ABSTRACT

THOMPSON, KYLE ANDREW. Commuting Involutions of SL(n, k). (Under the
direction of Dr. Aloysius Helminck).

The classification of commuting involutions of a connected, reductive algebraic
group over an algebraically closed field of characteristic not two was completed by
Helminck in [Hel88]. In this thesis, the isomorphism classes of commuting pairs of in-
volutions of SL(n, k) for arbitrary fields of characteristic not two are determined. This
is done in three main parts: commuting pairs of inner involutions, commuting pairs of
involutions with one inner involution and one outer involution, and commuting pairs
of outer involutions. The classification is done up to (almost) inner automorphism of
SL(n, k) as in the case of a single involution, completed in [HWDO06]. For commuting
pairs of involutions, the classification is done in several pieces, each of which uses an
isomorphism class representative of a single involution of SL(n, k) as the first entry.
First, it is shown that if a mapping of a certain form is invertible, it will partially
zero-out the matrix representative of one of the entries in the pair of commuting in-
volutions while fixing the other pair, and will be an inner automorphism of SL(n, k).
Then, it is shown that, indeed, the given mapping must be invertible for one of a few
given forms. This leads to an induction argument that gives a partial classification of
the commuting inner pairs. To finish the classification, whether or not the remaining
pairs are isomorphic is determined. Next, using results on Quadratic forms, a 'nice’
form for commuting pairs with one inner and one outer involution is found. To finish
the classification of such pairs, work is completed on a field (of characteristic not two)
by field basis and results are explicitly obtained for algebraically closed fields, the real
numbers, finite fields, and the p-adic numbers. Lastly, equivalence between the clas-
sification of commuting outer pairs and commuting pairs with one inner involution

and one outer involution is shown.
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Chapter 1
Introduction

For any field k of characteristic not two we can define a symmetric k-variety as
the homogeneous space G/ Hy where G is a reductive algebraic group defined over
k and H is the fixed point group of a k-involution with G, and H; the k-rational
points of G and H, respectively. The study of these symmetric k-varieties occur in
problems in representation theory, geometry, singularity theory, the study of character
sheaves and the study of cohomology of arithmetic subgroups (as in [BB81], [Vog83]
and [Vog82] for representation theory, [DCP83|, [DCP85] and [Abe88| for geometry,
[LV83] [HS90] for singularity theory, [Lus90] and [Gro92] for the study of character
sheaves, and [TW89] for the study of cohomology of arithmetic subgroups).

Determining various orbit decompositions of symmetric k-varieties play a vital
role in the study of these symmetric spaces, especially in representation theory (see
[OMS84], [Vog83] and [Vog82], [HHO05, HHO8], [vdBS97, BD92, Del98, FJ80, OS80],
[Kir93], and [Gro92]). The orbits of minimal parabolic k-subgroups on symmetric
varieties and the orbits of a f-stable symmetric k-subgroup acting on the symmetric
k-variety for 6 a k-involution are important in the study of the representation the-
ory of symmetric varieties and harmonic analysis, respectively. The related double
cosets play an important role in their study, including the double cosets of a pair of
commuting involutions (see [Hel88] [Mat02]).

Although the double cosets of a pair of commuting involutions are important

in several areas of mathematics, there still is not a complete classification of the



isomorphy classes of commuting involutions for general base fields. For algebraically
closed fields, this was completed by Helminck in [Hel88] and some partial results
were obtained by Matsuki [Mat02] over the real numbers for compact groups. This
thesis is on the classification of commuting involutions of SL(n, k), for k an arbitrary
field of characteristic not two. The classification of single involutions of SL(n, k)
was completed by Helminck, Wu, and Dometrius up to conjugacy by (almost) inner
automorphisms of SL(n, k) in [HWDO06]. I used their results to classify commuting
pairs of involutions up to conjugacy by (almost) inner automorphisms of SL(n, k) in
the following manner: a pair of commuting involutions (o, ) of SL(n, k) is isomorphic
to any commuting pair of the form (Inng' ¢ Inng, Inng' 6 Inng), for Inng an (almost)
inner automorphism of SL(n, k). This can lead to the determination of the maximal
(0,0, k)-split tori for the isomorphism classes given by (o, ). Furthermore, this can
lead to a generalization as described below.

The classification of commuting involutions of an algebraic group over an alge-
braically closed field was completed by Helminck [Hel88] using commuting involutions
of the root system (that can be lifted to commuting involutions of the group) and
quadratic elements in a (o, §)-split torus. Also, work on the classification of one invo-
lution of an algebraic group over an arbitrary field of characteristic not two was done
by Helminck [Hel00] using the root system of a maximal k-split torus and something
similar to quadratic elements. From the classification of commuting involutions of
SL(n, k), one can work to generalize to commuting involutions of an arbitrary re-
ductive algebraic group by using the root system of a maximal k-split torus built
from a maximal (o, 0, k)-split torus and some form of quadratic elements. In doing
this, one would want to synthesize the work on commuting involutions over an al-
gebraically closed field and single involutions over an arbitrary field of characteristic
not two. To begin this process one might, in order to simplify things, first focus on
the case of split reductive algebraic groups where maximal k-split tori are maximal
tori. Along the way, one might want to determine the classification of (o, 6, k)-split
tori over the intersection of fixed point groups of ¢ and 6, the relationship between
commuting involutions of the root system and commuting involutions of the group,

and an appropriate classification of quadratic elements in a (o, 0, k)-split torus or a



torus containing one.

In this dissertation, the classification of commuting involutions of SL(n, k) is split
in 3 parts: commuting pairs of inner involutions, commuting pairs of involutions
with one inner involution and one outer involution, and commuting pairs of outer
involutions. The classification is done up to (almost) inner automorphisms of SL(n, k)
as in the case of a single involution, completed in [HWDOG], i.e. inner automorphisms
of SL(n, k) that keep SL(n, k) invariant. For commuting pairs of inner involutions,
the classification is done in several pieces, each of which uses an isomorphism class
representative of a single involution of SL(n, k) as the first entry. First, it is shown
that if a mapping of a certain form is invertible, it will partially zero-out the matrix
representative of one of the entries in the pair of commuting involutions while fixing
the other pair, and will be an inner automorphism of SL(n, k). This is done in lemma
4.1.2. Then it is shown in lemma 4.1.5 that, indeed, the given mapping must be
invertible for one of a few given forms. This leads to an induction argument that
gives a partial classification of the commuting inner pairs. To finish the classification
of inner pairs, the remaining ones are determined to be isomorphic or not on a case-
by-case basis. This leads to the isomorphism classes, appearing as theorems 4.3.14,

4.3.16, and 4.3.17 in this dissertation:

Theorem 1.0.1. For n divisible by 4, p,q representatives of elements in k*/k*?,
with p,q Z 1 mod k*2, the isomorphism classes of commuting inner involutions of

SL(n, k) are as follows:
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ForY", we have: n —1i # 1, and j € {1,2,...,"7’1' vifn—i—j3#j,i—k+#k then
ke{l,2,...;i} orelseifn—i—j=7j, ori—k==k, thenk € {1,2,...,%}. Also,
for Y we have: if 5 —j #j, 5 —k #k, then fork € {1,2, . ,%} we get distinct
isomorphism classes for distinct j, k such that as a pair (j, k) is distinct, independent

of order, orif 5 —j=j, or5 —k=%k, thenkE{l,Z,...,%},

Theorem 1.0.2. For n even but not divisible by 4, p,q representatives of elements

k*/k*2, p,q #1 mod k*2, a® — gb* = p the isomorphism classes of commuting inner

involutions of SL(n, k) are as follows:
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Where, for Y we have: forn—i #1i, and j € {1,2, ce %}, ifn—i—j #j,i—k#k
then k € {1,2,...,i} orelse ifn—i—j=j, ori—k =k, thenk € {1,2,...,%}, and
for Y we have: if 5 —j # j, 5§ —k #k, then for k € {1,2, cee g} we get distinct
isomorphism classes for distinct j, k such that as a pair (7, k) is distinct, independent

of order, orif § —j =7, or 5 —k=F, thenkE{l,Z,...,%},
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Theorem 1.0.3. For n odd, the isomorphism classes of commuting pairs of involu-
tions of SL(n, k) are: (Inny,_,,,Inny) for
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form—i#i andje {1,2,..., %}, ifn—i—j#j,i—k#kthenk € {1,2,... i}
orelseifn—i—j=7, ort—k=k, thenkE{l,Q,...,%}.

Next, using results on Quadratic forms, a 'nice’ form for commuting pairs with
one inner and one outer involution is obtained in lemmas 5.1.4 and 5.2.4 correspond-
ing to symmetric and skew-symmetric forms (that give rise to outer involutions),
respectively. To finish the classification of such pairs, work is done on a field (of char-
acteristic not two) by field basis and results are explicitly obtained for algebraically
closed fields, the real numbers, finite fields, and the p-adic numbers. This is sum-
marized in the tables herein and in theorem 5.3.11. Lastly, the equivalence between
the classification of commuting outer pairs and commuting pairs with one inner in-
volution and one outer involution is shown. In the last section, a summary of the

isomorphism classes of pairs of commuting involutions of SL(n, k) is given.



Chapter 2
Background Material

In this section, an overview of the material on which most of this thesis relies is
presented. This will include the theory and results from [HWDO06], [Hel88], and a
few selections from [Sch85], [Jon50], [Dom03], [Jac05], and [Hel00], as well as a short

introduction to symmetric k-varieties.

2.1 Involutions of SL(n, k)

This thesis is about commuting pairs of involutions of SL(n, k) for k a field of
characteristic not two, and their isomorphism classes. Thus, a thorough grasp of
single involutions and their isomorphism classes is needed, as it is used throughout
this work. Throughout this section £ is a field of characteristic not two, k; is an

extension field of k& and k is the algebraic closure of k.

Definition 2.1.1. An involution defined over a field k£ of a connected, reductive
algebraic group, G, defined over k is an automorphism (over k) of order two, i.e. an
automorphism ¢ such that ¢? = Id and ¢ # Id.

Before defining what it is meant by isomorphic involutions, some notation is
needed:

Notation 2.1.2. Let G be a connected, reductive algebraic group defined over a field
k. Then let Aut(G) denote the set of all automorphisms of G. Let Inng(G) denote



the set of all inner (k)-automorphisms of G, i.e. Inng(G) = {Inng |A € G}, where
for X € G,Inny(X) = A1 XA for A € G, and any automorphism of G that is not
an inner automorphism is referred to as an outer automorphism. Also, let Inn(G)
denote the set of automorphisms of GG that are ’almost’ an inner automorphism, i.e.
Inn(G) = {Inny|A € G,Inns(G) = G} where G is the group G over k, i.e. for
G = SL(n, k), G = SL(n, k).

Definition 2.1.3. Given two involutions 7 and o of G, 7 is isomorphic or Inn(G)-
isomorphic to o if and only if there is a ¢ € Inn(G) such that 7 = ¢~'o¢, often

denoted 7 ~ 0.

Note that in the above definition, we take the definition of isomorphic involutions
to be that of Inn(G)-isomorphism. There is also a similar notion for Aut(G) and
Inn (G)-isomorphism that are not considered in this thesis.

Beginning with the classification of involutions of SL(2, k), as in [HW02], an im-
portant lemma that holds for n = 2 is the following [Bor91]:

Lemma 2.1.4. For ¢ € Aut(SL(2,k)) and k not algebraically closed, there exists an
extension field ky of k and a 7 € Inn(SL(2,k)) such that T|sLor = ¢, i.e. there is
always a 2 x 2 matriv A € SL(2, k1) such that ¢ = Inny |syk). Furthermore, for k
algebraically closed, Aut(SL(2,k)) = Inn(SL(2, k)).

Unfortunately, as soon described, the above lemma does not hold for n > 2;
however, it turns out that for n > 2 there are only two types of involutions to
classify: inner and outer. Considering the automorphisms of SL(2, k) of the form
Inny for A € SL(2,k;), by the above lemma this covers all of them, the following

lemma from [HW02], lead to a 'nice’ form for the matrix A:

Lemma 2.1.5. The automorphism Inny € Inn(SL(2, k1)) keeps SL(2, k) invariant if
and only if A = pB for some p € ky and B € GL(2,k).

In other words, since Inn,pz = Inng for any constant p, every automorphism of
SL(2, k) can be written as Inng [gr,2.x) for B € GL(2, k). Knowing this, and applying
some simple matrix algebra, the form of B can be further simplified [HW02]:



Lemma 2.1.6. Suppose ¢ € Aut(SL(2,k)) is an involution. Then there exists a

matriz A € GL(2,k) such that ¢ = Inny [sLek) and Inng is isomorphic to Inn<o 1).
q0

Therefore, all isomoprhy classes of involutions of SL(2, k) can be represented by 2 x
2 matrices of the form (2 (1)) € GL(2,k). The problem of determining the isomorphy
classes of involutions of SI(2, k), then, has been reduced to determing which ¢’s give
distinct isomorphism classes, i.e. the classification has been reduced to the field k. In

fact, distinct isomorphism classes of involutions of SL(2, k) arise from distinct square

classes, i.e. distinct elements of k*/k** [HW02]:

Theorem 2.1.7. Suppose ¢,0 € Aut(SL(2,k)) are involutions of which the corre-

sponding matrices in G are A = (2 (1)) and B = (2 [1)) Then ¢ is conjugate (isomor-

phic) to o if and only if q/p is a square in k*.

Corollary 2.1.8. The number of isomorphy classes of involutions of SL(2,k) equals
the order of k*/k*?, and distinct isomorphy classes of involutions have matrix repre-

sentatives (2 (1)) for distinct q € k*/k*2.

Since the groups k*/k*? for k algebraically closed fields, R,F,Q,, and Q, for
p # 2 are considered in this thesis, their groups are briefly listed (as in [HW02] and
[HWDO6)):

1. k= k. In this case |[k*/k*%| =1
2. k =R. In this case k*/k** & Z,, and thus |k*/k*?| = 2.
3. k= Q. In this case |k*/k*?*| = oo.

4. k =T,,p # 2. Then, k*/k** ~ Zy and thus |k*/k*?*| = 2. For convenience (and
to refer to later in this thesis) the smallest’ non-square in F, will be refered to

as sp, as in [HWDO06], and then take {1, s,} as the elements in k*/k*2.

5. k= Q,,p # 2. In this case, k*/k** & Zy X Zs, hence |k*/k*?| = 4. Again letting
s, refer to the 'smallest’ non-square in the field F,, the elements of k*/k*? can

be taken in the following set: {1, p, s,,ps,}, as in [HWO02].



6. k = Q. In this case, |[k*/k**| = 8. Also, the elements of k*/k*? can be taken in
the following set: {1,—1,2,—2,3,—3,6,—6}, as in [HW02].

Although the classification of involutions of SL(2, k) can be reduced to the struc-
ture of the field k, namely to the number of square classes, the same does not hold
for SL(n, k),n > 2; however, for involutions of SL(n, k), n > 2, of inner type, i.e. in
Inn(SL(n, k)), the structure of k*/k*?* plays an important role.

The classification (up to Inn(G)-isomorphism) of involutions of SL(n, k),n > 2 is
broken up into two parts: classifying inner involutions (inner automorphisms that are
involutions) and classifying outer involutions (outer automorphisms that are involu-
tions). First, inner involutions of SL(n, k) are discussed for k a field of characteristic
not two. Note that for A € GL(n,k),Inny = Inny for A" € SL(n, k), because
A = <#(A)> n A and Inny = Inn, 4 for any constant o. Thus, one can consider an
automorphism of the following type: Inny [symk) for Y € GL(n, k). From [HWDO06],

we have the following two lemmas:

Lemma 2.1.9. Let Y € GL(n, k). If Inny |srmury) = Id, then Y = pI for some
pE k.

Lemma 2.1.10. Let ¢ € Inn(SL(n,k)) = {Innyg |A € SL(n,k),Inns(SL(n, k)) =
SL(n,k)} = {Inn, |A € GL(n, k), Inns(SL(n, k)) = SL(n, k)} (by the remark above),
and let Y € GL(n, k). Then, for ¢ = Inny € Inn(SL(n, k)) keeps SL(n, k) invariant
if and only if Y = pB for p € k and B € GL(n, k).

The above lemma implies that any automorphism in Inn(SL(n, k)) of SL(n, k) can
be written as Inng for B € GL(n, k). Therefore, any involution of SL(n, k) of inner
type can be written as Inny |y for Y € GL(n, k). Furthermore, isomorphism of

involutions can be written as conjugation by Inny for Y € GL(n, k). In fact, we get:

Lemma 2.1.11. The automorphisms of inner type Inny,, Inny, € Inn(SL(n, k)) are

conjugate (isomorphic) if and only if the matriz Y1 is conjugate to cYy for some c € k.

Proof. Inny, is conjugate to Inny, if and only if there is ¢ € Inn(SL(n,k)) such
that ¢~ 'Inny, ¢ = Inny, if and only if there is an A € GL(n, k) such that ¢ =
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Inny |st.(nk), Inna(SL(n, k)) = SL(n,k) and ¢ € Inn(SL(n,k)) such that Inny, =
Inn ;" Inny, Inny if and only if there is a B € GL(n, k) such that Innz' Inny, Inng =
Inny,. This holds if and only if Inn BYiB-ly; ! = Id if and only if BY;B~! = ¢Y, for
¢ € k. But by lemma 2.1.10 Y1, Y, € GL(n, k) and since B € GL(n, k) this holds if
and only if ¢ € k. O

Returning to involutions, the matrix representatives of an involution of inner type
of SL(n, k), they have the form Inny for Y € GL(n, k) such that Inn}. = Id. This
implies that Y2 = pI,, for p € k. By determining whether or not p is a square in k*,

the isomorphism class of Inny can be narrowed down:

Lemma 2.1.12. Suppose Y € GL(n, k) with Y? = pl,,. Then if p = ¢* € k** then
Y is conjugate to cl,_;; for somei=0,1,...,n. If p ¢ k** then n is even and Y is

conjugate to Ly .

In fact, the distinctness of involutions of SL(n, k) up to Inn(SL(n, k))-isomorphism
depends in part on the structure of the field k, because distinct isomorphism classes
of involutions Inng,, = come from distinct p € k*/k**. The complete classification (of

involutions of inner type of SL(n, k) is used in theorem 3.3.1), and is as follows:

Theorem 2.1.13. Suppose ¢ € Aut(SL(n, k)) is of inner type. Then up to isomor-
phism (Inn(SL(n, k))-isomorphism), ¢ is one of the following:

1. Inny [snk), where Y =1, _;; € GL(n, k), and i € {1,2,..., ng}
2. Inny |spnk), where Y = L, , € GL(n, k) and p € k*/k*,p# 1 mod k*?
and these are distinct classes, thus ¢ is only one of the above.

As there exists a 'nice’ relationship between involutions of SL(n, k) of inner type
and the structure of the field & given by the group k*/k*2, outer involutions of SL(n, k)
are related to bilinear forms on the vector space k™. Before describing the relationship
between bilinear forms on £ and outer involutions of SL(n, k) an important result

from [Bor91] is vital:
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Lemma 2.1.14. Any outer automorphism can be written as Inny, 6 for 0 a fized outer

automorphism.

Thus, taking the outer automorphism of SL(n,k) to be §(A) = AT~! for A €
SL(n, k), any outer automorphism of SL(n, k) can be written as Inny; . Knowing this,
one needs to classify the automorphism of inner type Inny; for Inn,; 6 an involution of
SL(n, k). It turns out [HWDO6] that M must be either symmetric or skew-symmetric

(hence a matrix representative of a symmetric or skew-symmetric bilinear form on

k™):

Lemma 2.1.15. For 0 the outer involution given by 0(A) = AT=! Inny 0 is an
involution of SL(n, k) if and only if M is symmetric or skew-symmetric and M is

only skew-symmetric if n is even.

This lemma allows one to describe the outer involutions of SL(n, k) but not clas-
sify them up to Inn(SL(n, k))-isomorphism. To do that, first recall the definition of

congruence:

Definition 2.1.16. Two bilinear forms with matrices M; and M, represent the same
bilinear form on k™ with respect to different bases if and only if they are congruent,

i.e. if and only if there exists a Q € GL(n, k) such that QTM,Q = M,.

Unfortunately, there is not a one-to-one correspondence between the congruence
classes of symmetric/skew-symmetric matrices M (and hence of symmetric/skew-
symmetric bilinear forms) and isomorphism classes of outer involutions of SL(n, k) of
the form Inny, 6; however, there is a close relationship between the two [HWDO06]. A

quick definition is needed first:

Definition 2.1.17. Two bilinear forms on k™ with associated matrices M; and My

are semi-congruent over k if there exists a Q € GL(n,k) and an a € k such that

QTM,Q = oM.

The notion of semi-congruence is what is needed to tie together the classification
of symmetric/skew-symmetric bilinear forms on £" and isomorphism classes of outer

involutions of SL(n, k) [HWDO06]:
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Theorem 2.1.18. If Inny, 6 and Innyy, 6 are two outer involutions of SL(n, k), then
they come from (nondegenerate) bilinear symmetric or skew-symmetric forms rep-
resented by My and M,y, respectively, and Inny, 6 is isomorphic to Innyg, 6 if and
only if My is semi-congruent to My. Furthermore, if the matrix representative is

skew-symmetric then n is even.

Therefore, to complete the classification of involutions of SL(n, k) one needs to de-
termine the semi-congruence classes of symmetric and skew-symmetric bilinear forms
on k™. This depends on the structure of the field £ and has been determined [HWDO6]
for algebraically closed fields, R, F,, Q,, Q, for p # 2.

2.2 Bilinear Forms

Symmetric and skew-symmetric bilinear forms on £" play an important role in the
construction and to some degree, the classification of outer involutions of SL(n, k) as
discussed above and in [HWDO06]. In this section we briefly review some results of
bilinear forms appearing in [Jon50] and [Sch85]. Recall the following definition from
[Sch85]:

Definition 2.2.1. A bilinear form on a vector space V' = k™ is a map
B: VXV =k

such that for all z,2,y,y’ € V and a € k the following hold:

Bz +2',y) = B(z,y) + B(2',y)
Blx,y+y) =Bz, y) + B(z,y)
Blaz,y) = af(z,y) = Bz, ay).
Furthermore, the bilinear form /3 is said to be symmetric if and only if 5(z,y) = 5(y, )

for all z,y € V and is said to be skew-symmetric if and only if 8(x,y) = —(y, x) for
all z,y e V.
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Given a matrix representative M of a bilinear form on k" (matrix representatives
of bilinear forms are congruent if and only if they represent the 'same’ bilinear form

with respect to a new basis), then from [Sch85] we get:
Lemma 2.2.2. Fvery symmetric matrix B is congruent to a diagonal matrix.

Hence, congruence of A and B being defined by Q € GL(n, k) such that QT BQ =
A, then for each B there exists a Q € GL(n, k) such that QT BQ is diagonal, say
QTBQ =>"", ¢i*22E;; where ¢; is a representative of k*/k*? and = € k. Then using
Q=3 %E“, the following holds:

Corollary 2.2.3. Every symmetric matrix B is congruent to a diagonal matrix whose

entries are representatives of the square-class group k* /k*2.
Also, a 'nice’ form exists for each nonsingular skew-symmetric matrix [Sch85]:

Lemma 2.2.4. Every skew-symmetric matriz in GL(n, k) is congruent to the matriz:
0 In
2
—I» 0
2

Considering bilinear forms over Q,,, some results from [Jon50] are useful. First, a

hence n must be even.

few definitions are needed:

Definition 2.2.5. The Hilbert Symbol, (-, ), of two nonzero p-adic numbers a and
3 is defined as follows: (o, ), = 1 if az? + By* = 1 has a solution over the p-adics,

and equals —1 otherwise.

Definition 2.2.6. The Hasse symbol, ¢,(M) of M the matrix representative of a

bilinear form on k" is defined by:

n—1
cp(M) =(=1,—Dy), | | (Ds, —=Djs1)y
1

<.
Il

for D; the determinant of the upper left ¢ x ¢ square submatrix of M.
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Using the above notions, and the two results below becomes useful when deter-
mining semi-congruence. This is because the first lemma relates the Hasse symbol
of a matrix M to the Hasse symbol of aM for o € k and the second result gives

necessary and sufficient conditions for congruence.
Lemma 2.2.7. If M is an n X n matriz (with entries in Q,) and o € Q, then:

(v, —1)2/2(&7 Dy,)pcp (M) :n even

cp(aM) =
plodM) { (c, =1)T 2, (M) :n odd

Theorem 2.2.8. Two symmetric matrices My and My with entries in Q, are con-

gruent if and only if: det(My) = o det(My) and c,(My) = c,(M>).

2.3 Automorphisms fixing Sp(2n, k) or SO(n, k, 3)

As the characterization theorems of automorphisms Inny for A € GL(n, k) that
keep Sp(2n, k) invariant or keep SO(n, k, 3) invariant in [Jac05] and [Dom03], respec-
tively, is used in the classification of commuting involutions of SL(n, k) with an outer
involution, a brief overview of the main results of those theses is included here. First,
consider automorphisms of inner type, having the form Inny, for A € GL(2n, k), that

keep Sp(2n, k) invariant. Then, it is shown in [Jac05] that:

Theorem 2.3.1. Inny keeps Sp(2n, k) invariant if and only if A = pM forp € k
and M € Sp(2n, k)

In other words, every inner automorphism that keeps Sp(2n, k) invariant can be

written as Inny for A € Sp(2n, k). This can be taken one step further:

Theorem 2.3.2. If A € Sp(2n, k), then Inny keeps Sp(2n, k) invariant if and only
if A =pM for some p € k and M € Sp(2n, k).

