
Abstract

PIERSON, DAVID MICHAEL. Buried-Object Detection Using Time-
Reversed Acoustics. (Under the direction of David Aspnes.)

The work presented here is a comprehensive study of using time reversal to detect

objects located in an inhomogeneous environment using backscattered signals with

an emphasis on littoral environments. Time reversal of acoustic signals in the ocean

has been studied for more than two decades with the emphasis on the use of the

forward scattered field. All studies share similar geometries where both the acous-

tical source and an adjacent array of transducers are placed in the water column.

This configuration, known as a time-reversal mirror (TRM), is not practical when

detecting an object that is located in a different environment than the TRM, such as

beneath the ocean floor. Little work has been done to study the efficacy of a single

transceiver performing the time-reversal operation on the backscattered signals from

targets buried beneath the ocean floor. Here, I start by presenting the theory for such

a system in both time and frequency domains for scattering by a sphere. Then by

using simulations I show that time reversal of backscattered signals provides a robust

method to detect targets buried in an acoustically inhomogeneous sediment using a

point transceiver in the water column several meters above the sea floor. Effects of

the time-reversal window (TRW) on the iterative time-reversal operation are also pre-

sented. I define a signal-to-noise ratio (SNR) that treats the return with the sphere

as the signal and the return without the sphere as noise to quantify improvements to

the sphere returns. I consider two different sediment models and angle of incidence to



show that the TRO operates independently of the sediment type and transceiver ori-

entation. Theoretical analysis reveals that the time-reversal of backscattered signals

converges to a subset of waveforms defined by the target and time-reversal window,

not the initial pulse. Analysis further reveals that the time-reversal operator detects

the sphere after only two iterations of the TRO, with more iterations enhancing the

sphere return through the non-linear filtering property of the TRO. Through this

work, I demonstrate that time reversal is a robust method to detect objects.
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Chapter 1

Buried Object Detection Using

Time-reversed Acoustics

1.1 Introduction

Location of objects by remote sources has been the subject of the work of many

people in many areas both civilian and military. The term ”remote sensing” gives

the impression of aerial photos, radar towers, satellites, and sonar systems on ships.

But this is not that different than tracking deposition of various substances on a

particular substrate. The goal is to be able to accurately measure some quantity

using any method appropriate for the object being located and the environment in

which the object is located. For example, use of echo location may not be the best

option to find an airplane 50 km away since sound does not propagate efficiently in

the atmosphere.

For the ocean environment there are two techniques available, one is based on

optical methods [1] and the other on acoustical methods. For example, the optical

system developed by Moore et. al. [2], [3], uses a 532 nm Nd:YAG laser to illuminate

the seafloor and a camera to record the image. Since it uses a laser the spatial (up

to 0.6 mm at 10 m) and depth resolution (up to 10 cm at 10 m) is high resulting in

high quality maps of the seafloor. The primary disadvantage of this and any optical

1
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system is it cannot penetrate the seafloor to find buried objects. This leads to the

other approach for the ocean environment, which is based on acoustics. There are

three regions where an object (the terms object and target are used interchangeably

throughout the literature) can be located: within the water column, on the ocean

floor, or beneath the ocean floor. For a target in the water column, the problem is

relatively easy since the target and the source are in the same environment. This

does not mean that the problem is trivial since the water column can vary greatly in

depth and range [4], [5]. Since the variation in the acoustic properties of the water

column varies more rapidly in depth than in range, acoustical systems are used to

locate targets from 1 m to several hundred kilometers. When an object is located on

the seafloor, it poses a similar problem since it is still visible to the detector in the

water column. To make the target more difficult to find, it is usually camouflaged to

look like a rock or is made to blend into the surrounding seafloor. Also the object

can become buried by the entrained sediment and scour effects leading to the next

region of interest and the main focus of this study.

Acoustic location systems have been studied and used with some success for targets

buried beneath the ocean floor [6]. Marine mammals are still the most effective

method [7], [8]. Of the man-made systems, two are widely used and can locate buried

objects remotely are the chirp sonar and the side-scan sonar systems. Chirp sonar

sends a wave packet composed of frequencies ranging from 1 Hz to 1 MHz at normal

incidence to the seafloor and gives a detailed picture of the underlying volume. If the

system is not in direct contact with the seafloor, it can scan an area approximately

5.7 km2 in a day assuming an average ship speed of 9.3 km/h and 5 km scan lines

separated by 100 m operating eight hours in that day. If the system is in direct

physical contact with the seafloor the scan rate will be much slower as the device

is prone to getting buried in the sediment or damaged by the seafloor. With either

configuration the main difficulty in rapidly mapping the seafloor is that only one line

can be scanned at a time.

In theory it is possible to use chirp sonar to locate buried objects. However, the
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problems in using chirp sonar for target detection and location make this impractical.

These are:

• The seabed attenuates the signal as a function of frequency limiting the

resolution as a function of depth. This makes chirp sonar ineffective for

locating small objects.

• Chirp sonar is a look-down approach, meaning that the sound wave in-

tercepts the seafloor at normal incidence. The result is that the area is

mapped by line scans, which can take several days to cover an area of

more than ten square kilometers.

• Typical chirp sonar systems cannot selectively tune the output signal. If

there is a target of interest, another system must be used to focus on it.

Hence a chirp sonar system is not the best platform to detect buried objects, especially

when the time to map a large area is critical.

Side-scan sonar is a different type of sonar system. As the name suggests, it looks

out to the sides and maps the seafloor. Most side-scan sonar systems use a smaller

range of frequencies (100 kHz to 500 kHz) to image the seafloor [9]. The resolution

is about 1.5 cm for 100 kHz and 0.3 cm for 500 kHz assuming a mean sound speed

in water of 1520 m/s. Since it is side looking the area of insonification is large. The

optical analog is known as dark-field microscopy where the incident field illuminates

the region of interest. A good parallel to imagine is a flashlight in a dark room.

If you point the beam straight down, you illuminate a smaller area than if you tilt

the flashlight slightly in front of you. However, like the flashlight, side-scan sonar

reflects specularly from the surface and most of the energy is scattered in the forward

direction.

As with any detection method that depends on waves interacting with a medium,

there is a relationship between wavelength of the probing signal, resolution, and range.

The smaller the wavelength the higher the resolution, which results in the detection

of smaller targets. However, higher frequencies are more prone to degradation, as will

be discussed, next.
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The three main causes of signal degradation are geometrical spreading, attenuation

from the propagating environment, and noise. Geometrical spreading comes from the

inverse-distance relationship of propagation and results in a weakening of the signal,

because the amplitude of the signal falls as the inverse of the distance between the

source and the wavefront. There are methods available to minimize this effect, such

as beam focusing and the use of solitons.

Attenuation is caused by the direct interaction of the sound field with the environ-

ment by absorption and scattering in the propagation direction by the environment.

In practice, there is no way to distinguish the two causes of attenuation so it is treated

as one cause. Since the environment can vary in space and time, these effects will

exhibit a spatio-temporal dependence. It is generally accepted that the attenuation

from the propagating environment is a function of frequency described by e−α|f | where

α is a positive constant and f is the frequency [5], [4]. For example, attenuation in

seawater has a range from 10−2 to 102 dB/km over the frequency range 10 Hz to

100 kHz. Obviously, lower frequencies propagate much farther than higher frequen-

cies, but at the cost of lower resolution. To compensate for this type of attenuation,

models are used to predict these environmental effects. All models require a pri-

ori knowledge of the environment, which may be difficult to obtain depending on

the information needed. In practice there is no method to distinguish the effects of

geometrical spreading and attenuation from the environment. As a result both are

considered one effect.

Noise is also present in the ocean with causes either natural or man-made. Natural

causes include wind-ocean-surface, biological, and tidal interactions over differing

frequency bands. Man-made noise is primarily from shipping and the occasional

experiment. Even though natural and man-made noise can cover different frequency

bands, in practice they are treated as one source of noise.

It has been discovered recently that under certain conditions the signal from side-

scan sonar penetrates the surface of the seafloor up to a few meters [10], opening

the possibility of using side-scan sonar to locate objects buried relatively near the
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surface. As with any new technique there are problems to be addressed. Two of

these problems are target detection and identification, both of which are studied in

this work. Current techniques such as matched field processing or inversion require

some a priori knowledge of the environment, which as stated earlier, presents a new

layer of problems. One of these methods, matched field processing (MFP), uses a

model to calculate the field from a source to the receiver by moving the source in

the model until the field from the simulation matches what is recorded from the

real source. The other method, called inversion, uses a model of the environment to

negate the effects of the environment by back-propagating the recorded signal. The

term inversion comes from matrix algebra because back-propagation of the signal

from the receiver to the source is the same as multiplying the recorded signal by

the inverse of the propagation matrix. Both techniques require a certain amount of

prior knowledge of the environment which may not be available, and since the ocean

environment is complicated, these techniques can be computationally involved.

Time reversal is another promising approach that does not depend on models of

the environment nor prior knowledge of the environment [11], [12]. Time reversal

takes advantage of the spatial reciprocity of the propagating medium by transmitting

a signal in reverse temporal order. The important restriction is that the environment

must change slowly compared to the time of propagation of the signal. Time reversal

has been studied for several years for target detection within the water column [13],

[14], underwater communications [15], [16], medical ultrasound [12], and toxic waste

barrel location [17]. The efficacy of time reversal through random media [18], [19], [20],

and how time-varying media affect time reversal [21], [22], [23], have all been studied.

The basic geometry for these studies is shown in Fig. 1.1, where a source is located

in some medium, either homogeneous or random, a distance away from an array of

transceivers. This array does not need to be coaxial with the source or have a flat

geometry, and can be located orthogonally to the source relative to the environment

as long as its location and shape remain fixed. As the initial pulse propagates from

the source to the time reversal mirror (TRM), the signal will be scattered within
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the medium by scatterers of varying geometries and composition. When the signal

reaches the TRM information about the path and scatterers is included in the time

record. Since the paths are reciprocal in space, transmitting the time-reversed signal

recorded by the TRM will focus the original pulse at the source location.

Time reversal has its basis in phase conjugation in which the complex field is

recorded after which the complex conjugate of the field is transmitted. If the tem-

poral part of the field is defined via complex phases eiωt, phase conjugation reduces

to reversing the signal in time. Phase conjugation has been studied both in acous-

tics [24] and optics [25], but the only similarity between the two is the end result

of transmission of the phase-conjugated signal. Acoustical phase conjugation (APC)

can be performed using transducers that reverse the temporal order of the received

signal upon transmission. This is possible because the technology has progressed to

the point where the sampling rates of current recording systems greatly exceed the

frequencies of interest. In contrast optical phase conjugation (OPC) uses electro-

magnetic waves whose frequencies greatly exceed sampling rates possible with optical

detectors. As a result, OPC must be performed in frequency space by taking ad-

vantage of the indifference of the complex conjugation of the exponential function.

This is accomplished by using nonlinear terms, second order for three-wave mix-

ing and third for four-wave mixing, of the susceptibility of the material used as the

phase conjugator. Three-wave mixing (TWM) is used for forward propagation of the

phase-conjugated field while four-wave mixing (FWM) is used for phase-conjugation

mirrors. Since acoustical time reversal uses a time-reversal mirror, the optical analog

is performed by four-wave mixing. The four waves in FWM are the incident field

(Ep), the conjugate wave (Ec), and two pump waves (E1 and E2) that are incident on

a slab of material whose third-order susceptibility can generate the conjugate field.

In the case of the mirror, optimal conjugation occurs when the frequencies of the two

pump fields equals the frequency of the incident field, resulting in a conjugate field

that is identical to the incident field in every respect, including polarization, with the

exception that the conjugate field has a wave vector anti-parallel to the incident wave
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vector. This conjugate field is the time-reversed representation of the incident field.

Unlike in acoustics, the optical time-reversal mirror generates fields in the forward

direction away from the source.

Two points worth mentioning concerning the configuration in Fig. 1.1 are that

the source and TRM are in the same medium and implications of the physical size

of the TRM. The minimal requirement that the array be in surface contact with the

medium in which the source/target is located poses an unnecessary constraint to the

problem that has not been addressed until now. The fact that the TRM is of fixed

size is not a problem unless the dimension of the array is larger than the dimension

of the region it is located. A single transducer can be used to detect a target and

the range of the target with improvements in resolution by using synthetic-aperture

techniques. Synthetic-aperture sonar (SAS) [26] uses a single transducer or a small

array of transducers in one body, which moves with respect to the target (Fig. 1.2).

The sonar sends a ping at location A and receives the scattered field at a point B,

which creates an aperture that is dependent on the distance traveled. Since TRMs

will return the signal to the source location, in this configuration the sonar must

transmit the time-reversed signal and then return to the location of the original ping

before the time reversed signal arrives. Because this movement is impractical on the

time scales involved, a second identical sonar system must remain at the original ping

location turning the SAS to a fixed TRM. No work has been done using time reversal

with a single transducer except for Draeger and Fink [27], Chambers [28], [29], and

the present investigation.

The theory of time reversal has been treated on the basis of its Fourier transform of

the temporal space. This has inherent problems since the time-reversal process is an

operation on a windowed set of the signal, resulting in errors due to frequency cutoff.

It also eliminates any insight as to how time reversal functions in the time domain.

Time reversal has another effect on the backscattered signal when the operation is

performed iteratively. As the signal travels through the medium, it undergoes a

convolution operation with the propagating environment in the forward and then
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the backscattered directions. Iteratively performing the time-reversal operation on

the backscattered signal averages out the effects of the propagating medium in the

backscattered return by selectively tuning to the frequencies that correspond to the

impulse reponse of the acoustically strongest scatterer. However, any environmental

effects left over from the first return are still present as seen by the attenuation of

certain frequencies.

Here I present the theory of the time-reversal operator in the time domain and

show that time reversal in the backscattered direction functions only in a finite tem-

poral sub-space. As a result, aliasing of the signal is built into time-reversal. This

point is not obvious in approaches that use the Fourier transform of the time-reversal

operator [28], [29], [30]. Filtering can help to some degree, but it must be changed

with each iteration of the time-reversal operator. I will also show that for any tar-

get, iterative time reversal of the backscattered signal will not reproduce the original

pulse shape, but converges to a backscattered waveform with minimal environmental

effects. It also does this without increasing the SNR over the temporal sampling of

the return. However, it does increase the SNR for certain frequencies that are related

to the field scattered from the target. This allows a limited amount of information

to be obtained about the target, specifically the distance to the surface of the target

and the target size. Finally, this work will show that the time-reversal procedure can

be used for a target that is not on the normal axis defined by the transceiver and

seafloor, demonstrating that it can be used with side-scan sonar systems.

I approach time reversal by studying the configuration consisting of a single-point

transducer where the target is located in a second inhomogeneous medium, as shown

in Fig. 1.3. The software package Bottom Response from Inhomogeneities and Surface

Roughness (BoRIS) [31], [32], [33] is used to calculate the backscattered return of the

situation in Fig. 1.3. The software was modified to allow the a target to be placed

anywhere in the bottom and to use time reversal.

Finally, possible directions for further studies based on this work are discussed.

These can range from improving the model, experimental verification of the present
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work, and possibly to investigate the use of other models or signal improvement

techniques in conjunction with time reversal to negate effects that can cause problems

if the time-reversal operator is used alone. One such problem for time reversal occurs

when the propagating medium changes on the time scale of the total time of travel

of the return [21]. Another is to use time reversal with side-scan sonar systems.

Applications for this capability range from the location of lost shipwrecks such as

Queen Anne’s Revenge off the coast of North Carolina to the location of mines buried

in the ocean floor. Since the seafloor itself is dynamic, the sediment that makes up

the seabed can scatter the targets from an original central location to anywhere

along the beach. This has posed problems for historic sites such as Queen Anne’s

Revenge as a result of massive storms off the coast. Since side-scan sonar systems

are far more efficient at covering large areas of seafloor, these targets can be located

rapidly. In addition time reversal gives a clearer image of the target, minimizing false

identifications. For buried naval mines this is of utmost importance.
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1.2 Figures

Figure 1.1: Configuration of a forward-scattering time-reversal mirror (TRM). The
source is located in a medium with randomly located scatterers a distance away from
the fixed TRM. The TRM does not need to be located directly across from the source.
Since the above is the forward-scattering geometry, the TRM will here reproduce the
original signal at the location of the source.
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Figure 1.2: Geometry of synthetic-aperture sonar (SAS). The target is pinged by the
transducer at A and the field scattered by the target is recorded when the transducer
is at B. TRMs would focus the ping back at A from B. However the transducer may
not be able to return to location A in the time the time-reversed signal returns to
point A.
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Figure 1.3: The geometry used in the simulations. The transceiver is located in the
water column while the target is located at a depth d below the surface of a sediment
that has an acoustically inhomogeneous profile.



