
ABSTRACT

JACKSON, LAURA ELIZABETH. The Directional p-Median Problem with
Applications to Traffic Quantization and Multiprocessor Scheduling.
(Under the direction of George N. Rouskas and Matthias F.M. Stallmann.)

An instance of a p-median problem gives n demand points. The ob-

jective is to locate p supply points in order to minimize the total distance of

the demand points to their nearest supply point. P -median is polynomially

solvable in one dimension but NP-hard in two or more dimensions, when either

the Euclidean or the rectilinear distance measure is used. In this thesis, we

treat the p-median problem under a new distance measure, the directional rec-

tilinear distance, which requires the nearest supply point for a given demand

point to lie above and to the right of it. This restriction has applications to

multiprocessor scheduling of periodic tasks as well as to traffic quantization

and Quality of Service scheduling in packet-switched computer networks. We

show that the directional p-median problem is polynomially solvable in one

dimension and give two algorithms. We prove the problem NP-hard in two or

more dimensions and then present an efficient heuristic to solve it. Compared

to the robust Teitz & Bart heuristic for p-median, our heuristic enjoys substan-

tial speedup while sacrificing little in terms of solution quality, making it an

ideal choice for our target applications with thousands of demand points.

The Directional p-Median Problem with Applications

to Traffic Quantization and Multiprocessor Scheduling

by

Laura Elizabeth Jackson

B.S. Mathematical Economics, M.S. Applied Science

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Raleigh

2003

Approved By:

Dr. Carla Savage Dr. Jeffrey Joines

Dr. George N. Rouskas Dr. Matthias F.M. Stallmann
Co-Chair of Advisory Committee Co-Chair of Advisory Committee

ii

To my family — Mom, Dad, Jeff, and Eliza.

iii

Biography

Laura Elizabeth Jackson was born in Greenwood, South Carolina, and

moved to North Carolina at the age of nine. She graduated from high school

in 1990 from the NC School of Science and Math in Durham. She was a James

Monroe Scholar at the College of William and Mary in Williamsburg, Virginia,

where she earned the BS in Mathematical Economics (1995, magna cum laude)

and the MS in Operations Research (1997). Along the way, she spent one year

learning German in Berlin and another year working as an actuary in Philade-

phia, Pennsylvania. She entered the NC State University operations research

program in 1997 and served one year as president of its graduate student associ-

ation. She later transferred to the computer science department and was named

a GAANN (Graduate Assistance in Areas of National Need) Computational

Science fellow. While in graduate school, she worked two years part-time in

the Advanced Network Research group at MCNC, where she helped design the

architecture and protocols for an all-optical local area computer network. Her

publications have appeared in IEEE Computer magazine, IEEE Transactions

on Parallel and Distributed Systems, and three conference proceedings. After

graduation, she plans to pursue a career in university research and teaching.

iv

Acknowledgements

I would like to thank the following great teachers for their dedication

to excellence and for the example they have given me. At East Iredell Elemen-

tary school, algebra teacher Greg ”Da Boss” Crowley captivated a room full of

13-year-olds with his energy and enthusiasm. At the North Carolina School

of Science and Math, John Goebel’s creative descriptions enabled me to ”see”

calculus. Larry Rabinowitz’s probability course was the most challenging and

rewarding class of my undergraduate career at William and Mary. In my first

programming course, Rance Necaise’s patient explanations led to a ”Eureka!”

moment when I first comprehended pointers. In Steve Park’s two simulation

courses, I learned when and when not to simulate, I learned to think before

programming, and I learned how to verify code; in short, I learned how to do it

right the first time. At NC State, Carla Savage introduced me to a whole new

world of abstraction called graph theory. Matt Stallmann helped me hone my

proof-writing skills. Finally, I would like to thank my advisor, George Rouskas.

Through his expert guidance and encouragement I learned how to do research.

v

Contents

List of Figures viii

List of Tables xiv

Chapter

1 The p-median problem 1

1.1 A brief history . 1

1.2 The p-median problem: continuous and discrete space 2

1.3 A new notion of distance: The directional distance metric 5

1.4 Organization of thesis . 6

2 Applications of the directional p-median problem 8

2.1 Traffic quantization . 8

2.2 Multiprocessor scheduling of periodic tasks 10

3 The directional p-median problem on the real line 13

3.1 Statement of the problem: DPM1 14

3.2 A dynamic programming algorithm for DPM1: Quantize 16

vi

3.3 Performance penalty due to quantization for Quantize 21

3.4 Graph representation of DPM1: A faster algorithm 36

3.5 The stochastic directional p-median problem on the real line . . 39

3.5.1 Statement of the problem: SDPM1 39

3.5.2 Optimal solution through nonlinear programming 42

3.5.3 An approximate solution: Algorithm Quantize-Continuous 46

3.5.4 Performance of Quantize-Continuous on six input distri-

butions . 48

3.6 Application: Improved complexity for scheduling periodic tasks

on a multiprocessor . 54

3.7 Conclusion . 56

4 The complexity of directional p-median in two or more dimensions 57

4.1 Directional p-median in two dimensions 59

4.2 Construction of the circuit for each variable 62

4.3 Alignment of clause points with variable circuits 64

4.4 Sketch of proof . 68

4.5 Proof details . 70

4.5.1 Notation . 70

4.5.2 An equal number of SW and NE corners 70

4.5.3 Notation revisited: A point numbering scheme 73

4.5.4 A circuit lemma: The true partition and the false parti-

tion are the only optimal partitions 75

4.5.5 Two clause configuration lemmas: Only legitimate sub-

sets may be in an optimal partition 77

vii

5 An efficient heuristic algorithm for DPM2 84

5.1 Effect of distance characteristics on computational effort 84

5.2 Teitz & Bart vertex substitution heuristic for p-median 85

5.3 Heuristic concentration . 88

5.4 The Teitz & Bart Restricted heuristic for DPM2 89

5.5 Evaluation of the Teitz & Bart Restricted heuristic 90

5.6 Conclusion . 95

6 Summary and future work 110

6.1 Summary . 110

6.2 Future directions . 111

Bibliography 113

Appendix

A Algorithm Quantize for DPM1 116

B Algorithm Quantize-Continuous for SDPM1 118

C Algorithm Q-PD2 for scheduling a quantized task set 120

viii

List of Figures

Figure

1.1 Sample p-median problem instances in the plane, with n = 9

demand points and p = 3 supply points. 5

1.2 Demand points arranged in a downward slope yield the maxi-

mum number of directional intersection points. 7

3.1 Sample mapping of task densities to service levels. 14

3.2 Probability density functions for the uniform and triangle input

distributions. 23

3.3 Probability density functions for the increasing and decreasing

input distributions. 24

3.4 Probability density functions for the unimodal and bimodal in-

put distributions. 25

3.5 Level curves in n of the normalized quantization load vs. number

of supply points (p). Top: Uniform. Bottom: Triangle. 26

3.6 Level curves in n of the normalized quantization load vs. number

of supply points (p). Top: Increasing. Bottom: Decreasing. . . . 27

ix

3.7 Level curves in n of the normalized quantization load vs. number

of supply points (p). Top: Unimodal. Bottom: Bimodal. 28

3.8 Uniform input: Level curves in p of the normalized quantization

load, for 100 individual demand sets. Top: n = 100. Bottom:

n = 1000. 30

3.9 Triangle input: Level curves in p of the normalized quantization

load, for 100 individual task sets. Top: n = 100. Bottom:

n = 1000. 31

3.10 Increasing input: Level curves in p of the normalized quanti-

zation load, for 100 individual demand sets. Top: n = 100.

Bottom: n = 1000. 32

3.11 Decreasing input: Level curves in p of the normalized quanti-

zation load, for 100 individual demand sets. Top: n = 100.

Bottom: n = 1000. 33

3.12 Unimodal input: Level curves in p of the normalized quanti-

zation load, for 100 individual demand sets. Top: n = 100.

Bottom: n = 1000. 34

3.13 Bimodal input: Level curves in p of the normalized quantization

load, for 100 individual demand sets. Top: n = 100. Bottom:

n = 1000. 35

3.14 Graph representation of an instance of DPM1 with n = 5. . . . 36

3.15 Sample mapping from the domain of f(x) to a solution set of 6

supply points. 39

3.16 Forming a pdf approximation: The area under f(x) over an

interval is paired with the right-hand endpoint of the interval. . 46

x

3.17 Level curves in p of the normalized quantization load, for K =

10, 15, . . . , 100. Top: Uniform. Bottom: Triangle. 50

3.18 Level curves in p of the normalized quantization load, for K =

10, 15, . . . , 100. Top: Increasing. Bottom: Decreasing. 51

3.19 Level curves in p of the normalized quantization load, for K =

10, 15, . . . , 100. Top: Unimodal. Bottom: Bimodal. 52

3.20 Bimodal: Level curves in p of the normalized quantization load,

for K = 10, 15, . . . , 300. 53

4.1 Rectilinear embedding of the sample problem instance. 61

4.2 A simple circuit with four corners, one of each type. Solid lines

indicate a true partition; the dashed lines indicate a false parti-

tion. The two ×’s mark supply points that do not coincide with

demand points. 63

4.3 Possible locations of clause points for the true partition. 66

4.4 Possible locations of clause points for the false partition. 66

4.5 Position of clause point P ∗
1 for clause E1 = (u1 ∨ u2 ∨ u3), from

the example given in Figure 4.1. 67

4.6 Overall cost increases when an illegitimate cluster is chosen. . . 69

4.7 An example of the point numbering scheme. 74

4.8 Lemma 4.2(e): A non-optimal subset of four points that contains

both SW corner points has f -value of 22. 76

4.9 Two non-optimal subsets involving clause point P ∗
j located in

configuration T1. 79

4.10 Two non-optimal subsets involving clause point P ∗
j located in

configuration T2. 80

xi

4.11 Two non-optimal subsets involving clause point P ∗
j located in

configuration T3. 80

4.12 Lemma 4.4(g): A third non-optimal subset involving clause point

P ∗
j located in configuration T3. 81

4.13 Two non-optimal subsets involving clause point P ∗
j located in

configuration F1. 82

4.14 Two non-optimal subsets involving clause point P ∗
j located in

configuration F2. 82

4.15 Two non-optimal subsets involving clause point P ∗
j located in

configuration F3. 83

5.1 One major iteration of the TB heuristic on a sample problem. . 86

5.2 Scatter plots of n = 1000 for the four input distributions. 92

5.3 The normalized ratio vs. p, for the TB and TBr heuristics, for

the four input distribution combinations. Each point (with 95%

confidence interval) is the mean of 50 problem instances with

n = 100. 96

5.4 The normalized ratio vs. p, for the TB and TBr heuristics, for

the four input distribution combinations. Each point (with 95%

confidence interval) is the mean of 50 problem instances with

n = 200. 97

5.5 (EquallyLikely, EquallyLikely) input: The normalized ratio vs.

p, for the TB and TBr heuristics, for problem instances of size

n = 100 and n = 200. Each point (with 95% confidence interval)

is the mean of 50 problem instances. 98

xii

5.6 (EquallyLikely, Bimodal) input: The normalized ratio vs. p, for

the TB and TBr heuristics, for problem instances of size n = 100

and n = 200. Each point (with 95% confidence interval) is the

mean of 50 problem instances. 99

5.7 (Bimodal, Bimodal) input: The normalized ratio vs. p, for the

TB and TBr heuristics, for problem instances of size n = 100

and n = 200. Each point (with 95% confidence interval) is the

mean of 50 problem instances. 100

5.8 (Quadrimodal, Quadrimodal) input: The normalized ratio vs.

p, for the TB and TBr heuristics, for problem instances of size

n = 100 and n = 200. Each point (with 95% confidence interval)

is the mean of 50 problem instances. 101

5.9 Level curves in p for the (EquallyLikely, EquallyLikely) input

combination, n = 100. Top: TB. Bottom: TBr. 102

5.10 Level curves in p for the (EquallyLikely, EquallyLikely) input

combination, n = 200. Top: TB. Bottom: TBr. 103

5.11 Level curves in p for the (EquallyLikely, Bimodal) input combi-

nation, n = 100. Top: TB. Bottom: TBr. 104

5.12 Level curves in p for the (EquallyLikely, Bimodal) input combi-

nation, n = 200. Top: TB. Bottom: TBr. 105

5.13 Level curves in p for the (Bimodal, Bimodal) input combination,

n = 100. Top: TB. Bottom: TBr. 106

5.14 Level curves in p for the (Bimodal, Bimodal) input combination,

n = 200. Top: TB. Bottom: TBr. 107

5.15 Level curves in p for the (Quadrimodal, Quadrimodal) input

combination, n = 100. Top: TB. Bottom: TBr. 108

xiii

5.16 Level curves in p for the (Quadrimodal, Quadrimodal) input

combination, n = 200. Top: TB. Bottom: TBr. 109

xiv

List of Tables

Table

3.1 Tables used in the Quantize algorithm. 17

3.2 Formulas of pdf and cdf input distributions. 22

3.3 Tables used in the Quantize-Continuous algorithm. 48

4.1 Summary of the reduction from planar 3-SAT to DPM2. 62

4.2 Possible moves in a walk around a circuit. 71

5.1 Probability density function for input distributions. 93

Chapter 1

The p-median problem

1.1 A brief history

The p-median problem is: given n demand points, find p supply points

that minimize the sum of the distance from each demand point to its closest

supply point, with respect to a particular distance metric. The choice of dis-

tance measure impacts the complexity of the problem as well as the approach

needed to find a solution. P -median under the Euclidean distance measure has

been in existence since at least the 17th century, when Pierre de Fermat1 posed

the 1-median problem with 3 demand points[14]:

Given three points in the plane, find a fourth point such
that the sum of its distances to the three given points is a
minimum.

At the start of the twentieth century, in one of the founding texts in location

theory, Alfred Weber considered a version of the Euclidean 1-median problem

to determine industrial location while minimizing transport cost [27]. Writing

1The origin of the problem is a matter of debate. See [11] for a historical review of the
1-median (Weber) problem.

2

in 1977, Ostresh noted that the problem “has application to the siting of steel

mills and schools, houses of ill repute and hospitals” [19]. More recently, p-

median has arisen in areas such as statistical cluster analysis, spatial data

mining, and data compression.

In this work, we consider the p-median problem under a new distance

metric, the directional rectilinear distance. In later chapters we will consider

both the single and multiple dimensional cases of the directional p-median

problem, giving optimal solutions for the former and heuristic solutions for the

latter. But first, we present in this chapter an overview of the p-median prob-

lem under traditional distance measures and the definition of the directional

rectilinear metric.

1.2 The p-median problem: continuous and discrete space

In d-dimensional space, d ≥ 2, the continuous p-median problem

allows supply points to be located anywhere in d-space, not merely from among

the given demand points. The discrete problem provides a list of candidate

points from which supply points may be chosen. Let d((xi, yi), (zj, tj)) be the

distance from point (xi, yi) to point (zj , tj) according to some distance metric.

The decision version of the continuous p-median problem in the plane may be

formally stated as:

Problem 1.1 (Continuous-PM2) Given a set X = {(x1, y1), (x2, y2), . . . , (xn, yn)}
of demand points in the plane, an integer p, and a bound B, does there exist

a set

S = {(z1, t1), (z2, t2), . . . , (zp, tp)}

3

of p supply points such that

n∑
i=1

min
1≤j≤p

{d((xi, yi), (zj, tj))} ≤ B ?

Continuous-PM2 is NP-complete under either the Euclidean (de) or

the rectilinear (dr) distance measure [17], where de and dr are defined as:

de((xi, yi), (zj, tj)) =
√

(xi − zj)
2 + (yi − tj)

2

dr((xi, yi), (zj, tj)) = |xi − zj |+ |yi − tj |

Under the rectilinear distance measure, it is well known that only

demand points and intersection points need be considered as candidates for

supply points. Intersection points are found by crossing the set {x1, x2, . . . , xn}
with the set {y1, y2, . . . , yn}, and subtracting the demand points, yielding at

most n2 − n new points. Thus the continuous p-median problem under the

rectilinear distance measure reduces to a discrete p-median problem (see [5] for

a complete treatment of discrete location problems).

The discrete p-median problem in the plane can be formulated as the

following integer program [22]:

Problem 1.2 (Discrete-PM2) Minimize

∑
i∈X

∑
j∈C

dijrij

4

subject to

∑
j∈C

rij = 1 ∀i ∈ X,

rij ≤ sj ∀i ∈ X, j ∈ C,

∑
j∈C

sj = p,

rij , sj ∈ {0, 1} ∀i ∈ X, j ∈ C,

where

i ∈ X = the set of demand points,

j ∈ C = the set of candidate points,

dij = distance from point i to point j,

p = number of supply points to be chosen,

rij =




1 if point i is assigned to candidate j,

0 otherwise,

sj =




1 if candidate j is chosen,

0 otherwise.

