane can

be plotted by z1 versus z2. We can cluster the n observations in two dimensions.

83

It is natural to ask if the representation of n observations in a plane captures the

major information of data, and how should it be evaluated? Suppose we use a q-dimensional

subspace (q < p) to fit n observations, we have to find a way to evaluate the quality of fitting

in the q-dimensional subspace. It is obvious that the closer q is to p, the more accurate the

fitting.

Let us first consider the case of p = 3 and q = 2, i.e., using a plane to fit n points

in R3. By Theorem 5.1.2, the best plane P1 in the least-squares sense is given by the

eigenvectors v1 and v2 of X TX corresponding to eigenvalues λ1 and λ2, where λ1 ≥ λ2 ≥ λ3

are the eigenvalues of X TX . The projection point of an individual xi ∈ R3 on P1 is

pxi ∈ R3. Then the least-squares function (5.1) is minimized. From the Pythagorean

theorem and Equation (5.5), we have

n∑

i=1

‖xi − pxi‖2 =
n∑

i=1

‖xi‖2 −
n∑

i=1

‖pxi‖2

= trace(XX T)− (vT
1 X TX v1 + vT

2 X TX v2)

= trace(X TX)− (λ1 + λ2)

=
3∑

i=1

λi − (λ1 + λ2)

= λ3.

The smallest eigenvalue λ3 of X TX provides the least-squares value of fitting n points on

the plane P1. In the general case, using a q-dimensional subspace to fit n points xi ∈ Rp,

we have

n∑

i=1

‖xi − pxi‖2 =
p∑

i=q+1

λi. (5.11)

Therefore, a standard way to evaluating the fitting in a subspace of dimension q

is to use the percentage ratio δ:

δ =
λ1 + · · ·+ λq

λ1 + · · ·+ λp
=

∑q
i=1 λi∑p
i=1 λi

. (5.12)

The ratio δ with 0 < δ < 1 shows the percentage of data information explained by the first

q factors.

84

5.2 Spectral Clustering and Factorial Method

In spectral clustering, the Laplacian matrix L and the signless Laplacian matrix M

of a graph G are the basic tools to model the graph minimum cut and maximum association.

We have

L = BGBG
T and M = IGIG

T ,

where BG is the oriented incidence matrix of G and IG is the unoriented incidence matrix.

5.2.1 Commonalities

The matrix IG can be seen as the data set matrix X in the factorial method.

The oriented incidence matrix BG can not be seen as X , because the negative value in BG

corresponding to each edge is arbitrary so that it could not represent the intrinsic nature

of the data. The IG of G is an n×m matrix having one row per node and one column per

edge. Following the idea of the factorial method, the IG can be represented by n points

(vertices) in Rm. Thus we can analyze the factors of n vertices decomposed from IG in the

least-square sense.

As discussed in Section 5.1.1, the kth factor axis of vertices is the eigenvector vk

of IG
T IG corresponding to the kth largest eigenvalue λk, and the kth factor is IGvk. From

Equation (5.9), the kth factor is also equal to
√

λkuk, where uk is the eigenvector of M =

IGIG
T corresponding to the kth largest eigenvalue λk. Therefore the factors of n vertices

in the factorial method can be obtained by the eigenvectors of the signless Laplacian M .

For example, the first factor is the eigenvector of M associated with the largest eigenvalue.

In spectral clustering, the second eigenvector u2 of M associated with the second largest

eigenvalue λ2 provides the nodes clustering result and here u2 is also associated with the

second factor of n vertices. We do not use the first factor to cluster nodes, because all

elements in it have the same sign, which does not comply with the definition of a partition

vector in the context of graph partitioning. However the first factor contains important

information concerning the n vertices. In the context of the factorial method, the first

factor can also be used to cluster nodes if we cluster its elements based on close values,

but not based on different signs, in which case we get the same clustering result as in

spectral clustering. Remember the factors are the coordinates of the projection of n vertices

in a lower dimensional subspace in the least-square sense. Since IG is nonnegative, it

85

is appropriate that the projection coordinates of n vertices on the first factor axis (first

factor) are positive. The projection coordinates on the second factor axis (second factor)

are distributed in both sides of the origin, which are used to partition graph nodes. This

is also another explanation as to why multiple eigenvectors of M can be used to obtain

multiple clustering, because the first q eigenvectors of M provide the coordinates of n

vertices projection in the best fitting of a q-dimensional subspace. Here we may say spectral

clustering is one special case of the factorial method of data matrices, i.e., elements in the

data set IG are nonnegative with special structure. The factors of n vertices obtained from

the incidence matrix IG have a connection to graph partitioning.

If we consider that IG is represented by m points (edges) inRn, then from Equation

(5.10) the kth factor of m edges IG
T uk is equal to

√
λkvk, where vk is the eigenvector of

E = IG
T IG corresponding to the kth largest eigenvalue. Therefore the eigenvectors of E

treated as factors of m edges can be used to cluster graph edges. In spectral clustering,

the eigenvectors of E provide edge clustering based on the vertices in the line graph of the

original graph G. Therefore, the results from factorial method and spectral clustering for

clustering edges coincide in the eigenvectors of E = IG
T IG.

Since the eigenvector uk of M = IGIG
T and the eigenvector vk of E = IG

T IG are

the left-hand and right-hand singular vector of IG, the SVD of IG contains the clustering

information of vertices and edges from the point of view of the factorial method.

Example 5.2.1. Let us return to Example 3.3.1, the graph with six vertices. The eigen-

vectors uk and vk of the matrices M and E are given in the orthogonal matrices U and V ,

respectively.

U =




0.5597 −0.1426 0.4930 −0.5223 0.2012 −0.3318

0.5752 −0.1764 0.1750 0.5136 −0.5654 0.1546

0.5429 −0.1041 −0.6850 0.0195 0.4393 0.1784

0.1677 0.5802 −0.3852 −0.3130 −0.5115 −0.3566

0.1015 0.4830 0.1696 0.5880 0.4137 −0.4591

0.1509 0.6064 0.2828 −0.1389 0.1182 0.7045




86

��
��
��
��
�H
HH

HH
H�
�
�
�
�
�
��

HHHHHHH

��
��
��
�

4

5

6

3

2

1

s
s

s

s

s
s 0.7

0.8

0.6

0.2

0.1

0.7

0.9

0.8

Figure 5.2: A sample graph with six vertices.

V =




0.5899 −0.1778 0.6031 −0.0091 −0.3968 −0.2021 0.1198 0.2097

0.5479 −0.1474 −0.4341 0.5282 −0.1295 0.3581 −0.1271 −0.2225

0.5055 −0.1212 −0.1528 −0.4658 0.6155 −0.1542 −0.2853 0.0738

0.1231 0.0861 0.2335 −0.2315 0.1160 0.1417 0.3952 −0.8244

0.1741 0.1250 −0.4555 −0.1454 −0.0371 −0.0958 0.7879 0.3069

0.1561 0.6233 −0.0872 −0.4476 −0.4040 0.3741 −0.2668 0.0690

0.1143 0.4837 −0.1590 0.2359 −0.0871 −0.7596 −0.1468 −0.2569

0.1157 0.5353 0.3602 0.4162 0.5111 0.2468 0.1359 0.2378




The vectors u1 and v1, i.e., the first factors of graph nodes and edges respectively, can also

be analyzed to cluster nodes and edges; meanwhile, values of elements in u2 and v2, i.e.,

the second factors, are appropriate within the context of graph partitioning.

5.2.2 Differences

There are two main differences between spectral clustering and the factorial method:

1. In multivariate analysis, the data set is an n×p matrix X . In most cases, the number

of variables p is much smaller than the number of observations n, e.g., p ∼ 10 and

n ∼ 103 or more. In the factorial method, for obtaining the first several factors

of observations, we can compute the eigenvectors of the small p × p matrix X TX
to get the factor axes. Then the factors of observations are linear combinations of

the original p variables with coefficients given by these factor axes. In other words,

because of the characteristics of multivariate data, the factorial method solves the

eigenvalue problem of a small matrix, instead of a large matrix, and thereby avoids a

large amount of computation.

87

However, in spectral clustering with an n × m incidence matrix IG, the number of

edges m is usually much larger than the number of nodes n. Therefore, in the case of

a graph with a large number of nodes, we cannot find a small matrix to reduce the

computational effort to cluster graph nodes.

2. In the factorial method, n observations in Rp are basically projected onto a subspace

of dimension two or three. Since p is small, the ratio δ in Equation (5.12) is introduced

to evaluate the fitting in a subspace of dimension q < p,

δ =
∑q

i=1 λi∑p
i=1 λi

,

where λi, i = 1, . . . , p, are eigenvalues of the p × p matrix X TX in descending order.

The ratio δ shows the percentage of data information explained by the first q factors.

However, in spectral clustering with large-scale data, this ratio δ cannot correctly

evaluate a partition given by the first several eigenvectors of the signless Laplacian

M . For example, in general, it is enough to use the first two eigenvectors of M to

cluster n nodes, then the ratio is

δ =
∑2

i=1 λi∑n
i=1 λi

,

where λi, i = 1 . . . n, are eigenvalues of M is descending order. If n is quite large,

then δ will be small. We cannot use this ratio to explain how many eigenvectors are

needed for partitioning graph nodes.

5.3 Principal Components Analysis

The aim of principal components analysis is also to reduce the dimension of the

multivariate data. It produces a lower dimensional representation of the observations or

variables of a multivariate data matrix. Then we can analyze this lower dimensional repre-

sentation to cluster the observations or variables. A multivariate variable X with p variables

is a vector

X = (X1, X2, . . . , Xp)T .

To reduce the dimension of each observation, we take a weighting coefficients vector µ =

(µ1, µ2, . . . , µp)T to obtain a projection of X, so that

88

µT X =
p∑

i=1

µiXi and
p∑

i=1

µi
2 = 1.

The weighting coefficients µ we choose are used to investigate and detect specific features

of the multivariate variable X. One strategy is to maximize the variance of the projection

µT X. Since

Var(µT X) = µT Var(X)µ,

the problem is formulated so as to find a coefficient vector µ such that

max
‖µ‖=1

µT Var(X)µ. (5.13)

Here Var(X) is the covariance matrix of multivariate variable X where definition of the

covariance matrix Σ is

Σ =




σ2
X1

σX1X2 . . . σX1Xp

σX2X1 σ2
X2

. . . σX2Xp

...
...

. . .
...

σXpX1 σXpX2 . . . σ2
Xp




, (5.14)

with

σXiXj = Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj) i 6= j,

and

σ2
Xi

= Cov(Xi, Xi) = Var(Xi).

Cov(Xi, Xj) is the covariance of two random variables Xi and Xj .

Theorem 5.3.1. From Theorem 2.2.5, the solution vector µ of problem (5.13) is given by

the eigenvector v1 corresponding to the largest eigenvalue λ1 of covariance matrix Σ.