Chapter 2

Theory: An Acoustics Primer

2.1 Introduction

Acoustics is the study of sound. To be exact, it is the study of how mechanical

waves propagate through a material. All materials exhibit longitudinal, also called

compressional, waves and transverse, sometimes referred to shear, waves in response

to an external force. The two waves are orthogonal and propagate at different speeds.

If the medium of study is a fluid or gas, the problem is made tractable by assuming

that the fluid is irrotational. In contrast, the fluid dynamicist assumes the fluid

is incompressible. The irrotational assumption allows the acoustic equations to be

solved using a scalar potential. If the medium is a solid, then the shear forces must

be taken into account, which introduces a vector potential.

The problem of time reversal to be addressed here involves a point source receiver

in a homogeneous fluid medium insonifying a solid sphere in an inhomogeneous solid-

like medium. I focus on applications in the littoral zone, so the second solid-like

medium will be treated as a lossy fluid with a density greater than the homogeneous

fluid. From physical and geometrical standpoints, the transverse waves generated by

the scattering of the sound wave by the seafloor can be ignored.

13
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2.1.1 Linear Wave Equation

The linear wave equation is derived from the fundamental equations of fluid dy-

namics. The full derivation is presented in Appendix A. The linear wave equation

used for all derivations in this document is

∇2ψ(~r, t)− 1

c2
∂2ψ(~r, t)

∂t2
= −f(~r, t), (2.1)

where −f(~r, t) is the forcing term and ~v = ∇ψ is the velocity potential, since ~v =

−∇ψ. Pressure is related to ψ by

p = −ρ0
∂ψ(~r, t)

∂t
. (2.2)

Equation (2.1) is a Sturm-Liouville equation allowing me to use separation of variables

to obtain a solution. From Appendix B.1 the solutions will be of the form

ψ(~r, t) =
∞∑

k=−∞

AkR(~r)e(ikct). (2.3)

with exact solutions to Eq. (2.1) found using a Green’s function approach as described

in Appendix B.1.1.

To illustrate the general form of the solutions, I will assume a point transceiver

located at ~rO in a fluid-filled half-space. The transceiver emits a delta-function pulse

at time tO. The velocity potential, as derived in Appendix B.1.1 is given by

ψ(~r, t) = A
δ(t− t′ − |~r − ~rO|/c)

|~r − ~rO|
. (2.4)

The second-half space is the ocean floor. Since ocean sediments are not rigid, the

transverse sound speed is about one order of magnitude smaller than the longitudinal

sound speed (see table B.1). Thus I will treat the ocean floor as a fluid with a higher

density and sound speed than the fluid in which the transceiver is located. The next

section outlines the general approach leading to a solution for two homogeneous fluid-

filled half-spaces. For completeness and to justify why a fluid-fluid model applies to

buried-target detection, the fluid-solid case is explained in Appendix B.2.2.
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2.2 Half-space Solutions

The number of permutations on a source transmitting in a fluid-filled half-space

solutions are infinite. These range from reflecting off an impermeable half-space [34],

[35] to interaction with a semi-permeable inhomogeneous half-space with random

surface roughness [33]. To illustrate how two seemingly unrelated problems lead to

similar solutions, I solve here for the backscattered field from a point impulse source

reflecting off a fluid-fluid interface; a fluid-solid interface is discussed in Appendix

B.2.2. Both use the geometry shown in Fig. 2.1.

2.2.1 Fluid-Fluid Interface

Consider a point source located at ~rO in a fluid-filled half-space adjacent to a

second fluid-filled half-space, Fig. 2.1. The source fluid has density ρ1 with constant

sound speed c1 and the adjacent fluid has a higher density ρ2 and a higher sound

speed c2. The boundary conditions are:

• The normal component of the velocity is continuous across the interface.

• The pressure is continuous across the interface.

There is also a time constraint at the interface that ensures that causality is preserved.

Since the geometry exhibits azimuthal symmetry, I can use cylindrical coordinates.

The total potential of the source in the source fluid is therefore

ψ1(~r, t) =

Aδ

(
t− tO −

√
(r−rO)2+(z−zO)2

c1

)
√

(r − rO)2 + (z − zO)2
+

Bδ

(
t− tO −

√
(r−rO)2+(z+zO)2

c1

)
√

(r − rO)2 + (z + zO)2

(2.5)

where the first and second terms refer to the potentials associated with the direct and

reflected components of the potential. The case A = B is that of an impenetrable
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second medium. The velocity potential in the second medium can be written

ψ2(~r, t) =

Dδ

(
t− tO −

√
(r−rT )2+(z−zT )2

c2

)
√

(r − rT )2 + (z − zT )2
, (2.6)

where the subscript T denotes the location of the virtual transmitting source. The

time the source emits the pulse, tO, will be the same for all potentials. Setting the

time the pulses reach the boundary equal I get the condition for the time at which

the pulse arrives at the boundary to be

t(rO, zO)
∣∣∣
Z=0

= tO +

√
(r − rO)2 + z2

O

c1
= tO +

√
(r − rT )2 + z2

T

c2
, (2.7)

regardless of the start time tO. Rearranging terms gives the relationship between the

source and image as

c2

√
(r − rO)2 + z2

O = c1

√
(r − rT )2 + z2

T . (2.8)

Pressure conservation at the boundary gives

p1 = p2 ⇒ ρ1
∂ψ1

∂t
= ρ2

∂ψ2

∂t
(2.9)

⇒ ρ1
(A+B)√

(r − rO)2 + z2
O

= ρ2
D√

(r − rT )2 + z2
T

, (2.10)

which after applying Eq. (2.8) gives the relationship between the coefficients

D =
ρ1c2
ρ2c1

(A+B). (2.11)

The continuity condition on n̂ · ~v at the interface yields

~v1 · ẑ = ~v2 · ẑ ⇒
∂ψ1

∂z
=
∂ψ2

∂z
, (2.12)

and after using the definitions for ψ I obtain

(A−B)zO

((r − rO)2 + z2
O)3/2

=
DzT

((r − rT )2 + z2
T )3/2

⇒ (A−B)zO =

(
c1
c2

)3

DzT .

(2.13)
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If I set B = RA where R is the reflection coefficient and set D = TA where T is

the transmission coefficient I get for Eq. (2.11)

T =
ρ1c2
ρ2c1

(1 + R) (2.14)

and Eq. (2.13) becomes

zT =
(1−R)

T

(
c2
c1

)3

zO (2.15)

It is interesting to note that the observer in the second medium sees the source at a

location behind the physical location of the source. Also the transmission coefficient

has a weighting factor that depends on the sound speeds and densities of the two

fluids.

Setting the tangential components of the velocity equal across the boundary gives

~v1 · r̂ = ~v2 · r̂ ⇒
∂ψ1

∂r
=
∂ψ2

∂r
. (2.16)

Using the definition of ψ with the constants B and D replaced with RA and TA gives

(1 + R)(r − rO)

((r − rO)2 + z2
O)3/2

=
T(r − rT )

((r − rT )2 + z2
T )3/2

. (2.17)

I now define the angle γi as the angle between the observation point on the surface

and the normal going through the source point:

sin γi =
r − ri√

(r − ri)2 + z2
i

, (2.18)

where i is either O or T. Using this relation and Eqs. (2.8), (2.14), and (2.17), the

above equation becomes

(1 + R) sin γO = T

(
c1
c2

)2

sin γT

⇒ sin γO

ρ1c1
=

sin γT

ρ2c2
, (2.19)

which is Snell’s law. Using Eq. (2.14) and

cos γi =
zi√

(r − ri)2 + z2
i

(2.20)
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for i equal to either O or T, I get for Eq. (2.15)

cos γO

ρ1c1
=

(
1 + R

1−R

)
cos γT

ρ2c2
. (2.21)

This is “Snell’s law”, but for cosines.

Combining Eqs. (2.8) and (2.14) with the transmitted velocity potential (2.6) gives

ψ2(~r, t) = (1 + R)
ρ1

ρ2

Aδ

(
t− tO −

√
(r−rO)2+(z−zO)2

c1

)
√

(r − rO)2 + (z − zO)2
, (2.22)

which expresses ψ2(~r, t) in terms of the source location ~rO and the surface reflection

coefficient R.

2.2.2 Scattering From a Sphere

To derive the scattered field from a solid sphere located in a solid medium, I will

ignore the transverse waves since cT/cL is much less than 1. An observer located at

the source position ~rO would see the sphere centered at ~rc lying on the axis connecting

the two. As a result I only need to concern myself with the longitudinal wave in the

solid [36], [37] and the monopole response off the sphere.

Impulse Response

Using the impulse function described by Eq. (2.6) and assuming a homogeneous

environment, I have

ψinc(~r, t) = D
δ
(
t− tO − |~r−~rO|

c

)
|~r − ~rO|

(2.23)

where

D = A(1 + R)
ρ1

ρ2

, (2.24)

c1 is the sound speed in the medium surrounding the source, and ρ1 and ρ2 are the

densities of the source and target fluids respectively. From now on I will drop the

subscript 1 on the speed of sound in the source medium. Setting ~r − ~rO equal to
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~r − ~rc + ~rc − ~rO allows me to expand the field about the point ~rc. Using the triangle

inequality yields

|~r − ~rc + ~rc − ~rO| ≤ |~rc|+ d, (2.25)

where ~rc and d are shown in Fig. 2.2. This allows me to write the incident potential

as

ψinc(~r, t) = D
δ
(
t− tO − |~rc|+d

c

)
|~rc|+ d

(2.26)

Using the geometry shown in Fig. 2.2, the total potential in the second medium

will be of the form

ψ(~r, t) = ψinc(~r, t) + ψsc(~r, t) (2.27)

where ψinc is the potential of the incident field given by Eq. (2.26) and ψsc is the

potential scattered by the sphere. It is standard to expand the scattered potential as

ψsc(~r, t) =
∞∑

k=−∞

∞∑
n=0

n∑
m=−n

A
(c),m
k,n hn(krc)Y

m
n (θc, φc)e

ikct (2.28)

where the subscript c denotes the expansion about the center of the sphere as shown

in Fig. 2.2. The next step is to write the expansion of the incident field about the

center of the sphere. Assuming d ≥ rc gives

ψinc(~r, t) =
D√
4π

∞∑
k=−∞

∞∑
l=0

l∑
s=−l

1

2l + 1

rl
c

dl+1
Y s

l (θc, φc)e
ikc[t−(tO+

|~rc|+d
c )] (2.29)

where the subscript c denotes the location of the center of the sphere while cL is the

longitudinal sound speed in the medium. The boundary condition on the sphere is

given by (
∂ψ

∂n
+ iσψ

) ∣∣∣∣∣
S

= 0 (2.30)

where σ is the acoustical admittance of the sphere. This can be set equal to 0

for any reasonably acoustically hard medium relative to the surrounding sediment,

for example an iron sphere, and to ∞ for any infinitely acoustically soft medium.
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Applying the boundary conditions at the surface of the sphere rc = a, I obtain for

the potential

ψ
∣∣∣
S

=
∞∑

k=−∞

∞∑
l=0

(
D√
4π

1

2l + 1

al

dl+1
eikc[t−(tO+ d+a

c )] + Ak,lhl(ka)e
ikct

)
. (2.31)

The normal derivative is

∂ψ

∂rc

∣∣∣
S

=
∞∑

k=−∞

∞∑
l=0

(
D√
4π

1

2l + 1

al

dl+1

[
l

a
+ ik

]
eikc[t−(tO+ d+a

c )] + Ak,lkhl
′(ka)eikct

)
(2.32)

where the term ik comes from the derivative of the exponential in the incident field.

Substituting the above two equations into the boundary condition gives

Ak,le
ikct[khl

′(ka) + iσhl(ka)] = − D√
4π

1

2l + 1

al

dl+1

[
l

a
+ i(k + σ)

]
eikc[t−(tO+ d+a

c )]

(2.33)

for each l in the expansion. Solving Eq. (2.33) for the coefficient Ak,l gives

Ak,l = − D√
4π

1

2l + 1

al

dl+1

[(l/a) + i(k + σ)]

[khl
′(ka) + iσhl(ka)]

e−ikc(tO+ d+a
c ). (2.34)

Using Eq. (2.34) in Eq. (2.28) and substituting the result in Eq. (2.26) gives

ψ(~r, t) =
∞∑

k=−∞

∞∑
l=0

l∑
s=−l

D√
4π

1

2l + 1

Y s
l (θc, φc)

dl+1
eikc(t−(tO+ d

c ))

×
[
rl
ce

ik|~rc| − al[(l/a) + i(k + σ)]

[khl
′(ka) + iσhl(ka)]

hl(krc)e
ika

]
.

(2.35)

As expected the total scattered potential contains geometrical information about

the sphere in the spherical Hankel functions. The impulse response from a sphere

is the multipole expansion of the potential. This result also depends on the term

ka in the expansion, providing in principle information about the target. At the

source location, ~rO, the target will appear as a monopole. Assuming the sphere is

acoustically infinitely hard, σ = 0, and setting t0 = 0, the return signal at the source

is

ψ(~rO, t) =
∞∑

k=−∞

D

d
eikct

[
1− i

h0(kd)

h0
′(ka)

eik(d−a)

]
(2.36)
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with D given by Eq. (2.24). Setting the time equal to the total time of travel for the

pulse, ct = 2(d− a), sets Eq. (2.36) to

ψ

(
~rO,

2(d− a)

c

)
=

∞∑
k=−∞

D

d
eik(d−a)

[
eik(d−a) + i

h0(kd)

h1(ka)

]
(2.37)

where I have used the relation that h0
′(x) = −h1(x). This expression shows that

the impulse response will give the location of the surface of the sphere as in Fig. 2.3.

Here, I keep the separation between the surface of the sphere and the detector fixed

at 10 m while varying the sphere radius from 0.05 m to 0.5 m. The fluctuations in the

amplitudes are from the mixing of the exponential functions with the spherical Hankel

functions in Eq.( 2.37). When the radius of the sphere is fixed and the sphere is moved

away from the source the quasi-periodic behavior of the amplitude of the impulse is

apparent, as in Fig. 2.4, which is the result of the mixing of the two exponentials an

the Hankel functions in Eq. (2.37).

One-Cycle Cosine Pulse

A more practical signal is the one-cycle cosine pulse from a source located at ~(r)c.

The pulse is defined as

ψ(~rc, t) =


0 t < 0

cos(ω0t− k0(d− rc)) 0 ≤ t ≤ 2π
ω0

0 t > 2π
ω0

(2.38)

where d is the location of the scattering target and ω0 is the frequency defined as

ω0 = 2π/T . The above function can be rewritten in terms of a convolution with a

rectangular pulse as

ψ(~rc, t) = cos(ω0t− k0(d− rc)) ~ rect

[
t− T/2

T

]
. (2.39)
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In the above equation ~ represents convolution with respect to time, rect is the

rectangle function defined by

rect

[
t− T/2

T

]
=


0 t < 0

1 0 ≤ t ≤ T

0 t > T

(2.40)

This function sets the cosine to one cycle, and T is the period of the signal. Using

the above potential for the incident potential the total monopole potential with the

scattered potential will be of the form

ψmonopole(rc, t) =
∞∑

k=−∞

cos(ω0t− k0(d− rc)) ~ rect

[
t− T/2

T

]
+ sin(ω0t− k0(d− rc)) ~ rect

[
t− T/2

T

]
k0

k

h0(krc)

h1(ka)

(2.41)

where I have already set the derivative of the zeroth order spherical Hankel function

equal to the negative of the first order spherical Hankel function. At the source

location, rc = d, the above return simplifies to

ψmonopole(rc = d, t) =
∞∑

k=−∞

cos(ω0t) ~ rect

[
t− T/2

T

]
+ sin(ω0t) ~ rect

[
t− T/2

T

]
k0

k

h0(kd)

h1(ka)
.