The distances between demand points and candidate points are orga-

nized into a distance matrix [dij]. In Section 5.1 we discuss properties of the

distance matrix that affect the difficulty of finding a good quality solution [25].

Figure 1.1 shows the 2-dimensional p-median problem under three dif-

ferent combinations of the solution space (continuous or discrete) and distance

measure (Euclidean or rectilinear).

5

0
0 400200

200

400

600

800

x

y

supply
point

demand
point

0
0 400200

200

400

600

800

x

y

0
0 400200

200

400

600

800

x

y

discrete, Euclideancontinuous, Euclidean continuous, rectilinear
(candidates = demand points)

Figure 1.1: Sample p-median problem instances in the plane, with n = 9
demand points and p = 3 supply points.

Summary of complexity results

In one dimension, the rectilinear and Euclidean distance measures

are the same. Hassin & Tamir demonstrate that the one-dimensional p-median

problem is solved in time O(pn) [13].

In two or more dimensions, p-median is an NP-complete problem un-

der either the rectilinear or the Euclidean distance measure [17]. Chapter 5

discusses a few of the many heuristics developed for this problem.

1.3 A new notion of distance: The directional distance metric

We now define the directional rectilinear distance measure. In gen-

eral, a c-directional, d-dimensional rectilinear metric (with c ≤ d) defines

distance from point (p1, . . . , pd) to (q1, . . . , qd) to be ∞ if pi > qi for some

i ∈ {1, . . . , c} and
∑

1≤i≤d |qi − pi| otherwise. Thus, in a directional p-median

problem, a supply point must achieve or exceed the values of the first c coor-

dinates of all its demand points.

6

In Chapter 4 we show that the rectilinear c-directional, d-dimensional

p-median problem is NP-complete when c = d = 2 (problem DPM2), which

implies NP-completeness for all c, d satisfying 2 ≤ c ≤ d. In the plane, the

2-directional rectilinear distance is:

ddr((xi, yi), (xj, yj)) =




xj − xi + yj − yi if xj ≥ xi and yj ≥ yi,

∞ otherwise

We define directional intersection points to be the subset of inter-

section points that lie above (at least) one demand point as well as to the right

of (at least) one demand point. Specifically, the point (xj, yj) is a directional

intersection point if:

(1) (xj , yj) /∈ X, that is, (xj , yj) is not itself a demand point, and

(2) there exist points (xi, yi) ∈ X and (xk, yk) ∈ X for which xj = xi and

yj = yk and xj > xk and yj > yi.

Figure 1.2 shows the worst case scenario, an instance of DPM2 which has the

most directional intersection points possible, (n2 − n)/2.

1.4 Organization of thesis

Chapter 2 describes two main applications of directional p-median.

Chapter 3 considers the one-dimensional problem, directional p-median on the

real line, which is solvable in polynomial time. The next two chapters consider

the multidimensional problem: Chapter 4 proves it NP-complete and Chapter 5

presents a fast heuristic algorithm for solving it. We conclude in Chapter 6 and

outline some areas for future work.

7

y

x

demand point

directional intersection point

Figure 1.2: Demand points arranged in a downward slope yield the maximum
number of directional intersection points.

Chapter 2

Applications of the directional

p-median problem

We motivate the directional p-median problem by presenting two sam-

ple applications. As compared to many facility location problems found in the

literature, the applications described here will have a much larger number of

candidate points, e.g. thousands or millions instead of hundreds.

2.1 Traffic quantization

The directional p-median problem arises in any network environment

in which a number of lower rate streams are multiplexed for transport over a

higher rate channel. In the emerging optical Wavelength Division Multiplexing

(WDM) networks, where the data rate of a single channel is 2.5 to 10 Gbps,

each channel is capable of carrying hundreds, even thousands, of independent

data streams. Managing and controlling such a large number of traffic streams

at Gigabit per second data rates is an extremely complicated task, while the

9

complexity of certain functions (e.g., Quality of Service scheduling) increases

faster than linearly with the number of data streams.

The multidimensional directional p-median problem corresponds to

demand requests characterized by two or more parameters. For example, a

customer of computing services may request service for various Quality of Ser-

vice (QoS) “resources”, such as bandwidth, burst size, or delay bounds. Rather

than meeting each customer’s demand with a unique level of service, the service

provider may prefer to group (quantize) similar requests into a single service

level, in such a way that any given customer receives at least the amount re-

quested of a given resource. In the plane, a given demand point will be mapped

to a level of service (a supply point) that is located above and to the right of it,

corresponding to a c-directional, d-dimensional distance metric with c = d = 2.

The directional rectilinear metric is appropriate whenever cost of service is a

linear combination of costs along each dimension. The operations of traffic

engineering, packet scheduling and QoS support, network management, traffic

policing, and billing are greatly simplified in a such a network.

Performance analysis is also more tractable in a system offering a

limited number of service levels, since systems with continuous rates give rise

to analytical models with infinite dimensions (note also that these models are

usually approximated by finite-dimensional ones). On the other hand, limiting

the number of supported rates does have a disadvantage in that it may use

more resources (e.g., network bandwidth) than a continuous-rate system to

accommodate a given set of customer requests. Rather than receiving the exact

rate needed, a request may have to subscribe to the next higher rate offered.

As a result, quantization will have an adverse effect on system performance

resulting in either a higher blocking probability (i.e., a higher probability of

10

denying a request compared to a continuous-rate system employing the same

amount of resources) or a lower utilization (since more resources may be needed

to carry the same set of requests as a continuous-rate system).

Lea and Alyatama consider the problem of quantizing packet traffic

in the context of ATM networks, demonstrating that ATM networks offering

a handful of quantized levels suffer little performance degradation compared

to continuous rate networks [15]. Our conclusions are similar although our

approach is different and our results are stronger. Specifically, [15] takes a

queueing theoretic approach, considering a single link with Poisson arrivals,

and uses a heuristic technique (simulated annealing) to obtain a sub-optimal

vector of service levels. In Chapter 3 we use a dynamic programming approach

which allows us to compute the optimal service levels in a very efficient manner.

2.2 Multiprocessor scheduling of periodic tasks

Like data streams vying for data channels, periodic tasks in a sys-

tem of multiple identical processors must contend for the limited resources of

processor time. Tasks must be scheduled (“multiplexed”) such that their dead-

lines are respected. In a multiprocessor system that provides only a (small)

set of quantized service levels, many functions, such as billing and the schedul-

ing, management, and handling of dynamic task requests, will be significantly

simplified as compared to a system offering a continuous spectrum of rates.

In particular, we show in Section 3.6 that the preemptive scheduling of

a set of n periodic tasks on m identical processors is much easier when the task

set has been quantized. In this slotted time model, a periodic task (demand

point) is characterized by a rational density xi, 0 < xi < 1, such that if xi is

11

written as a fraction in lowest terms, xi = Ci

Di
, then Ci is the computation time

(number of subtasks) that must be processed within the period Di.

The system is subject to two constraints: the Processor Constraint

requires that at any instant in time, a processor may work on at most one

subtask, and the Task Constraint requires that at any instant in time, a task

may have a subtask being processed by at most one processor. This model is

nearly identical to that considered in [4] and [7], which does not require the

ratio Ci

Di
to be in lowest terms.

A feasible schedule for this problem exists if and only if
∑n

i=1 xi ≤
m [4], and the fastest scheduling algorithm runs in time O(m log n) at each

slot [3]. The priority of competing subtasks is determined in part by a sub-

task’s slot deadline, the latest slot in which it may be scheduled. Since the

algorithm at each slot selects the m tasks with the most imminent slot dead-

lines, the running time per slot can be no lower than O(m log n). Therefore, this

algorithm may not be appropriate for applications with a very large number

of tasks (n). For instance, consider a web server for a popular web site which

uses multiple processors to serve client requests. Such a web site may receive

millions of requests per minute; therefore, it is essential to have a scheduling

algorithm with a running time independent of the number of requests. Also,

consider the recent announcement by IBM regarding the creation of server

farms that will provide processing power to applications on demand. This

view of processing power as a service that is provided by some form of public

utility may be appealing to both individuals and companies of all sizes (which

may wish to reduce costs by outsourcing their computation needs much like

they “outsource” their power or water needs). Such a public utility will face

very large task sets that are also highly dynamic in nature. Thus, it will have

12

to rely on fast scheduling algorithms in order to provide service in an effective

and efficient manner.

As mentioned in Section 2.1, quantization will have an adverse effect

on performance, either a higher blocking probability compared to a continuous-

rate system, or a lower utilization, since a larger number of processors may be

needed to carry the same set of tasks. However, in applications where n is

very large, we believe that the performance penalty is more than offset by the

improvements in speed and complexity resulting from quantization (as shown

in Section 3.6).

Chapter 3

The directional p-median

problem on the real line

Throughout this chapter, we occasionally refer to the second sample

application from Section 2.2, the scheduling of periodic tasks on a multipro-

cessor. Without loss of generality, we assume that each demand point xi is a

rational number on the interval (0, 1), with the interpretation that xi is the

requested rate of processor share which cannot exceed 1 (representing 100%

utilization of a processor). In Section 3.1, we begin with the formal definition

of the directional p-median problem on the real line (DPM1), and then present

an optimal dynamic programming solution. In Section 3.3, we present the

results of a simulation study that examines the tradeoff penalty due to quan-

tization, in terms of excess resources needed to meet the demands of a set of

quantized requests. We show how to formulate DPM1 as a special case of the

constrained shortest path problem in Section 3.4. In Section 3.5, we introduce

the stochastic directional p-median problem (SDPM1), for which the input is

a probability density function describing the population of demand requests.

14

x x x x x x x x x x x

zzzzzz

xX :

S :

0 1

x
1 2 3 4 5 6 7 98 10 11 12 13

654321

Figure 3.1: Sample mapping of task densities to service levels.

We present an optimal solution for a certain class of probability density func-

tions, as well as an approximate solution. Finally, in Section 3.6, we simplify

the multiprocessor scheduling algorithm from [2] by restricting the number of

service rates (supply points) offered.

3.1 Statement of the problem: DPM1

Let X be a set of n demand points on the real line {x1, . . . , xn}, such

that x1 ≤ x2 ≤ · · · ≤ xn, and let the density of X be ρX =
∑n

i=1 xi. A set of

supply points S = {z1, . . . , zp}, z1 < z2 < · · · < zp, 1 ≤ p ≤ n, is a feasible

solution for X if and only if xi ≤ zp, i = 1 . . . n. For notational convenience,

we assume z0 = 0. Associated with a feasible solution is an implied mapping

from X → S, where xi → zj if and only if zj−1 < xi ≤ zj .

Figure 3.1 shows a sample mapping from a set of 13 demand points

onto a solution set of 6 supply points. Let Xj be the set of demands mapped

to supply point zj , and let |Xj| = nj .

Problem 3.1 (DPM1) Given a set X of n demand points, x1 ≤ x2 ≤ · · · ≤ xn,

find a feasible set S of p supply points, z1 < z2 < · · · < zp, 1 ≤ p ≤ n, which

15

minimizes the following objective function:

gD(z1, . . . , zp) =
p∑

j=1

∑
xi∈Xj

(zj − xi) (3.1)

=
p∑

j=1

(njzj)− ρX (3.2)

= qD(z1, . . . , zp)− ρX (3.3)

The objective function gD represents the performance penalty due to

quantization. That is, gD is the amount of excess resources (in our example,

excess processor load) needed for the system to service the set of quantized

demands, which results after the original demand set has been mapped onto a

solution set of p supply points.

The second term of Equation (3.3), ρX , the requested load, is the

amount of load requested by the original set of demand points, while the first

term, qD(z1, . . . , zp), is the quantization load, the load assigned to the set

of quantized points.1 The minimum (optimal) value of gD is called g∗D, and a

feasible set S at which g∗D is obtained is called an optimal solution set for X.

Minimizing gD also minimizes a quantity called the Normalized Quantization

Load for deterministic input, NQLD:

NQLD =
qD(z1 . . . zp)

ρX
(3.4)

=

∑p
j=1 njzj

ρX
(3.5)

≥ 1 (3.6)

Clearly, the closer NQLD is to 1, the fewer resources are wasted.

1The subscript “D” in gD(z1, . . . , zp) and qD(z1, . . . , zp) stands for deterministic input.
We will derive similar expressions for stochastic input in Section 3.5.

16

For any feasible solution set for which xn < zp, the objective function

gD can be reduced by setting zp = xn. Therefore in an optimal solution set,

the maximum supply point zp must equal the maximum demand point xn.

Furthermore, we can state the following lemma:

Lemma 3.1 Let X be a set of n demand points such that x1 ≤ x2 ≤ · · · ≤ xn.

There exists an optimal solution set S = {t1, . . . , tp}, t1 < t2 < · · · < tp, of X,

for which tj ∈ X, for each j = 1, . . . , p.

Proof. Suppose there exists an optimal solution set of X called S1 = {z1 . . . zp},
z1 < z2 < · · · < zp, for which there exists some za ∈ S1 but za /∈ X . There

can be no xi that is mapped to za. If there were, then za could be moved down

to za −∆, for some ∆ > 0, and the objective function could be lowered, con-

tradicting the optimality of S1. Therefore we can create S from S1 by setting

tj = zj for j 6= a, and ta = xn.

3.2 A dynamic programming algorithm for DPM1: Quantize

We now present the algorithm Quantize which uses a dynamic pro-

gramming approach to obtain an optimal set of supply points for problem

DPM1. This approach is based on the observation that, due to Lemma 3.1,

an optimal set of supply points is a subset of the set X of demand points.

Quantize computes this optimal subset in an efficient manner.

Quantize builds four tables of values described in Table 3.1, and in

doing so finds the optimal value of the objective function g∗D and an optimal

solution set S. The n×n tables Diff and Cumul hold differences and cumulative

sums of differences, respectively, values that will be used to fill in the entries

17

name size defined description of entry i, j

Diff n× n i ≤ j the difference x[j]−x[i]
Cumul n× n j ≤ i sum of entries in column i of Diff,

from row j to row i

Opt n× p j ≤ i minimum value of gD for DPM1
with X = {x1, . . . , xi} and p = j

Prev n× p j ≤ i and j 6= 1 index into x array of zj−1, if zj =x[i].

Table 3.1: Tables used in the Quantize algorithm.

of the n× p table Opt. Entries in Diff and Cumul are calculated according to

the following formulas (the array x holds the elements of the task set X):

Diff[i][j] = x[j]− x[i] , i ≤ j

Cumul[i][j] =
i∑

k=j

Diff[k][i]

=
i∑

k=j

(x[i]− x[k]) , j ≤ i

Filling in a single entry of Opt corresponds to solving one instance of

DPM1; entry (i,j) holds the minimum value of the objective function gD for

an instance of DPM1 in which X = {x1, . . . , xi} and p = j. Each entry of Opt

is calculated recursively, using entries representing smaller problem instances,

that is, an instance having a smaller value of n or a smaller value of p or both.

Specifically:

Opt[i][j] =




0 if i = j

Cumul[i][j] if j = 1

mini−1
k=j−1 {Opt[k][j − 1] + Cumul[i][k + 1]} j < i and j 6= 1

(3.7)

18

Lastly, the n×p table Prev holds the information needed to construct

the optimal solution set S. By Lemma 3.1, each supply point zj ∈ L must take

on the value of some xi ∈ X. Prev[i][j] holds the index into the x array of zj−1,

assuming that zj = xi; that is, if zj = xi, then zj−1 = x[Prev[i][j]]. Prev[i][j]

also equals the value of k at which the minimum was attained in the third

line of Equation (3.7) (or i − 1 if i = j). Note that for j = 1, Prev[i][j] is

undefined, since there is no z0. Thus when Quantize finishes building Prev,

the optimal solution set S can be constructed using only a few lines of code.

The pseudocode description of Quantize can be found in Appendix A.

Correctness proof

Theorem 3.4 below proves the correctness of Quantize by demonstrat-

ing that the value calculated for Opt[n][p] is equal to the optimal value of the

objective function gD for an instance of DPM1 in which a set of n tasks are

optimally quantized (mapped) onto p supply points. We first prove two lemmas

to aid in the proof of Theorem 3.4.

Lemma 3.2 Opt[n][p] = g∗D(z1, . . . , zp) whenever p = n.

Proof. Since there are as many supply points as there are demand points,

each demand point receives exactly the amount of resources it requests; that

is, zi = xi for i = 1, . . . , n. Thus g∗D(z1, . . . , zp) =
∑n

i=1 (zi − xi) = 0, which

agrees with the first case of Equation (3.7).

Lemma 3.3 Opt[n][p] = g∗D(z1, . . . , zp) whenever p = 1.

19

Proof. Since there is only one supply point, then z1 = xn, and thus g∗D(z1) =

∑n
i=1 (xn − xi) = Cumul[n][1], which agrees with the second case of Equa-

tion (3.7).