Thus, every inner automorphism that keeps Sp(2n, k) and Sp(2n, k) invariant,
can be written as Inny, for M € Sp(2n, k). Also, inner automorphisms that keep
SO(n, k, B) invariant for 5 a bilinear symmetric (non-degenerate) form on k" have a

nice form [Dom03].
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Theorem 2.3.3. Suppose B is a non-degenerate symmetric bilinear form with matrix
M over k™ where the characteristic of k is not two. Then for A € GL(n, k), if Inny
keeps SO(n, k, B) invariant if and only if A = aA for a € k and:

1. Ae SO(n, k, B) if n is odd
2. AeSO(n,k,B) or Ae O(n,k, ) and det(A) = —1, if n is even.
Taking this one step further, [Dom03] showed:

Theorem 2.3.4. For A € SO(n,k,B) or n even and A € O(n,k, ), the inner
automorphism Inny keeps SO(n, k, 3) invariant if and only if A = aA for some

a €k and:
1. AeSO(n,k,B) if n is odd
2. AeSO(n,k,B) or Ae O(n,k,B) and det(A) = —1 if n is even.

Thus, every inner automorphism that keeps SO(n, k, 8) and SO(n, k, #) invariant,
can be written as Inny, for M € SO(n, k,5) or M € O(n, k,5) and det(M) = —1, n

even.

2.4 Commuting Pairs of Involutions over

Algebraically Closed Fields

A classification of commuting pairs of involutions for G a connected, reductive
algebraic group defined over an algebraically closed field was determined in [Hel88]
and is briefly outlined below.

The main result on commuting involutions in this paper can be summarized as
follows: for a root system of a certain torus, 7', in GG, the classification of commut-
ing involutions of G' can be reduced to the classification of commuting (admissible)
involutions of the root system of T" up to a certain ’quadratic element’ of the torus
T.

To begin, the following definition is needed:
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Definition 2.4.1. Let T be a maximal torus of G, a connected reductive algebraic
group over an algebraically closed field. An automorphism ¢ of G of order < 2 is
normally related to 7" if and only if ¢(T) = T and T, = {t € T|¢(t) = t7'}* is a

maximal ¢-split torus of G.

With this, a correspondence between isomorphism at the group level and Weyl-

group conjugacy at the associated root level can be given [Hel88]:

Theorem 2.4.2. Let ¢y, ¢y € Aut(G) be such that ¢? = ¢3 = Id and assume ¢y, o
are normally related to T, forT" a mazimal torus of G. Then ¢, and ¢y are conjugate

under Inn(G) if and only if ¢1|r and ¢o|r are conjugate under W(T'), the Weyl group
of T.

Furthermore, as shown in the proof of the above theorem in [Hel88|, if two invo-
lutions ¢; and ¢o, restricted to T" are the same (on the torus) then, on the group G,
¢1 = ¢ Inn, for some ¢ € T} .

Before developing a full correspondence between involutions on the root level and
involutions on the group level, one needs to determine which involutions on the root

level can be ’lifted’ to the group G.

Definition 2.4.3. An involution o € Aut(X, ®) can be lifted if there is an involutorial
automorphism ¢ € Aut(G,T) inducing ¢ on (X, ®), i.e. ¢|p = 0. Where ® is the
root system of 7" and Aut(V,W) is the set of automorphisms, «, of V' such that
a(W)=W.

Now, for T" a maximal torus of GG, involutions which can be lifted are given by the
following [Hel88]

Proposition 2.4.4. Let ¢ € Aut(X,®) be an involution and /\ a basis of ®. Then

the following are equivalent:
1. ¢ can be lifted

2. There is a t € T such that ¢ Inn; is an involution, for ¢ defined by

n(Xal§)) = X (€)
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foralla € A€ € k, and o the corresponding one-parameter additive subgroup
of G defined by a.

3. There is at € T such that cy)e, = a(d(t)t) for all o € A, where cyia)p, are

structure constants of G relative to {xa}-
4. There is a't € T such that cya)g, = a(t) for all a € A.

A concept related to lifting involutions from the root system of a given connected,
reductive algebraic group is determining whether or not an involution, ¢ of some root
datum can be realized as a lifted involution, 95 of some reductive algebraic group G
with maximal torus T with T’ ¢_ is a maximal QZA)-Split torus of GG. In the case that this
holds, the datum is said to be admissible. These indices are given in [Hel88].

Continuing to commuting involutions, a definition is needed first:

Definition 2.4.5. A torus A of G is called (o, 0)-split if A is o- and 6-split. Also,
a torus 1" of G whish is both o and @ stable is called (o, #)-stable and define T, =
{teT|o(t)=0(t) =t"}°

Given this definition, two results that are useful in the classification of commuting

involutions are the following [Hel88]:
Lemma 2.4.6. 1. There exists a maximal torus of G, which is (o,0)-stable.

2. All mazimal (o, 0)-split tori of G are conjugate under (G, N Gy)°, where Gy =
{9 € Glolg) = g}°.

A notion of normally related exists for commuting pairs of involutions as well:

Definition 2.4.7. If (0,0) is a pair of commuting involutorial automorphisms of
G and T is a maximal torus of G, then (c,0) is normally related to 7" if and only
if (T) = 0(T) =T and T,,,T,,T, are maximal (o,8)-split, o-split, and 6-split,

respectively.

Also, it was shown in [Hel88] that such tori always exists, and they are all conjugate
under (G, N Gy)°.
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The above leads to one of the main results of [Hel88], namely the relationship
between classifying commuting involutions of a reductive algebraic group G and clas-

sifying commuting involutions of the associated root system:

Theorem 2.4.8. Let (01,01) and (02,02) be pairs of commuting involutorial auto-
morphisms of G, normally related to T'. Then (o1,01)|r and (o9,02)|r are conjugate
under W(T) if and only if there exists ¢ € T, , with € € Z(G) such that (og,0s) is

isomorphic to (01,60, Inn,).

The € in the above theorem is called a quadratic element of the torus 7. These
elements are vital to the classification of commuting involutions. Before proceeding,
let C(T) denote the set of W(T') conjugacy classes of ordered pairs of commuting
involutions of the root system of a torus 7". Since every pair of commuting involutorial
automorphisms of G is isomorphic to one normally related to T', there is a map [Hel88]
that takes pairs of commuting involutions of G to C(T'). Let C(o,6) denote the fiber
above the image of the map on a pair (o,6). With this, and letting F' denote the
family of all pairs of commuting involutorial automorphisms of a G, let F'(o,6) denote
the subset of F' consisting of pairs of commuting involutions of G whose isomorphism
classes are in C(c,6) and A a maximal (o, 6)-split torus of G, as in [Hel88]. Then
for Fa(0,0) = {(0,0Inn,)|e € A,e? € Z(G)}. Thus, as shown in [Hel88], any pair in
F(o,0) is isomorphic to a pair (o,61Inn,) € Fa(o,0), thus, the isomorphism classes
in C(0,0) can be represented by a set of quadratic elements of A. Finally, determing

which quadratic elements a; give isomorphic pairs (o, 0 Inn,,) is given in [Hel88]:

Proposition 2.4.9. Let (0,0) be a pair of commuting involutions of G, A a mazimal
(0,0) -split torus of G and T D A a (o, 0)-stable maximal torus of G such that T,
is a mazimal o-split torus of G and T, is a mazimal 0-split torus of G. Then two
pairs (0,0 1Inn,,) and (o,01Inn,,) in Fa(o,0) are isomorphic under Zg(A) if and only
if there exists at € T such that o(t) =t and ajay = 0(t)t".

Thus, to classify commuting involutions of a connected, reductive algebraic group
GG over an algebraically closed field, one needs to determine Weyl group conjugacy

classes of (admissible) commuting involutions of a root system (of some torus) and
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then classify quadratic elements corresponding to pairs in Fa(c,0), for A C T as

above.

2.5 k-Involutions over Fields of Characteristic Not

Two

As a classification of commuting involutions of an arbitrary connected, reductive
algebraic group over algebraically closed fields (of characteristic not two) is given
in [Hel88], a classification of single k-involutions of a connected, reductive algebraic
group (defined over k) for k an arbitrary field of characteristic not two is discussed in
[Hel00]. A few of the results of this paper are discussed below. First, a few definitions
are needed [Hel00]

Definition 2.5.1. A mapping ¢ : G — G is called a k-automorphism of G if ¢ is a
bijective rational k-homomorphism whose inverse is a rational k-homomorphism, for
G a connected, reductive algebraic k-group. Furthermore, for G and ¢ defined over

k with ¢ an automorphism of G of order 2, ¢ is called a k-involution.

Definition 2.5.2. A k-torus A of G is called (0,k)-split if it is both 6-split and
k-split.

Because the classification of k-involutions of a group G defined over k is related

to k-tori of G, some results on these tori are needed from [Hel00]:

Proposition 2.5.3. Let A be a mazimal (0, k)-split torus of G. Then A is the unique
mazximal (0, k)-split torus of Zg(A).

Furthermore, for Gy = {g € G|0(g) = g}, G reductive, and H a k-open subgroup
of Gy, the following is shown in [Hel00]:

Proposition 2.5.4. Let A, and Ay be mazimal (8, k)-split tori of G and Ay, and A,
be mazimal k-split tori of G containing Ay and As, respectively. Then there exists a

g e (Zg(fil)Ho)k such that g7'A1g = Ay and gt A g = A,.
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As with the action of an involution on a group G over an algebraically closed field
being given by an index (related to the associated root system of G), the actions of
the Galois group I' of K/k where for G a reductive k-group, 7' a maximal k-torus of
G, K is a finite Galois extension of k& which splits 7' [Hel00], and the involution 6 can
be described by an index [Hel00]. In doing this, one could hope for a characterization
of k-involutions of G by characterizing admissible involutions of the root system of a
certain torus; however, more is needed [Hel00]. It will be described later that there are
three [Hel0O0] invariants needed to classify k-involutions. Working toward classifying

k-involutions on a torus 7" in G, a few preliminaries from [Hel00] are needed:

Definition 2.5.5. Let A be a maximal k-split torus of G. A k-involution 6 of G is
normally related to A if #(A) = A and A, is a maximal (6, k)-split torus of G.

Lemma 2.5.6. Let A be a mazximal k-split torus of G. FEvery k-involution is G-

isomorphic with one normally related to A.

A result analogous to the relationship between involutions of a connected, reduc-
tive algebraic group and involutions of the associated torus (and hence root system)

for k-groups G and k-involutions is the following [Hel00]:

Theorem 2.5.7. Let G be a connected reductive semi-simple algebraic group defined
over k, A a mazximal k-split torus of G and 61,05 be k-involutions of G, normally
related to A. Then, 61 is G-isomorphic to 0, Inn, for a € A;zl if and only if 61| z,a)

and 03| z,a) are isomorphic under G

Note how this differs from the result for groups over algebraically closed fields:
for k groups one needs to restrict to the centralizer of a maximal k-split torus (for
split groups this is no different, since maximal k-split tori are maximal tori) and
furthermore, one needs isomorphism over G; on the restriction, unlike isomorphism
over the Weyl group (of a torus 7) on the restriction for the algebraically closed case.
By results on [Hel00], one can do slightly better than isomorphism over Gy on the
restriction. In fact, one only needs to use N(A,0;) = Ng, (A).Z(A, 6y) for Z(A,6s)
the set of z; € Zg(A) for i € I for I a certain index set stemming from a minimal

parabolic k-subgroup of G acting on Gy/H) [Hel00].
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The above relates isomorphism of k-involutions of G on the group level to isomor-
phism on the restriction to the centralizer of a maximal k-split torus. As stated above,
this is not enough for a full classification of k-involutions of G. Three invariants are

needed [Hel0O0]:

1. classification of admissible k-involutions of (X*(T"), ®(T), ®(A)) for T a maxi-

mal torus of G containing a maximal k-split torus A of G.

2. classification of the Gx-isomorphism classes of k-involutions of the k-anisotropic
kernel of G, i.e. the product of the derived group Zg(A) and the maximal
anisotropic k-torus in the center of Zg(A) [Hum75]

3. classification of G-isomorphy classes of k-inner elements a € I, (A4;")

By synthesizing the results in [Hel00] and [Hel88] one could work towards a gener-
alized result of commuting k-involutions of an arbitrary connected, reductive algebraic

group defined over a field k of characteristic not two.

2.6 Symmetric k-Varieties

As the study of commuting involutions is motivated by the study of symmetric
k-varieties and associated double coset decompositions, a very brief discussion is
included. Following the work in [HP94], let G be a connected k-group and 6 a k-
automorphism of G of order two. The fixed point group of the k-involution 6 is
given by Gy = {g € G|0(g) = g} and it is a k-group that is also reductive (for G
reductive). Also, as stated in [HP94], if G is semi-simple and simply connected, then
Gy is connected. A criterian for determing whether an involution of G is a k-involution
is the following [HP94]:

Proposition 2.6.1. Let G be a connected semi-simple algebraic k-group and 6 an

involution of G. Then 0 is defined over k if and only if GY is defined over k.

Let H be a k-open subgroup of Gy. Then for G reductive:
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Definition 2.6.2. The variety G/H is called a symmetric variety and the variety

G/ Hy, is called a symmetric k-variety.

There is a 'natural’ root system associated to the symmetric space G/H [HP94].
Namely, for a torus 7" of G that is #-stable (where H is defined as a k-open subgroup
of the fixed point group of € in G) and -split (recall a torus, A, is f-split if and only
if 0(a) = a™! for all a € A), if T is maximal #-split it gives the 'natrual’ root system
of G/H. Similarly, for T" a maximal (0, k)-split k-torus of G, the root system given
by T is the 'natural’ root system of the symmetric k-variety, Gi/Hy [HP94].

As the study of orbits of minimal parabolic k-subgroups acting on symmetric k-
varities play an important role in the study of such varities [HP94|, a result on the

decomposition of the orbits is included as in [HP94]:

Theorem 2.6.3. Let G be a reductive algebraic k-group, 6 a k-involution of G, H
a k-open subgroup of Gy, and P a minimal parabolic k-subgroup of G. Then, for
{A;|i € I} be the set of representatives of the Hy-conjugacy classes of 0-stable mazimal

k-split tori in G, the following holds:

H\Gr/ Py ~ | Wi, (4:)\We, (4))

el

for We, (Ai) = Ng, (Ai)/Za, (Ai) and Wy, (A;) defined similarly.
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Chapter 3
Preliminaries

Our basic references for reductive groups, Borel subgroups, and maximal tori will
be the books [Bor91], [Hum75|, and [Spr98|. For background on the the classification
of pairs of commuting involutions over algebraically closed fields, our basic reference

will be the paper [Hel88]. We will follow their notations and terminology.

3.1 Some notation

Throughout this thesis, & will be a field of characteristic not equal to 2, and G
is a reductive algebraic group defined over k. Let T be a maximal k-split torus in
G, and P be a minimal parabolic subgroup of GG. Let 6 be an involution of G, and
K = G be the fixed point group of §. Let G}, K;, and T}, be the k-rational points of
G, K and T, respectively. Wg, (T) = Ng, (T)/Zq, (T) is the Weyl group of T' in Gy,
where Ng, (T') is the normalizer of T"in Gy, and Zg, (T') is the centralizer of T" in Gy.
For a closed subgroup U of G we write U° for the connected component containing
the identity. The following is some notation we will use throughout the rest of this
paper.

Notation 3.1.1. 1. We will use g to denote the entire square class of q.

2. By abuse of notation, we will use ¢ € k*/(k*)? to denote that ¢ is the represen-

tative of the square class q of k.
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Notation 3.1.2. Let E; ; be the appropriate (clear from the context) size matrix with

a 1 in the (7, j)th entry and zeros elsewhere.

Notation 3.1.3. 1. Let I; be the j x j identity matrix. We will sometimes refer to
the identity matrix as Id, where its size is apparent from the context, and with

a slight abuse of notation also refer to the identity operator by Id.

[n—i
2. Let I,,;; € GL(n, k) be the matrix given by: ( ; )

0 1
qg O
3. Let L, , be the matrix given by:
01
qg O
o 0 In
4. Let L;, , be the matrix given by: 2| for n even.
7 q[% 0
[n73
5. Let M, s; € GL(n, k) be the matrix given by: "
s

0 I,
6. Let J,,, be the matrix: ( >
-1, 0

k

7. Let P, be the permutation matrix: Y 2 (E;0_1 + E§+i,2z‘)
Notation 3.1.4. Let M (n, k) denote n X n matrices over the field k, and M (n x m, k)

denote n X m matrices over the field k.

Notation 3.1.5. Let Inng be the mapping defined by Inns(X) = A7'XA. We will

sometimes refer this mapping by its matrix representative, A.
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Notation 3.1.6. A commuting pair of involutions of SL(n, k) will sometimes be re-
ferred to as such, in addition to being referred to as: a pair, a commuting pair, or a

commuting pair of involutions.

3.2 (@-stable Tori
T is O-stable if 0(T) = T. Then, T =TT, where
LTT={teT|o(t) =t}°
2. T-={teT|0()=t""'}°. The torus T~ is called #-split.
Moreover, T NT~ is finite.

Definition 3.2.1. A torus T is called (0, k)-split if 7" is k-split and #-split. We will
let Ay denote the set of maximal (6, k)-split tori.

All maximal k-split tori of G are G-conjugate. If T is a maximal torus, then
Za(T) =T. By a result in [Ste68], any Borel subgroup contains a #-stable maximal

torus.

3.3 Useful Results

Lemma 3.3.1. Every pair of commuting inner involutions is isomorphic to the pair

(Inny, Inny) for either:
1.Y =1I,;; € GL(n,k) where i € {1,2,..., 2]}
2. Y = L,, € GL(n, k) where q € k*/k** with ¢ # 1 mod k*2, n even.

and these are distinct for distinct i € {1,2,..., L%J} and distinct ¢ € k*/k** with
q# 1 mod k*2.

Proof. This follows immediately from the definition of isomorphic pairs and the clas-

sification of inner involutions of SL(n, k) found in [HWDO06]. O
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We will need another lemma from [Sil00].

A B
Lemma 3.3.2. For A,B,C,D € M(3,k), det ( ) = det (AD — BC) when

C D
CD = DC
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Chapter 4

Classification of Commuting Pairs

of Inner Involutions

Using the results of [HWDO06], we classify the pairs of commuting inner involutions
of SL(n, k), for k a field of characteristic not 2. A pair of commuting inner involutions
will have the form (Inng,Inng) for A, B € GL(n, k), where Inny(X) = A7'XA,
VX € SL(n, k).

Dropping the Inny notation, we will sometimes refer to the matrix A € GL(n, k)
for the corresponding inner automorphism, Inn 4, and (A, B) for the pair (Innyg, Inng).
Note that Inny is an automorphism when A € GL(n, k) and is an involution when
A% = pId. Also note that Inny ~ Inng if and only if there is a C' € GL(n, k) such
that C~'AC = ¢B for ¢ € k, as in [HWD06]. We will first focus on pairs of the form
(Inny, Inny) for Y = L, , and then for Y = I,,_,;, because every pair of involutions
of SL(n, k) has the first entry in the pair isomorphic to one of these [HWDO06]. In
each case, the form of the matrix A in the pair (Inny, Inny) is determined first. Then,
the fact that Inn, is an involution of SL(n, k) is used next to ’simplify’ the form of A
while keeping the form of Y fixed. After this is completed for each Y, there are only
a few possible isomorphism classes of commuting inner involutions of SL(n, k). The

last step, then, is to determine the distinctness of the remaining pairs.
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4.1 Commuting Inner Involutions with the First

Pair Isomorphic to Inng,

As stated above, we first consider pairs of commuting inner involutions of the form

(Inng, ,,Inng), for ¢ #1 mod k*2

Lemma 4.1.1. (Inng, ,Inng), is a pair of commuting involutions only if A = (A;;)

and one of the following:

iy bi aij  bij
Ai,j = or Ai,j =
qbi;j ai; —qbij  —ai,

ij bij
Proof. Let A = (Ai;)!"2, and Y = Lu, = (Y;;)!"2,, where A;; = <a ! ’J> and

ij=1 ij=1)
Cij dij

qg O
+ (Inny) ™' (Inng) ' Inny Inny = Id 5 Inngy g1y = Id < AYA"'Y 1 = ¢l ¢ €
E={0} & AY = VA & (A )72, (i, = e (V)2 (Ai)i2 & (YA,

= c(AZ-JYi,i)Zﬁl <> For each fixed i,j € {1,2,...,n/2},
0 1 Q5 5 bi,j Q5 biﬂ' 01
=c
qg O Gij dij Gij dij q 0
Ci i dz i bz i Qi
H ( 7] 7]> - c (q 7] 7‘7> ’
qai;; qb;; qdi;  cij

if and only if ¢; ; = cqb; ;, d; j = ca, j, qa; ; = cqd; ;, and qb; j = cc; j. This implies that

0 1 00
Yi;, = ( ) fori =jand V;; = <0 0) for ¢ # j, then Inny Inny = Inny Inny

cij = c%cij, and d;; = *d;j, givingus ¢ =1 or ¢;; =0=d;;. Butif ¢;; =0 =d,
then a,; = 0 = b;; since ¢,c # 0 — A singular, a contradiction since Inny is an
automorphism — ¢ =1 — ¢ = +1 — ¢;; = qb;; and d;; = a;; or ¢;; = —qb;; and

dij = —ai;. 0

Therefore, for ¢ € k*/k**,q # 1 mod k*? and suppressing the Inn notation, com-
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muting pairs:

0 1 a1 a1,2 a1n-1 A1
q 0O ... 00 az a2 9 ce a2 n—1 a2 n

)
00 ... 01 Gp—-11 An—12 ... Qp—1n-1 Qn-1n
00 ... g0 (1 po .. Qpp—1 (nn

are one of the following forms:

01 ... 00 a1 bip ... Qip bin/2
g 0 ... 00 gbia ai; .. gbigng a1,n)2
S | : : : . or (4.1)
00 .01 Qs bnj2i -0 Gujanz bnjong2
00 .. q 0 qbnj21 nj2a oo Gbnjan2 Anjange
01 ... 00 a1 bii ... a1 ,n/2 bins2
q 0 .00 —qb1 1 —a11 ... —qb1,n/2 —Q1n/2
: , : : (4.2)
00 ... 01 Ap /2,1 buj2n oo Gnjang2 bnj2,n/2
00 ... q0O —qbnj21 —Qpa1 oo —Gbpjanse —njane

We now prove a lemma about pairs of the above two forms that will aid in their

classification. Partition the matrix A above as follows:

A U
(v o)
for Ay € M(n —4,k),U € M(n —4 x 4,k),V € M4 xn—4,k),C € M(4,k).
The following lemma gives a sufficient condition to ’zero-out’ blocks in the matrix A,
which we will see makes the classification of pairs much easier.
Lemma 4.1.2. If for some M; € GL(4,k), with M? = pl,, we have (?} C+UMZ~) is

invertible and commutes (up to a scalar multiple) with L, ,, then we get the following

isomorphism if A?> = pl:

I A U ~ 1 Al O(n—ayx4
"\v ¢ w’ O (n—a) M; '
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Proof. Suppose that A? = pI, then:

24UV AU+UC\  (pls 0 )
VA +CV VU + C? 0 pL)’ '

This gives the following relations:

But then,

A2+ UV =pl,_, (
AU4+UC =0 (
VA +CV =0 (

VU +C*  =pl, (

-1
Al U Al U Al U
V C+ M, vV C vV C+ M,
-1
A2+ UV AU +UC AU
VA +CV + MV VU+C*+MC) \V C+ M,

-1

p]n—4 O Al U
-1

In74 0 p]n,4 0 Al U
0 M, V. o C+M)\V C+M)

A U
since, from above, we know M? = pI;. Also, because, by supposition, ( ! )
v

is invertible, there exists a matrix: (

i.e.

VXi+(C+ M)Xs VXo+ (CH+ M;)Xy

C+ M,
X1 X
X3 Xy

A, U XX\
vV C+M)\Xs X, v

A X, +UX; A X+ UX, o Lia 0
0o I/

> such that
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This results in the following relations:

VX1 +(CH+ M)X; = (4.8)
VXo+ (C+M)Xy =14 (4.9)

This gives:

In74

0 p[n,4 0 Al U
0 M, Vo C+ M, Vi O+ M,

)
(o) )
() )
Gl

(

Xy pX2>

This implies that,

2
pX1 pXo)  (plha O
0 M, 0 pl)’
because the corresponding involution is isomorphic to Inn,, but then

(pX1)2 = pInf47
pX1pXo + pXoM; = 0.