The vector v1 gives the direction on which the variance of the projection of obser-

vations is maximized, or alternatively this direction captures the majority of the variance

of the data. Therefore the linear combination

89

Y1 = v1
T X = v11X1 + v21X2 + v31X3 + · · ·+ vp1Xp,

is called the first principal component [17]. The second highest variance of the projection is

given by Y2 = v2
T X, called the second principal component, where vector v2 is orthogonal

to v1 and is the eigenvector corresponding to the second largest eigenvalue λ2 of Σ. In

matrix notation, principal components are Y = V T X, where V is the matrix form of

eigenvectors of Σ. These first several principal components are what we want for describing

the multivariate data in a lower dimension.

In practice, given the multivariate statistical data X (n × p matrix) with n ob-

servations and p variables, let xij be the entry of X corresponding to the ith row and jth

column, then the elements in the covariance matrix of X in Equation (5.14) are

σXiXj =
1
n

n∑

k=1

(xki − xi)(xkj − xj),

and

σ2
Xi

=
1
n

n∑

k=1

(xki − xi)2,

where xi = 1
n

∑n
k=1 xki.

Here we can see that it is better to first center every variable of the data matrix

X . We denote the centered data matrix as Xc. It is given by

Xc = X − 1nxT ,

where 1n = (1, 1, . . . , 1)T in n dimension and x = (x1, x2, . . . , xp)T . If we let H = I −
(n−11n1n

T) be the centering matrix, then Xc = HX . After forming the centered data

matrix Xc, it is not difficult to calculate the covariance matrix

Σ =
1
n
Xc

TXc. (5.15)

Theorem 5.3.2 ([17]). Let v1, . . . , vp be the eigenvectors of the p× p covariance matrix Σ

corresponding to the eigenvalues λ1 ≥ · · · ≥ λp, then the principal components are given by

yk = Xcvk with the following

90

E(yk) = 0, k = 1, . . . , p (5.16)

Var(yk) = λk, k = 1, . . . , p (5.17)

p∑

k=1

Var(yk) =
p∑

k=1

λk = trace(Σ). (5.18)

The principal component yk = Xcvk can be represented by an eigenvector of the

n × n matrix 1
nXcXc

T . Recall our discussion of the duality relations between 1
nXc

TXc and
1
nXcXc

T in Section 5.1.3, if we let uk be the kth eigenvector of 1
nXcXc

T associated with the

kth largest eigenvalue λk, then from Equation (5.9), we have

1√
n
Xcvk =

√
λkuk.

This is equivalent to

yk = Xcvk =
√

nλkuk. (5.19)

Therefore, the kth principal component yk can be obtained by the kth eigenvector of
1
nXcXc

T . The most important one is the first principal component y1 =
√

nλ1u1, where u1

is the first eigenvector of 1
nXcXc

T . Actually the vector u1 also provides a partition solution

of a graph composed by n observations of the multivariate variable X. We shall explain

this partition solution in next section.

5.4 Graph Partitioning in Multivariate Statistical Analysis

In this section, we shall consider the possibility of using graph partitioning tech-

niques to analyze a multivariate statistical variable X.

Our task is to analyze n observations of X in a lower dimensional representation.

If we want to apply graph partitioning techniques, the first problem we need to solve is

to create a graph of n nodes associated with n observations. This is equivalent to the

problem of deciding which method to use to determine the weight of an edge connecting

91

two observations. It is necessary to choose an edge weight that appropriately depicts the

relationship between two observations.

Given a centered data matrix Xc with n observations and p variables, from Equa-

tion (5.19), we know the kth principal component is yk =
√

nλkuk, where uk is the eigen-

vector of 1
nXcXc

T corresponding to the kth largest eigenvalue λk. Now let us focus on the

n× n matrix XcXc
T . If we set W = XcXc

T , and let a vector xi
T = (xi1, xi2, . . . , xip) be the

ith row of Xc corresponding to the ith observation, then the element wij of W is

wij = xi
T xj = xi1xj1 + xi2xj2 + · · ·+ xipxjp. (5.20)

If wij < 0, then the kth element xikxjk of Equation (5.20) is more likely to be negative

or we can say wij is dominated by negative xikxjk. This means, for the kth variable of

observations i and j, one value is above the mean of this variable and another is below the

mean. If wij > 0, then we can say wij is dominated by positive xikxjk. This means, for the

kth variable of observations i and j, both values are above the mean or both are below the

mean. Therefore a negative value of wij depicts the difference between observations i and

j, and a positive value depicts the similarity. The value wij can be assigned to the edge

connecting i and j as a weight.

Definition 5.4.1. Given a multivariate centered data matrix Xc with n observations and

p variables, an edge connecting observations i and j (i 6= j) in a graph G of n nodes

(observations) without self-loops has a weight wij such that

wij = xi
T xj

where xi
T = (xi1, xi2, . . . , xip) is the ith row of Xc associated with the observation i.

Based on this graph G, two observations connected by a large positive edge should

be in the same cluster, and two observations connected by a negative edge having large

modulus should be in different clusters. Therefore, we can use the spectral clustering

technique discussed in Section 3.4 to cut negative edges so as to partition graph nodes.

To perform the spectral clustering, we shall first get the adjacency matrix A of G

whose elements are edge weights. The diagonal elements of A are zeros. Then an n × n

matrix M is obtained as M = D+A, where D is a diagonal matrix whose diagonal element

is dii =
∑

k |wik|. A partition result with more positive edges within clusters and more

92

negative edges cut between clusters can be achieved by maximizing the Rayleigh quotient

of pT Mp/pT p, where p is a partition vector defined in Equation (3.5). Since the matrix

W = XcXc
T , and the only differences between W and the matrix M = D + A of G are

diagonal elements, then we can get a diagonal matrix D1 = W −M . Now

pT Mp

pT p
≡ pT Wp

pT p
− pT D1p

pT p
.

It is obvious that pT D1p/pT p is constant, so maximizing pT Mp/pT p is equivalent to max-

imizing pT Wp/pT p. From Theorem 2.2.5, an eigenvector of W = XcXc
T corresponding to

the largest eigenvalue maximizes the Rayleigh quotient of W . Therefore we can assert that

the first eigenvector of XcXc
T associated with the largest eigenvalue provides a heuristic

solution for clustering graph nodes (observations) of G.

Because matrices XcXc
T and 1

nXcXc
T share the same eigenvectors, this heuristic

solution can be obtained from the first eigenvector u1 of 1
nXcXc

T . We already know the first

principal component of n observations is y1 =
√

nλ1u1, where λ1 is the largest eigenvalue of
1
nXcXc

T . In other words, the result from principal components analysis has been connected

to the heuristic result from spectral clustering by a constant
√

nλ1. Let us see an example

of world university rank data.

Example 5.4.1. The Academic Ranking of World Universities data consists of information

of the world’s top 100 universities in 2005 (see appendix for data). All universities have

been evaluated in six aspects: ’Score on Alumni’, ’Score on Award’, ’Score on Citation’,

’Score on N&S’, ’Score on SCI’ and ’Score on Size’. These scores are given in a scale of

100. The multivariate data is a 100× 6 matrix with 100 observations and 6 variables. This

matrix should be first centered according to each variable.

Using the method of principal components analysis discussed in Section 5.3 to

calculate the first principal component y1, and then applying the K-means clustering algo-

rithm on y1, we obtain two groups of universities. The top 12 universities form one group,

and the rest form the other group.

Using Definition 5.4.1 to create a graph with 100 nodes associated with 100 uni-

versities, and then computing the first eigenvector u1 of W provides a heuristic solution for

clustering nodes. The K-means clustering algorithm on u1 gives two groups of universities.

This result is the same as that obtained by the principal components analysis.

93

In this chapter, we discussed the relation between spectral clustering and statistical

clustering, and especially two techniques in statistical clustering, i.e., the factorial method

and principal components analysis. We saw that

1. Spectral clustering can be seen as a special case of the factorial method on node-edge

incidence matrix.

2. Based on a graph of observations created from a multivariate data matrix, the re-

sult obtained from spectral clustering is related to the result obtained from principal

components analysis.

94

Chapter 6

Heuristic Methods for

Decomposing Real Unsymmetric

Matrices

6.1 Introduction

Classical block iterative methods for solving large sparse linear systems of equa-

tions in the form

Ax = b,

where A is an n × n real matrix and x, b are vectors, requires that the diagonal blocks

be more dense than the off-diagonal blocks. This is also very common in the problems of

computing the stationary distribution of a large Markov chain. A Markov chain is called

nearly completely decomposable (NCD), if its state space can be partitioned into disjoint

subsets, with strong interaction between states within subsets but with weak interaction

between subsets themselves. Given an NCD Markov chain, we want to obtain a block form

as

95

Pn×n =




P11 P12 · · · P1n

P21 P22 · · · P2n

...
...

. . .
...

Pn1 Pn2 · · · Pnn




by a symmetric permutation so that the elements in the off-diagonal blocks Pij (i 6= j) are

much smaller than those in the diagonal blocks Pii.

In this chapter, we discuss applying spectral clustering procedures to decompos-

ing a real unsymmetric matrix into blocks and especially to find the nearly-completely-

decomposable components of NCD Markov chains. There are already several effective

methods in this field, such as MARCA [35] and TPABLO [3], which will be introduced

first in Section 6.2 and Section 6.3 respectively. In Section 6.4, we shall develop a new

spectral clustering procedure for obtaining partitions of matrices. A modified clustering

procedure suitable for the case of large-scale data matrices is also presented.

6.2 MARCA

MARkov Chain Analyzer (MARCA) [36, 37] is a software package designed for

generating and analyzing large Markov chains. In this section, we focus on the near-complete

decomposability test (ncdtest) of the package MARCA, i.e., a block partitioning algorithm

for matrices. We shall call this algorithm MARCA for short.

To do the near-complete-decomposability test, MARCA provides a parameter for

controlling the blocks solution obtained. This parameter γ is called the decomposability

factor, which can be varied from 10−10 to 10−1. For each different value, all nonzero ele-

ments of a probability matrix P less than this specified value are discarded. Then strongly

connected components (SCC) are searched in a directed graph corresponding to the remain-

ing matrix. Each strongly connected component represents a partition block. Finally, for

different values of γ, MARCA lists the number of partition blocks found and the sizes of

the biggest and smallest block obtained. If given an infinitesimal generator Q, MARCA

will test the matrix Q∆t + I instead. We shall go through an example to illustrate this

procedure of MARCA.

96

Example 6.2.1. An artificially constructed 10× 10 irreducible stochastic matrix P [35] is

P =




. .5 . .5 . .

. . .999994 . . .

.999995

. . . .11999 .44 .44

.0001 . . .99 .0099 .

. .0002 .0002 .99 .00959 .

. .000001

. .000003000007

.000001 .