Theorem 3.4 Opt[n][p] = g∗D(z1, . . . , zp), for n ≥ 1 and 1 ≤ p ≤ n.

Proof. By induction. For the base case, let n = 1 and p = 1. By Lemma 3.2,

Opt[1][1] = g∗D(z1).

Assume Opt[i][j] = g∗D(z1, . . . , zp), for all possible (i,j)-pairs where

i = 1, . . . , n and j = 1, . . . , p, for some n ≥ 1 and 1 ≤ p < n. We now

prove that Opt[n][p + 1] = g∗D(z1, . . . , zp+1). Note that this is sufficient for the

induction step; by Lemma 3.3 we can always fill in the first element of each

row of the Opt table. Then we need only fill in each row from left to right,

beginning with row 1 and proceeding to row 2, etc. Thus for the induction step

it is sufficient to show that we can accurately calculate the next entry (one

column to the right) in the current row, namely Opt[n][p + 1].

Case (a): p + 1 = n. By Lemma 3.2, Opt[n][p + 1] = g∗D(z1, . . . , zp).

Case (b): p+1 < n. The largest supply point must equal the largest demand

point: zp+1 = xn. We next examine all possible values for zp and

choose the one that yields the lowest value of the objective function

gD(z1, . . . , zp+1). According to Lemma 3.1, we need only consider the

demand points as possible values for zp; in particular, zp may only equal

one of the following demands: {xp, xp+1, . . . , xn−1}. Suppose zp = xk,

for some k ∈ {p, p + 1, . . . , n − 1}. Then the demands {xk+1, . . . , xn}
will be mapped to zp+1 = xn, and the contribution to the objective

20

function gD(z1, . . . , zp+1) from the zp+1-mapping alone will be:

n∑
i=k+1

(zp+1 − xi) =
n∑

i=k+1

(xn − xi)

=
n∑

i=k+1

Diff[i][n]

= Cumul[n][k + 1]

This quantity, Cumul[n][k + 1], is exactly the second term inside the

min function of the third case of Equation (3.7). Next, we calcu-

late the contribution to the objective function gD(z1, . . . , zp+1) from

the demand mappings to the remaining supply points z1 to zp; this

contribution depends on the placement of z1 to zp−1 (recall that we

have fixed zp at xk). By the inductive hypothesis, we have already

calculated the optimal placement of z1 to zp−1 whenever zp = xk; in

particular, Opt[k][p] is the minimum value of the objective function

for a problem instance in which X = {x1, . . . , xk} is mapped onto p

supply points, and the Prev table holds the positions of the supply

points that yield this minimum value. Thus the min function of the

third case of Equation (3.7) does the following: for each possible posi-

tion xk for zp, xk ∈ {xp, . . . , xn−1}, it calculates the objective function

gD(z1, . . . , zp+1) = Opt[k][p] + Cumul[n][k + 1], and then chooses the

position that yields the minimum. The chosen value of k is stored in

the Prev table.

21

Analysis of Quantize

The operation of Quantize can be divided into four sequential tasks.

First, the algorithm builds the Diff table in time O(n2). Second, it uses the

Diff table to fill in the entries of the Cumul table, also in time O(n2). Third,

the algorithm builds the Opt table: for an entry calculated using the third line

of Equation (3.7), the min operation inspects at most n sums; hence the line

with the min operation requires time O(n). There are at most np entries in

Opt, and thus Quantize builds the Opt table in time O(n2p). The fourth and

final task of Quantize consists of constructing the optimal solution set S from

the information held in the Prev table, which is accomplished in time O(p).

Therefore, the overall running time of Quantize is O(n2 + n2 + n2p + p) or

O(n2p).

3.3 Performance penalty due to quantization for Quantize

Simulation set-up and input parameters

To determine the penalty in terms of excess resources needed as a

result of quantization, a simulation study was designed using a variety of dif-

ferent types of demand sets X. In particular, six different input distributions

were used to generate demand sets X in the simulations: uniform, triangle,

increasing, decreasing, unimodal, and bimodal. Figures 3.2-3.4 show the graph

of each input distribution’s probability density function. The mathematical

expressions of each probability density function (pdf) and cumulative distribu-

tion function (cdf) are given in Table 3.2. From each input distribution, one

hundred demand sets with n = 100 were generated, and another one hundred

demand sets with n = 1000 were generated. Each demand set was gener-

22

Distribution f(x) F (x) domain

Uniform 1 x 0 < x < 1
Triangle 4x 2x2 0 < x < .5

−4x + 4 −2x2 + 4x− 1 .5 ≤ x < 1
Increasing 2x x2 0 < x < 1
Decreasing −2x + 2 −x2 + 2x 0 < x < 1

4/9 4x/9 0 < x < .25
Unimodal 6 6x− 25/18 .25 ≤ x < .35

4/9 4x/9 + 5/9 .35 ≤ x < 1
1/4 x/4 0 < x < .25
4 4x− 15/16 .25 ≤ x < .35

Bimodal 1/4 x/4 + 3/8 .35 ≤ x < .65
4 4x− 33/16 .65 ≤ x < .75

1/4 x/4 + 3/4 .75 ≤ x < 1

Table 3.2: Formulas of pdf and cdf input distributions.

ated starting from a unique seed for a Lehmer random number generator with

modulus 231 − 1 and multiplier 48271.

Each demand set then served as input to the algorithm Quantize. We

used the normalized quantization load NQLD (defined in Equation (3.4)) as

the measure of the performance penalty due to quantization. For each demand

set, NQLD was calculated for a variety of values of p, the number of supply

points in the optimal solution set.

Simulation results

Figures 3.5-3.7 contain a total of six graphs, one for each input dis-

tribution. Each graph shows NQLD along the y-axis corresponding to values

of p ranging from p = 2, 3, . . . , 100 along the x-axis, for demand sets of size

n = 100 and n = 1000. Each point was generated by averaging NQLD across

one hundred demand sets. The n = 1000 curve lies slightly above the n = 100

curve, yet the general shape of the curves remains the same regardless of X and

23

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

Uniform pdf

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

Triangle pdf

Figure 3.2: Probability density functions for the uniform and triangle input
distributions.

24

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

Increasing pdf

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

Decreasing pdf

Figure 3.3: Probability density functions for the increasing and decreasing
input distributions.

25

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

Unimodal pdf

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

Bimodal pdf

Figure 3.4: Probability density functions for the unimodal and bimodal input
distributions.

26

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

Number of Supply Points (p)

Uniform
n = 100

n = 1000

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

Number of Supply Points (p)

Triangle
n = 100

n = 1000

Figure 3.5: Level curves in n of the normalized quantization load vs. number
of supply points (p). Top: Uniform. Bottom: Triangle.

27

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

Number of Supply Points (p)

Increasing
n = 100

n = 1000

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

Number of Supply Points (p)

Decreasing
n = 100

n = 1000

Figure 3.6: Level curves in n of the normalized quantization load vs. number
of supply points (p). Top: Increasing. Bottom: Decreasing.

28

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

Number of Supply Points p)

Unimodal
n = 100

n = 1000

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

Number of Supply Points (p)

Bimodal
n = 100

n = 1000

Figure 3.7: Level curves in n of the normalized quantization load vs. number
of supply points (p). Top: Unimodal. Bottom: Bimodal.

29

input distribution: NQLD drops immediately as p increases. In each graph,

NQLD has dropped below 1.05 at an p-value ≤ 20, for both the n = 100 curve

and the n = 1000 curve. In the multiprocessor example, this result means

that by using only 20 (or fewer) rate levels (supply points), we can adequately

service demand sets of 100 or even 1000 rate requests, dedicating no more than

5% processor resources beyond the amount requested. Another interpretation

is that, for a fixed amount of processor resources, we can accept rate requests

up to approximately 95% capacity.

Figure 3.8 contains two graphs using the uniform input distribution.

The top graph shows NQLD along the y-axis corresponding to each of the one

hundred individual demand sets X for n = 100. The bottom graph shows

the same, for one hundred demand sets with n = 1000. Level curves for

p = 2, 4, 6, 8, 10, 15 and 20 are shown. These graphs present the information

contained within the uniform-input graph of Figure 3.5 in a different way; the

single point at, say, p = 10 in the n = 100 (respectively, n = 1000) uniform-

input graph of Figure 3.5 was created from averaging the NQLD values of the

100 points shown in the level curve for p = 10 in the top (respectively, bottom)

graph of Figure 3.8. As expected, we see that as the number of supply points

used for quantization increases, the normalized quantization load improves;

that is, as p increases, NQLD approaches 1 from above. Comparing the top

graph to the bottom graph, we can see that the variation in NQLD decreases

as the task set X increases in size from n = 100 to n = 1000.

Figures similar to Figure 3.8 for the remaining input distributions

exhibit similar characteristics (Figures 3.9-3.13).

30

1

1.1

1.2

1.3

1.4

1.5

1.6

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

Demand Set

p = 2
p = 4
p = 6
p = 8

p = 10
p = 15
p = 20

1

1.1

1.2

1.3

1.4

1.5

1.6

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

Demand Set

p = 2
p = 4
p = 6
p = 8

p = 10
p = 15
p = 20

Figure 3.8: Uniform input: Level curves in p of the normalized quantization
load, for 100 individual demand sets. Top: n = 100. Bottom: n = 1000.

31

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

Demand Set

p = 2
p = 4
p = 6
p = 8

p = 10
p = 15
p = 20

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

Demand Set

p = 2
p = 4
p = 6
p = 8

p = 10
p = 15
p = 20

Figure 3.9: Triangle input: Level curves in p of the normalized quantization
load, for 100 individual task sets. Top: n = 100. Bottom: n = 1000.

32

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

Demand Set

p = 2
p = 4
p = 6
p = 8

p = 10
p = 15
p = 20

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

Demand Set

p = 2
p = 4
p = 6
p = 8

p = 10
p = 15
p = 20

Figure 3.10: Increasing input: Level curves in p of the normalized quantization
load, for 100 individual demand sets. Top: n = 100. Bottom: n = 1000.

33

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

Demand Set

p = 2
p = 4
p = 6
p = 8

p = 10
p = 15
p = 20

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

Demand Set

p = 2
p = 4
p = 6
p = 8

p = 10
p = 15
p = 20

Figure 3.11: Decreasing input: Level curves in p of the normalized quantization
load, for 100 individual demand sets. Top: n = 100. Bottom: n = 1000.

34

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

Demand Set

p = 2
p = 4
p = 6
p = 8

p = 10
p = 15
p = 20

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

Demand Set

p = 2
p = 4
p = 6
p = 8

p = 10
p = 15
p = 20

Figure 3.12: Unimodal input: Level curves in p of the normalized quantization
load, for 100 individual demand sets. Top: n = 100. Bottom: n = 1000.

35

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

Demand Set

p = 2
p = 4
p = 6
p = 8

p = 10
p = 15
p = 20

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

Demand Set

p = 2
p = 4
p = 6
p = 8

p = 10
p = 15
p = 20

Figure 3.13: Bimodal input: Level curves in p of the normalized quantization
load, for 100 individual demand sets. Top: n = 100. Bottom: n = 1000.

36

0 1 2 3 4 5
0000 0

(x − x)+(x − x)+(x − x)

(x − x)+(x − x)

(x − x)+(x − x)+(x − x)

(x − x) (x − x)

(x − x)

(x − x)+(x − x)+(x − x)+(x − x)
5 4 5 3 5 2 5 1

4 3 4 2 4 1

(x − x)+(x − x)
3 2 3 1

(x − x)
2 1

3 2

4 3 4 2

5 4 5 3 5 2

4 3

(x − x)+(x − x)
5 4 5 3

5 4

Figure 3.14: Graph representation of an instance of DPM1 with n = 5.

3.4 Graph representation of DPM1: A faster algorithm

Let G = (V, E) be a weighted, complete, directed acyclic graph

(DAG), with the vertex set V = 0, 1, · · · , n and arc weights w(i, j) for arc

(i, j) from vertex i to vertex j, 0 ≤ i < j. Solving problem DPM1 is equiv-

alent to finding a minimum weight p-link path from vertex 0 to vertex n in

G, a special case of the constrained shortest path problem (which is listed as

problem ND30 in [12]) (see also [28]). Further, the arc weights in the graph

representation of DPM1 can be shown to have the concave Monge property,

allowing a solution in time O
(
n
√

p log n
)

[1], instead of the O(n2p) required

by algorithm Quantize. Figure 3.14 shows the graph for an instance of DPM1

with n = 5.

For each demand xi there is one node i. In addition we create a

dummy node 0. Let w(i, k) be the arc weight from vertex i to vertex k. The

value of w(i, k) represents the cost of mapping demand points i + 1, i + 2, . . .,

37

k to demand point k. We therefore assign w(i, k) the following value:

w(i, k) =




0, k = i + 1

(k − i− 1)xk −∑k−1
j=i+1 xj , k > i + 1

The objective is to find the minimum weight path from vertex 0 to

vertex n that has exactly p arcs. A path t in a DAG is a sequence of arcs:

t : (i0, i1), (i1, i2), . . . , (ir−1, ir)

Path t is called a (0-n)-path if i0 = 0 and ir = n; that is, t begins at vertex 0

and ends at vertex n. The weight of path t is simply:

w(t) = w(i0, i1) + w(i1, i2) + · · ·+ w(ir−1, ir)

Any p-link path t = (i0, i1), (i1, i2), . . . , (ip−1, ip) with i0 = 0 and

ip = n is a feasible solution for DPM1. The interpretation of this path is

as follows. The demand points corresponding to nodes i1, i2, . . . , ip are desig-

nated as supply points. For example, in Figure 3.14, suppose p = 3, and let

(0,2,4,5) be a feasible 3-link path. Then the corresponding feasible solution

for DPM1 is z1 = x2, z2 = x4, and z3 = x5. The sum of the arc weights for

this path equals the objective function value for the implied mapping for the

corresponding solution S = {z1, z2, z3}, namely:

w(t) = w(0, 2) + w(2, 4) + w(4, 5)

= (x2 − x1) + (x4 − x3) + 0

38

Let G = (V, E) be a weighted, complete DAG, with V = v0, v1, · · · , vn.

G satisfies the concave Monge condition if

w(i, j) + w(i + 1, j + 1) ≤ w(i, j + 1) + w(i + 1, j) (3.8)

holds for all 0 < i + 1 < j < n. It is easily shown that the arc weights for the

graph representation of DPM1 obey this condition. We evaluate the left hand

side (LHS) and right hand side (RHS) of Equation (3.8), and then show that

RHS− LHS ≥ 0.

LHS = w(i, j) + w(i + 1, j + 1)

= (j − i− 1)xj −
j−1∑

m=i+1

xm + (j − i− 1)xj+1 −
j∑

m=i+2

xm

RHS = w(i, j + 1) + w(i + 1, j)

= (j − i)xj+1 −
j∑

m=i+1

xm + (j − i− 2)xj −
j−1∑

m=i+2

xm

RHS− LHS = (j − i− (j − i− 1))xj+1 + (j − i− 2− (j − i− 1))xj

+


 j−1∑

m=i+1

xm −
j∑

m=i+1

xm +
j∑

m=i+2

xm −
j−1∑

m=i+2

xm




= xj+1 − xj + (−xj + xj)

= xj+1 − xj

39

f()

S : z z z z z z

x

x

0 1

6
1 2 3 4 5

Figure 3.15: Sample mapping from the domain of f(x) to a solution set of 6
supply points.

Recalling that x1 ≤ x2 ≤ · · · ≤ xn, then we have

RHS− LHS = xj+1 − xj ≥ 0 .

Thus the arc weights of the DPM1 graph representation obey the

concave Monge property, and DPM1 can be solved in time O
(
n
√

p log n
)

using

the algorithm in [1].

3.5 The stochastic directional p-median problem on the real line

3.5.1 Statement of the problem: SDPM1

We now consider a variation of the directional p-median problem il-

lustrated in Figure 3.15. Let f(x) and F (x) be the probability density function

and cumulative distribution function, respectively, representing the population

of demand points, with domain wholly contained within (0, 1). Let µ be the

mean of f(x) and let b ≤ 1 be the least upper bound on the domain of f(x). A

set S = {z1, . . . , zp}, 0 < z1 < z2 < · · · < zp < 1, is a feasible solution of f(x)

40

if and only if b ≤ zp. For notational convenience, we set z0 = 0. Notice that

each zj is unique. Associated with a feasible solution is an implied mapping

from the domain of f(x) into S, where x → zj if and only if zj−1 < x ≤ zj . We

may also write the implied mapping as (xlower, xupper] → zj, where xlower = zj−1

and xupper = zj.