Also, since k has characteristic not 2,

1 (2pXy pXo pX1 30X (In-a O
r\o m)\ 0o 0 I}
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Ay U

e 2p X1 pXo
o VvV C+ M,

is invertible (assuming
0 M;

) is invertible) so that,

-1

2p X1 pXo pX1 pXo 2p X1 pXy

2 (pX1)* 2pX1pXo + pXoM; 22X, pXy
0 M? 0 M;

1

2pl,—y pXipXs 2p X1 pXs

pX; 0
0o M )’

) commutes (up to a scalar multiple) with

(pX1 0 ) (szl pXs 22X, pX,
0

by the above relations and that M? = pl,.
2p Xy pXs

It remains to show that
0 M,

pXo
M;

)

is a commuting pair (with Inn notation suppressed) isomorphic to

X X
Ln,q7 bA1 PAg
0 M;
A U

Vv C+ M,

: . : Ly 0
tion the matrix L,, , into blocks:
0 Ly

X
L, 4. It was shown above that <p ! ) commutes with L, ,:
0

because, by supposition, L, , and ( ) commute (as involutions). Parti-

> , with Ly € GL(n—4,k) and L, € GL(4, k)



33

which is possible because we are assuming n is even. Then,
Ly 0 (pX1 pXo) . pX1 pXo) (L1 O
0 Lo 0 M, 0 M, 0 Lo
N pLi Xy pliXo\ c pXiLy pXoLs
0 LQMZ 0 MZLZ

for some ¢ € k. This gives the relations:

pL1X1 = CpX1L1 (410)
pL1X2 = CpX2L2 (411)

And because the characteristic of k is not two, equation (4.10) implies that 2pL; X =
2cpX1Lq, so that

Ly 0 2pXy pXo\  (2pLi Xy pLiXo
0 Lo 0 M; 0 Lo M;
o 2CpX1L1 CngLz
0 CMZ‘LQ

2pXy pXo\ (L1 O
=c :
0 M; 0 Lo
Before proceeding to the next theorem, some small results are needed.

x
Lemma 4.1.3. For a fized q € k, the set { ( Y
qy x

r vy w oz W+ qyz Tz +yw w oz r vy
qQy T qz w QyW + qrz qyz + Tw qz w qQy T

> |z, y € k} is commutative.

Proof.
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. r oy r Yy
Lemma 4.1.4. Vz,y € k, e = £1, if det < > =0, then < ) =0,
€qy

€qy ex €x
when ¢ 21 mod k*2.

Y

Proof. det
€qy €z

) = ¢(z? — qy?) which is zero if and only if 22 = qy*. If y = 0,

Y

€qy ex
mod k*?, a contradiction. O

2
thena::Oand( ):0,ory7£0whichimpliesq:;”—§:(z) =1

Let My, My, M, M, and M, be the matrices:

0010 00 01 1 0 1 0
0001 0 0 qg O 0 1 0 1
+ 7:|: ) )
» 000 0200 |p-1 0 -1 0
0O p 00 p 0 0 0 0 p—1 0 -1
0 0 1 0 0 0 1 1
0 0 0 —1 0 0 —q —1
+ , £ ) ) ,
0O —p 0 O _1177(1(;_1%100

respectively, and note that M2 = M2 = M2 = ply4, and M2 = M2 = ply,..

Theorem 4.1.5. For A= (A;;)}.

J=

Sz

A U -
1= , My, My, Ms, My, My as above,

we have one of the following:

Q; j bi,j Ay U .. .
1. A;j = and 15 wnvertible for M = My, My, or Ms,
qbiJ Q; 5 vV C + M

or Ja,b € k such that a® + ¢b*> = p, 2ab = 0.

Qj 4 bi,j Ay U . . ~ ~
2. A j = and 1s wnwvertible for M = My or Ms.
_qbi,j —am V C + M
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2
. A1 U Al U P .
Proof. Since = pl,, we know is invertible. Therefore, the
vV C vV C

(AU . o :
matrix is invertible if and only if

vV C+ M,
Ay U A U\ A3+ UV AU +UC
vV C+ M, vV C VA +CV + MV VU+ C*+ M;C
I, 0
— (P (by equations (4.4) - (4.7))
MV ply + M,C

is invertible, which is invertible if and only if pI, + M C' is invertible, by lemma 3.3.2.
We show first that if pI, + M C' is singular for M = M;, 1 = 1,2, 3 then there exists
a solution a® + ¢b?> = p,2ab = 0, for a,b € k, and second we show that ply + MC
is nonsingular for some M = M;, i = 1,2, corresponding to parts (1) and (2) of the
theorem, respectively.
Considering the first part, suppose that pl, + M;C' is singular for i = 1,2,3. We
know, by supposition, that:

a b ¢ d
qgb a qd c
e f g h
qf e qh g

for a,b,c,d,e, f,g,h € k,q Z1 mod k*2. Now, det (pI; + M;C) = 0, implies that:

pte =£f +g +h

+qf pte Zqh +g
det =0
+pa +pb pEpc +Epd

+qpb “+pa +qpd p+pc

along with lemmas 3.3.2 and 4.1.3, imply that

pte =*f ptpc £pd g h a b
0 = det —p
+qf p+te +qpd p =+ pc qgh g gb a
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and thus
qf p+te gpd  p—+pc qgh g/ \qgb a
= det —p
—qf p—e —qpd p —pc qgh g) \gb a

By lemma 4.1.4 this gives:

and thus
p2<c d>+p<e f>__p2(c d>_p<€ f)
qd ¢ qf e qd c qf e
—>2p(p<c d>+<e f>>:0
qd ¢ qf e
3p<c d)“‘(e f>:7
qd ¢ qf e

since the characteristic of k is not 2 and p # 0. Therefore,

e f c d
- , 4.13
(qf 6) p<qd C) 1

Also, det (pIy + M>C') = 0 implies that

pEtqf e +qh +g
+qe + + +qh
det ge  prqf =qg L
+pb :l:ga ptpd p+ %’c
+pa +pb pEpc pEpd

along with lemmas 3.3.2 and 4.1.3 gives:

dt((p:l:qf +e ) <p:|:pd :I:§c> p(qh g) (qb a>) 0
e - - =
tge pEqf tpc pEpd 7 \qg9 qh) \qa qb
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and thus

p+aqf e p+pd e pl(ah g\ [qb a
0 = det q _ £z

ge  p+aqf pc  p+pd 7 \qg9 qh) \ga qb

—qge  p—qf —pc  p—pd q

By lemma 4.1.4,

which implies

()

qg O

(e f):—£<c d). (4.14)
qf e 4 \qd c

Putting (4.13) and (4.14) together,

L c d _ e f _ P
qd ¢ qf e q

0 1
since the characteristic of k is not 2, p # 0, and ( ) is invertible. Therefore,
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so that ¢,d = 0, since if —p = —§ then ¢ = % = 1, a contradiction to the fact that

qZ1 mod k** and hence e, f = 0. Plugging back into pI, + M;C, (which is singular

p?* 0 g h\[a b
o] TP =0
0 p qgh g gb a
1

- (g h) :p<a b) (4.15)
gh g gb a

b h
) is invertible since it multiplies with (gh ) to get ply).
qan g

by supposition) we get

a
(we know that
qb a
Using that ply + M3C' is also singular, det (ply + M3C) =0, i.e.
—1

<p+a b ) (a b)
p
b b
dor | N 40 PHe vl Ll =0

o) (02
qb a 0 p gb a

which implies, by lemmas 3.3.2 and 4.1.3, p not zero, and ¢ # 1 mod k*?, that

-1

+ b 0 b
det pra P —p ¢ —plp—1)I | =0,
@b p+a 0 p qb a

so that by lemma 4.1.4,

1

) _
p* 0 a b a b
—p? +p —pL—plp—1)L=0
0 p? gb a gb a

1

a b\ a b
—plo—p + —L—-—(p—1)1L=0
gb a qb a

-1

—(p-1Dh—(p-1)+ (qab Z) —p<qab 2) =0



a b a b
— =p
qb a gb a
2

a®+qb®  2ab a b
— = = p[g
2qab  a® + qb? gb a

39

— Ja,b € k such that a® + ¢b®> = p,2ab = 0. Therefore, either one of pIy + M;C

is nonsingular for i = 1,2, or 3, or Ja,b € k such that a® + ¢gb> = p,2ab = 0. This

completes the first part of the theorem.

We now prove the second part of the theorem. Suppose, by way of contradiction,

that pIy + M;C for i = 1,2 is singular. We know, in this case, that the matrix C has

the form:

a b c d
—qb —a —qd -—c
e f g h
—qf —e —qh —g

C:

?

for some a,b,c,d,e, f,g,h € k,qg# 1 mod k*?. Now, det (pl4 + ]\ZﬂC’) = 0, gives:

pte =+f +g +h
+ +e =+qh +

det af p q 9 1_,
+pa +pb pEpc +£pd

+gpb +pa Eqpd p=+£pc

This implies, by lemmas 3.3.2 and 4.1.3, that

pte =£f pEpc £pd g h a b
det —p =0
+qf pte +gpd p =+ pc qgh g qb a

and thus
d h b
oman (0 O ) () )
qf p+te gpd  p+pc qgh g) \gb a
= det —p :
—qf p—e —qpd p—pc qgh g/ \gb a
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Lemma 4.1.4 gives:
—-p
qf p+te gpd  p+pc qh g) \gb a
—p
—qf p—e —qpd p—pc qgh g/ \gb a

0

which implies

b ) o) )G )
— —p =
0 —1 qd c 0 —1 qf e
e f c d
= _ , 4.16
_><—qf —€> p(—qd —C> 1

since the characteristic of k is not 2 and p # 0. Similarly, det <pI4 + M2C> =0,

gives:

ptle—qf) £(f—e) +(g — qh) +(h —g)
dot +(qf —qe) pE(e—qf)  *(gh—q9) +(g —qh)
+i(a—qb) £ (b—a) pE(c—qd) £ (d—0)

155 (gb —qa) £ (a—qb) £ (gd —qc) p=£E(c—qd)

=0.

By lemmas 3.3.2 and 4.1.3,
det(C’l — CQ) =0
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for

CH:(pi@—qﬂ +(f ) ><piﬁlw—q@ i%ﬁd—d)>zmd

+(qf —qe) pE(e—qf) i (ad —qc) pEiE(c—qd

C__(iw—qm :ﬂﬁ—gi)< +:2-(a — qb) i%ﬂb—®>

L =

+(gh —qg9) +(g9—qh)) \Ei%(eb—qa) £ (a—gb)

This implies that both det(C] + C% — C%) and det(C] + C, — C%) are zero for:

Cu:Cf+lq@—q@+p@—qn £d=e)+p(f —¢) )
2 (gd —gc) + plaf — ge)  P* + £ (c — qd) + p(e — qf)

y_(ﬁ—ﬁ@—wwm@—w> —ﬁw—d—Mﬂw))

i (ad —qc) —plaf —qe) p* — = (c —qd) — p(e — qf)
e—qf f—e c—qd d-—c
( f—qe e—qf) (qd—qc c—qd)
g—qh h—g a—qb b—a
(qh—qg g—qh> (qb—qa a—qb>.
Lemma 4.1.4 implies C] + C) — C4 = 0 and C{ + C) — C% = 0. Therefore,
2P<L< c—qd d-—c >+< e—qf f—e >>:O
1=4q\ ¢gd—qc c—qd ¢f —qe e—qf
_)_L<c—qd d—c>:<e—qf f—e)
=4 \gd—qc c—qd af —qe e—qf
since the characteristic of k is not 2, and

_L 1 1 C d o 1 1 e f
=g \—¢ -1 —qd —c B —q -1 —qf —e
D c d B e f
- 1-gq (—qd —c> B <—qf —e) 7 1D

because ¢ 1 mod k*2. Putting (4.16) and (4.17) together:

c d D c d
—p -7
qd ¢ =g\ ¢gd ¢

N
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& d
_>< ):O,Sinceif—p:—%}%1—q:]—3:1’sincep?§0_>q20’

—qd —c

e f
—qf —e
using (p[4 + MZC’) is singular for i =1, 2,

D 0 +g =+h
0 p  *qh =g

a contradiction. Therefore, (

0 = det
+pa +pb p 0

+gpb +pa 0 P

0 +(g—qh) *(h—g)
0 p +(qh —q9) +(9—qh)

(b—a) D 0
+12-(gb —qa) +7E5(a—qb) 0 p

2 0 h b
0=det | (¥ oY “
0 p? qgh g) \¢b a
p? 0 P g—qh h—g a—qgb b—a
— det - :
0 p*) l=a\gh—qg g—qh) \gb—qa a—qb

by lemmas 3.3.2 and 4.1.3. Therefore, by lemma 4.1.4,
g h\[a b p? 0

p et
gh g/ \gb a 0 p

D g—qh h—g a—qgb b—a
1=qg\qh—q9 g—qh) \gb—qa a—qb
so that

g h a b ] 1 g—qgh h—g a—qgb b-—a
qgh g) \gb a S l-g qgh—qg9 g—qh) \gb—qa a—qb

thus,

) is also the zero matrix. Using this, and
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This results in the following relations:

ag + qbh = p
ah+bg =0
(0= ab)(g — gh) + alb— a)(h— g)) = p

which imply

ag — qah — gbg + ¢*bh + gbh — qbg — qah — qah + qag = p(1 — q)
— (ag + qbh) + q(ag + qbh) — g(ah + bg) — g(ah + bg) = p(1 — q)
—p+ap=p(+q)=p(l-q)
—+14+q¢g=1—¢q
—2¢q=0

—q=0

since the characteristic of k is not 2, which gives us a contradiction since q was

assumed to be nonzero. Therefore, one of ply + M;C,i = 1,2 is invertible. m

We are now at a point where we can use the results above and induction to further
simplify the form of a commuting pair of involutions of SL(n, k) where the first entry
is isomorphic to L, ,, for ¢ # 1 mod k**. Namely, we get the following theorem
by repeatedly applying the techniques above, and using the fact that a matrix A
in GL(n, k) defines an inner automorphism of SL(n, k), via the map Inn,. Before
proceeding, observe that the invertible matrices from theorem 4.1.5 commute (up to

scalar multiple) with L, ,.

4.1.6 n divisible by 4

Corollary 4.1.7. Given that n is divisible by 4 and q is not equivalent to 1 mod k*2,
then the pair: (Inng, ,Inny) is isomorphic to the pair (InnL; J Inng), for any A such

that the above is a pair of commuting involutions, and

Y 0 , 0 In
B p— 7L1’Lq p— 2 y
0 +Y ’ qI= 0
2
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where Y is the matrix representative of an isomorphy class of inner involutions of

SL (%, k), or (InnLn’q,InnA) 18 1somorphic to (InnLM,Innln_%%Ln’q).

Proof. Without loss of generality, suppose A% = pl,. Then, by lemma 4.1.2 and
theorem 4.1.5 we know if there is not a solution to a? 4+ ¢b?> = p with 2ab = 0 over k

that
/
(Innan,InnA) R (Innan,InnA,) A = <A1 0)
| | 0 M

with M = M;, i = 1,2,3 or M = M;, i = 1,2. In fact, using the automorphism

I,y O
defined by for R:
0 R
0

0 1 =+l 0 0 01
0 0 +¢ 1 <12 0 ) 0 0 q 0

P ) _ _ ) pg p_ )
P :]:a 0 0 IQ .[2 1—q 1-g 0 0
+p p 0 0 %; %‘i 00

the above isomorphism becomes:

, A0
(Innan,InnA) ~ (InnLn_q,InnA/) A" = ,
’ ' 0 M

for M either M, or Ml, depending on which form from lemma 4.1.1 is the matrix A.

Namely, if M = M, or Ml, nothing needs to be done. If M = M, then set

0O 0 1 4#1
0 0 =£q 1
P :I:% 0 O
+p p 0 O

R:

(keeping the signs of M, and R the same). Then, R is invertible because ¢ # 1

mod £*? and
I,—4 O I,—4 O
! Ln,q ! = Ln,qa
0 R 0 R

Lia O\ (A 0 [Lia O\ (4 0
0 R/J\0 M 0 R 0 M)
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If M = Mj set

Then R is invertible and

IfM:MQSet
0 0 01
0 0 0
R: pq p q
T T 00
g o

Then R is invertible because ¢ is neither 0 nor 1, and

1

Iy O Iy 0)
Lnﬂ] :Ln,q>
0 R 0 R
-1
Lia O\ (A 0\ (Lia 0 (47 0
0 R/J\0 M, 0 R 0 M)

A U
But A% = pl, implies that A”? = (TflAT)2 = pl,, for T = ! , thus
vV C+M

A2 = pI,_4. And since we are assuming that there is no solution to a? + gb* = p
with 2ab = 0 over k, by lemmas 4.1.2 and 4.1.5, and the above argument, there is an

invertible matrix S such that:

S_an_4’qS == CLLn_4’q

A” 0
STIALS =b| !
0 M
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for M’ = M,, or M' = M,. This implies that the commuting pair (InnLnyq, InnA) is

isomorphic to the commuting pair:

(Inn(lenMS 0 )’Inn<SlA’1$ 0))
0 L4,q 0 M
Inn aln_1q 0 \3 Inn 0

_ 0 L4,q b 1 0

0o M
0 M

S 0
via the inner automorphism defined by ( ) This forces a = 41 because
0 I,

L2 4y = qln-y = (S‘an_4’qS)2 = a?ql,,_4. If a = —1, the inner automorphism

defined by the matrix:

Iy 0
1 0 0 0
T = 0 0 -1 0 0
0 0 1 0
0 0 0 -1

gives the required isomorphism to the pair:

Inn/p, .. 0y, Inn
( 0 L4,q> ) AY 0 0 7
0 M
0 M

i.e. to the pair with @ = 1 by factoring out the constant —1 (after conjugation by the

above inner automorphism defined by 7") because

b 2)C6 -0

and because (since we know M = M, or M),

1 0 0 0
0 -1 0 O
0 0 1 O
0 0 0 -1
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commutes with M. Also, b = £1, because

2
A// 0 b2A//2 0
A2 = pl, 4 = (S7'ALS)* = v? ( ' ) = ( ' ) ,

0o M 0 bl

since M’ = M, or Ml. But by definition of M; and Ml we can ignore a constant of
+1. Therefore, if there is no solution over k to a? + gb®> = p with 2ab = 0 then the

pair (InnLM, Inn A) is isomorphic to the pair

Inn Ln_aq 0 , Inn +AY 0
0 L4,q M’ ’
0 M

for M, M’ either (both) M, or (both) M,. Using this as an induction step, by re-
peatedly applying lemma 4.1.2 and theorem 4.1.5 to the block A7, this gives us, by

induction, the isomorphism:

X 0

(InnLn,q,InnA) = (InnLnyq,InnAu) VA = ’

for Xj = Ml, or Xj = Ml.

Consider Innp for the permutation matrix:

Pn = Z (Ei,Qifl + E%Jﬂ‘,gi) .

=1

aij bij

For the cases that A has the form (A4;;) with A;; = ( ) and no solu-

qbij i,
tion over k of a® 4+ ¢b* = p with 2ab = 0 or A has the form (A;;) with A;; =
ai,j bi; . . . . .

( ¥ 7 ) it remains to show that the commuting pair (Inan, Inn A//), with

—gbi; —ai;
X 0
. : : Y 0
A" = is isomorphic to (Inn% ,InnB), with B = for
* 0 Y
0 Xn

Y the matrix representative of an isomorphy class of inner involutions of SL(%, k).
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First, it can be shown that P,L,, P, ' = L;, ,- Note that, because P, is a permutation

matrix,
%
P t=pPr= Z (Egic1, + E2i,%+i)
i—1
and note
3 3
Ly,g= Z (Eai—12i + qE2i2i-1) , L/n,q = Z (Ez%—i-z + quJrz‘,i) )
i1 i—1
so that PnLn’an*1 is equal to:
3 3 3
Z (Ei,Zi—l + E%—i—i,%) (Eai—1,2i + qE2i2i-1) Z (E2i—1,i + E2z‘,g+i)
i—1 =1 i=1
3 3 3 3 7 3
Z(Z Eioi1 Z Foj 12 + Z Eisi1 Z qEsj 051 + Z Eniioi Z Eoj_1;
i—1 =1 i—1 =1 i—1 =1

n

2

3 3
+ Z Eg+z,2¢ Z qEs;2i-1) Z (E2i—1,i + E2z‘,g+i)
i=1 j=1 i=1

n

2

3 3
= Z Ei2+0+0+ Z qu+i,2z‘—1 Z (E2i—1,i + E2z‘,g+z')
i=1 i=1

=1

n n n n n n
2 2 2 2 2 2

= E E; o E Eoj_1,+ E E; o E E2j,%+j + E qu+z’,2z‘—1 E Eoj_1
i=1 j=1 i=1 j=1 i=1 j=1

n n
il bl

+ E qEn i1 E Eajnyj
i=1 j=1

n n

=0+ i Eizyi+q i Enyii +0

i=1 i=1

|
wI3

=D (Binyit+qEni) =Ly,

.
—_

with the zeros following from the fact that 27 — 1 # 2¢ for any ¢ or 5. Next, it is shown

Y 0
) with Y’ € GL(Z, k).

that P,A"P; !, for A” as above, has the block form:
0 +Y’
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By the argument above, it is known that A” is one of two forms:
M, 0 M, 0

0 M, 0 M,

i.,e. A” is one of the following forms:

n_q

€; (E1+4z',3+4i + E2+4i,4+4i + pE3+4i,1+4i + pE4+4i,2+4i)
=0
n_q

€i (Eryaigrai — Botaiarai + PEsyainvai — DEataiotai)
=0

for ¢; = 1. Therefore, P,A"P; ! is equal to:

n n n n
2 4 2 4
(E Ei,2i—1 E EjE4j—3,4j—1 + g Ei,Qi—l E EjPE4j—1,4j—3
=1 j=1 i=1 j=1
n n n n
2 1 2 1
-1
+> Enii ¥ 6Ey 04+ Y Eniin Y €pEsyja )Py or
i=1 j=1 i=1 j=1
n n n n
2 1 2 1
(E FEioi1 E EjE4jf3,4j71 + E FEii1 E ejpE4j71,4j73
=1 Jj=1 i=1 j=1
n n n n
2 4 2 4
-1
=Y Buyin ) 6Buy00— Y Enyin Y €pEyja0)P;
i=1 j=1 i=1 j=1

because 2 — 1 # 45 — 2,21 — 1 # 45,2i # 45 — 1,2i # 45 — 3 for any integers i, j.
These are equal to:

n n n n

4 4 4 4
(D eBajra1+ ) 06 Esjaj s+ Y €Es o145+ ) peEnisia;0)P, " or
Jj=1 Jj=1 Jj=1 Jj=1
n n n n
4 4 4 4
(Z €jFoj_145-1+ ZPEjEszj—:a - Z Gng+2j—1,4j - ZpejE%-‘erAj—Q)Pn_la
j=1 j=1 j=1 j=1

respectively, because 2 = 45 — 2 when ¢ = 2j — 1 and 2¢ = 45 when ¢ = 27. Similarly
solving fori in terms of j and using that for integers 7,7, 20 — 1 # 45,45 — 2 and
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21 # 45 — 1,45 — 3, this results in:

n n n n

4

4 1 4
> ciEnj125+ ) peiEaai+ Y 6 Bsio 1 mia+ ) peEnisinia 1 or

=1 =1 j=1 j=1

n n n n

4 4 4 4

> eiErj10i+ Y 06 Eaai = Y € Eiai 10— Y P Enia; im0
=1 =1 j=1 j=1

n

3
= § € Eyj 10j + D€ Eajoj 1+ € En o) 1 n g+ pejEn gin g5y or
=1

%
Z GjE2j71,2j +p€jE2j,2j71 - EjE%+2j71,%+2j - pGjE%Jij,%Jerfl
j=1
respectively. Note that, in both cases, these end up as matrices with two-by-two blocks
on the diagonal. Because n is divisible by 4, we get the desired block form. Thus, the

commuting pair (Inn L, ., Inn A) for A one of the forms in lemma 4.1.1 is isomorphic to

n,q?

a commuting pair of the form (IDHLfnvq, IHH(Y’ 0 )) for Y’ € GL(%, k), when there
0 +Y’

is no solution over k to a® + ¢b®* = p with 2ab = 0. Because Inn, is an involution

isomorphic to Inn(y/ 0 ), there exists an invertible C” such that C'"'AC’ = oY’
0 Y’

so that pI, = A% = (C"TAC")* = a2V, ie. Y’ is the matrix representative of an
involution of SL(%, k). This implies that there is a matrix 7" € GL(%, k) such that
T'-YY'T" = BY for Y the matrix representative of an isomorphy class of involution

of SL(%, k). Therefore, (InnLn’ o InnA) is isomorphic to

s 1)

~ | Inn, —1 , JInn 1 y
( (5 7)) 2a(T ) (T 2) (555 %’x))
I I

- (““<Ta 2) (o )52y O >>

= (InnL;Lyq,Inn(g :l:OY)) ,

aij  bij .
whenever A is of the form (A4;;) with 4;; = < bJ ’]> and no solution over k of
q0i; Qi
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9 9 . . Q;,j bi
a® + gb® = p with 2ab = 0 or A has the form (4; ;) with 4;; = ) , for
—q0i; —Q;

Y the matrix representative of an isomorphy class of inner involution of SL(%, k).

aij  bij

Lastly, if A has the form (A4;;) with A;; = ( ) and each of M; for

qbij aij
1 = 1,2, 3 is singular, it was shown in theorem 4.1.5 that there is a,b € k such that

a b
a?+qb® = p,2ab = 0. Let M, be the two by two matrix ( ; ) for a, b the solution
gb a

over k to 22 + qy?® = p,2zy = 0. By lemma 4.1.1 and lemma 4.1.3, the matrix

Ay U

0 O
A+ = 0 O
(O M4) V C+
0 My
commutes with L, ,. Also, one of them is invertible:
Ay U
0 O is invertible
V C+
0 My
Ay U
A UYL :
0 O is invertible
V C+ vV C
0 My
pIn74 0
— 0 0 0 0
0 M4 0 M4
0 0 . .
— ply + C is invertible
0 My

< ply £ M,Cs is invertible

h
for Cy the lower right two-by-two block of C, i.e. Cy = < g ) for g,h € k. If both

qh g
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pls + M4Cy and pl, — M4Cy are singular, then
bh h+b
0 — det p+ag+q an + 0g
q(ah +bg) p+ aq+ gbh
~ det <(p—(ag+th) —(ah + bg) ))
—q(ah +bg) p— (ag+ qbh)

q(ah +bg)* = (p+ ag + qbh)* and
g(ah +bg)* = (p — (ag + gbh))*.

and thus

If (ah + bg) # 0 then (p + ag + gbh) # 0 and q = (p + ag + gbh)?/(ah + bg)?, a
contradiction to the fact that ¢ # 1 mod k*2. Therefore, (ah+ bg) = 0 which implies
(p+ag + qbh) = 0 = (p — (ag + gbh)). Thus, p = ag + gbh = —p and 2p = 0. This
gives p = 0 because the characteristic of £k is not two, but this is a contradiction to

the fact that Inny is an automorphism. Therefore one of

Ay U

0 0
V C+
0 M,

is invertible. Therefore, by the proof of lemma 4.1.2 and the above induction argu-
ment, the pair (Innanq,InnA) is isomorphic to the pair (InnLn,q,InnB/), for B’ the

matrix of 2 x 2 blocks of the form ¢; (a
qb a

with ¢, = £1. But since the characteristic of the field & is not two and 2ab = 0, either

) on the diagonal and zeros elsewhere,

a or bis 0. If b is zero, then the pair (Inn Lng» 1NN B/) for B" as described directly above

Inng, ., Inn /¢ ar, Inng, ,Inn /e 1,
e = a e
E%GIQ 6%12

Inng, ,Inn /¢,
( . 5%12)

is equal to:




53

After conjugation by Innp, for P, the permutation matrix: > 2, (Ei,zi_1 + E%JFLQZ'),

this gives:

Inng, Inn e, . .
P, pr | = | ML, nn(gioy) )
enlo
2

for Y the matrix representative of an isomorphy class of inner involutions of SL(%, k),

because, P, B'PT is equal to:

n n
2 2
T
E (Ei,Qzel + Egﬂ',m‘) E €5 (Baj12j-1+ Eajo;) | Py
i=1 Jj=1
n n n
2 2 2
= E EZEZ,Qlfl + E eiE%+i,21 g (E2]71 Jj + EQ] 7+j)
=1 =1 7j=1
n n
2 2
= E € + E € B i n,
=1 =1

where the multiplications follow from the fact that 2i — 1 # 25 for integers ¢, j and
2j—1=2i—1or §+i= 4+ jimplies i = j. Note that this gives B’ the desired

form (possibly after factoring out a —1). If a = 0, then (Inan, Inn A) is isomorphic

Inn; . Inn
s 0 b
gb 0

to

Inn;_ ,Inn
s 0 1
q 0
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This implies that p = ¢ because, by supposition B? = pl,. Therefore, the pair

(InnLn’q, InnA) is isomorphic to the pair (InnLM, Inn; ), for some

n—2i,21’,Ln,q

ie{0,1,...,2}. O

4.1.8 n even, not divisible by 4

When n is even but not divisible by 4, we can do something similar.

