
ABSTRACT

MELENDEZ, BARBRA SUE.  On Scheduling Delivery in a Military Deployment
Scenario.  (Under the direction of Thom J. Hodgson and Kristin Thoney.)

The ability to rapidly and accurately perform sensitivity analysis in military

deployment planning is a vital tool for force deployment planners.  The Deployment

Scheduling Analysis Tool (DSAT), a new software tool, provides this ability.  DSAT

builds the deployment scenario through a graphic user interface, invokes an adaptation of

the Virtual Factory to schedule the movement and delivery of the equipment and provides

meaningful output in the form of reports and graphics.  The Virtual Factory is a job shop

scheduling procedure developed at North Carolina State University which is proven to

rapidly provide near-optimal solutions to large problems.

This research focuses on evaluating both the accuracy and effectiveness of DSAT.

An existing tool, the Deployment Analysis Network Tool Enhanced (DANTE), is proven

to minimize the time required to deliver the equipment (Cmax).  Since DANTE is a

relaxation of the original problem, it establishes a lower bound for Cmax.  An extension of

DANTE, COMFLOW, includes due date information and establishes a lower bound on

the maximum lateness of the equipment, Lmax.  DSAT’s schedule, in terms of Cmax and

Lmax are compared to their lower bounds.  Finally, DSAT’s schedule, in terms of

transportation asset utilization, is compared to accepted asset utilization planning factors.

This evaluation indicates that DSAT provides near optimal schedules for air deployments

and good schedules for deployments including rail and sea movement.
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Chapter 1

Introduction

1.1  Overview

The military must often move a large number of personnel and equipment from one

location (or many) to another, always as rapidly as possible.  In other words, the military

must effectively plan, schedule and execute force deployment operations.  These force

deployments are characterized by the following main components:

� The military units, consisting of personnel and equipment, that are deploying,

their current location, availability dates and their final destination;

� The selection of transportation ports (air, rail and sea) through which the units

will travel;

� The selection of available transportation assets (planes, trains, and ships) on

which the units will move.

Each component is a dynamic element in the overall force deployment problem.  Unit

availability dates may change as a result of unforeseen maintenance setbacks;

maintenance issues as well as many others also affect port capabilities and available

transportation assets.  Each component also impacts the other components.  The final

destination affects port selection; choices are reduced to ports in or near the target area.
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Port selection influences the selection of transportation assets; all ports can not support all

assets.  Airports with short runways or dirt runways can not support the larger aircraft.

Seaports with shallow depth cannot support the larger ships with deeper draft.

Effectively scheduling the deployment of forces is an extremely complex problem.

Given that the above components are dynamic, the force deployment scheduling problem

must be repeatedly solved based on the current situation.  Furthermore, many military

deployments are short-notice contingency and peacekeeping operations (Humanitarian

Relief, etc) which require rapid planning and scheduling.  Force deployment planners

simply do not have the luxury of unlimited time to determine the best means of deploying

a given force to meet the demands of an operational plan.

In addition to providing rapid analysis of ongoing force deployment operations,

the force deployment planners must also provide accurate and time-sensitive analysis in

support of military studies on future force design.  The Army Chief of Staff, General

Shinseki, plans to transform the Army into a lighter force capable of deploying one

division any where in the world in five days, and five divisions in 30 days.  The Airforce

maintains that with its current structure and cargo aircraft, these goals are impossible to

meet.  Their inventory of aircraft must change to support the changing structure of the

military forces.  While the actual product development timeline might be quite long (up

to at least 10 years), money must be committed now to see the results 10 years from now.

Significant amounts of money are committed in the early stages of product development.

Force Deployment Sensitivity analysis is a key tool in the design of future equipment and

cargo carriers.
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Current Military Deployment Planning models are not adequate tools to provide

timely and accurate sensitivity analysis for force deployment planners.  The current

models are cumbersome and difficult to work with, requiring detailed time-phased force

deployment data (TPFDD) to run.  TPFDD is very time consuming to generate; it

involves both operational and logistical planners working in an interactive process.  Both

types of planners require extensive training to effectively generate the required data.

Force deployment planners need a fast, accurate and deployable tool to effectively plan

and provide analysis for a military deployment problem.

1.2  The Military Deployment Problem

The military performs many different missions.  These missions range from humanitarian

relief through peacekeeping to armed conflict.  Different missions require different types

of units.  Medical, engineering and water purification units are needed for humanitarian

relief efforts.  Military police and infantry are used in peacekeeping missions.  Finally,

depending on the size and scale of the armed conflict, either a partial or total mobilization

of forces is required.

Each military unit has a unique collection of equipment that enables them to

conduct their unit mission in any type of environment; each piece of unit equipment has

specific characteristics such as weight, length, width and height.  The collection of units

selected for a specific deployment has become known as the “deployment package”.  The

units within the deployment package are each given a specific required delivery date (due

date) and final destination.  Defining these additional aspects of the unit equipment
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transforms the deployment package into a movement requirement.  The movement

requirement determines several aspects of the military deployment problem.  This

requirement identifies the number of pieces of equipment to be moved, the type of

equipment, the origin (current location) and destination of the equipment as well as when

it must be delivered.

Once the movement requirement has been determined, the deployment planner

must now focus on the port facilities that will be utilized during the deployment process.

First, the need for intermediate ports (transshipment nodes) must be established; a plane

can only fly so far before it must land.  In addition, if a particular route employs different

modes of transportation, i.e. rail and shipping, the modal change occurs at a

transshipment node.  The origin ports, final destination ports, and any selected

transshipment sites become the nodes in the deployment network with an associated

(geographical) distance between them.  Each port has its own characteristics associated

with it.  Sea ports are characterized by the number of berths, the material handling

equipment available to move, lift and load containers onto the ship, the stevedore crews

available, the depth of the harbor area, etc.  Similar details, as well as the number of

runways available, the runway length, surface material and the MOG characterize

airports.  MOG refers to the Maximum-on-Ground capacity of an airport - the maximum

number of aircraft allowed in the operational area of the port at any one time.  The

number of switching tracks available, the number of loading ramps, and the size of the

rail system characterize rail ports (depots).  All of these characteristics impact the port
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cargo throughput capacity, the amount of cargo that can be processed through the port

complex and loaded on to an awaiting transportation asset in a given time period.

Once all the ports in the network are finalized, the arcs must be “capacitated” by

assigning the transportation assets to them.  All transportation assets (ships, planes and

trains) are limited resources that must be judiciously allocated to each ongoing mission.

Each transportation asset is also characterized by several factors:  weight capacity,

volume capacity, area capacity, door size, speed of travel, amount of time required to load

(equipment onto said asset), unload, and perform maintenance, etc.  The allocation of

transportation assets to each arc in the network will have a significant impact on the total

amount of time required for the last unit to arrive, unload and clear the final destination

port.  This total amount of time is called the “deployment horizon” or deployment closure

time.

The deployment planner allocates the transportation assets to the routes or the

network arcs with the goal of minimizing the deployment closure time.  The asset – route

allocation usually changes over time.  As the majority of the movement requirement

moves towards the final destination, so do the transportation assets.  This type of

allocation, a dynamic asset – route allocation, establishes a dynamic deployment network.

An asset – route allocation that remains fixed over time, a static allocation, establishes a

static deployment network.  The asset – route allocation, dynamic or static, completes the

definition of the deployment network:  the origin nodes, transshipment nodes, and the

final destination nodes, and the capacities of each arc linking the nodes.  Once the

deployment network has been established, the next phase in the deployment problem is to
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determine the schedule of equipment onto the transportation assets that will minimize the

maximum lateness of any piece of equipment.

Thus, the deployment problem is really a series of two interrelated combinatorial

problems.  First, the deployment planner must determine the optimal allocation of

available transportation assets to each leg of a deployment network (defined as the set of

origin, intermediate, and final destination nodes) which will minimize the deployment

closure time.  Next, given the established deployment network, the planner must

determine the optimal assignment of equipment to routes that will minimize the

maximum lateness of any piece of equipment.

1.3  Research Objectives

There are 4 distinct objectives of this research.  The first objective is met in the

last major section of Chapter 3.  In this chapter, a key deployment analysis tool will be

discussed, the Deployment Analysis Network Tool Enhanced (DANTE).  DANTE

models the military deployment problem as a multiperiod minimum cost network flow

problem.  DANTE aggregates all movement requirements into a total weight requirement

(disregarding equipment volume and area specifications and transport asset volume and

area limitations), it also aggregates port facilities and transportation assets to represent

combined capabilities according to a fixed network structure.  DANTE establishes a

lower bound for the deployment horizon, � �maxCLB , for a fixed transportation network

and specified movement requirement.  This chapter’s last section presents a proof that

DANTE’s minimum cost objective function does minimize the deployment closure time.
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This proof establishes DANTE as an effective tool for determining the lower bound for

the deployment closure time, LB(Cmax), or the deployment completion time.  DANTE

forms the basis for a new lower bound tool developed later in this research.

The second objective is met in the last section of Chapter 4.  In this chapter, the

DANTE network flow model is evolved into a multicommodity, multiperiod network

flow model.  The total movement requirement is broken down into multiple commodity

packages.  This simple modification provides the deployment planner with the capability

to track the movement of individual commodities through the deployment network; it also

allows the planner to determine when the individual commodities arrive at the final

destination.  This chapter’s last section details an iterative method to establish the lower

bound for the maximum lateness, LB(Lmax), of the deployment package.

The third objective is met in the last major section of Chapter 5.  In this chapter, a

new deployment planning tool, the Deployment Scheduling Analysis Tool (DSAT), is

introduced.  This tool is designed to create deployment schedules that meet delivery date

requirements of a specified deployment package.  Key heuristics and procedures of this

tool are presented in detail.  Modifications are made to DSAT’s scheduling routine to

improve performance.  The last section describes an experiment conducted to determine

the DSAT scheduling routine that yields the best results.  The tool’s improvements are

defined in terms of the reduction of deployment closure time and maximum lateness and

the increase in computer run time required to achieve these results.

The fourth objective is met in Chapter 6.  This chapter details an evaluation of the

effectiveness of DSAT’s generated deployment schedules.  The DSAT deployment
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schedules are first analyzed to determine how effectively the transportation assets are

utilized throughout the deployment.  Effective asset utilization is based on how well an

asset's multiple capacities (weight, volume or area) are filled during each mission the

asset executes.  DSAT’s asset utilization is compared to accepted asset utilization

planning factors.  Next, DSAT’s schedule, in terms of deployment closure time (Cmax)

and maximum lateness of the deployment package (Lmax) is compared to the lower

bounds for both Cmax and Lmax.
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Chapter 2

Literature Review

2.1  Military Deployment Tools

There are several deployment tools currently in use today by deployment planners of all

branches (Air Force, Army, Navy, etc).  Most of these tools are service specific in

orientation and application.  Some model all aspects of the deployment process.

2.1.1  Service Specific Tools

The various branches of the Armed Services do have good models and tools for planning

and analyzing specific aspects of the overall deployment problem.  These tools are all

powerful aids but are limited to a small portion of the overall deployment problem.

The Air Force schedules both peacetime and wartime airlift operations.  Their

various tools include the Air Mobility Command Deployment Analysis System (ADANS)

[25] which enables the Air Force to perform airlift scheduling operations on various

scopes from large scale planning to detailed monitoring and execution of a current

mission.  Rappoport, et al [28], developed a new approach to assigning and scheduling

aircraft.  While most analyses addressed aircraft assignment as a plane minimization

problem because of the limitations on available aircraft, they addressed the problem as an
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aircraft load maximization problem.  They developed a heuristic for prioritizing the

requirements for loading; their goal seeks to utilize each aircraft more fully.  Solanki, et al

[32], developed an execution planning algorithm that could be used daily to modify the

existing airlift operations plan.  An algorithm based on the insertion heuristic was

selected for implementation due to its computational feasibility and its capability to

absorb complex constraints arising in the execution planning problem.  The insertion

heuristic has the additional desirable feature of keeping intact as much of the existing

schedule as possible.  Rathi, et al [29], presents mathematical models for analysis of the

airlift deployment problem, which involves the allocation of a limited number of aircraft

towards the shipment of cargo and personnel between many origins and destinations

within prescribed time windows.  These formulations attempt to optimally allocate

strategic airlift resources towards the shipment demand (cargo and personnel) such that

the maximum amount of demand is delivered on time using preferred aircraft types.  A

much smaller statement of the problem is achieved in a third formulation by assuming

that lateness is distributed evenly over all routes.  All formulations were modeled by

linear programming formulations and offered a tradeoff between the degree of control to

be exercised by the planner and the speed of computation.

The military also has several decision support tools at its disposal.  The Port

Simulation (PORTSIM) [24] analyzes input data for real-world ports and determines the

port’s throughput capability and any limiting constraints (space available, material

handling equipment, etc).  The Transportation Analysis Reports Generator (TARGET)

[23] provides detailed equipment listings for Army units and estimates the transportation
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asset requirements to move various groupings of units.  The Department of Army

Movements Management System (DAMMS) [26] provides the military with worldwide

automated cargo tracking capability.  The Mobilization Movement Control Automated

Support System (MASS) [26] provides planning and control systems for the highway

convoy of military units to their deployment ports of embarkation.

2.1.2  Multi-Mode Tools

There are currently very few software packages in use to assist in planning a military

deployment utilizing all available resources.  One of these, the Joint Flow and Analysis

System for Transportation (JFAST) [24] was developed by the Oak Ridge National

Laboratories to support the United States Transportation Command (USTRANSCOM).

JFAST is a simulation program that provides detailed estimates for strategic force

movement by air and sealift assets.  Deployment planners use JFAST to estimate unit

closure dates (time for entire unit to reach final destination).  Unfortunately, JFAST

requires a very rigid input structure, which requires a great deal of time to prepare.  This

input requirement makes JFAST both a very difficult and an extremely time consuming

program to operate.  Because of these operational characteristics, JFAST is not a good

tool for sensitivity analysis.

The Deployment Analysis Network Tool Enhanced (DANTE) [17] provides a

sensitivity analysis tool for studying large-scale deployment scenarios.  DANTE models

the “flow” of troops and equipment from Air- and Sea-Ports of Embarkation (APOE,

SPOE), through air and sea movement corridors to Air- and Sea-Ports of Debarkation
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(APOD, SPOD), then through forward transportation corridors (air, road, rail or inland

waterways) to the final assembly area.  The process is modeled as a time-phased network

flow problem with the objective of minimizing the deployment closure time.  The model

is optimized using an Out-of-Kilter algorithm.  The Transportation Engineering Agency

of the Military Traffic Management Command, MTMC_TEA, validated DANTE against

the Joint Flow and Analysis System for Transportation (JFAST).  A number of varying

scenarios were modeled using both tools.  The results from both analyses were consistent.

However, DANTE provides analysis for an aggregate tonnage requirement; it does not

deal with equipment/asset compatibility issues.  Individual port capacities are also

aggregated into a general geographical representative port.  DANTE reduces all

deployment scenarios to a general network structure utilizing notional representative port

facilities and assets.  DANTE lacks the detail necessary  to create a unit deployment

schedule.

In addition, DANTE does not take into account the possibility of reallocating

transportation assets to routes over time.  To alleviate this shortfall, Trainor [34]

developed the Dynamic Transportation Asset Allocation Model.  This model incorporates

asset constraints into a linear programming formulation of a deployment scenario.  These

additional constraints involve integer variables.  Since the resulting integer program is

extremely difficult to quickly solve, the linear programming relaxation is solved.  A post-

processing algorithm is employed to obtain an integer solution.  This dynamic allocation

of assets to routes builds a dynamic deployment network designed to minimize the

deployment closure time.



13

Currently there exists a shortfall of programs that allow users to rapidly perform

accurate deployment planning and sensitivity analysis and retain enough problem

definition to develop an effective unit deployment schedule.

2.2  Network Flow Problems

A large body of previous work exists in this area.  This major area has been divided into

the smaller areas of multiperiod network flow problems, service network design

problems, and multicommodity network flow problems.  Each specific area has it own

unique characteristics and solution methods.

2.2.1  Multiperiod Network Flow Problems

Aronson, et al [1] developed a forward network simplex algorithm for solving

multiperiod network flow problems.  The method exploits the natural decomposition of

multiperiod network problems by limiting its pivoting activity.  A forward algorithm is an

approach to solving dynamic problems by solving successively longer finite subproblems,

terminating when a stopping rule can be invoked or a decision horizon found.

Aronson, J.E., [2] developed a specialized branch-and-bound algorithm for the

multiperiod assignment problem.  The multiperiod assignment problem, a specialization

of the three dimensional assignment problem, is an optimization model that describes the

situation of assigning people to activities or jobs over time.  He considered the most

general case, which has both a cost of assigning a person to an activity in each time

period, and a cost of transferring the person from one activity in each period to another
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activity in the next period.  He formulated the multiperiod assignment problem as a

multicommodity network flow problem.  The special structure of this problem enabled

him to (relatively) quickly find a good feasible solution using the shortest path heuristic

algorithm.  A new branch and bound algorithm for solving this problem was developed.

