
ABSTRACT

Hui, Jie. QoS Provisioning in Wi-Fi Networks: Capacity Modeling and Resource

Control. (Under the direction of Professor Michael Devetsikiotis).

The ubiquitous Wireless Fidelity (Wi-Fi) networks, and their increasing quality

of service (QoS) requirements for emerging applications, motivate extensive studies

of QoS provisioning in such networks. Two tasks, namely, capacity modeling and

resource control, are crucial in solving the problem:

A performance model is first needed to predict the network QoS metrics from the

network settings. We propose a new unified analytical model to study the saturation

throughput and delay performance of 802.11e Enhanced Distributed Coordination

Function (EDCA), which is easier to apply than the most current ones. In order to find

usable mathematical models for most cases where analytical models are not feasible,

we first advocate the application of metamodeling techniques to Wi-Fi performance

studies and formulate a general metamodeling framework for such purpose. The

results in three case studies support the validity of our methodology: our saturation

capacity metamodel for 802.11 Distributed Coordination Function (DCF) displays an

interesting log-linear relationship between capacity and number of users; our voice

over Wi-Fi admission capacity metamodel gives a much tighter bound than bounds

existing in the literature; and, finally, our throughput metamodel for a simple ad-hoc

network, for the first time, characterizes the cross-layer effects between MAC and

network layer schedulers. Our work, therefore, points out a new direction for future

performance studies of Wi-Fi networks.

Then, based on the performance models we derive, resource control schemes of

input parameters can be designed to achieve certain level of QoS outputs in some

cases. For example, we are able to design a Weighted Round Robin (WRR) scheduler

at the MAC layer to control the share of the radio resources, by applying our analytical

model to a special case of EDCA configuration. Furthermore, based on our fitted

metamodel for the capacity of voice over Wi-Fi, a more practical admission control

scheme is composed.
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Chapter 1

Introduction

Wi-Fi, referring to any type of IEEE 802.11 (‘a’, ‘b’, or ‘g’ or the future ones,

like ‘n’ or ‘s’) Wireless Local Area Network (WLAN)1, is becoming the standard net-

work in homes, hot spots in public areas, and in the enterprise. Its rapid deployment

has boosted an increasing demand for quality of service (QoS) in Wi-Fi networks.

This increase in demand motivates researchers to study how to provide QoS in Wi-

Fi, which differs from wired networks and licensed cellular networks, due to their

shared medium. The medium access control (MAC) schemes, Distributed Coordi-

nation Function (DCF) and Enhanced Distributed Channel Access (EDCA), which

regulate the rules to share the medium, thus, remain the core of this problem. Two

major steps are required to achieve QoS provisioning. The first one is to understand

how the network settings including DCF and EDCA MAC parameters affects the

QoS performances- to model or predict the QoS performance outputs in functions

of network inputs; then based on the performance model comes the second one - to

control the network settings in order to achieve the desired QoS metrics.

In this chapter, we first introduce the background knowledge of QoS in networks

including wired and wireless networks, then motivate the study of QoS provisioning

in IEEE 802.11 WLAN. Our contributions in this area through modeling and control

are briefly summarized before the outline of this dissertation.

1Thereafter, Wi-Fi and WLAN are used alternatively in this dissertation.



2

1.1 Background

To provide practical and efficient end-to-end QoS schemes is one of the biggest

challenges facing networking researchers and vendors. End-to-end QoS can not be

achieved even if a single network element (wired or wireless) does not provide QoS.

1.1.1 Definition of QoS

Quality of service (QoS) in the networking area refers to the capability of a network

to provide service differentiation and resource assurance to different streams according

to their requirements.

The following are some of the QoS parameters reflecting the service differentiation:

• Throughput: The Desired Bite Rate (bps) or bandwidth.

• End-to-end (ETE) Delay: Delay encountered by a packet, the sum of transmis-

sion delay, processing delays (includes router look-up), queueing delay etc.

• Delay Jitter: Variations in ETE delay.

• Packet Loss Rate: the percentage of lost packets due to channel error or queue

overflow.

The most successful network, the Internet, did not offer QoS in the beginning,

same as the legacy Wi-Fi networks. The Best Effort packet delivery is the only

service it could support, which means traffic is processed as quickly as possible, but

there is no guarantee as to timeliness or actual delivery.

QoS support, however, is essential for business and real-time applications such as

VoIP and on-line multimedia services. Before we can say we already have effectively

infinite bandwidth in the whole world, we still need QoS schemes to allocate limited

resources to multi-users based on the service level agreements they purchase.
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1.1.2 QoS in wired networks

In the Internet, there are a number of layer 3 routers in the backbone and also

some layer 2 switches in the edge LAN. To support end-to-end QoS, all of them need

to be QoS aware.

Layer 3 QoS: Two new architectures for resource allocation in layer 3, IntServ

and DiffServ, are proposed in the Internet over the last decade.

The IntServ architecture is based on per-flow resource reservation. That is to

reserve resource for every flow in every hop router like in telephone networks. A

signaling protocol, RSVP, sets up and maintains the reservation path in the control

plane. Then the data flow can go through the reserved path, which is classified

according to the reservation index, and is scheduled using the reserved bandwidth in

the data plane.

To avoid the high overhead of per-flow reservation in IntServ, DiffServ treats

packets on a per-class basis. DiffServ pushes complexity to the network edge who will

read per-flow information and classify, mark and police the traffic accordingly; and

simplifies and speeds the operation in the core routers who need only forward packets

differently according to up to 8 classes. The class information is carried in the DSCP

or IP precedence fields in the IP packet header.

Layer 2 QoS: Layer 2 bridges and switches, the main connecting components

of LANs, support class-based differentiated forwarding treatments at the MAC level.

The basic forwarding treatments of packets in switches are very similar to those in

DiffServ routers. The only difference is that switches could only see MAC frames and

use CoS to classify traffic.

1.1.3 QoS in Wireless Cellular Networks

In recent years, with the increasing popularity of wireless communications, many

researchers have made efforts to adapt wireline-inspired fair queueing algorithms to

wireless cellular systems facing the big challenges of location-dependent and bursty

channel errors. The common strategy of these schemes is to use compensation to

remedy the fairness guarantees. The authors in [1] proposed an unified wireless fair
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queueing architecture and mapped those wireless fair scheduling algorithms (IWFQ

[2], CIF-Q [3] and WFS [4]) to the unified architecture, then compared their prop-

erties. These scheduling algorithms differ in terms of the model they emulate, the

swapping and compensation model they use.

1.1.4 QoS in Wireless LAN

Similar to wired or wireless cellular networks, wireless stations or wireless Ac-

cess Points can support flow or class based priority treatment for applications which

compete for the same output wireless port. But the difference is that there is no

competition among output port resources in wired network or wireless cellular net-

work, since the resources are reserved for each port (wire bandwidth in wired network

and wireless frequency/time slot/code in wireless cellular network). However in IEEE

802.11 WLAN, all wireless stations and AP share the same wireless medium. There-

fore, the QoS in wireless medium access is further required in order to achieve the

end-to-end QoS.

QoS in AP and Wireless Station: AP is a layer 2 switch with WLAN at one

side and wired Ethernet LAN at the other side. The wireless output port in AP and

wireless station can provide the same class-based differentiated forwarding treatments

as the normal wired output port does. Or it can provide flow-based treatment since

the number of flows/users in a WLAN will not be too large.

QoS in Medium Access: In LAN, access to the link bandwidth is arbitrated by

the MAC protocol in a decentralized fashion. 802.4 (Token Bus), 802.5 (Token Ring)

support up to eight access priorities, but legacy 802.11 DCF MAC does not support

differentiated access. In order to provide end-to-end QoS, a QoS enhancement over

DCF, namely EDCA, is being standardized by the IEEE 802.11e group to add the

priority access features.

Protocol Description of DCF and EDCA

A legacy DCF wireless station performs CSMA/CA with the following BEB pro-

cedures [5] to access the wireless medium (Fig. 1.1):
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Figure 1.1: DCF Access Procedure.

Defer: A station with a pending packet has to wait for the channel to be idle for

the duration of a Different Inter Frame Space (DIFS) before the transmission in order

to give priority access to Polling or Control Messages. If the channel is sensed busy

during this period, the station has to wait for another idle DIFS after the channel

is idle again, then performs a random backoff. Backoff: Then, the station has to

wait for an additional random backoff time, which is uniformly distributed between 0

and CWmin slots. If the channel is sensed to be busy during this period, the station

suspends backoff until the channel is idle for DIFS again. Handshaking: If the

packet size is bigger than a threshold, a two-way handshaking procedure is performed

to further reduce the DATA collision probability, including a RTS and a CTS packet.

Data Transmission: If the above procedures are successful, the DATA packet will

be transmitted. Confirmation: Then, the station awaits an acknowledgement from

the destination for confirmation. Collision and Retransmission: If more than one

station begin their transmissions at the same time, a collision happens. The collided

station will defer, backoff, and then retransmit with a new contention window size

(CWnew=CWold ∗ 2 + 1) until CWmax is reached, then stays unchanged at CWmax. If

the retransmission attempts reach a retry limit, the packet will be discarded.

To provide differentiated channel access, EDCA [6] supports up to four access

categories (AC) in each QoS station, for packets belonging to eight user priorities

(UPs) or frame types. AC values of 0, 1, 2 and 3 represent best effort, background,

video and voice AC, respectively. The mapping between UP or frame type and AC

can be found in the draft [6].

Comparing to the equal access of DCF contentions by using the same DIFS,
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CWmin and CWmax, EDCA offers differentiated access through the EDCA parameter

set AIFS[AC], CWmin[AC], CWmax[AC] and TXOPlimit[AC] for a corresponding

AC (AC=0, 1, 2, 3). AIFS[AC] is determined by AIFS[AC] = SIFS+AIFSN [AC]∗
Tslot, where AIFSN [AC] is an integer indicating the number of slots after a SIFS

duration a station should defer before either invoking a backoff or starting a transmis-

sion. The minimum value for AIFSN is 2 for backoff entities of non-AP stations and

1 for back entities of QoS access points (QAP). Transmission opportunity (TXOP) is

a new scheme to improve the efficiency of the protocol. A backoff entity can transmit

multiple packets within one TXOP, of which the maximum length is TXOPlimit[AC].

1.1.5 Packet Scheduling in QoS Schemes

Packet schedulers act in a key role in order to allocate the limited resources to

competing flows/classes/stations with priorities in all of the QoS aspects above.

There are basically two kinds of scheduling mechanisms: Priority-based Scheduling

(PQ) and Fair-share Scheduling (FS). The principle of PQ is to always serve the higher

priority queue before the lower priority queue. The FS is trying to emulate the ideal

Generalized Processor Sharing (GPS) in real packet-switched networks. Numerous

fair queueing and scheduling algorithms have been proposed and analyzed. One

category is to serve the queues in a round-robin fashion using frames or cycles, such

as RR, WRR and DRR. The other category is to assign a service deadline (or time-

stamp, or virtual finishing time) for each packet of different connection and serve

them in the increased order of this deadline, such as WFQ, WFQ2, and SCFQ, etc.

The main difference between various algorithms is the way to compute the virtual

time.

Packet schedulers (PS) with the above scheduling algorithms are used to allocate

resources in different places in the network. Routers use PS in layer 3 to allocate

bandwidth of output port to different incoming flows. Switches use PS in layer 2 to

do the same thing. Random Medium Access Control (MAC) Protocols use virtual

schedulers controlled by the access algorithms to allocate shared medium bandwidth

to the access entities.



7

1.2 Motivation: QoS Provisioning

As we conclude from the above section, QoS is akin to sharing limited resources,

with priorities between competing parties. To share the same output port bandwidth,

either wired or wireless, packet schedulers/controllers can be used to allocate resource

either at network layer or MAC layer, either based on per-flow or per-class separation.

Among different output ports, there is no competition in wired or wireless cellular

networks, since each output port is associated with an individual wire or wireless

channel (frequency/time slot/code). However, in unlicensed 802.11 WLAN, no spe-

cific wireless resource is reserved for each port. All wireless stations compete for the

same shared wireless medium. Therefore, how to share this scarce wireless bandwidth

with priorities and how to restrict the number of competing parties are crucial issues

in order to provide QoS.

The legacy 802.11 WLAN does not offer QoS access because its MAC function,

DCF, treats all stations with the same access parameters. With the increasing demand

of QoS in WLAN and its rapid deployment, a QoS enhanced MAC function over

legacy DCF, so called EDCA, is being standardized by a IEEE 802.11e working

group. EDCA differentiates the service among stations/applications by allocating

different access parameters, such as contention window (CW) size or arbitrary inter

frame space (AIFS). Therefore, how to provide the desirable QoS performance by

adjusting or controlling those access parameters in a WLAN is a big problem facing

network researchers, also the topic of our research and this dissertation.

Another urgent problem for VoIP applications over Wi-Fi networks is a good call

admission control scheme (CAC) which determines when to accept or deny a call

request in order to guarantee QoS level for existing users and the will-be admitted

call. An accurate estimation of the VoIP capacity in a Wi-Fi network, i.e., the

maximum number of VoIP calls can be supported, therefore is the major component

of the answer, which also corresponds to a part of our research effort.
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1.3 Contributions: Capacity Modeling and Resource

Control

Both of our objectives, a scheduler of controlling EDCA access to provide pred-

icable QoS performance and a CAC to support acceptable QoS for VoIP, require

estimation of Wi-Fi capacities, under different settings. Our major contributions in

this dissertation are done in capacity estimation (or capacity modeling) and can be

categorized into: analytical modeling, simulation modeling and metamodeling. The

control schemes to achieve the QoS provisioning goals are then rooted in the corre-

sponding models naturally.

1.3.1 Methodology

A Wi-Fi network can be viewed as a generic system. The first step in studying

a system is to define a vector of controllable variables (inputs) X = {x1, x2, ..., xm}
and a vector of responses (outputs) Y = {y1, y2, ..., yn}, where m and n are the sizes

of inputs and output respectively. Here for QoS provisioning problems, inputs to a

Wi-Fi network can be DCF and EDCA access parameters and number of admitted

users, etc. And the outputs can be QoS throughput and delay performance of the

Wi-Fi network.

The objective of the performance modeling, therefore, is to find the relationship

between input X and output Y , Y = F (X), or in other words, to construct the

response surfaces 2 of yi = fi(x1, x2, ..., xm), where i=1,2,...,n.

The form of the true response function F (·) = {f1(·), f2(·), ..., fn(·)} of the system

is unknown and perhaps very complicated, hence we must approximate it. The way

to approach this approximation can either be based on measurements or modeling.

Measurements of the real system although are perhaps accurate data, only offer lim-

2If there are two inputs in a system X = {x1, x2}, we may visualize the values of one response
variable yi as a surface lying above the (x1, x2) plane. It is this graphical perspective of the problem
environment that has led to the term response surface [7]. Even if the ‘surface’ is not a true graphical
two-dimensional surface when the number of inputs is not two (m! = 2), the term response surface
is still used to represent generally the collection of response values.
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ited sample points over the response surfaces due to the computation or sampling

costs inherent in the experiments. Therefore, abstract models of the real system need

to be built in order to exhaustively explore the response surfaces and obtain predic-

tions and formulate strategies. Fig.1.2 shows different ways in which a system might

be studied.

System


Measurements


Y=F(X)


Model


Analytical


Model


Simulation


Model

Metamodel


Ya=A(X)
 Ys=S(X)
 Ym=M(X)


Figure 1.2: Ways to Study a System.

Types of Models

In general, we can build three types of models to abstract a system.

• Analytical model: When the behavior of the system is easy to analyze, an ana-

lytical model is a good way to characterize the rules regulating the system. The

responses from the analytical model for inputs of X are Ya with an approxima-

tion error εa,

Ya = A(X) = Y + εa.

An analytical model A(·) can be as simple as s = vt in the example of a car

system which asks about the distance of a car traverses during a period of time t

with speed of v, and can sometimes be non-explicit and extraordinarily complex,

requiring vast computing resources for finding solutions.

• Simulation model : For some complex systems, analytical models may not be

possible to find or too complex to solve, therefore simulation models are used
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instead to capture the system behavior. The responses from the simulation

model for inputs of X are Ys with an approximation error εs,

Ys = S(X) = Y + εs

An advantage of the simulation model over the analytical model is that it can

simulate the system dynamics in great detail, thus providing a closer approxi-

mation to the system without the frequent need of assumptions required in the

analytical model for facilitating the analysis. Quite often, simulation models

also act as tools for validating the analytical models.

• Metamodel: An explicit closed-form response function is most wanted to explore

the whole response surface and develop optimizing strategies. A simulation

model S(·) is simply not such a function, since it is just a mechanism that turns

input parameters into output performance measures. If the analytical model

A(·) of a system is not available or can not offer such a closed-form function,

people turn to another modeling method, metamodeling, to find the solution.

A “metamodel” is defined as a mathematical closed-form model of the simula-

tion model, or a ‘model of the model’ in [8]. The responses from the metamodel

for inputs of X is Ym with approximation error εm,

Ym = M(X) = Y + εm

1.3.2 Contributions

In order to achieve QoS provisioning objectives in Wi-Fi networks, we make the

following three contributions through the modeling methodology illustrated above

and control schemes based on them:

Analytical Modeling of EDCA in Single-hop WLAN

The increasing QoS requirements for rapid deployed IEEE 802.11 WLAN net-

works motivate extensive performance evaluations of the upcoming 802.11e QoS-aware

EDCA. Most of the analytical studies up-to-date have been based on one of the three
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major performance models in legacy DCF analysis, requiring a large degree of com-

plexity in solving multi-dimensional Markov chains.

Here, we expose the common guiding principle behind these three seemingly dif-

ferent models. Subsequently, by abstracting, unifying and extending this common

principle, we propose a new unified performance model and analysis method to study

the saturation throughput and delay performance of EDCA, under the assumption of

finite number of stations and ideal channel conditions in a single-hop WLAN. This

unified model combines the strengths of all three models, and thus is easy to un-

derstand and apply; on the other hand, it helps increase the understanding of the

existing performance analysis.