Corollary 4.1.9. Given that n is even but not divisible by 4 and q is not equivalent

to 1 mod k*?, and A* = pI,,, then (Inn, ,,Inny) =~

Inng, ,Inn/;, =
(InnLn,q’ Inn[n—% 2iLn,q) , Or nea’ 5 i )
' 0 In_y;

if there is a solution over k to a®+ qb® = p,2ab = 0, otherwise it is isomorphic to the

pair, P(a,b) =

Inn ,Inn
01 a b
0 0
q 0 —qb —a
0 L, o, 0 Y 0
0 —-Y

for' Y the matrix representative of an isomorphism class of inner involution of the

group SL(”T_Q, k). Furthermore, for fived Y, all such pairs are isomorphic.

Proof. The first statements follow from the proof of corollary 4.1.7. Fix a represen-
tative, Y, of an inner isomorphism class of involution of SL(”T’Z, k) and suppose that
we have pairs P(a,b) and P(c,d), as defined above. Then, P(a,b) is isomorphic to
P(c,d) if there is an z,y € k such that:

A TP | G B G
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because, then, for

g —qy - ’
0 —Iz,

Inng! Inn Inng, Inng! Inn Inn
s (Lg,qo)ss (a b) 0 i

0 L/g—Lq —qgb —a

= P(c,d).

x )

For any x,y € k, not both zero, det <
—qy —x

) = qy? — 22, and since ¢ is not a

x
square in k, the determinant is nonzero. This implies that the matrix ( Y >
—qy —x
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is either the zero matrix or is invertible. Therefore, for x,y not both zero,

-1

x Y a b x Y
(—qy —fc> (—qb —a> (—qy —fc>
1 ar —qby  br —ay —xr —y
N qy® — (q(bx —ay) ar— qby) (qy x >
B 1 ( —ax? + 2gbxy — qay? bx? — 2axy + gby? )
qy® — 22

—q(bx? — 2axy + qby?) —(—az?® + 2qbry — qay?)

c
must equal ( > . But this happens if and only if the following equations are

—qd —c
satisfied:

—az® + 2qbxy — qay® = (qy* — 2%)c
be? — 2axy + gby® = (qy® — 2?)d.

The first of the above equations holds if and only if there is an z,y € k not both zero
such that (c—a)z?+2gbry — (c+a)qy* = 0. If (c—a) = 0 then we can take z = 1 and
y = 0. If (c—a) # 0 then the above holds if (2¢by)* +4(c — a)(c+ a)qy? is a square in
k (by the quadratic formula). But that is square <+ 4y%q(qb* + ¢® — a?) is a square <>
4y%q(c* — p) is square (since a? — gb* = p by construction). But 4y?q(c* — p) is square
+ q(c® — p) is square. Also, we know ¢? — qd? = p, by construction — ¢ — p = qd>

and thus ¢(c* — p) = q(qd?) = ¢*d?, a square. Therefore, we know there is z,y € k

—2gby++/ (2qby)2+4(c—a) (c+a)qy?
2(c—a)

not both zero (the above shows that x = is a solution to

the first equation and thus we can let y = 1 # 0) such that we get P(a,b) isomorphic
to P(c,d’) but then ¢ — ¢qd”? = p, and we know ¢? — qd? = p, so —qd*> = —qd? —

d = £d. If d = —d the theorem follows from using the the inner automorphism
defined by:
1 0
0
0 In_yn_y
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Note that by viewing the Y’s in the pairs above as trivial, the classification of

commuting involutions of SL(2, k) follows.

4.2 Commuting Inner Involutions with the First

Pair Isomorphic to Inn

In_i;

We now consider commuting pairs of inner involutions of SL(n, k) with the first

involution isomorphic to Inn;

n—i,3?

and proceed in the same manner is when the first

entry is isomorphic to Inng,, .

Corollary 4.2.1. A commuting pair of involutions with the first entry isomorphic

to Inng,_,, fori € {1,2, e \_%J} 1 1somorphic to either (Innln InnB) with B =

0 I , Y1 0 . ,
, forp ek or (Innln_“,lnng) with B = , with Y, the matriz
0 ,

—i,i0

pl; 0 £Y5
representative of an isomorphy class of inner involutions of SL(n — i, k) and Ys the

matriz representative of an isomorphy class of inner involutions of SL(1, k).

(B B
By Bi)
for By € M(n —ixn—1,k), Bp € M(n —1i xi,k), By € M(i x n —i,k), and

By € M(i x i, k), the commuting condition gives:

Proof. For

B',_;B =cl,_;,
A In—i,iB/ = CB/[n—m'

B, B, B, —B,
e =cC

—Bs —By Bs —By
< c=1and B, =0,B3=0
orc=—1 and B; =0,B, =0,

because the characterstic of k is not two. If ¢ = 1, then the commuting pair

(Inn T

n—i,i’

B 0
InnA) is equal to the pair (Innjn_“,lnnB,) for B! — ( 1 ) It
| 0 —By
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A% = pl, then B? = pl, ; and B} = pl;, and thus there is a C; € GL(n — i, k)
and Cy € GL(7, k) such that:

C’lelCl =aY; and

Cy'ByCy = Yy

for Y7, Y5 matrix representatives of isomorphy classes of inner involutions of SL(n—i, k)

and SL(1, k), respectively. This gives isomorphism with the pair

Inn;,_,.,Inn
s }/’1 O
0 Y,

by factoring out an . But B = pI, implies that (vY3)” = 72Y2 = 4201; because,
by construction, Y5 represents an inner involution. This implies that ¢ and p are in

the same square class, so we can take Y5 such that Y;? = pl;, so that v = +1.

Next, if ¢ = —1 then the commuting pair (Innjn_i’i,lnnA) is equal to the pair
0
(Inny, ,,,Inng) for B' = ( 2). But because Innp/ is an automorphism and
’ By 0

= () ()= (0 )
By 0 Bs 0 0 Bs3Bs

By;Bs € GL(n — i,k) and B3By € GL(i, k) and thus By, By are nonsingular. This
implies that n — ¢ = 7, because the rank of the product is at most two times the

minimum of n — 7,7. This gives, since B”? = pl,,, that ByB; = pl; and thus Bs; =

0 B
pBy " so that the pair is equal to (Inny, ,,,Inng) for B' = ( ) 2). But then
pBy" 0

I; O
using the inner automorphism defined by the matrix ( ) gives the desired
0 By

isomorphism:
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4.3 Classification of Remaining Pairs

The isomorphism classes of commuting inner involutions of SL(n, k), now depend,
in part, on the isomorphism classes of the blocks Y, Y], and Y, (viewed as a matrix

representative of an inner involution).

Lemma 4.3.1. Let A and B be a matrix representatives of inner involutions such
that A? = p1, and B? = pol,,. If Inny is isomorphic to Inng, as inner involutions,

then p; = p» mod k*2.

Proof. Inn, isomorphic to Inng implies there is a C' € GL(n, k) such that C71AC =

cB — (¢B)? = (CT'AC)? = CT'ACCAC = C'p1I,C = pl, — pol, = B? =
2 *

=1L, = pa=(£)" p1 = p1 = p2 mod k*. O

This lemma implies that we need to determine the distinctness only of those

remianing commuting pairs where the matrix representatives of the inner involutions

(corresponding to pairs with isomorphic first entries) square to the same square class

multiple of the identity.

Lemma 4.3.2. Suppressing the Inn notation, we have that

D7 B ) PR VA (s
“\ 0 Ls, T\ 0 —Lu,
2 T

Proof. If the above pairs are isomorphic then there is a matrix in GL(n, k) of the
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A B A B
form or such that
gB A —qB —A
A B L%p 0 A B Ln
=c
+qB +A 0 Lz,/ \£¢B +A

( ALs,  BLas, ) L:,A  Lu,B >
VAN 27 27 = 27 27
j:qBL%p ﬂ:ALgvp :FngJ,B :FL%J,A

cA= 1L, ALz, = —cAand ¢B =L, ALz, = —cB (4.18)

which implies that A and B are both zero since the characteristic of k is not two, or

that ¢ is zero. But both of these contradict the fact that the matrix representative of

A B

the inner automorphism defined by the matrix
+qB +A

) is invertible. O

Lemma 4.3.3. Suppressing the Inn notation we have that, for

27j6{07177L%J};Z7é]7

7 I%,m' 0 ",7é I I%,]’J’ 0
n,q’ n,q’ ’
0 s 0 Iny

Proof. This follows from the fact that I,,_s;2; is not isomorphic to I,_9;2; for ¢,7 €

{0,1,...,]2]},i#j, and

Inn ~ Inn
(ng,k 0 ) Iy ok 2k
0 To_gpk

for k € {O, 1,..., L%J } To show the above isomorphism, consider the matrix

5k k
P = Eii+ En_pyinyi + E Ernokti,n—kti + Enoktin—k+i-
=1 =1
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Then,
3k k
T
PP =P E Eii+ Engin g + E En_pyin—okt+i + En—krin—kti

i=1 =1

o

= E E’LZ + Eﬂ—k—i—z 5 —k+i + E En 2k+i,n—2k-+i + En k+in—k+i
=1 =1
n—2k

— Z Ezz + ZEn 2k+i,n—2k+1i
=1

=1,

because of the following: ¢ = §+i,1 = 5 —k+i,i=n—k+i,5+i=5—k+i,5+1=
n—k+1i,5—k+1i=mn—k+1all contradict either that fact that % is no larger than

7 or that n # 0. Note that for & = 0 the isomorpism is trivial and the matrix P is

not needed. Furthermore,

P(Ig_k’k ! )PT
0 Inps

n_
T
=P E Ejj+ Enyyng— E :Eﬁ*kﬂﬁ*kﬂ' + Enitjn—k+j | P
Jj=1 j=1
n_k "

2

k

T

= E B+ E :Eﬁkﬂ,ﬁa E EONESTE AT E B kjnnti | P
=1 j=1

n_k Lo

2 k k
= E E;;+ E En_pyjn gty — E By oktjn—ok+j — E B ktjn—ktj
=1 j=1
n—2k
- E E,_] E En 2k+jn—2k+j
= In—2k,2k

]

Having distinct isomorphism class representatives of inner involutions of SL(%, k)

as blocks, does not always guarantee distinct pairs, as the following lemma shows.
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Lemma 4.3.4. Suppressing the Inn notation, for i € {O, 1,..., L%J },

’ I%—i,i 0 . ’ I% O
L. ~ (L, .
’ 0 —Isg; N0 I

Proof. This isomorphism follows from considering the inner involution defined by:

n__

5t i
P=Y Ejj+Esn+> Esiyinivi+ B ivin it
Jj=1 J=1

)

Note that for

n
b 2

J i
1
Q=) Ejj+Bssjzei+ Y ~Enijnini + Busivjziny,
=1 =1 4

it follows that PQ = I,,, and Q = P~!. Then,

(I 0
P P
0 —In

n . 3
2t 4
_ p-1 Z
=P Ejj— E%ﬂ',gﬂ + E E%fiJrj,nfiJrj - qEnfiJrj,%fiJrj
=1 j=1
5=l 5t i i
=Y Eii— D Buvizei— D Buijnoiri+ ) Buitjnoisg
J=1 Jj=1 Jj=1 J=1
5t i
= Eij—Eajae+ ) —Buivjnivi+ Euivinoitg
=1 j=1
_ In_;; 0
0  —Ioy,
The proof follows from the fact that P commutes with L], . O

Lemma 4.3.5. The pairs (Inny, ,Iong, ,,,.0,,) fori€ {0,1,..., 2|} are distinct

for distinct 1.

Proof. Let i # j with 4,5 € {0,1,...,[2]}. Then if (Lyg, In—2i2iLn,) is isomorphic
to (L q, In—2i2iLn,) then there exists an A € GL(n, k) such that

ALnquil = CLn’q and AIn,QLQiLn’inl = /ﬁ[anj,QjLn,q
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this implies that A~'L,, , = 1L, ;A" so that

_ 1 _ K
A[n72i,2iA an7q = EAIn72i,2iLn,qA f= EITL*2]'72J'L71:Q

K
—1
— AL, _9i %A :Ejn—Qj,qu

a contradiction to the fact that the inner involutions defined by the matrices I,,_9; 2;

and I,,_9j9; are in distinct isomorphism classes for ¢ # j, ¢, € {0, 1,..., L%J } n

Lemma 4.3.6. Suppressing the Inn notation we have the following: the commut-

Ln 0
ing pair (Lp.g, In—2i2iLng) is not isomorphic to (L;lq, ( 21 )), for i €
’ 0 —L=»
24

Ln 0
{0, 1,..., L%J} (n divisible by 4), and the pair (L;q, ( 24 )) is isomorphic
T\ 0 La,

to (Lng, Iz nL

n
DRID) n7q)'

0 In_;;
Proof. First, note that (L, g, [n—2i2iLlng) =~ (L;%q, ( 2 )), via the inner
qlz_;; 0

automorphism defined by the permutation matrix P,, as defined above. Considering

first the case when we use the negative block, for the pair to be isomorphic it must

B
be that for some invertible matrix of the form ( ) for A, B € M(%,k) (it

+qB +A
commutes up to a scalar multiple with L, ) that

A B Lz, 0 0 In_s A B
=c
+¢B +A 0 —Lz, qloi; 0 +qB +A
( AL:, —BLx q> (j:qln_“B i]n_”A)
_) 2 27 =c 2 ) 2 )
:iZQBL%’q :FAL%,(] QI%,%ZA QI%,%ZB
—ALn , = *cqln_;;B,BL» ;= *cln_; ;A and
27 2 ’ 2 2 3
AL%’q = :chI%,MB, BL%’q = ZFCI%,MA, signs taken respectively
—A = qcI%,M-BLg’lq =—Aand B = cfg,MAL?q =-B

which implies both A and B are the zero matrix, since the characteristic of k£ is not

two. This is a contradiction to the invertibility of an inner automorphism defined by

i A B
the matrix , as above.
+qB +A
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Considering the case when the positive block is used, i.e.

L%’q 0
<L;L7q’ ( >> - (Lr/n’qj Ln,q) ‘
0 —l—L%,q
q[% L%ﬁq

and note that S commutes with L . Furthermore, det(S) = det (LQ%_ i qlé) by
lemma 3.3.2, which is equal to det(—glz — ¢lz) = det(—2¢lz) # 0, because the

Let

characteristic of k is not two. Therefore, S is invertible and thus so is the inner
automorphism defined by S. Now, for X = >"2 | Fo; 12;-1 — Fa0:

-1

SL, .5 = Ly_q In )(Lgﬁq 0 ) (ng_q In )
q[% L%_q 0 Lqu qI% L%7_q
-1
_(Lsilze L )(L;gq L;)
ngvq L%_qL%q q]% L%_q
-1
_ qX XL%,q L%,q [%
qXL%_q qX q]% Lﬁ’_q

2

0 X) (Ln I ) <Ln s )
= 2” 2 27 2
qX 0 q[% L%,q qI% L%ﬁq

-1

Pn 0
2

Furthermore,
0 Pn

) commutes with L] and

T

(P; 0)(0 X)(P; 0) _( 0 ]M>
0 Pg qX 0 0 P% qf%y% 0
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because

PnXPT
2 2

n n n

4 2 4
= E Eioio1+ E%+i,2i E Esi—19i-1 — E2i9i g Esi1;+ E2z‘,§+z'

=1 i=1 i=1

n
1 1

= E Eioi1— E%+z’,2z‘ E Eoi_1; + E2i,%+i
i=1 =

n

1
= E Ei,z‘—Egﬂ‘,gﬂ

i=1

:[ﬂ n,

Therefore,

(L;M(I?LTL,Q) ~ (L;L7q7 ( ! ]Z&)) ~ (Ln,qa]%,%Ln,q>-

Ln 0
Hence, by lemma 4.3.5, the pair (L'n " ( 2+ )) is not isomorphic to any pair
’ 0 L=

27q

(Lnyg> In—2i2iLnq) unless i = %. n

Lemma 4.3.7. Suppressing the Inn notation, the following isomorphism holds:

I .. Ln-iq 0 ~\r .. Ln—iq 0
"\ 0 Ly, "\ o0 —Ly,

S = Z_: Eyr+ Z FEok—12k-1 — Eog 2k,

k=1 k=n—i+1

Proof. Let

then S is invertible and because S is diagonal, it commutes with the diagonal matrix
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I,,_; ;. Furthermore,

Lyn_iq 0
N 0 (Zzzl Eok—19k-1 — EQk,2k> Ligq (2221 Eop—1k-1 — E2k,2k> B
B Li_iq 0
- 0 (Zzzl Eok—101 — qE2k,2k—1> (Zzzl Eo—10k—1 — E2k,2k>
B Lypiq 0
N 0 (ZZ:1 _E2k—1,2k - qEzk,2k-1>
B Lypiq 0
N 0 - (Z?g Eop—1 01 + qEQk;,Qk—l)

(Luig O
0 —Lig

Lemma 4.3.8. For n —i # i, and distinct j € {1,2, ey L%J} or distinct k €

]

{1, 2,..., L%J }, pairs of the following form are distinct:

Inn;, ,.,Inn
7 (Inij,j 0 )

0 Ii g

Proof. 1f not, then we would have the isomorphism, for A € GL((n — i),k) and
B e GL(4, k):

-1

A 0\ (Lisj; 0 A0 Lnicy 0
=c
0 B 0 L/ \0 B 0 i

— AIn_i_jJAil = CIn—i—l,l and Blz‘_;@kBil = CI@'—m,m;

at least one of which leads to a contradiction, since for j # [, I,—;—;; and I,_;_;

are in distinct isomorphism classes for j,1 € {1, 2,..., L%J }, and k # m, I;,_y and

Iy, m are in distinct isomorphism classes for k,m € {1, 2,..., L%J } O
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Lemma 4.3.9. Forn—i#4,j € {1,2,...,[%*]}, and k € {1,2,..., %]}, and

suppressing the Inn notation,

I .. In-i-jj 0 ~ 71 .. Tn-i-jg 0
’ 0 Ii kg ’ 0 —Ii i

if and only if eitheri —k =k orn—1— 7 =7.

Proof. (<) First, suppose that i — k = k, then i = 2k, and let

Then, SIn_m-S_l = [n_m' and

o fm=imii 0 o
0 Ii ik

[nf’ifj,j 0 X
= 0 I 0, 1
. ( . k) T < . k)
I, O I, O
Infifj,j 0

[ In-imgy 0 )
0 —Ii pk

Next, if n — i — j = j then n — i = 25, and let

0; 1
, 0
s =|\z o

0 I;
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Then, S,[n,iyisl_l = dn—ij and

o (In=imii 0 ) g

0 Ii ik

-1

0j I i, 0 I 0

=\ 0 I; 0,
0 Li g

0, —I,\ (0, I,

J J J J O
= \L 0 )\ 0

0 Ii g

. (In—i—j,j 0 )
0 —Ii ik

Thus, the first part follows from the fact that Inn, 4 = Inny for constant «, invertible
A.
(=) If the above pair is isomorphic, then there is an S € GL(n, k) such that S

A 0
has the block form, for A € GL(n —i,k) and B € GL(i, k), ( B), and
0

Al,
Bl B~ = —cli_j .

71 f— . ..
i AT = i

If Al,,_; ;A" =cl,_;_j, then either ¢ = —1 or ¢ = 1, because

2 272
=y,

I, = (A]n—i—j,jz‘rl)

= CZIn_i.

Q

S
M(n—i—jxjk),SeMGxn—i-jk),

L )= )
()7

R
If ¢ = —1 then for A = ( T)’ with @ € M(n —i—j.k),T € M(j,k),R €
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which implies that @ is the zero (n — ¢ — j X n — i — j) matrix and T is the (5 x j)
zero matrix because the characteristic of the field & is not two. Since A is invertible
this implies that n — ¢ — j = j, because if not then the rank of A would be at most
two times the minimum of {n —i — j,7}. If ¢ =1 then BI; ;B! = —I; 1} and by

the same reasoning as above, 1 — k = k. O

Lemma 4.3.10. Forn —1 =1, and j,k,l,m € {1,2, cee \_%J }, suppressing the Inn

I licjg 0 ~ (1. iy 0
Y 0 ]i_k,k . 0 Ii—m,m

if and only if either 7 =1 and k =m or j =m and k = 1.

notation,

Proof. The isomorphism holds if and only if either

Aiili p kA 0
0 Biwili—j By,

X1

[ Aixidiok 0 0 B
0 Bixili—j;) \Ani 0
1
0 Aixi Ii—j,j 0 0 Aixi Ii—l,l 0
= =C
Bivi 0 0 Lickk Bivi 0 0 ILicmm

for A, B € GL(i, k), if and only if k = [ and j = m, by the classification of involutions
of SL(n, k) (in [HWDO06)), or for A, B € GL(1, k),

—1
Aixi 0 Lij; 0 Aixi 0 Liogy 0
=c
0 Bixi 0 Likg 0 Bixi 0 Liimm
if and only if j = [ and &k = m, by similar reasoning. O

Lemma 4.3.11. For j =1 and k = m, as in the statement of lemma 4.53.10, i—j = j

ori—k = k if and only if the following isomorphism holds, suppressing the Inn

7 0 Ii—k,k 7 0 —Li—kk

notation:
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Proof. (=) If i —j = j or i — k = k then the isomorphism holds by the proof of
lemma 4.3.9.