Problem 3.2 (SDPM1) Given f(x), F (x), and µ as defined above, find a

feasible solution of p quantized supply points zj , j = 1, . . . , p, such that the

following objective function is minimized:

gS(z1, . . . , zp) =
p∑

j=1

(∫ zj

zj−1

(zj − x) f(x) dx

)
(3.9)

=
p∑

j=1

(∫ zj

zj−1

zj f(x) dx

)
−

p∑
j=1

(∫ zj

zj−1

x f(x) dx

)
(3.10)

=
p∑

j=1

(
zj

∫ zj

zj−1

f(x) dx

)
− µ (3.11)

= qS(z1, . . . , zp)− µ (3.12)

Notice that gS(z1 . . . zp) is the average penalty per demand of ex-

cess resources used by the quantized set above that requested by the original

demand set. The second term of Equation (3.12), µ, is the average load re-

quested by a demand point, while the first term, qS(z1, . . . , zp), is the average

quantization load, that is, the average load across the set of quantized de-

mands. In contrast, in the deterministic input case given in Equation (3.3),

gD(z1, . . . , zp) = qD(z1, . . . , zp) − ρX is the total penalty under quantization

for a particular demand set X, not the average, and qD(z1, . . . , zp) (respec-

tively, ρX) is the total load for the quantized demand set (respectively, for the

original demand set). We reach this conclusion mathematically by dividing

41

Equation (3.2) by n and taking the limit as n goes to infinity:

lim
n→∞

gD(z1, . . . , zp)

n
= lim

n→∞


 1

n


 p∑

j=1

(njzj)− ρX






= lim
n→∞


 p∑

j=1

(
nj

n
zj

)− lim
n→∞

(
ρX

n

)

=
p∑

j=1

(
zj lim

n→∞

(
nj

n

))
− µ

Notice that the limit of nj/n as n goes to infinity equals the proportion

of xi’s that fall within the interval (zj−1, zj), or
∫ zj
zj−1

f(x) dx. Thus we have:

lim
n→∞

gD(z1, . . . , zp)

n
=

p∑
j=1

(
zj

∫ zj

zj−1

f(x) dx

)
− µ

= gS(z1, . . . , zp)

We can find an expression for Normalized Quantization Load for

stochastic input, NQLS, by taking the limit of Equation (3.5) as n goes to

infinity (notice that in going from Equation (3.13) to (3.14) below, we multiply

the numerator and denominator by 1/n):

NQLS = lim
n→∞

∑p
j=1 (njzj)

ρX
(3.13)

= lim
n→∞

∑p
j=1

(
nj

n
zj

)
ρX

n

(3.14)

=

∑p
j=1

(
zj limn→∞

(
nj

n

))
limn→∞

(
ρX

n

) (3.15)

=

∑p
j=1

(
zj

∫ zj
zj−1

f(x) dx
)

µ
(3.16)

=
qS(z1, . . . , zp)

µ
(3.17)

42

Because µ is a constant for a given f(x), both the objective function

gS(z1, . . . , zp) and the Normalized Quantization Load NQLS are minimized

whenever the average quantization load qS(z1, . . . , zp) is minimized. The fol-

lowing lemma is analogous to the fact that, in the deterministic case, the largest

supply point in an optimal quantization set must equal the largest demand

point xn.

Lemma 3.5 Let f(x), F (x), and b be defined as above. Let S = {z1, . . . , zp},
0 < z1 < z2 < · · · < zp < 1, be an optimal solution of f(x). Then zp = b.

Proof. By contradiction. Suppose zp 6= b. From the definition of a feasible

solution, we know b ≤ zp; thus b < zp. The values currently mapped to zp lie

in the interval (zp−1, b]. Moving zp down to b will reduce the objective function

by a non-negligible amount equal to (zp− b)
∫ b
zp−1

f(x) dx. This contradicts the

optimality of S. Thus zp = b.

3.5.2 Optimal solution through nonlinear programming

For a given cumulative distribution function F (x) and given values of

p and b, we can optimally solve problem SDPM1 using the method described

in this section, whenever F (x) is (1) twice differentiable and (2) not piecewise

defined, over the entire domain of F (x). In Section 3.5.3 we present an approx-

imate solution for instances of SDPM1 for which F (x) fails to have these two

properties.

Rewriting gS(z1, . . . , zp) from Equation (3.11), we have the following

43

optimization problem:

Minimize gS(z1, . . . , zp) =
p∑

j=1

(zj (F (zj)− F (zj−1))) − µ

subject to : 0 < z1 < z2 < · · · < zp−1 < zp = b

When F (x) is twice differentiable and not piecewise defined, f(x) and

f ′(x) are also not piecewise defined. Specifically, for each of F (x), f(x), and

f ′(x), it is possible to write the function as a single closed form expression

over its entire domain, a necessary property for applying the following method:

locate a critical point of gS and then verify that the point is a minimum.

To find a critical point, we set the first order partial derivatives of

gS with respect to zj , j = 1, . . . , p − 1, equal to zero, yielding a set of p − 1

simultaneous differential equations in p − 1 unknowns. The highest service

level zp is known; from Lemma 3.5we know zp = b. It will then be possible to

solve for each zj , j = 2, . . . , p, in terms of z1 only. Since zp = b, we can find

z1. Through back-substitution we can then obtain the remaining values for zj ,

j = 2, . . . , p− 1.

Taking the partial derivative of gS with respect to zj , j = 1, . . . , p−1,

we have:

∂gS

∂zj
= zj

∂F (zj)

∂zj
+ (F (zj)− F (zj−1))− zj+1

∂F (zj)

∂zj
(3.18)

= (zj − zj+1)
∂F (zj)

∂zj
+ F (zj)− F (zj−1) (3.19)

= (zj − zj+1)f(zj) + F (zj)− F (zj−1) (3.20)

From the equation ∂gS

∂zj
= 0, j = 1, . . . , p− 1, we can solve for zj+1 in

44

terms of zj and zj−1:

zj+1 = zj +
F (zj)− F (zj−1)

f(zj)
(3.21)

Since z0 = 0, then F (z0) = 0. For the equation corresponding to

∂gS

∂z1
= 0, we have:

z2 = z1 +
F (z1)

f(z1)
(3.22)

Thus we have z2 in terms of z1 only. For the equation corresponding to ∂gS

∂z2
= 0,

we have:

z3 = z2 +
F (z2)− F (z1)

f(z2)
(3.23)

Using Equation (3.22) to substitute for z2 in Equation (3.23) above

gives an expression for z3 in terms of z1 only. For the equation corresponding

to ∂gS

∂z3
= 0, we have:

z4 = z3 +
F (z3)− F (z2)

f(z3)
(3.24)

Since we already have both z3 and z2 in terms of z1 only, we can

use substitution to get z4 in terms of z1 only. In general, we can obtain an

expression for zj+1 in terms of z1 only, after using substitution in the equation

corresponding to ∂gS

∂zj
= 0. The final equation, corresponding to ∂gS

∂zp−1
= 0, is:

b = zp = zp−1 +
F (zp−1)− F (zp−2)

f(zp−1)

After substitution, the left-hand side of this equation is the constant

b, and the right-hand side is a function of z1. Thus we can solve for z1. All

45

other values of zj , j = 2, . . . , p− 1, can be obtained once z1 is known.

Notice that the feasible region, defined by 0 < z1 < z2 < . . . < zp−1 <

zp = b, is a convex set. If F (x) is a convex function, then gS is also convex, and

the critical point (z1, z2, . . . , zp−1) will be a global minimum. Otherwise, the

critical point (z1, z2, . . . , zp−1) is a minimum if and only if the Hessian matrix

of second partial derivatives of gS is positive definite. Since the Hessian for gS

turns out to be a symmetric tridiagonal matrix, it can be shown to be positive

definite (or not) in time O(p2) [8].

Example: Solution for the uniform input distribution. Due to the

simplicity of the uniform distribution, namely f(x) = 1 and F (x) = x, it is

possible to solve for the optimal values of z1, . . . , zp−1 without specifying a

particular value for p. The domain of the uniform distribution is (0, 1), thus

from Lemma 3.5 we have zp = 1. Using Equation (3.21) we have:

zj+1 = zj +
zj − zj−1

1

= 2zj − zj−1

Recalling z0 = 0, the first equation (corresponding to ∂gS

∂z1
= 0) yields:

z2 = 2z1. From the second equation we have: z3 = 2z2 − z1 = 3z1; from the

third: z4 = 2z3 − z2 = 4z1; and so on, up to the (p− 1)st equation: zp = pz1.

In general, zj = jz1 for j = 2, . . . , p. Using the additional information that

zp = 1, we have that zp = pz1 = 1. Thus z1 = 1
p
, and for j = 2, . . . , p − 1 we

have zj = j
p
. This result confirms our intuition, which tells us that whenever

demand points are scattered uniformly on (0, 1), the best approach is to place

the p supply points at equal intervals on (0, 1).

46

K K K K K K K

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��������
x

xf()

K
KK−1

0 1

1 2 3 4 5 6

Figure 3.16: Forming a pdf approximation: The area under f(x) over an inter-
val is paired with the right-hand endpoint of the interval.

3.5.3 An approximate solution: Algorithm Quantize-Continuous

For any given cumulative distribution function F (x) and given values

of p and b, we can find an approximate solution to problem SDPM1 using the

method described in this section and illustrated in Figure 3.16. This approx-

imation is necessary whenever F (x) is piecewise defined or fails to be twice

differentiable; in addition, this approximation may be used whenever the com-

plexity of F (x) and f(x) make the approach of Section 3.5.2 difficult.

It is possible to create a discrete approximation of the pdf and use

an algorithm similar to Quantize to find an estimate of the optimal solution

set S. That is, the new algorithm, called Quantize-Continuous, will find the

optimal quantization set for a given approximation of a pdf. The better the

pdf approximation, the closer the estimate will be to the true optimal solution

for the pdf.

In particular, we can choose an integer K > p and partition the

interval (0, 1) into K intervals (i−1
K

, i
K

), i = 1, . . . , K. The right-hand endpoint

47

of the ith interval is ei = i
K

; we associate with ei a discrete point mass density

mi =
∫ i

k

i−1
k

f(x) dx .

These K ordered pairs {(ei, mi)} form the approximation of f(x) that serves

as input to the algorithm Quantize-Continuous, which selects the zj ’s of the

optimal solution set S from among the K endpoint values {ei}.
Quantize-Continuous differs from Quantize in several ways. First, the

input to Quantize-Continuous is the collection of K ordered pairs {(ei, mi)},
while the input to Quantize is the set of demand points X, containing n values

of xi. Second, the tables Diff and Cumul are replaced by the K × K tables

Sum and Prod:

Sum[i][j] =
j∑

s=i

m[s] , i ≤ j

Prod[i][j] = e[i] · Sum[j][i] , j ≤ i

Lastly, Quantize-Continuous minimizes the average quantization load qS(z1, . . . , zp)

(and holds these values in a K×p table called AQL), whereas Quantize minimizes

the total quantization load qD(z1, . . . , zp) (and holds the values of qD(z1, . . . , zp)−
ρX = gD(z1, . . . , zp) in the Opt table). Apart from these differences, the two

algorithms are very similar, in that the same code used in Quantize to build

Opt (using Cumul) is exactly the same code used in Quantize-Continuous to

build AQL (using Prod in the place of Cumul). Quantize-Continuous runs in

time O(K2p) and Quantize runs in time O(n2p); these time complexities are

identical, since K and n simply represent the size of the input. Table 3.3

summarizes the main data structures used by Quantize-Continuous.

48

name size defined description of entry i, j

Sum K ×K i ≤ j the sum:
∑j

s=i m[s]

Prod K ×K j ≤ i the product: e[i]×Sum[j][i]
AQL K × p j ≤ i portion of gS due to an optimal choice

of p = j from (e1,m1) . . . (ei,mi)
Prev K × p j ≤ i, j 6= 1 index into e array of zj−1, if zj =e[i]

Table 3.3: Tables used in the Quantize-Continuous algorithm.

Note that the entry AQL[i][j] holds the minimum value of qS for a

subset of the larger problem instance of SDPM1 that we wish to solve; namely,

AQL[i][j] is the portion of qS(z1, . . . , zp) that arises from optimally choosing j

service levels to quantize the first i pairs (e1, m1) up to (ei, mi). (AQL[i][j] does

not hold the minimum value of qS for a smaller problem instance of SDPM1

in which the K = i and p = j.) The pseudocode description of Quantize-

Continuous can be found in Appendix B.

3.5.4 Performance of Quantize-Continuous on six input distribu-

tions

To evaluate the performance of Quantize-Continuous, we ran the al-

gorithm on the six different input distributions described in Section 3.3 for

a variety of values of K and p. In particular, we allowed K to take on the

values 10, 15, 20, . . . , 100 and p the values from 2 to 50. However, in the

graphs of Figures 3.17-3.19, we have chosen only to display level curves of p for

p = 5, 10, 15, 20, 25, 30, and 35. These three figures contain two graphs apiece,

corresponding to the six different input distributions as input to Quantize-

Continuous. We have plotted the value of the normalized quantization load

NQLS on the y-axis corresponding to a particular value of K along the x-axis.

49

As expected, the level curves of p approach 1 as p increases. Notice also that,

for a particular value of p, as K increases, the value of NQLS decreases slightly

and immediately settles down to a particular value. For example, in the bottom

graph (triangle input) of Figure 3.17, the level curve of p = 20 settles down

to a value of NQLS ≈ 1.045 as early as K = 25. Therefore by dividing the

interval (0, 1) into as few as 25 smaller intervals, we can adequately estimate

the effect on required resources due to quantization into 20 supply points.

In the bottom graph (bimodal input) of Figure 3.19, the level curves

of p don’t appear to settle down as quickly; instead they possess an interesting

sinusoidal shape. We therefore generated another graph (Figure 3.20) for the

bimodal distribution, this time letting K take on the values 10, 15, 20, . . . , 300.

From K = 100 to K = 300, the sinusoidal shape quickly decreases in amplitude

and settles down to a particular value of NQLS . The shape can be attributed

to the endpoints of the K intervals adequately falling along the points of dis-

continuity of the pdf. The first peak in the bimodal distribution rises at x = .25

and falls at x = .35, and the second peak rises at x = .65 and falls at x = .75.

When K = 20, 40, 60, . . ., there are endpoints ei that exactly equal .25, .35,

.65, and .75; further, these K values correspond to the valleys (lower values of

NQLS) of the level curves of p.

Thus a probability density function f(x) with discontinuities is better

approximated (hence Quantize-Continuous performs better) whenever the K

intervals are chosen such that the endpoints lie at the points of discontinuity.

In fact, Quantize-Continuous does not require that the input pairs (ei, mi)

be evenly spaced along the interval (0, 1). Therefore whenever f(x) has many

discontinuities, the endpoints ei may be particularly chosen to fall at the points

of discontinuity to achieve better performance from Quantize-Continuous.

50

1

1.05

1.1

1.15

1.2

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

K

Uniform
p = 5

p = 10
p = 15
p = 20
p = 25
p = 30
p = 35

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

K

Triangle
p = 5

p = 10
p = 15
p = 20
p = 25
p = 30
p = 35

Figure 3.17: Level curves in p of the normalized quantization load, for K =
10, 15, . . . , 100. Top: Uniform. Bottom: Triangle.

51

1

1.02

1.04

1.06

1.08

1.1

1.12

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

K

Increasing
p = 5

p = 10
p = 15
p = 20
p = 25
p = 30
p = 35

1

1.05

1.1

1.15

1.2

1.25

1.3

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

K

Decreasing
p = 5

p = 10
p = 15
p = 20
p = 25
p = 30
p = 35

Figure 3.18: Level curves in p of the normalized quantization load, for K =
10, 15, . . . , 100. Top: Increasing. Bottom: Decreasing.

52

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

K

Unimodal
p = 5

p = 10
p = 15
p = 20
p = 25
p = 30
p = 35

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

0 20 40 60 80 100

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

K

Bimodal
p = 5

p = 10
p = 15
p = 20
p = 25
p = 30
p = 35

Figure 3.19: Level curves in p of the normalized quantization load, for K =
10, 15, . . . , 100. Top: Unimodal. Bottom: Bimodal.

53

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

0 50 100 150 200 250 300

N
or

m
al

iz
ed

 Q
ua

nt
iz

at
io

n
Lo

ad

K

Bimodal
p = 5

p = 10
p = 15
p = 20
p = 25
p = 30
p = 35

Figure 3.20: Bimodal: Level curves in p of the normalized quantization load,
for K = 10, 15, . . . , 300.

54

3.6 Application: Improved complexity for scheduling periodic tasks

on a multiprocessor

In Section 2.2 we introduced the problem of scheduling n periodic

tasks on m identical processors. The algorithm PD2 is the fastest known al-

gorithm that will create a feasible schedule for periodic task sets which satisfy

the necessary and sufficient condition
∑n

i=1 xi ≤ m [2]. Here, we give a faster

algorithm (Q-PD2) that schedules a quantized set of periodic tasks.

