
ABSTRACT 
 

SCHROEDER, BASTIAN JONATHAN. A Behavior-Based Methodology for Evaluating 
Pedestrian-Vehicle Interaction at Crosswalks. (Under the direction of Dr. Nagui 
Rouphail.) 
 
 
This dissertation explores the interaction of pedestrians and drivers at unsignalized 

crosswalks in an event-based data collection and analysis approach. Through logistic 

regression techniques the microscopic data are used to derive predictive models for driver 

yielding and pedestrian crossing behavior. The analysis found that pedestrian and driver 

decision-making processes are sensitive to the dynamic profile of the vehicle, pedestrian 

characteristics and other concurrent events at the crosswalk. By relating the yield 

outcome to the dynamic state of the vehicle, a region of vehicle dynamics constraints was 

defined where virtually no yields are observed. Pedestrian assertiveness was found to be a 

key variable for promoting yielding behavior and increasing the likelihood of a pedestrian 

crossing. A contrast of the behavioral models for driver yielding and pedestrian crossing 

found a generally better model fit for the latter category. It is reasoned that the pedestrian 

decision is strongly influenced by the temporal duration to the point of conflict and the 

consequences of a poor decision. With a lack of enforcement, a driver is more easily 

swayed in the decision of whether or not to yield. The pedestrian crossing data are thus 

more consistent than the yielding data, resulting in models with greater statistical power. 

The evaluation of two pedestrian crossing treatments found that the treatments resulted in 

expected increases in the likelihood of drivers yielding, but also promoted more 

aggressive pedestrian behavior. For a pedestrian-actuated treatment, the effect on yielding 

was found to be greater following activation. The predictive models for two 

geometrically different mid-block crossings showed sufficient similarities, which 

suggests that the development of generic yielding and crossing models is feasible. The 

results of this research demonstrated the viability of the data collection approach and 

gave promise for expandability of the method to other applications. The research is 

meaningful in the context of modern microsimulation models, where the resulting models 

can be applied to describe the interaction of the driver and pedestrian modes. 



 

A Behavior-Based Methodology for Evaluating Pedestrian-Vehicle 
Interaction at Crosswalks 

 
 
 

by 
Bastian Jonathan Schroeder 

 
 
 
 

A dissertation submitted to the Graduate Faculty of  
North Carolina State University 

 in partial fulfillment of the 
 requirements for the Degree of 

 Doctor of Philosophy 
 
 
 
 

Civil Engineering 
 
 

Raleigh, North Carolina 
 

2008 
 
 

APPROVED BY: 
 
 
 

 ____________________ _________________ _______________ 
Dr. Joseph Hummer  Dr. Billy Williams  Dr. Dennis Boos 

 
 
 
 

__________________ 
Dr. Nagui Rouphail 

Chair of Advisory Committee 
 
 



   

 
 
 ii 

DEDICATION 
 
 

To My Family 
 



   

 
 
 iii 

BIOGRAPHY 

 
Bastian Jonathan Schroeder was born on August 18, 1980 in Frankfurt, Germany. He 

grew up in Kriftel, Germany and received his Abitur high school diploma from the Main-

Taunus Schule in Hofheim, Germany in 1999. He immigrated to the United States in 

February 2000 and enrolled as an undergraduate at North Carolina State University in the 

fall of 2000. In May 2004, he graduated with a Bachelor of Science in Civil Engineering 

and a Bachelor of Science in Multidisciplinary Studies. Mr. Schroeder continued his 

graduate career at NCSU where he received a Master of Civil Engineering in December 

2005. Since that time he had been working on his Ph.D. degree under the supervision of 

Dr. Nagui Rouphail in the Department of Civil, Construction, and Environmental 

Engineering at North Carolina State University. He started working as a research 

associate at the Institute for Transportation Research and Education in January 2008. Mr. 

Schroeder resides in Raleigh, NC with his wife Theresa and his son Aedon.  



   

 
 
 iv 

ACKNOWLEDGEMENTS 
 
I would like to express my deepest thanks to my family for their continued support during 

my collegiate career. The path to this degree has been long and at times challenging and 

it was the love and support of my family that carried me through when ambition failed. I 

feel very fortunate and thankful to have a wonderfully unique and caring family that 

stands behind my aspirations.  

 

I would also like to express my thanks and gratitude to my dissertation advisory 

committee, Dr. Nagui Rouphail, Dr. Joe Hummer, Dr. Billy Williams, and Dr. Dennis 

Boos. They have been supportive and encouraging throughout my collegiate career and 

have always been accessible inside and outside the classroom. I owe special gratitude to 

my advisory chair, Dr. Nagui Rouphail, for his guidance through my graduate studies and 

this dissertation. I would also like to thank two other members of the N.C. State faculty, 

Dr. John Stone and Dr. David Greene, who have both been instrumental in shaping my 

path through college.  

 

I also owe thanks to the staff at the Institute for Transportation Research and Education 

(ITRE) for a friendly, supportive and flexible work environment. Special recognition and 

gratitude go to Dr. Ron Hughes, Mr. Chris Cunningham, Dr. Kosok Chae and the 

remaining members of the NCHRP 3-78a research team. This dissertation would not exist 

in its current form without their input and advice.  

 

I further acknowledge the financial support from the National Cooperative Highway 

Research Program, the Southeastern Transportation Center, the Federal Highway 

Administration Eisenhower Fellowship program, and the North Carolina State University 

College of Engineering. Additionally, this research was partially funded by a 

Bioengineering Research Partnership from the National Eye Institute of the National 

Institutes of Health (NIH Grant R01 EY12894-03). This achievement would not have 

been possible without the generous support of these programs.  



   

 
 
 v 

TABLE OF CONTENTS 
 
List of Tables .................................................................................................................... ix 
List of Figures  .................................................................................................................. xi 
List of Equations .............................................................................................................. xiii 
List of Abbreviations ...................................................................................................... xiv 
1 Introduction.................................................................................................................1 
1.1 Motivation..........................................................................................3 
1.2 Contribution to Knowledge ...............................................................8 
1.3 Research Objectives...........................................................................9 
1.4 Research Scope ................................................................................10 
1.5 Outline of Dissertation.....................................................................11 
2 Analysis Framework .................................................................................................13 
2.1 A Framework for Evaluating Unsignalized Crossings ....................13 
2.2 Pedestrian Crossing Facilities..........................................................17 

2.2.1 Channelized Right-Turn Lanes ................................................................. 18 
2.2.2 Mid-Block Crossings ................................................................................ 18 
2.2.3 Roundabout Crossings .............................................................................. 19 

2.3 The Range of Pedestrian Treatments...............................................20 
2.3.1 Increasing Pedestrian Visibility ................................................................ 21 
2.3.2 Forcing Behavior Change ......................................................................... 24 
2.3.3 Interrupting Traffic Flow .......................................................................... 26 
2.3.4 Assisting Blind Pedestrians ...................................................................... 27 

2.4 Pedestrian-Vehicle Interaction.........................................................27 
2.4.1 Pedestrian Crossing Behavior ................................................................... 27 
2.4.2 Driver Yielding Behavior ......................................................................... 36 

2.5 Data Needs .......................................................................................39 
2.5.1 The Crosswalk Interaction ........................................................................ 39 
2.5.2 Interaction Parameters .............................................................................. 39 

2.6 Chapter Summary ............................................................................43 
3 Methodology .............................................................................................................45 
3.1 Data Collection ................................................................................45 

3.1.1 Interaction Characteristics ........................................................................ 45 
3.1.2 Data Collection Set-Up............................................................................. 50 
3.1.3 Data Extraction and Reduction ................................................................. 54 
3.1.4 Variable Definitions.................................................................................. 54 

3.2 Estimating Probability Parameters ..................................................61 
3.2.1 Review of Statistical Models .................................................................... 61 
3.2.2 Logistic Model Forms............................................................................... 63 
3.2.3 Statistical Inference for Logit ................................................................... 69 
3.2.4 Analysis Approach.................................................................................... 72 



   

 
 
 vi 

3.3 Site Description................................................................................75 
3.4 Chapter Summary ............................................................................82 
4 Driver Yielding Models at Mid-Block Crossings.....................................................83 
4.1 Event-Based Analysis for MB-CLT ................................................84 

4.1.1 Descriptive Statistics................................................................................. 84 
4.1.2 Variable Interactions................................................................................. 86 
4.1.3 Vehicle Dynamics Constraints.................................................................. 87 

4.2 Yield Model Development for MB-CLT.........................................89 
4.2.1 Variable Selection..................................................................................... 89 
4.2.2 Multilinear Regression Analysis............................................................... 90 
4.2.3 Binary Logit Models – MB-CLT.............................................................. 92 
4.2.4 Cumulative Logit Model........................................................................... 99 
4.2.5 Multinomial Logit Model ....................................................................... 100 
4.2.6 Nested Logit Model ................................................................................ 101 
4.2.7 MB-CLT Site Summary.......................................................................... 103 

4.3 Event-Based Analysis for MB-RAL..............................................105 
4.3.1 Descriptive Statistics............................................................................... 105 
4.3.2 Variable Interactions............................................................................... 107 
4.3.3 Vehicle Dynamics Constraints................................................................ 108 

4.4 Yield Model Development for MB-RAL ......................................110 
4.4.1 Variable Selection................................................................................... 110 
4.4.2 Multilinear Regression Analysis............................................................. 111 
4.4.3 Binary Logit Models – MB-RAL ........................................................... 112 
4.4.4 Cumulative Logit Model......................................................................... 116 
4.4.5 Multinomial Logit Model ....................................................................... 117 
4.4.6 Nested Logit............................................................................................ 117 
4.4.7 MB-RAL Site Summary ......................................................................... 119 

4.5 Chapter Summary ..........................................................................121 
5 Pedestrian Crossing Models at Mid-Block .............................................................124 
5.1 Characterizing Pedestrian Gap Acceptance...................................124 

5.1.1 Definitions............................................................................................... 126 
5.2 Traditional Gap Acceptance Approaches ......................................128 

5.2.1 Graphical Method ................................................................................... 128 
5.2.2 Maximum Likelihood Estimation ........................................................... 132 
5.2.3 Ramsey-Routledge Method .................................................................... 134 
5.2.4 Result Synthesis from Traditional Gap Acceptance Approaches ........... 137 

5.3 Event Based Analysis for MB-CLT ..............................................139 
5.3.1 Descriptive Statistics............................................................................... 139 
5.3.2 Variable Interactions............................................................................... 142 
5.3.3 Exploratory Analysis for Pedestrian GO Lags........................................ 143 

5.4 Crossing Model Development for MB-CLT .................................145 
5.4.1 Multilinear Regression Models............................................................... 145 



   

 
 
 vii 

5.4.2 Binary Logit Models for MB-CLT ......................................................... 146 
5.4.3 Site Summary.......................................................................................... 153 

5.5 Event-Based Analysis for MB-RAL..............................................155 
5.5.1 Descriptive Statistics............................................................................... 155 
5.5.2 Variable Interactions............................................................................... 157 
5.5.3 Explanatory Analysis for Pedestrian Gap Acceptance ........................... 158 

5.6 Crossing Model Development for MB-RAL.................................161 
5.6.1 Multilinear Regression Models............................................................... 161 
5.6.2 Binary Logit Models for MB-RAL......................................................... 162 
5.6.3 Site Summary.......................................................................................... 167 

5.7 Chapter Summary ..........................................................................169 
6 Yielding and Crossing at Roundabouts...................................................................171 
6.1 Roundabout Crosswalks ................................................................171 
6.2 Yielding Models for Roundabout Crossing...................................173 

6.2.1 Event Based Analysis ............................................................................. 174 
6.2.2 Yield Model Development for RBT-RAL.............................................. 179 
6.2.3 Yielding Model Summary....................................................................... 188 

6.3 Pedestrian Crossing Models at Roundabouts ................................189 
6.3.1 Event Definitions .................................................................................... 189 
6.3.2 Conventional Gap Acceptance Approaches............................................ 190 
6.3.3 Event-Based Analysis ............................................................................. 196 
6.3.4 Crossing Model Development for RBT-RAL......................................... 200 
6.3.5 Crossing Model Summary ...................................................................... 205 

6.4 Chapter Summary ..........................................................................206 
7 Simulation Implementation.....................................................................................208 
7.1 Site and Model Comparison ..........................................................208 
7.2 Overview of Pedestrian Modeling in Microsimulation .................211 
7.3 The Research in the Simulation Context .......................................214 
7.4 Algorithm Requirements................................................................217 
7.5 Chapter Summary ..........................................................................220 
8 Conclusions and Recommendations .......................................................................221 
8.1 Summary of Major Findings..........................................................221 
8.2 Revisiting Objectives.....................................................................224 

8.2.1 Objective 1 .............................................................................................. 224 
8.2.2 Objective 2 .............................................................................................. 225 
8.2.3 Objective 3 .............................................................................................. 226 
8.2.4 Objective 4 .............................................................................................. 227 

8.3 Research Limitations .....................................................................228 
8.4 Areas of Future Research...............................................................230 

8.4.1 Direct Research Expansion ..................................................................... 230 
8.4.2 Indirect Application of Concepts ............................................................ 232 



   

 
 
 viii 

9 References...............................................................................................................234 
10 Appendix.................................................................................................................241 
10.1 Appendix A: Yielding at Mid-Block Models ................................242 
10.2 Appendix B: Pedestrian Crossing at Mid-Block Models ..............263 
10.3 Appendix C: RBT-RAL Roundabout Models ...............................290 

 
 



   

 
 
 ix 

LIST OF TABLES 
 
Table 1: Hypothesized Impact of Independent Variables on Response ........................... 59 
Table 2: Descriptive Statistics, MB-CLT ......................................................................... 84 
Table 3: Descriptive Statistics, MB-RAL....................................................................... 106 
Table 4: Critical Gap/Lag Results - All Data.................................................................. 130 
Table 5: Critical Gap/Lag Results – Before and After ................................................... 131 
Table 6: MLE Results - Paired Data - Gaps ................................................................... 133 
Table 7: Critical Gap/Lag Results from RR Method ...................................................... 135 
Table 8: Critical Gap/Lag Results from RR Method - Before & After .......................... 137 
Table 9: Summary Comparison of Traditional Gap Acceptance Approaches................ 138 
Table 10: Descriptive Statistics – MB-CLT ................................................................... 139 
Table 11: Descriptive Statistics – MB-CLT – Near/Far/Combo .................................... 141 
Table 12: Descriptive Statistics – MB-RAL................................................................... 155 
Table 13: Descriptive Statistics – MB-RAL – Near/Far/Combo.................................... 157 
Table 14: Descriptive Statistics for RBT-RAL Yield Data ............................................ 174 
Table 15: Critical Gap/Lag Results - All Data................................................................ 191 
Table 16: Critical Gap/Lag Results, Observed – by Entry/Exit...................................... 193 
Table 17: Summary of RR Results for RBT-RAL.......................................................... 195 
Table 18: Summary Comparison of Gap Acceptance Approaches for RBT-RAL......... 195 
Table 19: Descriptive Statistics for Pedestrian Crossing Model - RBT-RAL................ 197 
Table 20: Summary of Restricted Models for Driver Yielding ...................................... 208 
Table 21: Summary of Restricted Models for Pedestrian Crossing................................ 209 
Table 22: Variable Implementation ................................................................................ 219 
Table A-23: Correlation Matrix with Yield Response, MB-CLT *................................ 243 
Table A-24: DYM Results of Multi-Linear Regression, MB-CLT ................................ 244 
Table A-25: DYM Results of Binary Logistic Regression, MB-CLT............................ 245 
Table A-26: DYM Results of Cumulative Logistic Regression, MB-CLT.................... 247 
Table A-27: DYM Results of Multinomial Logistic Regression, MB-CLT................... 249 
Table A-28: DYM Results of Nested Logistic Regression, MB-CLT............................ 251 
Table A-29: Correlation Matrix with Yield Response, MB-RAL * ............................... 253 
Table A-30: DYM Results of Multi-Linear Regression, MB-RAL................................ 254 
Table A-31: DYM Results of Binary Logistic Regression, MB-RAL ........................... 255 
Table A-32: DYM Results of Cumulative Logistic Regression, MB-RAL.................... 257 
Table A-33: DYM Results of Multinomial Logistic Regression, MB-RAL .................. 259 
Table A-34: DYM Results of Nested Logistic Regression, MB-RAL ........................... 261 
Table B-35: Correlation Matrix – MB-CLT - Gaps*...................................................... 265 
Table B-36: Correlation Matrix – MB-CLT - Lags* ...................................................... 266 
Table B-37: Correlation Matrix – MB-RAL - Gaps* ..................................................... 267 
Table B-38: Correlation Matrix – MB-RAL - Lags*...................................................... 268 
Table B-39: PCM Results of Multi-Linear Regression for Lags – MB-CLT................. 269 
Table B-40: PCM Results of Multi-Linear Regression for Gaps – MB-CLT ................ 271 
Table B-41: PCM Results of Binary Logistic Regression for Lags - MB-CLT ............. 274 



   

 
 
 x 

Table B-42: PCM Results of Binary Logistic Regression for Gaps - MB-CLT............. 277 
Table B-43: PCM Results of Multi-Linear Regression for Lags – MB-RAL ................ 280 
Table B-44: PCM Results of Multi-Linear Regression for Gaps – MB-RAL................ 282 
Table B-45: PCM Results of Binary Logistic Regression for Lags - MB-RAL +* ......... 284 
Table B-46: PCM Results of Binary Logistic Regression for Gaps - MB-RAL ............ 287 
Table C-47: Correlation Matrix, RBT-RAL, Yielding Model*...................................... 291 
Table C-48: Correlation Matrix, RBT-RAL, Yielding Model – EXIT only* ................ 292 
Table C-49: Correlation Matrix, RBT-RAL, Yielding Model – ENTRY only* ............ 293 
Table C-50: DYM Multilinear Regression Models - RBT-RAL.................................... 294 
Table C-51: DYM Binary Logit Regression Models - RBT-RAL ................................. 296 
Table C-52: DYM Cumulative Logit Regression Models - RBT-RAL ......................... 299 
Table C-53: DYM Multinomial Logit Regression Models - RBT-RAL ........................ 301 
Table C-54: DYM Nested Logit Models, Level 2 - RBT-RAL...................................... 303 
Table C-55: Correlation Matrix, RBT-RAL, Pedestrian Crossing Model – Lags Only*305 
Table C-56: Correlation Matrix, RBT-RAL, Pedestrian Crossing Model – Gaps Only*306 
Table C-57: PCM Multilinear Regression Models - RBT-RAL – Lags Only................ 307 
Table C-58: PCM Multilinear Regression Models - RBT-RAL – Gaps Only ............... 309 
Table C-59: PCM Binary Logit Regression Models - RBT-RAL – Lags Only ............. 311 
Table C-60: PCM Binary Logit Regression Models - RBT-RAL – Gaps Only............. 313 
 



   

 
 
 xi 

LIST OF FIGURES 
 
Figure 1: Analysis Framework Flowchart ........................................................................ 15 
Figure 2: Roundabout Pedestrian Crossing....................................................................... 19 
Figure 3: In-Road Pedestrian Signs .................................................................................. 22 
Figure 4: Roadside Pedestrian Flasher.............................................................................. 23 
Figure 5: In-Pavement Flashing Crosswalk...................................................................... 24 
Figure 6: Raised Crosswalk, Speed Humps and Chicanes ............................................... 25 
Figure 7: Offset Marked Crosswalk & Signing, Offset to the right.................................. 26 
Figure 8: Time-to-Collision Concept................................................................................ 41 
Figure 9: Time to Stop Relationships ............................................................................... 42 
Figure 10: Pedestrian-Driver Interaction in Time-Space Domain.................................... 49 
Figure 11: Data Collection Set-Up ................................................................................... 52 
Figure 12: Picture of Laser Speed Measurement Device (Source: www.laseratlanta.com)
........................................................................................................................................... 53 
Figure 13: Nested Binary Logit Flowchart ....................................................................... 68 
Figure 14: Photos of Data Collection Site MB-CLT ........................................................ 78 
Figure 15: Photos Data Collection Site MB-RAL ............................................................ 79 
Figure 16: Photos of Data Collection Site RBT-RAL ...................................................... 80 
Figure 17: Speed-Distance Relationship including Deceleration Thresholds, MB-CLT . 89 
Figure 18: Model Probability Plots – Multi-Linear Regression, Restricted Model, MB-
CLT................................................................................................................................... 92 
Figure 19: Model Probability Plots – Binary Logit, Unrestricted, MB-CLT ................... 97 
Figure 20: Model Probability Plots – Binary Logit, Restricted Model 3, MB-CLT ........ 98 
Figure 21: Model Probability Plots – Nested Logit, Restricted Model 3, MB-CLT ...... 102 
Figure 22: Combined Yield Probability for MB-CLT after Treatment Installation ....... 104 
Figure 23: Speed-Distance Relationship including Deceleration Thresholds, MB-RAL110 
Figure 24: Model Probability Plots – Multi-Linear Regression, Restricted Model, MB-
RAL................................................................................................................................. 112 
Figure 25: Model Probability Plots – Binary Logit, Unrestricted Model, MB-RAL ..... 114 
Figure 26: Model Probability Plots – Binary Logit, Restricted Model 2, MB-RAL...... 115 
Figure 27: Model Probability Plots – Nested Logit Level 2, Restricted Model 4, MB-RAL
......................................................................................................................................... 119 
Figure 28: Combined Yield Probability for MB-RAL Site ............................................ 121 
Figure 29: Cumulative Probability Plots for Pedestrian Gap Acceptance...................... 130 
Figure 30: Gap/Lag Distributions from Ramsey-Routledge Methodology .................... 134 
Figure 31: Before & After Distributions from Ramsey-Routledge Methodology.......... 136 
Figure 32: Plot of GO and NOGO events for Lag Analysis – MB-CLT........................ 144 
Figure 33: Model Probability Plot for Lags – Unrestricted Model 1 - MB-CLT ........... 147 
Figure 34: Model Probability Plot for Lags – Restricted Model 5 - MB-CLT............... 148 
Figure 35: Model Probability Plot for Gaps – Unrestricted Model 2 - MB-CLT........... 150 
Figure 36: Model Probability Plot for Gaps – Restricted Model 3 - MB-CLT .............. 152 
Figure 37: Plot of GO and NOGO Events – MB-RAL – All Data ................................. 158 



   

 
 
 xii 

Figure 38: Plot of GO and NOGO Events  – MB-RAL – by Lag Type ......................... 161 
Figure 39: Model Probability Plot for Lags – Unrestricted Model 1 - MB-RAL........... 163 
Figure 40: Model Probability Plot for Lags – Restricted Model 2 - MB-RAL .............. 164 
Figure 41: Model Probability Plot for Gaps – Unrestricted Model 1 - MB-RAL .......... 166 
Figure 42: Model Probability Plot for Gaps – Restricted Model 3 - MB-RAL.............. 167 
Figure 43: Roundabout Crosswalk Geometry (adopted from FHWA, 2000)*............... 172 
Figure 44: Speed-Distance Plot with Decel. Thresholds, RBT-RAL ............................. 178 
Figure 45: Yield Probability Plot, RBT-RAL - Restricted Model 4............................... 181 
Figure 46: DYM Probability Plots for Cumulative Logit Restricted Model 3 - RBT-RAL
......................................................................................................................................... 185 
Figure 47: Yield Probability Plot, Nested Logit Level 2, Restricted Model 3 - RBT-RAL
......................................................................................................................................... 187 
Figure 48: Graphical Method for RBT-RAL Pedestrian Data........................................ 191 
Figure 49: Graphical Method for RBT-RAL Pedestrian Data – by Entry/Exit Leg....... 192 
Figure 50: Gap/Lag Distribution from RR Methodology for RBT-RAL ....................... 195 
Figure 51: Exploratory Analysis of Lags for RBT-RAL................................................ 200 
Figure 52: Probability Plot for P(GO) in a Lag – Restricted Model 2 - RBT-RAL ....... 202 
Figure 53: Probability Plots Gaps, Unrestricted Model 2, RBT-RAL - Gaps ................ 204 
Figure 54: Probability Plots, Restricted Model 3, RBT-RAL - Gaps............................. 205 
Figure B-55: Cumulative Prob. Plots for Ped. Crossing– MB-CLT............................... 263 
Figure B-56: Cumulative Prob. Plots for Ped. Crossing– MB-RAL .............................. 264 
 
 



   

 
 
 xiii 

LIST OF EQUATIONS 
 
Equation 1: HCM Capacity Equation for Two-Way Stop Controlled Intersection (17-70)
........................................................................................................................................... 29 
Equation 2: Pedestrian Critical Gap after HCM (Equation 18-17)................................... 33 
Equation 3: General Statistical Model for Driver Yielding .............................................. 62 
Equation 4: Binary Probit Model for Driver Yielding...................................................... 62 
Equation 5: Logit Model for Driver Yielding................................................................... 63 
Equation 6: Binary Logit Model ....................................................................................... 64 
Equation 7: Estimating Probabilities from Binary Logit Model....................................... 64 
Equation 8: Probability Estimates from Multinomial Logit Model for Driver Yielding.. 66 
Equation 9: Model Form of Cumulative Logit Model for Ordered Responses ................ 67 
Equation 10: Probability Estimates from Cumulative Logit Model for Driver Yielding . 67 
Equation 11: Odds of Response 1 for Binary Logit Model .............................................. 69 
Equation 12: Pseudo R-Square for Logit Model............................................................... 70 
Equation 13: Akaike Information Criterion (AIC) for Logit Model Estimation .............. 71 
Equation 14: DYM – Mid-Block Yield – Unrestricted Model, MB-CLT........................ 96 
Equation 15:DYM – Mid-Block Yield – Restricted Model 3, MB-CLT ......................... 97 
Equation 16: DYM – Mid-Block Yield – Nested Logit, Restricted Model 3, MB-CLT 102 
Equation 17: DYM – Mid-Block Yield – Binary Logit, Unrestricted Model, MB-RAL114 
Equation 18: DYM – Mid-Block Yield – Binary Logit, Restricted Model 2, MB-RAL 115 
Equation 19: DYM – Mid-Block Yield, Nested Logit, Restricted Model 4, MB-RAL . 118 
Equation 20: PCM - Mid-Block Lag, Unrestricted Model 1, MB-CLT ......................... 146 
Equation 21: PCM - Mid-Block Lag, Restricted Model 5, MB-CLT............................. 148 
Equation 22: PCM - Mid-Block Gap, Unrestricted Model 2 – MB-CLT....................... 149 
Equation 23: PCM - Mid-Block Gap, Restricted Model 3, MB-CLT ............................ 151 
Equation 24: PCM - Mid-Block Lags, Unrestricted Model 1, MB-RAL ....................... 162 
Equation 25: PCM - Mid-Block Lags, Restricted Model 2, MB-RAL........................... 163 
Equation 26: PCM - Mid-Block Gaps, Unrestricted Model 1, MB-RAL....................... 165 
Equation 27: PCM - Mid-Block Gaps, Restricted Model 3, MB-RAL .......................... 166 
Equation 28: DYM – Binary Logit, Restricted Model 4, RBT-RAL ............................. 181 
Equation 29: DYM Cumulative Logit, Restricted Model 3, RBT-RAL......................... 183 
Equation 30: DYM – Nested Logit Level 2, Restricted Model 3, RBT-RAL................ 187 
Equation 31: PCM - Restricted Model 2 - RBT-RAL - Lags ......................................... 202 
Equation 32: PCM - Unrestricted Model 2 - RBT-RAL - Gaps ..................................... 203 
Equation 33: PCM - Restricted Model 3 - RBT-RAL - Gaps......................................... 204 
 



   

 
 
 xiv 

LIST OF ABBREVIATIONS 
 
Response Variables 
GO – Pedestrian Event is GO (crossing was initiated). Also the binary outcome of the 

pedestrian event (GO=1, NOGO=0) 
HY – The outcome of the vehicle event is a hard yield, indicating that the driver slowed 

down to a full stop to create a crossing opportunity for the pedestrian 
LAG_EVENT - Pedestrian Event is a Lag (First Event after arriving at the crosswalk) 
NOGO – Pedestrian Event is NO-GO (no crossing event) 
NY – The outcome of the vehicle event is a Non Yield 
SY – The outcome of the vehicle event is a Soft Yield, indicating that the driver slowed 

down for the pedestrian, but did not come to a full stop 
YIELD – The binary outcome of the yield event (Yield=1, Non-Yield=0) 
Y_ORDERED – The categorical outcome of the yield event with three ordered outcomes 

(3=HY=hard yield, 2=SY=soft yield, 1=NY=non-yield) 
Y_TYPE - The binary type of the yield event outcome (HY=1, SY=0) 
 
Discrete Explanatory Variables 
ADY – Presence of an adjacent yield in the opposite direction; ADY=1 if a vehicle in the 

opposite lane has already yielded for the pedestrian at the crosswalk 
AST – The pedestrian is assertive; AST=1 if the pedestrian exhibits assertive behavior in 

the approach of the crosswalk, indicated for example through fast walking pace 
COM – Indication of non-verbal communication between driver and pedestrian; COM=1 

if there is evidence of non-verbal interaction (waving, raising hand to say 'Thank 
You') between the driver and pedestrian 

DECEL_TAU – The deceleration rate threshold is satisfied; DECEL_TAU=1 if the 
deceleration rate necessary to come to a full stop before the crosswalk is greater 
than 10ft/sec^2 

DSC – Presence of an downstream conflict; DSC=1 if a vehicle is stopped downstream 
of the crosswalk or if there is heavy traffic in the circulating lane preventing 
immediate entry into the circle (Roundabout Only) 

ENTRY – Indication of whether the event occurred at the entry leg of the roundabout 
(Entry = 1) or at the exit leg (Entry = 0) - (Only applicable for roundabout site) 

FLASH – Indication whether the flashing beacon was actuated by the pedestrian; 
FLASH=1 if beacon was flashing during the yield event (Only applicable for 
Charlotte, NC site) 

FOLL – Approaching vehicle has close follower; FOLL=1 if the vehicle has a follower 
at a short headway of approximately 2-4 seconds 

G_NEAR – The observed gap/lag event has a vehicle in the near lane and no vehicle in 
the far lane relative to the waiting pedestrian 

G_FAR – The observed gap/lag event has a vehicle in the far lane and no vehicle in the 
near lane relative to the waiting pedestrian 



   

 
 
 xv 

G_COMBO – The observed gap/lag event has a vehicle in both lanes (near and far) - the 
gap/lag size is measured relative to first vehicle arrival  

HEV – Approaching vehicle is a heavy vehicle; HEV=1 if the vehicle is anything larger 
than the equivalent of a 15-passenger van (dump truck, TTST, bus) 

MUP – There are multiple pedestrians present in the crosswalk influence area; MUP=1 if 
the number of pedestrians waiting at the curb is greater than 1 

NEAR – Pedestrian is waiting on the near-side of the approaching vehicle; NEAR=1 if 
the pedestrian waits on the same side of the road that the vehicle is traveling on 

PLT – Approaching vehicle is part of a platoon of vehicles; PLT=1 if the headway to the 
following OR the previous vehicle was short (approximately 2-4 seconds) 

PREV – The previous vehicle passed without yielding; PREV=1 if the previous vehicle 
failed to yield to the same pedestrian waiting at the crosswalk 

PXW – A pedestrian from a previous event is still present in the crosswalk; PXW=1 if 
the driver has to account for a pedestrian who is still in the roadway from a 
previous event 

QUE – Vehicle is part of a queue of vehicles; QUE=1 if the queue or platoon that the 
vehicle is a part of is moving slowly due to some downstream congestion or 
incident 

TRIG – The pedestrian triggered the yield by stepping into roadway; TRIG=1 if the 
pedestrian actively seized the roadway before the driver action indicated a yield 

TRTMT – Presence of crossing treatment; TRTMT=1 if the treatment was installed and 
so is equivalent to the 'after' case (Only applicable for Mid-Block sites) 

TTC_TAU – The time to collision threshold is satisfied; TTC_TAU=1 if the theoretical 
time to arrival at the crosswalk is less than 3 seconds (TTC=DIST1/SPEED_FT) 

 
Continuous Explanatory Variables 
DECEL – Deceleration rate necessary to come to a full stop prior to crosswalk; DECEL 

is calculated from measured speed and distance; 
DECEL=(SPEED_FT*SPEED_FT)/(2*DIST1); units are feet/sec2 

DIST1 – Vehicle position at the time of pedestrian arrival in crosswalk influence area 
measured in feet using a LIDAR speed measurement device 

D_WAIT – The duration of pedestrian waiting time at the decision point. The waiting 
time is zero for all initial lag events. For all subsequent gaps, the waiting time is 
calculated from the duration between the initial arrival at the crosswalk and the 
passing of the previous vehicle in seconds.  

E_GAP – Expected Gap Time between successive vehicle events at constant speed in 
seconds 

E_LAG – Expected Lag Time b/w ped. (t1) and time vehicle would have arrived at 
constant speed in seconds 

O_GAP – Observed Gap Time between successive vehicle events t3n and t3n+1 in 
seconds 

O_LAG – Observed Lag Time b/w ped. arrival (t1) and vehicle arrival at the crosswalk 
(t3) in seconds 
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SPEED_FT – Vehicle speed at the time of pedestrian arrival in crosswalk influence area 
measured in ft/sec using a LIDAR speed measurement device in feet per second 

TTC – Time until vehicle would theoretically arrive at the crosswalk; TTC is calculated 
from the measured speed and distance at the time pedestrian arrives in the 
crosswalk influence area; TTC=DIST1/SPEED_FT; units are seconds 

 
Data Collection Terms 
MB-CLT – Site code for data collection site: Mid-Block Crossing on Selwyn Avenue in 

Charlotte, NC 
MB-RAL: – Site code for data collection site: Mid-Block Crossing on Sullivan Drive in 

Raleigh, NC 
RBT-RAL – Site code for data collection site: Roundabout Crossing on Pullen Road in 

Raleigh, NC 
LIDAR – A speed measurement device that uses laser technology used in data collection 
 
Analysis Terms 
CG -  Critical Gap (sec.), by definition the gap time at which a minor street vehicle or 

pedestrian is equally likely to accept or reject the gap.  
DYM – Driver Yield Model. Probabilistic model describing the likelihood of a driver 

yielding to pedestrians at the crosswalk.  
Gap – The temporal duration between two successive vehicle arrivals at a given point of 

reference (front bumper to front bumper) measured in seconds 
HCM – Highway Capacity Manual (TRB, 2000). A reference manual outlining traffic 

engineering operational analysis methodologies 
Lag – The temporal duration between the pedestrian arrival at the crosswalk and the 

arrival of the first vehicle measured in seconds 
LOGIT – Statistical model using logistic regression techniques to describe probabilities 
MLE – Maximum Likelihood Estimation; a statistical methodology to estimate a model 

form or parameter distribution that maximizes the likelihood of observing the 
given sample of data points 

MUTC – Manual of Uniform Traffic Control Devices (FHWA, 2002). A reference 
manual for traffic engineers discussion guidelines for signs, marking and 
signalized traffic control.  

PCM – Pedestrian Crossing Model. Probabilistic model describing the likelihood of a 
pedestrians accepting a gap or lag in the conflicting traffic stream 

P(G) – The probability of a gap occurring in the traffic stream 
P(GU) – The probability of a gap being utilized by the pedestrian  
P(Y) – The probability of a driver yielding  
P(YU) – The probability that a yield is utilized by the pedestrian 
RR – Ramsey-Routledge Method; a statistical methodology to estimate a distribution of 

critical gaps or lags from a sample of data 
VDC – Vehicle Dynamics Constraint. The relative position to the crosswalk of the 

vehicle and its speed at the time of a pedestrian event is such that the necessary 
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deceleration rate to come to a stop before the crosswalk (DECEL) is greater than 
the assumed comfortable deceleration rate of 10 ft/sec2. A driver subject to VDC 
is considered unlikely to yield to a pedestrian.  

 
Simulation Terms 
PR – Abbreviation for “priority rules”, which is the model algorithm in the simulation 

model VISSIM used to describe gap acceptance and yielding behavior.  
VISSIM – A microsimulation software package that models movements of individual 

vehicles and pedestrians from user-defined and default algorithms 
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1 INTRODUCTION 
 

The field of traffic engineering has traditionally focused on the operations of motorized 

modes of transportation. While the analysis of vehicular traffic is most common, an 

increasing number of engineering projects today are including accommodations for non-

motorized road users. Many cities and smaller townships have drafted master plans for 

pedestrian and bicycle networks, including both non-motorized trails and facilities shared 

with motorized traffic. The growing emphasis on the pedestrian and bicycle modes 

demands proper methods of analysis to determine the operational levels of service for 

non-motorized transportation modes as well as their interaction with vehicular traffic.  

 

One of the most challenging components in the analysis of pedestrian facilities is the 

assessment of a location where the pedestrian path crosses a roadway of motorized traffic. 

These pedestrian crosswalks may or may not be signalized, and pedestrian delay and 

safety at these locations are important measures to understand. Over the past decade, 

pedestrian research has focused on the evaluation of treatments for unsignalized crossing 

locations that are intended to make them safer for pedestrians. The evaluation of such 

pedestrian crossing treatments is typically carried out through empirical before and after 

studies that investigate aggregated measures of effectiveness. The effectiveness of a 

treatment is oftentimes quantified by a decrease in vehicle speed, an increase in yielding 

behavior, or a reduction of crashes following installation. Alternatively, researchers 

sometimes use comparison sites to contrast driver and pedestrian behavior at, for instance, 

marked versus unmarked crosswalks (Zeeger et al, 2001). While these are adequate and 

statistically valid methods of analysis, their clear drawbacks are that evaluation is time-

consuming and lacks microscopic detail. A macroscopic analysis of pedestrian 

crosswalks may be adequate for some applications, but this dissertation argues that it is 

insufficient for a representation of these facilities in a microsimulation environment.  
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Significant work has also been done on alternatives to conventional signalized pedestrian 

crossings. Innovative signalization schemes for pedestrian mid-block and roundabout 

crossings have been applied in Europe and Australia (Inman and Davis, 2007), and more 

recently in the United States (Tucson DOT, 2007). The general objective of these new 

signalization strategies is to balance the crossing safety for pedestrians with the delay 

experienced by motorized traffic as a result of installing the signal.  

 

Current traffic engineering analysis tools and capacity models are of limited use for 

evaluating the interaction of pedestrians and vehicles at unsignalized crossing facilities. 

Common analysis methodologies are limited to boundary cases, which assume strictly 

enforced right-of-way rules (TRB, 2000). The methods typically ignore the more 

complex interaction of the two modes in which some drivers yield to pedestrians and 

some pedestrians accept gaps in traffic. Thus, while the methods may be adequate for 

analyzing signalized pedestrian crossings, they do not offer a way of comparing the 

operations of signals to unsignalized control. A true comparison of the operational impact 

of different unsignalized treatments is also not possible in the current framework.   

 

The greatest challenge in the analysis of unsignalized pedestrian crossings is the interplay 

between pedestrian crossing and driver yielding behavior. Absent the appropriate data, 

pedestrian crossing behavior is oftentimes analyzed with the implication that it is 

generally analogous to vehicular gap acceptance. But can an unsignalized mid-block 

pedestrian crossing really be compared with minor street traffic operation at a two-way 

stop controlled intersection? In fact, yielding behavior at pedestrian crossings in the US 

varies greatly, which may be attributable to differences in geographic location, the type 

of crossing location, the time of day and a range of other factors that are not well 

understood in current research practice. Current research gives evidence for the 

variability of driver yielding behavior across geographic locations (Fitzpatrick et al., 

2006) and further indicates that some pedestrian treatments are effective in increasing the 

rate of yielding. But an important question remains: What are the operational impacts of 



   

 
 
 3 

an increased yielding rate? In order to analyze the interaction of the pedestrian and 

vehicle modes it is important to gain better insight into both the yielding and the gap 

acceptance processes and to identify ways that these behavioral characteristics can be 

related back to a measurable effect on operations.  

 

1.1 Motivation 
An increasing number of cities and state agencies are placing high priority on providing 

adequate pedestrian facilities. Pedestrian facility improvement projects aim to create 

recreational pedestrian paths, to revitalize downtown areas, or to create safe walking 

routes to educational facilities. With increasing focus on these types of pedestrian 

facilities, questions about pedestrian safety and the operational interaction of pedestrians 

and motorized traffic need to be addressed. Especially when these pedestrian facilities 

intersect with streets, engineers have to decide how to control the interaction of the 

pedestrian and vehicle modes at the crossing.   

 

The research presented here is inspired by two ongoing research projects investigating 

crossing difficulties of pedestrians with vision impairments. The first, a Bioengineering 

Research Partnership sponsored by the National Eye Institute (NEI) of the National 

Institutes of Health (NIH) quantifies differences in crossing performance of blind and 

sighted pedestrians at roundabouts. The second, National Cooperative Highway Research 

Project (NCHRP) 3-78a, is aimed at identifying and evaluating treatment solutions that 

may help pedestrians with vision impairments cross at roundabouts and channelized turn 

lanes.  

 

The involvement in aforementioned research projects produced the need to analyze 

crossing performance of blind travelers and identify ways to measure the effect of 

treatment installation. The two projects are ultimately motivated by the American with 

Disabilities Act (ADA). This legislation enacted in 1990 mandates equal access to public 

facilities to all users of that facility, including those with mobility or vision impairments. 
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Especially the question of the accessibility of unsignalized roundabout crossings to blind 

pedestrians has triggered a lot of research in recent years. The associated US Access 

Board (2006) regulations oblige transportation facilities to conform to the Americans 

with Disabilities Act and require equal access for all pedestrians, including those with 

vision or mobility impairments regardless of the demand for crossing. More discussion 

on this issue will follow in later chapters. 

 

But pedestrian safety concerns clearly extend to pedestrians without disabilities as well. 

The National Highway Traffic Safety Administration (NHTSA, 2006) lists a total of 

4,784 pedestrian facilities in 2006 and 61,000 injuries in traffic collisions. The report 

further cites that the highest rate of pedestrian fatalities (almost 40%) occurred during the 

hours of 4pm and 8pm, suggesting a relationship between pedestrian safety and heavy 

PM peak hour traffic.  

 

In a separate analysis of pedestrian and bicycle injuries based on hospital data, an FHWA 

Report (FHWA, 1999) found that 88% of the injuries from motor vehicle crashes 

occurred on the roadway. Furthermore, 38.5% of motor vehicle roadway injuries were to 

children under the age of 14, indicating elevated risk for young pedestrians in roadway 

crashes.  

 

In efforts to improve pedestrian safety at signalized and unsignalized crossings a range of 

treatments or countermeasures are available. A recent NCHRP report by Fitzpatrick et al 

(2006) presented a thorough overview of such pedestrian crossing treatments and in many 

ways provided practicing engineers with helpful advice on the selection and evaluation of 

treatments. The pedestrian countermeasure selection system PEDSAFE 

(www.walkinginfo.org) has a similar objective and includes links to case studies, 

treatment evaluations and an image library for reference. In an effort to achieve a more 

comprehensive and consistent analysis of treatments, Fitzpatrick et al (2006) collected 

data at several sites with different treatments installed. The authors used their 
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observations to make inferences on treatment effect on yielding behavior. However, the 

data collection approach in many ways was of a macroscopic nature, aggregating the 

results at the site level.  

 

With the availability of different pedestrian crossing treatments, there needs to be some 

basis for deciding upon their installation and for analyzing their impacts. A common 

approach is to determine whether a signalized pedestrian crossing is warranted. The 

pedestrian signal warrant in the Manual of Uniform Traffic Control Devices (MUTCD) 

(FHWA, 2002) warrants the installation of a pedestrian signal when both of the following 

conditions are met:  

A. The pedestrian volume crossing the major street at an intersection or midblock 

location during an average day is 100 or more for each of any 4 hours or 190 or 

more during any 1 hour; and  

B. There are fewer than 60 gaps per hour in the traffic stream of adequate length to 

allow pedestrians to cross during the same period when the pedestrian volume 

criterion is satisfied. Where there is a divided street having a median of sufficient 

width for pedestrians to wait, the requirement applies separately to each direction 

of vehicular traffic. 

{SOURCE: MUTCD, 2003 Edition, Section 4C.05 Warrant 4, Pedestrian 

Volume} 

In the MUTCD a pedestrian signal is warranted if both the pedestrian volume is high and 

the conflicting vehicle flow is high, making it difficult for pedestrians to cross at a 

facility.  

 

While this warrant provides decision support for engineers in areas of heavy pedestrian 

traffic, it does not provide guidance in other cases. Oftentimes, lower-volume crossings 

can prove challenging for pedestrians because of heavy vehicular traffic, poor sight 

distances, or high approach speeds. Such crossings with little pedestrian demand may 
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pose safety concerns and may cause many pedestrians to avoid these types of facilities all 

together.  

 

With a lack of guidance from the MUTCD, engineers may turn to the Highway Capacity 

Manual (HCM) (TRB, 2000) to make decisions on pedestrian treatment installations 

based on pedestrian delay estimation at an unsignalized pedestrian crossing. However, 

discussions in this document will show that the current delay calculation in the HCM 

effectively assumes one of two right-of-way regulations: either all drivers yield to 

pedestrians or none do. Clearly, both assumptions are inadequate in describing actual 

operations at many crosswalks and thus research insights into this problem are sorely 

needed.  

 

In addition to signals, engineers and planners today have a whole range of pedestrian 

treatments to choose from that may or may not serve the need of a particular site. 

Oftentimes, unsignalized crossings can be enhanced by treatments geared at increasing 

driver yielding behavior, and thus forgoing signalization. Many of these treatments have 

been heavily researched and their effectiveness demonstrated through empirical before 

and after studies. Nonetheless, their true impacts on operations at a new site are difficult 

to predict using existing methods. Similarly, a true comparison between signalized and 

unsignalized operations is also challenging to conduct a priori.  

 

The NCHRP 3-78a project places a strong emphasis on the use of microsimulation 

models for treatment evaluation. Motivated by the high cost of field data collection and 

associated risk to blind study participants, the project intends to use microsimulation to 

model the interaction of pedestrians and motorized traffic at signalized and unsignalized 

facilities. Working from calibrated base interaction models, the goal is to extrapolate 

treatment impacts to a wider range of geometric and operational situations.  
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It was through the involvement in NCHRP 3-78a that the author along with members of 

the research team developed the underlying concepts used in this dissertation. The 

planned application of microsimulation models requires that the aforementioned 

interaction models accurately reflect actual observations at crosswalks.  

 

Of the few existing attempts to analyze yielding and gap acceptance through microscopic 

behavioral data (not through site-specific parameters), the work by Sun et al (2002) 

stands out. The authors investigated the use of logit and probit models to describe both 

components of pedestrian-vehicle interaction and demonstrated the feasibility of this 

approach through model validation. The authors used observational data from one 

crosswalk, but did not include any operational parameters in the analysis. Their work 

focused on binary variables such as gender and vehicle type. They did not investigate if 

the speed of a particular driver would allow him or her to come to a stop at the crosswalk, 

nor did the authors perform any evaluation of treatments.  

 

In his doctoral dissertation, Chae (2006) performed an operational analysis of pedestrian-

vehicle interaction at roundabouts using video image processing. Through sophisticated 

vehicle tracking technology, the author was able to obtain detailed time-sensitive data on 

speeds and time gaps of both modes. The author discussed a range of treatments that 

would affect the interaction, but did not offer any in-depth evaluation of treatment 

effects. Further, the Chae (2006) did not investigate midblock crossings and did not 

explore predictive models for behavior.  

 

In this dissertation, the author develops and implements an event-based methodology for 

this type of analysis. The data used in this document were collected independently of the 

above projects. The author has jointly published and presented several papers including 

those exploring behavioral differences of blind and sighted pedestrians (Schroeder, 

Rouphail, and Wall Emerson, 2006), comparing pedestrian signal treatments at 
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roundabouts (Schroeder, Rouphail and Hughes, 2008), and evaluating unsignalized 

pedestrian crossings in a microsimulation environment (Schroeder and Rouphail, 2007). 

 

1.2 Contribution to Knowledge  
This document builds on several of the cited research studies by evaluating the effect of 

treatments presented by Fitzpatrick et al (2006) and PEDSAFE using statistical modeling 

tools similar to the work by Sun et al (2002). The key difference is that the research in 

this dissertation considers operational variables as well as behavioral attributes. The 

modeling results can be implemented in microsimulation, much like the approach taken 

by Chae (2006). The research makes a contribution to the knowledge base in the field of 

traffic engineering in several ways:  

 

• The research develops a data collection methodology for researchers that 

measures a range of discrete and continuous variables describing the interaction 

of pedestrians and drivers at unsignalized crosswalks. These variables describe 

the dynamic state of the vehicle, behavioral attributes of drivers and pedestrians, 

and the state of concurrent events with the interaction.  

 

• The research adopts statistical methods to describe the probability of driver 

yielding and pedestrian crossing behavior from the data. The developed forecast 

models allow for a more realistic representation of pedestrian-vehicle interaction, 

overcoming the limitations of existing methodologies that only address the 

boundary cases of yielding behavior.  

 

• The implementation of the probabilistic models in a microsimulation environment 

allows the analyst to compare the effectiveness of different types of treatments 

relative to a base scenario with just a zebra-striped crossing. Such quantitative 

comparison of the operational impact of treatments is not possible with existing 
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methods.  

 

• The more realistic representation of unsignalized operations allows for contrasting 

those crossings with signalized crosswalks in a simulation environment. In current 

practice it is impossible to quantify the incremental impact of a pedestrian signal 

on vehicle or pedestrian operations, because the evaluation of the unsignalized 

baseline case is overly simplistic.  

 

1.3 Research Objectives 
This research seeks to develop an analysis methodology for pedestrian-vehicle interaction 

that is applicable for inclusion in a microsimulation environment. The specific objectives 

of this research are as follows:  

 

1. Devise a data collection methodology to evaluate the interaction of pedestrians 

and drivers at unsignalized pedestrian crossings at a microscopic or event level.  

2. Demonstrate that pedestrian crossing and driver yielding behavior is sensitive to:  

o the dynamic characteristics of the approaching vehicle  

o behavioral characteristics of pedestrian and driver  

o concurrent events at the crosswalk  

o the installation of crosswalk treatments   

3. Describe driver yielding and pedestrian crossing behavior from collected event-

based data accounting for attributes of vehicle dynamics, behavior and the effect 

of treatments 

4. Demonstrate that driver yielding and pedestrian crossing models have application 

to microsimulation models where they can enhance existing interaction 

algorithms 
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1.4 Research Scope 
The methodology presented in this document requires significant data to properly 

calibrate the proposed behavioral parameters that describe pedestrian crossing and driver 

yielding behavior. The attributes for pedestrian and driver populations were collected at 

sites in Raleigh and Charlotte, NC at a sample size deemed sufficient for an illustration of 

the methodology.  

 

Given the great variability of pedestrian and driver behavior, the results are clearly 

subject to a regional and site-specific bias and should not be generalized to other sites at 

this time. While the methodology is universal and thus transferable, the observed data are 

not. Any extension or application of this research to other sites and outside of the State of 

North Carolina should therefore include additional data collection and model validation 

efforts.  

 

The analysis approach aimed to take full advantage of the amount of data used for model 

calibration. The results are contrasted with existing analysis methodologies for gap 

acceptance and yielding, but the models were not formerly validated with independent 

data not used in model development. 

 

The data collection approach collects microscopic data on individual drivers and 

pedestrians, but does not track these entities in sub-second time intervals. Vehicle 

tracking has been demonstrated by others, but is beyond the scope of this effort.  

 

Finally, this research focuses strictly on the intermodal relations of the vehicle and 

pedestrian modes at pedestrian crossings; it does not address the intramodal interaction 

on the approaches to the crossing, unless it has a direct effect on the interaction at the 

crosswalk. The intramodal processes for vehicular traffic are taken from existing models 

(e.g. car-following algorithms) and can be calibrated to reflect observed conditions as 
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necessary (e.g. speed distributions). Similarly, pedestrian travel patterns, interactions 

between multiple pedestrians, and walking speed effects are not explicitly analyzed.  

 

1.5 Outline of Dissertation 
This document is divided into three main parts. The first part provides an overview of the 

problem statement and outlines the research approach and analysis methodology. This 

chapter presented an introduction to the research and defined the objectives in the context 

of existing work. Chapter 2 presents the underlying analysis framework and discusses 

different types of pedestrian crossings and treatments. It further reviews the behavioral 

process of pedestrian crossing and driver yielding behavior and summarizes existing 

research on the subject matter. Chapter 3 lays out a data collection methodology 

developed specifically for this research to obtain the necessary variables from the field. It 

also discusses ways of reducing and analyzing the data. Special emphasis is given on 

illustrating the basic concepts of logistic regression techniques.  

 

The second part of the document presents the data and analysis results of actual field data 

collected for this dissertation. Data were collected at two mid-block crossing locations 

and one roundabout site. The data for the mid-block crossing included observations 

before and after the installation of two different pedestrian crossing treatments; an in-road 

pedestrian warning sign and an in-pavement pedestrian-actuated flashing beacon. Chapter 

4 is devoted to the analysis of driver yielding behavior at the two mid-block sites and the 

impact of the treatments on driver behavior. Chapter 5 analyzes pedestrian crossing 

behavior for those same data sets and compares conventional gap acceptance analysis 

methods with the newly proposed logistic regression approach. Chapter 6 presents and 

analyzes both driver yielding and pedestrian crossing data for a single-lane roundabout 

crosswalk.  

 

In the third and final part, the field observations are related back to the analysis 

framework presented. Chapter 7 extends the behavioral concept in the context of 
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microsimulation. It discusses the potential for implementing of the logistic models and 

outlines requirements for simulation algorithms utilizing the results of this research. 

Chapter 8 relates the findings back to the initial research objectives and discusses areas of 

future research. Chapter 9 gives a list of references used in this research. Supporting 

documentation on data reduction, analysis methodologies and modeling outputs can be 

found in the Appendix.  
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2 ANALYSIS FRAMEWORK 
 

The analysis framework presented in this chapter rests on the assumption that driver and 

pedestrian behavior can be represented through a set of descriptive parameters, that these 

parameters can be calibrated from field data, and that they can be used as inputs in 

simulation models. It is further assumed that different treatments implicitly impact the 

behavioral parameters of drivers and pedestrians and that these impacts are observable in 

the field. The research premise is as follows: if both the behavioral base condition of 

pedestrian and driver behavior and the treatment effect are quantifiable and observable, 

the resulting operational effects extracted from microsimulation are meaningful 

(assuming the simulation logic is valid).  

 

The chapter presents an analysis framework for unsignalized pedestrian crossing 

facilities. The underlying concepts for the framework were first presented at the Annual 

Meeting and Exhibit of the Transportation Research Board (Schroeder and Rouphail, 

2007). The chapter discusses the components of the framework and how it relates to 

modern microsimulation tools. It also offers a discussion of data needs in preparation for 

discussing the data collection methodology in the next chapter. The chapter goes on to 

present a brief overview of different pedestrian crossing facilities and a summary of the 

types of pedestrian treatments and crossing facilities. It concludes with a detailed 

discussion and literature review of the two main components of pedestrian-vehicle 

interaction: pedestrian crossing behavior and driver yielding behavior.  

 

2.1 A Framework for Evaluating Unsignalized Crossings 
 

This research is based on an innovative analysis framework for unsignalized pedestrian 

crossings that utilizes both pedestrian crossing behavior and driver yielding behavior. The 

framework allows for the analysis of signalized and unsignalized pedestrian crossing 
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facilities and a comparison among the two in a microsimulation environment. A 

flowchart of the general analysis framework is provided in Figure 1.  

Site Characteristics
  - Geometry
  - Volumes

Traffic Control

Conventional Signal
  - Timing

  - Compliance

'Hybrid' Signal
  - Timing

  - Compliance
- Behavior

Unsignalized Signalized

Base Condition 'Zebra'
  - P(Y)    - P(YU)
  - P(G)    - P(GU)

Increase Visibility
  - Increase P(Y)
  - Increase P(YU)?
  - Increase P(GU)?

Crossing Treatment

Force Behavior 
Change
  - Increase P(Y)
  - Increase P(GU)?

Assist Blind Ped.
  - Increase P(Y)
  - Increase P(YU)
  - Increase P(GU)

Field Data Collection
- Behavioral Characteristics 

- Impact of Treatments

Logistics Regression
- Estimate Model Parameters

- Input in Simulation

 Set-Up Simulation Model
          - Car Following        - Random Arrivals   

- Priority Rules         - Evaluation 

Calibration & Validation

Select Performance Measures
 Compare Treatment Scenarios

Run Sensitivity Analysis

DECISION SUPPORT FOR TREATMENT INSTALLATION
Reportable, Quantifiable Impact of Treatment on Selected Performance Measures

A Behavior-Based for Evaluating Pedestrian-Vehicle Interaction at 
Crosswalks
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Figure 1: Analysis Framework Flowchart 

 

The analysis methodology relies on site-specific characteristics of the crosswalk. It 

assumes that geometric information and traffic and pedestrian volumes are available from 

field visits, design drawings or forecasts. It is further assumed that the analyst is aware of 

the existing or proposed type of traffic control (signalized or un-signalized).  

 

For signalized crossings a conventional signal can be described from signal timing 

parameters and associated analysis methodologies. Concerns about pedestrian and driver 

compliance to the signal indication are valid and have been explored by others (Tiwari et 

al., 2007). However, the analysis of these behaviors is beyond the scope of this research. 

The same is true for behavioral characteristics at hybrid signals including the HAWK 

signal (Tucson DOT, 2007 and Schroeder, Rouphail, and Hughes, 2008) and strategies 

such as the “Pelican” or “Toucan” signals used in Europe and Australia (Inman and 

Davis, 2007).  

 

The emphasis of this dissertation is on unsignalized crossing facilities, because signalized 

crossings are more clearly defined in existing analysis methodologies (TRB, 2000). For a 

representative analysis of signalized pedestrian crossing alternatives in microsimulation, 

the reader is referred to Schroeder, Rouphail and Hughes (2008). That work compared 

the use of both conventional pedestrian-actuated signals and innovative HAWK signals at 

single-lane and two-lane roundabouts. It demonstrated the potential of microsimulation to 

evaluate signalized crossing treatments over a range of volume levels and further 

compared innovative and new signalization strategies prior to field implementation. 

 

For unsignalized crossings, the author proposed a framework for evaluating the 

interaction of pedestrians and vehicles in a recent paper (Schroeder and Rouphail, 2007). 

The paper discusses modeling parameters for the interaction of pedestrian and vehicle 
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traffic that should be included in a microscopic simulation analysis of unsignalized 

pedestrian crossing facilities.  

 

Specifically, the interaction is characterized by four interaction processes that can be 

expressed in the form of probabilities:  

 

P(G)  - The probability of a gap occurring in the traffic stream 

P(GU)  - The probability of a gap being utilized by the pedestrian  

P(Y)  - The probability of a driver yielding  

P(YU) - The probability that a yield is utilized by the pedestrian 

 

The probability of gap occurrence, P(G), is a function of vehicle arrivals and the headway 

distribution in the traffic stream. The behavioral characteristics of pedestrians and drivers 

are generally described by the probability of crossing in a gap, P(GU), and the probability 

of a driver yielding to a waiting pedestrian, P(Y). The fourth parameter typically applies 

only to pedestrians with vision impairments or other special populations who tend to 

reject or miss a portion of the encountered yields. For the population of pedestrians 

observed in this research, the yield utilization rate, P(YU), is 100%.  

 

The approach further hypothesizes that different treatments affect one or more of these 

probabilities. A later section categorizes treatments based on their intended effect: 

increasing visibility, forcing a behavior change, or assisting blind travelers. For example, 

a given treatment may be intended to increase the likelihood of yielding, but may also 

have an affect on pedestrian gap acceptance. In earlier work, the probabilities associated 

with different treatment effects were assumed for a demonstration of concept (Schroeder 

and Rouphail, 2007). Through the methodology put forth in this research the author will 

demonstrate how the probabilities can be estimated from field observations and how a 

treatment effect can be accounted for.  
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Modern microsimulation models simulate the movements of individual vehicles and 

pedestrians based on algorithms for car-following, lane-changing behavior and others. 

The models generally allow the user to simulate speed and headway distributions as 

random parameters and to define priority rules (PTV, 2005) to represent unsignalized 

points of interaction. By adopting the model algorithms to match findings from this 

research, microsimulation can be a viable tool for analyzing the interaction of the 

pedestrian and vehicle modes.  

 

Microsimulation models minimize data collection costs compared to field evaluation and, 

in the case of pedestrian research, offer the potential for non-intrusive treatment 

evaluation, minimizing the risk to study participants. Through the analysis framework 

presented above, they allow the evaluation of proposed pedestrian treatments prior to 

installation at a new location. With proper calibration of models, simulation tools have a 

wide range of applications and have been used for example to model pedestrian-vehicle 

interaction at roundabouts (Chae, 2006).  

 

Additional discussion on the modeling of pedestrians in microsimulation and the 

implementation of this research in microsimulation is provided in Chapter 7.  

 

With models in place to describe pedestrian and driver behavior and to quantify treatment 

impacts, microsimulation models can be coded and calibrated from site-specific 

interaction parameters.  

 

2.2 Pedestrian Crossing Facilities 
Pedestrian crossings are a common feature at signalized intersections where they are 

typically tied to the vehicular signal phasing scheme. The analysis of these types of 

pedestrian crossings is outlined in the HCM. Besides these signalized crossing locations 

at intersections, there are three major types of unsignalized pedestrian crossings: 
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crossings at channelized right-turn lanes, mid-block pedestrian crossings, and crossings at 

the approaches to a modern roundabout.  

 

2.2.1 Channelized Right-Turn Lanes 

Channelized right-turn lanes (CTL) are commonly found at signalized intersections to 

create additional capacity for heavy right-turning traffic. These single-lane bypass lanes 

are typically free-flowing with a yield-controlled merge into downstream traffic and may 

be outfitted with an acceleration and/or a deceleration lane. A pedestrian crossing at the 

main signalized intersection inevitably requires the pedestrian movement to also cross 

these CTLs, which is most commonly done at an unsignalized zebra-striped crosswalk in 

the center of the turn lane. For a detailed discussion on CTL geometry and alternative 

placement for the pedestrian crosswalk refer to NCHRP Report 279 (TRB, 1985) and the 

NCHRP 3-72 project (TRB, 2003). While not discussed in detail in this document, a 

previously published paper (Schroeder, Rouphail and Wall Emerson, 2006) presents a 

detailed analysis comparing the crossing abilities of blind and sighted travelers at these 

types of facilities.  

 

2.2.2 Mid-Block Crossings 

In addition to crossings at signalized intersections, pedestrian crossings are commonly 

found at mid-block locations. Contrary to what is implied in the terminology, these 

crossings are not necessarily located in the middle of a block, but rather can be found 

anywhere along a roadway at locations away from an intersection crossing. The crossed 

roadway can range anywhere from one to four or more lanes, may have traffic in one or 

two directions, and may or may not be outfitted with a signal. The decision to place a 

signal at a mid-block location is regulated by the pedestrian signal warrant in the 

MUTCD (FHWA 2002).  
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2.2.3 Roundabout Crossings 

Pedestrian crossings are also found at modern roundabouts, which are becoming an 

increasingly popular traffic control feature in the US. A long-term staple in Europe and 

Australia, an online database (Kittelson Associates, 2007) now lists more than 1,000 

roundabout intersections across the United States, justifying their inclusion in this 

discussion. The pedestrian crossing at modern roundabouts is typically a two-stage 

crossing with pedestrians being able to find refuge on the splitter island as shown in 

Figure 2. The pedestrian crossing location is also designed to allow storage for one or 

more vehicles waiting to enter the roundabout downstream of the crosswalk.  

 
Figure 2: Roundabout Pedestrian Crossing 

(SOURCE: FHWA Roundabout Guide, 2000) 
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For the purpose of discussion it is assumed that the base condition for pedestrian 

crossings at any of the three types of locations is a zebra-striped unsignalized crosswalk. 

At these types of crossings, legislation typically gives pedestrians in the crosswalk the 

right-of-way, but as later discussion shows, motorist compliance varies. To further 

enhance the crossing and to make it safer for pedestrians, there are several categories of 

pedestrian crossing treatments that aim to facilitate pedestrian crossings.  

 

2.3 The Range of Pedestrian Treatments 
A great variety of treatments are available to help traffic engineers and planners improve 

pedestrian facilities and to provide safe crossing opportunities for pedestrians. The 

PEDSAFE pedestrian countermeasure selection system is available online 

(www.walkinginfo.org) and lists 49 different treatments ranging from engineering 

solutions to education and enforcement methods. Similarly, a recent NCHRP report on 

“Improving Pedestrian Safety at Unsignalized Intersections” (Fitzpatrick et al, 2006) 

discusses a range of treatments and research findings on their safety performance.  

 

Countermeasure selection tools such as PEDSAFE are intended to help practitioners 

distinguish between different treatments and make informed decisions on how to improve 

pedestrian facilities. Several state DOTs have developed their own decision tools or 

treatment matrices to support decisions. A great number of treatments have been 

evaluated as to their effectiveness in reducing pedestrian collisions, or in increasing the 

likelihood of yielding drivers. This document divides pedestrian treatments into four 

broad categories based on their intended functionalities:  

 

1. Treatments that are geared at increasing pedestrian visibility, including static 

warning signs and pedestrian-actuated flashing beacons geared at increasing 

yielding behavior 
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2. Treatments that are forcing a behavior change in drivers, such as a raised 

crosswalk or chicanes geared at reducing driver speeds and creating a safer 

crossing environment 

3. Treatments that are interrupting traffic flow, which includes conventional 

pedestrian signals and some innovative modifications of the signal phasing 

scheme, and  

4. Special treatments intended to help blind pedestrians. This last category includes 

treatments aimed at improving gap and yield detection of blind pedestrians at 

unsignalized crossings.  

 

Multiple treatments from the same or from different categories are oftentimes combined 

to either enhance the intended effect or supplement it. For example, the effect of a static 

sign could be enhanced by adding a pedestrian-actuated flashing beacon and could be 

supplement by additionally installing speed humps in the approach to the crosswalk. 

NCHRP report 562, cited above, supports this notion of a “systematic combination” 

(Fitzpatrick et al, 2006) of treatments to maximize the benefits to pedestrians.  

 

2.3.1 Increasing Pedestrian Visibility 

Treatments in this category have the general objective of increasing the awareness of 

drivers that are in the approach to a crosswalk. This category can be further divided into 

treatments that are a) static, b) animated, but non-responsive, and c) pedestrian-actuated.  

 

a) Static treatments include conventional roadside signs and pavement marking 

delineating the crosswalk. This category also includes some innovative changes to 

conventional treatments, such as fluorescent green signs or colored pavement 

marking. A treatment with much promise that has been used in many 

municipalities is an in-road sign reminding drivers that it is a state law to yield to 

pedestrians within the crosswalk (Figure 3). Research showed that these signs are 
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effective in increasing the yielding behavior of drivers (Fitzpatrick et al, 2006). 

All treatments in this group are fairly cost effective and easy to install.  

 

 
Figure 3: In-Road Pedestrian Signs  

(Source: http://mutcd.fhwa.dot.gov) 

b) Animated (but non-responsive) treatments intend to increase a driver’s awareness 

by installing flashing beacons at the roadside, in the pavement or mounted 

overhead above the crosswalks. These signs increase the visibility of the 

crosswalk by flashing constantly. They are more expensive than group a and 

further require a constant power supply to operate. Figure 4 shows the example of 

a roadside flashing beacon.  
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Figure 4: Roadside Pedestrian Flasher  

(Source: www.walkinginfo.org/pedsafe) 
 

c) Pedestrian-actuated treatments are flashing beacons similar to group b, but are 

only active when actuated by a pedestrian push-button. The big advantage here is 

that the flashing display is intuitively associated with the presence of a pedestrian. 

Pedestrian-actuated treatments can be mounted at the roadside, overhead or in-

pavement (Figure 5). They also come at an additional cost, because of the push-

button, and furthermore require communication ability (if a pedestrian on one side 

of the crosswalk pushes the button, flashers on both sides of the street need to 

start flashing).  
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Figure 5: In-Pavement Flashing Crosswalk  

(Source: www.walkinginfo.org) 

 

The general objective of treatments in this category is to alert drivers of the 

presence of a pedestrian crosswalk. A by-product of increased driver attention in 

many cases is an increase in the yielding behavior of drivers. It is important to 

point out that this behavior change in drivers (more yielding) is voluntary, i.e. not 

enforced by physical modifications of the roadway or through legislation. The 

NCHRP report by Fitzpatrick et al. (2006) refers to this treatment category as 

“active when present” devices.  

 

2.3.2 Forcing Behavior Change 

Treatments in this category actually force drivers to modify their behavior. Examples 

include speed enforcement treatments (lower speed limit, enforcement) or physical 

modifications to the roadway aimed at reducing speeds. This could be achieved through 

raised crosswalks, speed humps, road diets or chicanes in the roadway (Figure 6). In 

general, drivers are forced to slow down, making it safer for pedestrians. Lower speeds 

have also been linked to increased yielding behavior (Geruschat and Hassan, 2005).  
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Figure 6: Raised Crosswalk, Speed Humps and Chicanes  

(Source: www.walkinginfo.org/pedsafe) 

 

There are other treatments that force a behavior change upon the pedestrian. Examples 

include fencing or landscape treatments delineating pedestrian paths or offset crosswalks 

that direct pedestrians towards oncoming traffic in a two-stage crossing (Figure 7).  
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Figure 7: Offset Marked Crosswalk & Signing, Offset to the right  

(Source: www.walkinginfo.org/pedsafe) 

 

2.3.3 Interrupting Traffic Flow 

The most high-tech and therefore most expensive treatments are pedestrian signals, 

designed to interrupt traffic to create safe crossing opportunities for pedestrians. Similar 

to pedestrian signals at signalized intersections, these treatments can be installed at a mid-

block location or roundabout pedestrian crossing to stop vehicle traffic at the approach. 

Signals further have the advantage that they can be outfitted with audible pedestrian 

signals (APS) to create equal access for pedestrians with vision disabilities.  

 

The pedestrian clearance time at signals (flashing don’t walk, FDW) is timed as a 

function of crossing width and pedestrian walking speed. This safety-related timing 

practice governs the impact of the signal on the pedestrian-induced delay to vehicle 

traffic through longer red phases. The effect of the signal can be mitigated through a 

combination of shorter crossing distance and modified timing patterns. Because the 

research presented here focuses on unsignalized crossings, the reader is referred to 

Schroeder, Rouphail, and Hughes (2008) for further discussion.  
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2.3.4 Assisting Blind Pedestrians 

Specialized treatments under evaluation in the NCHRP 3-78a research effort aim to 

enhance the ability of blind pedestrians to make crossing decisions. The two broad 

categories here are treatments that enhance yield detection and those that target to 

improve gap detection abilities of the pedestrians. These treatments are beyond the scope 

of this work and will therefore not be discussed further here.  

 

2.4 Pedestrian-Vehicle Interaction 
This section describes the behavioral components in the interaction of pedestrians and 

vehicles at unsignalized crosswalks: pedestrian gap acceptance and driver yielding 

behavior. The analysis of this interaction is complicated by the apparent lack of a clear 

understanding of right-of-way legislation. While many states have legislation in place 

requiring vehicles to yield to pedestrians in the crosswalk, field observations on busier 

streets make it evident that compliance varies. More commonly, drivers and pedestrians 

use methods of non-verbal communication to determine crossing priority. The 

willingness of a driver to yield and the assertiveness with which a pedestrian seizes the 

crosswalk are two of many factors that may influence this interaction. Other factors may 

include the cross-section of the road, the type of crossing treatment or the general level of 

congestion at the crossing location. These behavioral processes are explored below.  