(<) If the isomorphism holds then either there is an invertible A, B € GL(i, k)
such that AL,_;;A™' = cI,_;; and Bl; ,B™' = —cl;_; or A,B € GL(i, k) such
that AIi_kJCA_l = cl;_;; and B[i_mB—l = —cli_, as in the proof of lemma 4.3.10.
The first of these cases gives I, = (cl;_;;)* = (Al_; ;A~")* = I, which implies that
¢ = £1. This, in turn, implies that either ¢ — j = j or ¢ — k = k, as in the proof
of lemma 4.3.9. The second case forces k = j, because k,j are such that if they
are distinct then I;_jj and [;_;; are in distinct isomorphism classes of involutions
of SL(n, k), but if & = j, then this reduces to the first case and thus i — j = j or
i—k=k. O

Lemma 4.3.12. For k =1 and j = m, as in the statement of lemma 4.53.10, i—j = j

or i —k = k if and only if the following isomorphism holds, suppressing the Inn

I : Li-jj 0 ~ |7 Livkk 0
v I v 0 —I_;,

Proof. (=) If i —j = j or i — k = k then the isomorphism holds by the proof of

notation:

lemma 4.3.9 and by using the matrix:

0 I . (ok 1k>
S = <0k [k> 0 or I, Oy )
Iy Oy I; 0
similar to the use of S in the proof of lemma 4.3.9.

(<) If the isomorphism holds then either there is an invertible A, B € GL(i, k)
such that AI,_;;A™' = ¢,y and Bl B™' = —cl;,_j; or A,B € GL(i, k) such
that AIi,j,jA_l = cl;—j; and BIFk’kB_l = —cl;_j . The second of these cases
forces ¢ = 41, which in turn forces either i — j = 7 or ¢ — k = k. The first case
forces k = j, because k, j are such that if they are distinct then /;_j; and I;_; ; are in
distinct isomorphism classes of involutions of SL(n, k), but if & = j, then by the above

reasoning, we still have i — j = j or i — k = k, as in the proof of lemma 4.3.11. [
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0 I Ln, 0O
Lemma 4.3.13. | [,;, % | 1i, °
pl; 0O 0 L%,p

Aixi 0 0 Aixi .
Proof. and are the two forms of matrices that commute

0 Bz’xi Bixz’ O
0 Aii B
pBixiAi_Xli 0 ’

with I;; up to a multiple, but
Aii 0 0 L\ [Aixi O
0  Bixi pli 0 0  Bix
0 pAiXiBz‘;li
BiXiAi_Xli 0 7
both of which do not equal a scalar multiple of L, ,,. m

-1

-1

Bivi 0 pl; 0 Bixi 0

Theorem 4.3.14. For n divisible by 4, p,q representatives of elements in k*/k*2,

with p,q # 1 mod k*2, the isomorphism classes of commuting inner involutions of

SL(n, k) are as follows:

(Inn%’q, Inny) , (Inan, IIll’ly/) , (Innlnﬂ,’i, Il’ll’ly//) ) (InnI ,Innym) for

n n
2°2

Iﬂ_ii 02 n
27 b 2 ;
%7%,[%%[/”4,, or RS 1,2,...,1},
Oz In_g;

n
1,2,...,—},
1

[n—i—" Onfi )
Y" = L, or( B Dl ),ie{l,Z,... Q},

Oisctn—i)  Li—kk "2

Iﬂ_j’j Onyn ) n
Y”’:L;l’p,or< 2 202 ),]6 1,2,...,1}.
ForY", we have: n —i # 1, and j € {1,2,...,"7”}, ifn—i—j#j,i—k#k then
ke{l,2,...i} orelseifn—i—j=j,ori—k=k, thenk € {1,2,...,L}. Also,
for Y" we have: if § —j #j, 5 —k #k, then for k € {1,2, . ,%} we get distinct
isomorphism classes for distinct j, k such that as a pair (j, k) is distinct, independent

of order, orif § —j =17, or 5 —k =k, thenkE{l,Q,...,%}.

Proof. This follows directly from above. m
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Lemma 4.3.15. For n even, not divisible by 4, a*> — qb*> = q, i € {1,2,..., 272} the
pair P(a,b) as defined in corollary 4.1.9, with Y = LnTﬂg 1s not isomorphic to the
pair (Ln,g, In—2i2iLn.q).

Proof. Let P(a,b); be the first involution in the (ordered) pair P(a,b) and P(a,b)s
be the second involution in the pair P(a,b), (as defined in corollary 4.1.9) for Y =
Lnz . If the pairs are isomorphic for some 4, there would be an A € GL(n, k) such
that, for some i, Al, 9 2L, A™" = 7P(a,b)y and AL, ,A™" = a P(a,b);. This
implies that 7P (a,b)s = AL, _2i2;Ln,A™" = aAl,_9,2;A " P(a,b);. This implies that
QAL 92 A7 = TP(a,b)2P(a,b)1.

If —1 is not a square in k then the involution represented by:
2P(a,b)2P(a,b); is isomorphic to the involution defined by the matrix Ly, which
would contradict I,,_9; 2, and L, _; being in separate isomorphism classes. In this case
the pairs would not be isomorphic.

If —11is a square, then the involution represented by ¥ P(a, b)2P(a, b); is isomorphic

to the involution represented by gP (a,b), for Y =1 n—2 where the lower block has

—14,3)
a

. . b .. .
an even number of —1’s. Also, since —1 is a square T <_a _qb), is isomorphic to 71 1,

2 2 2 a .2
. z oy b % z oy \—1 . —bx“+2axy—qby ay 72ba:y+gx
1.e. (fqy 790) (—a —b) (fqy 7‘(”) 18 equal kS —q(ay2—2b1’y+%x2) —(=bz?+2azy—qby?) )’ and
. . 2
ay®—2bxy+ %xQ = 0 has a nonzero solution (pick an z nonzero) because 4z*(b*— )=
—42?%, a square if —1 is a square. But this gives an odd number of —1’s whereas I 92
n

has an even number of —1’s and neither have more then bJ —1’s. Therefore they

cannot be isomorphic, and thus the corresponding pairs cannot be isomorphic. O

This gives us the isomorphy classes of commuting involutions of SL(n, k) for n

even and not divisible by 4.

Theorem 4.3.16. For n even but not divisible by 4, p, q representatives of elements
kE*/k*2, p,q #1 mod k*?, a®> — qb® = p the isomorphism classes of commuting inner

involutions of SL(n, k) are as follows:
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(InnLn’q, Inn;n%,%Ln,q), (Innlnﬂ.’i, Innyu) fori e {1, 2,00, g}, and

(Inn(LQ,q 0 ),Inny) ; (InnL;hq,Inny/) , (InnI%’%,Innw,) for

0 L;Hz,q

@ b 0 I 0
v — b —a N |

0 Iﬁ n—2
0 Ino2 n2Lysy z 3

In;i 0 9
y' = = ,z’e{l,Q,...,V J}
0 Inyy 4

Y'=1L or ( Ini—jj Om—i)xi
= Lipp,
Oix(n—iy  Lizkp

n,p? 4

Y" =L,  or (IW U5x3 >,j6{1,2,...,2}

Where, for Y" we have: forn—i #1i, and j € {1,2, ce %}, ifn—i—j #j,i—k#k
then k € {1,2,...,i} orelseifn—i—j=j, ori—k ==k, thenk € {1,2,...,%}, and
for Y we have: if 5 —j # j, 5 —k # k, then for k € {1,2, ce %} we get distinct
isomorphism classes for distinct j, k such that as a pair (7, k) is distinct, independent

of order, orif § —j=j, or 5 —k =k, then k € {1,2,..., }}.

Proof. This follows from the preceeding lemma, corollary 4.1.9, lemma 4.3.4 and the

classification of involutions for n divisible by 4. O]

We can now complete the classification by consider when n is odd:

Theorem 4.3.17. For n odd, the isomorphism classes of commuting pairs of involu-
tions of SL(n, k) are: (Inny, ., Inny) for
v — < Li—jj Om-ixi ) e {172’ L E} ’
Oisctn—i)  Li—kp 2
form—i#i andje {1,2,..., %} ifn—i—j#j,i—k#kthenk e {1,2,... i}
orelseifn—i—j=7,ort—k=k, thenk € {1,2,...,%}

Proof. This follows from above. ]
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Chapter 5

Classification of Commuting Pairs
of Involutions with one Outer

Involution

In this chapter, we consider the classification of commuting pairs of involutions,
with one involution an outer involution, the other an inner involution. Throughout
this section, let 6 be the (outer) involution of SL(n, k) defined by 0 (A) = AT~! From
[HWDO06], we know that such a commuting pair has the form (Inny, €, Inny) for M
the matrix of a symmetric or skew-symmetric bilinear form over k", where M is

skew-symmetric only if n is even.
Lemma 5.0.18. For an inner automorphism, Inny, of SL(n, k): Inng 0 = 0 Inn 7.
Proof. Let X € SL(n, k), then
Inng 0/(X) = Tnng (X77) = A7XT 1A = 09 (A1 X71A) =0 (47 x714) )
=0 (ATXA™") = 0Innr (X).
O

Lemma 5.0.19. (Inny, 6, Innga) is a commuting pair of involutions if and only if

A2 =pl,, M =+M", and ATMA = oM.
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Proof. That the pair is comprised of involutions Inn; @ and Inny if and only if A% =
pl,, M = £M7 follows from [HWDO06]. Thus, it suffices to show that the above pair
of involutions is a commuting pair if and only if ATMA = oM. This follows because
(Innys 0,Inny) is a commuting pair only if Inny, Innyr-1 0 = Inny Inny, 0 if and only

lf IHHAMATM—l = Id O

There are two cases to consider: when M is symmetric and when M is skew-

symmetric, and they will be considered in that order.

5.1 Forms of Pairs when M is Symmetric

Lemma 5.1.1. If M = M7T, then (Inny, 0, Inna) is a commuting pair of involutions

if and only if (Inny 0,Inny) = (Innp; 0, Inna) A”? = pl,,, and ATMA = M.

Proof. The if statement follows from lemma 5.0.19, and by lemma 5.0.19 to show
the only if, it suffices to show that Inny = Inng, ATMA" = M. We know that
A € GL(n, k) from [HWDO06] and that for X € SO(n, k,3) (for B a non-degenerate
symmetric bilinear form over k" with matrix M, as in [Dom03]), X” M X = M. There-
fore, (Inny (X)) MInny (X) = (A7'XA) MATIXA = ATXT (AT'MAY) X A,
but since ATMA = oM then 1M = AT'MA™'. Thus, ATXT (AT7'MA™) XA
= ATXT (LM) XA =LATMA = L (aM) = M. Therefore, Inny keeps SO(n, k, 3)
invariant, which implies (by theorem 5.2 in [Dom03]) that A = ¢;A for ¢; € k and
A eSO(n,k,B) or A e O(n,k,B3), and Inny = Inn, ; = Inny; — ATMA = o/ M. By
the argument above, Inn ; keeps SO(n, k,3) invariant, but Inny = Inn; — Innj is an
involution of SL(n, k), thus Inn; keeps SL(n, k) invariant and for X € SO(n, k, ),
Inn; (X) € SO(n, k, 8) — Inn; € SO(n, k, B) since X is in SL(n, k). Therefore, Inn ;
keeps SO(n, k, 5) invariant, which implies by theorem 5.2 in [Dom03], A = ¢ A’ for
A" € SO(n,k,B) or A" € O(n, k, B). Therefore, Inny = Inn ; = Inn,, 4 = Inn . ]

Corollary 5.1.2. If M = M7, then (Inny 0, Inny) is a commuting pair of involu-
tions if and only if it equals (Innys 0, Inna) with A? = +1,,, ATMA' = M.
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Proof. By lemma 5.1.1, it suffices to show that A”? = £1,,. Since the above pair is a
pair of involutions, A”? = pI,, — A’ = pA’~!, and from lemma 5.1.1, A”TMA" = M —
I,=ATMA M = ATMT (pA M) = p(MA)" MA since M = M”. Therefore,
p(MA)T = ma«,andthus(p(ALAqT)T::(A4AﬁT — MA = L(MA)T. This
implies p(MA)" = MA = i(MA’)T and thus p? (MA")" = (MA)", and since
Inny is an automorphism and M is the matrix of a non-degenerate bilinear form,

pPP=1—p==+1 [

Therefore by the results above, every pair of commuting involutions of SL(n, k)
with one involution an inner involution and one involution an outer involution (cor-
responding to a symmetric bilinear form on £™) is isomorphic to: (Inny, €, Inn,), for

A? = £1,, M symmetric.

Theorem 5.1.3. The pair, (Inny 0, Inny), for A2 = I,,, M symmetric, is isomor-
phic to (InnD Q,Innfn_iﬁi), for D, a diagonal matriz with entries in k*/k**, i €
{1,2, o \_gj} Also, if —1 is not a square in k*, (Inny 0,Inny), for A? = —1I,
(this forces n to be even), M symmetric, is isomorphic to (Innc 07InnLn’71), for C' =
(Cﬁk)j%’k:l, Cir = ( ik bj’k>, C symmetric.
—bjr Gk

Proof. First, we prove that (Inny; 6, Inny), for A% = I,,, M symmetric, is isomorphic
to (Innp 6, Inng, ,,), for D, a diagonal matrix with entries in k*/k*?. Since A? = I,
we know there is an invertible matrix S such that S™'AS = cilp—ii, a1 € K —
the above pair is isomorphic to (InnM/ 0, Innln_i,i), with M’ symmetric since M7 =
(STMS)T = STMTS = STMS = M’'. Also, by lemma 5.1.1, we can take M’ such
that I,
and invertible B such that B"M'B = M’ and Inn;, ,, = Inn,, ,, = Inng.) But, if
I . .M'I, ;; = M' — for M1, M3 symmetric,

A — M1 —iyx(n—iy M2m_ixi
M2T M3 )

ixX(n—1)

M'I,_;; = M’ (if it does equal M’ then there is some constant a € k*
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then
IT M, = (Ml(”i? o MZ("‘“”) L
_M2i><(n—i) —M3ix;
_ <M1(n—i)><(n—i) _M2(n—i)xi> _
~M2 iy M3ia

and since the characteristic of k is not two this gives M2 = 0. Therefore, because
M is symmetric, M1 and M3 are symmetric. From [Sch85], we have that there is an
invertible S, and an invertible S5 such that SlTMlSl = D1 and 52TM352 = D2, for
D1, D2 diagonal matrices with elements in k*/k*?. This implies that (Inny; 0, Inn,)
is isomorphic to (InnD Q,Innfn_m) for D, diagonal with elements in k*/k*?, because

the blocks S7 and S5 commute with the blocks I,,_; and I;, respectively. This proves

S 0
the first statement, because the inner automorphism defined by the matrix ( ! 5 )
0 5

commutes with the inner automorphism defined by 1,,_; ;.

We now show the second statement, that if —1 is not a square (if it is then this
reduces to the first statement) in &%, (Innys 6, Inny), for A2 = —1I,,, M symmetric, is
isomorphic to (Innc 0, InnLnﬁl), for C' = (ijk)j%,k:p Cip = ( aj bj,k> , C symmet-

—bjk ajk
ric. From [HWDO06] we know that there is an invertible 7" such that T-'AT = L,, _; so

that (Innp 0, Inny) is isomorphic to (Innc H,InnLnﬁl), with C' symmetric. Further-
more, as in the proof of the first statement we can take C such that Lg,—chn,—l =C

. . . . . z Qj k bj,k
considering 2 x 2 blocks, which implies for C' = (Cjx) 71—y, Cin = . )
Cik Gk
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for j, k € {1, 2,..., %} This implies that for each fixed j, k € {1,2, cee %}, ajr = d;p
and c; = —bjk, so that C has the desired form. ]

Lemma 5.1.4. The commuting pair of involutions (for —1 not a square in k*)
(Innc 9,InnLn7_1), for C' = (Cj,k)j%,kzlf Cir = <aj’k bM), C symmetric, is iso-
—bjr ajp

morphic to the pair (Inncf 0, InnLnﬁl), for C" = ( .;k)]%k’ with C% ), = d;ly for j =k,
d; € k*/k*?, and C% . is the 2 X 2 zero matriz when j # k.

Proof. First, observe that a3, + b7, = 0 if and only if either bjr = 0 = a;;, or
—1= <Z§—i>2, a contradiciton to the fact that —1 is not a square in k*. This implies
that the matrix (), is either the 2 x 2 zero matrix or is invertible. Observe also that
because C'is symmetric, C;; = a; ;I and Cj; = Cy ;. Second, for n =4 if Cy 5 = 0,

we're done. Suppose (o # 0, and consider the matrix:

a2 51,2
S =
0 0

0
—51,2 1.9 0
1
0 0 O

- o O O
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Then S*'L, 1S =L, and

sTcs
T
Q12 b1,2 0 0 ay1 0 Q12 bl,2 a2 b1,2 0 0
o —b1,2 a1.2 0 0 0 ay1 —51,2 a12 —51,2 1.2 0 0
1o 0 10| |ae —bs as O 0 0 10
0 0 01 bia a2 0  agp 0 0 01
1.9 —5172 0 0 1,112 a1,1bl,2 a12 51,2
o b1,2 12 0 0 —al,lbl,Q a1,1012 —51,2 a2
o 0 1o | a2+, 0 a5 0
0 0 01 0 aig + big 0  ae
al,l(a%,Q + b%z) 0 a%,z + biz 0
. 0 al,l(a%,z + biz) 0 a%g + b%,2
N aig + big 0 as2 0
0 ai, + 07, 0 az 2

Also, for P; as above, we have, from the proof of lemma 4.1.7, that P/ = P;*,

P;'Ly 1Py = J,. Then,

al,l(biQ + a?z) aiz + b%,Q 0 0
PrSTCSP, = a%,z + biz a2 0 0
0 0 aLl(a%,Q + b?,z) aiz + biQ
0 0 aiy 407, ago

But this gives us identical symmetric 2 x 2 blocks on the diagonal, thus we know from

[Sch85] there is an invertible 2 x 2 matrix, Q, such that for

_ 0 - - - D 0
Q: Q —)QTPZSTCSP4Q:D: )
0 @ 0 D
for D a 2 x 2 diagonal matrix. Also, the form of Q) guarantees that it commutes with
Jy. Finally, 'undoing’ the permutation matrix P, we get P,DPI = D', a diagonal
matrix, and P4J4P4_1 = Ly _y. Thus, for n = 4 the isomorphism holds. Proceeding

by induction, assume the result holds for some n, we aim to show it holds for n + 2.
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Let (Innc 9, InnLHQ’_I) be a commuting pair of involutions of SL(n + 2, k). Partition
C into block form in the following way:
n+2 Ol U
C= (Cj,k)j,li 1= )

UT CL“F?L‘FQ
2 02

for Cy € M(n,k), U € M(n x 2,k), and the form of C forces C; = (Cj,k)j%,k:r From
our induction hypothesis, there is an invertible B such that BTC, B has 2 x 2 blocks
on the diagonal of the form d;I, with zeros elsewhere, and B~'L,, 1B = L, ;. This

implies that
di 1y 0

BT 0\ (C U B 0\ v’
0 L) \UT Cupur) \0 L 0 dn I ’

U/T CM n+t2
b

2 2

N3

BT 0
0 I
of B, B‘anH,,lB = Ly49-1. By the form of C' and thus of BTCB (because the

for U' = BTUB. For B = < ), by the induction hypothesis and the form

involution Inngro560 commutes with the involution Innp, and by the proof of

n+2,—1
n
2
lemma 5.2.3), U’ = (C’. n+2> for
)5 j=1
1 O
+2
1,”2
a . nt+2 b n+2
C! w2 = 72 72 Let S’ =
Js 2 b C// ’
—0,; nt2 a; nt+2 42
Vi M) %’nZ
0 I

where C’J’.’Lr2 = C]/- nio if it is nonzero, and I, if it is zero. Note that S’ is such that
’ 2 b 2
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S/_anJrQ’,lS/ = Ln+2771’ and S,TBTCBS, =

T
iy 0 d, I 0
1,242 142
U/
Sl
{ri n+2 O dﬂIQ
202
0 I Ut Cniz niz
2 02
nT nT
d,C nt2 0 C nt2 Ly nt2
17 2 17 2 2
= S’
0 dfchn_,.Q OZT»,H_Q Cﬂ n+2
2772 2772 27
C} ni2 Chr ni2 Cri2 ni2
T2 2°7 2 2 02
nT " nT
dlcl L+201L+2 0 01L+2 1. nt2
T o s o E>) ’ 2
- nT " nT
200 np2Un nga n n 2
0 dgC n+2 ' n nt2 Cn n+2 Cfg’n2
2°72 2772 2772
CLnTH fjﬁ 0%7%4& CZTLH On42—2 , n-2‘—2
2 2772
did, I 0 4,1
0 dndy Iy dn Iy
2 2 2
d’llz dlglg CL‘*'? n+2
2 2 02
= C’

by the construction of Cj” ngz- Therefore, (Inn¢ 6, Inny,, ., ) is isomorphic to the pair

(Inng 6, Inng,,, ).

Claim 5.1.5. (Inné 0,Inn;,

n+2,71)

15 1somorphic to (InnM 0, InanH), for M the ma-

(M0 . . :
trix , with M a symmetric matriz.
0 M

Proof. The pairs are Innp isomorphic for P =

541

21 (Bigi1 + Eg+1+1;,2i) = I'ny2-

This is true because it was shown in the proof of corollary 4.1.7 for positive integers



n that P,Ly P, " = L, , = J, (for n even). Also,
Innpnj2 Inng 0 Innp, , = :[IlIan?EQ Inng InnPnTS 0

= InnanC'PTﬂg 0,

since P, is a permutation matrix. Furthermore, P, ,C P 4o is equal to:

82
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3
P2 Z didé(E%—l,Qi—l + E2i,2z‘)Pg+2
i=1

n

3
/ T
+ Poio E di(E2i—1n+1 + Eointo + Ent12i-1 + En+2,2i)Pn+2
i=1
T
+ Pn+2a"T+2’"T+2(En+l,n+l + En+2,n+2)Pn+2

T
+ Pn+2b”T4'27"T4'2(En+l,n+2 - En+2,n+l)Pn+2

F+1 2
! T
- g (Ez‘,Qz‘—l + E%—&-H—z‘,%) E didi(EQi—LQi—l + E2i,2i)Pn+2
i=1 i=1
5+ ;

5
+ Z(Ei,zpl + Eg+1+i,2i) Z di(Esi—1n+1 + Eointo + Ent19io1 + En+2,2i)Pg+2

i1 i=1
F+1
+ Y (Bigio1+ Enyi4i0:) (E +E )P
1,21—1 5 +144,2i a”TJr{% n+1,n+1 n+2,n+2)4 na2
i=1
241
T
+ ) (Bigit + Egpayig)bosz nse (Epgings = Envane) Pli
i=1
3 5+l
!
= E did;(E; 2i-1 + E%+1+i,2i) E (Egi1,i + Ezi,g+1+i)
i—1 i=1
3 5+l
!
+ g di(E;ny1 + Eniitinse + Engi10i1+ Eni29) g (B, + E2i,g+1+i)
i=1 i=1
241
+ GnTH,nTH(EgH,nH + Eptont2) E (Egi1i + E2i7%+1+i)
i=1
241
+ bnTH,nTH(EgH,nH — Enioni1) E (Eai—1,i + E2z',g+1+z‘)
i=1

5
= Z didi(Eii + Eni1qini144)
i—1

n
2
!
+ E di(Eiz g1+ Enitinte + Enpri + Engonyig)
=1

+ Gni2 niz (E%Jrl,%ﬂ + En+2,n+2) + bL;Z,Lf (Eg+1,n+2 - En+2,%+1)

83



84

M

Qni2 ni2 E'nyg nyy, because, since €' is symmetric, bniz ni2 =0 (as shown above), and
2 2 ’ 2 2

M O n n
and this is equal to ( ) for M =3 2 didiEyi + Y7 di(Einyy + Engyy) +

n+1 = 2i — 1 implies that ¢ = § + 1, as well as n + 2 = 2i implies that i = 5 + 1.

Also, since n is even, n + 1 # 2¢ for integers . m

By results of [Sch85], there exists an invertible @ such that QT M@ is diagonal,

therefore, because

o (@0 )

is diagonal and

-1

Q 0 0 Tus Q 0\ 0 Tus
0 Q —Tnez 0 0 Q —IHTHO’

2

then (Inné 0, Inny, is isomorphic to (Inn p 6, Inn;, +2), for D diagonal. But since

n+2,—1)

P, .5 is a permutation matrix, (InnD 0,Inn;, +2), for D diagonal is isomorphic to
(II]I]C/ 0, InnLn+27_1), for C" diagonal, and since C' commutes with L, o 1, it has the

desired form. N

5.2 Forms of Pairs when M is Skew-Symmetric

Next, consider the case when M is skew-symmetric (and thus n is even, n = 2m.)

Let
( 0 In)
J2m - ?
—I- 0
2

Lemma 5.2.1. If M = —M?7 then the pair (Inny; 0, Inny) is isomorphic to the pair
(Innz,,,, 0, Innp) for AT Jo A" = Jo,,

Proof. From [Sch85], we have that M is congruent to Jy, — 3Q € GL(n, k) such
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that QT MQ = J,,,, then

(Innp 6, Inna) ~ (Inng Innpy @ Inng-1, Inng Inny Inng-1)
= (IHDQ IHDM IHHQT 9, II]I’IQ—lAQ)

= (Inny,,, 6,Inn ) .

Also, (Inny,, 6,Innj) is a commuting pair of involutions if and only if A? = pI, and
ATJQmA = aJam,. We now show (Inny, 6,Inn;) = (Inny,, 0, Inny/). for A’ such that

AT Jou A" = Jop. Let X € Sp(2m, k). Then,
(Inn 4 (X)) Jop Inn 4 (X) = (A1XA)T Jy,, A-1X A

= ATXT(AT-1 ], A1) X A
= ATXT (1J2m> XA
(e
1 - o
= —AT (X" ], X) A

(07

1 - .
= —AT ], A

Therefore, Inn ; keeps Sp(2m, k) invariant, and thus by theorem 5.5 in [Jac05], A =
cB for B € Sp(2m, k), ¢; € k. Furthermore, Inn; = Inn,p = Inng, and Inng
keeps Sp(2m, k) invariant because Inng is also an involution of SL(n, k), thus for
X € Sp(2m, k), Inng (X) is in Sp(2m, k) and in SL(n, k) — Inng (X) is in Sp(2m, k).
Because Innp keeps Sp(2n, k) invariant, B = cyA’ for ¢y € k, A’ € Sp(2m, k), by

theorem 5.5 in [Jac05]. Therefore, Innj; = Inng = Inn ¢y A’ = Inny. O

Corollary 5.2.2. If M = —M7" then the commuting pair of involutions, n = 2m,
(Inny 0, Inny), is isomorphic to the pair (Innj,, 0, Inna) for AT Jy, A" = Jop, and

A? = +£1,.

