
ABSTRACT

NAGAPPAN, NACHIAPPAN. A Software Testing and Reliability Early Warning (STREW)
Metric Suite. (Under the direction of Dr. Laurie A. Williams.)

The demand for quality in software applications has grown, and awareness of software

testing-related issues plays an important role towards that. Unfortunately in industrial practice,

information on software field quality of a product tends to become available too late in the

software lifecycle to affordably guide corrective actions. An important step towards remediation

of this problem lies in the ability to provide an early estimation of post-release field quality.

This dissertation presents a suite of nine in-process metrics, the Software Testing and

Reliability Early Warning (STREW) metric suite, that leverages the software testing effort to

provide (1) an estimate of post-release field quality early in software development phases, and (2)

a color-coded, feedback to the developers on the quality of their testing effort to identify areas

that could benefit from more testing. We built and validated our model via a three-phase case

study approach which progressively involved 22 small-scale academic projects, 27 medium-sized

open source projects, and five large-scale industrial projects. The ability of the STREW metric

suite to estimate post-release field quality was evaluated using statistical regression models in the

three different environments. The error in estimation and the sensitivity of the predictions indicate

the STREW metric suite can effectively be used to predict post-release software field quality.

Further, the test quality feedback was found to be statistically significant with the post-release

software quality, indicating the ability of the STREW metrics to provide meaningful feedback on

the quality of the testing effort.

© Nachiappan Nagappan 2005
All Rights Reserved

A Software Testing and Reliability Early Warning (STREW)
Metric Suite

By

Nachiappan Nagappan

A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY OF
NORTH CAROLINA STATE UNIVERSITY

IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

Raleigh, NC

2005

Approved by:

Dr. Christopher G. Healey

Dr. Jason A. Osborne

Dr. Mladen A. Vouk

Dr. Laurie A. Williams
Chair of Advisory Committee

 ii

Om

To Appa and Amma….+

+ To my parents

 iii

Biography

Nachiappan Nagappan was born on the 24th of May 1980 in a small village, Kottaiyur in Tamil Nadu,

India. He did his schooling at Vidya Mandir Senior Secondary School, Madras and graduated in

1997. He received a B.Tech degree in Information Technology from the University of Madras in 2001

and his M.S. degree from North Carolina State University in 2002. In his spare time, he enjoys

building toy train models and playing soccer.

 iv

Acknowledgements

This thesis would not have been possible without the help of several people. It is impossible to

acknowledge everyone I have worked with in the 22 years of my academic life. If I have missed you,

I apologize for the mistake but want you to know that you are gratefully remembered.

First and foremost, I would like to thank Laurie for being a fantastic advisor. I met Laurie for the

first time on a Wednesday, Nov 14 2001 at 11.00 AM. That was our first meeting. From that time on

till today it’s been a pleasure to work with her. I appreciate her patience, encouragement and support

through these years. She has always watched out for me, helped me with all my problems and has

always been open in her views. Her comments/feedback is something I will miss. Thanks, Laurie.

Dr. Vouk has been a truly inspiring mentor. I have always been amazed by his ability to think of

several possible solutions to a problem whenever I have got stuck. His experience and insight have

greatly influenced my work. I hope this work meets the high standards set by him.

My other committee members Dr. Jason Osborne and Dr. Chris Healey have been supportive of

my work through these years. Dr. Osborne took the trouble of explaining statistics to a computer

science major in addition to spending long hours explaining various statistical modeling techniques

and packages and the significance of interpreting the results. My understanding of “the why and how

of statistics” has been greatly influenced by him. Dr. Healey has been supportive of my work and has

showed a lot of interest in my future goals and plans after graduation. I sincerely appreciate all his

help.

In addition to this I would like to express my sincere thanks to all the people who have helped

me professionally in different stages of my careers, in alphabetical order Pekka Abrahamsson, Annie

Antón, Thomas Ball, Ed Gehringer, John Hudepohl, Brendan Murphy, Madan Musuvathi, Will

Snipes, and David Thuente. The people at 165C, Lucas – thanks for clarifying all the questions I had

on the data validity issues, Mark, Will, and Frank for putting up with me for so long and providing

welcome breaks. The software developers who worked on the several open source projects that were

 v

used in this dissertation, the developers in the industrial software organization, and the students of

CSC 326 in Fall 2003 are gratefully acknowledged for their contribution towards this thesis.

My thanks are also due to Martin for working with me on GERT and my friends at NC State

Guru, CK, Pradeep (both), Yogi, Dinesh, Prabhakar and Karthikeyan who have made my stay at

NCSU very enjoyable.

On an organizational level, I would like to thank the Department of Computer Science,

(especially Margery Page and Vilma Berg) and North Carolina State University, for proving an

excellent environment for a student 8801 miles (14164 km) from home.

Finally last but in no way least, Chidambaram Arunachalam, Annan and Akka for keeping me

sane, taking care of me and feeding me on a regular basis. Without you people, my stay here would

not have been possible, and I would not have graduated…. and my brother for being the motivation

for me to finish up before he did….

My work was partially funded by an IBM (IBM-Eclipse Innovation Award). This material is also

based upon work supported by the National Science Foundation under CAREER award Grant No.

0346903 and DUE-CCLI 0088178. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not necessarily reflect the views of the

National Science Foundation.

 vi

TABLE OF CONTENTS

 Page
No.

LIST OF TABLES ………………………………………………………..……… ix

LIST OF FIGURES …………………………………………………..………….. xi

1. INTRODUCTION …………………………………..………………………… 1

2. BACKGROUND …………………………………..………………………….. 4

2.1 SOFTWARE RELIABILITY …………………………………………… 4

2.2 SOFTWARE TESTING ………………………………………………… 6

2.2.1 SOFTWARE TESTING CLASSIFICATIONS …………………... 6

2.2.2 AUTOMATED SOFTWARE TESTING EXAMPLE USING

JUNIT ……………………………………………………………………

8

2.3 SOFTWARE METRICS ………………………………………………... 11

2.3.1 TEST METRICS ………………………………………………….. 13

2.3.1.1 PRODUCT METRICS (DEFECT/ERROR/FAULT

METRICS) …………………………………………………………

14

2.3.1.2 PROCESS METRICS ……………………………………... 15

2.3.2 HALSTEAD SOFTWARE SCIENCE ……………………………. 16

2.3.3 CYCLOMATIC COMPLEXITY …………………………………. 17

2.3.4 FUNCTION-POINT ANALYSIS ………………………………… 18

2.3.5 HENRY-KAFURA STRUCTURE METRIC …………………….. 19

2.3.6 OBJECT-ORIENTED METRICS ………………………………… 20

2.3.6.1 CK METRICS …………………………………………….. 20

2.3.6.2 MOOD METRIC SUITE …………………………………. 21

2.4 INDUSTRIAL METRIC PROGRAMS ………………………………... 21

2.4.1 MOTOROLA ……………………………………………………... 21

2.4.2 HEWLETT-PACKARD ………………………………………….. 22

2.4.3 IBM ROCHESTER ……………………………………………….. 23

 vii

3. RELATED RESEARCH ………………………..…………………………….. 24

3.1 PRIOR RELATED WORK ……………………………………………... 24

3.2 SOFTWARE RELIABILITY MODELS ……………………………….. 28

4. STREW METRIC SUITE …………………………………………..………… 37

5. POST-RELEASE FIELD QUALITY ESTIMATION …………………….... 46

5.1 FEASIBILITY STUDY …………………………………………………. 47

5.2 MODEL BUILDING ……………………………………………………. 49

5.3 RESULTS EVALUATION TECHNIQUES ……………………………. 51

5.4 ACADEMIC CASE STUDY …………………………………………… 52

5.4.1. DESCRIPTION …………………………………………………... 52

5.4.2 MODEL BUILDING ……………………………………………… 53

5.4.3 RANDOM DATA SPLITTING …………………………………... 54

5.5 OPEN SOURCE CASE STUDIES ……………………………………... 55

5.5.1. DESCRIPTION …………………………………………………... 56

5.5.2 MODEL BUILDING ……………………………………………… 58

5.5.3 RANDOM DATA SPLITTING …………………………………... 59

5.6 INDUSTRIAL CASE STUDY ………………………………………….. 65

5.6.1. DESCRIPTION …………………………………………………... 65

5.6.2 POST-RELEASE FIELD QUALITY PREDICTION …………….. 66

6. TEST QUALITY FEEDBACK ……………….……………………………… 69

6.1 BUILDING TEST QUALITY FEEDBACK STANDARDS …………… 70

6.2 EVALUATION OF TEST QUALITY FEEDBACK STANDARDS …... 73

6.3 CASE STUDIES ………………………………………………………… 73

6.3.1 ACADEMIC CASE STUDY …………………………………….... 74

6.3.2 OPEN SOURCE CASE STUDY ………………………………….. 75

6.3.3 STRUCTURED INDUSTRIAL CASE STUDY ………………….. 77

6.4 STATISTICAL ANALYSIS OF TEST QUALITY FEEDBACK............. 79

6.5 QUALITATIVE ANALYSIS …………………………………………… 82

6.6. DISCRIMINATIVE POWER ………………………………………...... 86

 viii

7. RETROSPECTIVE STREW METRIC ANALYSIS ……………………….. 88

8. CONCLUSIONS AND FUTURE WORK ……………………….…………... 98

REFERENCES ………………………………..…………………………………. 101

APPENDIX A - DATA SETS …………………………………………..……….. 110

APPENDIX B – TOOL SUPPORT ……………………………….…………….. 112

APPENDIX C - MISCELLANEOUS STATISTICAL ANALYSIS ………….. 116

 ix

LIST OF TABLES

 Page

No.

Table 3.1: Legend for classification of software reliability models ………………. 30

Table 3.2: Software Reliability model classification ……………………………… 31

Table 4.1: Corresponding source and test code …………………………………… 38

Table 4.2: STREW metrics and collection and computation instructions ………... 40

Table 5.1: Pearson correlation and statistical significance results between the

ratios and the reliability estimate …………………………………………………..

49

Table 5.2: Prediction evaluation results …………………………………………… 54

Table 5.3: Component matrix for PCA transformation …………………………… 59

Table 5.4: AAE and ARE values ………………………………………………….. 64

Table 5.5: Sensitivity evaluation for PCA models ………………………………… 65

Table 5.6: Industrial project sizes …………………………………………………. 65

Table 5.7: Project characteristics ………………………………………………….. 66

Table 6.1: Color coded feedback standards ……………………………………….. 71

Table 6.2: STREW metric color coded feedback explanation …………………….. 71

Table 6.3: Desired correlation results with the color-coded feedback …………….. 73

Table 6.4: Academic case study – correlation results ……………………………... 75

Table 6.5: Open source case study – correlation results …………………………... 77

Table 6.6: Industrial project data description ……………………………………… 78

Table 6.7: Industrial case study – correlation results ……………………………… 79

Table 6.8: Summary correlation results of test quality feedback ………………….. 80

Table 6.9: Comparative modeling results …………………………………………. 81

Table 6.10: Simple linear regression coefficients …………………………………. 81

Table 6.11: Test quality feedback standards – open source case study …………… 82

Table 6.12: Release 1 STREW metrics feedback …………………………………. 83

Table 6.13: Release 2 STREW metrics feedback …………………………………. 83

Table 6.14: Release 3 STREW metrics feedback …………………………………. 84

Table 6.15: Release 4 STREW metrics feedback …………………………………. 84

Table 6.16: Release 5 STREW metrics feedback …………………………………. 85

Table 6.17: Release 6 STREW metrics feedback …………………………………. 85

 x

Table 6.18: Type 1 and Type II errors …………………………………………….. 86

Table 6.19: Type I, Type II errors for case studies ………………………………... 86

Table 7.1: Correlation Matrix – Academic Projects ………………………………. 92

Table 7.2: Correlation Matrix – Open Source projects ……………………………. 93

Table A.1: Academic case study data set ………………………………………….. 110

Table A.2: Open source case study data set ……………………………………….. 111

Table B.1: Statistics for the past 10 months ……………………………………….. 114

Table B.1: Statistics for All Time (courtesy sourceforge.net) ……………………. 115

Table C.1: One-Sample Kolmogorov-Smirnov Test – Academic Projects ……….. 116

Table C.2: One-Sample Kolmogorov-Smirnov Test – 27 Open Source Projects …. 116

Table C.3: Correlation matrix with individual project metrics – Academic ………. 121

Table C.4: Correlation matrix with individual project metrics – Open source ……. 122

 xi

LIST OF FIGURES

 Page

No.

Figure 2.1: Testing Techniques ……………………………………………………. 7

Figure 2.2: Example Java Source program ………………………………………... 8

Figure 2.3: Example Java Test program …………………………………………... 9

Figure 2.4: JUnit output screen shot ………………………………………………. 11

Figure 2.5: Software metrics classification ………………………………………... 13

Figure 4.1: Corresponding source and test classes ………………………………... 38

Figure 4.2: STREW metric revision process ……………………………………… 42

Figure 4.3: Example cyclomatic complexity computation ……………………....... 43

Figure 4.4: Sample assertion and test case measurement example ……………….. 44

Figure 4.5: CBO, DIT and WMC measurement example ………………………… 44

Figure 5.1: Empirical case studies ………………………………………………… 47

Figure 5.2: Academic projects size ………………………………………………... 53

Figure 5.3: Normal probability plot for model fitting ……………………………... 54

Figure 5.4: Histogram of TRs/KLOC in academic projects …………….………… 55

Figure 5.5: Open source project sizes ……………………………………………... 57

Figure 5.6: Model fitting results for PCA …………………………………………. 58

Figure 5.7: Random data split – model building and evaluation results …………... 59

Figure 5.8: Prediction plots with all the STREW metrics …………………………. 66

Figure 5.9: Prediction plots with PCA …………………………………………….. 67

Figure 6.1: Color coded feedbacks-Academic case study ………………………… 74

Figure 6.2: Project size across three years ………………………………………… 76

Figure 6.3: Color coded feedbacks for open source case study …………………… 76

Figure 6.4: Color coded feedbacks for structured industrial case study …………... 78

Figure 7.1: Scatterplots of TRs Vs. Size …………………………………………... 89

Figure 7.2 Scatterplots of TRs/KLOC Vs. Size …………………………………… 89

Figure 7.3: 3-D plots of Asserts/KLOC vs. Test Cases/KLOC vs. TRs/KLOC …... 90

Figure 7.4: 3-D plots of Asserts vs. Test Cases vs. TRs …………………………... 91

Figure 7.5: Statement and Branch Coverage with TRs/KLOC ……………………. 91

 xii

Table 7.6: Scatter plots of STREW metrics with TRs/KLOC …………………….. 94

Figure B.1: GERT snap shot ………………………………………………………. 112

Figure B.2: Usage Statistics (courtesy sourceforge.net) …………………….…….. 114

Figure C.1: Normality plot of regression residuals – Academic case study ….…… 117

Figure C.2: Normality plot of regression residuals –Open source case study …….. 117

Figure C.3: Scree plot ……………………………………………………………... 118

Figure C.4: Component plot ………………………………………………………. 119

Figure C.5: Scree plot ……………………………………………………………... 119

Figure C.6: Component plot ………………………………………………………. 120

CHAPTER 1

INTRODUCTION

Software engineering is the application of a systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software; that is, the application of engineering to

software[43]. A more mathematical definition of Software Engineering was presented by Boehm in

the classic Software Engineering Economics book [10] ,

Software engineering is the application of science and mathematics by which the

capabilities of computer equipment are made useful to man via computer programs,

procedures, and associated documentation. [10]

Software Engineering activities include: Managing, Costing, Planning, Modeling, Analyzing,

Specifying, Designing, Implementing, Testing and Maintaining of software [33].

In industry, estimates of software field quality are often available too late in the software lifecycle

to affordably guide corrective actions to the quality of the software. As a result, true field quality

cannot be measured before a product has been completed and delivered to an internal or external

customer. Because this information is available late in the software lifecycle, corrective actions tend

to be expensive [10]. Software developers can benefit from an early warning regarding the quality of

their product.

In our research, we formulate this early warning from a collection of internal testing metrics that

are correlated with Trouble Reports (TRs) per thousand lines of code (KLOC), an external measure

 2

obtained from users. A TR [60] is a customer-reported problem whereby the software system does not

behave as the customer expects. An internal metric, such as cylomatic complexity [58], is a measure

derived from the product itself [44]. An external measure is a measure of a product derived from the

external assessment of the behavior of the system [44]. For example, the number of failures found in

test is an external measure.

The ISO/IEC standard [44] states that “internal metrics are of little value unless there is evidence

that they are related to some externally visible quality.” Internal metrics have been shown to be

useful as early indicators of externally-visible product quality [3] when they are related (in a

statistically significant and stable way) to the field quality/reliability of the product. The validation of

such internal metrics requires a convincing demonstration that (1) the metric measures what it

purports to measure and (2) the metric is associated with an important external metric, such as field

reliability, maintainability, or fault-proneness[29].

Our research objective is to construct and validate a set of easy-to-measure in-process metrics

that can be used as an early indication of an external measure of post-release field quality and

provides meaningful feedback on the thoroughness of a testing effort. To this end, we have created a

metric suite we call the Software Testing and Reliability Early Warning metric suite for Java

(STREW-J) [69-71]. Software reliability is defined as the probability that the software will work

without failure under specified conditions and for a specified period of time [64].

The STREW metrics are used to build a regression model to estimate the post-release field

quality using the metric TRs/KLOC. The estimation of post release field quality via the STREW

metric suite is applicable for development teams that write extensive automated test cases, such as is

done in the Extreme Programming [8] software development methodology. The STREW method is

not applicable for script-based automated testing because, as will be discussed, the metrics are

primarily based upon the object-oriented (O-O) programming paradigm. Teams develop a history of

the value of the STREW metrics from comparable projects with acceptable levels of field quality.

These historical metric values are then used to estimate the relationship between the STREW metric

 3

elements and the TRs/KLOC. In this dissertation, we present empirical results of an academic

feasibility study (22 projects), a case study of open source projects (27 projects), and an industrial

case study (five projects) designed to build and validate the STREW model.

The rest of this thesis is organized as follows. Chapter 2 provides the background introduction to

software reliability, software testing, software metrics, and industrial metric programs. Chapter 3

outlines the prior research work related to the estimation of fault density and fault-proneness, and

Chapter 4 presents the STREW metric suite. Chapters 5 and 6 provide the evaluation of the STREW

metric suite in terms of estimating the post-release field quality and providing test quality feedback.

Chapter 7 presents a retrospective analysis of the STREW metric suite, and Chapter 8 discusses the

conclusions and future work.

 4

CHAPTER 2

BACKGROUND

This section provides an introduction to the four main areas related to this proposal: software

reliability, software testing, software metrics, and industrial metric programs.

2.1 SOFTWARE RELIABILITY

Software reliability is defined as the probability that the software will work without failure under

specified conditions and for a specified period of time [64]. A number of software reliability models

are available. They range from the simple Nelson model [73] to more sophisticated hyper-geometric

coverage-based models [45], to component-based models, and object-oriented models [3]. Several

reliability models use Markov Chain techniques [95]. Other models are based on the use of an

operational profile, i.e., a set of software operations and their probabilities of occurrence [64]. These

operational profiles are used to identify potentially-critical operational areas in the software to signal

a need to increase the testing effort in those areas. A large group of software reliability growth models

are described by Non-Homogenous Poisson Processes (NHPP) [98]. This group includes Musa [66]

and the Goel-Okumoto [35] models.

In many test-centric methodologies, developers strive to pass all the automated tests that are

written, and there are no measurable faults. Even if there are failures, these failures might not be an

accurate reflection of the reliability of the software if the testing effort was not comprehensive.

 5

Instead, “no failure” estimation models, as described in [26, 28, 59], may be more appropriate for use

with such methodologies.

Software reliability models can be classified broadly into seven categories [97]:

• Markov models: A model belongs to this class if its probabilistic assumption of the

failure process is essentially a Markov process, i.e. a birth-death process. In these

models each state of the software has a transition probability associated with it that

governs the operational criteria of the software.

• Non-homogeneous Poisson process (NHPP) models: A model is classified as a

NHPP model if the main assumption is that the failure process is described by a NHPP.

The main characteristic of this type of model is that there is a mean value function which

is defined as the expected number of failures up to a given time.

• Bayesian process: In a Bayesian process model, some interesting information about

the software to be studied is available before the testing starts, such as inherent fault

density and defect information of previous releases. This information can be used in

combination with the collected test data to make a more accurate estimation and

prediction about the reliability.

• Statistical data analysis methods: Different statistical models and methods are

applied for the analysis of software failure data. Some of these models are the time series

model, proportional hazards model, and regression models.

• Input-domain based models: These models do not make any dynamic assumption

about the failure processes. All possible input and output domains of the software are

constructed and, based on the results of the testing, the faults in mapping between the

input and output domains are identified, i.e. for a particular value in the input domain if

the corresponding value in the output domain must be produced or a fault is identified.

 6

• Seeding and tagging models: These models utilize the statistical capture-recapture

technique that involves the artificial seeding of faults. The assessment of the testing is

based upon the number of seeded faults that remain in the software at the conclusion of

the testing effort.

• Software metrics models: Software reliability metrics which are measures of the

software complexity can be used to estimate the number of software faults remaining in

the software.

2.2 SOFTWARE TESTING

Software testing is a verification and validation (or V&V) software practice and is considered to

be a software quality assurance practice. Software testing can be use to answer two main questions

[10],

• Verification: Are we building the product right?

• Validation: Are we building the right product?

2.2.1 SOFTWARE TESTING CLASSIFICATIONS

As shown in Figure 2.1, testing activities can be classified as black box or white box. Black box

testing [43], (also called functional testing) is testing that ignores the internal mechanism of a system

or component and focuses solely on the outputs generated in response to selected inputs and

execution conditions. Black box testing is used to simulate the customer behavior and focuses on

input/output. White box testing [43], (also called structural testing) is testing that takes into account

the internal mechanism of a system or component.

 7

Figure 2.1: Testing Techniques

There are several levels of testing that should be done on a large software system. These levels are

explained below [43].

1. Unit Testing: Testing of individual hardware or software units or groups of related

units[43]. It is done at a very low structural level. The primary objectives of unit testing

are to (1) verify the code against the component, i.e. to see if the code does what the

component is expected to do with respect to the overall system; (2) execute all new and

changed code to ensure all branches are executed in all directions, (3) check for the

correctness of logic and data paths; and (4) exercise all error messages, return codes and

response options [48].

2. Integration testing: Testing in which software components, hardware components, or

both are combined and tested to evaluate the interaction between them. Integration testing

involves uses both black and white box testing techniques[43].