 

2.4.1 Pedestrian Crossing Behavior 

Pedestrian crossing behavior has not been explored to the same degree that vehicle gap 

acceptance has been investigated. While similar in concept, there are a variety of 

pedestrian characteristics and caveats in the interaction between the pedestrian and 

vehicle modes that give reason to derive separate pedestrian crossing models (PCM). The 

PCM terminology is introduced here, because the analysis includes both gap and lag data 

(defined below). This section provides an overview of general vehicle gap acceptance 

models. It then reviews reasons that pedestrians are believed to behave differently when 

making a decision to cross the roadway and summarizes existing research.   
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Overview of Gap Acceptance Models 

Traditionally, literature on vehicle gap acceptance has used a constant value of critical 

gap (CG) that is calibrated for local conditions (Troutbeck and Brilon, 2002). It can differ 

depending on the type of movement and the type of vehicle. For example, the CG for left 

turns is likely to be larger than for right turns, and heavy vehicles tend to have longer CG 

because of slower acceleration profiles and longer vehicle lengths. In the following, this 

type of gap acceptance model will be referred to as the deterministic model.  

 

By definition, the critical gap is the time between consecutive vehicles on the major road 

at which a vehicle waiting at the minor approach is equally likely to accept the gap or 

reject it. Literature on gap acceptance oftentimes assumes that drivers are both 

homogeneous and consistent. In a homogeneous driver population, all drivers have the 

same critical gap. Under consistency assumption, the same gap acceptance situation will 

always cause a driver to make the same (consistent) decision. Although these 

assumptions are not realistic, Troutbeck and Brilon (2002) justify their use because 

inconsistencies in driver behavior tend to increase capacity while a heterogeneous driver 

population will decrease capacity, thereby offsetting the previous effect. 

 

The most common US application of deterministic gap acceptance is in the US Highway 

Capacity Manual (TRB, 2000). The Manual recommends using a constant critical gap 

from listed default parameters or locally estimating CGs from field conditions. It further 

recommends a reduction of its tabulated CG values for heavily populated regions (greater 

than 250,000), suggesting that drivers in those regions may be more likely to encounter 

frequent congestion and have thus lowered their CG threshold.  

 

There are several ways for estimating CG from field data, including a graphical method 

(Troutbeck and Brilon, 2002), a regression method (Troutbeck and Brilon, 2002), a 

statistical method based on maximum likelihood estimation (Troutbeck, 2001), and the 

Ramsey-Routledge method (ITE, 2000). In application of these methods, the capacity of 
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the minor street flow becomes a function of the CG on the minor approach tc, the follow-

up time on the minor approach tf, and the conflicting major street flow qp, as shown in 

HCM2000 equation 17-70 adopted below:  

 
Equation 1: HCM Capacity Equation for Two-Way Stop Controlled Intersection (17-70) 
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The follow-up time describes the time needed for additional vehicles in a stored queue to 

accept the same gap. The size of tf is typically less than tc, because some of the decision 

and acceleration times for subsequent vehicles occur during the initial gap.  

 

In addition to deterministic gap acceptance, a report compiled for the Federal Highway 

Administration (FHWA) Next Generation Microsimulation (NGSIM) research effort 

(Cambridge Systematics, 2004) discusses probabilistic gap acceptance models, for which 

the driver response for an identical event (same speed, same gap in conflicting traffic) 

can be drawn from a probabilistic distribution of possible responses. Such probit models 

assume a mean CG with a random variance term depending on the specific coefficients 

defined for a driver and/or situation. Conceptually, probit models could represent 

inconsistent driver behavior and a heterogeneous population by drawing gap acceptance 

decisions from random distributions.  

 

Alternatively, probabilistic behavior can be modeled in the form of a binary or 

multinomial logit model. A logit model could describe the likelihood of gap acceptance 

as a function of a number of different parameters (for example assertive vs. non-assertive 

pedestrians, gap time, and type of the arriving vehicle). It thus introduces greater 

complexity in the gap acceptance model, but in turn requires a lot of data for calibration. 

Logit gap acceptance models have been proposed by Ben-Akiva and Lerman (1985), and 
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Cassidy (1995), and probit models were suggested by Mahmassani and Sheffi (1981) and 

Madanat (1994).  

 

Some researchers have proposed even more complex algorithms for modeling gap 

acceptance. Kita (1993) used neural networks to describe the process, under the 

assumption that gap acceptance is not a linear sequence of events, but that multiple 

factors affect the decision making process. This modeling approach is capable of 

removing consistency assumptions, but the authors upheld the assumption of 

homogeneity.  

Pedestrian Crossing Attributes  

To assess pedestrian gap acceptance, the viewpoint needs to be shifted to the perspective 

of a pedestrian arriving at a crosswalk. The pedestrian population arriving at the 

crosswalk needs to be treated very differently from a vehicle population. Blue and Adler 

(2001) pointed out that pedestrians are not officially channelized, can vary their speed, 

can occupy any part of the walkway, can bump into each other and have almost 

instantaneous acceleration/deceleration profiles.  

 

A number of researchers have attempted to predict pedestrian movement characteristics 

for a stream of pedestrians. The most promising research focuses on cellular automata 

modeling, which treats the pedestrian as an independent cell capable of movement in a 

defined number of directions. Research by Blue and Adler (2001) developed bi-

directional cellular automata (CA) models for pedestrian movement, which in concept is 

similar to a car-following model that also accounts for the next following vehicle. The 

CA model was later improved to an octo-directional model by Holden and Cangelosi 

(2003) allowing for less restricted pedestrian movements that more closely resemble 

actual behavior. These models have application for describing the pedestrian walking 

behavior on the crosswalk and are frequently applied to analysis of transit and terminal 

facilities.  
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For the assessment of pedestrian behavior at road crossings, the heterogeneous nature of 

the pedestrian population needs to be taken into consideration. While gap acceptance for 

drivers is strongly linked to the acceleration capability of the vehicle, pedestrian 

decisions are a function of individual attributes. A typical population includes students, 

elderly, blind pedestrians, children, and people with baby strollers. There are drastic 

differences in the ability and the willingness to make crossing decisions among these sub-

groups. A lot of recent research has focused on gap acceptance by blind pedestrians. 

Ashmead et al. (2005) found that when attempting to cross at a two-lane roundabout, 

blind pedestrians waited three times longer than sighted pedestrians and furthermore 

made about 6% ‘risky’ decisions. Sighted pedestrians didn’t make any ‘risky’ decisions. 

In another example, Sun et al. (2002) found from data at an unsignalized mid-block 

pedestrian crossing that both the minimum accepted gap time and the average accepted 

gap time were lower for younger than for older pedestrians.  

 

Research at pedestrian mid-block crossings by Dunn and Petty (1984) found that 

pedestrians tend to exhibit more risky behavior when waiting 30 or more seconds at a 

crossing. Accordingly, the HCM predicts an increasing likelihood of non-compliance as 

pedestrian delay increases (TRB 2000). The phenomenon of non-compliance can also be 

interpreted in an adjustment of the critical gap to a lower threshold, raising the question 

whether a gap acceptance model ought to include a decay function of CG time that is a 

function of waiting time. On the other hand, Sun et al. (2002) actually found an increase 

in the average accepted gap as the waiting time of pedestrians increased. The authors 

explained this trend as due to pedestrians who still wait at the crosswalk after long 

waiting times tending to be careful in nature and therefore never accepting a short or 

risky gap.  

 

When interpreting the consistency assumption, it is intuitive that pedestrians will tend to 

alter their gap acceptance attributes if they are in a hurry versus if they are on a leisure 

trip. The consistency assumption then is violated, because a similar vehicular gap and 
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speed at a given geometry will result in different decisions by the pedestrian, depending 

on his/her state of mind. Pedestrian walking speeds may vary for similar reasons. For 

example, the HCM Chapter (TRB, 2000) on pedestrians recommends a walking speed of 

4.0 ft/sec, with a lowered speed of 3.3 ft/sec if the fraction of elderly pedestrians exceeds 

20% and a further reduction by 0.3ft/sec at upgrades exceeding 10%. Bennett et al. 

(2001) investigated pedestrian walking speeds at signalized intersections and mid-block 

crossings and found slower average speeds at the mid-block locations. The authors also 

found differences between the 15th and 85th percentile walking speeds of about 2.5 ft per 

second and significant variation between pedestrians with and without walking difficulty 

at all studied locations. Fitzpatrick et al (2006) recommended in a recent NCHRP report 

to lower the pedestrian walking speed used by the MUTCD to 3.5 ft/s, but further 

acknowledge that even lower speeds may be appropriate in some cases. The variability of 

walking speed is important when discussing crossing behavior, because it is directly 

proportional to the time required to cross a given distance.   

Pedestrian Follow-Up Time 

The HCM equation shown above uses the critical gap and follow-up time to calculate 

minor-street capacity as a function of major street flow. While a pedestrian critical gap 

can be observed from field data, the follow-up time concept proves challenging.  

 

The above referenced lack of channelization for pedestrian traffic means that pedestrians 

are not confined to sequential queue storage like vehicles, but can occupy spaces next to 

each other in the waiting area. In fact, the HCM offers equations for analyzing pedestrian 

storage space at the crosswalk (TRB, 2000). Therefore, it is argued here that the concept 

of follow-up time is not applicable for pedestrians in the same fashion as for vehicles. For 

pedestrians, it is possible that for example, three pedestrians cross at the exact time, 

depending on the width of the crossing. In this case then, the classical follow-up time 

wouldn’t apply until the 4th pedestrian, who had to wait behind the other three.  
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Models for Pedestrian Gap Acceptance 

The discussion above suggests that pedestrian movements, pedestrian gap acceptance, 

and pedestrian-vehicle interaction are different enough from conventional vehicular 

traffic to warrant alternate models for pedestrian movements, gap acceptance, and 

capacity.  

 

The deterministic gap acceptance model in the HCM2000 Pedestrian Chapter offers a 

method for estimating critical gap tc as a function of crosswalk length L, Pedestrian 

Walking Speed Sp, and pedestrian start-up time ts (Equation 2). 

   
Equation 2: Pedestrian Critical Gap after HCM (Equation 18-17) 

s
p

c t
S
Lt +=  

 

Rouphail et al (2005) described pedestrian gap acceptance as the sum of latency and 

actual crossing times, an approach similar to the HCM2000 method discussed above. The 

authors used field estimates of the median latency time in place of the HCM2000 start-up 

time. The authors’ research compared latency times of blind and sighted pedestrians and 

found that blind pedestrians exhibited significantly larger latency times, resulting in 

longer critical gap values and presumably more delay. The increased delay to blind 

pedestrians is consistent with research findings presented above.  

 

Researchers have also attempted to use advanced gap acceptance models to describe 

pedestrian crossings. Sun et al. (2002) calibrated probit and binary logit models to 

describe both pedestrian gap acceptance and driver yielding from actual field data. The 

authors excluded about 25% of observations for later model validation and found that 

binary logit models performed best in both cases, correctly predicting 85.6% of gap 

acceptance and 87.1% of yielding decisions. For comparison, a probit model only 

resulted in 68.5% correctly predicted gap acceptance decisions, and a deterministic 
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critical gap model actually achieved a surprising 81.5% correct predictions. Regression 

analysis found the important factors for pedestrian gap acceptance to be gap size, number 

of pedestrians waiting, and age of pedestrians. Important factors for the driver yielding 

model were the opposite direction traffic volume, number of pedestrians waiting, and 

type of vehicle. The authors recommended the binary-logit model for estimation, stating 

that the good performance of the deterministic model was likely due to an extraordinarily 

homogeneous pedestrian population.  

 

In the application of any of these methods, the analyst generally needs to distinguish 

between gap and lag events. A gap describes the time difference between consecutive 

vehicle events. A ‘lag’ corresponds to the time between a pedestrian’s arrival at the 

crosswalk and the next vehicle event. Just as a gap, the lag can either result in a GO 

decision (ped. arrival – crossing – vehicle event) or NOGO decision (ped. arrival – 

vehicle event). In field estimation, it needs to be clearly distinguished which type of 

observation is recorded.  

Field Estimates of Pedestrian Gap Acceptance 

There are four traditional methods that are commonly used to estimate gap acceptance 

parameters from field data. The graphical method and the regression method allow the 

analyst to estimate the critical gap parameter only (Troutbeck and Brilon, 2002), while 

the maximum likelihood method (Troutbeck, 2001), and the Ramsey-Routledge method 

(ITE, 2000) estimate distributions of critical gaps.  

 

The graphical method plots the cumulative frequency of accepted gaps and rejected gaps. 

The critical gap can then be obtained graphically from the intersection of the two curves, 

which by definition, corresponds to the gap time that is equally likely to result in a 

rejected or an accepted gap. This method can intuitively be adapted to the pedestrian 

mode and is also applicable for lag data.  
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In the regression method, the observer keeps track of how many vehicles (or pedestrians) 

accepted a gap of a certain size. The analyst then plots the different measured accepted 

gap times versus the number of vehicles that entered the intersection during that time. A 

linear regression is then completed on the mean gap time for each vehicle group size. The 

critical gap can then be calculated from the slope of the line and the intercept of the gap 

size. Conceptually, the critical gap represents the average gap time for one half vehicle 

entries. The regression method does not use rejected gap data.  

 

For the analysis of pedestrian gap acceptance, the regression method is not applicable, 

because pedestrians are typically not queued in the same fashion that vehicles are. Given 

the lack of channelization of pedestrian movement and the potential for multiple 

pedestrians to wait beside each other, it is possible for more than one pedestrian to accept 

a relatively short gap or even for pedestrians to accept gaps out of sequence. Therefore, 

similar to the discussion of why the ‘follow-up time’ concept does not apply directly to 

pedestrians, it is argued here that the regression method is not applicable for pedestrian 

gap acceptance analysis.  

 

For the maximum likelihood method, MLE according to Troutbeck (2001), the data need 

to be arranged in a way that only the accepted gap and the largest rejected gap are 

recorded for each vehicle (pedestrian). The critical gap parameter is estimated using a 

likelihood function and is defined as the critical gap value that maximizes the likelihood 

of observing the particular sample. Data for this method are difficult to obtain, because 

only pairs of accepted and rejected events can be used. For example, the method throws 

out all cases where a pedestrian crosses immediately (accepted lag only) or where a 

pedestrian rejects multiple gaps before a vehicle yields. In an attempt to utilize a large 

portion of the data, the MLE method can be applied to a sample of accepted and rejected 

gaps (not from the same vehicle), as long as the sample sizes are the same.   
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The Ramsey-Routledge method, similar to the graphical method, uses the frequency of 

accepted and rejected gaps for certain bin sizes (recommended 2 second bins) to estimate 

the distribution of critical gaps. Following the discussion in ITE (1994), the Ramsey-

Routledge method does not require the analyst to assume a distribution as is the case in 

the MLE method. This brings advantages when dealing with special cases such as a 

multi-modal critical gap distribution, where there are two or more distinct groups within 

the pedestrian populations. The Ramsey-Routledge method can be applied to gap and lag 

data.  

 

This section identified important differences between the pedestrian population and a 

population of drivers. The discussion emphasized the need for treating pedestrians as a 

heterogeneous and inconsistent population and further raises the question for the need of 

a gap acceptance decay function that reduces the critical gap as a function of waiting 

time. Researchers have demonstrated promising results from describing PCM through 

logit and potentially probit models, but also showed that the traditional gap acceptance 

models are fairly accurate in their prediction ability. The section presented four 

alternative methods, but argued that only three are applicable for pedestrian gap 

acceptance. The next section focuses on the second component of the interaction of the 

two modes: the yielding behavior of drivers approaching the crosswalk.  

 

2.4.2 Driver Yielding Behavior 

The objective of this section is to summarize existing research on driver yielding 

behavior and to discuss the decision-making process that leads a driver to yield to a 

pedestrian at the crosswalk. 

Yielding Rates 

When describing pedestrian-vehicle interaction, some percentage of drivers is expected to 

yield to a waiting pedestrian, with the actual percentage depending on factors such as the 

presence of a zebra-crosswalk, the vehicle speed and the local driving culture. Several 

studies have attempted to identify factors contributing to the yielding process.  
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In a study looking at driver yielding at roundabouts, Geruschat et al. (2005) found that 

the probability of motorists yielding to pedestrians is a function of vehicle speeds on the 

approach, and that they are more likely to yield at the entry than at the exit of the 

roundabout. Ashmead et al. (2005) found similar differences in yielding behavior 

between entry and exit legs of roundabouts. Harrell (1993) found that drivers are more 

likely to yield to pedestrians with brightly colored clothing and also yield more to an 

assertive pedestrian who entered the crosswalk (rather than passively remaining on the 

curb). Guth et al. (2005) found a great variability of yielding behavior across different 

roundabout geometries.  

Predictive Models  

In previous research Sun et al (2002) collected data on driver yielding and pedestrian gap 

acceptance at an unsignalized midblock pedestrian crossing and compared the fit of 

different statistical models. In an approach similar to what is proposed here, the authors 

estimated yielding probabilities based on the discrete parameters driver gender, driver 

age, type of vehicle, number of pedestrians, and the presence of an opposing yield. They 

found that drivers are more likely to yield to a group of pedestrians and that older drivers 

were more likely to yield than younger drivers. In the pedestrian gap acceptance model, 

they investigated pedestrian age, gender, waiting time, gap size and the number of 

pedestrians. Their results showed that a logistic modeling approach outperformed a probit 

model for driver yielding, as well as for pedestrian gap acceptance. The authors looked at 

only one crosswalk and did not analyze any pedestrian treatment effects. 

 

The analysis proposed here expands the research approach by Sun et al (2002) in several 

areas. Most notably, the research by Sun et al did not look at constraints to driver yielding 

behavior related to vehicle dynamics. As discussed later in this chapter, there are physical 

limits to the ability of a driver to yield. In previous research, Geruschat and Hassan 

(2005) found that drivers are more likely to yield at lower speeds demonstrating the 

importance of dynamics variables.  
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Without vehicle dynamics information, the statistical model by Sun et al (2002) offers 

interesting insights in the yielding behavior of different driver types, but falls short of 

describing the true operational parameters involved in the yielding process. Nonetheless, 

their results strengthen the approach for the logistic regression approach proposed here 

and give helpful insight in sample size requirements. The authors collected 1.5 hours 

each of AM and PM peak data over 5 days, for a total of 15 hours of data. The resulting 

samples included 687 accepted gap, 938 rejected gap, and 1254 motorist yield data 

points, which was sufficient to allow them to estimate statistically significant probit and 

logit models.  

 

The research findings above can be summarized as the decision of a driver to yield is a 

function of both operational and behavioral parameters. In the first category, the yield 

decision is triggered by both the speed of the vehicle and the assertiveness of the 

pedestrian. In the behavioral category, drivers are influenced by clothing and the number 

of pedestrians at the crosswalk. Similarly, it can be hypothesized that yielding is 

impacted by the presence of a conflict downstream of the crosswalk. There are also cases, 

where a driver may be forced to yield, because of a pedestrian GO decision in gap in 

traffic that is too short.  

 

The HCM2000 (TRB, 2000) currently states that the procedure for unsignalized 

pedestrian crossings is not applicable for zebra-striped crossings, because pedestrians 

have the right-of-way. In other words, the method assumes that all drivers comply with 

legislation and yield to pedestrians in the crosswalk. In those cases, the HCM 

recommends using the method for two-way stop-controlled intersections. Experience 

shows that the compliance rate of drivers at zebra crossings is likely to vary across 

locations, and intuition is supported by research findings (Fitzpatrick et al., 2006) that the 

yielding rate is typically less than 100 %. At the same time, there is likely to be some 

yielding behavior, even at locations without demarcation of the pedestrian crosswalk. 
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2.5 Data Needs 
The following discussion rests on the assumption that there are certain parameters that 

lead an approaching driver to the decision of whether or not to yield to a pedestrian at the 

crosswalk. The section presents parameters that are related to the yielding behavior of 

drivers and how these variables may enter into a driver yielding model.  

 

2.5.1 The Crosswalk Interaction 

The interaction of drivers and pedestrians at an unsignalized crosswalk is a very complex 

process. In concept, there are two agents involved in the interaction at pedestrian 

crosswalks.  

 

From the perspective of the pedestrian arriving at the crosswalk, the decision is made 

whether a given gap or lag in vehicular traffic is long enough for a safe crossing or to 

wait for a larger gap. From the driver perspective, a similar process leads the driver to 

either proceed through the conflict area or to yield the right-of-way to the pedestrian. 

Conceptually, it can be said that the driver accepts a gap in the conflicting pedestrian 

stream, given that the driver has the general propensity to yield to pedestrians. In a sense, 

the process of pedestrian-vehicle interaction can then be described as a dual gap 

acceptance process in which the action-reaction sequence can be initiated by either 

agent.  

 

2.5.2 Interaction Parameters 

Conceptually, the probability of a driver to yield when a pedestrian is present at the 

crosswalk, P(Yield), can be expressed as a function of independent parameters βi; much 

like it would be done in multi-linear regression analysis. Similarly, the probability of a 

pedestrian’s decision to cross the road is a function of some variables. Through statistical 

modeling, these parameters can be related to the response variable as demonstrated by 

Sun et al. (2000) and others. Due to the discrete nature of the process (1/0 = Y/NY or 
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GO/NOGO) methods of categorical data analysis need to be applied. This is discussed in 

detail later, but regardless of the form of the dependent variable, the decision of a driver 

to yield or of the pedestrian to GO should be a function of the following types of 

variables:  

 

• Vehicle Dynamics: A yield is only feasible if a driver can reasonably come to a 

complete stop (hard yield) or delay his arrival at the crosswalk enough to allow 

the pedestrian to cross (rolling yield). Parameters in this category include travel 

speeds, distance from the conflict area, and maximum (comfortable) deceleration 

rates for both drivers and pedestrians. These variables affect the arrival time of the 

vehicle and thereby also the pedestrian decision.  

 

• Vehicle and Driver Characteristics: These attributes describe, for example the 

‘willingness’ of drivers to yield, driver courtesy, and the type of vehicle  

 

• Pedestrian Characteristics: Pedestrian attributes include assertiveness, the 

presence of multiple pedestrians, or the willingness to accept risk. 

 

• Confounding Factors: In addition to the personal attributes above, the 

circumstances surrounding the interaction may impact the decision-making 

process. Examples include the presence of a downstream queue after the 

crosswalk or a yield event in the opposing direction or adjacent travel lane. 

Yielding behavior is also intuitively related to whether or not a vehicle is 

traveling in a platoon of vehicles. Similarly, pedestrians may be more willing to 

accept a short gap from an individual vehicle than a platoon. 

Vehicle Dynamics  

The category of vehicle dynamics warrants further elaboration. The following discussion 

analyzes this concept in relation to the conflict point: the hypothetical point where vehicle 
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and pedestrian occupy the same space at the same time. To simplify the discussion, it is 

assumed that both vehicles and pedestrians can be represented by single points, thus 

ignoring the physical dimensions of each.  

 

It will further be assumed that both agents will act to try and prevent the conflict from 

actually happening, by altering their travel speeds at some point. In this sense the agent 

with the lower risk threshold will react first, triggering a reaction from the other. Both 

action and reaction are subject to the individual driver and pedestrian behavioral 

parameters (population heterogeneity) and may further vary across situations and over 

time (population inconsistency).  

 

Under uncongested, free-flow conditions, a driver at some point on a road and 

approaching a crosswalk at a speed vd is expected to arrive at the crosswalk after a time td 

has elapsed, where td=vdxd (xd is the distance from the point to the crosswalk or conflict 

point, see Figure 8). At any point in time, the driver can make the decision to slow down 

and yield to a pedestrian, constrained by the maximum (comfortable) deceleration rate dd. 

Using the dynamics relationship 0=v=vd+dt, the time required for driver deceleration is 

td=(-vd)/dd.  

  
Figure 8: Time-to-Collision Concept 

 

Assuming a comfortable deceleration rate of dd=-10 ft/s2 and an approach travel speed of 

vd=30ft/s (about 20.5 mph), the likelihood of a driver yielding is expected to decrease 

xd 

vd 

Crosswalk 
Entry Area 
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rapidly if he is less than 3 seconds away from the crosswalk – because the deceleration 

rate to do so is more than the comfortable rate. Speaking in terms of distances and using 

the relationship 0=vd
2–2ddxd, this latest decision point (LDP) occurs at a distance of 

xd=v0
2/2dd=45 feet from the conflict point. Conceptually, as travel speed increases and 

the deceleration rate decreases, the LDP for a driver to yield moves further away from the 

crosswalk.  

 

To elaborate this relationship, Figure 9 shows the required deceleration times and 

distances as a function of travel speed for different comfortable deceleration rates.  

Time to Stop (sec)

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

10 20 30 40 50

Travel Speed (ft/sec)

Ti
m

e 
to

 S
to

p 
(s

ec
)

5 ft/s^2 10 ft/s^2 15 ft/s^2 20 ft/s^2

Distance to Stop (ft)

0.0

50.0

100.0

150.0

200.0

250.0

10 20 30 40 50

Travel Speed (ft/sec)

D
is

ta
nc

e 
to

 S
to

p 
(f

t)

5 ft/s^2 10 ft/s^2 15 ft/s^2 20 ft/s^2
 

Figure 9: Time to Stop Relationships 

 

The figures illustrate that dependent upon the given speed and deceleration profiles of a 

particular driver, the LDP tends to move further away from the crosswalk in the time-

space domain.  

 

To some extent, the behavior of driver yielding to pedestrians is conceptually similar to a 

driver reaction to the onset of amber at a signalized intersection. The event of a 

pedestrian stepping into the crosswalk influence area (CIA) is similar to the event of a 

signal light status changing to amber. At the time of this event, the distance of the driver 

from the crosswalk and the current speed will decide on whether a driver is physically 

capable of stopping before the crosswalk (stop bar). Just as in signal timing practice, it is 
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therefore expected that some drivers do not have time to yield. In this case, the driver 

decision is subject to vehicle dynamics constraints (VDC) and the probability of yielding 

is expected to be very low.  

 

The crosswalk yield process is different from the amber response in that drivers are not 

required to stop at the crosswalk (or at least don’t take the law as seriously as the need to 

stop at a red light). So, while the VDC threshold expectedly would be well suited to 

describe the likelihood of a driver stopping at a light, VDC is not likely to be a perfect 

predictor for yielding.  

 

The dynamic nature of the interaction is also important for the pedestrian decision. Gap 

acceptance theory traditionally places a strong emphasis on the temporal duration of the 

gap, which in turn is a function of vehicle dynamics. For VDC events, it is expected that 

no pedestrian GO decisions would be observed. To truly describe this interaction, it is 

therefore very important to capture the dimension of vehicle dynamics, VDC, and the 

associated duration of lags and gaps.  

 

2.6 Chapter Summary  
This chapter illustrated that pedestrian crossing and driver yielding behavior are complex 

processes, and that existing analysis approaches fall short of capturing this complexity. 

Typically, gap acceptance behavior is described by a single estimate of the critical gap, 

while yielding behavior is expressed by a single site-aggregated percentage.  

 

The discussion further showed that the decision making processes for both events are a 

function of operational and behavioral factors. Gap acceptance theory is typically tied to 

the gap size, an operational measure that is a function of vehicle speed and distance. 

However, it ignores behavioral characteristics of the individual pedestrian by assuming 

population homogeneity and consistency. On the other hand, yielding behavior is 
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aggregated into a single site estimate, thus ignoring the operational impacts of vehicle 

dynamics on the yield response.  

 

These findings illustrate the need to take a closer look at both processes. With the 

availability of microsimulation models, it is possible to utilize more elaborate algorithms 

to describe these behaviors. The following chapter develops a data collection method for 

obtaining necessary variables in the field and presents methods of statistical analysis.  
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3 METHODOLOGY 
 

The previous chapter presented a framework for analyzing unsignalized crossing facilities 

in a microsimulation environment. The framework proposes that the operational impact 

of different pedestrian treatments can be modeled implicitly through their effect on the 

behavioral attributes of drivers and pedestrians; predominantly driver yielding behavior 

and pedestrian gap acceptance.  

 

The clear challenge for the proposed approach is that the performance measures extracted 

from the simulation model are only meaningful to the extent that the behavioral input 

parameters are reflective of the actual behavior of drivers and pedestrians. The efficacy of 

this approach is contingent upon the ability to develop model algorithms that are 

calibrated from field observations of the interaction.  

 

This chapter presents a data collection methodology to obtain the necessary variables 

from field observations. It discusses data reduction and defines dependent and 

explanatory variables used in the analysis. It then reviews statistical methodologies to 

estimate probabilities of the discrete choice outcomes using logistic regression. It 

concludes with a description of the data collection sites studied in this research. 

 

3.1 Data Collection 
 
3.1.1 Interaction Characteristics 

The data collection methodology needs to gather attributes of pedestrian-vehicle 

interaction in the field. It was argued in Chapter 2 that the dynamic characteristics of the 

approaching vehicle are essential for describing both driver yielding and pedestrian 

crossing behavior, because they directly relate to the expected time of arrival of the 

vehicle at the crosswalk. To evaluate the effect of these variables, they need to be 

collected accurately using reliable measurement devices. They also need to be coded at a 
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consistent point in the interaction sequence. For the purpose of discussion, the temporal 

beginning of an interaction event is defined as follows:  

 

A pedestrian-driver interaction event commences as a pedestrian arrives in the 

crosswalk influence area while a driver is in the approach of the crosswalk.  

 

All variables will be coded relative to this point in time (t1). The data collection 

methodology assumes that the following statements are true at t1:  

• The pedestrian has indicated that she is intending to cross at the facility (rather 

than continuing along the sidewalk). 

• The pedestrian is aware of the approaching vehicle and decides whether or not she 

feels comfortable to cross the road. 

• The driver is aware of the pedestrian’s intention and has to react (make the 

decision to yield or continue through the crosswalk). 

• The observer knows that an event sequence (action-reaction) is about to take place 

(from video observation) and records the attributes of the interaction event. 

 

The assumptions above are valid if both driver and pedestrian are consciously aware of 

each other’s presence. It shall be noted here that there are clearly cases where that is not 

true, as driver or pedestrian may be distracted. In an observatory study the cognitive 

awareness of the involved parties is not discernable, but can only be presumed from 

erratic or unexpected behavior. For example, a pedestrian may step into the roadway and 

then retreat quickly realizing that she misjudged the position of the vehicle. Similarly, a 

driver may perform an emergency braking maneuver when recognizing the presence of 

the pedestrian too late.  

 

From the onset of a pedestrian-driver interaction event at time t1, there are four potential 

outcomes to the interaction of the two modes:  
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1) Pedestrian GO Decision [GO] – The pedestrian decides that there is sufficient time 

for a safe crossing and steps into the crosswalk at time t2. The size of the accepted 

gap is defined in one of two ways: 

a. The observed lag between the time, t2, and the time the vehicle arrives at the 

crosswalk, t3, is defined by: 

  lGO_obs = t3 – t2 

Similarly, if a pedestrian rejects the initial lag for vehicle n and accepts a 

subsequent gap before vehicle n+1 arrives, that observed gap time is defined by: 

 gGO_obs = t3,n+1 – t3,n 

 

b. The expected lag is the difference between t2 and the time the vehicle would 

have arrived at the crosswalk at zero deceleration, t3
*. In this case, the expected 

gap size becomes a function of the vehicles speed (v2) and distance from the 

crosswalk (x2) at time t2, such that:  

  lGO_exp = t3
* – t2 = (t2 + x2/v2) – t2 = x2/v2 

The expected gap time is similarly calculated as the difference between the 

expected arrival times of vehicles n and n+1: 

 gGO_exp = t3,n+1
* – t3,n

* = x2,n+1/ v2,n+1 – x2,n/v2,n  

 

2) Pedestrian NO-GO Decision [NOGO]/ Driver Non-Yield Decision [NY] – The 

pedestrian decides that the time until the expected vehicle arrival is too short to 

safely cross the facility, i.e. she rejects the lag or gap. At the same time, the driver 

decides that it is either physically impossible to yield to the pedestrian, or he is 

unwilling to yield. The calculation for observed and expected NOGO lags and gaps 

are consistent with the discussion above.  

 

For a NY event, the expected lag and gap times are equivalent to the time to 

collision of the driver, defined as the time the vehicle would have arrived at the 
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crosswalk if it continues at speed v1 from distance x1 and time t1.  

 

3) Driver Soft Yield Decision [SY] – The decelerating vehicle creates a crossing 

opportunity for the pedestrian, without coming to a complete stop. The expected 

time to collision and the necessary deceleration rate to come to a stop for the 

vehicle can be calculated from its speed and position relative to the crosswalk at the 

time of pedestrian arrival.   

 

4) Driver Hard Yield Decision [HY] – The driver slows down to a complete stop 

creating a crossing opportunity for the pedestrian. The expected arrival time and the 

necessary deceleration rate can be calculated from initial conditions at t1.  

 

Figure 10 below illustrates the different possible event outcomes for pedestrian and driver 

interaction in the time-space domain. In the scenario, two pedestrians A and B arrive at 

the crosswalk at times t1,A and t1,B. The figure further shows a total of three vehicles (I, II, 

and III) that approach the crosswalk at a constant speed.   
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Figure 10: Pedestrian-Driver Interaction in Time-Space Domain 

 

At the time of the first pedestrian arrival, t1,A, vehicle I is located at a distance x1 from the 

crosswalk, traveling at speed v1. In the time-space domain, the vehicle speed is 

represented by the slope of the trajectory line. For this first interaction, the driver decision 

is NY and the pedestrian decision is NOGO for this lag event. The driver of vehicle II 

also decides NY and the pedestrian decides NOGO for the gap between vehicles I and II. 

Shortly after vehicle II passes through the crosswalk, pedestrian A begins crossing (GO 

decision), presumably judging the gap until vehicle III arrives to be long enough. The 

pedestrian bases her decision to cross on the expected arrival time of the vehicle, t3,III*. 

As vehicle III approaches the crosswalk, pedestrian B arrives at the crosswalk and the 

driver decides to create a SY crossing opportunity. Pedestrian B utilizes this SY and 

crosses the road safely before the vehicles observed arrival time t3,III. Clearly, the 
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observed GO gap time for pedestrian A is not reflective of the state of the system at the 

time the pedestrian made the decision to cross. In this case, the expected GO Gap A is the 

better measure. The figure also show the hypothetical case, where vehicle III decides to 

HY resulting in an extended time of zero speed.  

 

This interaction sequence of 2 pedestrians and 3 vehicles resulted in a total of six events 

that can be used in the analysis: NOGO Lag Pedestrian A, NY Vehicle I, NOGO Gap 

Pedestrian A, NY Vehicle II, GO Gap Pedestrian A, and SY Vehicle III. The GO 

decision for pedestrian B is not included in the analysis because it is merely a reaction to 

the yield event. For a study looking at yield utilization behavior of blind pedestrians, this 

event would have been considered in a model that predicts the probability of GO in a 

yield. This research is not concerned with the likelihood of GO in a yield, because the 

yield utilization rate of the observed (sighted) pedestrians was 100%. 

 

In this context it is important to emphasize that more than one event can be associated 

with one pedestrian, raising questions of statistical independence of the observations. For 

example, pedestrian A in the above example rejected a lag and a gap before crossing in a 

gap. From a statistical point of view, these three events are not independent and thus 

violate the underlying assumptions of regression analysis. However, it is within the 

nature of gap acceptance studies to observe this sort of event sequence and by definition a 

gap GO or NOGO cannot be observed independent of a prior lag event. In the statistical 

analysis, all event points will therefore be included. However, to test for the effect of the 

event sequence a variable describing pedestrian waiting time will be introduced that 

controls for pedestrian delay (and therefore inherently for the number of NOGO 

decisions). By definition, only one event is observed for each driver.  

 

3.1.2 Data Collection Set-Up 

To effectively analyze the interaction of drivers and vehicles, it is necessary to accurately 

record the different variables shown in Figure 10. In general, observed time stamps at the 
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crosswalk are easily obtained from video recordings, but the distance and speed 

measurements used for the expected times are more challenging. These data may be 

obtained through one of the following data collection approaches:  

 

1) Vehicle tracking through ITRE-mv (Chae, 2006) or other video-image processing 

software that generates detailed data on vehicle trajectories on a sub-second level 

of analysis. This approach clearly would generate all necessary data for very 

precise speed and distance measurements. The clear drawback of this method is 

that data extraction is difficult and time-consuming, because the software has to 

be properly calibrated. One could also make the case that this approach would 

result in too much data, because the operational vehicle data are only one part of 

the proposed approach, and any circumstantial data would still have to be 

extracted in a manual fashion.  

2) Manual estimation of speed and distance from video observations can be achieved 

by placing cones alongside the vehicle approach. This set-up is easy, only requires 

one data collection device (video camera), and all data can be obtained in post-

processing. One drawback to this method is that the speed and distance 

measurements are only approximations, and are dependent on good video angles 

of the approach. Generally, higher elevated angles are preferable, but come at the 

expense of potentially losing some of the needed behavioral data. Another 

concern is that driver behavior might be affected by the cones. Options for an 

elevated camera angle are a ‘natural’ wall or hill, the bed of a truck or a 

telescoping mast pole.  

3) A police speed trailer could be set up with the display pointing towards the 

camera (away from drivers). This way the observer gets information on the speed 

of vehicles, but cannot get the distance from the crosswalk. The same concern of 

impacting driver behavior needs to be considered.  

4) A laser speed gun could be used to record the vehicle speed at each pedestrian 

event. Modern equipment includes a time-stamp of the observation and also 
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records the distance between the speed gun and the vehicle. This approach brings 

the need for additional data collection equipment, but otherwise balances data 

accuracy and processing effort. The use of a radar speed measurement device 

does not apply, because it only measures speeds, not distances.    

 

For the data collection, approach 4 was selected, because it promised the best 

combination of data precision and time efficiency. Figure 11 shows a schematic of the 

data collection set-up.   

 

Camera
Speed GunCIA

 
Figure 11: Data Collection Set-Up 

 

In order to capture all relevant data, the video angle has to cover events concurrent to the 

interaction, such as the presence of an adjacent yield or multiple pedestrians As shown in 

the diagram, the video camera angle is wide enough to cover the crosswalk influence area 

(CIA) and the approach to the crosswalk..  

 

Before beginning data collection, the video camera and laser speed measurement device 

(light detection and ranging, LIDAR) were started simultaneously to synchronize the 

record of speed measurements with the time stamp on the video. During the experiment, 

the analyst monitored the crosswalk and measured the speed and distance of the closest 

vehicle when a pedestrian arrived at the crosswalk. In many cases, the observer took 

multiple measurements of the same vehicle as the pedestrian walked towards the 

crosswalk. This allowed the analyst to selectively match speed observations to video 

events during post-processing in the lab.  
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The LIDAR device was able to store each speed measurement and associated distance of 

the vehicle from the observer. With the observer positioned at a known and constant 

distance from the crosswalk, it is possible to infer the distance between the vehicle and 

the crosswalk.  

 

The use of additional equipment to measure vehicle speeds raises the questions of data 

accuracy and precision. This research used the SpeedLaser® product manufactured by 

Laser Atlanta (see Figure 12).  

 

  
 

Figure 12: Picture of Laser Speed Measurement Device (Source: www.laseratlanta.com) 

According to the equipment specification the speed accuracy of the laser measurements is 

+/- 1mph (1.6kh) (Laser Atlanta, 2008). An independent comparison of speed 

measurement devices (Gates, Schrock, and Bonneson, 2004) showed that LIDAR devices 

were the most accurate and most precise measurement option especially at higher speeds 

when compared to pneumatic tubes, piezoelectric sensors, tape switches, and radar. The 



   

 
 
 54 

study found that for 35 mph approach speeds the LIDAR device was 98% accurate at +/- 

0.5 mph tolerance and 100% accurate for +/- 1.5 mph tolerance. If the observer is 

positioned at an angle to the approaching vehicle, the measurement needs to be corrected 

for the cosine error to get the vehicle speed in the travel direction. According to ITE 

(2000) this error is less than 1 mph if the angle of observation is less than 10 degrees. 

This discussion gives confidence that the measurement errors are within the human 

observer error, provided the measurements are made in a head-on fashion.  

 

3.1.3 Data Extraction and Reduction 

The time matched video and LIDAR observations were post-processed in the laboratory. 

For the speed measurements, it was assumed that the vehicle speed remained 

approximately constant between the time the pedestrian arrived in the CIA (t1) and the 

true time of the LIDAR measurement (due to the reaction time of the observer). The 

relative displacement of the vehicle during that time can be calculated to get an estimate 

at time t1. All observations were made by the same observer to assure consistency in 

reporting.  

 

For each event, all parameters were extracted manually by recording time stamps for 

pedestrian and vehicle arrivals at the crosswalk (continuous variables) and noting the 

state of all binary variables. An event is recorded, if at the time a pedestrian has shown 

clear intentions that she plans to cross at the facility, a vehicle is approaching the 

crosswalk. The dynamic attributes of the interaction are coded as defined in the 

discussion above. In addition, the analyst recorded a range of binary indicators to 

describe the interaction. The following section defines these variables, which are also 

listed in the list of abbreviations.  

 

3.1.4 Variable Definitions 

Response Variables 

The following variables describe the discrete event outcomes of the interaction:  
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YIELD  The event results in a driver yield (Yield=1, Non-Yield=0). A yield is 

defined as a deliberate action on behalf of the driver that delays the 

vehicle arrival at the crosswalk to create a crossing opportunity for the 

waiting pedestrian 

NY  The driver decides not to yield to the pedestrian. The outcome of the 

vehicle event is a non yield 

SY  The outcome of the vehicle event is a soft yield, indicating that the driver 

slowed down for the pedestrian, but did not come to a full stop 

HY The outcome of the vehicle event is a hard yield, indicating that the 

driver slowed down to a full stop to create a crossing opportunity for the 

pedestrian 

Y_TYPE  A variable distinguishing the type of yield outcome (HY: Y_TYPE=1, 

SY: Y_TYPE=0) 

Y_ORDERED A categorical variable describing all three possible outcomes of the yield 

event. The three ordered levels of the yield outcome are non-yield (NY: 

Y_ORDERED=1), soft yield (SY: Y_ORDERED=2), and hard yield 

(HY: Y_ORDERED=3) 

GO  The event results in a pedestrian crossing decision. The GO variable is 

used to describe the binary outcome of the pedestrian event (GO=1, 

NOGO=0) 

LAG_EVENT Pedestrian event is characterized as a lag indicating the first vehicle 

encounter after arriving at the crosswalk. All subsequent vehicle events 

are characterized as gaps 

Discrete Explanatory Variables 

The following variables are binary indicators describing the pedestrian-vehicle 

interaction. They are used as potential independent variables in the analysis.  

ADY  Presence of an adjacent yield in the opposite direction; ADY=1 if a 

vehicle in the opposite lane has already yielded for the pedestrian at the 

crosswalk 
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AST  The pedestrian is 'assertive'; AST=1 if the pedestrian exhibits assertive 

behavior in the approach of the crosswalk, indicated for example 

through fast walking pace 

COM  Indication of non-verbal communication between driver and pedestrian; 

COM=1 if there is evidence of non-verbal interaction (waving, raising 

hand to say 'Thank You') between the driver and pedestrian 

DECEL_TAU The deceleration rate threshold is satisfied; DECEL_TAU=1 if the 

deceleration rate necessary to come to a full stop before the crosswalk is 

greater than 10ft/sec^2 

DSC Presence of an 'downstream conflict'; DSC=1 if a vehicle is stopped 

downstream of the crosswalk, or if there is heavy traffic in the 

circulating lane preventing immediate entry into the circle - Only 

applicable for RBT-RAL site 

ENTRY Indication of whether the event occurred at the entry or exit leg of the 

roundabout (Entry = 1 or Entry = 0, respectively) - Only applicable for 

RBT-RAL site 

FLASH  Indication whether the flashing beacon was actuated by the pedestrian; 

FLASH=1 if beacon was flashing during the yield event - Only 

applicable for MB-CLT site 

FOLL Approaching vehicle has close follower; FOLL=1 if the vehicle has a 

follower at a short headway of approximately 2-4 seconds 

G_NEAR  The observed gap/lag event has a vehicle in the near lane and no vehicle 

in the far lane, relative to the waiting pedestrian 

G_FAR  The observed gap/lag event has a vehicle in the far lane and no vehicle 

in the near lane, relative to the waiting pedestrian 

G_COMBO  The observed gap/lag event has a vehicle in both lanes (near and far) - 

the gap/lag size is measured relative to first vehicle arrival  
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HEV Approaching vehicle is a heavy vehicle; HEV=1 if the vehicle is 

anything larger than the equivalent of a 15-passenger van (dump truck, 

TTST, bus) 

MUP There are multiple pedestrians present in the CIA; MUP=1 if the number 

of pedestrians waiting at the curb is greater than one 

NEAR Pedestrian is waiting on the near-side of the approaching vehicle; 

NEAR=1 if the pedestrian waits on the same side of the road that the 

vehicle is traveling on 

PLT Approaching vehicle is part of a platoon of vehicles; PLT=1 if the 

headway to the following OR the previous vehicle was short 

(approximately 2-4 seconds) 

PREV The previous vehicle passed without yielding; PREV=1 if the previous 

vehicle failed to yield to the same pedestrian waiting at the crosswalk 

PXW A pedestrian from a previous event is still present in the crosswalk; 

PXW=1 if the driver has to account for a pedestrian who is still in the 

roadway from a previous event 

QUE  Vehicle is part of a queue of vehicles; QUE=1 if the queue or platoon 

that the vehicle is a part of is moving slowly due to some downstream 

congestion or incident 

TRIG The pedestrian triggered the yield by stepping into roadway; TRIG=1 if 

the pedestrian actively seized the roadway before the driver action 

indicated a yield 

TRTMT Presence of the 'in-pavement flasher' crossing treatment; TRTMT=1 if 

the treatment was installed and so is equivalent to the 'after' case - Only 

applicable for MB-CLT and MB-RAL sites 

TTC_TAU The time to collision threshold is satisfied; TTC_TAU=1 if the 

theoretical time to arrival at the crosswalk is less than 3 seconds  
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Continuous Explanatory Variables 

The following variables describe the dynamic characteristics of the interaction of 

pedestrian and driver. The measures are calculated from LIDAR speed measurements and 

event time stamps, and are used as potential independent variables in the analysis.  

DECEL Deceleration rate necessary to come to a full stop prior to crosswalk; 

DECEL is calculated from measured speed and distance; 

DECEL=(SPEED_FT*SPEED_FT)/(2*DIST1); units are feet/sec2 

DIST1 Vehicle position at the time of pedestrian arrival in crosswalk influence 

area, measured in feet using a LIDAR speed measurement device 

D_WAIT The duration of pedestrian waiting time at the decision point. The 

waiting time is zero for all initial lag events. For all subsequent gaps, the 

waiting time is calculated from the duration between the initial arrival at 

the crosswalk and the passing of the previous vehicle (in seconds) 

E_GAP Expected gap time between successive vehicle events at constant speed 

(in seconds) 

E_LAG Expected lag time between pedestrian arrival (t1) and time vehicle 

would have arrived at constant speed (in seconds) 

O_GAP Observed gap time between successive vehicle events t3n and t3n+1 (in 

seconds) 

O_LAG Observed lag time between pedestrian (t1) and vehicle arrival at the 

crosswalk (t3), (in seconds) 

SPEED_FT Vehicle speed at the time of pedestrian arrival in crosswalk influence 

area, measured in ft/sec using a LIDAR speed measurement device  

TTC Time until vehicle would theoretically arrive at the crosswalk; TTC is 

calculated from the measured speed and distance at the time pedestrian 

arrives in the crosswalk influence area; TTC=DIST1/SPEED_FT; units 

are seconds 
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The variable definitions above contain the response variables for the driver yielding 

model (YIELD, Y_ORDERED, and Y_TYPE) and for the pedestrian crossing model 

(GO, NOGO, and LAG_EVENT). The actual model for pedestrian crossing behavior 

only utilizes the GO variable and applies it separately for gap and lag events. The NOGO 

and LAG_EVENT variables are included for the analysis of descriptive statistics.  

 
Table 1: Hypothesized Impact of Independent Variables on Response 

YIELD = 1 Y_TYPE = HY GO = 1
Binary Factors

ADY + – +
AST + + +
COM + – .
DECEL_TAU – + –
DSC + – +
ENTRY + – +/–
FLASH + +/– +
FOLL – – –
HEV – +/– –
MUP + + –
NEAR + +/– +
PLT – +/– –
PREV – +/– +/–
PXW + + +
QUE + + +
TRIG + + +
TRTMT + – +
TTC_TAU – + –

Continous Factors
DECEL – + –
DIST1 + – +
O_GAP . . +
T_GAP . . +
O_LAG . . +
T_LAG . . +
SPEED_FT – + –
TTC + – +

Response Variable
Explanatory Variables

 
 

Table 1 shows the hypothesized effects of the discrete and continuous explanatory 

variables on the dependent variables YIELD=1, Y_TYPE=HY and GO=1. A variable that 
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is hypothesized to increase the likelihood of the response is denoted by a ‘+’. A variable 

that is hypothesized to decrease the likelihood of the response is denoted by a ‘-’. The 

sign ‘+/-‘ indicates that the effect is unclear, and a ‘.’ suggests that this variable is not 

applicable for the particular response.  
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3.2 Estimating Probability Parameters 
The behavioral models introduced in the analysis framework chapter have to predict 

discrete decisions by pedestrian and driver. This approach is different from more 

common (multi-) linear regression approaches that quantify the effect of different factors 

on a continuous dependent variable. The behavioral responses used in this research are 

not continuous, but categorical.  

 

In particular, the driver yield model predicts whether a driver yields or not. Similarly, the 

pedestrian crossing model predicts whether a pedestrian decides to cross or not. 

Conceptually, this type of discrete-choice modeling is similar to a transportation mode-

choice model, predicting whether an individual takes the bus, the train or drives his/her 

own car to work.  

 

3.2.1 Review of Statistical Models 

The analysis of categorical data requires different statistical methodologies from interval 

or continuous data (Washington et al. 2003). Categorical data can either be nominal (age, 

gender) or ordinal, in which case something can be said about the relative ranking of 

values. For example, in a survey with answers from ‘1’ to ‘5’, it can be said that ‘3’ is 

more than ‘2’, but not necessarily that ‘4’ is twice as much as ‘2’. Due to these 

limitations in categorical data, the mathematical operations of addition or multiplication 

are meaningless and the analysis requires statistical tools beyond conventional regression 

analysis.  

 

A pedestrian’s decision to accept or reject a gap in vehicular traffic clearly falls in the 

nominal category. In the case of drivers yielding to pedestrians, the decision outcome can 

be qualified as nominal (yield or non-yield) or could be argued to have ordinal character. 

In the latter case, the event outcomes could be divided into ordered responses of non-

yields, soft yields, and hard yields. Depending on the characteristics of the response 

variable, different statistical models can be applied in categorical data analysis.  
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Adapting the discussion in Washington et al. (2003) to the example of drivers yielding to 

pedestrians, the response variable Yin can describe the probability of discrete outcome i 

for observation n, such that: 

 
Equation 3: General Statistical Model for Driver Yielding 

 

Yin = βi Xin + εin , 

 

Where βi is the parameter vector for outcome i, Xin is the vector of observable covariates 

and εin is a vector of disturbance terms with an assumed distribution. The estimation of 

the parameter vector for the models can utilize either a probit or a logit approach.  

 

Assuming a binary outcome of the yielding event Yi and a normal distribution of the error 

terms ε, the probability of a driver yielding Pn(1) versus the probability of a non-yield 

Pn(2), can be expressed as a probit model: 

 
Equation 4: Binary Probit Model for Driver Yielding 

 

Pn(1) = Ф{(β1 X1n – β2 X2n)/σ} , 

 

Where Ф is the standardized cumulative normal distribution and σ is the pooled variance 

of all observations. The estimation of the parameter vector β is achieved through 

maximum likelihood estimation. A general problem in the use of probit models is that the 

outcome is not restricted to positive values between zero and one, and can therefore result 

in unreasonable probability estimates.  

 

In an effort to overcome these and other restrictions of probit models, the logit approach 

assumes that the disturbance terms in ε follow an extreme value distribution rather than a 
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normal distribution (Washington et al. 2003). This assumption simplifies the estimation 

of Pn(1) above by replacing β2 X2n with the maximum of all other outcomes βI XIn ≠ 1. 

Assuming the common Gumbel Type 1 extreme value distribution, equation 4 above 

becomes the standard logit function: 

 
Equation 5: Logit Model for Driver Yielding 

 

Pn(i) = Exp[βi Xin] / Σ(EXP(βI XIn)) 

 

The logit model is more intuitive in that predicted probabilities will always be between 

zero and one. Depending on the format of the dependent variable, different logit models 

apply.  

 

3.2.2 Logistic Model Forms 

The most intuitive approach is to utilize the GO or YIELD response variable in a binary 

logistic regression, to predict the likelihood of a pedestrian crossing or of a driver 

yielding. In fact, for the pedestrian crossing model, the binary logit model is the only 

viable alternative. With the distinction between hard yield and soft yields more 

complicated model forms can be applied to the driver yield model. The categorical yield 

response may be described by the simple binary logit model, a multinomial logit model, a 

cumulative logit model for ordered responses, or a nested logit model. In the following 

discussion, the applicability of the driver yield model to these alternate model forms is 

discussed in more detail.  

Binary Logistic Regression 

The analysis of categorical data requires different statistical methodologies from interval 

or continuous data (Washington et al. 2003). The decision of a pedestrian to begin 

crossing has two distinct outcomes (1=GO, 0 = NOGO). Similarly, driver yielding 

behavior can be interpreted as a nominal parameter with binary outcome (1=yield, 

0=non-yield). The binary logit model is the simplest logistic model form to describe this 
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response variable. Following the discussion in Agresti (2007) the binary logistic 

regression model describing the log odds of response Y is given by:  
 

 
Equation 6: Binary Logit Model 

( )[ ] ( )
( ) i

m

i
i xYP

YPYPLogit ∑
=

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

=
==

1
011

1log1 ββ  

 

with intercept β0 and parameters βi describing the effects of m explanatory variables xi on 

the yield response. Keeping all other effects fixed, a one-unit increase in the variable xi 

has a multiplicative effect equal to the odds ratio of eβi on the likelihood of yielding. The 

model parameters can be obtained through maximum likelihood estimation in SAS 

statistical software using PROC LOGISTIC. The probability estimates for the yield 

response can be obtained using the exponential function as follows: 

 
 Equation 7: Estimating Probabilities from Binary Logit Model 
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For estimating the model parameters and determining significant effects, SAS PROC 

LOGISTIC allows the analyst to use a forward selection algorithm at a user-defined 

confidence level. With this algorithm, variables are added to the model in a stepwise 

fashion starting with the one yielding the highest Chi-Square statistic. The algorithm 

continues to add variables to the model, one at a time, until the significance level exceeds 

the desired confidence level. Alternatively, the analyst can manually add and drop 

variables to arrive at a satisfactory model.  
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Multinomial Logit Model 

It can be argued from visual observations of yielding behavior that a soft yield is 

distinctly different from a hard yield and may be more likely to result in a risky 

interaction. In particular, there is a greater amount of ambiguity in interpreting a soft 

yield from the perspective of the pedestrian. While a hard yield is easily identified, the 

soft yield may require additional non-verbal communication between the involved 

parties. A soft yield may thus be more likely to be misinterpreted by the pedestrian and 

may result in a risky situation if the driver grows impatient with the lack of pedestrian 

response and re-accelerates.  

 

While a binary response variable is a valid description of the event outcome of the driver 

yielding process, it can be argued that additional detail may be necessary in some case. 

For example, in the context of crossing difficulties for pedestrians with vision 

impairments it is evident that blind travelers have more difficulties detecting a yield in 

which the vehicle does not come to a complete stop (soft or rolling yield). Similarly, 

when deploying video detection technology to detect yielding events as is done in 

ongoing research at NCSU (sponsored by NIH), it is more difficult to define or detect a 

soft yield. The categorical yield variable with event outcomes NY, SY, and HY can be 

analyzed in a multinomial logistic regression approach. The parameter estimation and 

interpretation of this approach is cumbersome and ignores the relative ranking of the 

outcome categories.  

 

In the multinomial logit model form the analyst has to select a base value of the response, 

which in this case is most intuitively the NY level. The model algorithm then estimates a 

separate intercept for the remaining two response levels (SY and HY). For each 

independent variable, the MNL model estimates separate parameters for each level, 

resulting in a very complicated model form. Conceptually, each variable has different 

effects on the log odds of SY and HY relative to the NY base. For example, a model with 
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3 independent variables would have 8 parameters: 2 intercepts and 2 parameters for each 

of the three explanatory factors.  

 

Again, the parameter vector β can be estimated using maximum likelihood estimation. 

Assuming that the driver yielding models can be described by the three discrete outcomes 

HY, SY, and NY, the respective probabilities can be estimated through the following 

equations:  

 
 

Equation 8: Probability Estimates from Multinomial Logit Model for Driver Yielding 
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Where P(Y=1), P(Y=2), and P(Y=3) are the probabilities for a driver to perform a non-

yield, soft yield, and hard yield, respectively. The parameters affecting the exponential 

terms describe the effects of the different independent variables. After estimation of the 

MNL parameters, statistical significance tests can be performed using the likelihood ratio 

test, which is similar to the Chi-Square statistic used in simple linear regression.  

Cumulative Logit Model for Ordered Responses 

A cumulative logit model for ordered responses utilizes the additional information that a 

hard yield is in some fashion more than a soft yield, which in turn is more than a non-

yield. This cumulative modeling approach typically has higher statistical power and is 
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more intuitive in the interpretation. It is limited by the assumption of proportional odds 

on the different response levels. In other words, it assumes that the effect of a variable on 

SY versus NY is the same as on the difference between SY and HY. This assumption will 

be tested in the model development process. The model form is given below.  
 
Equation 9: Model Form of Cumulative Logit Model for Ordered Responses 
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The cumulative logit model generally results in greater statistical power than the 

multinomial logit model and is more easily interpreted. The likelihood of SY and HY are 

estimated relative to the NY baseline and separate intercepts are calculated for the two 

response levels. For each independent variable, the cumulative logit model only requires 

one parameter, assuming proportional odds on both response levels. The probabilities of 

any one of the three response levels are calculated from the equations below.  
 

Equation 10: Probability Estimates from Cumulative Logit Model for Driver Yielding 
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The cumulative logit model for ordered responses estimates the probability that the 

response is less than or equal to level j. The probability of Y equal level j is obtained by 

subtraction as shown above. In the interpretation of this model form, each probability 

parameter increases or decreases the log odds of the categorical response in the direction 

from NY to HY. 

Nested Logit Model 

A final possibility is to apply a nested logit model that predicts the likelihood of a hard 

yield given that a yield occurred. Conceptually, this represents a two-stage binary logit 

model with the first stage consistent to the initial binary logit discussed above. Given that 

the first level of the nested logit predicts a yield, the second level predicts the likelihood 

that the driver performs a hard yield (versus the baseline soft yield). The flowchart in 

Figure 13 illustrates the model form. 

  
Figure 13: Nested Binary Logit Flowchart 

 

The model form is consistent with equations 6 and 7, only that the estimation of the 

second level is performed on only a subset of the observations (those with YIELD=1). 

Nested Logit Level 1
Logit [P(Y=1)] 

Y=1 Y=0 

Nested Logit Level 2
Logit [P(HY=1)] 

HY=0 HY=1

NY 

SY HY
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The response is the binary variable Y_TYPE, which takes the value 0 for SY and 1 for 

HY outcomes. 

 

3.2.3 Statistical Inference for Logit 

The output of logistic regression models is interpreted differently from multilinear 

regression. This section discusses inference statistics for logit regression and how 

different models are compared in their relative fit.  

 

In the PROC LOGISTIC output, statistics for individual variables include the parameter 

estimates βi, the standard error of the estimate and a Wald Chi-Square test for the null 

hypothesis βi=0. The Wald test statistic calculates the z-statistic by dividing the parameter 

estimate by its standard error. Similar to significance tests for linear regression models, 

the probability test can be interpreted with regard to a user-selected confidence interval 

by getting a p-value for z from a standard normal table (p<0.05 indicates a 95% 

confidence level). The Wald test is adequate for large samples (Agresti, 2007).  

 

The interpretation of the individual model parameters is more difficult than for linear 

regression due to the exponential form of the logit equation. Following the discussion in 

Agresti (2007), the odds of a response 1 for a binary logit model are given by: 
 
Equation 11: Odds of Response 1 for Binary Logit Model 
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The slope parameters βi in the exponential relationship in equation 11 can be interpreted 

through the odds ratio of the parameter. For a continuous variable, a one-unit increase in 

the variable results in an eβ increase in the odds of the response variable. For a binary 

explanatory variable the odds ratio is interpreted as an increase in the odds of the 

response from when the variable increases from levels 0 to 1. The odds ratio is the 
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increase in the likelihood of the response for a variable assuming that all other variables 

are fixed.  

 

Continuing the parallel to linear regression, the commonly used R-square test statistic 

describes the amount of variability in the data that is explained by the model. In general, 

a higher R2 value indicates a better model fit, but the statistic is inflated with the addition 

of more variables. The adjusted R2 penalizes the model for inclusion of additional 

variables and is a better measure for models with many independent variables.  

 

In the estimation of logistic regression models in PROC LOGISTIC, SAS uses a 

generalization of the usual R2 statistic to mimic the analysis of linear regression. 

According to the SAS user manual (SAS Institute, 1999) the likelihood-based pseudo R2 

is calculated by: 
 
 
 
 
Equation 12: Pseudo R-Square for Logit Model 
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where n is the sample size and L(0) and )ˆ(βL  are the likelihood of the intercept-only 

model and the specified model, respectively. However, even this generalization does not 

cover the complete range from 0 to 1. Alternatively, the max-rescaled R-Square divides 

the generalized R-square by the upper bound of the R2 estimate to achieve a statistic that 

ranges all the way from 0 to 1.  

 

The max-rescaled R2 statistic provides a sense of the overall model fit, but is not well 

suited to compare different models. The overall model fit is also tested using three 

different statistics testing the hypothesis that the overall parameter vector β is zero: 

likelihood ratio test, score test, and Wald test. However, these statistics are also not well 
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suited in comparing different models, because they generally show high significance even 

if only one parameter has a significant effect on the response (Agresti, 2007). 

 

A better method of model comparison is given by three information criteria that are 

included in the PROC LOGISTIC output: -2 Log Likelihood Criterion, Akaike 

Information Criterion (AIC), and Schwarz Criterion (SC). The -2 Log Likelihood 

criterion tests the null hypothesis that all effects in the model are zero and approximately 

follows a chi-square null distribution. The difference in the -2 Log Likelihood statistics of 

two models is significant if it exceeds the corresponding Chi-square value at the 

difference in degrees of freedom between the two models.  

 

The AIC and SC criteria both are adjustments to the -2 Log Likelihood criterion to 

account for the number of terms in the model and the sample size. According to SAS 

Institute (1999) these latter criteria are best suited for comparing different model forms 

that use the same data set, but a different number of parameters. According to Agresti 

(2007), the AIC is calculated by: 
 
 
Equation 13: Akaike Information Criterion (AIC) for Logit Model Estimation 
 
 AIC = -2(log likelihood – number of parameters in model) 

 

For the AIC or SC criteria a smaller statistic signifies an improvement in model fit to the 

data. While the AIC and SC statistics are a better estimate of overall model fit than the -2 

Log Likelihood statistic, they cannot be used in the same fashion to test statistical 

difference by subtraction.   

 

Besides these statistics, the comparison of different models should also consider their 

practical significance. Agresti (2007) argues that: 

It is sensible to include a variable that is important for the purposes of the study 

and report its estimated effect even if it is not statistically significant. … Likewise, 
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with a very large sample size sometimes a term might be statistically significant 

but not practically significant. 

This notion is very important in the context of analyzing pedestrian-vehicle interaction in 

this research, because practical application is clearly important in the field of civil 

engineering. Therefore, while statistical model fit is important, and the evaluation of all 

significant parameters is intriguing, there are practical limitations that need to be 

considered as well. Especially in light of the proposed application to a microsimulation 

environment, the selected models need to be implementable in software.  

 

3.2.4 Analysis Approach 

In the data analysis chapters, all four logistic model forms are applied to the driver 

yielding models (binary logit, multinomial logit, cumulative logit, and nested logit). For 

the pedestrian crossing models, only the binary logit model is applicable because the GO 

response only has two distinct levels.  

 

For both sets of models, the analysis begins with a general analysis of descriptive 

statistics of the different variables using SAS PROC MEANS. This allows the analyst to 

develop a feel for the data. In each category, the MEANS procedure will be applied to the 

entire data set as well as to the before and after conditions (for mid-block), the entry and 

exit leg (for roundabout), and the different levels of the response variables.  

 

In the next step, a correlation analysis is performed using SAS PROC CORR to identify 

significant correlations between independent variables and response variables. This step 

also helps screen issues with multicollinearity between independent variables. 

Additionally, binary explanatory variables are related to the dependent variables with 

SAS PROC FREQ, which generates 2x2 contingency tables for the variable pairs and 

performs Chi-square statistical tests.  
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Before moving into the logistic regression analysis, the author first applied multilinear 

regression models (MLR) to all data sets. The categorical nature of the response violates 

the underlying assumptions of these models and the result will likely exhibit irrational 

estimates (predicting probabilities less than zero or greater than 1). Nonetheless, these 

models are a helpful tool for an initial assessment of the feasibility of regression analysis 

for the given data set.  

 

For the logistic regression analysis, several different modeling approaches are applied 

that differ in the number and type of parameters that are considered. Initially, the analysis 

focused on the full model that includes all eligible parameters and was intended to get a 

general feel for which parameters show strong association with the dependent variable in 

the logistic regression. Next, an unrestricted model is evaluated, which is strictly guided 

by statistical model fit. After arriving at a model with ideal statistical fit, the logistic 

analysis was repeated but limited to variables that have application to microsimulation. In 

this restricted model approach only factors that could feasibly be implemented in 

microsimulation models were considered. 

The Unrestricted Model 
Using a user-specified confidence level of 0.05, the PROC LOGISTIC modeling 

algorithm can apply a forward selection algorithm and add variables to the model one at a 

time until they no longer satisfy the threshold. Variables are added starting with the 

highest Chi-Square statistic. This approach is motivated by the objective to achieve the 

best possible model fit for the data, ignoring practical applicability of the final model. 

 

The Restricted Model 

It was argued previously that practical significance can be equally if not more important 

than statistical significance in the model selection process. With large data sets, statistical 

significance of parameters can be coincidental and may not have a meaningful 

interpretation. A central assumption of this research is that the resulting models can be 



   

 
 
 74 

implemented in a microsimulation environment to quantify the impact of behavioral 

variables. This model selection approach is therefore restricted to practically significant 

parameters that can be implemented in microsimulation. However, the approach still 

considers statistical significance as a secondary selection criterion.  

 

The question of implementability requires some knowledge of the way microsimulation 

models work, which is discussed in more detail in Chapter 7. Conceptually, the decision 

algorithms to yield or cross the road are updated every simulation time step (typically at 

0.1 second intervals), based on the state of the explanatory variables. The data collection 

approach made the key assumption that driver and pedestrian make these decision at the 

time a pedestrian arrives at the crosswalk (t1). With this assumption, only variables that 

can be observed or measured at this point in time are allowed to enter in the restricted 

model.  

 

Following this assumption, several of the collected variables are left out of the restricted 

model development approach. For example, the variable TRIG is measured after the 

defined onset of the event. A driver can observe a brisk pedestrian walking pace on the 

approach (AST) and base his yielding decision on the presumption that this pedestrian 

might step into the roadway. However, if the pedestrian actually does so is unknown at t1. 

Similarly, the presence of an adjacent yield (ADY) is not evident at t1, because that yield 

has yet to occur. In the observational data it was not discerned when the adjacent yield 

took place, so it cannot be deduced when and if the driver in the opposite lane was aware 

of it.  

 

For the temporal parameters used in the pedestrian crossing models, the restricted models 

are limited to the expected gap and lag times, because those are quantified from the state 

of the system at t1 (both in the field and in the simulation model). The observed times 

may be influenced by other events, as discussed above.  
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Following this reasoning, several variables were not allowed to enter the restricted 

model: ADY, COM, FOLL, PREV, PXW, TRIG, O_GAP, and O_LAG. From the entire 

list of explanatory variables the following list was included in the development of the 

restricted models: AST, DSC, ENTRY, FLASH, HEV, MUP, NEAR, PLT, QUE, 

TRTMT, DECEL, DIST1, E_GAP, E_LAG, SPEED_FT, and TTC.  

 

The usefulness of the variables in both unrestricted and restricted models may further be 

limited by low sample sizes. The maximum likelihood estimation of the predictor 

parameters in logistic regression is problematic with sparse data (Agresti, 2007). This 

occurs if a contingency table of the response and an explanatory variable has a cell with 

few observations. If a cell has a count of 0 (an empty cell) the independent variable is 

virtually a perfect predictor of a specific response level. The consequence is that the 

maximum likelihood procedure may not converge at an estimate. The concern with 

sparse data is especially evident for variables that are observed less frequently, including 

ADY, DSC, HEV, MUP, QUE, and potentially others, depending on the particular data 

set. To achieve a finite model estimate from the maximum likelihood estimation, the 

marginal counts in the contingency table have to be greater than 0 (Agresti, 2007).  

 

3.3 Site Description 
The methodology was applied to two unsignalized midblock crosswalks in Raleigh and 

Charlotte, North Carolina and a single-lane roundabout also in Raleigh, NC. Both mid-

block sites have two-lane cross-sections and were selected because of heavy pedestrian 

activity and vehicle flows and because of the already planned installation of a new 

pedestrian crossing treatment. The roundabout site also sees heavy pedestrian and vehicle 

traffic, but no treatment effect was studied.  

 

The first crosswalk, on Selwyn Avenue in Charlotte, NC (MB-CLT), is adjacent to the 

campus of Queens University. The two-lane site has unusually wide 20-foot (6.1 

meters)lanes  with a posted speed limit of 35 mph. The roadway has on-street parking 
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starting approximately 100 feet to the north of the crosswalk. The crosswalk is used by 

students, faculty and residents in the communities adjacent to the university. The road 

functions primarily as a north-south arterial. Because of concerns for pedestrian crossing 

safety, the City of Charlotte decided to install pedestrian-actuated, in-pavement flashing 

beacons at the crosswalk. Figure 14 shows photos of the data collection site, and a close-

up view of the treatment after installation.  

 

The second crosswalk, on Sullivan Drive in Raleigh, NC (MB-RAL), is on the campus of 

North Carolina State University. The facility has standard 12-foot lanes and a speed limit 

of 25 mph. The crosswalk is used primarily by students walking to class from adjacent 

surface parking lots. The road functions as access to the parking facility, but is also used 

by through traffic avoiding heavier-traveled arterial roads to the north and south. The 

NCSU Department of Transportation decided to install an in-road pedestrian warning 

sign at the crosswalk to increase driver yielding behavior. Figure 15 shows photos of the 

data collection site and a close-up view of the treatment. 