Recall from Section 2.2 that PD2 uses the slot deadline associated

with each subtask to prioritize subtasks for scheduling. Generally speaking,

the next subtask of a particular task becomes eligible for processing only after

the previous subtask’s slot deadline has passed.2 The online implementation

of PD2 presented in [2] has the following main phases:

(1) Pre-Processing. The algorithm inserts the initial eligible subtask of

each of the n tasks into a heap H , which holds all subtasks currently

eligible for processing.

(2) Scheduling. At each time slot:

(a) Selection. The algorithm chooses a total of m eligible subtasks to

process. It chooses subtasks according to most imminent deadline,

and breaks ties in constant time.

(b) Update. For each task corresponding to one of the m selected

subtasks, the algorithm calculates the earliest time slot t at which

the task’s next subtask will become eligible. It then inserts this

2Depending on the value of a task’s density xi = Ci

Di
, the windows of time in which

neighboring subtasks are eligible may, in fact, overlap by at most one slot. The reader is
referred to [2] for details.

55

next subtask into a heap Ht according to its deadline. Since there

are n tasks in all, the number of non-empty heaps is at most n+1.

PD2 completes the Pre-Processing phase in time O(n). During the Schedul-

ing phase, PD2 completes Selection in time O(m logn) and Update in time

O(m log n). At any point in time, for each task, at most one subtask (the next

one to be processed) is stored in one of several heaps: heap H if the subtask

is currently eligible, or heap Ht if time slot t is the next earliest slot that the

subtask will be eligible.

We propose modifying PD2 to create a new algorithm called Quantized-

PD2, or Q-PD2. We use the same priority definition as PD2; that is, we use

the same rules during the Selection phase to choose m eligible subtasks for

processing. Taking advantage of the quantized input, we replace the collection

of heaps with a set of p queues, one for each service level (supply point) zj .

During the Pre-Processing phase, the initial eligible subtask of each of the n

tasks is inserted in arbitrary order into the queue corresponding to its assigned

service level. Initially, all subtasks within a given queue have the same deadline

and hence the same priority. Choosing the eligible head-of-line subtask with

the highest priority from among the p queues can be done in time O(1) (recall

that, for the scheduling problem, p is a constant; it doesn’t depend on n or m).

The Selection phase can therefore be completed in time O(m). Next, for each

of the m selected subtasks, the Update phase involves:

(1) calculating the time t_next at which the task’s next subtask will be-

come eligible,

(2) calculating the priority of the next subtask at time t_next, and

56

(3) placing the next subtask at the end of its queue.

Each of these three actions for updating a single task requires time O(1), so in

total the Update phase requires time O(m).

Therefore Q-PD2 has a per slot time complexity of O(m) as compared

to O(m logn) for PD2. The Pre-Processing phase time complexity remains un-

changed at O(n). The pseudocode description of Q-PD2 is given in Appendix C.

3.7 Conclusion

In this chapter we considered two variants of the one-dimensional

directional p-median problem. In the first, DPM1, the input is a finite set of

demand points, and in the second, SDPM1, the input is the probability density

function representing the population of demand points. We presented optimal

solutions in each case. However, as we will see in the next chapter, the addition

of even one more dimension causes directional p-median to become intractable.

Chapter 4

The complexity of directional

p-median in two or more

dimensions

In Chapter 3 we introduced the one-dimensional directional p-median

problem (DPM1) and showed that it can be solved in time O
(
n
√

p log n
)

by restating the problem as a constrained shortest path problem. In this

chapter we define the multidimensional counterpart of DPM1, the rectilin-

ear c-directional, d-dimensional p-median problem, and prove it NP-complete.

Chapter 5 presents an efficient heuristic for the multidimensional problem.

Recall that the one-dimensional (non-directional) p-median problem

is solved in time O(pn) [13]. In two or more dimensions, the (non-directional)

continuous p-median problem (Problem 1.1) is NP-complete under either the

Euclidean or the rectilinear distance measure [17]. In the rectilinear case, only

intersection points (defined in Section 1.2) need be considered as candidate sites

58

for supply points, which reduces the problem to a discrete p-median problem.

Similarly, the p-median problem under the directional rectilinear dis-

tance measure reduces to a discrete problem, and only directional intersection

points need be considered as candidates. Recall from Section 1.3 that we de-

fine the c-directional, d-dimensional rectilinear distance (with c ≤ d) from

point (p1, . . . , pd) to (q1, . . . , qd) to be ∞ if pi > qi for some i ∈ {1, . . . , c} and

∑
1≤i≤d |qi − pi| otherwise. Under a directional metric, a supply point must

achieve or exceed the values of the first c coordinates of its assigned demand

points. Notice that the distance matrix [dij], where dij is the distance from

point i to point j, is not symmetric, because if dij is finite and dij > 0, then dji

is necessarily infinite. However, the directional distance measure does obey the

triangle inequality (dij ≤ dik +dkj for any three points i, j, and k), a character-

istic which bodes well for the performance of heuristics for this problem [25].

The multidimensional directional p-median problem arises when at-

tempting to proportion a network to satisfy the various Quality of Service (QoS)

demands of many customers, where a particular level of QoS is described by

d ≥ 2 parameters. In two dimensions, for example, a service provider may

characterize its service using the two parameters average transmission rate ρ

and maximum burst size σ. Each customer requests a level of service described

by an ordered pair (ρi, σi), and the collection of thousands of requests is a

scatter plot in the (ρ, σ)-plane. In an effort to simplify network operations, the

service provider may prefer to group similar requests into a single service level,

in such a way that any given customer receives at least the amount requested.

That is, a given demand point in the plane will be mapped to a supply point

that is located above and to the right of it, corresponding to a c-directional,

d-dimensional distance metric with c = d = 2.

59

The rest of the chapter is organized as follows. We begin in Sec-

tion 4.1 with a precise statement of the decision version of the problem for

c = d = 2 (DPM2). We show that DPM2 is NP-complete, which implies NP-

completeness for all c, d satisfying 2 ≤ c ≤ d. Sections 4.2 and 4.3 describe

the two main components in the reduction from planar 3-SAT, circuits and

clause configurations. We then present a sketch of the proof in Section 4.4.

Sections 4.5.2 and 4.5.5 contain details of the proof.

4.1 Directional p-median in two dimensions

Our main result is that the (decision version of the) directional, rec-

tilinear p-median problem is NP-complete in two dimensions. In the pre-

cise statement of the problem which follows, let ddr((xi, yi), (xj, yj)) be the

2-directional rectilinear distance from point (xi, yi) to point (xj , yj). That is,

ddr((xi, yi), (xj, yj)) =




xj − xi + yj − yi if xj ≥ xi and yj ≥ yi,

∞ otherwise

Problem 4.1 (DPM2) Given a set X = {(x1, y1), (x2, y2), . . . , (xn, yn)} of

points in the plane, an integer p, and a bound B, does there exist a set

S = {(z1, t1), (z2, t2), . . . , (zp, tp)}

of p points such that

n∑
i=1

min
1≤j≤p

{ddr((xi, yi), (zj, tj))} ≤ B ?

Our reduction is from planar 3-SAT, the non-polar version (see [18]),

60

first proved NP-complete by Lichtenstein [16]. An instance of planar 3-SAT

consists of a conjunctive normal form (CNF) formula with three literals per

clause, each literal being either a variable or its negation. In addition, the

graph representation of this formula must be planar. To build the graph repre-

sentation, we create a vertex for each variable and a vertex for each clause. We

add edges to connect variable v’s vertex to the vertex of any clause in which v

or its negation appears. The graph must remain planar even if we add a cycle

that traverses the variable vertices in some order.

Fig. 4.1(a) shows the planar graph for the formula E1 ∧E2 ∧E3 ∧E4,

where E1 = (u1 ∨ u2 ∨ u3), E2 = (u3 ∨ u4 ∨ u5), E3 = (u2 ∨ u3 ∨ u4), and

E4 = (u1 ∨ u4 ∨ u5) (and also for 212 − 1 other formulas that have the same

variables in the same clauses and differ only in whether or not a particular

occurrence is negated). Our proof requires an orthogonal embedding of the

formula graph as shown in Fig. 4.1(b). Such an embedding can be constructed

in linear time and with O(n2) total area [20] (see also [9]). Even though the

orthogonal drawing assumes a graph whose maximum degree is four, a simple

transformation can ensure this requirement without affecting the remainder of

the argument: clause vertices have degree three by design and edges from a

variable vertex to k > 4 clauses can be replaced by a tree with k leaves and

interior nodes of degree ≤ 4.

The demand points for the directional p-median instance are orga-

nized into n rectilinear polygons called circuits, one for each variable, and m

additional points, one per clause. Fig. 4.1(c) illustrates the schematic based on

the orthogonal embedding of Fig. 4.1(b) (analogous to the schematic used by

Megiddo and Supowit [17]). Table 4.1 gives an overview of the elements of the

reduction.

61

E
u

u u

4

1

E1E2

u4

u3

E3

2

5

(a) The planar graph for an instance of planar
3-SAT.

u

EE4 5u

1 2u

E1
2E

4u

3u

3

(b) An orthogonal embedding of the above planar
graph.

u

E

2

u5

4u

E1

1
u

3u
34E

2E

(c) The schematic for the p-median instance based on
the planar 3-SAT instance.

Figure 4.1: Rectilinear embedding of the sample problem instance.

62

Planar 3-SAT → DPM2

variable ui → circuit Ci of points P i
1, P

i
2, . . . , P

i
ri

clause Ej → clause point P ∗
j

if ui in Ej → P ∗
j is located near circuit Ci in a true configuration

if ui in Ej → P ∗
j is located near circuit Ci in a false configuration

Table 4.1: Summary of the reduction from planar 3-SAT to DPM2.

4.2 Construction of the circuit for each variable

A 3-SAT variable ui is represented by a circuit Ci of points {P i
1, P

i
2, . . . , P

i
ri
},

such that ri = 0 (mod 6) and ri ≥ 18. Circuits are designed in such a way that

an optimal set of ri/3 supply points partitions the demand points in one of

two ways, to represent true and false values, respectively. In the circuit in

Figure 4.2, subsets in the true (respectively, false) partition are enclosed with

solid (respectively, dashed) lines.

Let S ⊆ {P i
1, P

i
2, . . . , P

i
ri
} be any subset of a circuit Ci and let f(S)

denote the minimum of the directional 1-median problem on S (as in [17]).

The optimal supply point for any subset S is the point (xmax, ymax), where

xmax = maxP i
k
∈S {xk} and ymax = maxP i

k
∈S {yk}, and f(S) is the sum of the

distances of all points in S to (xmax, ymax). In the true partition, every subset

S is made up of three points such that f(S) = 8. The false partition has

three-point subsets with f -value 8 along the straight segments, and subsets

with two and four points, respectively, in the SW and NE corners. The latter

have supply points that are not demand points (they are indicated by × in

Figure 4.2) and have f -values of 4 and 12, respectively.

Although the circuit in Figure 4.2 has only four corners, this will not

always be the case. For example, the circuit for u3 in Figure 4.1(c) has ten

corners: two NW, three NE, three SW, and two SE.

63

NW NE

SE

Straight subsets

SW

1 2 3 4 2

2

2

4

3

2

4

3

2
1

343242

2

4

2

3

4

2

3

3

3 4 22

2 3

Figure 4.2: A simple circuit with four corners, one of each type. Solid lines
indicate a true partition; the dashed lines indicate a false partition. The two ×’s
mark supply points that do not coincide with demand points.

64

For technical reasons having to do with details of the proof, we con-

struct circuits according to the following rules:

(1) If a circuit has ri points then ri = 0 (mod 6) and ri ≥ 18.

(2) Points in corners of a circuit are arranged as in Figure 4.2, depending

on the direction the corner faces (one of NW, NE, SW, or SE).

(3) Points are situated according to the following interpoint spacing rules:

(a) The first point up or right from a SW corner is at distance 2;

subsequent interpoint distances are 4,2,3,4,2,3, etc., until a point

at distance 3 from a NW or SE corner is reached.

(b) The first point down or left from a NE corner is at distance 2;

subsequent interpoint distances are 2,4,3,2,4,3, etc., until a point

at distance 1 from a NW or SE corner is reached.

(4) A side of a circuit must include at least one straight subset of either

the true or the false partition.

(5) Sides of a circuit must be more than 6 units apart.

It is not hard to see that these conditions can be met with at most a constant

multiplicative increase in the overall area of the graph embedding.

4.3 Alignment of clause points with variable circuits

For each clause E = `1 ∨ `2 ∨ `3, we add a demand point P ∗ located

where the circuits corresponding to the variables of `1, `2, and `3 come together.

If `j = u, for some variable u, then point P ∗ is positioned in one of the true

65

clause configurations (T1, T2, or T3) with u’s circuit C, shown in Figure 4.3.

If `j = u, then point P ∗ is positioned in one of the false clause configurations

(F1, F2, or F3) with C, as Figure 4.4 illustrates. Figure 4.5 represents clause

E1 from the example given in Figure 4.1: clause point P ∗
1 is aligned with the

u1-circuit in configuration T1, with the u2-circuit in configuration F3, and with

the u3-circuit in configuration T2.

Similar to the proof in [17], we consider the directional p-median prob-

lem on some circuit Ci with p = ri/3. We may rephrase the problem as: Par-

tition Ci into p sets S1, S2, . . . , Sp so as to minimize
∑

f(Sj). For convenience,

we call f(S) the f -value of the subset, and we call
∑

f(Sj) the f -sum for the

partition. For the true partition, the f -sum is equal to 8ri/3, because the f -

value of each subset is 8. For the false partition, the f -sum is also equal to

8ri/3, because on average the f -value of each subset is 8. This result relies

on the proof in Section 4.5.2 that there is an equal number of SW and NE

corners in any circuit. Recall that, in the false partition, the two-point subset

in the SW corner has f -value 4, and the four-point subset in the NE corner has

f -value 12; thus each subset in the false partition on average contains three

points and has f -value 8.

Each true (respectively, false) configuration is carefully constructed

so that the point P ∗ can join a subset of the true (respectively, false) partition

and add 12 to the f -value for that subset. Joining any other subset would

result in a higher (non-optimal) f -sum for the circuit. Therefore, if the truth

values are chosen so that E is satisfied, then there is at least one subset that

P ∗ may join such that the circuit will have a new f -sum that is 12 more than

its previous f -sum.

Suppose we have constructed a DPM2 instance from a 3-SAT instance

66

T

T

P*

P*

P*

T

(if west of circuit)

(if north of circuit)

(if south or east of circuit)

12

4.2

2.6

123

2

1

Figure 4.3: Possible locations of clause points for the true partition.

P *

P *

P *

F

F

(if north or east of circuit)

(if south of circuit)

(if west of circuit)

12

2

12

1

F
1

2

3

Figure 4.4: Possible locations of clause points for the false partition.

67

u

u

1

3

2u

12

2.6

12

4.2P1
*

Figure 4.5: Position of clause point P ∗
1 for clause E1 = (u1 ∨u2 ∨ u3), from the

example given in Figure 4.1.

68

with r total demand points in the variable circuits and m additional points for

m 3-SAT clauses. The decision problem will ask whether or not there exist

p = r/3 supply points with total cost (i.e. sum of f -sums across all circuits)

at most 8r/3 + 12m.

4.4 Sketch of proof

It is not hard to see that a satisfiable formula implies the existence of

p supply points with total cost 8r/3 + 12m. First, cluster the points in each

variable circuit using either the true partition or the false partition, depending

on whether the satisfying assignment makes that variable true or false. With

no clause points, this leads to a solution with r/3 supply points and a cost

of 8r/3. Second, because each clause has at least one true literal, each clause

point has a circuit with which it aligns so that it can join a cluster and add no

more than 12 to the total cost. The total cost will therefore be 8r/3 + 12m as

desired.

Now we need to ensure that any choice of r/3 supply points having

cost ≤ 8r/3 + 12m corresponds to a satisfying solution for the 3-SAT formula.

This will be argued in two stages. First, we observe that any partition of

the demand points can only include legitimate clusters, ones that are part

of either a true partition, a false partition, a T cluster (see Figure 4.3) on a

circuit with a true partition, or an F cluster (see Figure 4.4) on a circuit with

a false partition. Then the satisfying assignment can be derived from the true

and false partitioning of the circuits for the variables; that it is a satisfying

assignment follows from the fact that each clause point can only be part of a

cluster belonging to a circuit with the “right” partition.

69

T1

8

8

8

8 20

8

4.2

2.6
*P

(a) Optimal

P*

8

2.6

8

17

811.48

2.2

(b) Non-optimal

Figure 4.6: Overall cost increases when an illegitimate cluster is chosen.