Despite its appealing simplicity, our unified model and analysis are validated very

well by simulation results. And ultimately, by means of the proposed model, we are

able to precisely evaluate the differentiation effects of EDCA parameters on WLAN

performance in very broad settings, a feature which is essential for network design.

Centralized Control in Single-hop WLAN

An appropriate transfer function derived from modeling serves as the foundation

for our control scheme. In a cooperative infrastructure WLAN, AP can control access

priorities of stations through control messages. Therefore, we design a centralized

priority controller in AP with the control function coming from the reverse function

of the analytical model derived in our first contribution for a special configuration of

EDCA.

Metamodeling Framework and Case Studies

Some of the easier performance problems of Wi-Fi networks can be solved by ana-

lytical modeling methods, but most of the complicated ones, involving too many fac-

tors from multiple layers, can only be answered through validated simulation models.

However, an explicit mathematic model is always the most effective way to represent

the system behavior and the most convenient basis for performance optimization.

Here, we first advocate the application of metamodeling techniques to performance
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studies of Wi-Fi networks, in order to find usable, if approximate, closed-form math-

ematical models. Subsequently, we formulate a general metamodeling framework for

Wi-Fi networks.

Our results in three relevant case studies, after applying this framework, support

the validity of our metamodeling methodology: our capacity metamodel for 802.11

Distributed Coordination Function (DCF) is validated by a well-known analytical

model and displays an interesting log-linear relationship between capacity and number

of users; our voice over Wi-Fi admission capacity metamodel gives a much tighter

bound than bounds existing in the literature and composes a more practical admission

control scheme; and, finally, our throughput metamodel for a simple ad-hoc network,

for the first time, characterizes and quantifies the cross-layer effects between EDCA

MAC layer and network layer through significant interactions in the metamodel. Our

work, therefore, points out a new direction for future performance studies of Wi-Fi

networks.

1.4 Outline

In the rest of the dissertation, these three accomplishments are presented in detail

before summary and brief outline of future work.

Chapter 2 describes an analytical model of differentiated MAC access (802.11e

EDCA) in a single-hop network. Based on a special case of this model, a centralized

scheduler is introduced in Chapter 3 for single-hop cooperative WLANs. Chapter 4

advocates the application of metamodeling methodology and presents a metamodeling

framework for Wi-Fi performance studies; three subcases based on this framework

leverage and support the validity of our methodology. Finally, Chapter 5 summarizes

this dissertation.
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Chapter 2

Analytical Modeling of EDCA in

Single-hop WLAN

2.1 Introduction

Throughput and delay analysis of contention-based random multiple access tech-

niques, especially Carrier Sense Multiple Access (CSMA) and its variations, has long

been a research focus in packet networks since 1970s. Accompanying the standardiza-

tion and rapid deployment of IEEE 802.11 WLANs in 1990s, the performance analysis

of its contention-based DCF MAC access function [5], a CSMA with collision avoid-

ance (CSMA/CA) scheme with slotted binary exponential backoff (BEB), has been

studied extensively by analytical or numerical means in recent years. Among those

analytical studies, three major performance models have been proposed in parallel, in

order to analyze the saturation throughput/capacity performance: Assuming a con-

stant collision probability for each station, Bianchi [9, 10] proposed a Markov Chain

to approximately model the behavior of CSMS/CA/BEB DCF, found the equilib-

rium packet transmission probability in a generic slot time by solving the Markov

Chain, and finally obtained the saturation throughput by applying regenerative anal-

ysis to a generic slot time; Cal̀ı [11, 12] analyzed a p-persistent variant of DCF, with

persistence factor p derived from the contention window (CW) in DCF, then found
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the capacity similarly using renewal theory; Tay [13] used instead an average value

mathematical model, in order to calculate the packet collision probability, and solved

the maximum throughput in terms of collision probability. A variation of Bianchi’s

model was proposed by Wu in [14] for the further consideration of retry limits.

Driven by the rapid growth of WLAN traffic volume and the different needs of

applications, the IEEE 802.11 Task Group E has been working for several years to

enhance the current best effort 802.11 MAC to support a QoS-aware WLAN. EDCA,

one of the main and mandatory schemes in 802.11e [6], parameterizes DCF CSMA/CA

scheme with prioritized Exponential Backoff (EB) to achieve differentiated QoS. In

the recent years, the performance of EDCA has been explored by means of not only

simulation [15, 16, 17, 18, 19, 20, 21, 22], and [23], but also analytical evaluations

[24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], and [23]. Most of the EDCA analytical studies

are based on the modifications of DCF analysis mentioned above: [23] and [27] extends

and parameterizes Cal̀ı’s p-persistent DCF to accommodate different classes; with the

exception [26], the others all modify or extend Bianchi’s Markov Chain model [10]

to accommodate the differentiation of Arbitration Inter Frame Space (AIFS) and/or

CW. [24, 28, 31, 32] analyze the differentiation effects of only CW, while in the others,

the differentiation effects of both AIFS and CW are considered. [30] and [29] varies

transition rates on top of the original Markov Chains, while [25] and [34] enlarge the

original bi-dimensional Markov Chain to tri-dimensional, and [33] enlarges it even to

multi-dimensional. Other than multi-dimensional Markov chains, [26] provides a new

rigorous analytical approach to model AIFS-based priority mechanisms but also with

the weakness of high complexity.

To achieve more successful embedding of QoS-aware MAC in network schemes,

such as call admission control and scheduling schemes, a performance model/analysis

needs to be easier to understand and apply. The EDCA analysis mentioned above,

which can evaluate differentiation effects of all EDCA parameters, all require high

complexity.

Motivated by this need to simplify and to unify, we re-examine thoroughly the

foundations of these EDCA analyses, including Bianchi’s seminal Markov model,

Cal̀ı’s p-persistent CSMA model and Tay’s average value model for DCF analysis.



15

We establish and expose a common guiding principle behind these seemingly differ-

ent models: all of them assume saturation traffic conditions and homogeneous slots

accessed with the same probability. The probability can be either the constant trans-

mission probability (Cal̀ı) or constant collision probability (Bianchi and Tay); and

they can be converted to each other. For example, the persistence factor p in Cal̀ı’s

model derived from CW using an iterative algorithm, actually, is the transmission

probability calculated from Bianchi’s Markov Chain model, and also can be converted

from the collision probability in Tay’s model which was solved by average value anal-

ysis. In other words, both Bianchi’s and Tay’s model imply a constant transmission

probability, which agrees with the constant transmission probability resulting from a

geometrically distributed backoff interval in Cal̀ı’s model. This homogeneity, in turn,

guarantees the application of regenerative analysis.

The differences among these methods consist of rather technical side issues, con-

cerning diverse naming for transmission probability, different methods of finding the

probabilities, and varied choices of renewal cycles. For instance, the renewal cycle in

Cal̀ı’s model was explicitly marked to be the time between two adjacent successful

transmissions; implicitly, Bianchi picked a generic slot and Tay chose time between

two transmissions to be their renewal cycles. But in the common assumption of slot

homogeneity, these different renewal cycles are all valid and also can be transformed

to each other.

Keeping these commonalities in mind, in this chapter we borrow strengths from

these three models and compose a new unified performance model for EDCA analysis,

without involving large complexity. We still use renewal theory to formulate the

throughput performance, but assume constant packet transmission probabilities for

different stations in different periods of time to account for differentiation effects of

both AIFS and CWmin/CWmax in EDCA. The secondary assumption is that each

packet transmission probability only depends on a unique collision probability. These

transmission probabilities consist of a two dimensional persistence factor matrix,

resulting in a p-persistent like CSMA/CA performance model. We denote this set

of transmission probabilities by matrix P, and thus name the unified model as the

generalized P-persistent CSMA/CA model (called in the sequel P-persistent,
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for short). In other words, we adopt a p-persistent like system in which persistence

factors are time-dependent, while all the other pervious models used static persistence

factors.

In order to solve for those transmission probabilities or the persistence factors

in matrix P, we provide extensions to both Bianchi’s Markov Chain analysis and

Tay’s mean value analysis. This unified model, on one hand, reduces the complexity

of Markov chains and is easy to apply; on the other hand, it increases the under-

standing of several efforts in the past on saturation throughput analysis of 802.11

MAC and allows better understanding the system behavior by exploiting the time-

dependent persistence factors. Finally, the accuracy of the model and the analysis is

well validated by simulation results.

The remainder of this chapter is organized as follows: First, we briefly review DCF

and EDCA mechanisms in Section 1.1.4. Second, in Section 2.2, we propose our uni-

fied performance model, a P-persistent CSMA/CA, for EDCA. How to derive P, the

key factor of the model, is illustrated in Section 2.2.3. Applying regenerative analysis

to this model with knowledge of P, we calculate the saturation throughput perfor-

mance and delay performance of 802.11e EDCA separately in Section 2.3 and Section

2.4, in the assumption of finite number of stations and ideal channel conditions in a

single-hop WLAN. We then establish the accuracy of this model by simulation results

and study the differentiation effects of EDCA parameters in Section 2.6. Finally, in

Section 2.7, we present our conclusions and describe our future directions.

2.2 Unified Performance Model

2.2.1 Assumptions and Configurations

Assumptions

According to the latest draft of the 802.11e standard, we make the following

assumptions about the EDCA random access system which is going to be analyzed

in the following section:
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• Finite number of stations contend in a single-hop network;

• Each station has one access entity which belongs to one of the four ACs, and

the number of stations deploying a AC is N [AC];

• Ideal channel conditions: Propagation delay is zero, there is no channel error,

no hidden node problem and no capture effects;

• Synchronized and slotted system: The time immediately following a busy medium

and an idle AIFS[AC] is slotted and a station is allowed only to transmit at the

beginning of each slot time (Tslot). Here we assume the slot boundaries in all sta-

tions are synchronized. This assumption together with ideal channel conditions

implies a synchronous start of frame transmissions.

• Saturation traffic: all stations always have constantly back-logged queues;

• Constant successful transmission time Ts slots, including constant payload trans-

mission time T slots 1, overhead and control message time:

T = PacketSize/DataRate/Tslot, and Ts = (PHY &MACheader + RTS + CTS +

ACK + 3 ∗ SIFS)/Tslot + T ;

• Constant collision time Tc = RTS/Tslot slots . In this chapter, we assume

RTS/CTS access mode. However, the analysis can be easily applied to the

basic access mechanism without RTS/CTS with the modification of Tc;

• TXOPlimit[AC]=0 for all ACs. We assume only one data frame is transmitted

per EDCA TXOP.

• Infinite retry limit for a frame after collision as assumed in [10]2.

1Not affecting the validity of the model, we assume a constant packet payload size in this chapter;
otherwise, T will be a function of the average payload size.

2The inclusion of a finite retry limit in the model is straightforward [14] and not discussed here
in this chapter.
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EDCA parameter sets

We also define the priority EDCA parameter set for a corresponding AC as

AIFS[AC], CWmin[AC] and CWmax[AC]. For the ease of mathematic expressions

in this chapter, we transform the standard EDCA parameters into the following:

di = AIFS[4−i]/Tslot, Wi = CWmin[4−i]+1, mi = log
CWmax[4−i]+1
CWmin[4−i]+1

2 , and ni = N [4−i].

In other words, there are n1 stations using voice access category (AC=3), ..., n4

stations using best effort access category (AC=0). di can be interpreted as the length

of AIFS[4− i] measured in slots. From the draft [6], we know AIFS[0] ≥ AIFS[1] ≥
AIFS[2] ≥ AIFS[3]. Therefore, d1 ≤ d2 ≤ d3 ≤ d4. Wi is just an even number larger

than the minimum contention window size by one; and mi is the maximum backoff

stage for AC = 4− i.

Backoff Range

There are different conventions regarding the inclusion of the bounds in the range

of the backoff slots. The uncertainties and changes in 802.11e drafts during the

standardization process also reflect this.

In this chapter, we assume the range to be [1, CW [AC]] inclusive. The reason

why the backoff counter starts from 1 is because of the backoff suspension during a

busy channel. For example, two backoff entities A and B contend for channel access.

Entity A initiates a frame exchange at a particular slot, then B will defer from channel

access upon detecting channel busy and suspend the decreasing of its backoff counter.

After transmission, Entity A will randomly pick up a new backoff slot from zero to

CW; and B will resume its backoff function upon detecting channel idle again. Before

A can transmit again, B has to count down at least one more slot. This means the

minimum backoff slot for A should not be zero. Therefore, a lower bound of 1 is a

must for the backoff range. Thesis [23] also explains why backoff counter should start

from one instead of zero.



19

2.2.2 Unified Performance Model

If several EDCA stations contend for a radio channel with the configurations as we

assumed above, we will observe on the time axis an alternate sequence of idle periods

(consisting of defer time and backoff slots) and transmission periods (successful or

unsuccessful). An idle period or a delay period (D) and a following transmission

period (TP ) compose a cycle. An example of channel state with two stations contend

for is shown in Fig. 2.1. To study the throughput and delay performance, like most

of the classical CSMA analysis did, we need to find out the average length of the

delay period, the transmission period and the useful message transmission time using

regenerative analysis.
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Figure 2.1: EDCA Channel States with Two stations (d1 = 2, d2 = 4).

However, the packet scheduling governed by EDCA BEB is not memoryless, since

it depends on the transmission history (e.g., how many retransmissions the head-of-

line packet has suffered). Therefore, those cycles are not strictly speaking regenerative

cycles, and the average length of the delay periods and transmission periods, which

depend on the backoff algorithm, can not be calculated easily.

Since we can not directly study the performance of EDCA system, we are going to

construct a performance model to approximate the behavior of EDCA backoff algo-

rithm, then study the performance of this model instead. If the model is appropriate

enough based on good approximations, we should find good consistency between real

system performances (from simulation) and model performances (from analysis).

Next, we construct such a performance model which abstracts, unifies and extends

the common guiding principle behind the three previous DCF performance models by
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assuming constant transmission probabilities varying according to different stations

and differing period of time. This key assumption, together with the memoryless

packet scheduling regulated by this unified model as follows, makes the renewal

analysis of throughput and delay performance possible.

• First, we divide the possible random delay period into 4 Backoff Sub-Periods

(“BSP”s, for short, in the following) as shown in Fig.2.2. The jth BSP is defined

as the period of time between AIFS[4− j] and AIFS[3− j] for j = 1, 2, 3; and

the forth BSP is defined as the period of time greater than AIFS[4]. Thus, the

length of BSPj under the unit of slots is ∆j = dj+1 − dj for j = 1, 2, 3.
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Figure 2.2: Random Delay Model.

• Second, we define the slot transmission probability pij as the transmission prob-

ability of a station belonging to AC(4− i) in a slot boundary within the BSPj,

i.e., when the channel is idle, all ni stations of AC(4− i) will transmit in a slot

within ∆j with probability pij, or postpone the transmission by one slot with

probability 1− pij, where i = 1, 2, 3, 4 and i = 1, 2, 3, 4.

• Third, there are two possibilities for transmission: If a station transmits and

succeeds, the other stations have to wait for Ts slots until the transmission

finishes, then repeat the same procedures. Otherwise, if more than one station

tries to grab the channel in the same slot, a collision happens. All stations

have to wait for Tc slots until the collision is detected, then repeat the above

contention procedures.

We call this model the generalized P-persistent CSMA/CA, because all the slot

transmission probabilities (pij) can actually be seen as persistence factors, assuming
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each station is using a classical p-persistent CSMA/CA. In this case, the persistence

factors vary in different time periods, also according to different access categories.

We insert all the persistence factors into a matrix, and name it the slot transmission

probability matrix P. As we can see, P is a 4× 4 upper triangular matrix since i and

j are both from 1 to 4 and stations of AC(4− i) cannot transmit in BSPj.

P =




p11 p12 p13 p14

0 p22 p23 p24

0 0 p33 p34

0 0 0 p44




In this model, the packet scheduling is memoryless because the transmission prob-

abilities are independent and there are always
4∑

i=1

ni packets waiting in the beginning

of a cycle (saturation traffic condition). Therefore, the time in which a transmission

ends are renewal points. Fig. 2.3 shows the renewal cycles of the channel states.

We denote by random variable D the duration of the random delay period3, and by

random variable TP the duration of a transmission period, which varies according to

the failure or the success of the transmission.
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Figure 2.3: Channel Model.

Using the classical renewal property, we can calculate the saturation throughput

S as the ratio of expected successful transmission time over the expected cycle length

as in Eq. (2.1), where U represents the successful payload transmission time during

a cycle. Furthermore, access delay can be directly derived from throughput using the

3The delay model is shown in Fig. 2.2.
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relationship AccessDelay = T/S.

S =
E(U)

E(D) + E(TP )
(2.1)

2.2.3 Calculation of P

In order to calculate the throughput and delay performance for the model, we

first need to find the key factors, namely the slot transmission probabilities in matrix

P from the EDCA backoff algorithm. We use the following three steps to calculate

them.

Represent Slot Collision Probabilities cij as a function of pij

A transmission happens with probability pij for a station of AC(4 − i) during a

slot in BSPj. It may succeed or collide. The slot collision probability cij is one minus

the probability that all other stations do not transmit, including the other (ni − 1)

stations of the same AC and all the other stations of different ACs.

cij = 1−

4∏
k=1

(1− pkj)nk

1− pij
, i, j = 1, 2, 3, 4. (2.2)

Represent Slot Transmission Probabilities pij as a function of cij

Besides the key assumption, we further assume cijs are constant and independent

of the backoff stage (secondary assumption) as assumed in other EB analyses [10, 35,

32, 13]. Thus, we can represent pij as a function of a unique cij using two methods

here: Mean Value Analysis extended from [13] and Markov Chain Analysis extended

from [10].

Mean Value Analysis

Given collision probabilities cij, the number of transmissions for a station with

AC = 4 − i to transmit a packet successfully in BSPj is geometrically distributed
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with parameter (1− cij). When the backoff stage is r, the contention window size is

updated to be 2r ∗Wi− 1 for r = 0, 1, . . . , mi. Since we only consider the contentions

in BSPj, which begins from the end of BSPj−1, the average backoff slots in BSPj is

2r∗Wi−
j−1P
k=1

∆k

2
, where

j−1∑
k=1

∆k represents the summation of all the past BSPs.