The computational tests of the algorithm were performed on moderately sized problems

involving up to seven personnel and activities, and up to ten time periods.

2.2.2  Service Network Design Problems

Kim, et al [20] developed and solved a large-scale service network design problem

involving package delivery under various constraints (time windows, limited ground and

air transport fleet, etc).  They strengthened the linear programming relaxation by adding

valid inequalities.  By exploiting the problem structure using a specialized network

representation and applying a series of problem reduction methods, they achieved

dramatic decreases in problem size without compromising the optimality of the model.

One of their reduction techniques involved creating “super commodities”.  A commodity

was defined by origin and destination information for each package.  All packages with

the same origin (or destination) were aggregated into a super commodity.  They

concluded that although state-of-the-art integer programming methods can work well for

relatively small, uncongested service network design problems, they must be used in

concert with heuristics to be effective for large-scale, congested problems encountered in

practice.  One data set representing a complete operation of a real world express package

delivery company resulted in a problem with 151,002 constraints, 1 billion package flow
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variables and 0.3 billion asset and route variables.  After applying their network

reductions, the number of forcing constraints was reduced to 15,355.

Fisher, et al [14] considered the problem in which a fleet of vehicles must be

scheduled to pickup and deliver a set of orders in truckload quantities.  They developed

an algorithm based on a network flow relaxation, which imposes necessary conditions on

the flow of empty vehicles.  The network flow model provides a lower bound and a

nearly feasible solution that can be made feasible with some simple heuristics.  On both

real world scenarios and random problems, the algorithm consistently produces solutions

within 1% of optimality after seconds of computer runtime.  The algorithm constructs the

routes for the vehicles.  The problems based on real data varied from 74 to 87 orders

(number of truckloads to be delivered) using from 33 to 53 (100 available) vehicles.  The

random problems varied from 20 to 100 orders and 15 to 73 vehicles.

Crainic, et al [12] examined the freight transportation problem which occurs when

the same authority controls and plans both the supply of transportation services (modes,

routes, frequencies of the services, and governing policies for terminals) and the routing

of freight.  They developed a general modeling framework, based on a network

optimization model, which could be used to enhance the tactical and strategic planning

process for such a system.  The purpose of the model was not to obtain a detailed

representation of operations, but to generate “best” operating strategies to reduce costs

and delays and to improve the quality of service.  The problem is solved by means of an

algorithm based on decomposition and column generation principles.
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2.2.3  Multicommodity Network Flow Problems

Crainic, et al [11] developed a tabu search procedure for multicommodity

location/allocation problems.  This problem typically arises in the shipping industry

where container depots have to be selected, the assignment of customers to depots has to

be established for each type of container, and the interdepot container traffic has to be

planned to account for differences in supplies and demands in various zones of the

geographical territory serviced by the shipping company.  It is modeled as a mixed integer

program, combining zero-one location variables and a multicommodity network flow

structure.  They use a relaxed formulation of the original problem by fixing the location

variables, yielding an uncapacitated multicommodity network flow problem.  They then

restricted their search procedure to the space of the location variables.

Iakovou, et al [19] consider the strategic level routing problem of hazardous

materials in marine waters over a multicommodity network with multiple origins-

destinations using a network flow model.  A commodity is defined as an origin-

destination pair of nodes.  They worked on selecting the best route for each hazardous

material and commodity couple.  Their objective was to generate the best global strategies

to balance the tradeoffs between the transport costs and the expected total risk costs,

while enforcing an equitable distribution of risk.  They developed an efficient two-phase

solution approach.  The first phase obtains good lower bound and upper bounds for the

problem.  Phase two concentrates on closing the gap between the two bounds.

Lamar, et al [21] worked with uncapacitated multicommodity flows on a fixed

charge network.  The uncapacitated, multicommodity network design problem is modeled
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with aggregate and disaggregate forcing constraints.  (Forcing constraints ensure logical

relationships between the fixed charge-related and the flow-related decision variables.)

Origin and destination nodes define their commodities.  A new lower bound for this

problem – referred to as the capacity improvement (CI) bound – is presented.  A key

feature of the CI lower bound is that it is based on the LP relaxation of the aggregate

version of the problem.  They also demonstrated through a numerical example that the CI

lower bound can converge to the optimal objective function value of the IP formulation.

Assad, A.A, [3] wrote a comprehensive survey of the literature dealing with the

multicommodity flow problem.  He presented various models for the multicommodity

problems, including capacitated and uncapacitated linear multicommodity problems and

nonlinear multicommodity problems.  He also presented solution techniques (and source

references) for both linear and nonlinear flow problems.  The former included

decomposition, partitioning, compact inverse methods, and primal-dual algorithms.  A

variety of feasible directions are presented for the latter.

Crainic, et al [13] presented a branch-and-bound algorithm for the

multicommodity location-allocation problem with balancing requirements.  The

formulation displays a network flow structure that is most favorable to efficient

algorithmic developments due to the presence of the balancing requirements.  In

particular, tight bounds may be efficiently computed by using a reformulation of the weak

relaxation of the problem as a minimum cost multicommodity flow problem.  The

relaxations are actually uncapacitated multicommodity flow problems, which may be

separated into single commodity flow problems.  They also developed and analyzed
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various branching criteria and showed that the branching rules, which form the most

efficient branch-and-bound procedure for the present problem, are quite different from

those used to solve the classical location problems.  The experimentation was conducted

on both randomly generated problems and on a large-scale application.

2.3  Scheduling

This subject area has a wealth of written material.  It is divided into four sub sections:

single machine scheduling, parallel machine scheduling, job shop scheduling and Virtual

Factory scheduling.

2.3.1  Single Machine Scheduling

Baker, et al. [5] dealt with sequencing jobs on a single machine with no preemption to

minimize maximum tardiness.  The static problem assumes all jobs are available at the

same time while the dynamic problem assumes jobs become available over time.  They

present the optimal solution for the static problem; Jackson’s Theorem states that

processing jobs in nondecreasing order of their due dates yields an optimal sequence of

jobs.  They also state that a modification of Jackson’s theorem can be applied to the

dynamic problem if preemption is allowed.  The adaptation is as follows:  1.  At each job

completion, the job with minimum due date among the available jobs is scheduled.  2.  At

each ready time, the due date of the now available job is compared to the due date of the

job currently under process.  The current job is preempted if the new due date is earlier

than the current job’s due date.  They note that the solution in this dynamic preemptive
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situation is easy to construct because the mechanism is a dispatching procedure, which

means that scheduling decisions are made at chronologically ordered points in time.  They

developed a branch and bound technique for the dynamic non-preemptive situation.  They

used four different dispatching procedures to construct an initial solution using the

adapted Jackson’s Theorem.  They presented a short comparison of the different

dispatching procedures on the absolute deviation of the initial solution from the optimal

solution.  Although the paper addresses a specific scheduling criterion, their general

purpose is to illustrate how basic properties of the static problem can effectively be

utilized in solving the dynamic problem.  Their computational results show that problems

with up to 30 jobs can be solved quite rapidly, most of the time.  They proposed relying

on their heuristic methods for larger problems where the branch and bound algorithm

does not converge to an optimal solution quickly enough.

Pinedo [27] authored a book, which summarized scheduling theories and

algorithms for diverse situations including deterministic and stochastic models, and single

and multiple machine models.  His section concerning the minimization of maximum

lateness on a single machine, deterministic model showcases several typical scenarios.

Two scenarios of special concern are well known single machine, no job precedence

scheduling problems.  The first problem assumes that all jobs are available at the same

time.  The second assumes that each job has a defined release date.  He further states that

the optimal job sequence for the first problem is the sequence of jobs scheduled according

to the Earliest Due Date (EDD) rule.  For the second problem, he presents a proof that it

is strongly NP-hard.  This latter problem has received a lot of attention because it appears
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frequently as a subproblem in flow shop and job shop problems.  This attention has

resulted in numerous “relatively effective” branch-and-bound techniques for determining

an optimal sequence of jobs.

Bratley, et al [7], dealt with sequencing with earliest start and due dates with

application to computing bounds for the general job shop problem to minimize the

maximum makespan.  They worked with a single machine scheduling problem that

results from the relaxation of some constraints as follows:  Suppose that a partial

schedule already exists where the earliest start time of the remaining operations are

affected by the earliest finish time of the scheduled jobs.  A strong lower bound may be

obtained by solving the one machine problem for each machine that must process the

remaining jobs.  The one machine problems consists of sequencing the remaining jobs,

each with release time, ri � 0, processing time, pi, on that machine, and additional

processing time, qi, on the other machines.  The qi times do not interfere with each other.

The sequence of jobs must minimize the completion time for all jobs, including the qi’s.

They developed an algorithm that obtains optimal and near optimal solutions for a

relaxed problem and used this method to obtain lower bounds for the general problem.

This technique requires knowledge of job routing prior to scheduling.

McMahon et al. [22] dealt with scheduling on a single machine with earliest start

times and due date constraints to minimize maximum lateness.  They developed an

algorithm for sequencing the jobs.  Their algorithm could be classified as branch and

bound, however, it provides a complete solution with each node of the enumeration tree.

They start with a good initial solution based on a constructive heuristic proposed by
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Schrage, and referenced in Bratley, et al [7].  Schrage’s heuristic is basically to schedule

all available jobs in earliest due date (EDD) order at time index t, update t to the end of

the processing time, and then repeat until all jobs have been scheduled.  This results in a

non-preemptive schedule of jobs.

2.3.2  Parallel Machine Scheduling

Bratley, et al. [6] discussed the scheduling of jobs with release times and due dates on

identical machines.  They minimized the total time to complete all jobs without

preemption.  They presented a multi-stage solution algorithm that is based on an implicit

enumeration procedure and also uses a labeling type algorithm, which solves the problem

when preemption is allowed.  Their problem sizes remain “small”, both in the number of

jobs and machines.  They stated that when the number of jobs and machines is large, the

size of the enumeration tree is very large.  The solution may not be obtained in a

reasonable amount of time on a contemporary computer.  They worked with a maximum

number of 25 jobs.

Horn [18] considered situations in which jobs require only one operation on a

single machine, or on one of a set of identical machines.  Penalty-free interruption is

allowed.  Some simple algorithms are given for finding optimum schedules to minimize

maximum lateness and total delay, for the single-machine case, and maximum lateness

for a restricted multi-machine case.  The general multi-machine case has unique

availability and due dates for each job.  A simple flow problem formulation permits

minimizing maximum lateness for the more general multi-machine case.  The solution to
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the flow problem establishes a feasible schedule for the jobs.  This flow problem was

repeatedly solved in an iterative process developed to establish the maximum lateness in

an optimal schedule.

Baker, et al [4], considered the problem of scheduling n jobs to minimize the total

earliness and tardiness penalty.  They reviewed the literature on this topic, providing a

framework to show how results have been generalized.  They started with a basic model

containing symmetric penalties, one machine and a common due date.  Then they

progressed to more complicated situations by adding parallel machines, complex penalty

functions and distinct due dates.  In their conclusion, they mentioned that the problems

could be described by two classes.  One class involves a common due date for all jobs.

The other class permits distinct due dates.  For the second class, their research indicates

that in general, it appears that only branch and bound techniques have been effective at

solving these problems.

2.3.3  Job Shop Scheduling

Cho, et al [9] studied the problem of obtaining feasible preemptive schedules for

independent jobs with associated release times and due dates in open, flow and job shops.

They showed that for the case of the flow shop (and hence the job shop) determining

whether or not all jobs can be completed by their due dates is NP-Hard.

Schutten [30] defined the term “practical job shops” as job shops with practical

features such as transportation times, simultaneous resource requirements, setup times,

and many minor but important other characteristics.  He further stated that the principle of
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decomposing a classical job shop problem into a series of single-machine problems could

be easily applied to such practical job shops.  He presented several extensions of the

Shifting Bottleneck procedure to accommodate issues such as due dates and release times

of jobs.  The Shifting Bottleneck procedure presupposes known routings prior to

scheduling the jobs.

Brucker, et al [8], developed a new lower bound for the job-shop scheduling

problem.  The lower bound is based on a two-job relaxation, which can be solved

efficiently by using geometric methods.  Results show that the new lower bound improves

the classical lower bound if the ratio between the number of machines and number of jobs

is large.

Conway [10] investigated priority dispatching rules used in job shop scenarios.

According to Conway, a priority rule can be considered to operate by assigning, at the

time a selection must be made from queue, a numerical value called a “priority” to each

of the waiting jobs and then selecting the job with the smallest priority value.  The study

was concerned with the desire to complete the processing of all jobs before their due

dates.  The investigation considered both the various methods that might be used to

assign due dates and the various priority rules that might be used to meet the dates

assigned.  The shop scenario considered consisted of nine machine groups, each with a

single machine.  All machines were continuously available.  The job routings were known

in advance.  Based on their results, they concluded that if the due dates are assigned by

some external agency (outside of the job shop environment), then none of the standard

and obvious priority rules’ performance is particularly noteworthy.  Overall, he concluded
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that the shortest processing time priority rule exhibited the best performance of all rules

tested.

2.3.4  Virtual Factory Scheduling

Hodgson, et al [15] demonstrated that a conceptually simple simulation-based procedure

(first proposed by Lawrence and Morton, 1986) is both effective and efficient in

providing optimal or near optimal schedules for minimizing the maximum lateness (Lmax)

in large job shops.  This simulation became known as the Virtual Factory.  They noted

that in general, the Virtual Factory appeared to perform better on larger problems.  This

paper presented a lower bound for Lmax, LB(Lmax), by decomposing the m machine job

shop into m single machine problems.  The single machine lower bound for machine m,

LBm(Lmax), based on work done by Carlier and Pinson, was computed for each of the m

machines.  The overall lower bound for the job shop problem is the maximum lower

bound for all m single machines:  � � � �� �maxmax max LLBLLB m
m

� .  One major assumption

in the Virtual Factory procedure is that all routes for jobs are known in advance.

Hodgson, et al [16] improved the simulation procedure by identifying the critical

jobs (those jobs that were among the latest) and inserting “idle time” into a machine

schedule just prior to the arrival of a critical job to that machine.  This ensures that no

critical jobs are delayed due to noncritical jobs currently under process.

Weintraub, et al [35] developed a tabu search procedure for the Virtual Factory

that identified process plans with alternative operations and routings for jobs.  This

enhancement yielded improved schedules that minimized manufacturing costs while still
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satisfying job due dates.  The findings of this research had several important implications.

First, there are significant differences in schedule performance between scheduling with

and without alternatives.  Second, allowing alternatives can greatly increase the ability to

satisfy due dates under various shop floor conditions.

Thoney, et al. [33] developed a simulation technique for scheduling a multi-

factory job shop, which included inter-factory transportation (with transportation assets

treated as batch processors).  She modified the Virtual Factory to demonstrate its

applicability to a variety of problems, including the Military Deployment Problem.  The

parallel between the job shop scenario and the military deployment scenarios is

demonstrated as follows:  Each piece of unit equipment is a job.  The ports through which

the cargo (unit equipment) moves are factories through which jobs must process.  Cargo,

at various ports in the deployment network, is loaded and unloaded on different types of

transportation assets.  The transportation assets are batch processors moving jobs between

factories.  The batch processing time is the summation of the load, travel and unload

times for each type of asset.  Further modifications allowed the Virtual Factory to develop

alternate routes for the unit equipment.  This ensured that unit equipment was equitably

balanced between the various routes; which in turn ensured that no transportation

resources were idle while others were in constant use.  She demonstrated an iterative

technique to establish a lower bound for the maximum lateness using a linear program

relaxation of a network flow model.  This technique is based on work presented by Horn

[18].  It involved establishing a feasible flow schedule with an established maximum

lateness.  The established or “accepted” maximum lateness was reduced by one and the
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LP was resolved.  The first infeasible flow established the lower bound for a feasible

maximum lateness.
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Chapter 3

The Military Deployment Problem and DANTE

The Military Deployment Problem is a very complex problem with two interrelated parts.

The first part of the problem is to determine the allocation of transportation assets to

routes over time that minimizes the total time for all cargo to reach the final destination.

In other words, assign assets to minimize the deployment horizon or closure time.  The

transportation asset – route allocation can be classified as either static (allocation remains

constant for duration of the deployment) or dynamic (allocation changes during the

deployment process).  The type of allocation in turn determines the type of network; a

dynamic deployment network has a dynamic asset – route allocation.  Once the initial

problem has been solved and the transportation assets are subsequently assigned, the

deployment network is finalized and the first part of the problem is completed.  For this

research, port operating characteristics remain fixed over time and the network is a static

deployment network.