3. Functional and System testing: Using black box testing techniques, testing conducted

on a complete, integrated system to evaluate the system's compliance with its specified

requirements[43].

4. Acceptance testing: (1) Formal testing conducted to determine whether or not a system

satisfies its acceptance criteria and to enable the customer to determine whether or not to

Software Testing

White Box Testing Black Box Testing

 8

accept the system. (2) Formal testing conducted to enable a user, customer, or other

authorized entity to determine whether to accept a system or component[43].

5. Regression testing. Selective retesting of a system or component to verify that

modifications have not caused unintended effects and that the system or component still

complies with its specified requirements[43].

2.2.2 AUTOMATED SOFTWARE TESTING EXAMPLE USING JUNIT

As this dissertation deals with leveraging the software testing effort for estimating post-release

field quality, we present an example of the xUnit1 type of software testing that our post-release field

quality is based upon. Note the symmetries between the source and test code. This example involves

a Java program to add, subtract, multiply and divide two numbers, as shown in Figure 2.2.

Source Program

//computation.java
//author-Nachiappan Nagappan

import java.io.*;
import java.lang.*;

public class computation
{
 //Add two numbers
 public static int addi(int temp1,int temp2)
 {
 int temp3;
 temp3=temp1+temp2;
 return(temp3);
 }

 //Subtract two numbers
 public static int subt(int temp1,int temp2)
 {
 int temp3;
 temp3=temp1-temp2;
 return(temp3);
 }

 //Multiply two numbers
 public static int mult(int temp1,int temp2)
 {
 int temp3;

1 http://xprogramming.com/software.htm

 9

 temp3=temp1*temp2;
 return(temp3);
 }

 //Divide two integers
 public static int divi(int temp1,int temp2)
 {
 int temp3;
 temp3=temp1/temp2;
 return(temp3);
 }

 public static void main(String args[])throws IOException
 {
 int x;
 computation nachi=new computation();
 }

} //End of Program
Figure 2.2: Example Java Source program

There are four methods that form the core of the source program, addi(), subt(), mult() and divi()

which perform the operations of addition, subtraction, multiplication and division. The corresponding

automated testing program written in JUnit2 is given in Figure 2.3. This test program exercises the

source program to check if the operations are correct based on specific test cases (e.g. testaddi() in

Figure 2.3 to check if two integers are added correctly).

Test Program
//computationTest.java
//author-Nachiappan Nagappan

import junit.framework.*;
import java.io.*;

public class computationTest extends TestCase
{
 public computation x;

 public computationTest(String name)
 {
 super(name);
 }

 public void setUp()
 {

2 junit.org

 10

 x=new computation();
 }

 //Test addi() method of computation.java
 public void testaddi()
 {
 x=new computation();
 assertEquals(100,x.addi(75,25));
 }

 //Test subt() method of computation.java
 public void testsubt()
 {
 x=new computation();
 assertEquals(50,x.subt(75,25));
 }

 //Test mult() method of computation.java
 public void testmult()
 {
 x=new computation();
 assertEquals(1875,x.mult(75,25));
 }

 //Test divi() method of computation.java
 public void testdivi()
 {
 x=new computation();
 assertEquals(3,x.divi(75,25));
 }

 public static void main(String[] args)
 {
 }

} //End of Program

Figure 2.3: Example Java Test program

Upon execution of the above test program, all the four mathematical operations are tested and the

JUnit output is produced, as shown in Figure 2.4. Figure 2.4 shows that four of four test cases pass

and provides a green bar to visually demonstrate that all test cases passed.

 11

Figure 2.4: JUnit output screen shot

2.3 SOFTWARE METRICS

We present in this section a discussion on software metrics as we use in-process testing metrics in

our dissertation research. The term software metrics explains many activities, all of which involve

some degree of software measurement [33]:

• Cost and effort estimation

• Productivity measures and models

• Data collection

• Quality models and measures

 12

• Reliability models

• Performance evaluation and models

• Structural and complexity metrics

• Capability-maturity assessment

• Management by metrics

• Evaluation of methods and tools.

Since there is virtually an infinite number of possible software metrics, developers must have

some criteria for choosing which metrics to apply for a particular project. Ideally, a metric should

possess the following characteristics [77]:

• Simple. The definition and use of the metric is simple;

• Objective. If different people perform the measurement, they will give similar values.

Objective metrics allow for consistency and prevents individual bias;

• Easily collected. The cost and effort to obtain the measure is reasonable;

• Robust. The metric is insensitive to irrelevant changes, allowing for useful comparison;

and

• Valid. A valid metric measures what it is supposed to measure, promoting trustworthiness

of the measure.

Software metrics may be broadly classified into seven categories [77] as shown in Figure 2.5. The

seven categories represent the seven different phases of software engineering from which metrics can

be collected.

 13

Figure 2.5: Software Metrics Classification

The STREW metric suite is comprised of metrics from both the source and test code. The

following discussion presents a broad overview of the popular software metric measures. The metrics

range from product, process metrics to metric measurement paradigms like the Halstead metrics,

cyclomatic complexity, and function points.

2.3.1 TEST METRICS

We shall concentrate on a study of the test metrics [77] because in our work, we leverage the

testing effort to assess the quality of the testing effort and to predict post-release field quality based

on previous empirical data. Test metrics may be of two types [77],

1. Metrics related to test results or the quality of the product being tested.

2. Metrics used to assess the effectiveness of the testing process.

In this dissertation, we will be focusing on metrics of the second category. Further, we also provide

an overview of some of the product (metrics obtained from the software) and process (metrics

obtained from the software process employed in the development cycle) metrics that are commonly

used.

Software Metrics

Installation and Checkout
Metrics

Implementation Metrics

Design Metrics Requirements MetricsMetrics used in all phases

Operation and
Maintenance Metrics

Test Metrics

 14

2.3.1.1 PRODUCT METRICS (Defect/Error/Fault Metrics)

• Primitive defect/error/fault metrics. These are very simple, easy to collect metrics that are

represented in terms of bar, line graphs and using histograms.

• Number of faults detected in each module.

• Number of requirements, design, and coding faults found during unit and integration testing.

• Number of errors by type (e.g. number of logical errors, number of computation errors,

number of interface errors etc.)

• Number of errors by cause or origin

• Number of errors by severity (number of critical errors, number of major errors, number of

cosmetic errors).

• Fault Density (FD): Number of faults/size in one thousand lines of code (KLOC)

o FD may also be weighed in using the severity of errors as shown in Equation 2.1.

FD (Weighted) = W1 S/N+W2 A/N+W3 M/N (2.1)

 W1,W2 ,W3 – Weights assigned.(User dependant)

 N- Number of faults

 S-Number of severe faults

 A-Number of average severity faults

 M-Number of minor faults

• Defect age: Defect age is the time between when a defect is introduced and when it is fixed.

The average defect age of a product is computed using the summation of the individual defect

ages for all the defects as shown in Equation 2.2.

defect age= Σ∀(Phase detected – phase introduced)/ Number of defects (2.2)

• Defect response time: This measure is the time between when a defect is detected to when it

is fixed or closed.

 15

• Defect Cost: The cost of a defect is the sum of the cost to analyze the defect, the cost to fix it,

and the cost of failures already incurred due to the defect.

• Defect removal efficiency (DRE): The defect removal efficiency is the percentage of defects

that have been removed during a process, computed via Equation 2.3.

DRE = Number of defects removed/Number of defects at the start of the process * 100% (2.3)

2.3.1.2 PROCESS METRICS

Test case metrics

• Total number of planned white/black box test cases run to completion.

• Number of planned integration tests run to completion

• Number of unplanned test cases required during the test phase.

Coverage metrics

• Statement coverage

• Branch coverage

• Path coverage

• Data flow coverage

• Test coverage

Failure metrics

• Mean time to failure (MTTF): This is the mean time for the next failure i.e. (i+1)th failure

given the failure times of the previous i failures. This metric is a basic parameter required

by most software reliability models.

• Failure rate: This is used to indicate the growth in the software reliability as a function of

test time and is usually used with reliability models. Failure rate requires the observed

time between failures at a given severity level and the number of failures in a given

severity level in a particular time interval. The failure rate can calculated using R(t) as

 16

shown in Equation 2.4, is obtained from the cumulative probability distribution (F(t)) of

the time until the next failure, using a software reliability estimation model.

o The failure rate, λ(t)= -1/R(t) [dR(t)]/dt where R(t)=1-F(t) (2.4)

• Cumulative failure profile. Uses a graphical technique to predict reliability to estimate

additional testing time needed to reach an acceptable reliability level and to identify

modules and subsystems that require additional testing.

Some of the more commonly used software metric(s)/suites are discussed below. These models

provide an introduction to current trends in software metrics measurement.

2.3.2 HALSTEAD SOFTWARE SCIENCE

Halstead [37] proposes the measurement of a software system that is obtained by breaking down

and arranging a finite number of program “tokens,” which are basic syntactic units distinguished by a

compiler. Halstead’s measurement takes into account the number of distinct operators and operands

that appear in a program; the total number of operator occurrences; and the total number of operand

occurrences to calculate several program characteristics. These characteristics are program length

(total number of operator and operand occurrences), volume (number of bits required to specify a

program), vocabulary (total count of distinct operator and operand count), level (a measure of

software complexity), and program effort.

Using the above metrics, Halstead designed a set of equations that express several of the program

characteristics.

Vocabulary (n): n = n1 + n2 (2.5)

Length (N): N= N1 + N2 (2.6)

= n1 log2(n1) + n2 log2(n2)

Volume (V): V= N log2 (n) (2.7)

 = N log2 (n1 + n2)

Level (L): L= V*/V (2.8)

 17

 = (2/n1) * (n2/N2)

Difficulty (D) = 1/L (2.9)

Effort (E): E= V/L (2.10)

Faults (B): = V/S* (2.11)

Where:

• n1- The number of distinct operators that appear in a program

• n2- The number of distinct operands that appear in a program

• N1- The total number of operator occurrences

• N2- The total number of operator occurrences

• V* is the volume represented by the built in function performing the task of the entire

program

• S* is the mean number of mental discriminations (decisions) between errors (S* is 3000

according to Halstead).

Halstead’s metrics has been subject to criticism in several aspects, such as methodology,

derivations of equations, human memory models [48]. Empirical support is lacking in several areas of

the Halstead measures. The Halstead metrics are static metrics that ignore variations in fault rates

observed in software products and among modules. However, Halstead’s work was instrumental in

making metrics an issue among computer scientists as it was the first formal investigation of software

metrics. [48]

2.3.3 CYCLOMATIC COMPLEXITY

McCabe designed cyclomatic complexity [58] as a measure of the programs testability and

understandability. Both testability and understandability impact maintainability [48]. Cyclomatic

complexity is adapted from the classical graph theoretical cyclomatic number to suit software science

and can be defined as the number of linearly-independent paths through a program. Cyclomatic

complexity has been shown to be an indicator of the effort required to test a program [48].

 18

The formula used to compute the complexity metric is shown in Equation 2.12.

M = V(G) = e-n+2p (2.12)

Where, V(G) = cyclomatic complexity of G

 e = number of edges

 n = number of nodes

 p=number of unconnected parts of the graph.

To have good testability and maintainability, McCabe recommended that no program module

should have a cyclomatic complexity greater than 10. Because it is based on decisions and branches,

this complexity metric is consistent with the logic pattern of design and programming, which appeals

to software professionals. Many experts recommend the use McCabe’s cyclomatic complexity to

ensure adequate test coverage, and the use of McCabe’s cyclomatic measure has been gaining

acceptance by practitioners [48].

2.3.4 FUNCTION-POINT ANALYSIS

Function point analysis [2] is an approach for assessing the size of a piece of software based on

the functionality provided. Function points are obtained by the analysis of a requirements

specification document to identify the different functions that the system is to perform. The functions

are classified into different types and are given weightings according to the relative complexity of the

function type [85].

For example, the unadjusted function point count ‘ufc’ for a specification is given by [85]

Equation 2.13:

ufc = 4*i+5*o+4*e+7*p+10*f (2.13)

 where, i = number of external input types

 o = number of external output types

 e = is the number of enquiries

 p = is the number of external files (program interfaces)

 f = is the number of external files

 19

(This is a simplified equation from [85] to illustrate ufc)

Further, Albrecht suggests that a total of 14 complexity metric factors be taken into account for

calculating the technical complexity factor (tcf) [85]. The 14 factors are data communications,

distributed data processing, performance, heavily-used configuration, transaction rate, on-line data

entry, end-user efficiency, on-line update, complex processing, reusability, installation ease, operation

ease, multiple sites, facilitate change. Each factor is scored between zero (no influence) and five (very

strong influence). The tcf is calculated as shown in Equation 2.13:

tcf = 0.65 + 0.01 *∑
i

 DI (2.13)

,where DIi is the degree of influence of the ith technical complexity factor.

Thus, the tcf will range from 0.65 to 1.65. For a simple system with no data communications the

value will tend towards 0.65. A distributed system dealing with high transaction volumes and

characterized by complex processing have a tcf of approximately 1.35. Combining the technical

complexity factor and the unadjusted function point count, we obtain the adjusted function point

count (fp) as in Equation 2.14:

fp = ufc*tcf (2.14)

The function point is usually used as a predictor of the development effort, although its inverse is

often also used as a productivity index. Also, for example, once the function points of an organization

are calibrated, they have been found to explain 75% of the variation in program size in a study of 15

commercial software systems [49].

2.3.5 HENRY-KAFURA STRUCTURE METRIC

Structure metrics take into account the interactions between modules in a product or system and

quantify such interactions. The information-flow metric defined by Henry and Kafura [41], uses fan-

in (a count of the number of modules that call a given module) and fan-out (a count of the number of

modules that are called by a given module) to calculate a complexity metric.

Henry and Kafura’s structure complexity metric (Cp) is defined in Equation 2.15:

 20

 Cp = (fan-in * fan-out)2 (2.15)

 In general, modules with a large fan-in are relatively small and simple. In contrast, modules that are

large and complex have a small fan-in. Thus, components with a large fan-in and large fan-out may

indicate poor design. Such modules have to be decomposed correctly.

2.3.6 OBJECT-ORIENTED METRICS

In recent years, object-oriented (O-O) programming has gained importance, and new suites of

metrics that exploit the O-O properties are becoming popular. Two popular O-O metric suites are

presented below.

2.3.6.1 CK METRICS

The CK metric suite proposed by Chidamber-Kemerer (CK) [17]identifies six O-O metrics:

• Weighted Methods per class (WMC). the weighted sum of all the methods defined in a

class;

• Coupling Between Objects (CBO): the number of other classes with which a class is

coupled;

• Depth of Inheritance Tree (DIT): the length of the longest inheritance path in a given

class;

• Number of Children (NOC): the count of the number of children (classes) that each class

has;

• Response for a class (RFC): the count of the number of methods that are invoked due to

the initiation of an object of a particular class; and

• Lack of Cohesion of Methods (LCOM): is a count of the number of method pairs whose

similarity is zero and minus the count of method pairs whose similarity in not zero.

Several studies have been performed assessing the effectiveness of the CK Metrics in addressing

software fault-proneness [3, 86, 88]. These studies are explained in detail in Chapter 3.

 21

2.3.6.2 MOOD METRIC SUITE

The MOOD [15] O-O metric suite consists of the following O-O Metrics:-

• Method Hiding Factor (MHF): the number of visible methods;

• Attribute Hiding Factor (AHF): the number of visible attributes;

• Method Inheritance Factor (MIF): the ratio of the sum of inherited methods to the total

number of methods.

• Attribute Inheritance Factor (AIF): the ratio of, the sum of inherited attributes to the total

number of attributes.

• Polymorphism Factor (PF): the degree of method overriding in the class inheritance tree.

PF equals the number of actual method overrides divided by the maximum number of

possible method overrides.

• Coupling Factor: the actual number of couplings among classes in relation to the

maximum number of possible couplings.

2.4 INDUSTRIAL METRIC PROGRAMS

This section provides an insight into the popular metric programs employed in three popular

industrial organizations (Motorola, Hewlett-Packard, and IBM) to present an overview of the types of

metrics that are measured in commercial software development organizations.

2.4.1 MOTOROLA

Motorola’s software metrics program [21] follows the Goal/Question/Metric paradigm [6]. The

goals and measurement areas identified by the Motorola Quality Policy for Software Development

(QPSD) are listed below [48]:

Goals

• Goal 1: Improve project planning

• Goal 2: Increase Defect containment

• Goal 3: Increase Software Reliability

 22

• Goal 4: Decrease software defect density

• Goal 5: Improve customer service

• Goal 6: Reduce the cost of nonconformance

• Goal 7: Increase software productivity

Measurement areas:

• Delivered defects and delivered defects per size

• Total effectiveness throughout the process

• Adherence to schedule

• Estimation accuracy

• Number of open customer problems

• Time that problems remain open

• Cost of nonconformance

• Software reliability

2.4.2 HEWLETT-PACKARD

Hewlett- Packard’s software metrics program [36] uses several metrics and ratios to assess product

quality. A subset of these metrics is given below [48]:

• Average fixed defects/working day

• Average engineering hours/fixed defect

• Average reported defects/working day

• Branches covered/ Total branches

• Defects/thousands of non-commented source statements

• Defects/Lines of Documentation not included in program source code

• Defects/Testing time

• non-commented source statements /engineering month

• Percent overtime: average overtime/40 hours per week

 23

• Engineering months/Total Engineering months

2.4.3 IBM ROCHESTER

For the software community within IBM, a set of standard 5-UP software quality metrics is

defined by the IBM corporate software measurement council. The 5-UP metrics include the following

[48]:

• Overall customer satisfaction

• Post release defect rate for three years

• Customer problem calls

• Fix response time

• Number of defective fixes

IBM Rochester in addition to the above 5-UP metrics uses several other in-process metrics, such

as phase effectiveness (for each phase of effectiveness and test); inspection coverage; effort; defect

rates; in-process inspection escape rate; compilation of failures and build/integration defects; weekly

defect arrivals and backlog during testing; defect severity; defect cause; reliability; models for post

release defect estimation.

 24

CHAPTER 3

RELATED RESEARCH

In this chapter, we present the related research work in two sections. Section 3.1 is a discussion of

prior related studies done with software metrics, and Section 3.2 investigates the applicability of

popular software reliability models within our research context.

3.1 PRIOR RELATED WORK

The higher the failure-proneness of the software, logically the lower the reliability and the quality

of the software produced, and vice-versa. Software fault-proneness is defined as the probability of

the presence of faults in the software [23]. Failure-proneness is the probability that a particular

software element will fail in operation. Using operational profiling information, it is possible to relate

failure-proneness and fault-proneness of a product. Research on fault-proneness has focused on two

areas: (1) the definition of metrics to capture software complexity and testing thoroughness and (2)

the identification of and experimentation with models that relate software metrics to fault-proneness

[24]. While software fault-proneness can be measured before deployment (i.e. the count of faults per

structural unit such as faults per line of code), failure-proneness cannot be directly measured on

software before deployment [31]. Fault-proneness can be estimated based on directly-measurable

software attributes if associations can be established between these attributes and the system fault-

proneness.

 25

Structural O-O measurements, such as those defined in the CK [17] and MOOD [15] O-O metric

suites, are being used to evaluate and predict the quality of software [39]. Structural object-

orientation (O-O) measurements, such as those in the Chidamber-Kemerer (C-K) O-O metric suite

[17], have been used to evaluate and predict fault-proneness [3, 13, 14]. The CK metric suite

consists of six metrics: weighted methods per class (WMC), coupling between objects (CBO), depth

of inheritance tree (DIT), number of children (NOC), response for a class (RFC) and lack of cohesion

among methods (LCOM). These metrics can be a useful early internal indicator of externally-visible

product quality in terms of fault-proneness [3, 86, 88].

 In software systems, the actual measurable product quality (e.g., failure rate) that is derived from

the behavior of the system usually cannot be measured until too late in the life-cycle to effect an

affordable corrective action. In general, a multi-phase approach must be taken collecting the various

metrics of these suites at different stages, since different metrics will be visible at different

development phases [92, 93].

Basili et al. [3] studied the fault-proneness in a class on eight student projects. It was observed

that the WMC, CBO, DIT, NOC and RFC were correlated with defects while the LCOM was not

correlated with defects. Further, Briand et al. [14] performed an industrial case study and observed

the CBO, RFC, LCOM to be associated with the fault-proneness of a class. A similar study done by

Briand et al. [13] on eight student projects showed that classes with a higher WMC, CBO, DIT and

RFC were more fault prone while classes with more children (NOC) were less fault prone (LCOM

was not associated with the defects). Tang et al. [88] studied three real time systems for testing and

maintenance defects. Higher WMC and RFC were found to be associated with fault-proneness. El

Emam et al. [30] studied the effect of project size on fault-proneness by using a large

telecommunications application. Size was found to confound the effect of all the metrics on fault-

proneness. In addition to this, Chidamber et al.[17] analyzed project productivity, rework, and design

effort of three financial services applications. High CBO and low LCOM were associated with lower

productivity, greater rework, and greater design effort. To summarize, there is a growing body of

 26

empirical evidence that supports the theoretical validity of the use of these internal metrics [3, 13] as

predictors of fault-proneness. The consistency of these findings varies with the programming

language [86]. Therefore, the metrics are still open to criticism. [19]

The relationship between product quality and process capability [82] and maturity has been

recognized as a major issue in software engineering based on the premise that improvements in

process will lead to higher quality products. The process capability is defined as the ability of a

process to address the issue of stability, as defined and evaluated by trend or change. Such a

relationship between product quality and process capability should manifest itself via meaningful

metrics that would exhibit trends and other characteristics that would be indicative of the stability of

the process. Using the Space Shuttle software Schneidewind reports an assessment of long term

metrics, such as MTTF, total failures per KLOC change in code (churn), total test time normalized by

KLOC change in code, remaining failures normalized by KLOC, change in code, and predicted time

to next failure to be indicative of the stability of the software process with respect to process

capability [82].

Several techniques have been used for the analysis of software quality (errors3) with respect to

program metrics. Linear regression analysis techniques have been used to relate quality factors, such

as defect density and reliability, to software metrics. These regression models are built using the best

fit among all the data available and can be used to predict the software quality factors accordingly

using the current values of the metrics for programs that are being analyzed[63]. Discriminant

analysis, a statistical technique that is used to categorize programs into groups (high, moderate, low

quality) based on the programs metric values, are also used as a tool for the detection of fault-prone

programs. Munson et al. demonstrated the efficacy of discriminant analysis by using the technique

called data-splitting. From a total of 390 programs, 260 were randomly-selected and were used to

3 (1) The difference between a computed, observed, or measured value and the true, specified, or theoretically
correct value or condition. (2) An incorrect step, process, or data definition (3) An incorrect result (4) Human
action that produces an incorrect result.