 

The single-lane roundabout is located at the intersection of Pullen Road and Stinson 

Drive in Raleigh, NC (RBT-RAL). Pullen Road is a heavily traveled 2-lane minor arterial 

street just east of the NCSU campus. Stinson Drive serves as the visitor’s entrance to the 

university’s main campus. The intersection sees heavy north-south through traffic, as 

well as some traffic entering and leaving the university. With several campus bus routes 

going through the roundabout, and with delivery trucks accessing the university, there is 

also a significant amount of heavy vehicles. This research utilized the southern crosswalk 

because it sees the heaviest activity of pedestrians. Figure 16 shows photos of the 

roundabout from a near-by rooftop, and a composite view of two time-synchronized 

cameras. This view allows the analyst to record observations from a ground level view of 

the crosswalk, consistent with the other sites, while simultaneously monitoring the 

vehicle operations for the entire site.  
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The “before” data collection for the mid-block sites both took place in early spring 2007, 

when the sites were marked with zebra striped crosswalks and outfitted with standard 

pedestrian signage. The author allowed a six-week driver acclimation period for drivers 

and pedestrians before collecting the “after” data. This was deemed a sufficient amount 

of time because the populations of university-affiliated pedestrians and commuter traffic 

were expected to travel the sites daily, and would thus get sufficient exposure to the new 

measure. The roundabout data were collected during the fall 2007 semester. All data 

collection took place during good weather conditions (no rain or ice) and while the 

semester at the respective universities were in session (no breaks or holidays).  
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a) View of Data Collection Site looking South 

 

 
b) Close-up view of in-pavement flashing crosswalk 

 
Figure 14: Photos of Data Collection Site MB-CLT 



   

 
 
 79 

 

a) View of Data Collection Site looking East 

 

 
b) Close-up view of in-road pedestrian warning sign 

 
Figure 15: Photos Data Collection Site MB-RAL 
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a) Overhead-View of Data Collection Site looking North 

 

b) Composite Two-Camera View used for data collection 
 

Figure 16: Photos of Data Collection Site RBT-RAL 
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For all three sites, the author performed multiple hours of observations. During data 

collection, a video camera was positioned to record events at the crosswalk while the 

author monitored pedestrian activity. Whenever a pedestrian was in the approach to the 

crosswalk, the author measured the speed and distance of the closest vehicle with a 

LIDAR speed measurement device. The start of the video camera and the LIDAR device 

were time-synchronized to allow for post-processing in the lab. Additionally, the LIDAR 

device generated a beep sound, audible on the video, every time a measurement was 

performed. This allowed the author to precisely match up the speed and distance time-

stamp with the video observations.  

 

All data sets required significant post-processing in the lab. The original video 

observations were time-stamped and copied to DVD. The time-stamps in the LIDAR 

device output files were matched up with the beginning of the video and the distance 

measurements converted to distances relative to the crosswalk. The device measures the 

distance to the vehicles, which can be converted by knowing the distance between the 

observer and the crosswalk.  

 

Once the data were cleaned up for analysis, the analyst replayed each video looking for 

pedestrian events. All time-stamps were entered manually into an Excel spreadsheet and 

the video was paused and rewound, as necessary, to capture all variables. This very time-

consuming process resulted in a data extraction time of about 10 hours per hour of video, 

depending on the number of events per hour. This estimate does not include time 

requirements for actual data collection, data preparation or any analysis of the data. A 

total of 17 hours of video were used for this research. 

 

Depending on the volume of pedestrians and vehicles, each hour of video resulted in up 

to 200 separate events for driver yielding or pedestrian crossing behavior. The analysis 

only used video events that could be matched up with a LIDAR measurement. The final 

sample sizes for the MB-CLT, MB-RAL and RBT-RAL sites included 604 yielding and 
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551 crossing events, 470 yielding and 768 crossing events, and 100 yielding and 88 

crossing events, respectively. Overall, 2581 interaction events were used in the analysis, 

corresponding to an average of approximately 150 events per hour of video.  

 

3.4 Chapter Summary 
This chapter proposed a data collection methodology to measure event-based interaction 

data of both the pedestrian and vehicle mode in the field. The methodology uses time-

synchronized LIDAR vehicle dynamics measurements and video observations to extract a 

range of continuous and discrete interaction variables.  

 

Statistical analysis techniques that can estimate the likelihood of driver yielding and the 

likelihood of a pedestrian crossing decision as a function of both binary and continuous 

explanatory variables were reviewed. The response variables themselves are of a 

categorical nature, requiring the use of logistic regression techniques. While a binary 

response can be described by a relatively simple binary logit model, the three-level yield 

response may require more complicated modeling approaches. The multinomial, 

cumulative, and nested logit model forms all have promise for this analysis.  

 

With the availability of statistical analysis procedures, the author developed an analysis 

approach to evaluate the field data. The analysis includes the evaluation of unrestricted 

models that maximize statistical fit and restricted models that are limited to variables 

implementable in microsimulation.  

 

Using the time-synchronized video observations and vehicle dynamics measurements, the 

author was able to analyze 17 hours of video observations for three different data 

collection sites. The three sites include two unsignalized mid-block crossings and one 

crossing at a single-lane roundabout. The mid-block sites were each visited twice and 

evaluated in conditions ‘before’ and ‘after’ the installation of treatments intended to 

improve pedestrian operations.  
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4 DRIVER YIELDING MODELS AT MID-BLOCK CROSSINGS 
 

This chapter discusses the development and analysis of statistical models describing the 

likelihood of drivers yielding to pedestrians at unsignalized mid-block crosswalks. 

Initially, the author examined descriptive statistics of the individual parameters to acquire 

a general sense of the trends and variability in the data. Next, the interaction of different 

parameters was investigated with special attention to the operational parameters 

associated with vehicle dynamic constraints. In the final analysis logistic regression 

models were developed to describe driver yielding behavior. 

 

Data were collected on the dynamics of the approaching vehicles, behavioral 

characteristics of drivers and pedestrians, and the circumstances surrounding the 

pedestrian-vehicle interaction event.  

 

Three different response variables were evaluated. The first, YIELD, is a binary indicator 

describing whether the driver yielded or not. The categorical variable Y_ORDERED, 

distinguishes between non-yield (NY), soft yields (SY) and hard yields (HY) events. 

Y_TYPE is a binary variable that only considers the two types of yield events.  

 

In the following, the results from the two mid-block test sites are presented separately. 

First, the crosswalk on Selwyn Avenue in Charlotte, NC (MB-CLT) is analyzed including 

the treatment effect of the pedestrian-actuated in-pavement flashing beacons. Second, the 

crosswalk on Sullivan Drive in Raleigh, NC (MB-RAL) is analyzed including the 

treatment effect of the in-road pedestrian warning sign.  

 

Due to the size of some tables, the results of correlation analyses and all regression 

models are relegated to Appendix A. For the logistic regression model, the chapter 

repeats pertinent statistics and gives equations for the selected predictive models in 

different categories.  
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4.1 Event-Based Analysis for MB-CLT 
 

4.1.1 Descriptive Statistics 

The author used SAS PROC MEANS to obtain descriptive statistics on the modeling 

parameters. The results in Table 2 show the mean and standard deviation for all 604 data 

points, for the before (361) and after (243) treatment conditions, and for yield (105) and 

non-yield (499) events.  

 
Table 2: Descriptive Statistics, MB-CLT 

Variable Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev
Sample Size 604 . 361 . 243 . 105 . 499 .
Response Variables

YIELD 0.174 0.379 0.150 0.357 0.209 0.407 1.000 0.000 0.000 0.000
Y_ORDERED 1.289 0.662 1.266 0.655 1.324 0.671 2.667 0.474 1.000 0.000
Y_TYPE* 0.667 0.474 0.778 0.420 0.549 0.503 0.667 0.474 . .

Binary Factors
ADY 0.084 0.278 0.086 0.281 0.082 0.275 0.229 0.422 0.054 0.226
AST 0.142 0.349 0.141 0.349 0.143 0.351 0.371 0.486 0.094 0.292
COM 0.050 0.217 0.058 0.234 0.037 0.189 0.286 0.454 0.000 0.000
DECEL_TAU 0.106 0.308 0.069 0.254 0.160 0.367 0.000 0.000 0.128 0.334
FLASH 0.131 0.337 0.000 0.000 0.324 0.469 0.276 0.449 0.100 0.300
FOLL 0.489 0.500 0.476 0.500 0.508 0.501 0.429 0.497 0.502 0.500
HEV 0.015 0.121 0.011 0.105 0.021 0.142 0.019 0.137 0.014 0.118
MUP 0.321 0.467 0.302 0.460 0.348 0.477 0.410 0.494 0.302 0.460
NEAR 0.511 0.500 0.501 0.501 0.525 0.500 0.448 0.500 0.524 0.500
PLT 0.671 0.470 0.681 0.467 0.656 0.476 0.505 0.502 0.706 0.456
PREV 0.678 0.468 0.701 0.459 0.643 0.480 0.648 0.480 0.684 0.465
PXW 0.132 0.339 0.150 0.357 0.107 0.309 0.390 0.490 0.078 0.268
QUE 0.007 0.081 0.011 0.105 0.000 0.000 0.019 0.137 0.004 0.063
TRIG 0.079 0.270 0.044 0.206 0.131 0.338 0.305 0.463 0.032 0.176
TRTMT 0.403 0.491 0.000 0.000 1.000 0.000 0.486 0.502 0.386 0.487
TTC_TAU 0.175 0.380 0.116 0.321 0.262 0.441 0.019 0.137 0.208 0.406

Continous Factors
DECEL 4.787 5.928 3.959 4.540 6.013 7.368 2.266 1.630 5.316 6.353
DIST1 335.433 256.526 381.892 273.154 266.697 212.314 406.698 254.921 320.467 254.588
SPEED_FT 40.341 9.419 40.897 9.488 39.518 9.274 36.754 10.738 41.094 8.949
TTC 8.376 6.002 9.468 6.369 6.753 4.999 11.027 5.934 7.818 5.871

* The Sample Size for Y_TYPE is only 105 observations, because it only considers HY and SY events

ALL DATA NON-YIELDSYIELDSAFTERBEFORE

 
 

The response variable, YIELD, is a binary variable, so its mean is equivalent to the 

overall observed yielding rate. The overall yielding rate at the site is 17.4%, with 15.0% 

yielding in the ‘before’ case and 20.9% yielding after treatment implementation. Though 

small, this difference is significant at the 90% level. The ordered variable Y_ORDERED 

shows a similar trend, and Y_TYPE suggests that 66.7% of yields were classified as hard 

yields.   
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Table 2 also begins to shed light on why the observed yielding rates may be so low at the 

site. The average observed speed (SPEED_FT) at the site is 40.34 ft/sec (27.5mph or 

44.26 km/h) and is significantly higher for non-yield events (p<0.0001). The installation 

of the treatment had no significant effect on speed. There is also a large variation in the 

relative distance from the crosswalk at the time of a pedestrian arrival (DIST1) and at 

least some vehicles were probably too close to be able to stop. The vehicle dynamics 

constraint factors TTC and DECEL also show high standard deviations. By examining 

the VDC factors in terms of thresholds (TTC_TAU and DECEL_TAU), it becomes 

evident that no yields were observed at deceleration rates above 10 ft/sec2 and only 1.9% 

of yields occurred at TTC times below 3 seconds.  

 

The low yielding rate may also be associated with the frequent occurrence of vehicle 

platoons and drivers avoiding sudden yields in fear of a rear-end collision. Overall, 

67.1% of vehicles traveled in platoons (PLT), 48.9% had a close follower (FOLL) and 

67.8% were preceded by a non-yielding vehicle (PREV). Furthermore, only few events 

are associated with ‘non-verbal communication, COM, (5.0%), or an adjacent yield, 

ADY (8.4%) and vehicle queuing, QUE was negligible (0.7%).   

 

The data further show that 51.1% of pedestrians were at the NEAR side of the vehicle, 

32.1% traveled in a group (MUP) and 14.2% exhibited assertive behavior (AST) 

indicated by brisk walking during their approach to the crosswalk. About 7.9% of 

pedestrians were observed to actually ‘trigger’ a yield (TRIG) by stepping onto the 

roadway. In 13.2% of the events, a previous pedestrian was still in the crosswalk (PXW). 

Only 1.5% of events were associated with a heavy vehicle presence (HEV).  

 

Comparing the data for yield and non-yield events, almost 3 times as many yields were 

associated with the actuated flasher (FLASH). Interestingly, the treatment was only 

activated in 32.4% of the events captured in the ‘after’ case. Yield events also showed a 
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higher likelihood of pedestrian assertiveness, ‘trigger’ behavior, and the presence of a 

previous pedestrian still in the crosswalk. Non-yield events were associated with 

significantly higher speeds and lower distances from the crosswalk (both p<0.0001). 

Consequently, non-yield events are associated with lower time-to-collision (TTC) and 

higher necessary deceleration rates (DECEL) with p-values of <0.0001 and 0.0017, 

respectively.  

 

4.1.2 Variable Interactions 

Table A-23 in Appendix A shows the correlation matrix for all variables. The results 

suggest that many of the variables exhibit significant correlations with the dependent 

variable, as indicated by low p-values. The correlation coefficients are relatively low, 

suggesting that no single variable is a consistent predictor of yielding. The strongest 

correlations are evident for COM, AST, TRIG, and PXW, pointing to the major 

importance of the behavior of the pedestrian in influencing the yielding process.  

 

The correlation for platoons (PLT) is stronger than FOLL and PREV, which is surprising, 

because the three factors are clearly closely related. This suggests that the mere fact that a 

driver is traveling in a platoon may be more important than the relative position in the 

platoon. The three variables are expectedly well correlated amongst each other.  

 

Several of the continuous variables show significant correlation with the response 

variable, however at low correlation coefficients. The level YIELD=1 is associated with 

greater DIST1 and TTC, but is inversely correlated with SPEED and DECEL. These 

trends point towards the importance of vehicle dynamics on yielding behavior.  

 

Only few of the explanatory variables show high correlations with each other. Relatively 

strong associations are evident between TRIG, AST and PXW, suggesting that assertive 

pedestrians are more likely to also trigger a yield and that pedestrian behavior may be 

more assertive if a previous pedestrian is still in the crosswalk.  
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Another weak, but significant correlation is evident between TRTMT/FLASH and TRIG, 

suggesting that pedestrian behavior may have been affected by the presence and 

activation of the treatment. Future analysis of the associated pedestrian gap acceptance 

data may provide further insight into this relationship.  

 

4.1.3 Vehicle Dynamics Constraints 

In the discussion in Chapter 2, the author made the point that drivers may be subject to 

‘vehicle dynamics constraints’ (VDC) in their decision to yield to a pedestrian. Figure 17 

shows a plot of the relationship between vehicle speed and distance by yield outcome for 

the before and after cases. The figure shows non-yield events as stars, soft yields as 

circles and hard yields as squares. Curves of constant deceleration rates for 5, 10, 15, and 

20 ft/sec2 have been superimposed on the graphs (1 ft/sec2 = 0.3048 m/sec2).  
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Figure 17: Speed-Distance Relationship including Deceleration Thresholds, MB-CLT 
The deceleration rate of 10ft/sec2 is also used in traditional signal timing applications 

(ITE, 1982) when calculating the length of the clearance phase for drivers, although more 

recent documents use a rate of 11.2 ft/sec2 (TRB, 2000). That phase is timed long enough 

so that drivers that are too close and too fast to stop can proceed through the intersection 

without running the red light while others can decelerate at this acceptable deceleration 

rate or below.  

 

The relationship in Figure 17 supports the notion of VDC affecting the likelihood of 

drivers to yield. From over 600 observations, no yield events were observed above the 10 

ft/sec2 and only a total of 7 yield events (5 before, 2 after) were observed above 5 ft/sec2. 

The figure further shows that a large number of non-yields are observed below the 

theoretical yield threshold. This is because this particular site may have an overall low 

propensity to yield, independent of VDC. It is also important to keep in mind that non-

yielding vehicles that were far from the crosswalk may have been part of a fast-moving 

vehicle platoon, or simply were drivers that had no interest in yielding.  

 

From the relationships shown, the author hypothesized that for a ‘high-yield’ site, 

characterized by low speeds, narrow lanes, a courteous driver population, and assertive 

pedestrians, the VDC threshold could be a fairly accurate predictor for yield and non-

yield events.  

 

4.2 Yield Model Development for MB-CLT 
 

4.2.1 Variable Selection 

Given the strong indication of the impact of VDC, the author decided to exclude all 

observations with a deceleration rate in excess of 10 ft/sec2 from further analysis. The 

reasoning for excluding these data is that they would introduce a bias in classifying these 

as ‘non-yield events’ in the logistic model. These particular drivers may very well have 
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yielded, had they only been a little further away from the crosswalk at the time of the 

pedestrian arrival. The goal of the analysis then is to assess what other factors may 

explain the yielding behavior of drivers, when they actually had a choice. The remaining 

data set for MB-CLT contained 540 observations. 

 

Additionally, the author decided to exclude the parameter COM from further analysis, 

because 2x2 contingency tables with the YIELD response showed that all COM=1 events 

were associated with YIELD =1. This phenomenon may be evidence for bias, as it is 

unlikely to observe non-verbal communication (waving, raising hand to say ‘thank you’) 

in a non-yield event. Similarly, interaction tables for HEV by YIELD showed cells with 

less than 5 observations in both data sets. The contingency tables showed no significant 

interaction between the variables from Chi-Square Tests and Fisher’s Exact Tests. The 

latter is a better test for small samples, because it doesn’t use large-sample 

approximations of the Chi-Square distribution. Consequently, the data suggest that the 

yielding patterns of heavy vehicles are not different from that of passenger cars and they 

will therefore be treated as one population in this analysis. Future research with a larger 

sample size of HEV observations is necessary to investigate the interaction of HEV with 

other variables (for example platoons).   

 

Furthermore, the MB_CLT data has only four observations of vehicle queues (QUE), 

which is too small of a sample to include in the analysis. The remaining explanatory 

variables considered in the models are ADY, AST, FLASH, FOLL, NEAR, PLT, PREV, 

PXW, TRIG, TRTMT, DECEL, DIST1, SPEED_FT, and TTC.  

 

4.2.2 Multilinear Regression Analysis 

It is considered good practice in categorical data analysis to first attempt a simpler multi-

linear regression approach. While this approach ignores the categorical nature of the 

response variable and may violate certain practical constraints (yield probability less than 

zero or greater than one), it is a good benchmark for model comparison.  
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Table A-24 shows the results of multi-linear regression using SAS PROC GLM. The full 

model in Table A-24-a shows significant parameters for ADY, FLASH, NEAR, PLT, 

PREV, PXW, TRIG, and TTC. The highest parameters and thus strongest effects are 

observed for TRIG, FLASH, and PLT suggesting the likelihood of yielding is increased 

for ‘triggered’ events and if the pedestrian activates the flashing beacons, while the 

presence of a vehicle platoon decreases the yield probability. The signs of most 

parameters are as hypothesized, except for FOLL and DIST1 which are not significant. 

The overall model fit is significant (p<.0001) and has an overall adjusted R2 value of 

0.27.  

 

In the restricted model, the yield response is predicted by PLT, NEAR, AST, SPEED_FT, 

DECEL, TRTMT, and FLASH with all variables except for TRTMT being significant. 

These variables are considered to have practical application with feasibility of 

implementation in microsimulation. The overall model fit is less than the full model with 

an adjusted R2 of 0.18. Figure 18 shows a plot of varying a subset of parameters for the 

restricted model.  
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Figure 18: Model Probability Plots – Multi-Linear Regression, Restricted Model, MB-CLT 

 

The plot suggests the limitation of the linear model for this type of analysis, because the 

indicated effects of FLASH and AST are constant over the entire range of speeds. The 

vertical line shows the predicted probabilities of yielding at a speed of 40 ft/sec.   

 

Various forms of logistic regression were applied to the data sets. Starting with different 

binary logit models for a 1/0 yield response (YIELD) the analysis then considers more 

complex model forms for the response variables Y_ORDERED and Y_TYPE by 

distinguishing hard from soft yields.  

 

4.2.3 Binary Logit Models – MB-CLT 

Full Model 

The initial modeling approach considers all feasible variables, ignoring statistical 

significance or the practical applicability of the emerging model. The full model is 

intended to show general associations between the explanatory variables and the YIELD 

response.  
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The results in Table A-25-a show that significant estimates were obtained for ADY, 

FLASH, NEAR, PLT, PREV, PXW, TRIG, and DECEL (p<0.10). The variable AST is 

just above that threshold with p=0.11, while the remaining variables have low chi-square 

test associations with the response. The overall model R-Square value for this model is 

0.2408 and the Max.-Rescaled R2 is 0.3843.  

Unrestricted Model 

The modeling algorithm in SAS/STAT PROC LOGISTIC includes a ‘forward selection’ 

algorithm that sequentially adds variables to the model starting with the one with the 

highest Chi-Square statistic. The algorithm continues until the Chi-Square value of the 

next parameter falls below the user-specified significance threshold of 0.05. The final 

model uses eight explanatory variables and has an R2 value 0.2286 (max. rescaled R2 is 

0.3648). 

 

The ‘unrestricted’ model in Table A-25-b suggests that drivers are more likely to yield if 

an adjacent yield is present (ADY), if the pedestrian is waiting at the nearside of the road 

(NEAR), if the pedestrian triggers a yield by stepping onto the roadway (TRIG), if a 

previous pedestrian is still in the crosswalk (PXW), and if the in-pavement pedestrian 

flasher is activated (FLASH). Similarly, the likelihood of yielding is decreased if the 

driver is traveling in a platoon (PLT), if the previous vehicle failed to yield (PREV), and 

if yielding would require greater deceleration rates (DECEL). This last effect is particular 

interesting, considering that vehicles subject to vehicle dynamics constraints 

(DECEL>10ft/s2) have been removed from the analysis. Note that the DECEL parameter 

is essentially an interaction term of DIST1 and SPEED_FT, neither of which is 

significant at the selected confidence level. The use of the interaction term without the 

individual effects is justified, because the term has scientific meaning (the deceleration 

rate) and is therefore not a conventional interaction term.  
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When all other parameters are kept constant, the model results show the multiplicative 

effects of each variable xi on the odds of yielding, given by the term eβi. This is also 

called the odds ratio of the effect (Agresti, 2007). For example, the estimated odds of a 

yield occurring if there is an adjacent yield is 2.63 times the odds for a non-ADY event. 

If the vehicle travels in a platoon, the odds for a yield are reduced 0.47 times and are also 

reduced 0.36 times if the previous vehicle did not yield. The strongest effect is evident 

from TRIG, followed by PXW, FLASH and ADY. Note that the mere presence of the 

treatment (TRTMT) is not significant in the model, but that pedestrians actually have to 

actuate the flashers in order to influence driver behavior. The flasher actuation increased 

the odds of yielding 2.79 times compared to a non-actuation. The odds in yielding are 

further reduced 0.65 times for each additional 1ft/sec2 in necessary deceleration rate.  

Restricted Model 

One difficulty in the above approach is that some of the parameters may be observable in 

the field, but are difficult to predict or assume for a future site. For example, the presence 

of an adjacent yield is merely a function of random pedestrian and vehicle arrivals. The 

following restricted model therefore focuses on variables that have the potential for 

implementation in microsimulation as was discussed in Chapter 3. 

 

Table A-25 also shows the binary logistic regression results for the restricted models. Of 

the variables listed above, HEV and MUP were excluded because of very high p-values. 

In restricted model 1 all other variables were left in the model, even if the effects are not 

significant at the given sample size. The final model R2 value in the seven-variable model 

is 0.1800 (max. rescaled R2 is 0.2874). 

 

The odds of yielding are increased by AST, NEAR, FLASH, and TRTMT and decreased 

by PLT, SPEED_FT, and DECEL. The strongest effect is evident from the pedestrian 

assertiveness, which increases the odds of yielding 6.57 times. Again, the effect of 

FLASH is stronger than TRTMT, which is not significant. The effect of NEAR is strong, 

but also not significant in this model. Vehicle platoons continue to show a significant 
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reduction in yielding. Both continuous variables are significant with comparable effects 

for a unit increase in SPEED_FT and DECEL.  

 

Restricted Model 2 removes the non-significant parameters in the previous model 

resulting in a 5-variable model with all effects significant. The likelihood of yielding is 

increased by AST and FLASH and decreased by PLT, DECEL, and SPEED_FT. Finally, 

restricted model 3 further reduces the number of variables to a 4-variable model by 

eliminating SPEED_FT. The two variables DECEL and SPEED are clearly similar, 

which is supported by correlation coefficients in table A-24. The variable DECEL is kept 

in the model because it had a higher chi-square value in the previous model and is 

furthermore more meaningful by accounting for both speed and distance. The model in 

A-26-e is therefore considered the best model with practically meaningful variables to 

predict the likelihood of yielding at site MB-CLT. 

Model Comparison 

Statistical tests for the overall model (likelihood ratio, Wald, and Score tests) are 

significant at p<0.0001 for all models. The model fit of different models is best compared 

using the AIC and SC criteria, where a lower value generally indicates better overall 

model fit. The results indicate that all models are fairly comparable in these model fit 

statistics. In this case, the practical significance for model selection weighs more heavily 

than minor differences in statistical model fit.  

 

The pseudo R-square and max-rescaled R2 values for all models are fairly low. While 

these measures are not as easily interpreted as the R2 statistics for linear regression 

model, they do provide a general feel of model fit. In this sense, the low statistics for the 

yield models are not surprising, because of the complexity of the interaction of the two 

modes. Additional data collection at high-yield sites may result in a better model fit, but 

likely never to very high levels. 
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In the comparison of the two models the effects of assertiveness and the yield trigger are 

interesting. While the unrestricted model selects TRIG with an odds ratio of 6.04, the 

restricted model 3 was limited to AST, because of its practical significance. However, 

AST still resulted in a similar odds ratio of 5.59 and high significance. So why didn’t 

AST show up in the unrestricted model? This is explained by the correlation of these two 

variables shown in table A-25 (correlation coefficient of 0.56 at p<0.0001). Conceptually, 

the two variables seem to ‘explain’ similar yield events, but TRIG (corr.=0.38) shows a 

slightly higher correlation with YIELD then AST (corr.=0.30). In the unrestricted model, 

TRIG therefore enters the model first with a higher Chi-square value and then leaves little 

additional yield variability that would be explained by AST.  

 

Figure 19 shows graphical representations produced by varying some effects in the 

model, while keeping other factors fixed. The unrestricted model shows a decreasing 

trend of the predicted probability of yielding with increasing deceleration rate. It further 

suggests that the likelihood of yielding is higher for ‘trigger’ events and higher for 

pedestrians who activate the treatment (FLASH=1). As suggested by the coefficients in 

Table A-25-d, the effect of TRIG is stronger than that of the flasher being activated. The 

comparative probabilities for a fixed deceleration of 5ft/sec2 (1.5m/s2) are shown in the 

figure. The corresponding equation is given below.  

 
Equation 14: DYM – Mid-Block Yield – Unrestricted Model, MB-CLT 

logit[P(Y=1)] = -0.1240 + 0.9669ADY - 0.7543PLT - 1.0156PREV + 0.5902NEAR  + 

1.7988TRIG + 1.1498PXW - 0.4349DECEL + 1.0264FLASH 
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 Figure 19: Model Probability Plots – Binary Logit, Unrestricted, MB-CLT 

 

For the restricted model, Figure 20 shows a similar relationship between the yield 

probability, FLASH and AST as a function of the necessary deceleration rate to yield 

(PLT is fixed at zero). The likelihood of yielding decreases with an increasing rate of 

deceleration that would be necessary to stop at the crosswalk. Because events with 

DECEL > 10 ft/sec^2 were removed from model development, the equation is not 

defined in that region and the resulting probability of yield is zero. The resulting equation 

is given below.  

 
Equation 15:DYM – Mid-Block Yield – Restricted Model 3, MB-CLT 

logit[P(Y=1)] = -0.3776 + 1.7206*AST + 1.1891*FLASH - 0.9551*PLT - 0.3818 * DECEL 
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Effect of AST, FLASH and DECEL (PLT=0)
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Figure 20: Model Probability Plots – Binary Logit, Restricted Model 3, MB-CLT 

 

Figure 20 shows a base yielding rate of about 40% for non-assertive pedestrians that do 

not activate the flasher. At a deceleration rate of zero seconds, this is equivalent to a 

vehicle that is very far away from the crosswalk at the time of pedestrian arrival. If the 

variables AST and FLASH take the value ‘1’ the odds of yielding increase by a 

multiplicative factor equal to the odds ratio (5.59 for AST and 3.28 for FLASH).  

 

Looking at a constant deceleration rate of 5 feet/sec^2 the base yield rate at the MB-CLT 

site is drops to 9%. By activating the flasher, the likelihood of yielding increases to 25%. 

An assertive pedestrian will encounter a yield from 36% or 65% of vehicles, depending 

on whether she activates the treatment or not. The effect of PLT is not shown in the 

figure, but the odds ratio of 0.39 suggests that the likelihood of yielding is reduced by 

that factor if the vehicle is traveling in a platoon.  

 

In the comparison of the unrestricted model and restricted model 3, the AIC estimates are 

430.43 and 443.42, respectively. Similarly, the -2 log likelihood statistics for the two 
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models are 391.86 and 433.42, respectively. The -2 log likelihood statistic approximately 

follows a Chi-Square distribution and the difference is tested at the difference in degrees 

of freedom between the two models. Consequently, the difference of 41.56 is statistically 

significant at 8-4=4 degrees of freedom (p<0.0001). By excluding some variables in the 

restricted model, the analyst thus sacrifices some explanatory power. This is also evident 

by the max-rescaled R2 statistics for the unrestricted model (0.3648) and restricted model 

2 (0.2671). Both models use variables FLASH, PLT, DECEL and a variable describing 

pedestrian behavior (either AST or TRIG). The difference in model fit seems to originate 

primarily from variables ADY, PREV, and PXW.  

 

4.2.4 Cumulative Logit Model 

As discussed above, the yield response can also be interpreted as an ordered categorical 

variable. It is assumed that a ‘soft yield’ is in some sense more than a non-yield and that a 

‘hard yield’ is more than a soft yield. If this assumption holds true, the cumulative logit 

model for ordered responses results in a model with additional information about the 

response variable and relatively high statistical power.  

 

Table A-26 shows the resulting models for the MB-CLT site. The tables show that the 

unrestricted cumulative logit models contain largely the same variables that were 

significant in the binary logit approach, giving additional confidence to these earlier 

results. Yielding behavior is described by variables ADY, FLASH, PLT, PREV, PXW, 

TRIG and DECEL. By restricting the variables to those with practical significance, 

restricted model 2 uses variables AST, FLASH, PLT, and DECEL.  

 

Despite the overall model significance, the cumulative models were rejected, because the 

proportional odds assumption was consistently violated. The cumulative logit approach 

generally assumes that the effect of a variable is constant across all different response 

categories and thus uses only one parameter for each variable. In other words the relative 

odds of a variable on the response interval ‘non-yield’ to ‘soft yield’ is proportional to the 
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‘soft yield’ to ‘hard yield’ distinction. The significance tests for the proportional odds 

assumption are highly significant for all models (p<0.0001), suggesting that the 

assumption that the proportional odds model is valid is rejected. Therefore, while the 

model results (variables, effect size, and sign of effect) are generally reasonable and 

intuitive the cumulative logit model is probably not a good model for these data.  

 

4.2.5 Multinomial Logit Model 

With the cumulative logit model rejected due to a violation of the proportional odds 

assumption, it is possible to fit a multinomial logit model to the data. This model form 

still uses all three response categories, but no longer assumes that the responses are 

ordered. The resulting models for MB-CLT are shown in table A-27.  

 

Using the SAS forward selection algorithm at the 95% confidence level (unrestricted 

model), the resulting model predicts the likelihood of SY and HY, relative to the NY 

benchmark from variables ADY, AST, FLASH, PLT, PREV, TRIG, DECEL and TTC. 

The restricted model 2 again uses AST, FLASH, PLT, and DECEL. 

 

Because the multinomial does not assume proportional odds, it uses two intercepts (one 

for SY and one for HY) and further estimates individual parameters for SY and HY for 

each variable (labeled as -2 and -3 in the tables), making the interpretation of this model 

more cumbersome. It results in two equations, one for each level of the yield response 

relative to the NY baseline.  

 

The parameter estimates in this multinomial logit form give further insight in why the 

proportional odds assumption was rejected for the cumulative logit model. For example, 

the two slope parameters for the AST variable in restricted model 2 are 2.501 and 1.365 

for the Y_ORDERED levels 2 and 3, respectively. The variable thus has a much larger 

effect on the odds of a soft yield then a hard yield. The cumulative logit model would 
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have assumed the same effect for both levels. The parameter estimates for levels 2 and 3 

are also different for the remaining variables in restricted model 2. 

 

 

4.2.6 Nested Logit Model 

The more complex model forms presented above indicated that there is merit in 

distinguishing between soft and hard yields in the models. An alternative approach to 

interpreting the data is to utilize a nested logit model that first predicts the likelihood of a 

yield occurring (same as binary logit above) and then predicts the yield type, given that 

the event was a yield.  

 

In the model development of the second level of the nested logit models, the variable 

COM was considered as a valid factor. It was determined earlier that the variable was 

biased in distinguishing yield and non-yield evens, but this concern does not apply in 

distinguishing between yield types.  

 

Table A-28 shows this second component of nested logit models for the MB-CLT site. 

The unrestricted model predicts the likelihood of a HY, given Y from variables AST, 

COM, TRTMT, and SPEED_FT. The coefficients for the AST, COM, and TRTMT 

parameters are negative, indicating that a ‘true’ value for these variables decreases the 

likelihood of a ‘hard yield’. Similarly, the likelihood of a HY is increased with faster 

approach vehicle speeds. The odds ratios indicate that the strongest effect is evident for 

TRMT, which decreases the log likelihood of a HY by a factor of 0.105, followed by 

COM and AST.  

 

The initial restricted model has a variety of parameters that are not significant. The 

modified restricted model 2 was further limited to variables AST, TRTMT, and 

SPEED_FT. The effects are consistent with the unrestricted model discussed above, with 

AST and TRTMT decreasing the likelihood of a ‘hard yield’ and SPEED_FT increasing 
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it. Alternatively, restricted model 3 uses DECEL instead of SPEED for two reasons. First, 

the variable use is consistent with the first level of the nested logit, and second, the 

DECEL variable combines vehicle speed and distance making it more useful in its 

application to microsimulation. Figure 21 and Equation 16 show the resulting predictive 

model for the second stage nest.  

 
Equation 16: DYM – Mid-Block Yield – Nested Logit, Restricted Model 3, MB-CLT 

logit[P(HY=1)] = 1.5249 - 1.4754AST - 1.5803TRTMT + 0.2873DECEL 
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Figure 21: Model Probability Plots – Nested Logit, Restricted Model 3, MB-CLT 

 

The figure suggests that the likelihood of a hard yield increases with required 

deceleration rate. This is intuitive because at higher rates the driver has less of a choice to 

simply slow down to a roll. The likelihood of a HY is furthermore greater for a non-

assertive pedestrian, which suggest that drivers react to assertiveness by slowing down 

earlier. A HY is also more likely in the ‘before’ case, suggesting that with installation of 

the in-pavement flashing beacon drivers are more likely to yield in a rolling fashion.  
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The AIC statistics for the unrestricted model and restricted model 3 are 113.84 and 

122.67, respectively. The difference in -2 log likelihood for the unrestricted model 

(103.84) and restricted model 3 (114.67) is statistically significant at 4-3=1 degree of 

freedom (p=0.0001). The adjusted R2 statistics of the two models are 0.3435 and 0.2299, 

respectively. By limiting the model to restricted variables the analyst gives up some 

statistical fit.  

 

4.2.7 MB-CLT Site Summary 

The analysis of the MB-CLT site demonstrated the benefits of the event-based analysis 

approach and logistic regression to analyze driver yielding behavior. A simplistic before 

and after evaluation of the in-pavement flashing beacon treatment would have concluded 

that the treatment results in a 39% increase in the yield rate from 15.0% to 20.9%. The 

generally low yielding behavior would then be attributed to 67% vehicle platooning and 

relatively fast approach speeds at a two lane facility with unusually wide lanes.  

 

A closer look at the dynamic characteristics of yielding behavior revealed that not a 

single yield was observed if the deceleration rate necessary to come to a stop at the 

crosswalk exceeded 10 ft/sec2 measured from the time a pedestrian arrived at the 

crosswalk. The author reasoned that these drivers were subject to vehicle dynamics 

constraints, similar to drivers passing through a signalized intersection during the ‘amber’ 

intersection. In the predictive models for driver yielding these events were excluded.  

 

When investigating the probability of yielding behavior for non-VDC drivers, the most 

promising model form is a two-level nested binary logit model. The first level predicts an 

increased probability of yielding for assertive pedestrians and for those that activate the 

‘flasher’ treatment. The yield probability is decreased if the vehicle is traveling in a 

platoon and further reduces with an increase in the necessary deceleration rate. In the 

second level of the model, another binary logit model predicts an increasing likelihood of 
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a ‘hard yield’ with increasing DECEL rate. The likelihood of HY is decreased for 

assertive pedestrians and is less after treatment installation.  

 

The overall probability of a HY can be calculated by multiplying the two probability 

functions. The likelihood of SY correspondingly is the likelihood of a yield multiplied by 

one minus the probability of a hard yield. Because the two levels of the model contain 

different variables, it is difficult to visualize the combined models. In an effort to do so, 

Figure 22 shows the probability of HY and SY for variables AST, FLASH and DECEL in 

the ‘post treatment’ case (the variable TRTMT is fixed at 1 in the second-level nest).  
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 Figure 22: Combined Yield Probability for MB-CLT after Treatment Installation 

 

The relationship between pedestrian assertiveness, treatment activation, and necessary 

deceleration rate in figure 22 is an intuitive way to visualize the predictions from the 
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yielding algorithms developed in this research. While the models do not explain all 

variability in yielding behavior, they follow initial hypotheses and can be implemented in 

a simulation environment. They therefore allow a more accurate representation of the 

yielding process in microsimulation than the state of the practice, accounting for 

variations in pedestrian behavior, the effect of vehicle dynamics, and the impact of a 

pedestrian crossing treatment.  

 

4.3 Event-Based Analysis for MB-RAL 
 

4.3.1 Descriptive Statistics 

The results in Table 3 are for a total sample size of 470 data points with 265 ‘before’ and 

205 in the ‘after’ condition. Overall, 158 yields and 312 non-yields were observed, 

suggesting a yielding rate of 33.6%. The yielding percentage increased significantly after 

installation of the treatment from 26.8% to 42.4%, corresponding to a 58% increase in 

yielding (p=0.0004).  
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Table 3: Descriptive Statistics, MB-RAL 

Variable Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev
Sample Size 470 . 265 . 205 . 158 . 312 .
Response Variables

YIELD 0.336 0.473 0.268 0.444 0.424 0.495 1.000 0.000 0.000 0.000
Y_ORDERED 1.513 0.777 1.411 0.729 1.644 0.820 2.525 0.501 1.000 0.000
Y_TYPE* 0.525 0.501 0.535 0.502 0.517 0.503 0.525 0.501 . .

Binary Factors
ADY 0.066 0.248 0.060 0.239 0.073 0.261 0.120 0.326 0.038 0.193
AST 0.091 0.289 0.072 0.258 0.117 0.322 0.209 0.408 0.032 0.176
COM 0.091 0.289 0.072 0.258 0.117 0.322 0.272 0.446 0.000 0.000
DECEL_TAU 0.085 0.279 0.109 0.313 0.054 0.226 0.013 0.112 0.122 0.328
FOLL 0.245 0.430 0.223 0.417 0.273 0.447 0.253 0.436 0.240 0.428
HEV 0.021 0.144 0.026 0.161 0.015 0.120 0.019 0.137 0.022 0.148
MUP 0.351 0.478 0.347 0.477 0.356 0.480 0.443 0.498 0.304 0.461
NEAR 0.626 0.485 0.619 0.487 0.634 0.483 0.665 0.474 0.606 0.489
PLT 0.383 0.487 0.366 0.483 0.405 0.492 0.342 0.476 0.404 0.491
PREV 0.294 0.456 0.343 0.476 0.229 0.421 0.247 0.433 0.317 0.466
PXW 0.213 0.410 0.189 0.392 0.244 0.430 0.348 0.478 0.144 0.352
QUE 0.051 0.220 0.042 0.200 0.063 0.244 0.076 0.266 0.038 0.193
TRIG 0.051 0.220 0.042 0.200 0.063 0.244 0.139 0.347 0.006 0.080
TRTMT 0.436 0.496 0.000 0.000 1.000 0.000 0.551 0.499 0.378 0.486
TTC_TAU 0.221 0.416 0.226 0.419 0.215 0.412 0.101 0.303 0.282 0.451

Continous Factors
DECEL 4.601 4.145 4.890 4.554 4.227 3.523 3.138 1.929 5.341 4.732
DIST1 202.624 134.729 216.215 148.238 185.055 112.888 224.699 126.678 191.445 137.476
LDECEL 1.267 0.699 1.311 0.731 1.210 0.654 0.987 0.577 1.407 0.714
LDIST1 5.085 0.723 5.135 0.752 5.019 0.681 5.231 0.679 5.011 0.735
SPEED_FT 35.147 8.998 36.584 8.586 33.289 9.197 33.418 10.011 36.023 8.320
TTC 5.783 3.577 5.963 3.951 5.553 3.020 6.727 3.412 5.308 3.569

* The Sample Size for Y_TYPE is only 158 observations, because it only considers HY and SY events

ALL DATA NON-YIELDSYIELDSAFTERBEFORE

 
 

The facility statistics show a mean speed of 36.6 ft/s (24.9mph) in the before condition 

and 33.3 ft/s (22.70mph) in the after period (p<0.0001). Note that these values are for all 

vehicles, so that the free-flow speed may be significantly higher. The overall observed 

standard deviation of speeds was 9.0 ft/s and the maximum observed speed at the site was 

66.6 ft/s (45.4 mph).  

 

Most other variables are consistent in the before and after data sets, with any variability 

explained by random variation (p>0.1). The variable PREV had a significantly lower 

mean in the ‘after’ data set, which needs to be considered in the model development.  

 

Several variables exhibit significant differences when comparing the ‘yield’ and ‘non-

yield’ data sets. Yielding events appear to be associated with ADY, AST, COM, 

DECEL_TAU, PXW, TRIG, TRTMT, TTC_TAU and all continuous variables. 

Surprisingly, the effect of platoons (PLT) is not significant at this site (p=0.187). With an 
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overall percentage of 38.3%, platoons are less common here than at the MB-CLT site. 

More importantly, the lower speed of vehicles (and thus platoons) may decrease a 

driver’s perceived risk of a rear-end collision when yielding. Consistent with the other 

site, driver yielding behavior seems to be associated mostly with vehicle dynamics and 

the behavior of the pedestrian.  

 

4.3.2 Variable Interactions 

The correlation matrix in Table A-29 supports the association of the above-mentioned 

explanatory variables with the YIELD response. Several correlation coefficients are 

significant, but small, supporting the notion that the yielding process is a complex 

combination of factors, rather than the result of any single variable. The strongest 

correlation is evident with COM, but experience from the MB-CLT site suggests a 

potential bias in the collection of this variable. This notion is supported by the 2x2 

contingency table of COM by Yield, which again shows that no YIELD=0 events were 

observed with evidence for non-verbal communication.  

 

The correlation coefficients among explanatory variables show a strong interaction 

between AST and TRIG, urging caution in the use of these variables in model 

development. Expectedly strong correlations exist between PLT and FOLL, and between 

the two threshold parameters DECEL_TAU and TTC_TAU. Interactions between other 

binary variables are negligible.  

 

A surprising find is that of 24 TRIG=1 observations only two were associated with a non-

yield. So, while the variable was distributed across event types for the MB-CLT site (of 

48 TRIG=1 events, 16 were associated with non-yields), the pedestrian ‘trigger’ behavior 

more consistently resulted in yields at the MB-RAL site. This may be explained by the 

site characteristics of MB-RAL. With lower speed limit, narrower lanes and a more 

campus-like appeal, drivers may be more reactive to the pedestrian behavior and less 
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likely to swerve around a pedestrian who has stepped into the roadway. This behavior 

was observed quite frequently at MB-CLT.  

 

While the distribution of the TRIG variable is consistent with driver behavior observed in 

the videos, it is still problematic in the model development process. In general it is good 

practice to have at least 5 observations in each cell of the 2x2 matrix, but it is more 

important that the predicted frequency is greater than 5 (Agresti 2007). The marginal row 

and column totals are also sufficiently large and the variable will therefore be considered 

in the model development process.  

 

4.3.3 Vehicle Dynamics Constraints 

Figure 23 shows the speed-distance relationships for the MB-RAL site for the before and 

after cases with the same superimposed deceleration curves.  
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Figure 23: Speed-Distance Relationship including Deceleration Thresholds, MB-RAL 

 

Similar to the trends observed at the other site, the VDC threshold of 10 ft/sec2 appears to 

give an upper boundary of the deceleration rate that is ‘acceptable’ to drivers in the 

approach of the crosswalk. During the ‘before’ observation, there were in fact two events 

in which yielding drivers applied deceleration rates in excess of 10ft/sec^2. These events 

were from individual vehicles (non-platoon), which were 52 and 72 feet from the 

crosswalk at the time of the pedestrian arrival, traveling at 35.0 and 38.4 ft/s, 

respectively. The first event was ‘triggered’ by the pedestrian. The corresponding TTC 

times are calculated at 1.5 and 1.9 seconds, suggesting that these situations could be 

categorized as ‘risky’ events. To be consistent with the analysis of the MB-CLT site, 

these two yield events will be excluded from the modeling analysis, along with all ‘non-

yield’ events that fall above the VDC threshold.  

 

4.4 Yield Model Development for MB-RAL 
 

4.4.1 Variable Selection 

After removing the VDC observations, the remaining MB-RAL data set contained 430 

observations. Consistent with the other site, the variable COM is removed from the 

further analysis, because 2x2 contingency tables with the YIELD response showed that 

all COM=1 events were associated with YIELD =1. Similarly, interaction tables for HEV 

by YIELD showed cells with less than 5 observations and Fisher’s Exact test showed no 

significant effect of these variables on the YIELD response. The MB-RAL site did 

exhibit significant queuing resulting in 24 QUE=1 observations. The variable will 

therefore be considered in the model development. 

 

The remaining explanatory variables to be considered in the regression model are ADY, 

AST, FOLL, NEAR, PLT, PREV, PXW, QUE, TRIG, TRTMT, DECEL, DIST1, 
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SPEED_FT, and TTC. Due to the nature of the treatment at this site, the variable FLASH 

is not applicable.  

 

4.4.2 Multilinear Regression Analysis 

The multilinear regression analysis allows the analyst to explore the regression fit of the 

data with a simpler model form. Table A-30 shows the models for the MB-RAL data set 

with significant parameters ADY, AST, NEAR, PXW, QUE, TRIG, TRTMT, and 

DECEL in the ‘full model’. The largest effects are observed for ADY, AST, QUE, and 

TRIG. Parameter signs are largely as hypothesized. Parameters for FOLL, SPEED and 

DIST1 violate the initial hypotheses but are generally small and non-significant. The 

overall model fit is significant (p<.0001) and has a relatively poor overall R2 value of 

0.2518.  

 

Narrowing the field of variables in the ‘restricted model’ predicts an expected increase in 

the likelihood of yielding with AST, NEAR, and TRTMT, and a decrease with PLT, 

DECEL, and SPEED. The limitations of the multilinear approach are evident when 

looking at a graphical representation of this model (Figure 24). For example, the graph 

predicts yield probabilities greater than 1.0 for an assertive pedestrian after treatment 

installation (AST=1, TRMT=1).  
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Figure 24: Model Probability Plots – Multi-Linear Regression, Restricted Model, MB-RAL 

 

 

In the following, various forms of logistic regression will be applied to the data sets. 

Starting with different binary logit models for a 1/0 yield response (YIELD) the analysis 

will then consider more complicated model forms for the ordered response 

Y_ORDERED and on the distinction of ‘hard’ and ‘soft’ yields with Y_TYPE.  

 

4.4.3 Binary Logit Models – MB-RAL 

Full Model 

The Full model for MB-RAL in Table A-31 shows significant logistic regression 

parameters for ADY, AST, NEAR, PXW, QUE, TRIG, TRTMT and DECEL at the 90% 

confidence level.  

Unrestricted Model 

Applying the forward selection algorithm with a p=0.05 threshold, SAS produces an 

eight-variable unrestricted model for MB-RAL. The model includes parameters ADY, 



   

 
 
 113 

AST, NEAR, PREV, PXW, TRIG, TRTMT, and DECEL, which are largely the same as 

the significant parameters in the full model. The variable QUE did not make it into the 

model, but PREV met the probability threshold.  

 

The largest odds ratios are present for AST and TRIG, which increase the log odds of a 

yield occurring by factors 6.1 and 5.3, respectively. Effects of ADY, NEAR, and PXW 

are also high with odds ratios greater than 2. The treatment effect still increases the yield 

probability 1.7 times. There is further evidence that the necessary deceleration rate 

(DECEL) has a strong effect. Despite the fact the VDC was applied, an increase of 1 

ft/sec2 in necessary deceleration rate still decreases the log odds of yielding 0.69 times.  

Restricted Model 

Just as for the other data set, the restricted model is limited to variables that can be 

implemented in microsimulation. The resulting six-variable restricted model 1 has a 

comparable model fit to previous models. With the exception of the speed effect, all 

parameters in the model are significant. With an odds ratio close to 1.0, the effect of 

speed is very minor, resulting in a model that is most sensitive to the binary states 

surrounding the interaction at the crosswalk and the deceleration rate.  

 

When eliminating the speed effect, restricted model 2 predicts an increasing likelihood of 

yielding from AST, NEAR and TRTMT. PLT and DECEL decrease the likelihood of 

yielding. The strongest effect is evident from pedestrian assertiveness, which in the 

absence of the TRIG variable now has an odds ratio of 12.02. Keeping everything else 

constant, the assertiveness of a pedestrian therefore has a major impact on yielding 

behavior at this site.  

Model Comparison 

The tests statistics for the overall model fit are significant for both the unrestricted and 

restricted models at p<0.0001. The pseudo R-Square values of the models are comparable 

to the model fit resulting from the MB-CLT crosswalk data. Neither model comes close 
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to fully describing the yielding process, but both provide valuable and significant insight 

into parameters related to driver yielding behavior.  

 

Figure 25 graphs the unrestricted model as a function of DECEL, TRTMT and AST and 

keeping all other variables fixed based on equation 17. The figure shows that with an 

increase in necessary deceleration rate, the yield probability of driver decreases sharply. 

At a constant deceleration rate of 5 ft/sec^2 the base yielding rate is 0.10, which increases 

to 0.16 after the treatment has been installed. An assertive pedestrian faces yielding 

probabilities of 0.40 and 0.54 before and after treatment installation, respectively. The 

relationship emphasizes that the collected data suggest a strong influence of the 

pedestrian behavior on yielding behavior.  

 
Equation 17: DYM – Mid-Block Yield – Binary Logit, Unrestricted Model, MB-RAL 

logit[P(Y=1) = -0.3229 + .1.0963ADY + 1.8089AST + 0.7021NEAR - 

0.5755PREV + 0.9257PXW + 1.6642TRIG + 0.5399TRTMT - 0.3758DECEL 
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Figure 25: Model Probability Plots – Binary Logit, Unrestricted Model, MB-RAL 
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The graph for the restricted model in Figure 26 and corresponding equation 18 shows a 

similar trend to the unrestricted model. Again, the impact of the crossing treatment and 

pedestrian assertiveness play a major role in yielding.  
 

Equation 18: DYM – Mid-Block Yield – Binary Logit, Restricted Model 2, MB-RAL 

logit[P(Y=1) = -0.1240 + 2.4865 AST + 0.6165 NEAR - 0.4907 PLT + 0.6477 TRTMT - 

0.3441 DECEL 
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(All other variables set to zero)
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Figure 26: Model Probability Plots – Binary Logit, Restricted Model 2, MB-RAL 

 

At a necessary deceleration rate of 5 ft/sec^2 a driver yields with a likelihood of 0.14 in 

the base case. This increases to 0.23 with treatment installation. The likelihood of a driver 

yielding to an assertive pedestrian in the same condition is 66% without the treatment and 

78% with the presence of the in-roadway pedestrian sign. The effects of NEAR and PLT 

are not shown, but their effects in yielding can be interpreted from the odds ratios. If the 

pedestrian is at the near-side of the vehicle, the log odds of yielding are increased by a 
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factor of 1.85. If the vehicle is traveling in a platoon, the odds of yielding are decreased 

by a factor 0.61. Conceptually, the condition NEAR=1 raises all curves in Figure 26 

while PLT=1 lowers them.  

 

The AIC statistics for unrestricted and restricted model 2 are 465.02 and 491.62, 

respectively. The difference in -2 log likelihood between unrestricted (447.02) and 

restricted model 2 (479.62) is statistically significant at 8-5=3 degrees of freedom 

(p<0.0001) in a chi-square test comparison. Similarly, the max-rescaled R2 statistic for 

the unrestricted model (0.3204) is larger than for restricted model 2 (0.2442). The 

additional descriptive power of the unrestricted model seems to be attributable to 

variables ADY and PXW. Both models use variables AST, NEAR, TRTMT, DECEL, 

variables describing vehicle headways (PREV or PLT) and those describing pedestrian 

behavior (AST or TRIG).  

 

4.4.4 Cumulative Logit Model 

The cumulative logit model for ordered responses uses the categorical response variable 

Y_ORDERED with three levels: NY, SY, and HY. All cumulative models for the MB-

RAL violate the proportional odds assumption, consistent with the findings at MB-CLT. 

This indicates that the parameter effects are not the same for the difference between 

levels SY and HY as they are for levels NY and SY.  

 

Estimating the models despite this violation, the resulting models are shown in Table A-

32. The unrestricted model predicts effects in the direction of HY through AST, NEAR, 

PXW, and TRTMT. An increase in DECEL affects the log odds in the direction of NY, 

thus decreasing the odds of yielding. Restricted Model 2 shows similar variable effects. 

AST, NEAR, and TRTMT shift the odds towards HY, while PLT and DECEL work in 

the opposite direction.  
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Because all models violate the proportional odds assumption, the cumulative logit model 

is not adequate for the MB-RAL yield data set and was not explored further.  

 

4.4.5 Multinomial Logit Model 

The results for the multinomial logit models for MB-RAL are shown in table A-33. Using 

the SAS forward selection algorithm at the 95% confidence level the unrestricted models 

for the MB-RAL predicts the SY and HY outcomes from variables ADY, AST, NEAR, 

PREV, PXW, TRIG, DECEL and SPEED_FT at a max-rescaled R-square of 0.3702. The 

restricted model 2 uses AST, NEAR, PLT, TRTMT, and DECEL and has a max-rescaled 

R-square of 0.2301. The better statistical fit of the unrestricted model is also evident in 

the AIC with a value of 653.088 compared to 703.391 for the restricted model. The 

difference is significant at p<0.0001.  

 

For restricted model 2, the parameter estimates for response levels 2 and 3 again show 

differences. For example AST-2 and AST-3 have parameters 3.1928 and 1.3702, 

respectively, indicating that the assertiveness has a stronger effect on the likelihood of a 

soft yield than a hard yield. For this model, the two levels of TRTMT and DECEL are 

relatively close with the treatment increasing the likelihood of both yield types and an 

increase in DECEL generally decreasing the odds of yielding. Relating these findings 

back to the cumulative logit model, it is likely that the prime reason that the proportional 

odds assumption was rejected is due to the assertiveness variable.  

 

4.4.6 Nested Logit 

Given the promising results of the multinomial logit model in separating variable effects 

on the SY and HY responses, the nested logit approach offers an alternative way to do so 

while keeping the overall model form simple. Using the binary logit model described 

above as the first level nest, the second level predicts the likelihood of a ‘hard yield’ 

given that the first level resulted in a yield.  
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The second level of the unrestricted nested logit model for MB-RAL (Table A-34). uses 

variables ADY, AST, COM, QUE, and TRIG. Interestingly, the treatment effect is not 

significant for this site. The log likelihood of a hard yield is decreased by ADY, AST, 

COM, and TRIG and increased by QUE. The odds ratios suggest the strongest effects 

from QUE, followed by TRIG, AST, ADY and COM.  

 

Restricting the model to selected parameters and eliminating those with poor significance 

results in a three-variable model (restricted model 2) with effects AST, DECEL and 

SPEED_FT. Given the correlation between the two continuous variables, it is preferable 

to eliminate one of them from the model. Restricted model 3 using AST and SPEED_FT 

has a slightly better model fit than restricted model 4 (with AST and DECEL) and the 

parameter estimate for DECEL is not significant at the given sample size in the latter 

model. However, restricted model 4 is considered to have greater practical significance, 

accounting for both vehicle speed and distance through the DECEL variable. It is 

therefore selected as the preferred model for the second-stage nest for MB-RAL and is 

also consistent with earlier model forms. It predicts a decreased likelihood of HY with 

pedestrian assertiveness and an increased odds of HY with greater DECEL rate as shown 

in equation 19 and Figure 27.  

 
Equation 19: DYM – Mid-Block Yield, Nested Logit, Restricted Model 4, MB-RAL 

logit[P(HY=1) = 0.0965 - 1.8219 AST + 0.1109 DECEL 
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Figure 27: Model Probability Plots – Nested Logit Level 2, Restricted Model 4, MB-RAL 

 

The figure illustrates that the likelihood of a HY decreases with increasing speed of the 

vehicle. Furthermore, an assertive pedestrian in all cases is less likely to encounter a hard 

yield. Restricted model 4 again has a higher AIC statistic (204.325) than the unrestricted 

model (176.978), thus sacrificing some model fit for the sake of applicability to 

microsimulation.  

 

4.4.7 MB-RAL Site Summary 

A simplistic analysis of driver yielding behavior at the MB-RAL site indicated that the 

in-road pedestrian warning sign resulted in an increase in the yield rate from 26.8% to 

42.4%, a significant increase of 58%. On an aggregated level, drivers at this site exhibit a 

greater willingness to yield and a very effective low-cost treatment.  

 

Taking into consideration the position of the vehicles in the time-space domain at the 

time of pedestrian arrival again suggests that drivers constrained by VDC will not yield. 
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Excluding these events with DECEL greater than 10ft/sec2 allows the event-based 

logistic analysis to be applied only to drivers who in fact have a choice to yield.  

 

The two-level nested binary-logit model is preferred to describe the probability of driver 

yielding. The first level predicts an increase in the log odds of yielding for assertive 

pedestrians, for pedestrians waiting at the near-side of the crossing relative to the vehicle, 

and shows a positive impact of the treatment. The odds of yielding are reduced for drivers 

traveling in a platoon and are diminished for an increase in the necessary deceleration 

rate. Given that the first level predicts a yield, the likelihood of a HY increases with 

increasing necessary deceleration rate and is generally lower for assertive pedestrians.  

 

The two models can be combined into an overall model that predicts the likelihood of HY 

by multiplying the probability predictions from the individual models. The probability of 

SY correspondingly is the likelihood of yield multiplied by [1-P(HY)]. Naturally, the sum 

of the two probabilities equals the overall yield probability shown in Figure 26. 

Frequency plots for the resulting model for the four combinations of AST and TRTMT 

variables are given in Figure 28 as a function of the necessary deceleration rate.  
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Figure 28: Combined Yield Probability for MB-RAL Site 

 

An interesting trend in figure 28 is that the probability of hard yields for assertive 

pedestrians seems to be constant and thus independent of the deceleration rate. For non-

assertive pedestrians, the likelihood of a hard yield drops proportional to the overall yield 

rate with greater deceleration rate.  

 

4.5 Chapter Summary 
The findings presented in this document shed light on the complex interaction of 

pedestrians and vehicles at unsignalized crosswalks. The data showed clear evidence that 

it is important to account for vehicle dynamics constraints on the evaluation of 

crosswalks. The yield threshold in this study was set at a deceleration rate of 10ft/sec2, 

which coincides with signal timing practice for the amber phase at signalized 

intersections. Variables describing these vehicle dynamics are a function of the vehicle 
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speed and distance from the crosswalk and proved important even below the 10ft/sec2 

threshold. 

 

Vehicle yields also showed a strong correlation with the behavior of the pedestrian. An 

assertive pedestrian or one who tries to trigger a yield would oftentimes elicit a response 

from the driver. The data further suggest that this assertiveness may be related to prior 

events, such as the presence of a previous pedestrian in the crosswalk. This relationship, 

as well as the effect of pedestrian waiting time (number of rejected gaps) will be explored 

in future research.  

 

Additionally, the data gave evidence to a strong effect of vehicle platoons in reducing the 

likelihood of yielding. In fact, the frequent occurrence of platoons may explain the low 

overall yielding rate at the MB-CTL site, and to a lesser extent at the MB-RAL site.  

 

The analysis of the treatments showed a significant effect on yielding at both sites. The 

analysis of the in-pavement flashing beacon at MB-CLT showed a significant effect on 

yielding, especially when the treatment is activated. Higher actuation rates, or the use of 

‘passive’ pedestrian detection technology, therefore have potential for further increasing 

the effect of the treatment on yielding.  

 

In the comparison of the unrestricted and restricted modeling approaches it is important 

to highlight that the unrestricted models for both sites found variables ADY and PXW to 

be significant descriptors of yielding. These variables were not included in the restricted 

models because they were not necessarily measured at the time of pedestrian arrival at the 

crosswalk. For an interaction event, the variables for an adjacent yield and the presence 

of a pedestrian in the crosswalk were coded as “true” if observed at any point in time 

during the interaction. Because of this data collection bias, they were excluded from the 

restricted analysis. Through more detailed data collection, relating the time of an adjacent 
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yield to the yield response, the inclusion of these variables in a restricted yield model 

may be possible.  

 

The research demonstrated that the data collection approach and analysis methodology 

can be combined with logistic regression techniques to develop predictive models for 

driver yielding behavior. The implications of such predictive models for driver yielding 

behavior is especially important in combination with modern microsimulation tools, 

which may eventually be used to predict performance of a future site. This will be 

explored further in Chapter 7.  
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5 PEDESTRIAN CROSSING MODELS AT MID-BLOCK 
 

This chapter discusses the development and analysis of statistical models describing 

pedestrian gap acceptance behavior at the two unsignalized mid-block crosswalks. The 

chapter initially reviews methods that are commonly used for analyzing gap acceptance 

behavior for vehicles as presented in Chapter 2. These methods are then applied to the 

collected pedestrian data to provide a benchmark for the logistic regression analysis. The 

author examines descriptive statistics and correlations of individual parameters to explore 

trends and variability in the data. Ultimately, using the results of this analysis, logistic 

regression techniques are applied to develop predictive models for pedestrian crossings 

from the behavioral data sets.  

 

5.1 Characterizing Pedestrian Gap Acceptance 
 

The gap acceptance concept is commonly applied in the analysis of driver behavior at 

yield- or stop-controlled intersections. For example, a driver waiting to enter a modern 

roundabout screens the circulating traffic for a large-enough gap between successive 

vehicles. Similarly, a driver waiting at the minor approach of a two-way stop controlled 

intersection looks for gaps in traffic on the major road. At an unsignalized pedestrian 

mid-block crossing, pedestrians have to make a similar decision before crossing the road: 

Is the gap in the traffic stream large enough to allow for a safe crossing?   

 

The pedestrian’s decision is similar to that of drivers in that she has to judge the arrival 

time of the next vehicle and how long it would take to cross the road at a comfortable 

walking speed. It is conceptually similar to minor-street through traffic at a two-way 

stop-controlled intersection with a two-directional conflicting traffic stream.  

 

However, the pedestrian gap acceptance process is different than that for drivers, for two 

main reasons: a lack of channelization and the potential of driver yielding. Vehicles 
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waiting at a single-lane approach at a yield or stop-controlled junction have to enter the 

intersection in a “first-in-first-out” prioritization scheme (FIFO). Pedestrians typically 

wait beside each other and can decide to cross the road even if they are not first in line. 

For this reason, chapter 2 discussed that the commonly used concept of follow-up time 

doesn’t apply to pedestrians.  

 

With the potential of drivers yielding to pedestrians, the gap acceptance process is further 

complicated because there are now two alternative types of crossing opportunities: 

crossing in a gap or crossing in a yield. The models for driver yielding in Chapter 4 

predicted the likelihood of a yield, defined as: 

 

… an obvious driver action that delayed the vehicle arrival at the crosswalk and 

thus creates a crossing opportunity for the pedestrian. The driver action can be 

deliberate or can be triggered by the pedestrian by stepping into the roadway.  

 

In the yield analysis the inclusion of the triggered or forced yields was justified, because 

the logistic regression approach accounted for this category with a binary explanatory 

variable. The likelihood of a driver yielding was thus predicted both with and without a 

triggering behavior on the part of the pedestrian.  

 

The models for pedestrian crossing decisions discussed in this chapter similarly predict 

the likelihood of a GO Decision, defined as: 

 

… a deliberate action by the pedestrian evident by stepping off the sidewalk and 

into the roadway with intent to cross. This pedestrian action can further be 

characterized as being a function of the lag time to the next vehicle, or by the gap 

time between successive vehicles in the conflicting traffic stream. By definition, 

these events do not include crossings that occurred because of a vehicle yield 

event.  
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Theoretically, the analysis framework allows for the inclusion of both gap and yield 

crossings in the prediction of pedestrian GO decision by introducing a binary indicator 

variable for yield presence. This type of general crossing model therefore could feasibly 

predict the likelihood of a pedestrian GO decision for both yield and gap conditions.  

 

In reality, it is expected that most (if not all) sighted pedestrians will in fact accept a yield 

crossing opportunity. In ongoing research on the crossing behavior of pedestrians with 

vision impairments (NCHRP 3-78a), it is evident that the yield detection capabilities of 

blind travelers are less than 100%. However, for the sighted pedestrians observed in this 

research a perfect detection results in a perfect correlation between yield=1 and GO=1, 

thus making the yield variable useless as a predictor. In the maximum likelihood 

estimation of the predictor parameters in logistic regression, this results in sparse data 

(Agresti, 2007), meaning that a 2x2 contingency table of YIELD by GO has an empty 

cell for the yield=1/GO=0 pair. In the parameter estimation the result is a model that 

doesn’t converge at an estimate.  

 

Consequently, the analysis in this chapter does not include GO decisions that are the 

direct result of a yield (these events were analyzed in the previous chapter). However, the 

analysis does include crossing decisions that take place with an adjacent yield. Even with 

a yield in one lane, the decision to cross the other lane remains a gap selection process (of 

course this decision is influenced by the yielding vehicle). The following section 

discusses the difference between gap and lag events, and defines other parameters 

pertinent to the model.  

 

5.1.1 Definitions 

It is important to first distinguish between decisions that are made with respect to gaps 

versus lags. A gap is typically defined as the time headway between two successive 

vehicles at a fixed point; in this research that point is the beginning of the striped 
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crosswalk. Gaps then are typically observed while a pedestrian is waiting at the curb 

under steady traffic conditions.  

 

On the other hand, a lag is defined as the time interval elapsed until the first vehicle 

arrival measured from the time the pedestrian arrives at the crosswalk. For this first 

encounter the gap between successive vehicles is irrelevant, because the pedestrian can 

arrive at the crosswalk any time during a gap passage. The elapsed lead time since the 

last vehicle is ignored and the pedestrian makes his/her crossing decision based on the lag 

time remaining to the next vehicle.  

 

The two mid-block crosswalks analyzed in this chapter are both at facilities with a two-

lane cross-section, with one lane of traffic per direction. In this context, it is important to 

distinguish whether the gap or lag the pedestrian encounters is in the near lane or the far 

lane relative to her own position. Presumably, the pedestrian decision to cross is not the 

same in both cases. In fact, it is hypothesized that for a single-vehicle arrival, the near-

side critical gap is lower than the far side critical gap, because it enables the pedestrian to 

more quickly clear the area of conflict (assuming the other lane is empty). The decision is 

likely to be yet again different for events that are characterized by vehicles in both lanes. 

A further discussion of these gap acceptance concepts is given in Fitzpatrick et al. (2006).  

 

An additional challenge in defining gaps and lags presents itself as a consequence of the 

data collection methodology. The author recorded time-stamps for the actual vehicle 

arrivals at the crosswalks and thus can derive the temporal duration of gaps and lags from 

the time stamps in the form of observed gaps/lags. However, it can be reasoned that in 

some cases the observed vehicle arrivals at the crosswalks may have been influenced by a 

pedestrian action. Specifically, an assertive pedestrian may have elicited a driver reaction 

thereby delaying the arrival time at the crosswalk. In this case the observed gap/lag will 

be less than the expected gap/lag that assumes that the driver continues at the original 

speed. The data collection methodology discussed in chapter 3 records the vehicle speed 
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and distance from the crosswalk at the time the pedestrian arrives. This makes it possible 

to calculate the expected arrival time and thus the expected gap or lag time.  

 

The distinction between observed and expected gap is also important in the model 

application to microsimulation. A model algorithm would predict a pedestrian GO or 

NOGO decision based on the instantaneous state of the system, i.e., the expected arrival 

time. Any predictive model with application to microsimulation therefore should be 

based on expected arrival times. As a driver decelerates the expected time to arrival 

increases from one time step to the next and may thus still result in an eventual crossing 

by the pedestrian.  

 

5.2 Traditional Gap Acceptance Approaches 
The discussion in Chapter 2 identified four traditional methods for quantifying gap 

acceptance parameters: graphical method, regression method, Ramsey-Routledge 

method, and maximum likelihood estimation. The chapter further stated that the 

regression method assumes a FIFO prioritization scheme and sequential discharge from 

the standing queue (of vehicles) in which the first driver accepts a gap greater or equal to 

the critical gap. Additional vehicles in theory will accept the same gap if the residual time 

between the actual gap size and the initial critical gap is greater than their follow-up time. 

Because the pedestrian stream is not channelized in the same fashion, multiple 

pedestrians can in fact accept the same gap (independent of follow-up time) thus 

violating the assumptions underlying the graphical method. In the following section, the 

remaining three methods will be applied to data collected at the two mid-block crossing 

sites. 

 

5.2.1 Graphical Method 

The graphical method plots the cumulative distributions of gaps (or lags) that resulted in 

a GO and those that resulted in a NOGO decision as a function of gap size. By definition, 

the resulting critical gap (or lag) is the intersection of the two probability plots or the gap 
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size at which the likelihood of GO and NOGO is the same. The underlying frequency 

distributions were extracted from the data sets using the PROC FREQ procedure in SAS. 

Binary indicators in the data set allowed for a separate analysis of gaps and lags and of 

events in the before and after periods.  

Figure 29-a shows the resulting cumulative probability plots for gaps and lags at the MB-

CLT site. Figure 29-b shows corresponding plots for MB-RAL. Both figures further 

distinguish the observed and expected gaps and lags.  

Cumulative Distribution of 'GO' and -No-Go' Decisions
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Cumulative Distribution of 'GO' and -No-Go' Decisions
MB-RAL
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b) MB-RAL 

Figure 29: Cumulative Probability Plots for Pedestrian Gap Acceptance 
 

Table 4 below shows the critical gap and lag times obtained for the two sites.  

 
Table 4: Critical Gap/Lag Results - All Data 

Observed Expected Observed Expected
MB-CLT 4.1 3.9 6.5 6
MB-RAL 4.8 4.9 6.4 6.2

SITE
Critical Gap (sec.) Critical Lag (sec.)

