
ABSTRACT 
 

NAGAPPAN, NACHIAPPAN. A Software Testing and Reliability Early Warning (STREW) 
Metric Suite. (Under the direction of Dr. Laurie A. Williams.) 
 

The demand for quality in software applications has grown, and awareness of software 

testing-related issues plays an important role towards that. Unfortunately in industrial practice, 

information on software field quality of a product tends to become available too late in the 

software lifecycle to affordably guide corrective actions. An important step towards remediation 

of this problem lies in the ability to provide an early estimation of post-release field quality.  

This dissertation presents a suite of nine in-process metrics, the Software Testing and 

Reliability Early Warning (STREW) metric suite, that leverages the software testing effort to 

provide (1) an estimate of post-release field quality early in software development phases, and (2) 

a color-coded, feedback to the developers on the quality of their testing effort to identify areas 

that could benefit from more testing. We built and validated our model via a three-phase case 

study approach which progressively involved 22 small-scale academic projects, 27 medium-sized 

open source projects, and five large-scale industrial projects.  The ability of the STREW metric 

suite to estimate post-release field quality was evaluated using statistical regression models in the 

three different environments. The error in estimation and the sensitivity of the predictions indicate 

the STREW metric suite can effectively be used to predict post-release software field quality. 

Further, the test quality feedback was found to be statistically significant with the post-release 

software quality, indicating the ability of the STREW metrics to provide meaningful feedback on 

the quality of the testing effort.      
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CHAPTER 1 
 
 
INTRODUCTION 
 

Software engineering is the application of a systematic, disciplined, quantifiable approach to the 

development, operation, and maintenance of software; that is, the application of engineering to 

software[43]. A more mathematical definition of Software Engineering was presented by Boehm in 

the classic Software Engineering Economics book [10] , 

Software engineering is the application of science and mathematics by which the 

capabilities of computer equipment are made useful to man via computer programs, 

procedures, and associated documentation. [10] 

Software Engineering activities include: Managing, Costing, Planning, Modeling, Analyzing, 

Specifying, Designing, Implementing, Testing and Maintaining of software [33].  

In industry, estimates of software field quality are often available too late in the software lifecycle 

to affordably guide corrective actions to the quality of the software. As a result, true field quality 

cannot be measured before a product has been completed and delivered to an internal or external 

customer. Because this information is available late in the software lifecycle, corrective actions tend 

to be expensive [10]. Software developers can benefit from an early warning regarding the quality of 

their product. 

In our research, we formulate this early warning from a collection of internal testing metrics that 

are correlated with Trouble Reports (TRs) per thousand lines of code (KLOC), an external measure 
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obtained from users. A TR [60] is a customer-reported problem whereby the software system does not 

behave as the customer expects.  An internal metric, such as cylomatic complexity [58], is a measure 

derived from the product itself  [44]. An external measure is a measure of a product derived from the 

external assessment of the behavior of the system [44].  For example, the number of failures found in 

test is an external measure.  

The ISO/IEC standard [44] states that “internal metrics are of little value unless there is evidence 

that they are related to some externally visible quality.”  Internal metrics have been shown to be 

useful as early indicators of externally-visible product quality [3] when they are related (in a 

statistically significant and stable way) to the field quality/reliability of the product. The validation of 

such internal metrics requires a convincing demonstration that (1) the metric measures what it 

purports to measure and (2) the metric is associated with an important external metric, such as field 

reliability, maintainability, or fault-proneness[29].  

Our research objective is to construct and validate a set of easy-to-measure in-process metrics 

that can be used as an early indication of an external measure of post-release field quality and 

provides meaningful feedback on the thoroughness of a testing effort. To this end, we have created a 

metric suite we call the Software Testing and Reliability Early Warning metric suite for Java 

(STREW-J) [69-71].  Software reliability is defined as the probability that the software will work 

without failure under specified conditions and for a specified period of time [64].  

The STREW metrics are used to build a regression model to estimate the post-release field 

quality using the metric TRs/KLOC.  The estimation of post release field quality via the STREW 

metric suite is applicable for development teams that write extensive automated test cases, such as is 

done in the Extreme Programming [8] software development methodology. The STREW method is 

not applicable for script-based automated testing because, as will be discussed, the metrics are 

primarily based upon the object-oriented (O-O) programming paradigm.  Teams develop a history of 

the value of the STREW metrics from comparable projects with acceptable levels of field quality. 

These historical metric values are then used to estimate the relationship between the STREW metric 
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elements and the TRs/KLOC.  In this dissertation, we present empirical results of an academic 

feasibility study (22 projects), a case study of open source projects (27 projects), and an industrial 

case study (five projects) designed to build and validate the STREW model.    

The rest of this thesis is organized as follows.  Chapter 2 provides the background introduction to 

software reliability, software testing, software metrics, and industrial metric programs. Chapter 3 

outlines the prior research work related to the estimation of fault density and fault-proneness, and 

Chapter 4 presents the STREW metric suite. Chapters 5 and 6 provide the evaluation of the STREW 

metric suite in terms of estimating the post-release field quality and providing test quality feedback. 

Chapter 7 presents a retrospective analysis of the STREW metric suite, and Chapter 8 discusses the 

conclusions and future work. 
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CHAPTER 2 
 
 
BACKGROUND 
 

This section provides an introduction to the four main areas related to this proposal:  software 

reliability, software testing, software metrics, and industrial metric programs. 

2.1 SOFTWARE RELIABILITY 

Software reliability is defined as the probability that the software will work without failure under 

specified conditions and for a specified period of time [64]. A number of software reliability models 

are available. They range from the simple Nelson model [73] to more sophisticated hyper-geometric 

coverage-based models [45], to component-based models, and object-oriented models [3]. Several 

reliability models use Markov Chain techniques [95].  Other models are based on the use of an 

operational profile, i.e., a set of software operations and their probabilities of occurrence [64]. These 

operational profiles are used to identify potentially-critical operational areas in the software to signal 

a need to increase the testing effort in those areas. A large group of software reliability growth models 

are described by Non-Homogenous Poisson Processes (NHPP) [98]. This group includes Musa [66] 

and the Goel-Okumoto [35] models.   

In many test-centric methodologies, developers strive to pass all the automated tests that are 

written, and there are no measurable faults. Even if there are failures, these failures might not be an 

accurate reflection of the reliability of the software if the testing effort was not comprehensive.   
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Instead, “no failure” estimation models, as described in  [26, 28, 59], may be more appropriate for use 

with such methodologies. 

Software reliability models can be classified broadly into seven categories [97]: 

• Markov models: A model belongs to this class if its probabilistic assumption of the 

failure process is essentially a Markov process, i.e. a birth-death process. In these 

models each state of the software has a transition probability associated with it that 

governs the operational criteria of the software.     

• Non-homogeneous Poisson process (NHPP) models: A model is classified as a 

NHPP model if the main assumption is that the failure process is described by a NHPP. 

The main characteristic of this type of model is that there is a mean value function which 

is defined as the expected number of failures up to a given time.  

• Bayesian process: In a Bayesian process model, some interesting information about 

the software to be studied is available before the testing starts, such as inherent fault 

density and defect information of previous releases. This information can be used in 

combination with the collected test data to make a more accurate estimation and 

prediction about the reliability. 

• Statistical data analysis methods: Different statistical models and methods are 

applied for the analysis of software failure data. Some of these models are the time series 

model, proportional hazards model, and regression models. 

• Input-domain based models: These models do not make any dynamic assumption 

about the failure processes. All possible input and output domains of the software are 

constructed and, based on the results of the testing, the faults in mapping between the 

input and output domains are identified, i.e. for a particular value in the input domain if 

the corresponding value in the output domain must be produced or a fault is identified. 
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• Seeding and tagging models: These models utilize the statistical capture-recapture 

technique that involves the artificial seeding of faults.  The assessment of the testing is 

based upon the number of seeded faults that remain in the software at the conclusion of 

the testing effort. 

• Software metrics models: Software reliability metrics which are measures of the 

software complexity can be used to estimate the number of software faults remaining in 

the software. 

2.2 SOFTWARE TESTING 

Software testing is a verification and validation (or V&V) software practice and is considered to 

be a software quality assurance practice. Software testing can be use to answer two main questions 

[10], 

• Verification:  Are we building the product right? 

• Validation:  Are we building the right product? 

2.2.1 SOFTWARE TESTING CLASSIFICATIONS 

As shown in Figure 2.1, testing activities can be classified as black box or white box.  Black box 

testing [43], (also called functional testing) is testing that ignores the internal mechanism of a system 

or component and focuses solely on the outputs generated in response to selected inputs and 

execution conditions.   Black box testing is used to simulate the customer behavior and focuses on 

input/output. White box testing [43], (also called structural testing) is testing that takes into account 

the internal mechanism of a system or component.   
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Figure 2.1: Testing Techniques 

There are several levels of testing that should be done on a large software system.  These levels are 

explained below [43]. 

1. Unit Testing: Testing of individual hardware or software units or groups of related 

units[43]. It is done at a very low structural level. The primary objectives of unit testing 

are to (1) verify the code against the component, i.e. to see if the code does what the 

component is expected to do with respect to the overall system; (2) execute all new and 

changed code to ensure all branches are executed in all directions, (3) check for the 

correctness of logic and data paths; and (4) exercise all error messages, return codes and 

response options [48].  

 
2. Integration testing:  Testing in which software components, hardware components, or 

both are combined and tested to evaluate the interaction between them. Integration testing 

involves uses both black and white box testing techniques[43]. 

3. Functional and System testing:  Using black box testing techniques, testing conducted 

on a complete, integrated system to evaluate the system's compliance with its specified 

requirements[43]. 

4. Acceptance testing:  (1) Formal testing conducted to determine whether or not a system 

satisfies its acceptance criteria and to enable the customer to determine whether or not to 

Software Testing 

White Box Testing Black Box Testing 
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accept the system. (2) Formal testing conducted to enable a user, customer, or other 

authorized entity to determine whether to accept a system or component[43]. 

5. Regression testing.  Selective retesting of a system or component to verify that 

modifications have not caused unintended effects and that the system or component still 

complies with its specified requirements[43]. 

2.2.2 AUTOMATED SOFTWARE TESTING EXAMPLE USING JUNIT 

As this dissertation deals with leveraging the software testing effort for estimating post-release 

field quality, we present an example of the xUnit1 type of software testing that our post-release field 

quality is based upon.  Note the symmetries between the source and test code.  This example involves 

a Java program to add, subtract, multiply and divide two numbers, as shown in Figure 2.2. 

Source Program  

//computation.java 
//author-Nachiappan Nagappan 

import java.io.*; 
import java.lang.*; 
 
public class computation 
{ 
   //Add two numbers 
 public static int addi(int temp1,int temp2) 
 { 
  int temp3; 
  temp3=temp1+temp2; 
  return(temp3); 
 } 
 
   //Subtract two numbers 
 public static int subt(int temp1,int temp2) 
 { 
  int temp3; 
  temp3=temp1-temp2; 
  return(temp3); 
 } 
 
   //Multiply two numbers 
 public static int mult(int temp1,int temp2) 
 { 
  int temp3; 

                                                 
1 http://xprogramming.com/software.htm 
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  temp3=temp1*temp2; 
  return(temp3); 
 } 
 
   //Divide two integers 
 public static int divi(int temp1,int temp2) 
 { 
  int temp3; 
  temp3=temp1/temp2; 
  return(temp3); 
 } 
 
 public static void main(String args[])throws IOException 
 { 
  int x; 
  computation nachi=new computation(); 
 } 
  

}                       //End of Program 
Figure 2.2: Example Java Source program 

There are four methods that form the core of the source program, addi(), subt(), mult() and divi() 

which perform the operations of addition, subtraction, multiplication and division. The corresponding 

automated testing program written in JUnit2 is given in Figure 2.3. This test program exercises the 

source program to check if the operations are correct based on specific test cases (e.g. testaddi()  in 

Figure 2.3 to check if two integers are added correctly). 

Test Program 
//computationTest.java 
//author-Nachiappan Nagappan 
 
import junit.framework.*; 
import java.io.*; 
 
public class computationTest extends TestCase 
{ 
 public computation x; 
 
 public computationTest(String name) 
 { 
  super(name);   
 } 
 
 public void setUp() 
 { 

                                                 
2 junit.org 
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    x=new computation(); 
  } 
 
  //Test addi() method of computation.java 
  public void testaddi() 
 { 
  x=new computation();  
  assertEquals(100,x.addi(75,25)); 
 } 
 
 //Test subt() method of computation.java 
 public void testsubt() 
 { 
  x=new computation();  
  assertEquals(50,x.subt(75,25)); 
 } 
 
 //Test mult() method of computation.java 
 public void testmult() 
 { 
  x=new computation();  
  assertEquals(1875,x.mult(75,25)); 
 } 
 
 //Test divi() method of computation.java 
 public void testdivi() 
 { 
  x=new computation();  
  assertEquals(3,x.divi(75,25)); 
 } 
  
 public static void main(String[] args)  
 { 
 } 

}                 //End of Program 

Figure 2.3: Example Java Test program 

Upon execution of the above test program, all the four mathematical operations are tested and the 

JUnit output is produced, as shown in Figure 2.4.  Figure 2.4 shows that four of four test cases pass 

and provides a green bar to visually demonstrate that all test cases passed.   
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Figure 2.4: JUnit output screen shot 

2.3 SOFTWARE METRICS 

We present in this section a discussion on software metrics as we use in-process testing metrics in 

our dissertation research.  The term software metrics explains many activities, all of which involve 

some degree of software measurement [33]: 

• Cost and effort estimation 

• Productivity measures and models 

• Data collection 

• Quality models and measures 
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• Reliability models 

• Performance evaluation and models 

• Structural and complexity metrics 

• Capability-maturity assessment 

• Management by metrics 

• Evaluation of methods and tools. 

Since there is virtually an infinite number of possible software metrics, developers must have 

some criteria for choosing which metrics to apply for a particular project. Ideally, a metric should 

possess the following characteristics [77]: 

• Simple.  The definition and use of the metric is simple; 

• Objective. If different people perform the measurement, they will give similar values.  

Objective metrics allow for consistency and prevents individual bias; 

• Easily collected.  The cost and effort to obtain the measure is reasonable; 

• Robust.  The metric is insensitive to irrelevant changes, allowing for useful comparison; 

and 

• Valid. A valid metric measures what it is supposed to measure, promoting trustworthiness 

of the measure. 

Software metrics may be broadly classified into seven categories [77] as shown in Figure 2.5. The 

seven categories represent the seven different phases of software engineering from which metrics can 

be collected.      
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Figure 2.5: Software Metrics Classification 

The STREW metric suite is comprised of metrics from both the source and test code. The 

following discussion presents a broad overview of the popular software metric measures. The metrics 

range from product, process metrics to metric measurement paradigms like the Halstead metrics, 

cyclomatic complexity, and function points. 

2.3.1 TEST METRICS 

We shall concentrate on a study of the test metrics [77] because in our work, we leverage the 

testing effort to assess the quality of the testing effort and to predict post-release field quality   based 

on previous empirical data. Test metrics may be of two types [77], 

1. Metrics related to test results or the quality of the product being tested. 

2. Metrics used to assess the effectiveness of the testing process. 

In this dissertation, we will be focusing on metrics of the second category.  Further, we also provide 

an overview of some of the product (metrics obtained from the software) and process (metrics 

obtained from the software process employed in the development cycle) metrics that are commonly 

used.  

Software Metrics

Installation and Checkout 
Metrics 

Implementation Metrics 

Design Metrics Requirements MetricsMetrics used in all phases 

Operation and 
Maintenance Metrics 

Test Metrics 
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2.3.1.1 PRODUCT METRICS (Defect/Error/Fault Metrics) 

• Primitive defect/error/fault metrics. These are very simple, easy to collect metrics that are 

represented in terms of bar, line graphs and using histograms. 

• Number of faults detected in each module. 

• Number of requirements, design, and coding faults found during unit and integration testing. 

• Number of errors by type (e.g. number of logical errors, number of computation errors, 

number of interface errors etc.) 

• Number of errors by cause or origin 

• Number of errors by severity (number of critical errors, number of major errors, number of 

cosmetic errors). 

• Fault Density (FD): Number of faults/size in one thousand lines of code (KLOC)  

o FD may also be weighed in using the severity of errors as shown in Equation 2.1. 

FD (Weighted) = W1 S/N+W2 A/N+W3 M/N     (2.1) 

 W1,W2 ,W3 – Weights assigned.(User dependant) 

 N- Number of faults 

 S-Number of severe faults 

 A-Number of average severity faults 

 M-Number of minor faults 

• Defect age: Defect age is the time between when a defect is introduced and when it is fixed. 

The average defect age of a product is computed using the summation of the individual defect 

ages for all the defects as shown in Equation 2.2. 

defect age= Σ∀(Phase detected – phase introduced)/ Number of defects      (2.2) 

• Defect response time: This measure is the time between when a defect is detected to when it 

is fixed or closed. 
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• Defect Cost: The cost of a defect is the sum of the cost to analyze the defect, the cost to fix it, 

and the cost of failures already incurred due to the defect. 

• Defect removal efficiency (DRE):  The defect removal efficiency is the percentage of defects 

that have been removed during a process, computed via Equation 2.3. 

DRE = Number of defects removed/Number of defects at the start of the process * 100%  (2.3) 

2.3.1.2 PROCESS METRICS 

Test case metrics 

• Total number of planned white/black box test cases run to completion. 

• Number of planned integration tests run to completion 

• Number of unplanned test cases required during the test phase. 

Coverage metrics 

• Statement coverage 

• Branch coverage 

• Path coverage 

• Data flow coverage 

• Test coverage 

Failure metrics 

• Mean time to failure (MTTF): This is the mean time for the next failure i.e. (i+1)th  failure 

given the failure times of the previous i failures. This metric is a basic parameter required 

by most software reliability models. 

• Failure rate: This is used to indicate the growth in the software reliability as a function of 

test time and is usually used with reliability models. Failure rate requires the observed 

time between failures at a given severity level and the number of failures in a given 

severity level in a particular time interval. The failure rate can calculated using R(t) as 
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shown in Equation 2.4, is obtained from the cumulative probability distribution (F(t)) of 

the time until the next failure, using a software reliability estimation model.  

o The failure rate, λ(t)= -1/R(t) [dR(t)]/dt where R(t)=1-F(t)     (2.4) 

• Cumulative failure profile. Uses a graphical technique to predict reliability to estimate 

additional testing time needed to reach an acceptable reliability level and to identify 

modules and subsystems that require additional testing. 

