
Abstract

WILLS, REBECCA S. When Rank Trumps Precision: Using the Power Method to
Compute Google’s PageRank. (Under the direction of Ilse C.F. Ipsen.)

The PageRank algorithm, developed by Google founders Larry Page and Sergey

Brin, assigns ranking scores to webpages that reflect their relative importance. These

scores are based primarily on the link structure of the Web graph and correspond to

elements of a dominant left eigenvector, called the PageRank vector, of the stochastic

Google matrix. When the starting vector is a probability vector, the iterates of

the power method applied to the Google matrix converge to the PageRank vector.

Determining when to stop the iterations requires deciding when an iterate vector

is good enough. Existing termination criteria rely on various measures of distance

between successive iterate vectors. In this dissertation, we investigate how well a

power method iterate vector approximates the PageRank vector, we show that the

existing termination criteria do not guarantee accurate ranking, and we provide a

computationally efficient criterion for determining relative rankings, exact rankings,

and ranking intervals of PageRank scores.

WHEN RANK TRUMPS PRECISION:
USING THE POWER METHOD TO COMPUTE

GOOGLE’S PAGERANK

by

Rebecca S. Wills

a dissertation submitted to the graduate faculty of

north carolina state university

in partial fulfillment of the

requirements for the degree of

doctor of philosophy

mathematics

raleigh, north carolina

2007

approved by:

Ilse C.F. Ipsen Stephen L. Campbell

chair of advisory committee

Stephen J. Kirkland Carl D. Meyer

technical consultant

Ernest L. Stitzinger

Biography

Rebecca Smith Wills, daughter of Jane and Danny Smith, was born on April 12,

1977, in Halifax County, North Carolina. She has two older siblings, Danita and

Daniel, and one younger sibling, Jonathan. She received a Bachelor of Science degree

in mathematics from High Point University on May 8, 1999, and married Jeremiah

Wills on May 15, 1999. After working as a Benefits Specialist at Aon Consulting,

Inc. for approximately 2.5 years, Rebecca began her graduate work in mathematics at

North Carolina State University in the fall of 2002. She received a Master of Science

degree in 2004 and completed her doctorate in 2007. While at NC State, she taught

several mathematics courses and won the Maltbie Award for excellence in teaching.

ii

Acknowledgements

Anyone who has ever been able to sustain good work has had at least one

person – and often many – who have believed in him or her. We just don’t

get to be competent human beings without a lot of different investments

from others.

- Fred Rogers (host of Mister Rogers’ Neighborhood) [65]

Although this dissertation indicates to others that I have achieved an academic

goal, it serves as a reminder to me of those who helped along the way. I am grateful

for the financial, academic, and/or personal support I received from many people in

my educational pursuits.

Financial Assistance. I thank the NCSU math department for providing sup-

port during the past five years through teaching assistantships, summer employment,

office space, supplies, and travel funds. In addition, I thank the following organiza-

tions for their financial contributions: the NCSU Graduate Student Support Plan, the

NCSU Alumni Association (fellowship), the NCSU Preparing the Professoriate pro-

gram (stipend), the NCSU University Graduate Student Association (travel funds),

and the Society for Industrial and Applied Mathematics (SIAM student travel award).

iii

Academic Support. I owe considerable thanks to the members of my advi-

sory committee: Ilse Ipsen, Steve Campbell, Steve Kirkland, Carl Meyer, and Ernie

Stitzinger. I often think of how fortunate I have been to get to know and to receive

feedback from such a strong group of mathematicians. I also thank David Bird for

agreeing to serve as my representative from the graduate school.

I am grateful to my academic advisor and dissertation chair, Ilse Ipsen, for freely

investing her time and expertise in my educational development. Through weekly

meetings, class discussions, and email correspondence with Ilse Ipsen, I had numerous

opportunities to observe her strong work ethic and tireless commitment to excellence

in mathematics. Among the many things I learned from her, the two most influential

have been the importance of effectively communicating ideas and the benefits of

receiving honest critique of those ideas.

The end product of my dissertation research reflects many contributions from all

members of my advisory committee. During presentations of my research to the

Graduate Student Numerical Analysis Seminar, Steve Campbell always asked me

thoughtful questions. In fact, one question ultimately changed the course of my

dissertation research. In addition to providing the main idea for the analysis in my

dissertation, Steve Kirkland read early drafts of my results and gave helpful feedback.

I give credit to Carl Meyer for sparking my interest in the PageRank algorithm and

iv

for answering many of my early questions about it. In addition, I consider his books

and research papers excellent resources.

I thank Ernie Stitzinger for convincing me to attend NCSU and for always showing

that he cares about me as a person. Each conversation I had with him during the

past five years brightened my days. I am confident that he will never know the extent

of his impact on the lives of so many graduate students.

Many others deserve to be acknowledged for their academic and technical support.

I thank the members of the Graduate Student Numerical Analysis Seminar for making

me a better speaker. I am grateful to John Griggs for serving as my mentor for the

Preparing the Professoriate program and for his interest in my development as an

educator. I thank Amy Langville for planning link analysis seminars to discuss the

PageRank algorithm, for co-authoring many useful resources on PageRank, and for

always pointing me in the right direction when I needed something. I owe thanks to

David Gleich for providing data sets for many of my experiments and for promptly

answering my questions about the data sets. Without the help of Joel Cason during

the month before my defense, I am not sure if I would have been able to complete my

dissertation on time. I thank him for quickly fixing numerous computer problems. I

appreciate the assistance I received from Miriam Ansley, Seyma Bennett-Shabbir, Di

Bucklad, Brenda Currin, Carolyn Gunton, Denise Seabrooks, and Charlene Wallace

throughout my tenure at NCSU.

v

I would be remiss if I failed to mention the tremendous influence of faculty from

High Point University. My chemistry professor, Charlie Warde, was the first to tell me

that it would be a shame if I did not become “Dr. Smith.” I have never forgotten his

words nor have I forgotten his delightful personality. For many years, my academic

success has been championed by Rob Harger, Manyon Idol, Nelson Page, and Shirley

Robertson. Impressed by their commitment to teaching and genuine interest in their

students, I continually strive to invest as much in my students as they have invested

and continue to invest in me.

Personal Support. I cannot adequately express thanks to my husband, Jay, for

his constant support and overwhelming belief in me. Although also working on his

Ph.D. in sociology, he always found time to be my counselor, editor, secretary, and

biggest fan. From bringing me coffee when I needed it to working long hours with me

at NCSU, his actions are those of an unselfish partner. I truly am blessed to share

life with him.

Through the years, I have received unwavering support from my parents and my

siblings. They always are there to cheer me on. At a very young age, I learned from

my mother to be satisfied with nothing less than my best. I respect and admire her

strength and character. As a minister, my dad taught me about God’s unfailing love

and ever present help. Some of my greatest memories from childhood are the debates

I had with my parents and siblings. I am so thankful to my parents for encouraging

vi

inquisitive children to ask questions and to my siblings, Danita, Daniel, and Jonathan,

for enjoying debates as much as I did.

As the years go by, my extended family continues to grow. I thank each member,

from nieces and nephews to in-laws, for providing necessary diversions from study

during the past five years.

I have enjoyed getting to know and certainly will miss my office-mates and near

office-mates: Jordan Bostic, Rebecca Kalhorn, Drew Pasteur, Laurie Zack, April

Alston, and Ryan Siskind. Thanks for looking through my presentation slides, helping

me figure out Matlab code, and deciding just the right word to include in a sentence.

More importantly, thanks for the conversations about nothing in particular. Good

luck to each of you in your academic pursuits. Thanks also to Amanda Hall and

Rizwana Rehman for your friendship.

Finally, I owe many thanks to my former students. You greatly enhanced my

experience at NCSU and served as a daily reminder to me of my primary reason for

embarking on this journey.

vii

Table of Contents

List of Tables . x

List of Figures . xi

1 Introduction . 1

2 Google’s PageRank Algorithm . 3
2.1 Background . 3
2.2 Notation . 5
2.3 Mathematics of PageRank . 6

2.3.1 Directed Web Graph . 6
2.3.2 Web Hyperlink Matrix . 7
2.3.3 Dangling Node Fix . 8
2.3.4 Google Matrix . 10
2.3.5 PageRank Vector . 11
2.3.6 Linear System Formulation of PageRank 12
2.3.7 Examples . 13

3 The Power Method for Computing PageRank 16
3.1 Properties . 16
3.2 Termination Criteria . 18
3.3 Residual and Forward Error . 19

3.3.1 Residual . 20
3.3.2 Forward Error . 24
3.3.3 Summary of Bounds . 36
3.3.4 Experiments . 39

4 Ranking Convergence of the Power Method 56
4.1 Ranking Distance . 56
4.2 Incorrectly Ranked Approximations to PageRank 59

4.2.1 Examples to Support Claims 60
4.2.2 Experiments . 64

4.3 Forward Error Bounds and Ranking 67

viii

4.3.1 Experiments . 70
4.3.2 Discussion . 74

5 Conclusion . 77
5.1 Summary of Contributions . 77
5.2 Future Research . 79

5.2.1 Short-term . 79
5.2.2 Long-term . 80

List of References . 81

Appendices . 89

Appendix A Matlab File: adjacency to hyperlink.m 90

Appendix B Matlab File: pers vector.m 93

Appendix C Matlab File: new pagerank experiments.m 95

ix

List of Tables

2.1 Modeling surfer behavior for the directed graph in Figure 2.2 15

3.1 Summary of Residual and Forward Error Bounds 37
3.2 Chapter 2 Example . 40
3.3 Characteristics of data sets used in experiments 46
3.4 Degree information of data sets in Table 3.3 47

4.1 Correct Ranking After 5 Iterations 62
4.2 Termination Criteria for Chapter 2 Example 65
4.3 Forward Error Bounds to Identify Ranking for Chapter 2 Example . . 71
4.4 Characteristics of wb-cs.stanford data set 72
4.5 Ranking Information for wb-cs.stanford Example 73

x

List of Figures

2.1 Simple directed graph with 4 vertices 7
2.2 Dangling node fix to Figure 1 . 9

3.1 Chapter 2 directed graph with dangling node fix w =
(

1
n

)
11 39

3.2 One norm – Model 1 (Row 1: x(0) = v =
(

1
4

)
11; Row 2: x(0) = e1) . . 41

3.3 Infinity norm – Model 1 (Row 1: x(0) = v =
(

1
4

)
11; Row 2: x(0) = e1) . 42

3.4 One norm – Model 2 (Row 1: x(0) = v = e1; Row 2: x(0) =
(

1
4

)
11) . . 43

3.5 Infinity norm – Model 2 (Row 1: x(0) = v = e1; Row 2: x(0) =
(

1
4

)
11) . 44

3.6 wb-cs.stanford and Stanford (v = w = x(0) =
(

1
n

)
11; α = 0.85) 49

3.7 Stanford-Berkeley and wikipedia-20051105 (v = w = x(0) =
(

1
n

)
11;

α = 0.85) . 50
3.8 enwiki-20060925 and enwiki-20061104 (v = w = x(0) =

(
1
n

)
11; α = 0.85) 51

3.9 Infinity Norm Bounds (α = 0.85; v = w = x(0), where v is defined by
the Matlab code in Appendix B) . 53

3.10 enwiki 20061104 (v = w = e1,715,731; x(0) =
(

1
n

)
11; α = 0.85) 55

4.1 Kendall’s τ Distance Example . 58
4.2 Directed Ring Graph with n Vertices 60
4.3 wb-cs.stanford (α = 0.85; v = w = x(0), where vi = 0 if the indegree or

outdegree of vertex i is less than 10 and vi = 1
165

, otherwise) 75

xi

Chapter 1

Introduction

The most popular modern-day ranking scheme is the PageRank algorithm developed

by Google founders Larry Page and Sergey Brin and implemented by Google for

many Web search tools. The PageRank algorithm determines the relative importance

of webpages by assigning a ranking score to each of more than 25 billion webpages

recognized by Google [8]. The PageRank scores are based primarily on the link

structure of the Web graph, and they correspond to elements of a dominant left

eigenvector, called the PageRank vector, of the stochastic Google matrix.

Google originally computed an approximation to the PageRank vector by means

of the power method. When the starting vector is a probability vector, the power

method iterate vectors converge to the PageRank vector. Existing termination crite-

ria are based on various measures of distance between successive iterate vectors. In

this dissertation, we investigate how well a power method iterate vector approximates

the PageRank vector, we show that the existing termination criteria do not guaran-

tee ranking, and we introduce a computationally efficient criterion for determining

rankings of PageRank scores.

1

Chapter 1. Introduction

The dissertation is organized as follows. Chapter 2, Sections 3.1, 3.2, and 4.1

provide background material and literature review. Our contributions begin in Sec-

tion 3.3 along with summaries of existing results and continue in Sections 4.2 and 4.3.

2

Chapter 2

Google’s PageRank Algorithm

2.1 Background

Google1 founders Larry Page and Sergey Brin met in 1995 when Page visited the

computer science department of Stanford University during a recruitment weekend

[2, 12]. Brin, a second-year graduate student at the time, served as a guide for

potential recruits, and Page was part of his group. They discussed many topics

during their first meeting and disagreed on nearly every issue. Soon after beginning

graduate study at Stanford, Page began working on a Web project, initially called

BackRub, that exploited the link structure of the Web. Brin found Page’s work on

BackRub interesting, so the two started working together on a project that would

permanently change Web search. Brin and Page realized that they were creating a

search engine that adapted to the ever-increasing size of the Web, so they replaced

the name BackRub with Google (a common misspelling of googol, the number 10100).

Unable to convince existing search engine companies to adopt the technology they

had developed but certain their technology was superior to any available, Brin and

1Most of Chapter 2 and the first two sections of Chapter 3 appeared in [75].

3

Chapter 2. Google’s PageRank Algorithm

Page decided to start their own company. With the financial assistance of a small

group of initial investors, Brin and Page founded the Web search engine company

Google, Inc. in September 1998.

Almost immediately, the general public noticed what Brin, Page, and others in the

academic Web search community already knew — the Google search engine produced

much higher-quality results than those produced by other Web search engines. Other

search engines relied entirely on webpage content to determine ranking of results,

and Brin and Page realized that webpage developers could easily manipulate the

ordering of search results by placing concealed information on webpages.2 Brin and

Page developed a ranking algorithm, named PageRank after Larry Page, that utilizes

the link structure of the Web to determine the importance of webpages. During the

processing of a query, Google’s search algorithm combines precomputed PageRank

scores with text-matching scores to obtain an overall ranking score for each webpage.

Although many factors determine Google’s overall ranking of search engine re-

sults, Google maintains that the heart of its search engine software is PageRank [3].

A few quick searches on the Internet reveal that both the business and academic

communities hold PageRank in high regard. The business community is mindful that

Google remains the search engine of choice and that PageRank plays a substantial

2That is, a developer could add text in the same color as the background of the page, invisible to
the user but detected by automated search engines. If the terms of a search query occurred many
times in the hidden text, that webpage could appear higher than webpages which were really more
informative.

4

Chapter 2. Google’s PageRank Algorithm

role in the order in which webpages are displayed. Maximizing the PageRank score

of a webpage, therefore, has become an important component of company marketing

strategies. The academic community recognizes that PageRank has connections to

numerous areas of mathematics and computer science such as matrix theory, numer-

ical analysis, information retrieval, and graph theory. As a result, much research

continues to be devoted to explaining and improving PageRank.

2.2 Notation

We adopt the following notation throughout the dissertation. All matrices are real

n×n and vectors are real n×1. The transpose of a vector u is the 1×n vector uT . The

one-norm of a column vector u with elements ui is ‖u‖1 ≡
∑

i |ui|, and the infinity-

norm is ‖u‖∞ ≡ maxi |ui|. The one-norm of a matrix A with elements Aij is the

maximal column sum, ‖A‖1 ≡ maxj

∑
i |Aij|, and the infinity-norm is the maximal

row sum ‖A‖∞ ≡ maxi

∑
j |Aij|. The vector 11 is the column vector of all ones. If

u is a vector with all nonnegative elements, we write u ≥ 0, and ‖u‖1 = uT 11. A

vector u with u ≥ 0 and uT 11 = 1 is a probability vector. The uniform vector is
(

1
n

)
11.