Subsequently, we can calculate the expectation of the number of backoff slots for

a station of AC = 4− i in BSPj conditioning on backoff stage r.

wij = (1− cij)
Wi−1−

j−1P
k=1

∆k

2

+ +cij(1− cij)
2∗Wi−1−

j−1P
k=1

∆k

2 + ...

+ (cij)mi(1− cij)
2mi∗Wi−1−

j−1P
k=1

∆k

2

+ (ci,j)mi+1
2mi∗Wi−1−

j−1P
k=1

∆k

2

= 1−cij−cij∗(2∗cij)
mi

1−2∗cij
∗ Wi

2 −
1+

j−1P
k=1

∆k

2 .

Therefore, pij, the slot transmission probability of a station with AC = 4 − i in

BSPj, is the reciprocal of the average number of backoff slots plus one as in Eq. (2.3),

where i = 1, ...j and j = 1, 2, 3, 4. The other stations with AC values less than 4− j

transmit in this ∆j period with probability of zero, implying pij = 0, when i > j.

pij = 1
wij+1 = 2

Wi−
j−1P
k=1

∆k+cij∗(Wi−1)∗ 1−(2∗cij)mi

1−2∗cij

. (2.3)

Markov Chain Analysis

For each station (AC = 4− i) in BSPj, we let rij(t) represent the stochastic pro-

cess of backoff stage (0, ..., mi), and let bij(t) be the stochastic process of backoff timer

(1, 2, ..., W
(mi)
i −1) at time t. We can model {rij(t),bij(t)} as a two-dimensional embed-

ded Markov Chain shown in Fig. 2.44. Similarly to the previous method, stations are

not using the original contention window sizes, but the equivalent smaller contention

4In total, there are 10 Markov chains for different is and js, since i = 1, ...j and j = 1, 2, 3, 4.
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Figure 2.4: Markov Chain of {rij(t),bij(t)} for a station (AC = 4− i) in BSPj.

window sizes W
(r)
i , subtracting all past BSPs from the CWs, W

(r)
i = 2r ∗Wi−

j−1∑
k=1

∆k,

for backoff stage r = 0, 1, . . . , mi.

In this Markov chain {rij(t),bij(t)} , the only non-null one-step transition proba-

bilities are5:




Pij{r, k|r, k + 1} = 1, r ∈ [0,mi],

k ∈ [1,W (r)
i − 2];

Pij{0, k|r, 1} = 1−cij

W
(0)
i −1

, r ∈ [0,mi],

k ∈ [1,W (r)
i − 1];

Pij{r, k|r − 1, 1} = cij

W
(r)
i −1

, r ∈ [1,mi],

k ∈ [1,W (r)
i − 1];

Pij{mi, k|mi, 1} = cij

W
(mi)
i −1

, k ∈ [1,W (mi)
i − 1]

5We adopt the short notation: Pij{k1, l1|k0, l0} = Pij{rij(t + 1) = k1, bij(t + 1) = l1|rij(t) =
k0, bij(t) = l0}.
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Whenever the backoff timer of a station is one, the station is going to transmit

in the next slot. As stated in [32], for the consideration of backoff suspension stage

and the consistency of Markovian states of different stations, we combine the backoff

timer state 0 with state 1, and combine states before and during suspension to be

a new state. Therefore, the slot transmission probability pij is just the summation

of the stationary state probabilities of states with backoff timer value of one. Let

bij(r, k) = limt−>∞P{rij(t) = r, bij(t) = k} be the stationary distribution of the

chain. Therefore, for i = 1, ..., j, j = 1, 2, 3, 4,

pij =
mi∑
r=1

bij(r, 1) = 2

Wi−
j−1P
k=1

∆k+cij∗(Wi−1)∗ 1−(2∗cij)mi

1−2∗cij

(2.4)

As we can see, the result is the same as what was derived using Mean Value

Analysis above. The derivation is similar to that in [10], thus not discussed here in

detail.

Solve cij and pij

From the last two steps, we know cij is a function of ni and p1j, ..., pjj, pij is a

function of cij,Wi and mi. Since ni, Wi and mi are all known, by solving the 2j

dimensional nonlinear equations composed of equations of c1j, ..., cjj from Eq. (2.2)

and equations of p1j, ..., pjj from Eq. (2.3) or (2.4), we can solve the values of p1j, p2j,

..., and pjj. Repeating this procedure for all the BSPs (j = 1, 2, 3, 4), we can obtain

the transmission probability matrix P.

2.3 Saturation Throughput Analysis

By knowing P, and then applying probabilistic analysis to the P-persistent CSMA/CA

performance model, we can calculate the average random delay E(D), the average

successful transmission time E(U) and the average transmission period E(TP ), then

obtain the generalized saturation throughput performance for 802.11 EDCA.
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2.3.1 Average Random Delay E(D)

Before formulating E(D), let us define two more transmission matrices besides P.

System Slot Transmission Probability Matrix Ptr: We already know pij

represents the transmission probability of a station (AC = 4−i) at a slot boundary

in BSPj. For the whole system, it is possible that no one transmits in a slot. Then,

we define the probability of the system to transmit at a slot boundary in BSPj as

system slot transmission probability ptrj. It is related to pij by ptrj = 1−
j∏

i=1

(1− pij)
ni .

Integrating all ptrj for j = 1, 2, 3, 4 into a matrix, we denote by Ptr the system slot

transmission probability matrix,

Ptr =
[

ptr1 ptr2 ptr3 ptr4

]
.

System BSP Transmission Probability Matrix P∆: A BSP consists of

many slots. In each slot, the system can be in transmission state with probability

ptrj. We define another matrix P∆ as the system BSP transmission probability ma-

trix, P∆ =
[

p∆1 p∆2 p∆3 p∆4

]
. The jth elements of the matrix - p∆j

represent

the probability that transmission begins in BSPj. Thus, it is the product of the

probability that no transmission happens in the past BSP s and the probability that

at least one transmission happens in BSPj:

p∆j = [1− (1− ptrj)
∆j ]

j−1∏

k=1

(1− ptrk)
∆k , j = 1, 2, 3

p∆4 =
3−1∏

k=1

(1− ptrk)
∆k .

Then, we can calculate E(D) using the following theorem.

Theorem: The average random delay can be computed by conditioning on the

BSP in which transmission begins as

E(D) = d1 + L× P T
∆ = d1 +

4∑

j=1

lj × p∆j ,
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where L is the conditional average backoff delay matrix L =
[

l1 l2 l3 l4

]
, and

lj represents the average backoff delay if transmission begins in BSPj, with lj = 1
ptrj

,

j = 1, 2, 3, 4.

Proof. The random delay D is a random variable. It can take any value from the set

[d1 +1,..., d2,..., d3,..., d4,...∞)6. For given system slot transmission probabilities, the

tail-distribution function of D can be expressed as:

Pr(k) = Pr[D ≥ k] =



(1− ptr1)k−d1−1 d1 + 1 ≤ k ≤ d2

(1− ptr2)k−d2−1(1− ptr1)∆1 d2 + 1 ≤ k ≤ d3

(1− ptr3)k−d3−1
2∏

j=1
(1− ptrj)∆j d3 + 1 ≤ k ≤ d4

(1− ptr4)k−d4−1
3∏

j=1
(1− ptrj)∆j d4 + 1 ≤ k < ∞

Then, the expected delay can be represented as a function of Pr(k) as:

E(D) =
∞∑

k=d1+1

k[Pr(k)− Pr(k + 1)] = d1 + 1 +
∞∑

k=d1+2

Pr(k) = d1 +
∞∑

k=d1+1

Pr(k)

By inserting the values of Pr(k), we obtain

E(D) = d1 +
d2∑

k=d1+1

(1− ptr1)
k−d1−1 +

d3∑

k=d2+1

(1− ptr2)
k−d2−1(1− ptr1)

∆1

+
d4∑

k=d3+1

(1− ptr3)
k−d3−1

2∏

j=1

(1− ptrj)
∆j

+
∞∑

k=d4+1

(1− ptr4)
k−d4−1

3∏

j=1

(1− ptrj)
∆j

= d1 +
1

ptr1

[1− (1− ptr1)
∆1 ] +

1
ptr2

[1− (1− ptr2)
∆2 ](1− ptr1)

∆1

+
1

ptr3

[1− (1− ptr3)
∆3 ]

2∏

j=1

(1− ptrj)
∆j +

1
ptr4

3∏

j=1

(1− ptrj)
∆j

= d1 +
4∑

j=1

lj × p∆j = d1 + L× P T
∆ .

6Since the minimum value of backoff slots is 1 as explained in Section 2.2.1, the minimum random
delay is d1 + 1.
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where lj, p∆j
for j = 1, 2, 3, 4 are defined as above.

2.3.2 Average Successful Transmission Period E(U)

A transmission can be successful or not. In order to calculate the average successful

transmission period E(U), we first need to find out the probability for a transmission

to succeed.

We define Ps as the successful transmission probability for the whole system.

That is the probability for a certain transmission in a cycle to be successful. It is the

summation of the successful transmission probabilities of each station Ps =
4∑

i=1

ni ∗ psi,

where, we denote by psi the probability that a transmission is successful for one of

the ni stations with AC equal to 4− i.

We introduce another quantity psucij, which represents the probability that the

transmission is successful for a station (AC = 4− i) in BSPj, given that there is at

least one transmission in BSPj. It is related to pij and ptrj by psucij =
pij

1−pij
× 1−ptrj

ptrj
.

Similarly as in the previous section, we can calculate psi conditioning on the BSP

in which the transmission begins: psi =
4∑

j=1

psucij ∗ p∆j
.

Thus, E(U), the expected time during a cycle that the channel is used without a

collision is the product of payload transmission time and the probability of a successful

transmission:

E(U) = Ps × T.

2.3.3 Mean Transmission Period E(TP )

By conditioning on the success of the transmission, we can calculate the mean

transmission period as

E(TP ) = PsTs + (1− Ps)Tc.
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2.3.4 Saturation Throughput

System Saturation Throughput S: Finally, we can obtain the total saturation

throughput for the system by plugging E(U), E(D) and E(TP ) into Eq. (2.1) as

S =
Ps × T

d1 +
4∑

j=1
lj ∗ p∆j + PsTs + (1− Ps)Tc

. (2.5)

Station Saturation Throughput Si: The saturation throughput for a station

of AC = 4− i is the total throughput multiplied by psi/Ps for j = 1, 2, . . . , N .

Si =
psi × T

d1 +
4∑

j=1
lj ∗ p∆j + PsTs + (1− Ps)Tc

. (2.6)

Saturation Throughput Ratio: The ni stations belonging to the same AC

(4− i) receive the same amount of saturation throughput. The saturation throughput

ratio among stations of different ACs can be expressed as the ratio of successful

transmission probabilities:

S1 : S2 : S3 : S4 = ps1 : ps2 : ps3 : ps4.

2.4 Access Delay Analysis

We define the access delay as the time duration from the packet becoming Head Of

Line (HOL) on the sender’s side, until it receives acknowledgment from the receiver.

The contributors to access delay include: 1) Medium Access Delay : The time between

the packet becoming HOL and it beginning transmission. It further includes the

backoff time, deferring periods and retransmission time due to collisions; 2) Successful

Transmission Delay: The transmission time of useful data and overhead.

The calculation of access delay is straightforward following the throughput anal-

ysis. For one of the ni stations with AC = 4− i (i = 1, 2, 3, 4),

AccDelayi =
Tcycle

psi

=
T

Si
. (2.7)
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The mean access delay is given by the packet transmission time T divided by the

throughput. Similarly, for the whole system, the mean access delay given by

AccDelay =
Tcycle

Ps
=

T

S
. (2.8)

2.5 Special Cases of EDCA

From the unified model, we can easily analyze the throughput of legacy 802.11

DCF and other special cases. The results totally agree with those in [10] and [32], in

which the analysis is carried out in different ways.

2.5.1 Legacy 802.11 DCF

In legacy 802.11 DCF, all stations use the same MAC parameters, including

AIFS = d ∗Tslot, CWmin, and CWmax, meaning there is only one AC, and one BSP .

If we assume there are total n stations and let W = CWmin + 1 and m = log
CWmax+1
CWmin+1

2 ,

in a slot within BSP , all n stations transmit with a same probability p, and succeed

with a same successful probability psuc:

P = [p] , Psuc = [psuc] .

By solving the nonlinear equations p = 2

W+c∗(W−1)∗ 1−(2∗c)m

1−2∗c

and c = 1 − (1− p)n−1,

p can be found; and thus psuc = p(1−p)n−1

1−(1−p)n .

From P, we can derive Ptr = [ptr], where ptr = 1 − (1 − p)n; P∆ = [p∆], where

p∆ = 1; and the average random delay E(D) = d + 1
ptr

.

Subsequently, each station receives the same saturation throughput. The normal-

ized system saturation throughput is

S = Ps×T
d+ 1

ptr
+PsTs+(1−Ps)Tc

= ptr×Ps×T
(1−ptr)∗1+ptrPs(Ts+d+1)+ptr(1−Ps)(Tc+d+1) .
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where Ps = n ∗ psuc = np(1−p)n−1

1−(1−p)n . This expression is the same as that in [32], which

was derived using the concept of generic slot introduced in [10].

2.5.2 EDCA (Same AIFS, Different CW)

In this special case, only the contention window sizes are used to differentiate the

services for stations of different ACs, while the AIFS = d∗Tslot are kept the same for

all stations, thus resulting in different Wi = CWmin[4−i]+1 and mi = log
CWmax[4−i]+1
CWmin[4−i]+1

2 .

We also assume there are ni stations for AC of 4 − i, where i = 1, 2, 3, 4. This

differentiation scheme is very commonly used practically.

Stations only compete in BSP4 with length of ∆4, since ∆1 = ∆2 = ∆3 = 0.

Similarly, only the 4th columns of matrixes P and Psuc are non-zero with different

values.

P =




0 0 0 p1

0 0 0 p2

0 0 0 p3

0 0 0 p4




, Psuc =




0 0 0 psuc1

0 0 0 psuc2

0 0 0 psuc3

0 0 0 psuc4




,

From P, we can derive Ptr = [0 0 0 ptr], where ptr = 1 −
4∏

i=1

(1− pi)
ni ; P∆ =

[0 0 0 p∆], where p∆ = 1. p1, p2, p3, p4 can be solved from the nonlinear Equa-

tions pi = 2

Wi+ci∗(Wi−1)∗ 1−(2∗ci)
mi

1−2∗ci

and ci = 1 −
4Q

k=1
(1−pk)

(1−pi)
. The successful probability

of a station of (AC = 4 − i) can be computed as psi = pi

1−pi
∗ 1−ptr

ptr
, and the total

Ps =
4∑

i=1

ni ∗ psi.

Similarly, the average random delay and the total throughput take the same value

as those in the general case. The saturation throughput ratio among stations of

different ACs is expressed as S1 : S2 : S − 3 : S4 = p1

1−p1
: p2

1−p2
: p3

1−p3
: p4

1−p4
, also the

same as derived in paper [32].
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2.6 Simulation Validation and Discussion

2.6.1 Simulation Model

We programmed a discrete-event simulation of a single-hop static WLAN. For

each station, a traffic generator feeds traffic packets into a MAC queue. The packet

stays in the MAC queue until it reaches HOL and wins the contention of the medium

access. After the packet departs from MAC queue, it is transmitted by a transmitter.

The receiver in the destination station accepts the packet and sends it to a sink after

collecting statistics.

Traffic Model

The traffic generator generates packets according to the distribution of packet

inter-arrival time and packet size. The distribution of packet inter-arrival time can

be any distribution in our simulator. Because we study the network under saturation

traffic in this chapter, we use constant packet inter-arrival time and set the traffic

rate larger than the capacity of the network in order to make it saturated. We use in

our simulation a constant payload size of 1500 bytes.

Radio Channel Model

As assumed in the analysis, we implement an ideal radio channel in the simulation:

that means that the propagation delay is zero, and there is no channel error and no

exposed or hidden node problem.

MAC Implementation

In order to minimize the number of events and speed up the simulation, we did

not simulate the behavior of backoff entity in each station individually. Instead, we

simulated the behavior of the 802.11e EDCA medium access as a virtual scheduler

7. For example, the scheduler observes how many packets are in HOL position, then

7An ideal channel condition and the synchronized system make this simulation method feasible.
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compares their AIFS[AC] + backoff values. It tells the stations with the smallest

value to transmit the packet, and tells the other station to hold the packet and

retransmit, then advances the simulation time by AIFS[AC]+backoff of the winner

station plus the packet transmission time. If only one station has the smallest delay

value, the packet transmission is a success and packet transmission time is Ts; if more

than one station has the same smallest delay value, collision happens and the packet

transmission time is Tc.

The parameters of 802.11 MAC and PHY deployed in the simulation as well the

comparative analysis are shown in Table 2.1.

Table 2.1: 802.11 MAC/PHY Simulation Parameters

Parameter Value Parameter Value
RTS 0.352 ms SIFS 0.01 ms
CTS 0.304 ms PHY/MAC header 0.328 ms
ACK 0.304 ms Tslot 0.02 ms

2.6.2 Simulation Results

Simulation Validation: Experiment 1, 2 and 3

QSTA1


QSTA2


QSTA3


QSTA4
 QSTA5


QSTA6


QAP


QSTA7


QSTA8


QSTA9


QSTA10


AC_VO


AC_VI


AC_BE


AC_BK


Figure 2.5: Simulation Scenario for Experiment 1.

The WLAN scenario we simulated in experiment 1, 2, 3 is shown in Fig. 2.5. In

this WLAN, ten stations send traffic to QAP. Each station deploys one backoff entity
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of one AC to contend for the channel. Among these ten wireless stations (WS), there

is one backoff entity per AC VO (WS1), two backoff entities per AC VI (WS2 and

WS3), three per AC BE (WS4, WS5 and WS6) and four per AC BK (WS7, WS8,

WS9 and WS10).

The EDCA parameter sets of the three experiments are (see Table 2.2):

• Experiment 1: default setting from draft [6];

• Experiment 2: vary AIFS from the default setting;

• Experiment 3: vary CW from the default setting.