Some of the more commonly used software metric(s)/suites are discussed below. These models 

provide an introduction to current trends in software metrics measurement.   

2.3.2 HALSTEAD SOFTWARE SCIENCE 

Halstead [37] proposes the measurement of a software system that is obtained by breaking down 

and arranging a finite number of program “tokens,” which are basic syntactic units distinguished by a 

compiler. Halstead’s measurement takes into account the number of distinct operators and operands 

that appear in a program; the total number of operator occurrences; and the total number of operand 

occurrences to calculate several program characteristics.  These characteristics are program length 

(total number of operator and operand occurrences), volume (number of bits required to specify a 

program), vocabulary (total count of distinct operator and operand count), level (a measure of 

software complexity), and program effort.    

Using the above metrics, Halstead designed a set of equations that express several of the program 

characteristics. 

Vocabulary (n): n = n1 + n2                                                      (2.5) 

Length (N): N= N1 + N2    (2.6) 

= n1 log2(n1) + n2 log2(n2) 

Volume (V): V= N log2 (n)                               (2.7) 

         = N log2 (n1 + n2) 

Level (L): L= V*/V          (2.8) 
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     = (2/n1) * (n2/N2) 

Difficulty (D) = 1/L          (2.9) 

Effort (E): E= V/L                                          (2.10) 

Faults (B): = V/S*                                         (2.11) 

Where: 

• n1- The number of distinct operators that appear in a program 

• n2- The number of distinct operands that appear in a program 

• N1- The total number of operator occurrences 

• N2- The total number of operator occurrences 

• V* is the volume represented by the built in function performing the task of the entire 

program 

• S* is the mean number of mental discriminations (decisions) between errors (S* is 3000 

according to Halstead).  

Halstead’s metrics has been subject to criticism in several aspects, such as methodology, 

derivations of equations, human memory models [48]. Empirical support is lacking in several areas of 

the Halstead measures. The Halstead metrics are static metrics that ignore variations in fault rates 

observed in software products and among modules. However, Halstead’s work was instrumental in 

making metrics an issue among computer scientists as it was the first formal investigation of software 

metrics. [48] 

2.3.3 CYCLOMATIC COMPLEXITY  

McCabe designed cyclomatic complexity [58] as a  measure of the programs testability and 

understandability.  Both testability and understandability impact maintainability [48]. Cyclomatic 

complexity is adapted from the classical graph theoretical cyclomatic number to suit software science 

and can be defined as the number of linearly-independent paths through a program. Cyclomatic 

complexity has been shown to be an indicator of the effort required to test a program [48]. 
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The formula used to compute the complexity metric is shown in Equation 2.12. 

M = V(G) = e-n+2p                (2.12) 

Where, V(G) = cyclomatic complexity of G 

 e = number of edges 

 n = number of nodes 

 p=number of unconnected parts of the graph. 

To have good testability and maintainability, McCabe recommended that no program module 

should have a cyclomatic complexity greater than 10.  Because it is based on decisions and branches, 

this complexity metric is consistent with the logic pattern of design and programming, which appeals 

to software professionals. Many experts recommend the use McCabe’s cyclomatic complexity to 

ensure adequate test coverage, and the use of McCabe’s cyclomatic measure has been gaining 

acceptance by practitioners [48].  

2.3.4 FUNCTION-POINT ANALYSIS 

Function point analysis [2] is an approach for assessing the size of a piece of software based on 

the functionality provided. Function points are obtained by the analysis of a requirements 

specification document to identify the different functions that the system is to perform. The functions 

are classified into different types and are given weightings according to the relative complexity of the 

function type [85].  

For example, the unadjusted function point count ‘ufc’ for a specification is given by [85] 

Equation 2.13: 

ufc = 4*i+5*o+4*e+7*p+10*f        (2.13) 

 where, i = number of external input types 

            o = number of external output types 

            e = is the number of enquiries 

            p = is the number of external files (program interfaces) 

            f = is the number of external files 
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(This is a simplified equation from [85] to illustrate ufc) 

Further, Albrecht suggests that a total of 14 complexity metric factors be taken into account for 

calculating the technical complexity factor (tcf) [85]. The 14 factors are data communications, 

distributed data processing, performance, heavily-used configuration, transaction rate, on-line data 

entry, end-user efficiency, on-line update, complex processing, reusability, installation ease, operation 

ease, multiple sites, facilitate change. Each factor is scored between zero (no influence) and five (very 

strong influence). The tcf is calculated as shown in Equation 2.13: 

tcf = 0.65 + 0.01 *∑
i

 DI  (2.13) 

,where DIi is the degree of influence of the ith technical complexity factor. 

Thus, the tcf will range from 0.65 to 1.65. For a simple system with no data communications the 

value will tend towards 0.65.  A distributed system dealing with high transaction volumes and 

characterized by complex processing have a tcf of approximately 1.35. Combining the technical 

complexity factor and the unadjusted function point count, we obtain the adjusted function point 

count (fp) as in Equation 2.14: 

fp = ufc*tcf            (2.14) 

The function point is usually used as a predictor of the development effort, although its inverse is 

often also used as a productivity index. Also, for example, once the function points of an organization 

are calibrated, they have been found to explain 75% of the variation in program size in a study of 15 

commercial software systems [49]. 

2.3.5 HENRY-KAFURA STRUCTURE METRIC 

Structure metrics take into account the interactions between modules in a product or system and 

quantify such interactions. The information-flow metric defined by Henry and Kafura [41], uses fan-

in (a count of the number of modules that call a given module) and fan-out (a count of the number of 

modules that are called by a given module) to calculate a complexity metric. 

Henry and Kafura’s structure complexity metric (Cp) is defined in Equation 2.15: 
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 Cp = (fan-in * fan-out)2        (2.15) 

 In general, modules with a large fan-in are relatively small and simple. In contrast, modules that are 

large and complex have a small fan-in. Thus, components with a large fan-in and large fan-out may 

indicate poor design. Such modules have to be decomposed correctly.  

2.3.6 OBJECT-ORIENTED METRICS   

In recent years, object-oriented (O-O) programming has gained importance, and new suites of 

metrics that exploit the O-O properties are becoming popular. Two popular O-O metric suites are 

presented below.  

2.3.6.1 CK METRICS 

The CK metric suite proposed by Chidamber-Kemerer (CK) [17]identifies six O-O metrics: 

• Weighted Methods per class (WMC).  the weighted sum of all the methods defined in a 

class; 

• Coupling Between Objects (CBO): the number of other classes with which a class is 

coupled; 

• Depth of Inheritance Tree (DIT): the length of the longest inheritance path in a given 

class; 

• Number of Children (NOC): the count of the number of children (classes) that each class 

has; 

• Response for a class (RFC): the count of the number of methods that are invoked due to 

the initiation of an object of a particular class; and 

• Lack of Cohesion of Methods (LCOM): is a count of the number of method pairs whose 

similarity is zero and minus the count of method pairs whose similarity in not zero. 

Several studies have been performed assessing the effectiveness of the CK Metrics in addressing 

software fault-proneness [3, 86, 88]. These studies are explained in detail in Chapter 3.  
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2.3.6.2 MOOD METRIC SUITE 

The MOOD [15] O-O metric suite consists of the following O-O Metrics:- 

• Method Hiding Factor (MHF): the number of visible methods; 

• Attribute Hiding Factor (AHF): the number of visible attributes; 

• Method Inheritance Factor (MIF): the ratio of the sum of inherited methods to the total 

number of methods. 

• Attribute Inheritance Factor (AIF): the ratio of, the sum of inherited attributes to the total 

number of attributes. 

• Polymorphism Factor (PF):  the degree of method overriding in the class inheritance tree. 

PF equals the number of actual method overrides divided by the maximum number of 

possible method overrides. 

• Coupling Factor: the actual number of couplings among classes in relation to the 

maximum number of possible couplings. 

2.4 INDUSTRIAL METRIC PROGRAMS 

This section provides an insight into the popular metric programs employed in three popular 

industrial organizations (Motorola, Hewlett-Packard, and IBM) to present an overview of the types of 

metrics that are measured in commercial software development organizations.  

2.4.1 MOTOROLA 

Motorola’s software metrics program [21] follows the Goal/Question/Metric paradigm [6]. The 

goals and measurement areas identified by the Motorola Quality Policy for Software Development 

(QPSD) are listed below [48]: 

Goals 

• Goal 1: Improve project planning 

• Goal 2: Increase Defect containment 

• Goal 3: Increase Software Reliability 
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• Goal 4: Decrease software defect density 

• Goal 5: Improve customer service 

• Goal 6: Reduce the cost of nonconformance 

• Goal 7: Increase software productivity 

Measurement areas: 

• Delivered defects and delivered defects per size 

• Total effectiveness throughout the process 

• Adherence to schedule 

• Estimation accuracy 

• Number of open customer problems 

• Time that problems remain open 

• Cost of nonconformance 

• Software reliability 

2.4.2 HEWLETT-PACKARD 

Hewlett- Packard’s software metrics program [36] uses several metrics and ratios to assess product 

quality. A subset of these metrics is given below [48]: 

• Average fixed defects/working day 

• Average engineering hours/fixed defect 

• Average reported defects/working day 

• Branches covered/ Total branches 

• Defects/thousands of non-commented source statements  

• Defects/Lines of Documentation not included in program source code 

• Defects/Testing time 

• non-commented source statements /engineering month 

• Percent overtime: average overtime/40 hours per week 
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• Engineering months/Total Engineering months 

2.4.3 IBM ROCHESTER 

For the software community within IBM, a set of standard 5-UP software quality metrics is 

defined by the IBM corporate software measurement council. The 5-UP metrics include the following 

[48]: 

• Overall customer satisfaction 

• Post release defect rate for three years 

• Customer problem calls 

• Fix response time 

• Number of defective fixes 

IBM Rochester in addition to the above 5-UP metrics uses several other in-process metrics, such 

as  phase effectiveness (for each phase of effectiveness and test); inspection coverage; effort; defect 

rates; in-process inspection escape rate; compilation of failures and build/integration defects; weekly 

defect arrivals and backlog during testing; defect severity; defect cause; reliability; models for post 

release defect estimation.  
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CHAPTER 3 
 
 
RELATED RESEARCH 
 

In this chapter, we present the related research work in two sections. Section 3.1 is a discussion of 

prior related studies done with software metrics, and Section 3.2 investigates the applicability of 

popular software reliability models within our research context.  

3.1 PRIOR RELATED WORK 

The higher the failure-proneness of the software, logically the lower the reliability and the quality 

of the software produced, and vice-versa.  Software fault-proneness is defined as the probability of 

the presence of faults in the software [23]. Failure-proneness is the probability that a particular 

software element will fail in operation.  Using operational profiling information, it is possible to relate 

failure-proneness and fault-proneness of a product.  Research  on fault-proneness has focused on two 

areas: (1) the definition of metrics to capture software complexity and testing thoroughness and (2) 

the identification of and experimentation with models that relate software metrics to fault-proneness 

[24]. While software fault-proneness can be measured before deployment (i.e. the count of faults per 

structural unit such as faults per line of code), failure-proneness cannot be directly measured on 

software before deployment [31]. Fault-proneness can be estimated based on directly-measurable 

software attributes if associations can be established between these attributes and the system fault-

proneness.   
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Structural O-O measurements, such as those defined in the CK [17] and MOOD [15] O-O metric 

suites, are being used to evaluate and predict the quality of software [39].  Structural object-

orientation (O-O) measurements, such as those in the Chidamber-Kemerer (C-K) O-O metric suite 

[17], have been used to evaluate and predict fault-proneness [3, 13, 14].   The CK metric suite 

consists of six metrics: weighted methods per class (WMC), coupling between objects (CBO), depth 

of inheritance tree (DIT), number of children (NOC), response for a class (RFC) and lack of cohesion 

among methods (LCOM).  These metrics can be a useful early internal indicator of externally-visible 

product quality in terms of fault-proneness [3, 86, 88]. 

  In software systems, the actual measurable product quality (e.g., failure rate) that is derived from 

the behavior of the system usually cannot be measured until too late in the life-cycle to effect an 

affordable corrective action. In general, a multi-phase approach must be taken collecting the various 

metrics of these suites at different stages, since different metrics will be visible at different 

development phases [92, 93].  

Basili et al. [3] studied the fault-proneness in a class on eight student projects. It was observed 

that the WMC, CBO, DIT, NOC and RFC were correlated with defects while the LCOM was not 

correlated with defects. Further, Briand et al. [14] performed an industrial case study and observed 

the CBO, RFC, LCOM to be associated with the fault-proneness of a class. A similar study done by 

Briand et al. [13] on eight student projects showed that classes with a higher WMC, CBO, DIT and 

RFC were more fault prone while classes with more children (NOC) were less fault prone (LCOM 

was not associated with the defects). Tang et al. [88] studied three real time systems for testing and 

maintenance defects. Higher WMC and RFC were found to be associated with fault-proneness. El 

Emam et al. [30] studied the effect of project size on fault-proneness by using a large 

telecommunications application. Size was found to confound the effect of all the metrics on fault-

proneness. In addition to this, Chidamber et al.[17] analyzed project productivity, rework, and design 

effort of three financial services applications. High CBO and low LCOM were associated with lower 

productivity, greater rework, and greater design effort. To summarize, there is a growing body of 
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empirical evidence that supports the theoretical validity of the use of these internal metrics [3, 13] as 

predictors of fault-proneness. The consistency of these findings varies with the programming 

language [86].  Therefore, the metrics are still open to criticism. [19] 

The relationship between product quality and process capability [82] and maturity has been 

recognized as a major issue in software engineering based on the premise that improvements in 

process will lead to higher quality products. The process capability is defined as the ability of a 

process to address the issue of stability, as defined and evaluated by trend or change. Such a 

relationship between product quality and process capability  should manifest itself via meaningful 

metrics that would exhibit trends and other characteristics that would be indicative of the stability of 

the process. Using the Space Shuttle software Schneidewind reports an assessment of long term 

metrics, such as MTTF, total failures per KLOC change in code (churn), total test time normalized by 

KLOC change in code, remaining failures normalized by KLOC, change in code, and  predicted time 

to next failure to be indicative of the stability of the software process with respect to process 

capability [82].  

Several techniques have been used for the analysis of software quality (errors3) with respect to 

program metrics. Linear regression analysis techniques have been used to relate quality factors, such 

as defect density and reliability, to software metrics. These regression models are built using the best 

fit among all the data available and can be used to predict the software quality factors accordingly 

using the current values of the metrics for programs that are being analyzed[63]. Discriminant 

analysis, a statistical technique that is used to categorize programs into groups (high, moderate, low 

quality) based on the programs metric values, are also used as a tool for the detection of fault-prone 

programs. Munson et al. demonstrated the efficacy of discriminant analysis by using the technique 

called data-splitting. From a total of 390 programs, 260 were randomly-selected and were used to 

                                                 
3 (1) The difference between a computed, observed, or measured value and the true, specified, or theoretically 
correct value or condition. (2) An incorrect step, process, or data definition (3) An incorrect result (4) Human 
action that produces an incorrect result. 
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build the discriminant model.  The remaining 130 programs were used to test the efficacy of the 

model to classify programs according to software faults. Discriminant analysis has been shown to 

work well for programs with a low error rate, but the linear regression models shows greater promise 

for use with programs with a high potential for faults[62]. Further, using Binary Discriminant Factors 

(BDFs) makes fewer mistakes in classifying software that is of low quality than in the case with linear 

vectors of metrics [83].  

Also, optimized set reduction (OSR) techniques and logistic regression techniques are used for 

modeling risk and fault data. OSR techniques attempts to determine which subsets of observations 

from historical data provide the best characterization of the programs being assessed. Each of these 

optimal subsets is characterized by a set of predicates (a pattern), which can be applied to classify 

new programs. OSR is sometimes better than a logistic regression analysis for multivariate empirical 

modeling since pattern-based classification is more accurate than logistic regression equations [12]. 

Further, logistic regression models can be built that relate software measures and software fault 

proneness for classes of homogenous software products [24]. Also, multivariate models can be built 

with logistic regression where Principal Component Analysis (PCA) is used on the of metrics to 

model the data [25]. Denaro et al. calculated 38 different software metrics for the open source Apache 

1.3 and Apache 2.0 projects. Using PCA, they selected a subset of consisting of nine of these metrics 

was found to explained 95% of the total variance.  Using combinations of these nine metrics, logistic 

regression models were built using the data from the Apache 1.3 project and verified against the 

Apache 2.0 project [25]. We believe that a judicious use of early metrics, in conjunction with an 

understanding of the software process can be a powerful tool in guiding the development of good 

quality software. 
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3.2 SOFTWARE RELIABILITY MODELS 

For our research, we must select an appropriate estimation model which can take as input a 

quantification of the automated testing effort.  We considered a large number of published software 

reliability estimation models.  Early in the research, the use of an operational profile-based reliability 

model was determined to be impractical for use with development teams that write extensive 

automated test cases (i.e. employ automated testing methods (ATM)). ATM is the existence of a dual 

hierarchy of executable source and test code that work in parallel, for example Java source programs 

and Junit test programs. An example for this is provided in Chapter 4. The infeasibility of using 

operational profiles was determined based upon the results of three case studies [68] carried out in 

industrial locations, John Deere, Rolemodel Software, and Nortel.  We had initially assumed there 

was a correspondence between the customer requirements and the developers automated acceptance 

test cases.  This assumption came from the idea that, during the requirements elicitation process, the 

developers and customers would create the requirements and then the developers write acceptance 

tests that dealt specifically with that certain requirement.  In this way, developers could prove to the 

customer that a given requirement was completed by demonstrating that its acceptance test(s) passed.  

Thus, we expected that there would be a correspondence between a requirements and its acceptance 

test case(s) for the life of the product.    

However, we found that developers tend to aggregate a minimal set of acceptance test cases, each 

used to satisfy several of the customer’s requirements. For example, the developers could have an 

acceptance test that tested a certain core capability of the program.  After this test passes, this core 

capability is deemed to be implemented.  As a result, developers consider that they do not need to 

keep that test in its current form any more, and they build upon this test case to demonstrate more 

complex behavior of another requirement.  As more functionality is added to the system, developers 

may alter/add additional conditions to acceptance test cases so that one acceptance test may be used 
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for multiple requirements.  Therefore, developing a mapping between requirements and acceptance 

test cases was shown to not be practical.    