The first stage of this second proof direction requires careful analysis

of many cases (full details are given in Section 4.5). The reader should become

convinced that any cluster that is not legitimate will incur a penalty in f -

value. This assertion is obvious for clusters that have legitimate ones as proper

subsets (adding a new point to a cluster, unless it is the supply point, will

increase its f -value). Less obvious is the analysis of clusters that are proper

subsets of legitimate ones or that overlap with legitimate ones. For these,

we argue that a local decrease, if any, is necessarily “paid for” by a larger

increase in another part of the circuit. For example, Figure 4.6(b) shows an

illegitimate cluster with local decrease in f -value involving the clause point P ∗

from the T1 configuration, and demonstrates how this forces a larger increase

elsewhere. The optimal partition for this circuit and clause point, as shown

in Figure 4.6(a), has an f -sum of 60. The illegitimate cluster in 4.6(b) that

includes the clause point has f -value 11.4 instead of 20, forcing another cluster

to have f -value 17 instead of 8, making the total f -sum 60.4.

70

4.5 Proof details

4.5.1 Notation

To facilitate the proofs in the following sections, we introduce some

notation that allows us to describe circuits and clause configurations more

precisely.

Labeling the SW and NE corners. We wish to label the SW and NE

corners in a circuit, while ignoring the NW and SE corners. Without loss of

generality, we designate any SW corner of a circuit as the beginning corner

of the circuit and label it L1. We next traverse the circuit, starting by moving

upwards away from L1, and label the SW and NE corners as we come to them,

with L2, L3, etc.

Walking around a circuit. We wish to describe a walk around all or part of

a circuit. Let oi = (〈corner〉 , 〈direction〉) denote an orientation on a circuit,

where 〈corner〉 represents the type of corner where we are currently standing

(NE, NW, SE, or SW), and 〈direction〉 represents the direction we are fac-

ing immediately after turning the corner (u, d, `, or r, meaning up, down,

left, or right). We may describe a (partial or complete) walk around a cir-

cuit by a sequence of orientations o1, o2, . . . , ok for some integer k. For exam-

ple, a clockwise walk around part of a square circuit, beginning at the SW

corner (L1) and ending at the SE corner, can be described as the sequence

(SW,u),(NW,r),(NE,d),(SE,`).

4.5.2 An equal number of SW and NE corners

We next consider the order in which NE and SW corners occur in a

circuit.

71

from:\to: SW,u SW,r NW,r NW,d NE,d NE,` SE,` SE,u

SW,u
√ √

SW,r
√ √

NW,r
√ √

NW,d
√ √

NE,d
√ √

NE,`
√ √

SE,`
√ √

SE,u
√ √

Table 4.2: Possible moves in a walk around a circuit.

Lemma 4.1 {L1, L3, L5, . . .} are SW corners, and {L2, L4, L6, . . .} are NE cor-

ners.

Proof. We describe a walk around a circuit and exhaustively list the possi-

bilities to show that the lemma is true. From a given current orientation, the

possibilities for the next orientation are limited to those listed in Table 4.2.

We now examine four cases that prove the lemma.

Case (a): (SW,u). We cannot reach another SW corner without first reaching

a NE corner. Using the table to list the possible next moves, we have:

(1) (NE,`). Done.

(2) (NW,r),(NE,d). Done.

(3) [(NW,r),(SE,u)]k,(NE,`), for some integer k ≥ 1. That is, we pass

through the orientations [(NW,r),(SE,u)] a total of k times before ar-

riving at (NE,`). The fact that the circuit is a closed loop guarantees

that k is finite, and thus ensures that we must eventually arrive at

(NE,`).

72

Case (b): (SW,r). We cannot reach another SW corner without first reaching

a NE corner. Using the table to list the possible next moves, we have:

(1) (NE,d). Done.

(2) (SE,u),(NE,`). Done.

(3) [(SE,u),(NW,r)]k,(NE,d), for some integer k ≥ 1. Done.

Case (c): (NE,d). We cannot reach another NE corner without first reaching

a SW corner. Using the table to list the possible next moves, we have:

(1) (SW,r). Done.

(2) (SE,`),(SW,u). Done.

(3) [(SE,`),(NW,d)]k,(SW,r), for some integer k ≥ 1. Done.

Case (d): (NE,`). We cannot reach another NE corner without first reaching

a SW corner. Using the table to list the possible next moves, we have:

(1) (SW,u). Done.

(2) (NW,d),(SW,r). Done.

(3) [(NW,d),(SE,`)]k,(SW,u), for some integer k ≥ 1. Done.

73

4.5.3 Notation revisited: A point numbering scheme

Lemma 4.1 implies that a circuit contains an equal number of NE

corners and SW corners. Suppose a circuit has c SW corners (and therefore

also c NE corners); then the last SW corner before reaching the beginning of the

circuit is L2c−1, and the last NE corner is L2c. The numbering is (mod2c), such

that L2c+1 = L1. The SW and NE corners break the circuit into alternating

segments: for k = 1, 2, 3, . . . , c, the segment from L2k−1 to L2k has interpoint

distances in the (repeating) sequence [4,2,3], whereas the segment from L2k to

L2k+1 has interpoint distances in the (repeating) sequence [2,4,3].

Now we wish to label the points in a circuit in such a way that, for

each integer k = 1 (mod 3), we have ddr(Pk, Pk+1) = 4, ddr(Pk+1, Pk+2) = 2,

and ddr(Pk+2, Pk+3) = 3. We define n[s, s + 1] to be the number of points

between corners Ls and Ls+1, s = 1, 2, . . . , 2c. As a result of the way circuits

are constructed, n[s, s + 1] = 0 (mod 3) for all s.

Starting at L1, we label points in increasing order on the segments

from L2s−1 to L2s, where s = 1, 2, . . . , c. From L1 to L2, points are labeled

P1, P2, . . . , Pn[1,2]. We next label the points between L3 and L4 as follows:

Pn[1,2]+1, Pn[1,2]+2, . . . , Pn[1,2]+n[3,4]. After labeling the points on the segment

from L2c−1 to L2c, the last point of which will be Pg, g =
∑c

s=1 n[2s−1, 2s], we

next start at L1 and traverse the circuit in the opposite direction, labeling the

points on the segments we skipped. Thus we start with Pg+1 and label points

in increasing order on the segments from L2s+1 to L2s, where s = c, c−1, . . . , 1.

The last point labeled will be Pri
, ri =

∑2c
s=1 n[s, s + 1]. Figure 4.7 shows

a circuit with ten SW/NE corners and 66 points numbered according to this

scheme.

74

L3

L4

L5 L6

L 7

L9

L10
L1

L2

L 8

P P P P P
P P P P P

P P P
P P P P131210 11

P P P

P P P P P P

P P P P

P P P

34 35 36
P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

47

27

26

28

29

30

25

52

51

50

49

48

60

59

58

57

56

63

62

61

16

15

14

66

65

64

4

3

2

1

33

32

31
37 38 39 40 41 42

5 6 7 8 9
17 18 19 20 21

22 23 24

53 54 55

43 44 45 46

Figure 4.7: An example of the point numbering scheme.

75

4.5.4 A circuit lemma: The true partition and the false partition

are the only optimal partitions

We need only consider subsets of adjacent points in a circuit; we call

such subsets adjacent subsets. A non-adjacent subset is a subset whose

convex hull encloses one or more points not in the subset. Clearly, such a

subset is never optimal, since one or more of the points has been assigned to a

supply point that is not its closest supply point.

Lemma 4.2 The true partition and the false partition are the only partitions

that yield the minimum f -sum of 8ri/3.

Proof. We examine all adjacent subsets, legitimate and illegitimate.

Case (a): A subset of three points that includes both SW corner points has

f -value of at least 14. An adjacent subset is formed by letting the third

point be one of the points adjacent to a SW corner point, located four

units away from the nearest corner point. The f -value of such a subset

is exactly 14.

Case (b): A subset of three points that includes at least two NE corner points

has f -value of at least 8. For an adjacent subset, the third point must

be either another NE corner point (in which case the f -value is 8) or

a point Pk, where k = 1 (mod 3), located four units away from the

nearest corner point (in which case the f -value is again 8).

Case (c): A subset of three points (Pk, Pk+1, Pk+2) that includes less than

two SW corner points and includes less than two NE corner points and

k 6= 0(mod3), has f -value of 8. If k = 1(mod3), then ddr(Pk, Pk+1) = 4

76

8

8 2

8

8

22

Figure 4.8: Lemma 4.2(e): A non-optimal subset of four points that contains
both SW corner points has f -value of 22.

and ddr(Pk+1, Pk+2) = 2. Pk+2 serves as the solution point and the

subset has f -value of 8. If k = 2 (mod 3), then ddr(Pk, Pk+1) = 2 and

ddr(Pk+1, Pk+2) = 3. Pk+2 serves as the solution point and the subset

has f -value of 8.

Case (d): A subset of three points (Pk, Pk+1, Pk+2) that includes less than

two SW corner points and includes less than two NE corner points and

k = 0 (mod 3), has f -value of 11. Pk+2 serves as the solution point.

Since ddr(Pk, Pk+1) = 3 and ddr(Pk+1, Pk+2) = 4, the f -value of the

subset is 11.

Case (e): A subset of four points that contains both SW corner points has f -

value of at least 22. Figure 4.8 shows this subset as a part of a partition

on a circuit of 18 points into 6 subsets. Any partition containing this

subset can do no better than an f -sum of 56. In contrast, an optimal

partition (the true or false partition) achieves an f -sum of 48.

Case (f): A subset of four points that contains all four NE corner points has

f -value of 12.

77

Case (g): A subset of four points that contains exactly three NE corner points

has f -value of 16.

Case (h): A subset of four points that contains less than three NE corner

points and less than two SW corner points has f -value of at least 17.

Let (Pk, Pk+1, Pk+2, Pk+3) be a subset of size four. If k = 2 (mod 3)

then the f -value is 20. If k = 1 (mod 3) or k = 0 (mod 3), the f -value

of the subset is 17.

Case (i): A subset of two points that is comprised of both SW corner points

has f -value of 4.

4.5.5 Two clause configuration lemmas: Only legitimate subsets

may be in an optimal partition

Lemma 4.3 Adding a clause point P ∗
j to a legitimate subset in one of the

configurations shown in Figures 4.3 and 4.4 (i.e., F1, F2, F3, T1, T2, T3) results

in an f -sum increase of 12 for that subset.

Proof. We examine each case.

Case (a): A subset of five points that includes the four NE corner points and

a clause point P ∗
j located in configuration F1 has f -value of 24. Before

the addition of P ∗
j , the NE corner subset has f -value of 12. P ∗

j , located

three units northeast of the subset’s former solution point (marked by

×), becomes the new supply point.

Case (b): A subset of four points that includes the three points (Pk, Pk+1, Pk+2),

k = 2 (mod 3), and a clause point P ∗
j located in configuration F2 or F3

78

has f -value of 20. The point Pk+2 serves as the supply point.

Case (c): A subset of four points that includes the three points (Pk, Pk+1, Pk+2),

k = 1 (mod 3), and a clause point P ∗
j located in configuration T1 has

f -value of 20. The × shown in Figure 4.3 serves as the supply point.

P ∗
j contributes 4.2 to the f -value, while points Pk, Pk+1, and Pk+2

contribute 8.6, 4.6, and 2.6, respectively.

Case (d): A subset of four points that includes the three points (Pk, Pk+1, Pk+2),

k = 1 (mod 3), and a clause point P ∗
j located in configuration T2 or T3

has f -value of 20. The point Pk+2 serves as the supply point.

Lemma 4.4 Combining the clause point P ∗
j with any subset other than those

shown in Figures 4.3 and 4.4 will result in a partition that fails to reach the

minimum f -sum.

Proof. We examine each case.

Case (a): A subset of four points that includes the three points (Pk, Pk+1, Pk+2),

k = 2(mod3), and a clause point P ∗
j located in configuration T1 (shown

in Figure 4.9(a)) has f -value of 21.2. The point P ∗
j serves as the supply

point.

Case (b): A subset of five points that includes the four NE corner points and

a clause point P ∗
j located in configuration T1 (shown in Figure 4.9(b))

has f -value of 28.6. The × serves as the supply point.

Case (c): A subset of four points that includes the three points (Pk, Pk+1, Pk+2),

k = 2(mod3), and a clause point P ∗
j located in configuration T2 (shown

79

4

8

8

8

1221.2

2.6

4.21.8

P*
j

(a) Lemma 4.4(a)

4

8

8 28.6

8

8

2.6

6.2

P*
j

(b) Lemma 4.4(b)

Figure 4.9: Two non-optimal subsets involving clause point P ∗
j located in con-

figuration T1.

in Figure 4.10(a)) has f -value of 23. The point Pk+2 serves as the sup-

ply point.

Case (d): A subset of five points that includes both SW corner points, the

two points (Pk, Pk+1), k = 2 (mod 3), and a clause point P ∗
j located in

configuration T2 (shown in Figure 4.10(b)) has f -value of 36. The ×
serves as the supply point.

Case (e): A subset of four points that includes the three points (Pk, Pk+1, Pk+2),

k = 2(mod3), and a clause point P ∗
j located in configuration T3 (shown

in Figure 4.11(a)) has f -value of 26. The × serves as the supply point.

Case (f): A subset of five points that includes the four points (Pk, Pk+1, Pk+2, Pk+3),

k = 2(mod3), and a clause point P ∗
j located in configuration T3 (shown

in Figure 4.11(b)) has f -value of 30. The × serves as the supply point.

Case (g): A subset of four points that includes the three points (Pk, Pk+1, Pk+2),

80

23

4

8 12

8

8

3
Pj

*

12

(a) Lemma 4.4(c)

36

8

8

128
014

*Pj

(b) Lemma 4.4(d)

Figure 4.10: Two non-optimal subsets involving clause point P ∗
j located in

configuration T2.

jP*

8

26

8 12

8
4

9

(a) Lemma 4.4(e)

jP*

8

8 12

4

10

30
3

(b) Lemma 4.4(f)

Figure 4.11: Two non-optimal subsets involving clause point P ∗
j located in

configuration T3.

81

4

8

8 12

23

8

15

Pj
*

Figure 4.12: Lemma 4.4(g): A third non-optimal subset involving clause point
P ∗

j located in configuration T3.

k = 2(mod3), and a clause point P ∗
j located in configuration T3 (shown

in Figure 4.12) has f -value of 23. The point Pk+2 serves as the supply

point.

Case (h): A subset of four points that includes the three points (Pk, Pk+1, Pk+2),

k = 1(mod3), and a clause point P ∗
j located in configuration F1 (shown

in Figure 4.13(a)) has f -value of 23. The point P ∗
j serves as the supply

point.

Case (i): A subset of four points that includes the three points (Pk, Pk+1, Pk+2),

k = 1(mod3), and a clause point P ∗
j located in configuration F1 (shown

in Figure 4.13(b)) has f -value of 23. The point P ∗
j serves as the supply

point.

Case (j): A subset of four points that includes the three points (Pk, Pk+1, Pk+2),

k = 1(mod3), and a clause point P ∗
j located in configuration F2 (shown

in Figure 4.14(a)) has f -value of 26. The point Pk+2 is the supply point.

82

8

jP*

8
23

8

8

8

2
3

(a) Lemma 4.4(h)

Pj
*

8

8

8 8

23

8

1 4

(b) Lemma 4.4(i)

Figure 4.13: Two non-optimal subsets involving clause point P ∗
j located in

configuration F1.

Pj
*

8

8 8

8

8

2615

3

(a) Lemma 4.4(j)

29

Pj
*

2 8

8

88

12

(b) Lemma 4.4(k)

Figure 4.14: Two non-optimal subsets involving clause point P ∗
j located in

configuration F2.

83

29

8

12

8 8

8

2

jP*

(a) Lemma 4.4(`)

Pj
*

8

8
26

8

88

12

(b) Lemma 4.4(m)

Figure 4.15: Two non-optimal subsets involving clause point P ∗
j located in

configuration F3.

Case (k): A subset of five points that includes the four points (Pk, Pk+1, Pk+2, Pk+3),

k = 1(mod3), and a clause point P ∗
j located in configuration F2 (shown

in Figure 4.14(b)) has f -value of 29. The point Pk+3 is the supply point.

Case (`): A subset of five points that includes the four points (Pk, Pk+1, Pk+2, Pk+3),

k = 1(mod3), and a clause point P ∗
j located in configuration F3 (shown

in Figure 4.15(a)) has f -value of 29. The point Pk+3 is the supply point.

Case (m): A subset of four points that includes the three points (Pk, Pk+1, Pk+2),

k = 1(mod3), and a clause point P ∗
j located in configuration F3 (shown

in Figure 4.15(b)) has f -value of 26. The point Pk+2 is the supply point.