 27

build the discriminant model. The remaining 130 programs were used to test the efficacy of the

model to classify programs according to software faults. Discriminant analysis has been shown to

work well for programs with a low error rate, but the linear regression models shows greater promise

for use with programs with a high potential for faults[62]. Further, using Binary Discriminant Factors

(BDFs) makes fewer mistakes in classifying software that is of low quality than in the case with linear

vectors of metrics [83].

Also, optimized set reduction (OSR) techniques and logistic regression techniques are used for

modeling risk and fault data. OSR techniques attempts to determine which subsets of observations

from historical data provide the best characterization of the programs being assessed. Each of these

optimal subsets is characterized by a set of predicates (a pattern), which can be applied to classify

new programs. OSR is sometimes better than a logistic regression analysis for multivariate empirical

modeling since pattern-based classification is more accurate than logistic regression equations [12].

Further, logistic regression models can be built that relate software measures and software fault

proneness for classes of homogenous software products [24]. Also, multivariate models can be built

with logistic regression where Principal Component Analysis (PCA) is used on the of metrics to

model the data [25]. Denaro et al. calculated 38 different software metrics for the open source Apache

1.3 and Apache 2.0 projects. Using PCA, they selected a subset of consisting of nine of these metrics

was found to explained 95% of the total variance. Using combinations of these nine metrics, logistic

regression models were built using the data from the Apache 1.3 project and verified against the

Apache 2.0 project [25]. We believe that a judicious use of early metrics, in conjunction with an

understanding of the software process can be a powerful tool in guiding the development of good

quality software.

 28

3.2 SOFTWARE RELIABILITY MODELS

For our research, we must select an appropriate estimation model which can take as input a

quantification of the automated testing effort. We considered a large number of published software

reliability estimation models. Early in the research, the use of an operational profile-based reliability

model was determined to be impractical for use with development teams that write extensive

automated test cases (i.e. employ automated testing methods (ATM)). ATM is the existence of a dual

hierarchy of executable source and test code that work in parallel, for example Java source programs

and Junit test programs. An example for this is provided in Chapter 4. The infeasibility of using

operational profiles was determined based upon the results of three case studies [68] carried out in

industrial locations, John Deere, Rolemodel Software, and Nortel. We had initially assumed there

was a correspondence between the customer requirements and the developers automated acceptance

test cases. This assumption came from the idea that, during the requirements elicitation process, the

developers and customers would create the requirements and then the developers write acceptance

tests that dealt specifically with that certain requirement. In this way, developers could prove to the

customer that a given requirement was completed by demonstrating that its acceptance test(s) passed.

Thus, we expected that there would be a correspondence between a requirements and its acceptance

test case(s) for the life of the product.

However, we found that developers tend to aggregate a minimal set of acceptance test cases, each

used to satisfy several of the customer’s requirements. For example, the developers could have an

acceptance test that tested a certain core capability of the program. After this test passes, this core

capability is deemed to be implemented. As a result, developers consider that they do not need to

keep that test in its current form any more, and they build upon this test case to demonstrate more

complex behavior of another requirement. As more functionality is added to the system, developers

may alter/add additional conditions to acceptance test cases so that one acceptance test may be used

 29

for multiple requirements. Therefore, developing a mapping between requirements and acceptance

test cases was shown to not be practical.

The main problems with using an operational profile-based model were identified as:

(1) Developers would need to change their automated acceptance testing habits to eliminate

the reuse and alteration of test cases;

(2) It is almost impossible to tie together the customer requirements and developer’s

acceptance test cases as developers tend to aggregate acceptance test cases to satisfy

several of the customer’s requirements; and

(3) The requirements of a software system continuously evolve across a release and this

evolution requires the developers to constantly reassign and recalculate the operation

profiles of the acceptance and unit tests which involves tremendous overhead. The

developers in the case study would not consider such a change to their current agile

methodology.

This lead us to the conclusion that the use of an operational profile model may not be feasible and

our approach would have to focus on using a non-operational profile models [78] for estimation of

reliability.

We set out to base our estimation model upon existing reliability models. The results of the first

round of the model selection effort are summarized in Tables 3.1 and 3.2. The selection criterion that

was used is based on the following constraints:

1. An operational profile-based model is impractical for our work.

2. In an ATM, all the test cases pass and there are no measurable failures.

3. Time is not monitored during testing/running of test cases in ATM. Therefore, defects

per unit time of operation cannot be measured.

4. No information regarding the inherent defect density (i.e. the number of defects

remaining in the software) is available. The inherent defect density is generally obtained

based on defects in previous released versions (or) based on results after testing stages

 30

like Functional Verification test (FVT) at the end of which a testing group would say, for

example that there are 5 defects/KLOC based on their testing principle.

Twenty-two existing models were analyzed for identifying their fit within our problem domain.

We classified these models into one of four categories: Candidate, Bad Model Fit, Bad Data Fit, and

Overall Poor Fit. Table 3.1 shows the legend for the classification of the models. For example, if a

model could be used with an ATM but needed data that was not available with an ATM, it was

classified as a “Bad Data Fit.” In the data applicability criterion we assess if the product data

(metrics) available from software systems can be used for the modeling purposes. Information

regarding assumptions about the remaining number of failures in the system or process information

about the software system which is not easy to measure forms a crucial part in classifying models as a

bad data fit.

Table 3.1: Legend for Classification of Software Reliability Models

Applicability to data

available

Applicability to ATMs Model Classification

Yes Yes Candidate

Yes No Bad Model Fit

No Yes Bad Data Fit

No No Overall Poor Fit

The classification of the twenty-two software reliability models according to the above

classification is shown in Table 3.2. The far majority of the models have a Bad Model Fit because

they require information about the previous failures (or require failures to occur) which would make

the model inapplicable if the system had no failures. Ultimately, we used a empirical metric model

that is found in the Candidate classification.

 31

Table 3.2: Software Reliability model classification

Candidate Models

Empirical Metric Models, Lipow [55]: Several metrics are collected from previously-

successful software programs. Using these metrics, a regression equation is framed that is

used to estimate the reliability of similar programs. If data from similar previous projects is

available for calibration, this model can be used.

Regression Models[63]: A linear regression analysis is investigated between the faults and

certain selected metrics and parameters, such as field project quality. Works well with all

the data available.

Zero Failure Model [59]: The zero failure model determines the reliability when there are

no failures, as shown below. To use the Zero-Failure model, we must identify a meaningful

long term failure rate denoted by Θ and that N random tests have established an upper

confidence bound (1-α) that Θ is below some level θ [38]. The relationship between these

factors is given by 1- (1-θ)N <= α [89]. Easy applicability but does not work for large

systems; Used in our feasibility studies.

Bad Model Fit

Nelson Model[73]: This is a very simplistic model based on the number of test failures.

R = 1-(ň/n).

where

• ň - number of failures during testing.

• n-total number of testing runs.

• R is the system reliability.

If no failures are available, the reliability becomes 100% which might always not be the case

as software systems usually have failures.

 32

Table 3.2 (continued)

Fault seeding models, Schick and Wolvertone [80] and Duran and Wiorkowski [27]: The

model requires fault injection whereby faults are intentionally injected into the software by

the developer. The testing effort is evaluated based upon how many of these injected defects

are surfaced during testing. Using the number of injected defects remaining, an estimate on

the reliability based on the quality of the testing effort is computed. Infeasible because it

requires process changes needing developers to do fault injection.

Hypergeometric Distribution, Tahoma et al. [87]: The number of faults experienced by

test instance t(i) is required. Using the number of faults experienced by each test instance,

the overall system reliability can be determined. But in ATM there are no measurable

failures and usually the number of failures in each testing instance is not measured or

tracked. With ATMs, all the test cases pass, and there are no faults/failures to analyze.

Fault Spreading Model, Wohlin and Korner [96]: Requires number of faults at a level (or

testing cycle/stage). The number of faults at each level is utilized to make predictions about

untested areas of the software. With ATMs, all the test cases pass, and there are no

faults/failures to analyze.

Fault Complexity Model, Nakogawa and Hanata [72]: Ranking of faults according to

complexity. Based on the number of faults in each complexity level, the reliability of the

system is estimated based on the current complexity level (high, moderate, low) of the

software. With ATMs, all the test cases pass, and there are no faults/failures to analyze.

Littlewood-Verall Model [56]: Requires a scale parameter, Ψ(i), that is used for describing

the quality of the test, and is a monotonically-increasing function. Failures are exponentially

distributed with a parameter assumed to have a prior Gamma distribution. With ATMs, all

the test cases pass, and there are no faults/failures to analyze.

 33

Table 3.2: (continued)

Jelinski-Moranda (JM) Model [46]: In the JM model, the initial number of software faults

in unknown but fixed (i.e. non-increasing), and the times between the failures are

exponentially distributed random quantities. Using this information, the JM model is

modeled as a Markov process model. But in ATMs, there are no failures, and the times of the

failure are also not measured.

Bayesian Formulation of the JM model, Langberg-Singpurwalla [54]: This models the

parameters in the JM model as random variables. Poor fit for the same explanation as for the

JM model.

Bayesian Model for fault free probability, Thompson and Chelson [90]: This model delas

with the probability of fault-free software. Reliability at time t, R(t/λ,p) = (1-p) + pe-λt, where

λ is given by a prior gamma distribution and p (probability that software is not fault-free) is

given by an beta distribution. Using these parameters, a Bayesian model is constructed to

estimate the reliability. This model cannot be used because lamda and p cannot be fixed

without prior information of the defect density. Also, the defects may not follow a Beta

Distribution and with ATMs, all the test cases pass, and there are no faults/failures to

analyze.

Bayesian Model using a Geometric Distribution, Liu [57]: In this model let, Xi be the

number of test cases at the ith debugging instance at which the first failure will occur. Using

this value, the number of failures remaining at the current debugging instance can be

determined.

With ATMs, all the test cases pass, and there are no faults/failures to analyze.

 34

Table 3.2: (continued)

Goel-Okumoto Model [35]: The mean value function of the failures at time t is given by,

m(t)=a(1-e-bt) where in time t the cumulative failures are observed; a and b are parameters

defined from the collected failure data. With ATMs, all the test cases pass, and there are no

faults/failures to analyze.

S-shaped model,Yamada, Ohba et.al. [98] : m(t)= a[1-(1+bt)e-bt]

Where,

• a is the number of faults detected

• b is the failure detection rate

With ATMs, all the test cases pass, and there are no faults/failures to analyze.

Basic Execution Time Model [65] : λ(τ) – fK[N0-µ(τ)]

Where,

• f and K are parameters related to the testing phase, initial fault density (N0)

• µ(τ)-faults corrected after τ amount of testing

• λ(τ) is failure rate function at the execution time τ.

This model cannot be applied as we do not have the initial fault density, and the failure rate

function at execution time τ with the ATMs.

Logarithmic Poisson Model [67] : Based on the Basic Execution Time Model (above).

λ(τ)= λ0 e-Φµ(τ)

Where,

• λ0 is the initial failure intensity

• Φ is the failure intensity decay parameter.

The time, t, parameter is not available as in ATMs.

 35

Table 3.2: (continued)

Duane Model also known as the Weibull Process Model [26] : m(t)= (t/α)β

The two parameters α and β are based on failure data, m(t) is the mean value function of the

failures at time t. With ATMs, all the test cases pass, and there are no faults/failures to

analyze.

Markov Models, Shantikumar [84] and Whittaker and Poore [75]: Requires transition

probabilities from state to state. Using this information a stochastic model is created and

analyzed for stability. This is primarily because there can be a very large number of states in

a large software program. Determining the states and the transition between the states

would require a process change that is likely to be unwelcome to developers that

utilize a ATM.

Fourier Series Model, Crow and Singpurwalla [20]: Fault clustering and time series

analysis form a basis of this model. Using time series analysis, the model predicts how

clustered the faults will be at a given point in time. The ‘time’ parameter is not available as

in ATM only the number of tests (or testing runs) can be measured. With ATMs, all the test

cases pass, and there are no faults/failures to analyze.

Bad Data Fit

Input Domain-based Models, Bastani and Ramamoorthy [7] and Weiss and Weyuker [94]:

Input domain is denoted by I of program P. I is mapped to output space O. If there is a fault

in mapping, then that mapping is identified as a potential fault to be rectified. Applicable,

but infeasible to map the domains are there can be a very large number of possibilities in a

large industrial case study.

 36

Table 3.2 (continued)

Overall Poor Fit

Halstead Metrics [37], modified by Schneider [81]: Halstead metrics are collected for the

programs. Using these metrics, the reliability of the system is estimated using a fixed

predefined equation. Halstead’s metrics has been subject to criticism in several aspects, such

as methodology, derivations of equations, human memory models [48]. Empirical support is

lacking in several areas of the Halstead measures. Data is calibrated according to old

FORTRAN programs that are no longer valid as software development has moved to

language like C, C++ and Java. Also the Halstead metrics also do not take into account OO

paradigms.

 37

CHAPTER 4

STREW METRIC SUITE

The (Software Testing and Reliability Early Warning) STREW metric suite consists of internal,

in-process testing metrics that are leveraged to estimate post-release field quality with an associated

confidence interval. The use of the STREW metrics is predicated on the existence of an extensive

suite of automated unit test cases being created as development proceeds. These automated unit tests

need to be structured as is done with the one of the O-O xUnit4 testing frameworks, such as JUnit5.

The STREW method is not applicable for script-based automated testing because, as will be

discussed, the metrics are primarily based upon the O-O programming paradigm. When these xUnit

frameworks are used with O-O programming, both test code and implementation code hierarchies

emerges. Figure 4.1 presents a simplistic example of a parallel structure between the source and test

class. For each implementation source code class (e.g. computation), there exists a corresponding

test code class (e.g. computationTest). Often each method/function in an implementation source

code class (e.g. addi) will have one or more corresponding test code method(s)/functions(s) (e.g.

testaddi). In industrial practice, often such perfect parallel class structure and one-to-one

method/function correspondence is not observed; our example is overlysimplistic for illustrative

purposes. However, a test hierarchy which ultimately inherits from the TestCase class (in JUnit) is

created to exercise the implementation code.

4 http://xprogramming.com/software.htm
5 http://junit.org/

 38

Figure 4.1: Corresponding source and test classes

Table 4.1 provides sample Java code for a computation class which adds and subtracts two

integers. Notice the assertEquals keyword in the testaddi and testsubt methods. xUnit

testing is assert-based. The number of asserts and other metrics specific to xUnit-like test automation

are used in the STREW metric suite.

Table 4.1: Corresponding source and test code

public class computation
{
 public static int addi(int temp1,int temp2) {
 int temp3
 temp3 = temp1 + temp2;
 return(temp3);
 }
 public static int subt(int temp1,int temp2) {
 int temp3
 temp3 = temp1 - temp2;
 return(temp3);
 }

public class computationTest extends TestCase
{
 public computation x;
 public void setUp() {
 x=new computation();
 }
 public void testaddi() {
 assertEquals(100,x.addi(75,25));
 }
 public void testsubt() {
 assertEquals(40,x.subt(50,10));
 }
}

 39

The STREW-J Version 2.0 metric suite consists of nine constituent metric ratios. The metrics are

intended to cross-check each other and to triangulate upon an estimate of post-release field quality.

Each metric makes an individual contribution towards estimation of the post-release field quality but

work best when used together. Development teams record the values of these nine metrics and the

actual TRs/KLOC of projects. These historical values from prior projects are used to build a

regression model that is used to estimate the TRs/KLOC of the current project under development.

For our case studies, we collect the TRs from customer-reported problems. These problems were

screened. Duplicates and TRs involving documentation problems were removed.

 The nine constituent STREW metrics (SM1 – SM9) and instructions for data collection and

computation are shown in Table 4.2. The metrics can be categorized into three groups: test

quantification metrics, complexity and O-O metrics, and a size adjustment metric.

The test quantification metrics (SM1, SM2, SM3, and SM4) are specifically intended to

crosscheck each other to account for coding/testing styles. For example, one developer might write

fewer test cases, each with multiple asserts [79] checking various conditions. Another developer

might test the same conditions by writing many more test cases, each with only one assert. We intend

for our metric suite to provide useful guidance to each of these developers without prescribing the

style of writing the test cases. Assertions [79] are used in two of the metrics as a means for

demonstrating that the program is behaving as expected and as an indication of how thoroughly the

source classes have been tested on a per class level. SM4 serves as a control measure to counter the

confounding effect of class size (as shown by El-Emam [30]) on the prediction efficiency;

 40

Table 4.2: STREW metrics and collection and computation instructions

Test quantification
Number of Assertions
SLOC*

SM1 Count the number of assertions in all test cases for all
source files.

Number of Test Cases
SLOC*

SM2 Count the number of test cases to test all source files.

Number of Assertions
Number of Test Cases

SM3 Count the number of assertions in all test cases for all
source files.
Count the number of test cases to test all source files.

_____(TLOC+/SLOC*)___
(Number of ClassesTest Number
of ClassesSource)

SM4 Count the number of classes for all source files.
Count the number of classes for all test files.

Complexity and O-O metrics
Σ Cyclomatic ComplexityTest

Σ Cyclomatic ComplexitySource

SM5 Compute the sum of the cyclomatic complexity of all
the test files.
Compute the sum of the cyclomatic complexity of all
the source files.

Σ CBOTest

Σ CBOSource
SM6 Compute the sum of the CBO of all the test files.

Compute the sum the CBO of all the source files.

Σ DITTest

Σ DITSource

SM7 Compute the sum of the DIT of each file for all the test
files.
Compute the sum of the DIT of each file for all the
source files.

Σ WMCTest

Σ WMCSource
SM8 Sum the WMC in each file for all the test files.

Sum the WMC in each file for all the source files.
Size adjustment
SLOC* ____________
Minimum SLOC*

SM9 Divide the SLOC* of by the SLOC of the smallest
project used to build the STREW.

* Source Lines of Code (SLOC) is computed as non-blank, non-comment source lines of code
+ Test Lines of Code (TLOC) is computed as non-blank, non-comment test lines of code

The complexity and O-O metrics (SM5, SM6, SM7, and SM8) examines the relative ratio of

test to source code for control flow complexity and for a subset of the CK metrics. The dual hierarchy

of the test and source code allows us to collect and relate these metrics for both test and source code.

These relative ratios for a product under development can be compared with the historical values for

prior comparable projects to indicate the relative complexity of the testing effort with respect to the

source code. The metrics are now discussed more fully:

• The cyclomatic complexity [58] metric for software systems is adapted from the classical

graph theoretical cyclomatic number and can be defined as the number of linearly

independent paths in a program. Prior studies have found a strong correlation between the

 41

cyclomatic complexity measure and the number of test defects [91]. Studies have also shown

that code complexity correlates strongly with program size measured by lines of code [48]

and is an indication of the extent to which control flow is used. The use of conditional

statements increases the amount of testing required because there are more logic and data

flow paths to be verified [50].

• The larger the inter-object coupling, the higher the sensitivity to change [17]. Therefore,

maintenance of the code is more difficult [17]. Prior studies have shown CBO has been

shown to be related to fault-proneness [3, 13, 14]. As a result, the higher the inter-object class

coupling, the more rigorous the testing should be [17].

• A higher DIT indicates desirable reuse but adds to the complexity of the code because a

change or a failure in a super class propagates down the inheritance tree. The relationship

between the DIT and fault-proneness [3, 13] was found to be strongly correlated.

• The number of methods and the complexity of methods involved is a predictor of how much

time and effort is required to develop and maintain the class [17]. The larger the number of

methods in a class, the greater is the potential impact on children, since the children will

inherit all the methods defined in the class. The ratio of the WMCtest and WMCsource measures

the relative ratio of the number of test methods to source methods. This measure serves to

compare the testing effort on a method basis. The relationship between the WMC as an

indicator of fault-proneness has been demonstrated in prior studies[3, 13].

The final metric is a relative size adjustment factor (RCAF). Defect density has been shown to

increase with class size [30]. We account project size in terms of SLOC for the projects used to build

the STREW prediction equation using the size adjustment factor.

The metrics that comprise the STREW metric suite have evolved [69-71] through our case

studies. Some metrics were removed based on the lack of their ability to contribute towards the

estimation of post-release field quality and due to already existing inter-correlations between the

 42

elements. The metric revision process is illustrated in Figure 4.2. The standards for these metrics are

used to provide feedback on the quality of the testing effort.

Figure 4.2: STREW metric revision process

As part of the STREW revision process, metrics were removed based upon by statistical inter-

correlations, multicollinearity, stepwise, backward, and forward regression techniques [53] of case

study data. The following metrics were removed:

• Statement coverage

• Branch coverage

• Number of requirements/Source lines of code

• Number of childrentest/Number of childrensource

• Lack of cohesion among methodstest/Lack of cohesion among methodssource

To better explain the collection of metrics, we present two examples below that highlight the

metrics that are collected. The usual metrics like the LOCsource and LOCtest and the number of classes

are not explained. Cyclomatic complexity is a measure of the control flow complexity in a program.

Figure 4.3 shows the control flow graph for explaining the computation of the cyclomatic complexity.

Case
Studies

Statistical data
analysis and

model building

Error and
predictability
of estimate

Revision of
metric suite
(if required)

Develop
standards for the

metrics

Metrics
collection

 43

Using the computation for cyclomatic complexity (Equation 2.12) we calculate cyclomatic

complexity to be 7-6+2 = 3, where 7 is the number of edges, 6 is the number of nodes and one

component is present in Figure 4.3.

Figure 4.3: Example cyclomatic complexity computation

Consider the program shown in Figure 4.4. The left hand column shows a program to add two

numbers. The corresponding test program written to test it is shown in the right hand column. The

underlined parameters in the test program namely testaddi() is counted as a test case and the

parameter assertEquals(100,x.addi(75,25)) sends in the input numbers 75 and 25 to the source

program and checks if the computed sum is equal to 100. This counts as one assertion. The second

example shown in Figure 4.5 explains the measurement of the O-O measures, coupling between

objects, depth of inheritance tree and weighted methods per class.