The main problems with using an operational profile-based model were identified as:  

(1) Developers would need to change their automated acceptance testing habits to eliminate 

the reuse and alteration of test cases;  

(2) It is almost impossible to tie together the customer requirements and developer’s 

acceptance test cases as developers tend to aggregate acceptance test cases to satisfy 

several of the customer’s requirements; and  

(3) The requirements of a software system continuously evolve across a release and this 

evolution requires the developers to constantly reassign and recalculate the operation 

profiles of the acceptance and unit tests which involves tremendous overhead.  The 

developers in the case study would not consider such a change to their current agile 

methodology.   

This lead us to the conclusion that the use  of an operational profile model may not be feasible and 

our approach would have to focus on using a non-operational profile models [78] for estimation of 

reliability. 

We set out to base our estimation model upon existing reliability models.  The results of the first 

round of the model selection effort are summarized in Tables 3.1 and 3.2.  The selection criterion that 

was used is based on the following constraints: 

1. An operational profile-based model is impractical for our work. 

2. In an ATM, all the test cases pass and there are no measurable failures. 

3. Time is not monitored during testing/running of test cases in ATM.  Therefore, defects 

per unit time of operation cannot be measured.  

4. No information regarding the inherent defect density (i.e. the number of defects 

remaining in the software) is available. The inherent defect density is generally obtained 

based on defects in previous released versions (or) based on results after testing stages 
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like Functional Verification test (FVT) at the end of which a testing group would say, for 

example that there are 5 defects/KLOC based on their testing principle.  

Twenty-two existing models were analyzed for identifying their fit within our problem domain.  

We classified these models into one of four categories:  Candidate, Bad Model Fit, Bad Data Fit, and 

Overall Poor Fit.  Table 3.1 shows the legend for the classification of the models.  For example, if a 

model could be used with an ATM but needed data that was not available with an ATM, it was 

classified as a “Bad Data Fit.” In the data applicability criterion we assess if the product data 

(metrics) available from software systems can be used for the modeling purposes. Information 

regarding assumptions about the remaining number of failures in the system or process information 

about the software system which is not easy to measure forms a crucial part in classifying models as a 

bad data fit. 

Table 3.1: Legend for Classification of Software Reliability Models  

Applicability to data 

available 

Applicability to ATMs Model Classification 

Yes Yes Candidate 

Yes No Bad Model Fit 

No Yes Bad Data Fit  

No No Overall Poor Fit 

 

The classification of the twenty-two software reliability models according to the above 

classification is shown in Table 3.2.  The far majority of the models have a Bad Model Fit because 

they require information about the previous failures (or require failures to occur) which would make 

the model inapplicable if the system had no failures.  Ultimately, we used a empirical metric model 

that is found in the Candidate classification.   
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Table 3.2: Software Reliability model classification   

Candidate Models 

Empirical Metric Models, Lipow [55]:  Several metrics are collected from previously-

successful software programs.  Using these metrics, a regression equation is framed that is 

used to estimate the reliability of similar programs.  If data from similar previous projects is 

available for calibration, this model can be used.  

Regression Models[63]:  A linear regression analysis is investigated between the faults and 

certain selected metrics and parameters, such as field project quality.  Works well with all 

the data available. 

Zero Failure Model [59]:  The zero failure model determines the reliability when there are 

no failures, as shown below. To use the Zero-Failure model, we must identify a meaningful 

long term failure rate denoted by Θ and that N random tests have established an upper 

confidence bound (1-α) that Θ is below some level θ [38]. The relationship between these 

factors is given by 1- (1-θ)N <= α [89].  Easy applicability but does not work for large 

systems; Used in our feasibility studies. 

Bad Model Fit 

Nelson Model[73]:  This is a very simplistic model based on the number of test failures. 

R = 1-(ň/n).    

where  

• ň - number of failures during testing. 

• n-total number of testing runs.  

• R is the system reliability. 

If no failures are available, the reliability becomes 100% which might always not be the case 

as software systems usually have failures.  
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Table 3.2 (continued) 

Fault seeding models, Schick and Wolvertone [80] and Duran and Wiorkowski [27]:  The 

model requires fault injection whereby faults are intentionally injected into the software by 

the developer.  The testing effort is evaluated based upon how many of these injected defects 

are surfaced during testing. Using the number of injected defects remaining, an estimate on 

the reliability based on the quality of the testing effort is computed.  Infeasible because it 

requires process changes needing developers to do fault injection.  

Hypergeometric Distribution, Tahoma et al. [87]:  The number of faults experienced by 

test instance t(i) is required. Using the number of faults experienced by each test instance, 

the overall system reliability can be determined. But in ATM there are no measurable 

failures and usually the number of failures in each testing instance is not measured or 

tracked. With ATMs, all the test cases pass, and there are no faults/failures to analyze. 

Fault Spreading Model, Wohlin and Korner [96]:  Requires number of faults at a level (or 

testing cycle/stage). The number of faults at each level is utilized to make predictions about 

untested areas of the software. With ATMs, all the test cases pass, and there are no 

faults/failures to analyze. 

Fault Complexity Model, Nakogawa and Hanata [72]:  Ranking of faults according to 

complexity. Based on the number of faults in each complexity level, the reliability of the 

system is estimated based on the current complexity level (high, moderate, low) of the 

software. With ATMs, all the test cases pass, and there are no faults/failures to analyze. 

Littlewood-Verall Model [56]:  Requires a scale parameter, Ψ(i), that is used for describing 

the quality of the test, and is a monotonically-increasing function. Failures are exponentially 

distributed with a parameter assumed to have a prior Gamma distribution.  With ATMs, all 

the test cases pass, and there are no faults/failures to analyze.   
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Table 3.2: (continued) 

Jelinski-Moranda (JM) Model [46]:  In the JM model, the initial number of software faults 

in unknown but fixed (i.e. non-increasing), and the times between the failures are 

exponentially distributed random quantities. Using this information, the JM model is 

modeled as a Markov process model. But in ATMs, there are no failures, and the times of the 

failure are also not measured. 

Bayesian Formulation of the JM model,  Langberg-Singpurwalla [54]:  This models the 

parameters in the JM model as random variables. Poor fit for the same explanation as for the 

JM model.    

Bayesian Model for fault free probability, Thompson and Chelson [90]:  This model delas 

with the probability of fault-free software. Reliability at time t, R(t/λ,p) = (1-p) + pe-λt, where 

λ is given by a prior gamma distribution and p (probability that software is not fault-free) is 

given by an beta distribution. Using these parameters, a Bayesian model is constructed to 

estimate the reliability. This model cannot be used because lamda and p cannot be fixed 

without prior information of the defect density.  Also, the defects may not follow a Beta 

Distribution and with ATMs, all the test cases pass, and there are no faults/failures to 

analyze. 

Bayesian Model using a Geometric Distribution, Liu [57]:  In this model let, Xi be the 

number of test cases at the ith debugging instance at which the first failure will occur. Using 

this value, the number of failures remaining at the current debugging instance can be 

determined. 

With ATMs, all the test cases pass, and there are no faults/failures to analyze. 
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Table 3.2: (continued) 

Goel-Okumoto Model [35]:  The mean value function of the failures at time t is given by, 

m(t)=a(1-e-bt) where in time t the cumulative failures are observed; a and b are parameters 

defined from the collected failure data. With ATMs, all the test cases pass, and there are no 

faults/failures to analyze. 

S-shaped model,Yamada, Ohba et.al. [98] : m(t)= a[1-(1+bt)e-bt]  

Where,  

• a is the number of faults  detected 

• b is the failure detection rate 

With ATMs, all the test cases pass, and there are no faults/failures to analyze.  

Basic Execution Time Model [65] : λ(τ) – fK[N0-µ(τ)]  

Where, 

• f and K are parameters related to the testing phase, initial fault density (N0) 

• µ(τ)-faults corrected after τ amount of testing 

•  λ(τ) is failure rate function at the execution time τ.  

This model cannot be applied as we do not have the initial fault density, and the failure rate 

function at execution time τ with the ATMs. 

Logarithmic Poisson Model [67] : Based on the Basic Execution Time Model (above). 

λ(τ)= λ0 e-Φµ(τ) 

Where,  

• λ0 is the initial failure intensity 

• Φ is the failure intensity decay parameter.  

The time, t, parameter is not available as in ATMs.  
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Table 3.2: (continued) 

Duane Model also known as the Weibull Process Model [26] :  m(t)= (t/α)β 

The two parameters α and β are based on failure data, m(t) is the mean value function of the 

failures at time t.  With ATMs, all the test cases pass, and there are no faults/failures to 

analyze. 

Markov Models, Shantikumar [84] and Whittaker and Poore [75]:  Requires transition 

probabilities from state to state. Using this information a stochastic model is created and 

analyzed for stability. This is primarily because there can be a very large number of states in 

a large software program.  Determining the states and the transition between the states 

would require a process change that is likely to be unwelcome to developers that 

utilize a ATM.    

Fourier Series Model, Crow and Singpurwalla [20]:  Fault clustering and time series 

analysis form a basis of this model. Using time series analysis, the model predicts how 

clustered the faults will be at a given point in time. The ‘time’ parameter is not available as 

in ATM only the number of tests (or testing runs) can be measured. With ATMs, all the test 

cases pass, and there are no faults/failures to analyze. 

Bad Data Fit 

Input Domain-based Models, Bastani and Ramamoorthy [7] and Weiss and Weyuker [94]: 

Input domain is denoted by I of program P. I is mapped to output space O. If there is a fault 

in mapping, then that mapping is identified as a potential fault to be rectified.  Applicable, 

but infeasible to map the domains are there can be a very large number of possibilities in a 

large industrial case study.  
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Table 3.2 (continued) 

Overall Poor Fit 

Halstead Metrics [37], modified by Schneider [81]:  Halstead metrics are collected for the 

programs.  Using these metrics, the reliability of the system is estimated using a fixed 

predefined equation. Halstead’s metrics has been subject to criticism in several aspects, such 

as methodology, derivations of equations, human memory models [48]. Empirical support is 

lacking in several areas of the Halstead measures.  Data is calibrated according to old 

FORTRAN programs that are no longer valid as software development has moved to 

language like C, C++ and Java. Also the Halstead metrics also do not take into account OO 

paradigms.   
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CHAPTER 4 
 
 
STREW METRIC SUITE 
 

The (Software Testing and Reliability Early Warning) STREW metric suite consists of internal, 

in-process testing metrics that are leveraged to estimate post-release field quality with an associated 

confidence interval. The use of the STREW metrics is predicated on the existence of an extensive 

suite of automated unit test cases being created as development proceeds.  These automated unit tests 

need to be structured as is done with the one of the O-O xUnit4 testing frameworks, such as JUnit5.  

The STREW method is not applicable for script-based automated testing because, as will be 

discussed, the metrics are primarily based upon the O-O programming paradigm.  When these xUnit 

frameworks are used with O-O programming, both test code and implementation code hierarchies 

emerges.  Figure 4.1 presents a simplistic example of a parallel structure between the source and test 

class.  For each implementation source code class (e.g. computation), there exists a corresponding 

test code class (e.g. computationTest).  Often each method/function in an implementation source 

code class (e.g. addi) will have one or more corresponding test code method(s)/functions(s) (e.g. 

testaddi).   In industrial practice, often such perfect parallel class structure and one-to-one 

method/function correspondence is not observed; our example is overlysimplistic for illustrative 

purposes.  However, a test hierarchy which ultimately inherits from the TestCase class (in JUnit) is 

created to exercise the implementation code.  

                                                 
4 http://xprogramming.com/software.htm  
5 http://junit.org/ 
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Figure 4.1: Corresponding source and test classes 

Table 4.1 provides sample Java code for a computation class which adds and subtracts two 

integers.  Notice the assertEquals keyword in the testaddi and testsubt methods.  xUnit 

testing is assert-based.  The number of asserts and other metrics specific to xUnit-like test automation 

are used in the STREW metric suite.   

Table 4.1: Corresponding source and test code 

public class computation 
{ 
   public static int addi(int temp1,int temp2) { 
       int temp3 
       temp3 = temp1 + temp2; 
       return(temp3); 
   } 
   public static int subt(int temp1,int temp2) { 
       int temp3 
       temp3 = temp1 - temp2; 
       return(temp3); 
   } 
 

public class computationTest extends TestCase 
{ 
      public computation x; 
      public void setUp() { 
             x=new computation(); 
      } 
      public void testaddi() { 
            assertEquals(100,x.addi(75,25)); 
      } 
      public void testsubt() { 
            assertEquals(40,x.subt(50,10)); 
      } 
} 
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The STREW-J Version 2.0 metric suite consists of nine constituent metric ratios.  The metrics are 

intended to cross-check each other and to triangulate upon an estimate of post-release field quality.  

Each metric makes an individual contribution towards estimation of the post-release field quality but 

work best when used together.  Development teams record the values of these nine metrics and the 

actual TRs/KLOC of projects.  These historical values from prior projects are used to build a 

regression model that is used to estimate the TRs/KLOC of the current project under development. 

For our case studies, we collect the TRs from customer-reported problems. These problems were 

screened.  Duplicates and TRs involving documentation problems were removed.   

 The nine constituent STREW metrics (SM1 – SM9) and instructions for data collection and 

computation are shown in Table 4.2.  The metrics can be categorized into three groups:  test 

quantification metrics, complexity and O-O metrics, and a size adjustment metric.      

The test quantification metrics (SM1, SM2, SM3, and SM4) are specifically intended to 

crosscheck each other to account for coding/testing styles.  For example, one developer might write 

fewer test cases, each with multiple asserts [79] checking various conditions.  Another developer 

might test the same conditions by writing many more test cases, each with only one assert.  We intend 

for our metric suite to provide useful guidance to each of these developers without prescribing the 

style of writing the test cases.  Assertions [79] are used in two of the metrics as a means for 

demonstrating that the program is behaving as expected and as an indication of how thoroughly the 

source classes have been tested on a per class level. SM4 serves as a control measure to counter the 

confounding effect of class size (as shown by  El-Emam [30]) on the prediction efficiency; 
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Table 4.2:  STREW metrics and collection and computation instructions 

Test quantification 
Number of Assertions 
SLOC* 

SM1 Count the number of assertions in all test cases for all 
source files.   

Number of Test Cases 
SLOC* 

SM2 Count the number of test cases to test all source files.   

Number of Assertions 
Number of Test Cases 

SM3 Count the number of assertions in all test cases for all 
source files.  
Count the number of test cases to test all source files.   

_____(TLOC+/SLOC*)___ 
(Number of ClassesTest Number 
of ClassesSource) 

SM4 Count the number of classes for all source files.  
Count the number of classes for all test files.  
   

Complexity and O-O metrics  
Σ Cyclomatic ComplexityTest 

Σ Cyclomatic ComplexitySource 

SM5 Compute the sum of the cyclomatic complexity of all 
the test files. 
Compute the sum of the cyclomatic complexity of all 
the source files. 

Σ CBOTest 

Σ CBOSource 
SM6 Compute the sum of the CBO of  all the test files. 

Compute the sum the CBO of all the source files. 
 
Σ DITTest 

Σ DITSource 

SM7 Compute the sum of the DIT of each file for all the test 
files. 
Compute the sum of the DIT of each file for all the 
source files. 

Σ WMCTest 

Σ WMCSource 
SM8 Sum the WMC in each file for all the test files. 

Sum the WMC in each file for all the source files. 
Size adjustment 
SLOC* ____________                           
Minimum SLOC* 

SM9 Divide the SLOC* of by the SLOC of the smallest 
project used to build the STREW. 

* Source Lines of Code (SLOC) is computed as non-blank, non-comment source lines of code 
+ Test Lines of Code (TLOC) is computed as non-blank, non-comment test lines of code 
 

The complexity and O-O metrics (SM5, SM6, SM7, and SM8) examines the relative ratio of 

test to source code for control flow complexity and for a subset of the CK metrics. The dual hierarchy 

of the test and source code allows us to collect and relate these metrics for both test and source code.  

These relative ratios for a product under development can be compared with the historical values for 

prior comparable projects to indicate the relative complexity of the testing effort with respect to the 

source code.  The metrics are now discussed more fully:  

• The cyclomatic complexity [58] metric for software systems is adapted from the classical 

graph theoretical cyclomatic number and can be defined as the number of linearly 

independent paths in a program.  Prior studies have found a strong correlation between the 
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cyclomatic complexity measure and the number of test defects [91]. Studies have also shown 

that code complexity correlates strongly with program size measured by lines of code [48] 

and is an indication of the extent to which control flow is used.  The use of conditional 

statements increases the amount of testing required because there are more logic and data 

flow paths to be verified [50].      

• The larger the inter-object coupling, the higher the sensitivity to change [17].  Therefore, 

maintenance of the code is more difficult [17].  Prior studies have shown CBO has been 

shown to be related to fault-proneness [3, 13, 14]. As a result, the higher the inter-object class 

coupling, the more rigorous the testing should be [17].   

• A higher DIT indicates desirable reuse but adds to the complexity of the code because a 

change or a failure in a super class propagates down the inheritance tree. The relationship 

between the DIT and fault-proneness [3, 13] was found to be strongly correlated. 

• The number of methods and the complexity of methods involved is a predictor of how much 

time and effort is required to develop and maintain the class [17]. The larger the number of 

methods in a class, the greater is the potential impact on children, since the children will 

inherit all the methods defined in the class. The ratio of the WMCtest and WMCsource measures 

the relative ratio of the number of test methods to source methods. This measure serves to 

compare the testing effort on a method basis. The  relationship between the WMC as an 

indicator of fault-proneness has been demonstrated in prior studies[3, 13]. 

The final metric is a relative size adjustment factor (RCAF).  Defect density has been shown to 

increase with class size [30].   We account project size in terms of SLOC for the projects used to build 

the STREW prediction equation using the size adjustment factor. 

The metrics that comprise the STREW metric suite have evolved [69-71] through our case 

studies.  Some metrics were removed based on the lack of their ability to contribute towards the 

estimation of post-release field quality and due to already existing inter-correlations between the 
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elements. The metric revision process is illustrated in Figure 4.2. The standards for these metrics are 

used to provide feedback on the quality of the testing effort. 