Table 2.2: 802.11e EDCA Parameter Sets for Experiment 1, 2, 3

Experiment AC CWmin CWmax AIFSN
1 AC BK 31 1023 7
(default) AC BE 31 1023 3

AC VI 15 31 2
AC VO 7 15 2

2 AC BK 31 1023 7
AC BE 31 1023 5
AC VI 31 1023 3
AC VO 31 1023 2

3 AC BK 31 1023 2
AC BE 31 1023 2
AC VI 15 31 2
AC VO 7 15 2

In each experiment, we simulate ten scenarios for this WLAN: progressively from

scenario 1 to scenario 10, we add WS1 to WS10 to the system one at a time. Then,

we collect the aggregate saturation throughput and access delay for each AC and

the whole system, and compare the results from simulation with the results from our

analysis in Fig. 2.6, 2.7 and 2.8. Lines represent analytical results, while the markers

near the lines represent the corresponding simulation ones. We use subscript ’A’

to represent analysis and ’S’ to represent simulation in the legend. Each simulation

result is averaged from twenty simulation replications, and each simulation replication

lasts for 1000000 transmission cycles. The 95% confidence interval (CI) is shown as
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Figure 2.6: Experiment 1: Performance Using Default EDCA Parameter Set

a bar around each simulation result. For most of the results, the CIs are too small to

be visible except the last four for access delay of AC BK in each figure.

The agreement between analysis and simulation is remarkable. The only exception

is the access delay for AC BK in Fig. 2.6. The reason is that the throughput for a

station of AC BK is very small (of the order of 10−3) and the access delay for a AC BK

station is very large (of the order of 103). In our analysis, the access delay is inversely

proportional to the throughput. Therefore, a tiny difference between simulation and

analysis result in throughput will result in a huge gap between access delay simulation

and analysis results.

From experiment 1 (Fig. 2.6), we can also gain another insight: Although only one

AC VO station competes with two AC VI stations, three AC BE stations and four

AC BK stations, the maximum (saturation) throughput per AC VO pumped into

the network is still the largest, the maximum (saturation) throughput per AC BK

pumped into the network is the smallest and nearly zero. The reason is that the de-

fault EDCA parameter set differentiates among the four ACs very effectively through

the combined effects of AIFS, CWmin and CWmax. AC BK stations are almost

starved in this experiment due to the long AIFS and big CWmin and CWmax, com-

paring to the very small AIFS and CW of AC VO.

By varying the EDCA parameter set from the standard default values, we can
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Figure 2.7: Experiment 2: Performance by Varying Only AIFS

study the individual differentiation effects of AIFS and CW separately. In experiment

2, we keep CWmin and CWmax the same for all ACs, and just vary the AIFSN by two

units between ACs; in experiment 3, we keep AIFSN all the same, but vary CWmin

and CWmax. Fig. 2.7 and Fig. 2.8 show the results from these two experiments.

The agreement between simulation and analysis is still very good. Beside that, by

comparing these three figures (Fig. 2.6, 2.7 and 2.8), we can tell that the combined

effects surely are greater than each individual one. But among them, the relationship

is not simply additive. The difference between AC VO and AC VI is mainly due to

the non-overlapping CW ranges. However the starvation of AC BK is not due to each

individual but the combined effects of both AIFS and CW differentiation.

Differentiation Effects: Experiment 4, 5 and 6

Another important factor not considered in the above experiments is the num-

ber of stations per AC. Realizing the correlation among the differentiation effects of

all EDCA parameters, we believe that a formal sensitivity analysis over the whole

response surfaces will be ideal to carry out a thorough study of parameter effects.

However, such a study is beyond the scope of this chapter.

In the following, we perform three more experiments of specific settings and at-

tempt to gain more understanding about the differentiation effects of AIFS, CWmin
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Figure 2.8: Experiment 3: Performance by Varying Only CW

and make some further observations. To filter out the effect of the number of sta-

tions and CWmax, we fix the number of stations for each AC to be equal to 3 and

CWmax = (CWmin + 1)5 − 1. The EDCA parameter sets are (see Table 2.3):

• Experiment 4: Only differentiate AIFS but keep CWmin and CWmax equal to

31 and 1023 respectively. The AIFSN differences increase from 0 to 4.

• Experiment 5: Only differentiate CWmin and CWmax but keep the AIFS equal

to 2. The CWmin difference increases from 0 to 4.

• Experiment 6: Differentiate both AIFS and CWmin, CWmax by combining

experiments 1 and 2.

From the result comparison in Fig.2.9, we can clearly see that a larger difference in

AIFS or CW result in a larger difference in throughput and delay performance among

different ACs. Furthermore, for this specific base setting {AIFSN, CWmin, CWmax} =

{2, 31, 1023}, we can infer the following:

• AIFSN has a larger differentiation effect on the performance than CW for the

same variation from 1 to 4;

• The combined differentiation effects of AIFSN and CW are bigger than both

individual ones.
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Table 2.3: 802.11e EDCA Parameter Sets for Experiment 4, 5, 6

Exp AC CWmin AIFSN
4 AC VO 31 2, 2, 2, 2, 2

AC VI 31 2, 3, 4, 5, 6
AC BE 31 2, 4, 6, 8,10
AC BK 31 2, 5, 8,11,14

5 AC VO 31,31,31,31,31 2
AC VI 31,32,33,34,35 2
AC BE 31,33,35,37,39 2
AC BK 31,34,37,40,43 2

6 AC BK 31,31,31,31,31 2, 2, 2, 2, 2,
AC BE 31,32,33,34,35 2, 3, 4, 5, 6,
AC VI 31,33,35,37,39 2, 4, 6, 8,10
AC VO 31,34,37,40,43 2, 5, 8,11,14
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Figure 2.9: Experiment 4, 5, 6: Comparison of Differentiation Effects

• By keeping all other parameters unchanged, a larger AIFS or CW results in a

lower throughput and a longer access delay.

Special Case with very small CWmin: Experiment 7

For some special settings with very small CW values (like CWmin=1,2,3), the

CWmin variations can show dramatic effects in performance differentiations. Also, a

bigger CW may result in a higher throughput and a shorter access delay. The reason

is that a very small CW value causes a high collision probability, therefore, an increase

from the this small CW can help reduce the collision probability, thus resulting in a
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Figure 2.10: Experiment 7: Special Case of Very Small CWmin

better performance. Experiment 7 (see Table 2.4 ) explores such a special case. The

results in Fig. 2.10 support the above observations.

Table 2.4: 802.11e EDCA Parameter Sets for Experiment 7

Experiment AC CWmin CWmax AIFSN
7 AC BK 3,3,3,3,3 3,3,3,3,3 2

AC BE 3,4,5,6,7 3,4,5,6,7 2
AC VI 3,5,7,9,11 3,5,7,9,11 2
AC VO 3,6,9,12,14 3,6,9,12,14 2

From the above experiments and discussions, we surmise that the differentiation

effectiveness around different parameter settings can vary from or even contradict each

other. The number of stations, AIFS, CWmin and CWmax for each AC all affect

the throughput and delay performance, and they are also correlated with each other.

Therefore, as mentioned earlier, a formal sensitivity analysis has to be conducted to

complete a more thorough study of the parameter effectiveness. This will be left as

our future work.

Sensitivity with respect to number of stations: Experiment 8

To study how our model performs with the changing number of stations, we con-

duct experiment 8: the EDCA parameter set is as in experiment 1; the number of
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Figure 2.11: Experiment 8: Sensitivity with Respect to Number of stations

stations per AC increases from 1 to 10 (N(0) = N(1) = N(2) = N(3) = 1, 2, ..., 10).

From the saturation throughput results in Fig. 2.11, we observe that the predic-

tive capability of our model remains high even with increasing number of stations.

Furthermore, another effect is that the saturation throughput drops due to more

frequent collisions, as the number of stations increases (greater than 2 per AC).

Comparing to the previous performance evaluations about both AIFS-based and

CW-based differentiation approaches, and although we do not offer a rigorous sensi-

tivity analysis, our work does provide the evaluation of four ACs with the standard

802.11e EDCA parameter setting. Most previous work only evaluates a WLAN with

two or three classes. The good agreement between simulation and our analysis proves

the accuracy of our model, and provides a useful tool for network design and analysis.

2.7 Conclusions

EDCA is introduced in 802.11e for QoS improvements over legacy 802.11 DCF.

The understanding of how the EDCA parameters affect the performance of WLAN

is a crucial prerequisite for the design of any QoS scheme using EDCA.

Our main contributions in this chapter are three fold: First, we abstract and unify

a common guiding principle behind three major performance models, thus increasing

the understanding and applicability of these efforts. Second, we propose a unified
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performance model and analysis method for 802.11e EDCA by taking elements of all

three models, while maintaining their common principles. In our model, the mem-

ory effects of backoff counter and backoff stage are still accounted for by using a

bi-dimensional state Markov Chain as in [10] or mean value analysis as in [13]; in a

novel manner, in order to account for the effect of different AIFS values, we did not

introduce further dimension(s) to the state space as in [25, 28, 34, 33], but we used

multiple bi-dimensional chains or multiple average value analysis in separate back-

off subperiods under the main assumption of time-dependent p-persistence behavior.

This new model is easy to apply by reducing the complexity of Markov Chains and

offering an alternative mean value analysis method to compute persistence factors.

For another aspect, this model also allows better understanding of the system behav-

ior by exploiting the concept of Backoff Sub-Periods, and by using the persistence

factors matrix P. Third, simulation results validate our model and analysis, showing

that our model will be a helpful tool for 802.11e network designers.

All of the analyses and simulations in this chapter are performed with the as-

sumption of ideal channel conditions, saturation traffic and a single-hop network

environment. The study of throughput and delay performance of EDCA with a more

realistic wireless channel model, different traffic models, and even in multi-hop net-

works, are included in our future plans. Another area of research can be to find closed

form solutions for a simplified performance model and then perform a formal sensi-

tivity analysis of each parameter, finally providing a dynamic turning of parameters

according to the desired QoS level.
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Chapter 3

Centralized Control in Single-hop

WLAN

In a cooperative infrastructure mode WLAN, AP can control the sharing of

medium resource of stations by emulating a packet scheduler at MAC layer through

proper setting of EDCA parameters. In order to design such a scheduler, a inverse

transfer function is needed in order to calculate EDCA parameters from the desired

throughput allocation.

For the general case, this inverse function is difficult to find, But for a special

case of EDCA configuration (same AIFS, different CW), we show in this chapter that

an analytical reverse function can be found, and that ultimately, we can design a

WRR scheduler at MAC layer to control the share of the radio resource. Our results

show that the MAC WRR which was designed using our analytical model can achieve

larger utilization, bandwidth ratio as expected and smaller average delay than the

network layer model.

3.1 Related Work

For several years the IEEE 802.11 Task Group E has been working to enhance

the current best effort 802.11 MAC [5] to support QoS for different applications.
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EDCA, one of the main and mandatory schemes in 802.11e [6], parameterizes DCF

to achieve differentiated QoS. In the last two years, the performance of EDCA has

been explored by use of numerical evaluation [15, 16, 18]. Similar conclusions have

been drawn, specifically that smaller Contention Window (CW) or smaller Arbitration

Inter Frame Space (AIFS) will support a higher priority level, like a higher throughput

and a shorter delay.

By applying these backoff based differentiation methods, a few distributed MAC

layer schedulers have been proposed to emulate ideal centralized schedulers. Kanodia

et al. designed a distributed priority scheduler [36] to emulate Earliest Deadline First

(EDF) and Virtual Clock (VC); they also proposed Distributed Wireless Ordering

Protocol (DWOP) to emulate FIFO by mapping the priority tag to backoff window

size. Vaidya et al. proposed a Distributed Fair Scheduling (DFS)[37] to emulate

Self-Clocked Fair Queueing (SCFQ) by setting backoff interval inverse proportional

to the flow weights. They use simulation results to argue that the bandwidth alloca-

tion is proportional to the weights, something we will address in this chapter. Luo et

al. proposed new packet scheduling models [38] to approximate WFQ with Modified

WRR for a multihop wireless network, by assigning each backoff interval equal to a

flow degree. Their model ensures fairness while seeking to maximize spatial reuse.

Banchs et al. proposed Assured Rate MAC Extension (ARME) in [39] to provide

soft throughput guarantees in line with the Assured Rate PDB for DiffServ by chang-

ing the CW dynamically. Barry et al. designed a whole system of QoS schemes,

including differentiated backoff-based MAC access and radio channel monitoring al-

gorithms which will help make correct admission decisions. Qiao et al. [24] proposed

a priority-based fair medium access control (PMAC) protocol to achieve fairness and

maximization of utilization simultaneously by modifying the DCF backoff scheme,

which is also a part of 802.11e EDCA QoS schemes.
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3.2 Throughput analysis of a special case of 802.11e

EDCA

In this special case, only the contention window sizes are used to differentiate

the services for stations, while the AIFS are kept the same for all stations. This

differentiation scheme is very commonly used in practice.

All stations compete in the same BSP since they use the same AIFS, therefore,

we denote the transmission probability for station i as pi and collision probability as

ci. Different from Chapter 2, here in order to consider a general scenario, we assume

there are n stations (n can be larger than 4).

3.2.1 Multi-stations in Uplink

The scenario assumed in this section is that n stations are competing for a single

WLAN channel with the same DIFS but different contention window size CWmini.

By applying the methodology of performance model we developed in Chapter 2,

we can derive pi and ci as:

pi =
m∑

i=0

bi,1 =
2

Wi + pi(Wi − 1)
{

1−(2∗ci)mi

1−2∗ci

} (3.1)

ci = 1−

n∏
i=1

(1− pi)

(1− pi)
(3.2)

We then use numerical techniques to solve these 2n dimensional nonlinear equations.

The probability that at least one station transmits is

Ptr = 1−
n∏

i=1

(1− τi) (3.3)

The probability of successful transmission of each station Psi
and the probability
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of total successful transmission Pscan be calculated as:

Psi
=

pi

1− pi

n∏
i=1

(1− pi)

Ps =
n∑

i=1

psi
=

n∑
i=1

{
pi

1− pi

n∏
i=1

(1− pi)

}
(3.4)

Normalized system saturation throughput S can be computed as in equation (3.5).

We can then derive the allocated bandwidth ratio (saturation throughput ratio) as

in equation (3.6). Here Ts is calculated as same as in [10], but we consider the RTS

timeout in Tc = RTSTimeout + EIFS.

S =
n∑

i=1

Si = PsE[P ]
(1−Ptr)Tslot+Ps(Ts+Tslot)+(Ptr−Ps)(Tc+Tslot)

(3.5)

S1 : S2 : ... : Sn = PS1 : PS2 : ... : PSn

=
τ1

1− τ1

:
τ2

1− τ2

: ... :
τn

1− τn

(3.6)

3.2.2 Multi-flows in Downlink

The scenario assumed in this section is similar to that in the previous section

except that the competing stations are replaced by flows in a station. The slot trans-

mission probability pi remains as same as in the multi-station case, described by

equation (3.1). However, taking into account the priority access during virtual colli-

sion, the collision probability of flow i would be calculated differently as in equation

(3.7), and the successful transmission probability as in equation (3.8) and (3.9).

ci = 1−
i−1∏

k=1

(1− τk) (3.7)

Psi
= pi

i−1∏

k=1

(1− τk) (3.8)
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Ps =
n∑

i=1

psi
= Ptr (3.9)

Ps equals Ptr means that there will be no unsuccessful transmission since no real

collision occurs. Then, the normalized system throughput S and the allocated band-

width ratio can be expressed as followings:

S =
PsE[P ]

(1− Ptr)Tslot + Ps(Ts + Tslot)
(3.10)

S1 : S2 : ... : Sn = PS1 : PS2 : ... : PSn

= τ1 : (1− τ1)τ2 : ... : (1− τ1)...(1− τn−1)τn (3.11)

3.3 Design of a MAC Layer WRR Scheduler

As stated in [40], the reason that packet schedulers are implemented above the

MAC layer in LANs is simply because the IEEE LAN standards - 802.X MAC and

LLC do not provide the necessary mechanisms for a controlled bandwidth sharing.

However, from the section above, we know that 802.11E MAC does provide thus a

mechanism in WLAN. The total throughput and the throughput ratio can be changed

by varying the EDCA access parameters.

In this section, we will show how to design a MAC layer WRR packet scheduler

using an analytical method we derived above.

WRR: Weighted Round Robin is the simplest approximation of Generalized Pro-

cessor Sharing (GPS) [41] for packet based networks. Every flow has an integer weight

wi corresponding to the expected service share. Based on those weights, a server with

the total rate r pre-computes a service schedule (frame), which serves session i at a

rate of WiP
i

Wi
r.

MAC Layer WRR: To emulate a WRR in MAC layer, we can assign the EDCA
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parameters in the following way (Fig. 3.1):

AIFSj+1 = AIFSj = DIFS,

CWminj+1 > CWminj(j = 0, 1, 2, . . . , 7) (3.12)

Figure 3.1: EDCA configurations for a MAC WRR.

3.3.1 Design of a MAC WRR

Our new analysis model in Section 3.2 can very closely estimate the saturation

throughput performance for given specific station/flow contention window sizes. And

vice versa, contention window sizes can also be derived for given expected total

throughput and throughput ratio in multi-station and multi-flow cases in the fol-

lowing procedures.

Given Conditions: Normalized Throughput S; Bandwidth Ratio ratio = [r1, r2, ..., rn];

Persistence factors PF1, PF2, ..., PFn; MAC/PHY as in Table 2.1.

Uplink (Multi-stations)

From equation (3.5), we can represent Ps as a function of S and Ptr as:

Ps =
PtrTc + Tslot

(K/S − 1)Ts + Tc

(3.13)

where K is the maximum throughput K =
AveragePacketSize

DataRate

Ts
.
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Then, the slot transmission probability of station i can be derived from equation

(3.4) as:

pi =

ri
nP

i=1
ri

Ps

ri
nP

i=1
ri

Ps − Ptr + 1
(3.14)

pi, Ptr and Ps can be derived by solving the n+2 dimensional nonlinear equations

consisting of equation (3.13), (3.14) above and (3.3) for Ptr.