 
 

The table shows that the critical lag times are higher than the critical gap times for both 

sites. This is explained by the pedestrian behavior. Upon initial arrival at the crosswalk 

(lag) the pedestrian has to screen the conflicting traffic stream, a cognitive process that 

requires time. Conceptually, the pedestrian needs this time to make the decision on 

whether or not it is safe to cross. For the subsequent crossings in gaps, this screening 

process presumably takes place before the temporal onset of the gap (i.e. while the 

vehicle passes in front of the pedestrian). The crossing then is initiated as soon as the 

vehicle clears the conflict area, maximizing the efficiency with which the gap is utilized.  
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In comparing the two sites, it is surprising that the critical gap appears to be lower for the 

MB-CLT site while the actual crossing distance is longer than at the MB-RAL site (40 

feet compared to 24 feet). At an assumed walking speed of 3.5 feet per second, the 

expected crossing times at the MB-CLT and MB-RAL sites are 11.4 and 6.9 seconds, 

respectively. The substantially lower critical gap times indicate that one or both of the 

following are true: the pedestrians walk substantially faster than the 3.5 feet/sec assumed 

in the upcoming release of the MUTCD and/or the pedestrian’s decision to GO is based 

on a distance shorter than the true crossing distance. The software package SIDRA 

INTERSECTION (SIDRA SOLUTIONS, 2007) recognizes the latter behavior pattern 

and allows the analyst to code an “effective crosswalk width” that is less than the actual 

crossing distance. Presumably, pedestrians at the MB-CLT site feel safe before 

completing the entire crossing, which is reflected in their decision making. 

  

Figure B-55 in the Appendix shows the cumulative distributions of observed gaps and 

lags in the before and after categories for the MB-CLT site; Figure B-56 is the equivalent 

figure for MB-RAL. Table 5 presents a summary of the critical gaps and lags obtained 

from the plots.  
Table 5: Critical Gap/Lag Results – Before and After 

Observed Expected Observed Expected
Before 3.6 3.4 7.4 7.8
After 3.2 3.0 4.9 4.3
Before 5.1 5.1 6.7 6.3
After 4.8 5.0 6.5 5.4

MB-CLT

MB-RAL

Site
Critical Gap (sec.) Critical Lag (sec.)

Category

 
 

The table suggests that the treatment installation may have an effect on pedestrian gap 

acceptance. The critical gaps appear to be lower in the after condition, although with the 

graphical method it cannot be tested if this difference is statistically significant because 

no standard deviation is given. The impact appears largest for the expected lags, 

suggesting that the treatments have the largest impact on the initial decision process. The 
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suggestion that the treatment installation would affect pedestrian decision-making is 

intriguing, because both treatments clearly target driver behavior. 

 

5.2.2 Maximum Likelihood Estimation 

While the graphical method presented above provides an intuitive estimate of critical gap 

and lag times, a clear disadvantage is that it fails to account for the stochastic nature of 

the gap acceptance process. The single estimator for critical gap decisions is useful only 

for some methods that rely on the concept, such as the Highway Capacity Manual 

methodology, for evaluating the delay of vehicles at the minor approach to a two-way 

stop controlled intersection; or more appropriately here, to estimate the delay for 

pedestrians crossing at a mid-block location (assuming no yields).  

 

However, as analysis methodologies move towards stochastic microsimulation models, it 

becomes important to account for the variability of the gap selection process in the 

pedestrian population. The method for gap acceptance estimation described by Troutbeck 

(1992) uses maximum likelihood estimation (MLE) to predict the critical gap mean and 

standard deviation assuming that the population of critical gaps is log-normally 

distributed. The MLE procedure predicts the distribution parameters (in this case mean 

and standard deviation) that maximize the likelihood of observing the given sample of 

critical gaps. 

 

The MLE gap procedure by Troutbeck (1992) uses within-subject paired gap acceptance 

data for estimation. For each driver (pedestrian) observed, the analyst records the longest 

rejected gap and the actual accepted gap, with the latter being expectedly the larger of the 

two. By using the longest rejected gap (as opposed to a random NOGO decision) the 

difference between the two observations is presumably minimized making it statistically 

easier (i.e. using a smaller sample size) to arrive at an estimate.  
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The nature of the estimation procedure makes it inapplicable for estimating the 

distribution of critical lags. By definition, the lag corresponds to the first event in the 

pedestrian-vehicle interaction process and it is therefore not possible to observe more 

than one for the same pedestrian (other than in the case of a controlled experiment with 

repeated crossings). Furthermore, the method naturally works best in conditions of heavy 

conflicting traffic, where each subject is likely forced to reject multiple gaps prior to the 

actual crossings.  

 

The MLE procedure for gap estimation is implemented in a spreadsheet that Troutbeck 

developed as a supplement to the referenced paper. The following tables give the 

estimation results obtained by using that spreadsheet. Table 6 shows the results including 

the number of iterations it took to arrive at an estimate, the sample size, the mean and 

standard deviation of the critical gap, and two-sided t-test results on the difference in 

critical gap in the before and after cases where applicable.  

 
Table 6: MLE Results - Paired Data - Gaps 

B&A 
(n=45)

Before 
(n=21)

After 
(n=24)

B&A 
(n=25)

Before 
(n=17)

After* 
(n=8)

Number of Iterations 35 25 57 31 34 .
Mean Critical Gap 5.7 5.6 6.0 6.6 6.3 .
SD of the Critical Gap 1.864 1.997 1.530 2.303 2.374 .
Difference B - A
p-value

* MLE Estimation did not converge - Macro Error

Charlotte, NC Raleigh, NC

-0.39
0.4732

 
 

Table 6 shows a mean critical gap of 5.7 seconds at the MB-CLT site and 6.6 seconds at 

MB-RAL. Consistent with the previous method, the site with the wide crosswalk 

surprisingly has the shorter critical gap time.  

 

A before and after comparison shows no significant impact of the treatment installation 

on critical gaps at the MB-CLT site. For the after condition at MB-RAL, the MLE 
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method did not converge at an estimate, presumably due to low sample size. These 

findings illustrate the limitations of the MLE method, because the need for within-subject 

paired observations severely reduces the number of useable observations for this 

application.  

 

5.2.3 Ramsey-Routledge Method 

The Ramsey-Routledge (RR) method for gap acceptance analysis is described in the ITE 

Manual for Transportation Engineering Studies (ITE, 1994) and is based on Ramsey and 

Routledge, 1973. Similar to the MLE method, the RR approach also estimates a 

distribution of critical gaps/lags. It is different from MLE because no assumptions about 

the shape of that distribution are made. The RR approach estimates a frequency 

distribution of critical gaps in 2 second bins, independent of a theoretical distribution (1 

second bins are possible, but require a larger sample size). The following analysis is 

based on the procedure outlined in ITE (1994) applied to both gaps and lags.  

 

Figure 30 shows the resulting distributions of critical gaps and critical lags for both the 

MB-CLT and MB-RAL sites. Table 7 gives a summary of the mean, standard deviation 

and sample size of these distributions. 
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Figure 30: Gap/Lag Distributions from Ramsey-Routledge Methodology 
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Table 7: Critical Gap/Lag Results from RR Method 

Mean SD n Mean SD n
Critical Gap (sec.) 5.74* 2.53 341 6.22* 2.63 325
Critical Lag (sec.) 8.64 2.96 185 7.36 2.79 527

MB-RALMB-CLT

* Some large Go and NoGO decisions were removed to meet assumptions  
 

Consistent with the previous two estimation approaches, the RR method predicts larger 

mean critical lags than gaps. To produce a valid estimate from this method, some large 

GO and NOGO decisions had to be removed from the analysis for some categories (*). 

The RR method assumes an increasing percentage of GO decisions with greater bin size 

relative to the total number of observations in the bin. If this assumption was violated at 

large gap sizes (clearly above the critical gap) all events in those larger bins were 

excluded from the analysis.  

 

Consistent with the other two methods, the RR analysis suggests that the critical gap is 

lower at the MB-CLT site than at the MB-RAL site. This difference is significant at 

p<0.0001 in a two-sided t-test. The critical lag distributions suggest the opposite trend, 

with a significantly higher estimate at the MB-CLT site (p<0.0001). 

 

Figure 31 and Table 8 show the results separately in the before and after conditions.  
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RR Critical GAP Distribution - Before & After
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a) Gaps 

RR Critical LAG Distribution - Before & After
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b) Lags 

 
Figure 31: Before & After Distributions from Ramsey-Routledge Methodology 
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Table 8: Critical Gap/Lag Results from RR Method - Before & After 

Mean SD n Mean SD n
Before 5.85 2.52 185 5.85 2.58 143
After 5.99* 2.61 165 5.8 2.55 66
p-value

Mean SD n Mean SD n
Before 9.22 3.05 93 7.15 2.75 336
After 8.00 2.83 91 7.76 2.86 191
p-value
* Some large Go and NoGO decisions were removed to meet assumptions

GAPS

LAGS

0.0054 0.0174

0.6110 0.8957

MB-CLT MB-RAL

MB-CLT MB-RAL

 
 

The table shows that the two treatments did not have a significant effect on the critical 

gap at either crossing. The mean critical gaps are nearly identical at both sites for the 

before and after conditions. The lag distributions for MB-CLT show a statistically 

significant decrease in the mean critical lag from 9.22 to 8.00 seconds. The lag data set 

for the MB-RAL site actually suggests a statistically significant increase in the critical lag 

size from 7.15 to 7.76 seconds with treatment installation.  

 

5.2.4 Result Synthesis from Traditional Gap Acceptance Approaches 

This section applied three common methods for gap acceptance to the data collected at 

the two midblock crosswalks MB-RAL and MB-CLT. The analysis presents an important 

benchmark against which to measure the following logistic regression analysis of 

pedestrian crossing behavior. Table 9 presents summary statistics of the results from all 

three methods.  
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Table 9: Summary Comparison of Traditional Gap Acceptance Approaches 

All Before After All Before After
Graphical Method 4.1 3.6 3.2 4.8 5.1 4.8
MLE Method 5.7 5.6 6.0 6.6 6.3 .
RR Method 5.7 5.9 6.0 6.2 5.9 5.8
Graphical Method 6.5 7.4 4.9 6.4 6.7 6.5
MLE Method . . . . . .
RR Method 8.6 9.2 8.0 7.4 7.1 7.8

Mean Gap (sec.)

Mean Lag (sec.)

MB-RALMB-CLT

 
 

The summary table shows that the MLE and RR are relatively close in their estimation of 

the mean pedestrian critical gap times, where applicable. The graphical method predicts 

lower critical values in all cases. The methods are inconsistent in their prediction of how 

the treatments affect gap acceptance behavior.  

 

The methods described above are useful in evaluating average pedestrian behavior and 

are sufficient to determine inputs for deterministic delay models that are based on the gap 

acceptance concept. Further, the RR and MLE methods account for heterogeneity in the 

pedestrian population by estimating a distribution of critical gaps. In a microsimulation 

application, gap acceptance algorithms can ideally utilize these distributions directly. 

Alternatively, at least some currently available microsimulation tools allow the modeler 

to code multiple “types” of pedestrians (PTV, 2003). Given the distribution of critical 

gaps, the overall population can be subdivided into multiple groups, whose gap 

acceptance behavior and relative frequency match the calculated distributions.  

 

However, all the above methods fail to identify underlying contributions to the variability 

in gap acceptance behavior. The analyst may assume that variability can be attributed to 

population heterogeneity, with some pedestrians having inherently but consistently 

different gap selection attributes. Using the event-based approach suggested in this 

research, the gap selection process can account for many factors that contribute to the 

observed variability.  
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5.3 Event Based Analysis for MB-CLT 
Data were collected describing driver characteristics, pedestrian characteristics, the 

dynamics of the closest approaching vehicle, and the conditions associated with the 

pedestrian-vehicle interaction event. Due to the complexity of the data, the following 

sections will discuss each site separately. A comparison of the results from both locations 

is provided in the chapter summary.  

 
5.3.1 Descriptive Statistics 

Consistent with the event-based analysis of driver yielding behavior in the previous 

chapter, the author initially used SAS PROC MEANS to obtain descriptive statistics of 

all dependent and independent variables. Table 10 shows the statistics for the entire data 

set and for data aggregated into before/after, Go/NOGO, and Gap/Lag categories.  

 
Table 10: Descriptive Statistics – MB-CLT 

Variable Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev
Sample Size 551 . 307 . 244 . 125 . 426 . 366 . 185 .
Response Variables

GO 0.23 0.419 0.18 0.381 0.29 0.455 1.00 0.000 0.00 0.000 0.22 0.414 0.24 0.430
NO_GO 0.77 0.419 0.82 0.381 0.71 0.455 0.00 0.000 1.00 0.000 0.78 0.414 0.76 0.430
LAG 0.32 0.468 0.32 0.467 0.36 0.480 0.36 0.482 0.33 0.470 0.00 0.000 1.00 0.000

Binary Factors
ADY 0.04 0.196 0.03 0.160 0.06 0.233 0.11 0.317 0.02 0.136 0.05 0.211 0.03 0.163
AST 0.20 0.397 0.19 0.389 0.21 0.407 0.63 0.484 0.07 0.252 0.16 0.366 0.27 0.445
COM 0.00 0.060 0.00 0.057 0.00 0.064 0.02 0.126 0.00 0.000 0.00 0.052 0.01 0.074
FLASH 0.14 0.347 0.00 0.000 0.32 0.466 0.29 0.455 0.10 0.295 0.17 0.378 0.08 0.265
FOLL 0.48 0.500 0.47 0.500 0.50 0.501 0.38 0.488 0.51 0.500 0.50 0.501 0.45 0.499
HEV 0.02 0.127 0.01 0.114 0.02 0.142 0.03 0.177 0.01 0.108 0.01 0.090 0.03 0.178
MUP 0.28 0.447 0.28 0.448 0.27 0.447 0.22 0.413 0.29 0.456 0.30 0.457 0.24 0.427
NEAR 0.58 0.494 0.58 0.494 0.58 0.494 0.57 0.497 0.58 0.493 0.59 0.492 0.56 0.498
PLT 0.63 0.484 0.64 0.482 0.61 0.488 0.32 0.468 0.72 0.451 0.70 0.459 0.48 0.501
PREV 0.65 0.479 0.68 0.467 0.60 0.490 0.56 0.498 0.67 0.470 0.95 0.228 0.05 0.227
PXW 0.07 0.247 0.09 0.288 0.03 0.178 0.14 0.353 0.04 0.201 0.05 0.211 0.10 0.304
QUE 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000
TRIG 0.03 0.173 0.01 0.081 0.06 0.241 0.10 0.296 0.01 0.108 0.03 0.163 0.04 0.191
TRTMT 0.44 0.497 0.00 0.000 1.00 0.000 0.57 0.497 0.41 0.492 0.43 0.496 0.47 0.500
G_NEAR 0.23 0.419 0.28 0.450 0.16 0.367 0.25 0.434 0.22 0.415 0.21 0.408 0.26 0.440
G_FAR 0.17 0.380 0.21 0.407 0.13 0.338 0.16 0.368 0.18 0.383 0.16 0.371 0.19 0.397
G_COMBO 0.54 0.499 0.47 0.500 0.64 0.482 0.41 0.493 0.58 0.494 0.57 0.496 0.49 0.501

Continous Factors
DECEL 5.02 6.909 4.06 4.627 5.67 7.453 1.67 0.780 5.69 6.646 3.25 4.903 8.71 8.792
DIST1 364.70 278.574 406.47 283.038 328.22 267.173 592.32 283.537 307.12 241.867 437.74 284.136 212.33 192.202
D_WAIT 4.88 5.724 5.68 6.301 3.88 4.727 5.11 6.144 4.81 5.601 7.34 5.587 0.00 0.000
O_GAP* 3.79 3.562 3.51 3.024 4.16 4.157 8.74 4.267 2.42 1.596 3.79 3.562 . .
T_GAP* 3.80 3.499 3.45 2.860 4.25 4.168 8.73 4.067 2.42 1.537 3.80 3.499 . .
O_LAG* 5.04 4.231 5.24 4.038 4.81 4.450 11.49 2.642 2.96 1.917 . . 5.04 4.231
T_LAG* 4.99 4.183 5.29 4.025 4.65 4.352 11.23 3.003 2.99 1.917 . . 4.99 4.183
SPEED_FT 41.15 9.776 42.43 8.785 40.39 9.299 41.35 10.316 41.58 8.677 40.81 9.742 41.88 9.834
TTC_V 8.99 6.438 9.70 6.687 8.09 6.005 14.39 6.072 7.40 5.638 11.01 6.438 4.99 4.182
* Sample Sizes for these variables are lower because they only include the gap/lag events observed in each category 

ALL DATA BEFORE AFTER GO NO_GO GAPS LAGS
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During the observation period, 23% of all interaction events resulted in a GO decision 

and 32% were lag events. In 20% of the cases, pedestrians exhibited assertive behavior. 

In the data, 28% of observations were associated with multiple pedestrians, meaning that 

72% of events were for individual travelers. Vehicle platoons were observed in 63% of 

events, which is consistent with the discussion in the previous chapter. Of all decisions, 

23% had a vehicle present in the near lane only, 17% in the far lane only, and the 

remaining 54% of events had vehicles approaching in both lanes. The mean waiting time 

of all pedestrians was 4.9 seconds.  

 

In the before and after comparison of the data, a larger overall percentage of events 

resulted in a GO decision after treatment installation resulting in a drop in the average 

waiting time from 5.7 to 3.9 seconds. The majority of independent variables is consistent 

across both conditions. Consistent with the analysis of the yielding data, pedestrians 

activated the treatment in 32% of the events. The treatment did not seem to result in a 

significant increase in the proportion of assertive behavior.  

 

Comparing events that resulted in a GO to the NOGO decisions, the GO decisions appear 

to be correlated with greater pedestrian assertiveness, a higher activation rate of the 

treatment, and less platooning. GO events are also associated with a lower necessary 

deceleration rate on the side of the driver, expectedly indicating that vehicles are 

probably further away from the crosswalk. This notion is supported by a difference in 

DIST1 while the average approach speed is comparable.  

 

A comparison of gap and lag events shows similar proportions of GO and NOGO events. 

Lags are associated with greater pedestrian assertiveness, a lower likelihood of the 

treatment being active, and a lower occurrence of platoons. Lags are furthermore 

associated with higher average deceleration rates, which are explained because any 

subsequent (gap) vehicles will always be able to decelerate at a slower rate to come to a 
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stop at the crosswalk than the first (lag) vehicle. By definition, the pedestrian waiting 

time for lags is zero, because it is the first event after pedestrian arrival.  Table 11 

presents the descriptive statistics for the gap categories near/far/combo. 

 
Table 11: Descriptive Statistics – MB-CLT – Near/Far/Combo  

Variable Mean StdDev Mean StdDev Mean StdDev Mean StdDev
Sample Size 551 . 125 . 96 . 298 .
Response Variables

GO 0.23 0.419 0.25 0.434 0.21 0.408 0.17 0.377
NO_GO 0.77 0.419 0.75 0.434 0.79 0.408 0.83 0.377
LAG 0.32 0.468 0.38 0.488 0.38 0.487 0.31 0.461

Binary Factors
ADY 0.04 0.196 0.00 0.000 0.00 0.000 0.00 0.000
AST 0.20 0.397 0.15 0.360 0.30 0.462 0.15 0.355
COM 0.00 0.060 0.00 0.000 0.00 0.000 0.00 0.000
FLASH 0.14 0.347 0.09 0.284 0.07 0.261 0.15 0.359
FOLL 0.48 0.500 0.41 0.493 0.51 0.503 0.50 0.501
HEV 0.02 0.127 0.03 0.177 0.02 0.144 0.01 0.100
MUP 0.28 0.447 0.18 0.382 0.27 0.447 0.31 0.464
NEAR 0.58 0.494 1.00 0.000 0.00 0.000 0.59 0.493
PLT 0.63 0.484 0.63 0.484 0.68 0.470 0.62 0.487
PREV 0.65 0.479 0.62 0.488 0.63 0.487 0.68 0.465
PXW 0.07 0.247 0.07 0.260 0.14 0.344 0.02 0.152
QUE 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000
TRIG 0.03 0.173 0.01 0.089 0.04 0.201 0.02 0.129
TRTMT 0.44 0.497 0.31 0.465 0.33 0.474 0.52 0.500
G_NEAR 0.23 0.419 1.00 0.000 0.00 0.000 0.00 0.000
G_FAR 0.17 0.380 0.00 0.000 1.00 0.000 0.00 0.000
G_COMBO 0.54 0.499 0.00 0.000 0.00 0.000 1.00 0.000

Continous Factors
DECEL 5.02 6.909 4.50 5.316 5.01 6.497 5.09 6.494
DIST1 364.70 278.574 410.69 314.747 399.34 284.166 336.59 262.468
D_WAIT 4.88 5.724 5.34 7.129 4.31 5.359 4.67 5.125
O_GAP* 3.79 3.562 4.01 3.128 4.88 4.371 3.27 3.200
T_GAP* 3.80 3.499 3.91 3.073214 4.89 4.449383 3.17 3.070936
O_LAG* 5.04 4.231 5.55 4.697 5.06 4.199 4.43 3.960
T_LAG* 4.99 4.183 5.45 4.608 5.11 4.228 4.46 3.978
SPEED_FT 41.15 9.776 42.14 9.110 43.55 8.914 40.83 8.962
TTC_V 8.99 6.438 9.83 7.748 9.28 6.371 8.25 5.885
* Sample Sizes for these variables are lower because they only include the gap/lag events observed in 
each category 

ALL DATA NEAR FAR COMBO

 
 

The analysis of different gap types in Table 11 shows a comparable rate of GO decision 

across all three categories. Far side gaps are correlated with greater pedestrian 

assertiveness, while combo gaps result in a more frequent activation of the flashing 

crosswalk. Pedestrian waiting time seems to be slightly higher for near gaps and lags, but 

that difference is not significant due to very high standard deviations.  
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5.3.2 Variable Interactions 

In the next analysis step the author used SAS PROC CORR to investigate interactions 

between the dependent and independent variables, as well as test for any multicollinearity 

among independent variables. Tables B-35 and B-36 show the correlation matrices for 

gap and lag events, respectively. The tables are formatted to highlight any correlation 

parameters greater than 0.3 (or less than -0.3) and p-values less than 0.05. Again, the 

following discussion will merely highlight some of the more interesting trends.  

 

Table B-35 indicates that GO decisions in gaps are correlated with the presence of an 

adjacent yield, pedestrian assertiveness, the activation of the flashing beacon, and trigger 

behavior. They are inversely correlated with the presence of platoons or a previous 

vehicle that failed to yield. Looking at the continuous variables, a GO decision is 

correlated with lower deceleration rates, greater distance from the crosswalk, and higher 

gap times.  

 

In the analysis of GO decisions for lag events, table B-36 suggests that GO decision are 

correlated with greater assertiveness, the activation of the flasher, and the presence of a 

previous pedestrian in the crosswalk. For the continuous variables, a GO decision is 

associated again with lower deceleration rates, greater distance, and larger gap times.  

 

The correlation analysis supports what is expected based on gap acceptance theory. The 

occurrence of a GO event is strongly correlated with the size of the gap or lag in the 

conflicting traffic stream. Given that yield events are not included in this analysis, the 

size of the conflicting gap or lag is a good indicator of whether or not a pedestrian will 

cross. However, the matrices further showed strong correlation with other variables that 

go beyond the traditional approaches for pedestrian gap acceptance. The use of logistic 

regression techniques allows the inclusion of these variables in the development of 

predictive models for the likelihood of a GO decision. But before moving into the 
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estimation, the following section takes a closer look at the association between lag size 

and decision outcome.  

 

5.3.3 Exploratory Analysis for Pedestrian GO Lags 

The discussion above highlights the importance of the gap or lag size in the traffic stream 

to the pedestrian decision on whether or not to cross (in the absence of a yield). This 

finding is both intuitive and in line with previous research on the subject. However, the 

event-based nature of the data collection approach allows for an even closer analysis of 

this particular variable for lag events.  

 

Most traditional gap acceptance approaches rely on observations taken at the conflict 

point. In particular, the size of a gap between vehicles is measured as the temporal 

difference between successive vehicle arrivals. For most vehicular applications (say two-

way stop-controlled intersection), this is a valid approach, because a vehicle in the major 

street flow is very unlikely to alter its desired time-space trajectory in the approach of the 

intersection. Given the interactive nature of pedestrian crosswalks this is not necessarily 

true. While in some events the vehicle maintains its trajectory through the crosswalk at a 

constant speed, more often than not drivers will slow down in anticipation of pedestrian 

activity. Therefore, the actual observed arrival time at the crosswalk may or may not be 

the same as the expected arrival time calculated from the time of pedestrian arrival. This 

expected lag time, however, is what the pedestrian uses to make the decision on whether 

or not to cross. The lag time in turn is influenced by the decisions of both driver and 

pedestrian in response to this initial state.  

 

The speed and distance to the crosswalk at the time of pedestrian arrival at the crosswalk 

were recorded and it was therefore possible to analyze pedestrian decisions based on the 

expected arrival times. Figure 32 shows a plot of speed versus distance at the time of 

pedestrian arrivals for all lag events. The event outcomes are symbolized by squares for 

GO events and stars for NOGO decisions. The figure further shows radial lines of 
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constant lag times to provide a visual reference. Note that gap events cannot be analyzed 

in this fashion, because their expected arrival at the crosswalk is preceded by other 

vehicles.   

 

Figure 32: Plot of GO and NOGO events for Lag Analysis – MB-CLT 

 

From the plot, it is clearly evident that zero GO events were observed at lag times less 

than 4 seconds and that only few were observed at lags between 4 and 8 seconds. Most 

GO decisions occur at lags greater than 8 seconds with NOGO decisions expectedly 

showing the opposite trend. In the previous section, the graphical and Ramsey-Routledge 

methods estimated critical lag times of 6.5 and 8.6 seconds, respectively. The radial lines 

offer a visual confirmation of these parameters.  

 

The line that best separates these two event outcomes can be estimated using statistical 

procedures such as Fisher’s Discriminate Function. This method was not applied here, 

because the more modern logit regression approach conceptually achieves the same goal; 
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dividing the clusters of observations into two categories using a mathematical 

discriminate.  

 

Comparing the event plot back to the graphical representation of yield events in Chapter 

4, it can be anticipated that the logit regression models for lag (and presumably gap) 

events may achieve a better overall statistical fit.  

 

5.4 Crossing Model Development for MB-CLT 
The methodology chapter discussed the application of logistic regression methods in the 

context of these data. Due to the categorical nature of the dependent variable, the logistic 

procedure is the appropriate method of analysis. However, as was done for the driver 

yielding models it is good practice to first apply multilinear regression (MLR) to get a 

general sense of what to expect from the logit models. Following the MLR analysis, the 

author will explore a range of binary logistic models. Similar to the analysis of the driver 

yielding models, the modeling approach explores full, unrestricted, and restricted models. 

Models for gap and lag events are evaluated separately.  

 

5.4.1 Multilinear Regression Models 

Table B-37 shows the multilinear regression models for the MB-CLT site. The full model 

suggests that AST, TRIG, G_NEAR, G_COMBO, DECEL, and O_LAG are good 

potential variables in the regression model. Further analysis in the unrestricted approach 

results in a four-variable model predicting the likelihood of GO as a function of 

pedestrian assertiveness, vehicle status in the near lane, treatment presence, and observed 

lag size. The treatment effect indicates that pedestrians are more likely to cross after the 

in-pavement flashing crosswalk was installed. The restricted model is very similar, with 

the exception that it uses the expected lag time. The adjusted R-square statistics of the 

full, unrestricted, and restricted MLR models are 0.79, 0.78, and 0.76, respectively. 
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The corresponding models for gaps are shown in Table B-38. The likelihood of GO in a 

gap for the full model shows that AST, MUP, PREV, PXW, TRTMT, D_WAIT, G_FAR, 

G_COMBO, O_GAP and T_GAP are all good explanatory variables. The unrestricted 

model 2 includes variables AST, MUP, PREV, PXW, TRTMT, D_WAIT, and O_GAP. 

Restricted model 2 utilizes variables AST, FLASH, NEAR, PLT, D_WAIT, and T_GAP 

to predict the likelihood of GO. The adjusted R-square statistics of the full, unrestricted 

and restricted MLR models are .76, .73, and .70, respectively.  

 

These initial results from the MLR analysis already suggest that pedestrian gap 

acceptance behavior is more readily predictable than driver yielding behavior. With 

highly significant parameters and good overall model fit statistics there is a lot of promise 

for the following logistic regression analysis. The preliminary models show good fit 

using size of gaps and lags and a treatment effect. They also suggest an impact of 

pedestrian waiting time (D_WAIT) in increasing the likelihood of GO.  

 

5.4.2 Binary Logit Models for MB-CLT 

Lag Events 
Table B-39 contains all models for lag events for site MB-CLT. The two unrestricted 

models are results of the SAS modeling algorithm with B-39-b using the observed and B-

39-c the expected lag values. The resulting models both contain the variables AST and 

G_FAR in addition to the lag time variable. The latter model further contains the variable 

describing whether the treatment was activated (FLASH). Unrestricted model 1 has the 

better statistical fit with AIC 24.602, -2 log L 16.602 and max-rescaled R-square 0.9538. 

Unrestricted model 2 has an AIC of 28.458 and -2 log L of 18.458, which is a statistically 

poorer fit (p=0.0016). The resulting equation 20 for unrestricted model 1 is given below 

followed by a graphical representation of the model in Figure 33.  

 
Equation 20: PCM - Mid-Block Lag, Unrestricted Model 1, MB-CLT 

logit[P(GO=1)] = -15.496 + 3.4780 AST - 4.753 G_FAR + 1.855 O_LAG 



   

 
 
 147 

 

 
Likelihood of 'GO' - LAG Events

Effect of AST, G_FAR and O_LAG

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Observed Lag Time (sec.)

'G
O

' P
ro

ba
bi

lit
y

G_FAR=0, AST=0
G_FAR=1, AST=0
G_FAR=0, AST=1
G_FAR=1, AST=1

 
Figure 33: Model Probability Plot for Lags – Unrestricted Model 1 - MB-CLT 

 

The figure expectedly shows an increasing probability of GO as a function of the 

observed lag time. The left-most curve corresponds to the likelihood of crossing for an 

assertive pedestrian who is faced with a “non-far” lag (i.e. either a near only, or combo 

lag). With an odds ratio of 32.45, pedestrian assertiveness has a very large effect on an 

increased likelihood of GO. This curve represents the group of events that would use the 

lowest lag times. For example, the 50th percentile lag for this group is approximately 6.5 

seconds. For a non-assertive pedestrian, the probability distribution shifts to the right 

indicating higher lags. The 50th percentile lag for a “G_FAR=0” event is approximately 

8.4 seconds. The remaining two curves follow this trend, with non-assertive pedestrians 

and G_FAR=1 lags generally requiring longer lag times.  

 

Table B-39 further shows five different restricted models featuring different 

combinations of variables. The model fit statistics for these models are all very 

comparable and hence the model with the most practical application is selected as the 

best fit. Restricted Model 5 predicts the likelihood of GO as a function of pedestrian 

assertiveness (AST), activation of the treatment (FLASH), whether the vehicle is in the 
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near lane (NEAR), and the expected lag time to the first vehicle arrival.  The resulting 

equation and probability plots are shown below (in Equation 21 and Figure 34).  

 

 
Equation 21: PCM - Mid-Block Lag, Restricted Model 5, MB-CLT 

logit[P(GO=1) = -12.930 + 3.092 AST+ 3.239 FLASH + 1.941 NEAR + 1.252 T_LAG 
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b) Far-side crossing 

Figure 34: Model Probability Plot for Lags – Restricted Model 5 - MB-CLT 

 

The probability plots show the predicted likelihood of GO for vehicle encounters on the 

near side (34 -a) and far side (34 -b) relative to the position of the waiting pedestrian. 
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Both plots show an increasing probability of GO with increasing expected lag time. The 

four curves from left to right (lower likelihood of GO given the same lag time) represent 

assertive pedestrians who activate the flasher, non-assertive pedestrians who activate the 

flasher, and assertive and non-assertive pedestrians who don’t activate the treatment. 

Looking at a constant lag time of, for example, 8 seconds (vertical line in the figures), 

these four categories have a likelihood of crossing of 0.27, 0.89, 0.91, and 1.00 for a 

crossing in a near-side lag. For a crossing in a far-side lag, all four curves shift to the 

right towards higher expected lag times. For a constant lag time of 8 seconds the 

likelihood of crossing for the four categories then are 0.05, 0.54, 0.58, and 0.97.  

 

Restricted Model 5 has an AIC statistic of 34.874, which indicates that some statistical fit 

is sacrificed compared to unrestricted model 1 (AIC=24.602). The max-rescaled R-square 

statistic for the restricted model is still very high with 0.9292.  

Gap Events 

Table B-40 shows the corresponding logit models for the likelihood of a GO decision in a 

gap event. Unrestricted Model 2 has the best statistical fit and predicts the GO response 

as a function of AST, PREV, TRTMT, G_FAR and O_GAP in equation 22. Figure 35 

shows the corresponding probability plot. Due to the number of variables, parameters for 

PREV and G_FAR are fixed in the plot.  

 
Equation 22: PCM - Mid-Block Gap, Unrestricted Model 2 – MB-CLT 

logit[P(GO=1)]= - 3.944 + 5.362 AST - 5.102 PREV + 1.436 TRTMT - 3.251 G_FAR + 

1.165 O_GAP 
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Figure 35: Model Probability Plot for Gaps – Unrestricted Model 2 - MB-CLT 

 

 

The plot suggests an increasing likelihood of GO with pedestrian assertiveness and with 

installation of the treatment (curve shift to the left). The likelihood of GO increases with 

greater lag times.  

 

The selection of the restricted models for this category proves challenging, with several 

models demonstrating good statistical fit and practical applicability. From a total of 7 

restricted models shown in Table B-43, models e through j all use AST, T_GAP and a 

variation of the treatment effect (either TRTMT or FLASH). They differ in the use of 

variables NEAR and D_WAIT. Of these two, the latter one is of greater practical 

significance as it gives evidence for a reduction of the gap selection threshold over time. 

The concept of a decaying critical gap was hypothesized in chapter 2 and represents 

impatient behavior on behalf of the waiting pedestrians.  

 

From a statistical standpoint, restricted model 2 has the lowest AIC (97.709), but its 

parameter estimate for D_WAIT is not significant for the given sample. For restricted 

model 6 the parameter estimate for D_WAIT is significant at the 90% confidence level 
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and an overall AIC of 102.276. The -2 log likelihood difference between the two models 

is significant at p=0.0104. 

 

Taking a closer look at the D_WAIT variable, its effect seems to be significant in 

combination with TRTMT, but not with either FLASH or NEAR. In the correlation 

analysis in Table B-36 the TRTMT and D_WAIT variables show a slight, but significant 

correlation (coefficient=-0.20, p-value=0.0001) suggesting lower pedestrian waiting time 

after treatment installation. In fact, table 10 also shows this significant reduction in 

waiting time after treatment installation from 5.7 to 3.9 seconds. The parameter estimates 

of TRTMT and AST in restricted model 6 are therefore confounded by a correlation 

between the two variables.  

 

Because it is uncertain whether the effect of pedestrian waiting time is true or a product 

of multicollinearity, it will not be considered in the selected restricted model. Of the 

remaining restricted models that do not use D_WAIT, restricted model 3 has the lowest 

AIC statistic (101.337) and all model parameters are significant at the 95% confidence 

level. The model is expressed numerically in Equation 23 and graphically in Figure 36.  

 
Equation 23: PCM - Mid-Block Gap, Restricted Model 3, MB-CLT 

logit[P(GO=1) = -8.511 + 4.360 AST + 1.726 FLASH + 1.454 NEAR + 0.974 T_GAP 
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b) Far-side crossing 

Figure 36: Model Probability Plot for Gaps – Restricted Model 3 - MB-CLT 

 

The activation of the treatment and pedestrian assertiveness both increase the likelihood 

of GO with odds ratios of 5.618 and 78.267, respectively. Gaps on the near side increase 

the likelihood of GO by a factor 4.279. With a one-second increase in theoretical gap 

time the likelihood of GO increases with an odds ratio of 2.648. 

 

With the large effect of AST, this model predicts that some assertive pedestrians will 

make GO decisions at very short gap times. In a model implementation these would 
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result in some risky decisions with pedestrians stepping into the roadway in clearly 

unsafe conditions. The mean GO gap for the site from table 10 was 8.74 seconds with a 

standard deviation of 4.27 seconds. In light of this high standard deviation it is expected 

that the logit would predict some very short accepted gaps. The advantage of this analysis 

approach is that these short accepted gaps can be associated with assertive pedestrians 

who activate the flashing treatment with a vehicle in the near lane.  

 

5.4.3 Site Summary 

The predictive models for the MB-CLT site were found to be highly sensitive to the size 

of the gaps or lags in the traffic stream. This finding is expected from gap acceptance 

theory and supports the validity of the selected analysis approach. The logistic regression 

models go beyond the traditional methods in that the models account for difference 

between different types of pedestrians in a heterogeneous population. The assertiveness 

variable shows up consistently in the models with a larger probability of GO for the 

assertive class of pedestrians.  

 

Most models further include some effect of the treatment (before & after) and/or whether 

the treatment was activated. While the clear intention of the in-pavement flashing beacon 

is to increase pedestrian awareness and promote driver yielding, it appears that it also 

encourages pedestrians to accept shorter gaps and lags in their GO decisions. While this 

clearly reduces the delay experienced by pedestrians it is also associated with an 

increased risk. Pedestrians who accept a shorter, presumably unsafe gap/lag run the risk 

of creating a pedestrian-vehicle conflict if the approaching driver fails to react. In a 

microsimulation implementation of these different algorithms, it would be possible to 

quantify the increased likelihood of such conflict when coding both the pedestrian 

crossing model and the driver yield model simultaneously.   

 

The gap analysis suggested an impact of pedestrian waiting time on increasing the 

likelihood of GO. The effect was found to be correlated with the treatment installation, 
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because pedestrians experienced significantly lower delay in the after condition. The 

waiting time variable was therefore not included in the selected model. Future research at 

pedestrian crosswalks with a significant amount of pedestrian waiting time may provide 

further insight in this variable.  

 

In comparison to the traditional gap acceptance approaches, inferences can be made 

about the overall fit of the logit models. While this comparison falls short of a true model 

validation, it assures that the logit model predictions are within the observed data ranges. 

The average critical lag estimates from graphical and RR methods were 6.5 and 8.6 

seconds. For example, in restricted model 5 the 50% likelihood of GO for a non-assertive 

pedestrian accepting a near-side lag without activating the treatment is approximately 8.8 

seconds. For an assertive pedestrian this lag time is reduced to 6.2 seconds and to about 

3.6 seconds if the same pedestrian were to activate the treatment. The three 50th percentile 

lag likelihoods for a far-side crossing are approximately 10.4, 7.8 and 5.2 seconds, 

respectively. This sort of comparison gives confidence that the logit predictions are 

generally within the range of lag times that were estimated from the traditional methods. 

 

The mean critical gap estimates from the graphical, MLE, and RR methods were 4.1, 5.7 

and 5.7 seconds, respectively. In comparison, restricted model 3 predicts a 50% likelihood 

of GO in a near-side gap of approximately 7.3 seconds for a non-assertive pedestrian who 

doesn’t activate the treatment. With activation of the treatment, that gap time is reduced 

to 5.4 seconds and for an assertive pedestrian to 2.7 seconds. While this last gap estimate 

seems low, it is reasonable considering the large standard deviation of critical gaps 

predicted from the traditional methods. For far-side gaps, the 50% GO likelihood gap 

times are expectedly higher (by a factor of 15.762 equal to the odds ratio of the effect).  

 

 

 



   

 
 
 155 

5.5 Event-Based Analysis for MB-RAL 
 

5.5.1 Descriptive Statistics 

The descriptive statistics for the MB-RAL site (Table 12) show an overall rate of ‘GO’ 

decisions of 60%. This is significantly higher than the observations at the MB-CLT site, 

which is indicative of relatively lower frequency of NOGO decisions. In other words, 

pedestrians at the MB-RAL site did not encounter as many gaps and lags that resulted in 

NOGO decisions. In fact, the average observed gap at this site is 7.2 seconds, compared 

to 3.8 seconds at MB-CLT. Correspondingly, the average waiting time of pedestrians is 

only 1.6 seconds (it was 4.9 seconds at the MB=CLT site). The dataset further shows 

40% assertive behavior and only 28% of vehicles traveling in platoons.  

 
Table 12: Descriptive Statistics – MB-RAL  

Variable Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev
Sample Size 768 . 465 . 303 . 459 . 309 . 219 . 549 .
Response Variables

GO 0.60 0.491 0.59 0.493 0.61 0.488 1.00 0.000 0.00 0.000 0.57 0.496 0.61 0.489
NO_GO 0.40 0.491 0.41 0.493 0.39 0.488 0.00 0.000 1.00 0.000 0.43 0.496 0.39 0.489
LAG 0.71 0.452 0.72 0.449 0.71 0.456 0.73 0.446 0.70 0.461 0.00 0.000 1.00 0.000

Binary Factors
ADY 0.02 0.151 0.02 0.122 0.04 0.187 0.02 0.153 0.02 0.149 0.06 0.245 0.01 0.085
AST 0.40 0.491 0.42 0.494 0.38 0.486 0.64 0.479 0.05 0.208 0.26 0.440 0.46 0.499
COM 0.00 0.036 0.00 0.000 0.00 0.057 0.00 0.047 0.00 0.000 0.00 0.000 0.00 0.043
FLASH 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000
FOLL 0.21 0.410 0.18 0.385 0.26 0.442 0.20 0.399 0.24 0.425 0.22 0.415 0.21 0.409
HEV 0.03 0.171 0.02 0.152 0.04 0.195 0.03 0.178 0.03 0.159 0.04 0.188 0.03 0.163
MUP 0.26 0.438 0.27 0.444 0.24 0.430 0.22 0.418 0.31 0.464 0.33 0.471 0.23 0.422
NEAR 0.63 0.482 0.64 0.480 0.62 0.486 0.64 0.480 0.62 0.486 0.61 0.489 0.64 0.479
PLT 0.28 0.450 0.25 0.431 0.34 0.473 0.20 0.399 0.40 0.492 0.38 0.487 0.24 0.428
PREV 0.25 0.436 0.26 0.438 0.25 0.432 0.22 0.412 0.31 0.464 0.80 0.398 0.03 0.183
PXW 0.20 0.398 0.20 0.399 0.19 0.397 0.22 0.418 0.16 0.363 0.04 0.199 0.26 0.438
QUE 0.02 0.124 0.02 0.138 0.01 0.099 0.00 0.047 0.04 0.186 0.02 0.134 0.01 0.120
TRIG 0.07 0.260 0.05 0.213 0.11 0.316 0.12 0.323 0.01 0.080 0.04 0.199 0.09 0.280
TRTMT 0.39 0.489 0.00 0.000 1.00 0.000 0.40 0.491 0.38 0.487 0.41 0.492 0.39 0.488
G_NEAR 0.43 0.496 0.44 0.497 0.43 0.495 0.49 0.500 0.36 0.481 0.35 0.477 0.47 0.500
G_FAR 0.21 0.405 0.19 0.396 0.23 0.420 0.22 0.418 0.18 0.386 0.17 0.376 0.22 0.416
G_COMBO 0.33 0.469 0.34 0.474 0.30 0.461 0.25 0.435 0.43 0.496 0.41 0.493 0.29 0.455

Continous Factors
DECEL 3.45 4.880 3.62 5.715 3.20 3.195 1.88 0.868 5.80 6.998 2.45 6.410 3.85 4.053
DIST1 355.61 226.828 360.91 236.772 347.47 210.781 468.46 203.746 187.96 138.634 450.14 234.644 317.90 212.400
D_WAIT 1.56 3.228 1.50 3.229 1.66 3.231 1.52 3.228 1.63 3.233 5.48 3.882 0.00 0.000
O_GAP* 7.17 5.285 6.17 4.221 8.64 6.279 10.45 4.480 2.82 2.271 7.17 5.285 . .
T_GAP* 6.96 4.444 6.20 4.302 8.05 4.442 10.00 3.109 2.93 2.131 6.96 4.444 . .
O_LAG* 9.11 6.010 9.03 6.215 9.24 5.686 12.37 5.361 4.05 2.340 . . 9.11 6.010
T_LAG* 8.26 5.187 8.55 5.575 7.79 4.487 11.04 4.599 3.93 2.260 . . 8.26 5.187
SPEED_FT 37.90 7.585 38.40 7.247 37.12 8.028 39.10 6.800 36.11 8.316 37.27 7.503 38.14 7.610
TTC_V 9.30 5.554 9.33 5.732 9.26 5.278 12.07 4.893 5.20 3.593 11.93 5.586 8.26 5.188
* Sample Sizes for these variables are lower because they only include the gap/lag events observed in each category 

ALL DATA BEFORE AFTER GO NO_GO GAPS LAGS
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In a before and after comparison, the treatment did not have a significant effect on the 

rate of GO decisions or pedestrian assertiveness. The apparent higher occurrence of 

vehicle platoons is not significant. The average pedestrian waiting time also appears 

unchanged and the treatment also did not have a significant effect on the average vehicle 

speeds. Overall, the before and after data sets look very similar suggesting that the 

treatment implementation did not have the same effect on pedestrian crossing behavior 

that it had on the likelihood of driver yielding. At this level of analysis, the treatment 

appears ineffective.  

 

A comparison of GO and NOGO decisions shows clearly that GO events are associated 

with a very high rate of pedestrian assertiveness and a lower occurrence of platoons. 

Expectedly, the necessary deceleration rate of vehicles is lower for GO events, related to 

the average distance at pedestrian arrival being much longer. The average speed 

observation is actually lower for NOGO decisions.  

 

Gap and lag events resulted in similar overall rates of GO and NOGO decisions. Lags are 

associated with more pedestrian assertiveness and by definition always have a pedestrian 

waiting time of zero. Gap events further rarely show a previous pedestrian already in the 

crosswalk, which is probably explained by the fact that the prior gap or lag was not 

crossable.  

 

Separating the events into the near, far, and combo types (Table 13), does not reveal any 

additional trends in the data.  
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Table 13: Descriptive Statistics – MB-RAL – Near/Far/Combo  

Variable Mean StdDev Mean StdDev Mean StdDev Mean StdDev
Sample Size 768 . 334 . 159 . 250 .
Response Variables

GO 0.598 0.491 0.668 0.472 0.648 0.479 0.464 0.500
NO_GO 0.402 0.491 0.332 0.472 0.352 0.479 0.536 0.500
LAG 0.715 0.452 0.772 0.420 0.767 0.424 0.640 0.481

Binary Factors
ADY 0.023 0.151 0.000 0.000 0.000 0.000 0.000 0.000
AST 0.404 0.491 0.434 0.496 0.440 0.498 0.344 0.476
COM 0.001 0.036 0.000 0.000 0.000 0.000 0.000 0.000
FLASH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
FOLL 0.214 0.410 0.237 0.426 0.157 0.365 0.204 0.404
HEV 0.030 0.171 0.027 0.162 0.025 0.157 0.036 0.187
MUP 0.259 0.438 0.249 0.433 0.189 0.392 0.324 0.469
NEAR 0.634 0.482 1.000 0.000 0.000 0.000 0.564 0.497
PLT 0.281 0.450 0.296 0.457 0.214 0.411 0.284 0.452
PREV 0.254 0.436 0.219 0.414 0.233 0.424 0.332 0.472
PXW 0.197 0.398 0.198 0.399 0.245 0.432 0.176 0.382
QUE 0.016 0.124 0.015 0.122 0.006 0.079 0.024 0.153
TRIG 0.073 0.260 0.072 0.259 0.101 0.302 0.052 0.222
TRTMT 0.395 0.489 0.386 0.488 0.434 0.497 0.368 0.483
G_NEAR 0.435 0.496 1.000 0.000 0.000 0.000 0.000 0.000
G_FAR 0.207 0.405 0.000 0.000 1.000 0.000 0.000 0.000
G_COMBO 0.326 0.469 0.000 0.000 0.000 0.000 1.000 0.000

Continous Factors
DECEL 3.455 4.880 3.292 3.944 3.174 3.201 3.951 6.740
DIST1 355.606 226.828 373.696 248.349 367.121 202.291 322.214 210.173
D_WAIT 1.564 3.228 1.079 2.623 1.295 2.845 1.898 3.391
O_GAP* 7.173 5.285 8.724 5.292 8.639 6.077 6.077 4.420
T_GAP* 6.955 4.444 7.835899 4.599921 7.967373 4.227987 5.763578 4.222203
O_LAG* 9.113 6.010 9.545 6.560 9.734 5.638 7.968 5.272
T_LAG* 8.256 5.187 8.707 5.651 8.673 4.840 7.291 4.596
SPEED_FT 37.895 7.585 38.738 7.566 37.594 7.122 37.063 7.763
TTC_V 9.304 5.554 9.578 5.912 9.731 5.190 8.581 5.256
* Sample Sizes for these variables are lower because they only include the gap/lag events observed in 
each category 

ALL DATA NEAR FAR COMBO

 
 

5.5.2 Variable Interactions 

The correlation matrices for the MB-RAL site are provided in tables B-41 and B-42 for 

gaps and lags, respectively. The GO response variable for gaps is correlated with 

assertiveness, trigger behavior, the treatment, and variables describing the duration of the 

gaps. It is also inversely correlated with the occurrence of platoons, a prior non-yield, and 

combo gaps.  

 

For lag events, the GO dependent variable is correlated with assertiveness, the presence 

of a pedestrian in the crosswalk, trigger behavior and the lag size. An inverse correlation 
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is evident for vehicle platoons, and a previous vehicle that failed to yield. The treatment 

variable is not significant for lags.  

 

Again, the GO response consistently shows strong correlation with the size of the gap or 

lag in the vehicle stream. Intuitively, assertive pedestrian behavior is associated with a 

greater likelihood to cross the road. Pedestrian crossings further appear to be more 

difficult when there is platooning in the vehicle stream and for more complicated combo 

gaps and lags.  

 

5.5.3 Explanatory Analysis for Pedestrian Gap Acceptance 

The analysis of the previous gap acceptance data set introduced the concept of 

discriminate analysis to determine the threshold between GO and NOGO decisions for 

lag events. Figure 37 shows the corresponding event plot for all lag events at the MB-

RAL site.  
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Figure 37: Plot of GO and NOGO Events – MB-RAL – All Data 

Lag Time (sec.) = 
              4       6        8      10      12 
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The plot indicates that virtually no GO events were associated with lags less than 4 

seconds and that virtually no lags over 10 seconds resulted in a NOGO decision. In the 

traditional gap acceptance methods, the graphical and RR methods estimated critical lags 

of 6.4 and 7.4 seconds, which are consistent with Figure 37. Given the large number of 

lag events observed at this site, it is further possible to generate similar plots for near, far, 

and combo lags (Figure 38). 
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a) Near Side Lags Only 
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b) Far Side Lags Only 
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c) Combo Lags Only 
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Figure 38: Plot of GO and NOGO Events  – MB-RAL – by Lag Type 
 

The plots by event type in Figure 38 indicate that the GO/NOGO threshold for near side 

gaps seems to be somewhat lower than for far side gaps, with the cluster of GO events 

shifted further towards the 4-second lag line. Also, fewer near-side lags over 10 seconds 

resulted in a NOGO decision. For combo gaps, the threshold function appears to be less 

clearly defined, made evident by a significant overlap of GO and NOGO events.  

 

5.6 Crossing Model Development for MB-RAL 
The following section lays the groundwork for the development of predictive logistic 

models for the likelihood of a pedestrian GO decision at the MB-RAL site. After an 

initial analysis using multilinear regression methods, binary logistic regression techniques 

are applied. Consistent with the analysis of the MB-CLT site, the modeling approach 

distinguished between unrestricted and restricted models, which are further differentiated 

by gap and lag events.  

 

5.6.1 Multilinear Regression Models 

Table B-43 shows the resulting MLR models for lags at the MB-RAL site. The full model 

is sensitive to AST, PREV, PXW, TRIG, G_COMBO, DECEL, and SPEED_FT. 

Interestingly, this does not include the actual size of the lag, although it is implicitly 

accounted for through other continuous variables. In unrestricted model 2, the GO 

response is predicted as a function of AST, PXW, G_COMBO, DECEL, and SPEED_FT. 

The model has an adjusted R-Square of 0.60. 

 

The restricted models were forced to include the expected lag variable as was done for 

the other site. When eliminating the other continuous variables, the effect of T_LAG is 

highly significant. Restricted model 2 predicts an increasing likelihood of GO with 

pedestrian assertiveness, the treatment installation and the lag size (adjusted R-Square is 

0.68).  
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The analysis of gap events (Table B-44) shows significant effects for AST, NEAR, PLT, 

PXW, TRIG, and T_GAP in the full model. The resulting unrestricted model uses those 

same parameters in a model with good overall model fit (adjusted R-Square equals 0.78). 

When restricting the variables to those with application to microsimulation, the resulting 

model utilizes AST, NEAR, PLT, and T_GAP. With adjusted R-Square equal 0.76, the 

overall model fit of this model is only slightly worse than the best unrestricted model. 

Contrary to the MB-CLT site, the effect of pedestrian waiting does not appear to be 

significant here.  

 

5.6.2 Binary Logit Models for MB-RAL 

Lag Events 

Table B-45 shows the binary logit models for the likelihood of GO in a lag for the MB-

RAL site. Unrestricted model 1 minimizes the AIC statistic (107.523) and predicts an 

increasing likelihood of GO with pedestrian assertiveness and a longer observed lag time. 

The likelihood of GO is further decreased by a factor of 0.26 with the presence of 

multiple pedestrians. This variable has not shown up in other models thus far and 

suggests that pedestrians may exhibit more conservative crossing behavior when walking 

with another person. A group of pedestrians may be more likely to be involved in a 

conversation and may thus be less pressed for time in their decision to cross. This finding 

is also consistent with gap acceptance theory laid out in the Highway Capacity Manual 

(HCM 2000), which hypothesis an increase in critical gap size with an increase in the 

number of pedestrians waiting (although this increase occurs at group sizes much larger 

than what was observed here). The following equation and figure plot the probability 

functions for unrestricted model 1 as a function of observed lag time.  
 

Equation 24: PCM - Mid-Block Lags, Unrestricted Model 1, MB-RAL 

logit[P(GO=1) = -9.766 + 5.369 AST - 1.348 MUP + 1.089 O_LAG 
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Figure 39: Model Probability Plot for Lags – Unrestricted Model 1 - MB-RAL 

 

As expected, the figure shows an increase in the likelihood of GO with increasing lag 

time. Furthermore, pedestrian assertiveness significantly increases the likelihood of GO 

at a given lag size indicated by an overall shift of the probability distribution to the left. 

The presence of multiple pedestrians has the opposite effect, resulting in a shift to the 

right on the observed lag scale. Given similar lag and assertiveness characteristics, a 

group of pedestrians tends to wait for longer lags to cross.  

 

Moving to the restricted models, all five alternatives shown in Table B-45 again have 

very similar overall model fit statistics. The selected model is therefore the one with the 

greatest practical application. Restricted model 2 predicts the likelihood of GO in a lag as 

a function of assertiveness, the location of the vehicle relative to the pedestrian (in the 

near or far lane), the presence of the treatment and the size of the conflicting lag. 

Compared to unrestricted model 1, the AIC is higher at 121.727. The probability plots in 

Figure 40 show a visual representation of the selected model for lags in the near and far 

lane. 

 
Equation 25: PCM - Mid-Block Lags, Restricted Model 2, MB-RAL 

logit[P(GO=1) = -10.215 + 6.019 AST + 0.642 NEAR + 0.786 TRTMT + 1.053 T_LAG 
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Figure 40: Model Probability Plot for Lags – Restricted Model 2 - MB-RAL 

 

Figure 40 shows an increasing probability of GO with pedestrian assertiveness and with 

installation of the treatment. Similar to the observations at the MB-CLT site, the curves 

for near side crossings are shifted to the left relative to far side crossings, indicating lower 

GO thresholds for near-side lags. Even with a slightly higher AIC statistic compared to 

unrestricted model 1, the max-rescaled R-Square for restricted model 2 is still high at 

0.9198, indicating very good overall model fit. 

 

While the multilinear models did not reveal the effect of the treatment, the logistic 

regression results clearly show a shift of the probability curve to the left. This supports 

the notion that arose at the MB-CLT site showing that pedestrians were more willing to 
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accept shorter lags after the treatment was installed. Therefore, while the treatment was 

effective in promoting driver yielding, as shown in the previous chapter, it also led to 

more assertive pedestrian behavior. This might be attributable to a sense of entitlement 

that leads pedestrians to alter their decision after they get visual confirmation that they in 

fact have the right-of-way. A similar effect was observed in previous research, where the 

introduction of zebra striping at a mid-block crosswalk actually led to an increase in 

collisions over the base unmarked case (Zeeger et al. 2001).  

Gap Events 

The logistic models for the likelihood of GO in a gap for the MB-RAL site are shown in 

Table B-46. The equation and probability plots for unrestricted model 1 are given below:  

 
Equation 26: PCM - Mid-Block Gaps, Unrestricted Model 1, MB-RAL 

logit[P(Y=1) = -16.426 + 9.308AST -3.415 MUP + 5.246NEAR - 9.271 PXW  

   + 3.997 G_FAR + 1.975 T_GAP 
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Figure 41: Model Probability Plot for Gaps – Unrestricted Model 1 - MB-RAL 

 

Again, the plots above keep two of the parameters (PXW and G_FAR) fixed. Consistent 

with earlier models, the likelihood of a GO gap is increased by pedestrian assertiveness 

and a near-side gap, and is decreased for multiple pedestrians waiting at the crosswalks. 

With an extremely high model parameter, the effect of pedestrian assertiveness has a 

drastic effect on the likelihood of GO evident by the large shift in the figures.   

 

The selected restricted model (Table B-46-f) uses variables AST, NEAR, and T_GAP in 

the following equation:  

 
Equation 27: PCM - Mid-Block Gaps, Restricted Model 3, MB-RAL 

logit[P(Y=1) = -10.938 + 5.268 AST + 2.758 NEAR + 1.335 T_GAP 
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Figure 42: Model Probability Plot for Gaps – Restricted Model 3 - MB-RAL 

 

The likelihood of a GO decision in a gap increases with pedestrian assertiveness, a near-

side crossing, and longer expected gap times. This model also allows for a portion of 

assertive pedestrians to accept very short near-side gaps. With a 50th percentile GO gap of 

just over 2 seconds, there is some potential for pedestrian-vehicle conflicts. This model 

does not take into account the speed of the approaching vehicle. Presumably, this 

apparent ‘risky’ behavior would be less evident with a fast approaching vehicle.  

 

Restricted model 3 has an AIC statistic of 55.096 and -2 log L of 47.096, which is 

significantly higher than the -2 log L for unrestricted model 1 (28.037, AIC=42.037). The 

max-rescaled R-Square statistics are high for both the unrestricted and restricted models 

at 0.9531 and 0.9175, respectively. While the restricted set of variables sacrifices some 

statistical power over the best-fit model, the restricted approach still results in a model 

that fits the data well.  

 

5.6.3 Site Summary 

The analysis of the MB-RAL crosswalk showed consistent sensitivity to the size of gaps 

and lags as would be expected from theory. Consistent with the MB-CLT site the 

pedestrian assertiveness variable is highly significant in explaining an increased 
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likelihood of a GO decision. Many models also include the binary indicator of whether 

the approaching vehicle is in the near or far lane, with near-side gaps and lags generally 

being accepted at shorter lengths.  

 

The effect of the treatment installation is inconsistent for this site and only shows up in a 

subset of the models. However, where it is included, it results in an increased likelihood 

of GO given the same gap/lag size, which is consistent with findings from the MB-CLT 

site. Again, the treatment intended to increase driver yielding results in pedestrians 

accepting shorter and presumable risky gaps and lags in traffic. Compared to the MB-

CLT site, the variable D_WAIT did not show up as significant in any of the models. The 

likely reason for this is that the average waiting time at the MB-RAL site was very short, 

with most pedestrians being able to cross the road within just a few seconds. The high 

rate of GO lag events is also an indication that the majority of pedestrians were able to 

cross this facility without delay. This is not to say that these pedestrians would not have 

grown impatient (and lowered their crossing threshold) had they experienced greater 

delay. But, for the observed sample of gap crossings, the effect of waiting time is not 

significant.  

 

Short of full validation of the logit models, the regression results can be compared to 

critical gap and lag estimates from the traditional analysis approaches. The graphical and 

RR methods estimated critical lags of 6.4 and 7.4 seconds, respectively. Through the 

logistic regression analysis of event-based interaction data, the likelihood of GO in a lag 

can be analyzed in light of additional variables. Restricted Model 2 predicts a 50% 

likelihood of GO in a near-side lag at a theoretical lag time of 9.1 seconds for a non-

assertive pedestrian in the before case. After treatment installation, that 50% lag time is 

reduced to approximately 8.3 seconds, suggesting a significant impact of the treatment. 

For an assertive pedestrian the before and after 50% likelihood lag times are 

approximately 3.3 and 2.6 seconds, respectively. For a far-side lag all theoretical lag 

times are increased.   
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For the gaps analysis, the graphical, MLE, and RR methods estimated critical gaps of 4.8, 

6.6, and 6.2 seconds, respectively. Restricted model 3 for the likelihood of GO in a gap at 

the MB-RAL site shows a 50% likelihood of GO of 8.2 seconds for a non-assertive 

pedestrian and a far-side gap (6.1 seconds for a near-side gap). The 50 percent GO 

likelihoods for an assertive pedestrian in a near and far gap are 2.2 and 4.2 seconds, 

respectively. The estimated averages of the traditional gap acceptance methods are within 

the range of predictions resulting from the logit models, giving confidence to that 

estimation approach.  

 

5.7 Chapter Summary 
The analysis of pedestrian crossing behavior at the two studied mid-block crosswalks 

showed the expected sensitivity of the pedestrian GO decision to the size of the 

encountered lags or gaps. This is consistent with conventional gap acceptance theory. The 

form of the logistic regression models expresses the pedestrian decision by a probability 

function that accounts for more variables than traditional gap acceptance approaches. The 

probabilistic nature of the model algorithm takes into account the heterogeneity of the 

pedestrian population.  

 

The analysis further revealed that some observable characteristics of pedestrians and 

drivers can explain some of the apparent variability in the decision-making process. The 

pedestrian crossing models were generally very sensitive to pedestrian assertiveness. This 

particular variable was characterized by the walking pace of pedestrians while 

approaching the crosswalk and had a significant impact on gap and lag selection 

behavior. The models further indicated that pedestrians are willing to accept shorter lags 

and gaps relative to vehicles in the near lane, presumably because they clear the conflict 

zone more quickly.  
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Two pedestrian crossing treatments, a pedestrian-actuated in-pavement flashing beacon 

and an in-road pedestrian warning sign, were shown to impact pedestrian behavior. At 

both sites the respective treatment (or its activation) consistently resulted in a significant 

increase in the log odds of GO for both gap and lag events. Thus, a pedestrian was more 

likely to accept a shorter gap or lag in the after condition. Both treatments are intended to 

increase pedestrian visibility and make drivers aware of the crosswalk, but they also seem 

to affect pedestrian behavior. While the analysis in Chapter 4 demonstrated the 

effectiveness of the treatments in increasing the odds of drivers yielding, this chapter 

showed that they also increase the odds of a pedestrian GO decision.  

 

The analysis of pedestrian waiting time appeared to have some impact on increasing the 

likelihood of GO at the MB-CLT site. However, the variable was confounded with the 

treatment variable and the effect therefore could not be isolated. At the MB-RAL site, no 

such impact was evident, which is explained by overall low waiting times. To further 

explore this relationship, future research should look at additional data at sites with some 

pedestrian delay present.  

 

A comparison to the traditional gap acceptance estimation approaches showed that the 

logit models are generally in the range of gap and lag times. Evidently, the difference in 

these simpler approaches is that the logit analysis can account for more explanatory 

factors. While some of the traditional gap acceptance approaches can estimate a 

distribution of critical gaps and lags, they cannot discern what factors contribute to this 

variability. In fact, an attempt to quantify an effect of the pedestrian crossing treatments 

on gap acceptance behavior did not yield statistically significant results. By controlling 

for other factors such as pedestrian assertiveness and the difference between near and far-

side gaps, the logit approach was able to show a statistically significant impact of the 

treatments on increasing the likelihood of a pedestrian GO decision.   
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6 YIELDING AND CROSSING AT ROUNDABOUTS 
 

The previous two chapters dealt exclusively with driver and pedestrian behavior at 

unsignalized mid-block crosswalks. A similar interaction between the two road users can 

be observed at roundabout crossings. Modern roundabouts are becoming an increasingly 

common intersection control strategy in the United States with over 1,000 existing 

roundabouts registered at the time of this dissertation (Kittelson Associates, 2008). This 

chapter applies the same data collection and analysis methodology to these types of 

facilities.  

 

6.1 Roundabout Crosswalks 
Modern roundabouts have demonstrated safety benefits over stop-controlled 

intersections. Before and after collision statistics at intersections controlled by stop-signs 

later converted to roundabouts in North Carolina found a drastic reduction in crashes of 

54% and 48% for low-speed and high speed sites after accounting for traffic flows 

(NCDOT, 2007). National research confirms those safety benefits for both single and 

multilane roundabouts (Rodegerdts et al, 2007).  

 

Roundabouts are furthermore designed to enable safe pedestrian crossings. The 

Roundabout Informational Guide published by the Federal Highway Administration 

(FHWA, 2000) highlights the importance of safe pedestrian facilities. The deliberate 

reduction of vehicle speeds, the strategic placement of pedestrian crosswalks away from 

the circulating lane, and the use of splitter islands between the entry and exit leg of the 

roundabout, are intended to make these facilities safe to cross for pedestrians. Figure 43 

adopted from the FHWA guide shows the proper design of a pedestrian crosswalk with 

the aforementioned pedestrian safety features highlighted by the author.  
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Figure 43: Roundabout Crosswalk Geometry (adopted from FHWA, 2000)* 

 
While the FHWA Guide does not provide any methods for estimating pedestrian capacity 

or delay at roundabouts, it does account for the impact pedestrians have on the entering 

capacity. In a methodology borrowed from Brilon et al. (1993) higher pedestrian flows 

reduce the entering capacity by up to 20%. As with similar approaches in the Highway 

Capacity Manual, this method assumes that pedestrians have priority at marked 

crosswalks and that all drivers comply with this right-of-way rule.  

 

A more recent analysis of operations at US roundabouts (NCHRP 3-65) found a range of 

yielding behavior by facility type. Driver yielding was observed most frequently at the 

entry lane of single-lane roundabouts (85%) and the lowest yielding rate was observed at 

the exit lane of two-lane roundabouts (38%). These findings support the general 

hypothesis in this research that yielding rates at unsignalized facilities is a behavioral 

parameter with large variability warranting a more detailed analysis. In terms of 
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pedestrian behavior, NCHRP 3-65 found frequent running by pedestrians, especially on 

the last phase of the crossing (i.e. from the splitter island to the far curb). The same 

research further found that 17% of pedestrians crossed outside of the crosswalk at single-

lane roundabouts (12% at two-lane facilities) and observed 4 conflicts in 760 pedestrian 

observations, corresponding to a rate of 0.5%. There is currently no ongoing research 

with sufficient data to enable the derivation of a pedestrian capacity procedure at 

roundabouts.  

 

This chapter investigates pedestrian-driver interactions at a single-lane roundabout site in 

Raleigh, NC (RBT-RAL). While the data presented in this chapter is not statistically 

adequate to draw general conclusions on pedestrian facility performance at roundabouts, 

it provides a good baseline for further analysis by identifying the factors that are pertinent 

to the interaction at these types of facilities and suggests a methodology for accounting 

for those factors. .  

 

6.2 Yielding Models for Roundabout Crossing 
Previous studies consistently found higher yielding behavior at the entry leg of a modern 

roundabout. It can be surmised that entering drivers anticipate delay upon approaching 

the circle because of the yield control and therefore are more willing to accept additional 

delay by yielding to pedestrians. Exiting drivers on the other hand have effectively 

cleared the delay zone and may be less willing to stop once more for pedestrians. 

Yielding behavior was furthermore found to be influenced by pedestrian behavior, with 

assertive pedestrians prompting more yields.  

 

In the analysis of yielding behavior, the difference between entry and exit yields will be 

accounted for, as will be the behavior of the pedestrian. Furthermore, the analysis 

includes an evaluation of the effect of a downstream conflict, which is expected to be 

more relevant at the entry leg to the roundabout. Subsequent vehicle arrivals are expected 

to yield at a higher rate, given that they expect delay. Other variable definitions for the 
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roundabout models are consistent with the mid-block chapter models and can be 

referenced in the glossary.   

 

6.2.1 Event Based Analysis 

Descriptive Statistics 

Using the same analysis methodology as was applied to the mid-block data, the RBT-

RAL yielding data are first analyzed using SAS PROC MEANS. The resulting statistics 

are shown in Table 14.  

 
Table 14: Descriptive Statistics for RBT-RAL Yield Data 

Variable Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev
Sample Size 100 . 47 . 53 . 40 . 60 .
Response Variables

YIELD 0.400 0.492 0.404 0.496 0.396 0.494 1.000 0.000 0.000 0.000
Y_ORDERED 1.570 0.769 1.574 0.773 1.566 0.772 2.425 0.501 1.000 0.000
Y_TYPE* 0.425 0.501 0.421 0.507 0.429 0.507 0.425 0.501 . .

Binary Factors
ADY 0.060 0.239 0.000 0.000 0.113 0.320 0.075 0.267 0.050 0.220
AST 0.190 0.394 0.128 0.337 0.245 0.434 0.200 0.405 0.183 0.390
COM 0.020 0.141 0.021 0.146 0.019 0.137 0.050 0.221 0.000 0.000
Decel_Tau 0.140 0.349 0.213 0.414 0.075 0.267 0.025 0.158 0.217 0.415
DSC 0.040 0.197 0.064 0.247 0.019 0.137 0.100 0.304 0.000 0.000
ENTRY 0.470 0.502 1.000 0.000 0.000 0.000 0.475 0.506 0.467 0.503
FOLL 0.520 0.502 0.532 0.504 0.509 0.505 0.625 0.490 0.450 0.502
HEV 0.060 0.239 0.000 0.000 0.113 0.320 0.100 0.304 0.033 0.181
MUP 0.180 0.386 0.128 0.337 0.226 0.423 0.200 0.405 0.167 0.376
NEAR 0.450 0.500 0.638 0.486 0.283 0.455 0.425 0.501 0.467 0.503
PLT 0.710 0.456 0.723 0.452 0.698 0.463 0.750 0.439 0.683 0.469
PREV 0.410 0.494 0.426 0.500 0.396 0.494 0.325 0.474 0.467 0.503
PXW 0.260 0.441 0.170 0.380 0.340 0.478 0.400 0.496 0.167 0.376
QUE 0.070 0.256 0.085 0.282 0.057 0.233 0.125 0.335 0.033 0.181
TRIG 0.020 0.141 0.043 0.204 0.000 0.000 0.000 0.000 0.033 0.181
TTC_TAU 0.350 0.479 0.447 0.503 0.264 0.445 0.200 0.405 0.450 0.502

Continous Factors
DECEL 5.25 6.56 7.04 7.25 3.67 5.47 2.96 2.69 6.78 7.84
DIST1 105.36 72.56 117.54 85.80 94.56 57.08 115.29 69.02 98.73 74.65
SPEED_FT 24.20 8.78 30.25 7.83 18.85 5.51 21.45 9.22 26.04 8.04
TTC 4.69 3.31 3.76 2.54 5.51 3.69 5.72 3.64 4.00 2.89
* The Sample Size for Y_TYPE is only 40 observations, because it only considers HY and SY events

ALL DATA NON-YIELDSYIELDSEXITENTRY

 
 

The data in the table indicate an overall yielding rate of 40% at the roundabout, with 

42.5% considered to be hard yields. Of the 100 yield events observed, only 6% had an 

adjacent yield and only 4% had a downstream conflict. So while these variables have 
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much practical significance, it appears they will not be useful in the model development 

phase due to the limited sample size at this particular roundabout. The average vehicle 

speed is 24.2 feet/sec (16.5 mph), with 71% of vehicles traveling in platoons and 7% of 

the events representing observations in slow moving queues. On the pedestrian side, 19% 

exhibited assertive behavior, 18% of the pedestrian events had multiple pedestrians 

present, 26% had a pedestrian still present in the crosswalk, and 2% actively triggered a 

yield. 