 

Figure 4.2: STREW metric revision process 

As part of the STREW revision process, metrics were removed  based upon by statistical inter-

correlations, multicollinearity, stepwise, backward, and forward regression techniques [53] of case 

study data. The following metrics were removed: 

• Statement coverage 

• Branch coverage 

• Number of requirements/Source lines of code 

• Number of childrentest/Number of childrensource 

• Lack of cohesion among methodstest/Lack of cohesion among methodssource 

To better explain the collection of metrics, we present two examples below that highlight the 

metrics that are collected. The usual metrics like the LOCsource and LOCtest and the number of classes 

are not explained.  Cyclomatic complexity is a measure of the control flow complexity in a program. 

Figure 4.3 shows the control flow graph for explaining the computation of the cyclomatic complexity. 
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Using the computation for cyclomatic complexity (Equation 2.12) we calculate cyclomatic 

complexity to be 7-6+2 = 3, where 7 is the number of edges, 6 is the number of nodes and one 

component is present in Figure 4.3. 

 

Figure 4.3: Example cyclomatic complexity computation 

Consider the program shown in Figure 4.4. The left hand column shows a program to add two 

numbers. The corresponding test program written to test it is shown in the right hand column. The 

underlined parameters in the test program namely testaddi() is counted as a test case and the 

parameter assertEquals(100,x.addi(75,25)) sends in the input numbers 75 and 25 to the source 

program and checks if the computed sum is equal to 100. This counts as one assertion. The second 

example shown in Figure 4.5 explains the measurement of the O-O measures, coupling between 

objects, depth of inheritance tree and weighted methods per class. 
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public class computation 

{ 

 public static int addi(int temp1,int temp2)  

       { 

         int temp3; 

         temp3=temp1+temp2; 

         return(temp3); 

 } 

 public static void main(String 
args[])throws IOException  

       { 

         int x; 

         computation nachi=new 
computation(); 

 }  

} 

public class computationTest extends TestCase 

{ 

 public computation x; 

 public computationTest(String name)  

      { 

  super(name);   

 } 

 public void setUp()   

       { 

    x=new computation(); 

  } 

  public void testaddi()  

       { 

  System.out.println(); 

  x=new computation();  

  assertEquals(100,x.addi(75,25)); 

 } 

       public static void main(String[] args) { 

 } 

} 

Figure 4.4: Sample assertion and test case measurement example 

import java.io.*; 
import java.lang.*; 
public class A -------------------  DIT = 1 
{ 
       public static void w() ---  WMC = 1 
       { 
       } 
       public static void x() ---  WMC = 1 
       { 
       } 
} 
class B extends A  -------------  DIT = 2 
{  
} 
class C extends B --------------  DIT = 3 
{ 
       public void z() -----------  WMC = 1 
       {    
       } 
}  

class D --------------------------  DIT = 1 
{ 
         public void p() ---------  WMC = 1 
         { 
              A TclassA = new A(); CBO=1    
TclassA.w(); 
          } 
}                     
 
Metric Values  
WMC = 4 
DIT = 7 
CBO = 1 
 

Figure 4.5: CBO, DIT and WMC measurement example 



 45

From the above example code we calculate the WMC, DIT and CBO as shown below.  

1. The WMC, considering a uniform weighting of 1 per method shows that there are 4 methods, 

(w(), x(), z(), p() ) so WMC is 4. 

2. The CBO, showing the coupling between the classes in A and D by using the object TclassA 

is 1. 

3. The DIT, is the sum of the inheritance of the classes A(), B(), C() and D() as shown in Figure 

4.5 which is 7. 

The main limitations associated with the use of the STREW metrics suite are as follows: 

• The existence of automated tests. To quantify the extent of testing done measurably in 

terms of assertions and test cases, we need the existence of automatic test cases which use 

the xUnit-style of testing. The STREW metric suite, in its current form, cannot leverage 

the manual black box testing results. 

• The existence of prior comparable projects. To some extent, this limitation is alleviated 

by having comparable projects by some other organization that has acceptable post-

release field quality. The prediction equations used in this dissertation can serve as a 

starting point when there is a lack of comparable projects. 

• Model robustness. The better the consistency of data collected, the better the prediction 

accuracy. Consider the scenario of data from student projects being used to predict the 

post-release field quality of a software system for space shuttles. There will be errors in 

estimation as both the systems are from different environments with different post-release 

field quality requirements. Hence, in building the models with data collected from 

different environments there can be unfair bias towards one particular category of 

projects that cause an inflated or wrong prediction in terms of estimating the post-release 

field quality and providing test quality feedback.  
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CHAPTER 5 
 
 
POST-RELEASE FIELD QUALITY 
ESTIMATION  
 

This chapter discusses a preliminary feasibility study and the three-phased validation results 

obtained using the STREW metric suite for estimating post-release field quality. The validation 

studies are performed in three different environments to build an empirical body of knowledge, as 

shown in Figure 5.1. We discuss the model building activities, the model evaluation, and finally the 

results obtained using the three different set of case studies. Drawing general conclusions from 

empirical studies in software engineering is difficult because any process depends to a large degree on 

a potentially large number of relevant context variables.  For this reason, we cannot assume a priori 

that the results of a study generalize beyond the specific environment in which it was conducted [5].  

Researchers become more confident in a theory when similar findings emerge in different contexts 

[5].   By performing multiple case studies and/or experiments and recording the context variables of 

each case study, researchers can build up knowledge through a family of experiments [5] which 

examine the efficacy of a new practice.  Replication of experiments addresses threats to experimental 

validity. We address these issues related to empirical studies by replicating multiple case studies 

through a family of experiments in three different (academic, open source and industrial) contexts. 

Similar results in these contexts indicate the promise of this approach at statistically significant levels. 
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Figure 5.1: Empirical case studies 

Section 5.1 presents the feasibility study on Version 1.1 of the STREW metric suite using the 

Zero-Failure model. Section 5.2 presents the model building techniques for the case studies 

performed with STREW Version 2.0 metric suite, and Section 5.3 explains the results evaluation 

techniques for the case studies. Section 5.4, 5.5 and 5.6 present the academic, open source and 

industrial case studies. 

5.1 FEASIBILITY STUDY 

Based on the results obtained in Table 3.2, the empirical regression model and Zero-Failure 

model is the best suited in our research context. In our preliminary feasibility study, we used the 

Zero-Failure model with STREW Version 1.1, as will be discussed below.  We ran a feasibility study 

on 13 vending machine programs written in Java by junior/senior-level undergraduates in a software 

engineering course at NCSU in Fall 2002.  The programs were, on average, 789 lines of code (LOC).  

With these programs, we analyzed an initial set of metrics defined in the STREW-J Version 1.1 [70]:   

• number of test cases/source lines of code (R1);  

• number of test cases/number of requirements (R2);  

• test lines of code/source lines of code (R3);  

Academic case 
study 

Open Source 
case study

Industrial case 
study 

Empirical body of evidence 
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• number of asserts/source lines of code (R4); and on 

• statement  coverage (C).  

We estimated reliability via the Zero-Failure model described by Hamlet et al. [38] and others 

[28, 59]. This model was chosen because the programmers worked until all the automated test cases 

passed (e.g. no failures are demonstrated by the test suite).  However, it is possible and even likely 

that their test suites did not constitute a thorough test effort. To use the No-Failure model, we must 

identify a meaningful long term failure rate denoted by Θ and that N random tests have established an 

upper confidence bound (1-α) that Θ is below some level θ [38]. The relationship between these 

factors is given by 1- (1-θ)N <= α [89]. This model is similar to the analysis performed by Frankl et al. 

[34] on operational testing given by 1-(1-q)T, where q is the failure rate for operational testing and T 

is the number of tests.  

We ran a multiple regression analysis with the metrics collected from the program and the 

reliability estimate.  The result of applying an ordinary least squares regression provided evidence 

(F=4.325, p=0.041) of a linear association between the reliability estimate and the metrics. The 

regression equation to predict the reliability is given by Equation 5.1.  

Reliability = 0.669 + 1.586*R1 + 0.0513*R2 – 0.0290*R3 + 0.192*R4 – 0.0774*C  (5.1) 

Correlations between the metrics and the reliability estimate for various values of θ are given in 

Table 5.1. The given p-values for tests of zero correlation provide evidence of positive linear 

dependence of reliability on the metrics R1 and R2. Ratios R3 and R4 are not statistically significant 

with the reliability estimate.  This lack of association may be because the coefficients were based 

upon programs from a small number (N=13) of different programmers and the value of R3 and R4 

relies on personal programming style.  The relationship between the code coverage and the estimated 

reliability was also not statistically significant.  The lack of relationship between code coverage and 

the estimated reliability might be because the students were specifically assigned to create test suites 

with 100% statement coverage which may have created an artificial situation.  While only R1 
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(number of test cases/source lines of code) and R2 (number of test cases/number of requirements) 

demonstrated a statistically significant relationship with the reliability estimate, we continued to 

analyze the potential of the other metrics to refine the STREW metric suite.        

Table 5.1: Pearson correlation and statistical significance results between the ratios and the 
reliability estimate 

θ R1 R2 R3 R4 Coverage 

0.01 0.629, 
p=.021

0.992, 
p=.000 

0.302, 
p=.316

0.469, 
p=.106

0.118, 
p=.702 

0.05 0.703, 
p=.007

0.814, 
p=.001 

0.393, 
p=.184

0.541, 
p=.056

0.039, 
p=.900 

0.10 0.616, 
p=.025

0.584, 
p=.036 

0.414, 
p=.159

0.502, 
p=.081

-0.071, 
p=.817 

 

In applying the Zero-Failure model, the meaningful long term failure rate denoted by Θ and N 

random tests to establish an upper confidence bound on the reliability estimate. Θ is user defined and 

governs the reliability estimate. In the absence of failures, it is not possible to determine Θ. Hence we 

use the empirical model building approach through the rest of our investigations.  

5.2 MODEL BUILDING 

This section describes the model-building strategies that were used for predicting post-release 

field quality.  A number of techniques have been used for the analysis of software quality in terms of 

reliability, failure density, and fault-proneness.   Multiple linear regression (MLR) analysis was used 

to model the relationship between quality and software metrics [51, 63].  In our work, the dependent 

variable that is to be measured is the TRs/KLOC and the independent variables are the STREW 

metrics. 

The regression equation is of the form: 

• Y = c + a1X1+a2X2+…..+anXn, where Y is the estimated (dependent) variable, a1, a2 …., an 

are regression coefficients and X1, X2 …., Xn are the known variables (independent). 

One difficulty associated with MLR is multicollinearity among the metrics that can lead to 

inflated variance in the estimation of post-release field quality.  One approach that has been used to 
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account for multicollinearity is Principal Component Analysis (PCA) [33]. With PCA, a smaller 

number of uncorrelated linear combinations of metrics that account for as much sample variance as 

possible are selected for use in regression (linear or logistic).  PCA can be used to downweigh metrics 

that are highly correlated with other metrics, thus simplifying data collection with minimal impact on 

the accuracy of the information provided.  A multivariate logistic regression equation [25] can be 

built to model data using the principal components as the independent or predictor variables.  

As will be discussed, in our case studies the nine STREW metrics demonstrated multicollinearity.  

The Kaiser-Meyer-Olkin (KMO) [47] test of sampling adequacy was used to identify 

multicollinearity.  For PCA to be applicable, the KMO measure of sampling adequacy should be 

greater than 0.6 [11]. The KMO measure of sampling adequacy is a test of the amount of variance 

within the data that can be explained by the individual measures (e.g. the STREW metrics).  PCA 

generates a linear transformation of a set of correlated attributes, such that the transformed variables 

are independent, i.e. the transformed variables do not have any inter-correlations between them that 

lead to an inflated variance in the estimation of the post-release field quality. The PCA analysis 

showing the scree plots of the principal components and the respective components plots are shown 

for the academic and open source projects are presented in Appendix C. Scree plots explain the 

identification of the principal components from the individual metrics.  

In our study, the KMO results indicated the applicability of using the principal components 

produced by PCA, rather than the nine individual metrics, in an MLR equation. Throughout this 

dissertation, we present the regression analysis using all the STREW metrics and the principal 

components obtained from the STREW metrics. The primary purpose of presenting both models is for 

comparison between a basic approach (all STREW metrics but suffering from multicollinearity) and a 

more precise approach (PCA after accounting for multicollinearity). This type of comparative 

analysis also serves to indicate that results obtained by PCA are more accurate for our purposes, and 

all the nine STREW metrics are required to construct the principal components, indicating the utility 

of the nine individual STREW metrics. 
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The generalized regression equation and associated confidence are formulated as follows:   

• Y = c + a1PC1+a2PC2+…..+anPCn, where a1, a2 …., an are regression coefficients and PC1, 

PC2 …., PCn are the produced principal components. 

• Further, the estimated value of the TRs/KLOC (Ynew) is calculated with an associated 

confidence bound [53] given by Equation 5.2 where n is the number of observations, t (α/2, n) is 

the standard t-table value with n degrees of freedom at a significance level of α = 0.05. 

 Confidence bounds = Ynew + t (α/2, n) * Mean Standard Error    (5.2)                          

Further, the model building strategies have the following associated factors: 

• The coefficient of determination, R2, is the ratio of the regression sum of squares to the total 

sum of squares. The value of the ratio can be between 0 and 1, with larger values indicating 

more variability explained by the model and less unexplained variation. 

• The F-ratio is used to test the hypothesis that all regression coefficients are zero at 

statistically significant levels.   

• Where parametric testing is appropriate, a significance level of α = 0.05 was adopted for 

statistical inference. For example, all interval estimates are reported using confidence level 

95%. 

5.3 RESULTS EVALUATION TECHNIQUES  

The evaluation of the TRs/KLOC estimates with the actual values is performed using two 

methods explained below: 

• Average Absolute Error (AAE) and Average Relative Error (ARE). AAE and ARE are used to 

measure the accuracy of prediction of the estimated TRs/KLOC with numerical quantification 

(i.e. numerical accuracy) [52]. The smaller the values of AAE and ARE, the better are the 

predictions.  The equations for AAE and ARE are provided as Equations 5.3 and 5.4 where n 

is the number of observations. 
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AAE = ∑
=

n

1in
1  | Estimated Value – Actual Value |                                (5.3) 

 

ARE = ∑
=

n

1in
1 (| Estimated Value – Actual Value |) / Actual Value       (5.4) 

 

• Correlation between the actual and estimated TRs/KLOC. This correlation is used to quantify 

the sensitivity of prediction. The two correlation techniques utilized are (1) the Spearman 

rank correlation which is a commonly-used robust rank correlation technique [33] because it 

can be applied when the association between elements is non-linear and (2) the Pearson 

bivariate correlation that requires the data to be distributed normally and the association 

between elements to be linear. A positive relationship between the actual and estimated 

values is desired in terms of the more robust Spearman rank correlation 

A positive correlation between the actual and estimated TRs/KLOC would indicate that with an 

increase in estimated TRs/KLOC, there is an increase in actual TRs/KLOC.  A negative correlation 

would indicate that with an increase in estimated TRs/KLOC, there is a decrease in actual TRs/KLOC 

(or vice versa). 

5.4 ACADEMIC CASE STUDY  

This sub-section describes a controlled study performed with junior/senior-level students at North 

Carolina State University (NCSU) to investigate the efficacy of the STREW metric suite elements to 

estimate TRs/KLOC. 

5.4.1. DESCRIPTION 

The students worked on a project that involved development of an Eclipse6 plug-in to collect 

software metrics. The project was six weeks in duration and used Java as the programming language. 

The JUnit testing framework was used for unit testing; students were required to have 80% statement 

                                                 
6 http://eclipse.org/ 
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coverage. A total of 22 projects were submitted, and each group had four to five students. Figure 5.2 

shows the size LOCsource of the projects that were developed. The projects were between 617 LOCsource 

and 3,631 LOCsource.  On average, the ratio of LOCtest to LOCsource was 0.35.  Each project was 

evaluated by 45 independent test cases.  Actual TRs/KLOC was estimated by test case failures (or) 

TRs per KLOC because the student projects were not released to customers.  If a 2000-line project 

had ten failures (out of the 45 tests) the TRs/KLOC = (10/2000)*1000 = 5 failures/KLOC.  

 
Figure 5.2: Academic projects size 

The academic study is a closed structured environment that might represent ideal experimental 

conditions but may not reflect industrial settings. As a result, an external validity issue arises because 

the programs were written by students, and the projects were small relative to industry applications.  

This concern is mitigated to some degree because the students were advanced undergraduates 

(junior/senior).      

5.4.2 MODEL BUILDING 

The initial regression model to estimate post-release field quality was built using all the STREW 

metrics and the principal components obtained from the STREW metrics as the independent variables 

and the TRs/KLOC as the dependent variable for all 22 projects. The normal probability plots for the 
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built model along with the R2 value and associated statistical significance is shown in Figure 5.3. This 

model serves to indicate the overall model fit obtained using all the data points. 
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Figure 5.3: Normal probability plot for model fitting  

5.4.3 RANDOM DATA SPLITTING 

To evaluate the efficacy of the STREW metric suite to predict TRs/KLOC, we use a random 

splitting approach. We randomly selected two-thirds (N=15) of the samples to build a prediction 

model and the remaining one-third (N=7) to evaluate the built model. We obtained the results shown 

in Table 5.2.  

Table 5.2: Prediction evaluation results 

 STREW metrics PCA 

Model Fit R2= 0.905, (F=5.274, p=0.041) R2= 0.598, (F=5.463, p=0.015) 
 

Prediction Evaluation   
(7 projects) 

AAE=15.29, ARE=4.19 
Pearson correlation = 0.390 

(p=0.377) 
Spearman correlation = 0.464 

(p=0.294) 

AAE=4.47, ARE=1.27 
Pearson correlation = 0.328 

(p=0.473) 
Spearman correlation = 0.464 

(p=0.294) 
 

The AAE and ARE results in Table 5.2 indicate that the model produces an estimate that is 

indicative of the true TRs/KLOC. The actual values of TRs/KLOC range from 1.43 TRs/KLOC to 
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35.5 TRs/KLOC indicating a wide spectrum of quality in terms of TRs for the academic projects. 

This range of TRs/KLOC of the projects is shown by the histogram in Figure 5.4.  The ARE and 

AAE values are less than the standard deviation of the TRs/KLOC (standard deviation is 7.738 

TRs/KLOC). In spite of the wide spectrum of the TRs/KLOC, the ARE and AAE values indicate the 

feasibility of using the STREW metric suite compared to the actual values of the TRs/KLOC. The 

Pearson and Spearman rank correlation is not statistically significant. The reason for the correlation 

coefficients to be positive but not statistically significant might be due to the small sample size (seven 

projects). The results of this feasibility study motivated further investigation using open source and 

industrial projects to investigate the utility of the STREW metric suite to predict TRs/KLOC on larger 

scale projects. 