The DANTE tool developed by Hodgson et, al [17] was designed to provide a

lower bound on the time needed to deliver a given deployment package to the theater of

operations ( )( maxCLB ) using a static deployment network.  This tool is so quick and

easy to use that the deployment planner can perform effective sensitivity analysis

concerning the impact of the transportation asset composition and assignment on the
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deployment closure time.  The basic assumptions and structure of the DANTE network is

developed in detail.  Then a proof is given that shows that the minimum cost objective

function formulation used by DANTE minimizes the deployment closure time.

3.1  The Deployment Analysis Network Tool Enhanced, DANTE

DANTE models any military deployment scenario on a predetermined and generalized

deployment network.  It performs network flow analysis to provide a lower bound on the

total amount of time needed to transport the deployment package to the final destination,

LB(Cmax).  The fundamental network structure of DANTE is depicted in Figure 3.1.

Figure 3.1  DANTE’s Fundamental Network Structure

The acronym CONUS refers to the Continental United States.  Although multiple

forts as well as airports and seaports exist within CONUS, DANTE aggregates all forts,
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airports and seaports into one fort, airport and seaport.  This facility aggregation also

occurs within the strategic lift and theater portion of the network.  The facility

aggregation is a major simplifying assumption DANTE employs which creates an

extremely generalized network structure that can represent all deployment scenarios.

Another simplifying assumption in DANTE is the aggregation of all unit equipment.  The

equipment for all deploying units is consolidated into one equipment list.  Furthermore,

the equipment characteristics of area and volume are completely ignored.  Instead, the

equipment is represented as a total weight requirement to be shipped.  The equipment is

flowed through the network via several possible routes.  The equipment departs CONUS

through the aerial and/or seaport of embarkation (APOE, SPOE).  This equipment can

either go directly to the Theater ports of debarkation (APODs) or through strategic ports

(APODs, SPODs) with further movement to the Theater Staging Area.

The various nodes of the model (air and seaports) are limited in their capacity to

process equipment.  These limited capacities are the actual (or assumed) capacities of the

facilities to be utilized and are expressed as STONs/day.  The various transportation

routes (air, land and sea) are also limited in their capacities.  These limitations are a

function of the specific assets available (number of and type of aircraft, ships, etc.) and

the distances involved.  Because of capacity limitations, material may be delayed

(queued) at certain points in the network (port nodes).  Also, the flow of material within

the transportation links of the model is delayed by the length of time associated with the

particular link (i.e., flight time, shipping time, etc.).  Although the network depiction in
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Figure 3.1 appears fairly simplistic, the actual network structure employed by DANTE is

quite a bit more complicated.

DANTE represents time in discrete six-hour segments.  Consider the network in

Figure 3.1.  This network structure is represented for each time period, with periods

stacked one on top of another.  Figure 3.2 shows a partial view of this network.  This

stacked network displays movement through time as well as space; a plane, leaving the

CONUS APOE at time 0 (node 4, level 1) and taking 12 hours to reach the strategic

APOD, reaches that node at time 2 (node 7, level 3).  For each possible transportation

passage, there is an arc connecting the nodes and spanning time.

Figure 3.2  Partial Stacked DANTE Network
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As mentioned previously, the model is capacitated at a number of points.  All

queuing arcs have infinite capacity because it is assumed that cargo storage space is

unlimited.  The port limitations are modeled by splitting each port into an arrival node

and a departure node.  A capacitated arc connecting the nodes of a particular port

represents the port capacity.  This capacity is expressed as an amount of short tons

(STONs) per period and is a simple input parameter for the tool.  The capacities of the

transportation links (air and sealifts) are computed from other input data.  Each link

requires specific input data, such as the number of different types of assets operating on

that link, the number of each type of asset, the travel speed, cargo carrying capacity (in

STONs), the amount of time required to load and unload the asset, and the distance that

asset will travel.  For example, the capacity of the strategic air link (arc 4-7) for C17s

would be computed using the following formula:

� �� �1717*2
)17)(17(#

17 CunloadtimeloadtimeCspeedC17stanceStratAirDi
capacityCCpStratAirCa C

��

�

This formula computes the period carrying capacity of the arc and is expressed in STONs

per period.  Note that the asset’s one way travel time is simply the distance divided by the

speed of the asset.  The arc’s period capacity, however, uses the asset’s round trip travel

time in addition to the time spent loading and unloading the asset.  This total time

represents the amount of time required for the asset to return to its origin port, thus

becoming available to carry new cargo.  The asset is assumed to return empty or deadhead

back; the return trip serves to degrade the capacity of the link.  All travel time
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calculations are rounded off to integer amounts.  Using the network structure shown in

Figure 3.2, DANTE’s network flow model is developed in the next section.

3.2  DANTE’s Network Flow Model

The problem of determining the flow of equipment through a fixed deployment network

in order to minimize the deployment closure time can be mathematically represented by

using a multiperiod minimum cost network flow model.  Nodes, arcs and time periods

characterize the network depiction of the deployment model illustrated in Figure 3.2.

Unit equipment (required flow) enters the network at time 0 (level 1 or period 1) at the

origin airport and flows through the network depending on the capacity of each arc.  All

unit equipment is assumed to be available at the same time.  The total deployment

window, T, is broken into discrete time periods, t, of equal length representing a six-hour

time span.  T is an estimate of the total amount of time required for the delivery of the

complete deployment package.  The airports are the nodes of the network while the arcs

connecting the nodes represent the movement of all cargo between ports.  Note that two

movement arcs leave node 4 in each period.  This represents the two routes to which

C17s and C5s are assigned to fly from the CONUS airport to the strategic airport.  The

capacity of a movement arc depends on the type and number of planes assigned to the arc

and the distance involved.  An additional terminal or sink node in each period connected

by an arc from the departure node of the final airport closes the network.  Flow across this

arc represents equipment arrival at the staging area.  At the end of the deployment time

window, all nodes are connected to the sink node by overflow arcs.  These are needed to
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ensure all cargo can reach the sink node.  If any of the overflow arcs have a positive flow,

the specified deployment time window, T, is too narrow given the number of planes

available and the movement requirement.  These overflow arcs are needed to maintain

feasibility of the mathematical model.

The classic form of the multiperiod minimum cost network flow problem,

MMCNFP, (Aronson and Chen [1]) is as follows:

Let N(t) be the set of nodes in period t, t = 1, …, T.  A node is represented as the

two-tuple (i,t) � N(t), where i is the node number, for i = 1, …, n(t), and t is the time

period.  In most models, the node sets do not change from one time period to the next.

Let A(t) be the set of arcs which have their origin nodes (i,t) in N(t), i.e., in period

t.  An arc is represented by the two-tuple of nodes, � � � �� �',,, tjti  � A(t), where � �', tj  is not

defined for 't  > T.

Let )()( tNtNi �
�  denote the set of nodes � �', tj  � N( 't ) for which arc

� � � �� �',,, tjti  � A(t), i.e., the set of nodes which have arcs pointing away from node (i,t).

Let )()( tNtNi �
� denote the set of nodes � �', tj  � N( 't ) for which arc � � � �� �titj ,,',  �

A( 't ), i.e., the set of nodes which have arcs pointing towards node (i,t).

Let itr  be the requirement of node (i,t).  The unit cost and flow capacity for arc

� � � �� �',,, tjti  are 'itjtc and 'itjtu  respectively.  The MMCNFP may be stated as follows:
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where 'itjtx  = amount of flow sent from node (i,t) to node (j,t’)

The choice of the length of the deployment window, T, is critical because it

directly affects the number of decision variables in the problem.  For example, if the

deployment window is 50 days and the time period length is six hours, the number of

time periods is 200.  Using the network represented in Figure 3.2, there will be 200 arcs

alone from node 13 to the sink node over which the amount of flow must be determined.

In general, there is an arc for each time period for all connected nodes in the network.

Trainor [34] developed the following linear programming (LP) formulation of

DANTE.  The subscripts for the decision variables (the amount of flow to send over an

arc) specify the origin node i and the destination node j of an arc and the time periods

over which the arc spans.  The decision variable is:

� )( ptitjW
�

, the amount of flow, in STONs, that leaves node i in period t and

arrives at node j in period t+p, for all Sptitj �� )( .  S is the set of connected

arcs for all i and j, and p represents the transit time from i to j.  On movement

arcs, these variables include a subscript a indicating the type asset that moves

the cargo.  Specifically, )( ptaitjW
�

 is the amount of flow transiting a
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movement arc for all a and Pptitj �� )( , where P is the set of movement

arcs.  SP �

A primary concern of deployment planners is the time to close the deploying force

on the final destination.  The objective of this LP formulation of DANTE is a function of

time.  Specifically, the objective is to minimize the time for all equipment to flow through

the network given the constraints specified.  To do this, an increasing (with time) cost is

assigned to the flows along the arcs from the departure node of the final destination

port(s) to the sink node.  In Figure 3.2, this is the arc from node 13 to the staging area

(sink) in each time period.  Flows on overflow arcs, as represented in Figure 3.2, are

assigned a significantly larger cost to make these arcs undesirable.  The flows over all

other arcs have zero cost.  This results in the following objective function:

� �
��
�

�

�

��
�

�

�

�
�

�

�

�
�

�

�
� ��

�� OVitjt
itjt

FDitjt
itjt WWtMinimize *1000* 

where FD is the set of all arcs, excluding overflow arcs, connected to the sink node; i.e.,

FD is the set of arcs connected to the final destination within the specified deployment

window (T).  OV is the set of all overflow arcs connected to the sink node; the set of arcs

which reach the final destination outside of the deployment window.  If the length of the

deployment window is too short for the established movement requirement then flow

values on the overflow arcs will be positive.  The deployment planner will not get a valid

estimate of the total time required to close the deployment package.  In this case, the

length of the deployment window would be extended until all flow occurred on the set of

arcs in FD.  All further discussion is based on the assumption that the deployment
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window length is of suitable duration for the established network and movement

requirement.  The objective function is therefore simplified to the following:

�
�

�

�

�
�

�

�

�
�FDitjt

itjtWtMinimize *                                                  (3.1)

The objective function is linear with respect to the decision variables.

The constraint set is primarily defined by two types of equations.  The first is a

node balance equation for each node for each time period.  These equations are of the

form “Flow Out – Flow In = 0”.  For example, consider node 7 from Figure 3.2, the

strategic Airbase arrival node.  The flows in/out of node 7 are depicted in Figure 3.3.

Figure 3.3  Example Node Flows

The flows into node 7 include cargo queued in the previous period, ttW 7)1(7 �
, and cargo

brought by C5s, ttCW 7)2(54 �
, and C17s, ttCW 7)1(174 �

.  In this example, the time required

to move cargo from node 4 to node 7 is two periods for a C5 or one period for a C17.

7

)1(77 �ttW

ttW 87

ttW 7)1(7 �

ttCW 7)2(54 �

ttCW 7)1(174 �
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This cargo movement time includes the one way travel time of the asset (based on

distance and asset speed) and the times to load and unload the asset.  The flows out of

node 7 include cargo that will be put on planes leaving the strategic airport for the theater

airport, ttW 87 , and cargo that is queued to the subsequent period, )1(77 �ttW .  The flow

balance equation for this node is:

.07)2(547)1(1747)1(787)1(77 �����
���� ttCttCtttttt WWWWW

The general format of each of the node balance equations is developed next.  The

movement requirements are flows into an origin port arrival node in the time period that

equipment first becomes available to move.  The node balance constraints corresponding

to these requirements are:

DitCARGOWW ititjttiti ����
�

,)1(                                          (3.2)

where D is the set of origin port arrival nodes in a given time period at which the

movement requirements ( itCARGO ) first become available for movement (D represents

the set of origin port arrival nodes).

The following equation pertains to all nodes that are not origin port arrival nodes.

Node (i,t) is the current point and time of reference.  The general form of the node

balance constraint is:

0)()( �� ��
�

�

�

�

ii Oo
itpto

Jj
ptitj WW , Dit��                              (3.3)

where iJ  is the set of all destination nodes for i, and iO  is the set of origin nodes for i.
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The second type of equation models the capacity restrictions for the different

types of arcs.  Each arc has a fixed capacity; the total flow on that arc can not exceed the

arc’s capacity.  The general form of the arc capacity limitation constraint is:

)()(0 ptitjptitj UW
��

��

for each arc, where )( ptitjU
�

is the upper bound.  The ability to store cargo at each port is

assumed to be infinite but can be constrained without loss.  Hence there is no upper

bound constraint on the flows on cargo queuing arcs.  All ports have a throughput

capacity limitation modeled as:

and  , tTPW ijitjt �� Rij �                                          (3.4)

where ijTP is the period throughput capacity of the port (fixed for all t) represented by arc

ij and R is the set of arcs that represent ports.  The throughput capacity is a function of the

port’s MOG, the largest asset able to transit through the port and the asset load time; it is

computed as:

timeloadasset
capacityAssetMOGTPij
 *

�

The upper bound on a movement arc capacity, aijCAP , is a function of the type of asset,

the number of assets allocated to the arc and the asset return time.  The asset return time

includes the asset load and unload times as well as twice the asset movement time.  An

example of the movement arc capacity computation was presented in section 3.1.  The

cargo movement constraint is modeled as:

aijptaitj CAPW �
� )( , Pptitjta ��� )( and ,                         (3.5)
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where a is the type of transportation asset, aijCAP  is the period weight capacity (in

STONs) for the combined assets of type a operating on that arc and P is the set of

movement arcs.  The formulation includes an arc constraint for each port and each asset

in each time period.

To insure that all required flow gets through the model, the following constraint is

added:

��
���

�
�

Dit
it

FDptitj
ptitj CARGOW

)(
)(                                  (3.6)

where FD is the set of all arcs connected to the sink node within the deployment window.

The complete LP formulation (problem DANTE), with accompanying equation

numbers, is summarized next.

Problem DANTE

�
�

�

�

�
�

�

�

�
�FDitjt

itjtWtMinimize * (3.1)

Subject to:  DitCARGOWW ititjttitj ����
�

,)1( (3.2)

0)()( �� ��
�

�

�

�

ii Oo
itpto

Jj
ptitj WW , Dit�� (3.3)

and  , tTPW ijitjt �� Rij � (3.4)

aijptaitj CAPW �
� )( , Pija ��  and , (3.5)
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tijW ptitj  and  ,0)( ��
�

 (3.7)

where

� FD  is the set of all arcs, excluding overflow arcs, connected to the sink node;

� D is the set of arrival port nodes, in a given time period, at which the

movement requirements ( itCARGO ) first become available for movement;

� p is the transit time between nodes;

� iJ  is the set of destination nodes for node i;

� iO  is the set of origin nodes for node i;

� ijTP is the period throughput capacity of the port represented by arc ij;

� R is the set of arcs that represent ports;

� aijCAP is the period weight capacity (in STONs) of the combined type a

transportation assets operating on the assigned route;

� P is the set of movement arcs;

� T is the deployment window of sufficient length.

3.3  DANTE Minimizes Deployment Closure Time

DANTE’s problem formulation, although presented as a multiperiod minimum cost

network flow model, does minimize the amount of time used to deliver the total

movement requirement to the staging area.  In other words, DANTE minimizes the

deployment closure time.  The proof of this statement is presented in the following

sections.
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3.3.1  Background

To be able to prove that DANTE minimizes deployment closure time, we must first

present some new definitions and observations.  Three new network structures are defined

and illustrated.  A relationship between the DANTE network, as defined in section 3.2

and one of the new networks will be shown to exist.

3.3.1.1  Definitions and Observations

Define the Period Closure Capacity of the network as the total flow capable of crossing

the arcs connected to the sink node (Final Destination) in a given period.  The set of arcs

connected to the sink node are the closure arcs.  Portions of the total movement

requirement become “available” to close after they arrive at the departure node of the

final destination port.  If flow is available to close at time t, then that flow, unless

“closed” or delivered to the sink, remains available to close at the next time period.

Let an Original Network be a 2 dimensional picture of the deployment scenario

containing all bases and routes from one base to another involved in the deployment

scenario.  An example Original Network is presented in Figure 3.4.
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Figure 3.4  Example Original Network

Define a Modified Network to be the same as the Original Network with two

modifications.  The first is that each port is replaced by two nodes with an arc connecting

them of capacity equal to the period throughput as defined in the DANTE Model, section

3.2.  The second is that the capacity of all other arcs is equal to the capacity of

corresponding arcs in the DANTE Model.  An example of the Modified Network is

depicted in Figure 3.5.  The Fort APOE is represented by nodes F1 and F2 and the port

throughput capacity by the connecting arc with capacity Fthru.  Similarly, the Strategic

APOD is represented by nodes S1 and S2 and the capacitated connecting arc Sthru, while

the Theater APOD is represented by nodes Th1 and Th2 and the capacitated connecting

arc Ththru.  The movement arcs between ports and their capacities are identified by the

asset type (C17, C5, or C130) and the nodes between which the asset operates.