The column vector ei is the vector with 1 in the ith position and 0 elsewhere. The

directed graph associated with matrix A is ∆(A). If Aij > 0, then there is a directed

edge from vertex i to vertex j in ∆(A).

5

Chapter 2. Google’s PageRank Algorithm

2.3 Mathematics of PageRank

The PageRank algorithm models the behavior of an idealized random Web surfer

[18, 62]. This Internet user randomly chooses a webpage to view from the listing of

available webpages. Then, the surfer randomly selects a link from that webpage to

another webpage. The surfer continues the process of selecting links at random from

successive webpages until deciding to move to another webpage by some means other

than selecting a link. The choice of which webpage to visit next does not depend on

the previously visited webpages, and the idealized Web surfer never grows tired of

visiting webpages. Thus, the PageRank score of a webpage represents the probability

that a random Web surfer chooses to view the webpage.

2.3.1 Directed Web Graph

To model the activity of the random Web surfer, the PageRank algorithm represents

the link structure of the Web as a simple directed graph3. Webpages are vertices

(or nodes) of the graph, and links from webpages to other webpages are edges that

show direction of movement. Webpages with neither outlinks nor inlinks are isolated

vertices, and we assume these vertices have been removed from the directed Web

graph. Although the Web graph is very large, the PageRank algorithm can be applied

to a simple directed graph of any size. To faciliate our discussion of PageRank, we

3A simple directed graph is a directed graph with neither multiple edges nor loops.

6

Chapter 2. Google’s PageRank Algorithm

apply the PageRank algorithm to the simple directed graph with 4 vertices shown in

Figure 2.1.

1 2

3 4

Figure 2.1: Simple directed graph with 4 vertices

2.3.2 Web Hyperlink Matrix

The process for determining PageRank begins by expressing a simple directed graph

as the n × n “hyperlink matrix” H, where n is the number of vertices. If vertex i

has outdegree4 li ≥ 1, then Hij = 1/li if there is a directed edge from vertex i to

vertex j, and Hij = 0, otherwise. Thus, Hij represents the likelihood that a random

surfer follows a directed edge from vertex i to vertex j. For the directed graph in

Figure 2.1,

H =


0 1 0 0

0 0 1 0

1
2

0 0 1
2

0 0 0 0

 .

4The outdegree of vertex i is the number of edges from vertex i to other vertices.

7

Chapter 2. Google’s PageRank Algorithm

Vertex 4 is called a dangling node because the outdegree of vertex 4 is zero (there is

no directed edge from vertex 4 to any other vertex). As a result, all entries in row 4

of H are zero. This means the probability is zero that a random surfer moves from

vertex 4 to any other vertex. The majority of webpages are dangling nodes in the

directed Web graph (e.g., postscript files and image files), so there are many zero

rows in in the Web hyperlink matrix [13, Section 1], [25, Section 1]. When a Web

surfer lands on dangling node webpages, the surfer can either stop surfing or move

to another webpage, perhaps by entering the Uniform Resource Locator (URL) of a

different webpage in the address line of a Web browser. Since H does not model the

possibility of moving from dangling node webpages to other webpages, the long-term

behavior of Web surfers cannot be determined from H alone.

2.3.3 Dangling Node Fix

Several options exist for modeling the behavior of a random Web surfer after landing

on a dangling node, and Google does not reveal which option it employs. One option

replaces each row of H corresponding to a dangling node by the same probability

vector, wT . The resulting matrix is S = H + dwT , where d is a column vector that

identifies dangling nodes, meaning di = 1 if vertex i is a dangling node and di = 0,

otherwise. The most popular choice in the literature for w is the uniform vector,

w =
(

1
n

)
11. This amounts to adding artificial directed edges from dangling nodes to

8

Chapter 2. Google’s PageRank Algorithm

all vertices in the directed graph. With w =
(

1
4

)
11, the directed graph in Figure 2.1

changes (see Figure 2.2).

1 2

4

1 2

3 34

Figure 2.2: Dangling node fix to Figure 1

The matrix S = H + dwT is,

S =


0 1 0 0

0 0 1 0

1
2

0 0 1
2

0 0 0 0

+


0

0

0

1

(1
4

1
4

1
4

1
4

)

=


0 1 0 0

0 0 1 0

1
2

0 0 1
2

1
4

1
4

1
4

1
4

 .

Although S depicts the tendency of random surfers to leave dangling nodes, the

model is not yet complete. Even when webpages have links to other webpages, a

random Web surfer might grow tired of continually selecting links and decide to move

9

Chapter 2. Google’s PageRank Algorithm

to a different webpage some other way. For the graph in Figure 2, there is no directed

edge from vertex 2 to vertex 1. On the Web, though, a surfer can move directly from

one webpage to another by entering the URL for a webpage in the address line of a

Web browser. The matrix S does not account for this possibility.

2.3.4 Google Matrix

The overall behavior of an idealized surfer is modeled by the Google matrix

G = αS + (1− α)11vT , (2.1)

where 0 ≤ α < 1 is the damping factor and v is a probability vector called the

personalization vector. The damping factor, α, allows idealized Web surfers to move

to a different webpage with probability 1 − α by some means other than selecting a

link. Brin and Page performed PageRank experiments with parameter values α = 0.85

and v =
(

1
n

)
11 [18, 62, 69]. Choices for α ranging from 0.85 to 0.99 appear in most

literature on the PageRank algorithm.

Assigning the uniform vector for v suggests Web surfers randomly jump to new

webpages when not selecting links. The uniform vector makes PageRank highly sus-

ceptible to link spamming [13, Section 4.4], [34, Section 6.4.1]. Link spamming is the

practice by some search engine optimization experts of adding more links to their

clients’ webpages for the sole purpose of increasing the PageRank score of those web-

pages. This attempt to manipulate PageRank scores is one reason Google does not

10

Chapter 2. Google’s PageRank Algorithm

reveal the current damping factor or personalization vector for the Google matrix.

In 2004, however, Gyöngyi, Garcia-Molina, and Pederson developed the TrustRank

algorithm to create a personalization vector that decreases the harmful effect of link

spamming [34], and Google registered the trademark for TrustRank on March 16,

2005 [6].

2.3.5 PageRank Vector

Because each element Gij of G lies between 0 and 1 (0 ≤ Gij ≤ 1) and the sum of

elements in each row of G is 1, the Google matrix is a stochastic matrix. It is known

that λ = 1 is not a repeated eigenvalue of G and is greater in magnitude than any

other eigenvalue of G [26, 37, 69]. Hence the eigensystem

πT G = πT , π ≥ 0, πT 11 = 1, (2.2)

has the unique solution π, called the PageRank vector5.

We say that λ = 1 is the dominant eigenvalue6 of G, and π is a corresponding

dominant left eigenvector 7 of G. (Since G represents a Markov chain, π is also called

the stationary distribution vector of G. See [60, § 8.4] for more information on Markov

5Though not required, the restriction is often made that the personalization vector v and the
dangling node vector w are probability vectors with all positive entries instead of all nonnegative
entries. Under this restriction, the PageRank vector also is a probability vector with all positive
entries.

6If the eigenvalues λi of A satisfy |λ1| > |λj | for all j 6= 1, then we say that λ1 is the dominant
eigenvalue of A.

7If A has dominant eigenvalue λ1, then an eigenvector corresponding to λ1 is a dominant eigen-
vector of A.

11

Chapter 2. Google’s PageRank Algorithm

chains.) The ith element of π is the PageRank score for vertex i. If πi > πj for some

i 6= j, then the PageRank of vertex i is higher than that of vertex j.

2.3.6 Linear System Formulation of PageRank

Based on the definition of the Google matrix (2.1),

πT = πT G

= πT
(
αS + (1− α)11vT

)
= απT S + (1− α)

(
πT 11

)
vT

= απT S + (1− α)vT , since πT 11 = 1.

Thus, πT − απT S = (1− α)vT implies that πT (I − αS) = (1− α)vT . Therefore, we

can equivalently define PageRank as the solution to the linear system,

πT (I − αS) = (1− α)vT . (2.3)

Since ‖αS‖∞ = α < 1, the matrix I − αS is nonsingular (see [31, Lemma 2.3.3], [54,

§7.1], and [60, Example 7.10.7]). Thus,

πT = (1− α) vT (I − αS)−1 . (2.4)

We will see in later chapters that (I − αS)−1 plays a major role in analyzing the

accuracy of power method iterates as approximations to π. We state several important

facts about I − αS and (I − αS)−1 in the following property:

12

Chapter 2. Google’s PageRank Algorithm

Property 2.1. Properties of I − αS and (I − αS)−1

1. I − αS is a nonsingular M-matrix.

2. (I − αS)−1 ≥ 0.

3. The row sums of I − αS are 1− α.

4. ‖I − αS‖∞ = 1 + α.

5. The row sums of (I − αS)−1 are 1
1−α

.

6.
∥∥(I − αS)−1

∥∥
∞ = 1

1−α
.

7. (I − αS)−1 is strictly diagonally dominant of its column entries,

meaning (I − αS)−1
ii > (I − αS)−1

li , for all 1 ≤ i ≤ n, 1 ≤ l ≤ n, l 6= i.

8. (I − αS)−1 =
∑∞

m=0 αmSm.

9. 1 ≤ (I − αS)−1
ii ≤ 1

1−α
for all 1 ≤ i ≤ n.

Most of these properties have appeared before, and their proofs are straightfor-

ward (see [53, § 5.2] and [54, § 7.1]). Property 2.1.7 follows from [59, Theorem 3.2,

Remark 3.3], and Property 2.1.8 follows from [31, Lemma 2.3.3].

2.3.7 Examples

Table 2.1 shows four different Google matrices and their corresponding PageRank

vectors (approximated to two decimal places) for the directed graph in Figure 2.2.

13

Chapter 2. Google’s PageRank Algorithm

The table illustrates the influence of the personalization vector on PageRank scores.

For instance, when α = 0.85, as is the case for the first and second models, the

PageRank scores and the ordering of the scores differ significantly. The first model

assigns the uniform vector to v, and vertices 1 and 4 receive the lowest PageRank

score. When v = e1, vertex 1 has the highest PageRank score. This personalization

vector models idealized surfers moving to vertex 1 once they grow tired of following the

edge structure of the graph. For the third and fourth models, α = 0.95. The difference

in PageRank scores and ordering of scores for these models is less pronounced. Even

though v = e1 in the fourth model, the higher damping factor decreases the influence

of v.

14

Chapter 2. Google’s PageRank Algorithm

Table 2.1: Modeling surfer behavior for the directed graph in Figure 2.2

Damping Personalization Google PageRank
Factor Vector Matrix Vector

(α) (vT) (G) (≈ πT)

Model 1 0.85
(

1
4

1
4

1
4

1
4

)


3
80

71
80

3
80

3
80

3
80

3
80

71
80

3
80

37
80

3
80

3
80

37
80

1
4

1
4

1
4

1
4

 (
0.21 0.26 0.31 0.21

)

Model 2 0.85
(
1 0 0 0

)


3
20

17
20

0 0

3
20

0 17
20

0

23
40

0 0 17
40

29
80

17
80

17
80

17
80

 (
0.30 0.28 0.27 0.15

)

Model 3 0.95
(

1
4

1
4

1
4

1
4

)


1
80

77
80

1
80

1
80

1
80

1
80

77
80

1
80

39
80

1
80

1
80

39
80

1
4

1
4

1
4

1
4

 (
0.21 0.26 0.31 0.21

)

Model 4 0.95
(
1 0 0 0

)


1
20

19
20

0 0

1
20

0 19
20

0

21
40

0 0 19
40

23
80

19
80

19
80

19
80

 (
0.24 0.27 0.30 0.19

)

15

Chapter 3

The Power Method for Computing PageRank

3.1 Properties

For small Google matrices like the ones in Table 2.1, we can easily find exact solutions

to the eigensystem, πT G = πT . The Google matrix for the entire Web has more than

25 billion rows and columns [8], so computing the exact solution requires extensive

time and computing resources. The power method was the first iterative algorithm

used to approximate the PageRank vector [62]. Since then, many have suggested

other possible algorithms [13, 53, 54]. These include classical iterative methods [9,

28, 14, 55], Krylov subspace methods [28, 29, 30], extrapolation methods [17, 16, 35,

46], aggregation/disaggregation [19, 41, 45, 56], and methods that adapt to the Web

graph [42, 44, 57].

Although each suggested algorithm has merit, the power method remains a good

option for computing PageRank [28],[54, §4.6]. It is the oldest and easiest technique

for approximating a dominant eigenvector of a matrix [71, §3.1]. In addition to being

simple to implement and requiring little storage, the power method is robust because

its convergence rate depends only on α. For matrices with a dominant eigenvalue, the

16

Chapter 3. The Power Method for Computing PageRank

power method converges to a dominant eigenvector for most starting vectors [22, §9.4].

Recall from Section 2.3.5, λ = 1 is the dominant eigenvalue of G and π is a dominant

left eigenvector. The power method applied to G converges to the PageRank vector

when the starting vector is a probability vector, see Section 3.3.

Given a starting vector x(0), with x(0) ≥ 0 and xT 11 = 1, the power method

calculates successive iterates[
x(k)
]T

= [x(k−1)]T G, where k = 1, 2, (3.1)

until some convergence criterion is satisfied. Notice that
[
x(k)
]T

= [x(k−1)]T G also

can be stated
[
x(k)
]T

=
[
x(0)
]T

Gk. As the number of nonzero elements of the person-

alization vector increases, the number of nonzero elements of G can increase. Thus,

the multiplication of [x(k−1)]T with G is expensive; however, since S = H + dwT (for

the dangling node fix mentioned in Section 2.3.3) and G = αS + (1− α)11vT , we can

express the multiplication as follows:[
x(k)
]T

= [x(k−1)]T
(
α
(
H + dwT

)
+ (1− α)11vT

)
= α[x(k−1)]T H + α

(
[x(k−1)]T d

)
wT + (1− α)

(
[x(k−1)]T 11

)
vT

= α[x(k−1)]T H + α
(
[x(k−1)]T d

)
wT + (1− α)vT ,

because [x(k−1)]T 11 = 1 since [x(k−1)]T is a probability vector. This is a sum of three

vectors: a multiple of [x(k−1)]T H, a multiple of wT , and a multiple of vT . (Notice

that [x(k−1)]T d is a scalar.) The only matrix-vector multiplication required is with

the hyperlink matrix H. A 2004 investigation of Web documents estimates that the

17

Chapter 3. The Power Method for Computing PageRank

average number of outlinks for a webpage is 52 [61]. This means that for a typical row

of the hyperlink matrix only 52 of the 25 billion elements are nonzero, so the great

majority of elements in H are 0 (H is very sparse). Since all computations involve the

sparse matrix H and vectors wT and vT , an iteration of the power method is cheap

(the operation count is proportional to the matrix dimension n).

3.2 Termination Criteria

The most popular criterion for terminating iterations of the power method is the

residual norm. For the PageRank algorithm, the residual is just the difference in

successive iterates,

rT
k ≡

[
x(k)
]T

(I −G)

=
[
x(k)
]T − [x(k)

]T
G

=
[
x(k)
]T − [x(k+1)

]T
. (3.2)

The power method stops when ‖rk‖ is less than some tolerance (ranging most often

from 10−8 to 10−2). Although the one norm appears most often in the literature, the

infinity norm and the two norm receive some treatment.

The ratio of the two eigenvalues largest in magnitude determines the asymptotic

convergence rate of the power method [31]. Haveliwala and Kamvar were the first to

prove that the second-largest eigenvalue in magnitude of G is less than or equal to the

damping factor α [37]. (See also [26].) This means that the asymptotic convergence

18

Chapter 3. The Power Method for Computing PageRank

rate is at most α for the Google matrix. The non-asymptotic bounds in Section 3.3

are even stronger. They show that the forward error and the residual decrease by a

factor of α in each iteration.