. . .000005 .000005 . .

· · ·

· · ·

. . . .

.000006 . . .

. . . .000005

.000003 .000002 .000003 .000002

. . . .

. .000005 .000005 .

.499 .499 .001 .000999

.49999 .49 .006 .004

. .009999 . .99

.00999 .01 .98 .




.

In MARCA, if the parameter γ increases from 10−10 to 10−6, there is no change on the

matrix P , because none of the nonzero elements of P is less than 10−6. This irreducible

matrix P represents only one strongly connected component that contains all 10 states.
If γ is set to be 10−5, then we obtain a modified matrix below:




. .5 . .5

. . .999994

.999995

. . . .11999 .44 .44

.0001 . . .99 .0099

. .0002 .0002 .99 .00959

.499 .499 .001 .000999

.49999 .49 .006 .004

.009999 . .99

.00999 .01 .98 .




.

97

There are two SCCs corresponding to two blocks: the first consists of states 1 through 6

and the second consists of states 7 through 10. If γ increases to 10−4, no change is made

on this matrix.
Now if γ is continuously increased to 10−3, then the resulting matrix has the

following structure:



. .5 . .5 . .

. . .999994 . . .

.999995

. . . .11999 .44 .44

. . . .99 .0099 .

. . . .99 .00959 .




and




.499 .499 . .

.49999 .49 .006 .004

. .009999 . .99

.00999 .01 .98 .




.

The second block consisting of states 7 through 10 still has only one SCC contains all four

states. However, in the first block of six states, we can find two SCCs. Therefore this block

is divided into two components: states 1 through 3 and states 4 through 6.
If γ is 10−2, then we obtain the resulting matrix as




. .5 . .5 . .

. . .999994 . . .

.999995

. . . .11999 .44 .44

. . . .99 . .

. . . .99 . .




and




.499 .499 . .

.49999 .49 . .

. . . .99

. . .98 .




.

Based on the search of SCCs, the block consisting of last four states is broken into two

components. Now there are four groups of states obtained: {1,2,3},{4,5,6},{7,8} and {9,10}.
This partition result will not change if γ is increased to 10−1.

In next section, we shall review another algorithm, called TPABLO, for finding

blocks of NCD Markov chains.

6.3 TPABLO Algorithms

The TPABLO (Threshold PArameterized BLock Ordering) partitioning algorithms

[3] are variants of the PABLO algorithm. The original PABLO algorithm presented by

O’Neil and Szyld [29] aims to obtain a diagonal dense blocks by permuting sparse matrices.

98

The new permuted matrices can be used to improve block iterative methods for solving linear

systems. We first quickly review the PABLO algorithm, and then describe the TPABLO

algorithms.

6.3.1 The Original PABLO Algorithm

Given a matrix A, let G = (V, E) be its associated graph, i.e., G is a matrix-

induced graph of the matrix A, then PABLO will produce k subgraphs Gi = (Vi, Ei),

i = 1, . . . , k, corresponding to k permuted diagonal blocks of the matrix A, where Ei ⊂ E,

and the sets Vi are disjoint and ∪k
i=1Vi = V . The number of blocks is not given a priori,

but it is determined by the algorithm with input parameters. The graph G is supposed

to be connected. There are three sets named P , Q and C in PABLO. The set P contains

those marked vertices that will be organized into the current block, and finally becomes a

Vi. The set Q contains those vertices that are adjacent to at least one vertex in P . The

set C contains the rest of the unmarked vertices of V that are neither in P nor in Q. The

PABLO algorithm is a series of operations on these three sets until no further operation

can be applied. At the beginning, we set P = Q = ∅ and C = V .

Let us define the fullness of a graph G(V, E), denoted as φV , as the ratio of the

number of edges in E to the number of edges in the clique of the vertex set V . For the

vertex i, let deg(i) be the number of edges in the form {i, j} or {j, i}, for a different vertex

j; and let in(i) be the number of edges {i, j} or {j, i} with j ∈ P . PABLO will choose the

first vertex from C which has the minimum degree, mark it, and put it into set P . Here

we initiate φP = 0. All vertices in C that are adjacent to the first vertex chosen into P are

moved to the rear of the set Q. After this operation, PABLO updates the in degree of all

vertices in Q. Now we pick up a node p from the front of Q, and we have to decide whether

or not p should be added to P . PABLO uses two criteria with two input parameters α and

β to make the decision.

1. To ensure that the fullness of G(P ∪ {p}) keeps at least some fraction of the fullness

of G(P):

φP∪{p} ≥ αφP , for α ≥ 0.

2. To ensure that the node p is adjacent to more nodes in P :

99

in(p)
deg(p)

≥ β, for 0 ≤ β ≤ 1.

The node p will be added to P if either of these two criteria is satisfied. If neither of these

two criteria is satisfied, then the node p will be put back into C. After a new node is added

to P , we need to update the Q and repeat previous operations until Q is empty. Thus we

obtain a subgraph G(Vi, Ei) with Vi = P . If C is also empty, then all the vertices in V have

been marked and the blocks have been obtained and the PABLO algorithm stops.

6.3.2 TPABLO1 and TPABLO2

There are two variants of the PABLO algorithm, called TPABLO1 and TPABLO2.

In these two versions of TPABLO, a third additional criteria is introduced to decide if the

vertex p from Q is added to the set P that contains those marked vertices. Let aij be an

entry of A corresponding to ith row (vertex) and jth column (vertex), and γ ≥ 0 be the

given threshold which is introduced as the third parameter of TPABLO. Then the node p

will be added to P if, besides either of these two criteria of PABLO mentioned above, the

third criteria must be satisfied.

1. TPABLO1 algorithm:

|aip| > γ or |api| > γ for at least one i ∈ P ;

2. TPABLO2 algorithm:

|aip| > γ and |api| > γ for all i ∈ P.

Here we can see that the third criteria of TPABLO1 makes the absolute value of every

entry in off-diagonal blocks smaller than the given threshold γ, meanwhile the criteria

of TPABLO2 makes the absolute value of every entry in diagonal blocks larger than the

threshold γ. The TPABLO1 algorithm can be used to find blocks in nearly completely

decomposable (NCD) Markov chains [3].

There are two other parameters for these two versions of TPABLO, called minbs

and maxbs, which are used to control the minimum and maximum size of diagonal blocks

obtained from TPABLO respectively.

100

6.3.3 Implementation

The PABLO, TPABLO1 and TPABLO2 algorithms were implemented in the C

programming language. Running results of the code provide the number of blocks obtained,

the size of each block and also list all states in each block. Since TPABLO1 is applied to

find blocks in NCD Markov chains, it was tested with the 10 × 10 irreducible stochastic

matrix P of Example 6.2.1.

In the TPABLO1 algorithm, if we set the parameters α = 0.6, β = 0.6 and

γ = 0.001, then it will give a partition of P with two blocks: states 1 through 6 and states

7 through 10. Now if we increase γ from 0.001 to 0.01, then a partition with three blocks is

obtained: states 1 through 6, states 7 and 8, and states 9 and 10. Finally, if the parameters

are changed to α = 0.8, β = 0.6 and γ = 0.01, then the TPABLO1 will give a partition with

four blocks: states {1,2,3},{4,5,6},{7,8} and {9,10}. Here we can see TPABLO1 algorithm

can provide the desired blocks of NCD Markov chains.

6.4 Spectral Clustering Procedures for Finding Blocks of

Matrices

The objective of spectral clustering is to group graph nodes based on a partitioning.

One popular partitioning objective is normalized cut (balanced minimum cut), which can be

related to the state clustering of Markov chains in the framework of a random walk generated

on a graph. This partitioning objective can be used to find blocks of a probability matrix

arising in the context of a Markov random walk on a graph. Each block corresponds to a

cluster of graph nodes. Extending this idea, we shall apply spectral clustering techniques to

general stochastic matrices in order to partition them. Of special concern is the application

of finding blocks of NCD Markov chains. In this section, such spectral clustering procedures

are introduced.

To decompose matrices into blocks, we seek to obtain multiple clusters of graph

nodes using spectral clustering, and just bi-partitioning, i.e. a pair of clusters of graph

nodes. One solution is to use multiple eigenvectors to group nodes into multiple subsets

without losing information of whole graph structure. We can do this because of Courant-

Fischer theorem, which will be explained in next section. Based on the Rayleigh quotient

101

and Courant-Fischer theorem, we propose a heuristic method for determining the number

of clusters in a graph.

6.4.1 The Rayleigh Quotient and Courant-Fischer Theorem

Given a symmetric matrix A and a nonzero real vector x, the Rayleigh quotient

R(A, x) is defined as:

R(A, x) =
xT Ax

xT x
. (6.1)

A well known result from matrix computation [16] states that

λmax = max
x 6=0

R(A, x) and λmin = min
x 6=0

R(A, x), (6.2)

where λmax and λmin are the largest and smallest eigenvalue of A respectively, and x is the

corresponding eigenvector.

It is only natural to wonder if the intermediate eigenvalues of a symmetric matrix

have representations similar to those of the extreme eigenvalues as described by Equation

(6.2). Fischer answered this question for matrices in 1905 while Courant [26] provided

extensions for infinite-dimensional operators in 1920. Their results are combined into the

so-called Courant-Fischer theorem which states:

Let V k denote a k dimensional subspace of Rn and x ⊥ V k mean that x ⊥ y for

all y ∈ V k. Then the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn of a symmetric matrix An×n are

λi = max
V i−1

(min
x⊥V i−1

x 6=0

R(A, x)) and λi = min
V n−i

(max
x⊥V n−i

x 6=0

R(A, x)) (6.3)

When i = 1 in the max-min formula and when i = n in the min-max formula, these results

revert to Equation (6.2).

From the proof of the Courant-Fischer theorem, it will follow that λi is attained

when V i−1 in the first expression is the span of the first i− 1 eigenvectors of A, and V n−i

in the second expression is the span of the last n − i eigenvectors of A. This means the

ith eigenvector of A minimizes R(A, x) in a subspace that is the span of the last n− i + 1

eigenvectors.