Strategic
APOD

C17 route

C17 route

C5 route

C5 route

C130 route

Fort APOE
Theater
APOD
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Figure 3.5  Example Modified Network

This modified network has several parameters associated with it; these parameters are as

defined in Table 3.1.

Table 3.1  Modified Network Parameters
Parameter Definition

N total number of distinct paths from an origin node to the destination (a path
is distinct if it contains at least one arc that is different from another path)

Pi path i where the paths have been sorted in increasing order of the time it
takes to get from its origin to the destination.

L(Pi) time, in periods, path i takes to get from its origin to the destination.
M(S) the maximum flow solution to the modified network when only the paths in

S are included in the network.

There are four distinct paths from the origin to the destination in Figure 3.5.  Suppose that

paths 1, 2, 3 and 4 take, respectively, 2, 3, 4 and 5 time periods to reach the destination.

CapC5F2Th1

F2 S1 S2 Th1 Th2
Fthru Sthru Ththru

CapC17F2Th1

CapC17F2S1

CapC5F2S1

CapC130S2Th1

F1
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Figures 3.6 through 3.9 are Modified Networks in which only certain paths are included.

For ease of reading, the arc capacities have been omitted.

Figure 3.6  Modified Network With Only Path 1 Included

Figure 3.7  Modified Network With Only Paths 1 and 2 Included

Figure 3.8  Modified Network With Only Paths 1, 2, and 3 Included

Figure 3.9  Modified Network With All Paths Included

P1P1, P2

F1 F2 S1 S2 Th1 Th2

P2

P1, P2

P3

P2
F1 F2 S1 S2 Th1 Th2

P1

P1, P2, P3P3

P1, P2, P3
P3

F1 F2 S1 S2 Th1 Th2

P1

P1
P1

F1 F2 S1 S2 Th1 Th2

P3

P4 P2

P1
P1, P2, P3, P4P3, P4P1, P2, P3, P4 P3, P4
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Define a Modified DANTE network to be a DANTE network in which the

capacity of all queuing arcs is set equal to zero except those at the origin(s).  Then,

Figures 3.10 though 3.13 show the Modified DANTE network based on the Original

Network (as depicted in Figure 3.4) for different lengths of the deployment window.

F1 F2 S1 S2 Th1 Th2

P1

F1 F2 S1 S2 Th1 Th2

F1 F2 S1 S2 Th1 Th2

P1

0

1

2

Figure 3.10  Modified DANTE Network from Time 0 to 2

F1 F2 S1 S2 Th1 Th2

P1

F1 F2 S1 S2 Th1 Th2

F1 F2 S1 S2 Th1 Th2

F1 F2 S1 S2 Th1 Th2

P1

P1,P2

P1

P2

0

1

2

3

Figure 3.11  Modified DANTE Network from Time 0 to 3
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F1 F2 S1 S2 Th1 Th1

P1

F1 F2 S1 S2 Th1 Th2

F1 F2 S1 S2 Th1 Th2

F1 F2 S1 S2 Th1 Th2

F1 F2 S1 S2 Th1 Th2

P1

P1

P1

P2

P1,P2

P2

P3

P3

P1,P2 ,P3

0

1

2

3

4

Figure 3.12  Modified DANTE Network from Time 0 to 4

F1 F2 S1 S2 Th1 Th2

P 1

F1 F2 S1 S2 Th1 Th2
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P3

P 3

P1,P 2 ,P 3

F1 F2 S1 S2 Th1 Th2

P2

P 1

P3

P3,P 4

P 1 ,P 2 ,P 3,P 4
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4

5

P 4

Figure 3.13  Modified DANTE Network from Time 0 to 5
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As seen in Figures 3.10 through 3.13, the Modified DANTE network “evolves” over time

as paths reach the final destination, until all paths are able to reach that point.

Observe that the Modified DANTE network is essentially an alternate

representation of the series of Modified Networks (figures 3.6 through 3.9) where the

origins of the Modified Network are connected by queuing arcs.  For example, in Figure

3.10, the only path to the destination is the same as depicted in Figure 3.6.  Also, in

Figure 3.11, the only path that reaches the destination at time 2 is the same as that shown

in Figure 3.6, and the only paths that reach the destination at time 3 are the same ones

seen in Figure 3.7.  The same pattern is evidenced in Figures 3.12 and 3.13.

The evolutionary process of the Modified DANTE network yields different

maximum flow solutions at different points in time, based on the specific time interval.

These maximum flow solutions are identified in the Table 3.2.

Table 3.2  Modified DANTE Network Maximum Flow Solutions
Time Period Intervals Maximum Flow Solution For

Each Period
[ 0, L(P1) ) 0

[ L(P1), L(P2) ) M(P1)
[ L(P2), L(P3) ) M(P1, P2)

� �

[ L(PN-1), L(PN) ) M(P1, P2, …, PN-1)
[ L(PN), � ) M(P1, P2, …, PN)

Observe that the DANTE network only differs from the Modified DANTE

network through the inclusion of several connecting arcs of infinite capacity.  The

additional arcs are queuing arcs connecting port arrival nodes at successive times, and
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arcs connecting the departure nodes of the final destination ports to the sink node.  These

arcs of infinite capacity provide no restrictions to the period closure capacity of the

network.  The obvious assertion is that the cumulative closure capacity from time period

0 through time period x for the original DANTE network is equal to the sum of the

maximum flow solutions per time period in the Modified DANTE network from time

period 0 to time period x.  For example, if L(P1) = 15, L(P2) = 17, and L(P3) = 20, then the

cumulative closure capacity through time period 19 is 2M(P1) + 3M(P1, P2).  This does

not imply that the flow of say time period 18 cannot be greater than M(P1, P2).  It just

implies that if the flow is greater, then the flow in periods prior to time period 18 must be

less than their capacity per time period in the table above.

3.3.1.2  DANTE Network and the Modified Network

Because the Modified DANTE network is an alternate representation of the series of

Modified Networks for the same Original Network, there is also a relation between the

DANTE network and the series of Modified Networks based on the same Original

Network.

Assertion:  The cumulative closure capacity for time period 0 through time period

x in the DANTE network, can be found by summing the Maximum Flow Solutions per

time period from time periods 0 to x in the series of Modified Networks based on the

same Original Network.

Proof:  For each network in the series of Modified Networks associated with time

periods 0 to x, there is a corresponding sub-network in DANTE that maintains the same
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capacity constraints while breaking up the individual paths to represent the time they take.

These sub-networks are independent except for the additional queuing arcs of infinite

capacity connecting nodes representing the same port in different time periods.  The only

other arcs in the DANTE model that are not present in the series of Modified Networks

are arcs of infinite capacity connecting the destination at different time periods to the

sink.  Therefore, the combined minimum cuts of the Modified Networks must be equal to

the minimum cut in the DANTE Model.  Since the minimum cut in a network must equal

the maximum flow, the cumulative capacity through time period x in DANTE must be

equal to the sum of the maximum flow solutions in the Modified Networks corresponding

to periods 0 through x.�

3.3.2  DANTE Closure Time Proof

Some final observations and assumptions are made before presenting the formal proof

that DANTE’s objective function, expressed as a minimum cost function, does minimize

closure time.  First, for the goal of minimizing the cost of the weighted closure flow in

DANTE, it cannot be optimal to delay flow that could have finished at an earlier time

period to a later one (recall that the weighted penalty corresponds to time of closure).

Also, there will be an optimal solution for the goal of minimizing closure time where this

non-delay of flow holds.  Therefore, in the optimal solution to both of these problems, we

will assume the per period closure capacities will not exceed the maximum flow solutions

identified in Table 3.2.  Consequently, we can translate this problem (to minimize the

cost of the weighted closure flow) into a bin-filling problem.  Let the period closure
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capacity be referred to as a bucket of capacity, or a bin to be filled.  When there is one

origin base, there is essentially one bin in each time period with the capacities in Table

3.2 above to which the weight at the origin can be assigned.  When there is more than one

origin, there may be multiple bins in each time period, with the sum of the bin capacities

equal to the capacity in the above table.  If, for example, there are 2 origins, then there

may be as many as 3 bins.  Each origin may have a bin to which only weight from that

origin may be assigned; these represent, primarily, the capacity of paths, on which no

flow from another origin may travel over (these paths have no common legs with paths

that originate at an alternate origin).  In addition, there may be a bin to which weight from

either origin can be assigned (paths have common arcs with links to both origins).

Assertion:  The optimal solution to minimizing the cost of the weighted closure

flow in the DANTE network has minimum closure time.

Proof:  Suppose to the contrary, the optimal solution does not have minimum

closure time, b, then two conditions exist.  First, there is some flow closing at a time c > b

that is available to close at or before b.  Second, there is unused closure capacity at time a

� b when there is flow available to close at that time.  Take one unit of weight, w, with

origin y, that is in a bin corresponding to closure at time c where c > b.  Then one of three

options must apply.  Let        indicate one full bin; let        indicate one non-full bin.

Option 1.  There is a non-full bin corresponding to closure at time ba �  in which

w can be placed (bin accepts flow from origin y).  Figure 3.14 depicts this option for a

Single Origin and a Multiple Origin Network.
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Figure 3.14  Option 1 Examples

Option 2.  There is a full bin corresponding to closure at time a � b that accepts

flow from multiple origins including y from which we may replace a unit of weight x,

with origin z, already in that bin and consequently place x in another non-full bin

corresponding to closure at some time a � b.  Figure 3.15 depicts this option.

Figure 3.15  Option 2 Example
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Option 3.  The same situation as in Option 2 occurs except that there is no non-

full bin in which to directly place x.  Then x must displace flow from another origin that

in turn displaces flow from another origin, etc.  The process of shuffling flows between

bins continues until a unit of weight can be placed into a non-full bin corresponding to

closure at time a � b.

In all cases the cost of the total weighted flow has been reduced through the

shuffling of available flows to earlier bins.  Hence, DANTE’s objective function ensures

that deployment closure time is minimized.�
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Chapter 4

DANTE’s Evolution

As mentioned previously, the Military Deployment Problem is an extremely complex

problem with two distinct yet interrelated parts.  The first part focuses on the

development of a deployment network geared towards minimizing the deployment

closure time.  DANTE is an effective planning tool used by deployment planners to

establish a lower bound for the deployment closure time, LB(Cmax), for a given

deployment package and a generalized, static deployment network.  The second part of

the deployment problem is to determine the schedule of equipment onto the transportation

assets to meet the required delivery dates.  In other words, schedule equipment to

minimize the maximum lateness of the deployment package, Lmax.

This chapter is geared towards determining a lower bound on the maximum

lateness, LB(Lmax), of the deployment package, given a fixed transportation asset – route

assignment.  The lower bound will be developed in the context of a specific military

deployment scenario, but remains applicable to all deployment scenarios.  First, the

specific deployment scenario will be presented.  Next a modification of the DANTE tool,

presented in detail, will provide a deployment planner with two additional capabilities.

The first is the capability of tracking the flow of specifically identified equipment (a

unique commodity) through the deployment network.  The second is the capability of
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determining individual commodity closure times.  The next modification of this tool will

provide the deployment planner the capability of sequencing the individual commodity

flows.  The final modification allows for an iterative application of this tool to establish

the LB(Lmax) of a deployment package.

4.1  A Military Deployment Scenario

This scenario represents a typical divisional-sized element deployment.  A standard set of

transportation assets and ports is used in this scenario; however, the solution technique

can accommodate any set of assets and ports and any sized unit deployment.  The set of

transportation assets and their operating characteristics is provided in Table 4.1.

Table 4.1  Transportation Asset Operating Characteristics
Aircraft Speed

(Knots)
Weight Capacity

(STONs)
Load Time

(hours)
Unload Time

(hours)
Maintenance
Time (hours)

C17 410 45 2.25 2.25 2.25
C5 409 61.3 4.25 3.25 3.25

C130 270 12 1.5 1.5 1.5

Knots is a marine term meaning nautical miles per hour.  The set of ports and their

infrastructure characteristics are provided in Table 4.2.  The acronym STON refers to a

short ton; one short ton is equivalent to 2,000 pounds.  MOG refers to the Maximum-On-

Ground capacity of an airfield or the maximum number of aircraft able to be

accommodated at any one time.  These characteristics, along with the number of

transportation assets, by type, operating at each port, are used to compute the port
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throughput capacity in STONs per period.  For the remainder of this research, one time

period is equivalent to six hours unless otherwise stated.

Table 4.2  Port Infrastructure Characteristics
Port Facility # Runways MOG

Fort Campbell Army Airfield 1 5
Ramstein Air Force Base 1 5

Dhahran International Airport 1 5

This deployment scenario involves moving units by air from Fort Campbell,

Kentucky, to Dhahran, Saudi Arabia.  An intermediate stop (ISB) is available at Ramstein

Air Force Base, Germany.  The transportation resources available include three types of

Air Force aircraft:  the C5 Galaxy, C17 Globemaster and C130 Hercules.  The C5 and

C17 are long-range aircraft that will fly the US-Germany routes and the US-Saudi Arabia

routes.  The C130, a significantly smaller and slower plane, is best used on shorter routes.

Its movement will be limited to the Germany-Saudi Arabia route.  Graphically, this

deployment scenario is shown in Figure 4.1.
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Figure 4.1  Military Deployment Scenario

4.2  Initial Changes to DANTE

Recall that DANTE models any military deployment scenario on a predetermined

deployment network.  It performs network flow analysis to provide a lower bound on the

total amount of time needed to transport the deployment package to the final destination.

One of the major deployment problem relaxations employed by DANTE is the port

aggregation in various locations throughout the network.  For the remainder of this

research, all ports will retain their individuality, including geographical relationships to

other identified ports.  A second relaxation employed by DANTE is the movement

requirement relaxation.  DANTE ignores all cargo characteristics except weight.  It

aggregates all equipment into one all encompassing movement requirement identified by

Dhahran
Airport

7285 miles

4555 miles

2764 miles4555 miles

7285 miles

Ramstein
Airbase

C17 route

C17 route

C5 route

C5 route

C130 route

Fort
Campbell
Airfield



57

the total weight to be moved.  A multicommodity variation of DANTE is developed next.

In this variation, cargo is aggregated by weight into multiple requirements or

commodities specified by certain equipment characteristics.  The sum of the commodity

weight requirements is equivalent to the total movement requirement.  The resultant

model, a multiperiod, multicommodity network flow model, also minimizes the

deployment closure time, but has the added capability of tracking individual commodities

and their closure times.  This new model will be referred to as COMFLOW.

4.2.1  Computing Port Throughput Capacities

A port throughput capacity expresses the port’s ability to process and clear equipment

within a specified time period.  A port has a limited amount of space for transportation

assets.  For example, a seaport with three berths can only receive and load or unload three

ships simultaneously.  This space restriction greatly affects the port throughput rate.

Other factors that also impact the rate are the available manpower and specialized cargo

handling equipment.  A major simplifying assumption made in this model is that all

personnel and cargo handling equipment remain available at all times (unless already

engaged in loading/unloading the maximum number of transportation assets allowed), i.e.

port work personnel never get sick nor does their machinery break down.

DANTE computes a port’s throughput rate based on the port’s MOG, the largest

asset’s weight carrying capacity, and the amount of time that asset spends at the port.  For

example, Campbell’s airport throughput rate (in STONs per period) is computed based on
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using C5 aircraft (it is the largest plane in the scenario that Campbell can accommodate)

in the following manner:

periodstons
period

hrs
loadtime

CapMOG
Cthru

C

C /  7059.4326*
25.4

3.61*56*
*

5

5
���

This period throughput rate is approximately equal to 1,731 stons per day.  DANTE

requires an integer valued daily throughput rate as input.

This method is a very simplistic means of determining a port’s throughput rate

and has a few shortcomings.  First, the amount of time each aircraft spends on the ground

varies according to the operation performed, i.e. loading or unloading.  Also, habitually,

each asset spends time in a maintenance bay after each flight, lengthening the amount of

time each asset spends at the port.  Another shortcoming of this method is its failure to

adequately represent the composition and size of the deployment fleet actually operating

at the facility.  The actual number of C5’s operating at a port might be considerably less

than the other assets operating there.  In that case, the actual port throughput rate would

be quite different.  To alleviate these shortcomings, two alternate methods to compute a

port’s throughput rate are proposed.

Recall that DANTE assumes the transportation asset to route assignment remains

fixed over time.  Both the methods described will continue to make that assumption.