 

Contrasting the entry and exit portions of the crosswalk, the overall yielding rates are not 

statistically different. Approximately the same rate of hard yields was observed for both 

sides of the crossing. The exit portion of the crossing shows higher pedestrian 

assertiveness and a lower likelihood of downstream conflicts. The average speed at the 

exit leg is significantly lower than at the entry leg, a direct result of roundabout geometry. 

Accordingly, the necessary deceleration rate at the exit leg is much lower than at the 

entry leg.  

 

In comparing yield and non-yield events, pedestrian assertiveness did not vary between 

the two types. The same is true for the presence of an adjacent yield. Also unexpected 

was an inverse correlation between yielding and a yield trigger event, likely a result of 

low sample size as only two triggering events were recorded. The presence of a 

downstream conflict shows perfect correlation with the yield outcome. Yield events are 

expectedly associated with the presence of a prior pedestrian in the crosswalk, the 

presence of a vehicle queue, and statistically lower necessary deceleration rates and 

speeds. 

Variable Interactions 

A correlation analysis was performed using SAS PROC CORR (Table C-47). The 

dependent variable YIELD was found to be correlated with the presence of a downstream 

conflict, the presence of a prior pedestrian in the crosswalk, and the expected time to 
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collision. An inverse correlation is evident for the two threshold parameters, the 

necessary deceleration rate and the speed of the vehicle.  

 

The ordered response variable shows the same relationships, with additional positive 

correlations for the presence of heavy vehicles and queue indicators. The Y_TYPE 

variable shows positive correlation with a downstream conflict, with higher necessary 

deceleration rate and with lower expected time to collision.  

 

A separate analysis was performed for yield events at the entry versus exit (Tables C-48 

and C-49). For yield events at the exit, only the presence of a pedestrian in the crosswalk 

and the time to collision variables show significant correlation. The entry leg yield data 

show stronger effects of deceleration rates, downstream conflicts, and vehicle speed.  

Vehicle Dynamics Constraints 

The discussion of yielding behavior in Chapter 4 highlighted the impact of vehicle 

dynamics constraints (VDC) on the ability of drivers to yield. It was demonstrated that 

there is a threshold regarding yield occurrence that is sensitive to the deceleration rate 

necessary to come to a full stop in advance of the crosswalk. The discussion further 

hypothesized that this threshold approximately corresponds to a deceleration rate of 10 

ft/sec^2, which is similar to the assumption used in timing the duration of the clearance 

interval at signalized intersections. The subsequent logistic regression assumed that no 

yielding is possible for those vehicle events that exceed this threshold. Subsequently, 

these observations were removed from the analysis data set. 

 

The corresponding VDC plot for RBT-RAL is given in Figure 44 for all observations (a) 

and for entry (b) and exit (c) events separately.  
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b) Entry Leg 
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c) Exit Leg 

Figure 44: Speed-Distance Plot with Decel. Thresholds, RBT-RAL 

 

The data plots for RBT-RAL agree with the prior hypothesis with the exception of one 

event, where a vehicle yielded at a required rate of 15 ft/sec^2. This particular vehicle 

approached the exit leg of the crosswalk at a speed of 22.7 ft/s (15.5 mph) and was at a 

distance of 37 feet from the crosswalk when an assertive pedestrian arrived on the splitter 

island after crossing the entry leg. Additional data are needed to ascertain whether there 

is an empirical basis for a higher VDC threshold at roundabouts. In order to stay 

consistent with the analysis at the mid-block crossings, the same assumption for VDC 

was applied to the RBT-RAL data, effectively treating this one event as an outlier. The 

variable HEV did not show any associations with the predictor variables, and these 

vehicle types were therefore included in the general analysis. Queue presence events 

showed some correlation with yields at the exit lane, but the low sample size makes it 

VDC 
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hard to justify the inclusion of this effect. Accordingly, the seven observations which 

included vehicle queues were removed from the analysis.  

 

6.2.2 Yield Model Development for RBT-RAL 

The analysis of descriptive statistics and an evaluation of 2x2 interaction tables indicated 

sample size limitations for several of the independent variables. In particular, only two 

events were observed with COM=1, both of which resulted in a yield. Similarly, all 4 

DSC=1 observations resulted in a yield, and both TRIG=1 events were associated with 

non-yields. In all three cases, the effect is a sparse 2x2 contingency table, which 

necessitates the exclusion of these variables as potential predictors from the logistic 

regression analysis. Furthermore, the sample size for variables describing a heavy vehicle 

(HEV) and the presence of a queue (QUE) only have 6 and 7 observations, respectively. 

After removing events with VDC = 1 and QUE = 1, the resulting data set contains 80 

observations.  

 

The RBT-RAL yield models were developed for all 80 events with the difference in entry 

(n=34) and exit yields (n=46) being accounted for through a binary indicator. Due to 

limited sample size, no separate models were tested for the two categories. The following 

analysis uses the full, unrestricted, and restricted models consistent with those developed 

in previous chapters.  

Multilinear Regression Models 

The analysis initially evaluates the effect of different independent variables in a 

multilinear regression approach (MLR). The resulting models are shown in Table C-50. 

In the full model, only the ENTRY variable has an overall significant effect on the 

response suggesting higher yielding at the entry leg (positive coefficient). In the 

development of the unrestricted model, the model contained significant effects for 

ENTRY, PXW, and SPEED_FT with an overall adjusted R-square of 0.14. In the second 

restricted model, a model with adjusted R-square of only 0.09 predicts the likelihood of 

yielding with variables ENTRY, DECEL, and SPEED_FT. The poor statistical fit of 
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these models confirms the variability in yielding behavior observed at the roundabout site 

and further points to sample size limitations.  

Binary Logit Models 

In the binary logit approach (table C-51), the effect of ENTRY again appears in the full 

model, suggesting a higher likelihood of yielding at the roundabout entry leg. This effect 

drops out in the unrestricted model, which includes PXW as the only significant 

parameter. With an odds ratio of 3.2, the log odds of a yielding occurring increase 3.2 

times with the presence of a prior pedestrian in the crosswalk. The max-rescaled R-

Square statistic is only 0.0925. This model is clearly not useful as a predictor for yielding 

behavior and will therefore not be explored further.  

 

The second restricted model predicts the likelihood of yielding as a function of ENTRY 

and DECEL with only the latter parameter estimate being significant at the given sample 

size. The model has a poor max-rescaled R-square fit of 0.0832. Restricted model 3 

attempts to separate the two components of the DECEL variable and gives a three-

variable model with ENTRY, DIST1, and SPEED_FT. This model generally fits the data 

better with a lower AIC criterion (107.338) and larger R-square (0.1543). However, the 

effect of DIST1 is not significant. Restricted model 4 only uses the effects of ENTRY 

and SPEED_FT. The model minimizes the AIC statistic at 106.002, but the slight 

difference in -2 log likelihood is not statistically better than restricted model 3 or the 

unrestricted model. The max-rescaled R-Square statistic is slightly lower than for 

restricted model 3 at 0.1444. Ultimately, restricted model 4 is selected as the best fit 

model because it minimizes the AIC statistic and has statistically significant parameter 

estimates.  

 

With an odds ratio of 0.877, restricted model 4 predicts that an increase of 1ft/sec in 

vehicle speed reduces the odds of yielding by a factor of 0.877. An ENTRY event 

increases the odds of a yield 7.4 times. The effect of this seemingly large odds ratio for 

the ENTRY=1 is expected to be balanced out in the application of the model by the fact 
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that the exit speeds at a roundabout are typically much lower than the entry speeds. 

Figure 45 shows the resulting probability plot of this model with corresponding equation 

28.  
 

Equation 28: DYM – Binary Logit, Restricted Model 4, RBT-RAL 

logit[P(Y=1) = 1.9461 + 2.0222 ENTRY - 0.1317 SPEED_FT 
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Figure 45: Yield Probability Plot, RBT-RAL - Restricted Model 4 

 

The figure shows a base yielding rate of 87.5% and 98.1% at the exit and entry legs for 

zero speed. With increasing vehicle speed, the likelihood of yielding decreases. Virtually 

no vehicle is predicted to yield above 60ft/s, which would be an unrealistically high 

speed for this roundabout site. Vehicles at the entry are more likely to yield than those at 

the exit leg, but this difference is balanced by the difference in speeds between the two. 

Table 14 cited average speeds at entry and exit legs of 30.3 and 18.9 ft/sec, respectively. 

The corresponding yield probabilities for these speeds from the graph are approximately 
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50% and 37% for the entry and exit leg, respectively. These estimates are in the general 

range of the average observed yielding rates at the site, which were approximately 40% 

for both entry and exit leg. The effect of the ENTRY variable is consistent with previous 

research on roundabouts that generally found higher yielding rates at roundabout entry 

legs (NCHRP 3-65). 

 

The parameters of the above model are intuitive, with the model predicting higher 

yielding at the entry leg and a lower likelihood of yielding with increasing vehicle speed. 

However, it surprisingly does not account for the effect of the vehicle distance from the 

crosswalk in an explicit (DIST1) or implicit form (DECEL). A possible explanation for 

this is that the geometric design of the roundabout generates a very specific speed 

distribution with drivers decelerating as they approach the circle. In a microsimulation 

implementation of this model that re-calculates the likelihood of yielding every time step, 

the same driver may in fact be more likely to yield as the vehicle moves closer to the 

crosswalk (and decelerates). This may explain the generally higher yielding rates at this 

compact urban roundabout compared to the mid-block crossings.  

 

Other variables that were significant in the mid-block models, mainly pedestrian 

assertiveness and vehicle platooning, are not significant at the given sample size for the 

roundabout yield model.  

Cumulative Logit Models 

The cumulative logit model for ordered responses builds on the assumption that the three 

discrete event outcomes - non-yield, soft yield, and hard yield - can be ordered 

sequentially. The interpretation of the resulting model is more cumbersome than the 

binary model, but is worth exploring given the rather poor performance of the simpler 

models (see Table C-52).  

 

The unrestricted model uses the forward selection algorithm with p=0.05 and results in a 

single-variable model with PXW. The parameter coefficient is negative, indicating that 
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the presence of a prior pedestrian in the crosswalk increases the odds in the direction of 

the hard yield response. The proportional odds assumption was rejected at the 90% 

confidence level. Also, while statistically significant, the single-variable model has no 

practical significance for reasons consistent with the discussion of the binary models. The 

max-rescaled R-square for the model is poor at 0.0785 and the AIC statistic is 153.71.  

 

In the development of a restricted cumulative logit model, restricted model 3 results in a 

reasonable two-variable model using ENTRY and SPEED_FT. The proportional odds 

assumption for this cumulative logit model yields a p-value of 0.9214 indicating that the 

model is valid. This suggests that the slope parameters for ENTRY and SPEED_FT were 

indeed shown to have the consistent effects on both levels of the yield response. The 

negative coefficient of ENTRY indicates increasing odds towards the hard yield response 

for the entry leg. Correspondingly, an increase in approaching speed decreases those 

odds, effectively making a non-yield more likely.  

 

All parameters in the model except for INTERCEPT 2 are significant. The model has a 

max-rescaled R-Square of 0.1744 and minimizes the AIC statistics at 148.36. 

Unfortunately, the AIC statistic does not allow comparison among model forms, so it 

cannot be discerned if this model fits the data better than the binary logit model without 

some form of validation effort. Equation 29 describes the model.  

 
Equation 29: DYM Cumulative Logit, Restricted Model 3, RBT-RAL 

Logit[P(Y≤1)]= -2.1843 – 2.139ENTRY + 0.144SPEED_FT 

Logit[P(Y≤2)]= -0.5445 – 2.139ENTRY + 0.144SPEED_FT 

 

The predictions of the cumulative logit model can be converted to distinct probability 

estimates using equation 10 in the methodology chapter. Figure 46 shows the resulting 

probability plots for the likelihoods of NY, SY, and HY as a function of vehicle speed 

and entry versus exit crossing.  
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Likelihood of Yield for Cum. Logit - ENTRY
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a) Entry Leg 

Likelihood of Yield for Cum. Logit - EXIT
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b) Exit Leg 
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Figure 46: DYM Probability Plots for Cumulative Logit Restricted Model 3 - RBT-RAL 
 

Figure 46-a contains three probability curves describing the likelihood of non-yield, soft 

yield and hard yield. The sum of the three probabilities always equals 1 at a constant 

speed. The figures show that hard yields are most likely to occur at low speeds. Soft 

yields are predicted to occur at intermediate speeds. Once the approaching vehicle speed 

is traveling above 30ft/sec, a non-yield becomes the most likely event outcome.  

 

For the exit leg, all probability curves shift to the left towards lower speeds. Given the 

same approaching vehicle speed, the likelihood of HY and SY are thus higher at the entry 

than the exit leg. In interpreting the figures, it is important to point out that the sum of 

P(SY) and P(HY) is very close to the overall yield probability predicted in the binary 

logit model.  

 

Multinomial Logit Models 

Because the proportional odds assumption was not rejected in the cumulative logit model, 

there is no statistical reason to explore the more complex multinomial logit approach. 

However, for completeness Table C-53 presents the results for this model form. This 

approach does not assume an ordered nature of the response, thereby estimating the 

likelihood of the soft yield and hard yield outcomes separately and relative to the selected 

baseline, the non-yield event. The unrestricted model utilizes variables PXW and DIST1 

and has significant parameters for both levels of Y_ORDERED. The odds ratio for the 

PXW effect is higher for Y_ORDERED =3, meaning that a previous pedestrian in the 

crosswalk has a stronger effect on the odds of a hard yield than of a soft yield. An 

increase in DIST 1 has a weak effect on an increase in the odds of a soft yield outcome, 

evident by a positive coefficient and an odds ratio close to 1.0. The negative coefficient 

for DIST1 at response level Y_ORDERED=3 suggests that the log odds of a hard yield 

decrease with greater vehicle distance from the crosswalk at the time of pedestrian 

arrival.  
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The final restricted model has higher AIC and SC information criteria than the 

unrestricted model but lower R-square estimates. It uses variables ENTRY and 

SPEED_FT, consistent with the selected restricted binary model. Interpreting the model, 

events taking place at the entry leg result in increased log odds of both soft yield and hard 

yield events, indicated by odds ratios greater than 1. With increasing vehicle speed, the 

odds of both yield types decrease.  

Nested Logit Models 

Given the reasonable fit of the cumulative and multinomial logit models, it is worth 

exploring the difference in soft yield and hard yield events further. The nested logit 

approach predicts the likelihood of yielding at two levels. In the first level, the overall 

likelihood of yield is predicted, which naturally coincides with the binary logit approach 

presented above. This section explores the second level of the nested approach. Assuming 

that a vehicle yields, the following model uses the response variable Y_TYPE and predict 

the likelihood of a hard yield occurring.  

 

In the unrestricted model in Table C-54, the forward selection algorithm arrives at a 

single-variable model using DIST1. Consistent with the unrestricted multinomial model 

above, the likelihood of a hard yield (Y_TYPE=1) decreases with increasing distance of 

the vehicle from the crosswalk at the time of pedestrian arrival. With each additional foot, 

the log odds of a hard yield decrease by a factor of 0.964. This model makes intuitive 

sense in that a driver at a longer distance has more time before arriving at the crosswalk 

and therefore is more likely to slow down to a rolling yield. Although this model is in the 

unrestricted category, it actually has practical application and could readily be 

implemented in microsimulation using a decision function based on space headway.  

 

The restricted models in the nested approach use only the continuous variables DECEL 

and SPEED_FT. The best model fit statistics are evident for restricted model 3, which 

uses both variables in a three-parameter model. The model fit is comparable (AIC = 
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30.028) and is slightly better than the unrestricted model (AIC = 31.186), but the 

difference in -2 log likelihood is not significant. The max-rescaled R-Square statistic is 

0.6143, which is much larger than for the first-level nested model.  

 

The log odds of a hard yield decrease with increasing vehicle speed and increase with 

greater DECEL rate. These trends are as hypothesized and consistent with earlier models. 

Even though the unrestricted model can theoretically be implemented in simulation, 

restricted model 3 (equation 30) is the better choice from a practical perspective, because 

it accounts for both distance and vehicle speed at the decision point. Figure 47 shows the 

likelihood of a hard yield as a function of DECEL and vehicle speed.  

 
Equation 30: DYM – Nested Logit Level 2, Restricted Model 3, RBT-RAL 

logit[P(HY=1) = 1.6143 + 1.9268 DECEL - 0.3377 SPEED_FT 
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Figure 47: Yield Probability Plot, Nested Logit Level 2, Restricted Model 3 - RBT-RAL 
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In interpreting the plot, the likelihood of a hard yield is virtually zero for vehicles with 

DECEL rates approaching zero. These vehicles are far from the crosswalk and have 

ample time to simply slow down to a soft yield. In combination with the pedestrian 

crossing model, most pedestrians would likely accept the gaps or lags for these vehicles. 

With increasing DECEL rate, the odds of HY increase. An increase in vehicle speed 

shifts the probability curve to the right towards higher DECEL rates. At the same DECEL 

rate, faster vehicles are less likely to need to do a hard yield because they are effectively 

farther away from the crosswalk. For example, requiring a DECEL rate of 3 ft/sec^2 a 

vehicle traveling at 4 0ft/sec is effectively 267 feet from the crosswalk and its likelihood 

P(HY|Y) is basically zero. At the same DECEL rate, a vehicle traveling at 20 ft/sec is 

only 67 feet from the crosswalk and its P(HY|Y) is 65%. Another way to interpret this 

relationship is that a driver is more likely to yield hard at a lower time to collision. The 

two example vehicles described above imply that the vehicles would have arrived at the 

crosswalk in 5.6 and 3.3 seconds, respectively, if they maintained the initial speeds. The 

vehicle with the shorter time to collision is more likely to perform a hard yield when 

deciding to yield.  

 

6.2.3 Yielding Model Summary 

Despite sample size limitations, the models predicting driver yielding behavior at the 

RBT-RAL roundabout show a lot of promise for extension of this research approach in 

the future. While the model fit statistics are sub-optimal for the some of the resulting 

models, the parameter estimates are intuitive and result in the hypothesized effects.  

 

Consistent with the yielding models for the mid-block crosswalk, the nested logit 

approach is the preferred approach for both statistical and practical reasons. While the 

more complex cumulative and multinomial logit approaches both result in valid models, 

the cumbersome application and interpretation of these models tilts the preference to the 

binary models. The nested logit is also preferred for reasons of consistency with the mid-

block crossing models.  
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The two-level approach to initially predict the likelihood of yielding and then the 

likelihood of a hard yield given yield is intuitive and supported by the data. The overall 

yielding behavior is consistently predicted to be higher at the entry leg and associated 

with lower deceleration rates. Once a yield decision is made, the likelihood of a hard 

yield increases with the DECEL rate and decreases with speed for reasons discussed in 

the previous section.  

 

6.3 Pedestrian Crossing Models at Roundabouts 
 

6.3.1 Event Definitions  

This section analyzes the event data collected at the Pullen-Stinson roundabout (RBT-

RAL) for parameters describing pedestrian crossing behavior. Just as for the mid-block 

crosswalks, a pedestrian arriving at a roundabout crossing will judge when to cross based 

on the events associated with his/her arrival. Presumably, the most important predictor 

for these crossing events is the time amount of time until the next vehicle arrival, 

measured in the form of lags or gaps. However, other factors, including pedestrian 

assertiveness, the leg being crossed, and the presence of an approaching platoon of 

vehicles to name just a few, are believed to affect the decision-making process.  

 

A roundabout crossing is inherently different from the mid-block crossing, because the 

design of the crosswalk physically separates the entry and the exit portion of the crossing 

as shown in Figure 43. The resulting two-stage crossing allows the pedestrian to cross 

one lane at a time, virtually independent from traffic conditions in the other lane.  

 

For the purpose of this analysis, pedestrian crossing events are categorized into gaps and 

lags, by entry versus exit crossings, and by event outcome (GO vs. NOGO). The analysis 

further accounts for the difference in observed and expected gap and lag times. Given the 

proximity of the roundabout crossing to the circulating lane, a larger difference between 
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these observed and expected gap/lag times is expected. At the roundabout, all vehicles 

are forced to slow down upon entering the circle and continue low speeds throughout the 

roundabout. Because of the geometrically prescribed slow speed profile in the 

roundabout, pedestrians may have come to anticipate a certain amount of deceleration by 

the approaching driver. In fact, pedestrians may base their crossing decision on this 

anticipated gap/lag accounting for some deceleration. The effect of these geometric speed 

constraints would most likely manifest itself in low expected critical gaps (relative to 

higher observed critical gaps).  

 

The following section presents the results from the three traditional gap acceptance 

approaches. 

 

6.3.2 Conventional Gap Acceptance Approaches 

Graphical Method 

The graphical method aims to quantify the critical gap and lag times for pedestrians from 

the intersection of the cumulative distributions of GO and NOGO decisions. Figure 48 

shows the resulting plots for expected and observed gaps and lags for RBT-RAL. The 

critical gap and lag estimates are given in Table 15. 
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Cumulative Distributions of 'GO' and -No-Go' Decisions
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Figure 48: Graphical Method for RBT-RAL Pedestrian Data 

 

Table 15: Critical Gap/Lag Results - All Data 

Event Type Observed Expected
Critical Gap (sec.) 3.6 4.2
Critical Lag (sec.) 5.0 4.7  

 

The plots in Figure 48 make evident the impact of low sample size on the distributions. 

The cumulative distribution curves resemble a step function for bins with a low number 

of observations. Accordingly, the results in Table 15 are to be treated with caution and 

could shift significantly with more data. The crossing distance at the roundabout is 

approximately 16 feet, which corresponds to a crossing time of 4.6 seconds at a 3.5 ft/sec 

walking speed. This time is on the same scale as the expected critical gap and lag times 

estimated by the graphical method.  

 

Consistent with observations at the mid-block sites, critical lags are higher than gaps 

because they include decision time in addition to actual crossing time. As hypothesized 
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above, the expected critical lag is lower than the observed critical lag. Whether this 

difference is truly attributable to the pedestrians’ anticipating a decelerating vehicle is 

hard to determine at this time. The observed and expected gaps show the opposite trend, 

underlining the importance of the sample size.  

 

Figure 49 and Table 16 show a more detailed assessment of the data by entry and exit leg, 

but are also impacted by similar concerns for sample size.  
 

Cumulative Distribution of GAPS - Observed
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Figure 49: Graphical Method for RBT-RAL Pedestrian Data – by Entry/Exit Leg 
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Table 16: Critical Gap/Lag Results, Observed – by Entry/Exit 

Event Type All Entry Exit
Critical Gap (sec.) 3.6 3.6 3.7
Critical Lag (sec.) 5.0 4.2 5.1  

 

Maximum Likelihood Estimation 

The critical gap estimation procedure by Troutbeck (2001) uses maximum likelihood 

estimation to estimate the population parameters of a normal distribution (mean and 

standard deviation) that maximize the likelihood of obtaining the given sample of 

observations. Just as for the graphical method, sample size concerns place a limitation on 

the results obtained in this section. Troutbeck’s methodology uses pairs of largest 

rejected and accepted gap for the same subject. The methodology by definition is not 

applicable to the analysis of lag events, because the same subject cannot accept and reject 

a lag in a strictly observational study.  

 

The RBT-RAL data set only contained four true pairs of gap observations (3 Entry and 1 

Exit), which is too low a sample to apply the procedure.  

Ramsey-Routledge Method 

In the Ramsey-Routledge procedure, the distribution of critical gaps or lags is calculated 

independent of any assumptions regarding the shape of the distribution. The procedure is 

able to work with a larger sample size than MLE, because it uses the frequency 

distributions of GO and NOGO decisions and is not limited to paired data. The results 

shown in Figure 50 and summarized in Table 17 show distributions and mean estimates 

for all categories except for the critical gap at the exit leg because of low sample size.   
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RR Critical Gap/Lag Distribution for RBT-RAL
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RR Critical Lag Distribution for RBT-RAL
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b) Lag Comparison 

RR Critical Gap Distribution for RBT-RAL
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c) Gap Comparison 
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Figure 50: Gap/Lag Distribution from RR Methodology for RBT-RAL 

 
Table 17: Summary of RR Results for RBT-RAL 

Mean SD n Mean SD n
All Data 5.33 2.35 12 6.00 2.53 35
Entry 5.42 2.36 9 5.81 2.50 21
Exit . . . 6.57 2.59 14

Critical Gap (sec.) Critical Lag (sec.)

 
 

The results above consistently show a lower critical gap than the critical lag. Also evident 

is a lower critical lag time for the entry than for the exit crossing. However, these 

numbers need to be interpreted with caution because of the very low sample sizes. While 

the RR method was able to arrive at an estimate, the recommended sample size for 2-

second gap/lag bins is 100 according to ITE (2000). Accordingly, the gap and lag 

distributions may shift significantly with greater sample size.  

Summary of Traditional Methods 

Table 18 summarizes the findings from all three methods for the roundabout site.  
Table 18: Summary Comparison of Gap Acceptance Approaches for RBT-RAL 

Critical Gap (sec.) Critical Lag (sec.)
Graphical Method 3.6 5.0
MLE Method . .
RR Method 5.3 6.0  

(.) No estimate possible due to low sample size 

 

The table shows lower critical values for gaps than lags for the graphical and RR 

methods, which is explained by additional pedestrian decision time that is included in 

lags. The underlying assumptions of the maximum likelihood estimation method resulted 

in too low a sample size to arrive at an estimate. In comparison to the mid-block sites, the 

critical gap and lag times are intuitively lower for this two-stage crossing. While the 

graphical and RR methods were able to arrive at estimates for critical gap and lag times, 
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the results need to be interpreted with caution due to the generally low sample size of 

observations.  

 

 

6.3.3 Event-Based Analysis 

The application of the traditional gap acceptance models to the RBT-RAL data estimated 

critical gap and critical lag values for overall pedestrian behavior as well as separated by 

entry and exit leg crossings. All methods yielded differences between gaps and lags, and 

between entry and exit legs that were not statistically significant for the given sample 

size.  

 

In the following event-based analysis approach, observations at the entry and exit leg can 

be combined into one model by introducing a binary indicator variable. While additional 

data collection would be desirable, the given sample appears to be sufficient for applying 

the proposed logistic regression concept to the pedestrian crossing behavior at the 

roundabout crossing.  

Descriptive Statistics 

The observations of pedestrian crossing behavior were analyzed in SAS PROC MEANS 

to identify general trends in the data (Table 19).  
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Table 19: Descriptive Statistics for Pedestrian Crossing Model - RBT-RAL 

Variable Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev
Sample Size 88 . 49 . 39 . 27 . 61 . 35 . 53 .
Response Variables

GO 0.557 0.500 1.000 0.000 0.000 0.000 0.519 0.509 0.574 0.499 0.514 0.507 0.585 0.497
NO_GO 0.443 0.500 0.000 0.000 1.000 0.000 0.481 0.509 0.426 0.499 0.486 0.507 0.415 0.497
LAG 0.693 0.464 0.714 0.456 0.667 0.478 0.000 0.000 1.000 0.000 0.714 0.458 0.679 0.471

Binary Factors
ADY 0.057 0.233 0.102 0.306 0.000 0.000 0.037 0.192 0.066 0.250 0.143 0.355 0.000 0.000
AST 0.307 0.464 0.510 0.505 0.051 0.223 0.222 0.424 0.344 0.479 0.257 0.443 0.340 0.478
FOLL 0.455 0.501 0.408 0.497 0.513 0.506 0.481 0.509 0.443 0.501 0.486 0.507 0.434 0.500
HEV 0.045 0.209 0.061 0.242 0.026 0.160 0.000 0.000 0.066 0.250 0.114 0.323 0.000 0.000
MUP 0.159 0.368 0.143 0.354 0.179 0.389 0.259 0.447 0.115 0.321 0.200 0.406 0.132 0.342
NEAR 0.648 0.480 0.592 0.497 0.718 0.456 0.741 0.447 0.607 0.493 0.514 0.507 0.736 0.445
PLT 0.568 0.498 0.408 0.497 0.769 0.427 0.667 0.480 0.525 0.504 0.600 0.497 0.547 0.503
PREV 0.432 0.498 0.327 0.474 0.564 0.502 0.889 0.320 0.230 0.424 0.457 0.505 0.415 0.497
PXW 0.057 0.233 0.082 0.277 0.026 0.160 0.037 0.192 0.066 0.250 0.057 0.236 0.057 0.233
QUE 0.023 0.150 0.000 0.000 0.051 0.223 0.000 0.000 0.033 0.180 0.029 0.169 0.019 0.137
TRIG 0.068 0.254 0.102 0.306 0.026 0.160 0.037 0.192 0.082 0.277 0.057 0.236 0.075 0.267

Continous Factors
DECEL 4.404 6.390 1.748 0.817 7.741 8.492 2.006 1.151 5.465 7.409 3.476 6.245 5.017 6.469
DIST1 200.610 153.610 280.684 148.214 100.004 87.284 255.889 147.622 176.142 150.954 127.404 82.242 248.953 170.489
D_WAIT 1.387 2.909 1.348 3.129 1.437 2.646 4.521 3.688 0.000 0.000 1.441 3.212 1.352 2.722
O_GAP* 4.870 3.311 6.524 3.885 3.090 0.883 4.870 3.311 . . 4.160 3.571 5.288 3.184
T_GAP* 4.688 2.478 6.262 2.424 2.992 0.965 4.688 2.478 . . 4.565 2.598 4.760 2.483
O_LAG* 6.261 4.227 9.328 2.649 2.132 1.564 . . 6.261 4.227 5.929 4.001 6.491 4.419

T_LAG* 6.097 4.026 8.931 2.644 2.281 1.735 . . 6.097 4.026 5.749 3.387 6.338 4.448
SPEED_FT 28.106 8.784 29.556 8.934 26.285 8.350 28.844 8.572 27.780 8.927 19.248 5.118 33.956 4.926
* Sample Sizes for these variables are lower because they only include the gap/lag events observed in each category 

EXIT ENTRYNO_GO GAPS LAGSALL DATA GO

 
 

The results show that of 88 observations, 56% resulted in a GO decision and 69% were 

categorized as lags (first events). For GO decisions, 51% of pedestrians were 

characterized as ‘assertive’ compared with only 5% for the NOGO decisions. The NOGO 

event outcome also seems associated with more vehicle platoons and significantly higher 

necessary deceleration rate. As expected, the gap and lag time measurements are 

significantly different for GO and NOGO outcomes.  

 

Comparing gap and lag events, approximately the same percentage of events resulted in 

GO and NOGO decisions, but overall, much fewer gap events were observed. Gap events 

show a higher deceleration rate. The average speeds of the two event types are not 

significantly different.  

 

Events at the entry and exit leg show similar distributions of GO and NOGO outcomes 

and the percentage of lag observations. No adjacent yields and no heavy vehicles were 
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observed at the entry leg. The average approach speeds are expectedly higher at the entry 

leg, resulting in higher average necessary deceleration rates.  

Variable Interactions 

Correlation coefficients for the RBT-RAL data for lags and gaps are given in Tables C-55 

and C-56. The GO response for lags is associated with pedestrian assertiveness, 

deceleration rate and the duration of the lag. The GO response for gap events is 

associated with similar variables, as well as vehicle platoons, and a previous non-yield.  

Exploratory Analysis for Pedestrian Lags  

The analysis is intended to visually assess the critical lag threshold, as was introduced in 

Chapter 5. Figure 51 shows the corresponding plots for all pedestrian crossing lag events 

collected at the roundabouts, as well as, divided by observations at the entry and exit leg.  
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b) Exit Leg Only 
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c) Entry Leg Only 

Figure 51: Exploratory Analysis of Lags for RBT-RAL 

 

Figure 51-a shows that one GO decision was observed above an expected lag of 4 

seconds, with four additional GO decisions between 4 and 6 seconds. Similarly one 

NOGO decision was observed at a expected lag more than 6 seconds, and four NOGO 

events between 4 and 6 seconds. The majority of GO and NOGO events are above 6 

seconds and below 4 seconds, respectively. As expected, the expected lag threshold line 

is lower than what was observed at the mid-block crossings, presumably because of a 

lower crossing time necessary for each leg in the two-stage crossing. Dividing the data 

into events at the exit and entry leg shows similar patterns, although exit observations are 

generally at lower speeds.  

 

6.3.4 Crossing Model Development for RBT-RAL 

Multilinear Regression Models 
The multilinear regression is an extension of the correlation analysis, which gives the 

analyst a sense of the general responsiveness of a regression model to the data, prior to 

Lag Time (sec.) =
     4                  6                8                 10          12 
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applying the actual logit models. Table C-57 gives the model results for lags and C-58 

gives results for the gap data collected at the roundabout.  

 

The full model for predicting the likelihood of GO for lag events shows significant 

effects of AST and O_LAG. Narrowing down the field of variables based on regression 

fit, the unrestricted model uses the four variables AST, NEAR, PREV and O_LAG with 

an adjusted R-square of 0.79. By limiting the variables to those with practical application, 

restricted model 2 still has an adjusted R-square of 0.74 with variables AST, NEAR, and 

T_LAG. Despite sample size limitations in the traditional gap acceptance approaches, 

these early regression models show a lot of promise for the subsequent logit analysis.  

 

The full linear model for GO decisions in gaps shows significant effects of AST, NEAR 

and PLT. Unrestricted model 2 uses variables AST, NEAR, PLT and O_GAP at an 

adjusted R-square value of 0.74. In restricted model 2, the likelihood of GO in a gap is 

increased by pedestrian assertiveness, an event at the entry leg and increasing expected 

gap size. The arrival of a platoon of vehicles decreases the likelihood of GO.  

Binary Logit Models 

The multilinear regression approach ignores the categorical nature of the dependent 

variable. The logistic regression approach presented in this section is adequate for 

predicting the binary response. Other categorical models, including cumulative, 

multinomial or nested logit models do not apply to this variable.  

Lag Events 

Table C-59 shows the logistic regression results of the likelihood of GO for lag events at 

the roundabout. The unrestricted model utilizing the observed lag time predicts a large 

increase in the likelihood of GO with pedestrian assertiveness and lag size. The model 

has a very high max-rescaled R-Square of 0.9803 and an AIC of 9.403. The model shows 

a large negative intercept and correspondingly large odds ratios that make interpretation 

difficult. A more practical model is given in restricted model 2, which uses the expected 
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lag time along with pedestrian assertiveness. The model has a worse AIC statistic of 

21.240 indicating that the overall model fit is statistically worse than the unrestricted 

model. However, with a max-rescaled R-Square value of 0.9026 the model still provides 

a reasonable overall fit for the data. The log odds of GO increase by a factor of 3.6 for 

each one-second increase in lag time. Furthermore, an assertive pedestrian increases the 

odds of GO by a factor of 22.1. The resulting probability plot in Figure 52 uses equation 

31.  

 
Equation 31: PCM - Restricted Model 2 - RBT-RAL - Lags 

logit[P(GO=1) = - 7.6989 + 3.0943 AST + 1.2723 T_LAG 
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Figure 52: Probability Plot for P(GO) in a Lag – Restricted Model 2 - RBT-RAL 

 

The figure shows an increasing likelihood of GO as a function of the expected lag time. 

The 50th percentile GO lag is at just over 6.0 seconds for a non-assertive pedestrian. For 

an assertive pedestrian the entire curve shifts to the left towards lower lag sizes. 

Accordingly, the 50th percentile GO lag for an assertive pedestrian is 3.6 seconds. For 
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comparison, the critical lag values predicted by the three traditional methods ranged 

between 5 and 6 seconds. 

Gap Events 

The binary logit models for gap events are shown in Table C-60. Unrestricted model 2 

predicts the likelihood of GO in a gap as a function of FOLL, D_WAIT, and O_GAP. 

The presence of a close follower is conceptually similar to the presence of vehicle 

platoons. With a close follower, it was hypothesized initially that a vehicle would be less 

likely to yield in fear of a potential rear-end collision. The model here suggests that this 

variable also has an effect on pedestrian behavior, reducing the likelihood of GO with an 

odds ratio of 0.009. This model further includes pedestrian waiting time as a significant 

variable. With increasing waiting time, the log odds of a pedestrian GO decision increase 

by a factor of 2.14 for each one second in pedestrian delay. The odds of GO also increase 

by a factor of 4.58 for each one second increase in the size of the observed gap. The 

model has an AIC statistic of 22.631 and a max-rescaled R-Square of 0.7598. The model 

equation 32 is represented graphically in Figure 53.  
 

Equation 32: PCM - Unrestricted Model 2 - RBT-RAL - Gaps 

logit[P(GO=1) = -8.0971 - 4.6675 FOLL + 0.7599 D_WAIT + 1.5208 O_GAP 
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Figure 53: Probability Plots Gaps, Unrestricted Model 2, RBT-RAL - Gaps 

 

The probability plots in Figure 53 show that in the presence of a vehicle with a close 

follower, the likelihood of GO shifts to the right towards higher lag times. With 

increasing wait time at the crosswalk the likelihood of GO increases. In other words, a 

pedestrian’s gap threshold for deciding to go decays the longer the wait time at the 

crosswalk. The effect is consistent with prior research relating gap acceptance to waiting 

time (Mahmassani and Sheffi, 1981). However, the integrity of this model is 

questionable, because of the large odds ratio associated with the wait time effect. For 

each second of wait time, the log odds of GO increase by a factor of 2.14, indicating that 

virtually any pedestrian would simply cross the road after very little delay. More data 

collection is necessary to verify this effect.  

 

Restricted model 3 provides a more reasonable estimate of the effect. With the 

introduction of the expected gap time variable, the waiting time parameter is no longer 

significant although the overall model fit is comparable to the unrestricted model above. 

Waiting time was included here, because it had shown practical and statistical 

significance in the unrestricted model. The resulting model has an odds ratio of 1.14 

associated with a one-second increase in waiting time. The model is also responsive to 

the expected gap size. Figure 54 shows the resulting probability plots.  
 

Equation 33: PCM - Restricted Model 3 - RBT-RAL - Gaps 

logit[P(GO=1) = -8.6936 + 0.1275 D_WAIT + 2.0271 T_GAP 
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Figure 54: Probability Plots, Restricted Model 3, RBT-RAL - Gaps 

 

The probability curve for GO in a gap shifts to the left with increasing waiting time. The 

vertical line indicates that without any wait time, 7% of pedestrians would decide to GO 

in a 3 second gap. After a wait time of 10 seconds, 21% of pedestrians would decide to 

GO. At wait times of 20 and 30 seconds, the same size gap would be accepted by 48% 

and 77% of pedestrians, respectively. The model has an AIC statistic of 22.934, which 

not statistically different from the AIC for unrestricted model 2. The max-rescaled R-

Square for the model is 0.7087.  

 

6.3.5 Crossing Model Summary 

The analysis of pedestrian crossing behavior at the studied roundabout resulted in logistic 

regression models that were sensitive to the size of the lag or gap encountered by the 

pedestrian. As expected from theory, an increase in the time to the next vehicle arrival (or 

difference between successive vehicles) increases the likelihood that the pedestrian 

decision is GO.  

 

Consistent with the mid-block chapter, separate logit models were developed for lag and 

gap events given their differences. The selected restricted model for crossing in a lag is 

sensitive to the expected lag time and pedestrian assertiveness. The latter parameter 
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predicts lower lag thresholds for pedestrians that exhibit assertive behavior in their 

walking styles. Other factors were not significant at the given sample size of 

observations.  

 

The model describing the likelihood of GO in a gap is a function of the expected gap 

time, but is not sensitive to assertiveness. Instead, the model predicts a lower gap time 

with an increase in pedestrian waiting time. This suggests that pedestrian lower their gap 

threshold the longer they have to wait for a crossing opportunity. This type of impact of 

waiting time on a reduced critical gap time has also been identified for drivers at 

roundabouts (Polus et al., 2003) and at other facility types (Mahmassani and Sheffi, 

1981).  

 

In comparing model fit statistics, the selected restricted lag model has a higher max-

rescaled R-square (0.9026) than the corresponding gap model (0.7087). Both models 

show better fit than the yielding models. This suggests that lag crossing behavior is more 

consistent than gap crossings in the given data set. The good statistical fit is further 

important in light of the poor performance of the traditional gap acceptance models. 

Given consistent pedestrian behavior, the logit regression approach thus provides a good 

description of the gap/lag selection process even with a low sample size.  

 

6.4 Chapter Summary 
The analysis of pedestrian-vehicle interaction substantiated the initial research hypothesis 

that pedestrian-vehicle interaction at unsignalized crossings is a complex process, 

sensitive to microscopic parameters. Going beyond the classification of yielding behavior 

by a simple percentage, the event-based evaluation of yield events showed that the 

decision of drivers to yield to a pedestrian is a function of dynamic variables describing 

the state of the vehicle. Vehicles that are closer to the crosswalk and traveling at a higher 

speed are less likely to yield, or may be subject to vehicle dynamics constraints resulting 

in a zero yield probability. Accounting for these factors in logistic regression models 
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allows for a probabilistic estimate of yielding and of the likelihood of a hard yield given 

yield in a two-level nested binary logit model. While a cumulative logit model for 

ordered responses provided a comparable overall model fit, the nested binary logit 

approach was preferred because of ease of interpretation and consistency with the mid-

block yielding models.  

 

The crossing decision by the pedestrian is subject to similar vehicle dynamics factors, 

represented through the expected arrival time of the vehicle at the crosswalk. Through 

binary logistic regression models, this chapter developed equations to predict the 

likelihood of a pedestrian GO decision as a function of gap and lag times, while taking 

into consideration factors of pedestrian assertiveness and wait time.  

 

The restricted models for driver yielding and pedestrian crossing behavior are limited to 

variables with practical application that can be implemented in microsimulation. As 

hypothesized in the analysis framework chapter, these probability functions are two of 

the algorithms needed to characterize the interaction of these two modes in a simulation 

environment.  

 

The selected models for gap/lag acceptance provided resulted in much better statistical fit 

than the driver yielding models. Given a relatively low sample size, the predictive ability 

of the yielding models is questionable. However, the pedestrian crossing models fit the 

data extremely well, suggesting that the low sample size of observations was sufficient 

for describing the more consistent behavior of pedestrians.  
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7 SIMULATION IMPLEMENTATION 
 

This chapter extends the behavioral concepts brought forth in this research to the 

microsimulation environment. It begins with a summary of the logistic model forms that 

were developed in the previous chapters. The discussion also reviews the state of the 

practice in microsimulation as it pertains to modeling the interaction of pedestrians and 

vehicles at unsignalized crossings. The chapter then illustrates the potential for 

implementing the logistic models in a simulation environment and outlines requirements 

for simulation algorithms.  

 

7.1 Site and Model Comparison 
The data collection and analysis methodology developed in this research was applied to 

two mid-block locations and a single-lane roundabout crossing. The three sites all differ 

in crossing geometry and traffic patterns. The MB-CLT location is a 40-foot crossing 

across two lanes with 35 mph speed limit and the MB-RAL site is a 24-foot crossing 

across two lanes with 25 mph speed limit. The RBT-RAL roundabout crossing is a two-

stage crossing across two 16-foot lanes at an approach speed of 25 mph. The mid-block 

crossing data includes the evaluation of two pedestrian crossing treatments. Table 20 

summarizes the selected restricted logit models describing the likelihood of driver 

yielding.  

 
Table 20: Summary of Restricted Models for Driver Yielding 

Site Model Equation
MB-CLT Nested Logit Level 1 logit[P(Y=1)] = -0.378+1.721AST+1.189FLASH-0.955PLT-0.382*DECEL

Nested Logit Level 2 logit[P(HY=1)] = 1.525-1.475AST-1.580TRTMT+0.287DECEL
MB-RAL Nested Logit Level 1 logit[P(Y=1)] = -0.124+2.487AST+0.617NEAR-0.491PLT+0.648TRTMT-0.344DECEL

Nested Logit Level 2 logit[P(HY=1)] = 0.097-1.822AST+0.111DECEL
RBT-RAL Nested Logit Level 1 logit[P(Y=1)] = 1.946+2.022ENTRY-0.132SPEED_FT

Nested Logit Level 2 logit[P(HY=1)] = 1.614+1.927DECEL-0.338SPEED_FT  
 

For all three sites, the driver yielding models have the form of a two-level nested binary 

logit model, first predicting the probability of yielding and then the probability of a hard 

yield. The first-level logit models for the mid-block sites consistently describe yielding as 
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a function of assertiveness, the treatment presence or activation, the occurrence of vehicle 

platoons and the required deceleration rate. The narrower MB-RAL crosswalk 

furthermore shows a significant effect of pedestrians crossing from the near-side relative 

to the approaching vehicle. The effect of pedestrian assertiveness is stronger at MB-RAL, 

but the effect of vehicle platoons is weaker, as indicated by the value of the model 

parameters. For the vehicle dynamics variable DECEL, both sites show a similar decrease 

in the likelihood of yielding at higher necessary deceleration rates. The treatment effects 

are difficult to compare, because one site uses a variable describing the actual activation 

of the treatment, while the treatment at the other site is static.  

 

The results from the level 1 logit at the roundabout show a different combination of 

variables and are hard to compare to the mid-block sites. For the two-stage roundabout 

crossing, the effects of pedestrian assertiveness and vehicle platoons are not significant 

and the NEAR, TRTMT and FLASH variables are not applicable. The model suggests a 

higher yielding rate at the roundabout entry.  

 

The level 2 logit models for the mid-block sites once again include comparable effects of 

AST and DECEL on the odds of a hard yield. The MB-CLT site further found a reduced 

likelihood of a hard yield after treatment installation. The roundabout site similarly 

indicates an increased likelihood of HY with greater deceleration rate, but further predicts 

a reduction of those odds with vehicle speed. Because of the combination of these two 

dynamic variables a direct comparison between the two facility types is not possible.  

 

A summary of the restricted models for pedestrian crossing behavior is given in Table 21.  

 
Table 21: Summary of Restricted Models for Pedestrian Crossing 

Site Model Equation
MB-CLT Binary Logit - Lag logit[P(GO=1)] = -12.930+3.092AST+3.239FLASH+1.941NEAR+1.252E_LAG

Binary Logit – Gap logit[P(GO=1)] = -8.511+4.360AST+1.726FLASH+1.454NEAR+0.974E_GAP
MB-RAL Binary Logit – Lag logit[P(GO=1)] = -10.215+6.019AST+0.642NEAR+0.786TRTMT+1.053E_LAG

Binary Logit – Gap logit[P(Y=1)] = -10.938+5.268AST+2.758NEAR+1.335E_GAP
RBT-RAL Binary Logit – Lag logit[P(GO=1)] = - 7.699+3.094AST+1.272E_LAG

Binary Logit - Gap logit[P(GO=1)] = -8.694+0.128D_WAIT+2.027E_GAP  
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The resulting pedestrian crossing models also show similarities between the two mid-

block sites. The likelihood of crossing in a lag is described by AST, NEAR, E_LAG and 

the treatment effect in both cases. Again the treatment effect is stronger at the MB-CLT 

site and assertiveness has a larger impact at the MB-RAL site. The effect of a NEAR 

vehicle is expectedly greater at the MB-CLT site, which has a much wider cross-section 

of the roadway.  

 

The lag model for the RBT-RAL uses the same variables as the mid-block sites, when 

considering that NEAR and TRTMT/FLASH are not applicable. The AST and T_LAG 

parameters are comparable to the mid-block sites. The larger intercept (smaller negative 

number) for the RBT-RAL site suggests that a pedestrian crossing is generally more 

likely there than at the mid-block sites for a fixed lag time. Given the shorter distance at 

each stage of roundabout crossing, this finding is quite intuitive.  

 

The gap models for the mid-block sites differ only in the use of the treatment effect, 

which is only evident at the MB-CLT site. Activation of the treatment here results in an 

increased likelihood of crossing. For the roundabout model, an increasing expected gap 

size similarly increases the likelihood of a crossing decision. The model further predicts a 

greater likelihood of crossing with pedestrian waiting time. 

 

For an implementation in microsimulation, the model algorithms need to be coded as a 

function of the independent variables in the logit models described above. Of the original 

list of variables, the following are represented in at least one of the models and thus need 

to be coded in the simulation: AST, D_WAIT, DECEL, E_GAP, E_LAG, ENTRY, 

FLASH, NEAR, PLT, SPEED_FT, and TRTMT. Before discussing the implementation 

in greater detail, the following section provides an overview of current pedestrian 

modeling practice in simulation. 
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7.2 Overview of Pedestrian Modeling in Microsimulation 
In microsimulation software, vehicles and pedestrians are modeled as individual entities 

that move through the simulation obeying user-defined and model-specific algorithms. In 

most microscopic models, the clear focus of these algorithms is vehicle motion. Today’s 

simulation models include algorithms describing car-following, lane-changing and gap 

acceptance behavior. New algorithms are continuously enhanced by software developers 

and agencies. Among those the ‘Next Generation Microsimulation’ effort (NGSIM) by 

the Federal Highway Administration is sponsoring the development of algorithms to 

improve the state of the practice of microsimulation. NGSIM recognizes the need to 

enhance pedestrian models and ranks this area 7th in a top 10 list of modeling stakeholder 

requirements (FHWA, 2004-1). The six higher ranked problem statements are lane 

selection on arterials, oversaturated freeway flow, freeway lane distribution, weaving 

sections, two-way left-turn lanes, and response to variable message signs. With limited 

resources, the initial NGISM effort naturally focuses on high-impact algorithms in the 

areas of freeways and signalized arterial systems. Given the resource requirements for 

algorithm development, it will be some time before NGSIM or A similar program will 

address the necessary pedestrian research for model development.  

 

Despite the lack of detailed pedestrian-vehicle interaction algorithms, some of the 

commercially available simulation developers have enabled the analyst to represent 

pedestrians as separate entities in the models. Depending on the flexibility of the 

particular tool, the analyst may be able to define pedestrian walking speed and crossing 

behavior in some detail. In another NGSIM publication (FHWA, 2004-2), the authors 

found that several models explicitly model pedestrians as individual entities: SimTraffic, 

VISSIM, HUTSIM, PARAMICS, and AIMSUN. Other models may be able to model 

pedestrians implicitly through their impact on the vehicle mode. For a subset of the initial 

group of models, built-in gap acceptance algorithms for two-way stop-controlled 

operation may be adopted to approximate pedestrian behavior.  
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The willingness of drivers to yield to pedestrians may be represented through similar gap 

acceptance algorithms. As discussed in chapter 2, the yielding process can be interpreted 

as the driver screening the pedestrian stream for crossable gaps. A driver yields when no 

gaps are available. In a response to user needs, models are further beginning to 

implement improved algorithms of pedestrian-pedestrian interaction. These cellular 

automata models were discussed in Chapter 2, but are not the focus of this research (Blue 

and Adler, 2001, Holden and Cangelosi, 2003).  

 

In the area of pedestrian-vehicle interaction, NCHRP 3-78a (TRB, 2008) selected the 

model VISSIM, because it proved to be the most flexible of the commercially available 

tools. In VISSIM, pedestrians are modeled explicitly as individual entities with user-

definable speed distributions. The interaction between pedestrians and drivers can be 

simulated using priority rules that allocated user-defined critical gap thresholds to the 

entities. VISSIM further allows the analyst to code multiple types of pedestrians and 

allows the user to assign different gap acceptance characteristics to the different 

pedestrian types. The capabilities of VISSIM will be explored further in the next section.  

 

As alternatives to VISSIM, several other microsimulation tools have varying levels of 

applicability to pedestrian modeling. SimTraffic is the microsimulation extension of the 

Synchro software package and automatically converts the hourly pedestrian demand user 

inputs from deterministic Synchro to generate pedestrian events in the simulation 

(Trafficware, 2004). SimTraffic assumes that pedestrians are channelized and uses built-

in algorithms to describe the interaction with vehicular traffic.  

 

In an analysis of the CORSIM software package, Rouphail and Eads (1997) found that the 

model implicitly accounts for the delay impact of pedestrians on turning movement 

traffic at signalized intersections. The model does not allow for an explicit analysis of 

pedestrian-vehicle interaction at unsignalized crossings, which is consistent with the 

NGSIM findings referenced above (FHWA, 2004-2).  
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The software tool AIMSUN (TSS, 2006) models pedestrians as individual entities similar 

to VISSIM. Pedestrian speed distributions and other characteristics can be user-defined. 

Priorities at unsignalized crossings can be defined manually for each intersection node. 

As other models, AIMSUN requires the analyst to specify which movement has priority, 

making it challenging to represent the interaction at unsignalized crossings. A review of 

the user guide for Q-Paramics (Quadstone, 2007) did not provide any reference to 

pedestrian modeling in the software, even though it was listed as a tool that explicitly 

models pedestrians by NGSIM.  

 

In an effort to better represent pedestrian-vehicle interaction in a simulation environment, 

Schroeder and Rouphail (2007) first discussed an analysis framework similar to the one 

presented in this research. In the paper, the authors hypothesized that the interaction of 

pedestrians and drivers could be represented by four probability parameters: the 

probability of yielding, probability of yield detection, probability of gap occurrence, and 

the probability of gap detection. The “detection” terminology was changed to gap 

“utilization” in this dissertation, recognizing that only the decision outcome can be 

observed by the researcher. From analyzing the interaction at the crosswalk, an observer 

can reliably determine if a pedestrian utilizes a gap or not, but cannot make inferences 

about the detection abilities of the pedestrian. The predictive models in chapters 5 and 6 

therefore describe gap utilization and not necessarily gap detection.  

 

Using these four probability parameters, Schroeder and Rouphail (2007) conceptualized 

several treatment scenarios that were intended to test the responsiveness of the simulation 

model on changes in one or more of the probability parameters. The scenarios included 

treatments intended to increase yielding behavior, and treatments intended to enhance 

yield and gap detection of pedestrians with vision impairments. The analysis in VISSIM 

evaluated the measures of effectiveness of pedestrian delay, vehicle delay and the 

likelihood of pedestrian-vehicle conflicts at a one-lane, one-way pedestrian crossing.  
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While the probability parameters and the effect of the treatments were strictly 

hypothetical, the measures of effectiveness responded in the expected fashion. The 

analysis demonstrated the ability of microsimulation to analyze pedestrian-vehicle 

interaction accounting for both driver yielding and pedestrian crossing behavior. 

However, the authors recognized that a true evaluation of the interaction requires 

probability parameters based on actual field data.  

 

7.3 The Research in the Simulation Context 
To the author’s best knowledge, the research presented herein offers for the first time the 

opportunity to describe pedestrian and vehicle interaction at sufficient level of detail for 

adaptation in microsimulation. While many studies have evaluated the rate of driver 

yielding (e.g. Fitzpatrick et al, 2006 and many others) few have considered the 

probabilistic nature of this behavior. Sun et al (2002) first developed logistic regression 

models using binary variables such as gender, age, and the presence of multiple 

pedestrians. These authors also investigated pedestrian gap acceptance and found 

differences by pedestrian age and as a function of waiting time. But without incorporating 

the speed and position of vehicles, the models lack the necessary traffic operational detail 

to be practically implemented in simulation.  

 

Most microsimulation models operate on a sub-second update interval. Each unit that 

enters the system is assigned a range of global parameters describing characteristics such 

as the desired speed, vehicle type etc. These parameters are assigned based on user-

defined (or default) distributions of these attributes that ideally have been calibrated with 

field data. As the unit moves through the network additional time-sensitive parameters 

are assigned. These may include speed reductions simulating the presence of a sharp 

curve or a speed limit sign and are assigned either temporally (within the restricted area) 

or permanently; the latter effectively overriding the global parameter. These time-



   

 
 
 215 

sensitive parameters can be changed explicitly by user input, or may vary implicitly as a 

function of other model algorithms (such as car-following logic).  

 

In the Schroeder and Rouphail (2007) paper, the authors assigned driver yielding and 

pedestrian crossing attributes globally. The propensity of drivers to yield was assigned 

randomly as the vehicle entered the network, from a user-defined vehicle distribution that 

included non-yielder and potential yielder driver types. When approaching the crosswalk, 

potential yielders screen the waiting area at the crosswalk and decelerate to a hard yield if 

a pedestrian was present. Non-yielders would proceed through the crosswalk ignoring the 

waiting pedestrian. All drivers were modeled to respond to pedestrians already in the 

crosswalk. In a similar fashion, three types of pedestrians were coded with conservative, 

typical, or risky crossing attributes. These attributes were drawn from a user-defined 

distribution as the units entered the network, thus representing a quasi-heterogeneous 

pedestrian population. The pedestrian GO decision at the crosswalk was calculated 

through the default gap acceptance algorithm using three different critical gap values for 

the three pedestrian types.  

 

The simulation model VISSIM can be adopted to model the interaction of the two modes 

using priority rules (PTV, 2003). These priority rules (PR) are the developers’ way of 

describing gap acceptance behavior. While VISSIM is just one of many models, the PR 

concept is useful to discuss the models developed in this research in the context of 

existing simulation practice.  

 

The PR algorithm can model gap selection decisions based on both temporal and spatial 

attributes in the conflicting traffic stream. Using the temporal PR parameters, a 

pedestrian GO decision is dependent on the expected arrival time of the vehicle, which is 

a function of vehicle speed and distance from the crosswalk. If the given expected 

gap/lag time is below the pedestrian’s risk threshold her decision will be NOGO. 

However, if in the next time step the vehicle decelerates because of another algorithm, 
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the expected arrival time increases and the PR algorithm is re-evaluated with another set 

of initial conditions. In this implementation the pedestrian decision is consistent, always 

resulting in a GO decision if the expected gap time exceeds her risk threshold. Schroeder 

and Rouphail (2007) were able to model a quasi-heterogeneous pedestrian population by 

assigning different PR thresholds to different ‘types’ of pedestrians.  

 

The spatial PR definition in VISSIM bases the gap selection decision on whether or not a 

user-defined distance on the conflicting roadway is occupied or not. Conceptually, both 

PR definitions can be used to describe the same risk threshold, but differ in their 

sensitivity to the speed distribution of the conflicting traffic stream. With the temporal 

definition, a faster traveling vehicle will be at a larger spatial distance than a slower 

vehicle for the same measured expected arrival time. Similarly, a vehicle just inside the 

spatial PR threshold will effectively arrive at the crosswalk more quickly with increasing 

speed. If the conflicting population has a small variance in speed the spatial and temporal 

PR definitions are similar.  

 

In Schroeder and Rouphail (2007) the interaction was modeled by assigning pedestrians a 

temporal PR definition (with varying levels based on their risk threshold) and using a 

spatial definition for potential yielders in the vehicular traffic. This use was justified 

because the variance in the speed distribution of pedestrian traffic is small compared to 

vehicle speeds. The result is that a potential yielder will always yield if a pedestrian is in 

the waiting area (within the spatial PR boundary). As that vehicle slows down, its 

expected arrival time will increase and the pedestrian will initiate crossing once the 

expected arrival time exceeds her temporal PR threshold. 

 

While this implementation is possible with existing gap acceptance algorithms in 

VISSIM there is no randomness in the decision-making process. Given time to 

decelerate, a potential yielder will always yield if a pedestrian is waiting at the crosswalk. 

The pedestrian will consistently accept a gap greater than her risk threshold.  
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This way of globally assigning gap acceptance (and thus yielding) behavior is common 

for all reviewed models, provided that they even allow this level of analysis detail. The 

discussed modeling approach ignores the true probabilistic nature of the interaction and 

does not account for behavioral inconsistency. For example, a driver encountering a 

waiting pedestrian may conclude one day that a 5 ft/sec2 deceleration rate is acceptable, 

but not the next day. Drivers and pedestrians do not make consistent decisions and that 

approach presumes otherwise. Up to this point, research identifying the factors 

contributing to this inconsistency has been scarce.  

 

With the findings from this research, a more realistic implementation can be achieved. 

The attributes for pedestrian-vehicle interaction represent both global and local 

parameters. For example, a driver is assigned a global desired speed parameter and 

vehicle characteristics that govern deceleration behavior. Similarly, a pedestrian who 

enters the network can be assigned an assertiveness attribute (or not). However, the actual 

decision models are not assigned globally, but become a function of the state of the 

system at the time of pedestrian arrival, t1. Conceptually, the likelihood of yielding would 

be re-calculated every simulation time-step depending on vehicle dynamics 

characteristics (speed, distance...), incidental attributes (platoons, multiple pedestrians...), 

and the pedestrian behavior (assertiveness, pedestrian in crosswalk...). The resulting 

interaction model, then, is similar to the car-following principle in that the behavior of 

one entity is contingent on the behavior of another.   

 

7.4 Algorithm Requirements 
The logistic regression models developed in this research allow for stochastic variability 

in the decision-making process that goes beyond the implementation discussed above. 

The logit models are highly sensitive to dynamic variables describing the expected arrival 

time and the necessary deceleration rate of vehicles at the crosswalk. Because of the 

nature of the simulation software, these parameters are updated every simulation time 
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step (typically 0.1 seconds) and correspondingly the probability functions are subject to 

change from one time step to the next. The vehicle dynamics element therefore requires 

the logit implementation to be in the form of core model algorithms. The assumption of 

global parameters in Schroeder and Rouphail (2007) does not allow for sufficient level of 

detail. 

 

A true implementation of the results of this research in microsimulation therefore requires 

new software code and cannot be achieved with existing algorithms. In the case of 

VISSIM, it is possible to dynamically update vehicle (and pedestrian) attributes during 

the simulation by the use of VAP code (PTV 2003). The probability functions used to 

plot the behavior of the logit function in this research would be implemented in this 

external code and the probability estimates re-calculated as the simulation progresses.  

 

Only a small portion of the logit variables would be implemented in the form of global 

parameters that are fixed throughout the simulation. Most of the variables found in the 

logistic regression models become implicit functions of other algorithms in the 

simulation. The dynamic variables such as vehicle speed and gap times are a function of 

car-following algorithms, speed distributions, and arrival patterns. These are time-

sensitive variables that are dynamically updated as the simulation progresses. Table 22 

lists the simulation variables and their suggested implementation.  
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Table 22: Variable Implementation 
Variable Implementation Comments
AST Global As a pedestrian entity is generated, it is randomly assigned 

either assertive or non-assertive behavior from a user-defined 
distribution

ENTRY Global Pedestrian arrival distributions at the entry and exit leg of a 
roundabout are globally defined by the user

FLASH Global As a pedestrian entity is generated, it is randomly assigned 
whether he/she will activate the flashing beacon based on a 
user-defined distribution

TRTMT Global The presence and effect of a pedestrian crossing treatment is 
globally defined

D_WAIT Implicit Waiting time is a time-sensitive attribute that is among others a 
function of the actual yield and crossing algorithms

DECEL Implict The necessary deceleration rate is an implict function of the 
vehicle speed and distance at the time of pedestrian arrival

E_GAP Implicit The expected gap time between vehicle arrivals is an implicit 
function of other simulation algorithms

E_LAG Implicit The expected gap time between vehicle arrivals is an implicit 
function of other simulation algorithms

NEAR Implicit The relative position of pedestrian and vehicle is an implicit 
result of the simulation model

PLT Implicit The location of a vehicle within a platoon of other vehicles is 
an implicit function of car-following algorithms and vehicle 
arrival distributions.

SPEED_FT Implicit The speed of the vehicle is globally assigned from a user-
defined distribution, but changes during the simulation as a 
function of other algorithms  

 
Table 22 suggests that variables AST, ENTRY, FLASH, and TRTMT would become 

global attributes of the pedestrian (assertiveness and activation of the treatment) and of 

the system (roundabout entry vs. exit and treatment presence). The remaining variables 

(D_WAIT, DECEL, E_GAP, E_LAG, NEAR, PLT, and SPEED_FT) are implicit 

functions of the simulation algorithms. These algorithms include the driver yielding and 

pedestrian crossing algorithms themselves. For example, as a driver decides to yield the 

variables E_GAP/E_LAG, DECEL, and SPEED_FT are affected. Similarly, D_WAIT 

increases every time a pedestrian rejects a gap.  
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The actual logit functions are implemented in the form of core algorithms that read-in the 

state of the Table 22 variables every simulation time step and re-calculate the decision 

probability. The decision outcome then becomes a random variable. The yield and 

crossing responses then depend on the outcome of a random experiment following the 

logit probability function.  

 

In the implementation, some assumptions need to be made about behavioral consistency. 

In a true randomized experiment it is feasible that an entity would change its decision 

outcome repeatedly, which is undesirable. It is therefore recommended that once a 

response is “true” the decision is fixed. Once a driver decides to yield and once a 

pedestrian decides to cross the action is followed through. More research would be 

necessary to predict variables that lead pedestrians and drivers to change their decisions.  

 

7.5 Chapter Summary 
This chapter discussed the extension of the probabilistic logit models to the area of 

microsimulation. The discussion demonstrated how current models represent pedestrian 

traffic and how the results from this research may help enhance existing algorithms.  

 

The implementation of the driver yielding and pedestrian crossing models would occur 

through new core algorithms that supplement existing algorithms such as car-following. 

The new algorithms are necessary because the probability functions would be updated 

with every simulation time-step, based on the changing state of the explanatory variables.  

 

The variables used in the logit models would be implemented in the form of global or 

time-sensitive model parameters. For example, pedestrian assertiveness would be 

assigned globally based on a user-defined population distribution of that variable. On the 

other hand, all dynamic variables, including vehicle speed and the expected gap/lag 

times, are time-sensitive parameters that are an implicit function of existing model 

algorithms. 
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8 CONCLUSIONS AND RECOMMENDATIONS 
 

The research presented in this dissertation details the behaviors of pedestrians and drivers 

at unsignalized crosswalks. The work represents one key component of a larger 

framework for evaluating the interaction of these two modes. Special emphasis is given 

to quantifying the effects of different pedestrian crossing treatments on behavior.  

 

8.1 Summary of Major Findings  
 

This dissertation developed and applied a methodology to collect event-based interaction 

parameters of drivers and pedestrians at unsignalized crosswalks. The research identified 

various dynamic and binary explanatory variables that were hypothesized to affect the 

decision-making processes of drivers and pedestrians. With the use of logistic regression 

techniques the effects of the variables were related to the categorical responses: driver 

yielding and pedestrian crossing behavior. The research resulted in the following major 

findings:  

 

• The research developed a methodology that is transferable to other sites and 

geographic locations. While the findings may be biased to region-specific 

behavioral attributes, the event-based data collection and analysis approach can 

readily be applied to other unsignalized and signalized pedestrian crossing 

locations. The methodology offers the opportunity to analyze the interaction at a 

greater level of detail than is possible in conventional site-aggregated studies, 

while keeping the amount of data collection time in the field at a manageable 

level.  

 

• The analysis of driver yielding behavior supported the notion that drivers 

approaching the crosswalk are subject to vehicle dynamics constraints (VDC) 

similar to drivers forced to run a yellow light at a signalized intersection. By 
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relating yield events to the necessary deceleration rate of drivers, the research 

identified that virtually no yields are observed at rates greater than 10 feet/sec2. 

The vehicle dynamic characteristics were significant parameters in all yielding 

and crossing models even after VDC-constrained vehicles were excluded from the 

analysis.  

 

• The research indicated that pedestrian assertiveness has a significant impact on an 

increased likelihood of drivers yielding and of pedestrian crossing. This effect 

was shown to be larger than that of any other explanatory variables, including the 

effect of yield-promoting treatments. A brisk pedestrian walking style thus was 

more effective in increasing driver yielding behavior than the costly installation of 

a treatment and was related to a greater likelihood of accepting a fixed-duration 

gap (or lag).  

 

• The research was able to develop a predictive model for yield types that 

distinguishes between the hard and soft yield outcomes from all yield events. 

Previous research suggested that soft yields are more challenging to detect by 

blind pedestrians and by automated yield detection technologies.  

 

• The evaluation of two pedestrian crossing treatments found that the treatments 

were effective in increasing yielding behavior, and furthermore resulted in more 

aggressive pedestrian crossing behavior. The variable describing the treatment 

installation resulted in an overall shift of the logit probability curves towards 

lower lag and gap times. The evaluation of a pedestrian-actuated treatment further 

showed that the activation of the treatment had a larger effect on yielding than the 

presence of the treatment itself.  

 

• The statistical fit of the pedestrian crossing models was generally much stronger 

than for the corresponding driver yielding models. It is reasoned that the 
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pedestrian decision is strongly influenced by the temporal duration to the point of 

conflict, because misjudgment has implications for personal safety. A driver does 

not feel a comparable urgency to yield even with sufficient time, resulting in a 

worse model fit.  

 

• The research found supporting evidence for an impact of waiting time on an 

increased likelihood of pedestrian gap acceptance. The notion of a decaying 

critical gap has previously been demonstrated by others and was confirmed here 

for crossings that exhibited a perceptible amount of pedestrian delay.  

 

• The comparison of yielding and crossing models for two mid-block sites showed 

many similarities in parameters, suggesting that the development of universal 

models for mid-block crossings may be feasible. The dynamic model variables 

can be normalized to account for differences in crosswalk geometry by defining 

the size of expected gaps or lags relative to the crossing width. More research is 

necessary to validate this notion, but these initial results are intriguing. 

 

• The research results show promise for implementation in microsimulation. The 

probabilistic models can be used to quantify system-level effects of the interaction 

of pedestrians and vehicles in a way that is useful for a traffic engineering 

operational analysis. Using site-specific behavioral characteristics the simulation 

model can estimate the impact of a pedestrian crossing treatment on pedestrian 

and vehicular delay, or other measures of effectiveness. This allows the analyst to 

contrast different unsignalized treatments and compare them for example to 

signalized operations.  
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8.2 Revisiting Objectives 
 

8.2.1 Objective 1 
Devise a data collection methodology to evaluate the interaction of pedestrians and 

drivers at unsignalized pedestrian crossings at a microscopic or event-based level.  

 

The data collection methodology described in Chapter 3 was successfully applied to three 

test sites in Raleigh and Charlotte, NC. Through the combination of time-synchronized 

video observations and laser speed measurements the author was able to collect a range 

of variables describing the interaction of the two modes at unsignalized crossings.  

 

Laser speed measurements allowed the analyst to quantify variables describing the 

dynamic characteristics of the vehicle. From the vehicle speed and distance from the 

crosswalk at the time of a pedestrian arrival, the author was able to calculate necessary 

vehicle deceleration rates and expected arrival times at the crosswalk. These variables 

proved practically meaningful and statistically significant in model development.  

 

Using the video observations it was further possible to define and extract a range of 

binary variables describing characteristics of driver and pedestrian, and the state of the 

system at the time of an interaction event. Among others, the video allowed the analyst to 

identify vehicle platoons, judge assertive pedestrian behavior and observe other 

concurrent events pertinent to the interaction.  

 

The data collection methodology proved feasible and non-intrusive. More importantly, 

the author was able to obtain a very large sample size of observations from only a few 

hours of data. Depending on pedestrian and vehicle volumes, the analyst was able to 

record up to 100-200 events per hour from video. The data extraction and data reduction 

effort was cumbersome and required a 10:1 time investment. However, the actual time 

spent in the field was relatively short compared to a more traditional evaluation.  
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8.2.2 Objective 2 
Demonstrate that pedestrian crossing and driver yielding behavior are sensitive to the 

dynamic characteristics of the approaching vehicle, behavioral characteristics of 

pedestrian and driver, concurrent events at the crosswalk, and the installation of 

crosswalk treatments.  

 

With the successful application of the data collection methodology this research was able 

to explore a range of discrete and continuous variables and relate them to the decisions of 

pedestrians and drivers. The response variables were the driver decision on whether or 

not to yield to a pedestrian and the pedestrian decision on whether or not to begin 

crossing the road. These responses were related back to the state of different variables at 

the time a pedestrian arrived at the crosswalk while a driver was in the approach.  