 44

public class computation

{

 public static int addi(int temp1,int temp2)

 {

 int temp3;

 temp3=temp1+temp2;

 return(temp3);

 }

 public static void main(String
args[])throws IOException

 {

 int x;

 computation nachi=new
computation();

 }

}

public class computationTest extends TestCase

{

 public computation x;

 public computationTest(String name)

 {

 super(name);

 }

 public void setUp()

 {

 x=new computation();

 }

 public void testaddi()

 {

 System.out.println();

 x=new computation();

 assertEquals(100,x.addi(75,25));

 }

 public static void main(String[] args) {

 }

}

Figure 4.4: Sample assertion and test case measurement example

import java.io.*;
import java.lang.*;
public class A ------------------- DIT = 1
{
 public static void w() --- WMC = 1
 {
 }
 public static void x() --- WMC = 1
 {
 }
}
class B extends A ------------- DIT = 2
{
}
class C extends B -------------- DIT = 3
{
 public void z() ----------- WMC = 1
 {
 }
}

class D -------------------------- DIT = 1
{
 public void p() --------- WMC = 1
 {
 A TclassA = new A(); CBO=1
TclassA.w();
 }
}

Metric Values
WMC = 4
DIT = 7
CBO = 1

Figure 4.5: CBO, DIT and WMC measurement example

 45

From the above example code we calculate the WMC, DIT and CBO as shown below.

1. The WMC, considering a uniform weighting of 1 per method shows that there are 4 methods,

(w(), x(), z(), p()) so WMC is 4.

2. The CBO, showing the coupling between the classes in A and D by using the object TclassA

is 1.

3. The DIT, is the sum of the inheritance of the classes A(), B(), C() and D() as shown in Figure

4.5 which is 7.

The main limitations associated with the use of the STREW metrics suite are as follows:

• The existence of automated tests. To quantify the extent of testing done measurably in

terms of assertions and test cases, we need the existence of automatic test cases which use

the xUnit-style of testing. The STREW metric suite, in its current form, cannot leverage

the manual black box testing results.

• The existence of prior comparable projects. To some extent, this limitation is alleviated

by having comparable projects by some other organization that has acceptable post-

release field quality. The prediction equations used in this dissertation can serve as a

starting point when there is a lack of comparable projects.

• Model robustness. The better the consistency of data collected, the better the prediction

accuracy. Consider the scenario of data from student projects being used to predict the

post-release field quality of a software system for space shuttles. There will be errors in

estimation as both the systems are from different environments with different post-release

field quality requirements. Hence, in building the models with data collected from

different environments there can be unfair bias towards one particular category of

projects that cause an inflated or wrong prediction in terms of estimating the post-release

field quality and providing test quality feedback.

 46

CHAPTER 5

POST-RELEASE FIELD QUALITY
ESTIMATION

This chapter discusses a preliminary feasibility study and the three-phased validation results

obtained using the STREW metric suite for estimating post-release field quality. The validation

studies are performed in three different environments to build an empirical body of knowledge, as

shown in Figure 5.1. We discuss the model building activities, the model evaluation, and finally the

results obtained using the three different set of case studies. Drawing general conclusions from

empirical studies in software engineering is difficult because any process depends to a large degree on

a potentially large number of relevant context variables. For this reason, we cannot assume a priori

that the results of a study generalize beyond the specific environment in which it was conducted [5].

Researchers become more confident in a theory when similar findings emerge in different contexts

[5]. By performing multiple case studies and/or experiments and recording the context variables of

each case study, researchers can build up knowledge through a family of experiments [5] which

examine the efficacy of a new practice. Replication of experiments addresses threats to experimental

validity. We address these issues related to empirical studies by replicating multiple case studies

through a family of experiments in three different (academic, open source and industrial) contexts.

Similar results in these contexts indicate the promise of this approach at statistically significant levels.

 47

Figure 5.1: Empirical case studies

Section 5.1 presents the feasibility study on Version 1.1 of the STREW metric suite using the

Zero-Failure model. Section 5.2 presents the model building techniques for the case studies

performed with STREW Version 2.0 metric suite, and Section 5.3 explains the results evaluation

techniques for the case studies. Section 5.4, 5.5 and 5.6 present the academic, open source and

industrial case studies.

5.1 FEASIBILITY STUDY

Based on the results obtained in Table 3.2, the empirical regression model and Zero-Failure

model is the best suited in our research context. In our preliminary feasibility study, we used the

Zero-Failure model with STREW Version 1.1, as will be discussed below. We ran a feasibility study

on 13 vending machine programs written in Java by junior/senior-level undergraduates in a software

engineering course at NCSU in Fall 2002. The programs were, on average, 789 lines of code (LOC).

With these programs, we analyzed an initial set of metrics defined in the STREW-J Version 1.1 [70]:

• number of test cases/source lines of code (R1);

• number of test cases/number of requirements (R2);

• test lines of code/source lines of code (R3);

Academic case
study

Open Source
case study

Industrial case
study

Empirical body of evidence

 48

• number of asserts/source lines of code (R4); and on

• statement coverage (C).

We estimated reliability via the Zero-Failure model described by Hamlet et al. [38] and others

[28, 59]. This model was chosen because the programmers worked until all the automated test cases

passed (e.g. no failures are demonstrated by the test suite). However, it is possible and even likely

that their test suites did not constitute a thorough test effort. To use the No-Failure model, we must

identify a meaningful long term failure rate denoted by Θ and that N random tests have established an

upper confidence bound (1-α) that Θ is below some level θ [38]. The relationship between these

factors is given by 1- (1-θ)N <= α [89]. This model is similar to the analysis performed by Frankl et al.

[34] on operational testing given by 1-(1-q)T, where q is the failure rate for operational testing and T

is the number of tests.

We ran a multiple regression analysis with the metrics collected from the program and the

reliability estimate. The result of applying an ordinary least squares regression provided evidence

(F=4.325, p=0.041) of a linear association between the reliability estimate and the metrics. The

regression equation to predict the reliability is given by Equation 5.1.

Reliability = 0.669 + 1.586*R1 + 0.0513*R2 – 0.0290*R3 + 0.192*R4 – 0.0774*C (5.1)

Correlations between the metrics and the reliability estimate for various values of θ are given in

Table 5.1. The given p-values for tests of zero correlation provide evidence of positive linear

dependence of reliability on the metrics R1 and R2. Ratios R3 and R4 are not statistically significant

with the reliability estimate. This lack of association may be because the coefficients were based

upon programs from a small number (N=13) of different programmers and the value of R3 and R4

relies on personal programming style. The relationship between the code coverage and the estimated

reliability was also not statistically significant. The lack of relationship between code coverage and

the estimated reliability might be because the students were specifically assigned to create test suites

with 100% statement coverage which may have created an artificial situation. While only R1

 49

(number of test cases/source lines of code) and R2 (number of test cases/number of requirements)

demonstrated a statistically significant relationship with the reliability estimate, we continued to

analyze the potential of the other metrics to refine the STREW metric suite.

Table 5.1: Pearson correlation and statistical significance results between the ratios and the
reliability estimate

θ R1 R2 R3 R4 Coverage

0.01 0.629,
p=.021

0.992,
p=.000

0.302,
p=.316

0.469,
p=.106

0.118,
p=.702

0.05 0.703,
p=.007

0.814,
p=.001

0.393,
p=.184

0.541,
p=.056

0.039,
p=.900

0.10 0.616,
p=.025

0.584,
p=.036

0.414,
p=.159

0.502,
p=.081

-0.071,
p=.817

In applying the Zero-Failure model, the meaningful long term failure rate denoted by Θ and N

random tests to establish an upper confidence bound on the reliability estimate. Θ is user defined and

governs the reliability estimate. In the absence of failures, it is not possible to determine Θ. Hence we

use the empirical model building approach through the rest of our investigations.

5.2 MODEL BUILDING

This section describes the model-building strategies that were used for predicting post-release

field quality. A number of techniques have been used for the analysis of software quality in terms of

reliability, failure density, and fault-proneness. Multiple linear regression (MLR) analysis was used

to model the relationship between quality and software metrics [51, 63]. In our work, the dependent

variable that is to be measured is the TRs/KLOC and the independent variables are the STREW

metrics.

The regression equation is of the form:

• Y = c + a1X1+a2X2+…..+anXn, where Y is the estimated (dependent) variable, a1, a2 …., an

are regression coefficients and X1, X2 …., Xn are the known variables (independent).

One difficulty associated with MLR is multicollinearity among the metrics that can lead to

inflated variance in the estimation of post-release field quality. One approach that has been used to

 50

account for multicollinearity is Principal Component Analysis (PCA) [33]. With PCA, a smaller

number of uncorrelated linear combinations of metrics that account for as much sample variance as

possible are selected for use in regression (linear or logistic). PCA can be used to downweigh metrics

that are highly correlated with other metrics, thus simplifying data collection with minimal impact on

the accuracy of the information provided. A multivariate logistic regression equation [25] can be

built to model data using the principal components as the independent or predictor variables.

As will be discussed, in our case studies the nine STREW metrics demonstrated multicollinearity.

The Kaiser-Meyer-Olkin (KMO) [47] test of sampling adequacy was used to identify

multicollinearity. For PCA to be applicable, the KMO measure of sampling adequacy should be

greater than 0.6 [11]. The KMO measure of sampling adequacy is a test of the amount of variance

within the data that can be explained by the individual measures (e.g. the STREW metrics). PCA

generates a linear transformation of a set of correlated attributes, such that the transformed variables

are independent, i.e. the transformed variables do not have any inter-correlations between them that

lead to an inflated variance in the estimation of the post-release field quality. The PCA analysis

showing the scree plots of the principal components and the respective components plots are shown

for the academic and open source projects are presented in Appendix C. Scree plots explain the

identification of the principal components from the individual metrics.

In our study, the KMO results indicated the applicability of using the principal components

produced by PCA, rather than the nine individual metrics, in an MLR equation. Throughout this

dissertation, we present the regression analysis using all the STREW metrics and the principal

components obtained from the STREW metrics. The primary purpose of presenting both models is for

comparison between a basic approach (all STREW metrics but suffering from multicollinearity) and a

more precise approach (PCA after accounting for multicollinearity). This type of comparative

analysis also serves to indicate that results obtained by PCA are more accurate for our purposes, and

all the nine STREW metrics are required to construct the principal components, indicating the utility

of the nine individual STREW metrics.

 51

The generalized regression equation and associated confidence are formulated as follows:

• Y = c + a1PC1+a2PC2+…..+anPCn, where a1, a2 …., an are regression coefficients and PC1,

PC2 …., PCn are the produced principal components.

• Further, the estimated value of the TRs/KLOC (Ynew) is calculated with an associated

confidence bound [53] given by Equation 5.2 where n is the number of observations, t (α/2, n) is

the standard t-table value with n degrees of freedom at a significance level of α = 0.05.

 Confidence bounds = Ynew + t (α/2, n) * Mean Standard Error (5.2)

Further, the model building strategies have the following associated factors:

• The coefficient of determination, R2, is the ratio of the regression sum of squares to the total

sum of squares. The value of the ratio can be between 0 and 1, with larger values indicating

more variability explained by the model and less unexplained variation.

• The F-ratio is used to test the hypothesis that all regression coefficients are zero at

statistically significant levels.

• Where parametric testing is appropriate, a significance level of α = 0.05 was adopted for

statistical inference. For example, all interval estimates are reported using confidence level

95%.

5.3 RESULTS EVALUATION TECHNIQUES

The evaluation of the TRs/KLOC estimates with the actual values is performed using two

methods explained below:

• Average Absolute Error (AAE) and Average Relative Error (ARE). AAE and ARE are used to

measure the accuracy of prediction of the estimated TRs/KLOC with numerical quantification

(i.e. numerical accuracy) [52]. The smaller the values of AAE and ARE, the better are the

predictions. The equations for AAE and ARE are provided as Equations 5.3 and 5.4 where n

is the number of observations.

 52

AAE = ∑
=

n

1in
1 | Estimated Value – Actual Value | (5.3)

ARE = ∑
=

n

1in
1 (| Estimated Value – Actual Value |) / Actual Value (5.4)

• Correlation between the actual and estimated TRs/KLOC. This correlation is used to quantify

the sensitivity of prediction. The two correlation techniques utilized are (1) the Spearman

rank correlation which is a commonly-used robust rank correlation technique [33] because it

can be applied when the association between elements is non-linear and (2) the Pearson

bivariate correlation that requires the data to be distributed normally and the association

between elements to be linear. A positive relationship between the actual and estimated

values is desired in terms of the more robust Spearman rank correlation

A positive correlation between the actual and estimated TRs/KLOC would indicate that with an

increase in estimated TRs/KLOC, there is an increase in actual TRs/KLOC. A negative correlation

would indicate that with an increase in estimated TRs/KLOC, there is a decrease in actual TRs/KLOC

(or vice versa).

5.4 ACADEMIC CASE STUDY

This sub-section describes a controlled study performed with junior/senior-level students at North

Carolina State University (NCSU) to investigate the efficacy of the STREW metric suite elements to

estimate TRs/KLOC.

5.4.1. DESCRIPTION

The students worked on a project that involved development of an Eclipse6 plug-in to collect

software metrics. The project was six weeks in duration and used Java as the programming language.

The JUnit testing framework was used for unit testing; students were required to have 80% statement

6 http://eclipse.org/

 53

coverage. A total of 22 projects were submitted, and each group had four to five students. Figure 5.2

shows the size LOCsource of the projects that were developed. The projects were between 617 LOCsource

and 3,631 LOCsource. On average, the ratio of LOCtest to LOCsource was 0.35. Each project was

evaluated by 45 independent test cases. Actual TRs/KLOC was estimated by test case failures (or)

TRs per KLOC because the student projects were not released to customers. If a 2000-line project

had ten failures (out of the 45 tests) the TRs/KLOC = (10/2000)*1000 = 5 failures/KLOC.

Figure 5.2: Academic projects size

The academic study is a closed structured environment that might represent ideal experimental

conditions but may not reflect industrial settings. As a result, an external validity issue arises because

the programs were written by students, and the projects were small relative to industry applications.

This concern is mitigated to some degree because the students were advanced undergraduates

(junior/senior).

5.4.2 MODEL BUILDING

The initial regression model to estimate post-release field quality was built using all the STREW

metrics and the principal components obtained from the STREW metrics as the independent variables

and the TRs/KLOC as the dependent variable for all 22 projects. The normal probability plots for the

 54

built model along with the R2 value and associated statistical significance is shown in Figure 5.3. This

model serves to indicate the overall model fit obtained using all the data points.

All STREW metrics PCA
R2= 0.807, (F=5.561, p=0.004) R2=0.512, (F=6.284, p=0.004)

Normal P-P Plot of Regression

Standardized Residual

Dependent Variable: TR's/KLOC

Observed Cum Prob

1.00.75.50.250.00

Ex
pe

ct
ed

 C
um

 P
ro

b

1.00

.75

.50

.25

0.00

Normal P-P Plot of Regression

Standardized Residual

Dependent Variable: TR's/KLOC

Observed Cum Prob

1.00.75.50.250.00

Ex
pe

ct
ed

 C
um

 P
ro

b

1.00

.75

.50

.25

0.00

Figure 5.3: Normal probability plot for model fitting

5.4.3 RANDOM DATA SPLITTING

To evaluate the efficacy of the STREW metric suite to predict TRs/KLOC, we use a random

splitting approach. We randomly selected two-thirds (N=15) of the samples to build a prediction

model and the remaining one-third (N=7) to evaluate the built model. We obtained the results shown

in Table 5.2.

Table 5.2: Prediction evaluation results

 STREW metrics PCA

Model Fit R2= 0.905, (F=5.274, p=0.041) R2= 0.598, (F=5.463, p=0.015)

Prediction Evaluation
(7 projects)

AAE=15.29, ARE=4.19
Pearson correlation = 0.390

(p=0.377)
Spearman correlation = 0.464

(p=0.294)

AAE=4.47, ARE=1.27
Pearson correlation = 0.328

(p=0.473)
Spearman correlation = 0.464

(p=0.294)

The AAE and ARE results in Table 5.2 indicate that the model produces an estimate that is

indicative of the true TRs/KLOC. The actual values of TRs/KLOC range from 1.43 TRs/KLOC to

 55

35.5 TRs/KLOC indicating a wide spectrum of quality in terms of TRs for the academic projects.

This range of TRs/KLOC of the projects is shown by the histogram in Figure 5.4. The ARE and

AAE values are less than the standard deviation of the TRs/KLOC (standard deviation is 7.738

TRs/KLOC). In spite of the wide spectrum of the TRs/KLOC, the ARE and AAE values indicate the

feasibility of using the STREW metric suite compared to the actual values of the TRs/KLOC. The

Pearson and Spearman rank correlation is not statistically significant. The reason for the correlation

coefficients to be positive but not statistically significant might be due to the small sample size (seven

projects). The results of this feasibility study motivated further investigation using open source and

industrial projects to investigate the utility of the STREW metric suite to predict TRs/KLOC on larger

scale projects.

TR's/KLOC

35.030.025.020.015.010.05.00.0

10

8

6

4

2

0

Std. Dev = 7.74
Mean = 7.6

N = 22.00

Figure 5.4: Histogram of TRs/KLOC in academic projects

5.5 OPEN SOURCE CASE STUDIES

Open source projects are convenient to perform case studies because source code, test code, and

defect logs are openly available for use. Additionally, open source projects are more representative of

industrial projects than the academic projects due to their size and scope. We selected 27 open source

projects to apply the STREW metric suite.

 56

5.5.1 DESCRIPTION

Twenty-seven open source projects that were developed in Java were selected from Sourceforge

(http://sourceforge.net). The following criterion was used to select the projects from Sourceforge.

• software development tools. All of the chosen projects are software development tools, i.e.

tools that are used to build and test software and to detect defects in software systems.

• download ranking of 85% or higher. In Sourceforge, the projects are all ranked based on

their downloads on a percentile scale from 0-100%. For example, a ranking of 85% means

that a product is in the top 85% of quantity of downloads. We chose this criterion because we

reasoned that a comparative group of projects with similarly high download rates would be

more likely to have a similar usage frequency by customers that would ultimately reflect the

post-release field quality.

• automated unit testing. The projects needed to have JUnit automated tests.

• defect logs available. The defect log needed to be available for identifying TRs with the date

of the TR reported.

• active fixing of TRs. The TR fixing rate is used to indicate the system is still in use. The time

between the reporting of a TR and the developer fixing it serves as a measure of this factor.

Projects that had open TRs that were not assigned to anyone over a period of three months

were not considered.

• Sourceforge development stage of 4 or higher. This denotes the development stage of the

project (1-6) where 1 is a planning stage and 6 is a mature phase. We chose a cut-off of 4

which indicates the project is at least a successful beta release. This criteria indicates that the

projects that are at a similar stage of development and are not projects too early in the

development lifecycle.

Figure 5.5 shows the names of the projects and their sizes in LOCsource. On average, the ratio of

LOCtest to LOCsource was 0.37. The projects range from around 2.5 KLOCsource to 80 KLOCsource. The

 57

TRs are normally distributed with a range from 0.20 to 6.9 TRs/KLOC (Mean = 1.42). The defect

logs were screened for duplicate TRs to obtain an accurate measure of TRs/KLOC. Duplicate TRs

were removed before analysis.

Figure 5.5: Open source project sizes

There is a validity issue with respect to the actual usage of open source software systems. The

commonly-available usage metric for open source software is the download activity ratio. For

example, it might be possible that Project 1 and Project 2 could have both been downloaded by 100

users, but Project 1 might have been actually used by only ten users while Project 2 by 90 users. We

have no visibility to this actual usage. Also, we are dependent on the customer-reports for measuring

the TRs/KLOC. However, some customers might not report the TRs in the open source environment.

We assume that the TRs are representative of the operational profile [64] of the software system. If

the different components of the software systems were not used equally the estimation of TRs can

lead to an inflated value (i.e. a different set of customers might use the product for a different purpose

and might exercise the product in different ways – and this different usage would surface a different

post-release product quality). The issues of the generalizability of the actual operation profile is

 58

negated to some extent by the uniform testing efforts of the projects, comparable TRs/KLOC across

all the projects and all the projects belonging to one particular domain of software systems. A more

detailed retrospective analysis is performed in Chapter 7.

5.5.2 MODEL BUILDING

Figure 5.6 shows the complete MLR model for all the 27 open source projects built using both the

STREW metrics and the principal components of the STREW metrics as the independent variable and

the TRs/KLOC as the dependent variable. Similar to the academic case studies, the models built is

statistically significant in its ability to explain the variance in the dependent variable.

All STREW metrics PCA
R2= 0.755, (F=5. 814, p=0.001) R2=0.428, (F=8.993, p=0.004)

Normal P-P Plot of Regression

Standardized Residual

Dependent Variable: TR's/KLOC

Observed Cum Prob

1.00.75.50.250.00

Ex
pe

ct
ed

 C
um

 P
ro

b

1.00

.75

.50

.25

0.00

Normal P-P Plot of Regression

Standardized Residual

Dependent Variable: TR's/KLOC

Observed Cum Prob

1.00.75.50.250.00

Ex
pe

ct
ed

 C
um

 P
ro

b
1.00

.75

.50

.25

0.00

Figure 5.6: Model fitting results for PCA

The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy is 0.764 indicating the efficacy

of the applicability of PCA. Principal component analyses of the nine STREW metrics yields two

principal components, the linear transformation coefficient given by the component matrix in Table

5.3.

Using MLR on the two principal components calculated using Table 5.3, we obtain Equation 5.5.

TRs/KLOC = 1.424 + 0.852 * PC1 - 0.132*PC2 (5.5)

where PC1 and PC2 are the transformed principal components produced from the nine STREW

metrics.

 59

Table 5.3: Component matrix for PCA transformation

 Component
 PC1 PC2

SM1 .793 .284
SM2 .795 -.281
SM3 -.270 .701
SM4 .935 -6.280E-03
SM5 .159 -.745
SM6 .877 .102
SM7 .699 .457
SM8 .864 4.126E-02
SM9 -.569 .233

5.5.3 RANDOM DATA SPLITTING

For the random data-splitting, we use two thirds (N=18) of the 27 projects to build the prediction

model and the remaining one-third (N=9) to evaluate the fit of the model. We repeated the random

split nine times to verify data consistency, i.e. to check if the results of our analysis were not a one-

time occurrence. Figure 5.7 shows the model building and model evaluation performed using MLR

on all the STREW metrics and the principal components. The results for each data split present the R2

and F test results for each model and the prediction results evaluated using AAE, ARE, and

correlation analysis. The graphs indicate the actual and the estimated TRs/KLOC along with the

regression predicted upper confidence level (ucl) and lower confidence level (lcl) [53].