(2.42)

The convolution operation with the rectangle function above sets the limits of inte-

gration on the Fourier transform of the above with gives

ψmonopole(rc = d, t) =
∞∑

ω=−∞

∞∑
k=−∞

2eiπω/ω0 sin(πω/ω0)√
2π(ω2 − ω2

0)

[
ω + iω0

k0

k

h0(kd)

h1(ka)

]
. (2.43)

By setting ω = kc, I finally get the total monopole potential scattered by a sphere as

ψmonopole(rc = d, t) =
∞∑

k=−∞

2eiπk/k0 sin(πk/k0)k√
2πc(k2 − k2

0)

[
1 + i

h0(kd)

h1(ka)

]
. (2.44)

The above equation is the spatial Fourier expansion of the response of the sphere to

the incident potential given by Eq. (2.39). What should be apparent from Eq. (2.44)
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is that the scattered potential pulse retains some of the incident pulse shape. Figure

2.5 shows the response from spheres of radii ranging from 5 cm to 50 cm centered

10 m away from the source from an incident potential pulse with a duration of 100

µs. The original pulse shape remains between the two horns on the top of each pulse.

The horns themselves are due to the rectangular window used to limit the duration

of the pulse. The location of the surface of the sphere is determined by the left side

of the pulse, which is to be expected from the ratios of the spherical Hankel functions

in Eq. (2.44). Changing the duration of the incident pulse does not change the ability

to locate the surface of the sphere, as shown in Fig. 2.6, where I have plotted the

response from the same geometry of that of Fig. 2.5, but changed the duration of the

pulse from 100 µs to 10 µs. The incident potential pulse shape is not present because

the time step used for these figures was 1 µs. There is a complex behavior between

the location of the center of the sphere and its radius, although the main dependence

on the amplitude of the return is on the radius of the sphere as shown by comparing

Figs. 2.5 and 2.7. Figure 2.5 shows a clear dependence of the amplitude of the return

on the radius of the spheres; the larger the sphere the greater the return, which is

consistent with scattering theory. In contrast, Fig. 2.7 shows that moving the sphere

results in little change in the amplitude of the returns. The difference between the two

results can be explained by the ratio of the spherical Hankel functions in Eq. (2.44).

Since the radius of the sphere is at least one order of magnitude smaller than the

separation between the source and the sphere, or as in the case of Fig. 2.7, the radius

of the sphere is about twenty times smaller than the distance between the source and

the sphere, the spherical Hankel function of the radius will vary more than that which

depends on the distance.
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2.3 Time Reversal

2.3.1 General Time Reversal of Signals

Closer examination of the linear acoustic equation (2.1) shows that it is reciprocal

in both space and time. Replacing r with −r or t with −t will give the same equation.

The same conclusion can be made by using the complex conjugate of the solution to

solve for Eq. (2.1). Performing the same replacement of variables with Eq. (B.8) will

leave the left hand side intact with the only concern being the properties of the forcing

term. Since the free-space acoustic equation has this spatio-temporal reciprocity, it

is possible to create an acoustical time-reversal mirror to negate the effects of the

propagating medium [24], [12]. Time reversal in acoustics is the performed by placing

an array of transceivers away from an acoustical source. These transceivers record

the signal from the source that is obscured by the propagating medium. The signal

is then transmitted in reverse temporal order. Assuming that the medium has not

changed during the recording and time reversal period, the field will focus at the

location of the source. Consider the following example similar to Fink, et. al. [12]

where a source located at ~rO emits a forcing term at time tO given by f(~r−~rO, t−tO).

The potential field generated is defined by

ψ(~r, t) =

∫∫∫
d3r′

∫
dt′G(~r, t;~r ′, t′)f(~r ′ − ~rO, t

′ − tO) (2.45)

where G(~r, t;~r ′, t′) is the Green’s function that includes all the properties of the

propagating medium. At the location of the time reversal mirror (TRM), the field

is recorded over the time interval T and transmitted in reverse temporal order. This

gives

ψ2(~r, t) = ψ(~r, T − t) =

∫∫∫
d3r′

∫
dt′G(~r, T − t;~r ′, t′)f(~r ′ − ~rO, t

′ − tO) (2.46)

�ψ2(~r, t) · n̂ = �ψ(~r, T − t) · n̂ (2.47)

where I have used

� = ∇+
i

c

∂

∂t
(2.48)
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to simplify the notation in the equations. Transmission of ψ2(~r, t) is written as

ψtr(~r1, t1) =

∫∫
d2r

∫
dt[G(~r1, t1;~r, t)�ψ2(~r, t)− ψ2(~r, t)�G(~r1, t1;~r, t)] · n̂ (2.49)

which becomes

ψtr(~r1, t1) =

∫∫∫
d3r

∫
dt[G(~r1, t1;~r, t)�

2ψ(~r, T − t)− ψ(~r, T − t)�2G(~r1, t1;~r, t)]

(2.50)

after substitution of ψ(~r, T − t) and the use of a time-dependent Green’s second

identity given by∫∫∫
d3r

∫
dt[φ�2ψ − ψ�2φ] =

∫∫
d2r

∫
dt[φ�ψ − ψ�φ] · n̂. (2.51)

Recall that the definition of a Green’s function is

�2G(~r, t;~r ′, t′) = −4πδ(~r − ~r ′)δ(t− t′). (2.52)

Using the above in the second term of Eq. (2.50) yields∫∫∫
d3r

∫
dtψ(~r, T − t)�2G(~r1, t1;~r, t) = ψ(~r1, T − t1). (2.53)

Using the definition of ψ(~r, t) from Eq. (2.45) in Eq. (2.50) yields∫∫∫
d3r

∫
dtG(~r1, t1;~r, t)�

2ψ(~r, T − t)

=

∫∫∫
d3r

∫
dtG(~r1, t1;~r, t)�

2

∫∫∫
d3r′

∫
dt′G(~r, t;~r ′, t′)f(~r ′ − ~rO, t

′ − tO)

= −4π

∫∫∫
d3r

∫
dtG(~r1, t1;~r, t)

∫∫∫
d3r′

∫
dt′δ(~r − ~r ′)δ(t− t′)f(~r ′ − ~rO, t

′ − tO)

= −4π

∫∫∫
d3r

∫
dtG(~r1, t1;~r, t)f(~r ′ − ~rO, T − t− tO)

(2.54)

Combining Eqs. (2.53) and (2.54) in Eq. (2.50) yields

ψtr(~r1, t1) = 4π[ψ(~r1, T−t1)−
∫∫∫

d3r

∫
dtG(~r1, t1;~r, t)f(~r ′−~rO, T−t−tO)] (2.55)
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for the time reversed field. This can be thought of as the superposition of incoming

and outgoing waves with respect to the source location.

Another approach to time reversal of acoustical signals is to use the temporal

Fourier transform of the signals. In this case the time reversed wave is calculated by

calculating the complex conjugate of the incident wave in temporal Fourier space

f(x, t) =
∞∑

ω=−∞

F (x, ω)e−iωt
⇒
TR

∞∑
ω=−∞

F ∗(x, ω)eiωt (2.56)

where F (x, ω) is assumed real. Figure 2.8 is a simple illustration of this phenomena.

Consider a simple example of a temporal signal being time reversed by the use of a

time-reversal mirror as in Fig. 1.1. The mirror records

f1(t) =

∫
g(t′)G(t− t′)dt′ (2.57)

where g(t′) is the original pulse shape andG(t−t′) is the propagation Green’s function.

After the time-reversal operation and transmission the signal at the source point is

given by

f2(t) =

∫
G(ω)g(ω)G(−ω)(e)−iωtdω (2.58)

in the frequency domain. After N iterations of this process, two results are measured

depending whether N is odd or even. For an odd number of iterations, the resulting

function is

fNodd(t) =

∫
G(N−1)/2(ω)g(ω)G(N+1)/2(−ω)e−iωt (2.59)

while for an even number of iterations the signal is

fNeven(t) =

∫
GN/2(ω)g(ω)GN/2(−ω)e−iωt. (2.60)

From the above results, which are consistent with the current theories such as Prada

[30] and Chambers [28].

The problems that are inherent in time reversal in acoustics are:

• Waveforms that are recorded for a finite amount of time lead to aliasing

of the time-reversed wave.
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• The success of time reversal in a dynamical medium is limited. It is

usually assumed that the medium is not a function of time, so the spatial

reciprocity of the medium is not violated.

• Time-reversal mirrors (TRMs) oriented to receive the forward-scattered

signal lose the backscattered signal.

2.3.2 Time reversal for backscattered signals

Now I consider a single transceiver located at ~rO and a target of arbitrary shape

centered at ~rC . I define the distance from transceiver to target as d = |~rC − ~rO|, and

set this distance to be much larger than the dimension of both the transceiver and

the target. Furthermore, I set the transceiver dimension to be much smaller than the

median dimension of the target so I can treat the source-receiver as a point. I set

the sound speed of the medium enclosing both to c. The basic geometry is shown in

Fig. 2.2 for a spherical target and a point transceiver, both located away from the

origin point “O”. The velocity potential from the transceiver can be written as

ψ(~r, t) = Gf (~r, t;~rO, tO) ~ f(~rO, tO) (2.61)

where Gf (~r, t;~rO, tO) is the forward-propagating Green’s function, f(~rO, tO) is the

forcing function from the source, and ~ represents the integration, which is a convo-

lution over time and space. From this point on all propagating Green’s functions will

use the notation that the time on the left hand side of the semicolon is the time on

the right hand side with the added term. I define a scattering operator S(~rC , t) that

does not affect time, i.e., the scattering is instantaneous. Using this notation, I can

write the backscattered signal measured by the transceiver as

ψ(~rO, t) = Gb

(
~rO, t+

d

c
;~rO, t

)
~S(~rC , t)~Gf

(
~rC , t+

d

c
;~rO, tO

)
~f(~rO, tO) (2.62)

where Gb is the back-propagating Green’s function which I assume not to be equal

to Gf . I define the time-reversal operator (TRO) R(T − t; t) with the following

properties:
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• Addition of a time delay, T, which manifests itself as a window for the

signal, forcing the signal to be finite in time after this operation.

• The signal is transmitted in reverse temporal order from the order of

reception forcing the wave to propagate backward through space.

• The above two conditions have the effect of creating a finite time space

where the signal exists only in the range T + tO + d
c

and T + tO + 2d
c
.

Figure 2.8 gives a simple illustration of this effect.

• Any additional gain to the signal is done with this operator by a multi-

plicative factor.

Using the TRO on Eq. (2.62) the target scatters the potential

ψ(~rC , t) = Gf

(
~rC , t−

d

c
;~rO, t

)
}R(T − t, t)}

Gb

(
~rO, t+

d

c
;~rO, t

)
~ S(~rC , t) ~Gf

(
~rC , t+

d

c
;~rO, tO

)
~ f(~rO, tO)

(2.63)

where I define } as convolution with respect to time only. After scattering by the

target, the transceiver records potential given by

ψ(~rO, t) = Gb

(
~rO, t+

d

c
;~rO, t

)
~ S(~rC , t) ~Gf

(
~rC , t−

d

c
;~rO, t

)
}R(T − t, t)}

Gb

(
~rO, t+

d

c
;~rO, t

)
~ S(~rC , t) ~Gf

(
~rC , t+

d

c
;~rO, tO

)
~ f(~rO, tO).

(2.64)

Performing another TRO iteration gives the signal recorded at the transceiver as

ψ(~rO, t) = Gb

(
~rO, t+

d

c
;~rO, t

)
~ S(~rC , t) ~Gf

(
~rC , t−

d

c
;~rO, t

)
}R(T − t, t)}

Gb

(
~rO, t+

d

c
;~rO, t

)
~ S(~rC , t) ~Gf

(
~rC , t−

d

c
;~rO, t

)
}R(T − t, t)}

Gb

(
~rO, t+

d

c
;~rO, t

)
~ S(~rC , t) ~Gf

(
~rC , t+

d

c
;~rO, tO

)
~ f(~rO, tO).

(2.65)



Chapter 2. Theory 29

The pattern that is developing in the TRO allows me to define a new backscattered

time-reversal operator (BTRO) as

BTRO = Gb

(
~rO, t+

d

c
;~rO, t

)
~S(~rC , t)~Gf

(
~rC , t−

d

c
;~rO, t

)
}R(T − t, t), (2.66)

and after setting the first backscattered waveform to

ψbs(~r, t) = Gb

(
~rO, t+

d

c
;~rO, t

)
~S(~rC , t)~Gf

(
~rC , t+

d

c
;~rO, tO

)
~f(~rO, tO) (2.67)

I can write the general iterative time-reversal operation as

ψi(~r, t) =
N∏

i=0

(BTRO)i } ψbs(~r, t) (2.68)

where
∏N

i=0 denotes that the convolution is to be performed for each iteration i. Note

that unlike other time reversal experiments [11], [20], [30], and [17], this derivation

uses the backscattered response only and is developed in the time domain, not in the

frequency domain, as others [19].

It should be apparent that the initial backscattered response given by Eq. (2.67)

is what is being time reversed, and not the original waveform. If time reversal can

enhance a signal by recreating the original signal, it fails in the backscattered direc-

tion. To recreate the original pulse using the backscattered signal requires inverting

the backscattered response using the relevant properties of the propagating medium

and the scattering object. However, iterative time reversal can be used to clean up

or improve the quality of the backscattered signal from the target, which can be used

to classify the target.

As in the case of time-reversal mirrors in the previous section, it is instructive to

perform the same analysis of the time-reversal procedure for backscattered signals in

the frequency domain. I will consider a simple time-dependent pulse g(t) originating

from a point transducer which is normally incident on an arbitrary scatterer. The

pulse propagates to the target according to

f(t) =

∫ ∞

∞
dt′g(t′)G(t− t′) (2.69)
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where G(t− t′) is the propagation Green’s function. The above signal is scattered by

the target and the transducer records the backscattered response

f1(t) =

∫
dt′′G(t− t′)

∫
dt′g(t′)GS(t′′ − t′) (2.70)

where I have set the scattering operation to changing the propagation Green’s function

such that GS(t− t′) 6= G(t− t′). Equation (2.70) has an inverse Fourier transform of

F1(ω) = G(ω)g(−ω)GS(ω). (2.71)

Time reversing Eq. (2.70) results in a second backscattered signal of the form

f2(t) =

∫
dt′′G(t− t′)

∫
dt′GS(t′′ − t′)f+

1 (t′) (2.72)

where the + denotes the time-reversal operation. In the frequency domain, f2(t) is

F2(ω) = G(−ω)G(ω)g(−ω)G2
S(ω). (2.73)

Performing the same procedure on f2(t) yields for the next recorded signal

f3(t) =

∫
dt′′G(t− t′)

∫
dt′GS(t′′ − t′)f+

2 (t′) (2.74)

with an inverse Fourier transform of

F2(ω) = G3(ω)g(ω)G3
S(−ω). (2.75)

This is a surprising result since I now have g(ω) instead of g(−ω) and the Green’s

functions are exhibiting a symmetry with respect to scattering. Performing another

iteration of the time-reversal procedure on Eq. (2.74) yields

f4(t) =

∫
dt′′G(t− t′)

∫
dt′GS(t′′ − t′)f+

3 (t′) (2.76)

with the corresponding inverse transform of

F4(ω) = G(−ω)G3(ω)g(ω)G3
S(−ω)GS(ω), (2.77)
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which I can rewrite as

F4(ω) = G(−ω)F3(ω)GS(ω). (2.78)

Equation (2.77) shows that F3(ω) is the waveform that the time-reversal operator

converges to using backscattered signals. One more iteration yields

f5(t) =

∫
dt′′G(t− t′)

∫
dt′GS(t′′ − t′)f+

4 (t′) (2.79)

with the corresponding inverse transform of

F5(ω) = G2(−ω)G3(ω)g(ω)G3
S(−ω)G2

S(ω), (2.80)

which I can rewrite as

F5(ω) = G2(−ω)F3(ω)G2
S(ω). (2.81)

After N iterations, the transceiver will record, in inverse Fourier space

FN(ω) = GN−3(−ω)F3(ω)GN−3
S (ω). (2.82)

This is a remarkable result for two reasons. First, convergence to a single waveform

occurs after two iterations of the time-reversal operator, which means that once the

third return is recorded we have detected the target if there is one present. Secondly,

this shows that the time-reversal operator acts as a nonlinear filter to the signal by

multiplying each iteration after the third by G(ω)GS(−ω). Therefore, each iteration

of the time-reversal operator after the second will enhance the return from the target.