The collision probability of station i can be calculated as

ci = 1− 1− Ptr

1− pi

(3.15)

Finally, the contention window sizes CWi can be derived from equation (3.1)

inversely:

CWi = round

{
2
pi
− 1

1 + ci
1−(2∗ci)mi

1−2∗ci

}
(3.16)

Downlink (Multi-flows)

Recalling equation (3.10) about the normalized throughput and the maximum

throughput K above, we can calculate the transmission probability Ptr as:

Ptr =
Tslot × S

Ts × (K − S).
(3.17)

The successful transmission probability Psi
of flow i can be calculated from the

bandwidth ratio and Ptr using the relation
n∑

i=1

Psi
= Ptr as:

Psi
=

ri
n∑

i=1

ri

Ptr (3.18)

Thus, the slot transmission probability of flow i can be derived from equation

(3.8) as:

pi =
Psi

i−1∏
k=1

(1− τk)

(3.19)
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Then we can derive the collision probability of flow i easily by using equation

(3.7). The final calculation of the contention window sizes CWi would be same as

equation (3.16).

3.3.2 Validation via Simulation

In this section, a simple experiment is conducted to evaluate our analysis method.

For the given expected throughput and bandwidth ratio, first, we calculate the con-

tention window sizes using our theoretical analysis. Second, the contention window

CW is entered as input into a simulation to compute the throughput S and bandwidth

ratio numerically, and then compared with our expected values.

Figure 3.2 compares the expected saturation throughput of the whole system and

each station/flow with the simulation results in the multi-station and multi-flow cases

(Note: The confidence intervals are too small to be viewed in the graph). Table 3.1

shows the values. We conclude from the comparison that our method provides a

feasible way to design the MAC layer WRR.
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Figure 3.2: Design a MAC WRR: ideal versus designed saturation throughput.
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Table 3.1: Experiment Results: n=6

Analysis S = 0.7885
Input r = [1 0.5 0.25 0.125 0.0675 0.03375]
Analysis CW = [35 67 130 257 474 944] (MS)
Output CW = [47 86 166 325 595 1182] (MF)
Simulation CW = [35 67 130 257 474 944] (MS)
Input CW = [47 86 166 325 595 1182] (MF)

S = 0.78893±0.00006 (MS)
Simulation r = [1 0.5011 0.2458 0.1231 0.0617 0.0303]
Output S = 0.78875±0.00003 (MF)

r = [1 0.5006 0.2482 0.1237 0.0621 0.0310]

3.3.3 Advantages of MAC Layer WRR

Before the development of the 802.11e protocol, WRR schedulers would be imple-

mented in the network layer of Access Point (AP) of a WLAN. For uplink scheduling,

the AP uses polling based PCF access protocol to poll stations. For downlink schedul-

ing, it polls its queues sequentially. In this case, why do we need to design a MAC

layer scheduler instead? This question should be answered in two scenarios.

Uplink

A distributed EDCA MAC scheduler is the only way to prioritize access of different

stations, assuming no polling protocol is used.

Downlink

A MAC layer scheduler provides higher throughput and smaller average access

delay. The following section gives the simulation comparison between these two.

Simulation Configurations: The ideal WRR scheduler is to achieve the band-

width ratio of six flows as 1 : 0.5 : 0.25 : 0.125 : 0.0625 : 0.03125, as previously. All of

the MAC/PHY simulation parameters are the same as in Table 2.1.

For the Network Layer WRR, we assign different weights to flows, namely [32 16 8 4 2 1].

This network layer scheduler is on top of a legacy DCF MAC which is using CWmin =

31. The server rate of WRR is assumed equal to the capacity of the DCF.

For the MAC Layer WRR, we use the method in the previous section to design
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the scheduler as CWmin = [47 86 166 325 595 1182].

Throughput Performance Comparison: As shown in Table 3.2 , the network

layer can control the link sharing exactly as expected; but, it can not achieve as

much throughput as a MAC layer scheduler can. The reason is that the competition

between multiple access instances helps reduce the time wasted in backoff in the latter

case than the former one, which has only a single access instance in the link layer

(using legacy DCF). Furthermore, the bandwidth ratio obtained from a MAC WRR

is still acceptably close to the desired value.

Table 3.2: Throughput Performance of Network and MAC WRR.

Network Layer MAC Layer
WRR + DCF WRR + EDCA

Throughput 0.78145±0.00001 0.78875±0.00003
BW1/BW1 1.0000 1.0000
BW2/BW1 0.4998 0.5002
BW3/BW1 0.2499 0.2479
BW4/BW1 0.1250 0.1238
BW5/BW1 0.0625 0.0619
BW6/BW1 0.0312 0.0307

Delay Performance Comparison: Another important QoS factor concerns the

delay and delay jitter. From the simulation comparison in Table 3.3, we can see that

flow 1 with the highest priority is treated preferably in both cases.

Table 3.3: Access delay Performance of Network and MAC WRR.

Flow Ave Std 95% MIN MAX
ID (ms) CI (ms) (ms)
1 22.8 41.4 0.114 7.41 254
2 37.9 87.3 0.34 15 377

L3 3 68.1 140 0.768 15 438
WRR 4 129 196 1.53 15 469

5 250 234 2.58 15 484
6 491 0.268 0.00417 483 492
1 15 7.98 0.022 7.37 74.6
2 29.9 19.2 0.0748 7.37 606

MAC 3 60.7 45.4 0.251 7.37 1180
WRR 4 121 97.1 0.76 7.37 2280

5 224 188 2 7.37 5750
6 454 390 5.91 7.37 7910

A MAC layer scheduler can support smaller access delay with smaller deviation

than a network layer scheduler does. But the maximum delay of the other low priority

flows in a MAC scheduler is much higher than in the network layer scheduler. The
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main reason is that there will be more retransmissions for low priority flows because

of the virtual collision resolution policy. This may restrict the use of MAC WRR in

real time applications because the worst case delay may be too large to be acceptable.

3.4 Conclusions

Our main contribution in this work is to show how to design a MAC layer WRR

scheduler by doing the analysis of 802.11e EDCA saturation throughput performance

of a special EDCA configuration inversely. The MAC layer scheduler designed in this

dissertation has certain advantages over a network layer scheduler, both for uplink

and downlink communication. The MAC scheduler in the uplink helps us exempt the

polling overhead. In the downlink case, simulation results showed that the MAC layer

scheduler obtains better delay performance and larger and variable total throughput.

Furthermore, it can also achieve the targeted throughput ratio between different flows.
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Chapter 4

Metamodeling Wi-Fi Networks - a

framework and three case studies

4.1 Introduction

Appropriate non-trivial performance models are required to study network perfor-

mance of Wi-Fi networks. Some of the simpler problems can be solved by analytical

modeling. The feasibility of analysis in DCF capacity case [10, 11, 13] and EDCA

capacity problem [42] is due to the exclusion of other layers in the problem, since

the capacity is defined as the asymptotic limit of MAC layer throughput, meaning

traffic from the application layer is assumed to be saturated. But still, these ana-

lytical models are non-explicit, highly complicated and require numerical techniques

for their solution. For other, more complex problems, when it is required to take into

consideration multiple factors from other layers as well as QoS constraints, analyt-

ical models typically are difficult to derive and, hence, simulation-based modeling

becomes the most applicable approach.

Let us look, for instance, at the question of VoIP capacity over Wi-Fi, namely,

calculating the maximum number of VoIP phone calls supportable in a Wi-Fi network.

Not only do the traffic characteristics of VoIP from the application layer need to be

considered (which will affect the MAC access dynamics dramatically), but also the
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queueing performance such as delay and packet loss rate need to be included, in order

to obtain satisfiable QoS constraints.

Although there are already quite a few analytical studies on the capacity of VoIP

over Wi-Fi networks [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54], our thorough re-

view has led us to believe that they actually estimate the capacity in way which is

overly optimistic, and thus offer rather loose upper bounds on the number of VoIP

calls. This is because of two reasons: first, most of them do not consider the asym-

metry of traffic conditions 1 and the correlation between traffic load and MAC ac-

cess dynamics, therefore they adopt the methodology of capacity of V oIP calls =
capacity of a Wi−Fi network

resource reuqested by one V oIP call
. where the capacity in the numerator is mistakenly cho-

sen as the capacity of Wi-Fi with one flow under saturation; second, no queueing

performance metrics such as delay and packet loss constraints are taken into account.

However, we argue that such capacity will never be reached in practice because a

much lower limit will be encountered first, due to the non-negligible collisions and

QoS constraints. This argument is also confirmed by simulation results.

Then, how to find a better estimate of the capacity of VoIP over Wi-Fi, one leading

to a tighter bound, remains a key problem for a good design of call admission control

(CAC) policies. The CAC based on an overly optimistic capacity estimation will

result in admitting more VoIP phone calls than a Wi-Fi network can support, thus

degrading the call qualities of all users. Hence, until a comprehensive analytical model

considering all the factors mentioned above becomes available, simulation models are

still the most reliable way to find the right answer.

In a Wi-Fi network, things will be more complicated when it is in ad-hoc mode

instead of infrastructure mode, because a station in ad-hoc networks can act as a

router and forward packets on behalf of its peers. The forwarding scheduler at the

network layer is very important in arbitrating the resource between own generated

traffic and forwarding traffic, and it posts another multi-layer complication on the

system performance. There are some schedulers [55, 56, 57, 58, 59, 60] designed for

stimulation of cooperation among possibly selfish parties in ad-hoc networks. But an

1For VoIP over Wi-Fi, the access point has a larger load than the stations because it talks with
multiple stations in the downlink.
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analytical model is not feasible due to the large dimensionality of the design space

across multiple layers in such Wi-Fi settings, therefore simulation models are still the

only practical way to evaluate the system performance.

However, an explicit mathematical model is always the most effective way to rep-

resent the system behavior and the most convenient way to facilitate embedding of

QoS-aware MAC in network schemes, such as call admission control and scheduling

schemes. Simulation models, although able to capture the system dynamics very

closely, are time costly and only provide snapshots of the system over particular sim-

ulation configurations. Even the analytical model example from the Wi-Fi capacity

problem does not offer a true closed form solution.

Therefore we are led to investigate an alternative method - namely, a metamod-

eling technique [61, 62, 63], in order to find an approximate mathematical represen-

tation of system performance in Wi-Fi networks. Metamodeling, described at times

as a ‘model of a model ’[8], has been used by the simulation community to study

the behavior of computer simulations for over thirty years and applied to many fields

including manufacturing, industrial engineering, operation research, queueing mod-

els [64]. However, there are really few applications of metamodeling to the field

of computer networks. Shaw [65] discussed the simulation and the metamodeling

methodologies applied to the parallel processing environment. Barrett et al. [66, 67]

and Vadde et al. [68] are the first two to use experiment design and statistical anal-

ysis to characterize the factor interactions among routing, MAC, mobility and load,

in mobile ad-hoc network (MANET). But both works try to view the problem more

from an engineering point of view, only capturing the capability of Response Surface

Methodology (RSM) in interpolating the factor interactions of the model, without

an awareness or mention of the superset of metamodeling methodologies in the back-

ground.

Our key methodological contribution in this Chapter is that we first advocate the

application of metamodeling techniques to performance studies of Wi-Fi networks

and build a framework of metamodeling network performance evaluation for Wi-Fi

networks. Under this framework, we apply metamodeling techniques to three impor-

tant Wi-Fi network case studies which need closed-form mathematical performance



56

models, from the simplest one only involving MAC access dynamics, to the most

complex one requiring interactions from application layer, network layer and MAC

layer in an ad-hoc setting.

Our results in these three subcases prove the validity of our metamodeling method-

ology and provide useful insights into understanding Wi-Fi performance: our capacity

metamodel of 802.11 DCF is validated by the well-known analytical model and shows

an interesting log-linear relationship between capacity and number of users; our voice

over Wi-Fi admission capacity metamodel give a much tighter bound than the exist-

ing bounds in the literature and composes a more practical admission control scheme;

and the throughput metamodel, in a simple ad-hoc network, for the first time charac-

terizes and quantifies the cross-layer effects between EDCA MAC layer and network

layer. Our work, therefore, points out a new direction for the future performance

studies of Wi-Fi networks.

The remainder of this chapter is organized as follows: First, in Section 4.2, we

briefly introduce the background of metamodeling and formulate a general framework

for metamodels of Wi-Fi network performance, in various settings. By applying

these metamodeling techniques to three subcases, namely DCF capacity problem,

VoIP capacity over Wi-Fi problem and the cross-layer scheduling in ad-hoc network,

we show how metamodeling works and the validity of this novel application to the

performance study of Wi-Fi networks, respectively in Section 4.3, Section 4.4 and

Section 4.5. Finally, in Section 4.6, we present our conclusions.

4.2 Metamodeling Methodology

4.2.1 Metamodeling and Response Surface Methodology

As discussed in the introduction, we can build three types of performance models

to study a Wi-Fi network. When the behavior of the system is easy to analyze, an

analytical model is a good way to characterize the rules regulating the system. For

some complex systems, analytical models may not be possible to find or too complex

to solve, therefore simulation models are used instead to capture the system behavior.
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An advantage of the simulation model over the analytical model is that it can simulate

the system dynamics in great detail, thus providing a closer approximation to the

system without the frequent need of assumptions required in the analytical model for

facilitating the analysis. However, an explicit closed-form response function is most

wanted to explore the whole response surface and develop optimizing strategies. A

simulation model S(·) is simply not such a function, since it is just a mechanism that

turns input parameters into output performance measures. If the analytical model

A(·) of a system is not available or can not offer such a closed-form function, people

turn to another modeling method, metamodeling, to find the solution.

Metamodel is defined as a mathematical closed-form model of the simulation

model, or a ‘model of the model’ in [8]. The responses from the metamodel for

inputs of X is Ym with approximation error εm,

Ym = M(X) = Y + εm

Metamodeling, the way of building a metamodel, involves: (1) simulation experi-

ment design for generating data; (2) choosing a mathematical model to represent the

data; (3) fitting the model to the observed data.

Experiment design:

An experiment design represents a sequence of experiments to be performed, ex-

pressed in terms of factors (design variables X) set at specified levels (predefined

values) [8]. The most common experimental design is a 2k full factorial design for

k factors at 2 levels, which is also used for our metamodel. The other experimental

designs include fractional factorial designs, orthogonal arrays, etc.

Model Choice:

After performing the necessary computer simulation runs according to the selected

experimental design (a set of of values from the input X) and collecting output

data (a set of Ym) from the simulations, the next step is to choose a model M(·) to

approximate the functional relationship between inputs X and outputs Y .
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The metamodel can correspond to a response surface, or a neural network, or

induction learning and Kringing, among others. The most prevalent models in the

metamodeling literature are response surfaces and neural networks. Response sur-

face models are normally first order, first order with interactions and second order

polynomials as followings. The neural networks model presents in nonlinear format

of y = 1
1+e−(β+

P
wixi)/T .

y = β0 +
m∑

i=1

βiXi (4.1)

y = β0 +
k∑

i=1

βiXi +
m∑

i=1

m∑

j=1,i<j

βijXiXj (4.2)

y = β0 +
k∑

i=1

βiXi +
m∑

i=1

βii(Xi)2 +
m∑

i=1

m∑

j=1,i<j

βijXiXj (4.3)

Model Fit:

To fit a model is to find the parameters of the model, e.g., βs in the response

surface model. The fitting method varies according to different choice of models. To

fit a response surface model, least square regression is used; while back-propagation

can be applied to building a neural network model.

Response Surface Methodology (RSM):

The whole metamodeling methodology is further specified to fall under the Re-

sponse Surface Methodology, or RSM, when the selected model is a response surface

model. Myers et al [7] define RSM as ‘a collection of tools in design or data analysis

that enhance the exploration of a region of design variables in one or more responses’.

The general RSM approach includes three steps: experiment design, build response

surface model and least squares regression analysis. RSM consists of a group of tech-

niques used in the empirical study of relationships between (one or more) response

variables and many input variables. The techniques have been used to answer the
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key question of what values of the input variables (setting) will yield a maximum for

the response variable.

In this chapter, we choose to apply RSM as our metamodeling methodology due

to the reasonable number of factors in the model and to the well-established theory

and techniques of response surface methodology.

4.2.2 Related Work

Although the term of metamodel was originated in 1987 by Kleijnen [69], the

simulation community has used metamodeling techniques to study the behavior of

computer simulations for over thirty years. Winter simulation conference proceedings

provide good resources for tutorial and survey of issues in metamodeling, such as

Barton series [62, 70, 71], Kelton series [72, 73, 61] and Sargent [74]. The most recent

one can be seen in [8] by Simpson.

RSM is the most prevalent metamodeling methodology. But the technique it-

self was invented far earlier in 1951 by Box and Wilson [75] for study of a real

non-simulation system. Due to the availability of cheap computing resources, vast

simulations became feasible experiments, therefore resulting in the wide application

of RSM to simulations in various disciplines, ranging from industrial engineering, op-

eration research to aerospace and mechanical engineering. The methodology of RSM

matured and advanced gradually, and the associated techniques consist of the topic

for whole books [7, 76] or book chapters [77, 78]. A comprehensive review of RSM

developments and applications from 1966-1988 is given in Myers et al [79]. Recent

surveys can be seen in [80] and [81].

However, there are really few applications of metamodeling to the field of com-

puter networks. Experiment design and analysis is presented only as alternative to

simulation in [82] to study performance of computer systems, the book itself is a

good resource for various performance analysis methods including experiment design,

measurement, simulation and queueing modeling, though. Shaw [65] discussed the

simulation and the metamodeling methodologies applied to the parallel processing

environment.



60

Barrett et al [66, 67] are the first to use experiment design and statistical analysis

to characterize the factor interactions among routing, MAC, mobility and load, in

MANET. Subsequently, Vadde et al [68] studied the throughput and delay perfor-

mance of MANET in the prospective of factor interactions among QoS architecture,

routing protocol, MAC, load and mobility extensively. But both works try to view

the problem more from an engineering point of view, only capturing the capability of

RSM in interpolating the factor interactions of the model, without an awareness or

mention of the superset of metamodeling methodologies in the background.

4.2.3 Formulation of Wi-Fi Metamodels

To enable increased application of metamodeling, including RSM, to the study

of computer network performance, and to release its vast “horsepower”, the core of

our work is a key methodological contribution: that is, to first build a framework

of metamodeling network performance evaluation for Wi-Fi networks. Under this

framework, many problems can be formulated and studied systematically, for exam-

ple, the interactions among different protocol layers, as in [66, 67, 68], and also in our

case study III (Section 4.5), as well as performance problems such as capacity of the

network in our case study I (Section 4.3) and case study II (Section 4.4).