3.3 Residual and Forward Error

In this section, we analyze how well a given power method iterate vector approximates

the PageRank vector by considering for k ≥ 0 the residual, rk ≡ x(k) − x(k+1), and

the forward error, εk ≡ x(k) − π. In addition to stating results based on any starting

vector x(0) ≥ 0 with
[
x(0)
]T

11 = 1, we provide results for the particular starting vector

x(0) = v, the personalization vector. To derive many of the bounds in this section,

we apply the following Lemma from [38], also stated in [51, Lemma PS], [60, Exer-

cise 5.1.11] and [21, Lemma 3.1] (and in slightly different form in [68, Theorem 2.10]).

Lemma 3.1. [38, Corollary 2.4(a)] For any vectors c and d such that cT 11 = 0,∣∣cT d
∣∣ ≤ dmax−dmin

2
‖c‖1 ,

where dmax and dmin are the maximum and minimum elements of d.

19

Chapter 3. The Power Method for Computing PageRank

Proof. For any scalar γ, cT (γ11) = 0. Thus,∣∣cT d
∣∣ =

∣∣cT (d− γ11)
∣∣ ≤ ‖c‖1‖d− γ11‖∞, by the Hölder inequality [31, § 2.2.2].

Let ‖d− γ∗11‖∞ = min
γ
‖d− γ11‖∞.

Since dmax+dmin

2
is the midpoint of the elements of d, γ∗ = dmax+dmin

2
.

Thus, min
γ
‖d− γ11‖∞ = ‖d−

(
dmax+dmin

2

)
11‖∞ = dmax−dmin

2
.

Note that Lemma 3.1 is tighter than the Hölder inequality for
∣∣cT d

∣∣ since

‖d‖∞ = maxi |di| ≥ dmax−dmin

2
.

3.3.1 Residual

In the following theorem, we provide an expression for the residual in terms of the

initial residual. The proof of [50, Corollary 3.11] includes the expression, and the

derivation for the starting vector x(0) = v appears in the proof of [15, Theorem 5]

and in [16, Property 7].

20

Chapter 3. The Power Method for Computing PageRank

Lemma 3.2 (Power Method Iterates). Let G be the Google Matrix and π its PageRank

vector. The power method iterates
[
x(k)
]T ≡ [x(k−1)]T G with x(0) ≥ 0 and ‖x(0)‖1 = 1

can be stated as[
x(k)
]T

= αk
[
x(0)
]T

Sk + (1− α)vT

k−1∑
m=0

αmSm, k ≥ 1.

Further, if x(0) = v, then[
x(k)
]T

= vT − vT (I − S)
k−1∑
m=0

αm+1Sm.

Proof. (by induction on k)

Since
[
x(1)
]T

=
[
x(0)
]T

G =
[
x(0)
]T (

αS + (1− α)11vT
)

= α
[
x(0)
]T

S + (1− α)
([

x(0)
]T

11
)

vT = α
[
x(0)
]T

S + (1− α)vT ,

the statement is true for k = 1. Assume true for k.

That is, assume
[
x(k)
]T

= αk
[
x(0)
]T

Sk + (1− α)
k−1∑
m=0

αmvT Sm.

Then,
[
x(k+1)

]T
=
[
x(k)
]T

G = α
[
x(k)
]T

S + (1− α)vT

= α

(
αk
[
x(0)
]T

Sk + (1− α)
k−1∑
m=0

αmvT Sm

)
S + (1− α)vT

= αk+1
[
x(0)
]T

Sk+1 + (1− α)
k−1∑
m=0

αm+1vT Sm+1 + (1− α)vT

= αk+1
[
x(0)
]T

Sk+1 + (1− α)
k∑

m=1

αmvT Sm + (1− α)vT

= αk+1
[
x(0)
]T

Sk+1 + (1− α)
k∑

m=0

αmvT Sm.

21

Chapter 3. The Power Method for Computing PageRank

Thus, the statement is true for k + 1.

Hence, by induction,
[
x(k)
]T

= αk
[
x(0)
]T

Sk + (1− α)
k−1∑
m=0

αmvT Sm, k ≥ 1.

If x(0) = v, then
[
x(k)
]T

= αkvT Sk + (1− α)
k−1∑
m=0

αmvT Sm.

=
k∑

m=0

αmvT Sm −
k−1∑
m=0

αm+1vT Sm

= vT +
k∑

m=1

αmvT Sm −
k−1∑
m=0

αm+1vT Sm

= vT +
k−1∑
m=0

αm+1vT
(
Sm+1 − Sm

)
= vT − vT (I − S)

k−1∑
m=0

αm+1Sm.

Theorem 3.3 (Residual). Let G be the Google Matrix and π its PageRank vector.

The power method iterates
[
x(k)
]T ≡ [x(k−1)]T G with x(0) ≥ 0 and ‖x(0)‖1 = 1 satisfy

rT
k = αk

([
x(0)
]T − [x(1)

]T)
Sk = αkrT

0 Sk, k ≥ 1.

Further, if x(0) = v, then

rT
k = αk+1vT (I − S) Sk.

22

Chapter 3. The Power Method for Computing PageRank

Proof. By Lemma 3.2,

rT
k =

[
x(k)
]T − [x(k+1)

]T
= αk

[
x(0)
]T

Sk + (1− α)
k−1∑
m=0

αmvT Sm − αk+1
[
x(0)
]T

Sk+1 − (1− α)
k∑

m=0

αmvT Sm

= αk
[
x(0)
]T

Sk − αk+1
[
x(0)
]T

Sk+1 − (1− α)αkvT Sk

= αk
([

x(0)
]T − α

[
x(0)
]T

S − (1− α)vT
)

Sk

= αk
([

x(0)
]T − [x(1)

]T)
Sk

= αkrT
0 Sk.

If x(0) = v, then rT
0 = vT − vT G = vT − αvT S − (1− α)vT = αvT (I − S).

Thus, rT
k = αk+1vT (I − S) Sk.

With the help of Theorem 3.3, we derive upper bounds for the one norm and the

infinity norm of the residual.

Corollary 3.4 (Residual Bounds). Under the assumptions of Theorem 3.3,

‖rk‖1 ≤ αk‖r0‖1 ≤ 2αk and ‖rk‖∞ ≤ αk

2
‖r0‖1 ≤ αk.

Further, if x(0) = v, then

‖rk‖1 ≤ 2αk+1 and ‖rk‖∞ ≤ αk+1.

Proof.

For the one norm,

‖rk‖1 = ‖rT
k ‖∞ = ‖αkrT

0 Sk‖∞ ≤ αk‖rT
0 ‖∞‖S‖k

∞ = αk‖r0‖1 ≤ 2αk.

23

Chapter 3. The Power Method for Computing PageRank

If x(0) = v, then ‖rk‖1 = αk+1‖vT (I − S) Sk‖∞ ≤ αk+1‖vT (I − S) ‖∞

≤ αk+1 (‖v‖1 + ‖v‖1‖S‖∞) = 2αk+1.

For the infinity norm,

‖rk‖∞ = ‖rT
k ‖1 = ‖αkrT

0 Sk‖1 = αk‖rT
0 Sk‖1.

By Lemma 3.1, since rT
0 11 = 0 and Sk is stochastic,

‖rk‖∞ = αk max
∣∣rT

0 Skei

∣∣ ≤ αk

2
‖r0‖1 ≤ αk.

If x(0) = v, then ‖rk‖∞ = αk+1‖vT (I − S) Sk‖1 = αk+1 max
∣∣vT (I − S) Skei

∣∣ .
Since vT (I − S) 11 = 0,

‖rk‖∞ ≤ αk+1

2
‖vT (I − S) ‖∞ ≤ αk+1.

3.3.2 Forward Error

In this section, we provide expressions for the forward error εk = x(k) − π in terms

of the initial forward error ε0 = x(0) − π, the group generalized inverse of I − G,

the matrix (I − αS)−1, and the difference x(0) − x(k). In addition, we include simple

proofs of previously known bounds on the forward error and derive new bounds.

In the following theorem, we give an expression for the forward error in terms of

the initial forward error ε0 = x(0) − π. Based on the expression for the forward error,

we obtain an upper bound for the component-wise error
∣∣∣x(k)

i − πi

∣∣∣.
24

Chapter 3. The Power Method for Computing PageRank

Theorem 3.5 (Forward Error). Let G be the Google Matrix and π its PageRank

vector. The power method iterates
[
x(k)
]T ≡ [x(k−1)]T G with x(0) ≥ 0 and ‖x(0)‖1 = 1

satisfy

εT
k = αk

([
x(0)
]T − πT

)
Sk = αkεT

0 Sk, k ≥ 1.

Further, if x(0) = v, then

εT
k = αk+1

(
vT − πT S

)
Sk.

Proof. (by induction on k)

Since εT
1 =

[
x(1)
]T − πT =

[
x(0)
]T

G− πT G =
([

x(0)
]T − πT

)
G

=
([

x(0)
]T − πT

) (
αS + (1− α)11vT

)
= α

([
x(0)
]T − πT

)
S + (1− α)

([
x(0)
]T − πT

)
11vT

= α
([

x(0)
]T − πT

)
S = αεT

0 S,

the statement is true for k = 1. Assume true for k. That is, assume εT
k = αkεT

0 Sk.

Then, εT
k+1 =

[
x(k+1)

]T − πT =
([

x(k)
]T − πT

)
G = εT

k G

= αkεT
0 Sk

(
αS + (1− α)11vT

)
= αk+1εT

0 Sk+1 + αk(1− α)εT
0 Sk11vT = αk+1εT

0 Sk+1.

Thus, the statement is true for k + 1. Hence, by induction, εT
k = αkεT

0 Sk.

If x(0) = v, then εT
k = αk

(
vT − πT

)
Sk = αk

(
vT − πT G

)
Sk

= αk
(
vT − απT S − (1− α)vT

)
Sk = αk+1

(
vT − πT S

)
Sk.

25

Chapter 3. The Power Method for Computing PageRank

Theorem 3.6 (Component-wise Error Bound). Under the assumptions of Theo-

rem 3.5, ∣∣∣x(k)
i − πi

∣∣∣ ≤ αk

2
max

h,l

(
Sk

hi − Sk
li

)
‖ε0‖1.

Further, if x(0) = v, then∣∣∣x(k)
i − πi

∣∣∣ ≤ αk+1

2
max

h,l

(
Sk

hi − Sk
li

)
‖vT − πT S‖∞.

Proof.

By Lemma 3.1 and Theorem 3.5,
∣∣∣x(k)

i − πi

∣∣∣ =
∣∣∣([x(0)

]T − πT
) (

αkSkei

)∣∣∣ .
Since

([
x(0)
]T − πT

)
11 = 0,∣∣∣x(k)

i − πi

∣∣∣ ≤ αk

2
max

h,l

(
Sk

hi − Sk
li

)
‖x(0) − π‖1

= αk

2
max

h,l

(
Sk

hi − Sk
li

)
‖ε0‖1.

If x(0) = v, then
∣∣∣x(k)

i − πi

∣∣∣ ≤ αk+1

2
max

h,l

(
Sk

hi − Sk
li

)
‖vT − πT S‖∞,

since
(
vT − πT S

)
11 = 0.

Since Sk is stochastic, 0 ≤ maxh,l

(
Sk

hi − Sk
li

)
≤ 1. Also, Sk

hi represents the prob-

ability of moving within the directed graph from any vertex h to vertex i in exactly

k steps. If maxh,l

(
Sk

hi − Sk
li

)
= 1, then there is a walk of length k from vertex h

to vertex i only, and some other vertex cannot reach vertex i in k steps. Further,

maxh,l

(
Sk

hi − Sk
li

)
= 0 means the probability of moving to vertex i in exactly k steps

is the same for every vertex. In this case, the PageRank for vertex i has converged.

26

Chapter 3. The Power Method for Computing PageRank

We formalize this statement in the theorem below. We also note that columns of

S corresponding to unreferenced vertices (vertices with zero indegree1) have all zero

entries (depending on the dangling node fix). Thus, the PageRank scores for these

vertices depend only on the personalization vector v ([24, Theorem 3.1] provides a

similar statement for unreferenced vertices when the dangling node fix vector and the

personalization vector are w = v =
(

1
n

)
11).

Theorem 3.7. Under the assumptions of Theorem 3.5, if Skei = β11 for some β ≥ 0

and k ≥ 1, then x
(k)
i = πi. Further, if Sei = 0, then x

(1)
i = πi = (1− α)vi.

Proof.

If
∣∣∣x(k)

i − πi

∣∣∣ ≤ αk

2
max

h,l

(
Sk

hi − Sk
li

)
‖ε0‖1 and max

h,l

(
Sk

hi − Sk
li

)
= 0, then x

(k)
i = πi.

But, max
h,l

(
Sk

hi − Sk
li

)
= 0 ⇔ max

h

(
Sk

hi

)
= min

h

(
Sk

hi

)
⇔ Skei = β11.

If Sei = 0, then
[
x(0)
]T

Gei = α
([

x(0)
]T

Sei

)
+ (1− α)

([
x(0)
]T

11
)

vT ei = (1− α)vi.

In the following corollary, we provide upper bounds for the one norm and the

infinity norm of the forward error. The bound for the one norm also appears without

proof in [43, §4] and with a different proof in [14, Theorem 6.1].

1The indegree of vertex i is the number of edges from other vertices to vertex i.

27

Chapter 3. The Power Method for Computing PageRank

Corollary 3.8 (Norm-wise Error Bounds). Under the assumptions of Theorem 3.5,

‖εk‖1 ≤ αk‖ε0‖1 ≤ 2αk and ‖εk‖∞ ≤ αk

2
‖ε0‖1 ≤ αk.

Further, if x(0) = v, then

‖εk‖1 ≤ 2αk+1 and ‖εk‖∞ ≤ αk+1.

Proof.

For the one norm,

‖εk‖1 = ‖εT
k ‖∞ = ‖αkεT

0 Sk‖∞ ≤ αk‖εT
0 ‖∞‖S‖k

∞ = αk‖ε0‖1 ≤ 2αk.

If x(0) = v, then ‖εk‖1 = αk+1‖
(
vT − πT S

)
Sk‖∞ ≤ αk+1‖vT − πT S‖∞

≤ αk+1
(
‖v‖1 + ‖πT S‖∞

)
.

Since πT S ≥ 0 and
(
πT S

)
11 = 1, ‖εk‖1 ≤ 2αk+1.

The bounds for the infinity norm follow from Theorem 3.6 and the fact that

for every vertex i, 0 ≤ maxh,l

(
Sk

hi − Sk
li

)
≤ 1.

The upper bounds follow from ‖ε0‖1 ≤ 2 and ‖vT − πT S‖∞ ≤ 2.

Group Generalized Inverse of I−G. In [50, § 2], Kirkland determines how

well a power method iterate x(k) approximates π for a general stochastic matrix with 1

as an algebraically simple eigenvalue. Tayloring his general analysis specifically to

iterates of the power method applied to the Google matrix, Kirkland recognizes that

the group generalized inverse of the matrix I−G is a “key component” in analyzing the

the forward error, εk = x(k)−π. Since G is a stochastic matrix, the group generalized

28

Chapter 3. The Power Method for Computing PageRank

inverse (I −G)# exists [20, Theorem 8.2.1]. It is the unique matrix satisfying the

three equations [20, Definition 7.2.4]:

1. (I −G) (I −G)# (I −G) = (I −G) ,

2. (I −G)# (I −G) (I −G)# = (I −G)# , and

3. (I −G) (I −G)# = (I −G)# (I −G) .

Further, (I −G) (I −G)# = I − 11πT [20, Theorem 8.2.3]. Thus,

rT
k (I −G)# =

([
x(k)
]T − [x(k+1)

]T)
(I −G)#

=
[
x(k)
]T

(I −G) (I −G)#

=
[
x(k)
]T (

I − 11πT
)

=
[
x(k)
]T − πT . (3.3)

So, εT
k =

[
x(k)
]T − πT = rT

k (I −G)# . Therefore, Kirkland concludes that (I −G)#

plays a major role in any discussion of the accuracy of x(k) as an approximation to π.