This analysis is the same as that that yields Eq. (2.68), but the behavior of the

time-reversal operator is more transparent.

A simple example of the behavior of the iterative time-reversal operator on backscat-

tered signals is demonstrated by considering the impulse response of a scatterer lo-

cated in a lossless medium. I define the initial impulse signal as g(t) = g0δ(t) and the

scattering Green’s function as

G(t, t′) = u

(
t− d

c
− t′

)
e(t−d/c−t′)/τ (2.83)
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where u is the unit step function required for causality, d is the distance from the

source to the scatterer, and c is the speed of sound in the medium. Using a lossless

medium, an observer will measure

f1(t) =

∫ ∞

∞
dt′g(t′)G(t, t′) = g0e

−(t−2d/c)/τu

(
t− 2d

c

)
. (2.84)

The time-reversal operator will set a window in the time-domain that I define starting

at t1 and ending at t2. With this condition in mind, the time-reversal operator acting

on Eq. (2.84) yields for the signal incident on the scatterer

g1(t
′) = g0u

(
t′ −

(
t1 +

d

c

))
e−(t′−(t1+d/c))/τu

(
t2 +

d

c
− t′

)
(2.85)

where the unit step functions are used to turn on the signal at t1 and turn off the

signal at t2, t1 < t2. Performing the convolution with the scattering Green’s function

of Eq. (2.83) on Eq. (2.85) yields

f2(t) =

∫ ∞

∞
dt′g0u

(
t′ −

(
t1 +

d

c

))
e−(t′−(t1+d/c))/τu

(
t2 +

2d

c
− t′

)
u

(
t− d

c
− t′

)
e(t−(t′+d/c))/τ .

(2.86)

The unit step functions define the limits of integration of all the equations of type

Eq. (2.86), which range from t1 + d
c

to the minimum of t2 + d
c

and t− d
c
. In order to

use the same time-reversal window for each iteration, I use t2 + d
c

as the upper limit

of integration. This is a result of defining the time-reversal window by the interval

between t1 and t2. This yields for the second return

f2(t) = g0u

(
t−

(
t1 +

2d

c

))
τ

2
e−

t+t1
τ e

2d
cτ

[
e

2t2
τ − e

2t1
τ

]
= g0Ae−

t+t1
τ u

(
t−

(
t1 +

2d

c

)) (2.87)

where I now define

A =
τ

2
e

2d
cτ

[
e

2t2
τ − e

2t1
τ

]
. (2.88)
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After using the time-reversal operator on Eq. (2.87) the field incident on the scatterer

is

g2(t
′) = g0Au

(
t′ −

(
t1 +

d

c

))
e−(t′−(t1+d/c))/τu

(
t2 +

d

c
− t′

)
. (2.89)

Using Eq. (2.89) with Eq. (2.83) yields the scattered field for the observer as

f3(t) = g0A
2e

2d
cτ e−

t
τ u

(
t−

(
t1 +

2d

c

))
. (2.90)

Equation (2.90) should be the stable waveform, which will be demonstrated by per-

forming the time-reversal operation two more times on Eq. (2.90). The fourth return

is

f4(t) = g0A
3e

2d
cτ e−

t
τ e−

t1+2d/c
τ u

(
t−

(
t1 +

2d

c

))
= f3(t)Ae

t1+2d/c
τ .

(2.91)

And performing the time-reversal operation on f4(t) yields for the fifth return

f5(t) = g0A
4e

2d
cτ e−

t
τ

(
e−

t1+2d/c
τ

)2

u

(
t−

(
t1 +

2d

c

))
= f3(t)

(
Ae

t1+2d/c
τ

)2

.

(2.92)

Both Eq. (2.91) and Eq. (2.92) support the statement that the third return is the

waveform that the time-reversal operator converges to using backscattered signals.

2.3.3 Time-Reversal for Spherical Target Backscatter

For the case of a solid sphere in a solid medium, I assume the transverse waves

are negligible. Using the impulse response for the backscattered field I can use the

backscattered field from Eq. (2.35),

ψ(~r, t) =
−D√
4πd

∞∑
k=−∞

∞∑
l=0

l∑
s=−l

Y s
l (θc, φc)

2l + 1

(a
d

)l
[

(l/a) + i(k + σ)

[khl
′(ka) + iσhl(ka)]

]
hl(krc)e

ikc(t−(tO+ d+a
c )).

(2.93)
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The above signal is recorded over a time interval, T, then time reversed resulting in

the transmitted signal

ψ(~rO, T ) =
D√
4πd

∞∑
k=−∞

∞∑
l=0

(−1)l+1

2l + 1

(a
d

)l
[

(l/a) + i(k + σ)

[khl
′(ka) + iσhl(ka)]

]
hl(kd)e

ikc(−T+(tO+ 2d+a
c )),

(2.94)

which I will rewrite as

ψ(~rO, T ) =
∞∑

k=−∞

Bk,le
ikc(tO+ 2d+a

c ). (2.95)

where

Bk,l =
D√
4πd

∞∑
l=0

(−1)l+1

2l + 1

(a
d

)l
[

(l/a) + i(k + σ)

[khl
′(ka) + iσhl(ka)]

]
hl(kd). (2.96)

Propagation is accomplished by multiplication with the Green’s function

G(~rc, t) =
δ(t− |~rc|+d

c
)

|~rc|+ d
. (2.97)

Performing the same expansion as was done to obtain Eq. (2.29) gives the time

reversed field incident on the sphere as

ψinc(~r, t) =
∞∑

k=−∞

∞∑
n=0

n∑
m=−n

Bk,l
Y m

n (θc, φc)√
4π(2n+ 1)

rn
c

dn+1

eikc(t− |~rc|+d
c )eikc(tO+ 2d+a

c ).

(2.98)

As in the analysis for the field scattered off a sphere, I write the scattered field as

Eq. (2.28). Using the proper boundary condition and mathematics, the backscattered

field becomes

ψsc(~r, t) =
∞∑

k=−∞

∞∑
n=0

n∑
m=−n

−Bk,l
Y m

n (θc, φc)√
4π(2n+ 1)

an

dn+1

(n/a) + i(k + σ)

khn
′(ka) + iσhn(ka)

hn(krc)e
ikc(t+tO+ d

c ).

(2.99)
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The transceiver records the above at its location over another time interval T

ψ(~rO, T ) =
∞∑

k=−∞

∞∑
n=0

Bk,l

4πd

(−1)n+1

√
2n+ 1

(a
d

)n (n/a) + i(k + σ)

khn
′(ka) + iσhn(ka)

hn(kd)eikc(tO+ 2d
c ).

(2.100)

The important difference between Eq. (2.100) and Eq. (2.95), is that the radius of the

sphere, a, is not in the exponent. It will return during the next time-reversal itera-

tion, introducing a small oscillatory phase shift that will only occur when the sphere

is present. With the expression for Bk,l in mind, it appears that the amplitude of the

field increases by multiplying with itself. This is not the case, but what is happening

is the coefficients are being re-expanded during each iteration of the time-reversal op-

erator. The end result is that the coefficients of the expansion converge to coefficients

associated with the scatterers. This is a process of selection that is inherent in the

time-reversal operator. From the structure of the returns it is the spatial components

of the signal that are being enhanced, not the temporal components. The windowed

effects as listed in (2.3.2) are apparent.
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2.4 Figures

Figure 2.1: The geometry used in the calculations. The point source is always in the
less dense medium. Because of the azimuthal symmetry of the medium, cylindrical
coordinates provide the simplest description.
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Figure 2.2: The geometry I use to calculate scattering from a sphere. Since I am
interested in the response from the sphere at the source location, I only need to carry
the calculations for the monopole term. Since I make the source omni-directional,
normal incidence along the line between the center of the sphere and the source can
be assumed.
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Figure 2.3: Responses with the separation between the center of the sphere and the
detector fixed at 10 m while the radius of the sphere is varied from 0.05 m to 0.5
m. The results show that the impulse is created at the location of the surface of the
sphere. The oscillations in the amplitudes are from the interaction of the exponentials
and the spherical Hankel functions in Eq (2.37). Some peaks are defined by the term
(d-a) in the exponentials and others by ratios of the spherical Hankel functions.
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Figure 2.4: Responses for the radius of the sphere fixed at 5 cm while the center of
the sphere is moved from 9.0 to 11.0 m. The results show that the surface closest to
the sphere dominates. The oscillations in the amplitudes of the peaks are due to the
spherical Hankel functions h0(kd).
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Figure 2.5: Responses with the location of the sphere centered at 10 m from the
detector and the radius from 5 to 50 cm. These shapes result from a one cycle cosine
pulse with a duration of 100 µs. Notice that the left side of the waveforms are at
the location of the surface of the sphere. The small oscillation at the top of each
waveform is due to the shape of the pulse.
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Figure 2.6: Response for the location of the sphere centered at 10 m from the
detector and the radius varied from 5 to 50 cm while the duration of the pulse is
changed from 100 to 10 µs. The results show that the ability to find the location of
the surface of the sphere is not compromised. The small oscillation at the top of each
waveform is not noticeable since the pulse duration has gone from 100 to 10 µs while
the time step is kept at 1 µs.
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Figure 2.7: Responses with the radius of the sphere fixed at 5 cm and the center
moved from 10.1 to 11 m in steps of 0.1 m. The 100 µs one-cycle cosine pulse again
gives the distance to the surface of the sphere, as noted by the left edge of the
responses above. The oscillation at the top of the returns is from the cosine pulse
while the horns at the top of each pulse are from the rectangular window used to
limit the length of the pulse.



Chapter 2. Theory 43

Figure 2.8: The basic idea behind time reversal is to transmit an as-received signal
recorded by the time-reversal mirror in reverse temporal order. If the medium is
aberrating, the original pulse shape will be recorded at the source location.
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Simulations and Interpretations

3.1 Introduction

Time reversal (TR) has been shown to be effective in the water column to focus

an acoustic signal on a source [13], [16] and through inhomogeneous media [18], [19],

[17] in the forward scattering direction. However, for the backscattered signal from

a target it has not been studied. The work presented here shows that time reversal

using a temporal segment of the signal, referred to as a window, of the acoustic return

does not improve the signal-to-noise ratio of the backscattered return after the first

iteration over all frequencies. However, windowed time-reversal operator (wTRO)

can improve the signal-to-noise ratio over frequency ranges that contain the target

information, and that enhancement can be tailored to match the frequency response

of the system. A windowed iterative time-reversal operator (iTRO) further improves

the quality of the return from a target. This chapter presents the results of simulations

and the interpretation of the results. I also include a section to describe the model

used for the simulations. As with any model and simulation, approximations are

made so the calculation can be done numerically. However, I keep the assumptions

as close as possible to what is reasonable for real world experiments.

This chapter is organized as follows. It begins with a brief section that describes

the model and explains the assumptions used along with the modifications made so

44
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it can be applied to this experiment. The next section describes the simulations and

explains why this configuration was chosen. Then the data from the simulations will

be presented followed by an explanation of the results. I will finish with a commentary

on the results in conjunction with the theory presented in preceding chapter.

3.2 Model

The model used for these simulations was obtained from G. Canepa, O. Bergem,

and E. Pouliquen [31]. It was tested by comparing the response from the seafloor

of the Gulf of La Spezia, Italy [33]. Quite good results were obtained. The model

is known as Bottom Response to Inhomogeneities and Surface (BoRIS) and uses the

following assumptions and approximations:

• The seafloor surface and volume are composed of an infinite number of

sub-elements that have periodic boundaries. This allows the model to use

only a finite number of elements in order to calculate the backscattered

return.

• The surface roughness satisfies the Kirchhoff approximation to avoid sharp

corners causing shadow effects.

• The environment is not dynamical.

• The seafloor surface roughness and volume inhomogeneities are generated

by stochastic fluctuations about median RMS values.

• The size of the inhomogeneities are described by correlation lengths in

both the horizontal and vertical direction.

• The source and receiver are co-located and assumed to be a point.

• The returns are determined from a conic cross-section where the angles

are represent the pitch, θ, and roll, φ, of the source. The pitch angle is

along the east and the roll is along the north.

• The ocean environment has cylindrical symmetry so only vertical and

horizontal directions need to be considered.
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The simulations calculate the surface and volume returns separately. The units for

the return are pressure normalized by 240 kPa at 1m.

For the simulations presented here, the temporal sampling of the returns was set

to 1 MHz. 10 MHz was used for a few situations to test the model with the result

that unnecessary noise was introduced in the returns. The smallest seafloor element

had a size corresponding to 1 cm. Scatterers were treated as cubic elements with a

side of 1 cm with the acoustic properties of the sediment. The acoustic properties of

the sediment are treated as a multiplicative function to the response as

µ (~r) =
c (~r)− c̄

c̄
+
ρ (~r)− ρ̄

ρ̄
. (3.1)

In above equation c (~r) and ρ (~r) are the sound speed and density at location ~r,

respectively and c̄ and ρ̄ are the corresponding average values. The fluctuations in

the volume are calculated based on correlation lengths that are entered by the user.

In real environments the inhomogeneities in the seafloor vary more in the vertical

direction than in the horizontal. As a result, Eq. (3.1) is calculated for each point

based on the correlation lengths in both the vertical and horizontal directions entered

by the user. Attenuation, β in the volume is assumed to be a function of frequency,

f, as β = |α|f where α is a real constant attenuation term.

To introduce a target of known composition and geometry the model needed to be

modified by inserting a different volume cube at a specific location. For the present

work, the location of this alternate volume the center of the target relative to the

point source. The target was inserted in a copy of the base volume element using

Eq. (3.1) to describe its acoustic properties. To calculate µ of Eq. (3.1) for the target

set I set c (~r) and ρ (~r) to the sound speed and density of the target while keeping

the average values to those of the surrounding medium.

3.3 Simulation Parameters

For the simulations various pulses shown in Fig. 3.1 were tested. Most of the

study used the one-cycle cosine pulse of 10 µs duration, which corresponds to the
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lower frequency limit used for most side-scan sonar systems. Two sine pulses of one

cycle were used; one of 10 µs duration to show that there is little difference between

the two initial pulses after a few iterations of the time reversal operator, and the

other with a duration of 100 µs. The 100 µs pulse shows that increasing the period

of the initial pulse makes the target more difficult to detect, but after approximately

20 iterations the return from the sphere becomes similar to that seen with the 10 µs

pulse. Two sine-squared pulses were used, one of a single cycle with a duration of

100 µs and the other with two cycles over the same time interval. One cycle was used

in most scenarios since using more than one cycle would just increase the amount of

power in the system without improving the understanding the process.

Two sediment types were studied. One was a mixture of 80% sand and 20%

silt. Most of the studies were performed on this since it had contributions from

two sediment types only. The other was a composition representing sediment from

Harbor Station, which is near the Cape Fear Inlet in North Carolina [38] and is more

geologically complex. The target was an iron sphere located so its surface was 10

cm beneath the surface of the seafloor. Iron was chosen since most artificial targets

of interest contain either iron, steel, or some iron alloy. However, any target that

is acoustically hard compared to the surrounding environment would provide similar

results. A sphere was used as a first-order approximation to an artificial target, and

the scattering theory for a sphere is well known [28], [29], [37], [39]. This is expected

to capture the main results; modification of the spherical shape would be expected to

result in only higher-order corrections. The depth was chosen since most objects that

rest on the seafloor will eventually be covered by a layer of sediment approximately

that thick. It also makes the problem more interesting since the backscattered signal

will have contributions from both seafloor and the target.

Sphere diameters of 2, 6, and 10 cm were studied to test the limits of the efficacy

of windowed time reversal to enhance the returned signal. In realistic situations,

the target diameter will be greater than 10 cm [8]. Two source/target geometries

were studied to contrast the case of normal incidence to non-normal incidence. In
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both cases the average distance from the source to seafloor was 10 m. The normal-

incidence study placed the target directly below the source while the non-normal

geometry placed the center of the sphere 7.05 m horizontally away from the normal

axis. This distance was chosen for two reasons: first, it sets the angle between the

normal and the axis connecting the center of the sphere to the source at 35◦. Second,

this is very close to the angle for which there is no backscatter from the seafloor as

described in Sec. B.2.2 and [40]. The conic section used to calculate the responses are

for the pitch angle −10◦ ≤ θ ≤ 10◦ and the roll angle −1.5◦ ≤ φ ≤ 1.5◦. For normal

incidence the region of insonification is an ellipse of 1.76 m along the east and 0.26

m along the north. For the 35◦ incidence the region is 5.34 m along east and 0.78 m

along north. The penetration of the signal into the seabed was set to 1 m for all the

simulations to ensure that there will be a backscattered response from the target.