The system we are interested here is not a manufacturing workshop, an aircraft,

or a computer processor, but a Wi-Fi network. Before we jump to the start of the

design of experiments, choosing and fitting metamodels, which are standard proce-

dures for every metamodeling problem, it is worth to first define the scope of the

problem, including problem statement, network model, design variables (inputs) and

performance metrics that we are interested in (outputs). Then the last step would

be to evaluate the model and draw conclusion from the model which will help the

understanding of Wi-Fi networks.

The complete procedure can be done sequentially as follows:

• Define the scope of the problem

– Problem statement: clearly specify the question to be answered and
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assumption to be made. The problem will determine the network model,

what to input into the network and what to collect from the network.

For example, if the problem is the capacity of DCF MAC in single hop

infrastructure Wi-Fi with physical layer of 802.11a, 802.11b or 802.11g,

the network model is going to be an infrastructure Wi-Fi, and we only

care about the design variables in DCF MAC and physical layer without

consideration of other higher layer parameters;

– Network model: a Wi-Fi network can be either in infrastructure mode

or ad-hoc mode [5] and represented by a graph G = {V,E}. The number

of nodes in the network is the number of vertices |V | in the graph and

the connections among nodes are represented in edges E. In infrastructure

network, all traffic have to go through access point (AP) therefore results

in only one hop in wireless domain; whereas in ad-hoc network, each node

can route traffic for other nodes and each flow may pass multiple hops.

Fig. 4.1 shows the network model examples for both modes.
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Figure 4.1: General Network Model of Wi-Fi Networks

– Inputs: the design or controllable variables of each node

X = {C1, C2, ..., C|V |}, where Ci is not a scalar but a vector representing
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all protocol parameter set for node i.

CT
i =




application layer parameter seti

transport layer parameter seti

network layer parameter seti

MAC layer parameter seti

PHY layer parameter seti




∗ Application layer : traffic profiles defined in transmission specification

(TSPEC) such as peak transmission rate, average transmission rate,

etc.

∗ Transport layer : congestion window size etc.

∗ Network layer : routing protocol and scheduler schemes

∗ MAC layer : DCF access parameter like contention window size (CW)

or EDCA access parameters such as arbitrary inter-frame space (AIFS).

∗ Physical layer : data transmission rate, overhead, etc.

If the system is symmetric, the input vector can be simplified to be just

one parameter set X = {C}, which is shared by every node. In some

problem, only a subset of layers are the focus of study, therefore, CT
i may

only include the parameter sets from these layers since parameters from

other layers are fixed.

– Outputs: the desired performance metrics from the network, such as

throughput, delay, and packet loss. Y = {P1, P2, ..., P|V |}, where Pi is not

a scalar but a vector representing all performance metrics of node i.

P T
i =




throughputi

delayti

packet loss ratei

...




• Design of experiments

• Choose and fit the metamodel
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• Evaluate the metamodel

To summarize, the most crucial step in the framework is the first step, in which

the scope of the problem is defined and the network model, inputs and outputs,

are clearly specified. The subsequent design of experiments, and the choosing and

fitting of models can be done following standard statistical approaches. The final

step of evaluating the metamodel and the application of the metamodel is the most

useful procedure which sheds light on the understanding and the design of Wi-Fi

networks. We show in the following three sections how we apply this framework and

methodology to three relevant sub-case studies of Wi-Fi performance evaluation, and

the insights network designers can obtain from using the metamodels.

4.3 Case Study I: DCF Saturation Capacity

4.3.1 Case Background

Capacity, defined as the maximum throughput, is a fundamental characteristic of

a network, which affects the network design, planning, and cost. Therefore, it remains

a research focus of the study of access networks.

802.11 DCF MAC (CSMA/CA with BEB) is the random multiple access scheme

a Wi-Fi network uses for radio access, which distinguishes Wi-Fi (802.11) from other

access networks, such as Ethernet (802.3), and Token Ring (802.5). Hence, to study

the capacity of Wi-Fi network requires performance analysis of 802.11 DCF MAC.

Accompanying the standardization and rapid deployment of IEEE 802.11 WLANs

in 1990s, the performance analysis of its contention-based DCF MAC access func-

tion [5] has been studied extensively by analytical or numerical means in recent

years. Among those analytical studies, three major performance models have been

proposed in parallel, in order to analyze the saturation throughput/capacity per-

formance: Assuming a constant collision probability for each station, Bianchi [10]

proposed a Markov Chain to approximately model the behavior of CSMS/CA/BEB

DCF, found the equilibrium packet transmission probability in a generic slot time by
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solving the Markov Chain, and finally obtained the saturation throughput by apply-

ing regenerative analysis to a generic slot time; Cal̀ı [11, 12] analyzed a p-persistent

variant of DCF, with persistence factor p derived from the CW in DCF, then found

the capacity similarly using renewal theory; Tay [13] used instead an average value

mathematical model, in order to calculate the packet collision probability, and solved

the maximum throughput in terms of collision probability. A variation of Bianchi’s

model was proposed by Wu in [14] for the further consideration of retry limits.

Bianchi’s model in [10] is so widely adopted that most subsequent analytical mod-

els of EDCA (QoS enhanced MAC over DCF) and many adaptive backoff schemes

are built on top of it. But one disadvantage of this model limits its use in practice:

that is no close form solution is provided. Solving of nonlinear equations is required

in derivation, which is time consuming and non-feasible for real time use.

The need of an approximate closed-form mathematical model of DCF capacity

motivates us to apply metamodeling methodology in this case. The reason we put

it as the first case study is due to the availability of validation through a well know

analytical model.

4.3.2 Define the Scope of the Problem

Problem Statement

The question to be answered can be stated as the capacity or the maximum

throughput of DCF MAC in an infrastructure Wi-Fi network. Since we only want

to study the maximum capacity of the MAC layer, also defined as the asymptotic

limit of DCF, we make assumptions typical in the literature related to DCF capacity

[10, 12, 13] as follows:

• There are N nodes and one AP in an infrastructure mode Wi-Fi network. The

N nodes and the AP are identical, they have the same type of traffic source,

the same MAC access function and the same physical layer transmission rate.

There are N flows coexisting, either in uplink from wireless station to AP, or

in downlink from AP to wireless station.
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• Traffic source is most aggressive and always keep sending packets. The packet

size is fixed as a constant.

• There is one queue in MAC layer, always backlogged. The packet at the head

of line uses DCF to access the radio channel.

• The channel is ideal. There is no channel error, no exposed or hidden node

problem, and no propagation delay.

• There is no consideration of queueing overflow and QoS requirement. In other

words, this capacity is a theoretical limit which will not be achieved in realistic

situations.

Network Model

According to the problem statement, the network is an infrastructure Wi-Fi net-

work with N nodes and one AP as shown in Fig. 4.2. Since our objective of the

study is the capacity of 802.11 MAC/PHY, MAC and physical layer in the protocol

stack are modeled together with a simplified application layer. The transport layer

and network layer are excluded from the problem.
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Figure 4.2: Network Model of Case Study I: an infrastructure Wi-Fi network.

Application Layer - Saturated Traffic: N identical traffic sources for N flows. For

each traffic source, the packet size is a constant packet size in units of bytes, the

inter-arrival time between two packets is set small enough to achieve a saturation

effect.
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MAC Layer - IEEE 802.11 DCF: A DCF access backoff entity is implemented

in MAC layer of each node to compete for radio channel. We assume RTS/CTS is

used. Because the contention window size is the most important parameter in the

backoff procedure, we are going to vary CW and study its effect on capacity in the

experiments.

Physical layer (PHY) - IEEE 802.11b [5]: In the physical layer, we use the most

popular 802.11b DSSS with a transmission rate of 11Mbps 2.

Inputs

The controllable or design variable is the value of the parameter minimum value of

CW (CWmin) of DCF MAC layer in each station. Because all stations are identical

(symmetric), we can further simplify the input to CWmin and the number N of

stations in the network.

X = [N CWmin]

The other non-controllable or fixed inputs in the network are shown in Table 4.1. The

data packet MAC layer sends to PHY layer is an MAC Protocol Data Unit (MPDU).

The length of the MPDU depends on the type of frame this MPDU carries and also

the length of MAC Service Data Unit (MSDU) frame the MAC layer receives from

the higher layer.

Outputs

The output responses that we are interested in is the capacity of the network, i.e.,

the total throughput of all stations. It can either be normalized to the transmission

rate, or in units of Mbps.

Y = Stotal = N ∗ Suser

2Other physical layer modes such as different rates of 802.11a and 802.11g can be easily substi-
tuted by changing the physical layer parameters including data transmission rate, Short Inter Frame
Space (SIFS), Different Inter Frame Space (DIFS), a slot time (Tslot), physical layer overhead and
the way MAC MPDU transmission time is calculated.
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Table 4.1: Constants in Network of Case I

Application Layer
packet size 1500 Bytes

MAC Layer
MAC MPDU TxTime 8∗MPDUlen

TxRate
µs

MPDUlen Data 34 + packet size Bytes
MPDUlen RTS 20 Bytes
MPDUlen CTS 14 Bytes
MPDUlen ACK 14 Bytes

Physical Layer
TxRate 11Mbps
SIFS 10 µs
DIFS 50 µs
Tslot 20 µs
PHYoverhead 192 µs

4.3.3 Design of Experiments

The throughput changes as the contention window size (CW) of each station

changes and the total number of stations (N) competing for the medium varies.

Therefore, we vary the values of CW and N as followings shown in Table 4.2. Note

here we change both of CWmin and maximum value of CW (CWmax), but keep the

number of backoff stage log
(CWmax+1)/(CWmin+1)
2 constant as 5. Therefore we only

show the change of CWmin in the table.

Table 4.2: Experiment Design Parameters for Case I

Factors Levels of Variation Level Values
CWmin 10 31,32,33,34,35,36,37,38,39,40
N 12 2,3,4,5,6,7,8,9,10,12,14,16

The levels of variation of CWmin and N are 10 and 12 respectively, resulting in

120 simulations. For each simulation setting, we run 10 replications in order to get

satisfactory confidence intervals of the simulation results. The simulation model is

implemented in ARENA and has been validated in our early work [83].
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4.3.4 Choose and Fit the Metamodel

By observing the data we collect from the simulations for the settings shown in the

table above, we can see that although Stotal in Fig.4.3(a) changes with both CWmin

and N , Suser = Stotal/N in Fig.4.3(b) is not affected by CWmin much.
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Figure 4.3: Response Surfaces of Throughput Values

But still Suser appears convex. By taking a logarithmic transformation, we can

clearly see the linear trend of ln(Suser) over ln(n) in Fig.4.4, which also shows the

insignificance of CWmin. Therefore, we choose a metamodel based on a first order

response surface model:

ln(Suser) = β0 + β1 ∗ ln(N)

By running the SAS GLM [84] program over the transformed data set, we obtain

β0 = −0.7013 and β1 = −0.9852, therefore the fitted metamodel is represented in

Equation (4.4). The Analysis of Variance (ANOVA) statistics for the model and

each factor is shown in Table 4.3. The high R-Square value of 0.999860 supports the

goodness-of-fit of this model in interpreting the given data set.

ln(Suser) = −0.7013− 0.9852 ∗ ln(N) (4.4)
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Figure 4.4: Response Surface after Transformation: Log(Suser)

Table 4.3: ANOVA Table for ln(Suser)

Source Degrees of Sum of Mean F Pr>F
Freedom Squares Square Value

Model 1 42.60659141 42.60659141 844225 <.0001
Error 118 0.00595526 0.00005047
Corrected 119 42.61254667
Total
R-Square Coeff Var Root MSE Mean
0.999860 -0.274330 0.007104 -2.589622
Parameter Estimate Standard t Value Pr > |t|

Error
Intercept -0.7012883640 0.00215507 -325.41 <.0001
logN -0.9851761722 0.00107222 -918.82 <.0001

Even after choosing a full model with CWmin and the interaction term as in

following equation, the newly fitted model only gives a tiny improvement over the

previous one, with an R-square increment of 0.000015 from 0.999860 to 0.999875, but

with at the expense of two more items.

ln(Suser) = β0 + β1 ∗ ln(N) + β2CWmin + β3CWmin ∗ ln(N),

Therefore, we are content with the simple model in Equation (4.4), which is suffi-

ciently accurate. By taking an exponential and transforming the normalized through-

put back to absolute throughput in units of Mbps, we can obtain the final fitted
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capacity model for 802.11b 11Mbps DCF as

Suser = 11 ∗ e−0.7013−0.9852 ln(N) = 5.4553 ·N−0.9852 (Mbps) =>

Stotal = 11N ∗ e−0.7013−0.9852 ln(N) = 5.4553 ·N0.0148 (Mbps) (4.5)

4.3.5 Evaluate the Metamodel: log-linear relationship

Validation

In order to validate the fitted model, we compare the throughput results from the

metamodel to the simulation model and the analytical model, which is a revised model

[32] over Bianchi’s model [10], after correcting a small state consistency problem.

From Fig. 4.5(a), we can see that the user throughput Suser response surfaces from

the three models lie almost on top of each other and, in general, agree with each other

very well.

A comparison of the total throughput Stotal, which is the performance metric

we want to study, is shown in Fig. 4.5(b). Although we can tell the difference

among the three surfaces, the three models still agree with each other very well in

a large scale, by noting that the scale of the graph is very small and ranges from

5 to 5.8 Mbps. Another insight we can draw from this graph is that the analytical

model overestimates the capacity but characterizes the curvature of the response

surface accurately. Our metamodel in some areas overestimates and in other areas

underestimates the capacity, but overall, it captures the main relationship of Stotal vs.

N . But it does not model the curvature of the surface over the area of small number

of users N very well due to its simplicity.

For further quantification of the predictability of the metamodel, we plot the

residuals and prediction error rate in Fig. 4.6(a) and Fig. 4.6(b), respectively. These

two graphs again confirm the insights we derived above. The difference between

the analytical model and the simulation model is almost constant positive (constant

means good surface curvature agreement and positive means overestimation). The

difference between the metamodel and the simulation model is small and has both

positive and negative values. And surely, the difference between the metamodel and
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the analytical model is bigger than it with simulation model. But generally, all

differences are small since the largest residual capacity is only 0.15 Mbps. The relative

prediction error rate shown in Fig. 4.6(b) better proves the goodness of the metamodel

with a maximum error rate of 3%, which means that in the worst case, the metamodel

can approximate the simulation model with 97% accuracy.

Evaluation

An interesting message from this model is when the change of CW is small, the

throughput is not affected much. In other words, the effect of CW is very mild. There-

fore CWmin is ignored from the metamodel, and we will only analyze the sensitivity

of the number of users in the network N in the network on throughput performance.

From the model of Equation (4.5), we see that Suser decreases with the rate of

r1 = k−0.9852 and Stotal increases with the rate of r2 = k0.0148, when N is increased by

k times.

N ′ = k ∗N =>

S ′user = 5.4553 · (k ∗N)−0.9852 = Suser/k
0.9852 = Suser/r1 (Mbps)

S ′total = 5.4553 · (k ∗N)0.0148 = Stotal · k0.0148 = Stotal ∗ r2 (Mbps)

For the cases of k = 2, ..., 10, the decreasing rate r1 and the increasing rate r2

are calculated in Table 4.4. For example, when we double the number of users N ,

the throughput each user can obtain will be a little bit more than half of original

one (divided by 1.9796), and the capacity of the network or the total throughput will

only be multiplied by 1.0103, almost the same as the original one. In summary, the

network capacity will increase slightly when the number of users increases because of

the less wasted time on backoff caused by more intense competitions, and the share

of each user will decrease just a little bit slower than the curve of 1/x.

Engineering Approximation

The sensitivity analysis above intriguers us to explore the possibility of further

approximation. Since r1 = k0.9852 ≈ k, and r2 = k0.0128 ≈ 1, we try to see if the
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Table 4.4: Sensitivity Analysis of Metamodel

Multiplier k Divisor r1 = k0.9852 Multiplier r2 = k0.0148

2 1.9796 1.0103
3 2.9516 1.0164
4 3.9188 1.0207
5 4.8823 1.0241
6 5.8430 1.0269
7 6.8013 1.0292
8 7.7575 1.0313
9 8.7120 1.0331
10 9.6650 1.0347

following math model can approximate the throughput well or not.

Suser = 5.4553 ·N−0.9852 ≈ 5.4553/N (Mbps)

Stotal = 5.4553 ·N0.0148 ≈ 5.4553 (Mbps) (4.6)

Comparisons of the throughput results between the new model, the simulation

model and the analytical model are shown in Fig. 4.7. The close match of Suser

among the three surfaces is still as good as in the previous one. Although the Stotal

from the new model is a constant plane, it still approximates the simulation model

well. The reason behind this phenomenon is that the capacity increases with N

so lightly that we can approximate the network capacity to be a constant as the

throughput when there is only one user, then the throughput each user can get will

just be simply this constant shared by the number of users.

4.4 Case Study II: VoIP Admission Capacity

4.4.1 Case Background

Voice over IP (VoIP) has been witnessing massive growth over the past two years.

Some people project that VoIP over Wi-Fi is going to be the next major disruptive

application (or “killer application”). The market statistics confirm this: worldwide

Wi-Fi VoIP handset revenue totaled 54.7 million in 2004 and units totaled 143, 000,
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and strong growth is expected at least through 2009 as steady adoption of voice over

Wi-Fi continues, according to Infonetics Research’s latest report.

However, the delivery of solid end-to-end voice quality remains a big challenge for

network designers and researchers. Nowadays, the only practical VoIP network plan-

ning method is over-engineering, which means to provide over-abundant bandwidth,

thus underutilizing the network. But a well designed call admission control (CAC)

scheme can customize the network bandwidth according to usage model, therefore

saving the network resources and .