Kirkland’s analysis is based on directed cycle2 lengths in ∆(S), the directed graph

associated with S. Note that ∆(H), the directed graph associated with the hyperlink

matrix, differs from ∆(S) when there are dangling nodes. Based on his analysis of

(I −G)# and the cycle structure of ∆(S), Kirkland provides the following forward

error bounds for a vertex i.

2A directed cycle is a directed walk with distinct edges and distinct vertices (except that it begins
and ends with the same vertex).

29

Chapter 3. The Power Method for Computing PageRank

Theorem 3.9. [50, Corollary 3.11] Under the assumptions of Theorem 3.5,

1. If vertex i is on no cycle of length at least 2 in ∆(S),

then
∣∣∣x(k)

i − πi

∣∣∣ ≤ αk

2

(
1

1−αSii

)
‖r0‖1 .

2. If vertex i is on a cycle of length at least 2 and g is the length of the shortest

such cycle, then
∣∣∣x(k)

i − πi

∣∣∣ ≤ αk

2

(
1

1−αg−αSii(1−αg−1)

)
‖r0‖1 .

For the second bound, note that 1
1−αg−αSii(1−αg−1)

≥ 1 since 0 ≤ α < 1. The bound

is tighter for webpages that lie only on long cycles. For both bounds, note that if

Sii 6= 0, then vertex i is a dangling node and wi > 0. Otherwise, Sii = 0 since simple

directed graphs do not have loops.

Remark 3.10. If x(0) = v, then the bounds in Theorem 3.9 are:

1. If vertex i is on no cycle of length at least 2 in ∆(S),

then
∣∣∣x(k)

i − πi

∣∣∣ ≤ αk+1

2

(
1

1−αSii

)∥∥vT (I − S)
∥∥
∞ .

2. If vertex i is on a cycle of length at least 2 and g is the length of the shortest

such cycle, then
∣∣∣x(k)

i − πi

∣∣∣ ≤ αk+1

2

(
1

1−αg−αSii(1−αg−1)

)∥∥vT (I − S)
∥∥
∞ .

Linear System Matrix. Recall from Section 2.3.6, that PageRank is the solution

to the linear system,

πT (I − αS) = (1− α)vT ,

30

Chapter 3. The Power Method for Computing PageRank

where (I − αS) is a nonsingular M-matrix. Using the expanded form of the Google

matrix, we obtain

(I −G) (I − αS)−1 =
(
(I − αS)− (1− α)11vT

)
(I − αS)−1

= I − (1− α)11vT (I − αS)−1

= I − 11πT .

Thus,

εT
k =

[
x(k)
]T − πT

=
[
x(k)
]T

(I −G) (I − αS)−1

= rT
k (I − αS)−1, (3.4)

which appears in [16, Property 11]. Since I − G is a singular matrix, (I − αS)−1

cannot be the group generalized inverse of I−G; however, (I − αS)−1 plays a similar

role. In the following theorem, we state an upper bound for the component-wise error∣∣∣x(k)
i − πi

∣∣∣ based on εT
k = rT

k (I − αS)−1.

Theorem 3.11 (Component-wise Error Bound). Under the assumptions of

Theorem 3.5,∣∣∣x(k)
i − πi

∣∣∣ ≤ 1
2

(
(I − αS)−1

ii −min
h

(I − αS)−1
hi

)
‖rk‖1, k ≥ 0.

31

Chapter 3. The Power Method for Computing PageRank

Proof.∣∣∣x(k)
i − πi

∣∣∣ =
∣∣rT

k (I − αS)−1ei

∣∣
≤ 1

2
‖rk‖1 max

h,l

(
(I − αS)−1

hi − (I − αS)−1
li

)
, since rT

k 11 = 0.

By Property 2.1.7,
∣∣∣x(k)

i − πi

∣∣∣ ≤ 1
2

(
(I − αS)−1

ii −min
h

(I − αS)−1
hi

)
‖rk‖1.

Remark 3.12. Applying Corollary 3.4 to Theorem 3.11,∣∣∣x(k)
i − πi

∣∣∣ ≤ αk

2

(
(I − αS)−1

ii −min
h

(I − αS)−1
hi

)
‖r0‖1, k ≥ 0.

Further, if x(0) = v, then∣∣∣x(k)
i − πi

∣∣∣ ≤ αk+1

2

(
(I − αS)−1

ii −min
h

(I − αS)−1
hi

)
‖vT (I − S) ‖∞, k ≥ 0.

Since rk is easily computable and ‖rk‖1 ≤ αk‖r0‖1, these bounds are not better than

the bounds in Theorem 3.11.

We know that 1 ≤ (I − αS)−1
ii ≤ 1

1−α
. Also, if vertex i is on no cycle of length 1

or greater, then (I − αS)−1
ii = 1 and minh (I − αS)−1

hi = 0. In this case, the bound in

Remark 3.12 is the same as the bound in Theorem 3.9.

Based on εT
k = rT

k (I − αS)−1, we have the following upper bounds for the one

norm and the infinity norm of the forward error. The bound for the one norm also

appears in [16, Property 12] and in [50, Equation 3.1]. The bound for the infinity norm

appears in [50, Remark 3.1]. We do not provide a separate statement for x(0) = v.

32

Chapter 3. The Power Method for Computing PageRank

Theorem 3.13 (Norm-wise Error Bounds). Under the assumptions of Theorem 3.5,

‖εk‖1 ≤ 1
1−α

‖rk‖1 and ‖εk‖∞ ≤ 1
2(1−α)

‖rk‖1.

Proof.

For the one norm,

‖εk‖1 = ‖εT
k ‖∞ = ‖rT

k (I − αS)−1‖∞ ≤ ‖rk‖1‖(I − αS)−1‖∞ = 1
1−α

‖rk‖1.

The result for the infinity norm follows from Theorem 3.11 and the fact that

for any vertex i, (I − αS)−1
ii −min

h
(I − αS)−1

hi ≤
1

1−α
.

Initial and Current Iterates. We determine an expression for the PageRank

vector π and computable bounds for the forward error in terms of the initial iterate

and current iterate. We derive a forward error bound for individual PageRank scores.

In addition, we provide upper bounds for the one norm and the infinity norm of the

forward error. Since we do not obtain more useful information when x(0) = v, we do

not include additional statements for x(0) = v in this section.

Theorem 3.14 (PageRank Vector). Under the assumptions of Theorem 3.5,

πT =
([

x(k)
]T − αk

[
x(0)
]T

Sk
) (

I − αkSk
)−1

, k ≥ 1.

33

Chapter 3. The Power Method for Computing PageRank

Proof. By Theorem 3.5,[
x(k)
]T − πT = αk

([
x(0)
]T − πT

)
Sk = αk

[
x(0)
]T

Sk − αkπT Sk.

So,
[
x(k)
]T − αk

[
x(0)
]T

Sk = πT − αkπT Sk = πT
(
I − αkSk

)
.

Since
(
I − αkSk

)
is nonsingular (by [31, Lemma 2.3.3]),

πT =
([

x(k)
]T − αk

[
x(0)
]T

Sk
) (

I − αkSk
)−1

.

Theorem 3.15 (Forward Error). Under the assumptions of Theorem 3.5,

εT
k = αk

([
x(0)
]T − [x(k)

]T) (
I − αkSk

)−1
Sk, k ≥ 1.

Proof. By Theorems 3.5 and 3.14,

εT
k =

[
x(k)
]T − πT = αk

([
x(0)
]T − πT

)
Sk

= αk
([

x(0)
]T − ([x(k)

]T − αk
[
x(0)
]T

Sk
) (

I − αkSk
)−1
)

Sk

= αk
([

x(0)
]T (

I − αkSk
)
−
[
x(k)
]T

+ αk
[
x(0)
]T

Sk
) (

I − αkSk
)−1

Sk

= αk
([

x(0)
]T − [x(k)

]T) (
I − αkSk

)−1
Sk.

Using the expression for the forward error in Theorem 3.15, we find an upper

bound for the component-wise error
∣∣∣x(k)

i − πi

∣∣∣.

34

Chapter 3. The Power Method for Computing PageRank

Corollary 3.16 (Component-wise Error Bound). Under the assumptions of Theo-

rem 3.5,∣∣∣x(k)
i − πi

∣∣∣ ≤ αk

2
max

h,l

((
eT

h − eT
l

) (
I − αkSk

)−1
Skei

)
‖x(0) − x(k)‖1, k ≥ 1.

Proof. By Theorem 3.15,[
x(k)
]T − πT = αk

([
x(0)
]T − [x(k)

]T) (
I − αkSk

)−1
Sk.

Since
([

x(0)
]T − [x(k)

]T)
11 = 0, Lemma 3.1 implies∣∣∣x(k)

i − πi

∣∣∣ ≤ αk

2
max

h,l

((
eT

h − eT
l

) (
I − αkSk

)−1
Skei

)
‖x(0) − x(k)‖1.

If Skei = β11, the bound in Corollary 3.16 is 0. Thus, the bounds in Corol-

lary 3.16 and in Theorem 3.6 equally identify when PageRank scores converge for

certain vertices. Based on Corollary 3.16 and the expression for the forward error in

Theorem 3.15, we derive upper bounds for the one norm and the infinity norm of the

forward error.

Corollary 3.17 (Norm-wise Error Bounds). Under the assumptions of Theorem 3.5,

‖εk‖1 ≤ αk

1−αk ‖x(0) − x(k)‖1 and ‖εk‖∞ ≤ αk

2(1−αk)
‖x(0) − x(k)‖1, k ≥ 1.

35

Chapter 3. The Power Method for Computing PageRank

Proof.

For the one norm,

‖εk‖1 = αk‖
([

x(0)
]T − [x(k)

]T) (
I − αkSk

)−1
Sk‖∞

≤ αk‖
[
x(0)
]T − [x(k)

]T‖∞‖ (I − αkSk
)−1 ‖∞‖Sk‖∞

≤ αk

1−αk ‖x(0) − x(k)‖1, by [31, Lemma 2.3.3].

The result for the infinity norm follows from Corollary 3.16 and the fact that

for any vertex i, max
h,l

((
eT

h − eT
l

) (
I − αkSk

)−1
Skei

)
≤ 1

1−αk .

The bounds in Corollary 3.17 are tighter than the upper bounds in Corollary 3.8

if 1
1−αk ‖x(0) − x(k)‖1 < 2 and 1

2(1−αk)
‖x(0) − x(k)‖1 < 1, respectively. They are tighter

than the bounds in Theorem 3.13 when αk

1−αk ‖x(0)−x(k)‖1 < 1
1−α

‖rk‖1. Note that as k

increases, 1
1−αk approaches 1, and x(k) approaches π. Also, if x(0) = v, then storage

of an additional vector is not required to compute the bounds in Corollary 3.17.

3.3.3 Summary of Bounds

Several bounds appear in Sections 3.3.1 and 3.3.2, so we provide a summary in the

following table:

36

Chapter 3. The Power Method for Computing PageRank

Table 3.1: Summary of Residual and Forward Error Bounds

Type of Bound Location Bound

Residual Cor. 3.4 ‖rk‖1 ≤ αk‖r0‖1 ≤ 2αk and ‖rk‖∞ ≤ αk

2
‖r0‖1 ≤ αk

Forward Error Thm. 3.6
∣∣∣x(k)

i − πi

∣∣∣ ≤ αk

2
maxh,l

(
Sk

hi − Sk
li

)
‖ε0‖1

Cor. 3.8 ‖εk‖1 ≤ αk‖ε0‖1 ≤ 2αk and ‖εk‖∞ ≤ αk

2
‖ε0‖1 ≤ αk

Thm. 3.9
∣∣∣x(k)

i − πi

∣∣∣ ≤ αk

2

(
1

1−αSii

)
‖r0‖1

(when vertex i has longest cycle length less than 2)∣∣∣x(k)
i − πi

∣∣∣ ≤ αk

2

(
1

1−αg−αSii(1−αg−1)

)
‖r0‖1

(when the shortest cycle length greater than 1 for vertex i is g)

Thm. 3.11
∣∣∣x(k)

i − πi

∣∣∣ ≤ 1
2

(
(I − αS)−1

ii −minh (I − αS)−1
hi

)
‖rk‖1

Thm. 3.13 ‖εk‖1 ≤ 1
1−α

‖rk‖1 and ‖εk‖∞ ≤ 1
2(1−α)

‖rk‖1

Cor. 3.16
∣∣∣x(k)

i − πi

∣∣∣ ≤ αk

2
maxh,l

((
eT

h − eT
l

) (
I − αkSk

)−1
Skei

)
‖x(0) − x(k)‖1

Cor. 3.17 ‖εk‖1 ≤ αk

1−αk ‖x(0) − x(k)‖1 and ‖εk‖∞ ≤ αk

2(1−αk)
‖x(0) − x(k)‖1

37

Chapter 3. The Power Method for Computing PageRank

Since the residual is computable and the forward error is not, we devoted much

more time to deriving bounds for the forward error. Also, the residual, x(k) − x(k+1),

indicates the closeness of successive power method iterate vectors while the forward

error, x(k)− π, indicates how close a power method iterate vector is to the PageRank

vector, which is what we really want to know. Thus, finding tight, computable upper

bounds for the forward error is important.

Although each forward error bound we presented contributes to the analysis of

forward error, some of the bounds are not computable unless π is known yielding them

useless in practice. The component-wise error bounds in Theorem 3.9, Theorem 3.11,

and Corollary 3.16 are computable without access to π; however, the bounds are

less practical for large matrices since the bounds require knowledge of cycle lengths,

access to elements of (I − αS)−1, or access to elements of
(
I − αkSk

)−1
Sk. The

upper bounds in Corollary 3.8 and the bounds in Theorem 3.13 and Corollary 3.17

are computable. Further, the bounds in Theorem 3.13 perform best for large values

of k in our experiments (see empirical results in Section 3.3.4).

38

Chapter 3. The Power Method for Computing PageRank

3.3.4 Experiments

All experiments were performed in Matlab without consideration for finite precision

errors.

Small Directed Graph

For our first set of experiments, we return to the directed graph with four nodes from

Chapter 2.

1 2

4

1 2

3 34

Figure 3.1: Chapter 2 directed graph with dangling node fix w =
(

1
n

)
11

For this graph, we presented four different models of surfer behavior. The Google

matrices and PageRank vectors for the models appear in Table 2.1. We report exper-

imental results for the first two models, so we list them again in Table 3.2.

Since we found the PageRank vectors for these models, we are able to compare the

computable norm-wise forward error bounds to ‖εk‖. The starting vector influences

each bound, so we check the bounds for two different starting vectors. (One reason

39

Chapter 3. The Power Method for Computing PageRank

Table 3.2: Chapter 2 Example

Damping Personalization Google PageRank
Factor Vector Matrix Vector

(α) (vT) (G) (≈ πT)

Model 1 0.85
(

1
4

1
4

1
4

1
4

)


3
80

71
80

3
80

3
80

3
80

3
80

71
80

3
80

37
80

3
80

3
80

37
80

1
4

1
4

1
4

1
4

 (
0.21 0.26 0.31 0.21

)

Model 2 0.85
(
1 0 0 0

)


3
20

17
20

0 0

3
20

0 17
20

0

23
40

0 0 17
40

29
80

17
80

17
80

17
80

 (
0.30 0.28 0.27 0.15

)

we include this example is that the reader can easily verify the results for the small

directed graph.)

The plots in Figure 3.2 and Figure 3.3 show that εk is much smaller and the bounds

are significantly tighter for Model 1 when x(0) = v =
(

1
4

)
11 than when x(0) = e1. The

plots in Figure 3.4 and Figure 3.5 for Model 2 reveal that x(0) =
(

1
4

)
11 is again a

better choice for the starting vector even though v = e1.