102

6.4.2 Determining the Number of Clusters

It is difficult to determine the number of clusters in a graph, because the criteria is

obscure. How do we identify three clusters rather than two or four? Generally, the number

of clusters is given as an input parameter in the previously discussed algorithms of spectral

clustering. Here we propose a heuristic method based on the Courant-Fischer theorem to

determine the number of clusters of a graph. The explanation is below:

From Theorem 3.7.1, the minimum value of a normalized cut can be obtained by

minimizing the Rayleigh quotient of the normalized Laplacian matrix L, and the eigenvector

corresponding to the second smallest eigenvalue of L provides a way of grouping nodes

into two clusters based on this normalized cut objective. This can also be observed from

Equation (3.32). Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of the normalized Laplacian L
and let v1, v2, . . . , vn be their corresponding eigenvectors. Each eigenvector of L represents

a partition solution of the graph. The v1 minimizes the Rayleigh quotient R(L, x) and

R(L, v1) = λ1 = 0. However v1 indicates that all nodes are in one cluster since all elements

in v1 have the same sign. It does not provide the normalized cut solution. The Courant-

Fischer theorem tells us that the second eigenvector v2 minimizes R(L, x) in the subspace

which is the span of the last n−1 eigenvectors. It is for this reason that v2 has been chosen

to be the heuristic solution of the normalized cut. If we do not choose the partition solution

provided by v2, then we can pick up v3 to partition the graph, because v3 minimizes R(L, x)

in the subspace which is the span of the last n − 2 eigenvectors. Recall that the Rayleigh

quotient R(L, vi) = λi evaluates the cut value of a partition given by vi. If R(L, v3) = λ3 is

close to 0 and not much different with λ2, then the partition solution given by v3 also makes

sense and provides clustering information. This description is illustrated in the example of

Figure 6.1. The left part of Figure 6.1 is a partition on a graph given by v2 and the right

Figure 6.1: Using eigenvector v2 and v3 to partition a graph

103

part is a partition given by v3. We can now obtain three clusters in this graph based on

eigenvectors v2 and v3 together. This illustration gives us the intuition that the number of

clusters in a graph can be determined by the number of eigenvectors with which we choose

to partition the graph. If we choose m eigenvectors v2, v3, . . . , vm+1 to partition the graph,

then the number of clusters obtained is m + 1.

Now this problem moves to the criterion of which eigenvectors should be chosen

to partition the graph. Each eigenvalue λi of the normalized Laplacian L evaluates the

cut value of a partition given by vi, and the second smallest one λ2 evaluates the value of

the normalized cut. Therefore the eigenvalues of L can tell us which eigenvectors should

be chosen. The details of how to decide upon the number of clusters is explained in our

improved spectral clustering algorithm, which is in Section 6.4.4.

6.4.3 Spectral Clustering using Two Clustering Techniques on Markov

Chains

As shown in Section 4.3, spectral clustering can be depicted in the framework of

Markov random walks on the graph structure by P = D−1A, where A is the adjacency

matrix of a graph G and D is a diagonal matrix whose ith diagonal element is the ith

vertex degree. P generated here is a transition probability matrix, and its eigenvalues are

all real [22]. It is already known that the solution of the eigenvalue problem Pv = λv is

also the solution of the generalized eigenvalue problem of the Laplacian Lv = (1− λ)Dv in

Equation (3.31), which is used to minimize the normalized cut [24]. The eigenvalue λ of P

is shifted to the eigenvalue 1− λ of the normalized Laplacian L. Therefore, the eigenvector

corresponding to the second largest eigenvalue of P provides the heuristic solution for the

normalized cut. Moreover, the stochastic matrix P and its eigenvectors are used in spectral

clustering algorithms [25, 38].

The stochastic matrix P can represent a Markov chain, and there are two clus-

tering techniques for Markov chains. The first technique focuses on the eigenvectors of

P corresponding to the positive eigenvalues closest to 1, and the clustering information

provided by these eigenvectors is based on the normalized cut. The second focuses on the

eigenvectors of P corresponding to the eigenvalues with modulus closest to 1 (not necessarily

positive), and the clustering information provided by these eigenvectors is based on a mea-

sure of the relative “distance” from each state to the stationary distribution. In previous

104

spectral clustering algorithms, only the first technique is used. In other words, only those

eigenvectors with positive eigenvalues are used. Actually the eigenvector associated with a

negative eigenvalue having the second largest modulus also provides important clustering

information, i.e., cluster structure and the role or position of states (graph nodes) in each

cluster, as discussed in Section 4.4. This is why here we introduce an improved spectral

clustering algorithm that incorporates the two clustering techniques of Markov chains to-

gether. In Section 7.3, we shall see that our algorithm can be applied to detect communities

in complex networks.

6.4.4 Multiple Clustering using Multiple Eigenvectors

The eigenvalues with large modulus of a stochastic matrix P show that the corre-

sponding right eigenvectors, in which we are interested, contain significant information for

clustering states. Since there are two clustering techniques available for a Markov chain,

we analyze these right-hand eigenvectors from two aspects.

First, we pay attention to the eigenvectors associated with positive eigenvalues.

Each eigenvector of P , likes each eigenvector of the normalized Laplacian L, gives a partition

solution of the graph G. The eigenvector having second largest eigenvalue provides the

solution of the normalized cut. However, if the third or fourth largest eigenvalue of P is

also close to 1, then the clustering information contained in these corresponding eigenvectors

can not be ignored. Suppose the number of clusters existing in a graph is not given as a

known, then, from the discussion in Section 6.4.2, this parameter may be determined by

the number of eigenvectors with which we choose to partition the graph. Now we have to

decide which eigenvectors are important.

An interesting result [9] is that a graph or a network is called well clustered if

the P of a Markov random walk on this graph presents a spectral gap with a few nearly

piece-wise constant eigenvectors with eigenvalues close to 1. A spectral gap means that if

we sort the eigenvalues of P in descending order, there is an apparent value gap (value drop)

between eigenvalues. This result may suggest a way of choosing important eigenvectors with

which cluster nodes, based on such spectral gap of P . However, it is not easy to find out a

spectral gap of P , especially when the state space is quite large and the eigenvalues of P are

close and numerical-sensitive. An alternative way here is to examine a ratio of two adjacent

eigenvalues of P , and then to decide the importance of the corresponding eigenvector for

105

clustering based on this ratio.

To decide which eigenvector is important, let λ1 . . . λm be the positive eigenvalues

of P with the order λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0, and v1 . . . vm be the corresponding right-hand

eigenvectors, so λ1 = 1 and v1 = e = [1, . . . , 1]T . We need to first check v2, which provides

the solution of normalized cut. If λ2 ≈ 1, then v2 is significantly important; otherwise, v2

is little important (the graph does not have well clustered structure). For the eigenvector

vi (i = 3, . . . , m), if vi−1 is important for clustering and





λi/λi−1 ≈ 1, then vi is significant;

λi/λi−1 ≈ 0, then vi is of little importance.

Now let us introduce two input parameters α and β to control which eigenvectors

should be chosen. Our algorithm begins by checking eigenvectors consecutively from v2 to

vm. The first parameter α is used to check v2. If λ2 ≥ α, then v2 is important; otherwise it

is of little importance. The second parameter β is used to check v3 . . . vm. The eigenvector

vi (i = 3 . . .m) is marked as important if λi/λi−1 ≥ β. The algorithm will not check

any further eigenvectors once it discovers the first eigenvector vj , for which λj/λj−1 < β.

Suppose v2 is of little importance, then we do not need to check consecutive eigenvectors

with positive eigenvalues because they are all of little importance. Finally, if the algorithm

stops at vj , then we obtain the important eigenvectors from v2 to vj−1 for clustering, which

imply that the number of clusters is j − 1.

We can see that the number of clusters obtained from our algorithm is controlled

by the input parameters α and β, where 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. The choice of α provides

the user a control over how the graph is partitioned. It can be set as α = 0.5, so if λ2 < 0.5,

then the graph contains only one cluster, itself. The value of β can vary to control whether

multiple clusters greater than two are obtained or not. This β can also help us to find a

spectral gap of P . Empirically, β between 0.7 and 0.9 can produce the desired clusters.

One another choice is to set β = λ2.

Second, we need to pay attention to a negative eigenvalue of P having the second

largest modulus; if it exists, the corresponding eigenvector is also important and its elements

give the relative “distance” from each state (graph node) to the steady state. Elements with

small modulus in this eigenvector indicate that the corresponding states are close to the

106

steady state; in other words, these states are in a group in which states are more closely

linked with each other. On the other hand, elements with large modulus indicate the

corresponding states are far from the steady state and the states are not closely linked with

each other. Also, element values that are close means that the corresponding states have

more chance to be directly linked with each other than those whose values are not close.

Therefore, the significant clustering information in this eigenvector should not be ignored.

In summary, we propose using two clustering techniques to group graph nodes.

The eigenvectors with positive eigenvalues, which we choose by two input parameters α and

β, can be used to determine the number of clusters in a graph, and the eigenvector with

negative eigenvalue having second largest modulus indicates the cluster structure and the

role or position of nodes in each cluster.

6.4.5 The Regular Clustering Algorithm

The spectral clustering algorithm is frequently used in the application of image

segmentation. Later we shall see that it can also be applied to study the community

structure in a complex network. However in these situation MARCA and TPABLO fail.

We first present a regular spectral clustering algorithm that is suitable for the case of small-

scale data, i.e., the number of graph nodes n ≈ 102 or 103. Although the matrix P here

is not large, we do not need to waste time and effort to calculate all n eigenvalues of P .

The reason is that, in practice, the number of clusters k has k ≈ 10 or 102, and only

the first tens of eigenvalues and their corresponding eigenvectors are needed. Therefore,

in the algorithm, we just calculate the first m (m ≈ n/10) largest eigenvalues and their

corresponding eigenvectors with which to do the clustering.

The procedure of our clustering algorithm consists of the following steps:

1. Given a graph G with n (n ≈ 102 or 103) nodes, generate a Markov random walk on

G as P = D−1A, where A is the adjacency matrix of G and D is a diagonal matrix

whose ith diagonal element is the ith vertex degree. P is a stochastic matrix.

2. Solve the eigenvalue problem Pv = λv.

If the number of clusters k is given as a known, then calculate v1, . . . , vk, the right

eigenvectors corresponding to the first k largest eigenvalues, and go to Step 4;

107

If k is not known a priori, then calculate 1 = λ1 ≥ · · · ≥ λm ≥ 0 the first m (m ≈ n/10)

largest eigenvalues and their corresponding right eigenvectors v1, . . . , vm.

3. If λ2 < α, then v2 is of little importance; there is no clustering and the algorithm

stops; otherwise v2 is marked as important.

Next, compare v3 to vm. The algorithm marks vi as important if λi/λi−1 ≥ β, until

the first of little importance vk+1 is found; that is λk+1/λk < β. The important

eigenvectors obtained are v2, . . . , vk.

4. Form a matrix V whose column are v2, . . . , vk and the number of clusters is k.

5. Cluster the rows of V as points using the K-means algorithm with k clusters.

6. Calculate the eigenvalue λn of P .

If λn is smallest but has the second largest modulus, then use the clustering result

from Step 5 to partition vn into k groups. Analyze the cluster structure and the role

or position of nodes based on the elements in each group of vn.

Let us first look at how this clustering algorithm works on some artificial sample

graphs. The two parameters of our algorithm are set to be α = 0.8 and β = 0.85.