3.3.1 80% Sand / 20% Silt

I chose a sediment of 80% sand and 20% silt to represent the average of most

beaches with sandy seafloors. The response of the seafloor to a 10 µs single-cycle

cosine pulse under normal incidence with no sphere present is shown in Fig. 3.2. The

black line of Fig. 3.2 shows the first return and the red line is the result of nine

iterations of the time-reversal operator (TRO) using the part of the signal bounded

by the box labeled “TR Window”. Recall the procedure for the TRO as follows:

1. Sample the return within the region in the box. The same region was used for

each iteration of the windowed time reversal operator.

2. Reverse the temporal order of the signal.

3. Set the gain to counter any loss in power from propagation. For this work the

gain was the inverse of the absolute maximum value, of the return, creating a

unity-amplitude time-reversed pulse.

4. Transmit this new signal.
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The window used for this series of time-reversal operations starts at 13.3893 ms of

the signal and has a duration of 170 µs. This window ensures that the return from

the spheres will be included with minimal contribution from the seafloor surface.

With a 10 cm diameter iron sphere buried 10 cm deep the return changes to the

black line in Fig. 3.3. The sphere is clearly present as shown by the oscillatory return

within the time-reversal window(TRW), but the envelope is not that expected from

scattering theory. After nine iterations of the TRO using the 170 µs window the return

has the waveform represented by the red line in Fig. 3.3, which does have the shape

expected by the backscattered return from a sphere scattering an impulse function.

The waveform of the tenth return of Fig. 3.3 as compared to Fig. 3.2 shows that the

TRO detects the sphere. There are a few properties that need to be mentioned:

• The convergence waveform is independent of the initial pulse shape.

• The convergence waveform is also independent of the surrounding sedi-

ment properties.

• The start time for recording the TRO return and the duration of the

time-reversal window determine the signal-to-noise ratio.

• The amplitude of the return from the sphere must be above the threshold

of the transceiver and at least marginally greater than the return of the

surrounding sediment.

• Performing a low-pass filter function on each iteration of the TRO only

serves to decrease the signal-to-noise ratio.

Initial Pulse Shape

To determine what effect the initial pulse shape has on the returns, I used the

pulses shown in Fig. 3.1. The 10 µs single-cycle cosine pulse is shown as the black

line, the 10 µs single-cycle sine pulse is the red line. The reasoning to switch from

cosine to sine was to minimize the oscillations in the first return, as in the black

line in Fig. 3.3, which could have been an artifact of the discontinuity of the cosine

envelope. However, by comparing the black line in Fig. 3.3 to that of Fig. 3.4 we find
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that the oscillations are due to the wavelength of the pulse, which is approximately

1.6 cm using a sound speed of 1600 m/s. Thus both the 6 and 10 cm diameter spheres

will be detected with these pulses. Using any of the 100 µs single-cycle pulses or the

double-cycle pulse shows that the TRO allows the 10 cm sphere to be detected after a

few iterations. This is demonstrated by Fig. 3.5, which shows the result of forty-nine

iterations of the TRO using the 170 µs time-reversal window. Comparison of the red

lines from Figs. 3.4 or 3.6 to 3.5 shows that the TRO improves the return from the

sphere especially when the first return shows that it is barely detected. Figure 3.6

shows the first return from the 100 µs single-cycle sine pulse normally incident on

the seafloor with the 10 cm sphere present, red line, and without, black line, showing

that the sphere is barely discernible from the sediment. However, after forty-nine

iterations of the TRO the sphere is easily distinguishable, as shown in Fig. 3.7. As in

Fig. 3.6, the black line is the return of the sediment alone and the red is the return

with the 10 cm diameter iron sphere present. This improvement in the target return

can also be seen in the frequency spectra of the returns as shown in Fig. 3.8 where

I plot the spectra from the first return of the 10 cm diameter iron sphere,black line,

from Fig. 3.6 and the fiftieth return, red line, from Fig. 3.7. The peak in the spectra

at 82 kHz is entirely from the sphere. Thus even though the initial pulse barely

detects the target, the TRO eventually yields a strong target signal.

The reason why the iTRO generates the same waveform independent of the initial

pulse is that during the iTRO the Fourier-Bessel components associated with the

strongest scatterer, in this case the sphere when present, are being selected through

re-expansion of the coefficients in the scattering process. Two factors limit what

frequencies remain after each re-expansion, one is the sampling rate of the transducer

which sets the high frequency limit. The other is absorption of certain frequencies by

the propagating environment. The characteristics of the main scatterer dictate what

components will be sorted out by the iTRO. Recall the derivation from Sec. 2.3.3,

where I show that each iteration of the TRO yields a re-expansion of the Fourier-Bessel

coefficients of the backscattered field. Those coefficients depend on the separation
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between the source and the center of the sphere and the radius of the sphere.

Time Averaged SNR

To simplify the results of this study and quantify the improvement in the SNR I

define the signal-to-noise ratio (SNR) as

SNR =

∫
T
(s(t)− n(t))2dt∫

T
n2(t)dt

(3.2)

where s(t) is the return with the target sphere, n(t) is the return from the sediment

without the sphere and T is the time over which to integrate. Using this definition

of the SNR gives a more direct method to quantify the efficacy of the TRO without

needing to generate plots for each iteration. Under normal incidence the 10 µs single-

cycle cosine pulse results in SNR curves shown in Fig. 3.9 where the circles are for

the 10 cm sphere and the diamonds are for the 6 cm sphere. The SNR for both the

6 and 10 cm diameter spheres appears to improve for the second and third returns

after using the wTRO twice after which the SNR decreases. The normal incidence

response from a 2 cm diameter sphere could not be detected, which is not surprising

since 2 cm is of the order of the dimension of the inhomogeneities. Figure 3.10

shows the SNR for the 10 µs cosine pulse at 35◦ incidence and demonstrates that

the wTRO improves the SNR independently of angle of incidence. The SNRs from

Fig. 3.10 shows that the SNR qualitatively converges in the same manner independent

of sphere diameter. The exception of the SNR from first return of the 10 cm sphere

which is gives a strong response and then degrades due to the window duration. As

shown in Fig. 3.11 the SNR converges rapidly as a function of return number and

remains stable thereafter. The convergence to a single SNR value is also independent

of initial pulse used as shown in Fig. 3.12 where I plot the SNR from the 10 µs and 100

µs single-cycle sine pulses normally incident on the 10 cm diameter sphere. Target

size has the effect of changing the convergence value provided that the sphere can be

detected. The oscillations at high return iteration numbers are from the interaction
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of the exponentials and the spherical Hankel functions from the expansion given by

Eq. (2.100) of Sec. 2.3.3.

Pulses and Filters

The various pulses shown in Fig. 3.1 all give SNRs that are similar to those shown

in Fig. 3.11 since after several iterations of the wTRO the returns converge to similar

waveforms independent of the initial pulse, as seen in Fig. 3.25. In Fig. 3.25 we have

the SNR as defined by Eq. (3.2) for the 10 µs cosine pulse, black for full pass (FP)

filtered and green for low pass (LP) filtered responses, and for the 10 µs sine pulse,

red for FP filtered and blue for LP filtered using the 170 µs time reversal window

in all cases. The low pass filter used a rectangle function in frequency space to 4.9

kHz then a half-cosine for 4.9 to 17.6 kHz. Use of this filter on the time-reversed

signal lowers the SNR most noticeably for the cosine pulse, compare the black and

green lines, because it removes all high frequency components from the time-reversed

signal. The relative increase in the SNR when changing from the cosine pulse to the

sine pulse is attributed to the window used to generate the initial pulse. Both pulses,

as for all the pulses used in this study, use a rectangle convoluted with the continuous

pulse train resulting in the cosine pulse starting fully on then decreasing while the

sine pulse starts at zero and smoothly increases. This translates into a cleaner first

return from the sine pulse as compared to the cosine pulse as shown in Fig. 3.25.

Increasing the period of the first pulse results in the need to increase the number of

iterations of the time-reversal operator before the waveform converges to the waveform

from the sphere. Comparing the SNR curves, as defined by Eq. (3.2), in Fig. 3.26 for

the 10 µs one-cycle cosine pulse, solid black line, to those from a 100 µs one cycle

sine pulse, solid red line, and 100 µs one and two-cycle squared sine, blue and green

lines respectively, show that time reversal of the backscattered signal from the 10 cm

diameter sphere does indeed improve the SNR from the sphere. Similar results are

obtained with the low pass filter used in conjunction with the time reversal operator.

Recalling the derivation that led to Eq. (2.68), each iteration of the time-reversal
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operator results in a re-expansion of that signal in orthogonal functions over the

frequency range defined by the temporal window duration and the temporal sampling

rate. These functions will eventually converge to one solution that depends only on

the radius of the sphere and to a lesser extent, the distance between the surface of

the sphere and the location of the source.

Time-reversal Windows Effects

Since filtering the return after each iteration of the TRO has the effect of negating

any benefits from the TRO, I chose to study the effects of changing the start time of

the time-reversal window and the duration of the TRW. To do this I use two series

of windows. One series is shown in Fig. 3.13, where I plot the response of the 10

cm sphere insonified by the 10 µs single-cycle cosine pulse with the three windows

used for this part of the study. The blue box is the original 170 µs window described

earlier. The green box is the window of duration of 270 µs starting at 13.3893 ms,

and was chosen to study how a longer recording time affects the wTRO. The red box

is a window of 99 µs starting at 13.4393 ms to study the effects of not having all the

information about the target in the window. The corresponding SNRs using these

windows are shown in Figs. 3.14 for the 10 cm diameter sphere and 3.15 for the 6

cm diameter sphere, both responding to the 10 µs single-cycle cosine pulse at normal

incidence. Changing the duration of the time reversal window from 170 µs to 270

µs does not appreciably change the results for either the 10 cm sphere (Fig. 3.14)

nor the 6 cm sphere (Fig. 3.15). This should be expected since the two windows

include the leading edge of the target return, which is important for the time-reversal

operator although it includes some information from the sediment above the target.

Changing the window start time from 13.3893 ms for the 170 µs to 13.4393 ms for the

99 µs window shows quantitatively the same shape of the SNR for both the 10 cm

(Fig. 3.14) and 6 cm (Fig. 3.15) spheres. The SNR is greater for the 99 µs window as

compared to the 170 µs window, which can be explained using Figs. 3.13 and 3.16.

Figure 3.13 shows that for the 99 µs window the first part of the time reversed signal
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for the target changes more rapidly than the beginning of the 170 µs time reversed

signal. This introduces higher frequency components and results in a second return

for the 6 cm sphere that is in Fig. 3.16. Notice in Fig. 3.16 that the 170 µs and 270 µs

windows produce nearly identical waveforms since the information from the sediment

is present in the first part of the returns while the 99 µs window produces a waveform

consisting of high frequency components that are consistent with scattering off the

sphere.

Since the SNR used is defined by Eq. (3.2) we also need to see what is happening to

the return from the sediment without a target for all the windows presented. Figure

3.17 shows the fifth return from the sediment without a target at normal incidence

using the three windows. It is not surprising that the 170 µs and the 270 µs returns

give nearly the same waveform since they both start at the same point in the return

record and the 99 µs window gives a completely different result since it is not recorded

until a later time than the other two windows. Comparison of Fig. 3.17 with the fifth

return at normal incidence from the 6 cm sphere (Fig. 3.18) shows why the SNR is

larger for the 99 µs window than for both the 170 µs and 270 µs windows. The 99 µs

window in Fig. 3.18 contains less sediment return than the other two windows. From

this discussion we can say that the SNR is affected by the start time for the TRO

while it is relatively unaffected by the duration. In contrast, with the 10 cm diameter

sphere the wTRO converges to nearly identical waveforms for the 99 µs window, red

line, versus the 170 µs window, black line, as shown in Fig. 3.19. This is due to the

size difference in the sphere relative to the duration of the window.

For the second wTRO study, I centered the windows about the same point in the

time record at 13.4733 ms and set the length of the window at 50, 100, 150, and 170

µs. Figure 3.20 shows the windows used with respect to the first return from the 6

cm diameter iron sphere using the 10 µs single-cycle sine pulse at normal incidence.

All windows include information about the sphere. The SNR for the 10 cm sphere

insonified by the 100 µs single-cycle sine pulse at normal incidence, Fig. 3.21, shows

that there is a strong dependence on window duration and SNR. The 50 µs window,
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shown in red, shows the most complex behavior of the SNR due to the fact that this

window contains only sphere location information with very little size information.

As the windows become larger, more information about the sphere size is available.

This trend continues until there is too much information about the sediment. This

behavior is qualitatively independent of sphere size by comparing Fig. 3.22 for the

6 cm diameter sphere using the configuration as in Fig. 3.21. Both the 50 and 100

µs TRWs increase the SNR from the 6 cm sphere. If the window is too large, small

spheres cannot be detected. This is shown in Fig. 3.23 where I plot the fiftieth return

from the 6 cm sphere using the 100 µs single-cycle sine pulse. The black line uses

the 150 µs TRW and the red is from the 50 µs TRW. This makes sense when you

realize that the longer TRWs will record more of the sediment return when windows

are centered about the same instant. Note that the wavelength of the 100 µs single-

cycle sine pulse is more than twice as long as the diameter of the 6 cm sphere. This

enforces the idea that the TRO can be used to locate targets whose dimensions are in

principle too small to be detected as long as the TRO is centered near the center of

the return from the target and has a minimal amount of return from the surrounding

medium.

The 10 µs single-cycle sine pulse at normal incidence to the 6 cm sphere shows

radically different behavior with window duration, as shown in Fig. 3.24. The 50 µs

TRW gives similar results for both the 10 and 100 µs single-cycle sine pulses. The

sphere is detected using either the 150 or 170 µs TRWs. TRWs that are greater than

50 µs should give new results for the smaller initial pulse since we now have an initial

pulse wavelength that is of the order of the diameter of the target sphere. What is

surprising is that the 150 µs window constantly decreases the SNR while all the other

windows converge to one SNR value. The other windows converge to different SNR

values based on window dimension, the longer the TRW the higher the SNR. This

is just a result of the fact that the TRO is picking up more information about the

target with each iteration as the window dimension increases.



Chapter 3. Data and Analysis 56

Frequency Dependent SNR

Since the returns are oscillatory it is worth discussing what the windowed time-

reversal operator is doing in frequency space. This will also assist in understanding

why the wTRO does not improve the SNR for each iteration. Calculations of the

absolute value of the Fourier transform of the returns shown in Figs. 3.2 and 3.3 show

that for both the sediment and the target, in this case the 10 cm sphere, the wTRO

affects only certain frequency components (Fig. 3.27). Indeed, the peak centered near

80 kHz from the first return of the sphere (green line) is strictly from the sphere while

the small hump about 20 kHz is in first return from both the sediment and sphere.

Nine iterations of the wTRO using the 170 µs window increases the 80 kHz peak

from the sphere (blue line) and suppresses the two peaks co-centered about 20 kHz

from the sediment (red line). This leads to the idea of using a frequency-dependent

signal-to-noise ratio.

We define such a signal-to-noise ratio SNR(Bi) as

SNR(Bi) =

∫ νi+∆ν

νi
(S(ν)−N(ν))2dν∫ νi+∆ν

νi
N2(ν)dν

(3.3)

where Bi = νi+∆ν is the frequency interval, S(ν) and N(ν) are the Fourier transform

of the returns with and without the sphere, respectively. Using Eq. (3.3) for the signal-

to-noise ratio gives a surface where one axis is the iteration number, another is the

normalized frequency, and the third is the SNR. Setting the frequency step to 5 kHz

on the 170 µs wTRO returns using the 10 µs cosine pulse at normal incidence to the

10 cm sphere confirms that the wTRO does improve the SNR if a target is present

(Fig. 3.28). The salient features that are present are shown in Fig. 3.27, namely

the peak at 80 kHz, 16 on the Normalized Frequency axis, remains through all the

iterations of the wTRO. The exception is in the first return where the sediment and

sphere returns both share common features which the wTRO distinguishes for future

returns. Changing the sphere diameter to 6 cm while keeping all the other variables

constant gives a spectrum that makes the sphere much more difficult to distinguish
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(Fig. 3.29). The wTRO picks out the peak in the tenth return from the sphere centered

near 160 kHz, the blue line in Fig. 3.29, which emphasizes that the wTRO is good

at enhancing information from a target in the backscattered signal. The frequency

dependent SNR corresponding to Fig. 3.29 shows that the wTRO can be used as a

filter to remove the higher frequency components from the SNR (Fig. 3.30). Figure

3.30 shows that the third and fourth returns are optimized to detect the 6 cm sphere.