Although αk‖ε0‖1,∞ are not computable for large matrices, all plots indicate that

the computable bounds from Corollary 3.17 perform better than the upper bounds

in Corollary 3.8 after a few iterations, and the bounds in Theorem 3.13 eventually

outperform the bounds from Corollary 3.17.

40

Chapter 3. The Power Method for Computing PageRank

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration Number

E
rr

or
 B

ou
nd

s

One Norm Error Bounds (Model 1)

||ε
k
||
1

2 αk (2 αk+1 if x(0) = v)
1 / (1−α) ||r

k
||
1

αk/(1−αk) ||x(0)−x(k)||
1

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration Number

E
rr

or
 B

ou
nd

s

One Norm Error Bounds (Model 1)

||ε
k
||
1

2 αk (2 αk+1 if x(0) = v)
1 / (1−α) ||r

k
||
1

αk/(1−αk) ||x(0)−x(k)||
1

Figure 3.2: One norm – Model 1 (Row 1: x(0) = v =
(

1
4

)
11; Row 2: x(0) = e1)

41

Chapter 3. The Power Method for Computing PageRank

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Iteration Number

E
rr

or
 B

ou
nd

s

Infinity Norm Error Bounds (Model 1)

||ε
k
||∞

αk (αk+1 if x(0) = v)
1 / (2(1−α)) ||r

k
||
1

αk/(2(1−αk)) ||x(0)−x(k)||
1

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Iteration Number

E
rr

or
 B

ou
nd

s

Infinity Norm Error Bounds (Model 1)

||ε
k
||∞

αk (αk+1 if x(0) = v)
1 / (2(1−α)) ||r

k
||
1

αk/(2(1−αk)) ||x(0)−x(k)||
1

Figure 3.3: Infinity norm – Model 1 (Row 1: x(0) = v =
(

1
4

)
11; Row 2: x(0) = e1)

42

Chapter 3. The Power Method for Computing PageRank

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration Number

E
rr

or
 B

ou
nd

s

One Norm Error Bounds (Model 2)

||ε
k
||
1

2 αk (2 αk+1 if x(0) = v)
1 / (1−α) ||r

k
||
1

αk/(1−αk) ||x(0)−x(k)||
1

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration Number

E
rr

or
 B

ou
nd

s

One Norm Error Bounds (Model 2)

||ε
k
||
1

2 αk (2 αk+1 if x(0) = v)
1 / (1−α) ||r

k
||
1

αk/(1−αk) ||x(0)−x(k)||
1

Figure 3.4: One norm – Model 2 (Row 1: x(0) = v = e1; Row 2: x(0) =
(

1
4

)
11)

43

Chapter 3. The Power Method for Computing PageRank

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Iteration Number

E
rr

or
 B

ou
nd

s

Infinity Norm Error Bounds (Model 2)

||ε
k
||∞

αk (αk+1 if x(0) = v)
1 / (2(1−α)) ||r

k
||
1

αk/(2(1−αk)) ||x(0)−x(k)||
1

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Iteration Number

E
rr

or
 B

ou
nd

s

Infinity Norm Error Bounds (Model 2)

||ε
k
||∞

αk (αk+1 if x(0) = v)
1 / (2(1−α)) ||r

k
||
1

αk/(2(1−αk)) ||x(0)−x(k)||
1

Figure 3.5: Infinity norm – Model 2 (Row 1: x(0) = v = e1; Row 2: x(0) =
(

1
4

)
11)

44

Chapter 3. The Power Method for Computing PageRank

Larger Directed Graphs

We include empirical results for the six data sets3 summarized in Table 3.3 and

Table 3.4. The Stanford and Stanford-Berkeley data sets are available for download

from Sep Kamvar’s Stanford homepage [7]. These data matrices appear often in the

literature4 (see [45, § 2] for a description of the data sets).

The wb-cs.stanford and Wikipedia data sets are available for download from

David Gleich’s “datasets graphs and more” website [1]. The wb-cs.stanford data

set is based on a subgraph of the webbase.graph file formed from a 2001 data crawl.

The Wikipedia data sets capture the internal link structure between articles in the

english Wikipedia site. Gleich formed the Wikipedia data sets by using the XML file

from Wikipedia data dumps, and he removed non-article pages.

3The percentage of dangling nodes in these data sets is much smaller than the percentage of
dangling nodes in the Web graph, see [13, Section 1], [25, Section 1].

4For information on the possible drawbacks of using the Stanford matrices for testing purposes,
see Sebastiona Vigna’s note [72].

45

Chapter 3. The Power Method for Computing PageRank

Table 3.3: Characteristics of data sets used in experiments

Date Name Source Vertices Directed Unreferenced Dangling
Edges Vertices Nodes

2001 wb-cs.stanford Stanford WebBase 9,914 36,854 699 2,861
Project (7.05%) (28.86%)

09/02 Stanford Stanford WebBase 281,903 2,312,497 20,315 172
Project (7.21%) (0.06%)

12/02 Stanford-Berkeley Stanford WebBase 683,446 7,583,376 68,062 4,735
Project (9.96%) (0.69%)

11/05/05 wikipedia-20051105 Wikipedia 1,634,989 19,753,078 464,135 72,556
(28.38%) (4.44%)

09/25/06 enwiki-20060925 Wikipedia 2,983,494 37,269,096 873,634 88,970
-pages-articles (29.28%) (2.98%)

11/04/06 enwiki-20061104 Wikipedia 3,148,440 39,383,235 932,906 91,462
-pages-articles (29.63%) (2.91%)

46

Chapter 3. The Power Method for Computing PageRank

Table 3.4: Degree information of data sets in Table 3.3

Name Vertices Largest Largest Indegree Outdegree
Indgree Outdegree < 10 < 10

wb-cs.stanford 9,914 340 277 9,488 9,381
(95.70%) (94.62%)

Stanford 281,903 38,606 255 252,527 213,135
(89.58%) (75.61%)

Stanford-Berkeley 683,446 83,448 249 595,324 456,817
(87.11%) (66.84%)

wikipedia-20051105 1,634,989 75,547 4,970 1,353,923 1,103,768
(82.81%) (67.51%)

enwiki-20060925-pages-articles 2,983,494 159,378 5,852 2,449,537 2,013,096
(82.10%) (67.50%)

enwiki-20061104-pages-articles 3,148,440 168,685 6,576 2,583,669 2,124,759
(82.06%) (67.52%)

47

Chapter 3. The Power Method for Computing PageRank

The Matlab code for our experiments is available in the appendix. For all experi-

ments, we ran 50 iterations of the power method and compared the infinity norm error

bounds in Theorem 3.11
(

1
2(1−α)

‖rk‖1

)
and Corollary 3.17

(
αk

2(1−αk)
‖x(0) − x(k)‖1

)
to

the upper bound in Corollary 3.8 (αk if x(0) 6= v and αk+1 if x(0) = v), and we plotted

the results. Since the one norm forward error bounds are two times the infinity norm

error bounds, we chose not to include plots showing a comparison of the one norm

bounds.

For our first set of experiments, we assigned the uniform vector
(

1
n

)
11 to the

personalization vector v, the dangling node fix vector w, and the starting power

method iterate vector x(0). We chose the damping factor α = 0.85. See Figures 3.6

- 3.8 for a plot of each comparison. The figures show that for all six data sets, the

infinity norm forward error bound in Corollary 3.17 is slightly better than αk+1, and

the bound in Theorem 3.13 is substantially better.

48

Chapter 3. The Power Method for Computing PageRank

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Iteration Number

E
rr

or
 B

ou
nd

s

Infinity Norm Error Bounds (wb−cs.stanford)

αk (αk+1 if x(0) = v)
1 / (2(1−α)) ||r

k
||
1

αk/(2(1−αk)) ||x(0)−x(k)||
1

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Iteration Number

E
rr

or
 B

ou
nd

s

Infinity Norm Error Bounds (Stanford)

αk (αk+1 if x(0) = v)
1 / (2(1−α)) ||r

k
||
1

αk/(2(1−αk)) ||x(0)−x(k)||
1

Figure 3.6: wb-cs.stanford and Stanford (v = w = x(0) =
(

1
n

)
11; α = 0.85)

49

Chapter 3. The Power Method for Computing PageRank

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Iteration Number

E
rr

or
 B

ou
nd

s

Infinity Norm Error Bounds (Stanford−Berkeley)

αk (αk+1 if x(0) = v)
1 / (2(1−α)) ||r

k
||
1

αk/(2(1−αk)) ||x(0)−x(k)||
1

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Iteration Number

E
rr

or
 B

ou
nd

s

Infinity Norm Error Bounds (wikipedia−20051105)

αk (αk+1 if x(0) = v)
1 / (2(1−α)) ||r

k
||
1

αk/(2(1−αk)) ||x(0)−x(k)||
1

Figure 3.7: Stanford-Berkeley and wikipedia-20051105 (v = w = x(0) =
(

1
n

)
11;

α = 0.85)

50

Chapter 3. The Power Method for Computing PageRank

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Iteration Number

E
rr

or
 B

ou
nd

s

Infinity Norm Error Bounds (enwiki−20060925)

αk (αk+1 if x(0) = v)
1 / (2(1−α)) ||r

k
||
1

αk/(2(1−αk)) ||x(0)−x(k)||
1

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Iteration Number

E
rr

or
 B

ou
nd

s

Infinity Norm Error Bounds (enwiki−20061104)

αk (αk+1 if x(0) = v)
1 / (2(1−α)) ||r

k
||
1

αk/(2(1−αk)) ||x(0)−x(k)||
1

Figure 3.8: enwiki-20060925 and enwiki-20061104 (v = w = x(0) =
(

1
n

)
11;

α = 0.85)

51

Chapter 3. The Power Method for Computing PageRank

The results are nearly identical for the Stanford and Stanford-Berkeley data sets

and are similar for the Wikipedia data sets. Thus, we limit reports from additional

experiments to the data sets wb-cs.stanford, Stanford, and enwiki-20061104.

For our second set of experiments, we defined the personalization vector v by

assigning 0 to each element of v corresponding to a vertex with indegree or outdegree

less than 10. We assigned equal weight to the remaining elements of v. (See Matlab

code in Appendix B.) For the wb-cs.stanford data set, if vi 6= 0, then vi = 1
165

. For

the Stanford data set, if vi 6= 0, then vi = 1
23,088

. For the enwiki-20061104 data set,

if vi 6= 0, then vi = 1
388,201

. This means that 1.66%, 8.19%, and 12.33% of all vertices

in each respective data set have both indegree and outdegree greater than or equal

to 10. We set w = x(0) = v and again chose α = 0.85. See Figure 3.9 for a plot of

each comparison. Notice that the bound in Theorem 3.13 once again outperforms the

bound in Corollary 3.17.

52

Chapter 3. The Power Method for Computing PageRank

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Iteration Number

E
rr

or
 B

ou
nd

s

Infinity Norm Error Bounds (wb−cs.stanford)

αk (αk+1 if x(0) = v)
1 / (2(1−α)) ||r

k
||
1

αk/(2(1−αk)) ||x(0)−x(k)||
1

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Iteration Number

E
rr

or
 B

ou
nd

s

Infinity Norm Error Bounds (Stanford)

αk (αk+1 if x(0) = v)
1 / (2(1−α)) ||r

k
||
1

αk/(2(1−αk)) ||x(0)−x(k)||
1

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Iteration Number

E
rr

or
 B

ou
nd

s

Infinity Norm Error Bounds (enwiki−20061104)

αk (αk+1 if x(0) = v)
1 / (2(1−α)) ||r

k
||
1

αk/(2(1−αk)) ||x(0)−x(k)||
1

Figure 3.9: Infinity Norm Bounds (α = 0.85; v = w = x(0), where v is defined by
the Matlab code in Appendix B)

53

Chapter 3. The Power Method for Computing PageRank

For all experiments so far, we defined the starting vector to be the personalization

vector. We include one final experiment in this section for the enwiki-20061104 data

set for which we chose a different starting vector. For this experiment, we defined

v = w = e1,715,731, the canonical vector with 1 in the 1, 715, 731 position and zeros

elsewhere (this corresponds to the vertex with largest indegree 168, 685). We chose

starting vector x(0) =
(

1
n

)
11 and damping factor α = 0.85.

Figure 3.10 shows that the bound in Corollary 3.17 is only slightly better than

the upper bound αk; however, the bound in Theorem 3.13 once again is much better

than the upper bound αk. This example suggests that the bound in Corollary 3.17

is more sensitive to the starting vector than the bound in Theorem 3.13, which is

plausible since the bound is stated in terms of x(0).

54

Chapter 3. The Power Method for Computing PageRank

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Iteration Number

E
rr

or
 B

ou
nd

s

Infinity Norm Error Bounds (enwiki−20061104)

αk (αk+1 if x(0) = v)
1 / (2(1−α)) ||r

k
||
1

αk/(2(1−αk)) ||x(0)−x(k)||
1

Figure 3.10: enwiki 20061104 (v = w = e1,715,731; x(0) =
(

1
n

)
11; α = 0.85)

55

Chapter 4

Ranking Convergence of the Power Method

4.1 Ranking Distance

Brin and Page developed the PageRank algorithm for the purpose of ranking vertices

of a simple directed graph (specifically, the Web graph). Thus, we should analyze the

ranking of elements of power method iterate vectors when determining the accuracy

of an approximation to π. As mentioned in Section 3.2, the residual norm is the most

popular criterion for terminating iterations of the power method applied to G; how-

ever, determining convergence based on the residual norm fails to take into account

the ranking of elements of the iterate vectors. In 1999 Haveliwala noted [36],

The residual... is one possible measure of the convergence. A more useful

approach to analyzing convergence involves looking at the ordering of

pages induced by the Rank vector. If the PageRank values will be used

strictly for determining the relative importance of pages, the convergence

should be measured based on how the ordering changes as the number of

iterations increases.

56

Chapter 4. Ranking Convergence of the Power Method

Haveliwala ran the PageRank algorithm on a Google matrix representing approxi-

mately 20 million webpages formed from a Stanford WebBase archive. He commented

that “as few as 10 iterations can provide a useful ranking assignment,” a much lower

number than the iteration count necessary to reduce the residual norm to a specified

value.

Comparing the ranking of elements of successive power method iterates is easy.

Simply count the number of pairwise disagreements between the ranking of corre-

sponding elements of each iterate. If the number is zero, the rankings agree. If the

number is “small”, the rankings are similar. The Kendall’s τ coefficient is a pop-

ular measure of the correlation between two rankings of a listing of n items. Sir

Kendall describes the coefficient τ as “a simple function of the minimum number of

interchanges between neighbours required to transform one ranking into another” [48,

§1.13]. Specifically, Kendall’s τ is a number between −1 and 1, defined as

τ ≡ 1− 2s
1
2
n(n− 1)

,

where s, the Kendall’s τ distance, is the number of integer pairs appearing in the

opposite order in two rankings of n items. Thus, given two rank vectors1 of size n, σ

and φ, the Kendall’s τ distance between their rankings is

s ≡ |{(i, j) : 1 ≤ i, j ≤ n, σ(i) < σ(j) and φ(i) > φ(j)}| .
1Here, we assume the elements of an n-vector are distinct real numbers, so the corresponding

elements of the rank vector represent the ranks of the elements, where “1” is highest and “n” is
lowest.

57

Chapter 4. Ranking Convergence of the Power Method

Note that σ(i) is the position of i in σ in contrast to σi, the ith element of σ.

For example, let σT = (1 6 2 3 4 5) and φT = (2 3 1 6 4 5). Then,

σ(2) = 3 since 2 is the third element of σ. The Kendall’s τ distance, s, between σ and

φ is four since s = |{(1, 2), (1, 3), (6, 2), (6, 3)}| = 4. Kendall’s τ is 7/15. We count

(1, 2) as a discrepancy since σ(1) < σ(2) and φ(1) > φ(2) (note: σ(1) = 1, σ(2) = 3,

φ(1) = 3 and φ(2) = 1). Kendall’s τ distance, s, indicates that we can transform σ

into φ in no fewer than the following four transpositions:

σ =



1

6

2

3

4

5


(6,2)−−→



1

2

6

3

4

5


(6,3)−−→



1

2

3

6

4

5


(1,2)−−→



2

1

3

6

4

5


(1,3)−−→



2

3

1

6

4

5


= φ.