Example 6.4.1. This is a graph with twelve vertices as shown in Figure 6.2. After for-
mulating P on this graph, we obtain eigenvalues of P , λ2 = 0.9126, λ3 = 0.8913 and
λ4 = 0.3919. The eigenvector v2 is important for clustering because λ2 > α = 0.8; v3 is
also important since λ3/λ2 = 0.9767 > β = 0.85. But v4 is of little importance because
λ4/λ3 = 0.4397 < β. Therefore we use v2 and v3 together to cluster vertices and the number
of clusters k = 3. There is no negative eigenvalue having second largest modulus.

108

Figure 6.2: An sample graph with twelve vertices.

v2,v3 =




−0.3497 0.1966

−0.3740 0.2144

−0.4098 0.2405

−0.2643 0.1361

−0.0000 −0.0471

0.0000 −0.3981

0.0000 −0.5086

0.0000 −0.5086

0.2643 0.1361

0.3497 0.1966

0.3740 0.2144

0.4098 0.2405




.

The K-means method gives clusters {1,2,3,4},{5,6,7,8} and {9,10,11,12}. Actually from

v2, v3 and the graph, vertex 5 is more likely to be the center of this graph.

Example 6.4.2. This is a clique cycle graph with sixteen vertices in Figure 6.3. After
formulating P on this graph, since the eigenvalues λ2 = 0.8965 > α = 0.8, λ3 = 0.8965, λ4 =
0.7676, λ5 = 0, . . . , v2 is important for clustering. The eigenvectors v3 and v4 are also
important because λ3/λ2 = 1 > β = 0.85 and λ4/λ3 = 0.8562 > β. v5 is of little importance
obviously. Therefore we use v2, v3 and v4 together to cluster vertices and the number of
clusters k = 4. There is no such negative eigenvalue having the second largest modulus.

109

Figure 6.3: A clique cycle graph with sixteen vertices.

v1,v2,v3 =




0.0807 −0.1877 −0.1631

0.0807 −0.1877 −0.1631

0.1028 −0.1437 −0.1063

0.0336 −0.1734 −0.1063

−0.1437 −0.1028 0.1063

−0.1877 −0.0807 0.1631

−0.1877 −0.0807 0.1631

−0.1734 −0.0336 0.1063

−0.1028 0.1437 −0.1063

−0.0807 0.1877 −0.1631

−0.0807 0.1877 −0.1631

−0.0336 0.1734 −0.1063

0.1437 0.1028 0.1063

0.1877 0.0807 0.1631

0.1877 0.0807 0.1631

0.1734 0.0336 0.1063




.

The K-means method provides four cliques {1,2,3,4},{5,6,7,8},{9,10,11,12} and {13,14,15,16}
as shown in Figure 6.3.

In the case of NCD Markov chains, there may be some real positive eigenvalues very

close to 1. This fact can be associated with the first clustering technique using eigenvectors

corresponding to these positive eigenvalues.

Example 6.4.3. Example 6.2.1 shows a 10×10 irreducible stochastic matrix P . Using our
spectral clustering procedure, we calculate first several eigenvalues and their corresponding

110

eigenvectors of P . The eigenvalues in decreasing order are

λ =
(

1 0.999987 0.979026 0.793556 0.000154 · · ·
)

,

and their corresponding eigenvectors are the columns

v =




0.3162 −0.35187 −0.000076 0.442391 0.000000

0.3162 −0.35187 −0.000078 0.702501 0.006969

0.3162 −0.35187 −0.000074 0.557477 0.000001

0.3162 −0.35186 −0.000071 −0.000376 −0.006969

0.3162 −0.35186 −0.000073 −0.000419 0.708020

0.3162 −0.35186 −0.000071 −0.000157 −0.706122

0.3162 0.25354 −0.265854 −0.000007 0.000477

0.3162 0.25353 −0.258376 −0.000005 −0.000477

0.3162 0.25354 0.659064 −0.000007 0.000000

0.3162 0.25353 0.654368 −0.000006 0.000004

· · ·




.

If we set two parameters α = 0.95 and β = 0.9, then eigenvectors v2 and v3 are

important for clustering because λ2 > α = 0.95 and λ3/λ2 = 0.979 > β, but v4 is of little

importance because λ4/λ3 = 0.811 < β. Hence, we apply the K-means method on v2 and

v3 together to cluster states into three groups {1, . . . , 6}, {7, 8} and {9, 10}.
If β is decreased to 0.8 and α is unchanged, then v4 now is important for clus-

tering because λ4/λ3 = 0.811 > β, but v5 is obvious of little importance since λ5 al-

most equals to 0. The K-means method is applied on v2, v3 and v4 to obtain four clusters

{1, 2, 3}, {4, 5, 6}, {7, 8} and {9, 10}.
We can see that if the eigenvector v4 is used for clustering, then the group con-

sisting of the first six states will be split into two clusters {1, 2, 3} and {4, 5, 6}, however

its corresponding eigenvalue λ4 is not very close to 1. This is reasonable because there is a

transition step from state 1 to state 4 with probability 0.5, which indicates this interaction

is not weak.

Finally, we conclude that MARCA, TPABLO and the spectral clustering algorithm

all work well on this 10× 10 stochastic matrix to generate NCD blocks.

6.4.6 The Case of Large-Scale Data

In this section, we consider a spectral clustering algorithm suitable for the case of

large-scale data. It is common that, in the case of NCD Markov chains, P is a large-scale,

111

sparse matrix, e.g., the number of states n ≈ 106 or greater. It is also possible that the

number of nodes in a graph in some applications is quite large. This implies that the number

of clusters k can also be large. For spectral algorithms, it is not practical to calculate a

large number of eigenvalues and their corresponding eigenvectors for a large-scale matrix

P . However, it is easy to obtain the first several extreme eigenvalues of P . Therefore, we

propose a new spectral hierarchical clustering algorithm for finding blocks (clusters) on a

large-scale matrix (graph).

The idea is that we first partition a large-scale matrix P into several relative

smaller submatrices, then for each submatrix, we apply the regular spectral clustering algo-

rithm or other well known algorithms (MARCA and TPABLO) to obtain the final desired

blocks. To implement this idea, we compute the first m (m ≈ 20 to 40, m ¿ n) real largest

eigenvalues of P and their corresponding right eigenvectors. According to these m eigenvec-

tors, the clustering method provides us with m relative smaller submatrices. After that, we

continuous to partition each of these m submatrices by two approaches. One approach is to

use TPABLO or MARCA for the application of finding NCD blocks. One other approach

is to use the regular spectral clustering algorithm, which is suitable for more than the NCD

case.

The procedure of the clustering algorithm for large-scale matrices consists of the following

steps:

1. Given a graph G with n (n ≈ 106) nodes, generate a probability matrix P by P =

D−1A; or given a large-scale NCD Markov chain with a probability matrix P .

2. Solve the eigenvalue problem Pv = λv.

Compute the first m (m ≈ 20 to 40) real largest eigenvalues of P close to 1 and their

corresponding right eigenvectors v1, . . . , vm.

3. Form a matrix V whose column are v1, . . . , vm.

4. Cluster the rows of V as points using the K-means algorithm with m clusters, then

obtain m submatrices.

5. For each submatrix, there are two variants to do the postprocessing.

Variant 1: Apply TPABLO or MARCA on each submatrix to find the NCD blocks;

112

Variant 2: For each submatrix S, rescale S to a new probability matrix by P ′ = D−1S,

where D is a diagonal matrix whose ith diagonal element is the ith row sum of S.

Then, apply the regular spectral clustering algorithm on P ′ to obtain blocks.

We shall test this algorithm by using an example of NCD Markov chains generated

from MARCA software in Section 7.2.

In this chapter, we presented three heuristic methods for decomposing real un-

symmetric matrices. They are MARCA, TPABLO and spectral clustering method. our

emphasis was on the spectral clustering algorithm procedure for obtaining clusters of graph

nodes and blocks of NCD Markov chains. A modified procedure that is suitable for the case

of large-scale data matrices was introduced.

113

Chapter 7

Applications and Experimental

Results

Spectral clustering techniques are based on graph partitioning, which is of central

importance in map coloring, scheduling and also appears in various forms in parallel comput-

ing and other important applications. In recent years, spectral clustering has been proved

to be effective in applications of electronic circuit design, image segmentation and neural

information processing. In this chapter, we introduce some new applications employing the

spectral clustering techniques discussed in this dissertation.

Section 7.1 discusses the application of spectral clustering in software change im-

pact analysis using the signless Laplacian to extract the clustering information of change

records of a software system. In Section 7.2, we use the spectral clustering procedures

discussed in Section 6.4 to find the nearly-completely-decomposable components of a large-

scale NCD Markov chain. Incorporating the idea of modeling with Markov chains, spectral

clustering techniques can also be applied to detect community structures in complex net-

works. This is described in Section 7.3.

7.1 Software Change Impact Analysis

In Sherriff et al. [33], the singular value decomposition is used to generate clusters

in an analysis that is used to gauge the impact of software changes in a computer system,

an analysis referred to as a Software Change Impact Analysis. The data is extracted from

114

a set of change records of the software system and used to construct an analysis matrix

that describes the historical change between two files. The singular vectors of the analysis

matrix, which constitute the clustering information of change records, are used to guide

impact analysis. The analysis matrix used has exactly the same structure as the signless

Laplacian matrix M and since the singular vectors of M are also the eigenvectors of M in

spectral clustering, it follows that the singular vectors generate the required clusters. An

example of such an analysis matrix M is

M =




25 10 0 0 0

10 31 21 0 0

0 21 24 0 0

0 0 0 15 12

0 0 0 12 17




.

This matrix depicts a small software system in which each row and column represents a

separate file. There are five files in the system. The values in M represent the number

of times that each file is changed in a track with another file. For example, File 2 has

been changed 10 times with File 1; 21 times with File 3 and 0 times with itself (since

m22 = m21 + m23, where mij is the element of M in ith row and jth column). Similarly,

File 5 has been changed 12 times with File 4 and 5 times with itself. We can create an

undirected graph based on these change records using each separate file as a vertex. The

weight of an edge represents the number of times that two files have been changed together.

The self-loops in the graph mean that the file has been changed in isolation from other files.

Thus, the adjacency matrix A and diagonal degree matrix D of the graph are

A =




0 10 0 0 0

10 0 21 0 0

0 21 0 0 0

0 0 0 0 12

0 0 0 12 0




, D =




25 0 0 0 0

0 31 0 0 0

0 0 24 0 0

0 0 0 15 0

0 0 0 0 17




.

It is easy to verify that the signless Laplacian is M = D + A. Hence clustering information

concerning change records is obtained by computing the singular vectors (eigenvectors)

of M . Since the graph is unconnected, the nonnegative matrix M is reducible: the first

singular vector can be combined with the second to identify potential association clusters.