Chapter 5

An efficient heuristic algorithm

for DPM2

In Chapter 4, we showed the directional rectilinear p-median problem

in two dimensions (DPM2) to be NP-complete. In this chapter we present an

efficient heuristic algorithm that produces good quality results for a variety of

input distributions. The new heuristic, called Teitz & Bart Restricted Heuris-

tic (TBr), makes use of the vertex substitution heuristic from Teitz & Bart

(TB) [26], described in Section 5.2, and the heuristic concentration approach

(HC) from Rosing & ReVelle [24], described in Section 5.3. Finally, in Sec-

tion 5.5 we present the results of a simulation study that evaluates our new

heuristic under a variety of input conditions.

5.1 Effect of distance characteristics on computational effort

Recall that, for a discrete p-median problem (Discrete-PM2, defined

in Section 1.2), the c points eligible to serve as supply points are called can-

85

didate points. The n × c distance matrix [dij] holds the distances from each

demand point to each candidate point. Different distance metrics produce

distance matrices with different characteristics, upon which the performance

of a heuristic depends. In [25], the authors identify two such characteristics:

symmetry and the ability to satisfy the triangle inequality. The lack of sym-

metry in the distance matrix has a minor impact on performance, but failure

to satisfy the triangle inequality is a much graver crime, making optimal or

even good quality solutions hard to find. (Non-directional) rectilinear and Eu-

clidean distance matrices both are symmetric and obey the triangle inequality.

A randomly generated distance matrix in general will neither be symmetric

nor obey the triangle inequality. As for our directional rectilinear distance

metric, the outlook is positive as regards the most critical attribute: the dis-

tance matrix obeys the triangle inequality but fails to be symmetric (recall that

if ddr((xi, yi), (xj , yj)) is finite and > 0, then ddr((xj, yj), (xi, yi)) is infinite).

ReVelle labels certain Discrete-PM2 problems as integer friendly,

meaning that “either integer termination of linear programming formulations

are frequent, or little branch and bound is needed to resolve the problem in

integers” [21]. The conclusions of [25] are that the characteristic of obeying the

triangle inequality has greatest impact on the integer friendliness of an instance

of Discrete-PM2. The question of why this is the case remains open.

5.2 Teitz & Bart vertex substitution heuristic for p-median

The 1968 Teitz & Bart [26] vertex substitution heuristic (TB) for

Discrete-PM2 is well-known and much studied. As is the case with any heuris-

tic, TB may become trapped in a local minimum. However, such pitfalls are

86

directional intersection point

demand point

considered
Position

for removal solution
Current

0
0 400200

200

400

600

800

x

y

1

4

5

3

2

6

7

9

8

10

11

12

13

14

15

16

17

18

Directional rectilinear

2 11 7 183

7 311 18

16

16

7 3 185

1

2

3

19

15

12

4

5

value
Obj fn

16 5 6 3 18 11

1316 5 6 18 10

16 5 6 13 3 8

final solution at end
of 1st major iteration

Figure 5.1: One major iteration of the TB heuristic on a sample problem.

rare, according to a study comparing TB to exact methods [23].

Figure 5.1 illustrates the operation of the TB heuristic on a sample

DPM2 problem instance of n = 9 and p = 5.1 TB begins with an initial solu-

tion of p supply points, chosen from among all candidate points. The heuristic

assigns each demand point to its nearest supply point and evaluates the ob-

jective function for this assignment. The supply points are ordered arbitrarily.

Beginning with the supply point in the first position, the heuristic tries substi-

tuting all other possible candidate points into this position; it replaces the first

supply point with the point that causes the greatest decrease in the objective

function. The heuristic then repeats this process with the supply point in the

second position, then the third position, and so on. At each step, the heuristic

tries to find the best supply point for the current position, given that all other

supply points in the solution are fixed. After each of the p points in the solu-

tion have been considered for removal, one major iteration of the heuristic is

1Although TB was created for the non-directional p-median problem, it works similarly
for the directional problem.

87

complete. The heuristic then begins the second major iteration, by considering

the supply point in the first position for removal. The TB heuristic terminates

when an iteration results in no changes to the solution, usually within only a

few (≤ 5) iterations.

If c = |C| is the number of candidate points, then each major iteration

of TB runs in time O(np(c− p)), or O(n2p) if the set of demand points is also

the set of candidate points [5]. There are p existing supply points and c − p

alternate candidate points, for a total of p(c − p) pairs to be considered. For

each of these pairs, we examine each demand point in order to find its closest

supply point.

The performance of TB depends on the starting solution. A common

approach is to generate a number of random starting solutions as input for

multiple TB runs, and then to choose the best solution from among the local

optima that are found [10].

The Densham & Rushton Global/Regional Interchange Algorithm

(GRIA) improves the runtime of TB by taking advantage of characteristics

of five well-known PM heuristics [6]. Speedup is achieved through the use of

novel data structures that enable the heuristic to evaluate far fewer supply

point substitutions. GRIA iterates between a global and a regional phase un-

til an iteration of both phases yields no change. For both the non-directional

problem, Discrete-PM2, and the directional problem, DPM2, the global phase

terminates with a feasible solution, i.e. one in which each demand point is

assigned to the “nearest” supply point (according to the appropriate distance

metric). Next, during the regional phase, each subset of points assigned to a

supply point is considered as a separate 1-median problem; for Discrete-PM2,

the solution to this 1-median problem could be different from the current supply

88

point, so making an exchange improves the overall objective function.

However in DPM2, during the regional phase, no exchange will ever

take place, since there will never be more than one valid directional median

for a given subset of demand points. The only feasible 1-median for a subset

of points is the point with (xmax, ymax), where xmax (respectively, ymax) is

the maximum-valued x (respectively, y) from among all points in the subset.

Therefore GRIA is not appropriate for a directional p-median problem.

5.3 Heuristic concentration

Rosing & ReVelle present a new methodology called Heuristic Con-

centration (HC) [24]. Although they demonstrate how HC works by applying

it to Discrete-PM2, HC, like other metaheuristics such as Tabu Search and

Simulated Annealing, can be applied to many different combinatorial prob-

lems. HC attempts to glean information from the many local minima obtained

from repeated runs of a heuristic. For example, the (local minima) solutions

resulting from separate TB runs may have differing objective function values,

as well as different supply points in the solution set. However, Rosing & Re-

Velle discover that there is frequently a great deal of overlap in the solution

sets corresponding to these local minima. HC takes advantage of this fact by

taking a two-stage approach. First, HC builds a Concentration Set (CS) by

taking the union of the several local minima solutions. The CS has a high

likelihood of containing the supply points that make up the optimal solution

set. The second stage then locates the best solution to the new subproblem,

selecting a solution only from among the members of the CS.

Rosing & ReVelle randomly generate coordinate pairs and use the

89

Euclidean distance measure, for problems of size n = 100, 125, 150, . . . , 300 with

p = 5, 10, 15, . . . , 50. They solve each problem optimally as well as heuristically.

For each problem, they create the CS from the best five solutions of 200 TB

runs. In the second stage, they use an integer linear program to optimally

select the best solution from the CS.

5.4 The Teitz & Bart Restricted heuristic for DPM2

The motivation for designing a new algorithm for DPM2 is to find a

very fast heuristic that doesn’t sacrifice much in solution quality. Recall that

the c candidate points in DPM2 include all n demand points as well as all

directional intersection points, as described in Section 1.3. In the worst case,

there could be (n2 +n)/2 candidate points to be considered for inclusion in the

solution set of p supply points.

The Teitz & Bart Restricted heuristic (TBr) follows the two-stage

approach of heuristic concentration. In the first stage, the concentration set

(CS) is built in the following manner. We run the 1-dimensional algorithm for

DPM1 (from Section 3.4) twice, once on the x-values and once on the y-values

of the n demand points, to obtain the p best x’s and the p best y’s. Crossing

these two sets yields p2 points that will serve as the CS. In the second stage,

we randomly generate 100 initial solutions from among all possible candidate

points, i.e. the set C (n demand points plus up to (n2 − n)/2 directional

intersection points). Each initial solution serves as input into a separate run of

the TB heuristic, which only chooses points for exchange from the CS. The final

TBr solution is the best outcome from the 100 TB runs. Note that the final

TBr solution may include a point that is not in the CS: each initial solution is

90

drawn from all candidate points, and then TB looks only in the CS for possible

replacement points.

Complexity analysis

Let n be the number of demand points, c the number of candidate

points (demand points plus directional intersection points), and p the number

of supply points in the solution. Recall that c is on the order of n2. Each major

iteration of TBr runs in time O(p(p2−p)n) or O(np3). In contrast, each major

iteration of TB runs in time O(p(c− p)n) or O(n3p).

Building the concentration set during the first stage of TBr requires

time O
(
n
√

p log n
)
, which is the time required by the algorithm in [1] to solve

DPM1.

5.5 Evaluation of the Teitz & Bart Restricted heuristic

Simulation set-up and input parameters

To determine the penalty in terms of excess load resulting from quan-

tization, we designed a simulation study using a variety of different types of

demand sets X. To generate points in the plane, we chose one discrete probabil-

ity density function (pdf) for the x-values and one for the y-values, from among

the possible pdf’s given in Table 5.1. Each discrete distribution can generate

integers in the range [1,1000]. The Bimodal distribution has one peak on the in-

terval [251,350] and another at [651,750]. The peaks of the Bimodal distribution

contain 80% of the density (that is, the probability of a Bimodal random vari-

ate taking on one of the 200 values from {251,252,. . .,350}∪{651,652,. . .,750} is

91

.8).2 In contrast, the Quadrimodal distribution has four much narrower peaks,

located on the intervals [96,105], [146,155], [446,455], and [596,605]. The peaks

of the Quadrimodal distribution contain 80% of the density (that is, the prob-

ability of a Quadrimodal random variate taking on one of the 40 values from

{96,97,. . .,105}∪{146,47,. . . ,155}∪{446,447,. . .,455}∪{596,597,. . .,605} is .8).

Four different combinations of the input distributions were selected

to generate input sets X for the simulations. In the first (EE), both the x-

values and the y-values were drawn from the EquallyLikely distribution. In the

second (EB), the x-values are EquallyLikely and the y-values are Bimodal. In

the third (BB), both the x-values and the y-values are Bimodal. In the fourth

(QQ), both the x-values and the y-values are Quadrimodal. Figure 5.2 shows

scatter plots of demand sets of size n = 1000 generated from the four input

combinations used in the simulations.

From each input distribution, we generated fifty demand sets with

n = 100 and another fifty demand sets with n = 200. Each demand set was

generated starting from a unique seed for a Lehmer random number generator

with modulus 231 − 1 and multiplier 48271.

Each demand set then served as input to the TB and TBr heuristics.

In an attempt to obtain a solution as close to optimal as possible, the TB result

for each demand set is actually the best of 100 runs of the TB heuristic. Analo-

gous to the normalized quantization load for DPM1, defined in Equation (3.4),

we define the normalized ratio as the measure of the performance penalty

due to quantization for DPM2. The denominator of the normalized ratio is the

density of X, ρX =
∑n

i=1 xi +
∑n

i=1 yi, which represents the amount of resources

2The discrete bimodal distribution is analogous to the continuous bimodal distribution
used in Chapter 3.3, which has domain (0,1) and peaks over the intervals (.25,.35) and
(.65,.75).

92

0

200

400

600

800

1000

0 200 400 600 800 1000

y

x

(a) X=EquallyLikely,Y=EquallyLikely

0

200

400

600

800

1000

0 200 400 600 800 1000
y

x

(b) X=EquallyLikely, Y=Bimodal

0

200

400

600

800

1000

0 200 400 600 800 1000

y

x

(c) X=Bimodal, Y=Bimodal

0

200

400

600

800

1000

0 200 400 600 800 1000

y

x

(d) X=Quadrimodal, Y=Quadrimodal

Figure 5.2: Scatter plots of n = 1000 for the four input distributions.

93

Distribution f(x) domain

EquallyLikely 1/1000 [1, 1000]
Bimodal 1/4000 [1, 250], [351, 650], [751, 1000]

16/4000 [251, 350], [651, 750]
Quadrimodal 5/24000 [1, 95], [106, 145], [156, 445], [456, 595], [606, 1000]

480/24000 [96, 105], [146, 155], [446, 455], [596, 605]

Table 5.1: Probability density function for input distributions.

needed to meet the demands of X before quantization. The numerator repre-

sents the amount of resources needed after quantization; it is equal to ρX plus

the value of the DPM2 objective function given in Section 4.1. Letting nj be

the number of demand points mapped to supply point (zj , tj), j = 1, . . . , p, we

have:

normalized ratio =
ρX +

∑n
i=1 min1≤j≤p {ddr((xi, yi), (zj , tj))}

ρX
(5.1)

=

∑p
j=1 nj(zj + tj)

ρX
(5.2)

≥ 1 (5.3)

The closer the normalized ratio is to one, the fewer resources are wasted. For

each demand set, we calculated the normalized ratio for the values of p =

5, 10, 15, 20, 25. In addition, we calculated the normalized ratio for p = 30 for

(1) all demand sets of size n = 100, and (2) QQ demand sets of size n = 200.

Simulation results

There are three sets of figures containing the results. Each set presents

the complete information of the simulation runs, but each highlights a different

feature of the data.

94

The first set contains two figures. Figure 5.3 (respectively, Figure 5.4)

shows all the results for problem instances of size n = 100 (respectively, size

n = 200). The normalized ratio is plotted against p for both the TB and

the TBr heuristics, for each of the four input distribution combinations. Each

point is the mean of 50 problem instances, and the error bars around each point

designate a 95% confidence interval. We notice that:

(1) For all values of p, the curves for input EE are the highest, followed by

EB and then BB.

(2) For values of p > 15, the curves for input QQ are the lowest.

We can attribute these features to the nature of the input. In the sample

scatter plots for each input shown in Figure 5.2, the level of “order” increases

as we move from EE to EB to BB to QQ. (Or, said another way, the level of

randomness decreases as we move from EE to EB to BB to QQ.) The EE input

appears to be the worst case scenario, with points scattered evenly over the

plane. In contrast, the other inputs possess natural clusters where points fall

with higher density: EB has two horizontal strips, BB has four squares, and

QQ has 16 squares. Observation #2 above results from the fact that p must

be at least 16 in order to take advantage of the 16 natural clusters within QQ.

In the next set of figures (Figures 5.5-5.8) we plot the same means

(plus confidence intervals) as shown in Figures 5.3 and 5.4, but the plots are

organized this time by input distribution combination. Figure 5.5 shows the

all the results for the EE input distribution combination: normalized ratio vs.

p for the TB and TBr heuristics, for problem instances of size n = 100 and

n = 200. Similarly, Figures 5.6, 5.7, and 5.8 correspond to the EB, BB, and

QQ inputs. We make two observations about these plots:

95

(1) For each input, the n = 200 curve lies above the n = 100 curve.

(2) The TBr curve closely tracks (lies slightly above) the TB curve.

Holding p fixed, it is reasonable to expect a higher quantization penalty for a

demand set of size n = 200 as compared to n = 100. Observation #2 illustrates

the quality of the TBr solution; we pay very little penalty in solution quality

for using TBr instead of TB, and we realize great gains in speed.

The final set of plots includes Figures 5.9-5.16, which contain two

graphs apiece. Each graph contains level curves in p of the normalized ratio for

each of the 50 input instances (which, when averaged, yield the means given in

previous plots). As we might expect, the variation diminishes from the n = 100

plot to the n = 200 plot.

.

5.6 Conclusion

In this chapter, we presented the Teitz & Bart Restricted (TBr)

heuristic for the directional rectilinear p-median problem in two dimensions.

Using as building blocks the 1968 Teitz & Bart (TB) heuristic [26] and the

recent Heuristic Concentration metaheuristic from Rosing & ReVelle [24], we

created TBr to be a faster alternative for applications with very large demand

sets. Although TB consistently returned solutions of slightly better quality,

TBr tracked TB’s performance closely and enjoyed a significant speedup, run-

ning in time O(np3) as compared to TB’s time of O(n3p).

96

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

5 10 15 20 25 30

N
or

m
al

iz
ed

 R
at

io

p

EE.tbr
EE.tb

EB.tbr
EB.tb

BB.tbr
BB.tb

QQ.tbr
QQ.tb

Figure 5.3: The normalized ratio vs. p, for the TB and TBr heuristics, for
the four input distribution combinations. Each point (with 95% confidence
interval) is the mean of 50 problem instances with n = 100.

97

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

5 10 15 20 25 30

N
or

m
al

iz
ed

 R
at

io

p

EE.200.tbr
EE.200.tb

EB.200.tbr
EB.200.tb

BB.200.tbr
BB.200.tb

QQ.200.tbr
QQ.200.tb

Figure 5.4: The normalized ratio vs. p, for the TB and TBr heuristics, for
the four input distribution combinations. Each point (with 95% confidence
interval) is the mean of 50 problem instances with n = 200.