Therefore a given asset will always operate between the same two ports for the duration

of the deployment.  Each asset i has an associated time spent at the origin Oi = Li + Mi

and time spent at the destination Di = Ui + Mi (where Li, Ui, and Mi are the load, unload

and maintenance time, respectively, of asset i).
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The first method involves computing the asset throughput rate for each asset type

operating at the port.  The asset’s throughput rate is computed as:

�
�
�

��
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iO
G

G
Cap

AssetRate
i

i
i

i

i
i asset  ofn destinatio  theisport  if 

asset  oforigin   theisport  if  
   where,

The port throughput rate is based on the port’s MOG and the maximum asset throughput

rate.  Some ports are quite large and can accommodate many assets.  In some cases, a

port’s MOG is larger than the total number of deployment assets operating there.  In these

cases, using the MOG would overestimate the actual throughput rate of cargo.  Let N be

the total number of assets operating at the port.  Then the port period throughput rate is

computed in the following manner:

� � � �
period

hrsAssetRateNMOGPortRate i
i

6*max*,min�

Based on the information presented in Tables 4.1 and 4.2 and the general network

structure depicted in Figure 4.1, each port would have a maximum port throughput rate of

300 STONS/period.  This rate is based on the C17’s capacity and ground clearance times.

This method would tend to overestimate the amount of cargo actually processed

through a port in a given period because it is based entirely on the asset that yields the

largest throughput rate.  This in turn, would ensure that DANTE, using this port

throughput rate, would still provide a lower bound for the deployment closure time.

The second method to determine the port throughput rate considers all types of

assets operating at the port, the particular operations (loading or unloading) taking place,

the fleet size and the fleet composition.  This method computes the port throughput rate

based on the port MOG and the weighted average asset throughput rate.  In addition to the
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times mentioned previously, each asset has a one way travel time Ti = distance/speed and

a roundtrip time Ri = 2Ti + Oi + Di.  Based on these times, each asset also has an arrival

rate (to a port) of 1/Ri.  Thus the weighted arrival rate is Ni/Ri, where Ni is the number of

asset i operating on the route.  The weighted average throughput rate at each port is then

computed as:
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  where

6**
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This method assumes that all routes are “active” in all periods.  Based on the

distances and the assets’ speeds involved, the first route capable of delivering cargo to the

Dhahran port is the direct route flown by C17 aircraft, delivering cargo in time period 4.

During this time period, Dhahran’s largest possible port throughput rate is 300

STONs/period.  During the next time period, period 5, and many subsequent periods, all

routes are able to deliver equipment to the port.  The port period throughput capacity for

this time span is accurately represented by the described computation method, which

yields a smaller throughput rate.  This rate is smaller due to the inclusion of the additional

asset types with significantly smaller capacity (C130) or longer ground times (C5).

Finally, at some point in time, the amount of equipment at the origin base is depleted.

From that time until all remaining equipment is delivered to Dhahran, the only cargo

arriving at Dhahran is from indirect routes.  The amount of equipment actually able to
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move through the Dhahran port is 120 STONs/period (based on the C130 assets), an

amount less than estimated by this computation method.

This method, using a fixed port throughput rate over time, sometimes

underestimates the actual port period throughput rate.  Then DANTE, using this method

to determine port throughput rates, would not provide a guaranteed lower bound for Cmax.

This method does provide a good approximation of the average port throughput rate for

the duration of the deployment.  The actual port throughput rate changes over time as the

deployment network develops and routes become active.  The port throughput rate which

changes over time is beyond the scope of this research.

4.2.2  Establishing the Multiple Commodities

Similar to the approach used by Kim, et al [20], a commodity will be identified by the

origin and due date information associated with each piece of equipment in the

deployment package.  The number of unique origin-due date pairs is the number of

commodities; all equipment with the same origin and due-date will have the same

commodity identifier.  The weight of each piece of equipment with the same commodity

identifier will be aggregated into a commodity weight requirement.  The end result is that

each commodity is identified by a unique origin-due date pair and has an associated

weight or commodity movement requirement.  For example, suppose three pieces of

equipment were deploying from Fort Bragg and two pieces from Fort Campbell.  The due

dates and weight requirements of the pieces are identified in Table 4.3, along with a

unique commodity identifier.
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Table 4.3  Equipment with Commodity Identifiers
Piece of

Equipment
Origin Due

Date
Weight

(STONs)
Commodity
Identifier

1 Bragg 3 2 1
2 Bragg 4 2 2
3 Bragg 3 1 1
4 Campbell 5 1 3
5 Campbell 4 3 4

Aggregating the weight requirements of all pieces with the same commodity identifier

results in four commodities with associated commodity weight requirement.  These

commodities are identified in Table 4.4.

Table 4.4  Commodity Data
Commodity Origin Due

Date
Requirement

(STONs)
1 Bragg 3 3
2 Bragg 4 2
3 Campbell 5 1
4 Campbell 4 3

The total movement requirement identified in both tables is 9 STONs.  The equipment

characteristics of volume and area are ignored as in DANTE.  Similar to DANTE’s

aggregation of all equipment into a single short tonnage movement requirement, this

process aggregates equipment into multiple commodity short tonnage movement

requirements based on origin and due date information.
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4.3  Developing COMFLOW

The problem of determining the flow of multiple commodities through a fixed

deployment network in order to minimize the deployment closure time can be graphically

represented using a multiperiod, multicommodity network.  In fact, both the graphical and

mathematical development of this network are very similar to the procedures

demonstrated in Chapter 3.

4.3.1  Graphical Representation

Unit equipment (required commodity flow) enters the network at time 0 at the origin

airport and flows through the network depending on the capacity of each arc.  All

equipment (therefore all commodities) is assumed to be available at their respective

origins at the same time.  The airports are the nodes of the network while the arcs

connecting the nodes represent the movement of all cargo (all commodities) between

ports.

To model an airport throughput limitation, each airport is modeled as an arrival

(1) and departure node (2) with a connecting arc representing the port throughput capacity

in a period.  Arcs for each type of plane connect the departure node from an airport to the

destination airport’s arrival node in a later time period determined by the cargo movement

time for that type plane.  The capacity of a cargo movement arc depends on the type and

number of planes assigned to the arc and the distance involved.  A sink node connected

by an arc to the departure node of the final destination airport closes the network.  At the

end of the deployment time window, all nodes are connected to the sink node by overflow
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arcs.  If any of the overflow arcs have a positive flow, the specified deployment time

window, T, is too narrow given the number of planes available and the total movement

requirement.  Overall, there is a network for each discrete time period creating the

“staircase” model depicted in Figure 4.2.  For the multicommodity flow model, this

network is additionally repeated for each commodity.  All commodities compete for

“space” on all the capacitated arcs.
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Figure 4.2  Network Representation of the Deployment Scenario

Each cargo movement arc links ports in different time periods based on  the

amount of time needed to move cargo between the ports.  This time includes the amount

of time needed to load and unload the asset moving the cargo, as well as the travel time of

the asset.  This total time represents the amount of time (in hours) the cargo spends on the

asset to complete its trip to the next port.  It is computed as follows:
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As an example, consider the C5 route from Fort Campbell to Dhahran, arc (C2, D1) in

Figure 4.2.  The flight distance is 7285 miles and the C5 characteristics are as specified in

Table 4.1.  The C5 cargo time, in periods, is calculated as:

4
6

25.325.4
1507.1*409

7285

�

�
�

�
�
�

�
��

�CargoTime

where 1.1507 is a factor that converts knots to miles per hour.  This calculation is

rounded off to integer amounts.  Subsequently, the C5 cargo movement arc connects node

C2 in period 1 (time 0) to node D1 in period 5 (time 4).  Likewise, the C5 cargo

movement arc connects C2 in period 2 with D1 in period 6.  This continues until T for

each cargo movement arc for this asset.

Each cargo movement arc also has an associated round trip time.  This time is

computed in a similar manner, but involves twice the distance and two maintenance

sessions for each asset.  This total time represents the amount of time required for the

asset to return to its origin and become available to receive another cargo load.  This time

is used in determining the cargo capacity per period for each cargo movement arc.  It is

computed as follows:

� �� �

periodhours

imeRoundtripT

/6

maint time*2 timeunload   timeload speed/distance*2 ����

This multiple commodity flow problem can be represented as a multiperiod,

multicommodity, minimum cost network flow problem with side constraints.  The side
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constraints model commodity competition for “space” on all capacitated arcs.  Each arc in

the deployment network has explicit bounds on the total amount of cargo that can flow

across it; these are computed as period capacities.  All arc lower bounds are set equal to

zero.

4.3.2  Mathematical Representation

This commodity flow problem is similar to the equipment flow problem that DANTE was

developed to evaluate; however, this problem will provide information concerning

individual commodity closure times.  The commodity flow problem is still a relaxation of

the original deployment problem due to the continued relaxation of the cargo

characteristics of area and volume, but the ports are no longer aggregated.  This

deployment network more accurately represents a given deployment scenario.  The

subscripts for the decision variable (the amount of commodity k to send over an arc)

specify the origin node i and the destination node j of an arc and the time periods over

which the arc spans.  The decision variable is

� )( ptkitjW
�

, the amount of commodity k, in STONs, that leaves node i in period

t and arrives at node j in period t+p, for all Sptitj �� )( .  S is the set of

connected arcs for all i and j, and p represents the transit time from i to j.  On

movement arcs, these variables include a subscript a indicating the type asset

that moves the cargo.  Specifically, )( ptkaitjW
�

 is the amount of commodity k

flowed on a movement arc for all a and Pptitj �� )( , where P is the set of

movement arcs.  SP �
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The objective of this formulation remains a function of time.  An increasing (with

time) cost is assigned to the flows along the arcs from the departure node of the final

destination port(s) to the sink node.  Flows on overflow arcs are assigned a significantly

larger cost.  All other flows have zero cost.  This results in the following objective

function similar to that constructed by Hodgson et al. [15]:
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where K is the set of all commodities.  FD is the set of all arcs, excluding overflow arcs,

connected to the sink node; i.e., FD is the set of arcs connected to the sink (final

destination) within the specified deployment window (T).  OV is the set of all overflow

arcs connected to the sink node; the set of arcs which reach the final destination outside

of the deployment window.  All further discussion is based on the assumption that the

deployment window length is of suitable duration for the established network and total

movement requirement.  The objective function is therefore simplified to the following:
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Two types of equations primarily define the constraint set.  The first is a node

balance equation for each node and commodity.  For example, consider node R1 from

Figure 4.2, the Ramstein Airbase arrival node.  The commodity 2 flows in/out of node R1

are depicted in Figure 4.3.
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Figure 4.3  Example Node Flows for Individual Commodity

The commodity 2 flows into the arrival node include cargo queued during the previous

period, tRtRKW ,1),1(,1,2 �
, cargo brought by C5s, tRtCCKW ,1),3(,2,5,2 �

, and C17s,

tRtCCKW ,1),2(,2,17,2 �
.  The cargo movement time in this example is three periods for C5s

and two periods for C17s.  The commodity 2 flows out of the arrival node include cargo

that will be put on planes leaving Ramstein for Dhahran, tRtRKW ,2,,1,2 , and cargo that is

queued to the subsequent period, )1(,1,,1,2 �tRtRKW .  The commodity 2 balance equation

for this node is:
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The second type of equation captures the commodity competition for space on

each of the capacitated arcs.  These equations are of the form “�Commodity Flows � Arc

R1

)1(,1,,1,2 �tRtRKW
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Capacity”.  For example, consider the port throughput arc for Ramstein Air Base, arc (R1,

R2) from Figure 4.2.  Suppose there are a total of three commodities, then the commodity

flows through the port are depicted in Figure 4.4.

Figure 4.4  Example Commodity Flows Over an Arc

The combined flow of all the commodities through the port in any single period can not

exceed the port’s period throughput capacity.  The resultant port throughput constraint for

the Ramstein Air Base with three commodity flows and a period throughput capacity of

Rthru is:

RthruW
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3
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The general format of each of the node balance equations is developed next.  The

commodity movement requirements (unit equipment) are commodity flows into an origin

port arrival node in the time period that type equipment first becomes available.  The

commodity node balance constraints corresponding to these requirements are:

KkDitCARGOWW kitkitjttkiti ������
�

,,)1( (4.2)
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where K is the set of all commodities and D is the set of arrival port nodes in a given time

period at which the commodity movement requirements ( kitCARGO ) first become

available for movement (D represents the set of origin port arrival nodes).

The following equation pertains to all nodes that are not origin port arrival nodes.

Node (i,t) is the point and time of reference.  The general form of the node balance

constraint is

0)()( �� ��
�

�

�

�

ii Oo
itptko

Jj
ptkitj WW , DitKk ����  and (4.3)

where iJ  is the set of all destination nodes for i, and iO  is the set of origin nodes for i.

The formulation includes a node balance constraint for each node and each commodity in

each time period.

The general format of flows over all arcs is developed next.  Each arc has upper

bounds on the total amount of flow it can carry in each time period.  The general form of

the arc capacity limitation constraint is:

)()(0 ptitj
Kk

ptkitj UW
�

�
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for each arc in each time period, where )( ptitjU
�

is the upper bound.  All ports have a

throughput capacity limitation modeled as

       and  , tTPW ij
Kk

kitjt ���
�

Rij � (4.4)

where ijTP is the period throughput capacity of the port represented by arc ij and R is the

set of arcs that represent ports.  The period throughput capacity can be computed in
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various manners as described in section 4.2.1.  The formulation includes an arc constraint

for each port in each period.

All movement arcs have a capacity and are modeled as:

aij
Kk

ptkaitj CAPW ��
�

� )( , Pptitjta ��� )( and , (4.5)

where a is the type of transportation asset, aijCAP  is the period weight capacity (in

STONs) for the combined assets of type a operating on that arc and P is the set of

movement arcs.  Each movement arc period capacity is a function of the number of assets

operating on that arc and the round trip time of the asset as computed in section 4.3.1.

For example, the movement arc period capacity for 6 C5’s operating between Campbell

and Dhahran would be calculated as:
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This formulation includes an arc constraint for each movement arc in each time period.

To insure that all required flow gets through the model, the following constraint is

added:

KkCARGOW
Dit
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where FD is the set of all arcs connected to the sink node within the deployment window.

There is one constraint for each commodity requirement.

The complete formulation (problem COMFLOW), with accompanying equation

numbers, is summarized next.
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Problem COMFLOW
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where

� K is the set of all commodities;

� FD  is the set of all arcs, excluding overflow arcs, connected to the sink node;

� D is the set of arrival port nodes, in a given time period, at which the

commodity movement requirements ( kitCARGO ) first become available for

movement;

� p is the transit time between nodes;

� iJ  is the set of destination nodes for node i;

� iO  is the set of origin nodes for node i;

� ijTP is the period throughput capacity of the port represented by arc ij;

� R is the set of arcs that represent ports;
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� aijCAP is the period weight capacity (in STONs) of the combined type a

transportation assets operating on the assigned route;

� P is the set of movement arcs;

� T is the deployment window of sufficient length.

4.4  Shortfalls and Capabilities

This version of COMFLOW puts no emphasis on meeting due dates.  Essentially, all

commodities have a common weight, and thus all commodity flows are scheduled so as

to minimize the total deployment closure time.

In spite of the shortfalls, this model does provide the deployment planner with these

capabilities:

� Structure commodity flow according to a simple dispatching rule, all commodities

are equal.

� Provide an estimate for each commodity’s closure time, Ck.

� Provide a lower bound for deployment closure time, LB(Cmax).  The last

commodity to close determines the deployment closure time.

� Provide information to compute an estimate for each commodity lateness (Lk) and

for Lmax = max(Lk).  Lk = Ck – dk, where dk is the due date of commodity k.

The information concerning LB(Cmax) and the estimates of Ck, Lk, and LB(Lmax) are

gained through post processing COMFLOW’s solution.

4.5  Sequencing the Commodity Flows

A simple dispatching rule often used in job shop scenarios is to select the available job

with the earliest due date (EDD).  To incorporate this idea into COMFLOW, different

penalties will be assigned to each commodity based on due date.  The commodity penalty

charge will structure commodity flow to minimize total penalty charge (while still
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minimizing deployment closure time).  If commodity i has a higher penalty than

commodity j, then commodity i would have a higher priority of flow than commodity j.

The result is that the flow of all commodities would be structured according to the EDD

policy.  The following discussion describes how commodity penalties are assigned.

4.5.1  Priorities and Penalties

Recall that commodity identifiers are based, in part, on due date information.  Assign an

integer valued priority to each commodity based on its due date.  The earlier due date has

a higher priority; the highest priority is 1.  A tie in due dates is resolved by assigning the

commodity with the largest weight requirement the higher priority value.  This strategy

supports the deployment planner’s goal of delivering as much equipment on time as

possible.

The commodity penalty is an integer value based on the commodity priority.  The

largest penalty charge is assigned to the commodity with the highest priority.  For

example, using the commodity information in Table 4.4, the commodity priorities and

penalties assigned are shown in Table 4.5.