Proof. The first statement is a restatement of lemma 5.2.1, so it remains to show that

A” = +1,. Suppose A”? = pl,, then AT .J,,, A’ = .J,,, which implies that

Iy = AT Dy ATyt = —ATJE AT = —p (Jom AT (JomA') ™
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7 T T
giving —p ((JQmA’) ) = (JonA")" and thus —p (Jo,A") = (J2nA")" . Therefore,
—p (LomA)" = (JamA) = =L (JanA)" = (S A)" = P (JomA) = PP =1 =
p==+1. O

Therefore by the results above, every pair of commuting involutions of SL(n, k)
with one involution an inner involution and one involution an outer involution (corre-
sponding to a skew-symmetric bilinear form on k™) is isomorphic to: (Inny,,, 6, Inny),

for A? = +1,,.

Theorem 5.2.3. The pair, (Inny, 0,Inny), for A? = I,,, M skew-symmetric (hence

n is even), is isomorphic to (Inan_M Q,Innfn_”), for

Jn—i 0 n—1i) X1
Jnfi,i = ( ( ) ) )
Oix (n—i) Ji

1€ {2,4, . ,%} Also, if —1 is not a square in k*, (Inny, 0,Inny), for A = -1, ,

M skew-symmetric, is isomorphic to (Innc H,Inan_l), for C' skew-symmetric, C' =

n a; b
(Cja) f=r> Cik = ( T M)-

—bjr ajk

Proof. First, we prove that (Inny 6,Inny), for A? = I,, the matrix, M, skew-
symmetric, is isomorphic to (Inny, ,,6,Inn;, ,.). Since A? = I, we know there

is an invertible matrix S such that S~'AS = ciln—ii, c1 € k¥ — the above pair is
isomorphic to (Innyy 0, Inny, ), with M’ skew-symmetric since M7 = (STMS)T =
STMTS = —STMS = —M’. Also, by the proof of lemma 5.2.1, we can take M’ such

that I7 , .M'I,_;; = M’ (if equality does not hold then, by results in [Jac05] and as

n—i,i
in the proof of lemma 5.2.1, there is some constant « € k* and invertible B such that

BTM'B = M’ and Inn; = Inng.) So, taking Ig_i,iM’]n_i,i = M’ this

n—1i,%

= Inn,;

n—i,t

gives for M1, M3 skew-symmetric,

A= M1g—iyx(n—-iy M2m_iyxi
— M2 M3y )’

ix(n—1i)
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M =1 M, ;;
B (Ml(n—i)x(n—i) M2(n—i)><z’> I
M2[ ., M3 ’

B (Ml(n—i)x(n—i) _MQ(n—i)Xi>
M2T, M3

(n—i)
and since the characteristic of k is not two, this gives M2 = 0. Therefore, because M’
skew-symmetric, M1 and M3 are skew-symmetric. From [Sch85], we have that there
is an invertible S;, and an invertible Sy such that ST M1S; = J,,_; and ST M3S, = J;.

This implies that (Inny, 6,Inny) is isomorphic to (Inny, ,, 6,Inn;, ), because

n—iu,t

-1

( St Opn—iyx > I .. ( St Opm—iyxi ) 7.
Oisx(n—iy 52 "\ Oixneiy  S2 ’

This proves the first statement. We now show the second statement, that if —1 is not
a square (if it is then this reduces to the first statement) in £*, (Inny, 6,Inny,), for
A? = —I,, M skew-symmetric, is isomorphic to (Innc 0, InnLn’_l), for C' = (C’M)Ek:l,

a; b;
Cix = ( Zk M), C' skew-symmetric. From [HWDO06] we know that there is
- ]7k a/]7k

an invertible 7' such that T-'AT = L, ; so that (Inny;6,Inn,) is isomorphic to
(Innc 0, InnLnﬁl), with C skew-symmetric. Furthermore, as in the proof of the first
statement we can take C' such that L} ;CL, 1 = C considering 2 x 2 blocks, — for

n a; b
C = (Cjr)irs Ci = ( - J7k>>

Cik ik

—cjr —d; 0 1 d. s
Cir = (LZ;_IC'LR’_l)jk — ( 3,k 3.k ) < ) _ < 3.k 3.k ) 7
’ ajr  bik -1 0 —biy

for 5,k € {1,2, ceey g} This implies that for each fixed j, k € {1,2, . .,%}, ajr =
djr and c¢;p = —b;k, so that C;j has the desired form and C' = (Cjk)]%k is skew-
symmetric. O

Lemma 5.2.4. The commuting pair of involutions (for —1 not a square in k*)

% CLj,k bjk . .
(Innc Q,InnLnﬁl), for C = (C’jvk)m:l, Cir = ; , C skew-symmetric, is
Yk ik
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isomorphic to the pair (Inne 6,Inny,, ), for C' = (C}’k)j%kzl, Clp =d;i (%) for

d; € k*/k** when j =k, and the 2 X 2 zero matriz when j # k.

Proof. As above, observe that a3, + b7, = 0 if and only if either b;, = 0 = a;; or
2
-1 = <Zj—i> , a contradiciton to the fact that —1 is not a square in £*. This implies
75

that the matrix () is either the 2 x 2 zero matrix or is invertible. Observe also that

and Cj, = —C} ;. Second, for n = 4 if C, 5 = 0, we're done. Suppose C 2 # 0, and

because C' is skew-symmetric,

consider the matrix:

b1,2 —ai2 0 0
a b 00
g — 1,2 1,2
0 0 10
0 0 0 1
Then S™'L,, 1S = L, and
s'cs
T
bio —aip2 0 0 0 bii a2 big bio —aip2 0 0
| @12 b1,2 0 0 —51,1 0 —51,2 ai 2 1.2 b1,2 00
0 0 10 —a12 5172 0 bg,g 0 0 10
0 0 0 1 _bLQ —ai2 —62,2 0 0 0 0 1
b1,2 1.2 0 0 bl,1a1,2 b1,1b1,2 1.2 b1,2
|2 b2 00 —b1,1b1 2 biiaia  —big aio
0 0 10 0 a%72+b%72 0 ba 2
O 0 0 1 _G%Q - b%g 0 _b2’2 O
0 bl,l(a%g + b%g) 0 a%,Q + b%,Q
. —6171((1%,2—1—1)%’2) 0 _a%,Q_b%,Z 0
O (],?72 + b%Q 0 b2,2
2

—aig — bi2 0 —ba2 0
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Also, for Pj, as above, it was shown in lemma 4.1.7 that Pl = P!, Py'Ly Py =

Ji. Also, PTSTCSP, =

0 0 bl,l(a%,z + b%,z) a%,z + b%,2
0 O a’%,Q + b%,Q b272
_bl,l(a%,z - b%,z) _a%,z - biz 0 0
0 0

_G%Q - b%g —bao
But this gives us symmetric 2 x 2 blocks on the off diagonal that are negatives of each

other, thus we know from [Sch85] there is an invertible 2 x 2 matrix, Q, such that for

_ 0 _ - = 0 D
Q= < ,QTP[STCSPQ =D = :
0 @ -D 0
for D a 2 x 2 diagonal matrix. Also, the form of () guarantees that it commutes

with J,. Finally, 'undoing’ the permutation matrix Pj, we get P,DPI = D’ a block

diagonal matrix of the form:

0 d 0 0
—d; 0 0 0
0 0 0 d
0O 0 —dy O

= 4 the isomorphism holds. Proceeding by

and P4J4P4_1 = Ly_y. Thus, for n =
induction, assume the result holds for some n, we aim to show it holds for n + 2. Let

(Innc 0, IHHLHH,,l) be a commuting pair of involutions of SL(n + 2, k). Partition C

into block form in the following way:

C (C )n;Z Cl U
= \Vik) k=1 )
_UT Cn+2 n+2
2 7 2

for Cy € M(n, k), U € M(n x 2,k). Note that the form of C' forces Cy = (Cj1) 71—,

for (CJ'JC)j%,k:l as described in the statement of this lemma. From our induction hy-
pothesis, there is an invertible B such that BTC\B =
di (%) 0

0 d%(fltl))
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_ B 0
and B~'L,, 1B = L, ;. This implies that B = < ) is invertible and

0 I
BTCB
(BT 0\ [ & U B 0
0 L) \~U" Cuznp | \0 I
_[BT™CiB U
o _U/T CLHLH
2 2
di (% 5) 0
U/
0 d%(—l(l))
U/T On+2 n+2

2 072

Also, B~' L9 1B = Ly, _1. By the form of C' and thus of BYCB, it must be that
+2; :
U= ()’ for
»T2 7=1

b, +2 —a,; nt2
C/ a2z = J’nT J’HQ
2 Q; nt2 b, n2
]7 2 b 2
Let
"
C" s 0
v 2
S =
" ’
n nt+2
202
0 I

where CJ’/ niz = Cj’, nio if it is nonzero, and I, if it is zero. Note that S is such that
» T2 )72
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1—1 I __
S LnJrQ’,lS = Ln+27,1, and
STBTCBS’
T
" 01
1,242 0 di( %) 0
/
= U s/
/ 1
g/ nt2 0 dz (—01 0)
20 2 2
—U/T Crg2 nt2
0 12 nT7n2
nr 1 nr
dlCl n+2 <_ 0) O CLnTHCl n+2
- nT 1 nT S/
0 dn Cn n+2(—10) CELHCE"—”
2 2772 27 2
Cf@ Cn n+2 OM nt2
E) 2 2 7 2
nT 1 " nT
dlcl n+2 (_0 10 ) O n+2 0 C LJFQOLnT%
) ’ 2
0 dy CZTnJrz (—01 (1)) n n2 CZTL“'Q Cn ni2
2 2072 2772 27 2
T "
Cl n+2 Cl n+2 _Cﬂ LHCQ n+2 CL“FQ nt2
2772 2°72 2 02
! 01 U 01
dldl(flo) 0 d1<710)
- U 01 U 01
0 d%dg(—lo) di(—lo)
U 01 U 01
1 (%o) dg(flo) C”‘;Q nd2

by the construction of C’J”nT+2 Therefore, (Inng 6, Inny, ., )

(Inng 6, Inng,,, ).

is isomorphic to the pair

Claim 5.2.5. (Inné 0, IHHLnH,,l) 18 isomorphic to (InnM 0, InanH), for M the skew-

0 M
symmetric matric , and M a symmetric matrizx.
-M 0
Proof. The pairs are Innp isomorphic for P = ZQH ( i2io1 + By 21) = P,o.

Then P, = P}y, and PyyoLnio 1Py ly = PoyoLnio 1 PLy = L, 1 = Jyyo, as
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shown in the proof of lemma 4.1.7. Also,
Inn Pl Inng 6 Innp, , = Inn Pl Inngs Inn P 0
= IHHPH+QCPE+2 0,
since P, is a permutation matrix. Furthermore,

Pn+2(§P7T+2
%
=P, Z did;(Eo;—1.2; — E2z',2z‘—1)Pg+2

=1

n

3
U T
+ P2 E di(Eai—int2 — Eaipt1 + Eng12i — Engo2i-1)Pris

i=1
+b Poio(E —E YPT
nTJr?ﬁTH n+2\Ln+1,n+2 n+2,n+1)4 42
5+l 3
U T
= E (Eigim1 + Eg+1+i,2z’) E did;(Egi—1,2i — Esi2i-1) P, 5
i=1 i=1
5+1 5
U T
+ E (Ei2i—1 + Eg+1+¢,2i) g di(Ei—1nt2 — Eaipr1 + Eny12i — Engo2i-1) Py
i=1 i=1
241
+b (Bigi1+ Eni459)(E - E )Pt
"7“7%“ 1,2i—1 5+144,2i n+1,n+2 n+2n+1)4ny2
i=1
5 5+1
!
= E didi(Ei2i — Eny1yioi1) E (B + Fainy114)
i=1 i=1
5 5+l
!
+ E di(Eipt2 — Eg+1+z’,n+1 + Eg+1,2i — Epy00i-1) E (Egi_1 + Ezz',g+1+i)
i=1 i=1
F+1
+ bnTJrQ,nTH(EgH,nH — Eniont1) E (Eai1i + E2i,g+1+z)
i=1

n
2
!/
= did{(Eizs14i — Eni1ii)
=1

n
2
U
+ E &i(Bint2 = By iivizn + Bz — Enyag)
=1

+ bL-QF{L-;? (Eg+1,n+2 - En+2,g+1)-
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—-M 0
bnTH’nTHE%J,_]_’%_i_]_, and note that M is symmetric. O]

0 M n n
This is equal to ( ) for M = 222:1 dzd;EZﬂ + 212:1 d; (Ei,%Jrl -+ E%+1,i) +

By results of [Sch85], there exists an invertible @) such that QT M@ is diagonal,

therefore, because

o0 (e )

has diagonal blocks and

-1
Q 0 0 Iup Q 0\ 0 Iup
0 Q —Tuiz 0O 0 Q —Jazz 0 ]

then (Inné H,InnLn%_l) is isomorphic to (IDD< o lg) Q,InanH), for D diagonal.

But by the form of P, s, the pair is isomorphic to (Innc/ 6, InnLn+27_1), for

di (%) 0
' = ,d; € k*/k*Z,
0 d%(—l(l))

and since C' commutes with L, o _1, it has the desired form. O

5.3 Classification of the Remaining Four Types

The above results imply that there are 4 possible types of commuting pairs (with
one involution an inner involution and one involution an outer involution) of involu-

tions of SL(n, k):

Corollary 5.3.1. Every commuting pair of involutions, one inner and one outer, of
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SL(n, k) is isomorphic to one of the following pairs:

Inn /4, 0,Inny, ,,
n—i,i ) (Inn, s, _, 0,Inn;g,_,,
(L)) e e
dn
Inn , 4,1, 0,Inng, _, Inn /4,7, 0,Inng, _,
3) ( | ) @ ( - )

and note that pairs of type (3) and (4) only need to be considered when —1 ¢ k**, and

dg[z d%Jz

pairs of type (2) can occur only when n-i and i are even.
Proof. This is a direct result of the work above. O

Note that pairs of type (2), above, are distinct for distinct i € {1,2, e ng}
with 2,n — ¢ even.

We first consider pairs of type (1) and their distinct isomorphism classes. Note
that these pairs are equal to pairs of the form ( Inn(z\g ) 0,Inng,_,, >, for M a
n — 1 X n — 1 representative of a semi-congruence class of symmetric matrices and N
an i X i representative of a semi-congruence class of symmetric matrices. If n —i # 14

then different semi-congruence classes (for M and N) give different isomorphism

classes, but different values of o might not give isomorphic pairs for fixed M and N.

Lemma 5.3.2. Let M and N, n — i # i, be fivred matriz representatives of semi-

congruence classes of symmetric bilinear forms on k™" and k', respectively. Then

( Inn(M ) 0,Inng,_,, ) ~ ( Inn(M o) 0,Inng,_,, )

if and only if either a; = oy mod k*? or there exists a f € k* such that M,_; is

congruent to SM,,_; and aq M; is congruent to BagM;.

Proof. This follows directly from the definition of isomorphic pairs and the fact that
n—1i%#i. m

Furthermore, complete results on the existence of such a g have been determined
for algebraically closed fields, R, [F,, and the p-adic numbers and are given in the
tables below. Additionally, results for n — ¢ = 7 exist and are also given in tables

below. Before giving the tables, we need some results given in [Jon50]:
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Definition 5.3.3. The Hilbert symbol (o, 8), is 1 depending on whether or not
the equation ax? + By? = 1 has a solution of the p-adic numbers, it is 1 if it has a

solution over the p-adics and is —1 otherwise.

Definition 5.3.4. The Hasse symbol,c,(f), of the matrix, M, of a bilinear form, f, is
defined in terms of the Hilbert Symbol:

n—1

&p(f) = (=1, =Dy), | | (Di; =Dit1),,

1

-.
Il

where D; is the ¢ x ¢ determinant in the upper left hand corner of the matrix, M, of

the bilinear form, f.
The following two lemmas come from [Jon50]:

Lemma 5.3.5. For a bilinear form, f, we have:

o c,(wf) = (w, (=1)"TV72) ¢, (f) if n is odd and

p
e ¢p(wf) = (w, (—1)”/25)pcp(f) if n is even
where 0 is the determinant of the matriz, M, of the bilinear form, f.

Lemma 5.3.6. Two symmetric matrices My and My with entries in Q, are congruent
if and only if
det(M;) = o® det(My) and c,(M;) = c,(Ms)

First, we consider when n — i # i. For algebraically closed fields there is only one
element in £*/k*? and thus we only need to consider distinct pairs of semi-congruence
class matrix representatives of size n — ¢ and 7 on the diagonal. For k£ = R no such
exists unless n —i —j=jori—k =~kfor M =1,,_;;, N = I,_y, which follows
from Sylvester’s law regarding the signature of a symmetric real bilinear form found

in [Art91]. We know such a 8 exists for n —i — j = j or i — k = k since:

T
0 In In 0 0 In\ [ ~In O
I, 0 0 ~I ) \ In 0 0 In

For finite fields (of characteristic not 2,) we first need an important lemma from

[Sch85]:
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Table 5.1: Distinct isomorphism classes given by the multiple o € F;/ IE';? for fixed
semi-congruence class representatives M and N

1
odd even
I, | 1|y,
n—14|odd | I,_; 1,sp | 1 1
even | I,,_; 1 1 1
M, _;s, 1 1 1

Lemma 5.3.7. Every element of IF,, can be written as the sum of 2 squares in F,,.

Note that this implies that there exists a symmetric matrix A = (fb 2) such that

for s, a representative of F/F+* = {1,s,} that is not a square, ATA = (s” 0 >, for

0 sp
a,b € F,, and this implies that for even m, I,, is congruent to s,/,, over GL(FF,, m).
This also implies that for M, ,, = (I”Hl 0 ) and m odd, M,, s, is semi-congruent to

Sp

I,,,. From this we can determine isomorphism classes:

Lemma 5.3.8. The distinct isomorphism classes of commuting pairs of involutions

of SL(F,,n) of the above type (1), are given by ( Inn(M 0 )07Inn1n_“ > for i €
0 aN ’

{1, 2,000, L%J } For each fixed pair, M and N, of semi-congruence class represen-

tatives of symmetric bilinear forms of k"%, k', respectively, the distinct isomorphism

classes for a € IF;/IF;’;Q are given i table I.
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Proof. This follows from lemmas 5.3.6 and 5.3.7, and the following (for n — ¢ even):

I i o 0
M, 0 1 0
( 0 spN> - 0 Sp
0 spN
I, i o 0
T
(S5 0 1 0 S 0
N (0 Ii+2) 0 5 (0 JHQ)
0 spN
STs 0
1 0
B 0 Sp
0 spN

for § = 2;1_2(CLE21‘_1’21'_1 + CLEQLQQ‘ + bEQi_LQi — bEQi’QrL'_l), where CL,b € k with
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a’ +b* = s, as in lemma 5.3.7. Furthermore,

sTs

3
|
-
|
™)

[

= (aB9i—12i—1 + aFEy; 0 + bEs; 1 9, — bEQi,2i71>TX

e
Il
—_

3
|
.
|
N

]+

(aBgi—19i—1 + aFs 9 + bEoy 19, — bEs; 0;-1)

=
Il
—

3

L
|

N

»

= (aB9i—19i—1 + aFEy;0; — bEo9i—1 9; + bEg;2;-1) X

i
I

3
|
-
|
N

»

(aB9i—12i—1 + aFEy; 0 +bEs 19, — bEg;2i1)

e
Il
—_

3
|
.
|
™)

N

o (a2E2i—1,2i—1 + abEg;_1 2; + CLQE%,% — abEs; 9i—1)+

B
Il
—

3

L
|

N

M

(—abEs;i_12 + b2E2i—1,2i—1 + abFEs; 9,1 + b2E2i,2i)

k=1
n—i—2
2
= ((a2 + bz)(E2ifl,2ifl + E9i9i))
k=1
:SpjnfifZ

so that the above matrix is equal to:

Spln—i—2 0 I_i o 0
1 0 é 0

0 Sp - 0 1
0 spN 0 N

Inica 0O
. 1 0

~ s, ; 2
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via the permutatoin matrix, P, that commutes with 1,,_; ;,

n—i—2 i

P = Z By + Z Ern itkm—ivk +Epn_icin—i+ Ep_in_i1.
k=1 k=1

The proof follows, then, from the fact that Inn,4 = Inny for any constant o and the

fact that
T —
M17178PM1»17$M1717SP - Ml’lzsp

for any size M (in this case M € GL(n — i, k)). O

Lemma 5.3.9. For the p-adic numbers, we have the following isomorphism classes
giwen in table format for commuting pairs of the form: ( Inn(z\g o) 0,Inng, ,, ) for
1€ {1,2, ceey ng} and for each fixed pair of semi-congruence class representatives
M and N, the distinct isomorphism classes for a € Q;/Q;Q, are given in the tables
below, first for p # 2, a € Q;/Q;Q = {1,p, sp,pSp}, then for p = 2, a € Q3/Q3? =
{1,-1,2,-2,3,-3,6,—6}. Furthermore, for n —i # i distinct semi-congruence class
elements along with distinct o’s listed in the tables below give distinct isomorphism
classes, and for n — i =i distinct semi-congruence class elements along with distinct

a’s listed in the tables below give distinct isomorphism classes except for the fact that

(Inn M 0 G,Innj_..>z(lnn N o0, Inn; )
( ) n—i,i ( M) n—i,i

0 aN 0 «
Lastly, for i =1 only the column for i =41+ 1 applies, and for i = 2 only the column
t =4l + 2 applies except for the entry My _g.

Proof. This follows from a direct computation of the Hilbert symbol and from lemma

5.3.5. O

Notation 5.3.10. Let M, ,, be the appropriate size matrix representative of a semi-
congruence class of symmetric bilinear form (either n — i x n — i or i X i) of the

form:

for j = n — i or 7, depending on the location in the tables below.