115

The singular vectors and singular values of M are, respectively,

U = V =




−0.29 0 0.9 0.31 0

−0.76 0 −0.02 −0.65 0

−0.59 0 −0.43 0.69 0

0 −0.68 0 0 −0.74

0 −0.74 0 0 0.68




,

D =




51.1 0 0 0 0

0 28.4 0 0 0

0 0 24.8 0 0

0 0 0 4.1 0

0 0 0 0 3.9




.

These matrices show that Files 4 and 5 are strongly linked in isolation from the rest of the

system. Also, Files 1, 2 and 3 are linked. In this particular example, a high singular value

indicates that that association cluster is more prominent in matrix M , due to a greater

number of changes that have occurred to that set of files.

Based on the graph and analysis matrix M , we can also obtain the unoriented

incidence matrix IG, where M = IGIG
T .

IG =




√
15

√
10 0 0 0 0 0

0
√

10
√

21 0 0 0 0

0 0
√

21
√

3 0 0 0

0 0 0 0
√

3
√

12 0

0 0 0 0 0
√

12
√

5




.

Again the singular value decomposition is applied to IG and we find

U =




0.29 0 −0.9 0.31 0

0.76 0 0.02 −0.65 0

0.59 0 0.43 0.69 0

0 0.68 0 0 −0.74

0 0.74 0 0 0.68




,

116

V =




0.16 0 −0.70 0.60 −0.00 0.34 0.09

0.46 0 −0.56 −0.53 0.00 −0.41 −0.10

0.86 0 0.41 0.08 −0.00 0.29 0.07

0.14 0 0.15 0.59 0.00 −0.76 −0.19

0 0.22 0 0 −0.64 −0.18 0.71

0 0.92 0 0 −0.10 0.09 −0.36

0 0.31 0 0 0.76 −0.14 0.55




,

D =




7.15 0 0 0 0 0 0

0 5.30 0 0 0 0 0

0 0 4.98 0 0 0 0

0 0 0 2.02 0 0 0

0 0 0 0 1.99 0 0




.

The matrix U is also the matrix of eigenvectors (singular vectors) of M , and provides

clustering information for the five files (vertices) in the software system. The matrix V

provides the information for the interaction (edges) of these five files. The singular values

of IG are the square root of the eigenvalues of M .

In this application, the signless Laplacian provides us a general way of modeling

a set of change records of a software system for clustering files within the system. Our

approach shows that clustering analysis in software change impact analysis is based on the

graph partitioning objective of maximum association. The SVD on a node-edge incidence

matrix can also generate the clusters of files in a set of change records.

7.2 NCD Markov Chains

The right-hand eigenvectors of the transition probability matrix P provide state

clustering information for Markov chains based on two clustering techniques. The eigen-

vector corresponding to the second largest eigenvalue of P in the sense of graph balanced

minimum cut is generally the most important in this regard. Let us apply our spectral clus-

tering procedures on problems of NCD Markov chains to decompose transition probability

matrices into blocks.

Example 7.2.1. Consider the 8 × 8 Courtois transition probability matrix P [35] with

117

NCD structure shown below,

P =




0.85 0.0 0.149 0.0009 0.0 0.00005 0.0 0.00005

0.1 0.65 0.249 0.0 0.0009 0.00005 0.0 0.00005

0.1 0.8 0.0996 0.0003 0.0 0.0 0.0001 0.0

0.0 0.0004 0.0 0.7 0.2995 0.0 0.0001 0.0

0.0005 0.0 0.0004 0.399 0.6 0.0001 0.0 0.0

0.0 0.00005 0.0 0.0 0.00005 0.6 0.2499 0.15

0.00003 0.0 0.00003 0.00004 0.0 0.1 0.8 0.0999

0.0 0.00005 0.0 0.0 0.00005 0.1999 0.25 0.55




.

Its eigenvalues are given by

λ =
(

1.0000 0.9998 0.9985 0.7500 0.5501 0.4000 0.3007 −0.1495
)

.

Observe that the eigenvalues λ2 = 0.9998 and λ3 = 0.9985 are very close to the unit
eigenvalue 1, and also very close to each other. If we set two parameters of the clustering
procedure α = β = 0.95, then the second and third right-hand eigenvectors v2 and v3 are
both important for clustering because λ2 > α and λ3/λ2 > β, but v4 is of little importance
due to λ4/λ3 < β. The corresponding right-hand eigenvectors of λ2 and λ3 are

v2,v3 =




−0.3536 −0.4876

−0.3536 −0.4878

−0.3536 −0.4883

−0.3536 0.3783

−0.3536 0.3777

0.3536 0.0073

0.3536 0.0073

0.3536 0.0073




,

These two eigenvectors can be used to obtain the NCD blocks on the Markov chain.

Based on v2, the first five states form one cluster, the remaining states form the other cluster.

After checking v3, it is apparent that although the states can still be partitioned into two

clusters, the last two states of the first group can be separated out. In this way, using both

v2 and v3, the three blocks of states in this NCD Markov chain can be found. They are

{1,2,3}, {4,5} and {6,7,8}.
Now we present another example to test our spectral hierarchical clustering algo-

rithm for decomposing a large-scale NCD matrix into blocks.

118

Example 7.2.2. One NCD matrix corresponding to an interactive computer system is

generated from the package MARCA due to Stewart [36]. We compared the partition result

from our algorithm to those obtained by MARCA and TPABLO.

In the algorithm of MARCA, a parameter γ, which can be varied from 10−10 to

10−1, is introduced. All elements of a matrix whose magnitudes are less than or equal to

γ are discarded. The remaining matrix is treated as a directed graph, and the strongly

connected components in this graph are determined as the NCD blocks. The NCD example

matrix we tested has 23, 426 states and 156, 026 nonzero elements. The results given by

MARCA with γ = 10−2 and TPABLO with α = β = 0.5, γ = 10−2 are the same, i.e., 51

blocks have been found with the smallest size 1 and the largest size 1, 326.

Using our hierarchical algorithm, we compute first 20 largest real eigenvalues and

their corresponding right-hand eigenvectors of P associated with this NCD chain. Then K-

means clustering algorithm on these 20 eigenvectors provides 20 relative smaller submatrices

than the original P . After applying TPABLO or MARCA with the same parameters as

before on each submatrix, we finally obtain the desired 51 blocks.

Our approach successfully provides NCD components of an NCD Markov chain

and shows that finding this NCD structure has quite close relation with the minimum

cut of graph partitioning in spectral clustering. The number of NCD components can be

determined by the number of eigenvalues of P close to 1.

In next section, we shall show some examples on which our spectral clustering

algorithm can produce desired clusters, but MARCA and TPABLO fail.

7.3 Community Networks

Spectral clustering can be applied to detect community structures in a large com-

plex network, depicted as a Markov random walk on a graph. We use our clustering algo-

rithm to decompose the transition probability matrix P of this Markov random walk into

blocks where each block represents an actual community in the network. In this situation

of decomposing a matrix, MARCA and TPABLO fail to provide the meaningful blocks.

We show three real-world networks, which have been commonly used in research

papers that discuss the community problems. Here, since all these networks are represented

by graphs, our new spectral techniques on the random walks of these graphs can be applied.

119

Example 7.3.1. Karate club network in an American university analyzed by Zachary [41].

This network consists of 34 members of a karate club. Zachary used a weighted

graph to depict this network, and observed that this club had been divided into two groups

in practice. After formulating a random walk on this network using P = D−1A, where

A is an adjacency matrix of the graph, we apply the MARCA and TPABLO algorithms

on P to find a partition of the nodes. However MARCA and TPABLO fail to give the

real partition of this network observed by Zachary based on the input parameters. If

calculating the second largest eigenvalue of P , λ2 = 0.8899 and its corresponding right-

hand eigenvector v2, because we already know that this club has been separated into two

groups (the number of clusters is given), we only use v2 to group nodes into two clusters

{1 − 8, 11 − 14, 17, 18, 20, 22} and {9, 10, 15, 16, 19, 21, 23 − 34}. This is the same to the

actual structure of this Karate club observed by Zachary after the split.

If we remove the weights from the graph and only analyze the graph structure,

the eigenvalues of P now are λ2 = 0.8677, λ3 = 0.7130, λ4 = 0.6127, λ5 = 0.3878,

Since this time the number of clusters is not known, we set α = β = 0.8, then λ2 > α

and λ3/λ2 = 0.8217 > β, λ4/λ3 = 0.8593 > β, λ5/λ4 = 0.6329 < β. The important

eigenvectors for clustering are v2, v3 and v4. Therefore we use these three eigenvectors to

group the nodes into four clusters. Observe that the eigenvalue with the second largest

modulus is positive. The K-means method gives clusters {1− 4, 8, 12− 14, 18, 20, 22}, {5−
7, 11, 17}, {9, 10, 15, 16, 19, 21, 23, 27, 30, 31, 33, 34} and {24− 26, 28, 29, 32}. This result co-

incides with the ‘optimal’ partition of Li, Zhang et al.[21] which is shown in Figure 7.1.

In the work of Li, Zhang et al., they use a quantitative function for community partition,

called modularity density or D-value. To detect communities in a network, they try to

find a partition such that the modularity density D is maximized. However, the search for

optimal D is a NP-hard problem [21].

Figure 7.1: Karate club network

120

If we apply MARCA and TPABLO on P , they also fail to provide the actual two

groups of the club after the split or the result of four groups in Figure 7.1.

Example 7.3.2. Journal citation network constructed by Rosvall and Bergstrom [32].

In this network, 40 journals from four different fields: physics, chemistry, biology

and ecology, are considered as nodes. In each field, 10 journals with the highest impact

factor were selected. There are 189 links connecting nodes if one or more articles from one

journal cite articles in another journal during 2004. Using the method of analyzing the

random walk on this network, we obtain a probability matrix as P = D−1A. We first use

MARCA and TPABLO to analyze P . However they fail to generate the actual structure of

this journal citation network with four fields.

Using the spectral algorithm, we compute the eigenvalues of P , λ2 = 0.8813,

λ3 = 0.7301, λ4 = 0.6209 and λ5 = 0.2932. If the two parameters of our clustering

algorithm are α = β = 0.8, then the eigenvectors v2, v3 and v4 are marked as important for

partitioning. Therefore we use these three eigenvectors to group nodes into four clusters.

The K-means method finally gives clusters {1, . . . , 10} as physics, {11, . . . , 20} as chemistry,

{21, . . . , 30} as biology and {31, . . . , 40} as ecology.

Example 7.3.3. The American college football network during the regular fall 2000 season

[15].

There are 115 teams denoted by nodes on this network. The teams are divided

into 12 conferences containing around 8-12 teams each. After formulating a Markov random

walk on this network using P = D−1A, we first run Marca and TPABLO to analyze P . The

partitioning results of 115 teams from them are far from the actual conferences structure

in the real world.