These returns have high frequency components from scattering off the sphere. As the

number of iterations increase, the SNR decreases due to the fact that the sediment

is absorbing these components since the duration of the time-reversal window is long

enough to record more sediment than sphere return.

Off Axis Returns, 35◦ Incidence

We now consider the geometry where the target is off-axis. The leading surface of

the target is still 10 cm beneath the surface, but is now 7.05 m off the normal axis due

east relative to the source. This results in an angle of incidence of 35◦ while the roll

and pitch angles, φ and θ, will remain the same as stated in Sec. 3.3. Angles greater

than 35◦ result in total loss in the backscattered direction as a result of complete

absorption by the second medium [40]. For this study the 10 µs cosine pulse was

used and the wTRO was set to start recording at 13.3893 ms for a duration of 170

µs to allow comparisons with the same settings at normal incidence. The targets are

again iron spheres with diameters of 2, 6, and 10 cm as in the normal incidence case.

Using this geometry there are several differences. The return time of the signal is

much longer since the absolute distance from the source to seafloor is now greater.

Targets will also appear larger due to refraction of the sound wave. This is the same

as the illusion that a quarter appears larger at the bottom of a pool when observed

at non-normal incidence.

We recall Fig. 3.10 using the definition for the SNR of Eq. (3.2) for all three targets.

As stated previously, this shows that the wTRO does not really improve the SNR over

the recording time of the return signal using the definition Eq. (3.2). But the temporal
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frequency plots from the first and tenth returns of the 10 cm sphere show that the

wTRO does indeed improve the returns from the sediment and sphere (Fig. 3.31) at

certain frequencies as in the normal incidence case. The red line in Fig. 3.31 is the

tenth return from the sediment alone and has a peak centered approximately at 135

kHz. The blue peaks centered near 165 kHz and 250 kHz are the response from the 10

cm sphere after nine iterations of the 170 µs wTRO. The frequency shift in Fig. 3.31

as compared with Fig. 3.27 is from the refraction of the incident wave making the

sphere appear bigger. It is this effect that allows the wTRO to isolate the 2 cm sphere

from the surrounding medium. This is shown in Fig. 3.32 where the blue line is the

tenth return from the sphere and the red line is the tenth return from the sediment

only.

Performing the calculation of the SNR from Eq. (3.3) on the returns from the 10

cm sphere using the frequency step size of 5 kHz, Fig. 3.33, shows that the wTRO

is not only stable for this angle of incidence, but keeps the target isolated from

the sediment. This behavior is the same as for normal incidence, which leads to

the conclusion that as long as there is a backscattered signal from a target in an

inhomogeneous medium the wTRO can be used to improve the quality of the return

from the target independent of the angle of incidence.

3.3.2 Harbor Station

Acoustic waves and their associated phenomenon are affected by the propagating

medium, but the windowed time reversal operator should be independent of these

effects. To show that this is the case, a second seafloor environment was modeled

using the same 10 µs single cycle cosine pulse as for the 80% sand / 20% silt sediment

of the previous section. The targets used are the same iron spheres with the same

diameters except that the acoustic parameter µ (~r) was changed to compensate for

the changed values of the averaged sound speed and density of the sediment. Both

normal and 35◦ incidence were studied. The sampling window for the wTRO was

set to start at 13.2893 ms with a duration of 170 µs for comparisons between the
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two sediments. The parameters from the seafloor to model Harbor Station in the

Cape Fear Inlet in North Carolina [38] were used for this part of the study using the

parameters listed in Tab. 3.1.

The SNR as defined by Eq. (3.2) shows behavior that is similar for both normal

and non-normal (35◦) incidence. Figure 3.34 is the SNR calculated over the entire

time record for each return at normal incidence for both the 6 cm and 10 cm spheres.

Again, the 2 cm sphere did not give a response that was distinguishable from the

sediment returns. Figure 3.34 shows that as the number of iterations for the wTRO

increases, the SNR increases until about the fifth or sixth return then drops off. This

is consistent with the observation that the wTRO converges to a steady waveform for

both the sediment and the target so the SNR will remain effectively constant. For

the non-normal (35◦) incidence, the SNR from Eq. (3.2) shows this same trend which

confirms that the wTRO will work independent of the angle of incidence (Fig. 3.35).

Windowed Time Reversal Limit

As implied in Sec. 3.3.1 the SNR from the wTRO reaches a limit where it enhances

the return from the 2 cm target. I wish to elaborate some on this point in this section.

Figure 3.36 shows the SNR using Eq. (3.2) for the 2 cm diameter iron sphere buried

in the Harbor Station sediment at 35◦ incidence from the source. This figure looks

almost identical to the SNR from the 10 cm sphere in Fig. 3.35 with the exception of

the vertical scale. The wTRO is not doing a good job of assisting in the enhancement

of the target return in this case, which is apparent from Fig. 3.37 where we have used

Eq. (3.3) for the SNR and a frequency sampling step of 5 kHz. We see that there is

no dominant frequency peak in the SNR in any return, which implies that the wTRO

is working with noise. If there was a distinguishable return from the 2 cm sphere the

plots in Fig. 3.37 would look more like those in Fig. 3.38 for the 10 cm sphere under

the same conditions. From this we can conclude that the wTRO not only needs a

return from a target, but the target return must have a higher SNR than that of the

sediment to use Eqs. (3.2) and (3.3) to calculate the SNR of the sphere.
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3.3.3 Sediment Comparison

The sediments have different behaviors with respect to the signals due to differ-

ences in sound speed, density, size of embedded scatterers, and attenuation. For the

two sediments studied Tab. 3.2 lists the differences between sound speed, density,

and attenuation. These are the most influential parameters in any acoustic model.

The return spectra for the tenth return at normal incidence for the 10 cm sphere

using the 170 µs wTRO, Fig. 3.39, shows that the differences in the sediment have

an effect on the returns. The changes in attenuation and sound speed are reflected in

the location of the two peaks since the Harbor Station sediment, red line, allows the

higher frequencies to propagate more easily than for the sand-silt sediment, black line.

Keeping the 170 µs wTRO and changing the angle of incidence shows that the angle

of incidence can be treated as a blue shift in frequency (Fig. 3.40). The difference in

sound speed in the two sediments of 50 m/s can introduce a small error in the location

of the target that translates to a temporal shift of 0.2 ms per 1 cm position shift.

Since the time reversal window used in these simulations were approximately 13.3 to

13.5 ms for normal incidence and 16.3 to 16.4 ms for 35◦ incidence, it would stand to

reason that there would be small discrepancies in the exact location of the center of

the sphere from the return time series. However, the figures show the robustness of

the time reversal operator to converge to the backscattered signal of a sphere in an

inhomogeneous environment.

3.4 Concluding Remarks

The results presented in this chapter show that the windowed time reversal oper-

ator has the potential to be a useful tool to determine a target that is acoustically

hard compared to the embedded environment. The idea that the time reversal win-

dow needs to match exactly the location of the target has been disproved by changing

not only the start time for the recording of the sampled signal, but also changing the

duration of the recording process. Time reversal in this study did not reproduce
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the original pulse from the backscattered return, which was not to be expected from

the theory presented in the previous chapter. The result of the iterative TRO is to

enhance the Fourier-Bessel response to the incident field when the spherical target is

present. This implies that the wTRO can be used to obtain target geometry from the

backscattered return that has been corrupted by the inhomogeneities in the sediment.

The fact that the wTRO is independent of incident angle shows that this process can

be used for targets that not on the normal axis defined by the source and seafloor.

The SNR as defined by Eq. (3.2) shows that the wTRO converges to the optimal re-

turn after the SNR has reached the maximum for short duration initial pulses. This

convergence and the accompanying stability is to be expected from the theory of the

iterative TRO [28], [29], [12]. The SNR as defined by Eq. (3.3) shows that the wTRO

does enhance the signal from the target.
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3.5 Figures and Tables

Figure 3.1: Pulses used for the simulations range from a one-cycle cosine pulse of
0.1 ms duration to a one-cycle-squared sine pulse of duration 1.0 ms. After several
iterations of the time reversal operator all the initial pulses converge to yield similar
results.
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Figure 3.2: Output from the BoRIS simulation using 80% sand and 20% silt without
a target for the conditions described in the text. The black solid line is the first return,
the red solid line is the tenth return after nine iterations of the time reversal operator.
The box shows the temporal boundary used for the time reversal operation.
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Figure 3.3: Output from the BoRIS simulation with the configuration of Fig 3.2 but
also containing a 10 cm diameter sphere. The black solid line is the first return, the
red solid line is the tenth return after nine iterations of the time reversal operator.
The box shows the temporal boundary used for the time reversal operation.
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Figure 3.4: To study the behavior of the time-reversal operator for different pulses I
looked at the returns from single-cycle 10 and 100 µs sine pulses at normal incidence
to the sphere. The figure shows the first return from the 10 µs pulse, black line, and
the 100 µs pulse, red line. The shorter pulse detects the sphere where as the longer
pulse appears not to detect it within the time-reversal window.
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Figure 3.5: The result of forty nine iterations of the time-reversal operator for the
single-cycle 10 and 100 µs sine pulses at normal incidence. The sphere is detected
by both which converge to the same wave packet, with a small difference in phase
that is dependent on the iteration that first has some high frequency components.
This alone demonstrates that time-reversal can be useful for the detection of buried
targets.
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Figure 3.6: First return for a 100 µs single-cycle sine pulse normally incident to
the seafloor with (red) and without (black) the presence of a 10 cm sphere. Super
resolution may be present, but it only provides a small amount of assistance.



Chapter 3. Data and Analysis 68

Figure 3.7: The fiftieth returns from the sediment only, black line, and with the
10 cm diameter iron sphere present, red line, show a significant difference. The high
frequency wave packet is generated by the scattering response from the sphere.



Chapter 3. Data and Analysis 69

Figure 3.8: Fourier spectra of the results from the 10 cm sphere shown in Figs. 3.6
(first return) and 3.7 (fiftieth return). The TRO process detects the sphere as evident
by the peak centered about 82.2 kHz.
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Figure 3.9: The SNR for the 10 µs one-cycle cosine pulse normally incident to the 6
(diamonds) and 10 cm (circles) spheres using Eq. (3.2). Both the spheres show similar
behavior. There is an initial boost to the SNR of the 10 cm sphere after which the
SNR then it converges to a smaller value.
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Figure 3.10: The SNR using Eq. (3.2) for the target off-axis from the source. Com-
parison with Fig. 3.9 shows that the time-reversal operator degrades the return from
the target.
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Figure 3.11: With the 10 cm sphere at normal incidence the SNR converges rapidly
to approximately 1.14 dB and remains centered about that value for 1000 iterations
of the wTRO. Only the first 100 returns are plotted.
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Figure 3.12: Convergence of the SNR of the 10 and 100 µs single-cycle sine pulses
to the same value independent of the pulse length and shape as shown here is an
important result that supports the idea that the TRO acts as a full-pass filter.
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Figure 3.13: The three windows used for the time reversal operator on the 6 and 10
cm diameter targets. All windows enclose some of the return from the 10 cm diameter
sphere at normal incidence.
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Figure 3.14: These SNRs show that no dependence on window duration, but a
dependence on the start time.
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Figure 3.15: As Fig. 3.14 for the 6 cm sphere.
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Figure 3.16: The time series for the return changes depending on when the wTRO
starts and ends. The second return for the 6 cm sphere given here shows that the
start time of the wTRO affects the waveform while the duration of the record affects
the location of characteristics of the waveform.
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Figure 3.17: Sediment return for the various windows. The red line shows very little
return from the sediment as compared to the other two lines. This is an artifact of
both the start time and duration.
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Figure 3.18: Comparing the returns for the 6 cm sphere (above) and the sediment
(Fig. 3.17) shows that the amount of information about the sediment can be decreased
by the proper choice of start time.
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Figure 3.19: The TRO signal for the 10 cm diameter iron sphere converges to
nearly identical waveforms after nine iterations for both windows, demonstrating the
robustness of the TRO for different windows.
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Figure 3.20: Time-reversal windows imposed on the first return from the 6 cm
diameter iron sphere with the 10 µs single-cycle sine pulse at normal incidence. The
windows are centered at the same time point in the return.
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Figure 3.21: Different windows affect the signal-to-noise ratio in ways that are
surprising. There exists an optimal window giving the best SNR depending on target
dimension and initial pulse duration. This behavior is independent of gain or initial
pulse amplitude. This figure uses the 10 cm diameter iron sphere in the sand/silt
sediment with a 100 µs single-cycle sine.
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Figure 3.22: As Fig. 3.21 for the 6 cm sphere. We expect no return. However,
the time-reversal operator can be tuned to enhance the signal from the sphere and
increase the SNR. The smaller windows detects the sphere while the longer windows
do not since the longer windows include more sediment return.
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Figure 3.23: Using the 100 µs single-cycle sine pulse normally incident on the 6cm
diameter iron sphere we can see that the fiftieth return from the 50 µs TRW detects
the sphere while the 150 µs TRW just detects the sediment. So setting the center
and durations of the TRW are the important factors in target detection using initial
pulses with wavelengths greater than the dimension of the target.
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Figure 3.24: SNRs for a 10 µs single-cycle sine pulse normally incident on the 6cm
diameter iron sphere. All TRWs allow the sphere to be detected. The longer the TRW
the higher the SNR, except for the 150 µs TRW, which appears to be an anomaly.
This could be an artifact of phase matching between the sediment-only return and
the target-sediment returns.
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Figure 3.25: SNRs for the one-cycle cosine pulse of 10 µs duration and the corre-
sponding sine pulses of the same duration. The black line is the SNR for the 10 cm
diameter sphere from the cosine pulse using a full pass (FP) filter, the red is the same
for the sine pulse, and the green and blue lines are from the low pass (LP) filter on
the returns from the cosine pulse (green) and the sine pulse (blue).
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Figure 3.26: Except for the 10 µs sine, all pulses incident on the 10 cm diameter
sphere whose closest surface is 10.1 m away from the source converge to the same
SNR after approximately 35 iterations. The black line is for the 10 µs one-cycle
cosine pulse, red for the 100 µs one-cycle sine pulse, blue for the 100 µs one-cycle
squared-sine pulse, and the green for the 50 µs two-cycle squared-sine pulse.
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Figure 3.27: Frequency spectrum of the returns with and without the 10 cm diameter
sphere. The spectra depend not only on iteration, but also on the target.
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Figure 3.28: The frequency dependence of the SNR provides more information about
the target for the second and higher returns. The higher frequencies are suppressed
for the sixth and higher returns. The sphere information is contained in the lower
frequencies. The frequency interval for the above is 5 kHz.
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Figure 3.29: As Fig. 3.27, but for the 6 cm sphere.
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Figure 3.30: As Fig. 3.28, but for the 6 cm sphere. Most information is contained
in the third and fourth return.