TR's/KLOC
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N = 22.00

 

Figure 5.4: Histogram of  TRs/KLOC in academic projects 

5.5 OPEN SOURCE CASE STUDIES 

Open source projects are convenient to perform case studies because source code, test code, and 

defect logs are openly available for use. Additionally, open source projects are more representative of 

industrial projects than the academic projects due to their size and scope.  We selected 27 open source 

projects to apply the STREW metric suite.  
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5.5.1 DESCRIPTION 

Twenty-seven open source projects that were developed in Java were selected from Sourceforge 

(http://sourceforge.net).  The following criterion was used to select the projects from Sourceforge.   

• software development tools.  All of the chosen projects are software development tools, i.e. 

tools that are used to build and test software and to detect defects in software systems.   

• download ranking of 85% or higher.  In Sourceforge, the projects are all ranked based on 

their downloads on a percentile scale from 0-100%.  For example, a ranking of 85% means 

that a product is in the top 85% of quantity of downloads.  We chose this criterion because we 

reasoned that a comparative group of projects with similarly high download rates would be 

more likely to have a similar usage frequency by customers that would ultimately reflect the 

post-release field quality.    

• automated unit testing. The projects needed to have JUnit automated tests.   

• defect logs available.  The defect log needed to be available for identifying TRs with the date 

of the TR reported.  

• active fixing of TRs.  The TR fixing rate is used to indicate the system is still in use. The time 

between the reporting of a TR and the developer fixing it serves as a measure of this factor. 

Projects that had open TRs that were not assigned to anyone over a period of three months 

were not considered.  

• Sourceforge development stage of 4 or higher. This denotes the development stage of the 

project (1-6) where 1 is a planning stage and 6 is a mature phase.  We chose a cut-off of 4 

which indicates the project is at least a successful beta release. This criteria indicates that the 

projects that are at a similar stage of development and are not projects too early in the 

development lifecycle. 

Figure 5.5 shows the names of the projects and their sizes in LOCsource. On average, the ratio of 

LOCtest to LOCsource was 0.37. The projects range from around 2.5 KLOCsource to 80 KLOCsource. The 
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TRs are normally distributed with a range from 0.20 to 6.9 TRs/KLOC (Mean = 1.42). The defect 

logs were screened for duplicate TRs to obtain an accurate measure of TRs/KLOC.  Duplicate TRs 

were removed before analysis.   

 

Figure 5.5: Open source project sizes 

There is a validity issue with respect to the actual usage of open source software systems.  The 

commonly-available usage metric for open source software is the download activity ratio. For 

example, it might be possible that Project 1 and Project 2 could have both been downloaded by 100 

users, but Project 1 might have been actually used by only ten users while Project 2 by 90 users. We 

have no visibility to this actual usage.  Also, we are dependent on the customer-reports for measuring 

the TRs/KLOC.  However, some customers might not report the TRs in the open source environment. 

We assume that the TRs are representative of the operational profile [64] of the software system. If 

the different components of the software systems were not used equally the estimation of TRs can 

lead to an inflated value (i.e. a different set of customers might use the product for a different purpose 

and might exercise the product in different ways – and this different usage would surface a different 

post-release product quality). The issues of the generalizability of the actual operation profile is 
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negated to some extent by the uniform testing efforts of the projects, comparable TRs/KLOC across 

all the projects and all the projects belonging to one particular domain of software systems. A more 

detailed retrospective analysis is performed in Chapter 7. 

5.5.2 MODEL BUILDING 

Figure 5.6 shows the complete MLR model for all the 27 open source projects built using both the 

STREW metrics and the principal components of the STREW metrics as the independent variable and 

the TRs/KLOC as the dependent variable. Similar to the academic case studies, the models built is 

statistically significant in its ability to explain the variance in the dependent variable.  
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Figure 5.6: Model fitting results for PCA 

The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy is 0.764 indicating the efficacy 

of the applicability of PCA. Principal component analyses of the nine STREW metrics yields two 

principal components, the linear transformation coefficient given by the component matrix in Table 

5.3.   

Using MLR on the two principal components calculated using Table 5.3, we obtain Equation 5.5. 

TRs/KLOC = 1.424 + 0.852 * PC1 - 0.132*PC2          (5.5) 

where PC1 and PC2 are the transformed principal components produced from the nine STREW 

metrics.   
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Table 5.3: Component matrix for PCA transformation 

 Component 
 PC1 PC2 

SM1 .793 .284 
SM2 .795 -.281 
SM3 -.270 .701 
SM4 .935 -6.280E-03 
SM5 .159 -.745 
SM6 .877 .102 
SM7 .699 .457 
SM8 .864 4.126E-02 
SM9 -.569 .233 

 

5.5.3 RANDOM DATA SPLITTING 

For the random data-splitting, we use two thirds (N=18) of the 27 projects to build the prediction 

model and the remaining one-third (N=9) to evaluate the fit of the model.  We repeated the random 

split nine times to verify data consistency, i.e. to check if the results of our analysis were not a one-

time occurrence. Figure 5.7 shows the model building and model evaluation performed using MLR 

on all the STREW metrics and the principal components. The results for each data split present the R2 

and F test results for each model and the prediction results evaluated using AAE, ARE, and 

correlation analysis. The graphs indicate the actual and the estimated TRs/KLOC along with the 

regression predicted upper confidence level (ucl) and lower confidence level (lcl) [53].  
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Pearson correlation = 0.672 (p=0.047) 
Spearman correlation = 0.500 (p=0.170) 

Pearson correlation = 0.834 (p=0.005) 
Spearman correlation = 0.700 (p=0.036) 
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Projects

987654321

TR
's

/K
LO

C

7

6

5

4

3

2

1

0

actual

estimated

lcl

ucl

Projects

987654321

TR
's

/K
LO

C

5

4

3

2

1

0

actual

estimated

lcl

ucl

AAE =0.8222, ARE = 0.4579 
Pearson correlation = 0.207 (p=0.592) 

Spearman correlation = 0.367 (p=0.332) 

AAE = 0.6400, ARE = 0.2796 
Pearson correlation = 0.694 (p=0.038) 
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R2= 0.921, (10.336, p=0.002) R2= 0.450, (6.138, p=0.011) 



 61

Projects

987654321

TR
's

/K
LO

C

7

6

5

4

3

2

1

0

actual

estimated

lcl

ucl

Projects

987654321

TR
's

/K
LO

C

5

4

3

2

1

0

actual

estimated

lcl

ucl

AAE =1.0455, ARE = 0.5922 
Pearson correlation = 0.369 (p=0.329) 

Spearman correlation = 0.367 (p=0.332) 

AAE = 0.7322, ARE = 0.4034 
Pearson correlation = 0.732 (p=0.025) 

Spearman correlation = 0.700 (p=0.036) 
MLR – Random split 5 PCA – Random split 5 
R2= 0.785, (3.246, p=0.056) R2= 0.446, (6.038, p=0.012) 

Projects

987654321

TR
's

/K
LO

C

6

5

4

3

2

1

0

actual

estimated

lcl

ucl

Projects

987654321

TR
's

/K
LO

C
5

4

3

2

1

0

actual

estimated

lcl

ucl

AAE =0.7055, ARE = 0.4614 
Pearson correlation = 0.885 (p=0.002) 

Spearman correlation = 0.933 (p<0.0005) 

AAE = 0.5533, ARE = 0.2599 
Pearson correlation = 0.799 (p=0.010) 

Spearman correlation = 0.717 (p=0.030) 
MLR – Random split 6 PCA – Random split 6 
R2= 0.935 (12.724, p=0.001) R2= 0.491, (7.229, p=0.006) 



 62

Projects

987654321

TR
's

/K
LO

C

6

5

4

3

2

1

0

actual

estimated

lcl

ucl

Projects

987654321

TR
's

/K
LO

C

4

3

2

1

0

actual

estimated

lcl

ucl

AAE =1.5788, ARE = 0.7331 
Pearson correlation = -0.290 (p=0.449) 

Spearman correlation = -0.217 (p=0.576) 

AAE = 0.6200, ARE = 0.2900 
Pearson correlation = 0.279 (p=0.467) 

Spearman correlation = 0.317 (p=0.406) 
MLR – Random split 7 PCA – Random split 7 
R2= 0.792, (3.376, p=0.050) R2= 0.367, (4.355, p=0.032) 

Projects

987654321

TR
's

/K
LO

C

5

4

3

2

1

0

actual

estimated

lcl

ucl

Projects

987654321

TR
's

/K
LO

C
4

3

2

1

0

actual

estimated

lcl

ucl

AAE =0.6233, ARE = 0.2841 
Pearson correlation = 0.721 (p=0.028) 

Spearman correlation = 0.750 (p=0.020) 

AAE = 0.3555, ARE = 0.1525 
Pearson correlation = 0.905 (p=0.001) 

Spearman correlation = 0.917 (p=0.001) 
MLR – Random split 8 PCA – Random split 8 
R2= 0.827, (4.247, p=0.027) R2= 0.642, (13.463, p<0.0005) 
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Figure 5.7: Random data split – model building and evaluation results 

To summarize, we present the results of our evaluation using the models built using all the 

STREW metrics and PCA in Table 5.4.  We can assess the efficacy of the prediction model built 

using 18 randomly-chosen projects. The ARE values reflect the relative error in terms of the absolute 

magnitude of the TRs/KLOC.  
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Table 5.4: AAE and ARE values 

All STREW metrics PCA Random 
Split AAE ARE AAE ARE 

1. 1.1077 0.4000 1.1230 0.3276 

2. 0.8222 0.4579 0.6400 0.2796 

3. 1.4019 0.8309 0.5600 0.2900 

4. 1.0455 0.5922 0.7322 0.4034 

5. 0.7055 0.4614 0.5533 0.2599 

6. 1.5788 0.7331 0.6200 0.2900 

7. 0.6233 0.2841 0.3555 0.1525 

8. 0.6533 0.3213 1.1011 0.574 

9. 0.9533 0.5373 0.4922 0.2493 

 

The overall standard deviation of the TRs/KLOC is 1.318 TRs/KLOC. The AAE in all the nine 

random cases (using PCA after eliminating multicollinearity) is smaller than the standard deviation 

indicating that the efficacy of the prediction results. Table 5.5 indicates the correlation coefficient 

(Pearson and Spearman) results between the actual and estimated post-release TRs/KLOC. The 

correlation measure serves to indicate the sensitivity of the predicted post-release TRs/KLOC.  Of 

nine random samples in the PCA, seven are statistically significant (between the estimated and actual 

post-release quality), indicating the efficacy of our approach for the open source projects case study 

(shown in bold in Table 5.5). This indicates the sensitivity of prediction between the actual and 

estimated values.  
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Table 5.5: Sensitivity evaluation for PCA models 

All STREW metrics PCA Random 
Split Pearson         

(p value) 
Spearman       
(p value) 

Pearson       
(p value) 

Spearman    
(p value) 

1. 0.672 (p=0.047) 0.500 (p=0.170) 0.834 (p=0.005) 0.700 (p=0.036)

2. 0.207 (p=0.592) 0.367 (p=0.332) 0.694 (p=0.038) 0.617 (p=0.077)

3. 0.640 (p=0.063) 0.683 (p=0.042) 0.641 (p=0.063) 0.667 (p=0.050)

4. 0.369 (p=0.329) 0.367 (p=0.332) 0.732 (p=0.025) 0.700 (p=0.036)

5. 0.885 (p=0.002) 0.933 (p<0.0005) 0.799 (p=0.010) 0.717 (p=0.030)

6. -0.290 (p=0.449) -0.217 (p=0.576) 0.279 (p=0.467) 0.317 (p=0.406)

7. 0.721 (p=0.028) 0.750 (p=0.020) 0.905 (p=0.001) 0.917 (p=0.001)

8. 0.384 (p=0.307) 0.367 (p=0.332) 0.351 (p=0.354) 0.467 (p=0.205)

9. -0.239 (p=0.536) -0.300 (p=0.433) 0.721 (p=0.028) 0.667 (p=0.050)

 

5.6 INDUSTRIAL CASE STUDY 

In this section, we describe the industrial case study that was performed to investigate the efficacy 

of the STREW metric suite to assess TRs/KLOC for three commercial large scale software systems. 

5.6.1 DESCRIPTION 

Our industrial case study involved three software systems (five versions) at a company in the 

United States.  To protect proprietary information, we keep the name and nature of the projects 

anonymous.  These projects were critical in nature because failures could lead to loss of essential 

funds for the company. The project sizes that were used for analysis are shown in Table 5.6.  

Table 5.6: Industrial project sizes 

Project Size 
Project 1A 190 KLOC 
Project 1B 193 KLOC 
Project 2A 504 KLOC 
Project 2B 487 KLOC 
Project 3 13 KLOC 

 

The development language used was Java, and the JUnit testing framework was used for unit and 

acceptance testing. Some other descriptive project characteristics measures are presented in Table 5.7.  
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Table 5.7: Project characteristics 

Factor Team value 
Team size Ranged from 6 to 16 developers. 
Team education level 62% had a bachelors degree and 34% had a 

masters degree or higher. 
Experience level of team 57% had more than five years of experience 
Domain expertise Medium-High. 
Language expertise Medium-High. 

 

5.6.2 POST-RELEASE FIELD QUALITY PREDICTION 

In the industrial environment, TRs found by customers are reported back to the organization.  

These TRs are then mapped back to the appropriate software systems. We use the STREW metrics of 

the open source projects to predict the TRs/KLOC of the industrial software systems. Figure 5.8 

indicates the prediction plots obtained using all the STREW metrics. The axes are removed to protect 

proprietary information.  

 
Figure 5.8: Prediction plots with all the STREW metrics 

 
Similarly Figure 5.9 indicates the prediction plots obtained using PCA on the STREW metrics 

from Equation 5.5. Figure 5.9 indicates that the prediction obtained by using the PCA after 
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accounting for multicollinearity which is more indicative than the prediction obtained by MLR using 

the nine STREW metrics. 

 

Figure 5.9: Prediction plots with PCA 

 

Due to the critical nature of the product, the post-release TRs/KLOC are low.  Further, Figure 5.9 

indicates the predicted value closely overlaps the actual TRs/KLOC and bounds for Projects 1 and 2.  

Project 3 may not a comparable project because it is smaller than the other projects and was to form 

the core components of the organization’s future software products. Therefore, Project 3 was 

particularly well tested, comparably more than the other software systems used to build or evaluate 

the prediction. On observing the nine STREW metric values for Project 3 we notice that metrics SM1, 

SM2 for Project 3 at least one order greater than all the projects (open source included). Metrics SM5, 

SM6, SM7, and SM8 for Project 3 are at least twice of SM5, SM6, SM7 and SM8 of all the other 

projects. SM5-SM8 are the cyclomatic and O-O metrics in the STREW metric suite indicating that 

project 3 had a high testing effort (and complexity) compared to all the other projects. 

Note that in all cases, the upper confidence bounds are larger than the actual value. Organizations 

can take a conservative approach and use the upper bounds of TRs/KLOC to be the actual estimated 
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TRs/KLOC to drive the overall quality higher. Even though the sample size is small (only 5 projects), 

we present the correlation results of the actual and estimated TRs/KLOC indicated in Figure 7. The 

Pearson correlation coefficient = 0.962 (p = 0.009) and Spearman correlation coefficient = 0.500 (p = 

0.391). This indicates the efficacy of the sensitivity of prediction of the TRs/KLOC but is limited by 

the small sample size of the available projects. (For comparative purposes for the MLR model built 

using all the STREW metrics the Pearson correlation coefficient = 0.873 (p = 0.054) and Spearman 

correlation coefficient = 0.700 (p = 0.188)). 
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CHAPTER 6 
 
 
TEST QUALITY FEEDBACK 
 

Providing test quality feedback allows the developers to identify areas that could benefit from 

more testing. Color coding [16, 42, 75] aids developers in quickly understanding if a metric is within 

acceptable limits. Our work is motivated by prior studies at IBM7 [16], Nortel Networks8 [42] that use 

color-coding to provide feedback on metric values based on standards (predefined or calculated).  

The Enhanced Measurement for Early Risk Assessment of Latent Defects (Emerald) system at 

Nortel Networks combined software measurements, quality models and delivery of results to provide 

in process feedback to developers to improve telecommunications software reliability. The Emerald 

system was found to improve architectural integrity; establish design guidelines and limits; focus 

efforts on modules more likely to have faults; target the test effort effectively; identify patch-prone 

modules early; incorporate design strategies to account for the risk associated with defective patches; 

and help obtain a better understanding of field problems [42]. Emerald provides color-coded feedback 

using nine categories: green, yellow and seven shades of red using non-OO metrics related to 

software system link volume, testability, decision complexity and structuredness (a more detailed 

explanation is available in [42]). However, STREW differs from Emerald  as it leverages the 

automatic testing effort performed to estimate the post-release field quality based on test and source 

code metrics and it developed for use by OO-languages. 

                                                 
7 www.ibm.com 
8 www.nortelnetworks.com 
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Similarly at IBM, immediate feedback on the complexity of Smalltalk methods, based on the 

source code allows developers to modify their code to more desirable characteristics in terms of the 

code complexity [16]. Color coded feedback is presented in three levels, red, yellow and green using 

Smalltalk complexity metrics like number of blocks, number of temporary variables and arguments, 

number of parameterized expressions etc. STREW similar to the work done at Nortel Networks and 

IBM, provides feedback in three ranges red, orange and green based on in-process metrics obtained 

from both the source and test code. 

6.1 BUILDING TEST QUALITY FEEDBACK STANDARDS 

The color that is displayed is determined by the results of Equation 6.1 for each metric.  The use 

of this equation is predicated on a normal distribution of TRs. If the TRs are not normally distributed, 

the Box-Cox normal transformation can be used to transform the non-normal data into normal form 

[74]. Using historical data from comparable projects that were successful, the lower limit (LL) of 

each metric ratio is calculated using Equation 5. The mean of the historical values for each metric 

(µSMx) serves as the upper limit.  The historical data is computed from previously-successful projects 

with acceptable levels of TRs/KLOC. In the absence of historical data, standard values can be used 

that are built from projects with similar acceptable levels of TRs/KLOC.  The mean and the lower 

limit serve as the test quality feedback standards for the STREW metrics. 