Table 4.5  Commodity Priorities and Penalties
Origin Due

Date
Requirement

(STONs)
Commodity
Identifier

Priority Penalty

Bragg 3 3 1 1 4
Bragg 4 2 2 3 2
Campbell 5 1 3 4 1
Campbell 4 3 4 2 3
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The new objective function including these commodity penalties is:
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where Pk is an integer penalty value for commodity k based on the commodity’s due date.

The constraint set is not affected and remains unchanged.  The commodity penalty and

time values operate together to assign a time based penalty charge for each commodity.

4.5.2  Minimizing Lmax

While sequencing jobs according to the EDD rule does minimize Lmax in a single machine

environment, the same is not always true in a multiple machine environment.  In the next

sections, a comparison between a single/multiple origin deployment network and parallel

machines will be made.  Finally, in the case of a multiple origin deployment network, a

final modification of COMFLOW is described.  This change creates an iterative process

that will usually yield a LB(Lmax) value within a reasonable amount of time.

4.5.2.1  Environmental Comparisons

Recall from Chapter 3 that the network closure capacity in each period was shown to be

equivalent to bins of capacity to be filled.  Thus the closure flow scheduling problem is

equivalent to a bin filling problem.  In a single origin deployment network environment,

the total closure capacity in each period is entirely devoted to receiving flows from that

origin; a single origin network is a single bin environment.  Consider the filling of the

single bin as a scheduling of jobs of unit capacity on machines in parallel where all jobs
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are released at the same time.  The EDD rule is known to minimize Lmax for this problem.

Therefore, in a single origin deployment network environment, the sequencing of closure

flows according to the EDD rule will also minimize Lmax.

In a multiple origin deployment network, depending on the actual routes within

the network, there may be any where from a single bin (access to final port through a

common link available to all origins) to at least as many bins as origins.  Filling these

bins is also equivalent to the scheduling of jobs of unit capacity on parallel machines.

The difference is that there are job-machine compatibility restrictions here, i.e. certain

jobs cannot be processed on certain machines.

The following two examples (Figures 4.5 and 4.6) show that the schedule of flows

with minimum closure time might not have the minimum Lmax.  For both examples, there

are two origins; each from which one commodity begins.  The first commodity, K1,

located at the first origin, has a due date of 10 and a movement requirement of 13 weight

units.  The second commodity, K2, located at the second origin, has a due date of 14 and

a movement requirement of 28 weight units.  Flow first becomes available to close in

time period 10; these time periods are identified at the far left of each figure.  The total

closure capacity in each period of 15 weight units is divided among three “bins”.  One bin

allows access only to flow from the first origin at 8 units per period; another bin allows

access only to flow from the second origin at 2 units per period; the final bin allows

access to flow from both origins at 5 units per period.  These bins are labeled “Origin 1”,

“Origin 2” and “Origin 1 or 2” respectively.  Since K1 has the earliest due date, it has the

larger penalty associated with its period closure times.  The period penalty per unit of
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closure flow and the cost of closure flow for each period are identified to the right of each

bin.  The total cost of the closure flow assigned to each bin is indicated beneath each bin.

The total cost of the closure flow schedule is identified at the bottom right of each figure.

Each commodity closure time and associated lateness are identified at the bottom left of

each figure.  The deployment closure time and maximum lateness (Cmax and Lmax) are

identified at the bottom center of each figure.  Figure 4.5 shows the minimum cost

closure flow schedule of these two commodities.  This schedule establishes LB(Cmax) of

13 at a cost of 592; it does not, however, have the minimum Lmax.

Figure 4.5  Closure Schedule with Minimum Cost and LB(Cmax)

Each entry of “K1” or “K2” represents one unit of K1 or K2 closure flow

Time
 Period

18
17
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15
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13
12
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10

Bin 1
Period
Cost
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Bin 1
Period
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per unit
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26
24
22
20K1 K1 K1 K1 K1 K1 K1 K1

K1 K1 K1 K1 K1

0
0
0
0
0
0
0

110
160 K2 K2 K2 K2 K2

Bin 2
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K2 K2 K2 K2 K2

K2 K2 K2 K2 K2

K2 K2 K2 K2 K2

Bin 2
Period
Cost
0
0
0
0
0
65
60
55
50 K2 K2

Bin 3
Period
Penalty
per unit

18
17
16
15
14
13
12
11
10

Bin 3
Period
Cost
0
0
0
0
0
26
24
22
20

K2 K2

K2 K2
K2 K2

Closure Cost bin 1: Closure Cost bin 2: Closure Cost bin 3:270 230 92

Closure
K1:
K2:

Lateness
11             1
13           -1

Cmax Lmax

13          1
Total Cost: 592

Origin 2
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Figure 4.6 shows a different closure flow schedule.  This results in a total cost of 602 and

a Cmax of 14; obviously not a minimum cost nor a minimum closure time schedule.  It

does, however, have the minimum Lmax and therefore establishes LB(Lmax) at 0.

Figure 4.6  Closure Schedule with Minimum Lmax

Clearly, COMFLOW in its current form will not provide an accurate lower bound

for Lmax.  It will, however, provide estimates for the lower bound of the lateness of each

commodity, as well as the maximum lateness.  Some additional modifications of

COMFLOW are necessary to obtain a lower bound for Lmax.

Each entry of “K1” or “K2” represents one unit of K1 or K2 closure flow

Time
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per unit
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28
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20K1 K1 K1 K1 K1 K1 K1 K1 K1 K1 K1 K1 K1

0
0
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0
0
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0
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Bin 2
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0
0
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Period
Penalty
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17
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15
14
13
12
11
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Bin 3
Period
Cost
0
0
0
0
0
26
24
22
20

K2 K2

K2 K2

K2 K2

Closure Cost bin 1: Closure Cost bin 2: Closure Cost bin 3:160 350 92

Closure
K1:
K2:

Lateness
10             0
14             0

Cmax Lmax

14          0
Total Cost: 602

Origin 2
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4.5.2.2  The Iterative COMFLOW

An obvious course of action is to convert COMFLOW into a Mixed Integer Problem with

the objective of minimizing Lmax.  This could be done relatively easily by the addition of

some new constraints.  The original set of node balance constraints and arc capacity

constraints, equations 4.2 through 4.7 in section 4.3.2 would remain unchanged.  For ease

of explanation, the case where Lmax is known to be greater than or equal to zero will be

discussed before the general case is presented.  The minimum cost formulation of the

objective function would be replaced by the objective function:  Min  Lmax.  The

following integer constraints would complete the transformation:

FDitjtkXCapMaxW kitjtkitjt ���� ,  ,* (4.8)

� � FDitjtkLXdt kitjtk ����� , ,* max (4.9)

FDitjtkX kitjt ��� , 1,or  0 (4.10)

max0 L� (4.11)

where CapMax is a sufficiently large constant (larger than the largest period closure

capacity), t is the time that arc itjt occurs (the time that closure occurs) and dk is the due

date of commodity k (then t – dk is the lateness of commodity k associated with closure

flow at time t).  For the general case where it is not known if Lmax is nonnegative, the

problem must be scaled so that all latenesses are nonnegative.  This can be achieved by

subtracting a large constant, M, from all the due dates.  Therefore the maximum lateness

of the problem is Lmax – M.  Unfortunately, as with most integer programming problems,
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the solution time for large-scale problems is prohibitive, requiring hours, days or longer

to obtain the optimal solution.  Since deployment planners do not have the luxury of

unlimited time, another technique must be developed.

After post processing the solution, COMFLOW will provide the deployment

planner valuable information.  COMFLOW’s solution provides a feasible schedule of

flows with minimum deployment closure time.  Intermediate due dates are attempted to

be satisfied through the sequencing of the commodity flows in EDD order.  Analysis of

the solution will allow the planner to establish the closure time of each commodity (Ck).

From this information, the individual commodity lateness (Lk) is computed as Lk = Ck –

dk, where dk is the commodity due date.  Finally, Lmax = max(Lk).  This value is a feasible

estimate for LB(Lmax).

Suppose that all commodity closure flows were limited to closure arcs occurring

at times such that the difference between each commodity closure flow time and due date

was less than the established Lmax value.  If this model were solved and a feasible solution

found, then a new closure schedule exists with a smaller maximum lateness value.  This

idea forms the basis of an iterative approach to determine the LB(Lmax); this approach was

adapted from a procedure proposed by Horn [18].  The flow restriction constraints added

to COMFLOW are:

VdtitjtkW kkitjt   |,   ,0 �����                                 (4.12)

where V is the current best estimate of Lmax.  These equations force all commodity k

closure flows onto closure arcs with times that establish a commodity closure lateness

less than V.  The proposed iterative technique is described next:
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Step 1.  Solve COMFLOW.  Analyze solution to determine V.

Step 2.  Solve COMFLOW, with restriction equations (4.12)

If no feasible solution exists, Stop.
Else set LB(Lmax) = V.  Go to Step 3.

Step 3.  Set V = V – 1 and go to Step 2.

Although multiple applications of COMFLOW are required, COMFLOW remains a linear

program with the addition of the constraint set in (4.12).  Thus its solution time requires a

matter of minutes instead of hours or days.  The sequencing of flows according to the

EDD rule should provide a good initial estimate of the true lower bound for Lmax, which

should limit the number of applications of COMFLOW required.  This iterative technique

will determine a lower bound for the maximum lateness.  Note that given LB(Lmax) is

established, COMFLOW’s established deployment closure time associated with that

LB(Lmax) is a conditional LB(Cmax).  The iterative application of COMFLOW establishes

a LB(Cmax) given that LB(Lmax) is minimized.
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Chapter 5

The Deployment Scheduling Analysis Tool (DSAT)

A new software tool (still in development) called the Deployment Scheduling Analysis

Tool (DSAT), allows a user to rapidly perform accurate military deployment scheduling

and sensitivity analysis on a personal computer [17].  The tool has three main

components:  a graphic user interface (GUI), a program to efficiently allocate a limited set

of transportation resources to routes, and a program to schedule the equipment onto the

transportation assets.  Both the GUI and the asset allocation program are written in Visual

Basic.  Through the GUI, the planner defines the movement requirement and the

deployment network.  To define the movement requirement, the planner first selects the

units comprising the deployment package and then identifies the required delivery dates

of the selected units.  Selecting the deploying units also selects the equipment and

identifies the units’ usual ports of departure (aerial and sea); this default port selection

may be changed.  The planner then selects any intermediate nodes (transshipment nodes)

required in addition to the final destination nodes.  Next, the planner allocates

transportation assets to each leg of the network.  The asset to route assignment completes

the deployment network.  Once the deployment network has been defined, DSAT creates

an input text file for the scheduler routine; this routine is included as an executable file.

The scheduler routine is Thoney’s [33] modification of the Virtual Factory simulator for

application to the military deployment problem.  It is written in C++.  The routine



84

schedules the individual pieces of equipment onto the transportation assets, simulates the

deployment process using that equipment schedule and determines critical information

concerning the resultant deployment schedule.  Once the scheduler routine is completed,

DSAT processes the information into explanatory graphs and reports for the deployment

planner.  The planner then has several options available in conducting sensitivity analysis.

This chapter describes the scheduler routine in detail, including the different heuristics it

uses.  Alternate heuristics are developed in an attempt to improve the overall performance

of DSAT.

5.1  Scheduler Routine Terminology

Thoney developed the military deployment scheduling procedure as a specialized

extension of the Virtual Factory.  The focus of her work was job shop scheduling with

batch processors.  In terms of the Virtual Factory, each piece of unit equipment in the

deployment package represents one real job that must be scheduled for movement.  Fake

jobs are created by the scheduler routine as “space fillers” for the various transportation

assets.  The various ports in the deployment network are the factories through which the

jobs process; the transportation assets are the batch processors in which a job moves

between factories.

Some additional specialized terminology is needed to complete the translation of

the deployment scheduling problem into a job shop scheduling problem for the Virtual

Factory.  Figure 5.1 displays the deployment scenario of Chapter 4 with some new labels.
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Figure 5.1  Center-Route Representation of Deployment Scenario

Each arc represents a distinct route between two ports flown by a particular type asset.  A

unique center number identifies the asset type and the assigned route.  Each center has a

number of assets assigned; a vehicle is one asset in a center.  A sequence of routes (or

centers) from a base to the final destination is a path on which a job may move.  As

shown in the figure, there are two routes to the Ramstein Airbase; these routes are

identified as centers 1 and 2.  If there were ten C17s assigned to fly from Campbell AAF

to Ramstein AB, then center 1 would have ten vehicles.  One path from Campbell to

Dhahran uses centers 2 and 5; another is a direct route using only center 3.  A port or

number of ports in the same general location is a base.  For example, Fort Campbell is a

base with two ports, one airfield and one rail depot (not shown).  Ramstein is a different

base with a single port, the airbase.

Dhahran
Airport

Center 4

Center 2

Center 5Center 1

Center 3

Ramstein AB

C17 route

C17 route

C5 route

C5 route
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5.2  Scheduler Routine Heuristics

The scheduler routine uses a plan that incorporates two unique heuristics.  These

heuristics allocate the jobs to the paths in an attempt to minimize the maximum lateness

of all jobs.  All jobs are pre-sorted in increasing due date order.  To minimize maximum

lateness, the job to path allocation attempts to schedule the jobs’ arrival at the final

destination in due date order.  The plan performs one iteration of an initial allocation

heuristic and then ten iterations of a reallocation heuristic.  The initial allocation heuristic

constructs the path that each job will travel over based on the average travel time to

complete the path.  The jobs are initially assigned to the path that is anticipated to be the

fastest.  The reallocation heuristic makes use of information gained through simulating

the previous allocation.  In the simulation, as vehicles arrive and are unloaded at the

base(s), jobs are completed and arrival times are recorded.  Jobs usually do not arrive in

exact due date order.  Therefore, based on this information, the jobs are reallocated to

paths according to actual arrival at the final destination.  This reallocation heuristic is

performed ten times and the best results are saved.  These heuristics and two proposed

alternate heuristics are discussed in detail in the following sections.

5.2.1  Initial Allocation Heuristic

The initial allocation heuristic builds each job’s path based on the structure of the

deployment network.  The jobs are initially assigned to a path that is anticipated to be the

fastest.  To build the paths, multiple passes through the network are required.  During the
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first pass, a backward traverse of the network, the average “travel” time from each base to

the final destination is computed.  During the next passes of the network, forward

traverses, each job at the current base, base i, is allocated to a vehicle that has the earliest

anticipated final destination arrival time and can accommodate the job.  A simplistic

example is provided below, prior to the detailed algorithm and required definitions.  This

example uses the deployment network of Figure 5.1 and additional center information.

The nodes of the network represent bases and are identified by the letters C, R and D for

Campbell, Ramstein and Dhahran, respectively.  Node C is the origin node; node D is the

final destination node.  The number of vehicles assigned to each center and the job time

to the center’s destination are identified in Table 5.1.

Table 5.1  Center Information for Deployment Network
Center i Asset

Type
# Vehicles Job Time, Ji

1 C17 2 5
2 C5 3 6
3 C17 3 8
4 C5 2 9
5 C130 5 4

The center’s job time represents the amount of time jobs spend on the center to travel to

the next destination.  The job time is the amount of time needed to load and unload the

center in addition to the actual one way travel time needed by the center to reach that next

destination.

During the first pass through the network, the backward traverse, the average

remaining times (Ri) from node i to the final destination base are computed.  Ri is based
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on all paths possible from node i.  The “travel” time for a path from a base to the final

destination consists of a center job time to the next destination plus the average remaining

time from that base.  The sum of each path’s “travel” time multiplied by the number of

vehicles in the initial center is divided by the total number of vehicles operating at that

base.  In the deployment scenario, there is one path from Ramstein and four paths from

Campbell.  The following average remaining times are computed in Table 5.2:

Table 5.2  Average Remaining Travel Times to Final Destination
Node i Ri

D 0
R 4

5
)4(5
�

C � � � �
9

10
)9(26352)8(3
�

����� RR RR

During the remaining passes, forward traverses, jobs are allocated to the center

vehicles.  At each base, the jobs are sorted in due date order.  The jobs are allocated based

on which path is anticipated to reach the final destination the earliest among the vehicles

in which the job can fit.  Once the job reaches the next destination in the path, it is

inserted into the list of jobs at that base.  Job scheduling at base i can not begin until all

jobs at bases preceding base i have been scheduled.  Then all jobs scheduled to move

through base i are on base i’s job list, and job allocation at that base can now begin.  The

anticipated final destination arrival time of jobs allocated on a vehicle is the vehicle’s job

time plus the average remaining time to reach the final destination base from that

location.  The earliest that subsequent trips for each vehicle can start is after the vehicle
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returns to it’s origin base.  So, at node C, the jobs scheduled on the first trip of a center 1

vehicle are anticipated to arrive at the final destination at time 5 + RR; the jobs scheduled

on the second trip of that vehicle are anticipated to arrive at the final destination at time

15 + RR, and so on.