All STREW metrics– Random split 1 PCA – Random split 1
R2= 0.748, (2.638, p=0.093) R2= 0.373 (4.467, (p=0.030))

Projects

987654321

TR
's

/K
LO

C

8

6

4

2

0

actual

estimated

lcl

ucl

Projects

987654321

TR
's

/K
LO

C

8

6

4

2

0

actual

estimated

lcl

ucl

AAE = 1.1077, ARE = 0.4000 AAE = 1.1230, ARE = 0.3276

 60

Pearson correlation = 0.672 (p=0.047)
Spearman correlation = 0.500 (p=0.170)

Pearson correlation = 0.834 (p=0.005)
Spearman correlation = 0.700 (p=0.036)

MLR – Random split 2 PCA – Random split 2
R2= 0.877, (3.838, p=0.006) R2= 0.442 (5.938, p=0.013)

Projects

987654321

TR
's

/K
LO

C

7

6

5

4

3

2

1

0

actual

estimated

lcl

ucl

Projects

987654321

TR
's

/K
LO

C

5

4

3

2

1

0

actual

estimated

lcl

ucl

AAE =0.8222, ARE = 0.4579
Pearson correlation = 0.207 (p=0.592)

Spearman correlation = 0.367 (p=0.332)

AAE = 0.6400, ARE = 0.2796
Pearson correlation = 0.694 (p=0.038)

Spearman correlation = 0.617 (p=0.077)
MLR – Random split 3 PCA – Random split 3
R2= 0.865, (5.706, p=0.011) R2= 0.450, (6.136, p=0.011)

Projects

987654321

TR
's

/K
LO

C

5

4

3

2

1

0

actual

estimated

lcl

ucl

Projects

987654321

TR
's

/K
LO

C

4

3

2

1

0

actual

estimated

lcl

ucl

AAE =1.4019, ARE = 0.8309
Pearson correlation = 0.640 (p=0.063)

Spearman correlation = 0.683 (p=0.042)

AAE = 0.5600, ARE = 0.2900
Pearson correlation = 0.641 (p=0.063)

Spearman correlation = 0.667 (p=0.050)
MLR – Random split 4 PCA – Random split 4
R2= 0.921, (10.336, p=0.002) R2= 0.450, (6.138, p=0.011)

 61

Projects

987654321

TR
's

/K
LO

C

7

6

5

4

3

2

1

0

actual

estimated

lcl

ucl

Projects

987654321

TR
's

/K
LO

C

5

4

3

2

1

0

actual

estimated

lcl

ucl

AAE =1.0455, ARE = 0.5922
Pearson correlation = 0.369 (p=0.329)

Spearman correlation = 0.367 (p=0.332)

AAE = 0.7322, ARE = 0.4034
Pearson correlation = 0.732 (p=0.025)

Spearman correlation = 0.700 (p=0.036)
MLR – Random split 5 PCA – Random split 5
R2= 0.785, (3.246, p=0.056) R2= 0.446, (6.038, p=0.012)

Projects

987654321

TR
's

/K
LO

C

6

5

4

3

2

1

0

actual

estimated

lcl

ucl

Projects

987654321

TR
's

/K
LO

C
5

4

3

2

1

0

actual

estimated

lcl

ucl

AAE =0.7055, ARE = 0.4614
Pearson correlation = 0.885 (p=0.002)

Spearman correlation = 0.933 (p<0.0005)

AAE = 0.5533, ARE = 0.2599
Pearson correlation = 0.799 (p=0.010)

Spearman correlation = 0.717 (p=0.030)
MLR – Random split 6 PCA – Random split 6
R2= 0.935 (12.724, p=0.001) R2= 0.491, (7.229, p=0.006)

 62

Projects

987654321

TR
's

/K
LO

C

6

5

4

3

2

1

0

actual

estimated

lcl

ucl

Projects

987654321

TR
's

/K
LO

C

4

3

2

1

0

actual

estimated

lcl

ucl

AAE =1.5788, ARE = 0.7331
Pearson correlation = -0.290 (p=0.449)

Spearman correlation = -0.217 (p=0.576)

AAE = 0.6200, ARE = 0.2900
Pearson correlation = 0.279 (p=0.467)

Spearman correlation = 0.317 (p=0.406)
MLR – Random split 7 PCA – Random split 7
R2= 0.792, (3.376, p=0.050) R2= 0.367, (4.355, p=0.032)

Projects

987654321

TR
's

/K
LO

C

5

4

3

2

1

0

actual

estimated

lcl

ucl

Projects

987654321

TR
's

/K
LO

C
4

3

2

1

0

actual

estimated

lcl

ucl

AAE =0.6233, ARE = 0.2841
Pearson correlation = 0.721 (p=0.028)

Spearman correlation = 0.750 (p=0.020)

AAE = 0.3555, ARE = 0.1525
Pearson correlation = 0.905 (p=0.001)

Spearman correlation = 0.917 (p=0.001)
MLR – Random split 8 PCA – Random split 8
R2= 0.827, (4.247, p=0.027) R2= 0.642, (13.463, p<0.0005)

 63

Projects

987654321

TR
's

/K
LO

C

6

5

4

3

2

1

0

actual

estimated

lcl

ucl

Projects

987654321

TR
's

/K
LO

C

5

4

3

2

1

0

actual

estimated

lcl

ucl

AAE =0.6533, ARE = 0.3213
Pearson correlation = 0.384 (p=0.307)

Spearman correlation = 0.367 (p=0.332)

AAE = 1.1011, ARE = 0.5740
Pearson correlation = 0.351 (p=0.354)

Spearman correlation = 0.467 (p=0.205)
MLR – Random split 9 PCA – Random split 9
R2= 0.838, (4.597, p=0.021) R2= 0.435, (5.765, p=0.014)

Projects

987654321

TR
's

/K
LO

C

8

6

4

2

0

actual

estimated

lcl

ucl

Projects

987654321

TR
's

/K
LO

C
5

4

3

2

1

0

actual

estimated

lcl

ucl

AAE =0.9533, ARE = 0.5373
Pearson correlation = -0.239 (p=0.536)

Spearman correlation = -0.300 (p=0.433)

AAE = 0.4922, ARE = 0.2493
Pearson correlation = 0.721 (p=0.028)

Spearman correlation = 0.667 (p=0.050)

Figure 5.7: Random data split – model building and evaluation results

To summarize, we present the results of our evaluation using the models built using all the

STREW metrics and PCA in Table 5.4. We can assess the efficacy of the prediction model built

using 18 randomly-chosen projects. The ARE values reflect the relative error in terms of the absolute

magnitude of the TRs/KLOC.

 64

Table 5.4: AAE and ARE values

All STREW metrics PCA Random
Split AAE ARE AAE ARE

1. 1.1077 0.4000 1.1230 0.3276

2. 0.8222 0.4579 0.6400 0.2796

3. 1.4019 0.8309 0.5600 0.2900

4. 1.0455 0.5922 0.7322 0.4034

5. 0.7055 0.4614 0.5533 0.2599

6. 1.5788 0.7331 0.6200 0.2900

7. 0.6233 0.2841 0.3555 0.1525

8. 0.6533 0.3213 1.1011 0.574

9. 0.9533 0.5373 0.4922 0.2493

The overall standard deviation of the TRs/KLOC is 1.318 TRs/KLOC. The AAE in all the nine

random cases (using PCA after eliminating multicollinearity) is smaller than the standard deviation

indicating that the efficacy of the prediction results. Table 5.5 indicates the correlation coefficient

(Pearson and Spearman) results between the actual and estimated post-release TRs/KLOC. The

correlation measure serves to indicate the sensitivity of the predicted post-release TRs/KLOC. Of

nine random samples in the PCA, seven are statistically significant (between the estimated and actual

post-release quality), indicating the efficacy of our approach for the open source projects case study

(shown in bold in Table 5.5). This indicates the sensitivity of prediction between the actual and

estimated values.

 65

Table 5.5: Sensitivity evaluation for PCA models

All STREW metrics PCA Random
Split Pearson

(p value)
Spearman
(p value)

Pearson
(p value)

Spearman
(p value)

1. 0.672 (p=0.047) 0.500 (p=0.170) 0.834 (p=0.005) 0.700 (p=0.036)

2. 0.207 (p=0.592) 0.367 (p=0.332) 0.694 (p=0.038) 0.617 (p=0.077)

3. 0.640 (p=0.063) 0.683 (p=0.042) 0.641 (p=0.063) 0.667 (p=0.050)

4. 0.369 (p=0.329) 0.367 (p=0.332) 0.732 (p=0.025) 0.700 (p=0.036)

5. 0.885 (p=0.002) 0.933 (p<0.0005) 0.799 (p=0.010) 0.717 (p=0.030)

6. -0.290 (p=0.449) -0.217 (p=0.576) 0.279 (p=0.467) 0.317 (p=0.406)

7. 0.721 (p=0.028) 0.750 (p=0.020) 0.905 (p=0.001) 0.917 (p=0.001)

8. 0.384 (p=0.307) 0.367 (p=0.332) 0.351 (p=0.354) 0.467 (p=0.205)

9. -0.239 (p=0.536) -0.300 (p=0.433) 0.721 (p=0.028) 0.667 (p=0.050)

5.6 INDUSTRIAL CASE STUDY

In this section, we describe the industrial case study that was performed to investigate the efficacy

of the STREW metric suite to assess TRs/KLOC for three commercial large scale software systems.

5.6.1 DESCRIPTION

Our industrial case study involved three software systems (five versions) at a company in the

United States. To protect proprietary information, we keep the name and nature of the projects

anonymous. These projects were critical in nature because failures could lead to loss of essential

funds for the company. The project sizes that were used for analysis are shown in Table 5.6.

Table 5.6: Industrial project sizes

Project Size
Project 1A 190 KLOC
Project 1B 193 KLOC
Project 2A 504 KLOC
Project 2B 487 KLOC
Project 3 13 KLOC

The development language used was Java, and the JUnit testing framework was used for unit and

acceptance testing. Some other descriptive project characteristics measures are presented in Table 5.7.

 66

Table 5.7: Project characteristics

Factor Team value
Team size Ranged from 6 to 16 developers.
Team education level 62% had a bachelors degree and 34% had a

masters degree or higher.
Experience level of team 57% had more than five years of experience
Domain expertise Medium-High.
Language expertise Medium-High.

5.6.2 POST-RELEASE FIELD QUALITY PREDICTION

In the industrial environment, TRs found by customers are reported back to the organization.

These TRs are then mapped back to the appropriate software systems. We use the STREW metrics of

the open source projects to predict the TRs/KLOC of the industrial software systems. Figure 5.8

indicates the prediction plots obtained using all the STREW metrics. The axes are removed to protect

proprietary information.

Figure 5.8: Prediction plots with all the STREW metrics

Similarly Figure 5.9 indicates the prediction plots obtained using PCA on the STREW metrics

from Equation 5.5. Figure 5.9 indicates that the prediction obtained by using the PCA after

 67

accounting for multicollinearity which is more indicative than the prediction obtained by MLR using

the nine STREW metrics.

Figure 5.9: Prediction plots with PCA

Due to the critical nature of the product, the post-release TRs/KLOC are low. Further, Figure 5.9

indicates the predicted value closely overlaps the actual TRs/KLOC and bounds for Projects 1 and 2.

Project 3 may not a comparable project because it is smaller than the other projects and was to form

the core components of the organization’s future software products. Therefore, Project 3 was

particularly well tested, comparably more than the other software systems used to build or evaluate

the prediction. On observing the nine STREW metric values for Project 3 we notice that metrics SM1,

SM2 for Project 3 at least one order greater than all the projects (open source included). Metrics SM5,

SM6, SM7, and SM8 for Project 3 are at least twice of SM5, SM6, SM7 and SM8 of all the other

projects. SM5-SM8 are the cyclomatic and O-O metrics in the STREW metric suite indicating that

project 3 had a high testing effort (and complexity) compared to all the other projects.

Note that in all cases, the upper confidence bounds are larger than the actual value. Organizations

can take a conservative approach and use the upper bounds of TRs/KLOC to be the actual estimated

 68

TRs/KLOC to drive the overall quality higher. Even though the sample size is small (only 5 projects),

we present the correlation results of the actual and estimated TRs/KLOC indicated in Figure 7. The

Pearson correlation coefficient = 0.962 (p = 0.009) and Spearman correlation coefficient = 0.500 (p =

0.391). This indicates the efficacy of the sensitivity of prediction of the TRs/KLOC but is limited by

the small sample size of the available projects. (For comparative purposes for the MLR model built

using all the STREW metrics the Pearson correlation coefficient = 0.873 (p = 0.054) and Spearman

correlation coefficient = 0.700 (p = 0.188)).

 69

CHAPTER 6

TEST QUALITY FEEDBACK

Providing test quality feedback allows the developers to identify areas that could benefit from

more testing. Color coding [16, 42, 75] aids developers in quickly understanding if a metric is within

acceptable limits. Our work is motivated by prior studies at IBM7 [16], Nortel Networks8 [42] that use

color-coding to provide feedback on metric values based on standards (predefined or calculated).

The Enhanced Measurement for Early Risk Assessment of Latent Defects (Emerald) system at

Nortel Networks combined software measurements, quality models and delivery of results to provide

in process feedback to developers to improve telecommunications software reliability. The Emerald

system was found to improve architectural integrity; establish design guidelines and limits; focus

efforts on modules more likely to have faults; target the test effort effectively; identify patch-prone

modules early; incorporate design strategies to account for the risk associated with defective patches;

and help obtain a better understanding of field problems [42]. Emerald provides color-coded feedback

using nine categories: green, yellow and seven shades of red using non-OO metrics related to

software system link volume, testability, decision complexity and structuredness (a more detailed

explanation is available in [42]). However, STREW differs from Emerald as it leverages the

automatic testing effort performed to estimate the post-release field quality based on test and source

code metrics and it developed for use by OO-languages.

7 www.ibm.com
8 www.nortelnetworks.com

 70

Similarly at IBM, immediate feedback on the complexity of Smalltalk methods, based on the

source code allows developers to modify their code to more desirable characteristics in terms of the

code complexity [16]. Color coded feedback is presented in three levels, red, yellow and green using

Smalltalk complexity metrics like number of blocks, number of temporary variables and arguments,

number of parameterized expressions etc. STREW similar to the work done at Nortel Networks and

IBM, provides feedback in three ranges red, orange and green based on in-process metrics obtained

from both the source and test code.

6.1 BUILDING TEST QUALITY FEEDBACK STANDARDS

The color that is displayed is determined by the results of Equation 6.1 for each metric. The use

of this equation is predicated on a normal distribution of TRs. If the TRs are not normally distributed,

the Box-Cox normal transformation can be used to transform the non-normal data into normal form

[74]. Using historical data from comparable projects that were successful, the lower limit (LL) of

each metric ratio is calculated using Equation 5. The mean of the historical values for each metric

(µSMx) serves as the upper limit. The historical data is computed from previously-successful projects

with acceptable levels of TRs/KLOC. In the absence of historical data, standard values can be used

that are built from projects with similar acceptable levels of TRs/KLOC. The mean and the lower

limit serve as the test quality feedback standards for the STREW metrics.

Using the computed values, we use a color-coded approach as shown in Table 6.1. In Table 6.1,

SMx refers to the each particular STREW metric (SM1, SM2 …) for the software system under

development compared to the calculated standards from successful projects.

LL(SMx) = µSMx-zα/2*Standard deviation of metric SMx (6.1)
n

where µSMx- Mean of Metric SMx, n is the number of samples used to calculate µSMx and Zα/2
is the upper α/2 quantile of the standard normal distribution (For example, Zα/2=1.96 is the t-
table value at 95% confidence interval, if sample size is greater than 30).

 71

Table 6.1: Color coded feedback standards

Color Interpretation

RED SMx < LL (Metric)

ORANGE LL (Metric) ≤ SMx ≤ µSMx

GREEN SMx > µSMx

The purpose of the color-coding is to direct corrective action to the test suite on the part of the

programmer. Table 6.2 provides detail on the specific corrective actions the programmer can take to

change a metric from red to orange or from orange to green.The explanation of all these metrics is

with respect to the standards built for each metric.

Table 6.2: STREW metric color coded feedback explanation

Metric Meaning of RED or
ORANGE

Corrective Action

SM1 The assertions/KLOC are
lower compared to projects
that were used to build the
feedback standards.

Add more assertions. These additional
assertions should be meaningful assertions
(can be cross checked with increase in
coverage)

SM2 The test cases/KLOC are
lower compared to projects
that were used to build the
feedback standards.

Add more test cases. These test case
density but should be meaningful test cases
(can be cross checked with increase in
coverage)

SM3 The assertions/test case are
lower compared to projects
that were used to build the
feedback standards.

Add more assertions per test case.

SM4 The overall testing effort
measured in terms of lines
of code and classes was not
comparable in terms of the
projects that were used to
build the feedback
standards.

Add more lines of test code. Increasing the
overall testing effort (controlling the source
code size) that would lead to an increase in
the test lines of code and the test classes.

 72

Table 6.2: (continued)

SM5 The complexity of the
testing effort is not
comparable in terms of the
previously acceptable
projects

Decrease cyclomatic complexity ratio by
decreasing the cyclomatic complexity of
source code. The simplest complexity
measure, the cyclomatic complexity
measure, ratio of the test code and source
code indicates how well the testing has
taken place at the complexity level. This
metric works in conjunction with metric
SM4 indicating that the testing effort was
not thorough enough. When metric SM4
increases, metric SM5 should also increase
with respect to checking for conditionals,
infinite loops, unreachable code etc., that
would increase the metric SM5

SM6 The CBO ratio of the test
code to source code is not
comparable to the
previously successful
projects.

Increase the CBO ratio by reducing the
coupling between objects in source code.
The larger the inter-object coupling, the
higher the sensitivity to change. Therefore,
maintenance of the code is more difficult.
As a result, the higher the inter-object class
coupling, the more rigorous the testing
should be [17]. The CBO of the source
code should be reduced to eliminate the
dependencies caused by coupling.

SM7 The DIT ratio of the test
code to source code is not
comparable to the
previously successful
projects.

Increase DIT ratio by reducing DIT in
the source code. Due to DIT, a change or a
failure in a super class propagates down the
inheritance tree. Hence we have to reduce
the DIT of the source code to acceptable
levels so that the DIT ratio is comparable to
the projects used to build the standards.

SM8 The WMC ratio of the test
code to source code is not
comparable to the
previously successful
projects.

Increase WMC ratio by breaking down
complex classes in source code to child
classes. The larger the number of methods
in a class, the greater is the potential impact
on children, since the children will inherit
all the methods defined in the class. Hence
we have to reduce the number of methods in
the source code to acceptable levels
calculated by the projects used to build the
standard. This metric essentially measures
the importance of the modularity of the
source code.

 73

6.2 EVALUATION OF TEST QUALITY FEEDBACK STANDARDS

To evaluate the efficacy of the test quality feedback standards, we initially use a robust Spearman

rank correlation technique with respect to the number of color-coded feedbacks obtained and the post-

release TRs/KLOC. The association between the test quality feedback and post-release field quality to

indicate the efficacy of the color-coded mechanism is shown in Table 6.3. In Section 6.4, we

investigate the overall efficacy of the test quality feedback across all three development environments

(academic, open source and industrial).

Table 6.3: Desired correlation results with the color-coded feedback

Color Desired
Spearman

Correlation

Interpretation

RED + ORANGE Positive Increase in (RED + ORANGE)
increases post-release TRs/KLOC.

GREEN Negative Increase in (GREEN) decreases
post-release TRs/KLOC

The higher the number of red and orange feedbacks, the higher we expect the TRs/KLOC to be,

as red and orange feedbacks denote a lower quality of the testing effort. This is indicated by a positive

correlation coefficient between the number of red and oranges with the post-release TRs/KLOC.

Inversely, the correlation coefficient between the number of green feedbacks and the TRs/KLOC is

expected to be negative. The feedbacks are calculated only for the STREW metric ratios SM1-SM8 as

SM9 is a size adjustment factor is a not an actual metric ratio for providing feedback.

6.3 CASE STUDIES

We present academic, open source and a structured industrial case study to build an empirical

body of evidence to indicate the efficacy of our approach.

 74

6.3.1 ACADEMIC CASE STUDY

We use the same random split of the 22 projects to build the test quality feedback standards and

the remaining seven to check the efficacy of the built standards to provide feedback on the quality of

the testing effort. We build the standards using the 15 academic projects and evaluate the projects

using the seven remaining projects. The quantity of color-coded feedbacks for each of these seven

projects is shown in Figure 6.1. The normality distribution of the STREW metrics is evaluated using a

Kolmogorov-Smirnov test on the metrics with the null hypothesis that the population distribution is

normal. The results of the Kolmogorov-Smirnov test are presented in Table C.1 in Appendix C.

Projects

7654321

Fe
ed

ba
ck

s

10

8

6

4

2

0

GREEN

ORANGE

RED

Figure 6.1: Color coded feedbacks-Academic case study

The quantity of reds and oranges and the quantity of greens is correlated to the TRs/KLOC, and

the results are shown in Table 6.4. The red and orange feedbacks were added together because they

represent a STREW metric ratio that is not of acceptable quality. The results in Table 6.4 indicate

that the expected correlation results are as desired. However, the p values of the correlations are not

statistically significant. This lack of statistical significance can be explained to a certain degree by the

small size of the projects. The correlation coefficients have the same magnitude but different signs

 75

because the number of reds and oranges is a linear function of the number of green feedbacks. The

above results indicate the feasibility for further exploration of the test quality feedback standards.

Table 6.4: Academic case study – correlation results

 RED +
ORANGE

GREEN

Correlation coefficient
with TRs/ KLOC

0.145 (p=0.756) -0.145 (p=0.756)

6.3.2 OPEN SOURCE CASE STUDY

In open source projects to evaluate test quality feedback in-process, we used thirteen versions of

httpunit, one of the 27 open source software projects used in our earlier analysis. The system has a

lifetime in use for three years. Each release has a time period of 2.5-3 months so that the TRs/KLOC

collected are representative of equal usage. The TRs/KLOC data is available from customer-reported

failure logs that are screened in the same way as the other open source projects in Chapter 5. The test

quality feedback standards were calculated using the 27 open source projects, as discussed in Chapter

5. The test quality feedback for the 13 versions is evaluated against the standards built using the 27

open source projects. The 13 versions belong to a system used for software testing, i.e. belonging to

the same domain as the 27 projects. The development language was in Java. Figure 6.2 shows the size

of the 13 versions as they grew over a period of three years from almost 3 KLOC to 11.5 KLOC.

Figure 6.2 represents only the LOCsource and not LOCtest.

 76

Figure 6.2: Project size across three years

The quantity of feedbacks for the thirteen versions of an open source software system are shown

in Figure 6.3.

Versions

13121110987654321

Fe
ed

ba
ck

s

10

8

6

4

2

0

GREEN

ORANGE

RED

Figure 6.3: Color coded feedbacks for open source case study

 77

Upon evaluation using a Spearman correlation we obtain the results as shown in Table 6.5.