Table 5.2: Isomorphism classes given by a € Q;/ Q;Q, p # 2, part [

1 =4l
[i ‘ Mp,sp,psp ‘ Ml,p,p ‘ Ml,l,p ‘ Ml,l,sp ‘ Ml,l,psp
—1¢Qp?
4k L, ; 1 1 X 1 1 1
Mo e | 1 1 X 1 1 1
M1, 1 1 X 1.p 1 1
My, |1 1 X 1 1p 1
M1, | 1 1 X 1 1 1,5,
Ak +1 | L, 1 1 X 1,p 1,p 1,5,
ik +2]| 1, 1 1 X 1 Lp 1
M s, | 1 1 X 1 1 1
My, |1 1 X 1 1 L,s,
Ml,LSp 1 1 X 1 1 1
Mlvlvpsp 1 1 X ]_,p 1 1
4k + 3 | L, 1 1 X 1,p 1.p 1,8,
My, ps, | 1 1 X 1,p 1,p 1,5,
-1 € Qy
4k I, ; 1 X 1 1 1 1
My,, |1 X 1 1 1 1
Ml,LP 1 X 1 ]_,Sp 1 1
MLLSp 1 X 1 1 1,]9 1
M1, | 1 X 1 1 1 1p
odd I, 1 X 1 1,s, 1,p 1,p
Mys,ps, | 1 X 1 1,5, 1.p 1.p
ik +2] 1, 1 X 1 1 1 1
M, e | 1 X 1 1 1 1
My, |1 X 1 1,s, 1 1
M1>175P 1 X 1 1 1,]9 1
Ml,l,psp 1 X 1 1 1 17p

100
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Table 5.3: Isomorphism classes given by a € Q/ Q;Q, p # 2, part II

1 =414 2
1; ‘ M17p7p5p ‘ Ml,p,sp,pSP ‘ My ‘ ML]'?SP ‘ Ml»lmsP
—-1¢ Q7

4k I, 1 1 X 1 1 1
My, ps, | 1 1 X 1 1 1

M1, 1 1 X 1 1 1,p

My, 1,p 1 X 1 1 1

My 1 ps, 1 1 X 1,s, 1 1

Ak +1 | L, 1,p 1 X 1,s), 1 1,p
4k +2 | I,,_; 1.p 1 X 1 1 1
My p ps, 1 1 X 1 1 1

M1, 1 1 X 1,s, 1 1

Ml,LSp 1 1 X 1 1 1

Mlvlvpsp 1 1 X 1 1 ]_,p

4k + 3 | L, 1,p 1 X 1,s, 1 1.p
posppsy | LoD 1 X L,s, 1 1.p

-1 € Qy

4k L,_; 1 X 1 1 1 1
M pp 1 X 1 1 1 1

Ml,LP 1 X 1 1,Sp 1 1

MLLSp 1 X 1 1 1,]? 1

My 1 ps, 1 X 1 1 1 1.p

odd I, 1 X 1 1,s, 1,p 1,p
Mys,ps, | 1 X 1 L,s, 1,p 1,p

4k +2 | I,,_; 1 X 1 1 1 1
Mys,ps, | 1 X 1 1 1 1

M1, 1 X 1 1,s, 1 1

M1>175P 1 X 1 1 1,p 1

Ml,l,psp 1 X 1 1 1 ]_,p




Table 5.4: Isomorphism classes given by a € Q;/ Q;Q, p # 2, part 111

=41+ 1 =41+ 3
[i ‘ Ml,p,sp,psp [’L ‘ Ml,p,sp,psp
—1¢ Q7
4k L, ; 1 X 1 1
Mp s, ps, 1 X 1 1
M1 Lp X Lp Lp
Ml,l,sp 1ap X 17p 17p
My 1 ps, 1,5, X 1,s, 1,s,
4k +1 | I,,_; 1,p,5,,p5p X 1,p,sp,psp | 1,p,5p,05p
Ak +2 | I, 1,p X 1,p 1,p
My p ps, 1 X 1 1
M1, 1,s, X 1,s, 1,s,
Ml,LSp 1 X 1 1
My 1 ps, Lp X Lp Lp
4k + 3 | L, 1.p,sp,0sp X 1,p,5,08, | 1,0,5p,05p
My s, ps, | 1,0,55,05p X 1,p,sp,psp | 1,p,5p,08p
-1eQ?
4k L,_; 1 1 1 1
M pp 1 1 1 1
M 1,s, 1,5, 1,5, 1,5,
M, Lp Lp Lp Lp
M 1 ps, Lp Lp Lp Lp
odd I, 1,555 | 1,0,5p,05p | 1,0,5p.05p | 1,0,5p,05p
My s, ps, | 1,D,Sp:0Sp | 1,0,5p,08p | 1,0,8p,08p | 1,0,8p,08p
Ak +2 | I, 1 1 1 1
My.s, ps, 1 1 1 1
M1, 1,s, 1,s, 1,s, 1,5,
M, Lp Lp Lp Lp
My 1 ps, Lp Lp D Lp
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Table 5.5: Isomorphism classes given by a € Q3/Q3%2, part Ia

i = 4l
I | Masg | Myy,—1 | Migo | My, —2
4k I, 1] 1 1 1 1
Myse | 1] 1 1 1 1
My | 1] 1 1-1 1 1
My, | 1] 1 1 1,3 1
Mg 5| 1] 1 1 1 1-1
Miis | 1] 1 | 1 1
M1’17_3 1 1 1 1 1
Mg | 1] 1 1 1 1
Mg _g| 1] 1 1 1 1
Ak +1 | 1, 1] 1 1-1 1,3 1-1
Ak +2 | 1, 1] 1 1-1 1 1
Mys g | 1| 1 1 1 1
My | 1] 1 1 1 1
My, | 1] 1 1 1 1-1
Mg 5| 1] 1 | 13 1
Myis | 1] 1 1 1 1
My _s| 1] 1 1 1 1
Mije | 1] 1 1 1 1
Mg | 1] 1 1 1 1
Ak +3 | 1, 1] 1 1-1 1.3 1-1
Myse | 1] 1 1-1 13 1-1
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Table 5.6: Isomorphism classes given by a € Q3/Q%2, part Ib

i = 4l
Mz | Myy,—3 | Migg | Mig,—6
4k I, 1 1 1 1
Mg 1 1 1 1
Myy_1| 1 1 1 1
M1, 1 1 1 1
My 5| 1 1 1 1
Myt | 1-1 1 1 1
M1’17_3 1 1,3 1 1
M1 1 1 1-1 1
Mig_g| 1 1 1 13
Ak +1 | 1, 1-1 1.2 1-1 1,2
Ak +2 | 1, 1 1 1 1
Mys_g| 1 1 1 1
My | 1 1 1 1
Mi 15 1 1 1 1
Mg 5| 1 1 1 1
Miis 1 1.2 1 1
My _3| 1-1 1 1 1
M1 1 1 1 13
M| 1 1 1-1 1
Ak +3 | 1, 11 1.2 1-1 1.2
Mse | 1-1 1,2 1-1 1,2
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Table 5.7: Isomorphism classes given by a € Q3/Q32, part Ila

1 =41+ 2
Ii | Masg | Myy 1| Myio | Myg o
4k I, 1 1 1 1 1
Myss | 1 1 1 1 1
My, | 1-1] 1 1 1 1
My, | 1 1 1 1 13
My 5| 1 1 1 -1 1
Miis; | 1 1 1 1 1
M, 5| 1 i I I i
Mg | 1 1 1 1 1
My | 1 1 1 1 1
F+1]1,, -1 1 1 1-2 | 13
Ak+2 |1, 1-1] 1 1 1 1
Mys 6| 1 1 1 1 1
My, | 1 1 1 1 1
M, | 1 1 1 -1 1
Mip_,| 1 | 1 1 I 13
Miis | 1 1 1 1 1
My 5| 1 1 1 1 1
Mg | 1 1 1 1 1
M1 | 1 1 1 1 1
Ak +3 |1, -1 1 1 1-2 13
Mysg | 1-1] 1 1 1-2 13
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Table 5.8: Isomorphism classes given by a € Q3 /Q32, part IIb

1 =41+ 2
Mygz | Miy 3| Miie | My, 6
4k I, 1 1 1 1
Masg 1 1 1 1
My | 1 1 1 1
Mi1s 1 1 1 1
My 2| 1 1 1 1
Mi1s 1 -1 1 1
My 5| 12 I 1 1
Mg 1 1 1 1-1
My | 1 1 1.3 1
F+1]1,, 1-2 | 13 13 | 1-3
4k +2 | I,,_; 1 1 1 1
Mys 6| 1 1 1 1
My | 1 1 1 1
Mi1s 1 1 1 1
My 2| 1 1 1 1
Miis | 12 1 1 1
My 5| 1 -1 1 1
Mg 1 1 1.3 1
My | 1 1 1 -1
&k +3 |1, 1-2 | 13 13 | 1-3
Myss | 1,2 13 13 1-3




Table 5.9: Isomorphism classes given by o € Q3/Q3?, part ITI

=41+ 1 1 =41+ 3
I; I; M 36
1% I, 1 1 1
M2’376 1 1 1
M1 1-1 1-1 1-1
M1 13 13 13
M1 -1 1-1 1-1
M1 5 -1 -1 -1
M1 12 12 12
M1 1-1 1-1 1-1
M1 12 12 12
i+ 11 1, |1-12-23-3.6-6|1-1.2-2.3-36-6 | 1-1.2-2.3-3.6-6
2|1, 1-1 1-1 1-1
M2737_6 1 1 1
M1y 1 1 1
M1 12 1-2 1-2
M1 13 13 13
M1 -2 -2 -2
M1 13 13 13
M6 13 13 13
M1 1-3 1-3 1-3
431, |1-12-23366|1-12-23-36-61-1.2-23-3.6-6
Mysg | 1-1,2-23/3.6-6 | 1-1,22,33,6-6 | 1-1,2,-2,3-3,6.-6
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Continuing on from Corollary 5.3.1, we now consider commuting pairs of involu-
tions of SL(n, k) of type (3), when —1 ¢ k*? which are isomorphic to pairs of the

form

(Inn(M O)H,Innjn >,

0 M

M a representative of a semi-congruence class of symmetric bilinear form of £™/2. Note,
however, that distinct semi-congruence class elements M do not necessarily yield
distinct isomorphism classes of commuting involutions of the above type, since we can
transform (the matrix representatives of the involutions of) the pair by nonsingular
matrices of the block form (4 %), while preserving J,. We give results of the

isomorphism classes of the above type for specific fields:
Theorem 5.3.11. For:

o k =k, —1 is a square and thus we do not need to consider pairs of the above

type.

o k=R, we get distinct pairs for distinct M; = In_;;,
ie{1,2,...,|%]}.

o k=T, with —1 & k*?, there is only one isomorphism class, (0,Inng, _,)

o k=Q,, with—1 €k, p+#2

n __

— § =4l + 1 There is one isomorphism class with commuting pair represen-
tative: (Q,InnLnﬁl).

n _

5 = 4l + 3 There is one isomorphism class with commuting pair represen-

tative: (Q,Inan_l).

— 45 = 4l + 2 There are two isomorphism classes of commuting pairs if
—1 is not a square modulo p, their representatives are: (G,InnLnﬁl) and
(Inn(ln—Q ) 0, InnLn,1) , otherwise there is one isomorphism class given

pl2

by (6’, InnLnﬁl).

5 =4l There are two 1somorphism classes of commuting pairs if —1 is not
a

square modulo p, their representatives are the following: (G,Inan_l)
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and (Imn(ln_2 ) 0,Inny,, 1) , otherwise there is one isomorphism class
pl2

given by (6’, Inng, _, ) .

o k=0Q

n _

— 5 =4l + 1 There is one isomorphism class with commuting pair represen-
tative: (Q,Inan_l).

n _

5 = 4l + 3 There is one isomorphism class with commuting pair represen-

tative: (0, InnLnﬁl) .

n __

41+2 There are two isomorphism classes of pairs, their representatives

are: (Q,InnLnﬁl) and (Inn(jn2 B ) Q,InnLnJ).

n _

— 5 = 4l There are two isomorphism classes of pairs, their representatives

are: (Q,InnLn’_l) and (Inn(1n2 B >9,InnLn’_1).

[\

Proof. We start by proving the case for & = R. For M = M; = Iz, i €
{1,2, cee L%J} We have,

Inn In_;; O 0,Inn;, | ( Inn<1,2121,72i 0 )G,Inanl ))
0 I%—i,i 0 —Igi

for 21 € {1,2, . .,g}, but for such i we get distinct semi-congruence class ele-
ments (1%,021-,21- 72), thus the above pairs are in distinct isomorphism classes for

ie{l,2,...,|2]}.

We now consider the case for k = F,. Since there are at most two semi-congruence

classes of bilinear forms of F} it is sufficient to show that the pair <0,Inn Jn) is
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isomorphic to the pair (Inn(Ml,l,sp 0 ) 0, Inan)‘ The latter is isomorphic to
0 Mi1,sp

(Inn Iy 0 Q,InnLn’_l) ~ [m iz, 0 0,Inng, _,
( 0 splz) ( 0 Sl’(be) <ab2>>

Imn /7, , o 0,Inng, _,

1)

~ (IHH(InO_Q [O2> 9) InnLn,—1)

~ (Inn(jno_2 ;)2> H,Inan>

= (0,Inny,),

O wo

for a,b € F, such that a* + b* = s, (which we know exist by lemma 5.3.6). Also,
the last isomorphism follows from using Innp, , an inner automorphism defined by a
permutation matrix, so that P;;FPn = 1I,, and PnLn7_1Pn_1 = J,, as shown in the proof
of lemma 4.1.7.

Next we consider the p-adics for p # 2, considering case by case the size of n.
First, suppose § =4l + 1. If -1 ¢ Q;2 then there is only one semi-congruence class
and thus only one isomorphism class of commuting involutions of the above form. If

-1 € @;2 then there are two semi-congruence classes given by I, and M, s, . In

this case, (6, Inn; ), is isomorphic to ( M0/ My.ppe, 0 6,Inny, ) This is true
" 0 Mp,sp.psp

for the following reasons: first, the latter of these pairs is isomorphic to

(Inn(1n04 p(1)4) 9, InnLn,_l)
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because, using the inner automorphism defined by the matrix P, (in lemma 4.1.7),

Inn /a0, 0 0,Inn,
0 Mpyspypsp

Inn /7, o\ ¢, Inng,
~ pla
spla
0 PspIZ
Inn , 7, 0 0,Inng, _,
pl2
~ a b\T( a b
S”(—ba> (—ba)
a WB\T( a b
0 p8p<fba> (*ba)
Inn g, 0 H,InnLn’_1
= pla
sp(a?+b2) 12
0 psp(a?+b2) s
Inn /7, 0 0,Inng, _,
- pla 0
0 Is
0 pla
Inn /g, | 0 0,Inng, _,
~ Is 0
0 pla
0 pla

since (sp,sp)p = 1 and thus, by lemma 5.3.3, there is a solution to 22 +¢% = L

Sp
over Q,, i.e. there elements a,b € Q, such that the 2 x 2 block A = (_"b Z), which
commutes with (% §), is such that ATA = i]g. Note that the last isomorphism of

pairs follows from using the inner involution defined by the permutation matrix

n—~6 n—4
P = Z By + Z (B iz + Eriok) + Enoin-1+ Enon_o.
k=1 k=n—5

Thus, it remains to show the following isomorphism because it has already been shown
that the pairs (6,Innz,, _,) and (0, Inny,) are isomorphic (via the inner automorphism

defined by the permutation matrix P, as in lemma 4.1.7):

Claim 5.3.12. The following are isomorphic for all n:

(Inn(lno_4 p%l) Q,Inanl) , and (G,InnLn,A)

Proof. Since the Hilbert symbol (L i)p = (sp,sp)p = 1, by lemma 5.3.3 there

sp? Sp

exists an a,b € Q, such that a® + b* = s, so that (6,InnLn 71) is isomorphic to



112

(Inan’spﬁsp 0, InnLn,fl) by using the block (_‘Zb Z) in the appropriate place:

0 = Inny, 0
~ Inn Inn;, 6 Inn~}!
]n—2 0 In,Q 0
0 (%) 0 (9?)

= Inn Inn;, Inn 70
In72 0 ([ng 0 )

0 (%) 0 (50
= Inn I 0 I 0 0
0 (%;:)T)( 0 (%2))
= Inn I 0 0 =1Inny,,, ., 0
0 <a28rb2 az—?-b2 ))

and noting that the block (% ?) commutes with the block ( ° §). After using the

inner automorphism defined by the permutation matrix:

I,_ 0
P = ! Py=F 1+ Eo3+ B30+ Eyy,
0 P

the commuting pair, (Inn My sy 0,Inny, 71>, is isomorphic to

1( . )9’1““(“04*12)
()
Inn Ins 0 )Q,IDD(Ln%l 0 )

1
T Sp
0 Q ( 1 )Q’
Sp
Inn /g, , X 0 Q,Inn(Ln_4,_1 0)
— 0 Ja
Sp !
Sp

Q

for 2%+ iy2 = p, which exists by lemma 5.3.3 since (%, i%) = 1 for —1 not a square
P
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modulo p, and

T Y 0 0
1
—=y x 0 0
Ql — Sp
0 0 x oy
0 0 —iy x

The isomorphism then follows because (s,, sp)p = 1, and hence by lemma 5.3.3, there

exists a solution over Q, to s,z? + s,y*> = 1 and hence the above pair, which is iso-

morphic to the pair ( Inn<1n4 ( 120 0 )> 0,Inny,, _, ) via the inner automorphism
O Pl syl

defined by P (given above), is isomorphic to ( Inn(1n4 0 ) 0,Inng,, _, )
0 ply

If —1 is a square modulo p then (p, p)p = 1 which implies by lemma 5.3.3 that

there is a solution in Q, to a”? + b"* = p so that

Inn/; o O,Inng, | ~ (Inn g, , 0 ejlanufan’ilQu
( 0 p[4) ( 0 pQ”TI4Q”)

- (I““<%4 oy? 1““%1)
(%) ) '

a b
= (9,InnLn,_1> for Q" = ( (o)
O
Therefore, by this claim, there is only one isomorphism class for commuting pairs

of involutions of SL(n,Q,) when § = 4/ + 1. Next, suppose § = 4l + 3. There are

two semi-congruence classes given by Iz and M, but by claim 5.3.12 and the

p75p7p5p7
arguments preceding it, there is only one isomorphism class of commuting involutions
of SL(n,Q,) for § = 41 4 3 of the form above. If § = 4/ 4 2, we consider first the
case that —1 ¢ Q2. It is known from [HWDOG] that there are five semi-congruence

classes given by: ]%7 My ps,» M11p, Mi1s,, My ps,. The corresponding pairs are:

( Inn /g, , 0 ¢,Inng, _, )
(" (o)

for (r,s) = (1,1), (p, psp), (1,p), (1,s,), (1, ps,), resectively. Since there is a solution

to a? +b* = Si over the p-adics, as above, these pairs are isomorphic, by lemma 5.3.3
P
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and the techniques above, to pairs of the form

( Inn /g, , 0 0,Inng, , )
(%" ()

for (u,v) = (1,1),(p,p), (1,p), (1,1),(1,p), respectively. But, by claim 5.3.12 this

leaves us with two pairs: <97 Inng, _1> and (Inn<ln4 (IQOU )) 0, IHHL,L71> .
: 0
0 pla

Claim 5.3.13. For § even, the following are not isomorphic for —1 not a square

modulo p: <97InnLn,71> and (Inn<ln4 ]200 )9,InnLn,1>_
0 (0 PI2>

Proof. 1t is sufficient to show that for § even, In(; ) <102(;(IJ2)) and [,, are not semi-
congruent, for —1 not a square modulo p, and hence the corresponding outer involu-
tions cannot be isomorphic and therefore, neither can the pairs. Since their determi-
nants differ by a square we need to show, by lemma 5.3.6, that for any w € Q5/ Q;Q,

cp(wly) # ¢ (1"52 ol ) But for § even,
ep(wlin) = (w, =1%),65(1) = (W, 1), ep(Ln) = p(Ln) = (=1, ~1),,.

However,

& (" ) = (=1, (pp), = — (~1,-1),

for —1 not a square modulo p. Therefore, since (I”O‘ ? pjz) is not congruent to any

multiple of I,, for —1 not a square modulo p, the two are not semi-congruent, and the

claim follows. O

Now, if —1 is a square modulo p then, for 7 even, the pairs (9,InnLn _1), and

(Inn(fng 0 ) 0, InnLn,—1> are isomorphic. This follows from the fact that if —1 is a

0 pls
square modulo p then (p, p)p = 1 and thus there is a solution to a? 4+ b?> = p over the

p-adics, by lemma 5.3.3, and thus

e A e

—_ (Inn, ;, 0,Inng,,
(e )
= (H,Inn,;nﬁl>
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for

(%) 0
o (D)

= 4l + 2 there are two isomorphism classes if —1 is not a square

Q=

Therefore, for 3
modulo p and one isomorphism class if —1 is a square modulo p. Lastly, we consider
when § = 4[. From [HWDO6], it is known that there are five semi-congruence classes
And by

the arguments above (including lemma 5.3.12) this leads to two potential isomorphism

(of symmetric bilinear forms) given by: [%, My.s,psp> Mi1py Mi1s,, M1 ps,-

ClaSSGSI ( 97InnLn 1 ), and ( IHH<1n4 1200 > lennLn,fl ) AS argued above’
0 (0 :DIQ)
these two are in distinct isomorphism classes for —1 not a square modulo p and are
isomorphic for —1 a square modulo p. Finally, we consider the 2-adics considering
case-by-case the size of 3.
Finally, we consider the 2-adics, case by case on the size of 7. First we need a

lemma:

Lemma 5.3.14. The following commuting pairs are isomorphic: (9711111%’71), and

I pp,e o 6 Inng, ).
0 Ms23gs

Proof.

(9,InnLn7_l> = (Inn(ln0410)971nnLn,1>
N (Inn U e,InnLn,_1>
(%" o)

via Inn ( Iis 0 ) for a* + b* = —6, which we know has a solution over @, by

0o (42)

lemma 5.3.3 since (—6,—6), = 1. The above pair is isomorphic to:

Inn /g, , 0 0,Inn /r, ,_, 0
00 0 I
0 60 0 0 (_12 0)
10

Inn /g, , 0 H,Inn(Ln_&_l 0
~ 1000 ( 0 12)
~ 0
[o-60 0 5, 0
0 2(0 01 0) 2
00 0-6
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via
Inn /g, , 0 and Inn 7, _, 0 )
HE: i
1
0 <01 0) o [0
0001 a

—2, which we know exists, by lemma 5.3.3 because

OOoO—O

. 2 172 __
respectively, for a™ — £b =

1 1)2 = 1. The above gives:

(_l 1
2726
01 _(Inn, g, , 0
y AN, g ) 0 72(12 0

0 —612
0

)H,InnLnyl) via Inn /r, ,
" i
0 <£Lb” Z//)

)) 9, IHnLn,_1> via IHH<In0_4 1(3)4)

z(Inn(zﬂ 0
0 —2I4

) 0, InnLn’l) via Inn<1n2 0 )
a/// blll)

0 ( _b/// a///

~ Inn(jn,4 0
0 -1y

IHH I’n—6 0 97 InnLn,—l
= I 0 0
0 0 —-I O
0 0 —I
Inn /g, 0 0,Inng, , .
~ 9L 0 0 vialnn 7, ;o0
0 0 3l 0 ( 0 A)
0 0 6l
( T1 Y1 )
—y1 T1
_ T2 Yo
fOI A - ( —Yy2 T2 )
( x3 y3>
—Y3 T3

~ (Inn<M2y376 0 ) H,IHan> via Innp .

0 Mz3s6
These isomorphisms follow because (—6, —6), = (—%, %)2 =1,(2,2), = (%’ %)2 =1,
1 1)2 = 1, thus by lemma 5.3.3, there exist the following

and (—3,-3), = (—ga 3
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solutions, over Q,:

—6a" — 60" = 1
2a" + 20" =1
i +yl =2

—y =Yy =3

—r3—y; =6
O

This immediately implies that there is only one isomorphism class of commuting

n

involutions (of the above form) of SL(n,Q2) when § is odd. Next, we consider (for

the 2-adics) when § = 4/. By lemma 5.3.14 we need to consider only whether the

pairs (Inan,q,q 9,InnLn,,1>7 for g € {1,-1,2,-2,3, 3,6, —6} are distinct, since

IIlIl Ml,l,q 0 07 Inan ~ (Inan @ 07 InnLn 71> .
0 Mg . ’

Computing the Hilbert symbol for each of the ¢ € {1,—1,2,—2,3,—3,6,—6}, gives
that (¢,¢), = 1 or (—¢,—q) = 1. Therefore, by lemma 5.3.3 there exists a solution

over Q, to ga* + qb* = 1 or —qa* + —gb* = 1, hence using the inner automor-
phism Inn on the pair <InnM1,q7q 0,InnLn7_1> we need to determine
n—2
( 0 (4 2))

only whether or not (9, Inny,, _1) is isomorphic to (Inan ., 0. Inng _1>.

Claim 5.3.15. My _; 1 and I,, as matriz representatives of symmetric bilinear

forms, are not semi-congruent for § even.

Proof. ¢, (al,) = (a, —1%)2% (I,) = (—1,—1)9= —1 but ¢, (My_11) = (—1,—1)s -
1---1-(=1,-1), = (=1,—1)3 = 1, therefore by lemma 5.3.6, the two matrices cannot

be semi-congruent, because M; _; _; is not congruent to any multiple of I,. O]

This immediately implies that the commuting pair <67 Inng, 1) is not isomorphic

to the commuting pair (Ianlyflﬁ1 G,InnLnﬁl) because by [HWDO06] M; ;1 % I,
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implies that the outer involutions Inny;, _, _, 6 and 6 are not isomorphic; hence, there
are two isomorphism classes of commuting pairs of involutions of SL(n, Q) for § = 4.
Also, there are two isomorphism classes of commuting pairs of involutions of SL(n, Qs)

for 5 = 41 + 2 by the above lemma and the fact that

Inn /¢ 0 0, Inny,
n—e6 ’ n,—1
Inn Mas_s O 0,Inn;, | ~ 2y 0 0
0 M2 3,6 0 0 3 O

0 0 —6I2

Q

Inn /7, 0 0,Inng, _,
I 0 0
0 <0 42 o>
0 0 Iy
~ Inn<1n74 0 )H,Inn,;nﬁl 7
0 —Ia

the first isomorphism follows from using the inner automorphism Innp,, the second
from the proof of lemma 5.3.14, lemma 5.3.3 and (2, 2),, (=6, —6), and (=3, —=3), =
1. The third isomorphism follows from the inner automorphism Innp, for P the

permutation matrix: S0 Ei 4+ S o Eiivo + Eiigs. [

To complete the classification of commuting pairs (one outer, one inner) of invo-

lutions of SL(n, k), we need to consider those of type (4) from corollary 5.3.1, namely,

( Inn(_OD 8) 0,Inn, ) ,

for D a diagonal matrix. Since Inn< A B) preserves Inn; , we can take D to be a
“BA

matrix representative of a semi-congruence class of symmetric bilinear form of k2, i.e.
take A = @Q and B = 0 for @ such that Q7" DQ = aM for M a matrix representative

of a semi-congruence class of bilinear forms. However, this is equivalent to classifying

those of the form:

outer/inner commuting pairs of type (3) in corollary 5.3.1:

Lemma 5.3.16. The classification of each of the commuting pairs of involutions of

the forms below is equivalent:

(Inn(j(:)) 0) 9,Inan> , (Inn(_% g) H,Innjn) )
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Proof. First, suppose (IHD<D1 0 )9,IDDJ,L) ~ (IDD<D2 0 )Q,IDHJ,L). This implies

0 D1 0 D2
there exists a nonsingular X € GL(n, k) such that X 'J,X = aJ,, and X7 (' § ) X

0 Dy
=0 ([())2 DOQ) for a, B € k*. This, in turn, implies that

(Inn<_0D1 Dol) H,Innjn> = (Inan<%1 £1> Q,Inan)
~ <InnxTJn<%1 D01>X 9, IHHXIJnx)

= <InnaJnXT(%1 z())l)X Q,Inan)

= (InnﬁJn<%2 192) G,Innjn)
=(Inn, o p,\60,Inn; |.
(-5, %)
Equivalence follows from using the above argument in reverse: Suppose that
Inn, ¢ p\0,Inny, |~ (Inn, ¢ p,\6,Inny, |.
(—Dl 0 ) <—D2 0 )

This implies there exists a nonsingular X € GL(n, k) such that X '.J, X = aJ, and
X7 (_OD1 [())1 ) X=0 (_OD2 %2) for a, § € k*. This, in turn, implies that

(Inn<%l £1> Q,Inan> = (Inan(_oD1 %1) Q,Inan)

Inn 0 D 0. Inn -1
T 1 ) X—1J, X
X Jn<_D1 . >X

= (InnodnxT<_0D1 D, )X 0, Inan)
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Chapter 6

Classification of Commuting Pairs

of Outer Involutions

In this chapter we consider isomorphism classes of commuting involutions of the
group SL(n, k) such that both involutions in the pair are outer involutions. We will

see that the classification of such pairs is equivalent to classifying inner/outer pairs.