 

Using the computed values, we use a color-coded approach as shown in Table 6.1.  In Table 6.1, 

SMx refers to the each particular STREW metric (SM1, SM2 …) for the software system under 

development compared to the calculated standards from successful projects.  

 

LL(SMx) = µSMx-zα/2*Standard deviation of metric SMx                    (6.1) 
n      

where µSMx- Mean of Metric SMx, n is the number of samples used to calculate µSMx and Zα/2 
is the upper α/2 quantile of the standard normal distribution (For example, Zα/2=1.96 is the t-
table value at 95% confidence interval, if sample size is greater than 30). 
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Table 6.1: Color coded feedback standards 

Color Interpretation 

RED SMx < LL (Metric) 

ORANGE LL (Metric) ≤ SMx ≤ µSMx 

GREEN SMx > µSMx 

 

The purpose of the color-coding is to direct corrective action to the test suite on the part of the 

programmer.  Table 6.2 provides detail on the specific corrective actions the programmer can take to 

change a metric from red to orange or from orange to green.The explanation of all these metrics is 

with respect to the standards built for each metric. 

Table 6.2: STREW metric color coded feedback explanation 

Metric Meaning of RED or 
ORANGE 

Corrective Action   

SM1 The assertions/KLOC are 
lower compared to projects 
that were used to build the 
feedback standards. 

Add more assertions. These additional 
assertions should be meaningful assertions 
(can be cross checked with increase in 
coverage) 

SM2 The test cases/KLOC are 
lower compared to projects 
that were used to build the 
feedback standards. 

Add more test cases. These test case 
density but should be meaningful test cases 
(can be cross checked with increase in 
coverage) 

SM3 The assertions/test case are 
lower compared to projects 
that were used to build the 
feedback standards. 

Add more assertions per test case.    

SM4 The overall testing effort 
measured in terms of lines 
of code and classes was not 
comparable in terms of the 
projects that were used to 
build the feedback 
standards. 

Add more lines of test code. Increasing the 
overall testing effort (controlling the source 
code size) that would lead to an increase in 
the test lines of code and the test classes. 
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Table 6.2: (continued) 

SM5 The complexity of the 
testing effort is not 
comparable in terms of the 
previously acceptable 
projects 

Decrease cyclomatic complexity ratio by 
decreasing the cyclomatic complexity of 
source code. The simplest complexity 
measure, the cyclomatic complexity 
measure, ratio of the test code and source 
code indicates how well the testing has 
taken place at the complexity level. This 
metric works in conjunction with metric 
SM4 indicating that the testing effort was 
not thorough enough. When metric SM4 
increases, metric SM5 should also increase 
with respect to checking for conditionals, 
infinite loops, unreachable code etc., that 
would increase the metric SM5 

SM6 The CBO ratio of the test 
code to source code is not 
comparable to the 
previously successful 
projects. 
 

Increase the CBO ratio by reducing the 
coupling between objects in source code. 
The larger the inter-object coupling, the 
higher the sensitivity to change. Therefore, 
maintenance of the code is more difficult.  
As a result, the higher the inter-object class 
coupling, the more rigorous the testing 
should be   [17].  The CBO of the source 
code should be reduced to eliminate the 
dependencies caused by coupling. 

SM7 The DIT ratio of the test 
code to source code is not 
comparable to the 
previously successful 
projects. 

Increase DIT ratio by reducing DIT in 
the source code. Due to DIT, a change or a 
failure in a super class propagates down the 
inheritance tree. Hence we have to reduce 
the DIT of the source code to acceptable 
levels so that the DIT ratio is comparable to 
the projects used to build the standards. 

SM8 The WMC ratio of the test 
code to source code is not 
comparable to the 
previously successful 
projects. 

Increase WMC ratio by breaking down 
complex classes in source code to child 
classes. The larger the number of methods 
in a class, the greater is the potential impact 
on children, since the children will inherit 
all the methods defined in the class. Hence 
we have to reduce the number of methods in 
the source code to acceptable levels 
calculated by the projects used to build the 
standard. This metric essentially measures 
the importance of the modularity of the 
source code. 
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6.2 EVALUATION OF TEST QUALITY FEEDBACK STANDARDS 

To evaluate the efficacy of the test quality feedback standards, we initially use a robust Spearman 

rank correlation technique with respect to the number of color-coded feedbacks obtained and the post-

release TRs/KLOC. The association between the test quality feedback and post-release field quality to 

indicate the efficacy of the color-coded mechanism is shown in Table 6.3.  In Section 6.4, we 

investigate the overall efficacy of the test quality feedback across all three development environments 

(academic, open source and industrial). 

Table 6.3: Desired correlation results with the color-coded feedback 

Color Desired 
Spearman 

Correlation 

Interpretation 

RED + ORANGE Positive Increase in (RED + ORANGE) 
increases post-release TRs/KLOC. 

GREEN Negative Increase in (GREEN) decreases 
post-release TRs/KLOC 

 

The higher the number of red and orange feedbacks, the higher we expect the TRs/KLOC to be, 

as red and orange feedbacks denote a lower quality of the testing effort. This is indicated by a positive 

correlation coefficient between the number of red and oranges with the post-release TRs/KLOC. 

Inversely, the correlation coefficient between the number of green feedbacks and the TRs/KLOC is 

expected to be negative. The feedbacks are calculated only for the STREW metric ratios SM1-SM8 as 

SM9 is a size adjustment factor is a not an actual metric ratio for providing feedback.  

6.3 CASE STUDIES 

We present academic, open source and a structured industrial case study to build an empirical 

body of evidence to indicate the efficacy of our approach. 
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6.3.1 ACADEMIC CASE STUDY 

We use the same random split of the 22 projects to build the test quality feedback standards and 

the remaining seven to check the efficacy of the built standards to provide feedback on the quality of 

the testing effort. We build the standards using the 15 academic projects and evaluate the projects 

using the seven remaining projects. The quantity of color-coded feedbacks for each of these seven 

projects is shown in Figure 6.1. The normality distribution of the STREW metrics is evaluated using a 

Kolmogorov-Smirnov test on the metrics with the null hypothesis that the population distribution is 

normal. The results of the Kolmogorov-Smirnov test are presented in Table C.1 in Appendix C. 
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Figure 6.1: Color coded feedbacks-Academic case study 

The quantity of reds and oranges and the quantity of greens is correlated to the TRs/KLOC, and 

the results are shown in Table 6.4. The red and orange feedbacks were added together because they 

represent a STREW metric ratio that is not of acceptable quality.  The results in Table 6.4 indicate 

that the expected correlation results are as desired. However, the p values of the correlations are not 

statistically significant. This lack of statistical significance can be explained to a certain degree by the 

small size of the projects. The correlation coefficients have the same magnitude but different signs 
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because the number of reds and oranges is a linear function of the number of green feedbacks. The 

above results indicate the feasibility for further exploration of the test quality feedback standards. 

Table 6.4: Academic case study – correlation results 

 RED + 
ORANGE 

GREEN 

Correlation coefficient 
with TRs/ KLOC 

0.145 (p=0.756)  -0.145 (p=0.756) 

 

6.3.2 OPEN SOURCE CASE STUDY 

In open source projects to evaluate test quality feedback in-process, we used thirteen versions of 

httpunit, one of the 27 open source software projects used in our earlier analysis.  The system has a 

lifetime in use for three years. Each release has a time period of 2.5-3 months so that the TRs/KLOC 

collected are representative of equal usage. The TRs/KLOC data is available from customer-reported 

failure logs that are screened in the same way as the other open source projects in Chapter 5. The test 

quality feedback standards were calculated using the 27 open source projects, as discussed in Chapter 

5. The test quality feedback for the 13 versions is evaluated against the standards built using the 27 

open source projects. The 13 versions belong to a system used for software testing, i.e. belonging to 

the same domain as the 27 projects. The development language was in Java. Figure 6.2 shows the size 

of the 13 versions as they grew over a period of three years from almost 3 KLOC to 11.5 KLOC. 

Figure 6.2 represents only the LOCsource and not LOCtest. 
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Figure 6.2: Project size across three years 

The quantity of feedbacks for the thirteen versions of an open source software system are shown 

in Figure 6.3.  
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Figure 6.3: Color coded feedbacks for open source case study 
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Upon evaluation using a Spearman correlation we obtain the results as shown in Table 6.5.  

Table 6.5: Open source case study – correlation results 

 RED + 
ORANGE 

GREEN 

Correlation coefficient 
with TRs/KLOC 

0.208 
(p=0.496) 

-0.208     
(p=0.496) 

 

From Table 6.5 we obtain similar results to the academic case study in terms of trend, the desired 

positive and negative correlation coefficients but the results not statistically significant likely due to 

the small sample size, as will be discussed in detail in Section 6.4. 

6.3.3 STRUCTURED INDUSTRIAL CASE STUDY 

To explore the efficacy of the test quality feedback mechanism, we performed a structured 

industrial case study to investigate the results under a more controlled environment. Six releases of a 

commercial software system “eXpert” were used for this case study. A metaphor that better describes 

the intended purpose of the system is a large sized “virtual file cabinet,” which holds a large number 

of organized rich, i.e. annotated, links to physical or web-based resources [1]. The system has 300+ 

potential users and is a web-based client-server solution developed by four developers at VTT 

Technical Research Centre of Finland [1]. The four developers were 5-6th year university students 

with 1-4 years of industrial experience in software development. Team members were well-versed in 

the Java O-O analysis and design approaches. The overall development time was 2.1 months and 

post-release TRs/KLOC is available from failure logs. The development language was Java. The 

standards are calculated using the 27 open source projects for providing test quality feedback. 

Since this was a “structured” case study, i.e. the level of control exhibited in the experiment was 

greater than the normal software development process. Measures such as effort and time were 

collected to make sure that these factors were in a comparable level across all the releases. This data 

is presented in Table 6.6 [1]. 
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Table 6.6: Industrial project data description (adapted from [1]) 

No. Collected 
Data 

Release 
1 

Release 
2 

Release 
3 

Release 
4 

Release 
5 

Release 6 
(correction 

phase) 

Total

1. Calendar time 2 2 2 1 1 0.4 8.4 

2. Total work 
effort (h) 

195 190 192 111 96 36 820 

3. LOC per 
release 

1821 2386 1962 460 842 227 7698

4. TRs 4 5 4 4 11 0 28 

5.  TRs/KLOC 2.19 2.10 2.04 8.70 13.06 0.0 1.43 

 

The feedbacks calculated using the 27 open source projects for the six releases of an industrial 

software system are shown in Figure 6.4.  
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Figure 6.4: Color coded feedbacks for structured industrial case study 

Upon evaluation using a Spearman correlation we obtain the results as shown in Table 6.7.  
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Table 6.7: Industrial case study – correlation results 

 RED + 
ORANGE 

GREEN 

Correlation coefficient 
with post-release 

TRs/KLOC 

0.338 
 (p=0.512) 

- 0.338 
(p=0.512) 

 

The results in Table 6.7, demonstrate similar results to the academic case study in terms of trend 

(the desired positive and negative correlation coefficients) but the results are not statistically 

significant due to the small sample size.  

6.4 STATISTICAL ANALYSIS OF TEST QUALITY FEEDBACK 

Table 6.8 summarizes the correlation results of the three categories of the case. Across all the 

three categories of case studies, the results are indicative in terms of trend (with respect to the sign of 

the correlation results) but are not statistically significant. This lack of statistically significant 

correlations is likely due to the small size of the individual sample populations as is demonstrated by 

the following analysis as shown in Table 6.9. When all the three models are combined together, the 

Spearman correlation results indicate the desired correlation trends with the TRs/KLOC at 

statistically significant levels (correlation coefficient = 0.468 (p=0.016) and vice versa), as shown in 

Table 6.8. The positive coefficient of the red and oranges at statistically significant levels indicates 

that with the increase in the number of red and orange feedbacks, there is an increase in the 

TRs/KLOC and vice-versa with the green feedbacks. (The Pearson correlation coefficients were 

0.488 (p=0.011) between the red + orange and the TRs/KLOC and -0.488 (p=0.011) for the number 

of greens and the TRs/KLOC. 
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Table 6.8: Summary correlation results of test quality feedback 

Correlation Coefficient Case study 

RED + 
ORANGE 

GREEN 

Sample Size 

Academic 0.145 -0.145 7 

Open Source 0.208 -0.208 13 

Industrial 0.338 -0.338 6 

All three case 
studies 

combined 

0.468        
(p = 0.016) 

- 0.468     
(p = 0.016)

26 

 

Further, to assess the effect of the environment (academic, open source and industrial case 

studies) on the test quality feedback, we perform a comparative modeling analysis using an 

ANCOVA (Analysis of Covariance) test, simple linear regression with the color-coded feedbacks and 

the TRs/KLOC, complete regression model including the interaction between the three types of case 

studies and the red + orange and green feedbacks, and an ANOVA (Analysis of Variance) test. 

ANCOVA can be used to test for differences among groups (in our case between the academic, open 

source and industrial case studies) to identify the relationship with the dependent variable 

(TRs/KLOC). To carry out these tests, we first fix the covariate environment variable to be 1 for 

academic case studies, 2 for open source case studies and 3 for industrial case studies. This nominal 

data allows tests like the ANCOVA to take into account that the data is from three different 

environments each of which may have a different ability with respect to the ability to provide test 

quality feedback.  The results for the comparative modeling with its associate R2, sum of squares due 

to regression (SS[R]), sum of squares due to error (SS[E]), and the mean square error (MSE) are 

shown in Table 6.9. Based on the values of F-test for model selection and the MSE, we can select the 

best model for integrating data across all the three environments. 
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Table 6.9: Comparative modeling results 

Model 
No. 

Model R2 SS[R] SS[E] MSE 

1. Simple Linear 
Regression 

0.239 28.2 89.9 3.74 

2. ANCOVA 0.349 41.3 76.9 3.5 
3. Complete 

Regression 
Model 

0.367 43.4 74.8 3.74 

4. ANOVA 0.339 40.1 78.1 3.4 
 

Two F-tests for model selection between model 1 and model 2 (F=1.87, p=0.178) and between 

model 1 and model 3 (F=1.01, p=0.424) indicate that model 1, the simple linear regression model is 

the best model. The ANOVA test also does not indicate any significant change in the MSE factor. 

The results of these two F-tests provide no evidence of any effect of the environment on the 

TRs/KLOC. The association between the TRs/KLOC and the red + oranges and greens is consistent 

across environments. Thus, the color-coded feedbacks indicates the variability in the TRs/KLOC at 

statistically significant levels. Further, the residual diagnostics also did not indicate a violation of the 

model assumptions. Hence on performing simple linear regression we get an R2 value= 0.239, (F= 

7.533, p=0.011). Table 6.10 shows the regression coefficients with the TRs/KLOC as the dependent 

variable. The bold values indicate that the coefficient is positive and is statistically significant 

indicating that with an increase in the number of red and orange test quality feedbacks there is an 

increase in the TRs/KLOC (and vice versa for green feedbacks). 

Table 6.10: Simple linear regression coefficients 

 Unstandardized Standardized t-test sig 
 Coefficients MSE Coefficients   

Constant -0.135 1.030  -0.131 0.897
Red+Orange 0.735 0.268 0.489 2.745 0.011
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6.5 QUALITATIVE ANALYSIS 

To serve as a check on the statistical studies, we did a qualitative analysis of the test quality 

feedback standards. For this purpose we use the “eXpert”industrial case study. The test quality 

feedback standards constructed using the 27 open source projects are shown in Table 6.11. 

Table 6.11: Test quality feedback standards – open source case study 

Metric RED ORANGE GREEN 
SM1 < 0.0545 [ 0.0545, 0.0822 ] > 0.0822 
SM2 < 0.0721 [ 0.0721, 0.1261] > 0.1261 
SM3 < 0.7790 [ 0.7790, 1.0958] > 1.0958 
SM4 < 0.7881 [ 0.7881, 1.0427] > 1.0427 
SM5 < 0.2474 [ 0.2474, 0.3376] > 0.3376 
SM6 < 0.3417 [ 0.3417, 0.4490] > 0.4490 
SM7 < 0.3498 [ 0.3498, 0.4931] > 0.4931 
SM8 < 0.2349 [ 0.2349, 0.3217] > 0.3217 

 

For qualitative evaluation we examine each release of the industrial case study with the standards 

in Table 6.11. We cannot assume that a correlation with a limited data set implies causality.  This 

analysis is intended to study the change in the number of red, orange and green feedbacks obtained 

in-process with the TRs/KLOC. Table 6.12 to 6.17 explain the qualitative feedback of the STREW 

metrics in each release. 

Based on Table 6.12, The post release field quality was 2.19 TRs/KLOC. Overall five of the 

STREW metrics were in the not acceptable range (red or orange). The metrics that were red or orange 

are assertions/SLOC, test cases/SLOC, testing effort size in terms of lines of code and classes, depth 

of inheritance, and weighted methods per class. We see that the test effort was not comparable to the 

open source standards as three of the test quantification metrics and two of the O-O metrics in terms 

of test complexity were not of appropriate quality. This explains the higher TRs/KLOC than the mean 

TRs/KLOC of the open source projects. (Complete TRs/KLOC list is available in Appendix  A). 
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Table 6.12: Release 1 STREW metrics feedback 

 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 
 0.0805 0.0273 2.9444 0.7026 0.4916 0.8148 0.4 0.2484 

Color Orange Red Green Red Green Green Orange Orange
Prior 

release 
color  

N/A N/A N/A N/A N/A N/A N/A N/A 

Post-release field quality = 2.19 TRs/KLOC 
 

From Table 6.13 we can see that the number of red and orange feedbacks combined is reduced in 

Release 2 to four, (though the number of red feedbacks individually increases to three from two) in 

Release 1. The metrics quantifying the depth of inheritance tree changes from orange to green 

indicating the increase in complexity ratio of the test effort. Also, the assertion density changed to 

green from orange. Further, the metrics also numerically show an increase in terms of the test 

quantification metrics. This increase indicates a minor improve in quality reflected by a decrease in 

the actual TRs/KLOC to 2.10 TRs/KLOC. 