Table 6.5: Open source case study – correlation results

 RED +
ORANGE

GREEN

Correlation coefficient
with TRs/KLOC

0.208
(p=0.496)

-0.208
(p=0.496)

From Table 6.5 we obtain similar results to the academic case study in terms of trend, the desired

positive and negative correlation coefficients but the results not statistically significant likely due to

the small sample size, as will be discussed in detail in Section 6.4.

6.3.3 STRUCTURED INDUSTRIAL CASE STUDY

To explore the efficacy of the test quality feedback mechanism, we performed a structured

industrial case study to investigate the results under a more controlled environment. Six releases of a

commercial software system “eXpert” were used for this case study. A metaphor that better describes

the intended purpose of the system is a large sized “virtual file cabinet,” which holds a large number

of organized rich, i.e. annotated, links to physical or web-based resources [1]. The system has 300+

potential users and is a web-based client-server solution developed by four developers at VTT

Technical Research Centre of Finland [1]. The four developers were 5-6th year university students

with 1-4 years of industrial experience in software development. Team members were well-versed in

the Java O-O analysis and design approaches. The overall development time was 2.1 months and

post-release TRs/KLOC is available from failure logs. The development language was Java. The

standards are calculated using the 27 open source projects for providing test quality feedback.

Since this was a “structured” case study, i.e. the level of control exhibited in the experiment was

greater than the normal software development process. Measures such as effort and time were

collected to make sure that these factors were in a comparable level across all the releases. This data

is presented in Table 6.6 [1].

 78

Table 6.6: Industrial project data description (adapted from [1])

No. Collected
Data

Release
1

Release
2

Release
3

Release
4

Release
5

Release 6
(correction

phase)

Total

1. Calendar time 2 2 2 1 1 0.4 8.4

2. Total work
effort (h)

195 190 192 111 96 36 820

3. LOC per
release

1821 2386 1962 460 842 227 7698

4. TRs 4 5 4 4 11 0 28

5. TRs/KLOC 2.19 2.10 2.04 8.70 13.06 0.0 1.43

The feedbacks calculated using the 27 open source projects for the six releases of an industrial

software system are shown in Figure 6.4.

Versions

654321

Fe
ed

ba
ck

s

10

8

6

4

2

0

GREEN

ORANGE

RED

Figure 6.4: Color coded feedbacks for structured industrial case study

Upon evaluation using a Spearman correlation we obtain the results as shown in Table 6.7.

 79

Table 6.7: Industrial case study – correlation results

 RED +
ORANGE

GREEN

Correlation coefficient
with post-release

TRs/KLOC

0.338
 (p=0.512)

- 0.338
(p=0.512)

The results in Table 6.7, demonstrate similar results to the academic case study in terms of trend

(the desired positive and negative correlation coefficients) but the results are not statistically

significant due to the small sample size.

6.4 STATISTICAL ANALYSIS OF TEST QUALITY FEEDBACK

Table 6.8 summarizes the correlation results of the three categories of the case. Across all the

three categories of case studies, the results are indicative in terms of trend (with respect to the sign of

the correlation results) but are not statistically significant. This lack of statistically significant

correlations is likely due to the small size of the individual sample populations as is demonstrated by

the following analysis as shown in Table 6.9. When all the three models are combined together, the

Spearman correlation results indicate the desired correlation trends with the TRs/KLOC at

statistically significant levels (correlation coefficient = 0.468 (p=0.016) and vice versa), as shown in

Table 6.8. The positive coefficient of the red and oranges at statistically significant levels indicates

that with the increase in the number of red and orange feedbacks, there is an increase in the

TRs/KLOC and vice-versa with the green feedbacks. (The Pearson correlation coefficients were

0.488 (p=0.011) between the red + orange and the TRs/KLOC and -0.488 (p=0.011) for the number

of greens and the TRs/KLOC.

 80

Table 6.8: Summary correlation results of test quality feedback

Correlation Coefficient Case study

RED +
ORANGE

GREEN

Sample Size

Academic 0.145 -0.145 7

Open Source 0.208 -0.208 13

Industrial 0.338 -0.338 6

All three case
studies

combined

0.468
(p = 0.016)

- 0.468
(p = 0.016)

26

Further, to assess the effect of the environment (academic, open source and industrial case

studies) on the test quality feedback, we perform a comparative modeling analysis using an

ANCOVA (Analysis of Covariance) test, simple linear regression with the color-coded feedbacks and

the TRs/KLOC, complete regression model including the interaction between the three types of case

studies and the red + orange and green feedbacks, and an ANOVA (Analysis of Variance) test.

ANCOVA can be used to test for differences among groups (in our case between the academic, open

source and industrial case studies) to identify the relationship with the dependent variable

(TRs/KLOC). To carry out these tests, we first fix the covariate environment variable to be 1 for

academic case studies, 2 for open source case studies and 3 for industrial case studies. This nominal

data allows tests like the ANCOVA to take into account that the data is from three different

environments each of which may have a different ability with respect to the ability to provide test

quality feedback. The results for the comparative modeling with its associate R2, sum of squares due

to regression (SS[R]), sum of squares due to error (SS[E]), and the mean square error (MSE) are

shown in Table 6.9. Based on the values of F-test for model selection and the MSE, we can select the

best model for integrating data across all the three environments.

 81

Table 6.9: Comparative modeling results

Model
No.

Model R2 SS[R] SS[E] MSE

1. Simple Linear
Regression

0.239 28.2 89.9 3.74

2. ANCOVA 0.349 41.3 76.9 3.5
3. Complete

Regression
Model

0.367 43.4 74.8 3.74

4. ANOVA 0.339 40.1 78.1 3.4

Two F-tests for model selection between model 1 and model 2 (F=1.87, p=0.178) and between

model 1 and model 3 (F=1.01, p=0.424) indicate that model 1, the simple linear regression model is

the best model. The ANOVA test also does not indicate any significant change in the MSE factor.

The results of these two F-tests provide no evidence of any effect of the environment on the

TRs/KLOC. The association between the TRs/KLOC and the red + oranges and greens is consistent

across environments. Thus, the color-coded feedbacks indicates the variability in the TRs/KLOC at

statistically significant levels. Further, the residual diagnostics also did not indicate a violation of the

model assumptions. Hence on performing simple linear regression we get an R2 value= 0.239, (F=

7.533, p=0.011). Table 6.10 shows the regression coefficients with the TRs/KLOC as the dependent

variable. The bold values indicate that the coefficient is positive and is statistically significant

indicating that with an increase in the number of red and orange test quality feedbacks there is an

increase in the TRs/KLOC (and vice versa for green feedbacks).

Table 6.10: Simple linear regression coefficients

 Unstandardized Standardized t-test sig
 Coefficients MSE Coefficients

Constant -0.135 1.030 -0.131 0.897
Red+Orange 0.735 0.268 0.489 2.745 0.011

 82

6.5 QUALITATIVE ANALYSIS

To serve as a check on the statistical studies, we did a qualitative analysis of the test quality

feedback standards. For this purpose we use the “eXpert”industrial case study. The test quality

feedback standards constructed using the 27 open source projects are shown in Table 6.11.

Table 6.11: Test quality feedback standards – open source case study

Metric RED ORANGE GREEN
SM1 < 0.0545 [0.0545, 0.0822] > 0.0822
SM2 < 0.0721 [0.0721, 0.1261] > 0.1261
SM3 < 0.7790 [0.7790, 1.0958] > 1.0958
SM4 < 0.7881 [0.7881, 1.0427] > 1.0427
SM5 < 0.2474 [0.2474, 0.3376] > 0.3376
SM6 < 0.3417 [0.3417, 0.4490] > 0.4490
SM7 < 0.3498 [0.3498, 0.4931] > 0.4931
SM8 < 0.2349 [0.2349, 0.3217] > 0.3217

For qualitative evaluation we examine each release of the industrial case study with the standards

in Table 6.11. We cannot assume that a correlation with a limited data set implies causality. This

analysis is intended to study the change in the number of red, orange and green feedbacks obtained

in-process with the TRs/KLOC. Table 6.12 to 6.17 explain the qualitative feedback of the STREW

metrics in each release.

Based on Table 6.12, The post release field quality was 2.19 TRs/KLOC. Overall five of the

STREW metrics were in the not acceptable range (red or orange). The metrics that were red or orange

are assertions/SLOC, test cases/SLOC, testing effort size in terms of lines of code and classes, depth

of inheritance, and weighted methods per class. We see that the test effort was not comparable to the

open source standards as three of the test quantification metrics and two of the O-O metrics in terms

of test complexity were not of appropriate quality. This explains the higher TRs/KLOC than the mean

TRs/KLOC of the open source projects. (Complete TRs/KLOC list is available in Appendix A).

 83

Table 6.12: Release 1 STREW metrics feedback

 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8
 0.0805 0.0273 2.9444 0.7026 0.4916 0.8148 0.4 0.2484

Color Orange Red Green Red Green Green Orange Orange
Prior

release
color

N/A N/A N/A N/A N/A N/A N/A N/A

Post-release field quality = 2.19 TRs/KLOC

From Table 6.13 we can see that the number of red and orange feedbacks combined is reduced in

Release 2 to four, (though the number of red feedbacks individually increases to three from two) in

Release 1. The metrics quantifying the depth of inheritance tree changes from orange to green

indicating the increase in complexity ratio of the test effort. Also, the assertion density changed to

green from orange. Further, the metrics also numerically show an increase in terms of the test

quantification metrics. This increase indicates a minor improve in quality reflected by a decrease in

the actual TRs/KLOC to 2.10 TRs/KLOC.

Table 6.13: Release 2 STREW metrics feedback

 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8
 0.0927 0.0279 3.3157 0.6417 0.5130 1.0980 1 0.2181

Color Green Red Green Red Green Green Green Orange
Prior

release
color Orange Red Green Red Green Green Orange Orange

Post-release field quality = 2.10 TRs/KLOC

Table 6.14 indicates that the total number of red and orange feedbacks increases by one for

Release 3. The assertion density (SM1) changed from green to orange indicating that the testing in

terms of assertions undergoing a decrease (i.e. more new code was added but the corresponding

assertions added were not up to the previous assertion density ratio). The weighted methods per class

metric (SM8) changed from orange to red indicating a decrease in quality with respect to the number

of test methods per class. The quantitative chamges of the STREW metrics is relatively less compared

 84

to Release 2 with Release 1. This leads to an explanation for a similar TRs/KLOC of 2.04 TRs/KLOC

like release 3.

Table 6.14: Release 3 STREW metrics feedback

 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8
 0.0749 0.0196 3.8181 0.6362 0.4405 0.8666 0.8666 0.1702

Color Orange Red Green Red Green Green Green Red
Prior

release
color Green Red Green Red Green Green Green Orange

Post-release field quality = 2.04 TRs/KLOC

As seen from Table 6.15, Release 4 had minor change in code. Primarily the in-process

development was completed by Release 3. Releases 4, 5, and 6 were primarily to improve quality.

Most of the effort in Release 4 was concentrated on fixing testing defects. This is indicated by the

numerical quantification of all the eight STREW metrics, which each only have a minor change, (only

in the second decimal place) compared to Release 3. This indicates the high TRs/KLOC associated

with Release 4.

Table 6.15: Release 4 STREW metrics feedback

 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8
 0.0751 0.0196 3.8181 0.6422 0.4510 0.8901 0.8666 0.1781

Color Orange Red Green Green Red Green Green Red
Prior

release
color Orange Red Green Red Green Green Green Red

Post-release field quality = 8.70 TRs/KLOC

Similar to Release 4, Release 5 shown in Table 6.16 also has even fewer new feature additions to

code. Most of the changes were bug fixes which can be used to explain the high TRs/KLOC

associated with Release 5.

 85

Table 6.16: Release 5 STREW metrics feedback

 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8
 0.0730 0.0183 3.9782 0.6686 0.4234 0.8645 0.7777 0.1724

Color Orange Red Green Green Red Green Green Red
Prior

release
color Orange Red Green Green Red Green Green Red

Post-release field quality = 13.06 TRs/KLOC

Release 6, shown in Table 6.17 was a correction phase in which there was no new feature

development. This affects the STREW metrics as the only changes to them will occur when there are

bug fixes. These changes will primarily not affect any of the feedbacks in the metrics compared to

Release 5. If the lower quality metrics (red feedbacks) are addressed namely, for example increasing

test effort (more test code in turn test cases in turn assertions) will also increase the number of

methods per class compared to the source code leading to better quality of code with fewer failures.

Table 6.17: Release 6 STREW metrics feedback

 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8
 0.0720 0.0177 4.0652 0.6471 0.3995 0.8469 0.7777 0.1696

Color Orange Red Green Red Green Green Green Red
Prior

release
color Orange Red Green Green Red Green Green Red

Post-release field quality = 0.0 TRs/KLOC

There are two limitations to our investigation of test quality feedback. One is the small size of the

samples (seven academic, 13 open source, and six industrial) which make it difficult to obtain a

statistical significance at a high 95% confidence. Secondly, the analyses were all done post-mortem,

i.e. the feedback results were not used to improve the testing effort as development proceeded. This

post-mortem feedback explains to a certain degree the similar number of color-coded feedbacks in

Figure 6.2 and Figure 6.3. Changing the red and orange feedbacks in these figures to green would

further serve in strengthening the current results with significantly higher levels of statistical

acceptance.

 86

6.6. DISCRIMINATIVE POWER

In addition to providing test quality feedback, we investigate the ability of the STREW metrics to

identify programs of low and high quality. For this purpose we use logistic regression with the

STREW metrics as the covariates and the post-release field quality (1- low quality and 0-high quality)

as the dependent variable. The field quality is calculated using Equation 6.1 on the TRs/KLOC such

that all projects with a TRs/KLOC lower than the calculated lower bound is “High Quality”,

otherwise it is classified as “Low Quality”. The quality of the logistic regression (Type I and Type II

errors) is evaluated as shown in Table 6.18.

Table 6.18: Type 1 and Type II errors

 Predicted

 High Quality Low Quality

High Quality Correct Type 1 Error Observed

Low Quality Type II Error Correct

The results for the Type I and Type II errors for the academic and open source case study are

shown in Table 6.18. The results shown in Table 6.19 indicate that a high proportion of “Low

Quality” and “High Quality” projects are correctly identified. This result adds knowledge to our

already existing empirical knowledge base of the test quality feedback results indicating the efficacy

of the STREW metric suite.

Table 6.19: Type I, Type II errors for case studies

 Type I Error Type II Error Overall Model Fit

Academic Case
Study (n=22)

0 (0%) 0 (0%) 100%
(9 +13)/22

(Low Quality =13, High Quality =9)
Open Source
Case Study
(n=27)

2/11 (18.15%)
[2.94%, 33.36%]

1/16 (6.25%)
[0%, 15.74%]

88.88% [74.68%, 100.00%]
(9+15)/27

(Low Quality =16, High Quality =11)

 87

Also Table 6.19 presents the error in the estimates within box brackets. The error in the estimates

for classification cannot be computed for the academic case study as there are no misclassifications.

Further, for providing test quality feedback, we have automated the collection and analysis of the

STREW metrics Version 1.4 via an open source Eclipse plug-in GERT (Good Enough Reliability

Tool)9 [22, 69]. In addition to providing a reliability estimate, the tool provides color-coded feedback

on the quality of the testing effort relative to historical data from comparable projects. Appendix B

presents a brief summary of the tool and its deployment in the Sourceforge software repository.

9 gert.sourceforge.net

 88

CHAPTER 7

RETROSPECTIVE STREW METRIC
ANALYSIS

This chapter deals with a retrospective analysis of the STREW metric suite, more specifically

identifying the relationship between the STREW metrics and the TRs/KLOC similar to the work done

by Vouk et. al.[93]. We investigate several hypothesis with relation to the STREW metrics and other

project metrics. These hypotheses are discussed below. In all our discussions, we restrict ourselves to

the academic and open source case study only because the industrial case study has only five points.

H0: There is no relationship between the number of TRs and the size of the code.

Figure 7.1 presents the scatter plots between the TRs and the size of the code. It also presents the

Pearson correlation results between the two measures to numerically quantify the scatter plots. The

correlation results in Figure 7.1 indicate that for the open source projects the large projects have more

TRs at statistically significant levels. A contrary relationship is observed with respect to the academic

projects. But this relationship is not statistically significant and is on a much smaller scale of projects

indicating that this evidence is not in direct contradiction to the open source projects. Hence we can

reject the null hypothesis and state that there exists a positive association between the size of a

project and the number of TRs.

 89

Academic Case Study Open Source Case Study

TR's

121086420

Si
ze

4000

3000

2000

1000

0

TR's

50403020100

Si
ze

80000

60000

40000

20000

0

Correlation = -0.168 (p=0.455) Correlation = 0.393 (p=0.043)

Figure 7.1: Scatterplots of TRs Vs. Size

H0: There is no relationship between the number of TRs/KLOC and the size of the code.

We perform a similar scatter plot analysis on the TRs/KLOC and the size of the code along with

correlation results for both the academic and open source projects, the results of which are shown in

Figure 7.2.

Academic Case Study Open Source Case Study

TR's

121086420

Si
ze

4000

3000

2000

1000

0

TR's

50403020100

Si
ze

80000

60000

40000

20000

0

Correlation = -0.627 (p=0.002) Correlation = -0.397 (p=0.041)

Figure 7.2 Scatterplots of TRs/KLOC Vs. Size

The results of both the academic and the open source case study indicate that the there is a

negative statistically significant relationship between the size and the TRs/KLOC. With increase in

 90

the size of the systems there is a decrease in the TRs/KLOC. These results are in agreement with

previously published empirical studies [4, 32, 40, 61, 76]. Thus we can reject the null hypothesis that

there is no relationship between the TRs/KLOC and the size of the code. This research hypothesis

indicates that our case study software systems were similar to previously studied software systems,

and the STREW metric suite results are not likely to be due to a difference in the underlying

relationship between the TRs/KLOC and the project sizes.

H0: There is no relationship between the number of TRs/KLOC and the asserts and test cases of the

code.

To address this hypothesis, we plot a three dimensional plot with the TRs/KLOC on the x axis

and the asserts/KLOC and test cases/KLOC on the y and z axis. The plots for the open source and

academic projects are shown in Figure 7.3.

Academic Case Study Open Source Case Study

A
s
s
e
r
t
s
/
K
L
O
C

.0840

0.0

30

.1

.06

.2

20

Test Cases/KLOCTR's/KLOC
.0410 .020

A
s
s
e
r
t
s
/
K
L
O
C

.68

0.0

.5

.1

6

.2

.4

.3

4 .3

Test Cases/KLOCTR's/KLOC
.22 .10 0.0

Figure 7.3: 3-D plots of Asserts/KLOC vs. Test Cases/KLOC vs. TRs/KLOC

From Figure 7.3, we observe a clustered pattern indicating the three way relationship between the

asserts/KLOC, test cases/KLOC and TRs/KLOC. This leads us to reject the null hypothesis that there

is no relationship between asserts/KLOC, test cases/KLOC and TRs/KLOC. To check for consistency

 91

when normalized by size we perform the same analysis using the absolute measures of the asserts, test

cases, and TRs. The results are shown in Figure 7.4.

Academic Case Study Open Source Case Study

A
S
S
E
R
T
S

30012

0

200

10

400

200

600

8

800

test casesTR's
1006 4 02

A
S
S
E
R
T
S

500050

0

400040

1000

2000

300030

3000

test casesTR's
200020 100010 00

Figure 7.4: 3-D plots of Asserts vs. Test Cases vs. TRs

The 3-D plots in Figure 7.4 also show clustering across both the academic and open source case

studies indicating the results hold across the normalizing effect of size on the asserts, test cases and

TRs. Figure 7.5 shows the relationship between the statement and branch coverage and the

TRs/KLOC for the academic projects.

Statement Coverage Vs. TRs/KLOC Branch Coverage Vs. TRs/KLOC

TR's/KLOC

403020100

St
at

em
en

t C
ov

er
ag

e

50

40

30

20

10

0

TR's/KLOC

403020100

Br
an

ch
 C

ov
er

ag
e

60

50

40

30

20

10

0

Correlation = -0.051 (p=0.822) Correlation = -0.090 (p=0.691)

Figure 7.5: Statement and Branch Coverage with TRs/KLOC

 92

The statistical results indicate that there is no correlation between the coverage and the

TRs/KLOC. Further, the majority of the overall statement and branch coverage is below 30%. The

projects were required to have a minimum of 80% statement coverage in their JUnit unit test suite for

non-GUI code (i.e. program logic), indicating a uniformness in the testing effort. The 30% is when

both GUI and non-GUI code is considered. The analysis when performed with the TRs also leads to

similar results.

Table 7.1 presents the correlation matrix of the academic case studies. The inter correlation

between the elements indicates the multicollinearity and the appropriateness of principal component

analysis. The TRs/KLOC is correlated with the CBO ratio and the RCAF. The other elements may

not have been correlated because of the small sample size of the academic projects.

Table 7.1: Correlation Matrix – Academic Projects

 TRs TRs/
KLOC

Asserts/
KLOC

TCs/
KLOC

Assert
s/ TCs

TLOC/tcl/
SLOC/scl

CCT/
CCS

CBO
T/

CBOS

DITT/
DITS

WMCT/
WMCS

RCAF

TRs Pearson
Correlation

1 .752 -.309 .216 -.413 -.075 -.032 .199 -.008 -.178 -.335

 Sig. (2-
tailed)

. .000 .162 .335 .056 .741 .888 .374 .972 .429 .127

TRs/
KLOC

Pearson
Correlation

.752 1 -.185 .226 -.307 -.103 .393 .642 .101 .118 -.627

 Sig. (2-
tailed)

.000 . .410 .312 .165 .647 .071 .001 .655 .600 .002

asserts/
KLOC

Pearson
Correlation

-.309 -.185 1 .450 .569 .510 .011 .021 .447 -.020 .106

 Sig. (2-
tailed)

.162 .410 . .036 .006 .015 .963 .927 .037 .929 .637

TCs/
KLOC

Pearson
Correlation

.216 .226 .450 1 -.310 .564 .096 .069 .402 -.032 -.169

 Sig. (2-
tailed)

.335 .312 .036 . .160 .006 .670 .760 .063 .886 .452

asserts/
TCs

Pearson
Correlation

-.413 -.307 .569 -.310 1 -.095 .097 .153 .045 .183 .239

 Sig. (2-
tailed)

.056 .165 .006 .160 . .675 .668 .497 .842 .416 .285

TLOC/tcl/
SLOC/scl

Pearson
Correlation

-.075 -.103 .510 .564 -.095 1 -.127 -.127 .660 -.184 .121

 Sig. (2-
tailed)

.741 .647 .015 .006 .675 . .573 .572 .001 .412 .590

CCT/ CCS Pearson
Correlation

-.032 .393 .011 .096 .097 -.127 1 .819 .205 .834 -.112

 Sig. (2-
tailed)

.888 .071 .963 .670 .668 .573 . .000 .361 .000 .619

 93

Table 7.1 (continued)

CBOT/
CBOS

Pearson
Correlation

.199 .642 .021 .069 .153 -.127 .819 1 .283 .520 -.214

 Sig. (2-
tailed)

.374 .001 .927 .760 .497 .572 .000 . .202 .013 .340

DITT/
DITS

Pearson
Correlation

-.008 .101 .447 .402 .045 .660 .205 .283 1 .116 .281

 Sig. (2-
tailed)

.972 .655 .037 .063 .842 .001 .361 .202 . .606 .205

WMCT/
WMCS

Pearson
Correlation

-.178 .118 -.020 -.032 .183 -.184 .834 .520 .116 1 -.087

 Sig. (2-
tailed)

.429 .600 .929 .886 .416 .412 .000 .013 .606 . .700

RCAF Pearson
Correlation

-.335 -.627 .106 -.169 .239 .121 -.112 -.214 .281 -.087 1

 Sig. (2-
tailed)

.127 .002 .637 .452 .285 .590 .619 .340 .205 .700 .