Therefore, the study of VoIP capacity over Wi-Fi access networks, constitutes a

main question to answer before designing a CAC, and has been a research topic for the

last few years. Although there are already quite a few analytical studies related to the

capacity of VoIP over Wi-Fi networks [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54],

after thoroughly reviewing them, we find that they actually estimate the capacity

in an overly optimistic way and offer rather loose upper bounds of the number of

VoIP calls. This is because of two reasons: first, most of them do not consider the

asymmetry of traffic conditions and the correlation between traffic load and MAC

access dynamics, therefore they adopt the methodology of capacity of V oIP calls =
capacity of a Wi−Fi network

resource reuqested by one V oIP call
. where the capacity in the numerator is mistakenly cho-

sen as the capacity of Wi-Fi with one flow under saturation; second, no queueing

performance metrics such as delay and packet loss constraints are taken into account.

However, we argue that such capacity will never be reached in practice because a

much lower limit will be encountered first, due to the non-negligible collisions and

QoS constraints. This argument is also confirmed by simulation results.

Under-utilization is not good, over-utilization is even worse, because the CAC

based on overly optimistic capacity estimation will result in admitting of more VoIP

phone calls than a Wi-Fi network can support thus degrading the call qualities of all

users. Hence, how to find a better estimation of the capacity of VoIP over Wi-Fi with

a tighter bound remains a key problem for a good design of call admission control

(CAC) policies.

Before a comprehensive analytical model considering all the factors mentioned

above becomes available, simulation models are still the most reliable way to find the
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right answer, but with limited power in formulating the solution. Therefore, it again

motives us to apply a metamodeling methodology to find and characterize tighter

VoIP bounds on the VoIP capacity over Wi-Fi.

4.4.2 Define the Scope of the Problem

Problem Statement

The question to be answered is to calculate the maximum number of VoIP calls

that can be supported in an infrastructure Wi-Fi network with satisfactory QoS

performance of one way delay less than 100ms and a packet loss rate less than 2%.

This question can also be stated in another way, namely, ’Can I add this new VoIP

call?’ as in the title of paper [51]. If this new VoIP call receives acceptable QoS after

being admitted into the network but also does not affect the QoS of existing calls,

while adding one more call will result in the opposite, we will then say this call can

be added and the number of existing calls plus this one is the maximum number of

VoIP calls supportable, and is the VoIP capacity of the network.

Network Model

The network model in this case is similar to the one in Case I, and shown in

Fig. 4.8. The network is an infrastructure Wi-Fi network with one AP and multiple

nodes. VoIP is the application carried in the network, therefore, application layer,

simple RTP/UDP/IP layers which add the VoIP headers, and 802.11 MAC and PHY

layers are models in the protocol stack of each station and AP. The number of nodes

in the network N is not fixed, since the maximum number of nodes, denoted as N∗,

is the parameter we want to know.

Application Layer - G711 VoIP Traffic: There are N pairs of VoIP bidirectional

calls. Each node carries an uplink VoIP flow to AP, and the AP carries N VoIP

downlink flows for N stations. For each call, we use the ITU G711 64kbps codec

where frames are sent out every time interval of V oicePktIntvl ms. The packet size

will vary according to the packet interval to keep the data rate constant at 64Kbps.
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Figure 4.8: Network Model of Case Study II: an infrastructure Wi-Fi network with
VoIP Traffic.

For example, if the packet interval V oicePktIntvl = 20ms, the packet size will be

64k ∗ 20ms = 1280bits = 160Bytes. G711 provides the best quality among the often

used VoIP codecs, among them G711, G729 and G723.1, since it occupies the largest

data rate. But due to its widest use in VoIP networks, we will illustrate our VoIP

capacity experiment with G711 traffic without loss of generality. For more detailed

VoIP codec algorithms the reader is referred to book [85].

RTP/UDP/IP Layer - VoIP headers: The standard method of transporting voice

samples through an IP based network requires the addition of three headers. These

headers are IP, UDP and RTP headers. An IPv4 IP header consists of 20 bytes; a

UDP header has 8 bytes and a RTP header has 12 bytes, therefore the total length

of the header is 40 bytes.

MAC Layer - IEEE 802.11 DCF: A DCF access backoff entity is implemented

in the MAC layer of each node to compete for radio channel. We assume the basic

access mode is used without RTS/CTS overhead, since the packet size of VoIP traffic

is small enough and below the threshold for activation RTS/CTS scheme. In this

experiment, all DCF parameters include DIFS and CWmin are fixed.

PHY layer - IEEE 802.11b: In physical layer, we use the 802.11b DSSS with

variable data transmission rates of 1, 2, 5.5, and 11Mbps.
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Inputs

The controllable or design variables of interest are two: the VoIP voice sample

interval and the PHY data rate.

X = [V oicePktIntvl DataRate]

The other non-controllable or fixed inputs in the network are shown in Table 4.5.

Table 4.5: Constants in Network of Case II

Application Layer
G711 traffic rate 64 kbps

RTP/UDP/IP Layers
VoIP header 40 bytes

MAC Layer
MAC MPDU TxTime 8∗MPDUlen

DataTxRate
µs

MAC header 34 Bytes
Physical Layer

CWmin 31
CWmax 1023
SIFS 10 µs
DIFS 50 µs
Tslot 20 µs
PHYoverhead 192 µs

Outputs

The output responses that we are interested in is the VoIP capacity of the network,

i.e., the maximum number of VoIP calls that can be supported in a Wi-Fi network

with satisfactory QoS metrics, i.e., one way delay less than 100 ms and packet loss

rate less than 2%.

Y = N∗
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4.4.3 Design of Experiments

The output capacity will vary as the controllable input variables change. Table

4.6 shows the parameters, voice sample interval (V oicePktIntvl) and the data trans-

mission rate (DataTxRate), for our designed experiments. For the G711 codec, the

normal used sample duration is tens of milliseconds, and the data transmission rate

of 802.11b in the standard can only be 1, 2, 5.5 and 11 Mbps.

Table 4.6: Experiment Design Parameters for Case II

Factors Levels of Variation Level Values
V oicePktIntvl (ms) 10 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
DataTxRate (Mbps) 4 1, 2, 5.5, 11

The levels of variation of V oicePktIntvl and DataTxRate are 10 and 4 respec-

tively, resulting in 40 simulations. For each simulation setting, we run 20 replications

in order to obtain satisfactory confidence intervals of the simulation results. And the

simulation duration of each run is set to 3 minutes in order to emulate the normal

calling time. We set the queue size of each MAC queue to be 30 packets.

The simulation model is implemented in ARENA. For each design combination

of V oicePktIntvl and DataTxRate, we actually run a series of simulation scenarios

with the number of nodes or VoIP call pairs incrementally set to be from 1 to 20.

Then we find the maximum number of VoIP pairs N∗ as the output, for which the

simulated packet loss rate is less than 2% and maximum one way delay is less than

100ms. The data set we collected from the simulations is shown in Table 4.7.

4.4.4 Choose and Fit the Metamodel

First, we choose a first order polynomial RSM model with interactions as Equation

(4.7). The ANOVA results from SAS GLM show that the R-square of the fitted model

is only 0.864488.

N∗ = β0 + β1 ∗ V oicePktIntvl + β2DataTxRate + β3V oicePktIntvl ∗DataTxRate (4.7)
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Table 4.7: Simulation Outputs N∗ for Case II

V oicePktIntvl (ms) 1Mbps 2Mbps 5.5Mbps 11Mbps
10 2 2 4 4
20 2 4 7 8
30 3 5 9 11
40 3 6 11 12
50 3 6 12 13
60 4 7 12 14
70 4 7 12 15
80 4 7 13 15
90 4 7 13 15
100 4 8 14 15

Inspired by the logarithmic transformation in Case I, we also try to fit the seconde

model as shown in Eq. (4.8), for which every variable is logarithmically transformed.

The new model results in a much higher R-square value of 0.950476. The ANOVA

table is shown in Table 4.8.

ln(N∗) = β0 + β1 ∗ ln(V oicePktIntvl) + β2ln(DataTxRate)

+ β3ln(V oicePktIntvl) ∗ ln(DataTxRate) (4.8)

Although the item log(DataTxRate) seems insignificant since its t test is larger

than 0.05, it has to be kept in the model because the corresponding interaction item

is significant. Therefore, we pick the second model as our final RSM. By plugging

β0 = −.2518396194, β1 = 0.4033792418, β2 = 0.1856925928 and β3 = 0.0973528574

into the model, and then taking an exponential transformation of log(N∗) back to

absolute values, we can obtain the final fitted VoIP capacity model for 802.11b as

N∗ = e−0.2518+0.4034 ln(T )+0.1857 ln(D)+0.0923 ln(T ) ln(D)

= 0.7774 · T 0.4034 ·D0.1857 · e0.0923 ln(T ) ln(D) (4.9)

where T denotes V oicePktIntvl and D denotes DataTxRate.
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Table 4.8: ANOVA Table for Model Eq. (4.8) of Case II

Source Degrees of Sum of Mean F Pr>F
Freedom Squares Square Value

Model 3 15.89100105 5.29700035 230.31 <.0001
Error 36 0.82799663 0.02299991
Corrected Total 39 16.71899768
R-Square Coeff Var Root MSE Mean
0.950476 7.761563 0.151657 1.953952
Parameter Estimate Standard t Value Pr > |t|

Error
Intercept -.2518396194 0.21952086 -1.15 0.2589
lVoicePktIntvl 0.4033792418 0.05663709 7.12 <.0001
lDataTxRate 0.1856925928 0.14524974 1.28 0.2093
lVoicePkt* 0.0973528574 0.03747490 2.60 0.0135
lDataTxRate

4.4.5 Evaluate the Metamodel: You can NOT add this VoIP

call

In order to validate the fitted model, we compare the throughput results from

the metamodel to the simulation model and the analytical model in [52, 45]. From

Fig. 4.9, we can see the differences among three surfaces, especially over the area

of big voice packet intervals and big data transmission rates. It is obvious that our

metamodel agrees with the simulation model better than the analytical model. Why?

Is this because our simulation model is not valid, or because the analytical model is

too optimistic?

In the following sections, we first validate our simulation model, then explain why

the capacity bound calculated by the analytical model is too loose and not realistic.

Finally we propose a new call admission control scheme based on our metamodel

which gives a much tighter bound on the VoIP capacity.

Validate Our Simulation Model

After thorough review, we have come to the conclusion that the analysis method-

ology adopted by many VoIP capacity works is the same:
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capacity of V oIP calls =
capacity of a Wi− Fi network

resource requested by one V oIP call
(4.10)

Here the denominator is easy to calculate. It depends on the voice codec scheme.

For G711, the voice sampling rate of 8 K results in a data rate of 64 Kbps. Plus

RTP/UDP/IP header of 40 bytes of each packet for every V oicePktIntvl ms, the

final bandwidth requested by one VoIP call is 64 + 40 ∗ 8/V oicePktIntvl Kbps. For

example, if V oicePktIntvl = 10 ms, then the bandwidth per G711 VoIP call is 96

Kbps.

The key part is the estimation of Wi-Fi network capacity in the numerator. Garg

[51] proposes to use the saturated network throughput ‘when there are exactly two

active senders’, i.e., Stotal(N = 2). Medepalli [45] assumes a saturated throughput

when ‘WLAN consists of only the station of interest’, i.e., Stotal(N = 1). The ra-

tionale behind this assumption is Hole’s statement in [52] that collision probability

in infrastructure based WLANs is seen to be small, especially for VoIP traffic. The

same argument can be seen in Wang’s JSAC paper [48], namely that the possibility

of collisions and the increase of backoff time in retransmissions are ignored.

Before we argue this network capacity estimation is wrong, we first prove our sim-

ulation model is valid by comparing the throughput results from our simulation to the
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results calculated from the analytical model of Stotal(N = 1). From Fig. 4.10, we can

see that the network capacity or the maximum achievable throughput from analysis

agrees very well with the simulation results under the same assumption of saturated

traffic, only one user and no consideration of QoS constraints. An side insight we

obtain from this graph is that logarithm of this capacity is in linear relationship with

the logarithm of voice packet interval, which determines the packet size.
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But one most important message we can derive is not our simulation model is

validated, but is that the real VoIP network capacity from the simulation with the

consideration of QoS constraints (packet loss rate less than 2% and delay less than

100ms) is way below the estimation from the analysis.

Why is the Analytical Bound so Optimistic?

We know from the the former section of Case Study I that the capacity is de-

pendant on the number of users and the traffic conditions. Under saturated traffic

condition, we proved through the last metamodel in Eq. (4.6) that Stotal can be

approximated by a constant. Therefore both approximations of Stotal(N = 1) or

Stotal(N = 2) will be good to estimate the network capacity. But the question is,
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can we still use this network capacity under saturated traffic conditions in order to

estimate the network capacity under VoIP traffic conditions in an infrastructure mode

Wi-Fi network with QoS constraints?

The answer is no. There are two reasons for this: First, the VoIP traffic is

asymmetric. As illustrated in Fig. 4.8, there are N flows out of the AP but only one

flow coming out of a station. This asymmetric traffic load correlates with MAC access

dynamics, and results in the asymmetric throughput for uplink and downlink shown

in Fig. 4.11, if we zoom in and observe the simulations of DataTxRate = 11Mbps and

V oicePktIntvl = 10ms while we change the number of VoIP calls. We find out from

the plots that throughput per flow in the downlink from the AP degrades a lot when

the number of VoIP calls reaches five, then keeps decreasing while the throughput

per flow in uplink from each station keeps steady at the load level (96Kbps). The

rationale behind this is that the AP has only one MAC queue and one backoff access

entity competing with the other N stations. When the system is under-loaded, the

throughput AP achieves can be higher than the throughput each station receives.

But when the system is overloaded, due to the fair nature of DCF access scheduling,

the total throughput carried by AP in the downlink will converge to the throughput

of each station.
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Second, no queueing performance metrics such as delay and packet loss constraints

are taken into account. However, as we can see from the figure above, when N is

larger than 4, the packet loss rate will be too high, resulting in degraded call quality.

Therefore, the maximum number of VoIP calls can be supported in such a Wi-Fi

network will only be four, smaller than the capacity predicted by the analysis of 5.58.

When the voice packet interval is larger, this difference will be more obvious.

New CAC with Tighter Bound

Therefore, we argue that our metamodel supports a tighter bound than the an-

alytical models in the literature. When there is a new VoIP call trying to apply for

the service in the network with already N users, if our metamodel tells us that N +1

is larger than our predicted capacity, then we deny the application, otherwise, we

accept it. But for the same case, the CAC based on the analytical model will accept

the new call wrongly, resulting in service degradation of all the current users plus the

new one.

4.5 Case Study III: Metamodel for Cross-layer Sched-

uler in ad-hoc Wi-Fi

4.5.1 Case Background

Motivation

The issue of cooperation has received a lot of attention in the context of mobile

multihop ad-hoc wireless LAN networks. In an ad-hoc network, participating nodes

may be self-interested - they may selfishly turn down the forwarding traffic flow

coming from the other nodes and only transmit their own generated traffic for the

reason of saving energy. But if every node performs in this manner, no traffic can

traverse multiple hops, and network throughput will degrade unacceptably. Therefore,

a good utilization of the scarce wireless resources in the whole ad-hoc network depends
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on the cooperation among participating parties. How to stimulate the cooperation,

thus, is a crucial issue in non-cooperative mobile ad-hoc networks.

The existing cooperation stimulation schemes are mostly designed within the net-

work layer, either by pricing-based or reputation-based approaches. The core concept

of pricing-based schemes is to reward the forwarding or relaying behavior and punish

the self transmission either in virtual money [55], [57] or other type of credit [56]. In

reputation-based schemes [58, 59, 60], a reputation system is maintained by neigh-

borhood monitoring, thus a misbehaving node with bad reputation can be detected

and avoided.

Although these cooperation schemes are implemented in WLANs, they do not con-

sider the inherent properties of wireless channels, i.e., they do not consider medium

access control (MAC) effects. Some simulation evaluations have been done but typi-

cally in a generic network infrastructure and without a real MAC at the bottom.

However, in packet radio networks, especially in mobile ad-hoc networks, the

medium access protocol mainly determines the sharing pattern of the radio channel.

Hence, different than in wired networks, the MAC cannot be omitted from studies of

cooperation in such wireless networks.

Only few reports [86, 87] have appeared studying the misbehavior and cooperation

problem solely at MAC layer in WLAN. These articles explore the binary backoff

function of the 802.11 Distributed Coordination Function (DCF) MAC and assume a

variable contention window (CW) size. However, simply to prevent the misbehavior

from the MAC point of view, by changing the backoff parameters, is limited without

simultaneous control at the network layer.

Therefore, we argue that cooperation in mobile ad-hoc WLAN is a fundamentally

cross-layer issue. Neither a purely network layer cooperation nor a solely MAC layer

cooperation can achieve the best channel utilization, therefore considering both layers

is a must. The promise of cross-layer cooperation enforcement is also forecast in [88]

and the same author describes a cross-layer framework in [89].

The objective of cross-layer design in mobile ad-hoc networks is to optimize and

exploit the cross-layer interdependencies in order to enhance the performance of the

network as a whole. Although many attempts at cross-layer designs, such as [90, 91,
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92, 93, 94, 95] and [96], can be found in the literature, there are very few quantitative

measurements of cross-layer effects. The reason is that such cross-layer effects are very

difficult to capture analytically as the combined cross-layer performance function of

the system is intractable.

Therefore we are led to investigate a metamodeling technique [61, 62, 63], in order

to find an approximate mathematical function of system performance in terms of

the cross-layer design parameters and subsequently quantify the cross-layer effects

through the evaluation of interaction terms in the model.

Most of the work in the MAC layer only considers the DCF function in which there

is only one access entity per node; however, multiple access entities can be supported

in the newly QoS-enhanced 802.11e EDCA. Therefore, how to stimulate coopera-

tion in network layer on top of EDCA MAC layer presents a currently unaddressed

question.

Motivated by these needs, in this section3, we study the cross-layer cooperation

consisting of a network layer priority scheduler extended from [55] and a MAC layer

EDCA priority access scheduler in a mobile ad-hoc network, by applying a metamod-

eling technique. Our contributions are three-fold: first, we advocate the multidisci-

plinary use of metamodeling in cross-layer design; second, we provide a metamodel

of system throughput in functions of cross-layer cooperation parameters both in net-

work layer and MAC layer; third, we quantify the cross-layer effects between MAC

and network layer and bring additional insights into the understanding of cross-layer

design.