Table 6.13: Release 2 STREW metrics feedback 

 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 
 0.0927 0.0279 3.3157 0.6417 0.5130 1.0980 1 0.2181 

Color Green Red Green Red Green Green Green Orange
Prior 

release 
color Orange Red Green Red Green Green Orange Orange

Post-release field quality = 2.10 TRs/KLOC 
 

Table 6.14 indicates that the total number of red and orange feedbacks increases by one for 

Release 3. The assertion density (SM1) changed from green to orange indicating that the testing in 

terms of assertions undergoing a decrease (i.e. more new code was added but the corresponding 

assertions added were not up to the previous assertion density ratio). The weighted methods per class 

metric (SM8) changed from orange to red indicating a decrease in quality with respect to the number 

of test methods per class. The quantitative chamges of the STREW metrics is relatively less compared 
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to Release 2 with Release 1. This leads to an explanation for a similar TRs/KLOC of 2.04 TRs/KLOC 

like release 3. 

Table 6.14: Release 3 STREW metrics feedback 

 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 
 0.0749 0.0196 3.8181 0.6362 0.4405 0.8666 0.8666 0.1702

Color Orange Red Green Red Green Green Green Red 
Prior 

release 
color Green Red Green Red Green Green Green Orange

Post-release field quality = 2.04 TRs/KLOC 
 

As seen from Table 6.15, Release 4 had minor change in code. Primarily the in-process 

development was completed by Release 3. Releases 4, 5, and 6 were primarily to improve quality. 

Most of the effort in Release 4 was concentrated on fixing testing defects. This is indicated by the 

numerical quantification of all the eight STREW metrics, which each only have a minor change, (only 

in the second decimal place) compared to Release 3. This indicates the high TRs/KLOC associated 

with Release 4.  

Table 6.15: Release 4 STREW metrics feedback 

 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 
 0.0751 0.0196 3.8181 0.6422 0.4510 0.8901 0.8666 0.1781

Color Orange Red Green Green Red Green Green Red 
Prior 

release 
color Orange Red Green Red Green Green Green Red 

Post-release field quality = 8.70 TRs/KLOC 
 

Similar to Release 4, Release 5 shown in Table 6.16 also has even fewer new feature additions to 

code. Most of the changes were bug fixes which can be used to explain the high TRs/KLOC 

associated with Release 5. 
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Table 6.16: Release 5 STREW metrics feedback 

 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 
 0.0730 0.0183 3.9782 0.6686 0.4234 0.8645 0.7777 0.1724

Color Orange Red Green Green Red Green Green Red 
Prior 

release 
color Orange Red Green Green Red Green Green Red 

Post-release field quality = 13.06 TRs/KLOC 
 

Release 6, shown in Table 6.17 was a correction phase in which there was no new feature 

development. This affects the STREW metrics as the only changes to them will occur when there are 

bug fixes. These changes will primarily not affect any of the feedbacks in the metrics compared to 

Release 5. If the lower quality metrics (red feedbacks) are addressed namely, for example increasing 

test effort (more test code  in turn test cases  in turn assertions) will also increase the number of 

methods per class compared to the source code leading to better quality of code with fewer failures.  

Table 6.17: Release 6 STREW metrics feedback 

 SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 
 0.0720 0.0177 4.0652 0.6471 0.3995 0.8469 0.7777 0.1696

Color Orange Red Green Red Green Green Green Red 
Prior 

release 
color Orange Red Green Green Red Green Green Red 

Post-release field quality = 0.0 TRs/KLOC 
 

There are two limitations to our investigation of test quality feedback. One is the small size of the 

samples (seven academic, 13 open source, and six industrial) which make it difficult to obtain a 

statistical significance at a high 95% confidence. Secondly, the analyses were all done post-mortem, 

i.e. the feedback results were not used to improve the testing effort as development proceeded. This 

post-mortem feedback explains to a certain degree the similar number of color-coded feedbacks in 

Figure 6.2 and Figure 6.3. Changing the red and orange feedbacks in these figures to green would 

further serve in strengthening the current results with significantly higher levels of statistical 

acceptance.   
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6.6. DISCRIMINATIVE POWER  

In addition to providing test quality feedback, we investigate the ability of the STREW metrics to 

identify programs of low and high quality. For this purpose we use logistic regression with the 

STREW metrics as the covariates and the post-release field quality (1- low quality and 0-high quality) 

as the dependent variable. The field quality is calculated using Equation 6.1 on the TRs/KLOC such 

that all projects with a TRs/KLOC lower than the calculated lower bound is “High Quality”, 

otherwise it is classified as “Low Quality”. The quality of the logistic regression (Type I and Type II 

errors) is evaluated as shown in Table 6.18. 

Table 6.18: Type 1 and Type II errors 

  Predicted 

  High Quality Low Quality 

High Quality Correct Type 1 Error Observed 

Low Quality Type II Error Correct 

 

The results for the Type I and Type II errors for the academic and open source case study are 

shown in Table 6.18. The results shown in Table 6.19 indicate that a high proportion of “Low 

Quality” and “High Quality” projects are correctly identified. This result adds knowledge to our 

already existing empirical knowledge base of the test quality feedback results indicating the efficacy 

of the STREW metric suite.  

Table 6.19: Type I, Type II errors for case studies 

 Type I Error Type II Error Overall Model Fit 

Academic Case 
Study (n=22) 

0 (0%) 0 (0%) 100%         
(9 +13)/22  

(Low Quality =13, High Quality =9) 
Open Source 
Case Study 
(n=27) 

2/11 (18.15%) 
[2.94%, 33.36%] 

1/16 (6.25%) 
[0%, 15.74%] 

88.88% [74.68%, 100.00%] 
(9+15)/27  

(Low Quality =16, High Quality =11) 
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Also Table 6.19 presents the error in the estimates within box brackets. The error in the estimates 

for classification cannot be computed for the academic case study as there are no misclassifications. 

Further, for providing test quality feedback, we have automated the collection and analysis of the 

STREW metrics Version 1.4 via an open source Eclipse plug-in GERT (Good Enough Reliability 

Tool)9 [22, 69].  In addition to providing a reliability estimate, the tool provides color-coded feedback 

on the quality of the testing effort relative to historical data from comparable projects. Appendix B 

presents a brief summary of the tool and its deployment in the Sourceforge software repository.  

 

 

 

                                                 
9 gert.sourceforge.net 
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CHAPTER 7 
 
 
RETROSPECTIVE STREW METRIC 
ANALYSIS 
 

This chapter deals with a retrospective analysis of the STREW metric suite, more specifically 

identifying the relationship between the STREW metrics and the TRs/KLOC similar to the work done 

by Vouk et. al.[93]. We investigate several hypothesis with relation to the STREW metrics and other 

project metrics. These hypotheses are discussed below. In all our discussions, we restrict ourselves to 

the academic and open source case study only because the industrial case study has only five points. 

H0: There is no relationship between the number of TRs and the size of the code.  

Figure 7.1 presents the scatter plots between the TRs and the size of the code. It also presents the 

Pearson correlation results between the two measures to numerically quantify the scatter plots. The 

correlation results in Figure 7.1 indicate that for the open source projects the large projects have more 

TRs at statistically significant levels. A contrary relationship is observed with respect to the academic 

projects. But this relationship is not statistically significant and is on a much smaller scale of projects 

indicating that this evidence is not in direct contradiction to the open source projects. Hence we can 

reject the null hypothesis and state that there exists a positive association between the size of a 

project and the number of TRs. 

 

 

 



 89

Academic Case Study Open Source Case Study 

TR's

121086420

Si
ze

4000

3000

2000

1000

0

 
TR's

50403020100

Si
ze

80000

60000

40000

20000

0

 
Correlation = -0.168 (p=0.455) Correlation = 0.393 (p=0.043) 

 
Figure 7.1: Scatterplots of TRs Vs. Size 

H0: There is no relationship between the number of TRs/KLOC and the size of the code.  

We perform a similar scatter plot analysis on the TRs/KLOC and the size of the code along with 

correlation results for both the academic and open source projects, the results of which are shown in 

Figure 7.2. 

Academic Case Study Open Source Case Study 

TR's

121086420

Si
ze

4000

3000

2000

1000

0

 
TR's

50403020100

Si
ze

80000

60000

40000

20000

0

 
Correlation = -0.627 (p=0.002) Correlation = -0.397 (p=0.041) 

 
Figure 7.2 Scatterplots of TRs/KLOC Vs. Size 

The results of both the academic and the open source case study indicate that the there is a 

negative statistically significant relationship between the size and the TRs/KLOC. With increase in 
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the size of the systems there is a decrease in the TRs/KLOC. These results are in agreement with 

previously published empirical studies [4, 32, 40, 61, 76]. Thus we can reject the null hypothesis that 

there is no relationship between the TRs/KLOC and the size of the code. This research hypothesis 

indicates that our case study software systems were similar to previously studied software systems, 

and the STREW metric suite results are not likely to be due to a difference in the underlying 

relationship between the TRs/KLOC and the project sizes.  

H0: There is no relationship between the number of TRs/KLOC and the asserts and test cases of the 

code.  

To address this hypothesis, we plot a three dimensional plot with the TRs/KLOC on the x axis 

and the asserts/KLOC and test cases/KLOC on the y and z axis. The plots for the open source and 

academic projects are shown in Figure 7.3. 
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Figure 7.3: 3-D plots of Asserts/KLOC vs. Test Cases/KLOC vs. TRs/KLOC 

From Figure 7.3, we observe a clustered pattern indicating the three way relationship between the 

asserts/KLOC, test cases/KLOC and TRs/KLOC. This leads us to reject the null hypothesis that there 

is no relationship between asserts/KLOC, test cases/KLOC and TRs/KLOC. To check for consistency 
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when normalized by size we perform the same analysis using the absolute measures of the asserts, test 

cases, and TRs.  The results are shown in Figure 7.4.  
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Figure 7.4: 3-D plots of Asserts vs. Test Cases vs. TRs 

The 3-D plots in Figure 7.4 also show clustering across both the academic and open source case 

studies indicating the results hold across the normalizing effect of size on the asserts, test cases and 

TRs. Figure 7.5 shows the relationship between the statement and branch coverage and the 

TRs/KLOC for the academic projects.  
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Figure 7.5: Statement and Branch Coverage with TRs/KLOC 
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The statistical results indicate that there is no correlation between the coverage and the 

TRs/KLOC. Further, the majority of the overall statement and branch coverage is below 30%. The 

projects were required to have a minimum of 80% statement coverage in their JUnit unit test suite for 

non-GUI code (i.e. program logic), indicating a uniformness in the testing effort. The 30% is when 

both GUI and non-GUI code is considered.  The analysis when performed with the TRs also leads to 

similar results.  

Table 7.1 presents the correlation matrix of the academic case studies. The inter correlation 

between the elements indicates the multicollinearity and the appropriateness of principal component 

analysis.  The TRs/KLOC is correlated with the CBO ratio and the RCAF. The other elements may 

not have been correlated because of the small sample size of the academic projects. 

Table 7.1: Correlation Matrix – Academic Projects 
 

  TRs TRs/ 
KLOC

Asserts/ 
KLOC

TCs/ 
KLOC

Assert
s/ TCs

TLOC/tcl/ 
SLOC/scl

CCT/ 
CCS

CBO
T/ 

CBOS 

DITT/
DITS 

WMCT/ 
WMCS

RCAF

TRs Pearson 
Correlation 

1 .752 -.309 .216 -.413 -.075 -.032 .199 -.008 -.178 -.335

 Sig. (2-
tailed) 

. .000 .162 .335 .056 .741 .888 .374 .972 .429 .127

TRs/ 
KLOC 

Pearson 
Correlation 

.752 1 -.185 .226 -.307 -.103 .393 .642 .101 .118 -.627

 Sig. (2-
tailed) 

.000 . .410 .312 .165 .647 .071 .001 .655 .600 .002

asserts/ 
KLOC 

Pearson 
Correlation 

-.309 -.185 1 .450 .569 .510 .011 .021 .447 -.020 .106

 Sig. (2-
tailed) 

.162 .410 . .036 .006 .015 .963 .927 .037 .929 .637

TCs/ 
KLOC 

Pearson 
Correlation 

.216 .226 .450 1 -.310 .564 .096 .069 .402 -.032 -.169

 Sig. (2-
tailed) 

.335 .312 .036 . .160 .006 .670 .760 .063 .886 .452

asserts/ 
TCs 

Pearson 
Correlation 

-.413 -.307 .569 -.310 1 -.095 .097 .153 .045 .183 .239

 Sig. (2-
tailed) 

.056 .165 .006 .160 . .675 .668 .497 .842 .416 .285

TLOC/tcl/ 
SLOC/scl 

Pearson 
Correlation 

-.075 -.103 .510 .564 -.095 1 -.127 -.127 .660 -.184 .121

 Sig. (2-
tailed) 

.741 .647 .015 .006 .675 . .573 .572 .001 .412 .590

CCT/ CCS Pearson 
Correlation 

-.032 .393 .011 .096 .097 -.127 1 .819 .205 .834 -.112

 Sig. (2-
tailed) 

.888 .071 .963 .670 .668 .573 . .000 .361 .000 .619
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Table 7.1 (continued) 
 
CBOT/ 
CBOS 

Pearson 
Correlation 

.199 .642 .021 .069 .153 -.127 .819 1 .283 .520 -.214

 Sig. (2-
tailed) 

.374 .001 .927 .760 .497 .572 .000 . .202 .013 .340

DITT/ 
DITS 

Pearson 
Correlation 

-.008 .101 .447 .402 .045 .660 .205 .283 1 .116 .281

 Sig. (2-
tailed) 

.972 .655 .037 .063 .842 .001 .361 .202 . .606 .205

WMCT/ 
WMCS 

Pearson 
Correlation 

-.178 .118 -.020 -.032 .183 -.184 .834 .520 .116 1 -.087

 Sig. (2-
tailed) 

.429 .600 .929 .886 .416 .412 .000 .013 .606 . .700

RCAF Pearson 
Correlation 

-.335 -.627 .106 -.169 .239 .121 -.112 -.214 .281 -.087 1 

 Sig. (2-
tailed) 

.127 .002 .637 .452 .285 .590 .619 .340 .205 .700 . 

 
 

Similarly Table 7.2 shows the correlation matrix for the open source case studies. The 

correlations for the TRs and TRs/KLOC are highlighted in bold to show their individual correlations 

with the STREW metrics. The TRs/KLOC are correlated with the STREW metrics, except SM1, 

SM3, and  SM4. 

Table 7.2: Correlation Matrix – Open Source projects 
 

  TRs TRs/ KLOCasserts/ 
KLOC

TCs/  
KLOC

asserts/ 
TCs 

TLOC/tcl/ 
SLOC/scl 

CCT/ 
CCS 

CBOT
/CBOS 

DITT/
DITS 

WMCT/
WMCS

RCAF 

TRs Pearson 
Correlation 

1 .102 -.143 -.293 .289 .162 -.074 .107 -.115 .017 .393 

 Sig. (2-
tailed) 

. .612 .478 .138 .144 .419 .715 .594 .567 .932 .043 

TRs/ KLOC Pearson 
Correlation 

.102 1 .288 .667 -.174 .129 .585 .583 .406 .644 -.397 

 Sig. (2-
tailed) 

.612 . .146 .000 .384 .523 .001 .001 .036 .000 .041 

asserts/ 
KLOC 

Pearson 
Correlation 

-.143 .288 1 .528 -.011 .022 .654 .654 .715 .537 -.435 

 Sig. (2-
tailed) 

.478 .146 . .005 .958 .912 .000 .000 .000 .004 .023 

TCs/KLOC Pearson 
Correlation 

-.293 .667 .528 1 -.514 .141 .718 .579 .437 .607 -.424 

 Sig. (2-
tailed) 

.138 .000 .005 . .006 .482 .000 .002 .023 .001 .028 

asserts/TCs Pearson 
Correlation 

.289 -.174 -.011 -.514 1 -.257 -.164 -.127 -.064 -.081 .216 

 Sig. (2-
tailed) 

.144 .384 .958 .006 . .196 .413 .528 .753 .688 .280 

TLOC/tcl/ 
SLOC/scl 

Pearson 
Correlation 

.162 .129 .022 .141 -.257 1 .183 .150 -.251 .134 -.220 

 Sig. (2-
tailed) 

.419 .523 .912 .482 .196 . .361 .456 .206 .505 .269 
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Table 7.2 (continued) 
 

CCT/CCS Pearson 
Correlation 

-.074 .585 .654 .718 -.164 .183 1 .854 .525 .931 -.434 

 Sig. (2-
tailed) 

.715 .001 .000 .000 .413 .361 . .000 .005 .000 .024 

CBOT/ 
CBOS 

Pearson 
Correlation 

.107 .583 .654 .579 -.127 .150 .854 1 .592 .810 -.310 

 Sig. (2-
tailed) 

.594 .001 .000 .002 .528 .456 .000 . .001 .000 .116 

DITT/DITS Pearson 
Correlation 

-.115 .406 .715 .437 -.064 -.251 .525 .592 1 .457 -.336 

 Sig. (2-
tailed) 

.567 .036 .000 .023 .753 .206 .005 .001 . .016 .086 

WMCT/ 
WMCS 

Pearson 
Correlation 

.017 .644 .537 .607 -.081 .134 .931 .810 .457 1 -.391 

 Sig. (2-
tailed) 

.932 .000 .004 .001 .688 .505 .000 .000 .016 . .044 

RCAF Pearson 
Correlation 

.393 -.397 -.435 -.424 .216 -.220 -.434 -.310 -.336 -.391 1 

 Sig. (2-
tailed) 

.043 .041 .023 .028 .280 .269 .024 .116 .086 .044 . 

 
The scatter plots for the STREW metric elements with TRs/KLOC are shown in Figure 7.6 for 

both the academic and open source projects. These plots are graphical representation of the 

correlations in Table 7.1 and Table 7.2. These correlations are to graphical represent the association 

between the TRs/KLOC and the STREW metrics.  
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Table 7.6: Scatter plots of STREW metrics with TRs/KLOC 

In Appendix C, Table C.3 and C.4 show a similar correlation matrix between the individual 

project metrics and TRs to highlight the association between the project metrics for both the open 

source and the industrial projects. 
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CHAPTER 8 
 
 
CONCLUSIONS AND FUTURE WORK  
 

An early estimation of potential software field quality is very useful to developers because it 

helps in identifying the overall quality of the software system. However, in most production 

environments, field quality is measured too late to affordably guide significant corrective actions.   In 

this dissertation, we have reported on the usage of an in-process suite of test metrics for providing an 

early warning regarding post-release field quality and for providing meaningful feedback on the 

thoroughness of a testing effort.  