Using our clustering algorithm mentioned in Section 6.4, we then solve the eigen-

value problem of P of the associated Markov chain. The eigenvalues from λ2 to λ13 are:

0.8632 0.8171 0.7749 0.7604 0.7177 0.7001

0.6753 0.6227 0.5900 0.5419 0.4488 0.3740

If the two parameters of our clustering algorithm are α = 0.8 and β = 0.9, then we shall

obtain the important eigenvectors for clustering v2, . . . , v11. This implies that our algorithm

121

produces 11 conferences in this American college football network. Actually it is reasonable.

In the original conference organization, five members of the 12th conference have few edges

between them, therefore in our result, these five nodes are distributed to other clusters. Our

result coincides with the observation of Li, Zhang et al.[21]. Meanwhile, one new community,

nodes {37, 59, 60, 64, 98}, is constructed in Li, Zhang et al., which is not recommended by the

eigenvalues and eigenvectors of P . In our result, the five nodes in this small new community

are assigned to the conferences with which they are most closely associated. For example,

59-“LouisianaTech” 60-“LouisianaMonroe” 64-“MiddleTennesseeState” are assigned to the

Southeastern. This is why 11 clusters are recommended on this network. Using our approach

we find

1. Cluster 1: {4, 6, 11, 41, 53, 73, 75, 82, 85, 99, 103, 108},

2. Cluster 2: {12, 25, 29, 51, 70, 91},

3. Cluster 3: {2, 26, 34, 38, 46, 90, 104, 106, 110},

4. Cluster 4: {20, 30, 31, 36, 56, 80, 81, 83, 95, 102},

5. Cluster 5: {47, 50, 54, 68, 74, 84, 89, 111, 115},

6. Cluster 6: {3, 7, 14, 16, 33, 40, 48, 61, 65, 101, 107},

7. Cluster 7: {8, 9, 22, 23, 52, 69, 78, 79, 109, 112},

8. Cluster 8: {45, 49, 58, 67, 76, 87, 92, 93, 98, 113},

9. Cluster 9: {13, 15, 19, 27, 32, 35, 37, 39, 43, 44, 55, 62, 72, 86, 100},

10. Cluster 10: {1, 5, 10, 17, 24, 42, 94, 105},

11. Cluster 11: {18, 21, 28, 57, 59, 60, 63, 64, 66, 71, 77, 88, 96, 97, 114}.

Since 12 conferences exist in the college football network, we can also apply the K-

means method with k = 12 on the corresponding eigenvectors v2, . . . , v12 to get 12 clusters.

The nodes that are underlined in the 11 clusters above are collected to form a new cluster

(community) {37,59,60,64,81,83,98}, and the other nodes are not changed. Therefore, the

only difference now with the result of Li, Zhang et al., is the nodes 81, 83 in this new

122

community. In the real conference partition, nodes 81, 83 are in the Independents with

node 37, which means nodes 81, 83 in this new cluster is reasonable. However, this new

cluster has few edges between each node rather than other clusters, so the 11 conferences

recommended by our clustering algorithm is an appropriate choice.

In this chapter, three applications of spectral clustering techniques are presented:

(1) software change impact analysis, (2) finding NCD blocks of a matrix and (3) obtaining

reasonable communities structure in complex real-world networks. As we have seen, spectral

clustering algorithms are effective at clustering graph nodes and decomposing matrices into

blocks. Although spectral based methods are expensive in computation and complexity

compared with MARCA and TPABLO algorithms, it works well in the case of studying the

community structure in practice where MARCA and TPABLO do not.

123

Chapter 8

Conclusions

In this dissertation, we introduced the concept of modeling the dual problem of

graph partitioning, namely graph clustering, using the signless Laplacian matrix. We pre-

sented a new spectral method which shows that the eigenvector associated with the second

largest eigenvalue of the signless Laplacian provides a heuristic solution for clustering nodes

based on a maximum association objective. This clustering result coincides with the graph

partitioning solution based on minimum cut. The spectral algorithm generates the cluster

values (eigenvalues of the signless Laplacian) which can be compared with cut values (eigen-

values of the Laplacian). We also extended the spectral clustering technique to a graph with

negative edge weights. One application of partitioning a graph having negative edge weights

is that involving the clustering analysis of a multivariate data matrix. The result obtained

from spectral graph partitioning is related to the result obtained from principal components

analysis.

In addition, we reveal the connection between the SVD and eigendecomposition in

applications of spectral graph partitioning and clustering. The clustering from an SVD is in

the sense of graph partitioning. We showed that the SVD of the node-edge incidence matrix

can generate edge clusters of a graph and not just node clusters. This idea is generalized to a

methodology for clustering two classes of states, i.e., applying SVD on a rectangle incidence

matrix to show the relationship between the two classes. We also presented an application

to simultaneously obtain clusters of terms and documents from a term-document matrix.

Depicting spectral clustering in the framework of a Markov random walk on a

graph, we were able to propose two different clustering measures on the states of Markov

124

chains. The first is a partition measure based on the normalized cut and the second,

a measure of the distance of states from steady state. We paid particular attention to

negative eigenvalues having large modulus, especially if one of them is the subdominant

eigenvalue. Such eigenvalues are usually ignored in spectral clustering. It is shown that

their corresponding eigenvectors provides important clustering information. We relate these

two clustering techniques to obtain more comprehensive information concerning clusters on

graph nodes.

A new regular spectral clustering algorithm incorporating two clustering tech-

niques on Markov chains is concluded in this dissertation. According to the control of two

parameters, this algorithm can determine the number of clusters on a network, and choose

significant eigenvectors of the transition matrix of a Markov random walk to cluster states.

We also propose a hierarchical clustering method which is suitable for large-scale matrices,

especially in the application of NCD Markov chains. Experiment results show that our

algorithms work well.

We applied our algorithm to real-world networks and obtained reasonable com-

munities structure on these networks as well. If a Markov chain generated on a network is

periodic, then we can not use the second measure on states of Markov chains to interpret

the clustering information. However we can also get the communities of this network in

the sense of normalized cut. For some networks with special structure, e.g. cycle graph

and complete graph, all nodes have the same role so that it makes no sense to cluster.

These kinds of special structures can be detected by their spectrums before the clustering

algorithm is applied.

125

Bibliography

[1] M. Brand and K. Huang. A unifying theorem for spectral embedding and clustering.

9th International Conference on Artificial Intelligence and Statistics, 2003.

[2] P. Chan, M. Schlag, and J. Zien, Spectral k-way ratio cut partitioning, IEEE Trans.

CAD-Integrated Circuits and Systems, Vol. 13, pp. 1088-1096, 1994.

[3] H. Choi and D. B. Szyld, Application of threshold partitioning of sparse matrices to

Markov chains.

[4] F. R. K. Chung, Spectral Graph Theory, Providence, RI: Amer. Math. Soc., 1997.

[5] D. Cvetkovic, M. Doob, and H. Sachs. Spectra of Graphs. Theory and application. J.

A. Barth Verlag, Leipzig, 3rd edition, 1995.

[6] D. Cvetkovic, P. Rowlinson, and S. K. Simic. Signless Laplacians of finite graphs. Linear

Algebra and its Applications, 423:155-171, 2007.

[7] Inderjit S. Dhillon. Co-clustering documents and words using bipartite spectral graph

partitioning. Proceedings of the Seventh ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, August 26-29, 2001, San Francisco, California,

USA.

[8] I. S. Dhillon, Y. Guan, and B. Kulis, A unified view of kernel k-means, spectral clus-

tering and graph partitioning, UTCS Technical Report #TR-04-25, June 30, 2004.

[9] W. E, T. Li, E. Vanden-Eijnden, Optimal partition and effective dynamics of complex

networks, Proc. Natl. Acad. Sci. USA 105, 7907-7912, 2008.

126

[10] C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for improving network

partitions. Technical Report 82CRD130, GE Corporate Research, 1982.

[11] M. Fiedler. Algebraic connectivity of graphs. Czecheslovak Mathematical Journal,

23:298-305, 1973.

[12] M. Fiedler. A property of eigenvectors of non-negative symmetric matrices and its

application to graph theory. Czechoslovak Mathematical Journal, 25:619-632, 1975.

[13] M. Filippone, F. Camastra, F. Masulli and S. Rovetta. A survey of kernel and spectral

methods for clustering. Pattern Recognition, Vol. 41, No. 1., pp. 176-190, 2008.

[14] M.R.Garey and D.S.Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H.Freeman & Company, 1979.

[15] M. Girvan, M. E. J. Newman, Community structure in social and biological networks,

Proc. Natl. Acad. Sci. USA 99, 7821-7826, 2002.

[16] G.H. Golub and C.F.Van Loan. Matrix computations. Johns Hopkins University Press,

3rd edition, 1996.

[17] W. Hardle and L. Simar, Applied Multivariate Statistical Analysis, Springer, 2nd edi-

tion, 2007

[18] D. J. Higham and M. Kibble. A unified view of spectral clustering. University of Strath-

clyde Mathematics Research Report, 2004.

[19] P. V. Hilgers and A. N. Langville. The five greatest applications of Markov Chains.

2006.

[20] B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The

Bell System Technical Journal, 29(2): 291-307, 1970.

[21] Z. Li, S. Zhang, R. S. Wang, X. S. Zhang, L. Chen, A novel quantitative function for

community detection, Physical Review E., 77 (1), 036109, 2008.

[22] N. Liu and W. J. Stewart, Clustering procedures for Graphs and Markov chains.

127

[23] C. D. Manning, P. Raghavan and H. Schutze. Introduction to information retrieval,

Cambridge University Press, 2008.

[24] M. Meila and J. Shi. Learning segmentation by random walks, in: NIPS, pp. 873-879,

2000.

[25] M. Meila and J. Shi. A random walks view of spectral segmentation, 2001.

[26] Carl D. Meyer. Matrix analysis and applied linear algebra. SIAM, 2000.

[27] A. Y. Ng, M. I. Jordan and Y. Weiss, On spectral clustering: Analysis and an algorithm,

Advances in Neural Information Processing Systems 14, pages 849-856, Cambridge,

MA, MIT Press, 2002.

[28] C. Nicholas and R. Dahlberg. Spotting topics with the singular value decomposition.

PODDP’98, LNCS 1481, pp.82-91, 1998.

[29] J. O’Neil and D. B. Szyld, A block ordering method for sparse matrices.

[30] A. Pothen, H. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of

graphs. SIAM Journal on Matrix Analysis and Applications, 11(3):430-452, July 1990.

[31] W.H. Press, S.A.Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical recipes in For-

tran 77: the art of scientific computing, Cambridge University Press, 1994.

[32] M. Rosvall and C. T. Bergstrom, An information-theoretic framework for resolving

community structure in complex networks, Proc. Natl. Acad. Sci. USA 104, 7327-7331,

2007.

[33] M. Sherriff, and L. Williams. Empirical software change impact analysis using singular

value decomposition. International Conference on Software Testing, Verification, and

Validation, Lillehammer, Norway, April 9-11, 2008.