The following definitions are necessary for both the initial and the reallocation

heuristics:

N number of jobs
Ui area of job i
Wi weight of job i
Vi volume of job i
Qi current path (in terms of centers) of job i
Bil Boolean value indicating if job i can be placed on center l
M number of centers
mj number of vehicles within center j
TUj total area capacity of each vehicle in center j if j is a ship, otherwise

TUj = -1
TWj total weight capacity of each vehicle in center j
TVj total volume capacity of each vehicle in center j if j is a not a ship,

otherwise TVj = -1
Kj vehicle type of center j
Jj time job spends on a vehicle from center j (load time + one way travel

time + unload time)
Hj time to complete return trip of vehicle from center j (maintenance time +

one way travel time + maintenance time)
T trip number of a vehicle
Rb average remaining time from base b to the final destination base
Ajm the anticipated final destination arrival time if a job is scheduled on the

mth trip of a vehicle in center j
Dj destination base of center j
C(b) set of centers at base b
L(b) set of jobs currently located at base b
F(b) set of fake jobs currently located at base b

Note the conditional definitions of TUj and TVj.  The scheduler routine maintains

information concerning the weight and area capacities for all ships throughout the
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simulation.  The scheduler also maintains information concerning the weight and volume

capacities for all other types of transportation assets.

The first trip of a vehicle in center j is anticipated to arrive at the final destination

at time Aj1 = Jj + RDj.  The second trip of a vehicle in center j is anticipated to arrive at the

final destination at time Aj2 = Jj + Hj + Jj + RDj.  Consequently, the Tth trip of a vehicle in

center j is expected to arrive at time AjT = T(Jj) + (T-1)Hj + RDj.  The average remaining

time from base b to the final destination base is 0 if b is the final destination base,

otherwise it is calculated as:  

� �
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The algorithm for the initial allocation heuristic has three parts; each part is

carried out for every base.  The first part involves creating a list of vehicle nodes sorted in

increasing order of anticipated arrival time at the final destination.  There is one vehicle

node list created for each base.  Let node (s, t, u, v, w) be a vehicle node where s is the

anticipated arrival time at the final destination, t is the center number, u is the available

area capacity, v is the available volume capacity, and w is the available weight capacity.

For each vehicle, one node is placed on the list representing its first arrival at the final

destination.  Assume that the jobs are sorted in order of increasing due dates.  The first

part of the heuristic (the backward traverse) is detailed as follows:

For each base b:

For each j � C(b):   (for each center operating at base b)

Step 1.  Calculate Aj1
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Step 2.  Set vehicle k within center j equal to 1

Step 3.  Insert node (Aj1, j, TUj, TVj,TWj) on the vehicle node list

Step 4.  if k < mj, set k to k + 1, go to Step 3

Next center j

Next base b

The completion of this part of the initial allocation heuristic results in a vehicle node list

at each base sorted in increasing order of anticipated arrival times at the final destination.

A node for each vehicle in each center is placed on this list.  Each entry details the

cargo’s first anticipated arrival time at the final destination, the center number and the

vehicle’s available capacities.  This provides a structure for initially assigning jobs to

vehicles based on the job due dates.

The second part of the initial allocation heuristic (a forward pass) allocates the

real jobs to the vehicles and adds subsequent vehicle trips on the list as necessary.  Each

real job is placed at its origin base.  This part’s algorithm is as follows:

For each base b:  (starting at origin base)

For each i � {L(b) –F(b)}:   (for each real job at base b)

Step 1.  Scan vehicle node list from beginning; find the first
node (s, t, u, v, w) simultaneously satisfying the following
conditions:

Ui � u (if u � -1)  (job area fits into remaining vehicle
capacity)

Vi  � v (if v � -1)   (job volume fits into remaining vehicle
capacity)

Wi � w  (job weight fits into remaining vehicle capacity)
Bit = True  (job i fits on center t)
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If no such node exits, go to the next real job.

Step 2.  If u = TUj  and  v =  TVj  and w = TWj, insert
node (s + Jt + Ht, t, TUt, TVt, TWt) on list (create next trip)

Step 3.  For the node found in Step 1, let u = u – Ui  (if u � -1),      v
= v - Vi (if v � -1)  and  w = w - Wi .  (This decrements the
remaining vehicle weight and area or volume capacities.)

Step 4.  Let Qi = Qi + {t}    (augment current path with center t)

Step 5.  Set L(Dt) = L(Dt) + {i}    (insert job on job list at next
destination)

Next i

Next b

This part of the initial allocation heuristic assigns each job to move on a specific center

vehicle.  If the job fits into the remaining volume and weight capacities of the vehicle and

is compatible with the center, then that job is allocated to that vehicle.  If the vehicle is

empty, a subsequent trip for that vehicle is added to the vehicle node list (Step 2), while

the remaining capacities of the vehicle for its current trip are decremented (Step 3).  The

path of the job is updated to indicate job travel on that center (Step 4).  Finally, the job is

added to the job list at the center’s destination base (Step 5).  Any job that does not fit

into any vehicle originating at that base is essentially removed from that base’s job list.

They are assigned a path at the end of the initial allocation heuristic.  This results in each

job having a specific path built for it.  The path is expressed as the sequence of centers

the job travels on to get from its origin to its final destination.

In creating the initial job to path allocation, the initial allocation heuristic could

over utilize (use to the exclusion of all or some other paths) or under utilize a particular
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path.  This situation, in turn, reduces the options available to the reallocation procedure

that shifts jobs to alternate paths.  To alleviate this problem, fake jobs are created for each

path.  These fake jobs have very low priority (i.e. their due dates are much later than real

job due dates).  Allocating these fake jobs to paths creates additional path arrival times at

the final destination.  Thus, the reallocation procedure has more options available for all

paths in considering job rerouting.  Consequently, the third part of the initial allocation

heuristic creates the fake jobs and their paths.  Once again, the bases are treated

individually, traversing in a forward manner.  One fake job, i, is initially placed at each

origin base with Ui = Vi = Wi = �.  The procedure is as follows:

for each base b:

for each i � F(b):  (for each fake job)

Step 1.  Let temp = 0

for each j � C(b):  (for each center)

Step 2.  set temp = temp + 1
If temp � |C(b)|  (if temp � number of centers at base)

Step 3.  Create a fake job, d

Step 4.  Let Qd = Qi + {j}

Step 5.  If TUj � -1, let Ud = min{Ui, TUj},
If TVj � -1, let Vd = min{Vi, TVj},
Let Wd = min{Wi, TWj}

Step 6.  Let L(Dj) = L(Dj) + {d}

Else

Step 7.  Let Qi = Qi + {j}
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Step 8. If TUj � -1, let Ui = min{Ui, TUj},
If TVj � -1, let Vi = min{Vi, TVj},
Let Wi = min{Wi, TWj}

Step 9.  Let L(Dj) = L(Dj) + {i}

End if

Next j

Next i

Next b

When this procedure is complete, each path has one fake job assigned to it that has the

maximum possible area, weight and volume a job can have if it is allocated to that path.

The assignment of fake jobs to paths is done in both Steps 3 through 6 and Steps 7

through 9.  Steps 3 through 6 clone each fake job that is currently at the base.  The

number of clones for a given fake job currently at the base is equal to the number of

centers at that base minus one.  The cloned jobs are assigned to the same path taken by

the current fake job in arriving at the current base.  Then each of the cloned jobs is

designated for transport by a unique center at the current base.  Steps 7 through 9 assign

the job that was cloned for transport by the remaining center.

After this procedure is complete, the largest possible area, volume and weight that

can fit in all assets on all of the paths is found.  Each fake job is then cloned 50 times and

the clones’ area, volume and weight are set equal to this smaller value.  The purpose for

having 50 smaller jobs and one large job on each path is to help ensure that at least one

extra trip is created for each vehicle on the path and that capacity on partially filled final

trips of real jobs is completely filled with fake jobs.  The purpose of this is to produce
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additional arrival times at the destination for each path that provides the reallocation

procedure more options in rescheduling jobs.  In forming the reallocation list, blocks are

created from aggregating job capacity regardless if a job is real or fake.  In contrast, only

real jobs are rescheduled in the blocks because the fake jobs have a fixed path.

The final part of this heuristic creates paths for real jobs that have not yet been

allocated.  Each remaining real job is compared with the fake jobs (each fake job has a

fixed path) until a compatible path is found.  The job is then allocated to that path.

5.2.2  The Reallocation Heuristic

Once the jobs are scheduled by an allocation heuristic, that job allocation is simulated by

the scheduler routine.  Information is gathered on the actual arrival times of each job to

the final destination.  The jobs do not necessarily arrive in due date order.  Each time a

job arrives at the final destination, its area, volume and weight is added to the aggregate

area, volume and weight of jobs that already arrived by way of the same path at the same

time.  The arrival time information is thus used to create blocks of used capacity that

arrive at the final destination at given times.  The reallocation heuristic reschedules the

jobs (sorted in order of increasing due dates) to these blocks of used capacity sorted in

increasing order of final destination arrival time.

This allocation heuristic has two parts.  Each part is performed once.  The first

part involves developing a list of capacity blocks during the simulation sorted in

increasing order of final destination arrival times.  The second part of the heuristic entails

the actual reallocation of the jobs to the vehicles.  The reallocation heuristic uses many of
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the terms defined for the initial allocation heuristic, but several additional terms are

defined next.  Let block (s, t, u, v, w) be a “used capacity” block where s is the final

destination arrival time, t is the tth arrival at time s, u is the current used area capacity, v

is the current used volume capacity and w is the current used weight capacity for the

block.  The following additional definitions are also necessary:

Pqr current path (in terms of centers) of the rth block arriving at time q
E(s) set of jobs arriving at the final destination at time s
NBs total number of blocks arrived at time s

The first part of the heuristic records the final destination arrival times and

aggregates certain used capacities into blocks of used capacities.  It is detailed as follows:

Step 1.  Let x be the first time in which at least one job arrives at the final
destination.

Step 2.  Set NBx equal to 1.  (initialize total number of blocks arriving at time x)

Step 3.  For each i � E(x):  (for each job that arrives at the final destination at time
x)

a.  Search list of all blocks (s, t, u, v, w), where s = x to see if Pst = Qi for
any t. (find a block arriving at time x with the same path as job i)

b.  If a block exists at some t (number of arrival, not time), let u = u + Ui

(if u � -1), let v = v + Vi ( if v � -1) and let w = w + Wi
Else increment NBx by 1 and add block (x, NBx, Ui, Vi, Wi) to the list.

next i

Step 4.  If all jobs are not at the final destination, let x be the next time at least one
job arrives at the final destination and go to Step 2.

The result of this first part of the reallocation heuristic is a list of used capacity blocks

sorted in increasing arrival time at the final destination.  Each used capacity block is then
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inflated by 20%; i.e. the used area, volume and weight are increased by 20%.  The

purpose of this inflation is to reduce the amount of unused capacity on the blocks’ path in

preparation for the eventual job rescheduling.

The second part of the algorithm performs the rescheduling of the real jobs (sorted

in increasing due date order) onto the identified used capacity blocks.  If a real job cannot

be rescheduled it remains on its current path.  The fake jobs always keep their initial path.

The second part of the heuristic is as follows:

Step 1.  Set the job, i, equal to 1.  (current job to be scheduled)

Step 2.  Search the list of blocks to find the first block (s, t, u, v, w) that
simultaneously satisfies the following conditions:

block has same origin base as job i
Ui � u  (if u � -1)  (job fits into remaining used area capacity)
Vi � v  (if v � -1)  (job fits into remaining used volume capacity)
Wi � w  (job fits into remaining used weight capacity)
Bik = True � k in Pst  (job fits onto all centers in path)

Step 3.  If no such block exists, go to Step 6, otherwise, go to Step 4.

Step 4.  If u � -1, let u = u – Ui.  If v � -1, let v = v – Vi.  Let w = w - Wi (decrement
remaining block capacities)

Step 5.  Let Qi = Pst  (redesignate path for job i)

Step 6.  If i < N, increment i by 1 and go to Step 2.

5.2.3  Proposed Alternate Allocation Heuristics

The original heuristics are lengthy and complicated.  The path construction for the jobs

requires one complete traverse of the deployment network and several computations even

before the first job’s path can be constructed.  Different schemes might also construct a
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good path while using less computer run time to execute.  These alternate allocation

heuristics, a second initial allocation heuristic and a second reallocation heuristic, are

proposed and described in detail in the following sections.

5.2.3.1  Initial Allocation Heuristic 2

For many items of equipment, the overriding characteristic that determines the mode of

travel (and hence the path) is its weight and/or volume.  Regardless of when it is due, the

job might have to go by a slower vehicle because it is too large or heavy to fit on a faster

vehicle.  The original initial allocation heuristic computed the average travel time to reach

the final destination from the current location.  At each base, all centers were included in

this computation.  It disregarded vehicle/job compatibility.  Therefore, a seemingly faster

path might have been based on travel times of incompatible assets.  This second

constructive heuristic only considers centers that are compatible with the job.  It does not

compute the anticipated average remaining travel time to the final destination.  Instead, it

builds a job’s path based on the job’s fastest anticipated arrival time at the next

destination on assets that can accommodate it.  Unlike the original, this heuristic does not

require a backward traverse of the network.  Instead, it performs only forward passes.

Similar to the original initial allocation heuristic, this second heuristic uses the

same definitions.  The only “new” definition is a redefinition of Ajm.  Under this heuristic,

Ajm is the anticipated next destination arrival time if a job is scheduled on the mth trip of a

vehicle in center j.  This information is passed into the scheduler routine, so no

calculation is actually performed.  This second heuristic creates a list of vehicle nodes
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sorted in increasing order of anticipated arrival time at the next destination.  Let node (s,

t, u, v, w) be a vehicle node with s the anticipated arrival time at the next destination, t the

center number, u the current remaining area capacity, v is the current remaining volume

capacity and w is the current remaining weight capacity of the vehicle.  Fake jobs are

treated in exactly the same manner as in the original initial allocation heuristic.  The first

part of this heuristic creates the initial vehicle nodes for every vehicle in every center.

Then, all real jobs are allocated to the vehicle nodes and subsequent vehicle trips are

created as necessary.  The actual algorithm is very similar to that previously shown:

For each base b:

For each j � C(b):  (for each center operating at base b)

Step 1.  Calculate Aj1

Step 2.  set vehicle k within center j equal to 1

Step 3.  Insert node (Aj1, j, TUj, TVj,TWj) on the vehicle node list

Step 4.  if k < mj, set k to k + 1, go to Step 3

Next center j  (creates list of 1st trip vehicle nodes for all vehicles)

For each i � {L(b) –F(b)}  (for each real job at base b)

Step 5.  Scan vehicle node list from beginning; find the first
node (s, t, u, v, w) that simultaneously satisfies the following
conditions:

Ui � u  (if Ui � -1)  (job area fits into remaining vehicle
capacity)

Vi � v  (if Vi � -1)  (job volume fits into remaining vehicle
capacity)

Wi  � w  (job weight fits into remaining vehicle capacity)
Bit = True  (job i fits on center t)
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If no such node exists, go to next real job.

Step 6.  If  u = TUj  and  v =  TVj  and  w = TWj,
insert node (s + Jt + Ht, t, TUt, TVt, TWt) on list (create next trip)

Step 7.  For the node found in Step 1, If u � -1, let u = u - Ui.
If v � -1, let v = v - Vi.  Let w = w – Wi.  (This decrements the
remaining vehicle weight and volume capacities.)

Step 8.  Let Qi = Qi + {t}    (augment current path with center t)

Step 9.  Set L(Dt) = L(Dt) + {i}    (insert job on job list at next
destination)

Next i

Next base b

The second part is identical to the third part of the original initial allocation heuristic.

This part creates the fake jobs and their fixed routes.  It ensures that each path has one

large and 50 small fake jobs assigned to it.  As in the original initial allocation heuristic,

any remaining real jobs not yet allocated to a path are given a compatible path at this

time.

5.2.3.2  Reallocation Heuristic 2

This reallocation heuristic also uses information learned through the simulation of the

previous allocation.  This second heuristic is based on identifying the critical jobs and

what their paths were.  A critical job has a job lateness equivalent to the maximum

lateness.  Once the critical jobs are identified, matching jobs with smaller job lateness

values are found.  A matching job has the same origin base, weight, volume and area as

the critical job.  This heuristic simply switches the paths of the critical and matching jobs



101

in an attempt to reduce the maximum lateness.  The following additional definitions are

needed:

Li = lateness of job i
Lmax = maximum lateness of all the jobs
CP = critical path; a path traveled by a critical job (Li = Lmax)
Oi = Origin base of job i
JL = list of all real jobs
MAX = maximum number of reallocation iterations to be performed
reallocationiters = number of reallocation iterations already performed

The algorithm is as follows:

For each i � JL:

Step 1.  Check job.
If Li = Lmax go to step 2.