Figure 4.1: Kendall’s τ Distance Example

Recently, Kendall’s-τ based residuals have become popular measures of conver-

gence of iterative algorithms applied to the Google matrix [10, 23, 49, 63, 67, 73].

To compute PageRank scores for subsets of the entire Web graph, Kamvar, Haveli-

wala, Manning, and Golub suggest using the Kendall’s τ distance between successive

iterates to determine convergence [45]. They state, “When the Kendall’s-τ residual

58

Chapter 4. Ranking Convergence of the Power Method

is 0, that means the ordering is correct, and the local PageRank computation can be

stopped.”

Since the Web graph is large, computing Kendall’s τ for all elements of successive

iterates is expensive. Kamvar et al. define a measure called KDist that compares the

distances between the top k rankings of successive iterates [45, 46]. KDist is identical

to Kendall’s τ when k = n. In addition, Kamvar et al. consider another top k measure

based on Kendall’s τ called Kmin defined by Fagin, Kumar, and Sikakumar [27].

Kamvar et al. provide empirical evidence to show that for the PageRank algorithm

the one norm of the residual closely matches the KDist and Kmin distances between

the top 100 rankings of successive iterates [46].

4.2 Incorrectly Ranked Approximations to PageRank

In this section, we investigate the effectiveness of the residual norm and of Kendall’s τ

based residuals in identifying and producing accurately ranked approximations to the

PageRank vector. We provide simple examples to show the following: (1) correct

ranking can be achieved for some power method iterate vector and destroyed for the

next, (2) a small residual norm does not guarantee correct ranking, (3) zero ranking

distance between power method iterate vectors does not guarantee correct ranking,

and (4) correct ranking can occur for successive iterates before the norm-wise distance

between the iterates is sufficiently small.

59

Chapter 4. Ranking Convergence of the Power Method

4.2.1 Examples to Support Claims

Directed Ring Graph

For the directed ring graph with n vertices in Figure 4.2, the Google matrix is G =

αC + (1− α)11vT , where C is the n× n basic circulant permutation matrix.

1

n 2

n - 1 …

1

1000 2

999

1

5 2

4 3

1

5 2

4 3

Figure 4.2: Directed Ring Graph with n Vertices

That is,

C ≡



0 1 0 · · · 0

0 0 1 · · · 0

. . .

0 0 0 · · · 1

1 0 0 · · · 0


.

Using Cn = I [40, § 0.9.6] in
(∑n−1

m=0 αmCm
)
(I − αC) = I − αnCn, gives

(I − αC)−1 =
(

1
1−αn

) n−1∑
m=0

αmCm.

60

Chapter 4. Ranking Convergence of the Power Method

Thus, the PageRank vector for the directed ring graph is

πT =
(

1−α
1−αn

) n−1∑
m=0

αmvT Cm.

In addition, if x(0) ≥ 0 with ‖x(0)‖1 = 1 is the initial power method iterate vector,

then [
x(k)
]T

= αk
[
x(0)
]T

Ck + (1− α)vT

k−1∑
m=0

αmCm, k ≥ 1,

by Lemma 3.2.

Claim 4.1. Correct ranking can be achieved in some iteration and destroyed in the

next.

For the directed ring graph with five vertices and personalization vector v = e1,

πT ≈ (1 α α2 α3 α4), where “≈” means “a multiple of”. Thus, if α ∈ (0, 1),

rank(πT) = (1 2 3 4 5). Table 4.1 shows that correct ranking is achieved after

5 iterations of the power method. (Note that correct ranking can occur after 3 or 4

iterations for small values of α, but for α > 0.725, 5 iterations are necessary.) The

sixth iterate is [
x(6)
]T ≈ (1 + α5 α

(
1 + α5

1−α

)
α2 α3 α4

)
.

When 1+α5 < α
(
1 + α5

1−α

)
, the ranking of x(6) is (2 1 3 4 5). This occurs when

α > 0.716. Furthermore, if α = 0.85, the Kendall’s τ distance, s, between successive

iterates is not zero until k = 20; however, iterates corresponding to k = 5, 10, and 15

are ranked correctly.

61

Chapter 4. Ranking Convergence of the Power Method

Table 4.1: Correct Ranking After 5 Iterations

Iteration Approximate
k Iterate Vector

0
(
1 0 0 0 0

)
1

(
1 α

1−α
0 0 0

)
2

(
1 α α2

1−α
0 0

)
3

(
1 α α2 α3

1−α
0
)

4
(
1 α α2 α3 α4

1−α

)
5

(
1 + α5

1−α
α α2 α3 α4

)

Claim 4.2. A small residual norm does not guarantee correct ranking.

For the directed ring graph with 1,000 vertices and personalization vector v = e1,

πT ≈ (1 α α2 ... α999). If α ∈ (0, 1), rank(πT) = (1 2 3 ... 1000). If

x(0) = v, then 33 and 118 iterations again are necessary to reduce the one norm of

the residual to 10−2 and 10−8, respectively. This is due to the fact that

‖rk‖∞ = ‖x(k) − x(k+1)‖1,∞ ≤ αk‖x(0) − x(1)‖1,∞,

as stated in Corollary 3.4. The iterates corresponding to k = 33 and k = 118 are:

62

Chapter 4. Ranking Convergence of the Power Method

[
x(33)

]T ≈ (1 α α2 · · · α32 α33

1−α
0 · · · 0

)
,

[
x(118)

]T ≈ (1 α α2 · · · α117 α118

1−α
0 · · · 0

)
.

Thus, many elements of x(33) and of x(118) receive the same ranking. In addition, if

α = 0.85, elements 107 through 118 of x(118) are incorrectly ranked since α118

1−α
> α107.

The first correct ranking occurs for this example when k = 1, 000.

Claim 4.3. Zero ranking distance between iterates does not guarantee correct rank-

ing.

We return to the directed ring graph with five vertices and define the personaliza-

tion vector vT = 1
15

(1 2 3 4 5). When α = 0.95, rank(πT) = (3 5 4 2 1).

If the initial power method iterate vector is the uniform vector, x(0) =
(

1
5

)
11, the

Kendall’s τ distance, s, between iterates 23 and 24 is zero, but rank([x(23)]T) =

(2 4 5 3 1), which does not match rank(πT). After 68 iterations, it appears

that the correct ranking stabilizes.

Claim 4.4. Correct ranking can occur for successive iterates before the norm-wise

distance between the iterates is sufficiently small.

For the example supporting Claim 4.1, let α = 0.85 and x(0) = v. Then, 33 and

118 iterations are necessary to reduce the one norm of the residual to 10−2 and 10−8,

respectively; however, correct ranking appears to stabilize in 20 iterations.

63

Chapter 4. Ranking Convergence of the Power Method

The example supporting Claim 4.2 also illustrates that correct ranking of iterate

vector elements can take n iterations, where n is the order of the matrix. In addition,

the examples show that ranking depends on α, n, v and the initial power method

iterate vector.

4.2.2 Experiments

In this section, we provide a summary of the number of iterations required to satisfy

the popular termination criteria for the small directed graph introduced in Chapter 2

and the wb-cs.stanford data set.

Small Directed Graph

Table 4.2 shows the number of iterations necessary to reduce the residual norm to

10−2, 10−8, and 10−10 for Model 1 and Model 2 with two different initial iterate vec-

tors. The table also includes the number of iterations required for element ranking

agreement of successive iterate vectors. For these models and starting vectors, correct

ranking occurs and appears to stabilize before ‖rk‖1 < 10−2. Thus, reducing the one

norm of the residual to 10−2 requires more iterations than necessary to compute a

correctly ranked approximation to the PageRank vector.

64

Chapter 4. Ranking Convergence of the Power Method

Table 4.2: Termination Criteria for Chapter 2 Example

Damping Personalization Google PageRank Ranking of
Factor Vector Matrix Vector Vertices

(α) (vT) (G) (≈ πT) (1=Highest)

Model 1 0.85
(

1
4

1
4

1
4

1
4

)


3
80

71
80

3
80

3
80

3
80

3
80

71
80

3
80

37
80

3
80

3
80

37
80

1
4

1
4

1
4

1
4

 (
0.21 0.26 0.31 0.21

) (
3 2 1 3

)

Model 2 0.85
(
1 0 0 0

)


3
20

17
20

0 0

3
20

0 17
20

0

23
40

0 0 17
40

29
80

17
80

17
80

17
80

 (
0.30 0.28 0.27 0.15

) (
1 2 3 4

)

Model 1
‖rk‖1 < δ

x(0) = v x(0) = e1

δ Iterations δ Iterations

10−2 7 10−2 15

10−8 42 10−8 50

10−10 54 10−10 61

Model 2
‖rk‖1 < δ

x(0) = v x(0) = 1
4
11

δ Iterations δ Iterations

10−2 15 10−2 7

10−8 50 10−8 41

10−10 61 10−10 52

Model 1
Ranking Distance is Zero

x(0) = v x(0) = e1

3 9

Model 2
Ranking Distance is Zero

x(0) = v x(0) = e1

13 5

65

Chapter 4. Ranking Convergence of the Power Method

wb-cs.stanford Data Set

For the second experiment performed in Section 3.3.4 on the wb-cs.stanford data

set, we defined the personalization vector v by assigning 0 to each element of v

corresponding to a vertex with indegree or outdegree less than 10. We assigned equal

weight to the remaining elements of v. For this definition, if vi 6= 0, then vi = 1
165

.

We chose the damping factor α = 0.85, and we set w = x(0) = v. We return to this

example to check the effectiveness and/or practicality of the residual norm and the

Kendall’s τ based residuals as termination criteria.

The number of iterations required to reduce the one norm of the residual to 10−2,

10−8, and 10−10 are 12, 83, and 109, respectively. The Kendall’s τ distance between

successive iterate vectors is first 0 for iterations 220 and 221. This example supports

Claim 4.2 (a small residual norm does not guarantee correct ranking). It appears that

ranking stabilizes after iteration 220; however, this is a large number of iterations2.

In addition to checking ranking agreement between all elements of successive iter-

ate vectors, we checked for ranking agreement between the top 100 ranked elements

of successive iterate vectors. The top 100 ranked elements first agree for iterations

20 and 21; however, they do not agree for iterations 23 and 24 and iterations 27 and

28. We observed no disagreements in the top 100 rankings after iteration 28. Based

on these findings, the termination criterion ‖rk‖1 < 10−2 is satisfied before ranking

2The one norm of the residual is much less than 10−16 at this point.

66

Chapter 4. Ranking Convergence of the Power Method

has converged for even the top 100 PageRank scores. Also, these results show that

ranking agreement between the top 100 elements of successive iterate vectors does

not imply that ranking has converged for those elements.

4.3 Forward Error Bounds and Ranking

The examples in Section 4.2 show that the existing criteria for terminating itera-

tions do not guarantee accurately ranked approximations to the PageRank vector.

In fact, they do not guarantee an approximation to the PageRank vector that has

similar rankings. In this section, we address this problem. Specifically, based on

Theorem 3.13, we derive a condition that can determine relative rankings of elements

of the PageRank vector3. This derivation closely parallels work from [50], and the

first line of the proof appears as Equation 3.2 in [50]. Following the derivation, we

show how to apply the condition to identify upper and lower bounds on the element

rankings of the PageRank vector.

3We could make similar statements based on other results from Section 3.3.2. We chose to focus
on the residual bound from Theorem 3.13 since it is easily computed and exhibited the best long-term
performance in our experiments.

67

Chapter 4. Ranking Convergence of the Power Method

Theorem 4.5 (Relative Ranking Agreement). Under the assumptions of Theorem 3.5,

if x
(k)
i > x

(k)
j + 1

1−α
‖rk‖1, then πi > πj.

Proof.

By Theorem 3.13, for any vertex i,
∣∣∣x(k)

i − πi

∣∣∣ ≤ ‖εk‖∞ ≤ 1
2(1−α)

‖rk‖1.

Thus, for vertices i and j,
∣∣∣x(k)

i − πi

∣∣∣+ ∣∣∣x(k)
j − πj

∣∣∣ ≤ 2
(

1
2(1−α)

‖rk‖1

)
= 1

1−α
‖rk‖1.

Since x
(k)
i − πi + πj − x

(k)
j ≤

∣∣∣x(k)
i − πi

∣∣∣+ ∣∣∣x(k)
j − πj

∣∣∣ ,
x

(k)
i − πi + πj − x

(k)
j ≤ 1

1−α
‖rk‖1.

If x
(k)
i > x

(k)
j + 1

1−α
‖rk‖1, then 0 < x

(k)
i −

(
x

(k)
j + 1

1−α
‖rk‖1

)
≤ πi − πj.

Therefore, πi > πj.

Remark 4.6. Theorem 4.5 also follows from∣∣∣x(k)
i − πi

∣∣∣+ ∣∣∣x(k)
j − πj

∣∣∣ ≤ ‖εk‖1 ≤ 1
1−α

‖rk‖1.

We adopt the ranking convention that assigns identical elements of a vector the

same ranking. We also assume that if x elements of π (or x(k)) receive the same

ranking b, then the element(s) of π (or x(k)) ranked just below these x elements receive

ranking b + x. For example, if πT = (0.3 0.2 0.2 0.1 0.07 0.07 0.06), then

rank(πT) = (1 2 2 4 5 5 7). With this ranking convention4, we establish

4According to http://en.wikipedia.org/wiki/Ranking, this ranking method is called competition
ranking.

68

Chapter 4. Ranking Convergence of the Power Method

upper and lower bounds on the ranking of elements of the PageRank vector, and we

state conditions that identify actual element rankings of the PageRank vector. Note

that if πi > πj, then rank(πi) < rank(πj) since 1 is the highest ranking.

Theorem 4.7 (Element Rankings of the PageRank Vector). Let 1 ≤ b < a < n.

Under the assumptions of Theorem 3.5,

1. If x
(k)
i > x

(k)
j + 1

1−α
‖rk‖1, rank(x

(k)
i) = b, and rank(x

(k)
j) = b + 1,

then rank(πi) ≤ b.

2. If x
(k)
l > x

(k)
i + 1

1−α
‖rk‖1, x

(k)
i > x

(k)
j + 1

1−α
‖rk‖1, rank(x

(k)
l) = b,

rank(x
(k)
i) = b + 1, and rank(x

(k)
j) = b + 2, then rank(πi) = b + 1.

3. If x
(k)
l > x

(k)
i + 1

1−α
‖rk‖1, x

(k)
i > x

(k)
j + 1

1−α
‖rk‖1, rank(x

(k)
l) = b

and rank(x
(k)
j) = a, then b < rank(πi) < a.

Proof.

For part 1, x
(k)
i > x

(k)
j + 1

1−α
‖rk‖1 implies πi > πj.

Suppose rank(x
(k)
i) = b = rank(x

(k)
j)− 1.

Then, for all h such that rank(x
(k)
h) ≥ b + 1, πi > πh. Thus, rank(πi) ≤ b.

For part 2, rank(πi) ≤ b + 1 (by part 1).

For every h such that rank(x
(k)
h) ≤ b, πh > πi. Thus, rank(πi) = b + 1.

For part 3, πl > πi and πi > πj, so rank(πl) < rank(πi) < rank(πj).

Thus, by parts 1 and 2, a < rank(πi) < b.

69

Chapter 4. Ranking Convergence of the Power Method

Since Theorem 4.5 requires x
(k)
i to exceed x

(k)
j by at least 1

1−α
‖rk‖1 to conclude

that πi is greater than πj, the inequality cannot identify the rankings of vertices with

the same PageRank scores; however, Theorem 4.7 provides a means to say something

about the rankings of these vertices by providing lower and upper bounds.