Chapter 3. Data and Analysis 92

Figure 3.31: A comparison of the power spectra with and without the sphere for
non-normal-incidence returns. There is a shift in frequency as compared with normal
incidence. The red line is the tenth return without a sphere, blue is with the sphere.
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Figure 3.32: As Fig. 3.31, but for the 2 cm sphere. The 2 cm sphere behaves as a
small perturbation in the sediment.
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Figure 3.33: SNR for off-axis detection, 10 cm sphere.
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Figure 3.34: SNR for returns from the Harbor Station sediment for normal incidence.
The 6 cm sphere shows similar behavior to that of the 80/20 sand/silt. The 10 cm
sphere shows that the SNR improves with iteration.
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Figure 3.35: As Fig. 3.34, but for non-normal incidence.
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Figure 3.36: As Fig. 3.35, but for the 2 cm sphere. The 2 cm sphere is detected.
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Figure 3.37: The SNR from the 2 cm sphere in the Harbor Station sediment at 35◦

incidence.
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Figure 3.38: As Fig. 3.37, but for the 10 cm sphere.
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Figure 3.39: The power spectrum of tenth return from the 10 cm sphere in normal
incidence using the 10 µs single-cycle cosine pulse for Harbor Station sediment (red
line) and the 80% sand / 20% silt sediment (black line). The peak is from the sphere
while the shifts of the peaks are from the acoustical properties of the sediment.
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Figure 3.40: As Fig. 3.39, but for 35◦ incidence.
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Table 3.1: Properties of the constituents of the different sediments. The percentages
of each in the Harbor Station sediment are also given [38], [5], [41].

Type % ρ c (m/s) α(dB/λ)
Sand 71.23% 1.9 1650 0.8

Gravel 25.82% 2.0 1800 0.6
Clay 2.53% 1.5 1500 0.2
Silt 0.42% 1.7 1575 1.0
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Table 3.2: Comparison of the three parameters that have the greatest affect on the
backscattered returns [38], [5], [41].

Parameter Sand-Silt Harbor Station
Sound Speed (m/s) 1635 1685
Density (×ρH2O) 1.86 1.92
Attenuation (dB/λ) 0.84 0.74
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Conclusion and Closing

4.1 Concluding Remarks

Time reversal operating on the backscattered return does not behave in the same

way as time-reversal does on forward scattered signals as I have shown by deriving

Eq. (2.68) and through the simulations I have performed. I have shown that time-

reversal can effectively detect and obtain target information using a single point

transceiver. By performing time-reversal on a window of the return the backscattered

signal will converge to a waveform consistent with the Fourier-Bessel impulse response

from the target as in Fig. 3.4. Figure 3.4 shows the first return from a 10 cm diameter

iron sphere buried in the 80% sand / 20% silt sediment where the surface of the

sphere is 10 cm from the surface of the seafloor. The red line is the first return using

a single-cycle sine wave 10 µs in duration and the black line is the first return using

a single-cycle sine wave 100 µs in duration. Both responses are recorded by the point

transceiver located 10 m above the seafloor at normal incidence. After forty-nine

iterations of the time-reversal operator (TRO), the fiftieth return will have the shape

as those in Fig. 3.5. Again the red line is the response using the single-cycle 10 µs

sine pulse and the black is the response using the 100 µs single-cycle sine pulse. What

is important to notice is that both waveforms are nearly identical and both contain

the Fourier-Bessel components consistent with scattering from a sphere. In contrast

104
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to Fig. 3.4, Fig. 3.5 shows that the 10 cm diameter iron sphere is detected using the

100 µs one-cycle sine pulse. This is a striking result since the 100 µs pulse has a

spatial resolution of 0.16 m assuming a median sound speed of 1600 m/s. The target

sphere has a diameter of 0.1 so any backscattered response from the sphere will be

negligible.

The reason time-reversal is able to detect this sphere is rather simple. The time-

reversal operator uses the complete return sampled over the recording phase of the

operation with a sharp cutoff in the time domain. This generates high frequency

components, which enter the next probing signal and increase the resolution. In this

respect the time-reversal operator acts as a full-pass filter that changes the temporal

order of the received signal. The limiting factor of this procedure is the sampling rate

for the transceiver, which I have set to 1 MHz (1 µs) for all simulations studied here.

It has been shown in other work that the TRO converges to a waveform such that

the energy focuses to the acoustically hardest scatterer and does so by converging

to the Green’s function of the environment that has the shortest path between the

source and scatterer, [29], [30]. That is evidenced by the wave packet in Fig. 3.5

which remains in approximately the same temporal location with small oscillations

about a median position due to the iterative TRO itself, recall the discussion following

Eq. (2.100).

Since I have complete control over the environment in these simulations, I can

perform the iterative TRO on the the seabed with and without the target sphere

present. Taking advantage of this I define a signal-to-noise ratio (SNR) as

SNR =

∫
T
(S(t)−N(t))2dt

intTN2(t)dt
(4.1)

where S is the return with the sphere present, N is the return of the sediment only, T

is the time duration of the TRO window. This definition of the SNR states that the

backscatter from the sphere is the signal of interest while all other components of the

recorded signal are noise. Using the above definition for the SNR on the returns that

give Fig. 3.4 and Fig. 3.5 results in the plots of Fig. 3.12, where I calculate the SNR for
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each iteration of the TRO. The black line is the SNR from the 10 µs single-cycle sine

pulse and the red is from the 100 µs single-cycle sine pulse. Notice that both curves

converge to the same SNR values as the number of iterations of the TRO increases.

Consistent with the previous paragraph, this convergence is independent of the initial

pulse shape used and only depends on the strength of the reflected signal. At low

iteration numbers, there is a significant difference in the SNR from the two pulses

used, which is an artifact of the difference in the frequencies of the initial pulses.

Calculation of the temporal spectrum of the returns confirm the presence of a

sphere. The backscattered responses in Fig. 3.4 and Fig. 3.5 give spectra as in Fig. 3.8

where I have plotted the spectra of the first return, solid black line, and the fiftieth

return, solid red line, using the 100 µs single-cycle sine pulse normally incident on

the sphere. Recall the wave packets in Fig. 3.5 due to the sphere, they contribute

the peak at 82.2 kHz in the spectrum while the peak 28.4 kHz is due to the sediment

only. The peak at 82.2 kHz from the sphere using the iterative TRO for the 100 µs

single-cycle sine pulse is not the result of super-resolution through the inhomogeneous

sediment, but is due to the full-pass filtering property of the TRO. If this peak in

the spectra was removed after each iteration, the response from the sphere would be

diminished as is shown in Fig. 3.25 where I plot the SNR using Eq. (3.2) for the 10 µs

single-cycle cosine and sine pulses normally incident on the 10 cm diameter sphere.

In this figure, the low-pass filter used was a cosine fall-off starting at 4.9 kHz and

ending at 17.6 kHz removing all frequencies higher than 17.6 kHz. Super-resolution

may provide some small assistance to the initial detection of the sphere if the return

is small as in Fig. 3.6 where the black line is the first return from the sediment only

and the red line is the first return from the 10 cm diameter sphere using the 100

µs single-cycle sine pulse normally incident to the seafloor in both cases. The small

difference in the returns may be the result of super-resolution, but is unlikely since the

median size of an inhomogeneity in the sediment is on the order of the sphere. After

forty-nine iterations of the TRO, shown in Fig. 3.7, shows that the 10 cm diameter

iron sphere is detected by the red line and looks nothing like the return from the
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sediment without the sphere represented by the black line.

Another interesting behavior from the iterative TRO is shown in Fig. 3.39 where

I compare the tenth return from the 10 cm diameter sphere using a single-cycle 10

µs cosine pulse normally incident to the target while using two different sediment

types. The black line represents the return using the 80 % sand / 20% silt sediment

and the red line is from the Harbor Station sediment model. Since I used the same

geometry and time-reversal window for both series, the shifts in frequency between

the two peaks come from the properties of the sediments. This is substantiated by

Fig. 3.19 where I plot the tenth return from the single-cycle cosine pulse normally

incident to the 10 cm sphere for the 80 % sand / 20% silt sediment using the 99 µs

time-reversal window (TRW), the solid black line, and the 170 µs TRW, solid red

line. The TRW has little affect on the response from the sphere, as long as the sphere

response is in the window to some extent the iterative TRO will give consistent results

independent of the window start time and duration. The major contributing factor

to the frequency shifts is due to the acoustical properties of the sediment.

All the conclusions discussed leave two important questions. One is “What is the

time-reversal of a signal?”, and the other is “What good is it and what advantages

does it have over other signal processing techniques?” Time-reversal can be thought

of as a full-pass filter that acts along acoustical ray paths. This idea is consistent

with the evidence I present and with other experiments and theories, [19], [29], [12],

[17]. For backscattered signals, time-reversal provides a method to obtain target

information that may not be easily discernible for the background. Time-reversal

does not require any inversion or matched-field processing techniques thus eliminating

the need for environmental information or computationally complex calculations that

may be solved after the environment has changed. It also provides a method to use

sonar systems for purposes other than those for which they were originally designed.

Side-scan sonar systems that are traditionally used to generate high resolution images

of the seafloor can be used to locate buried targets with minor changes made to the

control software.
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What is the future of time-reversal in acoustics and this work in particular? Even

though time-reversal has been studied for several years in academia, it was thought of

as a “solution looking for a problem” or as an interesting experiment to demonstrate

the properties of systems and a physical demonstration of Green’s functions. Now it

can be thought of as a tool that can provide information about targets independent of

the structure or properties of the propagating environment as long as that propagating

environment is static relative to the time of signal propagation.
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Appendix A

Derivation of the Linear Sound Equation

A.1 Equations of Fluid Dynamics

The linear acoustic equation can be derived from the conservation of mass and

the equation of motion (Euler’s equation) for a fluid. Consider a fluid with density ρ

and velocity ~v, the conservation of mass states for a given fixed volume the amount

of fluid in equals the amount of fluid out. In mathematical formalism it is

∂ρ

∂t
+∇ · (ρ~v) = 0 (A.1)

where ρ~v is the mass current. Euler’s equation states that for a given volume of

fluid that is moving, the sum of all the forces is equal to the time rate change of

momentum of that fluid, which is Newton’s second law for a fluid. If we neglect all

body forces such as gravity and set pressure as the only surface force acting on the

volume ~fS = −pn̂, then the total force on the volume is given by

ρ
∂~v

∂t
+ ρ(~v · ∇)~v = −∇p. (A.2)

A.2 Linearization

There are several approaches to linearize Eqs. (A.1) and (A.2), a straightforward

approach [34] is to set the variables of density, velocity and pressure to a median
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value plus a perturbation

ρ = ρ0 + ρ ′ ~v = ~v0 + ~v ′ p = p0 + p ′. (A.3)

Substitution of the above into the conservation of mass, Eq. (A.1), gives

∂(ρ0 + ρ ′)

∂t
+∇ · ((ρ0 + ρ ′)(~v0 + ~v ′)) = 0 (A.4)

which reduces to
∂ρ ′

∂t
+ (∇ρ′) · ~v0 + ρ0(∇~v ′) = 0 (A.5)

where only the first order perturbations were retained. Euler’s equation, Eq. (A.2),

becomes

(ρ0 + ρ ′)
∂(~v0 + ~v ′)

∂t
+ (ρ0 + ρ ′)[(~v0 + ~v ′) · ∇](~v0 + ~v ′) = −∇(p = p0 + p ′). (A.6)

Retaining only terms that are first order in perturbation, the above reduces to

ρ0
∂~v ′

∂t
+ ρ0(~v0 · ∇)~v ′ = −∇p ′. (A.7)

A further simplification can be made by setting the average fluid velocity to zero.

To avoid confusion, the primes will be dropped from Eq. (A.5) and Eq. (A.7). This

leaves for Eq. (A.5)
∂ρ

∂t
+ ρ0(∇ · ~v) = 0 (A.8)

and Eq. (A.7)
∂~v

∂t
= − 1

ρ0

∇p. (A.9)

The curl of equation A.9 is

∇× ∂~v

∂t
= − 1

ρ0

∇×∇p (A.10)

which implies that the fluid is irrotational. As a result the velocity is the gradient of

a potential ~v = ∇ψ. Using this and defining the speed of sound from p = c2ρ, we can
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now derive the linear wave equation in terms of the velocity potential. This gives

~v = ∇ψ

p = −ρ0
∂ψ

∂t

∇2ψ − 1

c2
∂2ψ

∂t2
= 0

(A.11)

for the velocity, pressure and linear acoustic equation in terms of on scalar potential.

It should be noted that there is no need to single out the velocity of the field, the above

derivation would give the same equation if the displacement vector or pressure was

used [35],[4]. In the case of the displacement vector, ψ would be the displacement

potential and the linear acoustic equation would be written in terms of pressure.

Also, this equation is for free space, a source could be incorporated by setting the

homogeneous equation to a forcing term f(~r, t) associated with the source.



Appendix B

Solutions

B.1 Separation of Variables

The linear acoustic equation is a Sturm-Liouville equation where the solutions

are obtained by several methods. Separation of variables can be used to gain some

insight into the relationship between the spatial and temporal parts of the solution.

We can assume that the solution to Eq. (2.1) can be written as ψ(~r, t) = R(~r)T (t),

where R(~r) is the spatial component and T (t) is the temporal component. Using this

turns the linear acoustic equation to

∇2R(~r)

R(~r)
− 1

c2T (t)

d2T (t)

dt2
= 0. (B.1)

Setting
1

c2T (t)

d2T (t)

dt2
= −α2 (B.2)

we find the the temporal part of ψ(~r, t) is a harmonic function with the spatial part

satisfying the equation

∇2R(~r) + α2R(~r) = 0. (B.3)

Solutions to Eq. (B.2) are of the form

T (t) =
∞∑

α=−∞

Aαe(iαct) (B.4)
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Setting β = αc, we now have a Fourier series of the form

T (t) =
∞∑

β=−∞

Aβe
(iβt). (B.5)

So now we can find the coefficients Aβ as

Aβ =

∫ ∞

−∞
T (t)e−iβtdt. (B.6)

What makes this interesting is the fact that as long as the temporal and spatial

components are separable, the temporal solution to Eq. (2.1) can be expressed as a

Fourier series of the type (B.5) allowing us to write the general solution to Eq. (2.1)

as

ψ(~r, t) =
∞∑

α=−∞

AαR(~r)e(iαct). (B.7)

B.1.1 Approach to a Solution: Green’s Function

As stated earlier, Eq. (2.1) can have an external forcing term f(~r, t) included to

make it more general resulting in an equation of the form

∇2ψ − 1

c2
∂2ψ

∂t2
= −f(~r, t). (B.8)

Green’s theorem states that the solution to (B.8) can be obtained through a second

function G(~r, t;~r ′, t ′) which must satisfy the following conditions:

1. G(~r, t;~r ′, t ′) must be a solution to the following inhomogeneous linear acoustic

equation.

∇′2G(~r, t;~r ′, t ′)− 1

c2
∂2G(~r, t;~r ′, t ′)

∂t′2
= −4πδ(~r − ~r ′)δ(t− t ′) (B.9)

2. G(~r, t;~r ′, t ′) must satisfy the boundary condition

αn̂ · ∇′G(~r, t;~r ′, t ′)− βG(~r, t;~r ′, t ′) = 0 (B.10)

for ~r ′ on the surface S and for all time t ′ and α and β both constants.
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3. G(~r, t;~r ′, t ′) must have reciprocity between the primed and unprimed coordi-

nates.

G(~r, t;~r ′, t ′) ≡ G(~r ′, t ′;~r, t) (B.11)

With the above conditions on G(~r, t;~r ′, t ′) met, ψ(~r, t) can be solved using

ψ(~r, t) =

∫∫∫∫
V

G(~r, t;~r ′, t ′)f(~r ′, t ′)dV ′dt ′

+

∫∫∫
S

(ψ(~r ′, t ′)∇′G(~r, t;~r ′, t ′)) · d~S ′dt ′

−
∫∫∫

S

(G(~r, t;~r ′, t ′)∇′ψ(~r ′, t ′)) · d~S ′dt ′

(B.12)

where the boundary is defined by V and S. For free space with sound speed c, the

Green’s function is

G(~r, t;~r ′, t ′) =
δ(t− t ′ −R/c)

R
. (B.13)

where R = |~r−~r ′| is the distance between the source ~r ′ and the observation point ~r.

Consider a point source located at the point ~rO that sends an impulse at time tO.

The forcing term f(~r ′, t ′) is given by

f(~r ′, t ′) = Aδ(~r ′ − ~rO)δ(t ′ − tO). (B.14)

Setting the bounding surface to infinity and setting both the boundary condition

on ψ(~r ′, t ′) and its normal derivative to zero at infinity, we have using the Green’s

function Eq. (B.13) in Eq. (B.12)

ψ(~r, t) =

∫∫∫∫
V

G(~r, t;~r ′, t ′)f(~r ′, t ′)dV ′dt ′

=⇒
∫∫∫∫

V

δ(t− t ′ − |~r−~r ′|
c

)

|~r − ~r ′|
Aδ(~r ′ − ~rO)δ(t ′ − tO)dV ′dt ′.