Related Work

Network Layer Cooperation A virtual currency (or “nuglet”) counter is pro-

posed in [55] to pay for each packet locally generated, and also to be earned by

forwarding packets on behalf of other nodes. Only if the nuglet counter is positive,

can the node send its own packet. Upon forwarding a packet, the nuglet counter

increases by one, while it decreases by the number of hops for transmitting a locally

3The work done is this section was also published as the technical report of Center for Advance
Computing and Communications in [97].
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generated packet. The major limitation of this scheme is the unfair treatment of the

edge nodes who cannot pay for their own transmission because of seldom forwarding

requests, in addition to the need for a temper-proof hardware module to protect the

nuglet counter.

In contract to using a universal utility metric, [57] proposes a layered scheme

consisting of a policed best-effort service and a incentive-based priority forwarding:

nodes get compensated for forwarding priority packets and nodes are unaffected if

they do not forward packets in a priority fashion.

“Sprite”, a centralized credit system in [56], determines charge and credit from

a game-theoretic perspective and motivates each node to report its actions honestly.

There is no need for temper-proof hardware in this scheme, however, some out-of-band

mechanism is required for communication of the credits.

The first reputation based scheme is introduced in [58], in which a watchdog iden-

tifies misbehaving nodes by performing a neighborhood monitoring and a reputation

system keeps track of reputations of each node. Another reputation-based scheme

called “CONFIDENT” is introduced in [59]. In CONFIDENT, a node monitor the

routing and forwarding behaviors of its neighbors and take reputation record and trust

records, then send alarms to isolate bad nodes upon detecting misbehavior. However,

it may degrade the network utilization by introducing significant reputation propaga-

tion overhead and by overloading the well behaving nodes. A reliability index-based

approach [60] takes into account not only the presence of possible selfish/malicious

nodes but also situations like congestion and wireless lossy links.

MAC Layer Cooperation: MAC greediness, reflected in a smaller backoff

interval, is detected by receivers and corrected by enforcing a bigger value in [86].

But it requires modification of the standard and also assumes nonrealistic traffic

always in uplink. A game theoretic scheme for CSMA/CA schemes is presented in

[87]. It shows how a Pareto-optimal point is achieved in a dynamic game by adaptively

changing the contention window size and misbehavior being penalized by jamming.
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4.5.2 Define the Scope of the Problem

Problem Statement

To characterize the cross-layer interaction between application layer load, network

layer cooperation scheduler and MAC layer access scheduler in an example ad-hoc

Wi-Fi network.

Network Model

For simplicity of explanation and to illustrate our approach, we pick a small

example ad-hoc WLAN with three stations as our network model as shown in Fig.

4.12. The insight of using metamodeling to study the cross-layer cooperation can

still be applied to any bigger and more complicated networks. In this ad-hoc WLAN,

there are three wireless stations (WS). WS2 is located in between WS1 and WS3,

and can talk to both of them. But WS1 and WS3 can not reach each other. Two

traffic flows compete for the resources in this network: flow 1 is from WS1 to WS3

which has to be relayed at WS2, flow 2 is from WS2 to WS3 directly.

1
 2
 3


Flow 1


Flow 2


WS1
 WS2
 WS3


Figure 4.12: Network Model of Case Study III: an small ad-hoc Wi-Fi network.

Our objective of this study is the interaction among three layers, namely, the

application layer, network layer and MAC layer. We assume that the transport layer

and physical layer parameters are fixed, therefore excluded from our input.

Application Layer: Traffic Profile

We assume an exponentially distributed traffic inter-arrival profile in this ad-hoc

network. For flow one, we define L1 as the exponentially distributed arrival rate of

traffic in WS1. For flow two, we define L2 as the exponential rate of traffic generation

in WS2. In our network, we assign L1 = L2 = load. Note that the load is normalized
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in terms of the physical layer transmission rate of 802.11.
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Figure 4.13: Case III: layer configurations.

Network Layer: cooperation forwarding scheduler

Two flows coexist at WS2. At the network layer, WS2 uses a forwarding scheduler

to determine the priorities between forwarding traffic and own traffic. Since the

station may be selfish and try to maximize its own throughput, cooperation needs

to be stimulated and selfishness needs to be punished by setting the appropriate

forwarding rule.

There are some scheduler schemes designed in the literature [55, 57, 56]. In this

chapter, we design our own priority forwarding scheduler by extending the scheme in

[55] with a generalized award and punishment and an upper threshold (UpThrshd)

and a lower threshold (LoThrshd) over the counter. Table 4.9 shows the scheduling

rule, where K is a constant and UpThrshd, LoThrshd, award and punish are four

control variables.

The advantages of our scheduler are the flexible increasing slope (award) and the

decreasing slope (punish) of the counter and also the flexible resources arbitration

between forwarding and self traffic by adjusting the two thresholds of the counter.

MAC Layer: IEEE 802.11e EDCA scheduler

We implement an EDCA priority access scheduler at MAC layer to arbitrate
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Table 4.9: Network Layer Cooperation Scheduler Scheme.

Virtual money counter N2
WS2 maintains a counter N2. Initially, N2=K
Scheduling Rule
IF N2 > UpThrshd,

WS2 only sends its own traffic and does not forward traffic;
ELSEIF LoThrshd < N2 < UpThrshd,

WS2 sends its own traffic and also forwards traffic;
ELSEIF N2 < LoThrshd,

WS2 only forwards traffic for WS1, and not send its own.
ENDIF
Update Rule of N2
IF the transmitted packet belongs to forwarding traffic,

N2 = N2 + award.
ELSEIF the transmitted packet belongs to its own traffic,

N2 = N2− punish.
ENDIF

the radio channel resource to multiple access entities by manipulating their EDCA

parameters, include AIFSN, CWmin, CWmax and TXOP.

In our experimental network, there are three access entities sharing the wireless

medium. Access entity one carries traffic L1 in WS1; access entity two the forwarding

traffic for WS1 in WS2; and access entity three transmits WS2 own generated traffic

L2 in WS2 itself. Our EDCA scheduler is represented in the bottom part of Fig.

4.13.

In our scheduler, we assign the same TXOP for all access entities and one TXOP

only accommodates one packet frame. Here, because WS1 and WS2 can pick different

values for their EDCA parameters even for the same AC. Hence, disregarding the AC

of the three access entities, we denote the EDCA parameters for them to be AIFSN1

and CW1, AIFSN2 and CW2, AIFSN3 and CW3
4, for access entity one, two and

three respectively.

4We let CW=CWmin and CWmax = (CWmin− 1)5 − 1
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Inputs

The input controllable variables of three wireless stations are X = {C1, C2, C3},
where Ci is a vector representing the controllable protocol parameter set for wireless

station i. WS3 has no input in this example.

X = {C1, C2, C3}

C1 = [L1 AIFSN1 CW1]

C2 = [L2 UpThrshd LwThrshd award punish AIFSN2 CW2, AIFSN3 CW3]

C3 = [ ]

And these input controllable variables come from three layers:

• Application layer : traffic load L1 and L2;

• Network layer : forwarding scheduler parameters UpThrshd, LwThrshd, award

and punish;

• MAC layer : EDCA parameters AIFSN1, AIFSN2,AIFSN3, CW1, CW2, and

CW3.

Besides the controllable input factors, the rest of the 802.11b 2Mbps DSSS MAC/PHY

parameters are fixed and shown in Table 2.1.

Outputs

The output responses that we are interested in are the throughput performance

values S1 and S2.

Y = {P1, P2, P3} = {[S1], [S2], [ ]} = [S1 S2]
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4.5.3 Design of Experiments

The experiment design is to decide the simulation configurations before the runs

in order to obtain the desired information. Our experiment design uses a 2k factorial

design approach, and the configuration of each input factor is shown in Table 4.10.

Table 4.10: Experiment Design Parameters for Case III

Levels of Level
Factors Variation Values
CW1, CW2, CW3 2 8,32
AIFS1, AIFS2, AIFS3 2 0,2
punish,award 2 0,1
LoThrshd 2 0,20
UpThrshd 2 80,100
L1 = L2=Load 2 0.2,0.5

Out simulation model is built in Arena [98], and can be divided into the following

main parts: traffic generator, network layer forwarding scheduler and EDCA access

scheduler. Although we are not able to validate the simulation model with respect to

the real system, we can achieve partial verification since the EDCA access scheduler

is already verified in [83, 42] with respect to an analytical model.

Our simulation model corresponds to a terminating simulation. We run each

simulation replication for 2 hours and run 10 replications for each of the input com-

bination.

4.5.4 Choose and Fit the Metamodel

The type of metamodel can be response surface, neural networks, induction learn-

ing and Kringing, etc. Here we choose to use response surface model due to its rea-

sonable number of factors and the well-established theory and techniques of response

surface methodology [7].

The most widely used response surface approximating functions are low-order

polynomials. We pick a first-order polynomial function with interactions because we
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not only want to study the main effect of each factor but also their interactions.

S1 = β0 +
k∑

i=1

βiXi +
k∑

i=1

k∑

j=1,i<j

βijXiXj . (4.11)

Here, k is the number of the factors, which is 11 in this experiment and X1 = Load,

X2 = award, X3 = punish, X4 = LoThrshd, X5 = UpThrshd, X6 = CW1, X7 = CW2,

X8 = CW3, X9 = AIFSN1, X10 = AIFSN2, and X11 = AIFSN3.

We use least square regression analysis5 over the simulation data in order to de-

termine the coefficients of the polynomials. We run SAS GLM [84] program over

the data we collect from simulation, and obtain the ANOVA statistics for the model.

The high value (0.926761) of R2, a goodness of fit index, indicates that the model

exhibits a very high degree of explanatory power in characterizing the throughput

performance.

We call this model the full-model, since it includes all input factors. But not

all interactions in this model are significant, in other words, can be omitted from

the model. We judge that the factors with t-test values larger than 0.05 are statis-

tically insignificant and then delete them from the model. The new model without

nonsignificant interactions is called reduced-model.

We re-fit the regression model for this reduced-model by SAS GLM. The R2 of

the reduced-model is still high enough (0.925798), which means it can still explain

the data well. Also, the t-test values for each polynomial terms in the new model is

statistically significant.

Table 4.11: ANOVA Table for Reduced Model of S1 of Case III

Source DF Sum of Mean F Pr>F
Squares Square Value Pr>F

Model 33 24.52219053 0.74309668 789.82 <.0001
Error 2014 1.89485694 0.00094084
Corrected Total 2047 26.41704748

R-Square Coeff Var Root MSE S1 Mean
0.925798 27.03109 0.030673 0.113474

Therefore, after inserting these fitted coefficients of the reduced model βs into the

5supported by GLM in SAS
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equation 4.11 6 and transforming the absolute value back to the unit of Mbps, our

final metamodel of throughput S1 is:

S1 = −.4670− .0024 ∗ load + 0.1946 ∗ award

+0.5214 ∗ punish− .0014 ∗ LoThrshd

+0.0062 ∗ UpThrshd− .0017 ∗ CW1 − .0006 ∗ CW2

+0.0010 ∗ CW3 +−.0043 ∗AIFS1

−.0027 ∗AIFS2 + 0.0053 ∗AIFS3

−.1470 ∗ load ∗ award + 0.2421 ∗ load ∗ punish

+0.0045 ∗ load ∗ CW1 + 0.0022 ∗ load ∗ CW2

−.0055 ∗ load ∗ CW3 + 0.0181 ∗ load ∗AIFS1

+0.0126 ∗ load ∗AIFS2 − .0278 ∗ load ∗AIFS3

+0.0103 ∗ award ∗ punish + 0.0017 ∗ award ∗ LoThrshd

−.0025 ∗ award ∗ UpThrshd + 0.0003 ∗ award ∗ CW2

−.0002 ∗ award ∗ CW3 − .0047 ∗ punish ∗ UpThrshd

+0.0007 ∗ punish ∗ CW1 + 0.0003 ∗ punish ∗ CW2

−.0008 ∗ punish ∗ CW3 − .0047 ∗ punish ∗AIFS3

−.000008 ∗ CW1 ∗ CW2 + 0.00002 ∗ CW1 ∗ CW3

+0.0001 ∗ CW1 ∗AIFS3

4.5.5 Evaluate the Metamodel: Cross-layer effects

From the existence of interactions consisting of two factors from different layers

(Table 4.12), we come to the conclusion that these two factors are cross-layer corre-

lated. For example, award from the network layer forwarding scheduler has different

effects on S1 for different value of CW2 from MAC layer. When keeping all other fac-

tors unchanged, a unit increase of award will increase S1 by (0.1946+0.0103punish+

6The coefficients for the nonsignificant terms are zero.
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0.0017LoThrshd − 0.0025UpThrshd + 0.0003*8 − 0.0002CW3) for CW2 = 8 and by

(0.1946+0.0103punish+0.0017LoThrshd− 0.0025UpThrshd+0.0003*32− 0.0002CW3)

for CW2 = 32.

Table 4.12: Cross-Layer Interactions

Application & Network Layer Interactions
load ∗ award, load ∗ punish
Application & MAC Layer Interactions
load ∗ CW1, load ∗ CW2, load ∗ CW3,
load ∗ AIFS1, load ∗ AIFS2, load ∗ AIFS3

Network & MAC Layer Interactions
award ∗ CW2, award ∗ CW3, punish ∗ CW1

punish ∗ CW2, punish ∗ CW3, punish ∗ AIFS3

Therefore, we are able to quantify the cross-layer effects using a metamodeling

technique. Taking into account all interactions, a cross-layer optimization is necessary

in order to achieve the optimal throughput of S1, and our metamodel can serve well

towards this goal. Although we only discuss the metamodeling of S1 in this chapter,

the same procedure can be applied to S2 and the total throughput, and the same

conclusion about cross-layer effects will apply.

4.6 Conclusions

Performance modeling of Wi-Fi networks is becoming increasingly important but

also more challenging, with Wi-Fi networks becoming ubiquitous and carrying a large

number of emerging applications.

The core of our work consists of advocating the use of metamodeling for addressing

these challenges, and making a key methodological contribution: that is, to first build

a framework of metamodeling network performance evaluation for Wi-Fi networks.

Under this framework, many problems can be formulated and studied systematically;

and very useful insights can be achieved for the better understanding and design

of Wi-Fi networks through evaluation of the fitted metamodels. For example, we

show three relevant cases of Wi-Fi network performance studies in this chapter. In
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Case I, we are able to find an interesting log-linear relationship between the DCF

capacity and the number of users and get an interesting message that the change

of CWmin will not affect the throughput significantly in the range specified in our

experiment; in Case II, we explain and illustrate the invalidity of the well-adopted

VoIP capacity analysis, and provide a much tighter bound based on our metamodel

leading to better CAC; and in Case III, the cross-layer interactions among MAC and

network layer schedulers are first characterized and quantified, therefore can serve as

the basis for cross-layer optimization and control.

The examples we illustrated here use only polynomial response surface models,

however, some other problems may require other types of metamodels, such as neural

networks or Kringing models. We also want to note that there are many issues about

metamodels not mentioned in the scope of this chapter but require attention, such

as how to choose an appropriate functional form, how to assess systematically the

adequacy of the fitted metamodel, the range of application scenarios and the robust-

ness of the prediction. Still, our work just exposes the tip of the proverbial iceberg,

and hopefully there will be more efforts to make this multidisciplinary framework

more mature and, most importantly, to highly boost the understanding and design

of Wi-Fi networks.
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Chapter 5

Summary

Wi-Fi access is becoming ubiquitous at homes, in public areas and enterprises to

free people from the cumbersome wires, so far mainly for data traffic applications.

How to provide QoS to emerging multimedia applications remains a challenging prob-

lem. The question itself is very broad. Good solutions cross over many areas includ-

ing call admission control, fast handover and security, and such solutions also need

to consider the impact of several layers, ranging from the application layer down to

the MAC and PHY layer.

In the scope of this dissertation, we address the QoS provisioning problem mainly

from the perspective of capacity estimation, which is a key component for efficient

resource allocation schemes. We focus on the MAC layer through the legacy DCF

or, better, through the newly approved EDCA, which constitute the core of Wi-Fi

technology. Our contributions, in six parts, can be categorized into two broad areas

(Fig.5.1)1:

• Capacity Modeling

– DCF capacity metamodeling with saturation traffic.

– VoWiFi capacity metamodeling with DCF MAC;

– EDCA capacity (plus delay) analytical modeling with saturation traffic;

1Analytical models are in green color and metamodels are in yellow color. The control schemes
are connected to the models on which they are based with brown dash lines.
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Figure 5.1: Contributions of this dissertation.

– Throughput metamodeling with network layer forwarding scheduler and

EDCA in multi-hop WLAN.

• Control Scheme

– WRR scheduler at MAC layer through EDCA parameters manipulating

based on EDCA analytical model;

– CAC for VoIP application with QoS considerations based on VoWiFi ca-

pacity metamodel.

The analytical model of EDCA capacity estimation under saturation traffic unified

three widely used models and outperforms the other models due to its rigorousness

and ease of application. Based on this model, we design a MAC layer WRR scheduler

that allocates radio channel resources, achieving higher utilization than a network

layer WRR. Due to the limitations and difficulties of analytical modeling in most

realistic circumstances, we first advocate the use of metamodeling for the study of

Wi-Fi network performance and we build a metamodeling framework under which

many problems can be formulated and solved systematically.

The application of this framework to three important case studies provides intrigu-

ing results. First, a log-linear relationship between DCF capacity and the number

of users is exposed for the first time; second, VoWiFi admission capacity is derived

with much tighter accuracy by our metamodel than current analysis bounds, and
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reasons behind this are also considered for the first time; third, the cross-layer factor

interactions among network layer schedulers and MAC layer EDCA is characterized

for the first time through our metamodel of multi-hop ad hoc networks.

There is clearly more work needed to be done in order to guarantee QoS for end

users with multimedia applications in Wi-Fi networks. Mixed analytical modeling

plus metamodeling will be a practical way to solve more complicated performance

problems. And more powerful CAC with MAC and PHY adaptations based on per-

formance models deserve great effort in the future.
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