 

Gap acceptance theory traditionally uses the temporal dimension to explain GO decisions. 

The research presented here supports this theory, finding that pedestrian GO decisions 

were very sensitive to the expected arrival time of the vehicle at the crosswalk. The 

author found that driver yielding decisions are also very sensitive to these types of 

variables. In fact, this research proposes that driver yielding behavior is subject to vehicle 

dynamics constraints (VDC) and presents data showing that yielding is highly unlikely if 

the necessary deceleration rate to come to a stop exceeds a threshold of 10ft/sec2.  

 

In addition to these dynamic variables, the research demonstrated that behavioral 

attributes impact the decision outcomes. An assertive pedestrian is generally prone to 

have lower gap thresholds and furthermore increases the likelihood that the approaching 

driver yields. There was further evidence that pedestrians make more conservative 

decisions when traveling in a group. Attempts to assess other behavioral variables such as 

the presence of non-verbal communication did not yield good observations, mainly 

because the video angle lacked sufficient detail.  
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The analysis also found that concurrent events tend to impact the decision outcomes. 

Drivers were less likely to yield when they were traveling in a platoon, presumably being 

apprehensive of the risk of a rear-end collision. The presence of an adjacent yield also 

showed correlation with increasing the likelihood of a yield in the other lane. An effect of 

downstream conflicts could not be determined at the given sample size.  

 

Finally, two of the sites were evaluated in conditions before and after the implementation 

of a pedestrian crossing treatment. Both treatments were intended to increase driver 

awareness of the crosswalk and the presence of pedestrians. Consistent with previous 

research, the treatments resulted in an increase in the likelihood of drivers yielding. 

However, the analysis further showed that the treatments impacted pedestrian crossing 

decisions. By reinforcing the notion that pedestrians have the right-of-way at the crossing, 

pedestrians tended to lower their gap thresholds after treatment installation. The 

evaluation of a pedestrian-actuated treatment showed that the impact of the treatment on 

driver yielding is contingent upon pedestrian activation.  

 

8.2.3 Objective 3 
Describe driver yielding and pedestrian crossing behavior from collected event-based 

data accounting for attributes of vehicle dynamics, behavior, and the effect of treatments. 

 

This dissertation successfully applied logistic regression techniques to event-based 

interaction data. While others have previously attempted to describe pedestrian and driver 

decisions through logit models, this research is the first time that a combination of 

continuous and discrete variables was used.  

 

The driver yielding models successfully applied a nested binary logit approach. The first 

level logit described the likelihood of yielding as a function of deceleration rate, 

pedestrian assertiveness, vehicle platooning, and other variables. The second level logit 

then predicted the likelihood of a hard yield from all yield events. This is the first time a 
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predictive model distinguished between the two types of yielding. The distinction of hard 

and soft yields is important for purposes of yield detection, both for pedestrians with 

vision impairments, and for testing automated yield detection methods.  

 

The parameters in the driver yielding models are significant and consistent with the 

hypothesized effects of the variables. However, the overall model fit statistics suggest 

that not all of the variability in the data is explained by the models. Despite legislation, 

the requirement to yield is rarely enforced and driver compliance is therefore much lower 

as compared to the rate of stopping at a red signal indication. Accordingly, the decision 

outcome cannot be predicted perfectly because too many variables affect the outcome. 

Presumably, a driver who has sufficient time to stop and encounters other conditions that 

favor a yield may be easily swayed in the decision to yield. Unfortunately, these types of 

behavioral characteristics are unobservable in a field experiment.  

 

The pedestrian crossing models show higher correlations between gap and lag duration 

and the decision to cross. The strong statistical fit of the pedestrian logit models is 

explained by the fact that a crossing decision in a short gap or lag time jeopardizes 

personal safety. A driver non-yield decision, despite a long lead time to the crosswalk has 

no comparable immediate consequences. Accordingly, the predictive crossing models 

generally fit the data better than the yield models. In addition to the strong effect of 

temporal variables, the pedestrian crossing models are sensitive to assertiveness and 

whether the vehicle is in the near or far lane. The models also consistently include the 

effect of the pedestrian crossing treatment. The variables for the treatment effect result in 

a shift of the crossing probability curve towards lower gap and lag sizes.  

 

8.2.4 Objective 4 
Demonstrate that driver yielding and pedestrian crossing models have application to 

microsimulation models where they can enhance existing interaction algorithms. 
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With the predictive logit models in place, Chapter 7 discussed the implementation of 

these models in a microsimulation environment. The chapter identified shortcomings in 

the way existing models treat the pedestrian mode and its interaction with vehicles; a 

notion supported by the ongoing FHWA NGSIM research effort. The discussion 

conceptually compared the logit models to the way car-following algorithms are 

implemented in current software. The author argued that a true implementation of the 

probability function would have to occur in the form of core algorithms that are 

dynamically updated and re-calculated every simulation step. This implementation goes 

beyond what was done in previous research and requires new code to enhance existing 

software. The actual variables that are used as input in the core algorithms include global 

driver and pedestrian attributes and time-sensitive variables, which are updated 

dynamically each simulation time step. All of the continuous variables and many of the 

discrete factors are implicit functions of existing simulation algorithms.  

 

A successful implementation of the logit algorithms is important for a simulation-based 

evaluation of pedestrian crossing facilities. For example, this more realistic representation 

of pedestrian-vehicle interaction is required to adequately contrast signalized and 

unsignalized operation of pedestrian crosswalks at modern roundabouts. The 

signalization of roundabouts is controversial and the current methods for comparing these 

scenarios are insufficient.  

 

8.3 Research Limitations 
The findings from the data collection and resulting logit models presented in this research 

need to be interpreted in the context of the associated sample sizes. Observations at the 

two mid-block sites resulted in sufficiently large samples of several hundred data points 

each. The roundabout site provided a much smaller sample of interaction events and 

results should be supplemented with additional data collection.  
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For the mid-block sites the samples of observations were acceptable to illustrate the data 

collection and regression methodologies. The two sites showed significant differences in 

yielding and crossing behavior, illustrating that models are not readily transferable 

between sites without further research. Furthermore, other research has shown large site-

to-site variations in yielding behavior and it is expected that models for behavior in rural 

North Carolina versus New York City would be much different.  

 

The studied populations of drivers and pedestrians were relatively uniform. Most drivers 

at the sites represent daily commuter traffic and most pedestrians are students and staff at 

the two universities. More importantly, it is difficult to ascertain features of population 

heterogeneity from video observations. The resulting data and logit models therefore do 

not account for population parameters that are not observable.  

 

In an effort to maximize the amount of data used for model development, no 

observational data were left out for later model validation. It is therefore not truly 

possible to compare alternate model forms beyond their statistical fit. The results were 

contrasted with more traditional analysis approaches and site-aggregated statistics. The 

analysis did not perform true model validation that would apply models to an 

independent data set not used in model specification and track the number of correct 

predictions.  

 

The discussion in Chapter 7 falls short of a demonstrated proof of model implementation. 

The chapter merely demonstrates conceptually how the logit models would be 

represented in simulation. While implementation seems feasible, it is unclear whether the 

model will accurately represent the interaction of the two modes. It is argued above that 

many of the model variables are implicit results of other model algorithms (car-

following, speed distribution, arrival patterns), which may need additional calibration 

before the observed interaction can be truly replicated.  
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The original analysis framework presented in Chapter 2 described the interaction through 

four probability parameters and this research only investigated two of them. The 

probability of gap occurrence and the probability of yield utilization have not been 

explored here.  

 

Finally, the use of expected arrival times and necessary deceleration rates in the 

pedestrian crossing and driver yielding models assumes that vehicle dynamics are 

inferred accurately. However, it is not clear from this research if a pedestrian can truly 

judge the speed and distance of the closest vehicle. Presumably a driver can read the 

vehicle speed on the speedometer, but still needs to estimate the relative distance and/or 

arrival time to the crosswalk. The model parameters then may or may not represent what 

pedestrians and drivers actually perceive.  

 
8.4 Areas of Future Research 
The discussion distinguishes between direct research expansion and indirect application 

of concepts of the presented research. The first represents a continuation of the described 

effort to include more sites, additional treatments, and larger samples. Areas of indirect 

application of concepts may benefit from a similar analysis approach but are not directly 

related to this dissertation. 

 

8.4.1 Direct Research Expansion  
 

A direct expansion of this research should address the need for additional data on 

roundabouts and include an evaluation of roundabout treatments. Given the background 

of this research in a project dealing with the accessibility of roundabouts to pedestrians 

with vision impairments it makes intuitive sense to gather additional data at these 

facilities. For similar reasons, the analysis of special pedestrian populations, including 

those with vision impairments, is desirable. For blind pedestrians it is especially 

important to assess the probability of yield utilization.  
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It is also important to further explore the use of automated data collection methodologies. 

The methodology chapter pointed out that the video image processing approach is 

cumbersome for application to multiple sites due to the need to calibrate the software for 

each site and viewing angle. However, for longer data collection at the same site, the 

additional calibration effort may well be justified. Even with the use of image processing, 

it is expected that some variables need to be extracted manually from the video stream.  

 

With the availability of additional data, a full validation effort of the logit models is also 

desirable. By relating model predictions back to observed data, it is possible to assess the 

quality of different model forms. More importantly, validation allows the analyst to better 

quantify the overall predictive ability of the model.  

 

Another direct extension of this research is the actual implementation in microsimulation 

of the logit models. Using the principles laid out in chapter 7 an implementation in 

software would allow the analyst to investigate the effects of changing input variables on 

system performance. If supplemented with additional field data on speeds and arrival 

distribution the simulation could be calibrated to closely mirror field observations. By 

then comparing simulation outputs to field observed response variables the software 

implementation can be validated.  

 

Additional extension of this research is possible in the area of conflict analysis. A number 

of research papers and reports have discussed the potential for using microsimulation for 

surrogate conflict analyses (e.g. FHWA, 2003). With calibrated decision-making 

algorithms, the simulation approach can be used to extract conflict data from the 

pedestrian-vehicle interaction models. Conceptually, the simulation model can then be 

used to not only contrast the operational impact of different treatments, but to further 

compare their impact on pedestrian safety. Schroeder and Rouphail (2007) demonstrated 

a method to extract pedestrian-vehicle conflicts from VISSIM.  
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In light of pedestrian safety concerns, there is also merit to a more detailed analysis of the 

impact of pedestrian waiting time on crossing behavior. For two of the studied sites, the 

logit analysis suggested that pedestrians lower their gap thresholds as waiting time 

increased. This class of decay function for gap acceptance behavior has previously been 

demonstrated for vehicular traffic and should be explored further in explaining pedestrian 

behavior.  

 

Finally, given additional data from different sites it would be appropriate to combine 

them for the purpose of developing generic models for pedestrian crossing and driver 

yielding behavior. With the understanding that sites will differ in approach speeds and 

crossing widths, normalized explanatory variables would need to be defined to be 

universally applicable. For example, for pedestrian crossing behavior the gap and lag 

times could be expressed relative to the theoretical crossing time (which is a function of 

crossing distance and walking speed). Using this concept a buffer time can be defined, 

representing the difference between the critical gap/lag and the theoretical crossing time. 

These universal probability models are desirable because they allow the analyst to 

transfer the predicted behavior to new sites or to contrast different treatment alternatives.  

 

8.4.2 Indirect Application of Concepts 
 

In addition to the areas of research expansion listed above, the general methodology and 

analysis framework has application to other areas of microsimulation modeling and 

algorithm development. Conceptually, the method can be applied to derive other model 

algorithms that represent decision-making processes, provided that the response and 

explanatory variables can be observed and measured.  

 

One example for this is the compliance at a red signal indication. The decision for a 

driver to violate a red signal indication can be expressed as a similar combination of 

speed and distance of the vehicle at the onset of amber, but may furthermore be 
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correlated with other concurrent events. In a similar fashion, a logit model could be used 

to predict the likelihood of drivers stopping at the amber indication. Together with a 

simulation-based conflict analysis methodology, a combination of these two models may 

ultimately lead to enhancements in crash prediction models for rear-end crashes at 

signalized intersections.  

 

While compliance of drivers at red signals is generally high, the compliance of 

pedestrians is typically much lower. Through a similar data collection approach, a 

pedestrian crossing model for signalized intersections could be developed that predicts 

the likelihood of GO at a red signal as a function of vehicle position and the behavior of 

other pedestrians. Similarly, a logit model could predict the likelihood of pedestrian GO 

during the flashing don’t walk phase. The evaluation could be further expanded to 

describe pedestrian behavior at new hybrid signals. 

 

Other examples of decision-making processes for vehicular traffic can be found in 

algorithms describing oversaturated conditions. In a saturated freeway merging section, 

for example, some drivers on the mainline will decelerate to allow on-ramp traffic to 

enter the freeway. This type of cooperative merging behavior is also observed at lower 

flows where drivers change lanes to create merging opportunities for ramp traffic. 

Cooperative behavior at oversaturated conditions is also evident at stop and yield 

controlled intersection, where mainline traffic commonly creates gaps for minor street 

traffic. In an implementation of these types of conditions in microsimulation, a logit-

based algorithm may be used to describe this behavior.  
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10.1 Appendix A: Yielding at Mid-Block Models 
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Table A-23: Correlation Matrix with Yield Response, MB-CLT * 
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ADY 0.24
<.0001

AST 0.30 0.05
<.0001 0.2498

COM 0.50 -0.07 0.21
<.0001 0.0885 <.0001

FLASH 0.20 0.09 0.04 0.09
<.0001 0.0204 0.3393 0.0232

FOLL -0.06 0.01 -0.03 -0.04 -0.02
0.1718 0.7595 0.4746 0.3166 0.6908

HEV 0.02 0.01 -0.01 0.03 0.03 0.10
0.6983 0.771 0.7886 0.3925 0.4119 0.0156

MUP 0.09 0.06 0.03 0.04 0.20 -0.05 0.00
0.0319 0.1457 0.394 0.3404 <.0001 0.2288 0.9347

NEAR -0.06 -0.18 -0.29 0.00 0.03 -0.01 -0.04 -0.05
0.1551 <.0001 <.0001 0.9041 0.523 0.7233 0.2842 0.2177

PLT -0.16 0.00 -0.08 -0.18 0.00 0.62 -0.03 -0.08 0.01
<.0001 0.9443 0.0561 <.0001 0.997 <.0001 0.4582 0.059 0.7772

PREV -0.03 0.03 -0.06 -0.07 0.13 0.06 -0.09 0.02 0.03 0.28
0.4692 0.4461 0.1181 0.0829 0.0013 0.144 0.0259 0.6381 0.5324 <.0001

PXW 0.35 0.34 0.67 0.14 0.05 -0.01 -0.01 0.06 -0.28 -0.03 -0.04
<.0001 <.0001 <.0001 0.0008 0.2062 0.7846 0.8508 0.1697 <.0001 0.4934 0.2798

QUE 0.07 -0.02 0.03 -0.02 -0.03 0.00 -0.01 0.08 -0.08 0.01 0.01 0.03
0.084 0.5434 0.5362 0.6474 0.4376 0.9657 0.8056 0.0651 0.0404 0.7366 0.7567 0.4862

TRIG 0.38 0.09 0.56 0.21 0.18 -0.03 0.01 0.05 -0.21 -0.08 -0.02 0.48 -0.02
<.0001 0.0323 <.0001 <.0001 <.0001 0.4555 0.7229 0.2456 <.0001 0.0468 0.6233 <.0001 0.5566

TRTMT 0.08 -0.01 0.00 -0.05 0.47 0.03 0.04 0.05 0.02 -0.03 -0.06 -0.06 -0.07 0.16
0.0584 0.8656 0.9404 0.2375 <.0001 0.4444 0.349 0.2308 0.5761 0.51 0.1389 0.1258 0.0993 <.0001

DECEL -0.20 -0.14 -0.07 -0.09 -0.12 0.02 -0.04 -0.06 0.03 -0.03 -0.46 -0.13 -0.05 -0.11 0.17
<.0001 0.0008 0.0879 0.0258 0.0028 0.5779 0.3305 0.1672 0.3983 0.3987 <.0001 0.0011 0.1985 0.0055 <.0001

DIST1 0.13 0.12 0.02 0.09 0.00 -0.04 -0.04 0.04 -0.05 0.03 0.39 0.06 -0.04 0.08 -0.22 -0.49
0.0017 0.0022 0.7065 0.0351 0.9663 0.3279 0.3309 0.3115 0.2599 0.428 <.0001 0.1619 0.277 0.0412 <.0001 <.0001

SPEED_FT -0.17 -0.12 -0.02 -0.01 -0.02 -0.08 -0.10 -0.01 0.00 -0.01 -0.02 -0.05 -0.21 -0.01 -0.07 0.25 0.26
<.0001 0.0041 0.6564 0.8974 0.6323 0.0586 0.0186 0.7355 0.9738 0.7583 0.5459 0.2293 <.0001 0.7496 0.0773 <.0001 <.0001

TTC 0.20 0.16 0.03 0.09 0.00 -0.01 -0.02 0.04 -0.04 0.05 0.41 0.09 0.03 0.10 -0.22 -0.56 0.93 -0.04
<.0001 <.0001 0.4066 0.0221 0.9542 0.8382 0.6424 0.3115 0.2949 0.2141 <.0001 0.0305 0.4074 0.0112 <.0001 <.0001 <.0001 0.304  
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Shaded cells have correlation > 0.30; bold values are significant at the 0.05 confidence level 
Table A-24: DYM Results of Multi-Linear Regression, MB-CLT 

 
a) Full Model 

Parameter Estimate
Standard 
Error t-value PR > |t| Source DF

Sum of 
Squares

Mean 
Squares F-Value pr > F R-Square

Coeff 
Var

Root 
MSE

Yield 
Mean

Intercept 0.2611 0.1253 2.08 0.0377 Model 14 24.24 1.732 15.07 <.0001 0.2866 174.355 0.3390 0.1944
ADY 0.1732 0.0565 3.07 0.0023 Error 525 60.34 0.114937
AST 0.0866 0.0636 1.36 0.1741 Corr. Total 539 84.58
FLASH 0.1375 0.0502 2.74 0.0064
FOLL 0.0309 0.0372 0.83 0.4065
NEAR 0.0690 0.0314 2.19 0.0286
PLT -0.1254 0.0421 -2.98 0.003
PREV -0.0967 0.0406 -2.38 0.0177
PXW 0.1414 0.0630 2.25 0.0251
TRIG 0.2970 0.0662 4.48 <.0001
trtmt 0.0189 0.0374 0.51 0.6134
Decel -0.0178 0.0130 -1.38 0.1688
DIST1 -0.0003 0.0003 -1.2 0.2316
SPEED_FT -0.0017 0.0032 -0.53 0.5944
TTC_V 0.0197 0.0111 1.78 0.0761

Adj. R - Square
0.27

 
b) Restricted Model 

Parameter Estimate
Standard 
Error t-value PR > |t| Source DF

Sum of 
Squares

Mean 
Squares F-Value pr > F R-Square

Coeff 
Var

Root 
MSE

Yield 
Mean

Intercept 0.4329 0.0699 6.19 <.0001 Model 7 16.33 2.333 19.77 <.0001 0.1882 197.928 0.3435 0.1736
PLT -0.1183 0.0298 -3.96 <.0001 Error 597 70.45 0.118
NEAR 0.0195 0.2925 0.67 0.5054 Corr. Total 604 86.78
AST 0.3028 0.0421 7.2 <.0001
SPEED_FT -0.0054 0.0016 -3.51 0.0005
DECEL -0.0082 0.0026 -3.19 0.0015
TRTMT 0.0043 0.0338 0.13 0.8983
FLASH 0.1862 0.0485 3.84 0.0001

Adj. R - Square
0.18
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 Table A-25: DYM Results of Binary Logistic Regression, MB-CLT 
 

a) Full Model 

Intercept 1 -0.6762 1.0879 0.3863 0.5343 AIC 534.012 413.251 Likelihood Ratio 148.7605 14 <.0001
ADY 1 1.1055 0.4104 7.256 0.0071 3.021 SC 538.304 477.625 Score 154.7637 14 <.0001
AST 1 0.7741 0.49 2.4958 0.1142 2.169 -2 Log L 532.012 383.251 Wald 96.7286 14 <.0001
FLASH 1 0.8544 0.4046 4.4584 0.0347 2.35 0.2408
FOLL 1 0.3369 0.3665 0.8452 0.3579 1.401 0.3843
NEAR 1 0.6839 0.3102 4.8615 0.0275 1.982
PLT 1 -1.0534 0.3851 7.481 0.0062 0.349
PREV 1 -0.866 0.3415 6.4295 0.0112 0.421
PXW 1 0.8251 0.4576 3.2514 0.0714 2.282
TRIG 1 1.4267 0.4916 8.4219 0.0037 4.165
trtmt 1 0.3578 0.3473 1.0616 0.3028 1.43
Decel 1 -0.2967 0.1462 4.115 0.0425 0.743
DIST1 1 -0.00169 0.00253 0.4457 0.5044 0.998
SPEED_FT 1 -0.0121 0.0307 0.1543 0.6945 0.99
TTC_V 1 0.0988 0.096 1.0592 0.3034 1.10

R-Square

Criterion
Intercept 

Only
Intercept and 

Covariates

Analysis of Maximum Likelihood Estimates Odds Ratio 
Point 

Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square
Pr > ChiS

q Test
Chi-

Square DF
Pr > ChiS

q

Max-rescaled R-2

 
b) Unrestricted Model 

ADY 1 0.9669 0.3868 6.2507 0.0124 2.63 AIC 534.012 430.430 Likelihood Ratio 140.1484 8 <.0001
FLASH 1 1.0264 0.3265 9.8828 0.0017 2.791 SC 538.304 448.488 Score 145.4136 8 <.0001
NEAR 1 0.5902 0.295 4.0012 0.0455 1.804 -2 Log L 532.012 391.864 Wald 91.8624 8 <.0001
PLT 1 -0.7543 0.2742 7.5657 0.0059 0.47 0.2286
PREV 1 -1.0156 0.3308 9.4274 0.0021 0.36 0.3648
PXW 1 1.1498 0.3708 9.6175 0.0019 3.16 Chi-Square DF
TRIG 1 1.7988 0.4329 17.2634 <.0001 6.04 8.4954 6
DECEL 1 -0.4349 0.0924 22.1535 <.0001 0.65

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Criterion
Intercept 

Only
Intercept and 

Covariates Test
Chi-

Square DF
Pr > ChiS

q

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point 
EstimateParameter DF Estimate

Standard 
Error

Wald Chi-
Square

Pr > ChiS
q

Residual Chi-Square Test
Pr > ChiSq

0.204

Max-rescaled R-2
R-Square
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c) Restricted Model 1 

Intercept 1 0.4356 0.5505 0.626 0.4288 AIC 534.444 441.107 Likelihood Ratio 107.3368 7 <.0001
AST 1 1.8823 0.3181 35.0159 <.0001 6.57 SC 538.737 475.455 Score 106.1210 7 <.0001
FLASH 1 0.9124 0.3729 5.9866 0.0144 2.49 -2 Log L 532.444 425.107 Wald 77.5397 7 <.0001
NEAR 1 0.2637 0.2695 0.9574 0.3278 1.30 0.1800
PLT 1 -0.9622 0.2502 14.7929 0.0001 0.38 0.2874
trtmt 1 0.4073 0.3135 1.6884 0.1938 1.50
Decel 1 -0.3428 0.0859 15.9139 <.0001 0.71
SPEED_FT 1 -0.0308 0.0134 5.2726 0.0217 0.97

Testing Global Null Hypothesis: BETA=0

Test
Chi-

Square DF
Pr > ChiS

q

Analysis of Maximum Likelihood Estimates Odds Ratio 
Point 

Estimate

Model Fit Statistics

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square
Pr > ChiS

q Criterion
Intercept 

Only
Intercept and 

Covariates

R-Square
Max-rescaled R-2

 
d) Restricted Model 2  

Intercept 1 0.6781 0.5212 1.6931 0.1932 AIC 534.444 439.594 Likelihood Ratio 104.8499 5 <.0001
AST 1 1.749 0.2897 36.4438 <.0001 5.75 SC 538.737 465.355 Score 105.1097 5 <.0001
FLASH 1 1.2118 0.3021 16.0853 <.0001 3.36 -2 Log L 532.444 427.594 Wald 77.3054 5 <.0001
PLT 1 -0.9608 0.2489 14.9 0.0001 0.38 0.1762

Decel 1 -0.3177 0.0829 14.6779 0.0001 0.73 0.2813
SPEED_FT 1 -0.0318 0.0132 5.7528 0.0165 0.97

R-Square
Max-rescaled R-2

Test
Chi-

Square DF
Pr > ChiS

q
Pr > ChiS

q Criterion
Intercept 

Only
Intercept and 

Covariates

Testing Global Null Hypothesis: BETA=0Analysis of Maximum Likelihood Estimates Odds Ratio 
Point 

Estimate

Model Fit Statistics

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square

 
e) Restricted Model 3* 

Intercept 1 -0.3776 0.2861 1.7418 0.1869 AIC 534.444 443.418 Likelihood Ratio 99.0262 4 <.0001
AST 1 1.7206 0.2851 36.4131 <.0001 5.59 SC 538.737 464.885 Score 97.7912 4 <.0001
FLASH 1 1.1891 0.3004 15.6718 <.0001 3.28 -2 Log L 532.444 433.418 Wald 72.6737 4 <.0001
PLT 1 -0.9551 0.2469 14.9664 0.0001 0.39 0.1673

Decel 1 -0.3818 0.0818 21.7706 <.0001 0.68 0.2671

Analysis of Maximum Likelihood Estimates Odds Ratio 
Point 

Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square
Pr > ChiS

q Criterion DF
Pr > ChiS

q

R-Square
Max-rescaled R-2

Intercept 
Only

Intercept and 
Covariates Test

Chi-
Square

 
 

* Model was selected as preferred model in its category 
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Table A-26: DYM Results of Cumulative Logistic Regression, MB-CLT 
 

a) Unrestricted Model** 

Intercept 1 -0.0622 0.3954 0.0247 0.8751 . AIC 669.68 568.757 Likelihood Ratio 114.923 7 <.0001
Intercept 1 0.5535 0.3991 1.9235 0.1655 . SC 678.263 607.381 Score 133.119 7 <.0001
ADY 1 -0.8153 0.3484 5.4751 0.0193 0.443 -2 Log L 665.680 550.757 Wald 83.2733 7 <.0001
FLASH 1 -0.766 0.3085 6.1649 0.013 0.465 0.1917
PLT 1 0.7067 0.2586 7.4707 0.0063 2.027 0.2706
PREV 1 0.8638 0.3081 7.8586 0.0051 2.372 Chi-Square DF
PXW 1 -0.8006 0.3376 5.6258 0.0177 0.449 12.8309 10
TRIG 1 -1.127 0.3756 9.0034 0.0027 0.324  
Decel 1 0.3793 0.0857 19.5974 <.0001 1.461
** Proportional Odds Assumption was rejected at p<0.0001

0.2333
PR > Chi2

R-Square
Max-rescaled R-2 Residual Chi2 Test

Pr > ChiSq Criterion
Intercept 

Only
Pr > ChiS

q
Intercept 

and Test
Chi-

Square DF

Model Fit Statistics Testing Global Null Hypothesis: BETA=0Analysis of Maximum Likelihood Estimates Odds Ratio 
Point 

EstimateParameter DF Estimate
Standard 

Error
Wald Chi-

Square

 
b) Restricted Model 1** 

Intercept 1 -0.2414 0.533 0.2052 0.6506 AIC 670.112 594.364 Likelihood Ratio 89.7475 7 <.0001
Intercept 1 0.3317 0.5344 0.3851 0.5349 SC 678.699 633.005 Score 96.5818 7 <.0001
AST 1 -1.4959 0.2995 24.9429 <.0001 0.224 -2 Log L 666.112 576.364 Wald 67.4291 7 <.0001
FLASH 1 -0.7793 0.3661 4.5313 0.0333 0.459 0.1529
NEAR 1 -0.2161 0.2602 0.6894 0.4064 0.806 0.2159
PLT 1 0.864 0.241 12.8535 0.0003 2.373
trtmt 1 -0.231 0.3081 0.5621 0.4534 0.794
Decel 1 0.306 0.0822 13.8595 0.0002 1.358
SPEED_FT 1 0.0256 0.0129 3.9679 0.0464 1.026
** Proportional Odds Assumption was rejected at p<0.0001

R-Square
Max-rescaled R-2

Test
Chi-

Square DF
Pr > ChiS

qParameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion
Intercept 

Only
Intercept and 

Covariates

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0
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c) Restricted Model 2** 

Intercept 1 -0.4254 0.5035 0.714 0.3981 AIC 670.112 591.566 Likelihood Ratio 88.546 5 <.0001
Intercept 1 0.1467 0.5046 0.0846 0.7712 SC 678.699 621.62 Score 95.7918 5 <.0001
AST 1 -1.4007 0.2734 26.2518 <.0001 0.246 -2 Log L 666.112 577.566 Wald 67.4935 5 <.0001
FLASH 1 -0.96 0.2899 10.9664 0.0009 0.383 0.1510

PLT 1 0.8732 0.2403 13.2069 0.0003 2.395 0.2132
Decel 1 0.292 0.0797 13.4126 0.0002 1.339
SPEED_FT 1 0.0263 0.0127 4.2832 0.0385 1.027
** Proportional Odds Assumption was rejected at p<0.0001

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq

R-Square
Max-rescaled R-2

Testing Global Null Hypothesis: BETA=0

Criterion
Intercept 

Only
Intercept and 

Covariates Test
Chi-

Square DF
Pr > ChiS

q

 
d) Restricted Model 3** 

Intercept 1 0.4323 0.28 2.3843 0.1226 AIC 670.112 594.067 Likelihood Ratio 84.0454 4 <.0001
Intercept 1 0.9993 0.2868 12.1425 0.0005 SC 678.699 619.827 Score 89.1761 4 <.0001
AST 1 -1.3916 0.2709 26.3778 <.0001 0.249 -2 Log L 666.112 582.067 Wald 63.3124 4 <.0001
FLASH 1 -0.9257 0.2892 10.2426 0.0014 0.396 0.1439

PLT 1 0.8642 0.2389 13.084 0.0003 2.373 0.2032
Decel 1 0.3508 0.0785 19.9575 <.0001 1.42
** Proportional Odds Assumption was rejected at p<0.0001

R-Square
Max-rescaled R-2

Test
Chi-

Square DF
Pr > ChiS

q

Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion
Intercept 

Only
Intercept and 

Covariates

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics
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Table A-27: DYM Results of Multinomial Logistic Regression, MB-CLT 
a) Unrestricted Model 

Intercept-2 1 2.2846 1.2016 3.6148 0.0573 AIC 669.680 540.955 Likelihood Ratio 160.725 16 <.0001
Intercept-3 1 -1.0084 0.7479 1.818 0.1776 SC 678.263 618.203 Score 169.053 16 <.0001
ADY-2 1 0.9542 0.5501 3.0084 0.0828 2.597 -2 Log L 665.680 504.955 Wald 104.061 16 <.0001
ADY-3 1 1.2322 0.3761 10.7333 0.0011 3.429 0.2574
AST-2 1 1.5514 0.5232 8.7942 0.003 4.718 0.3633
AST-3 1 0.6397 0.4271 2.2433 0.1342 1.896 Chi-Square DF
FLASH-2 1 1.6247 0.4748 11.7116 0.0006 5.077 28.5359 18
FLASH-3 1 0.8271 0.3762 4.8349 0.0279 2.287
PLT-2 1 -0.9126 0.4511 4.0934 0.0431 0.401
PLT-3 1 -0.6768 0.2972 5.1858 0.0228 0.508
PREV-2 1 -1.1762 0.506 5.4026 0.0201 0.308
PREV-3 1 -0.9067 0.3562 6.4795 0.0109 0.404
TRIG-2 1 1.7517 0.5915 8.7702 0.0031 5.765
TRIG-3 1 1.4121 0.5017 7.9206 0.0049 4.105
DECEL-2 1 -1.2308 0.2809 19.1977 <.0001 0.292
DECEL-3 1 -0.244 0.1279 3.6382 0.0565 0.783
TTC_V-2 1 -0.1738 0.0679 6.5406 0.0105 0.84
TTC_V-3 1 0.0376 0.0325 1.34 0.247 1.038
* Estimates for SY=2 and HY=3 are relative to baseline response NY=1

Intercept 
and Test

Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq
Chi-

Square DF
Pr > ChiS

q

Max-rescaled R-2

Analysis of Maximum Likelihood Estimates Odds Ratio 
Point 

Estimate

Model Fit Statistics

R-Square

Criterion
Intercept 

Only

Residual Chi2 Test
PR > Chi2

0.0544
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b) Restricted Model 1 

Intercept-2 1 0.0311 0.8045 0.0015 0.9692 AIC 670.112 570.576 Likelihood Ratio 119.5357 10 <.0001
Intercept-3 1 0.0764 0.5829 0.0172 0.8957 SC 678.699 622.097 Score 125.1188 10 <.0001
AST-2 1 2.5332 0.4244 35.6343 <.0001 12.594 -2 Log L 666.112 546.576 Wald 81.7971 10 <.0001
AST-3 1 1.3971 0.33 17.9216 <.0001 4.043 0.1982
FLASH-2 1 1.9417 0.4458 18.9692 <.0001 6.971 0.28
FLASH-3 1 0.8984 0.3477 6.6755 0.0098 2.456
PLT-2 1 -1.2522 0.4084 9.4004 0.0022 0.286
PLT-3 1 -0.8639 0.2757 9.8205 0.0017 0.422
DECEL-2 1 -0.4681 0.1722 7.3893 0.0066 0.626
DECEL-3 1 -0.2715 0.0884 9.4306 0.0021 0.762
SPEED_FT-2 1 -0.0474 0.0215 4.8741 0.0273 0.954
SPEED_FT-3 1 -0.0252 0.0147 2.9496 0.0859 0.975
* Estimates for SY=2 and HY=3 are relative to baseline response NY=1

Standard 
Error

Wald Chi-
Square Test

Chi-
Square

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics

Parameter DF Estimate

Testing Global Null Hypothesis: BETA=0

Pr > ChiSq Criterion
Intercept 

Only
Intercept and 

Covariates DF
Pr > ChiS

q

R-Square
Max-rescaled R-2

 
 

c) Restricted Model 2 
 

Intercept-2 2 -1.4458 0.4994 8.3817 0.0038 AIC 670.112 573.053 Likelihood Ratio 113.0584 8 <.0001
Intercept-3 3 -0.7815 0.3166 6.0915 0.0136 SC 678.699 615.988 Score 116.4177 8 <.0001
AST-2 2 2.5006 0.418 35.795 <.0001 12.19 -2 Log L 666.112 553.053 Wald 77.7378 8 <.0001
AST-3 3 1.3646 0.3268 17.432 <.0001 3.914 0.1886

FLASH-2 2 1.8793 0.4397 18.2628 <.0001 6.549 0.2663
FLASH-3 3 0.8844 0.3466 6.511 0.0107 2.421
PLT-2 2 -1.2003 0.4022 8.9041 0.0028 0.301
PLT-3 3 -0.8684 0.2746 10.0021 0.0016 0.42
DECEL-2 2 -0.6037 0.1694 12.7066 0.0004 0.547
DECEL-3 3 -0.3144 0.0866 13.1672 0.0003 0.73
* Estimates for SY=2 and HY=3 are relative to baseline response NY=1

Standard 
Error

Wald Chi-
Square Test

Chi-
Square

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics

Parameter DF Estimate

Testing Global Null Hypothesis: BETA=0

Pr > ChiSq Criterion
Intercept 

Only
Intercept and 

Covariates DF
Pr > ChiS

q

R-Square
Max-rescaled R-2
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Table A-28: DYM Results of Nested Logistic Regression, MB-CLT 
a) Unrestricted Model 

 

Intercept 1 0.6967 0.848 0.6749 0.4113 AIC 135.668 113.838 Likelihood Ratio 29.83 4 <.0001
AST 1 -1.7344 0.5438 10.1706 0.0014 0.177 SC 138.322 127.108 Score 25.8091 4 <.0001
COM*** 1 -1.7923 0.6093 8.6537 0.0033 0.167 -2 Log L 133.668 103.838 Wald 19.5429 4 0.0006
TRTMT 1 -2.2495 0.6146 13.3956 0.0003 0.105 0.2473
SPEED_FT 1 0.0683 0.0253 7.2688 0.007 1.071 0.3435

*** First level of nested logit model is identical with binary logistics model Chi-Square DF
**** COM was allowed to enter the P(HY|Y) model, but not the other models 9.5619 11

Max-rescaled R-2 Residual Chi2 Test

0.5702
PR > Chi2

Chi-
Square DF

Pr > ChiS
q

R-Square

Criterion
Intercept 

Only
Intercept 

and Test

Analysis of Maximum Likelihood Estimates Odds Ratio 
Point 

Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq

 
b) Restricted Model – 1 

Intercept 1 0.5539 0.9463 0.3426 0.5583 AIC 135.668 125.531 Likelihood Ratio 24.1373 7 0.0011
AST 1 -1.9421 0.5986 10.5248 0.0012 0.143 SC 138.322 146.762 Score 21.3125 7 0.0033
FLASH 1 -0.2999 0.6462 0.2153 0.6426 0.741 -2 Log L 133.668 109.531 Wald 16.831 7 0.0185
NEAR 1 -0.4934 0.5448 0.8202 0.3651 0.611 0.2054
PLT 1 0.596 0.4845 1.5135 0.2186 1.815 0.2852
trtmt 1 -1.6901 0.6757 6.2558 0.0124 0.184
Decel 1 0.2262 0.1956 1.3374 0.2475 1.254
SPEED_FT 1 0.0378 0.0252 2.2516 0.1335 1.038
*** First level of nested logit model is identical with binary logistics model 

Test
Chi-

Square

R-Square
Max-rescaled R-2

Intercept 
Only

Intercept and 
Covariates

Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion DF
Pr > ChiS

q

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics

 
c) Restricted Model – 2 

Intercept 1 0.6146 0.8316 0.5461 0.4599 AIC 135.668 121.558 Likelihood Ratio 20.11 3 0.0002
AST 1 -1.6594 0.5139 10.4266 0.0012 0.190 SC 138.322 132.174 Score 18.54 3 0.0003
trtmt 1 -1.6087 0.5126 9.8482 0.0017 0.200 -2 Log L 133.668 113.558 Wald 15.12 3 0.0017
SPEED_FT 1 0.0444 0.0227 3.8297 0.0504 1.045 0.1743
*** First level of nested logit model is identical with binary logistics model 0.2421Max-rescaled R-2

Pr > ChiS
q

R-Square

Criterion
Intercept 

Only
Intercept and 

Covariates Test
Wald Chi-

Square Pr > ChiSq
Chi-

Square DF

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
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d) Restricted Model – 3* 

Intercept 1 1.5249 0.5468 7.7784 0.0053 AIC 135.668 122.671 Likelihood Ratio 18.9968 3 0.0003
AST 1 -1.4754 0.4943 8.9093 0.0028 0.229 SC 138.322 133.287 Score 17.1811 3 0.0006
trtmt 1 -1.5803 0.5069 9.7214 0.0018 0.206 -2 Log L 133.668 114.671 Wald 14.1989 3 0.0026
Decel 1 0.2873 0.1827 2.473 0.1158 1.333 0.1655
*** First level of nested logit model is identical with binary logistics model 0.2299Max-rescaled R-2

Chi-
Square DF

Pr > ChiS
q

R-Square

Criterion
Intercept 

Only
Intercept and 

Covariates Test

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq

 
* Model was selected as preferred model in its category
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Table A-29: Correlation Matrix with Yield Response, MB-RAL * 

YI
EL

D

A
D

Y

A
ST

C
O

M

FO
LL

H
EV

M
U

P

N
EA

R

PL
T

PR
EV

PX
W

Q
U

E

TR
IG

TR
TM

T

D
EC

EL

D
IS

T1

SP
EE

D
_F

T

YIELD

ADY 0.16
0.0007

AST 0.29 -0.02
<.0001 0.5908

COM 0.45 -0.05 0.03
<.0001 0.2375 0.5551

FOLL 0.01 -0.07 -0.04 0.04
0.7614 0.1217 0.3491 0.3573

HEV -0.01 0.14 0.00 -0.05 -0.02
0.8072 0.0025 0.925 0.3114 0.7404

MUP 0.14 0.06 -0.03 0.00 0.04 0.05
0.0029 0.2258 0.4834 0.9745 0.4159 0.3196

NEAR 0.06 -0.18 -0.12 0.06 0.12 -0.04 0.05
0.2144 <.0001 0.009 0.1758 0.0074 0.4081 0.2488

PLT -0.06 -0.10 -0.11 -0.01 0.71 0.01 0.04 0.15
0.1917 0.0248 0.0139 0.8779 <.0001 0.9111 0.3402 0.0015

PREV -0.07 -0.02 -0.09 -0.11 -0.02 0.03 0.15 -0.03 0.34
0.1135 0.6537 0.0483 0.0199 0.6781 0.4563 0.0009 0.5463 <.0001

PXW 0.24 0.07 0.21 0.05 -0.03 0.00 0.05 -0.04 -0.16 -0.26
<.0001 0.1227 <.0001 0.266 0.5186 0.9208 0.2488 0.3912 0.0004 <.0001

QUE 0.08 -0.06 0.03 -0.01 0.21 -0.03 0.07 0.08 0.25 0.15 -0.07
0.0815 0.1822 0.5598 0.8872 <.0001 0.4595 0.1171 0.0846 <.0001 0.0013 0.1122

TRIG 0.29 -0.02 0.60 0.03 -0.06 0.03 -0.01 -0.08 -0.12 -0.11 0.28 -0.05
<.0001 0.6235 <.0001 0.5598 0.1622 0.4784 0.8522 0.08 0.0075 0.0202 <.0001 0.2437

TRTMT 0.16 0.03 0.08 0.08 0.06 -0.04 0.01 0.02 0.04 -0.12 0.07 0.05 0.05
0.0003 0.5804 0.091 0.091 0.2072 0.3812 0.841 0.6839 0.3914 0.007 0.1475 0.29 0.2857

DECEL -0.25 -0.13 0.00 -0.11 -0.02 -0.04 -0.15 0.06 -0.09 -0.28 0.06 0.00 -0.02 -0.08
<.0001 0.0043 0.9166 0.0209 0.6363 0.41 0.0015 0.2296 0.0506 <.0001 0.1752 0.9531 0.6267 0.0859

DIST1 0.12 0.18 -0.04 0.06 -0.08 -0.02 0.19 -0.01 -0.05 0.38 -0.08 -0.22 0.01 -0.11 -0.49
0.0113 <.0001 0.3918 0.2097 0.072 0.6946 <.0001 0.7966 0.2699 <.0001 0.0839 <.0001 0.7899 0.0127 <.0001

SPEED_FT -0.14 -0.01 0.04 0.01 -0.19 -0.01 -0.05 0.03 -0.25 -0.10 -0.01 -0.43 0.07 -0.18 0.26 0.33
0.0029 0.9043 0.4218 0.7872 <.0001 0.8054 0.3295 0.5104 <.0001 0.0285 0.8842 <.0001 0.1165 <.0001 <.0001 <.0001

TTC 0.19 0.20 -0.05 0.06 -0.01 -0.02 0.23 -0.02 0.04 0.43 -0.07 -0.10 -0.01 -0.06 -0.61 0.92 -0.02
<.0001 <.0001 0.2369 0.2298 0.7533 0.6169 <.0001 0.6641 0.4049 <.0001 0.1236 0.0257 0.7933 0.2185 <.0001 <.0001 0.6481  

* Shaded cells have correlation > 0.30; bold values are significant at the 0.05 confidence level  
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Table A-30: DYM Results of Multi-Linear Regression, MB-RAL 
 

a) Full Model 

Parameter Estimate
Standard 
Error t-value PR > |t| Source DF

Sum of 
Squares

Mean 
Squares F-Value pr > F

R-
Square

Coeff 
Var Root MSE

Yield 
Mean

Intercept 0.1253 0.1966 0.64 0.5241 Model 14 24.93 1.780 9.95 <.0001 0.2518 ###### 0.4230 0.3613
ADY 0.2215 0.0832 2.66 0.0081 Error 414 74.07 0.178916
AST 0.3230 0.0905 3.57 0.0004 Corr. Total 428 99.00
FOLL 0.0377 0.0737 0.51 0.6095
NEAR 0.1215 0.0444 2.74 0.0065
PLT -0.0736 0.0710 -1.04 0.3003
PREV -0.0883 0.0596 -1.48 0.1389
PXW 0.1822 0.0552 3.3 0.0011
QUE 0.2158 0.1082 1.99 0.0468
TRIG 0.2255 0.1198 1.88 0.0604
trtmt 0.1042 0.0428 2.44 0.0152
Decel -0.0610 0.0195 -3.13 0.0019
DIST1 -0.0012 0.0008 -1.54 0.1241
SPEED_FT 0.0077 0.0059 1.32 0.1878
TTC_V 0.0431 0.0275 1.57 0.1173

Adj. R - Square
0.23

 
b) Restricted Model 

Parameter Estimate
Standard 
Error t-value PR > |t| Source DF

Sum of 
Squares

Mean 
Squares F-Value pr > F

R-
Square

Coeff 
Var Root MSE

Yield 
Mean

Intercept 0.5082 0.1007 5.05 <.0001 Model 6 17.97 2.995 15.55 <.0001 0.1808 120.944 0.4388 0.3628
AST 0.4895 0.0732 6.69 <.0001 Error 423 81.44 0.192522
NEAR 0.1166 0.0446 2.61 0.0093 Corr. Total 429 99.40
PLT -0.1021 0.0458 -2.23 0.0264
trtmt 0.1210 0.0435 2.78 0.0056
Decel -0.0572 0.0115 -4.96 <.0001
SPEED_FT -0.0021 0.0027 -0.78 0.4386

Adj. R - Square
0.17
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Table A-31: DYM Results of Binary Logistic Regression, MB-RAL 
 

a) Full Model 

Intercept 1 -1.5824 1.1915 1.7639 0.1841 AIC 563.274 471.903
Likelihood 
Ratio 119.3707 14 <.0001

ADY 1 1.0882 0.4458 5.9585 0.0146 2.97 SC 567.336 532.825 Score 108.0163 14 <.0001
AST 1 1.7324 0.5382 10.3636 0.0013 5.65 -2 Log L 561.274 441.903 Wald 76.6804 14 <.0001
FOLL 1 0.0853 0.4295 0.0395 0.8425 1.09 0.2429
NEAR 1 0.6693 0.2657 6.3425 0.0118 1.95 0.3329
PLT 1 -0.328 0.4125 0.6322 0.4266 0.72
PREV 1 -0.5119 0.3431 2.2252 0.1358 0.60
PXW 1 0.9394 0.3084 9.2756 0.0023 2.56
QUE 1 1.1165 0.6078 3.3746 0.0662 3.05
TRIG 1 1.6034 0.8766 3.3459 0.0674 4.97
TRTMT 1 0.5553 0.2431 5.2177 0.0224 1.74
DECEL 1 -0.415 0.136 9.3076 0.0023 0.66
DIST1 1 -0.0059 0.00466 1.6083 0.2047 0.99
SPEED_FT 1 0.0449 0.036 1.5552 0.2124 1.05
TTC_V 1 0.1871 0.1623 1.3292 0.249 1.21

Max-rescaled R-2

Chi-
Square DF

Pr > ChiS
q

R-Square

Criterion
Intercept 

Only
Intercept and 

Covariates Test

Analysis of Maximum Likelihood Estimates Odds Ratio 
Point 

Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq

 
b) Unrestricted Model 

Intercept 1 -0.3229 0.3992 0.6541 0.4187 . AIC 563.274 465.024
Likelihood 
Ratio 114.2501 8 <.0001

ADY 1 1.0963 0.4386 6.2471 0.0124 2.99 SC 567.336 501.577 Score 102.8855 8 <.0001
AST 1 1.8089 0.5319 11.5658 0.0007 6.10 -2 Log L 561.274 447.024 Wald 72.6349 8 <.0001
NEAR 1 0.7021 0.2593 7.3319 0.0068 2.02 0.2338
PREV 1 -0.5755 0.2801 4.2229 0.0399 0.56 0.3204
PXW 1 0.9257 0.3067 9.1104 0.0025 2.52 Chi-Square DF
TRIG 1 1.6642 0.8765 3.6045 0.0576 5.28 5.0711 6
TRTMT 1 0.5399 0.2344 5.3058 0.0213 1.72
DECEL 1 -0.3758 0.0756 24.6862 <.0001 0.69

0.5347

Max-rescaled R-2 Residual Chi-Square Test
Pr > ChiSq

Chi-
Square DF

Pr > ChiS
q

R-Square

Criterion
Intercept 

Only
Intercept and 

Covariates Test

Analysis of Maximum Likelihood Estimates Odds Ratio 
Point 

Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq
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c) Restricted Model 1 

Intercept 1 0.1324 0.5268 0.0632 0.8015 . AIC 565.306 493.258
Likelihood 
Ratio 84.0477 6 <.0001

AST 1 2.4965 0.4475 31.1262 <.0001 12.14 SC 569.370 521.705 Score 77.7245 6 <.0001
NEAR 1 0.6249 0.242 6.6701 0.0098 1.87 -2 Log L 563.306 479.258 Wald 59.3376 6 <.0001
PLT 1 -0.5153 0.2414 4.5552 0.0328 0.60 0.1775
TRTMT 1 0.6221 0.2268 7.525 0.0061 1.86 0.2431
DECEL 1 -0.3287 0.0702 21.9219 <.0001 0.72
SPEED_FT 1 -0.0085 0.0141 0.3608 0.5481 0.99

Max-rescaled R-2

Chi-
Square DF

Pr > ChiS
q

R-Square

Criterion
Intercept 

Only
Intercept and 

Covariates Test

Analysis of Maximum Likelihood Estimates Odds Ratio 
Point 

Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq

 
d) Restricted Model 2* 

Intercept 1 -0.124 0.3083 0.1619 0.6875 . AIC 565.306 491.62
Likelihood 
Ratio 83.6863 5 <.0001

AST 1 2.4865 0.4468 30.9666 <.0001 12.02 SC 569.37 516.002 Score 77.2238 5 <.0001
NEAR 1 0.6165 0.2415 6.5179 0.0107 1.85 -2 Log L 563.306 479.620 Wald 59.0366 5 <.0001
PLT 1 -0.4907 0.2377 4.2617 0.039 0.61 0.1769
trtmt 1 0.6477 0.2228 8.4534 0.0036 1.91 0.2442
Decel 1 -0.3441 0.0658 27.3609 <.0001 0.71

R-Square
Max-rescaled R-2

Test
Chi-

Square DF
Pr > ChiS

qPr > ChiSq Criterion
Intercept 

Only
Intercept and 

Covariates

Analysis of Maximum Likelihood Estimates Odds Ratio 
Point 

Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square

 
 

* Model was selected as preferred model in its category 
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 Table A-32: DYM Results of Cumulative Logistic Regression, MB-RAL 
 

a) Unrestricted Model** 

Intercept 1 1 0.5806 0.2859 4.1237 0.0423 AIC 779.988 719.41 Likelihood Ratio 70.5788 5 <.0001
Intercept 2 1 1.6216 0.2986 29.4908 <.0001 SC 788.111 747.84 Score 72.4797 5 <.0001
AST 1 -1.114 0.3386 10.8228 0.001 0.328 -2 Log L 775.988 705.410 Wald 56.593 5 <.0001
NEAR 1 -0.606 0.2248 7.267 0.007 0.546 0.1517
PXW 1 -0.9424 0.251 14.0995 0.0002 0.39 0.1814
TRTMT 1 -0.5001 0.2099 5.6733 0.0172 0.606 Chi-Square DF

DECEL 1 0.2854 0.0605 22.2684 <.0001 1.33 12.8996 9
** Proportional Odds Assumption was rejected at p<0.0001

0.1672

Residual Chi-Square Test
Pr > ChiSq

Max.ReScaled R2

Chi-
Square DF

Pr > ChiS
q

R-Square

Criterion
Intercept 

Only
Intercept 

and Test

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq

 
 

b) Restricted Model - 1** 

Intercept 1 1 -0.3355 0.4849 0.4789 0.4889 AIC 783.337 734.213 Likelihood Ratio 61.1241 6 <.0001
Intercept 2 1 0.6791 0.4866 1.9476 0.1628 SC 791.465 766.723 Score 62.5268 6 <.0001
AST 1 -1.3008 0.3299 15.5507 <.0001 0.272 -2 Log L 779.337 718.213 Wald 49.7261 6 <.0001
NEAR 1 -0.6171 0.2245 7.5556 0.006 0.539 0.1325
PLT 1 0.4626 0.2253 4.2181 0.04 1.588 0.1584
TRTMT 1 -0.5225 0.2109 6.1407 0.0132 0.593
DECEL 1 0.2665 0.0646 17.0214 <.0001 1.305
SPEED_FT 1 0.0179 0.013 1.8868 0.1696 1.018
** Proportional Odds Assumption was rejected at p<0.0001

R-Square
Max.ReScaled R2

Test
Chi-

Square DF
Pr > ChiS

q

Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion
Intercept 

Only
Intercept and 

Covariates

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics

 
 
 
 
 
 
 
 



   

 
 
 258 

c) Restricted Model - 2** 

Intercept 1 0.1987 0.2902 0.4689 0.4935 AIC 783.337 734.05 Likelihood Ratio 59.2874 5 <.0001
Intercept 1 1.2073 0.2988 16.326 <.0001 SC 791.465 762.496 Score 60.3726 5 <.0001
AST 1 -1.2864 0.3284 15.3434 <.0001 0.276 -2 Log L 779.337 720.050 Wald 47.7022 5 <.0001
NEAR 1 -0.5998 0.2242 7.1586 0.0075 0.549 0.1288
PLT 1 0.4069 0.2212 3.3857 0.0658 1.502 0.1539
trtmt 1 -0.5726 0.2073 7.6286 0.0057 0.564
Decel 1 0.3018 0.0607 24.7071 <.0001 1.352
** Proportional Odds Assumption was rejected at p<0.0001

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion
Intercept 

Only
Intercept and 

Covariates

R-Square
Max.ReScaled R2

Testing Global Null Hypothesis: BETA=0

Test
Chi-

Square DF
Pr > ChiS

q
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Table A-33: DYM Results of Multinomial Logistic Regression, MB-RAL 
 

a) Unrestricted Model 

Intercept-2 1 -1.4179 0.7425 3.6469 0.0562 AIC 779.988 653.088 Likelihood Ratio 158.9002 16 <.0001
Intercept-3 1 0.0845 0.6079 0.0193 0.8894 SC 788.111 726.194 Score 162.3283 16 <.0001
ADY-2 1 1.4549 0.5189 7.8603 0.0051 4.284 -2 Log L 775.988 617.088 Wald 97.6017 16 <.0001
ADY-3 1 0.6464 0.5628 1.319 0.2508 1.909 0.3095
AST-2 1 2.6419 0.5933 19.831 <.0001 14.04 0.3702
AST-3 1 1.1937 0.6346 3.5381 0.06 3.299 Chi-Square DF
NEAR-2 1 0.614 0.364 2.8457 0.0916 1.848 16.2814 12
NEAR-3 1 0.767 0.3057 6.2973 0.0121 2.153
PREV-2 1 -1.5586 0.4291 13.1929 0.0003 0.21
PREV-3 1 -0.1675 0.3185 0.2765 0.599 0.846
PXW-2 1 0.8391 0.3923 4.5742 0.0325 2.314
PXW-3 1 1.0286 0.3468 8.7954 0.003 2.797
TRIG-2 1 2.0856 0.9218 5.1185 0.0237 8.049
TRIG-3 1 0.3964 1.1299 0.1231 0.7257 1.486
DECEL-2 1 -0.7012 0.14 25.0835 <.0001 0.496
DECEL-3 1 -0.2122 0.0891 5.679 0.0172 0.809
SPEED_FT-2 1 0.0458 0.0222 4.2471 0.0393 1.047
SPEED_FT-3 1 -0.0396 0.017 5.3873 0.0203 0.961
* Estimates for SY=2 and HY=3 are relative to baseline response NY=1

0.1787

Max.ReScaled R2 Residual Chi-Square Test
Pr > ChiSq

Chi-
Square DF

Pr > ChiS
q

R-Square

Criterion
Intercept 

Only
Intercept 

and Test

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq

 
b) Restricted Model 1 

Intercept-2 1 -2.0258 0.6686 9.1801 0.0024 AIC 783.337 692.779 Likelihood Ratio 106.5584 8 <.0001
Intercept-3 1 0.2857 0.5467 0.273 0.6013 SC 791.465 733.417 Score 112.5071 8 <.0001
AST-2 1 3.2498 0.4864 44.6405 <.0001 25.786 -2 Log L 779.337 672.779 Wald 78.1988 8 <.0001
AST-3 1 1.3081 0.5652 5.3556 0.0207 3.699 0.2195
TRTMT-2 1 0.7069 0.303 5.4426 0.0197 2.028 0.2623
TRTMT-3 1 0.5383 0.2673 4.0539 0.0441 1.713
DECEL-2 1 -0.5036 0.1088 21.4318 <.0001 0.604
DECEL-3 1 -0.1917 0.0791 5.8809 0.0153 0.826
SPEED_FT-2 1 0.0461 0.0193 5.7196 0.0168 1.047
SPEED_FT-3 1 -0.0346 0.0163 4.4919 0.0341 0.966
* Estimates for SY=2 and HY=3 are relative to baseline response NY=1

R-Square
Max.ReScaled R2

Test
Chi-

Square DF
Pr > ChiS

q
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics

Parameter DF Estimate

Testing Global Null Hypothesis: BETA=0
Intercept 

Only
Intercept and 

Covariates
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c) Restricted Model 2 

Intercept-2 1 -0.7151 0.3388 4.4539 0.0348 AIC 783.337 703.391 Likelihood Ratio 91.946 6 <.0001
Intercept-3 1 -0.6684 0.3019 4.9012 0.0268 SC 791.465 735.901 Score 100.2206 6 <.0001
AST-2 1 3.1928 0.4783 44.554 <.0001 24.357 -2 Log L 779.337 687.391 Wald 68.8904 6 <.0001
AST-3 1 1.3702 0.5577 6.0355 0.014 3.936 0.1925
TRTMT-2 1 0.5708 0.2943 3.7608 0.0525 1.77 0.2301
TRTMT-3 1 0.6519 0.2612 6.2306 0.0126 1.919
DECEL-2 1 -0.3794 0.091 17.3732 <.0001 0.684
DECEL-3 1 -0.2669 0.0751 12.6297 0.0004 0.766
* Estimates for SY=2 and HY=3 are relative to baseline response NY=1

Max.ReScaled R2

Chi-
Square DF

Pr > ChiS
q

R-Square

Criterion
Intercept 

Only
Intercept and 

Covariates Test

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq
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Table A-34: DYM Results of Nested Logistic Regression, MB-RAL 
 

a) Unrestricted Model 

Intercept 1 1.1088 0.2915 14.4729 0.0001 AIC 216.714 176.978 Likelihood Ratio 49.7367 5 <.0001
ADY 1 -1.6782 0.5788 8.4065 0.0037 0.187 SC 219.758 195.238 Score 42.0706 5 <.0001
AST 1 -1.7366 0.628 7.6472 0.0057 0.176 -2 Log L 214.714 164.978 Wald 30.1704 5 <.0001
COM 1 -1.5069 0.4318 12.1774 0.0005 0.222 0.2745
QUE 1 2.4945 1.1978 4.3368 0.0373 12.116 0.3361
TRIG 1 -1.8224 0.8804 4.2854 0.0384 0.162 Chi-Square DF
*** First level of nested logit model is identical with binary logistics model 15.5569 10
**** COM was allowed to enter the P(HY|Y) model, but not the other models

Pr > ChiSq

R-Square
Max.ReScaled R2 Residual Chi-Square Test

Test
Chi-

Square DF
Pr > ChiS

q

Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion
Intercept 

Only
Intercept 

and 

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics

0.1130

 
b) Restricted Model – 1 

Intercept 1 1.8814 0.8309 5.1268 0.0236 AIC 218.031 194.699 Likelihood Ratio 35.3323 4 <.0001
AST 1 -2.0394 0.527 14.9782 0.0001 0.13 SC 221.081 216.048 Score 31.4568 4 <.0001
NEAR 1 0.413 0.3994 1.0693 0.3011 1.511 -2 Log L 216.031 180.699 Wald 24.8845 4 0.0006
PLT 1 0.1007 0.4072 0.0611 0.8047 1.106 0.2027
trtmt 1 -0.0629 0.3727 0.0285 0.866 0.939 0.2704
Decel 1 0.4106 0.1424 8.3078 0.0039 1.508
SPEED_FT 1 -0.0871 0.0247 12.4599 0.0004 0.917
*** First level of nested logit model is identical with binary logistics model 
**** COM was allowed to enter the P(HY|Y) model, but not the other models

R-Square
Max.ReScaled R2

Test
Chi-

Square DF
Pr > ChiS

q

Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion
Intercept 

Only
Intercept and 

Covariates

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics

 
c) Restricted Model – 2 

Intercept 1 2.2316 0.6854 10.6003 0.0011 AIC 218.031 190.059 Likelihood Ratio 33.9717 3 <.0001
AST 1 -2.0916 0.5186 16.2637 <.0001 0.123 SC 221.081 202.259 Score 30.3735 3 <.0001
Decel 1 0.4163 0.1421 8.5869 0.0034 1.516 -2 Log L 216.031 182.059 Wald 24.0929 3 <.0001
SPEED_FT 1 -0.0895 0.024 13.8458 0.0002 0.914 0.1957
*** First level of nested logit model is identical with binary logistics model 0.261

R-Square
Max.ReScaled R2

Test
Chi-

Square DF
Pr > ChiS

q

Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion
Intercept 

Only
Intercept and 

Covariates

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics
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d) Restricted Model – 3 

Intercept 1 2.0496 0.6552 9.7843 0.0018 AIC 218.031 197.932 Likelihood Ratio 24.0994 2 <.0001
AST 1 -1.7387 0.4794 13.1558 0.0003 0.176 SC 221.081 207.081 Score 22.2893 2 <.0001
SPEED_FT 1 -0.049 0.0185 6.9986 0.0082 0.952 -2 Log L 216.031 191.932 Wald 18.5429 2 <.0001
*** First level of nested logit model is identical with binary logistics model 0.1431

0.191
R-Square

Max.ReScaled R2

Test
Chi-

Square DF
Pr > ChiS

q

Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion
Intercept 

Only
Intercept and 

Covariates

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics

 
 

e) Restricted Model – 4* 

Intercept 1 0.0965 0.3438 0.0788 0.7789 AIC 218.031 204.325 Likelihood Ratio 17.7064 2 0.0001
AST 1 -1.8219 0.4775 14.5596 0.0001 0.162 SC 221.081 213.474 Score 16.8496 2 0.0002
Decel 1 0.1109 0.1032 1.1552 0.2825 1.117 -2 Log L 216.031 198.325 Wald 14.617 2 0.0007
*** First level of nested logit model is identical with binary logistics model 0.1073

0.1431
R-Square

Max.ReScaled R2

Test
Chi-

Square DF
Pr > ChiS

q

Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion
Intercept 

Only
Intercept and 

Covariates

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics

 
 

* Model was selected as preferred model in its category 
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10.2 Appendix B: Pedestrian Crossing at Mid-Block Models 
 

Cumulative Distribution of 'GO' and 'NoGO' Decisions
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b) After 

 
Figure B-55: Cumulative Prob. Plots for Ped. Crossing– MB-CLT 
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Cumulative Distribution of GO and NOGO Decisions
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b) ‘After’ Case 

 
Figure B-56: Cumulative Prob. Plots for Ped. Crossing– MB-RAL 
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Table B-35: Correlation Matrix – MB-CLT - Gaps* 
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G

A
P
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D
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T

GO

NoGo -1.00
<.0001

ADY 0.23 -0.23
<.0001 <.0001

AST 0.59 -0.59 0.08
<.0001 <.0001 0.1174

COM 0.10 -0.10 -0.01 0.12
0.0586 0.0586 0.8257 0.021

FLASH 0.21 -0.21 0.24 0.04 -0.02
<.0001 <.0001 <.0001 0.4459 0.649

FOLL -0.09 0.09 -0.01 -0.10 0.05 -0.05
0.0867 0.0867 0.8223 0.0503 0.3153 0.3581

HEV 0.03 -0.03 -0.02 -0.04 0.00 -0.04 0.09
0.6303 0.6303 0.702 0.4518 0.9277 0.4291 0.0807

MUP -0.05 0.05 0.03 0.03 0.08 0.12 -0.07 -0.06
0.3186 0.3186 0.5934 0.5553 0.1224 0.0245 0.192 0.2617

NEAR -0.03 0.03 -0.03 -0.07 0.04 0.05 -0.05 -0.05 -0.04
0.5326 0.5326 0.5865 0.2021 0.4081 0.3052 0.2977 0.3595 0.4806

PLT -0.39 0.39 -0.05 -0.30 -0.08 -0.03 0.57 0.06 -0.09 -0.03
<.0001 <.0001 0.307 <.0001 0.1273 0.534 <.0001 0.2555 0.1026 0.52

PREV -0.22 0.22 -0.35 -0.09 0.01 -0.08 0.05 0.02 0.00 -0.03 0.18
<.0001 <.0001 <.0001 0.075 0.8104 0.1199 0.3723 0.6769 0.9606 0.5941 0.0004

PXW 0.07 -0.07 0.07 0.40 0.24 -0.03 0.01 -0.02 0.03 -0.11 0.00 -0.06
0.1708 0.1708 0.154 <.0001 <.0001 0.5435 0.7867 0.702 0.5934 0.0393 0.953 0.243

TRIG 0.24 -0.24 0.20 0.29 -0.01 0.19 0.03 -0.02 -0.11 -0.13 -0.04 -0.11 0.12
<.0001 <.0001 0.0001 <.0001 0.8672 0.0003 0.5113 0.7714 0.0381 0.0103 0.4881 0.0404 0.0193

trtmt 0.20 -0.20 0.12 0.03 -0.05 0.53 0.00 -0.02 -0.02 0.02 -0.07 -0.16 -0.14 0.16
0.0002 0.0002 0.0181 0.541 0.3868 <.0001 0.9881 0.7377 0.7593 0.6815 0.1814 0.0028 0.0078 0.0022

G_NEAR 0.00 0.00 -0.11 -0.10 -0.03 -0.09 -0.07 0.03 -0.11 0.43 0.06 0.09 -0.02 -0.09 -0.15
0.9582 0.9582 0.0293 0.068 0.6064 0.0746 0.1758 0.601 0.0299 <.0001 0.2478 0.0706 0.7262 0.0984 0.0042

G_FAR -0.02 0.02 -0.10 0.11 -0.02 -0.07 0.00 0.04 0.02 -0.53 0.05 0.04 0.22 0.02 -0.13 -0.23
0.7043 0.7043 0.0618 0.0338 0.6585 0.2143 0.9632 0.4275 0.6895 <.0001 0.3517 0.4284 <.0001 0.7556 0.0126 <.0001

G_COMBO -0.14 0.14 -0.25 -0.10 -0.06 0.03 0.06 -0.04 0.07 0.06 -0.05 0.06 -0.23 -0.06 0.18 -0.59 -0.50524
0.0089 0.0089 <.0001 0.0496 0.2544 0.5095 0.2866 0.4165 0.1721 0.2592 0.3852 0.2848 <.0001 0.2854 0.0005 <.0001 <.0001

Decel -0.31 0.31 -0.12 -0.12 -0.02 -0.06 -0.03 -0.05 0.01 0.00 0.10 -0.11 0.00 -0.08 0.15 -0.06 -0.04 0.14569
<.0001 <.0001 0.0276 0.0221 0.6359 0.2422 0.5105 0.3728 0.8425 0.9672 0.0625 0.0305 0.9595 0.1064 0.0045 0.2512 0.3928 0.0052

DIST1 0.38 -0.38 0.06 0.15 -0.03 -0.05 -0.07 0.05 0.05 -0.05 -0.17 0.00 0.03 -0.02 -0.14 0.13 0.08 -0.21 -0.39
<.0001 <.0001 0.2206 0.0033 0.624 0.3608 0.1979 0.3539 0.3201 0.307 0.0013 0.98 0.564 0.6385 0.0062 0.0134 0.1191 <.0001 <.0001

D_WAIT 0.06 -0.06 0.13 0.00 -0.03 -0.09 -0.03 0.00 0.02 0.04 0.01 -0.03 -0.04 -0.02 -0.20 0.12 -0.04 -0.13 -0.58 0.76
0.219 0.219 0.0121 0.9802 0.6155 0.0834 0.6215 0.9295 0.6402 0.396 0.8521 0.5203 0.4518 0.7497 0.0001 0.0255 0.5018 0.0168 <.0001 <.0001

O_GAP 0.73 -0.73 0.01 0.33 0.16 0.16 -0.05 0.08 -0.01 -0.14 -0.35 0.01 0.10 0.12 0.09 0.03 0.14 -0.17 -0.35 0.47 -0.03
<.0001 <.0001 0.9108 <.0001 0.0026 0.0022 0.3874 0.1144 0.9104 0.0078 <.0001 0.9159 0.0658 0.0245 0.0818 0.5336 0.0094 0.0014 <.0001 <.0001 0.5449

T_GAP 0.75 -0.75 0.14 0.33 0.02 0.15 -0.06 0.08 -0.03 -0.14 -0.36 -0.12 0.07 0.13 0.11 0.02 0.14 -0.20 -0.37 0.50 0.01 0.94
<.0001 <.0001 0.0081 <.0001 0.7217 0.0052 0.2607 0.109 0.5398 0.007 <.0001 0.0249 0.1591 0.0098 0.0302 0.7511 0.0077 <.0001 <.0001 <.0001 0.8142 <.0001

SPEED_FT -0.04 0.04 -0.05 0.03 -0.05 -0.07 -0.11 -0.01 0.06 -0.02 -0.01 0.05 0.10 -0.13 -0.08 0.09 0.10 -0.13 0.24 0.30807 -0.06 0.01 0.00
0.4727 0.4727 0.3295 0.5736 0.3262 0.2085 0.0308 0.8346 0.2588 0.6881 0.8178 0.306 0.0481 0.0145 0.1064 0.0822 0.0621 0.0135 <.0001 <.0001 0.2312 0.8026 0.9883

TTC_V 0.42 -0.42 0.10 0.16 -0.01 -0.01 -0.05 0.04 0.01 -0.04 -0.17 -0.02 0.00 0.04 -0.14 0.12 0.05 -0.19 -0.69 0.91 0.85 0.49 0.52 -0.05
<.0001 <.0001 0.0676 0.0021 0.824 0.8069 0.3082 0.4063 0.8761 0.4143 0.0008 0.6431 0.9685 0.4854 0.0092 0.0176 0.3083 0.0002 <.0001 <.0001 <.0001 <.0001 <.0001 0.3272 

* Shaded cells have correlation > 0.30 or <-0.30; bold values are significant at the 0.05 confidence level 
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Table B-36: Correlation Matrix – MB-CLT - Lags* 
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GO

NoGo -1.00
<.0001

ADY 0.14 -0.14
0.0599 0.0599

AST 0.62 -0.62 0.05
<.0001 <.0001 0.5105

COM 0.13 -0.13 -0.01 0.12
0.0777 0.0777 0.8682 0.1005

FLASH 0.31 -0.31 0.20 0.19 0.26
<.0001 <.0001 0.0053 0.0081 0.0004

FOLL -0.14 0.14 0.05 -0.09 0.08 0.03
0.0621 0.0621 0.509 0.2204 0.274 0.7213

HEV 0.11 -0.11 -0.03 0.09 -0.01 -0.05 0.08
0.1376 0.1376 0.6801 0.1997 0.8553 0.4788 0.2901

MUP -0.11 0.11 0.06 -0.11 0.13 0.03 -0.02 -0.03
0.1376 0.1376 0.3907 0.1316 0.0733 0.6637 0.7361 0.6792

NEAR 0.02 -0.02 0.01 -0.12 -0.08 -0.07 -0.06 0.04 0.01
0.7458 0.7458 0.8446 0.1081 0.2635 0.3179 0.4134 0.5841 0.8622

PLT -0.27 0.27 0.04 -0.17 0.08 0.01 0.84 0.01 -0.06 -0.06
0.0002 0.0002 0.5919 0.0193 0.3003 0.8836 <.0001 0.9254 0.4565 0.4525

PREV -0.02 0.02 0.11 -0.09 -0.02 0.11 0.02 -0.04 -0.02 -0.03 0.10
0.7448 0.7448 0.145 0.2147 0.8118 0.1278 0.7657 0.5542 0.7741 0.7121 0.1559

PXW 0.31 -0.31 0.27 0.32 -0.02 0.17 -0.06 -0.06 0.02 -0.02 -0.08 0.08
<.0001 <.0001 0.0002 <.0001 0.7361 0.0189 0.4314 0.4023 0.7858 0.7794 0.302 0.2999

TRIG 0.15 -0.15 0.14 0.26 0.37 0.48 -0.01 -0.04 0.09 -0.05 -0.02 -0.05 0.03
0.0393 0.0393 0.0544 0.0003 <.0001 <.0001 0.8909 0.6237 0.2292 0.4891 0.7783 0.5217 0.723

trtmt 0.02 -0.02 -0.02 0.01 0.08 0.30 0.08 0.07 0.03 -0.03 0.09 0.01 -0.10 0.15
0.7751 0.7751 0.7512 0.8727 0.2898 <.0001 0.3034 0.3298 0.653 0.6719 0.2238 0.8475 0.156 0.0367

G_NEAR 0.07 -0.07 -0.10 -0.03 -0.04 -0.03 -0.09 0.10 -0.13 0.53 -0.05 -0.09 0.04 -0.05 -0.14
0.3663 0.3663 0.1816 0.7151 0.5553 0.6903 0.2032 0.1736 0.0827 <.0001 0.4852 0.2392 0.5568 0.4758 0.0616

G_FAR -0.02 0.02 -0.08 0.13 -0.04 -0.14 0.07 -0.01 -0.05 -0.55 0.07 0.00 0.01 0.05 -0.05 -0.29
0.7449 0.7449 0.2676 0.0749 0.6244 0.0562 0.3248 0.8615 0.4983 <.0001 0.3216 0.9648 0.8541 0.5373 0.4754 <.0001

G_COMBO -0.15 0.15 -0.16 -0.16 -0.07 0.00 -0.03 -0.06 0.11 -0.06 -0.02 0.05 -0.12 -0.14 0.16 -0.58 -0.48363
0.0356 0.0356 0.0257 0.029 0.3265 0.95 0.6987 0.4324 0.1338 0.4329 0.82 0.4847 0.1062 0.0602 0.0339 <.0001 <.0001

Decel -0.43 0.43 -0.12 -0.30 -0.03 -0.18 0.16 -0.11 0.07 0.03 0.22 0.03 -0.21 -0.12 0.16 -0.07 0.02 0.10632
<.0001 <.0001 0.1132 <.0001 0.6786 0.013 0.0319 0.1244 0.3589 0.6438 0.0021 0.7132 0.0049 0.1121 0.0309 0.3435 0.776 0.1498

DIST1 0.79 -0.79 0.06 0.54 0.01 0.21 -0.15 0.14 -0.14 -0.04 -0.30 -0.08 0.31 0.06 -0.12 0.06 0.03 -0.12 -0.55
<.0001 <.0001 0.387 <.0001 0.8857 0.0043 0.0449 0.0584 0.0609 0.6118 <.0001 0.303 <.0001 0.3925 0.0982 0.4318 0.6689 0.1017 <.0001

O_LAG 0.87 -0.87 0.11 0.58 0.09 0.31 -0.16 0.13 -0.14 -0.03 -0.29 -0.06 0.34 0.15 -0.05 0.07 0.00279 -0.142 -0.61518 0.9375
<.0001 <.0001 0.1409 <.0001 0.2372 <.0001 0.0331 0.0833 0.0527 0.6421 <.0001 0.4551 <.0001 0.0391 0.4905 0.3241 0.97 0.0538 <.0001 <.0001

T_LAG 0.85 -0.85 0.12 0.56 0.00 0.24 -0.17 0.14 -0.15 -0.03 -0.31 -0.05 0.34 0.08 -0.08 0.07 0.01 -0.12521 -0.61619 0.94843 0.99
<.0001 <.0001 0.1135 <.0001 0.9785 0.0009 0.0176 0.064 0.0364 0.6533 <.0001 0.4707 <.0001 0.2723 0.3009 0.3775 0.8465 0.0895 <.0001 <.0001 <.0001

SPEED_FT 0.03 -0.03 -0.09 0.06 0.06 -0.03 0.05 -0.01 0.04 -0.06 -0.06 -0.16 0.02 0.00 -0.16 -0.06 0.11 0.00 0.23 0.32062 0.08 0.08
0.6602 0.6602 0.2223 0.3819 0.4506 0.6836 0.4629 0.8766 0.5734 0.3814 0.4356 0.033 0.8223 0.9873 0.0265 0.449 0.1452 0.964 0.002 <.0001 0.2866 0.2749

TTC_V 0.85 -0.85 0.12 0.56 0.00 0.24 -0.17 0.14 -0.15 -0.03 -0.31 -0.05 0.34 0.08 -0.08 0.07 0.01 -0.13 -0.62 0.95 0.99 1.00 0.08
<.0001 <.0001 0.1135 <.0001 0.9826 0.0009 0.0176 0.065 0.0362 0.6545 <.0001 0.4721 <.0001 0.27 0.3014 0.3744 0.8504 0.0893 <.0001 <.0001 <.0001 <.0001 0.2761

* Shaded cells have correlation > 0.30 or <-0.30; bold values are significant at the 0.05 confidence level 
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Table B-37: Correlation Matrix – MB-RAL - Gaps* 
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GO
-1.00

NoGo <.0001
0.04 -0.04

ADY 0.5754 0.5754
0.45 -0.45 0.02

AST <.0001 <.0001 0.8236
. . . .