4.3.1 Experiments

We apply Theorem 4.7 to the small directed graph and wb-cs.stanford data set ex-

amples.

Small Directed Graph

For Model 1 with x(0) = 1
4
11, the ninth iterate vector is the first for which the inequal-

ity in Theorem 4.5 applies. It is [x(9)]T ≈ (0.2148 0.2638 0.3066 0.2148) and

rank([x(9)]T) = (3 2 1 3). The residual bound is 1
1−0.85

‖x(9) − x(10)‖1 ≈ 0.0363.

Since x
(9)
3 > x

(9)
2 + 1

1−0.85
‖x(9) − x(10)‖1 and rank(x

(9)
2) = 2, Theorem 4.7 guarantees

that rank(π3) = 1. Also, x
(9)
2 > x

(9)
1 + 1

1−0.85
‖x(9) − x(10)‖1, and rank(x

(9)
1) = 3, so

rank(π2) = 2. Although the ranking distance between x(2) and x(3) is zero, the in-

equality in Theorem 4.7 is not satisfied until iteration 9. Also, notice that we actually

need to compute the tenth iterate vector in order to check the bound 1
1−α

‖r9‖1. Even

so, after iteration 10, we can determine that vertex 3 receives the highest ranking

70

Chapter 4. Ranking Convergence of the Power Method

PageRank score and vertex 2 receives the second highest ranking. In addition, we

know that vertices 1 and 4 cannot receive a ranking less than 3.

Table 4.3: Forward Error Bounds to Identify Ranking for Chapter 2 Example

Damping Personalization Google PageRank Ranking of
Factor Vector Matrix Vector Vertices

(α) (vT) (G) (≈ πT) (1=Highest)

Model 1 0.85
(

1
4

1
4

1
4

1
4

)


3
80

71
80

3
80

3
80

3
80

3
80

71
80

3
80

37
80

3
80

3
80

37
80

1
4

1
4

1
4

1
4

 (
0.21 0.26 0.31 0.21

) (
3 2 1 3

)

Model 2 0.85
(
1 0 0 0

)


3
20

17
20

0 0

3
20

0 17
20

0

23
40

0 0 17
40

29
80

17
80

17
80

17
80

 (
0.30 0.28 0.27 0.15

) (
1 2 3 4

)

For Model 2 with x(0) = e1, the inequality first identifies the ranking of PageRank

scores for iterate vector x(19). Thus, only 20 iterations are required to know all element

rankings of the PageRank vector.

wb-cs.stanford Data Set

It is not surprising that Theorem 4.5 quickly identified rankings of PageRank scores

for the small directed graph examples. After all, the distance between each distinct

PageRank score is fairly significant. For larger graphs, the distance between succes-

sive PageRank scores can be much smaller, so the number of iterations required to

71

Chapter 4. Ranking Convergence of the Power Method

establish ranking bounds for a large percentage of vertices can increase. To see what

information can be gained by application of Theorem 4.5 and Theorem 4.7 to larger

graphs, we return a final time to the second experiment performed in Section 3.3.4

on the wb-cs.stanford data set. In Table 4.4, we again list some of the characteristics

of this data set.

Table 4.4: Characteristics of wb-cs.stanford data set

Vertices Directed Unreferenced Dangling Indegree Outdegree
Edges Vertices Nodes < 10 < 10

9,914 36,854 699 2,861 9,488 9,381
(7.05%) (28.86%) (95.70%) (94.62%)

For the second experiment performed on the wb-cs.stanford data set, recall that we

defined the personalization vector v by assigning 0 to each element of v corresponding

to a vertex with indegree or outdegree less than 10. We assigned equal weight to the

remaining elements of v. For this definition, if vi 6= 0, then vi = 1
165

. We chose the

damping factor α = 0.85, and we set w = x(0) = v.

Based on our definition of v, Theorem 3.7 guarantees that the PageRank scores

for the unreferenced vertices are 0, so the unreferenced vertices receive the lowest

ranking5. Thus, we know the PageRank scores and ranking of those scores for 7.05%

5Depending on how the personalization vector is defined, unreferenced vertices can have different
PageRank scores. In addition, the ranking of the scores might not converge for many iterations.

72

Chapter 4. Ranking Convergence of the Power Method

of vertices before starting the power method. In addition, Theorem 3.7 implies that

PageRank scores for vertices only on short paths converge quickly; however, the

theorem does not imply that their rankings converge quickly.

We tested elements of each iterate vector according to part 1 of Theorem 4.7. That

is, in each iteration, we only checked to see if x
(k)
i > x

(k)
j + 1

1−α
‖rk‖1 for rank(x

(k)
i) =

rank(x
(k)
j)− 1. We limited our testing to this because we cannot obtain a tight lower

bound on the ranking of the PageRank score for vertex i unless this is satisfied6. Of

course, this also produces upper bounds for rankings of PageRank scores.

In Section 4.2.2, we stated that the number of iterations required to reduce the

one norm of the residual to 10−2, 10−8, and 10−10 are 12, 83, and 109, respectively. In

Table 4.5, we summarize the ranking information we obtain for these iteration counts.

Table 4.5: Ranking Information for wb-cs.stanford Example

Residual Iteration Vertices Satisfying Lowest Ranking
Norm Condition Satisfying Condition

10−2 12 0 N/A

10−8 83 1,288 5,389

10−10 109 3,205 8,118

6See appendix for Matlab code.

73

Chapter 4. Ranking Convergence of the Power Method

The condition is not satisfied before iteration 29. At that point, the highest ranked

vertex can be identified. The second highest ranked vertex is known after iteration 31.

By iteration 48, we are able to identify the top 100 rankings (although we are not

able to establish the exact rankings for them at this point). Figure 4.3 shows the

percentage of vertices satisfying the condition for each iteration (in multiples of 5 up

to 180 iterations). Also provided is the percentage of indistinct elements. Although

exact rankings cannot be inferred for vertices with indistinct values, the inequality

does identify upper and lower bounds on their rankings.

4.3.2 Discussion

Our experiments show that the inequality in Theorem 4.5 does not apply to all com-

ponents of the PageRank vector. For instance, it cannot identify rankings of vertices

with indistinct PageRank scores; however, it can provide upper and lower bounds for

their rankings. Also, even when the inequality cannot identify the top r rankings, it

might be able to identify the vertices that receive a ranking no greater than r.

For example, Google does not reveal actual PageRank scores; however, Google’s

toolbar includes a PageRank display feature that provides “an indication of the

PageRank” for a webpage being visited [5]. The PageRank scores on the toolbar

are integer values from 0 (lowest) to 10 (highest). Although some search engine opti-

mization experts discount the accuracy and the importance of toolbar scores [32, 33,

74

Chapter 4. Ranking Convergence of the Power Method

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

45

Iteration Number

P
er

ce
nt

ag
e

of
 E

le
m

en
ts

Percentage of Elements for which Bound Works (wb−cs.stanford)

0 20 40 60 80 100 120 140 160 180
54

56

58

60

62

64

66

68

70

72

74

Iteration Number

P
er

ce
nt

ag
e

of
 N

on
−

un
iq

ue
 E

le
m

en
ts

Percentage of Non−unique Elements in Iterate Vectors (wb−cs.stanford)

Figure 4.3: wb-cs.stanford (α = 0.85; v = w = x(0), where vi = 0 if the indegree or
outdegree of vertex i is less than 10 and vi = 1

165
, otherwise)

75

Chapter 4. Ranking Convergence of the Power Method

64], a Google webpage on toolbar features [4] states:

PageRank Display: Wondering whether a new website is worth your time?

Use the Toolbar’s PageRankTM display to tell you how Google’s algorithms

assess the importance of the page you’re viewing.

Google does not explain how toolbar PageRank scores are determined. If ranking is

ignored when computing PageRank scores, it is possible that webpages are assigned

toolbar scores that are too high or too low. Theorem 4.7 can be used to determine

which webpages receive the same toolbar PageRank score. For example, if Theo-

rem 4.7 identifies the top 100 ranked vertices, these vertices could be assigned toolbar

PageRank score 10. For iteration 109 in the wb-cs.stanford example above, Theo-

rem 4.7 applied for the vertex ranked 8,118 but did not apply for any vertices with

lower ranking. This could be used to justify assigning toolbar PageRank score 0 to

all vertices ranked lower than 8, 118 in the 108th iterate vector.

76

Chapter 5

Conclusion

5.1 Summary of Contributions

The following statements appearing in [36, 45, 46] inspired this research:

The residual... is one possible measure of the convergence. A more useful

approach to analyzing convergence involves looking at the ordering of

pages induced by the Rank vector. If the PageRank values will be used

strictly for determining the relative importance of pages, the convergence

should be measured based on how the ordering changes as the number of

iterations increases. [36]

This suggests a stopping criteria [sic] for local PageRank computations.

At each stage in a local PageRank computation, one could compute the

Kendall’s-τ residual ... When the Kendall’s-τ residual is 0, that means

the ordering is correct, and the local PageRank computation can be

stopped. [45]

77

Chapter 5. Conclusion

A rigorous explanation for the close match between the L1 residual and

the Kendall’s τ based residuals is an interesting avenue of future investi-

gation. [46]

Finding no analysis of these issues in the literature, we began ours. Our earliest

results appear in Section 4.2.1. We found very simple examples to support the follow-

ing: (1) correct ranking can be achieved for some power method iterate vector and

destroyed for the next, (2) a small residual norm does not guarantee correct ranking,

(3) zero ranking distance between power method iterate vectors does not guarantee

correct ranking, and (4) correct ranking can occur for successive iterates before the

norm-wise distance between the iterates is sufficiently small.

After making these observations, we sought a way to efficiently identify when com-

puted PageRank scores are accurately ranked. Steve Kirkland’s paper [50] provided

the main idea as well as many useful tools for our analysis. In fact, our experiments

illustrate that a computationally efficient criterion for determining relative ranking of

PageRank scores follows directly from [50, Equation 3.2]. Many theoretical contribu-

tions in Section 3.3 employ Lemma 3.2, and the proof of [50, Theorem 3.1] brought

this result to our attention. Theorem 4.5 makes it possible to determine ranking

bounds for PageRank scores, which accomplishes what we set out to do.

Additional contributions include a new statement for π (Theorem 3.14) and a

new statement for the forward error (Theorem 3.15) both in terms of x(0) and x(k) for

78

Chapter 5. Conclusion

k ≥ 1. Also, our component-wise error bound in Theorem 3.6 led to Theorem 3.7,

which implies that PageRank scores converge in k iterations for vertices with longest

path lengths k − 1, where k < n. Since unreferenced vertices have indegree 0, the

PageRank scores for these vertices depend only on the personalization vector v and

dangling node fix w.

5.2 Future Research

5.2.1 Short-term

• Incorporate adjustments to Theorem 4.5 to account for finite precision

errors to ensure accurate element rankings of computed iterates.

• Formalize procedures to implement Theorem 4.7 to find exact, top k,

and/or interval rankings of PageRank scores. For instance, determine at

what iteration count to begin checking ranking conditions.

• Find good choices for personalization, dangling node fix, and initial iterate

vectors.

• Determine which iterate elements converge fastest with respect to ranking.

• Identify if restrictions on components of the Google matrix exist to ensure

79

Chapter 5. Conclusion

that ranking agreement between successive iterate vectors implies correct

ranking.

• Apply the PageRank algorithm to specific classes of directed graphs.

5.2.2 Long-term

• Extend analysis to other ranking algorithms that make use of Perron-

Frobenius theory to approximate the dominant eigenvector of non-negative

matrices.

Two other popular Web ranking algorithms are HITS [52] and SALSA [58].

Other algorithms rank football teams, students by examination scores, best

methods on which to base admissions tests, social alternatives, etc. [11,

39, 47, 66, 70, 74]. Each of these algorithms uses the power method to

approximate a dominant eigenvector (right or left) of a nonnegative data

matrix; however, none of these algorithms takes into account ranking to

determine accuracy of an iterate.

• Develop algorithms similar to PageRank for other ranking schemes.

80

List of References

[1] http://www.stanford.edu/˜dgleich/data/. datasets graphs and more, organized

by David Gleich.

[2] http://www.google.com/corporate/history.html. Google Corporate Information:

Google Milestones.

[3] http://www.google.com/technology/index.html. Our Search: Google Technology.

[4] http://www.google.com/support/toolbar/. Google Toolbar (Select Features).

[5] http://toolbar.google.com/options help.html. Google Toolbar: About Toolbar

Option.

[6] http://www.uspto.gov/main/patents.htm. United States Patent and Trademark

Office official website.

[7] http://www.stanford.edu/˜sdkamvar/research.html. Stanford University Home-

page for Sepandar D. Kamvar.

[8] http://www.webrankinfo.com/english/seo-news/topic-16388.htm, January 2006.

Increased Google Index Size?

[9] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin, PageRank computation

and the structure of the Web: Experiments and algorithms, in The Eleventh

International WWW Conference, ACM Press, New York, May 2002.

[10] R. Baeza-Yates, P. Boldi, and C. Castillo, Generalizing PageRank:

damping functions for link-based ranking algorithms, in Proceeding of ACM SI-

GIR, Seattle, Washington, USA, August 2006, ACM Press, pp. 308–315.

81

References

[11] E. Barbeau, Perron’s result and a decision on admissions tests, Mathematics

Magazine, 59 (1986), pp. 12 – 22.

[12] J. Battelle, The Search: How Google and its Rivals Rewrote the Rules of

Business and Transformed our Culture, Penguin Group, 2005.

[13] P. Berkhin, A survey on PageRank computing, Internet Mathematics, 2 (2005),

pp. 73–120.

[14] M. Bianchini, M. Gori, and F. Scarselli, Inside PageRank, ACM Trans.

on Inter. Tech., 5 (2005), pp. 92–128.

[15] P. Boldi, M. Santini, and S. Vigna, Pagerank as a function of the damping

factor, in WWW ’05: Proceedings of the 14th international conference on World

Wide Web, New York, NY, USA, 2005, ACM Press, pp. 557–566.

[16] C. Brezinski and M. Redivo-Zaglia, The PageRank vector: Properties,

computation, approximation, and acceleration, SIAM J. Matrix Anal. Appl., 28

(2006), pp. 551–575.

[17] C. Brezinski, M. Redivo-Zaglia, and S. Serra-Capizzano, Extrapola-

tion methods for PageRank computations, Comptes Rendus de l’Académie des

Sciences de Paris, Series I, 340 (2005), pp. 393–397.

[18] S. Brin and L. Page, The anatomy of a large-scale hypertextual Web search

engine, Comput. Networks and ISDN Systems, 30 (1998), pp. 107–117.

[19] A. Z. Broder, R. Lempel, F. Maghoul, and J. Pedersen, Efficient

PageRank approximation via graph aggregation, Information Retrieval, 9 (2006),

pp. 123–138.

[20] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transfor-

mations, Dover, New York, 1991.

82

References

[21] G. E. Cho and C. D. Meyer, Comparison of perturbation bounds for the

stationary distribution of a Markov chain, Linear Algebra and its Applications,

335 (2001), pp. 137–150.

[22] G. Dahlquist and Åke Björck, Numerical Methods in Sci-

entific Computing, vol. II, SIAM, Philadelphia, to be published.

http://www.math.liu.se/˜akbjo/dqbjch9.pdf.

[23] J. V. Davis and I. S. Dhillon, Estimating the global PageRank of Web com-

munities, in KDD ’06: Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, New York, NY, USA,

2006, ACM Press, pp. 116–125.

[24] C. Ding, X. He, P. Husbands, H. Zha, and H. D. Simon, Pagerank, hits

and a unified framework for link analysis, in SIGIR ’02: Proceedings of the 25th

annual international ACM SIGIR conference on Research and development in

information retrieval, New York, NY, USA, 2002, ACM Press, pp. 353–354.

[25] N. Eiron, K. S. McCurley, and J. A. Tomlin, Ranking the Web frontier,

2004.

[26] L. Eldén, A note on the eigenvalues of the Google matrix, tech. report, LiTH-

MAT-R-04-01, Department of Mathematics, Linköping University, 2004.