98

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

5 10 15 20 25 30

N
or

m
al

iz
ed

 R
at

io

p

EE.200.tbr
EE.200.tb

EE.100.tbr
EE.100.tb

Figure 5.5: (EquallyLikely, EquallyLikely) input: The normalized ratio vs. p,
for the TB and TBr heuristics, for problem instances of size n = 100 and
n = 200. Each point (with 95% confidence interval) is the mean of 50 problem
instances.

99

1

1.05

1.1

1.15

1.2

1.25

1.3

5 10 15 20 25 30

N
or

m
al

iz
ed

 R
at

io

p

EB.200.tbr
EB.200.tb

EB.100.tbr
EB.100.tb

Figure 5.6: (EquallyLikely, Bimodal) input: The normalized ratio vs. p, for
the TB and TBr heuristics, for problem instances of size n = 100 and n = 200.
Each point (with 95% confidence interval) is the mean of 50 problem instances.

100

1

1.05

1.1

1.15

1.2

5 10 15 20 25 30

N
or

m
al

iz
ed

 R
at

io

p

BB.200.tbr
BB.200.tb

BB.100.tbr
BB.100.tb

Figure 5.7: (Bimodal, Bimodal) input: The normalized ratio vs. p, for the TB
and TBr heuristics, for problem instances of size n = 100 and n = 200. Each
point (with 95% confidence interval) is the mean of 50 problem instances.

101

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

5 10 15 20 25 30

N
or

m
al

iz
ed

 R
at

io

p

QQ.200.tbr
QQ.200.tb

QQ.100.tbr
QQ.100.tb

Figure 5.8: (Quadrimodal, Quadrimodal) input: The normalized ratio vs. p,
for the TB and TBr heuristics, for problem instances of size n = 100 and
n = 200. Each point (with 95% confidence interval) is the mean of 50 problem
instances.

102

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 10 20 30 40 50

N
or

m
al

iz
ed

 R
at

io

Demand Set

tb.EE.5.100
tb.EE.10.100
tb.EE.15.100
tb.EE.20.100
tb.EE.25.100
tb.EE.30.100

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 10 20 30 40 50

N
or

m
al

iz
ed

 R
at

io

Demand Set

tbr.EE.5.100
tbr.EE.10.100
tbr.EE.15.100
tbr.EE.20.100
tbr.EE.25.100
tbr.EE.30.100

Figure 5.9: Level curves in p for the (EquallyLikely, EquallyLikely) input com-
bination, n = 100. Top: TB. Bottom: TBr.

103

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 10 20 30 40 50

N
or

m
al

iz
ed

 R
at

io

Demand Set

tb.EE.5.200
tb.EE.10.200
tb.EE.15.200
tb.EE.20.200
tb.EE.25.200

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 10 20 30 40 50

N
or

m
al

iz
ed

 R
at

io

Demand Set

tbr.EE.5.200
tbr.EE.10.200
tbr.EE.15.200
tbr.EE.20.200
tbr.EE.25.200

Figure 5.10: Level curves in p for the (EquallyLikely, EquallyLikely) input
combination, n = 200. Top: TB. Bottom: TBr.

104

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 10 20 30 40 50

N
or

m
al

iz
ed

 R
at

io

Demand Set

tb.EB.5.100
tb.EB.10.100
tb.EB.15.100
tb.EB.20.100
tb.EB.25.100
tb.EB.30.100

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 10 20 30 40 50

N
or

m
al

iz
ed

 R
at

io

Demand Set

tbr.EB.5.100
tbr.EB.10.100
tbr.EB.15.100
tbr.EB.20.100
tbr.EB.25.100
tbr.EB.30.100

Figure 5.11: Level curves in p for the (EquallyLikely, Bimodal) input combi-
nation, n = 100. Top: TB. Bottom: TBr.

105

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 10 20 30 40 50

N
or

m
al

iz
ed

 R
at

io

Demand Set

tb.EB.5.200
tb.EB.10.200
tb.EB.15.200
tb.EB.20.200
tb.EB.25.200

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 10 20 30 40 50

N
or

m
al

iz
ed

 R
at

io

Demand Set

tbr.EB.5.200
tbr.EB.10.200
tbr.EB.15.200
tbr.EB.20.200
tbr.EB.25.200

Figure 5.12: Level curves in p for the (EquallyLikely, Bimodal) input combi-
nation, n = 200. Top: TB. Bottom: TBr.

106

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 10 20 30 40 50

N
or

m
al

iz
ed

 R
at

io

Demand Set

tb.BB.5.100
tb.BB.10.100
tb.BB.15.100
tb.BB.20.100
tb.BB.25.100
tb.BB.30.100

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 10 20 30 40 50

N
or

m
al

iz
ed

 R
at

io

Demand Set

tbr.BB.5.100
tbr.BB.10.100
tbr.BB.15.100
tbr.BB.20.100
tbr.BB.25.100
tbr.BB.30.100

Figure 5.13: Level curves in p for the (Bimodal, Bimodal) input combination,
n = 100. Top: TB. Bottom: TBr.

107

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 10 20 30 40 50

N
or

m
al

iz
ed

 R
at

io

Demand Set

tb.BB.5.200
tb.BB.10.200
tb.BB.15.200
tb.BB.20.200
tb.BB.25.200

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 10 20 30 40 50

N
or

m
al

iz
ed

 R
at

io

Demand Set

tbr.BB.5.200
tbr.BB.10.200
tbr.BB.15.200
tbr.BB.20.200
tbr.BB.25.200

Figure 5.14: Level curves in p for the (Bimodal, Bimodal) input combination,
n = 200. Top: TB. Bottom: TBr.

108

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 10 20 30 40 50

N
or

m
al

iz
ed

 R
at

io

Demand Set

tb.QQ.5.100
tb.QQ.10.100
tb.QQ.15.100
tb.QQ.20.100
tb.QQ.25.100
tb.QQ.30.100

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 10 20 30 40 50

N
or

m
al

iz
ed

 R
at

io

Demand Set

tbr.QQ.5.100
tbr.QQ.10.100
tbr.QQ.15.100
tbr.QQ.20.100
tbr.QQ.25.100
tbr.QQ.30.100

Figure 5.15: Level curves in p for the (Quadrimodal, Quadrimodal) input com-
bination, n = 100. Top: TB. Bottom: TBr.

109

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 10 20 30 40 50

N
or

m
al

iz
ed

 R
at

io

Demand Set

tb.QQ.5.200
tb.QQ.10.200
tb.QQ.15.200
tb.QQ.20.200
tb.QQ.25.200
tb.QQ.30.200

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 10 20 30 40 50

N
or

m
al

iz
ed

 R
at

io

Demand Set

tbr.QQ.5.200
tbr.QQ.10.200
tbr.QQ.15.200
tbr.QQ.20.200
tbr.QQ.25.200
tbr.QQ.30.200

Figure 5.16: Level curves in p for the (Quadrimodal, Quadrimodal) input com-
bination, n = 200. Top: TB. Bottom: TBr.

Chapter 6

Summary and future work

6.1 Summary

The traditional p-median problem asks us to find, for a given set of

n demand points, the set of p supply points that minimizes the total distance

of each demand point to its nearest supply point. Hassin & Tamir [13] give a

O(np) algorithm to solve the p-median problem on the real line, and Megiddo

and Supowit [17] prove that rectilinear and Euclidean versions of the p-median

problem in the plane are NP-complete.

In this thesis, we explore the p-median problem under a new distance

measure, the directional rectilinear distance. On the real line, this restriction

requires that the nearest supply point for a given demand point be located

to the right of it, while in the plane, the nearest supply point for a given

demand point must lie above and to the right of it. In general, the rectilinear

c-directional, d-dimensional p-median problem forces a supply point to achieve

or exceed the values of the first c coordinates of its assigned demand points.

The directional p-median problem has applications to multiprocessor

111

scheduling of periodic tasks as well as to traffic quantization and Quality of Ser-

vice scheduling in packet-switched computer networks. For the multiprocessor

application in particular, we simplify the periodic tasks scheduling algorithm

from [2] by limiting it to a much smaller set of allowed service rates (supply

points). While quantization has the disadvantage of requiring more resources

(e.g., processor time) than a continuous-rate system to accommodate a given

set of customer requests, we feel that the tradeoff is more than paid for by the

resulting gains in speed and simplicity.

We show that the directional p-median problem is polynomially solv-

able in one dimension and give two algorithms. We prove the problem NP-

complete in two or more dimensions and then present an efficient heuristic to

solve it. Compared to the robust Teitz & Bart heuristic for p-median, our

heuristic enjoys substantial speedup while sacrificing little in terms of solu-

tion quality, making it an ideal choice for our target applications that have

thousands of demand points.

6.2 Future directions

The directional Euclidean p-median problem. We expect that the NP-

completeness proof in Chapter 4 is adaptable to the p-median problem under

the directional Euclidean distance metric. Once the proof elements of circuits

and clause configurations are specified, the remainder of the proof should follow

easily.

Stochastic directional p-median in two dimensions. Analogous to prob-

lem SDPM1 in Section 3.5, we could consider the directional problem of finding

the optimal set of p supply points for a given joint probability density function

112

describing the population of demand points (xi, yi).

Benefits to other scheduling algorithms. As with the PD2 algorithm

for scheduling periodic tasks on multiple identical processors, we believe that

other scheduling algorithms can benefit from having quantized input. The

popular packet scheduling algorithm Weighted Fair Queueing (WFQ) is a good

candidate.

Further testing of TB Restricted heuristic. It would be worthwhile to

evaluate the TB Restricted heuristic on DPM2 problem instances that are

harder than most, for example, instances for which most of the runs of the

Teitz & Bart heuristic fail to find the optimal solution. In addition, TBr could

readily be extended to the 3-dimensional directional p-median problem.

Bibliography

[1] Alok Aggarwal, Baruch Schieber, and Takeshi Tokuyama. Finding a mini-
mum weight k-link path in graphs with Monge property and applications.
Discrete Computational Geometry, 12:263–280, 1994.

[2] James H. Anderson and Anand Srinivasan. A new look at Pfair priorities.
Technical report, University of North Carolina, September 1999.

[3] James H. Anderson and Anand Srinivasan. Mixed Pfair/ERfair scheduling
of asynchronous periodic tasks. Journal of Computer and System Sciences,
2001. Submitted.

[4] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportion-
ate progress: A notion of fairness in resource allocation. Algorithmica,
15(6):600–625, 1996.

[5] Mark Daskin. Network and Discrete Location: Models, algorithms, and
applications. John Wiley and Sons, New York, 1995.

[6] Paul J. Densham and Gerard Rushton. A more efficient heuristic for
solving large p-median problems. Papers in Regional Science: The Journal
of the RSAI, 71(3):307–329, 1992.

[7] M. L. Dertouzos and A. K-L. Mok. Multiprocessor on-line scheduling
of hard-real-time tasks. IEEE Transactions on Software Engineering,
15(12):1497–1506, Dec 1989.

[8] I. Dhillon. A new algorithm for the symmetric tridiagonal
eigenvalue-eigenvector problem. PhD thesis, University of California,
Berkeley, 1997.

[9] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

114

[10] Zvi Drezner and Horst W. Hamacher. Facility location: Applications and
theory. Springer Verlag, Berlin, 2002.

[11] Zvi Drezner, Kathrin Klamroth, Anita Schoebel, and George O.
Wesolowsky. The Weber problem. In Zvi Drezner and Horst W. Hamacher,
editors, Facility location: Applications and theory, pages 1–36. Springer
Verlag, Berlin, 2002.

[12] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman and Company,
New York, 1979.

[13] R. Hassin and A. Tamir. Improved complexity bounds for location prob-
lems on the real line. Operations Research Letters, 10:395–402, 1991.

[14] H.W. Kuhn. On a pair of dual nonlinear programs. In J. Abadie, editor,
Nonlinear programming, pages 39–54. North-Holland Publishing Com-
pany, Amsterdam, 1967.

[15] C. Lea and A. Alyatama. Bandwidth quantization and states reduction
in the broadband ISDN. IEEE/ACM Transactions on Networking, 3:352–
360, June 1995.

[16] David Lichtenstein. Planar formulae and their uses. SIAM Journal on
Computing, 11(2):329 – 343, 1982.

[17] Nimrod Megiddo and Kenneth J. Supowit. On the complexity of some
common geometric location problems. SIAM Journal on Computing,
13(1):182–196, February 1984.

[18] Bernard M. Moret. The Theory of Computation. Addison-Wesley, Read-
ing, MA, 1998.

[19] L. Ostresh. The multifacility location problem: Applications and descent
theorems. Journal of Regional Science, 17:409–419, 1977.

[20] A. Papakostas and I. G. Tollis. Algorithms for area-efficient orthogonal
drawings. Computational Geometry: Theory and Applications, 9:83 – 110,
1998.

[21] C.S. ReVelle. Facility siting and integer-friendly programming. European
Journal of Operational Research, 65:147, 1993.

[22] C.S. ReVelle and R.W. Swain. Central facilities location. Geographical
Analysis, 2:30–42, 1970.

115

[23] K.E. Rosing, E.L. Hillsman, and H. Rosing-Vogelaar. A note comparing
optimal and heuristic solutions to the p-median problem. Geographical
Analysis, 11:86–89, 1979.

[24] K.E. Rosing and C.S. ReVelle. Heuristic concentration: two stage solution
construction. European Journal of Operational Research, pages 75–86,
1997.

[25] D.A. Schilling, K.E. Rosing, and C.S. ReVelle. Network distance charac-
teristics that affect computational effort in p-median location problems.
European Journal of Operational Research, 127:525–536, 2000.

[26] M.B. Teitz and P. Bart. Heuristic methods for estimating the generalized
vertex median of a weighted graph. Operations Research, 16:955–961,
1968.

[27] Alfred Weber. Ueber den Standort der Industrien, 1909, translated as
Theory of the Location of Industries. University of Chicago Press, Chicago,
1929.

[28] Mark Ziegelmann. Constrained Shortest Paths and Related Problems.
PhD thesis, Universitaet des Saarlandes, 2001.

116

Appendix A

Algorithm Quantize for DPM1

{* fill in Diff table * }
for i = 1 to n do

for j = i to n do
Diff[i][j] = x[j] − x[i] ;

end for
end for
{* fill in Cumul table * }
for i = 1 to n do

for j = i to 1 do
if j == i then
Cumul[i][j] = 0

else
Cumul[i][j] = Diff[j][i] + Cumul[i][j + 1]

end if
end for

end for
{* build Opt table *}
for i = 1 to n do

for j = 1 to i do
if i == j then
Opt[i][j]= 0
Prev[i][j] = i− 1

else if j == 1 then
Opt[i][j] = Cumul[i][1]

117

else
Opt[i][j] = minj−1≤s≤i−1{Opt[s][j − 1] + Cumul[i][s + 1] }
Prev[i][j] = smin

end if
end for

end for
{* construct the z array from Prev *}
z[p] = x[n]
index[p] = n ;
for i = p− 1 to 1 do
index[i] = Prev[index[i + 1]][i + 1]
z[i] = x[index[i]]

end for

118

Appendix B

Algorithm Quantize-Continuous

for SDPM1

{* fill in Sum table (analogous to Diff) * }
for i = 1 to n do

for j = i to n do
if j == i then
Sum[i][j] = m[i]

else
Sum[i][j] = Sum[i][j − 1] + m[j]

end if
end for

end for
{* fill in Prod table (analogous to Cumul) * }
for i = 1 to n do

for j = 1 to i do
Prod[i][j] = Sum[j][i] × e[i]

end for
end for
{* build AQL table (analogous to Opt) *}
for i = 1 to n do

for j = 1 to i do
if i == j then
AQL[i][j] = AQL[i− 1][j − 1] + Prod[i][j]

119

Prev[i][j] = i− 1
else if j == 1 then
AQL[i][j] = Prod[i][1]

else
AQL[i][j] = minj−1≤s≤i−1{AQL[s][j − 1] + Prod[i][s + 1] }
Prev[i][j] = smin

end if
end for

end for
{* construct the z array from Prev *}
z[p] = e[n]
index[p] = n ;
for i = p− 1 to 1 do
index[i] = Prev[index[i + 1]][i + 1]
z[i] = e[index[i]]

end for

120

Appendix C

Algorithm Q-PD2 for scheduling

a quantized task set

{* Pre-Processing phase * }
Q = BuildQueues(x)
t = 0
{* Start of Scheduling phase * }
while true do

repeat
T = ExtractMin(Q)
Schedule task T in slot t
t_next = the earliest future time at which T will be eligible again
T.nextEligible = t_next ;
T.priority = Determine T’s priority at time t_next ;
Enqueue(Q,T)

until m tasks have been scheduled in slot t
t = t + 1

end while