Lemma 6.0.17. The pair: (Inny, 0,Innyy 0) is a commuting pair of involutions of
SL(n, k) if and only if (Inny 6,Inny-15p0) is a commuting pair of involutions of
SL(n, k).

Proof. First, suppose that (Inny, 0, Inny; 0) is a commuting pair of involutions of
SL(n, k). Then, M is a matrix representative of a nondegenerate symmetric or skew-
symmetric bilinear form on k", and M’ is a matrix representative of a nondegenerate

symmetric or skew-symmetric bilinear form on k™. Also, because the above is a
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commuting pair we have:

Inny 0 Innas 0 = Inngy 6 Inngyr 6
—0 Innypr—1 Inny, 0 = 0 Innyr—1 Inng,r 0
— Innypr—1 Innp, = Innppr—1 Innpy
— Innpppr—1 = Innpp -
—SMM" =aM' M
MM ™' =+aM'M™!
MMM =+aM’

— IDHMM/—lM = IHHM/’
for a € k*. This gives the following:

Innyr-1pp Innp 60 = Innppps—100 0
= IIlIlM/ 0
= Innypp-100
= Inny, Innppp-1 6

= Inny, 0 Innpy-1,,

which implies that the automorphism Innj;-1;, commutes with the involution Inn; 6.

The commuting pair also gives:

Inny; @ Inny, 6 = Inny, 6 Inny, 0
— Innyy 00 Innp,r—1 = Innyy 00 Inngpr—
— Inny Innyr—1 = Inngy Inng e
— Innyr—1yp = Innypr—1py
MM = MM
MM =+pMM
—(M~'M")? = £p1I,

and this implies that Innys-1y, is an involution of SL(n, k). Therefore, if the pair
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(Inny 0, Innyy 0) is a commuting pair of involutions of SL(n, k) then the above shows
that (Innys 6, Innys-15) is a commuting pair of involutions of SL(n, k).

Next, suppose (Innys 0, Inny;-1,) is a commuting pair of involutions of SL(n, k).
Then M is a matrix representative of a nondegenerate symmetric or skew-symmetric

bilinear form on k", and Innj;-1,, is an involution, thus:

Inn3, .,, = Id
—SMTM'M~'M' = al,
MMM =aM' !
—aMM' ™M = M

for a € k*. Also, because the above pair is a commuting pair, this gives:

Innp; -1 Inny 0 = Innpy 0 Innpp—1
— Innpp 0 = Innpgpr-10p 0 = Innpy Inn -1 ppy7-1 0

— IHHMI = IIlIl(MflM/)T—lM = IIlIlMTM/TflM = IHI]MM/T—IM

—M' = MMM

Therefore, this shows that aMM''M = M' = BMM'™~'M, which implies that
MT = aMTMTIMT = aMM™ M = a%M’ so that M’ = %M’T. Transposing
both sides of the preceding equation gives M7 = %M’, so that M’ = %M’T =
o) = (%)2M’. This implies that (g)Q — 1, which gives M’ = +M'T. This
implies that M’ is symmetric or skew-symmetric and, hence, Inny; 0 is an involution.

Furthermore,

Innyy @Inny 0 = Olnngypr—i Inng, 6
= OlInnyp-1Inny, 6
= Olnnypp-10
= Olnnypp-160
= Olnny;-1 Innyy 0

= Inny 01Inn,. 6,
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because, as shown above, M’ is either symmetric or skew-symmetric and by suppo-
sition, Innj;-1,, is an involution, so that M'M~! = aMM'~!. Therefore, the invo-
lutions Innys 6 and Innyp 6 commute and thus (Inny, 6, Inny 0) is a commuting pair

of involutions of SL(n, k), if (Inny; 6, Innys—1/) is a commuting pair of involutions of
SL(n, k). O

To finish showing the equivalence of classification of inner/outer pairs with the
classification of outer/outer pairs,the following lemma is needed:
Lemma 6.0.18. The commuting pairs of outer involutions of SL(n, k),

(Innps 0, Innyy, 0) and (Inny, 0, Innyy, 0)
are isomorphic if and only if their corresponding outer/inner pairs are isomorphic,
i.e., if and only if
(Innps 0, Innps-1p7,) and (Inny, 0, Innpy-1y,)

are 1somorphic.

Proof. First, suppose that (Inny, 0, Innyy, 0) ~ (Inny, 0, Innyg, ). Then there exists
a C € GL(n,k) such that CTMC = aM and CTM,C = BM, which implies that
C'M~ = IM~'CT so that

(Innps 0, Innps-1p,) =~ (Inne Innys 0 Inng-1, Inne Inngy-1p, Inng-1)

(
(Inngr e 0, Inng-1p7-101,0)
(Innps 0, Inny—107 a7, 0)
(Innps 0, Innpy-1p,)

Next, suppose that (Inny, 60, Inny-1p7,) ~ (Innpy 6,Inny-15,,) Then there exists a
C'" € GL(n, k) such that C'"" MC’" = aM and

C MM, C' = MM,
lelc«/T
[0

1
——MCTM,C" = MM,
«

SO =

—CTM,C" = afM,
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so that

(Innys 0, Innyy, 6) =~ (Inng Innyy 6 Inngr-1, Inng, Innyy, 0 Innge-1)
= (InnC’TMC" 6, InncTMIC 9)
= (Inny 0, Innyy, 0)
Therefore, this gives that the commuting pairs of involutions (Inns 6, Inny; -1y, ) and

(Innps 0, Innp;-1yy,) are isomorphic if and only if the commuting pairs of involutions

(Innyy 0, Innyy, 0) and (Inny, 6, Innyy, 6) are isomorphic. O

Corollary 6.0.19. Classifying commuting pairs of outer involutions of SL(n, k) is

equivalent to classifying outer/inner pairs of commuting involutions of SL(n, k).
Proof. This is an immediate consequence of the above two lemmas. O

The resulting isomorphism classes of commuting outer involutions, being derived
from the isomorphism classes of inner/outer commuting pairs, will be summarized in

the next section.
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Chapter 7
Summary of Results

In this section we summarize the isomorphism classes of commuting pairs of invo-
lutions of SL(n, k), for specific types of fields, namely, for algebraically closed fields,
R, F, (with characteristic not two), and Q,.

7.1 k= k: Algebraically Closed

1. If n is even, divisible by 4, we have the inner pairs:

Innfn—m" Inn In—i—j5 0O .
0 Li gk

Here, 1 € {1,2,...,%}, and these are distinct for 5 € 0,1,..., L";J, k €

{0,1,...,i}, j,k not both zero, unless n — i — j = j, in which case k €
{0, 1,..., L%J } We also have the inner/outer commuting pairs (H,Innfn_iﬂi),

for ¢ € {1,2,...,%},and

( IIlIl(J,b_i l[])l> Q;Innn—i,i ) 5

for i € {2, 4,..., %}, n —1 and ¢ even, and hence, the outer pairs (9, Inng, .. 9),

for i € {1,2,...,%}, and (Inan 0,Inn; o7 . .01 0), for ¢ € {2,4,...,%}, n—1

n—1,i
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and 7 even, for

2. If n is even, not divisible by 4, we get the same form of pairs as above (for n
even, divisble by 4).

3. If n is odd we get the inner pairs: (Innlni,wlnn(lnij,j 0 )) Here, i €
0 Li—kk

{1,2,...,2}, and these are distinct for j € 0,1,..., %% |, k € {0,1,...,4}, j, k
not both zero, unless n — ¢ — j = j, in which case k € {0, 1,..., L%J } We also
have the inner/outer pairs: (Q,Innfnfi’i), for i € {1, 2,00, %}, and hence the
outer pairs: (9, Inng,_,, 0), for i € {1, 2,..., g}

7.2 k=R: The Real Numbers

1. If n is even, divisible by 4, we have the inner pairs: (InnLn,f ., Inn A), for A =

In_;; O .
P'L, 1P, P'Is P, P'Is 2L, 1P, PT< gis O )P, ot Iy il 1, i €

{1, 2,..., %}, for P = Zi%:l(Ei72i,1 + E%+i72i). Aiso, we have the inner pairs:
(Inn;n_i’i,lnnB» for B = (I’“é’j’j Iif)k,k>’ i € {1,2,...,%}, and these are
distinct for 5 € 0,1,..., L%J, k€ {0,1,...,i}, j,k not both zero, unless
n—1—j = 7, in which case k € {0,1,...7 L%J}, or B=1L,_4,ifn—1and
i are even, or if n —i = i, B = PL, 1PT. We also have the inner/outer
pairs: (InnM H,Innln_i,i), for ¢ € {1,2, . .,g}, and M = (I”‘f)‘j’j Ii—ok,k>7 for
J € {0,1,..., L%J}, and k € {0,1,...,4i} unless n — i — j = j, in which case
ke {0, 1,..., L%J } For n — i # i these are distinct, and for n — ¢ = i these are

distinct for distinct {7, k}, or M = (‘]”"' 0 ), for i € {2,4, ce g} n —1 and 1

0 J; ?
In_ ;i O
even. We have the inner/outer pairs: (Inny 60,Inny, ), for N = ( 0 In _v),
o~
0 In_,,
& =1, . n . . .
<I%7i,i %0 ), for i € {1,2, e Z}' These, in turn, give us the commuting

e 0Ty o 9), forie{1,2,...,2) je

{0,1,...,{"7”}}, and k € {0,1,...,“”, if n —i— 7 = j, otherwise k €

2

outer pairs: <Inn I,
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{0,1,...,4}, and 7, k not both zero.

In—i—jxn—i—j On—i—jxj On—i—jxi—k On—i—jxk
O Oickxn—i—j  Oicixj  Lickxiok  Oi—gxk
- I

Ojxn—i—j Iy 0jxi—tk Ojxk

Okxcn—i—j Ok Okxi—k Tk

and (Inan 0,Inn; crp, ..o 9), for i € {2,4, ey g}, n — ¢ and ¢ even,

n—i,

2% 2
/
C - _.[’VLQ—’L On2—z><72L 0n2—1><%
Oi n—i 07, n ]1
2% 2%3 2

We also have the commuting outer pairs: <Inn1n72i’2i 0,Inn; _, ,.c05.cT 0), and

(Inanﬁ,InanI 9),f0ri€ {0,1,...,%},With

n—iidndn_i;

[ﬂfixﬂfi ngixi ngingi ngixi

On_ixn_; Oz_ix; In_jxn_; Oz_jx,

Cl - 2 )
Oingi [i><i Oingi Oi><i
Oix%—i Oz‘xz’ Oz‘xg—i ]z'><i

. If n is even, not divisible by 4, we get the inner pairs: < Inng, ,,Inny > for
_ (e o \T((0X) o L 0
A—(OQPTL—Q) ( 0 IL—QL_Q (C?Pn—Q)’
2 2

7 (13- 0 . n
P, ( N In ) P,,or 1, 99 L, _1,foric {1, 2,..., LZJ }, and for Py as defined
7—1

above. We also get the inner pairs: (Innln_mlnnB>v for i € {1,2,...,%},
with B = <L"*0i’*1 LZ_O_1>, for n — i and i both even, or B = (In_f)_j’j Ifm)?
for 7 € {1,2,..., L%J} and k € {1,2,...,i} if n — i — j # j, otherwise
ke {1, 2,..., L%J }, or B=PI'L, (Pifn—i=i, ie. if i = 2. The inner/outer
pairs and outer pairs are the same type as for n divisible by 4.

. If n is odd we get the inner pairs: (Innlni,wlnn(fn_i_j,j 0 )) Here, i €
0 Li—kk

{1,2,...,2}, and these are distinct for j € 0,1,..., %], k € {0,1,...,i}, j, k
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not both zero, unless n — i — 7 = j, in which case k € {O, 1,..., L%J } Also, for
n odd, the inner/outer pairs and outer pairs are the same form above, but note

that not both n — 4 and 7 can be even, so there are no pairs with an involution

of the form (77 ) 6.

7.3 k =TF,: Finite Fields (of characteristic not two)

1. If n is even, divisible by 4, we have the inner pairs <InnLn,q,Inn A), for A =

In . .
PTLygP, PTIy 5P, PTIy s Lo P, or P70 " ) P Liailng, for i €

In
2

{1,2,...,2}, ¢,¢ € F*/F?, q,¢" # 1 mod F;? and for P = Zz’%:l(Ei,Zifl +
En i) Also, we have the inner pairs (Innfn_i’“ InnB>, for B = (I"’é’j’j L,’—Ok,k>
and for ¢ € {1,2,...,%}, and these are distinct for 7 € 0,1,..., L%J, k €
{0,1,...,i}, j,k not both zero, unless n — i — j = j, in which case k €
{0,1,..., 4]}, or B=L, 4, if n—iand iareevenorif n—i=1i PL,,PT. We
also have the inner/outer pairs: (InnM Q,Innln_m), for i € {1,27 ce g}, and
M = (]\6[1 a?\,l ), for M a representative of a semi-congruence class of symmetric
bilinear form of F}’,‘_i, N; a semi-congruence class of symmetric bilinear form of
IF;) and a € IF;/]F;Q, where distinct pairs are given by « listed in table 1, or
M = (J"O*i %), for ¢ € {2,4, e g}, n — 4 and 7 even. If —1 is not a square in
F, then, we also have the inner/outer pairs (¢,Inn, ), and (Inny, 6,Inn;,).
These give us the outer pairs: (Inan 0,Inn;, o, _, o0 0), for i € {2, 4,..., %},

n — 1 and ¢ even, for

O%Xng—l In 02y
Cl=1 ~Iag Ongiyy Oy
Opunzt Opyg 1y
Also we have, for i € {1, 2,00, %} , the outer pairs:

(InnMn,1,1,sp 0, InnMn,l,l,s;DAIn—i,iA71 0)

for A =1, or (I, — Epini — Eii + By + Eiy;), and the outer pairs:
In.a 0

<971nnBIn,m‘B_1 9) for B = Iny or < 0 (fb b)) ([n - Enfi,nfi - Eifl,ifl +
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En ii-1+ Fi_1n:), such that a® + b* = é, which we know exists from [Sch85].
Also, if —1 is not a square in ), then we also have the outer pairs: (6, Inng, _, 6)

and (Inny, 6,0).

2. If n is even, not divisible by 4, we get the inner pairs: <Inn Lng» 1NN A) for
(o T (o) o L0
A_(O2Pn—2) < 0 IL—QL_Q (02Pn—2)’0r
2 02

v( (e ° 0
A = (102 Pn0—2) << q% a) ITL2277122L"27q/) (IO2 PnO—Q)

such that a,b € Fy, a® — qb* = ¢, ¢,¢ #1 mod F;? for some fixed a,b, also A
can be

Iﬂ_i 0 .
PnT< 2 I%—i) Py, or I 92iLng, for i € {1,2,...,[2]}, for P, as defined

k
above, i.e. > 2 (Eigi—1 + E§+i,2i)’ and for ¢ € F}/F+*. We also get the inner

pairs: <Innzn,i,i,lnn3>, for i € {1,2,...,2} and for B = (Lnai,q, L9,>, for

2,9
n —1i and ¢ even, or B = (I"_f)_j’j Iii,g), for j € {1,2,...,["%5*]} and k €
{1,2,...,i} if n —i — j # j, otherwise k € {1,2,...,|4]}, or PTL, P if
n—1 =1, ie. if i = §. The inner/outer pairs and outer pairs are the same type

as for n divisible by 4.

3. If n is odd we get the inner pairs: (Inn-[ni,i’lnn In—i—jj O )) Here, i €
0 Ii—kk

{1,2,...,2}, and these are distinct for j € 0,1,..., %], k € {0,1,...,i}, j, k
not both zero, unless n —i — j = 7, in which case k € {0, 1,..., L%J } Also, for
n odd, the inner/outer pairs and outer pairs are the same form above, but note

that not both n — ¢ and ¢ can be even, so there are no pairs with an involution

of the form (J’b‘i 31) 0.

7.4 k=Q, P-adic Numbers (p # 2)

1. If n is even, divisible by 4, we have the inner pairs: (IHHLM, InnA>, for A =
In_;; 0 .
PTL,yP, P'Ts « P, PTIs 1 L, 4P, or P” ( B > P, I _s;9:Ln, for i €
ot
{172a c '7%}7 Qaq/ € Q;/ ;;27 Q7q/ 7‘é 1 mod Q;? and for P = Z?:l(Ei,Qi—l +
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E%+Z~72i). Also, we have the inner pairs: (Innln_i’“ IHHB) for B = (Inf(i)fjvj 0 >

Lk
and for ¢ € {1,2,...,%}, and these are distinct for j € 0,1,..., L%J, and
k € {0,1,...,i}, j,k not both zero, unless n —i — j = j, in which case
ke {0, ..., \_%J }, or B= Ly ,,ifn—iandiareevenorifn—i=14PL,,PT.
We also have the inner/outer pairs: (InnM Q,Innln_m), for ¢ € {1,27 cee %},
and M = (1‘6[1 oz?V1 ), for M a representative of a semi-congruence class of sym-
metric bilinear form of @Z‘i, N a semi-congruence class of symmetric bilinear
form of in, and a € @;/ @;2, where distinct pairs are given by « listed in
tables 2 through 4. Also, M can be (J"O*i %), for 1 € {2,4,...,%}, n—1
and ¢ even. If —1 is not a square in @, then, we also have the inner/outer

pairs: (9, Inng,, 71), and (Inn<ln_2 0 ) 0, InnLn,1>, and these two are distinct
’ 0 pls

if 7 is even. Also, there are the inner/outer pairs: (InnLn 0, Inng,, 71), and

(Inn(Ln2,1 0 ) 0, InnLn,—l) , and these two are distinct if § is even, as well.
0 pLa 1

These give us the outer pairs: (Inan 0,Inny, o, 001 9), for i € {2, 4,..., g},

n — i and ¢ even, for

O%X% [ﬂ O%X’L
!/
C - _In;z On;zxg O%X%
Oiyn—i  Oign I
2 2 272 2

Also, we have the outer pairs stemming form the outer/inner pairs from tables

2 through 4 and, (Inng, _, 6,6), (6, Inny, _, 0), as well as (if % is even) the com-

muting pair: Inn([n—2 0 )eahm(ln_z 0 )L ) and the commuting pair
0 plo 0 ph ) ™t

Inn(Ln_Q’_l 0 ) 0, II]I](Ln_Q’_1 0 )Ln » Q

0 pLa— 0 pLa—1

. If n is even, not divisible by 4, we get the inner pairs: <Inn Lng> 1NN A) for
10
A= (B0 (01) o (2,0
- 0 P,_o 0 IL_Q n—2 0 P2/
2 2
a b
Crot )" (G ) ()
0 Pp_2 0 In 2 n2oL, o q 0 Pn2
T2z ’

such that a,b € Q,, a®* — qb* = ¢, ¢,¢ # 1 mod Q;Q for some fixed a,b,
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r (15— 0 ] a
P < o I%ﬂ_) P, or I,,_2 9Ly, for i € {1,2,...7 LZJ}, for P, as defined

k
above, i.e. > 2 (Figi-1 + Eg+z‘,2¢)7 and for ¢’ € Q}/Q;?. We also get the inner
pairs: (Inn;n_“, InnB>, fori € {1, 2,00, %} and for B = <L”6“q' LF) ,>, forn—1
s 9
and 7 even, or (I"‘g‘j’j IFOM>, for j € {1,2,...,[%*|} and k € {1,2,...,i} if
n—i—j#j, otherwise k € {1,2,... L]}, or PI'L, P if n —i =i, ie. if
i = 5. The inner/outer pairs and outer pairs are the same type as for n divisible
by 4.

3. If n is odd we get the inner pairs: (Innln—i,i’lnn In—i—jj O )) Here, i €
0 Ii ko

{1,2, . .,%}, and these are distinct for j € 0,1,..., L%J, ke{0,1,...,i}, 4,k
not both zero, unless n — i — 7 = j, in which case k € {0, 1,..., L%J } Also, for

n odd, the inner/outer pairs and outer pairs are the same form above, but note

that not both n — 4 and 7 can be even, so there are no pairs with an involution
Jn—i O
of the form ( 0 Ji) 6.

7.5 k=Qy 2-adic Numbers

1. If n is even, divisible by 4, we have the inner pairs: <InnLn’q, Inn A), for A =

T T T r (13- 0 ;
P Ln’q/P, P I%,%P, P 1%7%Ln7qlp7 P 0 In_,, P, or Iani,ZiLn,m for ¢ €

n
2%

{1,2,...,2}, ¢.¢ € Q3/Q3% ¢, ¢ # 1 mod Q3* and for P = E?:l(Ei,Zifl +
En ;). Also, we have the inner pairs: (Innln_m_, IHHB) for B = (I”’f)’j‘j Li}@)
and for ¢ € {1,2,...,%}, and these are distinct for 7 € 0,1,..., L%J, k €
{0,1,...,i}, j,k not both zero, unless n — i — j = j, in which case k €
{O, ..., L%J }, or B= L, ,ifn—iandiareeven, orifn—i =i, B = PL, 4PT.
We also have the inner/outer pairs: (InnM 0, Innln_m.), fore € {1, 2,..., %}, and
M = (]\6[1 a?\/'l ), for M, a representative of a semi-congruence class of symmetric
bilinear form of Q4 ", N; a semi-congruence class of symmetric bilinear form of

Q} and o € Q3/Q3%, where distinct pairs are given by « listed in tables 5 through

9. M can also equal: (J"O*i 2), for ¢ € {2,4, cee %}, n — ¢ and ¢ even. There

are also the pairs: (9, Innyg,, 71), and IHH(In_z 0 ) 0,Innr,, _, ), and these two
‘ 0 —I
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are distinct if % is even. Also, there are the pairs: (InnLn’_1 9,InnLn’_1), and

(Inn(LnQ,l 0 ) 0, InnLn,1), and these two are distinct if 7 is even. These
0 —Lo 1

give us the outer pairs: (Inn g, 0, Inn; orp

n—1i,t

c—10), forie{2,4,...,2}, n—i
and ¢ even, for

02 n—i In Oﬂxi
2 2

PRe 2
/
e e
Oign—i  Oign N
2 2 2 2 2

Also, we have the outer pairs stemming form the outer/inner pairs from tables

5 through 9 and the pairs: (InnLn,_1 0, 9), (9, Inng, _, 9), as well as (if 7 is even)

the commuting pair: Inn([n—Q 0 ) 0, Inn(ln_Q 0 )L f) and the commuting
0 plo 0 plp ) ™t

pair Inn /7., 0 o ¢, Inn Ln-2-1 0\, 0
0 pLa 1 0 pLo_q )1

. If n is even, not divisible by 4, we get the inner pairs: <Inn ., Inn A) for
n,q
10
A_(12 0 )T (0 ) o <I2 0 )
- 0 Pn72 0 ln_Q n—2 0 Pn72 ?
2 02
a b
<12 0 )T <7qbfa> 0 (12 0 )
0 Pn2 0 In_—2 n-2 Ln72 q’ 0 Pp2
Tzt ’

for a,b € Qq, a*> — qb® = ¢, q,¢ # 1 mod Qi? for some fixed a,b, as well

In_; 0 _
as PT ( 2 I%_i> P,, or I, 9Ly, for i € {1,2, e L%J }, for P, as defined
%
above, i.e. > 7 (Eigi—1 + E§+i,2i)7 and for ¢’ € Q5/Q3%. We also get the inner

pairs: <Inn1n7“., InnB>, fori e {1, 2,..., %} and for B = (L”Bi’q/ LF) ,>, forn—1
s 1,9

and 7 even, or (I"’é’j‘j Ii—ok,k>’ for j € {1,2, . L%J} and k € {1,2,... ¢} if
n—i—j # j, otherwise k € {1,2,...,|%|}, or B = PI'L, P ifn—i=i,
i.e. if 7 = §. The inner/outer pairs and outer pairs are the same type as for n
divisible by 4.

. If n is odd we get the inner pairs: (Innlni,ﬂlnn(ln—i—j,j 0 )) Here, i €
0 Li—kk

{1,2,...,2}, and these are distinct for j € 0,1,..., %], k € {0,1,...,i}, j, k
not both zero, unless n —i — j = 7, in which case k € {0, 1,..., L%J } Also, for

n odd, the inner/outer pairs and outer pairs are the same form above, but note
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that not both n — ¢ and 7 can be even, so there are no pairs with an involution
Jn—i O
of the form ( 5 Ji) 6.
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