[27] R. Fagin, R. Kumar, and D. Sivakumar, Comparing top k lists, SIAM J.

Discrete Math., 17 (2003), pp. 134–160.

[28] D. Gleich, L. Zhukov, and P. Berkhin, Fast parallel PageRank: A linear

system approach, tech. report, Yahoo!, 2004.

[29] G. H. Golub and C. Greif, Arnoldi-type algorithms for computing stationary

distribution vectors, with application to PageRank, Tech. Report SCCM-04-15,

Stanford University, 2004.

83

References

[30] , An Arnoldi-type algorithm for computing PageRank, BIT, 46 (2006),

pp. 759–771.

[31] G. H. Golub and C. F. V. Loan, Matrix Computations, The Johns Hopkins

University Press, Baltimore, 3rd ed., 1996.

[32] M. Grehan, What price PageRank? ClickZ Network, July 2005.

www.clickz.com.

[33] , What price PageRank? Part 2. ClickZ Network, July 2005.

www.clickz.com.

[34] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen, Combating Web spam

with TrustRank, in Proceedings of the 30th International Conference on Very

Large Databases, Morgan Kaufmann, 2004, pp. 576–587.

[35] T. Haveliwala, S. Kamvar, D. Klein, C. Manning, and G. Golub,

Computing PageRank using power extrapolation, tech. report, Stanford Univer-

sity, 2003.

[36] T. H. Haveliwala, Efficient computation of PageRank, Tech. Report 1999-31,

Stanford University, 1999.

[37] T. H. Haveliwala and S. D. Kamvar, The second eigenvalue of the Google

matrix, Tech. Report 2003-20, Stanford University, 2003.

[38] M. Haviv and L. V. D. Heyden, Perturbation bounds for the stationary

probabilities of a finite markov chain, Adv. Appl. Prob., 16 (1984), pp. 804–818.

[39] I. Hofuku and K. Oshima, A total ranking based on examination scores for a

small number of subjects. Tokyo University of Science, School of Management,

Discussion Paper, November 2002.

[40] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University

Press, 1990.

84

References

[41] I. C. Ipsen and S. Kirkland, Convergence analysis of a PageRank updat-

ing algorithm by Langville and Meyer, SIAM J. Matrix Anal. Appl., 27 (2006),

pp. 952–967.

[42] I. C. Ipsen and T. M. Selee, PageRank computation, with special attention

to dangling nodes. Accepted for publication in SIAM J. Matrix Anal. Appl.,

2007.

[43] I. C. Ipsen and R. S. Wills, Mathematical properties and analysis of Google’s

PageRank, Bol. Soc. Esp. Mat. Apl., 34 (2006), pp. 191–196.

[44] S. Kamvar, T. Haveliwala, and G. Golub, Adaptive methods for the com-

putation of PageRank, Linear Algebra Appl., 386 (2004), pp. 51–65.

[45] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub,

Exploiting the block structure of the Web for computing PageRank, tech. report,

Technical Report 2003-17, Stanford University, 2003.

[46] , Extrapolation methods for accelerating PageRank computations, in The

Twelfth International World Wide Web Conference, ACM Press, New York,

2003, pp. 261–270.

[47] J. P. Keener, The Perron-Frobenius theorem and the ranking of football teams,

SIAM Review, 35 (1993), pp. 80 – 93.

[48] S. M. G. Kendall, Rank Correlation Methods, Charles Griffin & Company

Limited, 1975.

[49] A. Khalil and Y. Liu, Experiments with PageRank computation, tech. re-

port, Technical Report 603, Computer Science Department at Indiana University,

2004.

[50] S. J. Kirkland, Conditioning of the entries in the stationary vector of a Google-

type matrix, Linear Algebra and its Applications, 418 (2006), pp. 665–681.

85

References

[51] S. J. Kirkland, M. Neumann, and B. L. Shader, Applications of Paz’s

inequality to perturbation bounds for Markov chains, Linear Algebra and its Ap-

plications, 268 (1998), pp. 183–196.

[52] J. Kleinberg, Authoritative sources in a hyperlinked environment, Journal of

the ACM, 46 (1999).

[53] A. N. Langville and C. D. Meyer, Deeper inside PageRank, Internet Math-

ematics, 1 (2005), pp. 335–380.

[54] , Google’s PageRank and Beyond: The Science of Search Engine Rankings,

Princeton University Press, Princeton, New Jersey, 2006.

[55] , A reordering for the PageRank problem, SIAM J. Sci, Comput., 27 (2006),

pp. 2112–2120.

[56] , Updating Markov chains with an eye on Google’s PageRank, SIAM J. Ma-

trix Anal. Appl., 27 (2006), pp. 968–987.

[57] C. P. Lee, G. H. Golub, and S. A. Zenios, A fast two-stage algorithm for

computing PageRank and its extensions, tech. report, Stanford University, 2003.

[58] R. Lempel and S. Moran, The stochastic approach for link-structure analysis

(SALSA) and the TKC effect, in The Ninth International World Wide Web

Conference, ACM Press, New York, 2000.

[59] J. McDonald, M. Newmann, H. Schneider, and M. Tsatsomeros, In-

verse M-matrix inequalities and generalized ultrametric matrices, Linear Algebra

and Its Applications, 220 (1995), pp. 321–341.

[60] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia,

PA, 2000.

86

References

[61] A. Nanavati, A. Chakraborty, D. Deangelis, H. Godil, and

T. D’Silva, An investigation of documents on the World Wide Web.

http://www.iit.edu/˜dsiltho/Investigation.pdf, December 2004.

[62] L. Page, S. Brin, R. Motwani, and T. Winograd, The PageRank citation

ranking: Bringing order to the Web, tech. report, Stanford University, 1998.

[63] F. Qiu and J. Cho, Automatic identification of user interest for personalized

search, in WWW ’06: Proceedings of the 15th international conference on World

Wide Web, New York, NY, USA, 2006, ACM Press, pp. 727–736.

[64] C. Ridings and M. Shishigin, PageRank uncovered. Technical Paper for the

Search Engine Optimization Online Community.

[65] F. Rogers, Life’s Journeys According to Mister Rogers: Things to Remember

Along the Way, Family Communications, Inc., New York, NY, 2005.

[66] T. L. Saaty, Rank according to Perron: A new insight, Mathematics Magazine,

60 (1987), pp. 211 – 213.

[67] T. Sarlós, A. A. Benczúr, K. Csalogány, D. Fogaras, and B. Rácz,

To randomize or not to randomize: space optimal summaries for hyperlink anal-

ysis, in WWW ’06: Proceedings of the 15th International Conference on World

Wide Web, New York, NY, USA, 2006, ACM Press, pp. 297–306.

[68] E. Seneta, Non-negative Matrices and Markov Chains, Springer-Verlag,

2nd ed., 1981.

[69] S. Serra-Capizzano, Jordan canonical form of the Google matrix: A potential

contribution to the PageRank computation, SIAM J. Matrix Anal. Appl., 27

(2005), pp. 305–312.

[70] G. Slutzki and O. Volij, Scoring of web pages and tournaments - axiomati-

zations, Social Choice and Welfare, 26 (2006), pp. 75–92.

87

References

[71] W. J. Stewart, Introduction to the Numerical Solution of Markov Chains,

Princeton University Press, Princeton, NJ, 1994.

[72] S. Vigna, Stanford matrix considered harmful. http://vigna.dsi.unimi.it/

papers.php, 2007.

[73] Y. Wang and D. J. DeWitt, Computing PageRank in a distributed Internet

search system, in Proceedings of the 30th VLDB Conference, 2004.

[74] S. White and P. Smyth, Algorithms for estimating relative importance in

networks, in KDD 0́3: Proceedings of the ninth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, New York, NY, USA,

2003, ACM Press, pp. 266–275.

[75] R. S. Wills, Google’s PageRank: The math behind the search engine, Math.

Intelligencer, 28 (2006), pp. 6–11.

88

Appendices

89

Appendix A

Matlab File: adjacency to hyperlink.m

90

Matlab File: adjacency to hyperlink.m

function
[A,p,total_in,D_in,q,total_out,D_out,D_out_keep,n]=adjacency_to_hyperlink(A);
%
% A is an adjacency matrix meaning A_ij = 1 if (i,j) is an element of the
% directed graph, and A_ij = 0 otherwise.
%
% A = hyperlink matrix
% p = largest indegree plus one
% total_in = vector with number of vertices for each indegree 0 to p-1
% D_in = vector with the indegree of each vertex
% q = largest outdegree plus one
% total_out = vector with number of vertices for each outdegree 0 to q-1
% D_out = vector used to create the hyperlink matrix
% D_out_keep = vector with the outdegree of each vertex
% n = size of A
%
%

[m,n]=size(A);

D_in=zeros(n,1);

for i=1:n
 D_in(i,1)=nnz(A(:,i));
end

'Finished forming D_in'

D_out = zeros(n,1);
B=sparse(A'); % Matlab is performs nnz(A(i,:)) too slowly.
for i=1:n
 D_out(i,1)=nnz(B(:,i));
end

'Finished forming D_out'

D_out_keep = D_out;

% Redefining D_out to create the hyperlink matrix.

for i=1:n
 if D_out(i,1)~=0
 D_out(i,1)=1/D_out(i,1);
 end
end

'Finished redefining D_out to be used to create hyperlink matrix'

for i = 1:n
 B(:,i)=D_out(i,1)*B(:,i);
end
A = B';
clear B; % Clearing B since we no longer need it

91

Matlab File: adjacency to hyperlink.m

'Finished creating hyperlink matrix'

p=max(D_in)+1;
total_in=zeros(p,1);

for j=1:n
 for i=1:min(50,p)
 if D_in(j,1)==i-1
 total_in(i,1)=total_in(i,1)+1;
 end
 end
end

'Finished determining indegree numbers'

q=max(D_out_keep)+1;
total_out=zeros(q,1);

for j=1:n
 for i=1:min(50,q)
 if D_out_keep(j,1)==i-1
 total_out(i,1)=total_out(i,1)+1;
 end
 end
end

'Finished determining outdegree numbers'

'Finished'

92

Appendix B

Matlab File: pers vector.m

93

Matlab File: pers vector.m

function [v]=pers_vector(D_in, D_out_keep, n);

v=ones(1,n);
for i=1:n
 if D_in(i,1)<10
 v(1,i)=0;
 end
 if D_out_keep(i,1)<10
 v(1,i)=0;
 end
end

norm(v,1)
v=v/norm(v,1);

94

Appendix C

Matlab File: new pagerank experiments.m

95

Matlab File: pagerank experiments.m

function [x,up_err_bd,res_k_bd,k_err_bd,k_max,ind_k_max,res_k_one,res_k_inf,
bound_works,k_tau,k_tau_top_k,which_ones,rank_xk,applies]
=new_pagerank_experiments(H,alpha,x0,max_it,v,w,top_k);

%
% To convert adjacency matrices to hyperlink matrices, first run:
%
[A,p,total_in,D_in,q,total_out,D_out,D_out_keep,n]=adjacency_to_hyperlink(A);
%
% The code for finding the dangling node vector, d, appears in Langville
% and Meyer's book, "Google's PageRank and Beyond."
%
% The function new_pagerank_experiments uses the power method.
%
% The code was not written with speed in mind. It was written to test
% results only.
%
%
% INPUT:
% H = hyperlink matrix (n x n)
% alpha = damping factor (between 0 and 1)
% x0 = starting vector (1 x n)
% max_it = number of iterations to run
% v = personalization vector (1 x n)
% w = dangling node fix vector (1 x n)
% top_k = top_k values to return for any iterate vector
%
% OUTPUT:
% x = last iterate vector (corresponding to max_it)
% up_err_bd (max_it by 1) for Cor. 3.8
% res_k_bd (max_it by 1) for Thm. 3.13
% k_err_bd (max_it by 1) for Cor. 3.17
% k_max (top_k x max_it) returns the top_k elements for each iteration
% ind_k_max (top_k x max_it) returns the index of the top_k elements for
% each iteration
% res_k_one (max_it x 1) contains ||r_k||_1 for each iteration
% res_k_inf (max_it x 1) contains ||r_k||_inf for each iteration
% bound_works (top_k-1 x max_it) checks to see when
% min(k_error_bound_inf,res_k_inf_bound) begins identifying ranking
% k_tau (max_it x 1) checks to see when successive iterates have same
% ranking
% k_tau_top_k (max_it x 1) checks to see when the top_k iterates have same
% ranking
% which_ones (top_k-1 x max_it)
% rank_xk (top_k-1 x max_it)
% applies (2*top_k-1 x 2*max_it)
%
%

[m,n]=size(H);

% Calculating the dangling node vector d:
% We need to know which rows have all zero entries.

96

Matlab File: pagerank experiments.m

row_sum_H=ones(1,n)*H';
non_zero_rows_H=find(row_sum_H);
zero_rows_H=setdiff(1:n,non_zero_rows_H);
z = length(zero_rows_H);
% Currently, the dangling node vector is the following:
d=sparse(zero_rows_H,ones(z,1),ones(z,1),n,1);
beta=1-alpha;
gamma=1/beta;
% Calculating the PageRank vector:
iterations = 0;
x = x0;
res_k_one=zeros(max_it,1);
res_k_inf=zeros(max_it,1);
res_k_bd=zeros(max_it,1);
up_err_bd=zeros(max_it,1);
alpha_k=zeros(max_it,1);
alpha_k_1=zeros(max_it,1);
one_norm_x0_xk=zeros(max_it,1);
k_err_bd=zeros(max_it,1);
k_max=zeros(top_k,max_it);
ind_k_max=zeros(top_k,max_it);
k_tau=zeros(max_it,1);
k_tau_top_k=zeros(max_it,1);
x_sort_old = zeros(n,1);
index_x_sort_old=zeros(n,1);
for i = 1:max_it
 x_old = x;
 x = alpha*x*H+alpha*(x*d)*w+beta*v;
 one_norm_x0_xk(i,1)=norm(x0-x,1);
 k_err_bd(i,1)=alpha^i/(1-alpha^i)*one_norm_x0_xk(i,1);
 alpha_k(i,1)=alpha^i;
 alpha_k_1(i,1)=alpha^(i+1);
 res_k_one(i,1)=norm(x-x_old,1);
 res_k_inf(i,1)=norm(x-x_old,inf);
 res_k_bd(i,1)=gamma*res_k_one(i,1); %This will produce the bound for the
prior iterate.
 [x_sort,index_x_sort]=sort(x','descend');
 k_max(:,i)=x_sort(1:top_k,1);
 ind_k_max(:,i)=index_x_sort(1:top_k,1);
 if index_x_sort_old == index_x_sort
 k_tau(i,1)=i;
 end
 if index_x_sort_old(1:top_k,1)==index_x_sort(1:top_k,1)
 k_tau_top_k(i,1)=i;
 end
 x_sort_old = x_sort;
 index_x_sort_old = index_x_sort;

end
bound_works=zeros(top_k-1,max_it);
which_ones=zeros(top_k-1,max_it);
rank_xk=zeros(top_k-1,max_it);
applies=zeros(2*top_k-1,2*max_it);

97

Matlab File: pagerank experiments.m

for i = 1:max_it-1
 for j = 1:top_k-1
 if k_max(j,i) > k_max(j+1,i) + res_k_bd(i+1,1)
 %if k_max(j,i) > k_max(j+1,i) + min(k_err_bd(i,1),res_k_bd(i,1))
 bound_works(j,i)=i;
 which_ones(j,i)=ind_k_max(j,i);
 rank_xk(j,i)=j;
 else if k_max(j,i)==k_max(j+1,i)
 bound_works(j,i)=1000;
 end
 end
 end
 p=nnz(which_ones(:,i));
 applies(1:p,2*i)=nonzeros(which_ones(:,i));
 applies(1:p,2*i-1)=nonzeros(rank_xk(:,i));
end

if x0==v
 up_err_bd=alpha_k_1;
else up_err_bd=alpha_k;
end

98