[34] J. Shi and J. Malik, Normalized Cuts and Image Segmentation, IEEE Transactions on

Pattern Analysis and Machine Intelligence 22:888-905, 2000.

[35] W. J. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton

University Press, 1994.

128

[36] W. J. Stewart, MARCA: Markov chain analyzer, Numerical Solution of Markov Chains,

pp. 37-61, Marcel Dekker, New York - Basel - Hong Kong, 1991.

[37] W. J. Stewart, MARCA: Markov chain analyzer a software Package for Markov mod-

elling, Version 3.0, 1996.

[38] D. Verma and M. Meila, A comparison of spectral clustering algorithms, UW CSE

Technical report 03-05-01, 2003.

[39] Douglas B. West. Introduction to graph theory. Prentice Hall, second edition.

[40] S. X. Yu and J. Shi, Multiclass spectral clustering, International Conference on Com-

puter Vision, Nice, France, 11-17 Oct 2003.

[41] W. W. Zachary, An information flow model for conflict and fission in small groups, J.

Anthropol. Res. 33, 452-473, 1977.

129

Appendix

The Academic Ranking of World Universities (ARWU) is published by the center

for world-class universities and the institute of higher education of Shanghai Jiao Tong

University. ARWU is updated on an annual basis. More than 1000 universities are ranked

by ARWU each year and the top 100 universities in 2005 are listed in Table A.1. For each

university observation, there are eight variables.

X1: Rank number,
X2: Name of the institution,
X3: Score on the number of alumni,
X4: Score on the number of staff winning Nobel Prizes and Fields Medals,
X5: Score on the number of highly cited researchers selected by Thomson Scientific,
X6: Score on the number of articles published in journals of Nature and Science,
X7: Score on the number of articles indexed in Science Citation Index,
X8: Score on per capita performance with respect to the size of an institution.

Table A.1: Top 100 universities of ARWU in 2005.
X1 X2 X3 X4 X5 X6 X7 X8

1 Harvard Univ 100 100 100 100 100 72.4
2 Univ Cambridge 99.8 93.4 53.3 56.6 70.9 66.9
3 Stanford Univ 41.1 72.2 88.5 70.9 72.3 65
4 Univ California - Berkeley 71.8 76 69.4 73.9 72.2 52.7
5 Massachusetts Inst Tech (MIT) 74 80.6 66.7 65.8 64.3 53
6 California Inst Tech 59.2 68.6 59.8 65.8 52.5 100
7 Columbia Univ 79.4 60.6 56.1 54.2 69.5 45.4
8 Princeton Univ 63.4 76.8 60.9 48.7 48.5 59.1
9 Univ Chicago 75.6 81.9 50.3 44.7 56.4 42.2
10 Univ Oxford 64.3 59.1 48.4 55.6 68.4 53.2

130

Table A.1: Continued.
X1 X2 X3 X4 X5 X6 X7 X8

11 Yale Univ 52.1 44.5 60.3 57.2 63.9 49.3
12 Cornell Univ 46.5 52.4 55 48.8 66.3 39.8
13 Univ California - San Diego 17.7 34.7 59.8 56.5 64.5 46.6
14 Univ California - Los Angeles 27.3 32.8 56.7 50.1 75.6 34.3
15 Univ Pennsylvania 35.5 35.1 56.7 42.9 71.8 39.1
16 Univ Wisconsin - Madison 43 36.3 52.1 46.3 68.7 29
17 Univ Washington - Seattle 28.8 32.4 53.9 47.1 73.8 27.2
18 Univ California - San Francisco 0 37.6 55.6 57.9 58.8 45.2
19 Johns Hopkins Univ 51.4 28.3 41.6 52.2 67.7 24.9
20 Tokyo Univ 36 14.4 38.5 52.1 86.5 34.7
21 Univ Michigan - Ann Arbor 43 0 61.9 43 76.5 30.9
22 Kyoto Univ 39.7 34.1 34.2 37 72.3 31.1
23 Imperial Coll London 20.8 38.1 40.8 38.2 64.6 40.3
24 Univ Toronto 28.1 19.7 39.3 38.9 76.7 41.9
25 Univ Illinois - Urbana Champaign 41.6 37.4 44.4 34.1 58 26
26 Univ Coll London 30.7 32.9 37.7 41.5 60.5 38.8
27 Swiss Fed Inst Tech - Zurich 40.2 37 35.1 41.1 43.4 52.4
28 Washington Univ - St. Louis 25.1 26.6 38.5 46.5 53.9 39.9
29 New York Univ 33.8 25 43 35.3 55.4 26.3
30 Rockefeller Univ 22.6 59.8 28.3 44.1 24 35.9
31 Northwestern Univ 21.7 19.3 44.4 33.8 57.6 36.2
32 Duke Univ 20.8 0 47.1 45.3 60.8 38.9
32 Univ Minnesota - Twin Cities 36 0 49.7 35.2 68.4 23.8
34 Univ California - Santa Barbara 0 36 42.3 39 44.1 35.8
35 Univ Colorado - Boulder 16.6 29.8 40.8 36.6 46.3 29.5
36 Univ Texas - Austin 21.7 17.1 49.1 30 54.8 21.7
37 Univ British Columbia 20.8 19.3 32.4 32.5 60.4 33.9
38 Univ Texas Southwestern Med Center 24.3 33.9 31.4 38.2 37.9 31
39 Pennsylvania State Univ - Univ Park 14 0 45.8 37.9 59.9 24
39 Vanderbilt Univ 12.5 30.2 34.2 24.5 49.2 35.6
41 Univ California - Davis 0 0 46.5 34.5 64 29.8
41 Univ Utrecht 30.7 21.4 27.2 27.3 55.7 25.9
43 Rutgers State Univ - New Brunswick 15.4 20.4 36.9 32.9 47.1 24.1
43 Univ Pittsburgh - Pittsburgh 25.1 0 40.1 25.9 64.3 28.2
45 Karolinska Inst Stockholm 30.7 27.8 33.3 19.7 47.3 25.1
46 Univ Paris 06 35.7 23.9 23.6 24.2 51.2 30
47 Univ California - Irvine 0 30 32.4 28.5 48.2 31.1
47 Univ Edinburgh 22.6 17.1 26.1 35.8 49.4 29.9
47 Univ Maryland - Coll Park 25.9 0 40.8 33.6 54.6 25.6
50 Univ Southern California 0 27.3 37.7 23.6 52.8 25.8

131

Table A.1: Continued.
X1 X2 X3 X4 X5 X6 X7 X8

51 Univ Munich 37.1 21.1 15.7 30.4 51.9 30
52 Tech Univ Munich 43 24.1 24.8 20.7 46.5 29.2
53 Univ Manchester 27.3 19.3 23.6 22.6 57.3 30.4
54 Carnegie Mellon Univ 30.7 33.5 32.4 14.7 38.3 31.4
55 Univ North Carolina - Chapel Hill 12.5 0 35.1 32.8 59.5 27.3
56 Australian Natl Univ 17.7 12.9 36.9 29 45.1 27.8
57 Univ Copenhagen 30.7 24.7 23.6 22.8 45.7 27.7
57 Univ Florida 15.4 0 35.1 25 65.2 25.8
57 Univ Zurich 12.5 27.3 19.2 30.3 47.2 30.6
60 Uppsala Univ 25.9 32.9 11.1 28.7 49.1 21.6
61 Univ Paris 11 33.2 34.2 13.6 19.6 44.9 27.9
62 Osaka Univ 12.5 0 23.6 31.1 66.8 29.2
63 Ohio State Univ - Columbus 17.7 0 40.8 21.5 61.2 19.5
64 Univ Bristol 10.9 18.2 30.4 24.5 47.5 27.4
65 Univ Rochester 33.2 9.1 27.2 25.3 43 36.1
65 Univ Sheffield 23.5 14.4 23.6 29.2 46.6 27.1
67 McGill Univ 28.8 0 28.3 23.6 56.8 30
67 Moscow State Univ 51.4 34.9 0 7.5 54 31.6
69 Case Western Reserve Univ 40.7 11.8 20.8 23 44.8 33.7
69 Univ Oslo 25.9 34.1 17.6 18.2 41.5 26.4
71 Univ Heidelberg 10.9 27.7 20.8 20.9 48.1 26.9
72 Univ Leiden 25.1 15.8 27.2 19.3 46.7 28.1
73 Tohoku Univ 18.8 0 19.2 26.9 65.3 29
73 Univ Arizona 0 0 29.4 36.8 55.8 25.7
75 Purdue Univ - West Lafayette 18.8 17.1 27.2 21.4 49.8 19.4
76 Univ Helsinki 18.8 18.2 15.7 21.4 54.5 27.5
77 Michigan State Univ 12.5 0 37.7 26.6 51 18.7
78 Hebrew Univ Jerusalem 33.2 0 23.6 27.1 46.6 26.9
78 Rice Univ 21.7 22.3 23.6 24.4 30.8 31
80 Boston Univ 15.4 0 31.4 28.1 50.8 17.5
80 King’s Coll London 16.6 23.5 20.8 17.4 44.6 24.8
82 Univ Melbourne 15.4 14.4 22.2 18.7 53.5 19.9
83 Univ Nottingham 15.4 20.4 20.8 19 45.6 24.8
84 Univ Goettingen 38.7 20.4 15.7 17.5 40.2 24.5
85 Univ Vienna 25.1 15.8 7.9 22.7 52.2 26.4
86 Brown Univ 0 13.9 29.4 25.5 40.7 27.9
87 Indiana Univ - Bloomington 14 18.2 24.8 21.2 42 18.2
87 Univ Basel 25.9 17.5 19.2 21.4 34.5 33.8
89 Texas A&M Univ - Coll Station 0 0 32.4 24.4 55 20.4
90 McMaster Univ 16.6 19.3 22.2 15.9 43.5 23.9

132

Table A.1: Continued.

X1 X2 X3 X4 X5 X6 X7 X8

90 Univ Freiburg 25.1 21.4 17.6 18.2 39.5 23.2
92 Univ Strasbourg 1 29.4 22.9 19.2 19.5 32.7 22.4
93 Ecole Normale Super Paris 47.8 25 13.6 18.1 27.2 23.3
93 Stockholm Univ 29.4 30.2 15.7 14.3 35.3 18.9
93 Tokyo Inst Tech 16.6 0 22.2 22.5 50.6 31.5
93 Univ Utah 0 0 30.4 31.4 45.5 24.8
97 Univ Roma - La Sapienza 16.6 15.8 11.1 21.8 54.6 15.1
98 Univ Birmingham 25.1 11.2 22.2 13.4 47 24.5
99 Lund Univ 29.4 0 24.8 19.4 50.1 18.1
100 Tufts Univ 18.8 17.1 20.8 19.1 37.4 25.2