Similarly Table 7.2 shows the correlation matrix for the open source case studies. The

correlations for the TRs and TRs/KLOC are highlighted in bold to show their individual correlations

with the STREW metrics. The TRs/KLOC are correlated with the STREW metrics, except SM1,

SM3, and SM4.

Table 7.2: Correlation Matrix – Open Source projects

 TRs TRs/ KLOCasserts/
KLOC

TCs/
KLOC

asserts/
TCs

TLOC/tcl/
SLOC/scl

CCT/
CCS

CBOT
/CBOS

DITT/
DITS

WMCT/
WMCS

RCAF

TRs Pearson
Correlation

1 .102 -.143 -.293 .289 .162 -.074 .107 -.115 .017 .393

 Sig. (2-
tailed)

. .612 .478 .138 .144 .419 .715 .594 .567 .932 .043

TRs/ KLOC Pearson
Correlation

.102 1 .288 .667 -.174 .129 .585 .583 .406 .644 -.397

 Sig. (2-
tailed)

.612 . .146 .000 .384 .523 .001 .001 .036 .000 .041

asserts/
KLOC

Pearson
Correlation

-.143 .288 1 .528 -.011 .022 .654 .654 .715 .537 -.435

 Sig. (2-
tailed)

.478 .146 . .005 .958 .912 .000 .000 .000 .004 .023

TCs/KLOC Pearson
Correlation

-.293 .667 .528 1 -.514 .141 .718 .579 .437 .607 -.424

 Sig. (2-
tailed)

.138 .000 .005 . .006 .482 .000 .002 .023 .001 .028

asserts/TCs Pearson
Correlation

.289 -.174 -.011 -.514 1 -.257 -.164 -.127 -.064 -.081 .216

 Sig. (2-
tailed)

.144 .384 .958 .006 . .196 .413 .528 .753 .688 .280

TLOC/tcl/
SLOC/scl

Pearson
Correlation

.162 .129 .022 .141 -.257 1 .183 .150 -.251 .134 -.220

 Sig. (2-
tailed)

.419 .523 .912 .482 .196 . .361 .456 .206 .505 .269

 94

Table 7.2 (continued)

CCT/CCS Pearson
Correlation

-.074 .585 .654 .718 -.164 .183 1 .854 .525 .931 -.434

 Sig. (2-
tailed)

.715 .001 .000 .000 .413 .361 . .000 .005 .000 .024

CBOT/
CBOS

Pearson
Correlation

.107 .583 .654 .579 -.127 .150 .854 1 .592 .810 -.310

 Sig. (2-
tailed)

.594 .001 .000 .002 .528 .456 .000 . .001 .000 .116

DITT/DITS Pearson
Correlation

-.115 .406 .715 .437 -.064 -.251 .525 .592 1 .457 -.336

 Sig. (2-
tailed)

.567 .036 .000 .023 .753 .206 .005 .001 . .016 .086

WMCT/
WMCS

Pearson
Correlation

.017 .644 .537 .607 -.081 .134 .931 .810 .457 1 -.391

 Sig. (2-
tailed)

.932 .000 .004 .001 .688 .505 .000 .000 .016 . .044

RCAF Pearson
Correlation

.393 -.397 -.435 -.424 .216 -.220 -.434 -.310 -.336 -.391 1

 Sig. (2-
tailed)

.043 .041 .023 .028 .280 .269 .024 .116 .086 .044 .

The scatter plots for the STREW metric elements with TRs/KLOC are shown in Figure 7.6 for

both the academic and open source projects. These plots are graphical representation of the

correlations in Table 7.1 and Table 7.2. These correlations are to graphical represent the association

between the TRs/KLOC and the STREW metrics.

Academic Case Study Open Source Case Study

TR's/KLOC

403020100

As
se

rts
/K

LO
C

.2

.1

0.0

TR's/KLOC

76543210

As
se

rts
/K

LO
C

.3

.2

.1

0.0

 95

TR's/KLOC

403020100

Te
st

 C
as

es
/K

LO
C

.08

.07

.06

.05

.04

.03

.02

.01

0.00

TR's/KLOC

76543210

Te
st

 C
as

es
/K

LO
C

.6

.5

.4

.3

.2

.1

0.0

TR's/KLOC

403020100

As
se

rts
/T

es
t C

as
e

12

10

8

6

4

2

0

TR's/KLOC

76543210

As
se

rts
/ T

es
t C

as
e

4.0

3.5

3.0

2.5

2.0

1.5

1.0

.5

0.0

TR's/KLOC

403020100

TL
O

C
/T

C
L/

SL
O

C
/S

C
L

2.0

1.5

1.0

.5

0.0

TR's/KLOC

76543210

TL
O

C
/T

C
l/S

LO
C

/S
C

L

3.5

3.0

2.5

2.0

1.5

1.0

.5

0.0

 96

TR's/KLOC

403020100

C
C

T/
C

C
S

1.2

1.0

.8

.6

.4

.2

0.0

TR's/KLOC

76543210

C
C

T/
C

C
S

1.0

.8

.6

.4

.2

0.0

TR's/KLOC

403020100

C
B

O
T/

C
B

O
S

1.6

1.4

1.2

1.0

.8

.6

.4

.2

0.0

TR's/KLOC

76543210

C
BO

T/
C

BO
S

1.2

1.0

.8

.6

.4

.2

0.0

TR's/KLOC

403020100

D
IT

T/
D

IT
S

4

3

2

1

0

TR's/KLOC

76543210

D
IT

T/
D

IT
S

1.6

1.4

1.2

1.0

.8

.6

.4

.2

0.0

 97

TR's/KLOC

403020100

W
M

C
T/

W
M

C
S

1.4

1.2

1.0

.8

.6

.4

.2

0.0

TR's/KLOC

76543210

W
M

C
T/

W
M

C
S

1.0

.8

.6

.4

.2

0.0

TR's/KLOC

403020100

R
C

AF

6

5

4

3

2

1

0

TR's/KLOC

76543210

R
C

AF

80

70

60

50

40

30

20

10

0

Table 7.6: Scatter plots of STREW metrics with TRs/KLOC

In Appendix C, Table C.3 and C.4 show a similar correlation matrix between the individual

project metrics and TRs to highlight the association between the project metrics for both the open

source and the industrial projects.

 98

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

An early estimation of potential software field quality is very useful to developers because it

helps in identifying the overall quality of the software system. However, in most production

environments, field quality is measured too late to affordably guide significant corrective actions. In

this dissertation, we have reported on the usage of an in-process suite of test metrics for providing an

early warning regarding post-release field quality and for providing meaningful feedback on the

thoroughness of a testing effort.

The STREW metric suite is intended to be easy to gather in the development environment so that

developers can receive an early indication of system TRs/KLOC throughout development. This

estimation allows developers to take corrective actions early. However, these benefits will not accrue

unless an adequate number of test cases that stress the system are written in the tight feedback loops,

as is done in the TDD [9] paradigm. The STREW metric suite has been designed to provide the

developer feedback to guide in the incremental creation of a thorough test suite. Additionally, the

STREW metric suite leverages the utility of the extensive suite of automated tests to identify low

quality projects throughout development. We note that the STREW metric suite can be used with any

system with an automatic test suite (not script based testing), not only for systems that are developed

using TDD.

 99

To summarize the main contributions of this dissertation are:

• Development of an in-process STREW metric suite that leverages the testing effort to

estimate the post-release field quality of the software. The STREW metric suite is a set of

static code measures that can be used to estimate the dynamic measure of post-release

field quality.

• Empirical evidence of the ability of the STREW metric suite to estimate post-release field

quality at statistically significant levels using three case studies in the academic, open

source and industrial environments.

• Empirically assess the ability of the STREW metric suite to provide meaningful feedback

on the thoroughness of a testing effort using three case studies in the academic, open

source and industrial environment.

Our case studies reflect only a relatively small set of data points and contexts. We plan to follow

a process similar to the research done with the COCOMO II cost estimation model [18] by Barry

Boehm at USC, over a period of 15 years with 83 data points from commercial, aerospace,

government, and nonprofit organizations. We will build a more general, robust STREW-based post-

release field quality estimation model by obtaining data from many industrial organizations, in

multiple domains, with varying degrees of quality. Similar to the COCOMO methodology we plan to

make our model robust to handle projects with a wide spectrum of post-release field quality.

We will continue to validate the metric suite under different industrial and academic

environments and refine metric suite according to specific industry characteristics with emphasis on

smaller granularity of measurement, i.e. instead on a project basis, measure the STREW metrics on a

function/class basis to provide more individual feedback to developers. We will continue to refine the

metric suite by add/deleting new metrics based on the results of further studies. An important step

towards generalizing STREW would involve modifying STREW metrics for non – OO languages as

languages like C that form a large part of the legacy code base. We plan to use non-automated test

 100

results with STREW to further enhance the measurement of the testing effort. In this thesis, we use

projects from teams that develop a history of the value of the STREW metrics from comparable

projects with acceptable levels of post-release field quality.

 101

REFERENCES

[1] Abrahamsson, P., Koskela, J., "Extreme Programming: A Survey of Empirical Data from a

Controlled Case Study," Proceedings of International Symposium on Empirical Software

Engineering, 2004, pp. 73-82.

[2] Albrecht, A. J., "Software function, source lines of code, and development effort prediction,"

IEEE Transactions on Software Engineering, Vol. 9, No. 6, pp. 639-648, 1983.

[3] Basili, V., Briand, L., Melo, W., "A Validation of Object Oriented Design Metrics as Quality

Indicators," IEEE Transactions on Software Engineering, Vol. 22, No. 10, pp. 751 - 761,

1996.

[4] Basili, V., Perricone, B., "Software Errors and Complexity : An Empirical Investigation,"

Communications of the ACM, Vol. 27, No. 1, pp. 42-52, 1984.

[5] Basili, V., Shull, F., Lanubile, F., "Building Knowledge through Families of Experiments,"

IEEE Transactions on Software Engineering, Vol. 25, No. 4, pp. 456-473, 1999.

[6] Basili, V., Weiss, D.M., "A Methodology for Collecting Valid Software Engineering Data,"

IEEE Transactions on Software Engineering, Vol. 10, No. 6, pp. 728-738, 1984.

[7] Bastani, F. B., Ramamoorthy, C.V., "Input-domain-based models for estimating the

correctness of process control programs," in Reliability Theory, A. Serra, Barlow, R.E., Ed.

Amsterdam: North-Holland, 1986, pp. 321-378.

[8] Beck, K., Extreme Programming Explained, Embrace Change. Boston: Addison Wesley,

2000.

[9] Beck, K., Test Driven Development: By Example. Boston: Addison-Wesley, 2003.

[10] Boehm, B. W., Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall, Inc.,

1981.

[11] Brace, N., Kemp, R., Snelgar, R., SPSS for Psychologists: Palgrave Macmillan, 2003.

 102

[12] Briand, L. C., Thomas, W.M., Hetmanski, C.J., "Modeling and Managing Risk Early in

Software Development," Proceedings of International Conference on Software Engineering,

1993, pp. 55-65.

[13] Briand, L. C., Wuest, J., Daly, J.W., Porter, D.V., "Exploring the Relationship between

Design Measures and Software Quality in Object Oriented Systems," Journal of Systems and

Software, Vol. 51, No. 3, pp. 245-273, 2000.

[14] Briand, L. C., Wuest, J., Ikonomovski, S., Lounis, H., "Investigating Quality Factors in

Object-Oriented Designs : An Industrial Case Study," Proceedings of International

Conference on Software Engineering, 1999, pp. 345-354.

[15] Brito e Abreu, F., "The MOOD Metrics Set," Proceedings of ECOOP '95 Workshop on

Metrics, 1995.

[16] Burbeck, S. L., "Real-time complexity metrics for Smalltalk methods," IBM Systems Journal,

Vol. 35, No. 2, pp. 204-226, 1996.

[17] Chidamber, S. R., Kemerer, C.F., "A Metrics Suite for Object Oriented Design," IEEE

Transactions on Software Engineering, Vol. 20, No. 6, pp. 476 - 493, 1994.

[18] Chulani, S., Boehm, B., Steece, B., "Bayesian Analysis of Empirical Software Engineering

Cost Models," IEEE Transactions on Software Engineering, Vol. 25, No. 4, pp. 573-583,

1999.

[19] Churcher, N. I. and M. J. Shepperd, "Comments on 'A Metrics Suite for Object-Oriented

Design'," IEEE Transactions on Software Engineering, Vol. 21, No. 3, pp. 263-5, 1995.

[20] Crow, L. H., Singpurwalla, N.D., "An Empirically Developed Fourier Series Model for

Describing Software Failures," IEEE Transactions on Reliability, Vol. 33, No. 2, pp. 176-

183, 1984.

[21] Daskalantonakis, M. K., "A Practical View of Software Measurement and Implementation

Experiences within Motorola," IEEE Transactions on Software Engineering, Vol. 18, No. 11,

pp. 998-1010, 1992.

 103

[22] Davidsson, M., Zheng, J., Nagappan, N., Williams, L., Vouk, M., "GERT: An Empirical

Reliability Estimation and Testing Feedback Tool," Proceedings of International Symposium

on Software Reliability Engineering, St. Malo, France, 2004, pp. 269-280.

[23] Denaro, G., "Estimating software fault-proneness for tuning testing activities," Proceedings

of International Conference on Software Engineering, 2000, pp. 704-706.

[24] Denaro, G., Morasca, S., Pezze, M., "Deriving Models of Software Fault-Proneness,"

Proceedings of Software Engineering Knowledge Engineering, 2002, pp. 361-368.

[25] Denaro, G., Pezze, M., "An Empirical Evaluation of Fault-Proneness Models," Proceedings

of International Conference on Software Engineering, 2002, pp. 241 - 251.

[26] Duane, J. T., "Learning Curve Approach to Reliability Monitoring," IEEE Transactions on

Aerospace, Vol. 2, No. 2, 1964.

[27] Duran, J. W., Wiorkowaski, J.J., "Capture-recapture sampling for estimating software error

content," IEEE Transactions on Software Engineering, Vol. 7, No. 1, pp. 147-148, 1981.

[28] Ehrenberger, W., "Statistical Testing of Real-Time Software," in Verification and Validation

of Real-Time Software, W. Quirk, J., Ed. New York: Springer-Verlag, 1985.

[29] El Emam, K., "A Methodology for Validating Software Product Metrics," National Research

Council of Canada, Ottawa, Canada NCR/ERC-1076, 2000.

[30] El Emam, K., Benlarbi, S., Goel, N., Rai, S.N., "The Confounding Effect of Class Size on the

Validity of Object-Oriented Metrics," IEEE Transactions on Software Engineering, Vol. 27,

No. 7, pp. 630 - 650, 2001.

[31] Fenton, N., Neil, M., "A critique of software defect prediction models," IEEE Transactions

on Software Engineering, Vol. 25, No. 5, pp. 675-689, 1999.

[32] Fenton, N. E., Ohlsson, N., "Quantitative analysis of faults and failures in a complex software

system," IEEE Transactions on Software Engineering, Vol. 26, No. 8, pp. 797-814, 2000.

[33] Fenton, N. E., Pfleeger, S.L., Software Metrics. Boston, MA: International Thompson

Publishing, 1997.

 104

[34] Frankl, P. G., Hamlet, R.G., Littlewood, B., Strigini, L., "Evaluating testing methods by

delivered reliability," IEEE Transactions on Software Engineering, Vol. 24, No. 8, pp. 586-

601, 1998.

[35] Goel, A., Okumoto, K., "Time-Dependant Error-Detection Rate Model for Software

Reliability and other Performance Measures.," IEEE Transactions on Reliability, Vol. 28, No.

3, pp. 206-211, 1979.

[36] Grady, R. B., Caswell, D.L., Software Metrics: Establishing a company-wide program.

Englewood Cliffs, NJ: Prentice Hall, 1986.

[37] Halstead, M. H., Elements of Software Science. New York: Elsevier North Holland, 1977.

[38] Hamlet, D., Voas J., "Faults on Its Sleeve: Amplifying Software Reliability Testing,"

Proceedings of International Symposium on Software Testing and Analysis, Cambridge, MA,

1993, pp. 89-98.

[39] Harrison, R., S. J. Counsell, and R. V. Nithi, "An Evaluation of the MOOD Set of Object-

Oriented Software Metrics," IEEE Transactions on Software Engineering, Vol. 24, No. 6, pp.

491-496, June 1998.

[40] Hatton, L., "Reexamining the Fault-Density - Component Size Connection," IEEE Software,

Vol. 14, No. 2, pp. 89-97, March/April 1997.

[41] Henry, S. M., Kafura, D., "Software Structure Metrics based on Information Flow," IEEE

Transactions on Software Engineering, Vol. 7, No. 5, pp. 510-518, 1981.

[42] Hudepohl, J., Aud, S.J., Khoshgoftaar, T.M., Allen, E.B., Mayrand, J., "Emerald: Software

Metrics and Models on the Desktop," IEEE Software, Vol. 13, No. 5, pp. 56-60, 1996.

[43] IEEE, "Standard 610.12-1990, IEEE Standard Glossary of Software Engineering

Terminology," 1990.

[44] ISO/IEC, "DIS 14598-1 Information Technology - Software Product Evaluation," 1996.

 105

[45] Jacoby, R., Masuzawa, K., "Test coverage dependent software reliability estimation by the

HGD model," Proceedings of International Symposium on Software Reliability Engineering,

1992, pp. 193-204.

[46] Jelinksi, Z., Moranda, P.B., "Software reliability research," in Statistical Computer

Performance Evaluation, W. Freiberger, Ed. New York: Academic press, 1972, pp. 465-497.

[47] Kaiser, H. F., "An Index of Factorial Simplicity," Psychometrika, Vol. 39, pp. 31-36, 1974.

[48] Kan, S. H., Metrics and Models in Software Quality Engineering. Reading, MA: Addison-

Wesley, 1995.

[49] Kemerer, C. F., "An empirical validation of software cost estimation models,"

Communications of the ACM, Vol. 30, No. 5, pp. 416-429, 1987.

[50] Khoshgoftaar, T. M., Munson, J.C.,, "Predicting software development errors using software

complexity metrics," IEEE Journal on Selected Areas in Communications, Vol. 8, No. 2, pp.

253-261, 1990.

[51] Khoshgoftaar, T. M., Munson, J.C., Lanning, D.L., "A Comparative Study of Predictive

Models for Program Changes During System Testing and Maintenance," Proceedings of

International Conference on Software Maintenance, 1993, pp. 72-79.

[52] Khoshgoftaar, T. M., Seliya, N., "Fault Prediction Modeling for Software Quality Estimation:

Comparing Commonly Used Techniques," Empirical Software Engineering, Vol. 8, No. 3,

pp. 255-283, 2003.

[53] Kleinbaum, D. G., Kupper, L.L., Muller, K.E., Applied Regression Analysis and Other

Multivariable Methods. Boston: PWS-KENT Publishing Company, 1987.

[54] Langberg, N., Singpurwalla, N.D., "A unification of some software reliability models," SIAM

Journal of Scientific and Statistical Computation, Vol. 6, No. 3, pp. 781-790, 1985.

[55] Lipow, M., "Number of faults per line of code," IEEE Transactions on Software Engineering,

Vol. 8, No. 4, pp. 437-440, 1982.

 106

[56] Littlewood, B., Verrall, J.L., "A Bayesian reliability growth model for computer software,"

Applied Statistics, Vol. 22, pp. 332-346, 1973.

[57] Liu, G., "A Bayesian assessing method of software reliability growth.," in Reliability Theory

and Applications, S. Osaki, Cao, J., Ed. Singapore: World Scientific, 1987, pp. 237-244.

[58] McCabe, T. J., "A Complexity Measure," IEEE Transactions on Software Engineering, Vol.

2, No. 4, pp. 308-320, 1976.

[59] Miller, K. W., Morell, L.J., Noonan, R.E., Park, S.K., Nicol, D.M., Murrill, B.W., Voas,

J.M., "Estimating the Probability of Failure When Testing Reveals No Failures," IEEE

Transactions on Software Engineering, Vol. 18, No. 1, pp. 33 - 43, 1992.

[60] Mohagheghi, P., Conradi, R., Killi, O.M., Schwarz, H., "An Empirical Study of Software

Reuse vs. Reliability and Stability," Proceedings of International Conference on Software

Engineering, 2004, pp. 282-292.

[61] Moller, K.-H., Paulish, D.J., "An Empirical Investigation of Software Fault Distribution,"

Proceedings of IEEE International Software Metrics Symposium, 1993, pp. 82-90.

[62] Munson, J. C., Khoshgoftaar, T.M., "The Detection of Fault-Prone Programs," IEEE

Transactions on Software Engineering, Vol. 18, No. 5, pp. 423-433, 1992.

[63] Munson, J. C., Khoshgoftaar,T.M., "Regression Modeling of Software quality : Empirical

Investigation," Information and Software Technology, Vol. 32, No. 2, pp. 106-114, 1990.

[64] Musa, J., Software Reliability Engineering: McGraw-Hill, 1998.

[65] Musa, J., "A Theory of Software Reliability and its Applications," IEEE Transactions on

Software Engineering, Vol. 1, No. 3, pp. 312-327, 1975.