The STREW metric suite is intended to be easy to gather in the development environment so that 

developers can receive an early indication of system TRs/KLOC throughout development.  This 

estimation allows developers to take corrective actions early. However, these benefits will not accrue 

unless an adequate number of test cases that stress the system are written in the tight feedback loops, 

as is done in the TDD [9] paradigm.  The STREW metric suite has been designed to provide the 

developer feedback to guide in the incremental creation of a thorough test suite.  Additionally, the 

STREW metric suite leverages the utility of the extensive suite of automated tests to identify low 

quality projects throughout development.  We note that the STREW metric suite can be used with any 

system with an automatic test suite (not script based testing), not only for systems that are developed 

using TDD.  
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To summarize the main contributions of this dissertation are: 

• Development of an in-process STREW metric suite that leverages the testing effort to 

estimate the post-release field quality of the software. The STREW metric suite is a set of 

static code measures that can be used to estimate the dynamic measure of post-release 

field quality. 

• Empirical evidence of the ability of the STREW metric suite to estimate post-release field 

quality at statistically significant levels using three case studies in the academic, open 

source and industrial environments. 

• Empirically assess the ability of the STREW metric suite to provide meaningful feedback 

on the thoroughness of a testing effort using three case studies in the academic, open 

source and industrial environment.  

Our case studies reflect only a relatively small set of data points and contexts. We plan to follow 

a process similar to the research done with the COCOMO II cost estimation model [18] by Barry 

Boehm at USC, over a period of 15 years with 83 data points from commercial, aerospace, 

government, and nonprofit organizations. We will build a more general, robust STREW-based post-

release field quality estimation model by obtaining data from many industrial organizations, in 

multiple domains, with varying degrees of quality. Similar to the COCOMO methodology we plan to 

make our model robust to handle projects with a wide spectrum of post-release field quality.  

We will continue to validate the metric suite under different industrial and academic 

environments and refine metric suite according to specific industry characteristics with emphasis on 

smaller granularity of measurement, i.e. instead on a project basis, measure the STREW metrics on a 

function/class basis to provide more individual feedback to developers. We will continue to refine the 

metric suite by add/deleting new metrics based on the results of further studies. An important step 

towards generalizing STREW would involve modifying STREW metrics for non – OO languages as 

languages like C that form a large part of the legacy code base. We plan to use non-automated test 
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results with STREW to further enhance the measurement of the testing effort. In this thesis, we use 

projects from teams that develop a history of the value of the STREW metrics from comparable 

projects with acceptable levels of post-release field quality.  
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Appendix A – Data sets 
 

Table A.1: Academic case study data set 
 

SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 
TRs/ 

KLOC 
0.072419 0.07319 0.989474 0.416084 1.270539 0.613636 2.047619 0.398693 2.103728 12.32666 
0.025062 0.00358 7 0.72093 0.426019 0.719101 0.9375 1 5.884927 1.652437 
0.01506 0.009639 1.5625 0.364621 0.924269 0.301887 0.8 0.396296 2.690438 7.228916 

0.061195 0.021855 2.8 0.579399 0.792186 0.538462 0.666667 0.72449 3.337115 1.457018 
0.112583 0.040287 2.794521 0.145374 0.671358 0.210526 0.769231 0.38 2.936791 3.311258 
0.025751 0.025751 1 0.113485 0.682403 0.140845 0.294479 0.127094 1.888169 18.88412 
0.083912 0.03581 2.343284 0.248815 0.908605 0.176471 0.4 0.419087 3.032415 5.344735 
0.022245 0.021218 1.048387 0.06383 0.528747 0.24 0.411765 0.064865 4.735818 8.555784 
0.190463 0.059109 3.222222 0.307851 1.811822 0.235294 3.8 0.283433 5.675851 1.427756 

0.025 0.022308 1.12069 0.35786 0.437308 0.329268 0.444444 0.405858 4.213938 1.923077 
0.039487 0.040513 0.974684 0.125 0.571874 0.086957 0.307692 0.20202 3.160454 6.666667 
0.103058 0.050396 2.044944 0.408907 1.01359 0.211765 0.48 0.46087 2.862237 7.92752 
0.062218 0.060211 1.033333 0.316384 0.466006 0.169014 0.5 0.39375 3.230146 8.529854 
0.007067 0.004122 1.714286 0.273723 0.201413 0.188119 0.45 0.38191 2.752026 5.889282 
0.052908 0.02104 2.514706 0.319149 0.679146 0.21875 2.4 0.580153 5.23825 4.022277 
0.059968 0.042139 1.423077 1.181518 0.431767 1.584416 1.8 0.892157 1 35.6564 
0.042157 0.027588 1.52809 0.47973 0.389182 0.320755 0.263158 0.33913 5.228525 1.549907 
0.045518 0.022409 2.03125 0.190476 0.571822 0.15625 0.666667 0.355769 2.314425 2.10084 
0.190793 0.017565 10.86207 0.319703 0.419594 0.438356 0.5 0.448454 2.675851 3.634161 
0.031097 0.030278 1.027027 0.37037 0.545008 0.369565 1.190476 0.852273 1.980551 13.91162 
0.067829 0.043282 1.567164 0.941176 0.608312 0.351064 0.6 1.354497 2.508914 5.167959 
0.027778 0.022222 1.25 0.175711 0.773148 0.166667 0.333333 0.304878 1.750405 10.18519 
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Table A.2: Open source case study data set 

 

SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 
TRs/ 

KLOC 
0.055602 0.054349 1.023059 0.319667 0.859121 0.607487 0.534314 0.308992 21.881 0.710168 
0.032401 0.022159 1.462222 0.155299 1.270924 0.179862 0.070686 0.145636 9.282 0.984834 
0.077072 0.147949 0.520935 0.694059 1.640944 0.61275 0.534 0.53862 11.362 0.643604 
0.011397 0.003177 3.587629 0.125165 0.269654 0.098648 0.246886 0.134135 27.911 0.261994 
0.020498 0.01064 1.926471 0.101405 0.910326 0.143173 0.118299 0.114993 23.367 1.682119 
0.14775 0.055443 2.664921 0.659643 0.598961 0.82906 0.721805 0.707219 3.149 2.03193 

0.148361 0.098659 1.503776 0.595318 1.244509 1.045028 0.576369 0.585379 12.267 2.384501 
0.073409 0.088209 0.832215 0.226997 3.303744 0.411226 0.146104 0.218008 9.264 1.381352 
0.10863 0.050388 2.155867 0.286179 1.857822 0.524051 0.66263 0.283009 10.358 2.117896 

0.076912 0.04131 1.861831 0.34194 0.997198 0.35492 0.523077 0.305928 12.812 0.642123 
0.134711 0.138715 0.971139 0.266631 0.595705 0.485356 1 0.258913 8.448 2.055832 
0.031641 0.082172 0.385057 0.345133 1.185235 0.486154 0.2287 0.250254 3.871 1.652893 
0.081526 0.562012 0.145062 0.832558 1.166894 0.873874 0.717949 0.910714 1.054 6.938422 
0.09146 0.302223 0.302625 0.501784 1.334559 0.733911 0.452012 0.368778 12.213 0.673602 

0.027399 0.024707 1.108937 0.093508 0.64379 0.294118 0.147216 0.092116 69.96 0.261315 
0.005519 0.004821 1.144928 0.039031 0.172479 0.049563 0.186869 0.047142 26.167 0.209592 
0.023736 0.140639 0.16877 0.294632 2.132135 0.141527 0.119617 0.229282 8.241 1.220053 
0.239488 0.209324 1.144105 0.477679 0.874162 0.571429 0.464286 0.48249 1 0.914077 
0.258738 0.317397 0.81519 0.652941 0.691388 0.5 1.289474 0.496523 2.275 1.205303 
0.181868 0.205638 0.884409 0.393939 0.572576 0.774194 1.526316 0.318182 1.654 2.763958 
0.013482 0.036382 0.370583 0.072683 0.45747 0.287869 0.599688 0.121825 30.577 0.388628 
0.001651 0.001351 1.222222 0.027144 0.405223 0.044061 0.028112 0.029683 6.09 0.60033 
0.0852 0.114835 0.741935 0.110818 1.332436 0.207127 0.212963 0.133277 5.182 0.705592 
0.02584 0.036822 0.701754 0.095238 0.399655 0.192593 0.68 0.120846 1.415 1.29199 
0.0176 0.161736 0.108818 0.2566 1.134122 0.313576 0.18797 0.381517 6.025 0.75861 

0.171854 0.441137 0.389571 0.625709 1.077885 0.772093 0.698113 0.403027 2.702 2.368065 
0.077032 0.053366 1.443459 0.525633 1.024454 0.591343 0.641115 0.699861 15.45 1.597444 
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Appendix B – Tool support 
 

Tool support for partial collection of the metrics used in the STREW metric suite Version. 1.4 is 

performed using an open source plug-in GERT10 (Good Enough Reliability Tool) under the Common 

Public License (CPL11) for the open source Eclipse12 development environment. Figure B.1 is a snap 

shot of the tool in use with different functionalities highlighted. 

 

Figure B.1: GERT snap shot 

All preferences for the tool are editable through a sub-page of the Eclipse IDE preference pages. 

These settings are retained throughout subsequent sessions as is the layout of the tool’s different 

graphical views. The configurations available consist of defining the parameters for the STREW 

                                                 
10 GERT can be obtained from http://gert.sourceforge.net. GERT was a winner in the International Challenge for Eclipse competition in the 
student project category 
11 http://www-124.ibm.com/developerworks/oss/CPLv1.0.htm 
12 Eclipse is an open source integrated development environment.  For more information see http://www.eclipse.org 
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model. If the user wishes to employ a different reliability model, the expression of metrics that 

determine the point estimate can be entered among these preferences. Optionally, the colors used to 

highlight the “Reliability Ratios” view and their associated ranges are defined from the same menu.  

GERT provides an easy-to-use tool for empirical reliability estimation and test feedback.  Some 

of GERT’s functionality is handled by other open source tools that have been incorporated in GERT’s 

source code. Currently, the task of performing coverage analysis and administrating unit testing is 

handled by JCoverage and JUnit, respectively.  

• JCoverage, licensed under the GNU General Public License (GPL13) is an extension 

to the Apache Ant build tool.   

• JUnit, licensed in similar fashion under the CPL, provides a framework for running 

unit testing. GERT calculates coverage based upon JUnit test cases. 

From the home page of GERT (gert.sourceforge.net) we present some statistics about the 

download rate and the activity profile over the past nine months14 (274 days). Figure B.2 presents the 

usage statistics from sourceforge.net. 

                                                 
13 http://www.gnu.org/copyleft/gpl.html 
14 The statistics snapshot was taken on November 11 2004. 
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Figure B.2: Usage Statistics (Courtesy sourceforge.net) 

Table B1 shows the number of downloads (D/L) and the rank of the GERT tool in sourceforge.net on 

a monthly basis. 

Table B.1: Statistics for the past 10 months (Courtesy sourceforge.net) 

Month Rank Page Views D/l

November 2004 7764    
(55.15) 150 64

October 2004 11282  
(34.62) 54 30

September 2004 5793    
(65.44) 316 156

August 2004 11022  
(38.42) 161 13

July 2004 7181  
(58.30) 66 12

June 2004 7294    
(60.36) 51 1 

May 2004 10814  
(37.40) 92 5 

April 2004 10906  
(33.42) 76 21

March 2004 7530    
(54.06) 184 25

February 2004 3042    
(80.88) 39 2 
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Table B.2 shows a cumulative number of downloads over the entire life time of the tool and its 

current rank with respect to other products in souceforge.net. 

Table B.1: Statistics for All Time (Courtesy sourceforge.net) 

Lifespan Rank Page Views D/l

276 days 8263 
( 51.81 ) 1,189 329
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Appendix C 
 

Miscellaneous Statistical Analysis 
 

Appendix C details some of the statistical analysis that form the underlying criterion for the 

analysis explained in this dissertation. We assess the normality of the STREW metrics, and the 

principal components produced by the STREW metrics in Appendix C.  

Table C.1 and C.2 are used to check for the normality of data distribution for application of 

equation 1. The results indicate that the STREW metrics are normally distributed.  

 
Table C.1: One-Sample Kolmogorov-Smirnov Test – Academic Projects 

 
 
 

SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 

Kolmogorov-Smirnov 
Z Statistic 

 

.890 .692 1.349 .880 1.049 1.182 1.306 1.241 

Asymp. Sig. (2-tailed) 
 

.406 .724 .053 .421 .221 .122 .066 .092 

 
 

Table C.2: One-Sample Kolmogorov-Smirnov Test – 27 Open Source Projects 
 

 
 

SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 

Kolmogorov-Smirnov 
Z Statistic 

 

.860 .957 .741 .933 .611 .551 .811 .706 

Asymp. Sig. (2-tailed) 
 

.450 .318 .642 .348 .850 .922 .526 .700 

 
In statistical studies, sometimes it is possible that the distribution of data points may be bimodal. 

This can be avoided by using dependent variable residuals from the regression equation in the test for 

normality. The plot of the residuals for the academic case study is shown in Figure C.1. We also ran a 

one sample Kolmogorov-Smirnov test on the unstandardized regression predicted residuals with the 

null hypothesis that the population distribution is normal. The results (Z=0.656, p=0.782) indicate 

that we can accept the null hypothesis that the distribution is normal. 
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Figure C.1 : Normality plot of regression residuals – Academic case study  

Similarly for the 27 open source projects the results of a Kolmogorov-Smirnov test on the 

unstandardized regression predicted residuals yielded (Z=0.656, p=0.782) indicating that the 

distribution was normal. The normality plots are shown in Figure C.2. 

Unstandardized Residual

1.25
1.00

.75
.50

.25
0.00

-.25
-.50

-.75
-1.00

-1.25
-1.50

6

5

4

3

2

1

0

Std. Dev = .65  
Mean = 0.00

N = 27.00

 

Figure C.2: Normality plot of regression residuals –Open source case study 
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We present more information on the principal component analysis in Figure C.3 - the scree plot 

and Figure C.4 - the component plot of the academic projects. The scree plot is useful in determining 

the number of principal components that should be extracted.  
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Figure C.3: Scree plot 

The component plot shows the location of the individual metrics in terms of the loaded 

components to identify relationships between the elements in terms of the principal components. 
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Figure C.4: Component plot 

Similarly we present in Figure C.5 - the scree plot and Figure C.6 - the component plot of the open 

source projects. 
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Figure C.5: Scree plot 
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Figure C.6: Component plot 

Table C.3 shows the association between project metrics and TRs without the normalization of 

metrics for the academic projects. From Table C.3 we observe that none of the metrics(shown in 

bold) are correlated with the TRs, indicating the absence of any relationship between the number of 

TRs and the individual project metrics. 
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Table C.3: Correlation matrix with individual project metrics - Academic 

  TRs SLOC CCS CBOS DITS WMPCS Asserts Test Cases
TRs Pearson 

Correlation 
1 -.335 .167 .062 .296 .308 -.369 -.089 

 Sig. (2-tailed) . .127 .459 .783 .181 .164 .091 .694 
SLOC Pearson 

Correlation 
-.335 1 -.216 .056 -.114 -.208 .459 .424 

 Sig. (2-tailed) .127 . .334 .806 .613 .354 .032 .049 
CCS Pearson 

Correlation 
.167 -.216 1 .304 .695 .870 .186 .026 

 Sig. (2-tailed) .459 .334 . .169 .000 .000 .407 .909 
CBOS Pearson 

Correlation 
.062 .056 .304 1 .238 .121 .065 .003 

 Sig. (2-tailed) .783 .806 .169 . .287 .591 .773 .991 
DITS Pearson 

Correlation 
.296 -.114 .695 .238 1 .810 -.161 -.229 

 Sig. (2-tailed) .181 .613 .000 .287 . .000 .475 .304 
WMPCS Pearson 

Correlation 
.308 -.208 .870 .121 .810 1 .160 .106 

 Sig. (2-tailed) .164 .354 .000 .591 .000 . .476 .638 
Asserts Pearson 

Correlation 
-.369 .459 .186 .065 -.161 .160 1 .762 

 Sig. (2-tailed) .091 .032 .407 .773 .475 .476 . .000 
Test Cases Pearson 

Correlation 
-.089 .424 .026 .003 -.229 .106 .762 1 

 Sig. (2-tailed) .694 .049 .909 .991 .304 .638 .000 . 
 

Similarly Table C.4 shows the association between project metrics and TRs without the 

normalization of metrics for the open source projects. From Table C.4 we observe that except the test 

cases all the other metrics are correlated with the TRs at statistically significant levels implying that 

with an increase in these metrics there is an increase in the TRs. This could imply that for the 

academic projects the lack of correlation might be due to the large variability of the TRs in the 

projects. 
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Table C.4: Correlation matrix with individual project metrics – Open source 

  TR's SLOC CCS WMCS CBOS DITS Asserts Test 
Cases 

TR's Pearson 
Correlation 

1 .393 .381 .395 .374 .431 .593 .131 

 Sig. (2-
tailed) 

. .043 .050 .041 .055 .025 .001 .515 

SLOC Pearson 
Correlation 

.393 1 .965 .962 .966 .854 .512 .243 

 Sig. (2-
tailed) 

.043 . .000 .000 .000 .000 .006 .223 

CCS Pearson 
Correlation 

.381 .965 1 .934 .917 .838 .474 .231 

 Sig. (2-
tailed) 

.050 .000 . .000 .000 .000 .013 .247 

WMCS Pearson 
Correlation 

.395 .962 .934 1 .976 .863 .619 .321 

 Sig. (2-
tailed) 

.041 .000 .000 . .000 .000 .001 .102 

CBOS Pearson 
Correlation 

.374 .966 .917 .976 1 .903 .530 .241 

 Sig. (2-
tailed) 

.055 .000 .000 .000 . .000 .005 .227 

DITS Pearson 
Correlation 

.431 .854 .838 .863 .903 1 .526 .230 

 Sig. (2-
tailed) 

.025 .000 .000 .000 .000 . .005 .249 

Asserts Pearson 
Correlation 

.593 .512 .474 .619 .530 .526 1 .551 

 Sig. (2-
tailed) 

.001 .006 .013 .001 .005 .005 . .003 

Test Cases Pearson 
Correlation 

.131 .243 .231 .321 .241 .230 .551 1 

 Sig. (2-
tailed) 

.515 .223 .247 .102 .227 .249 .003 . 

 