COM . . . .
-0.05 0.05 0.00 -0.01

FOLL 0.4312 0.4312 0.9637 0.8552
0.02 -0.02 0.05 0.05 0.01

HEV 0.7536 0.7536 0.4742 0.4535 0.831
-0.08 0.08 -0.02 -0.02 0.10 0.12

MUP 0.2358 0.2358 0.7245 0.8095 0.1437 0.0697
0.10 -0.10 -0.13 0.03 0.11 0.01 -0.05

NEAR 0.1564 0.1564 0.0479 0.6644 0.1057 0.9173 0.4243
-0.44 0.44 -0.01 -0.21 0.65 0.05 0.09 0.12

PLT <.0001 <.0001 0.8345 0.0017 <.0001 0.4924 0.1964 0.0892
-0.15 0.15 -0.43 -0.15 -0.02 0.10 0.10 0.07 0.18

PREV 0.0265 0.0265 <.0001 0.0243 0.814 0.1558 0.1353 0.2801 0.0086
-0.10 0.10 -0.05 0.03 -0.11 -0.04 -0.05 -0.02 -0.16 -0.13

PXW 0.143 0.143 0.4257 0.6119 0.1055 0.5529 0.4894 0.7468 0.0156 0.0561
-0.16 0.16 -0.04 -0.08 0.18 -0.03 -0.02 0.04 0.17 -0.10 -0.03

QUE 0.0199 0.0199 0.5998 0.2331 0.0095 0.6959 0.7364 0.5574 0.0104 0.124 0.6777
0.18 -0.18 -0.05 0.35 -0.05 -0.04 0.05 -0.02 -0.12 -0.07 -0.04 -0.03

TRIG 0.0077 0.0077 0.4257 <.0001 0.4259 0.5529 0.4529 0.7468 0.0868 0.2929 0.5281 0.6777
0.17 -0.17 0.09 0.14 0.10 0.04 0.03 -0.04 0.09 -0.04 -0.08 -0.04 0.06

trtmt 0.0104 0.0104 0.1955 0.0322 0.1363 0.5849 0.6123 0.5656 0.1704 0.5993 0.2527 0.5226 0.3544
0.15 -0.15 -0.19 0.00 0.03 -0.04 0.00 0.59 0.06 0.12 -0.05 0.04 -0.01 0.02

G_NEAR 0.0289 0.0289 0.0047 0.9438 0.6469 0.5591 0.9967 <.0001 0.4078 0.0792 0.4241 0.5188 0.9301 0.7488
0.02 -0.02 -0.12 -0.05 0.00 0.04 0.05 -0.56 0.00 0.16 -0.03 -0.06 -0.03 0.12 -0.33

G_FAR 0.7495 0.7495 0.0819 0.5051 0.9621 0.5353 0.4833 <.0001 0.9436 0.0167 0.6381 0.3651 0.6381 0.0689 <.0001
-0.19 0.19 -0.22 0.03 -0.04 -0.01 -0.01 -0.09 -0.05 0.02 0.11 0.02 0.06 -0.14 -0.61 -0.37661

G_COMBO 0.0039 0.0039 0.0011 0.6238 0.5687 0.8341 0.864 0.1919 0.4788 0.8175 0.1123 0.7164 0.3702 0.0343 <.0001 <.0001
-0.18 0.18 -0.02 0.08 -0.04 -0.02 0.06 -0.10 -0.01 0.02 0.03 -0.01 -0.01 -0.09 -0.06 -0.06 0.10944

Decel 0.0068 0.0068 0.7361 0.2192 0.5622 0.7185 0.3628 0.1347 0.8328 0.7375 0.6328 0.9074 0.9411 0.1867 0.4054 0.4179 0.1063
0.60 -0.60 -0.04 0.00 -0.03 -0.02 0.02 0.10 -0.32 0.01 -0.08 -0.19 -0.09 0.10 0.14 0.09 -0.20 -0.33

DIST1 <.0001 <.0001 0.5537 0.9955 0.6498 0.8078 0.8177 0.1595 <.0001 0.8999 0.26 0.004 0.1633 0.1255 0.0415 0.1651 0.0034 <.0001
0.03 -0.03 0.33 -0.18 -0.01 -0.01 0.12 0.02 -0.10 -0.15 0.02 -0.10 -0.10 0.04 -0.14 0.01 -0.05 -0.17 0.50

D_WAIT 0.6632 0.6632 <.0001 0.0067 0.8823 0.8501 0.0762 0.7823 0.1298 0.0278 0.7439 0.1529 0.1252 0.5766 0.0389 0.8894 0.4985 0.0121 <.0001
0.72 -0.72 -0.24 0.25 0.06 0.14 0.02 0.07 -0.23 0.13 -0.10 -0.12 0.02 0.23 0.21 0.13 -0.17 -0.19 0.64 -0.09

O_GAP <.0001 <.0001 0.0004 0.0002 0.3723 0.0352 0.7326 0.2707 0.0006 0.0567 0.1522 0.0807 0.7869 0.0006 0.0014 0.0641 0.0101 0.0056 <.0001 0.2043
0.79 -0.79 0.01 0.17 0.06 0.02 -0.01 0.03 -0.29 -0.02 -0.09 -0.13 -0.07 0.20 0.15 0.10 -0.23 -0.25 0.74 0.07 0.86

T_GAP <.0001 <.0001 0.9287 0.0115 0.3618 0.7379 0.8501 0.6947 <.0001 0.7909 0.2103 0.0476 0.3261 0.0024 0.032 0.1287 0.0008 0.0003 <.0001 0.3018 <.0001
0.24 -0.24 -0.11 0.08 -0.10 -0.06 -0.10 0.10 -0.21 -0.03 -0.03 -0.28 0.01 -0.03 0.17 0.01 -0.15 0.20 0.4026 -0.05 0.16 0.17

SPEED_FT 0.0004 0.0004 0.1119 0.2209 0.1276 0.3727 0.1381 0.156 0.0023 0.6592 0.6615 <.0001 0.8823 0.6351 0.0103 0.8611 0.0259 0.002 <.0001 0.4592 0.015 0.0114
0.60 -0.60 0.00 -0.02 0.02 0.03 0.06 0.07 -0.27 0.02 -0.05 -0.16 -0.11 0.13 0.08 0.10 -0.16 -0.30 0.92 0.60 0.67 0.78 0.13

TTC_V <.0001 <.0001 0.9639 0.7843 0.7355 0.648 0.386 0.3364 <.0001 0.7326 0.4825 0.0168 0.0983 0.061 0.2542 0.1231 0.0194 <.0001 <.0001 <.0001 <.0001 <.0001 0.049 
* Shaded cells have correlation > 0.30 or <-0.30; bold values are significant at the 0.05 confidence level 



   

 
 
 268 

Table B-38: Correlation Matrix – MB-RAL - Lags* 
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GO

NoGo -1.00
<.0001

ADY -0.02 0.02
0.6565 0.6565

AST 0.66 -0.66 0.01
<.0001 <.0001 0.875

FOLL -0.04 0.04 0.11 0.00
0.3283 0.3283 0.008 0.9238

HEV 0.02 -0.02 -0.01 0.05 0.02
0.6398 0.6398 0.7371 0.2738 0.5951

MUP -0.10 0.10 0.00 -0.07 0.00 0.01
0.0195 0.0195 0.9293 0.0837 0.9673 0.7426

NEAR -0.01 0.01 0.02 -0.05 0.10 -0.04 0.06
0.8033 0.8033 0.6598 0.2731 0.0258 0.3612 0.1332

PLT -0.12 0.12 0.10 -0.07 0.92 0.01 0.02 0.09
0.0034 0.0034 0.0167 0.1171 <.0001 0.81 0.5603 0.0392

PREV -0.13 0.13 -0.02 -0.12 0.00 -0.03 0.06 -0.03 0.17
0.0017 0.0017 0.7045 0.007 0.9934 0.4581 0.1498 0.5424 <.0001

PXW 0.12 -0.12 0.05 0.10 0.02 0.05 -0.05 -0.06 -0.02 -0.09
0.0065 0.0065 0.2694 0.0238 0.6344 0.2056 0.2632 0.182 0.6259 0.0369

QUE -0.12 0.12 -0.01 -0.08 0.12 -0.02 0.01 -0.04 0.18 0.31 -0.07
0.0047 0.0047 0.8076 0.055 0.0038 0.6337 0.8998 0.3895 <.0001 <.0001 0.0927

TRIG 0.22 -0.22 -0.03 0.33 -0.06 -0.01 -0.08 -0.07 -0.08 -0.06 0.16 -0.04
<.0001 <.0001 0.5399 <.0001 0.1424 0.7908 0.0782 0.0911 0.0587 0.1753 0.0001 0.3842

trtmt -0.04 0.04 0.06 -0.10 0.10 0.05 -0.06 -0.02 0.10 -0.05 0.01 -0.03 0.14
0.3527 0.3527 0.1387 0.0168 0.0208 0.2486 0.1777 0.7167 0.018 0.2501 0.7424 0.415 0.0008

G_NEAR 0.11 -0.11 -0.08 0.04 0.06 0.00 -0.01 0.70 0.04 -0.04 -0.02 -0.02 -0.01 -0.03
0.0084 0.0084 0.0589 0.2959 0.1749 0.9795 0.7334 <.0001 0.3211 0.3677 0.5944 0.5886 0.7402 0.5324

G_FAR 0.06 -0.06 -0.05 0.05 -0.09 -0.04 -0.13 -0.72 -0.10 -0.05 0.06 -0.03 0.07 0.01 -0.50
0.1546 0.1546 0.2841 0.2348 0.0273 0.402 0.0029 <.0001 0.025 0.2127 0.1313 0.5061 0.095 0.7616 <.0001

G_COMBO -0.18 0.18 -0.05 -0.10 -0.01 0.04 0.14 -0.10 0.00 0.10 -0.03 0.06 -0.08 0.01 -0.60 -0.34281
<.0001 <.0001 0.1987 0.0164 0.8531 0.3491 0.0008 0.0169 0.9075 0.0218 0.4688 0.1916 0.056 0.9033 <.0001 <.0001

Decel -0.56 0.56 -0.01 -0.31 0.01 -0.06 0.02 0.06 0.08 0.13 -0.02 0.17 -0.04 -0.01 -0.04 -0.03 0.07411
<.0001 <.0001 0.8083 <.0001 0.7524 0.1488 0.7025 0.1609 0.0755 0.0028 0.6557 <.0001 0.3796 0.807 0.3553 0.4877 0.0828

DIST1 0.66 -0.66 -0.02 0.29 -0.07 -0.02 -0.04 0.00 -0.14 -0.14 -0.04 -0.16 -0.08 -0.10 0.09 0.02 -0.11 -0.55
<.0001 <.0001 0.6658 <.0001 0.1144 0.6266 0.3644 0.9805 0.0011 0.0012 0.3655 0.0002 0.0531 0.0253 0.0354 0.5869 0.0096 <.0001

O_LAG 0.68 -0.68 -0.01 0.34 -0.01 0.07 -0.02 -0.04 -0.08 -0.12 0.04 -0.13 0.01 0.02 0.07 0.05526 -0.1224 -0.57132 0.88454
<.0001 <.0001 0.7374 <.0001 0.7718 0.1159 0.5883 0.3508 0.0483 0.0044 0.3678 0.0015 0.792 0.6976 0.1129 0.1961 0.0041 <.0001 <.0001

T_LAG 0.67 -0.67 -0.01 0.30 -0.01 0.01 -0.02 -0.02 -0.09 -0.14 -0.03 -0.13 -0.10 -0.07 0.08 0.04 -0.11943 -0.60769 0.95433 0.93
<.0001 <.0001 0.7767 <.0001 0.7669 0.748 0.6467 0.6518 0.0436 0.0009 0.4987 0.0031 0.0186 0.0953 0.0546 0.3139 0.0051 <.0001 <.0001 <.0001

SPEED_FT 0.17 -0.17 -0.03 0.12 -0.19 -0.09 -0.06 0.07 -0.23 -0.13 -0.01 -0.31 0.09 -0.10 0.06 -0.04 -0.04 0.05 0.3203 0.08 0.08
<.0001 <.0001 0.5539 0.0067 <.0001 0.0263 0.1381 0.084 <.0001 0.0021 0.7974 <.0001 0.039 0.0179 0.1454 0.4 0.386 0.1987 <.0001 0.0749 0.0754

TTC_V 0.67 -0.67 -0.01 0.30 -0.01 0.01 -0.02 -0.02 -0.09 -0.14 -0.03 -0.13 -0.10 -0.07 0.08 0.04 -0.12 -0.61 0.95 0.93 1.00 0.08
<.0001 <.0001 0.7763 <.0001 0.764 0.749 0.6439 0.6558 0.0432 0.0009 0.496 0.0031 0.0185 0.0942 0.0537 0.3159 0.005 <.0001 <.0001 <.0001 <.0001 0.0738

* Shaded cells have correlation > 0.30 or <-0.30; bold values are significant at the 0.05 confidence level 
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Table B-39: PCM Results of Multi-Linear Regression for Lags – MB-CLT 
 

a) Full Model 
Parameter Estimate Standard Error t Value Pr > |t| Source DF Sum of Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept -0.0024 0.1473 -0.02 0.9873 Model 21 27.6720 1.3177 33.65 <.0001 0.8126 81.3481 0.1979 0.2432
ADY -0.0612 0.1490 -0.41 0.6818 Error 163 6.3821 0.0392
AST 0.1621 0.0438 3.7 0.0003 Corrected Total 184 34.0541
FLASH 0.0728 0.0777 0.94 0.3503
FOLL 0.0237 0.0587 0.4 0.6871
HEV 0.0260 0.0878 0.3 0.7675
MUP 0.0159 0.0359 0.44 0.6576
NEAR 0.0559 0.0415 1.35 0.1799
PLT -0.0601 0.0602 -1 0.3195
PREV 0.0360 0.0683 0.53 0.5993
PXW -0.0205 0.0554 -0.37 0.7124
TRIG -0.1762 0.0999 -1.76 0.0795
trtmt 0.0160 0.0335 0.48 0.6338
G_NEAR -0.2229 0.1134 -1.96 0.0511
G_FAR -0.1957 0.1214 -1.61 0.1088
G_COMBO -0.2227 0.1139 -1.95 0.0523
Decel 0.0084 0.0024 3.43 0.0008
DIST1 0.0000 0.0004 -0.08 0.9373
O_LAG 0.1058 0.0333 3.18 0.0018
T_LAG -1.3288 1.2464 -1.07 0.288
SPEED_FT -0.0030 0.0027 -1.1 0.2734
TTC_V 1.3108 1.2508 1.05 0.2962

Adj. R-Square
0.79

 
b) Unrestricted Model 1 

Parameter Estimate Standard Error t Value Pr > |t| Source DF Sum of Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept -0.1871 0.0378 -4.95 <.0001 Model 5 26.2863 5.2573 121.15 <.0001 0.7719 85.6410 0.2083 0.2432
AST 0.1689 0.0441 3.83 0.0002 Error 179 7.7678 0.0434
TRIG -0.0274 0.0844 -0.32 0.7461 Corrected Total 184 34.0541
G_NEAR 0.0055 0.0441 0.12 0.9008
G_COMBO -0.0141 0.0391 -0.36 0.7188
O_LAG 0.0777 0.0045 17.29 <.0001

Adj. R-Square
0.77

 
c) Unrestricted Model 2 

Parameter Estimate Standard Error t Value Pr > |t| Source DF Sum of Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept -0.2567 0.0331 -7.76 <.0001 Model 4 26.5665 6.6416 159.66 <.0001 0.7801 83.8480 0.2040 0.2432
AST 0.1741 0.0419 4.15 <.0001 Error 180 7.4876 0.0416
NEAR 0.0636 0.0304 2.09 0.0381 Corrected Total 184 34.0541
trtmt 0.0520 0.0301 1.73 0.0862
O_LAG 0.0780 0.0044 17.79 <.0001

Adj. R-Square
0.78
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d) Unrestricted Model 3 
Parameter Estimate Standard Error t Value Pr > |t| Source DF Sum of Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept -0.1942 0.0237 -8.18 <.0001 Model 2 26.2690 13.1345 307.06 <.0001 0.7714 85.0264 0.2068 0.2432
AST 0.1671 0.0421 3.97 0.0001 Error 182 7.7850 0.0428
O_LAG 0.0779 0.0044 17.57 <.0001 Corrected Total 184 34.0541 Adj. R-Square

0.77  
e) Restricted Model 1 

Parameter Estimate Standard Error t Value Pr > |t| Source DF Sum of Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept -0.2376 0.0414 -5.74 <.0001 Model 6 26.0906 4.3484 97.2 <.0001 0.7662 86.9560 0.2115 0.2432
AST 0.2006 0.0428 4.68 <.0001 Error 178 7.9634 0.0447
FLASH 0.1517 0.0646 2.35 0.02 Corrected Total 184 34.0541
NEAR 0.0688 0.0317 2.17 0.0311
PLT -0.013976564 0.03293767 -0.42 0.6718
trtmt 0.041659113 0.03320465 1.25 0.2113
T_LAG 0.072927595 0.00480405 15.18 <.0001

Adj. R-Square
0.76

 
f) Restricted Model 2 

Parameter Estimate Standard Error t Value Pr > |t| Source DF Sum of Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept -0.2471 0.0348 -7.1 <.0001 Model 5 26.0826 5.2165 117.14 <.0001 0.7659 86.7567 0.2110 0.2432
AST 0.2009 0.0427 4.7 <.0001 Error 179 7.9715 0.0445
FLASH 0.1498 0.0643 2.33 0.021 Corrected Total 184 34.0541
NEAR 0.0697 0.0315 2.21 0.0284
trtmt 0.041070623 0.03309961 1.24 0.2163
T_LAG 0.073452766 0.00463125 15.86 <.0001

Adj. R-Square
0.76

 
g) Restricted Model 3 

Parameter Estimate Standard Error t Value Pr > |t| Source DF Sum of Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept -0.2257 0.0302 -7.46 <.0001 Model 4 26.0140 6.5035 145.6 <.0001 0.7639 86.8866 0.2113 0.2432
AST 0.2032 0.0428 4.75 <.0001 Error 180 8.0401 0.0447
FLASH 0.1760 0.0608 2.89 0.0043 Corrected Total 184 34.0541
NEAR 0.0694 0.0316 2.2 0.0292
T_LAG 0.0725 0.0046 15.84 <.0001

0.76
Adj. R-Square
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Table B-40: PCM Results of Multi-Linear Regression for Gaps – MB-CLT 

 
a) Full Model 

Parameter Estimate
Standard 

Error t Value Pr > |t| Source DF Sum of Squares
Mean 

Square F Value Pr > F R-Square Coeff Var Root MSE
GO  

Mean
Intercept 0.1400 0.1588 0.88 0.3785 Model 22 47.9449 2.1793 53.4 <.0001 0.7745 93.3343 0.2020 0.2164
ADY 0.0000 0.1126 0 0.9997 Error 342 13.9565 0.0408
AST 0.4532 0.0373 12.15 <.0001 Corrected Total 364 61.9014
FLASH 0.0454 0.0366 1.24 0.2164
FOLL 0.00174206 0.02731511 0.06 0.9492
HEV -0.0154635 0.11898811 -0.13 0.8967
MUP -0.0480533 0.02447942 -1.96 0.0505
NEAR -0.0107032 0.02853613 -0.38 0.7078
PLT -0.0206 0.0329 -0.63 0.5317
PREV -0.1586 0.0591 -2.68 0.0077
PXW -0.2788 0.0586 -4.75 <.0001
TRIG -0.0092 0.0727 -0.13 0.8998
TRTMT 0.04009227 0.02786424 1.44 0.1511
G_NEAR -0.0887849 0.10227201 -0.87 0.3859
G_FAR -0.2153705 0.10196793 -2.11 0.0354
G_COMBO -0.1273432 0.1000128 -1.27 0.2038
D_WAIT 0.0613 0.0213 2.88 0.0042
Decel -0.0025 0.0077 -0.32 0.7507
DIST1 -0.0001 0.0002 -0.43 0.6693
O_GAP 0.0711 0.0133 5.33 <.0001
T_GAP 0.05654382 0.01583366 3.57 0.0004
SPEED_FT 0.00042321 0.00284193 0.15 0.8817
TTC_V -0.0546069 0.02280692 -2.39 0.0172

0.76
Adj. R - Square
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b) Unrestricted Model 1 
Parameter Estimate

Standard 
Error t Value Pr > |t| Source DF Sum of Squares

Mean 
Square F Value Pr > F R-Square Coeff Var Root MSE

GO Mea
n

Intercept 0.1804 0.0581 3.11 0.002 Model 9 46.6261 5.1807 120.4 <.0001 0.7532 95.8399 0.2074 0.2164
AST 0.4906 0.0348 14.11 <.0001 Error 355 15.2753 0.0430
MUP -0.0448 0.0240 -1.87 0.0626 Corrected Total 364 61.9014
PREV -0.2994 0.0501 -5.97 <.0001
PXW -0.2794011 0.0588076 -4.75 <.0001
TRTMT 0.07935562 0.02347586 3.38 0.0008
D_WAIT 0.00567787 0.00202368 2.81 0.0053
G_FAR -0.1574022 0.03468908 -4.54 <.0001
G_COMBO -0.0760984 0.02661151 -2.86 0.0045
O_GAP 0.06935184 0.00330991 20.95 <.0001

Adj. R - Square
0.75

 
 

c) Unrestricted Model 2 
Parameter Estimate

Standard 
Error t Value Pr > |t| Source DF Sum of Squares

Mean 
Square F Value Pr > F R-Square Coeff Var Root MSE

GO Mea
n

Intercept 0.1265 0.0576 2.2 0.0286 Model 7 45.7132 6.5305 144.02 <.0001 0.7385 98.3854 0.2129 0.2164
AST 0.4876 0.0357 13.67 <.0001 Error 357 16.1882 0.0453
MUP -0.0535 0.0244 -2.19 0.0292 Corrected Total 364 61.9014
PREV -0.3205 0.0511 -6.27 <.0001
PXW -0.2958008 0.05903033 -5.01 <.0001
TRTMT 0.0814769 0.02377428 3.43 0.0007
D_WAIT 0.00689056 0.0020516 3.36 0.0009
O_GAP 0.06912312 0.00334367 20.67 <.0001

Adj. R - Square
0.73

 
d) Restricted Model 1 

Parameter Estimate
Standard 

Error t Value Pr > |t| Source DF Sum of Squares
Mean 

Square F Value Pr > F R-Square Coeff Var Root MSE
GO Mea

n

Intercept -0.1849 0.0414 -4.47 <.0001 Model 8 44.6013 5.5752 114.73 <.0001 0.7205 101.8509 0.2204 0.2164
AST 0.4088 0.0346 11.82 <.0001 Error 356 17.3001 0.0486
MUP -0.0476 0.0259 -1.84 0.0664 Corrected Total 364 61.9014
FLASH 0.0729 0.0370 1.97 0.0493
NEAR 0.05001844 0.02397018 2.09 0.0376
PLT -0.0491422 0.02799097 -1.76 0.08
TRTMT 0.07301434 0.02801906 2.61 0.0095
D_WAIT 0.00593476 0.00211711 2.8 0.0053
T_GAP 0.0706958 0.00379922 18.61 <.0001

Adj. R - Square
0.71
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e) Restricted Model 2 
Parameter Estimate

Standard 
Error t Value Pr > |t| Source DF Sum of Squares

Mean 
Square F Value Pr > F R-Square Coeff Var Root MSE

GO Mea
n

Intercept -0.1729 0.0382 -4.53 <.0001 Model 6 44.0598 7.3433 147.35 <.0001 0.7118 103.1432 0.2232 0.2164
AST 0.4056 0.0350 11.59 <.0001 Error 358 17.8416 0.0498
FLASH 0.1130 0.0318 3.56 0.0004 Corrected Total 364 61.9014
NEAR 0.0530 0.0242 2.19 0.0293
PLT -0.0468481 0.0281184 -1.67 0.0966
D_WAIT 0.00476059 0.00210757 2.26 0.0245
T_GAP 0.07176602 0.00382397 18.77 <.0001

Adj. R - Square
0.71
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Table B-41: PCM Results of Binary Logistic Regression for Lags - MB-CLT 
 

a) Full Model 
Odds Ratio*

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 204.9114 19 <.0001

Intercept 1 -22.4369 44.707 0.2519 0.6158 AIC 207.272 40.361 Score 150.0154 19 <.0001
ADY 1 -4.8284 56.4921 0.0073 0.9319 0.008 SC 210.493 104.768 Wald 3.4129 19 1.0000
AST 1 12.0454 12.3403 0.9528 0.329 >999.999 -2 Log L 205.272 0.361
FLASH 1 4.8146 16.6803 0.0833 0.7729 123.295 0.6697
FOLL 1 0.0309 27.1737 0 0.9991 1.031 0.9990
HEV 1 -10.6359 85.9784 0.0153 0.9015 <0.001
MUP 1 -10.343 16.4479 0.3954 0.5295 <0.001
NEAR 1 3.4262 20.7868 0.0272 0.8691 30.76
PLT 1 -5.2912 31.7677 0.0277 0.8677 0.005
PREV 1 10.887 44.7093 0.0593 0.8076 >999.999
PXW 1 -1.2939 11.8434 0.0119 0.913 0.274
TRIG 1 -16.244 15.3796 1.1156 0.2909 <0.001
trtmt 1 6.1195 11.0825 0.3049 0.5808 454.638
G_NEAR 1 -11.8375 26.4207 0.2007 0.6541 <0.001
G_FAR 1 -19.9952 28.875 0.4795 0.4886 <0.001
G_COMBO 1 -15.4466 23.5635 0.4297 0.5121 <0.001
Decel 1 0.4786 0.8761 0.2984 0.5849 1.614
DIST1 1 0.0131 0.1145 0.0131 0.9087 1.013
O_LAG 1 3.9011 5.4976 0.5035 0.478 49.459
SPEED_FT 1 -0.142 0.9883 0.0207 0.8857 0.868

Testing Global Null Hypothesis: BETA=0Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Pr >  

ChiSq
Standard 

Error
Wald Chi-

Square Point Estimate

Model Fit Statistics

Criterion
Intercept 

Only
Intercept and 

Covariates

R-Square
Max-rescaled R-2

 
b) Unrestricted Model - 1 

Odds Ratio*
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 188.6702 3 <.0001

Intercept 1 -15.4961 4.6991 10.8745 0.001 AIC 207.272 24.602 Score 143.1621 3 <.0001
AST 1 3.4797 1.743 3.9854 0.0459 32.45 SC 210.493 37.483 Wald 10.8359 3 0.0126
G_FAR 1 -4.7526 2.2164 4.5982 0.032 0.009 -2 Log L 205.272 16.602
O_LAG 1 1.8552 0.5779 10.3044 0.0013 6.393 0.6393

0.9538 Chi-Square DF
5.4639 14

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Pr > ChiS

q
Standard 

Error
Wald Chi-

Square Point Estimate Criterion

Testing Global Null Hypothesis: BETA=0

Residual Chi-Square Test

Model Fit Statistics
Intercept and 

Covariates
Intercept 

Only

0.9783
Pr > ChiSq

R-Square
Max-rescaled R-2
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c) Unrestricted Model - 2 
Odds Ratio*

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 186.8145 4 <.0001

Intercept 1 -16.333 5.6641 8.3152 0.0039 AIC 207.272 28.458 Score 140.5577 4 <.0001
AST 1 4.7736 2.0464 5.4416 0.0197 118.341 SC 210.493 44.559 Wald 8.9443 4 0.0625
FLASH 1 2.7573 1.6374 2.8355 0.0922 15.757 -2 Log L 205.272 18.458
G_FAR 1 -5.7795 2.8437 4.1306 0.0421 0.003 0.6357
T_LAG 1 1.9115 0.6914 7.6444 0.0057 6.763 0.9484 Chi-Square DF

7.5801 12

Point Estimate
Intercept 

Only
Intercept and 

CovariatesCriterion

Analysis of Maximum Likelihood Estimates

Parameter

Model Fit Statistics
Wald Chi-

SquareDF Estimate
Pr > ChiS

q
Standard 

Error

Testing Global Null Hypothesis: BETA=0

Residual Chi-Square Test
Pr > ChiSq

0.8170

R-Square
Max-rescaled R-2

 
d) Restricted Model - 1 

Odds Ratio*
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 189.4126 7 <.0001

Intercept 1 -19.6822 7.3521 7.1668 0.0074 AIC 207.272 31.86 Score 144.8761 7 <.0001
AST 1 3.206 1.9762 2.6319 0.1047 24.68 SC 210.493 57.622 Wald 9.6123 7 0.2116
FLASH 1 0.1606 1.8706 0.0074 0.9316 1.174 -2 Log L 205.272 15.860
NEAR 1 2.334 1.7657 1.7474 0.1862 10.319 0.6408
PLT 1 -2.2319 1.8733 1.4196 0.2335 0.107 0.9560
trtmt 1 3.0373 2.1956 1.9136 0.1666 20.85
O_LAG 1 1.8225 1.1594 2.4709 0.116 6.187
T_LAG 1 0.1229 1.0895 0.0127 0.9102 1.131

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Criterion
Intercept 

Only
Intercept and 

Covariates
Pr > ChiS

q Point Estimate

Analysis of Maximum Likelihood Estimates Model Fit Statistics Testing Global Null Hypothesis: BETA=0

R-Square
Max-rescaled R-2

 
e) Restricted Model - 2 

Odds Ratio*
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 183.7814 6 <.0001

Intercept 1 -15.9573 4.8945 10.6293 0.0011 AIC 207.272 35.491 Score 141.7383 6 <.0001
AST 1 3.9209 1.6864 5.4055 0.0201 50.444 SC 210.493 58.033 Wald 14.7635 6 0.0222
FLASH 1 2.269 1.7401 1.7002 0.1923 9.669 -2 Log L 205.272 21.491
NEAR 1 1.9819 1.4584 1.8468 0.1742 7.257 0.6297
PLT 1 -0.8211 1.3948 0.3465 0.5561 0.44 0.9394
trtmt 1 2.6432 1.7118 2.3843 0.1226 14.058
T_LAG 1 1.4653 0.4242 11.9343 0.0006 4.329

Testing Global Null Hypothesis: BETA=0Analysis of Maximum Likelihood Estimates Model Fit Statistics
Pr > ChiS

q Point EstimateParameter DF Estimate
Standard 

Error
Intercept 

Only
Intercept and 

Covariates
Wald Chi-

Square

R-Square
Max-rescaled R-2

Criterion
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f) Restricted Model - 3 
Odds Ratio*

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 183.4266 5 <.0001

Intercept 1 -16.7192 5.1252 10.6416 0.0011 AIC 207.272 33.846 Score 141.6945 5 <.0001
AST 1 3.8314 1.6958 5.1047 0.0239 46.128 SC 210.493 53.168 Wald 13.3946 5 0.0199
FLASH 1 2.2371 1.7013 1.7292 0.1885 9.367 -2 Log L 205.272 21.846
NEAR 1 2.0399 1.4593 1.9540 0.1622 7.69 0.6290
trtmt 1 2.5820 1.7117 2.2754 0.1314 13.223 0.9384
T_LAG 1 1.5344 0.4425 12.0265 0.0005 4.639

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square
Pr > ChiS

q Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Criterion
Intercept 

Only
Intercept and 

Covariates

R-Square
Max-rescaled R-2

Analysis of Maximum Likelihood Estimates

 
 

g) Restricted Model - 4 
Odds Ratio*

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 181.4852 4 <.0001

Intercept 1 -16.9345 4.9323 11.7883 0.0006 AIC 207.272 33.787 Score 140.3825 4 <.0001
AST 1 4.0323 1.5542 6.7313 0.0095 56.393 SC 210.493 49.889 Wald 14.0657 4 0.0071
NEAR 1 2.0941 1.3202 2.5159 0.1127 8.118 -2 Log L 205.272 23.787
trtmt 1 3.4168 1.6322 4.3822 0.0363 30.472 0.6251
T_LAG 1 1.5414 0.4231 13.2733 0.0003 4.671 0.9325

Testing Global Null Hypothesis: BETA=0Analysis of Maximum Likelihood Estimates Model Fit Statistics
Wald Chi-

Square
Pr > ChiS

q Point EstimateParameter DF Estimate
Standard 

Error Criterion
Intercept 

Only

R-Square
Max-rescaled R-2

Intercept and 
Covariates

 
h) Restricted Model – 5* 

Odds Ratio*
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 180.3981 4 <.0001

Intercept 1 -12.9303 3.155 16.7962 <.0001 AIC 207.272 34.874 Score 141.3220 4 <.0001
AST 1 3.0924 1.3402 5.3242 0.021 22.031 SC 210.493 50.976 Wald 18.6450 4 0.0009
FLASH 1 3.2393 1.5245 4.515 0.0336 25.517 -2 Log L 205.272 24.874
NEAR 1 1.941 1.2937 2.2511 0.1335 6.966 0.6229
T_LAG 1 1.2516 0.3017 17.2146 <.0001 3.496 0.9292

R-Square

Analysis of Maximum Likelihood Estimates Model Fit Statistics

Criterion
Intercept 

Only

Max-rescaled R-2

Intercept and 
Covariates

Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square
Pr > ChiS

q Point Estimate

 
* Model was selected as preferred model in its category 
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Table B-42: PCM Results of Binary Logistic Regression for Gaps - MB-CLT 
 

a) Full Model 
Odds Ratio*

Test Chi-Square DF Pr > ChiSq
Intercept 1 8.8012 221.1 0.0016 0.9682 AIC 383.325 90.748 Likelihood Ratio 334.5765 21 <.0001
ADY 1 -15.8883 221 0.0052 0.9427 <0.001 SC 387.225 176.546 Score 281.3263 21 <.0001
AST 1 7.0697 1.6713 17.8932 <.0001 >999.999 -2 Log L 381.325 46.748 Wald 26.2080 21 0.1986
FLASH 1 0.1645 1.6594 0.0098 0.921 1.179 0.6001
FOLL 1 -0.9087 1.9812 0.2104 0.6465 0.403 0.9258
ADY 1 -15.8883 221 0.0052 0.9427 <0.001
AST 1 7.0697 1.6713 17.8932 <.0001 >999.999
FLASH 1 0.1645 1.6594 0.0098 0.921 1.179
FOLL 1 -0.9087 1.9812 0.2104 0.6465 0.403
PREV 1 -5.4786 2.1798 6.3171 0.012 0.004
PXW 1 -9.2855 2.9824 9.6937 0.0018 <0.001
TRIG 1 1.3154 2.577 0.2606 0.6097 3.726
TRTMT 1 0.9784 1.1491 0.725 0.3945 2.66
G_NEAR 1 -16.9828 221 0.0059 0.9387 <0.001
G_FAR 1 -21.4843 221 0.0094 0.9226 <0.001
G_COMBO 1 -17.0238 221 0.0059 0.9386 <0.001
D_WAIT 1 0.4291 0.367 1.3669 0.2424 1.536
DECEL 1 -2.5276 1.6514 2.3427 0.1259 0.08
DIST1 1 -0.0179 0.0111 2.5805 0.1082 0.982
O_GAP 1 1.0898 0.4192 6.7566 0.0093 2.974
T_GAP 1 0.9284 0.5798 2.5637 0.1093 2.53
SPEED_FT 1 0.2769 0.2151 1.6566 0.1981 1.319

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Pr > ChiSqStandard Error Wald Chi-Square
Testing Global Null Hypothesis: BETA=0

Point Estimate

Model Fit Statistics
Intercept 

Only
Intercept and 

CovariatesCriterion

Max-rescaled R-Square
R-Square

 
b) Unrestricted Model -1  

Odds Ratio*

Test Chi-Square DF Pr > ChiSq
Intercept 1 -4.6478 1.1828 15.4407 <.0001 AIC 383.325 82.604 Likelihood Ratio 308.7206 4 <.0001
AST 1 4.7976 0.8251 33.8068 <.0001 121.218 SC 387.225 102.104 Score 262.9994 4 <.0001
PREV 1 -3.7751 1.1426 10.9151 0.0010 0.023 -2 Log L 381.325 72.604 Wald 47.2831 4 <.0001
G_FAR 1 -3.3314 0.9502 12.2916 0.0005 0.036 0.5708
T_GAP 1 1.2422 0.1999 38.6242 <.0001 3.463 0.8806

Chi-Square DF
16.7368 17

R-Square
Max-rescaled R-Square

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Pr > ChiSqStandard Error Wald Chi-Square Point Estimate
Testing Global Null Hypothesis: BETA=0

Residual Chi-Square Test

Model Fit Statistics

Pr > ChiSq
0.4723

Criterion
Intercept and 

Covariates
Intercept 

Only
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c) Unrestricted Model -2 
Odds Ratio*

Test Chi-Square DF Pr > ChiSq
Intercept 1 -3.9435 1.0190 14.9753 0.0001 AIC 383.325 82.090 Likelihood Ratio 311.2348 5 <.0001
AST 1 5.3618 0.9209 33.8981 <.0001 213.102 SC 387.225 105.490 Score 263.3704 5 <.0001
PREV 1 -5.1016 1.1356 20.1834 <.0001 0.006 -2 Log L 381.325 70.090 Wald 44.4158 5 <.0001
TRTMT 1 1.4364 0.6744 4.5366 0.0332 4.205 0.5737
G_FAR 1 -3.2508 0.9743 11.1339 0.0008 0.039 0.8851
O_GAP 1 1.1653 0.1896 37.7593 <.0001 3.207 Chi-Square DF

15.3152 15
Pr > ChiSq

0.4290

Point Estimate
Intercept 

Only
Intercept and 

CovariatesCriterionDF Estimate Pr > ChiSqStandard Error

R-Square
Max-rescaled R-Square

Analysis of Maximum Likelihood Estimates

Parameter

Model Fit Statistics

Wald Chi-Square
Testing Global Null Hypothesis: BETA=0

Residual Chi-Square Test

 
d) Restricted Model - 1 

Odds Ratio*

Test Chi-Square DF Pr > ChiSq
Intercept 1 -9.1246 1.5903 32.9214 <.0001 AIC 383.325 102.526 Likelihood Ratio 296.7993 8 <.0001
AST 1 4.0192 0.7252 30.7141 <.0001 55.657 SC 387.225 137.625 Score 262.9904 8 <.0001
MUP 1 -0.2566 0.6707 0.1464 0.7020 0.774 -2 Log L 381.325 84.526 Wald 61.0349 8 <.0001
FLASH 1 1.1575 0.8416 1.8916 0.1690 3.182 0.5565
NEAR 1 1.3292 0.7054 3.5506 0.0595 3.778 0.8586
PLT 1 -0.1969 0.6513 0.0914 0.7624 0.821
TRTMT 1 0.6898 0.7489 0.8485 0.3570 1.993
D_WAIT 1 0.0777 0.0552 1.9790 0.1595 1.081
T_GAP 1 1.0009 0.1569 40.6779 <.0001 2.721

R-Square
Max-rescaled R-Square

Intercept and 
CovariatesParameter DF Estimate Standard Error Wald Chi-Square Point Estimate Criterion

Intercept 
Only

Analysis of Maximum Likelihood Estimates Model Fit Statistics
Testing Global Null Hypothesis: BETA=0

Pr > ChiSq

 
e) Restricted Model - 2 

Odds Ratio*

Test Chi-Square DF Pr > ChiSq
Intercept 1 -9.1698 1.2788 51.4196 <.0001 AIC 383.325 97.709 Likelihood Ratio 295.6159 5 <.0001
AST 1 4.1648 0.7011 35.2839 <.0001 64.377 SC 387.225 121.109 Score 258.9819 5 <.0001
FLASH 1 1.5477 0.6722 5.3008 0.0213 4.701 -2 Log L 381.325 85.709 Wald 59.7785 5 <.0001
NEAR 1 1.4032 0.6561 4.5740 0.0325 4.068 0.5551
D_WAIT 1 0.0618 0.0535 1.3375 0.2475 1.064 0.8564
T_GAP 1 1.0307 0.1504 46.9732 <.0001 2.803

R-Square
Max-rescaled R-Square

Testing Global Null Hypothesis: BETA=0
Analysis of Maximum Likelihood Estimates Model Fit Statistics

Wald Chi-Square Pr > ChiSq Point EstimateEstimate Standard Error
Intercept and 

CovariatesParameter DF Criterion
Intercept 

Only

 
f) Restricted Model – 3* 

Odds Ratio*

Test Chi-Square DF Pr > ChiSq
Intercept 1 -8.5109 1.1308 56.6455 <.0001 AIC 386.376 101.337 Likelihood Ratio 293.0390 4 <.0001
AST 1 4.3601 0.7006 38.732 <.0001 78.267 SC 390.279 120.85 Score 256.8958 4 <.0001
FLASH 1 1.726 0.6437 7.1905 0.0073 5.618 -2 Log L 384.376 91.337 Wald 61.0654 4 <.0001
NEAR 1 1.4537 0.6361 5.2233 0.0223 4.279 0.5510
T_GAP 1 0.9739 0.1391 49.0126 <.0001 2.648 0.8475

R-Square
Max-rescaled R-Square

Criterion
Intercept 

Only
Intercept and 

Covariates
Testing Global Null Hypothesis: BETA=0

Standard Error Wald Chi-Square Pr > ChiSq Point Estimate

Analysis of Maximum Likelihood Estimates Model Fit Statistics

Parameter DF Estimate
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g) Restricted Model – 4 
Odds Ratio*

Test Chi-Square DF Pr > ChiSq
Intercept 1 -9.5640 1.3649 49.1001 <.0001 AIC 383.325 98.543 Likelihood Ratio 294.7821 5 <.0001
AST 1 4.0359 0.6949 33.7318 <.0001 56.593 SC 387.225 121.942 Score 260.5981 5 <.0001
trtmt 1 1.2857 0.6029 4.5476 0.0330 3.617 -2 Log L 381.325 86.543 Wald 61.8203 5 <.0001
NEAR 1 1.4941 0.6630 5.0780 0.0242 4.455 0.5541
D_WAIT 1 0.0825 0.0537 2.3620 0.1243 1.086 0.8548
T_GAP 1 1.0214 0.1464 48.6918 <.0001 2.777

Max-rescaled R-Square

Intercept 
Only

Intercept and 
Covariates

Testing Global Null Hypothesis: BETA=0

R-Square

Wald Chi-Square Pr > ChiSq Point Estimate CriterionParameter DF Estimate Standard Error

Analysis of Maximum Likelihood Estimates Model Fit Statistics

 
h) Restricted Model – 5 

Odds Ratio*

Test Chi-Square DF Pr > ChiSq
Intercept 1 -8.6058 1.1434 56.6475 <.0001 AIC 386.376 104.277 Likelihood Ratio 290.0989 4 <.0001
AST 1 4.2397 0.6931 37.4219 <.0001 69.384 SC 390.279 123.79 Score 257.4806 4 <.0001
TRTMT 1 1.1945 0.5578 4.5858 0.0322 3.302 -2 Log L 384.376 94.277 Wald 64.1412 4 <.0001
NEAR 1 1.5762 0.6324 6.2118 0.0127 4.837 0.5473
T_GAP 1 0.955 0.1333 51.3424 <.0001 2.599 0.8419

Intercept and 
Covariates

Testing Global Null Hypothesis: BETA=0
Parameter Pr > ChiSq Point EstimateDF Estimate Standard Error Wald Chi-Square Criterion

Intercept 
Only

Analysis of Maximum Likelihood Estimates Model Fit Statistics

R-Square
Max-rescaled R-Square  

 
 

i) Restricted Model – 6 
Odds Ratio*

Test Chi-Square DF Pr > ChiSq
Intercept 1 -8.2814 1.087 58.0383 <.0001 AIC 383.325 102.276 Likelihood Ratio 289.0493 4 <.0001
AST 1 3.8296 0.6352 36.3498 <.0001 46.045 SC 387.225 121.775 Score 258.8463 4 <.0001
TRTMT 1 1.3541 0.5817 5.4181 0.0199 3.873 -2 Log L 381.325 92.276 Wald 63.8192 4 <.0001
D_WAIT 1 0.0877 0.0512 2.9409 0.0864 1.092 0.5470
T_GAP 1 0.9603 0.1364 49.5876 <.0001 2.613 0.8439

Analysis of Maximum Likelihood Estimates Model Fit Statistics

Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq Point Estimate Criterion

Max-rescaled R-Square

Intercept 
Only

Intercept and 
Covariates

Testing Global Null Hypothesis: BETA=0

R-Square
 

j) Restricted Model – 7 
Odds Ratio*

Test Chi-Square DF Pr > ChiSq
Intercept 1 -8.0518 1.0542 58.3353 <.0001 AIC 383.325 100.798 Likelihood Ratio 290.5274 4 <.0001
AST 1 4.0271 0.655 37.8027 <.0001 56.099 SC 387.225 120.297 Score 257.3398 4 <.0001
FLASH 1 1.7552 0.6748 6.7653 0.0093 5.784 -2 Log L 381.325 90.798 Wald 60.2710 4 <.0001
D_WAIT 1 0.0663 0.0512 1.6761 0.1954 1.069 0.5489
T_GAP 1 0.9805 0.1421 47.6097 <.0001 2.666 0.8467Max-rescaled R-Square

Intercept 
Only

Intercept and 
Covariates

Testing Global Null Hypothesis: BETA=0

R-Square

Wald Chi-Square Pr > ChiSq Point Estimate CriterionParameter DF Estimate Standard Error

Analysis of Maximum Likelihood Estimates Model Fit Statistics

 
 

* Model was selected as preferred model in its category 
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Table B-43: PCM Results of Multi-Linear Regression for Lags – MB-RAL 
 

a) Full Model  
Parameter Estimate Standard Error t Value Pr > |t| Source DF

Sum of 
Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean

Intercept -0.0259 0.1642 -0.16 0.8749 Model 20 95.1001 4.7550 70.32 <.0001 0.7271 42.7417 0.2600 0.6084
ADY -0.2698 0.1794 -1.5 0.1332 Error 528 35.7014 0.0676
AST 0.4188 0.0264 15.85 <.0001 Corrected Total 548 130.8015
FOLL 0.0873 0.0779 1.12 0.2632
HEV -0.033752325 0.07000652 -0.48 0.6299
MUP -0.037960614 0.02699329 -1.41 0.1602
NEAR 0.051572358 0.04127467 1.25 0.212
PLT -0.113123456 0.07626338 -1.48 0.1386
PREV 0.130598191 0.06983349 1.87 0.062
PXW 0.078510633 0.02637112 2.98 0.003
TRIG 0.128017608 0.0462881 2.77 0.0059
trtmt 0.030745083 0.024366 1.26 0.2076
G_NEAR -0.164204826 0.12420297 -1.32 0.1867
G_FAR -0.136061075 0.12378523 -1.1 0.2722
G_COMBO -0.212592765 0.12305603 -1.73 0.0846
Decel -0.01788501 0.0035895 -4.98 <.0001
DIST1 -0.000254235 0.00032483 -0.78 0.4342
O_LAG 0.006873926 0.00535419 1.28 0.1998
T_LAG -0.420711686 0.28965905 -1.45 0.147
SPEED_FT 0.007007493 0.00275654 2.54 0.0113
TTC_V 0.465418729 0.28981758 1.61 0.1089

Adj. R-Square
0.72

 
b) Unrestricted Model - 1 

Parameter Estimate Standard Error t Value Pr > |t| Source DF
Sum of 

Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept 0.2490 0.0709 3.51 0.0005 Model 7 78.9456 11.2779 117.66 <.0001 0.6036 50.8893 0.3096 0.6084
AST 0.4905 0.0299 16.38 <.0001 Error 541 51.8559 0.0959
PREV 0.0203 0.0742 0.27 0.7844 Corrected Total 548 130.8015
PXW 0.0643 0.0307 2.09 0.0368
TRIG 0.01632934 0.05079004 0.32 0.748
G_COMBO -0.102634365 0.02940749 -3.49 0.0005
Decel -0.048464464 0.00348281 -13.92 <.0001
SPEED_FT 0.0086871 0.0017762 4.89 <.0001

Adj. R-Square
0.60

 
c) Unrestricted Model - 2 

Parameter Estimate Standard Error t Value Pr > |t| Source DF
Sum of 

Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept 0.2503 0.0699 3.58 0.0004 Model 5 78.9286 15.7857 165.24 <.0001 0.6034 50.8038 0.3091 0.6084
AST 0.4931 0.0283 17.4 <.0001 Error 543 51.8728 0.0955
PXW 0.0650 0.0303 2.15 0.0324 Corrected Total 548 130.8015
G_COMBO -0.1025 0.0292 -3.51 0.0005
Decel -0.048284718 0.00344832 -14 <.0001
SPEED_FT 0.008651456 0.00175616 4.93 <.0001

Adj. R-Square
0.60
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d) Restricted Model – 1 
Parameter Estimate Standard Error t Value Pr > |t| Source DF

Sum of 
Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean

Intercept -0.0474 0.0310 -1.53 0.1271 Model 5 89.5318 17.9064 235.6 <.0001 0.6845 45.3149 0.2757 0.6084
AST 0.4967 0.0249 19.97 <.0001 Error 543 41.2696 0.0760
NEAR 0.0293 0.0247 1.19 0.2362 Corrected Total 548 130.8015
PLT -0.0623 0.0279 -2.23 0.026
trtmt 0.05481888 0.0243878 2.25 0.025
T_LAG 0.048645202 0.00238831 20.37 <.0001

Adj. R-Square
0.68

 
 

e) Restricted Model – 2 
Parameter Estimate Standard Error t Value Pr > |t| Source DF

Sum of 
Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean

Intercept -0.0443 0.0255 -1.74 0.0829 Model 3 89.0776 29.6925 387.85 <.0001 0.6810 45.4799 0.2767 0.6084
AST 0.4974 0.0249 19.95 <.0001 Error 545 41.7238 0.0766
trtmt 0.0492 0.0244 2.02 0.044 Corrected Total 548 130.8015
T_LAG 0.0490 0.0024 20.48 <.0001

Adj. R-Square
0.68  
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Table B-44: PCM Results of Multi-Linear Regression for Gaps – MB-RAL 
 

a) Full Model  
Parameter Estimate Standard Error t Value Pr > |t| Source DF

Sum of 
Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean

Intercept 0.2755 0.3357 0.82 0.4129 Model 22 42.7240 1.9420 35.25 <.0001 0.7991 41.2666 0.2347 0.5688
ADY -0.1690 0.2517 -0.67 0.5029 Error 195 10.7439 0.0551
AST 0.2830 0.0440 6.43 <.0001 Corrected Total 217 53.4679
FOLL 0.0429 0.0570 0.75 0.4527
HEV -0.000342477 0.09179649 0 0.997
MUP -0.045947156 0.03559406 -1.29 0.1983
NEAR 0.0949 0.0490 1.93 0.0545
PLT -0.2143 0.0537 -3.99 <.0001
PREV -0.0718 0.0508 -1.41 0.1595
PXW -0.184639282 0.08492561 -2.17 0.0309
QUE -0.044825385 0.13617036 -0.33 0.7424
TRIG 0.2822 0.0884 3.19 0.0017
trtmt 0.0081 0.0359 0.23 0.8211
G_NEAR -0.3176 0.2560 -1.24 0.2161
G_FAR -0.2887 0.2627 -1.1 0.2731
G_COMBO -0.3424 0.2567 -1.33 0.1839
D_WAIT -0.0168 0.0150 -1.12 0.2647
Decel -0.001502739 0.0027065 -0.56 0.5794
DIST1 -4.17034E-05 0.00044805 -0.09 0.9259
O_GAP 0.0052 0.0084 0.61 0.5395
T_GAP 0.0496 0.0141 3.52 0.0005
SPEED_FT 0.0024 0.0057 0.42 0.6763
TTC_V 0.021550071 0.02374117 0.91 0.3652

Adj. R-Square
0.78

 
b) Unrestricted Model – 1 

Parameter Estimate Standard Error t Value Pr > |t| Source DF
Sum of 

Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept -0.0217 0.0419 -0.52 0.6051 Model 6 41.9206 6.9868 127.67 <.0001 0.7840 41.1276 0.2339 0.5688
AST 0.2883 0.0398 7.25 <.0001 Error 211 11.5473 0.0547
NEAR 0.0909 0.0327 2.78 0.006 Corrected Total 217 53.4679
PLT -0.2043 0.0357 -5.72 <.0001
PXW -0.18582075 0.08186574 -2.27 0.0242
TRIG 0.281236869 0.08647746 3.25 0.0013
T_GAP 0.076762356 0.00385505 19.91 <.0001

Adj. R-Square
0.78
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c) Restricted Model – 1 
Parameter Estimate Standard Error t Value Pr > |t| Source DF

Sum of 
Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean

Intercept -0.0376 0.0491 -0.77 0.4449 Model 6 41.0053 6.8342 115.71 <.0001 0.7669 42.7265 0.2430 0.5688
AST 0.3328 0.0401 8.3 <.0001 Error 211 12.4626 0.0591
NEAR 0.0891 0.0341 2.61 0.0096 Corrected Total 217 53.4679
PLT -0.2004 0.0373 -5.37 <.0001
trtmt 0.018272022 0.03527044 0.52 0.605
D_WAIT 0.001676171 0.00438781 0.38 0.7028
T_GAP 0.075486541 0.00402654 18.75 <.0001

Adj. R-Square
0.76

 
 

d) Restricted Model – 2 
Parameter Estimate Standard Error t Value Pr > |t| Source DF

Sum of 
Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean

Intercept -0.0252 0.0417 -0.6 0.5462 Model 4 40.9789 10.2447 174.72 <.0001 0.7664 42.5705 0.2421 0.5688
AST 0.3325 0.0385 8.64 <.0001 Error 213 12.4890 0.0586
NEAR 0.0884 0.0339 2.61 0.0097 Corrected Total 217 53.4679
PLT -0.1984 0.0361 -5.5 <.0001
T_GAP 0.076075272 0.00389651 19.52 <.0001

Adj. R-Square
0.76
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Table B-45: PCM Results of Binary Logistic Regression for Lags - MB-RAL +* 
 

a) Full Model  
Odds Ratio

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 654.0315 20 <.0001

Intercept 1 2.9548 139 0.0005 0.983 AIC 737.076 123.044 Score 399.3122 20 <.0001
ADY 1 -10.5779 140.9 0.0056 0.9401 <0.001 SC 741.384 213.514 Wald 53.6392 20 <.0001
AST 1 5.865 1.0524 31.0557 <.0001 352.483 -2 Log L 735.076 81.044
FOLL 1 12.6478 203.6 0.0039 0.9505 >999.999 0.6962
HEV 1 -0.8298 1.7175 0.2334 0.629 0.436 0.9435
MUP 1 -1.3378 0.7963 2.8227 0.0929 0.262
NEAR 1 0.3117 1.1809 0.0696 0.7919 1.366
PLT 1 -12.3998 203.6 0.0037 0.9514 <0.001
PREV 1 2.0531 4.1091 0.2496 0.6173 7.792
PXW 1 0.8708 0.6571 1.7561 0.1851 2.389
QUE 1 2.6486 4.3594 0.3691 0.5435 14.135
TRIG 1 1.1947 1.2724 0.8816 0.3478 3.302
trtmt 1 0.2283 0.6561 0.1211 0.7279 1.256
G_NEAR 1 -9.955 138.9 0.0051 0.9429 <0.001
G_FAR 1 -10.7214 138.9 0.006 0.9385 <0.001
G_COMBO 1 -11.1504 138.9 0.0064 0.936 <0.001
Decel 1 -1.4376 0.7938 3.2802 0.0701 0.237
DIST1 1 0.00769 0.0202 0.1442 0.7041 1.008
O_LAG 1 0.978 0.4373 5.0013 0.0253 2.659
T_LAG 1 -0.5986 0.8066 0.5508 0.458 0.55
SPEED_FT 1 0.1066 0.2014 0.2804 0.5965 1.113

Criterion

Max-rescaled R-Square
R-Square

Intercept Only Intercept and Covariates

Model Fit Statistics

Point Estimate

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Pr > ChiSqStandard Error Wald Chi-Square

Testing Global Null Hypothesis: BETA=0

 
b) Unrestricted Model – 1 

Odds Ratio
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 635.5526 3 <.0001

Intercept 1 -9.7659 1.3139 55.2463 <.0001 AIC 737.076 107.523 Score 366.8087 3 <.0001
AST 1 5.3687 0.7119 56.8747 <.0001 214.579 SC 741.384 124.755 Wald 69.9017 3 <.0001
MUP 1 -1.3478 0.6513 4.2828 0.0385 0.26 -2 Log L 735.076 99.523
O_LAG 1 1.0893 0.1456 55.9645 <.0001 2.972 0.6858

0.9294 Chi-Square DF
14.5862 17

Criterion Intercept and CovariatesIntercept OnlyPoint Estimate

Testing Global Null Hypothesis: BETA=0

Residual Chi-Square Test

Model Fit Statistics

Parameter DF Estimate Pr > ChiSqStandard Error Wald Chi-Square

Analysis of Maximum Likelihood Estimates

R-Square
Max-rescaled R-Square Pr > ChiSq

0.6253  
c) Unrestricted Model – 2 

Odds Ratio
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 623.9363 3 <.0001

Intercept 1 -9.2288 1.1689 62.3332 <.0001 AIC 737.076 119.139 Score 374.0784 3 <.0001
AST 1 5.8661 0.7245 65.5580 <.0001 352.878 SC 741.384 136.372 Wald 76.2924 3 <.0001
MUP 1 -1.2546 0.6082 4.2558 0.0391 0.285 -2 Log L 735.076 111.139
T_LAG 1 1.0669 0.1340 63.4325 <.0001 2.906 0.6791

0.9203 Chi-Square DF
17.5115 16

Testing Global Null Hypothesis: BETA=0

Residual Chi-Square Test

DF Estimate Pr > ChiSqStandard Error Intercept Only Intercept and CovariatesCriterion

Analysis of Maximum Likelihood Estimates

Parameter

Model Fit Statistics

Wald Chi-Square Point Estimate

R-Square
Max-rescaled R-Square Pr > ChiSq

0.3533  
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d) Restricted Model – 1 
Odds Ratio

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 623.3713 5 <.0001

Intercept 1 -10.2396 1.3348 58.8511 <.0001 AIC 737.076 123.704 Score 375.7830 5 <.0001
AST 1 6.0352 0.7421 66.1355 <.0001 417.903 SC 741.384 149.553 Wald 78.8375 5 <.0001
NEAR 1 0.6312 0.5336 1.3995 0.2368 1.880 -2 Log L 735.076 111.704
PLT 1 0.1037 0.6829 0.0231 0.8792 1.109 0.6787
trtmt 1 0.7879 0.5218 2.2798 0.1311 2.199 0.9198
T_LAG 1 1.0535 0.1315 64.1423 <.0001 2.868

Analysis of Maximum Likelihood Estimates Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Pr > ChiSqParameter DF Estimate Standard Error Wald Chi-Square Point Estimate Criterion Intercept Only Intercept and Covariates

R-Square
Max-rescaled R-Square

 
e) Restricted Model – 2* 

Odds Ratio
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 623.3482 4 <.0001

Intercept 1 -10.2150 1.3224 59.6736 <.0001 AIC 737.076 121.727 Score 374.1924 4 <.0001
AST 1 6.0194 0.7330 67.4360 <.0001 411.332 SC 741.384 143.268 Wald 78.8825 4 <.0001
NEAR 1 0.6420 0.5285 1.4753 0.2245 1.900 -2 Log L 735.076 111.727
trtmt 1 0.7861 0.5214 2.2736 0.1316 2.195 0.6787
T_LAG 1 1.0525 0.1313 64.2699 <.0001 2.865 0.9198

Wald Chi-Square Pr > ChiSq Point Estimate Criterion Intercept Only Intercept and CovariatesParameter DF Estimate Standard Error

Analysis of Maximum Likelihood Estimates Model Fit Statistics Testing Global Null Hypothesis: BETA=0

R-Square
Max-rescaled R-Square  

f) Restricted Model – 3 
Odds Ratio

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 621.8528 3 <.0001

Intercept 1 -9.7433 1.2262 63.1361 <.0001 AIC 737.076 121.223 Score 373.8768 3 <.0001
AST 1 5.9535 0.7223 67.9400 <.0001 385.117 SC 741.384 138.455 Wald 79.3445 3 <.0001
trtmt 1 0.7711 0.5206 2.1938 0.1386 2.162 -2 Log L 735.076 113.223
T_LAG 1 1.0480 0.1300 64.9734 <.0001 2.852 0.6778

0.9186

Criterion Intercept Only Intercept and Covariates

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

R-Square
Max-rescaled R-Square

Wald Chi-Square Pr > ChiSq Point Estimate

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard Error

 
g) Restricted Model – 4 

Odds Ratio
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 620.9851 3 <.0001

Intercept 1 -9.6982 1.2183 63.3688 <.0001 AIC 737.076 122.09 Score 372.8564 3 <.0001
AST 1 5.897 0.7151 67.998 <.0001 363.941 SC 741.384 139.323 Wald 80.4507 3 <.0001
NEAR 1 0.6128 0.5184 1.3973 0.2372 1.846 -2 Log L 735.076 114.090
T_LAG 1 1.0376 0.1269 66.8336 <.0001 2.823 0.6773

0.9179

Parameter DF Criterion Intercept Only

R-Square
Max-rescaled R-Square

Wald Chi-Square Pr > ChiSq Point EstimateEstimate Standard Error

Analysis of Maximum Likelihood Estimates

Intercept and Covariates

Model Fit Statistics Testing Global Null Hypothesis: BETA=0
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h) Restricted Model – 5 
Odds Ratio

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 619.5702 2 <.0001

Intercept 1 -9.2648 1.1326 66.9105 <.0001 AIC 737.076 121.505 Score 372.5670 2 <.0001
AST 1 5.8287 0.7047 68.4060 <.0001 339.908 SC 741.384 134.430 Wald 80.6969 2 <.0001
T_LAG 1 1.0338 0.1260 67.3381 <.0001 2.812 -2 Log L 735.076 115.505

0.6765
0.9168

Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq Point Estimate Criterion Intercept Only Intercept and Covariates

Analysis of Maximum Likelihood Estimates Model Fit Statistics

R-Square
Max-rescaled R-Square  

 
* Model was selected as preferred model in its category 
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Table B-46: PCM Results of Binary Logistic Regression for Gaps - MB-RAL 
 

a) Full Model  
Odds Ratio

Test Chi-Square DF Pr > ChiSq
Intercept 1 -73.3202 175 0.1756 0.6752 AIC 300.071 50.223 Likelihood Ratio 291.8479 21 <.0001
ADY 1 30.1471 177 0.029 0.8647 >999.999 SC 303.455 124.682 Score 174.0097 21 <.0001
AST 1 19.1788 18.0012 1.1351 0.2867 >999.999 -2 Log L 298.071 6.223 Wald 6.4761 21 0.9990
FOLL 1 -16.7172 11.9972 1.9416 0.1635 <0.001 0.7378
HEV 1 3.805 5.8428 0.4241 0.5149 44.924 0.9901
MUP 1 -23.7572 13.0311 3.3238 0.0683 <0.001
NEAR 1 12.1391 6.9127 3.0837 0.0791 >999.999
PLT 1 2.8976 9.6229 0.0907 0.7633 18.131
PREV 1 -16.0108 12.6858 1.5929 0.2069 <0.001
PXW 1 -9.8444 11.6034 0.7198 0.3962 <0.001
QUE 1 -5.4908 68.017 0.0065 0.9357 0.004
TRIG 1 15.6245 29.6548 0.2776 0.5983 >999.999
trtmt 1 -15.3408 14.8254 1.0707 0.3008 <0.001
G_NEAR 1 8.5423 167.7 0.0026 0.9594 >999.999
G_FAR 1 22.4357 168.7 0.0177 0.8942 >999.999
G_COMBO 1 -3.0103 167.3 0.0003 0.9856 0.049
D_WAIT 1 1.1258 1.5423 0.5328 0.4654 3.083
Decel 1 -4.6609 8.0543 0.3349 0.5628 0.009
DIST1 1 -0.0919 0.0574 2.5665 0.1091 0.912
O_GAP 1 5.929 3.5961 2.7184 0.0992 375.769
T_GAP 1 4.8769 2.7659 3.1091 0.0779 131.229
SPEED_FT 1 1.5264 0.9934 2.3607 0.1244 4.602

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Pr > ChiSqStandard Error Wald Chi-Square
Testing Global Null Hypothesis: BETA=0

Point Estimate Criterion

Model Fit Statistics

Intercept Only Intercept and Covariates

Max-rescaled R-Square
R-Square

 
b) Unrestricted Model – 1 

Odds Ratio

Test Chi-Square DF Pr > ChiSq
Intercept 1 -16.4264 4.1249 15.8581 <.0001 AIC 300.071 42.037 Likelihood Ratio 270.0334 6 <.0001
AST 1 9.3082 2.9025 10.2849 0.0013 >999.999 SC 303.455 65.729 Score 161.1539 6 <.0001
MUP 1 -3.4151 1.5566 4.8133 0.0282 0.033 -2 Log L 298.071 28.037 Wald 20.2006 6 0.0026
NEAR 1 5.2463 1.8619 7.9391 0.0048 189.858 0.7102
PXW 1 -9.2712 3.0865 9.0227 0.0027 <0.001 0.9531
G_FAR 1 3.9974 2.0660 3.7436 0.0530 54.454 Chi-Square DF Pr > ChiSq
T_GAP 1 1.9754 0.4627 18.2291 <.0001 7.209 13.2453 15 0.5834