(B.15)

The above integration give the final form of ψ(~r, t) as

ψ(~r, t) = A
δ(t− t ′ − |~r − ~rO|/c)

|~r − ~rO|
. (B.16)
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B.2 Interactions With Boundaries

In general, any acoustic wave will encounter a boundary. The simplest boundary

is smooth, homogeneous, and infinite such as in Fig. 2.1 separating two regions that

can be either fluid or solid. Two configurations discussed in this work are fluid-fluid

and fluid-solid.

B.2.1 Boundary Conditions

In the case of a fluid-fluid interface, the boundary conditions are:

1. Normal component of velocity is continuous across the boundary.

2. Pressure is continuous across the boundary.

While for the fluid-solid interface the conditions are:

1. Normal component of velocity is continuous across the boundary.

2. Normal component of stress tensor is continuous across the boundary. This is

nothing more than the pressure condition.

3. Tangential component of the stress tensor is zero at the boundary. The shear

forces go to zero since ideal fluids have no viscous effects.

B.2.2 Fluid-Solid Interface

The fluid-fluid model is used to describe sound propagation in the underwater

sound channel (USC). It is also used to describe sound propagation within the first

few meters of the ocean floor. The reason is that the ocean floor can be treated

as a fluid that the sediments that make up the ocean floor do not behave exactly

like a true solid. However, for completeness and to demonstrate why the fluid-fluid

approach is used in this study, we will solve the case of a fluid-solid interface. Solids

experience both stressses (forces acting normal to the surface, pressures) and strains
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(forces acting tangential to the surface, shear forces) [34]. As a result, there are

two modes of waves propagating in a solid with two different sound speeds. Ocean

sediments to exhibit this behavior, but the difference in the two sound speeds is on

the order of a magnitude (see Tab. B.1).

Since the solid will respond to small perturbations elastically, Hooke’s law applies

in three dimensions giving the strain tensor of the solid

Tij = −λδij∇ · ~u− µ

(
∂ui

∂xj

+
∂uj

∂xi

)
(B.17)

where ~u is the displacement vector. The negative signs are the result of Hooke’s law

in the solid stating that the solid will respond to the forces so as to return to its

original state. The constant λ is the Lamé constant and µ is the rigidity of the solid.

The Lamé constant can be thought of as a spring constant between a mass point in

the solid and its next nearest neighbors and µ can be thought of as related to the

torques about the mass point. Stress and strain disturbances propagate at different

speeds within the solid with the speed of propagation of these disturbances given by

c2L =
λ+ 2µ

ρ
c2T =

µ

ρ
(B.18)

where cL is the stress (longitudinal) sound speed and cT is the shear (transverse)

sound speed [40]. In nearly every solid cL is 3 to 10 times larger than cT and as a

result, the transverse waves tend to be ignored in many theories including the present

work. However, for completeness of this part, it is included here and ignored for the

time reversal theory.

The longitudinal wave is described by a scalar velocity potential, φ, while the

transverse wave needs to be described by a vector velocity potential ~ψ. So the velocity

of the wave is described by

~v(~r, t) = ∇φ(~r, t) +∇× ~ψ(~r, t). (B.19)

Mathematically, this is equivalent to the scalar potential describing the electric field

and the vector potential describing the magnetic field in electrodynamics [42].
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It is instructive to compare the results of the solid-fluid interface with the fluid-

fluid interface. To start, we will derive the reflected and transmitted potentials of a

point source located at ~rO in the fluid medium transmitting an impulse with velocity

given by ~v1 = ∇φ1. The second medium is a solid with a velocity given by ~v2 +∇φ2 +

∇× ~ψ2. To make this problem more tractable, we will set ~ψ2 = ψ2ŷ using Cartesian

coordinates. We set potential in the fluid medium as

φ1(~r, t) =

Aδ

(
t− tO −

√
(x−xO)2+(z−zO)2

c1

)
√

(x− xO)2 + (z − zO)2
+

ARδ

(
t− tO −

√
(x−xO)2+(z+zO)2

c1

)
√

(x− xO)2 + (z + zO)2

(B.20)

where c1 is the sound speed in the fluid and R is the reflection coefficient for the

interface. For the solid medium, we set the scalar and vector potentials as

φ2(~r, t) =

Bδ

(
t− tO −

√
(x−xL)2+(z−zL)2

cL

)
√

(x− xL)2 + (z − zL)2
(B.21)

ψ2(~r, t) =

Dδ

(
t− tO −

√
(x−xT )2+(z−zT )2

cT

)
√

(x− xT )2 + (z − zT )2
(B.22)

where the subscripts L and T correspond to longitudinal and transverse waves respec-

tively. Also notice that in the both Eqs. (B.21) and (B.22) that the location of the

image sources for the two separate modes are treated as if the waves originate from

two different locations which is a result of the two different sound speeds cL and cT .

Recall the boundary conditions for this problem:

• Normal component of velocity is continuous across the boundary.

• Normal component of stress tensor is continuous across the boundary.

This is nothing more than the pressure condition.

• Tangential component of the stress tensor is zero at the boundary. The

shear forces go to zero since ideal fluids have no viscous effects.
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We shall approach each in turn. First, consider causality at the surface of the bound-

ary. This enforces that no matter how far away the real and image sources are from

the boundary, the signal from all the sources must be at the boundary at one time.

This results in setting the terms in the delta functions of Eqs. (B.20), (B.21) and

(B.22) equal at the boundary giving us:√
(x− xL)2 + z2

L =

(
cL
c1

) √
(x− xO)2 + z2

O (B.23)

√
(x− xT )2 + z2

T =

(
cT
c1

) √
(x− xO)2 + z2

O (B.24)

for the location of the image sources in terms of the real source.

Causality and Geometry

To gain insight into the causality condition, consider Fig. B.1. The source point

labeled P is in the fluid medium with sound speed c1 while the image point labeled L

is in the solid medium with sound speed cL. The point L corresponds to the source of

the longitudinal waves seen by the observer at point ~r. We can treat the longitudinal

waves separate from the transverse waves since they are orthogonal modes in the

solid. This treatment also works with the transverse waves. At the point labeled X

the signals from P and L must arrive at the same time from the causality condition

stated above. The sine of the angles γO and γL are given by

sin γO =
x− xO√

(x− xO)2 + z2
O

sin γL =
x− xL√

(x− xL)2 + z2
L

. (B.25)

Multiplication and division of both by their respective sound speeds gives

sin γO =
x− xO

c1

c1√
(x− xO)2 + z2

O

sin γL =
x− xL

cL

cL√
(x− xL)2 + z2

L

. (B.26)

Now isolate the ratio that is constant due to causality gives

c1√
(x− xO)2 + z2

O

=
sin γO

(x− xO)/c1

cL√
(x− xL)2 + z2

L

=
sin γL

(x− xL)/cL
. (B.27)
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Setting the two terms in Eq. (B.27) gives us the Snell’s law relationship for each point

x on the surface
sin γO

(x− xO)/c1
=

sin γL

(x− xL)/cL
. (B.28)

Using cosines gives a similar result

cos γO

zO/c1
=

cos γL

zL/cL
. (B.29)

Both Eqs. (B.28) and (B.29) also hold for the transverse waves in the solid. Now

using the trigonometric identity cos2 γ + sin2 γ = 1, we find for γL in terms of γO

cos2 γL + sin2 γL = 1

⇒
(
c1zL

cLzO

)2

cos2 γO +

(
c1(x− xL)

cL(x− xO)

)2

sin2 γO = 1.
(B.30)

The only way the last line above can be true is if both the coefficients in front of the

cosine and sine terms equal 1. As a result, we get these useful relationships.

zL

cL
=
zO

c1

x− xL

cL
=
x− xO

c1
. (B.31)

Now we consider the normal component of velocity across the boundary. Using

Cartesian coordinates we have on the boundary z = 0

∂φ1

∂z
=
∂φ2

∂z
+
∂ψ2y

∂x
− ∂ψ2x

∂y
. (B.32)

Using the potentials given in Eq. (B.20) through Eq. (B.22), the above reduces to

∂φ1

∂z
=
∂φ2

∂z
+
∂ψ2

∂x
. (B.33)

The derivatives of each are

∂φ1

∂z
=

A(1−R)zO

((x− xO)2 + z2
O)3/2

, (B.34)

∂φ2

∂z
=

BzL

((x− xL)2 + z2
L)3/2

, (B.35)
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and
∂ψ2

∂x
=

−D(x− xT )

((x− xT )2 + z2
T )3/2

. (B.36)

Using the causality condition results in

A(1−R) cos γO

c21
=
B cos γL

c2L
− D sin γT

c2T
(B.37)

A(1−R) = B

(
c1
cL

)2

−D

(
c1
cT

)2

tan γO (B.38)

Where we used

cos γi =
zi√

(x− xi)2 + z2
i

(B.39)

and

sin γi =
x− xi√

(x− xi)2 + z2
i

(B.40)

for i equal to O, L, or T. And we used the relations (B.31) to go from Eq. (B.37) to

Eq. (B.38).

Next we shall consider the normal component of the stress tensor. In order to set

this condition, we need to take the partial derivative of the stress tensor with respect

to time which writes Eq. (B.17) as

∂Tij

∂t
= −λδij∇ · ~v − µ

(
∂vi

∂xj

+
∂vj

∂xi

)
. (B.41)

So the condition on normal Tij in Cartesian coordinates with normal along positive

z axis becomes

λ1∇2φ1 = λ2∇2φ2 + 2µ2
∂

∂z

(
∂φ2

∂z
+
∂ψ2y

∂x
− ∂ψ2x

∂y

)
. (B.42)

Notice that the only place where the vector potential exists is in the term multiplied by

µ2. The coefficients 1 and 2 correspond to the fluid and solid half spaces respectively.

For the specific potentials from Eqs. (B.20), (B.21), and (B.22); Eq. (B.42) reduces

to on the z = 0 plane

λ1∇2φ1 = λ2∇2φ2 + 2µ2
∂2φ2

∂z2
+ 2µ2

∂2ψ2

∂z∂x
. (B.43)
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The derivatives are

∇2φ1 =
A(1 + R)

((x− xO)2 + z2
O)3/2

(B.44)

∇2φ2 =
B

((x− xL)2 + z2
L)3/2

(B.45)

∂2φ2

∂z2
=

B(3 cos2 γL − 1)

((x− xL)2 + z2
L)3/2

(B.46)

∂2ψ2

∂z∂x
=

−3D cos γT sin γT

((x− xT )2 + z2
T )5/2

(B.47)

where we have used the definition of γi. Putting Eqs. (B.44) through (B.47) into

Eq. (B.43) gives

λ1(1 + R)A

c31
=
B[λ2 + 2µ2(3 cos2 γL − 1)]

c3L
− 3µ2D sin(2γT )

c3T

⇒ λ1(1 + R)A

c31
=
B[λ2 + 2µ2(3 cos2 γO − 1)]

c3L
− 3µ2D sin(2γO)

c3T

(B.48)

where we have used the causality condition and Eq. (B.31).

The continuity of the tangential component of the stress tensor, we have in the

solid in Cartesian coordinates is

∂vz

∂x
+
∂vx

∂z
= 0 (B.49)

where we have already set ∂~u
∂t

= ~v. Using the general geometry described in this

section, the above reduces to

2
∂2φ2

∂z∂x
+
∂2ψ2

∂x2
− ∂2ψ2

∂z2
= 0 (B.50)

Using the potentials in the solid given by Eqs. (B.21) and (B.22), the derivatives are:

∂2φ2

∂z∂z
=

−3B sin γL cos γL

((x− xL)2 + z2
L)3/2

(B.51)

∂2ψ2

∂x2
=

D[3 sin2 γT − 1]

((x− xT )2 + z2
T )3/2

(B.52)

∂2ψ2

∂z2
=

D[3 cos2 γT − 1]

((x− xT )2 + z2
T )3/2

(B.53)
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Combining Eqs. (B.51) through (B.53) into Eq. (B.50) gives

D = −B
(
cT
cL

)3
sin(2γL)

cos(2γT )

⇒ D = −B
(
cT
cL

)3

tan(2γO). (B.54)

Using Eq. (B.54) in Eq. (B.37) results in

A(1−R) cos γO

c21
=
B cos γL

c2L
−B

(
cT
cL

)3
sin(2γL)

cos(2γT )

sin γT

c2T
(B.55)

which reduces to

B =
A(1−R)c3L cos γO cos(2γT )

c21[cL cos(2γT ) cos γL + cT sin γT sin(2γL)]
(B.56)

⇒ B = A(1−R)

(
cL
c1

)2
cL cos(2γO)

cL + 2(cT − cL) sin2 γO

. (B.57)

This is the amplitude of the longitudinal field in the solid. Using Eq. (B.56) in

Eq. (B.54) gives

D = − A(1−R)c3T cos γO sin(2γL)

c21[cL cos(2γT ) cos γL + cT sin γT sin(2γL)]
(B.58)

or using Eq. (B.31) gives

D = −A(1−R)

(
cT
c1

)2
cT sin(2γO)

cL + 2(cT − cL) sin2 γO

. (B.59)

Rewriting Eqs. (B.56) and (B.58) gives

B = βc3L cos(2γT ) (B.60)

D = −βc3T sin(2γL) (B.61)

where

β =
A(1−R) cos γO

c21[cL cos(2γT ) cos γL + cT sin γT sin(2γL)]
. (B.62)

Or using Eq. (B.57) and Eq. (B.59) gives

B = βc3L cos(2γO) (B.63)

D = −βc3T sin(2γO) (B.64)
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where

β =
A(1−R)

c21[cL + 2(cT − cL) sin2 γO]
. (B.65)

Inserting Eqs. (B.63) and (B.64) into Eqs. (B.21) and (B.22) gives the total po-

tential in the solid as

φ2(~r, t) = βc1c
2
L cos(2γO)

δ

(
t− tO −

√
(x−xO)2+(z−zO)2

c1

)
√

(x− xO)2 + (z − zO)2
(B.66)

and

ψ2(~r, t) = −βc1c2T sin(2γO)

δ

(
t− tO −

√
(x−xO)2+(z−zO)2

c1

)
√

(x− xO)2 + (z − zO)2
(B.67)

using Eq. (B.65) for β.

Analysis of B and D

Using Eqs. (B.63) and (B.64), there are a few interesting behaviors. When the

angle γO is equal to zero,there are only longitudinal waves in the solid. As the angle of

incidence increases, the longitudinal waves decrease in amplitude and the transverse

waves increase in amplitude. This continues until the angle of incidence increases to

45◦ which at that point the waves in the solid are purely transverse.

The ratio D/B is given by

D

B
= −

(
cT
cL

)3

tan(2γO). (B.68)

To keep this ratio as close to zero as possible, a small angle is required which means

setting γO to near normal incidence, we can treat the solid as fluid-like. Note that

cT/cL is always smaller than 1, for most metals it is less than 0.75 and is less than 0.5

for most polymers. Consider a stainless steel sphere, cL for 347 stainless steel is 5790

m/s and cT is 3100 m/s [41] resulting in |D| ≤ |B|0.044 tan(2θS). Now consider a

more geologically realistic second medium such as clay, sand or silt, the sound speeds

are given in table B.1 [5] and [41]. Since (cT/cL)5 is much less than one, it will be

acceptable to ignore the shear waves in all calculations involving geologic sediments.
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Table B.1: The sound speeds below are given in m/s. It should be noted that cT
for both sand and silt are functions of depth as c z̃0.3 where z̃ is the depth and c is
the sound speed constant.

Material cL cT (cT/cL)5

clay 1500 < 100 1.32×10−6

sand (1m) 1650 110 1.32×10−6

silt (1m) 1575 80 3.38×10−7

Cast Iron 4994 2809 5.63×10−2

347 Stainless Steel 5790 3100 4.40×10−2

Rolled Copper 5010 2270 1.90×10−2

B.3 Figures
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Figure B.1: Justification of the use of a “Snell’s law” relation follows from the
boundary geometry. The point P is the source in medium 1 with sound speed c1 and
point L is the image in medium 2 with sound speed cL. Because of causality the
signal at X from both P and L must arrive at the same time. As a result the median
time of travel between X and either point must be the same when multiplied by the
appropriate sound speed.
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