[66] Musa, J., Ianino, A., Okumoto, K., Software Reliability:Measurement, Prediction,

Application. New York: McGraw Hill, 1987.

[67] Musa, J., Okumoto, K., "A Comparison of Time Domains for Software Reliability Models,"

Journal of Systems and Software, Vol. 4, No. 4, pp. 277-287, 1984.

 107

[68] Nagappan, N., Sherriff, M., Williams, L., "On the Feasibility of Using Operational Profiles to

Determine Software Reliability in Extreme Programming," North Carolina State University

CSC-TR-2003-15, 2003.

[69] Nagappan, N., Williams, L., Vouk M.A., ""Good Enough" Software Reliability Estimation

Plug-in for Eclipse," Proceedings of IBM-ETX Workshop, in conjunction with OOPSLA

2003, 2003, pp. 36-40.

[70] Nagappan, N., Williams, L., Vouk M.A., "Towards a Metric Suite for Early Software

Reliability Assessment," Proceedings of International Symposium on Software Reliability

Engineering, FastAbstract, Denver,CO, 2003, pp. 238-239.

[71] Nagappan, N., Williams, L., Vouk M.A., Osborne, J., "Using In-Process Testing Metrics to

Estimate Software Reliability: A Feasibility Study," Proceedings of IEEE International

Symposium on Software Reliability Engineering, FastAbstract, Saint Malo, France, 2004, pp.

21-22.

[72] Nakagawa, Y., Hanata, S., "An error complexity model for software reliability

measurement," Proceedings of International Conference on Software Engineering, 1989, pp.

230-236.

[73] Nelson, E. C., "Estimating software reliability from test data," Microelectronics and

Reliability, Vol. 17, No., pp. 67-74, 1978.

[74] NIST/SEMATECH, e-Handbook of Statistical Methods:

http://www.itl.nist.gov/div898/handbook/.

[75] Ohlsson, M. C., Wohlin, C., "Identification of Green, Yellow and Red Legacy Components,"

Proceedings of International Conference on Software Maintenance, 1998, pp. 6-15.

[76] Ostrand, T. J., Weyuker, E.J., "The Distribution of Faults in a Large Industrial Software

System," Proceedings of ACM International Symposium on Software Testing and Analysis,

2002, pp. 55-64.

[77] Peng, W. W., Wallace, D. R., Software Error Analysis. Summit, NJ: Silicon Press, 1994.

 108

[78] Rivers, A. T., Vouk, M.A., "Resource-Constrained Non-Operational Testing of Software,"

Proceedings of International Symposium on Software Reliability Engineering, Paderborn,

Germany, 1998, pp. 154-163.

[79] Rosenblum, D. S., "A practical approach to programming with assertions," IEEE

Transactions on Software Engineering, Vol. 21, No. 1, pp. 19-31, 1995.

[80] Schick, G. J., Wolverton, R.W., "An Analysis of Competing Software Reliability Models,"

IEEE Transactions on Software Engineering, Vol. 4, No. 2, pp. 104-120, 1978.

[81] Schneider, V., "Some experimental estimators for developmental and developed errors in

software development projects," Proceedings of the ACM Workshop/Symposium on

Measurement and Evaluation of Software Quality, 1981, pp. 169-171.

[82] Schneidewind, N. F., "An integrated process and product model," Proceedings of Fifth

International Software Metrics Symposium, 1998, pp. 224-234.

[83] Schneidewind, N. F., "Software metrics model for quality control," Proceedings of Fourth

International Software Metrics Symposium, 1997, pp. 127-136.

[84] Shantikumar, J. G., "A General Software Reliability Model for Performance Prediction,"

Microelectronics and Reliability, Vol. 21, No. 5, pp. 671-682, 1981.

[85] Shepperd, M., Ince, D., Derivation and Validation of Software Metrics: Oxford University

Press, 1993.

[86] Subramanyam, R., Krishnan, M.S., "Empirical Analysis of CK Metrics for Object-Oriented

Design Complexity: Implications for Software Defects," IEEE Transactions on Software

Engineering, Vol. 29, No. 4, pp. 297 - 310, 2003.

[87] Tahoma, Y., Tokunaga, K., Nagase, S., Murata, Y., "Structural Approach to the Estimation of

the Number of Residual Software Faults Based on the Hyper-Geometric Distribution," IEEE

Transactions on Software Engineering, Vol. 15, No. 3, pp. 345-362, 1989.

[88] Tang, M.-H., Kao, M-H., Chen, M-H., "An empirical study on object-oriented metrics,"

Proceedings of Sixth International Software Metrics Symposium, 1999, pp. 242-249.

 109

[89] Thayer, R., Lipow, M., Nelson, E., Software Reliability. Amsterdam: North-Holland, 1978.

[90] Thomson, W. E., Chelson, P.O., "On the specification and testing of software reliability,"

Proceedings of Annual Reliability and Maintainability Symposium, 1980, pp. 379-383.

[91] Troster, J., "Assessing Design-Quality Metrics on Legacy Software," Software Engineering

Process Group, IBM Canada Ltd. Laboratory, North York, Ontario 1992.

[92] Vouk, M. A., Jones, W., "Software Reliability Field Data Analysis," in Handbook of Software

Reliability Engineering, M. Lyu, Ed.: McGraw Hill, 1996.

[93] Vouk, M. A., Tai, K.C., "Multi-Phase Coverage- and Risk-Based Software Reliability

Modeling," Proceedings of CASCON '93, 1993, pp. 513-523.

[94] Weiss, S. N., Weyuker, E.J., "An Extended Domain-Bases Model of Software Reliability,"

IEEE Transactions on Software Engineering, Vol. 14, No. 10, pp. 1512-1524, 1988.

[95] Whittaker, J. A., "Markov Chain Techniques for Software Testing and Reliability Analysis,

PhD Dissertation," Department of Computer Science, University of Tenn., Vol., No., 1992.

[96] Wohlin, C., Korner, U., "Software Faults : Spreading, Detection and Costs," Software

Engineering Journal, Vol. 5, No. 1, pp. 38-42, 1990.

[97] Xie, M., Software Reliability Modeling. Singapore: World Scientific Publishing Co. Pte. Ltd.,

1991.

[98] Yamada, S., Osaki, S., "Software Reliability Growth Modeling: Models and Applications,"

IEEE Transactions on Software Engineering, Vol. 11, No. 12, pp. 1431-1437, 1985.

 110

Appendix A – Data sets

Table A.1: Academic case study data set

SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9
TRs/

KLOC
0.072419 0.07319 0.989474 0.416084 1.270539 0.613636 2.047619 0.398693 2.103728 12.32666
0.025062 0.00358 7 0.72093 0.426019 0.719101 0.9375 1 5.884927 1.652437
0.01506 0.009639 1.5625 0.364621 0.924269 0.301887 0.8 0.396296 2.690438 7.228916

0.061195 0.021855 2.8 0.579399 0.792186 0.538462 0.666667 0.72449 3.337115 1.457018
0.112583 0.040287 2.794521 0.145374 0.671358 0.210526 0.769231 0.38 2.936791 3.311258
0.025751 0.025751 1 0.113485 0.682403 0.140845 0.294479 0.127094 1.888169 18.88412
0.083912 0.03581 2.343284 0.248815 0.908605 0.176471 0.4 0.419087 3.032415 5.344735
0.022245 0.021218 1.048387 0.06383 0.528747 0.24 0.411765 0.064865 4.735818 8.555784
0.190463 0.059109 3.222222 0.307851 1.811822 0.235294 3.8 0.283433 5.675851 1.427756

0.025 0.022308 1.12069 0.35786 0.437308 0.329268 0.444444 0.405858 4.213938 1.923077
0.039487 0.040513 0.974684 0.125 0.571874 0.086957 0.307692 0.20202 3.160454 6.666667
0.103058 0.050396 2.044944 0.408907 1.01359 0.211765 0.48 0.46087 2.862237 7.92752
0.062218 0.060211 1.033333 0.316384 0.466006 0.169014 0.5 0.39375 3.230146 8.529854
0.007067 0.004122 1.714286 0.273723 0.201413 0.188119 0.45 0.38191 2.752026 5.889282
0.052908 0.02104 2.514706 0.319149 0.679146 0.21875 2.4 0.580153 5.23825 4.022277
0.059968 0.042139 1.423077 1.181518 0.431767 1.584416 1.8 0.892157 1 35.6564
0.042157 0.027588 1.52809 0.47973 0.389182 0.320755 0.263158 0.33913 5.228525 1.549907
0.045518 0.022409 2.03125 0.190476 0.571822 0.15625 0.666667 0.355769 2.314425 2.10084
0.190793 0.017565 10.86207 0.319703 0.419594 0.438356 0.5 0.448454 2.675851 3.634161
0.031097 0.030278 1.027027 0.37037 0.545008 0.369565 1.190476 0.852273 1.980551 13.91162
0.067829 0.043282 1.567164 0.941176 0.608312 0.351064 0.6 1.354497 2.508914 5.167959
0.027778 0.022222 1.25 0.175711 0.773148 0.166667 0.333333 0.304878 1.750405 10.18519

 111

Table A.2: Open source case study data set

SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9
TRs/

KLOC
0.055602 0.054349 1.023059 0.319667 0.859121 0.607487 0.534314 0.308992 21.881 0.710168
0.032401 0.022159 1.462222 0.155299 1.270924 0.179862 0.070686 0.145636 9.282 0.984834
0.077072 0.147949 0.520935 0.694059 1.640944 0.61275 0.534 0.53862 11.362 0.643604
0.011397 0.003177 3.587629 0.125165 0.269654 0.098648 0.246886 0.134135 27.911 0.261994
0.020498 0.01064 1.926471 0.101405 0.910326 0.143173 0.118299 0.114993 23.367 1.682119
0.14775 0.055443 2.664921 0.659643 0.598961 0.82906 0.721805 0.707219 3.149 2.03193

0.148361 0.098659 1.503776 0.595318 1.244509 1.045028 0.576369 0.585379 12.267 2.384501
0.073409 0.088209 0.832215 0.226997 3.303744 0.411226 0.146104 0.218008 9.264 1.381352
0.10863 0.050388 2.155867 0.286179 1.857822 0.524051 0.66263 0.283009 10.358 2.117896

0.076912 0.04131 1.861831 0.34194 0.997198 0.35492 0.523077 0.305928 12.812 0.642123
0.134711 0.138715 0.971139 0.266631 0.595705 0.485356 1 0.258913 8.448 2.055832
0.031641 0.082172 0.385057 0.345133 1.185235 0.486154 0.2287 0.250254 3.871 1.652893
0.081526 0.562012 0.145062 0.832558 1.166894 0.873874 0.717949 0.910714 1.054 6.938422
0.09146 0.302223 0.302625 0.501784 1.334559 0.733911 0.452012 0.368778 12.213 0.673602

0.027399 0.024707 1.108937 0.093508 0.64379 0.294118 0.147216 0.092116 69.96 0.261315
0.005519 0.004821 1.144928 0.039031 0.172479 0.049563 0.186869 0.047142 26.167 0.209592
0.023736 0.140639 0.16877 0.294632 2.132135 0.141527 0.119617 0.229282 8.241 1.220053
0.239488 0.209324 1.144105 0.477679 0.874162 0.571429 0.464286 0.48249 1 0.914077
0.258738 0.317397 0.81519 0.652941 0.691388 0.5 1.289474 0.496523 2.275 1.205303
0.181868 0.205638 0.884409 0.393939 0.572576 0.774194 1.526316 0.318182 1.654 2.763958
0.013482 0.036382 0.370583 0.072683 0.45747 0.287869 0.599688 0.121825 30.577 0.388628
0.001651 0.001351 1.222222 0.027144 0.405223 0.044061 0.028112 0.029683 6.09 0.60033
0.0852 0.114835 0.741935 0.110818 1.332436 0.207127 0.212963 0.133277 5.182 0.705592
0.02584 0.036822 0.701754 0.095238 0.399655 0.192593 0.68 0.120846 1.415 1.29199
0.0176 0.161736 0.108818 0.2566 1.134122 0.313576 0.18797 0.381517 6.025 0.75861

0.171854 0.441137 0.389571 0.625709 1.077885 0.772093 0.698113 0.403027 2.702 2.368065
0.077032 0.053366 1.443459 0.525633 1.024454 0.591343 0.641115 0.699861 15.45 1.597444

 112

Appendix B – Tool support

Tool support for partial collection of the metrics used in the STREW metric suite Version. 1.4 is

performed using an open source plug-in GERT10 (Good Enough Reliability Tool) under the Common

Public License (CPL11) for the open source Eclipse12 development environment. Figure B.1 is a snap

shot of the tool in use with different functionalities highlighted.

Figure B.1: GERT snap shot

All preferences for the tool are editable through a sub-page of the Eclipse IDE preference pages.

These settings are retained throughout subsequent sessions as is the layout of the tool’s different

graphical views. The configurations available consist of defining the parameters for the STREW

10 GERT can be obtained from http://gert.sourceforge.net. GERT was a winner in the International Challenge for Eclipse competition in the
student project category
11 http://www-124.ibm.com/developerworks/oss/CPLv1.0.htm
12 Eclipse is an open source integrated development environment. For more information see http://www.eclipse.org

 113

model. If the user wishes to employ a different reliability model, the expression of metrics that

determine the point estimate can be entered among these preferences. Optionally, the colors used to

highlight the “Reliability Ratios” view and their associated ranges are defined from the same menu.

GERT provides an easy-to-use tool for empirical reliability estimation and test feedback. Some

of GERT’s functionality is handled by other open source tools that have been incorporated in GERT’s

source code. Currently, the task of performing coverage analysis and administrating unit testing is

handled by JCoverage and JUnit, respectively.

• JCoverage, licensed under the GNU General Public License (GPL13) is an extension

to the Apache Ant build tool.

• JUnit, licensed in similar fashion under the CPL, provides a framework for running

unit testing. GERT calculates coverage based upon JUnit test cases.

From the home page of GERT (gert.sourceforge.net) we present some statistics about the

download rate and the activity profile over the past nine months14 (274 days). Figure B.2 presents the

usage statistics from sourceforge.net.

13 http://www.gnu.org/copyleft/gpl.html
14 The statistics snapshot was taken on November 11 2004.

 114

Date

11/04
10/04

09/04
08/04

07/04
06/04

05/04
04/04

03/04
02/04

N
um

be
r o

f V
ie

w
s/

D
ow

nl
oa

ds

400

300

200

100

0

View s

Dow nloads

Figure B.2: Usage Statistics (Courtesy sourceforge.net)

Table B1 shows the number of downloads (D/L) and the rank of the GERT tool in sourceforge.net on

a monthly basis.

Table B.1: Statistics for the past 10 months (Courtesy sourceforge.net)

Month Rank Page Views D/l

November 2004 7764
(55.15) 150 64

October 2004 11282
(34.62) 54 30

September 2004 5793
(65.44) 316 156

August 2004 11022
(38.42) 161 13

July 2004 7181
(58.30) 66 12

June 2004 7294
(60.36) 51 1

May 2004 10814
(37.40) 92 5

April 2004 10906
(33.42) 76 21

March 2004 7530
(54.06) 184 25

February 2004 3042
(80.88) 39 2

 115

Table B.2 shows a cumulative number of downloads over the entire life time of the tool and its

current rank with respect to other products in souceforge.net.

Table B.1: Statistics for All Time (Courtesy sourceforge.net)

Lifespan Rank Page Views D/l

276 days 8263
(51.81) 1,189 329

 116

Appendix C

Miscellaneous Statistical Analysis

Appendix C details some of the statistical analysis that form the underlying criterion for the

analysis explained in this dissertation. We assess the normality of the STREW metrics, and the

principal components produced by the STREW metrics in Appendix C.

Table C.1 and C.2 are used to check for the normality of data distribution for application of

equation 1. The results indicate that the STREW metrics are normally distributed.

Table C.1: One-Sample Kolmogorov-Smirnov Test – Academic Projects

SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8

Kolmogorov-Smirnov
Z Statistic

.890 .692 1.349 .880 1.049 1.182 1.306 1.241

Asymp. Sig. (2-tailed)

.406 .724 .053 .421 .221 .122 .066 .092

Table C.2: One-Sample Kolmogorov-Smirnov Test – 27 Open Source Projects

SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8

Kolmogorov-Smirnov
Z Statistic

.860 .957 .741 .933 .611 .551 .811 .706

Asymp. Sig. (2-tailed)

.450 .318 .642 .348 .850 .922 .526 .700

In statistical studies, sometimes it is possible that the distribution of data points may be bimodal.

This can be avoided by using dependent variable residuals from the regression equation in the test for

normality. The plot of the residuals for the academic case study is shown in Figure C.1. We also ran a

one sample Kolmogorov-Smirnov test on the unstandardized regression predicted residuals with the

null hypothesis that the population distribution is normal. The results (Z=0.656, p=0.782) indicate

that we can accept the null hypothesis that the distribution is normal.

 117

Unstandardized Residual

8.06.04.02.00.0-2.0-4.0-6.0

7

6

5

4

3

2

1

0

Std. Dev = 3.40
Mean = 0.0

N = 22.00

Figure C.1 : Normality plot of regression residuals – Academic case study

Similarly for the 27 open source projects the results of a Kolmogorov-Smirnov test on the

unstandardized regression predicted residuals yielded (Z=0.656, p=0.782) indicating that the

distribution was normal. The normality plots are shown in Figure C.2.

Unstandardized Residual

1.25
1.00

.75
.50

.25
0.00

-.25
-.50

-.75
-1.00

-1.25
-1.50

6

5

4

3

2

1

0

Std. Dev = .65
Mean = 0.00

N = 27.00

Figure C.2: Normality plot of regression residuals –Open source case study

 118

We present more information on the principal component analysis in Figure C.3 - the scree plot

and Figure C.4 - the component plot of the academic projects. The scree plot is useful in determining

the number of principal components that should be extracted.

Scree Plot

Component Number

987654321

Ei
ge

nv
al

ue
3.0

2.5

2.0

1.5

1.0

.5

0.0

Figure C.3: Scree plot

The component plot shows the location of the individual metrics in terms of the loaded

components to identify relationships between the elements in terms of the principal components.

 119

sm3

sm5sm8
sm6

sm1

mponent 2

sm9

sm7

1.01.0

-.5

0.0

.5.5

sm4

.5
sm2

1.0

Component 3Component 1
0.00.0

-.5-.5

Figure C.4: Component plot

Similarly we present in Figure C.5 - the scree plot and Figure C.6 - the component plot of the open

source projects.

Scree Plot

Component Number

987654321

Ei
ge

nv
al

ue

5

4

3

2

1

0

Figure C.5: Scree plot

 120

Component 1

1.0.50.0-.5-1.0

C
om

po
ne

nt
 2

1.0

.5

0.0

-.5

-1.0

sm9

sm8

sm7

sm6

sm4

sm5

sm3

sm2

sm1

Figure C.6: Component plot

Table C.3 shows the association between project metrics and TRs without the normalization of

metrics for the academic projects. From Table C.3 we observe that none of the metrics(shown in

bold) are correlated with the TRs, indicating the absence of any relationship between the number of

TRs and the individual project metrics.

 121

Table C.3: Correlation matrix with individual project metrics - Academic

 TRs SLOC CCS CBOS DITS WMPCS Asserts Test Cases
TRs Pearson

Correlation
1 -.335 .167 .062 .296 .308 -.369 -.089

 Sig. (2-tailed) . .127 .459 .783 .181 .164 .091 .694
SLOC Pearson

Correlation
-.335 1 -.216 .056 -.114 -.208 .459 .424

 Sig. (2-tailed) .127 . .334 .806 .613 .354 .032 .049
CCS Pearson

Correlation
.167 -.216 1 .304 .695 .870 .186 .026

 Sig. (2-tailed) .459 .334 . .169 .000 .000 .407 .909
CBOS Pearson

Correlation
.062 .056 .304 1 .238 .121 .065 .003

 Sig. (2-tailed) .783 .806 .169 . .287 .591 .773 .991
DITS Pearson

Correlation
.296 -.114 .695 .238 1 .810 -.161 -.229

 Sig. (2-tailed) .181 .613 .000 .287 . .000 .475 .304
WMPCS Pearson

Correlation
.308 -.208 .870 .121 .810 1 .160 .106

 Sig. (2-tailed) .164 .354 .000 .591 .000 . .476 .638
Asserts Pearson

Correlation
-.369 .459 .186 .065 -.161 .160 1 .762

 Sig. (2-tailed) .091 .032 .407 .773 .475 .476 . .000
Test Cases Pearson

Correlation
-.089 .424 .026 .003 -.229 .106 .762 1

 Sig. (2-tailed) .694 .049 .909 .991 .304 .638 .000 .

Similarly Table C.4 shows the association between project metrics and TRs without the

normalization of metrics for the open source projects. From Table C.4 we observe that except the test

cases all the other metrics are correlated with the TRs at statistically significant levels implying that

with an increase in these metrics there is an increase in the TRs. This could imply that for the

academic projects the lack of correlation might be due to the large variability of the TRs in the

projects.

 122

Table C.4: Correlation matrix with individual project metrics – Open source

 TR's SLOC CCS WMCS CBOS DITS Asserts Test
Cases

TR's Pearson
Correlation

1 .393 .381 .395 .374 .431 .593 .131

 Sig. (2-
tailed)

. .043 .050 .041 .055 .025 .001 .515

SLOC Pearson
Correlation

.393 1 .965 .962 .966 .854 .512 .243

 Sig. (2-
tailed)

.043 . .000 .000 .000 .000 .006 .223

CCS Pearson
Correlation

.381 .965 1 .934 .917 .838 .474 .231

 Sig. (2-
tailed)

.050 .000 . .000 .000 .000 .013 .247

WMCS Pearson
Correlation

.395 .962 .934 1 .976 .863 .619 .321

 Sig. (2-
tailed)

.041 .000 .000 . .000 .000 .001 .102

CBOS Pearson
Correlation

.374 .966 .917 .976 1 .903 .530 .241

 Sig. (2-
tailed)

.055 .000 .000 .000 . .000 .005 .227

DITS Pearson
Correlation

.431 .854 .838 .863 .903 1 .526 .230

 Sig. (2-
tailed)

.025 .000 .000 .000 .000 . .005 .249

Asserts Pearson
Correlation

.593 .512 .474 .619 .530 .526 1 .551

 Sig. (2-
tailed)

.001 .006 .013 .001 .005 .005 . .003

Test Cases Pearson
Correlation

.131 .243 .231 .321 .241 .230 .551 1

 Sig. (2-
tailed)

.515 .223 .247 .102 .227 .249 .003 .