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Pr > ChiSqStandard Error Wald Chi-Square CriterionPoint Estimate

Residual Chi-Square Test

Testing Global Null Hypothesis: BETA=0
Model Fit Statistics

Intercept and CovariatesIntercept Only

R-Square
Max-rescaled R-Square
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c) Unrestricted Model - 2 
Odds Ratio

Test Chi-Square DF Pr > ChiSq
Intercept 1 -3.9936 1.3294 9.0243 0.0027 AIC 301.196 58.366 Likelihood Ratio 254.8292 6 <.0001
ADY 1 2.9265 1.7350 2.8451 0.0917 18.662 SC 304.585 82.090 Score 144.1770 6 <.0001
AST 1 4.7599 1.3116 13.1697 0.0003 116.730 -2 Log L 299.196 44.366 Wald 28.6961 6 <.0001
FOLL 1 -3.5851 1.5651 5.2472 0.0220 0.028 0.7102
PREV 1 -5.7384 1.8154 9.9921 0.0016 0.003 0.9531
PXW 1 -4.2132 1.5921 7.0035 0.0081 0.015 Chi-Square DF Pr > ChiSq
O_GAP 1 1.4469 0.2857 25.6416 <.0001 4.250 13.7716 14 0.4669

Point Estimate Intercept Only Intercept and CovariatesCriterion

Analysis of Maximum Likelihood Estimates

Parameter

Model Fit Statistics

Wald Chi-Square
Testing Global Null Hypothesis: BETA=0

Residual Chi-Square Test

DF Estimate Pr > ChiSqStandard Error

R-Square
Max-rescaled R-Square

 
 

d) Restricted Model – 1 
Odds Ratio

Test Chi-Square DF Pr > ChiSq
Intercept 1 -9.7605 2.3459 17.3115 <.0001 AIC 300.071 59.449 Likelihood Ratio 252.6214 6 <.0001
AST 1 4.7209 1.2990 13.2082 0.0003 112.272 SC 303.455 83.141 Score 167.1874 6 <.0001
NEAR 1 2.5723 1.1103 5.3677 0.0205 13.096 -2 Log L 298.071 45.449 Wald 32.3576 6 <.0001
PLT 1 -1.2773 1.1590 1.2146 0.2704 0.279 0.6861
trtmt 1 0.1155 1.0571 0.0119 0.9130 1.122 0.9207
D_WAIT 1 -0.0483 0.1142 0.1786 0.6725 0.953
T_GAP 1 1.2629 0.2648 22.7503 <.0001 3.536

R-Square
Max-rescaled R-Square

Parameter DF Estimate Standard Error Wald Chi-Square Point Estimate Criterion Intercept Only Intercept and CovariatesPr > ChiSq

Analysis of Maximum Likelihood Estimates Model Fit Statistics
Testing Global Null Hypothesis: BETA=0

 
e) Restricted Model - 2 

Odds Ratio
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 252.4216 4 <.0001

Intercept 1 -9.8237 2.2930 18.3541 <.0001 AIC 300.071 55.649 Score 167.0797 4 <.0001
AST 1 4.7805 1.2734 14.0941 0.0002 119.161 SC 303.455 72.571 Wald 32.6554 4 <.0001
NEAR 1 2.4900 1.0674 5.4424 0.0197 12.062 -2 Log L 298.071 45.649
PLT 1 -1.3033 1.0992 1.4058 0.2358 0.272 0.6859
T_GAP 1 1.2388 0.2475 25.0570 <.0001 3.452 0.9204

Testing Global Null Hypothesis: BETA=0Analysis of Maximum Likelihood Estimates Model Fit Statistics

Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq Point Estimate Criterion Intercept Only Intercept and Covariates

R-Square
Max-rescaled R-Square  

f) Restricted Model – 3* 
Odds Ratio

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 250.9745 3 <.0001

Intercept 1 -10.9378 2.2697 23.2224 <.0001 AIC 300.071 55.096 Score 159.8575 3 <.0001
AST 1 5.2675 1.2678 17.2619 <.0001 193.935 SC 303.455 68.634 Wald 34.2771 3 <.0001
NEAR 1 2.7576 1.0967 6.3229 0.0119 15.762 -2 Log L 298.071 47.096
T_GAP 1 1.3350 0.2493 28.6733 <.0001 3.800 0.6838

0.9175

Wald Chi-Square Pr > ChiSq Point EstimateParameter DF Estimate Standard Error

Analysis of Maximum Likelihood Estimates Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Criterion Intercept Only Intercept and Covariates

R-Square
Max-rescaled R-Square  
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g) Restricted Model – 4 
Odds Ratio

Test Chi-Square DF Pr > ChiSq
Intercept 1 -10.8702 2.3021 22.2967 <.0001 AIC 300.071 56.827 Likelihood Ratio 251.2436 4 <.0001
AST 1 5.2338 1.2747 16.8587 <.0001 187.506 SC 303.455 73.75 Score 160.1626 4 <.0001
NEAR 1 2.8567 1.1323 6.3646 0.0116 17.403 -2 Log L 298.071 46.827 Wald 33.5419 4 <.0001
D_WAIT 1 -0.0597 0.1144 0.272 0.602 0.942 0.6842
T_GAP 1 1.368 0.2653 26.5803 <.0001 3.927 0.9181

R-Square
Max-rescaled R-Square

Criterion Intercept Only Intercept and Covariates
Testing Global Null Hypothesis: BETA=0

Analysis of Maximum Likelihood Estimates Model Fit Statistics

Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq Point Estimate

 
 

 
* Model was selected as preferred model in its category 
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10.3 Appendix C: RBT-RAL Roundabout Models 
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Table C-47: Correlation Matrix, RBT-RAL, Yielding Model* 
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Y_ORDERED 0.91
<.0001

Y_TYPE . 1.00
. <.0001

ADY 0.05 0.03 -0.05
0.6104 0.7525 0.7463

AST 0.02 -0.03 -0.18 -0.12
0.8372 0.7847 0.2746 0.2252

COM 0.17 0.17 0.03 -0.04 -0.07
0.0817 0.084 0.8312 0.7215 0.494

DECEL_TAU -0.27 -0.23 0.19 -0.10 0.02 -0.06
0.0065 0.0242 0.2498 0.3129 0.8052 0.5689

DSC 0.25 0.38 0.39 -0.05 -0.10 -0.03 -0.08
0.0121 <.0001 0.0134 0.6104 0.3278 0.7733 0.4153

ENTRY 0.01 0.01 -0.01 -0.24 -0.15 0.01 0.20 0.11
0.9356 0.9567 0.9629 0.0171 0.1373 0.9324 0.0489 0.2566

FOLL 0.17 0.19 0.14 -0.01 0.01 -0.01 -0.02 0.09 0.02
0.0878 0.0549 0.3766 0.9204 0.9518 0.955 0.8733 0.3524 0.8245

HEV 0.14 0.20 0.22 -0.06 -0.12 0.26 -0.10 -0.05 -0.24 -0.01
0.1724 0.0494 0.1743 0.5281 0.2252 0.0078 0.3129 0.6104 0.0171 0.9204

MUP 0.04 0.06 0.08 0.10 -0.09 -0.07 -0.11 0.30 -0.13 0.14 -0.12
0.6746 0.5584 0.6418 0.3182 0.3511 0.5082 0.2587 0.0022 0.2033 0.1724 0.2408

NEAR -0.04 0.01 0.18 -0.23 -0.28 0.01 0.21 0.23 0.36 0.02 -0.14 0.10
0.6852 0.9276 0.2621 0.0222 0.0041 0.8873 0.0322 0.024 0.0003 0.8116 0.1532 0.3251

PLT 0.07 0.13 0.26 -0.02 -0.03 -0.07 -0.06 0.13 0.03 0.67 -0.02 0.13 0.05
0.4767 0.1956 0.1014 0.8117 0.7857 0.5134 0.5552 0.1958 0.7835 <.0001 0.8117 0.2067 0.6459

PREV -0.14 -0.14 -0.06 -0.13 -0.25 0.17 -0.04 -0.07 0.03 0.07 -0.04 0.03 0.02 0.31
0.1614 0.1566 0.7283 0.2153 0.0128 0.0882 0.6684 0.5116 0.769 0.4991 0.6973 0.7459 0.8243 0.0018

PXW 0.26 0.21 -0.08 0.23 0.29 0.08 -0.24 -0.12 -0.19 0.07 0.14 0.02 -0.40 0.08 -0.26
0.0088 0.0325 0.6124 0.019 0.003 0.4395 0.0166 0.2305 0.0547 0.5044 0.1702 0.8513 <.0001 0.4442 0.0084

QUE 0.18 0.26 0.29 -0.07 -0.13 -0.04 0.00 0.14 0.06 0.26 -0.07 -0.03 0.07 0.18 0.25 -0.16
0.0798 0.0099 0.0729 0.4932 0.1875 0.6986 0.9822 0.1529 0.5817 0.0081 0.4932 0.7934 0.508 0.081 0.0123 0.106

TRIG -0.12 -0.11 . -0.04 0.29 -0.02 -0.06 -0.03 0.15 -0.15 -0.04 -0.07 0.01 -0.22 -0.12 0.08 -0.04
0.2478 0.2918 . 0.7215 0.0029 0.8403 0.5689 0.7733 0.1319 0.1398 0.7215 0.5082 0.8873 0.0254 0.238 0.4395 0.6986

TTC_Tau -0.26 -0.11 0.58 -0.10 -0.20 0.04 0.55 0.17 0.19 -0.05 -0.10 -0.02 0.39 -0.04 -0.01 -0.29 0.05 -0.10
0.0099 0.2836 <.0001 0.3365 0.0518 0.6572 <.0001 0.0886 0.0568 0.6188 0.3365 0.8716 <.0001 0.6981 0.8829 0.0032 0.6552 0.2993

DECEL -0.29 -0.22 0.35 -0.10 0.00 -0.05 0.83 -0.04 0.26 -0.08 -0.15 -0.02 0.27 -0.03 -0.06 -0.26 -0.07 -0.03 0.63
0.0038 0.0246 0.0264 0.341 0.9817 0.5967 <.0001 0.6828 0.0094 0.434 0.1446 0.849 0.0067 0.7742 0.5411 0.0088 0.5023 0.7337 <.0001

DIST1 0.11 -0.02 -0.51 -0.08 0.01 -0.03 -0.40 -0.05 0.16 0.03 -0.06 0.11 -0.16 0.06 0.21 0.12 -0.12 0.05 -0.65 -0.47
0.2657 0.824 0.0007 0.4281 0.9531 0.8039 <.0001 0.6034 0.1144 0.7386 0.5256 0.262 0.1199 0.5595 0.0394 0.2264 0.2409 0.5952 <.0001 <.0001

SPEED_FT -0.26 -0.29 -0.22 -0.13 0.04 -0.05 0.36 -0.19 0.65 -0.09 -0.30 -0.12 0.20 -0.18 -0.04 -0.17 -0.27 0.11 0.14 0.40 0.27
0.0097 0.003 0.1737 0.1825 0.7132 0.6352 0.0003 0.0591 <.0001 0.3796 0.0027 0.251 0.0448 0.0785 0.6652 0.0855 0.0061 0.2595 0.1674 <.0001 0.0072

TTC 0.26 0.13 -0.37 -0.03 0.01 -0.03 -0.45 0.00 -0.26 0.08 0.14 0.22 -0.30 0.11 0.18 0.23 -0.04 -0.02 -0.69 -0.58 0.77 -0.28
0.0101 0.2013 0.0184 0.7797 0.9347 0.7349 <.0001 0.9647 0.0079 0.4053 0.1656 0.0252 0.0024 0.2765 0.0756 0.0227 0.7245 0.8574 <.0001 <.0001 <.0001 0.0044  

* Shaded cells have correlation > 0.30 or <-0.30; bold values are significant at the 0.05 confidence level 
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Table C-48: Correlation Matrix, RBT-RAL, Yielding Model – EXIT only* 
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Y_ORDERED 0.91
<.0001

Y_TYPE . 1.00
. <.0001

ADY 0.08 0.05 -0.08
0.5895 0.7382 0.735

AST 0.08 0.04 -0.12 -0.20
0.588 0.7938 0.5992 0.1435

COM 0.17 0.26 0.26 -0.05 -0.08
0.2204 0.0602 0.2585 0.7246 0.5736

DECEL_TAU -0.09 -0.02 0.26 -0.10 0.00 -0.04
0.5431 0.8608 0.2585 0.467 0.9822 0.7782

DSC 0.17118 0.25993 0.2582 -0.0496 -0.0791 -0.0192 -0.0396
0.2204 0.0602 0.2585 0.7246 0.5736 0.8913 0.7782

FOLL 0.18 0.18 0.08 -0.01 0.03 0.14 -0.15 0.14
0.2032 0.1887 0.7144 0.9618 0.814 0.3312 0.2893 0.3312

HEV 0.20 0.28 0.32 -0.13 -0.20 0.39 -0.10 -0.05 -0.01
0.1562 0.0419 0.1642 0.3623 0.1435 0.0041 0.467 0.7246 0.9618

MUP 0.02 0.01 -0.03 0.09 -0.10 -0.08 -0.15 0.26 0.17 -0.19
0.8723 0.9307 0.8895 0.5157 0.4813 0.5934 0.2691 0.0639 0.2232 0.1655

NEAR -0.25 -0.19 0.20 -0.22 -0.26 -0.09 0.14 0.22 0.03 -0.09 0.16
0.0686 0.1704 0.3935 0.1061 0.0592 0.535 0.3258 0.1122 0.8309 0.511 0.2509

PLT 0.03 0.11 0.33 -0.02 -0.01 0.09 -0.12 0.09 0.67 -0.02 0.06 0.14
0.8393 0.4309 0.138 0.8619 0.9591 0.5161 0.3791 0.5161 <.0001 0.8619 0.6636 0.3193

PREV -0.10 -0.04 0.20 -0.17 -0.37 0.17 0.06 0.17 0.10 -0.05 0.21 0.18 0.28
0.4579 0.7505 0.3748 0.23 0.0061 0.2204 0.6663 0.2204 0.4742 0.7439 0.137 0.2071 0.0418

PXW 0.32 0.30 0.06 0.25 0.24 0.19 -0.20 -0.10 -0.01 0.12 -0.20 -0.45 0.04 -0.34
0.0216 0.0276 0.8127 0.0749 0.0843 0.1653 0.1411 0.4786 0.9234 0.3881 0.1562 0.0007 0.7889 0.0137

QUE 0.14 0.25 0.37 -0.09 -0.14 -0.03 -0.07 0.57 0.24 -0.09 0.06 0.03 0.16 0.30 -0.18
0.3336 0.0762 0.0943 0.5332 0.3186 0.8092 0.6185 <.0001 0.083 0.5332 0.6562 0.8458 0.2492 0.0278 0.2083

TTC_Tau -0.31 -0.22 0.37 -0.08 -0.24 0.23 0.48 -0.08 -0.18 -0.08 -0.12 0.38 -0.17 0.13 -0.25 0.04
0.0237 0.1142 0.0943 0.5739 0.0807 0.0954 0.0003 0.5542 0.1908 0.5739 0.3936 0.0046 0.2368 0.3644 0.0723 0.7847

DECEL -0.23 -0.17 0.27 -0.06 -0.05 -0.02 0.87 -0.08 -0.19 -0.15 -0.10 0.25 -0.12 0.01 -0.23 -0.09 0.62
0.1 0.2243 0.2311 0.674 0.7013 0.9071 <.0001 0.5872 0.1727 0.2983 0.4811 0.0711 0.3963 0.9685 0.0961 0.4991 <.0001

DIST1 0.23 0.12 -0.31 -0.08 0.09 -0.14 -0.35 0.42 0.17 -0.05 0.45 -0.07 0.07 0.17 0.12 0.06 -0.62 -0.50
0.0982 0.3824 0.17 0.5865 0.5336 0.3012 0.0098 0.002 0.2119 0.7344 0.0008 0.6056 0.627 0.2242 0.3826 0.693 <.0001 0.0001

SPEED_FT -0.28 -0.26 -0.02 0.05 0.29 -0.11 0.47 0.01 -0.18 -0.32 0.16 0.20 -0.28 -0.12 -0.13 -0.25 0.31 0.48 -0.09
0.0443 0.0616 0.9366 0.7413 0.0344 0.449 0.0004 0.9683 0.1923 0.0188 0.255 0.1561 0.0424 0.38 0.3673 0.067 0.0241 0.0002 0.5344

TTC 0.35 0.24 -0.28 -0.12 -0.05 -0.12 -0.36 0.32 0.19 0.10 0.33 -0.15 0.15 0.17 0.15 0.07 -0.62 -0.54 0.88 -0.46
0.0103 0.081 0.2235 0.4085 0.7147 0.4049 0.0072 0.0212 0.1707 0.4866 0.0144 0.2802 0.2862 0.2233 0.2935 0.6357 <.0001 <.0001 <.0001 0.0005  

* Shaded cells have correlation > 0.30 or <-0.30; bold values are significant at the 0.05 confidence level 
 



   

 
 
 293 

Table C-49: Correlation Matrix, RBT-RAL, Yielding Model – ENTRY only* 
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Y_ORDERED 0.91
<.0001

Y_TYPE . 1.00
. <.0001

AST -0.06 -0.12 -0.29
0.7121 0.4193 0.2243

COM 0.18 0.08 -0.20 -0.06
0.2287 0.5835 0.4093 0.7065

DECEL_TAU -0.43 -0.39 . 0.11 -0.08
0.0027 0.0067 . 0.4507 0.6086

DSC 0.31698 0.48672 0.50775 -0.0999 -0.0385 -0.1358
0.0299 0.0005 0.0265 0.5041 0.7972 0.3629

FOLL 0.16 0.20 0.21 -0.02 -0.16 0.07 0.07
0.2691 0.1715 0.3897 0.8703 0.2914 0.6356 0.6376

MUP 0.07 0.13 0.22 -0.15 -0.06 -0.04 0.42 0.10
0.6181 0.3857 0.3758 0.3263 0.7065 0.7737 0.0032 0.4895

NEAR 0.17 0.22 0.27 -0.24 0.11 0.17 0.20 0.00 0.16
0.2563 0.1409 0.2681 0.1001 0.4577 0.2395 0.1854 0.9799 0.2973

PLT 0.12 0.15 0.18 -0.05 -0.24 -0.03 0.16 0.66 0.24 -0.07
0.4152 0.3029 0.4637 0.746 0.1065 0.856 0.2783 <.0001 0.1094 0.6425

PREV -0.18 -0.25 -0.35 -0.07 0.17 -0.13 -0.22 0.03 -0.20 -0.16 0.34
0.2186 0.0867 0.1418 0.6337 0.2496 0.3765 0.1288 0.8351 0.1771 0.2883 0.0195

PXW 0.20 0.10 -0.27 0.34 -0.07 -0.24 -0.12 0.20 0.34 -0.25 0.15 -0.16
0.1696 0.4868 0.2681 0.0211 0.6556 0.1111 0.4285 0.1823 0.0211 0.0926 0.303 0.2803

QUE 0.21 0.27 0.22 -0.12 -0.04 0.03 -0.08 0.29 -0.12 0.07 0.19 0.20 -0.14
0.1469 0.0671 0.3758 0.4348 0.7641 0.8531 0.5946 0.0512 0.4348 0.6358 0.2042 0.1774 0.3545

TRIG -0.17 -0.16 . 0.55 -0.03 -0.11 -0.06 -0.22 -0.08 -0.06 -0.34 -0.18 0.19 -0.06
0.243 0.2877 . <.0001 0.8357 0.4633 0.7132 0.1288 0.59 0.6854 0.019 0.2222 0.2132 0.6676

TTC_Tau -0.22 0.00 0.80 -0.09 -0.13 0.58 0.29 0.07 0.17 0.32 0.08 -0.17 -0.29 0.03 -0.19
0.1427 0.981 <.0001 0.5595 0.3746 <.0001 0.0476 0.6345 0.2556 0.0282 0.6053 0.2602 0.0455 0.8276 0.2021

DECEL -0.36 -0.29 0.59 0.14 -0.09 0.79 -0.07 0.00 0.14 0.16 0.03 -0.14 -0.23 -0.08 -0.10 0.61
0.0119 0.0455 0.0079 0.3413 0.5406 <.0001 0.6213 0.9873 0.3602 0.2955 0.827 0.3531 0.123 0.5991 0.5085 <.0001

DIST1 0.03 -0.13 -0.70 -0.02 0.06 -0.49 -0.28 -0.08 -0.14 -0.35 0.05 0.24 0.21 -0.25 0.04 -0.77 -0.56
0.8478 0.3679 0.0008 0.8863 0.7088 0.0004 0.06 0.6097 0.3388 0.0164 0.7505 0.109 0.1636 0.0969 0.8038 <.0001 <.0001

SPEED_FT -0.41 -0.51 -0.43 0.08 -0.05 0.22 -0.51 -0.10 -0.25 -0.22 -0.25 -0.05 -0.01 -0.51 0.03 -0.18 0.21 0.38
0.0042 0.0003 0.0683 0.5851 0.7625 0.1362 0.0002 0.4877 0.093 0.13 0.0952 0.718 0.9671 0.0002 0.8672 0.2153 0.1547 0.0083

TTC 0.15 -0.03 -0.69 0.01 0.09 -0.55 -0.23 -0.06 -0.08 -0.36 0.08 0.24 0.27 -0.14 0.04 -0.80 -0.63 0.96 0.19
0.3272 0.8183 0.001 0.9653 0.5277 <.0001 0.1175 0.6729 0.5947 0.0128 0.5946 0.1042 0.0662 0.3342 0.7776 <.0001 <.0001 <.0001 0.2052  

* Shaded cells have correlation > 0.30 or <-0.30; bold values are significant at the 0.05 confidence level 
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Table C-50: DYM Multilinear Regression Models - RBT-RAL 
a) Full Model 

Parameter Estimate
Standard 

Error t Value Pr > |t| Source DF Sum of Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE
yield Mea

n
Intercept 0.5866 0.3948 1.49 0.1421 Model 13 5.1107 0.3931 1.8 0.062 0.2614 110.0556 0.4677 0.4250
ADY 0.1174 0.2333 0.5 0.6167 Error 66 14.4393 0.2188
AST -0.0281 0.1620 -0.17 0.8628 Corrected Total 79 19.5500
entry 0.5087 0.1717 2.96 0.0042
FOLL 0.1720 0.1485 1.16 0.2508
MUP -0.0205 0.1423 -0.14 0.8859
NEAR 0.0617 0.1388 0.44 0.6581
PLT -0.1527 0.1755 -0.87 0.3872
PREV -0.1600 0.1355 -1.18 0.242
PXW 0.2100 0.1363 1.54 0.1283
Decel -0.0410 0.0533 -0.77 0.4445
DIST1 -0.0022 0.0027 -0.81 0.4214
SPEED_FT -0.0119 0.0189 -0.63 0.5326
ttc_v 0.0534 0.0487 1.1 0.2769

0.12
Adj. R - Square

 
b) Unrestricted Model 1 

Parameter Estimate
Standard 

Error t Value Pr > |t| Source DF Sum of Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE
yield Mea

n
Intercept 0.5879 0.2237 2.63 0.0104 Model 5 3.7950 0.7590 3.56 0.0061 0.1941 108.5686 0.4614 0.4250
entry 0.4374 0.1509 2.9 0.0049 Error 74 15.7550 0.2129
FOLL 0.0770 0.1045 0.74 0.4634 Corrected Total 79 19.5500
PXW 0.2617 0.1132 2.31 0.0236
SPEED_FT -0.0241 0.0090 -2.67 0.0092
ttc_v 0.0181 0.0175 1.03 0.3055

Adj. R - Square
0.14

 
c) Unrestricted Model 2 

Parameter Estimate
Standard 

Error t Value Pr > |t| Source DF Sum of Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE
yield Mea

n
Intercept 0.7472 0.1855 4.03 0.0001 Model 3 3.4186 1.1395 5.37 0.0021 0.1749 108.4028 0.4607 0.4250
entry 0.4319 0.1506 2.87 0.0053 Error 76 16.1314 0.2123
PXW 0.2841 0.1117 2.54 0.013 Corrected Total 79 19.5500
SPEED_FT -0.0253 0.0089 -2.84 0.0057

Adj. R - Square
0.14  
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d) Restricted Model 1 
Parameter Estimate

Standard 
Error t Value Pr > |t| Source DF Sum of Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE

yield Mea
n

Intercept 0.5101 0.2975 1.71 0.0908 Model 7 1.1938 0.1705 0.67 0.6975 0.0611 118.8053 0.5049 0.4250
AST 0.0080 0.1536 0.05 0.9587 Error 72 18.3562 0.2549
MUP 0.0450 0.1496 0.3 0.7643 Corrected Total 79 19.5500
entry 0.1900 0.1345 1.41 0.162
Decel -0.0565 0.0458 -1.23 0.2209
NEAR 0.0007 0.1354 0.01 0.9959
PLT -0.0235 0.1257 -0.19 0.8524
ttc_v 0.0031 0.0298 0.1 0.9173

Adj. R - Square
-0.03

 
 

e) Restricted Model 2 
Parameter Estimate

Standard 
Error t Value Pr > |t| Source DF Sum of Squares Mean Square F Value Pr > F R-Square Coeff Var Root MSE

yield Mea
n

Intercept 0.9099 0.1835 4.96 <.0001 Model 3 2.4720 0.8240 3.67 0.0159 0.1264 111.5378 0.4740 0.4250
entry 0.4310 0.1557 2.77 0.0071 Error 76 17.0780 0.2247
Decel -0.0395 0.0287 -1.38 0.1726 Corrected Total 79 19.5500
SPEED_FT -0.0231 0.0095 -2.42 0.0179

Adj. R - Square
0.09  
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Table C-51: DYM Binary Logit Regression Models - RBT-RAL 

 
a) Full Model 

Intercept 1 0.4016 2.0114 0.0399 0.8417 AIC 111.097 113.231 Likelihood Ratio 23.8653 13 0.0324
ADY 1 0.7066 1.2193 0.3358 0.5623 2.027 SC 113.479 146.58 Score 20.9134 13 0.0747
AST 1 -0.1606 0.7967 0.0406 0.8402 0.852 -2 Log L 109.097 85.231 Wald 15.8169 13 0.2592
entry 1 2.8184 0.9973 7.9861 0.0047 16.749 0.2579
FOLL 1 1.0184 0.8095 1.5825 0.2084 2.769 0.3465
MUP 1 -0.4732 0.832 0.3235 0.5695 0.623
NEAR 1 0.2941 0.7139 0.1698 0.6803 1.342
PLT 1 -0.8337 0.9503 0.7695 0.3804 0.434
PREV 1 -0.8091 0.6929 1.3637 0.2429 0.445
PXW 1 1.0619 0.6919 2.3558 0.1248 2.892
Decel 1 -0.2499 0.3243 0.5941 0.4408 0.779
DIST1 1 -0.0135 0.016 0.7093 0.3997 0.987
SPEED_FT 1 -0.0562 0.1075 0.2735 0.601 0.945
ttc_v 1 0.3238 0.2726 1.4102 0.235 1.382

Test

Testing Global Null Hypothesis: BETA=0
Pr > ChiS

qDF
Chi-

SquareDF Estimate Pr > ChiSq

Analysis of Maximum Likelihood Estimates Model Fit Statistics

Criterion
Intercept 

Only
Intercept and 

Covariates

R-Square
Max-rescaled R-2

Parameter
Standard 

Error
Wald Chi-

Square
Odds Ratio 

Point Estimate

 
b) Unrestricted Model 1 

Intercept 1 -0.6931 0.2887 5.7648 0.0164 AIC 111.097 107.390 Likelihood Ratio 5.7067 1 0.0169
PXW 1 1.1631 0.4958 5.5030 0.0190 3.200 SC 113.479 112.154 Score 5.7132 1 0.0168

-2 Log L 109.097 103.390 Wald 5.5030 1 0.0190
0.0688
0.0925 Chi-Square DF

16.4378 12

Odds Ratio 
Point Estimate

0.1720
Pr > ChiSq

Pr > ChiS
qDF

Chi-
SquareTest

Residual Chi-Square Test

Parameter DF Estimate Pr > ChiSq

Testing Global Null Hypothesis: BETA=0
Standard 

Error
Wald Chi-

Square

Analysis of Maximum Likelihood Estimates Model Fit Statistics

R-Square
Max-rescaled R-2

Criterion
Intercept 

Only
Intercept and 

Covariates
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c) Restricted Model 1 

Intercept 1 0.7917 1.8494 0.1833 0.6686 AIC 111.097 115.368 Likelihood Ratio 13.7291 9 0.1323
AST 1 0.1944 0.6618 0.0863 0.769 1.215 SC 113.479 139.188 Score 12.4726 9 0.188
MUP 1 0.0732 0.6993 0.011 0.9166 1.076 -2 Log L 109.097 95.368 Wald 10.3033 9 0.3265
entry 1 2.5131 0.9088 7.6473 0.0057 12.343 0.1577
NEAR 1 -0.1042 0.5938 0.0308 0.8608 0.901 0.2119
PLT 1 -0.1887 0.5732 0.1084 0.742 0.828
DIST1 1 -0.0183 0.014 1.7089 0.1911 0.982
Decel 1 -0.3556 0.291 1.4929 0.2218 0.701
ttc_v 1 0.2957 0.242 1.4929 0.2218 1.344
SPEED_FT 1 -0.0157 0.0918 0.0294 0.8639 0.984

Odds Ratio 
Point Estimate

Pr > ChiS
q

Testing Global Null Hypothesis: BETA=0

Test
Chi-

Square DFPr > ChiSq
Standard 

Error
Wald Chi-

SquareParameter DF Estimate

Analysis of Maximum Likelihood Estimates Model Fit Statistics

R-Square
Max-rescaled R-2

Criterion
Intercept 

Only
Intercept and 

Covariates

 
d) Restricted Model 2 

Intercept 1 0.1853 0.4279 0.1875 0.665 AIC 111.097 109.982 Likelihood Ratio 5.1152 2 0.0775
ENTRY 1 0.8451 0.5418 2.4335 0.1188 2.328 SC 113.479 117.128 Score 4.7333 2 0.0938
DECEL 1 -0.2812 0.1416 3.9432 0.0471 0.755 -2 Log L 109.097 103.982 Wald 4.3899 2 0.1114

0.0619
0.0832

Odds Ratio 
Point Estimate Test

Chi-
Square DF

Pr > ChiS
q

Testing Global Null Hypothesis: BETA=0Model Fit Statistics

Parameter DF Estimate Pr > ChiSq
Standard 

Error
Wald Chi-

Square
Intercept 

Only
Intercept and 

CovariatesCriterion

Max-rescaled R-2

Analysis of Maximum Likelihood Estimates

R-Square
 

e) Restricted Model 3 

Intercept 1 1.8099 0.9606 3.5495 0.0596 AIC 111.097 107.338 Likelihood Ratio 9.7588 3 0.0207
ENTRY 1 1.9744 0.8287 5.6763 0.0172 7.202 SC 113.479 116.866 Score 9.0661 3 0.0284
DIST1 1 0.00315 0.00387 0.6635 0.4153 1.003 -2 Log L 109.097 99.338 Wald 7.6842 3 0.053
SPEED_FT 1 -0.1418 0.052 7.4268 0.0064 0.868 0.1148

0.1543

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq

Max-rescaled R-2

Chi-
Square DF

Pr > ChiS
q

R-Square

Criterion
Intercept 

Only
Intercept and 

Covariates Test
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f) Restricted Model 4* 

Intercept 1 1.9461 0.9593 4.1153 0.0425 AIC 111.097 106.002 Likelihood Ratio 9.0949 2 0.0106
ENTRY 1 2.0022 0.8353 5.7447 0.0165 7.405 SC 113.479 113.148 Score 8.3729 2 0.0152
SPEED_FT 1 -0.1317 0.0507 6.747 0.0094 0.877 -2 Log L 109.097 100.002 Wald 6.9826 2 0.0305

0.1075
0.1444Max-rescaled R-2

Chi-
Square DF

Pr > ChiS
q

R-Square

Criterion
Intercept 

Only
Intercept and 

Covariates Test

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq

 
* Model was selected as preferred model in its category 
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Table C-52: DYM Cumulative Logit Regression Models - RBT-RAL 
 

a) Unrestricted Model 1** 

Intercept 1 1 0.6756 0.2855 5.5978 0.018 AIC 157.246 153.705 Likelihood Ratio 5.5408 1 0.0186
Intercept 2 1 2.1896 0.3841 32.5042 <.0001 SC 162.01 160.851 Score 5.6587 1 0.0174
PXW 1 -1.0849 0.466 5.4193 0.0199 0.338 -2 Log L 153.246 147.705 Wald 5.4193 1 0.0199
** Proportional Odds Assumption was rejected at p<0.0572 0.0669

0.0785
Chi-Square DF

16.2732 12 0.179
Pr > ChiSq

Pr > ChiS
q Criterion

Intercept 
Only

Intercept and 
Covariates

Odds Ratio 
Point Estimate

Model Fit Statistics

Max-rescaled R-Square

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square

Analysis of Maximum Likelihood Estimates

Residual Chi-Square Test

Testing Global Null Hypothesis: BETA=0

Test
Chi-

Square DF
Pr > ChiS

q

R-Square

 
b) Restricted Model 1** 

Intercept 1 1 -2.9237 1.4888 3.8565 0.0496 AIC 157.246 159.649 Likelihood Ratio 13.5963 8 0.0929
Intercept 2 1 -1.2712 1.4643 0.7536 0.3853 SC 162.01 183.47 Score 11.9506 8 0.1534
AST 1 0.059 0.6199 0.0091 0.9241 1.061 -2 Log L 153.246 139.649 Wald 11.2189 8 0.1896
MUP 1 -0.17 0.6301 0.0728 0.7873 0.844 0.1563
ENTRY 1 -2.3511 0.7999 8.6395 0.0033 0.095 0.1833
NEAR 1 0.274 0.5605 0.239 0.6249 1.315
PLT 1 0.2271 0.5179 0.1924 0.661 1.255
DECEL 1 0.1108 0.2115 0.2746 0.6003 1.117
TTC_V 1 0.0475 0.123 0.149 0.6995 1.049
SPEED_FT 1 0.144 0.0478 9.0696 0.0026 1.155
** Proportional Odds Assumption was rejected at p=0.0035

Pr > ChiS
q

Intercept and 
Covariates Test

Chi-
Square DF

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square
Pr > ChiS

q

R-Square

Intercept 
OnlyCriterion

Max-rescaled R-Square

 
c) Restricted Model 2** 

Intercept 1 0.0351 0.4105 0.0073 0.9319 AIC 157.246 158.472 Likelihood Ratio 2.7737 2 0.2499
Intercept 1 1.4984 0.458 10.7027 0.0011 SC 162.01 168 Score 2.6608 2 0.2644
entry 1 -0.6296 0.5032 1.5652 0.2109 0.533 -2 Log L 153.246 150.472 Wald 2.5225 2 0.2833
Decel 1 0.1846 0.1277 2.0894 0.1483 1.203 0.0341
** Proportional Odds Assumption was rejected at p=0.0006 0.04

DF
Pr > ChiS

q
Pr > ChiS

q Criterion
Intercept 

Only
Intercept and 

Covariates

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square

R-Square
Max-rescaled R-Square

Test
Chi-

Square
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d) Restricted Model 3** 

Intercept 1 1 -2.1843 0.856 6.5111 0.0107 AIC 157.246 148.363 Likelihood Ratio 12.8822 2 0.0016
Intercept 2 1 -0.5445 0.8272 0.4333 0.5104 SC 162.01 157.892 Score 11.2808 2 0.0036
entry 1 -2.139 0.7378 8.4057 0.0037 0.118 -2 Log L 153.246 140.363 Wald 10.7483 2 0.0046
SPEED_FT 1 0.144 0.0447 10.3666 0.0013 1.155 0.1487
** Proportional Odds Assumption was NOT rejected (p=0.9214) 0.1744

Wald Chi-
Square

Pr > ChiS
q Criterion DF

Intercept 
Only

Intercept and 
Covariates Test

Chi-
SquareParameter DF Estimate

Standard 
Error

Odds Ratio 
Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0
Pr > ChiS

q

Analysis of Maximum Likelihood Estimates

R-Square
Max-rescaled R-Square  
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Table C-53: DYM Multinomial Logit Regression Models - RBT-RAL 
 

a) Unrestricted Model 1 

Intercept - 2 1 -1.9669 0.6508 9.1341 0.0025 AIC 157.246 143.781 Likelihood Ratio 21.465 4 0.0003
Intercept - 3 1 0.2356 0.7699 0.0936 0.7596 SC 162.01 158.073 Score 16.4097 4 0.0025
PXW - 2 1 1.1201 0.5685 3.8814 0.0488 3.065 -2 Log L 153.246 131.781 Wald 15.2094 4 0.0043
PXW - 3 1 1.7712 0.7794 5.1642 0.0231 5.878 0.2353
DIST1 - 2 1 0.00641 0.0039 2.7108 0.0997 1.006 0.276
DIST1 - 3 1 -0.0252 0.00964 6.8444 0.0089 0.975 Chi-Square DF

24.5 22

DF
Pr > ChiS

q

Analysis of Maximum Likelihood Estimates Odds 
Ratio 
Point 

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Wald Chi-

Square
Pr > ChiS

q Criterion
Standard 

Error

Max-rescaled R-
R-Square

Chi-
Square

Intercept 
Only

Intercept and 
Covariates Test

Residual Chi-Square Test

0.3216
Pr > ChiSq

 
b) Restricted Model 1 

Intercept - 2 1 0.6836 2.1475 0.1013 0.7502 AIC 157.246 160.632 Likelihood Ratio 28.614 16 0.0267
Intercept - 3 1 3.2953 2.3599 1.9498 0.1626 SC 162.01 203.508 Score 28.6477 16 0.0264
AST - 2 1 0.5128 0.7325 0.49 0.4839 1.67 -2 Log L 153.246 124.632 Wald 18.1047 16 0.3178
AST - 3 1 -0.6796 1.2227 0.3089 0.5783 0.507 0.3007
MUP - 2 1 -0.0859 0.8571 0.01 0.9202 0.918 0.3526
MUP - 3 1 0.2037 0.975 0.0437 0.8345 1.226
ENTRY - 2 1 1.7701 1.1148 2.5209 0.1123 5.871
ENTRY - 3 1 2.6359 1.3063 4.0716 0.0436 13.956
NEAR - 2 1 -0.0513 0.6876 0.0056 0.9405 0.95
NEAR - 3 1 -0.6802 0.9234 0.5425 0.4614 0.507
PLT - 2 1 -0.7683 0.6427 1.4291 0.2319 0.464
PLT - 3 1 0.2854 0.9408 0.092 0.7617 1.33
DECEL - 2 1 -0.4981 0.4268 1.3621 0.2432 0.608
DECEL - 3 1 -0.0354 0.311 0.013 0.9093 0.965
TTC_V - 2 1 0.0827 0.1794 0.2128 0.6446 1.086
TTC_V - 3 1 -0.22 0.2231 0.9722 0.3241 0.803
SPEED_FT - 2 1 -0.0378 0.0704 0.288 0.5915 0.963
SPEED_FT - 3 1 -0.1992 0.084 5.628 0.0177 0.819

Pr > ChiS
q Criterion

Intercept 
Only

Intercept and 
Covariates

Analysis of Maximum Likelihood Estimates Odds 
Ratio 
Point 

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square

R-Square

Test
Chi-

Square DF
Pr > ChiS

q

Max-rescaled R-
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c) Restricted Model 2 

Intercept - 2 1 0.3582 0.5269 0.4622 0.4966 AIC 157.246 153.355 Likelihood Ratio 11.8902 4 0.0182
Intercept - 3 1 -1.5491 0.6212 6.2191 0.0126 SC 162.01 167.648 Score 9.1372 4 0.0578
ENTRY - 2 1 1.3006 0.6678 3.7928 0.0515 3.672 -2 Log L 153.246 141.355 Wald 8.287 4 0.0816
ENTRY - 3 1 0.4354 0.7263 0.3593 0.5489 1.546 0.1381
DECEL - 2 1 -0.6152 0.2254 7.4456 0.0064 0.541 0.162
DECEL - 3 1 0.00323 0.1602 0.0004 0.9839 1.003

Pr > ChiS
q Criterion

Intercept 
Only

Intercept and 
Covariates

Analysis of Maximum Likelihood Estimates Odds 
Ratio 
Point 

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square
Pr > ChiS

qTest
Chi-

Square DF

R-Square
Max-rescaled R-

 
d) Restricted Model 3 

Intercept - 2 1 0.8877 1.0784 0.6776 0.4104 AIC 157.246 152.249 Likelihood Ratio 12.9970 4 0.0113
Intercept - 3 1 2.1166 1.2509 2.8633 0.0906 SC 162.01 166.541 Score 13.1864 4 0.0104
ENTRY - 2 1 1.5072 0.9221 2.6719 0.1021 4.514 -2 Log L 153.246 140.249 Wald 9.3168 4 0.0537

ENTRY - 3 1 2.9818 1.1349 6.9035 0.0086 19.724 0.1500
SPEED_FT - 2 1 -0.0937 0.056 2.7976 0.0944 0.911 0.1758
SPEED_FT - 3 1 -0.2103 0.0702 8.9732 0.0027 0.81

R-Square
Max-rescaled R-

Analysis of Maximum Likelihood Estimates Odds 
Ratio 
Point 

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square
Pr > ChiS

q
Pr > ChiS

q Criterion
Intercept 

Only
Intercept and 

Covariates Test
Chi-

Square DF
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Table C-54: DYM Nested Logit Models, Level 2 - RBT-RAL 
 

a) Unrestricted Model 

Intercept 1 3.2349 1.2871 6.3169 0.012 AIC 46.149 31.186 Likelihood Ratio 16.9627 1 <.0001
DIST1 1 -0.0366 0.0124 8.7914 0.003 0.964 SC 47.675 34.239 Score 12.6269 1 0.0004

-2 Log L 44.149 27.186 Wald 8.7914 1 0.003
0.3928
0.5403

R-Square
Max-rescaled R-2

Test
Chi-

Square DF
Pr > ChiS

qPr > ChiSq Criterion
Intercept 

Only
Intercept and 

Covariates

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square

 
b) Restricted Model – 1 

Intercept 1 1.1964 3.3673 0.1262 0.7224 AIC 46.149 40.87 Likelihood Ratio 21.2789 8 0.0064
AST 1 -1.1976 1.7019 0.4952 0.4816 0.302 SC 47.675 54.607 Score 15.7443 8 0.0462
MUP 1 -0.8665 1.5476 0.3135 0.5755 0.42 -2 Log L 44.149 22.87 Wald 8.2353 8 0.4108
entry 1 -0.4499 2.5292 0.0316 0.8588 0.638 0.4652
NEAR 1 -0.4351 2.2182 0.0385 0.8445 0.647 0.6398
PLT 1 0.8451 1.2849 0.4325 0.5107 2.328
Decel 1 1.9124 1.0941 3.0553 0.0805 6.769
ttc_v 1 -0.0268 0.3158 0.0072 0.9323 0.974
SPEED_FT 1 -0.3066 0.1411 4.7212 0.0298 0.736

R-Square
Max-rescaled R-2

Test
Chi-

Square DF
Pr > ChiS

q

Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion
Intercept 

Only
Intercept and 

Covariates

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics

 
c) Restricted Model – 2 

Intercept 1 1.3697 1.7238 0.6313 0.4269 AIC 46.149 35.029 Likelihood Ratio 21.1202 5 0.0008
AST 1 -0.8939 1.429 0.3914 0.5316 0.409 SC 47.675 44.187 Score 15.0546 5 0.0101
MUP 1 -0.7762 1.4897 0.2715 0.6023 0.46 -2 Log L 44.149 23.029 Wald 7.9293 5 0.1602
PLT 1 0.7146 1.2389 0.3327 0.5641 2.043 0.4627
Decel 1 1.9145 0.7414 6.6674 0.0098 6.783 0.6364
SPEED_FT 1 -0.3345 0.1279 6.8389 0.0089 0.716

R-Square
Max-rescaled R-2

Test
Chi-

Square DF
Pr > ChiS

q

Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion
Intercept 

Only
Intercept and 

Covariates

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics
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d) Restricted Model – 3* 

Intercept 1 1.6143 1.3568 1.4155 0.2341 AIC 46.149 30.028 Likelihood Ratio 20.1207 2 <.0001
Decel 1 1.9268 0.7295 6.9769 0.0083 6.867 SC 47.675 34.607 Score 14.3465 2 0.0008
SPEED_FT 1 -0.3377 0.1262 7.1631 0.0074 0.713 -2 Log L 44.149 24.028 Wald 7.4575 2 0.024

0.4467
0.6143

R-Square
Max-rescaled R-2

Test
Chi-

Square
Intercept 

Only
Intercept and 

Covariates DF
Pr > ChiS

q

Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics

 
 

e) Restricted Model - 4 

Intercept 1 0.4703 0.9461 0.2471 0.6191 AIC 46.149 46.629 Likelihood Ratio 1.5203 1 0.2176
SPEED_FT 1 -0.0502 0.0419 1.437 0.2306 0.951 SC 47.675 49.681 Score 1.4853 1 0.2229

-2 Log L 44.149 42.629 Wald 1.437 1 0.2306
0.0437
0.0601

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq
Chi-

Square DF
Pr > ChiS

q

R-Square

Criterion
Intercept 

Only
Intercept and 

Covariates Test

Max-rescaled R-2  
f) Restricted Model - 5 

Intercept 1 -1.9007 0.7465 6.4835 0.0109 AIC 46.149 43.026 Likelihood Ratio 5.1231 1 0.0236
Decel 1 0.4573 0.2217 4.2548 0.0391 1.58 SC 47.675 46.079 Score 5.0616 1 0.0245

-2 Log L 44.149 39.026 Wald 4.2548 1 0.0391
0.1399
0.1924

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics

DF
Pr > ChiS

q

Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion

R-Square
Max-rescaled R-2

Test
Chi-

Square
Intercept 

Only
Intercept and 

Covariates

 
 

* Model was selected as preferred model in its category 
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Table C-55: Correlation Matrix, RBT-RAL, Pedestrian Crossing Model – Lags Only* 

G
O

N
oG

o

A
D

Y

A
ST

FO
LL

H
EV

M
U

P

N
EA

R

PL
T

PR
EV

PX
W

Q
U

E

TR
IG

D
ec

el

D
IS

T1

O
_L

A
G

T_
LA

G

GO

NoGo -1.00
<.0001

ADY 0.23 -0.23
0.0768 0.0768

AST 0.48 -0.48 0.09
<.0001 <.0001 0.5058

FOLL -0.03 0.03 -0.10 0.05
0.8017 0.8017 0.4308 0.7078

HEV 0.09 -0.09 -0.07 0.23 0.30
0.4693 0.4693 0.591 0.0796 0.02

MUP 0.00 0.00 0.11 0.06 0.09 -0.10
0.9896 0.9896 0.3884 0.6247 0.4742 0.4647

NEAR -0.29 0.29 -0.33 -0.05 -0.09 -0.19 0.08
0.0249 0.0249 0.0096 0.69 0.4758 0.1354 0.543

PLT -0.22 0.22 -0.15 -0.07 0.85 0.25 0.14 -0.03
0.084 0.084 0.2627 0.5907 <.0001 0.0499 0.2933 0.8331

PREV -0.24 0.24 -0.14 -0.15 -0.02 0.01 -0.20 -0.28 0.21
0.0635 0.0635 0.2663 0.2508 0.906 0.9213 0.1291 0.0297 0.1089

PXW 0.09 -0.09 -0.07 0.09 0.16 0.20 0.11 0.08 0.12 -0.14
0.4693 0.4693 0.591 0.5058 0.2068 0.1273 0.3884 0.5513 0.3587 0.2663

QUE -0.21 0.21 -0.05 -0.13 0.21 -0.05 -0.07 -0.04 0.18 0.34 -0.05
0.0983 0.0983 0.7089 0.3054 0.1101 0.7089 0.6117 0.7586 0.1767 0.0078 0.7089

TRIG 0.14 -0.14 0.16 0.29 -0.03 -0.08 0.08 0.12 -0.07 -0.16 0.16 -0.06
0.2935 0.2935 0.2115 0.0251 0.8445 0.5443 0.5404 0.3638 0.568 0.2092 0.2115 0.6737

Decel -0.58 0.58 -0.16 -0.28 -0.09 -0.15 0.17 0.25 0.17 0.08 -0.06 0.03 -0.12
<.0001 <.0001 0.2241 0.027 0.5047 0.2346 0.1976 0.0537 0.1779 0.5321 0.6236 0.8031 0.3567

DIST1 0.70 -0.70 -0.04 0.21 -0.22 -0.11 0.07 -0.06 -0.36 -0.10 0.02 -0.19 -0.04 -0.49
<.0001 <.0001 0.7348 0.1039 0.0913 0.3799 0.6154 0.6478 0.004 0.4576 0.9016 0.1443 0.7585 <.0001

O_LAG 0.85 -0.85 0.13 0.32 -0.07 0.16 0.03 -0.23 -0.25 -0.13 0.00 -0.23 0.08 -0.65 0.84
<.0001 <.0001 0.3085 0.0127 0.5762 0.2062 0.8431 0.0688 0.0504 0.325 0.9977 0.0742 0.5363 <.0001 <.0001

T_LAG 0.82 -0.82 0.15 0.31 -0.08 0.07 0.01 -0.23 -0.27 -0.15 -0.01 -0.21 0.01 -0.66 0.89 0.95
<.0001 <.0001 0.2381 0.0168 0.5164 0.5835 0.9546 0.0768 0.036 0.2387 0.9293 0.1015 0.9123 <.0001 <.0001 <.0001

speed_ft 0.17 -0.17 -0.29 0.03 -0.27 -0.37 0.15 0.21 -0.30 -0.04 0.07 -0.23 -0.05 0.14 0.55 0.19 0.19
0.1923 0.1923 0.0228 0.7939 0.0342 0.0035 0.2586 0.1027 0.0197 0.7421 0.6179 0.0746 0.7003 0.2962 <.0001 0.1396 0.1394  

* Shaded cells have correlation > 0.30 or <-0.30; bold values are significant at the 0.05 confidence level 
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Table C-56: Correlation Matrix, RBT-RAL, Pedestrian Crossing Model – Gaps Only* 
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T1

D
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O
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G

A
P

GO

NoGo -1.00
<.0001

ADY 0.19 -0.19
0.3451 0.3451

AST 0.52 -0.52 -0.10
0.006 0.006 0.6028

FOLL -0.26 0.26 -0.19 0.02
0.1934 0.1934 0.3451 0.9219

MUP -0.11 0.11 -0.12 0.09 0.28
0.597 0.597 0.5644 0.654 0.164

NEAR 0.28 -0.28 0.12 0.32 -0.11 0.16
0.164 0.164 0.5644 0.1081 0.597 0.4338

PLT -0.68 0.68 -0.28 -0.19 0.68 0.24 -0.06
<.0001 <.0001 0.1613 0.3451 <.0001 0.2298 0.7672

PREV -0.34 0.34 0.07 -0.38 -0.13 -0.06 -0.21 0.00
0.082 0.082 0.7311 0.0519 0.5147 0.7672 0.2951 1

PXW 0.19 -0.19 -0.04 -0.10 -0.19 0.33 0.12 -0.28 0.07
0.3451 0.3451 0.8489 0.6028 0.3451 0.0912 0.5644 0.1613 0.7311

TRIG 0.19 -0.19 -0.04 0.37 -0.19 -0.12 0.12 -0.28 0.07 -0.04
0.3451 0.3451 0.8489 0.0598 0.3451 0.5644 0.5644 0.1613 0.7311 0.8489

Decel -0.28 0.28 -0.20 0.08 -0.15 -0.15 0.24 0.19 -0.07 -0.20 0.24
0.1636 0.1636 0.3225 0.6835 0.4637 0.4659 0.2288 0.3326 0.7432 0.3272 0.2378

DIST1 0.43 -0.43 0.03 -0.06 0.04 -0.28 -0.13 -0.18 -0.16 -0.18 -0.17 -0.38
0.0236 0.0236 0.8754 0.7836 0.8328 0.1612 0.5028 0.3763 0.4384 0.3677 0.3927 0.0511

D_WAIT 0.06 -0.06 0.52 -0.25 -0.01 -0.03 -0.14 -0.12 -0.03 -0.10 -0.17 -0.53 0.55
0.781 0.781 0.0055 0.2146 0.9645 0.8945 0.5015 0.5644 0.8969 0.618 0.3939 0.0041 0.0029

O_GAP 0.53 -0.53 -0.40 0.28 0.15 0.12 -0.02 -0.11 -0.17 0.33 -0.04 -0.24 0.24 -0.46
0.0046 0.0046 0.0395 0.1544 0.4568 0.5574 0.924 0.5862 0.4101 0.0909 0.8412 0.2202 0.2335 0.0162

T_GAP 0.67 -0.67 0.26 0.03 -0.07 -0.11 -0.10 -0.43 0.03 0.10 -0.11 -0.47 0.50 0.02 0.65259
0.0001 0.0001 0.1947 0.8739 0.746 0.5979 0.6113 0.0243 0.8677 0.6338 0.5759 0.014 0.008 0.9277 0.0002

speed_ft 0.24 -0.24 -0.16 0.15 0.05 -0.47 0.08 -0.02 -0.34 -0.33 0.01 0.33 0.63 0.05 0.08 0.10
0.2334 0.2334 0.4267 0.4577 0.8057 0.0125 0.6888 0.9143 0.0816 0.0922 0.9414 0.0974 0.0004 0.8163 0.7001 0.6215  

* Shaded cells have correlation > 0.30 or <-0.30; bold values are significant at the 0.05 confidence level 
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Table C-57: PCM Multilinear Regression Models - RBT-RAL – Lags Only 
a) Full Model 

Parameter Estimate
Standard 

Error t Value Pr > |t| Source DF
Sum of 

Squares
Mean 

Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept -0.2193 0.2770 -0.79 0.4326 Model 15 12.3314 0.8221 14.3 <.0001 0.8266 41.7853 0.2398 0.5738
ADY 0.1742 0.1556 1.12 0.2688 Error 45 2.5866 0.0575
AST 0.2329 0.0736 3.16 0.0028 Corrected Total 60 14.9180
FOLL -0.0810 0.1476 -0.55 0.5859
MUP -0.1501 0.1091 -1.38 0.1758
NEAR -0.1299 0.0812 -1.6 0.1166
PLT 0.1342 0.1565 0.86 0.396
PREV -0.1917 0.0981 -1.95 0.0569
PXW 0.1407 0.1314 1.07 0.2901
TRIG 0.0081 0.1273 0.06 0.9497
entry -0.1242 0.1115 -1.11 0.2714
Decel -0.0023 0.0068 -0.34 0.7389
DIST1 -0.0003 0.0011 -0.23 0.8206
O_LAG 0.0736 0.0265 2.78 0.0078
T_LAG 0.0164 0.0500 0.33 0.7441
SPEED_FT 0.0132 0.0101 1.31 0.1972

Adj. R - Square
0.77

 
b) Unrestricted Model 1 

Parameter Estimate
Standard 

Error t Value Pr > |t| Source DF
Sum of 

Squares
Mean 

Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept 0.0503 0.1045 0.48 0.6322 Model 8 12.0671 1.5084 27.51 <.0001 0.8089 40.8089 0.2341 0.5738
ADY 0.1388 0.1406 0.99 0.328 Error 52 2.8509 0.0548
AST 0.2329 0.0671 3.47 0.0011 Corrected Total 60 14.9180
MUP -0.1085 0.0997 -1.09 0.2818
NEAR -0.1305 0.0739 -1.77 0.0834
PLT 0.0275 0.0660 0.42 0.6786
PREV -0.1852 0.0810 -2.29 0.0263
entry 0.0314 0.0680 0.46 0.6463

Adj. R - Square
0.78
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c) Unrestricted Model 2 

Parameter Estimate
Standard 

Error t Value Pr > |t| Source DF
Sum of 

Squares
Mean 

Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept 0.0925 0.0824 1.12 0.2663 Model 4 11.9648 2.9912 56.72 <.0001 0.8020 40.0235 0.2296 0.5738
AST 0.2340 0.0657 3.56 0.0008 Error 56 2.9532 0.0527
NEAR -0.1506 0.0654 -2.3 0.025 Corrected Total 60 14.9180
PREV -0.1815 0.0749 -2.42 0.0187
O_LAG 0.0853 0.0077 11.07 <.0001

Adj. R - Square
0.79

 
d) Restricted Model 1 

Parameter Estimate
Standard 

Error t Value Pr > |t| Source DF
Sum of 

Squares
Mean 

Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept 0.0203 0.1034 0.2 0.845 Model 6 11.1922 1.8654 27.04 <.0001 0.7502 45.7803 0.2627 0.5738
AST 0.2716 0.0745 3.65 0.0006 Error 54 3.7259 0.0690
MUP -0.0192 0.1077 -0.18 0.8595 Corrected Total 60 14.9180
entry -0.0104 0.0726 -0.14 0.8863
NEAR -0.1076 0.0747 -1.44 0.1556
PLT -0.0143 0.0714 -0.2 0.8417
T_LAG 0.0887 0.0095 9.34 <.0001

Adj. R - Square
0.7225

 
e) Restricted Model 2 

Parameter Estimate
Standard 

Error t Value Pr > |t| Source DF
Sum of 

Squares
Mean 

Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept 0.0046 0.0806 0.06 0.9544 Model 3 11.1849 3.7283 56.93 <.0001 0.7498 44.6026 0.2559 0.5738
AST 0.2704 0.0724 3.73 0.0004 Error 57 3.7331 0.0655
NEAR -0.1106 0.0689 -1.61 0.114 Corrected Total 60 14.9180
T_LAG 0.0891 0.0088 10.08 <.0001

Adj. R - Square
0.7366  
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Table C-58: PCM Multilinear Regression Models - RBT-RAL – Gaps Only 
a) Full Model 

Parameter Estimate
Standard 

Error t Value Pr > |t| Source DF
Sum of 

Squares
Mean 

Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept -0.1366 1.2867 -0.11 0.9175 Model 16 6.2678 0.3917 8.28 0.0009 0.9298 41.9419 0.2175 0.5185
ADY -0.3188 1.0379 -0.31 0.7651 Error 10 0.4730 0.0473
AST 0.3867 0.1844 2.1 0.0623 Corrected Total 26 6.7407
FOLL 0.0813 0.1507 0.54 0.6012
MUP -0.1377 0.1760 -0.78 0.4523
NEAR 0.2397 0.1218 1.97 0.0774
PLT -0.4347 0.2424 -1.79 0.1032
PREV -0.2533 0.2086 -1.21 0.2524
PXW 0.1859 0.4532 0.41 0.6903
TRIG 0.0466 0.2902 0.16 0.8755
entry 0.0584 0.2768 0.21 0.837
Decel 0.1082 0.1200 0.9 0.3886
DIST1 -0.0001 0.0027 -0.02 0.984
D_WAIT 0.0604 0.1100 0.55 0.5954
O_GAP 0.0372 0.0659 0.57 0.5844
T_GAP 0.1027 0.1085 0.95 0.366
SPEED_FT -0.0093 0.0283 -0.33 0.7486

Adj. R - Square
0.82

 
b) Unrestricted Model 1 

Parameter Estimate
Standard 

Error t Value Pr > |t| Source DF
Sum of 

Squares
Mean 

Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept 0.0293 0.1668 0.18 0.8621 Model 4 5.7003 1.4251 30.13 <.0001 0.8456 41.9409 0.2175 0.5185
AST 0.4413 0.1079 4.09 0.0005 Error 22 1.0405 0.0473
NEAR 0.2165 0.1016 2.13 0.0444 Corrected Total 26 6.7407
PLT -0.4000 0.1005 -3.98 0.0006
T_GAP 0.1061 0.0193 5.5 <.0001

Adj. R - Square
0.82

 
c) Unrestricted Model 2 

Parameter Estimate
Standard 

Error t Value Pr > |t| Source DF
Sum of 

Squares
Mean 

Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept 0.4198 0.1516 2.77 0.0112 Model 4 5.2471 1.3118 19.32 <.0001 0.7784 50.2515 0.2606 0.5185
AST 0.2851 0.1351 2.11 0.0464 Error 22 1.4937 0.0679
NEAR 0.1979 0.1215 1.63 0.1176 Corrected Total 26 6.7407
PLT -0.6171 0.1085 -5.69 <.0001
O_GAP 0.0616 0.0162 3.8 0.001

Adj. R - Square
0.74
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d) Restricted Model 1 
Parameter Estimate

Standard 
Error t Value Pr > |t| Source DF

Sum of 
Squares

Mean 
Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean

Intercept -0.0102 0.1691 -0.06 0.9526 Model 6 5.7947 0.9658 20.42 <.0001 0.8596 41.9456 0.2175 0.5185
AST 0.3916 0.1149 3.41 0.0028 Error 20 0.9461 0.0473
MUP 0.0564 0.1186 0.48 0.6398 Corrected Total 26 6.7407
entry 0.1478 0.1072 1.38 0.1832
NEAR 0.2057 0.1032 1.99 0.06
PLT -0.4465 0.1111 -4.02 0.0007
T_GAP 0.1022 0.0195 5.24 <.0001

0.82
Adj. R - Square

 
e) Restricted Model 2 

Parameter Estimate
Standard 

Error t Value Pr > |t| Source DF
Sum of 

Squares
Mean 

Square F Value Pr > F R-Square Coeff Var Root MSE GO Mean
Intercept 0.1699 0.1556 1.09 0.2868 Model 4 5.5732 1.3933 26.25 <.0001 0.8268 44.4292 0.2304 0.5185
AST 0.4743 0.1126 4.21 0.0004 Error 22 1.1676 0.0531
entry 0.1235 0.0961 1.29 0.2117 Corrected Total 26 6.7407
PLT -0.4390 0.1083 -4.05 0.0005
T_GAP 0.0977 0.0204 4.79 <.0001

Adj. R - Square
0.80
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Table C-59: PCM Binary Logit Regression Models - RBT-RAL – Lags Only 
a) Full Model 

Intercept 1 -31.0908 101.6 0.0937 0.7595 AIC 85.231 26.065 Likelihood Ratio 83.1661 12 <.0001
AST 1 7.6167 19.5574 0.1517 0.6969 >999.999 SC 87.342 53.506 Score 49.8448 12 <.0001
FOLL 1 3.645 42.1732 0.0075 0.9311 38.281 -2 Log L 83.231 0.065 Wald 1.1307 12 1.0000
MUP 1 -9.379 110.9 0.0072 0.9326 <0.001 0.7442
NEAR 1 -7.0669 22.1379 0.1019 0.7496 <0.001 0.9996
PLT 1 -2.2839 42.3923 0.0029 0.957 0.102
PREV 1 -2.7106 19.2949 0.0197 0.8883 0.066
entry 1 -13.1969 43.536 0.0919 0.7618 <0.001
Decel 1 0.2253 2.6254 0.0074 0.9316 1.253
DIST1 1 0.0228 0.4484 0.0026 0.9594 1.023
O_LAG 1 5.082 8.5873 0.3502 0.554 161.089
T_LAG 1 -2.3214 19.2037 0.0146 0.9038 0.098
SPEED_FT 1 0.7603 3.1438 0.0585 0.8089 2.139

Test Chi-Square DF Pr > ChiSq

Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq Criterion Intercept Only
Intercept and 

Covariates

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics

R-Square
Max-rescaled R-2

 
b) Unrestricted Model 

Intercept 1 -44.3366 44.0002 1.0154 0.3136 AIC 85.231 9.403 Likelihood Ratio 79.8285 2 <.0001
AST 1 12.5505 13.0493 0.925 0.3362 >999.999 SC 87.342 15.735 Score 47.0968 2 <.0001
O_LAG 1 6.9639 6.8807 1.0243 0.3115 >999.999 -2 Log L 83.231 3.403 Wald 1.0248 2 0.5990

0.7298 Residual Chi-Square Test
0.9803 Chi-Square DF

2.5932 10 0.9894
Pr > ChiSq

Test Chi-Square DF Pr > ChiSq

Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq Criterion Intercept Only
Intercept and 

Covariates

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics

Max-rescaled R-2
R-Square

 
d) Restricted Model 1 

Intercept 1 -7.2762 3.5030 4.3146 0.0378 AIC 85.231 28.994 Likelihood Ratio 68.2373 6 <.0001
AST 1 3.3665 1.7636 3.6437 0.0563 28.977 SC 87.342 43.770 Score 45.7649 6 <.0001
MUP 1 0.4432 7.6040 0.0034 0.9535 1.558 -2 Log L 83.231 14.994 Wald 9.5482 6 0.1450
entry 1 -0.2819 1.5070 0.0350 0.8516 0.754 0.6733
NEAR 1 -0.0878 1.5742 0.0031 0.9555 0.916 0.9044
PLT 1 -0.7387 1.5191 0.2365 0.6268 0.478
T_LAG 1 1.2804 0.4782 7.1679 0.0074 3.598

Pr > ChiSq
Intercept and 

Covariates Test Chi-Square DF

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate Standard Error Wald Chi-Square

Max-rescaled R-2
R-Square

Criterion Intercept OnlyPr > ChiSq
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e) Restricted Model 2* 

Intercept 1 -7.6989 2.6391 8.5102 0.0035 AIC 85.231 21.240 Likelihood Ratio 67.9912 2 <.0001
AST 1 3.0943 1.5209 4.1395 0.0419 22.073 SC 87.342 27.573 Score 45.0454 2 <.0001
T_LAG 1 1.2723 0.4192 9.2105 0.0024 3.569 -2 Log L 83.231 15.240 Wald 10.1663 2 0.0062

0.6720
0.9026

Test Chi-Square DF Pr > ChiSqPr > ChiSq Criterion Intercept Only
Intercept and 

Covariates

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate Standard Error Wald Chi-Square

 
Max-rescaled R-2  

 
* Model was selected as preferred model in its category 
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Table C-60: PCM Binary Logit Regression Models - RBT-RAL – Gaps Only 
a) Full Model 

Intercept 1 -126.7 245.3 0.2666 0.6056 AIC 39.393 22.043 Likelihood Ratio 37.3498 10 <.0001
FOLL 1 -9.6916 25.9388 0.1396 0.7087 <0.001 SC 40.689 36.297 Score 19.9553 10 0.0297
MUP 1 -8.9939 54.3604 0.0274 0.8686 <0.001 -2 Log L 37.393 0.043 Wald 0.8043 10 0.9999
NEAR 1 10.117 77.7565 0.0169 0.8965 >999.999 0.7493
entry 1 -7.8338 114.2 0.0047 0.9453 <0.001 0.9995
Decel 1 10.1223 49.6649 0.0415 0.8385 >999.999
DIST1 1 -0.2382 0.5339 0.1991 0.6555 0.788
D_WAIT 1 10.6151 17.931 0.3505 0.5539 >999.999
O_GAP 1 6.7425 23.0353 0.0857 0.7697 847.707
T_GAP 1 11.8412 22.4534 0.2781 0.5979 >999.999
SPEED_FT 1 1.5255 5.3207 0.0822 0.7743 4.598

R-Square
Max-rescaled R-2

Test Chi-Square DF Pr > ChiSq
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Intercept 

Only
Intercept and 

Covariates

 
b) Unrestricted Model 1 

Intercept 1 -7.5982 3.3152 5.2529 0.0219 AIC 39.393 21.314 Likelihood Ratio 20.0785 1 <.0001
T_GAP 1 1.8893 0.8628 4.7953 0.0285 6.615 SC 40.689 23.906 Score 12.1898 1 0.0005

-2 Log L 37.393 17.314 Wald 4.7953 1 0.0285
0.5246 Residual Chi-Square Test
0.6998 Chi-Square DF

10.9937 9 0.2761
Pr > ChiSq

R-Square
Max-rescaled R-2

Chi-Square DF Pr > ChiSqCriterion
Intercept 

Only
Intercept and 

Covariates Test

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq

 
c) Unrestricted Model 2 

Intercept 1 -8.0971 3.8211 4.4905 0.0341 AIC 39.393 22.631 Likelihood Ratio 22.7619 3 <.0001
FOLL 1 -4.6675 2.2331 4.3689 0.0366 0.009 SC 40.689 27.814 Score 14.1560 3 0.0027
D_WAIT 1 0.7599 0.3620 4.4066 0.0358 2.138 -2 Log L 37.393 14.631 Wald 5.7675 3 0.1235
O_GAP 1 1.5208 0.6433 5.5883 0.0181 4.576 0.5696 Residual Chi-Square Test

0.7598 Chi-Square DF
4.7997 6

Pr > ChiSq
0.5697

R-Square
Max-rescaled R-2

Chi-Square DF Pr > ChiSq
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Intercept 

Only
Intercept and 

Covariates Test
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d) Restricted Model 1 

Intercept 1 -10.573 4.7525 4.9493 0.0261 AIC 39.393 24.994 Likelihood Ratio 22.3991 4 0.0002
MUP 1 -2.3998 2.4232 0.9808 0.322 0.091 SC 40.689 31.473 Score 12.9886 4 0.0113
D_WAIT 1 0.2577 0.2848 0.8184 0.3656 1.294 -2 Log L 37.393 14.994 Wald 5.2874 4 0.2591
entry 1 0.225 1.5003 0.0225 0.8808 1.252 0.5638  
T_GAP 1 2.4628 1.1287 4.7608 0.0291 11.738 0.7520Max-rescaled R-2

R-Square

Chi-Square DF Pr > ChiSq

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion
Intercept 

Only
Intercept and 

Covariates Test

 
e) Restricted Model 2 

Intercept 1 -10.5867 4.7742 4.9172 0.0266 AIC 39.393 23.016 Likelihood Ratio 22.3765 3 <.0001

MUP 1 -2.5502 2.1900 1.3560 0.2442 0.078 SC 40.689 28.200 Score 12.2733 3 0.0065
D_WAIT 1 0.2650 0.2815 0.8864 0.3464 1.303 -2 Log L 37.393 15.016 Wald 5.2813 3 0.1523
T_GAP 1 2.5030 1.1029 5.1504 0.0232 12.219 0.5634
  0.7516

R-Square
Max-rescaled R-2

Chi-Square
Intercept 

Only
Intercept and 

Covariates Test Pr > ChiSqCriterion
Standard 

Error
Wald Chi-

Square Pr > ChiSq DF

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate

 
f) Restricted Model 3* 

Intercept 1 -8.6936 4.0688 4.5653 0.0326 AIC 39.393 22.934 Likelihood Ratio 20.4584 2 <.0001
D_WAIT 1 0.1275 0.2114 0.3635 0.5466 1.136 SC 40.689 26.822 Score 12.2417 2 0.0022

T_GAP 1 2.0271 0.9607 4.4522 0.0349 7.592 -2 Log L 37.393 16.934 Wald 4.4574 2 0.1077
0.5313
0.7087Max-rescaled R-2

R-Square

Pr > ChiSqChi-Square
Intercept 

Only
Intercept and 

Covariates Test
Standard 

Error
Wald Chi-

Square Pr > ChiSq Criterion

Analysis of Maximum Likelihood Estimates
Odds Ratio 

Point Estimate

Model Fit Statistics Testing Global Null Hypothesis: BETA=0

Parameter DF Estimate DF

 
 

* Model was selected as preferred model in its category 
 