Step 2.  Set CP equal to  Qi

Step 3.  Locate a matching job.
Scan JL from beginning.  Find first job j that simultaneously
satisfies the following conditions:

Oj = Oi
Vj = Vi
Wj = Wi
Uj = Ui
Lj < Li

Step 4.  If matching job found set Qi = Qj and Qj = CP
Else set reallocationiters = MAX

Else
Next i

In Step 4, if no matching job is found then no alteration in job paths will improve the

current schedule.  In this case, the iteration counter value is set to MAX.  This will

terminate remaining reallocation iterations since no improvement is possible.
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5.3  New Scheduler Routine Plans

The addition of these two alternate heuristics provides the ability to create four different

basic scheduler routine plans for the job allocation problem.  The scheduler routine

originally had one plan consisting of one iteration of the original initial allocation

heuristic followed with ten iterations of the original reallocation heuristic.  Denote this

plan as Plan 1.  The additional new plans will also consist of a single iteration of an initial

allocation heuristic followed with ten iterations of a reallocation heuristic.  They differ in

the pairing of the two heuristics.  Plan 2 consists of the original initial heuristic and the

alternate reallocation heuristic.  Plan 3 consists of the alternate initial heuristic and the

original reallocation heuristic.  Plan 4 consists of the alternate initial heuristic and the

alternate reallocation heuristic.  These four plans are summarized in Table 5.3.  The

original heuristics (initial and reallocation) are labeled with 1 while the alternate

heuristics (initial and reallocation) are labeled with 2.

Table 5.3  New Scheduler Routine Plans
Plan Identifier Initial Heuristic Reallocation Heuristic

1 1 1
2 1 2
3 2 1
4 2 2

5.4  Critical Aspects of Scheduler Plans

Regardless of which combination of initial and reallocation heuristics are used to create

the four different scheduler plans, all plans have at least two common aspects.  The first

aspect concerns the scheduler’s rules used in loading the vehicles.  The second aspect
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concerns the number of reallocation iterations used in the scheduling plans.  These

aspects could greatly affect the performance of the scheduler routine and are now

presented in greater detail.

5.4.1  Vehicle Loading Rules

Recall that the scheduler routine allocates jobs to paths according to the previously

defined heuristics.  The path is defined as the sequence of centers the job uses to get to its

final destination.  During simulation, the Virtual Factory maintains multiple job lists at

each base in the network; there is one job list for each center that operates at that base.

Each job list is maintained in increasing due date order.  For each vehicle being loaded,

the Virtual Factory works from the top of the appropriate center job list.  Once the job is

loaded onto the vehicle, it is removed from the center list.  If a job does not fit into the

remaining available vehicle capacity, it is counted as a “failure” and the next job is

considered for loading.  The original vehicle loading rule loads jobs onto a vehicle until

five “failures” occur, then the loading operation ceases.  The vehicle is then released for

movement to the center’s next destination.  Under this particular loading rule, a non-full

vehicle could depart a base even if some remaining jobs could fit.  The following

proposed loading rules affect how extensively each center job list is searched while

conducting the vehicle loading operation.

The first new loading rule is simply to load each vehicle until 75 “failures” are

counted.  Although the entire center job list is not searched, this does greatly extend the

length of the search for a fitting job.  The second new loading rule is goal oriented.
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Under this rule, the entire center job list is searched unless the current vehicle load meets

a predefined goal.  If the goal has been met, the loading operation ceases and the vehicle

is released for movement even if remaining jobs could fit.  This goal is defined based on

the type of vehicle.  An aircraft usually is “weighted out” before being “cubed out”.  This

means that typically, an aircraft cargo load fills the aircraft’s weight capacity leaving

remaining available space.  A ship usually runs out of available floor space well before

filling it’s weight capacity. The vehicle loading goal is met if, for an aircraft or train, 90%

of its weight or volume capacity is filled.  The goal for a ship is 90% utilization of its area

or weight capacity.  A third new loading rule has a goal of 95% vehicle utilization.  The

last new loading rule is simply to always search the entire center job list when loading a

vehicle.  The loading rules are called:  Fail5 (the original rule), Fail75, Goal90, Goal95

and WholeList.

5.4.2  Number of Reallocation Iterations Performed

The original structure of all the scheduler plans includes one iteration of an initial

allocation heuristic followed by 10 reallocation heuristic iterations.  Instead of performing

a fixed number of reallocation iterations, a variable number will be used.  The first

variation will perform reallocation iterations, always recording the best results, until 20

consecutive iterations without improvement are performed.  The remaining variations

differ only by the number of consecutive no-improvement iterations performed.  The

other methods stop after 30, 40 and 50 consecutive no-improvement iterations.  These

variations are called 10Iters (the original), 20Consec, 30Consec, 40Consec and 50Consec.
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5.5  Improving DSAT Performance

The DSAT tool was designed to meet the deployment planners’ need for a fast and

effective scheduling and analysis tool.  The performance of the scheduler routine has a

direct impact on the overall performance of DSAT.  The scheduler performance is

defined by its results (in terms of deployment closure time and maximum lateness) and

the amount of time needed to obtain the results.  Typically, effective results are gained

through an increase in run time.

In addition to the four different scheduler plans presented in the previous section,

the two critical aspects of each plan will be evaluated.  The evaluation will focus on

improving the overall scheduler performance by determining the best plan to use as well

as which loading rule and the best number of reallocation iterations to perform.  The best

plan is that which yields the best results (smallest deployment closure time and maximum

lateness) in the best time.  All experiments were performed on a personal computer.  The

computer used was an HP pavilion 7845 model with a pentium III, 866 MHz processor

and 128 MB of RAM.

5.5.1  Deployment Models

The different plans will be evaluated in the context of three different deployment models.

These models will describe increasingly more complex deployments.  The first model,

Model A, describes the deployment of the 101st Air Assault Division located at Fort
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Campbell, Kentucky, to Saudi Arabia.  This movement will be done entirely by air; this is

the same model presented in Chapter 4 and is depicted again in Figure 5.2.

Figure 5.2  Model A – One Origin; Air Deployment

The second model, Model B, describes the deployment of two divisions, the 101st and the

1st Armored Division located at Fort Hood, Texas.  As in Model A, this deployment will

be entirely conducted by air.  Additional routes are added from Fort Hood to Ramstein

and to Dhahran.  While the entire 101st is deployable by air, only some of the 1st is air

deployable.  If the planner selects the 1st to deploy by air, DSAT informs the planner that

some equipment can not deploy by air.  The planner is then given several choices, either

select sea movement as an option, or leave the non-airdeployable equipment behind.  The
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use of Model B assumes that all non-airdeployable equipment is left behind.  Model B is

depicted in Figure 5.3.

Figure 5.3  Model B – Two Origins; Air Deployment

The final model, Model C describes the deployment of the 101st and the 1st using air, rail

and sea movement.  The air routes remain as depicted in Model B.  Each Division can
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and the Dammam seaports and between the Savannah and Dammam ports.  A rail route

connects each fort to each CONUS seaport.  Trains, each consisting of 100 standard 60-

foot flat cars, operate on the rail routes.  This model is shown in Figure 5.4.

Figure 5.4  Model C – Two Origins, Rail, Sea and Air Deployment

Tables 5.4 and 5.5 contain the standard asset operating characteristics and the port
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infrastructure characteristics, respectively.  DSAT does not compute a port throughput

rate; instead, the port infrastructure is passed into the scheduler routine via the generated

text input file.  The Virtual Factory simulates the deployment process through the port,

given the port infrastructure.

Table 5.4  Transportation Asset Operating Characteristics
Asset Speed* Weight

Capacity
(STONs)

Load
Time

(hours)

Unload
Time

(hours)

Average
Maintenance
Time (hours)

C17 410 45 2.25 2.25 2.25
C5 409 61.3 4.25 3.25 3.25

C130 270 12 1.5 1.5 1.5
Fast Sealift
Ship (FSS)

27 28560 48 48 24

Train*** 22 6750 24 24 0**
* All speeds are in knots except the train speed which is in miles per hour.
** Maintenance performed during load/unload times.
*** One train consists of 100 standard 60-foot flatcars.

Table 5.5  Port Infrastructure Characteristics
Port Number of

Runways
MOG or Number

of Berths
Ft. Campbell Army Airfield 1 5

Ft. Hood Army Airfield 1 5
Ramstein Air Force Base 1 5

Dhahran International Airport 1 5
Beaumont, Texas NA 6

Savannah, Georgia NA 6
Dammam, Saudi Arabia NA 13
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5.5.2  Methodology

The following comparisons will be made for each deployment model.  First, a baseline

performance level for each of the four basic scheduler plans will be established.  This

baseline performance evaluation uses each scheduler plan in conjunction with the original

vehicle loading rules and the original reallocation iteration count.  This represents the

original scheduler routine using the four proposed scheduling plans as described in

section 5.3.  Initially, only the vehicle loading rules will be varied for each plan.  The

performance of each option will be measured with respect to the smallest deployment

closure time and maximum lateness established as well as the amount of computer run

time needed to obtain the results.  As a result of this first comparison, any plans that are

clearly dominated will be eliminated.  Next, the reallocation iteration count will be varied

for each remaining plan.  Again, the performance of each option will be measured with

respect to closure time, maximum lateness and computer run time.  As a result of this

second comparison, a recommendation regarding which scheduler plan, including vehicle

loading rule and reallocation iteration count, should be incorporated into future DSAT

versions is made.

5.5.3  Results

The methodology was applied to varying scenarios for each deployment model described

earlier.  Table 5.6 shows the input parameters for each Model A scenario; these are in

addition to the asset operating characteristics and the port infrastructures.
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Table 5.6  Model A DSAT Input Parameters
Parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4
# STONs 2,235 11,136 21,097 32,211

# Jobs 511 2,869 4,853 8,180
# Vehicles to Each Route

C17 5 50 60 70
C5 5 50 60 70

C130 15 90 90 100

The baseline results for each of the four scheduler routine plans are included in Table 5.7.

Table 5.7  Model A Baseline Results
Scenario Plan Cmax Lmax Run Time

1 7.39 1.39 0.15
1 2 7.79 1.79 0.11

3 7.39 1.39 0.13
4 9.66 3.66 0.09
1 22.88 15.88 1.15

2 2 23.84 16.84 1.07
3 22.06 15.06 1.18
4 22.66 15.66 0.71
1 34.84 13.84 2.67

3 2 42.88 21.88 1.24
3 34.73 13.73 3
4 43.83 22.83 1.49
1 56.61 25.61 6.52

4 2 62.39 31.39 2.37
3 57.8 26.8 7.12
4 68.38 37.38 4.47

Note:  Run Time in seconds, all others in days

The results using the Fail75 loading rule are displayed in Table 5.8.  The relative change

data for Cmax and Lmax shows the percentage of change between the Fail75 loading rule

and the original rule.  For example, the Fail75 relative change in Cmax is computed as:
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max

maxmax  - 
C Fail75

C BaselineC Fail75
angeRelativeCh �

A negative number indicates the percentage of reduction in Cmax gained while a positive

number indicates the percentage of increase in Cmax gained.  The relative change for Lmax

values is computed in a similar manner.  The data for the runtime simply shows the

difference in runtimes between the two options.  A change of 10% or greater is

considered significant.  Using the Fail75 loading rule resulted in an improved Cmax and

Lmax value for every plan and every scenario; almost all of the Lmax improvements were

significant.  The Run Time increase with this loading rule was insignificant.

Table 5.8  Model A Fail75 Results
Relative Change**

Scenario Plan Cmax* Lmax* Run Time* Cmax Lmax Run Time
1 1 6.28 0.28 0.17 -0.177 -3.964 0.02

2 7.63 1.63 0.15 -0.021 -0.098 0.04
3 6.26 0.26 0.17 -0.181 -4.346 0.04
4 9.34 3.34 0.12 -0.034 -0.096 0.03

2 1 21.23 14.23 1.34 -0.078 -0.116 0.19
2 22.27 15.27 0.92 -0.070 -0.103 -0.15
3 20.72 13.72 1.39 -0.065 -0.098 0.21
4 21.91 14.91 0.85 -0.034 -0.050 0.14

3 1 32.44 11.44 2.95 -0.074 -0.210 0.28
2 40.07 19.07 1.67 -0.070 -0.147 0.43
3 32.89 11.89 3.2 -0.056 -0.155 0.2
4 42.09 21.09 1.86 -0.041 -0.083 0.37

4 1 53.20 22.2 6.76 -0.064 -0.154 0.24
2 58.36 27.36 2.58 -0.069 -0.147 0.21
3 53.19 22.19 7.68 -0.087 -0.208 0.56
4 63.07 32.07 3.92 -0.084 -0.166 -0.55

* Run Time in seconds, all others in days
** Positive value indicates increase; negative value indicates decrease
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The remaining loading rules, Goal90, Goal95 and WholeList had identical results in Cmax

and Lmax.  The Run Times for Goal90 and Goal95 were essentially the same.  Of these

three loading rules, the WholeList loading rule had the fastest run time for every run.  The

results for the WholeList loading rule are displayed in Table 5.9.  The relative change

data shows the difference between the WholeList loading rule and the Fail75 rule.

Table 5.9  Model A WholeList Results
Relative Change**

Scenario Plan Cmax* Lmax* Run Time* Cmax Lmax Run Time
1 1 6.26 0.26 0.173 -0.003 -0.077 0.00

2 7.63 1.63 0.197 0.000 0.000 0.05
3 6.26 0.26 0.172 0.000 0.000 0.00
4 9.34 3.34 0.121 0.000 0.000 0.00

2 1 20.72 13.72 1.993 -0.025 -0.037 0.65
2 21.53 14.53 1.567 -0.034 -0.051 0.65
3 20.2 13.2 2.009 -0.026 -0.039 0.62
4 21.51 14.51 1.332 -0.019 -0.028 0.48

3 1 31.44 10.44 5.41 -0.032 -0.096 2.46
2 38.39 17.39 4.232 -0.044 -0.097 2.56
3 31.81 10.81 5.715 -0.034 -0.100 2.52
4 37.8 16.8 4.057 -0.113 -0.255 2.20

4 1 51.33 20.33 13.651 -0.036 -0.092 6.89
2 55.26 24.26 10.11 -0.056 -0.128 7.53
3 50.99 19.99 15.144 -0.043 -0.110 7.46
4 59.03 28.03 11.588 -0.068 -0.144 7.67

* Run Time in seconds, all others in days
** Positive value indicates increase; negative value indicates decrease

The WholeList loading rule yielded better results than the Fail75 rule in almost every

instance.  Only the first scenario using plans 2, 3 and 4 displayed no additional
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improvement.  While there was only one significant improvement in Cmax, there were

several significant improvements in Lmax in the larger two scenarios.  The increased

computer run time gained through use of this loading rule is acceptable.  Over 500 jobs

are being scheduled onto multiple machines in a matter of seconds.  The comparison of

the various loading rules used with Model A scenarios indicates that always checking the

entire job list (WholeList loading rule) is the best option to use.  Under all loading rules,

either plan 1 or plan 3 was the plan with the best results with regards to Cmax and Lmax.

The same comparison was done between the various loading rules for scenarios

using deployment Model B.  Table 5.10 shows the input parameters for the different

Model B scenarios.

Table 5.10  Model B DSAT Input Parameters
Parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4
# STONs 12,152 59,015 62,928 106,227

# Jobs 1,559 9,067 9,016 17,579
# Vehicles to Each Route

C17 50 70 85 90
C5 50 70 85 90

C130 100 100 100 100

The baseline results for each scenario under Model B and each scheduler plan are shown

in Table 5.11.
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Table 5.11  Model B Baseline Results
Scenario Plan Cmax Lmax Run Time

1 1 18.55 8.55 0.67
2 18.84 8.84 0.38
3 17.89 7.89 0.61
4 20.58 10.58 0.4

2 1 81.85 51.85 8.54
2 90.14 60.14 2.78
3 85.65 55.65 9.15
4 98.56 68.56 2.45

3 1 90.69 55.69 6.49
2 102.83 67.83 2.55
3 94.55 59.55 7.72
4 103.08 68.08 3.73

4 1 151.01 101.01 42.17
2 179.99 129.99 5.79
3 156.59 106.59 40.73
4 184.87 134.87 5.07

Note:  Run Time in seconds, all others in days

The various loading rules offered results similar to those with Model A scenarios.  First

are the results using the Fail75 loading rule shown in Table 5.12.  The relative change

data, computed as for the Model A analysis, shows the difference between the Fail75 rule

and the original loading rule.
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Table 5.12  Model B Fail75 Results
Relative Change**

Scenario Plan Cmax* Lmax* Run Time* Cmax Lmax Run Time
1 1 17.00 7.00 0.92 -0.091 -0.221 0.25

2 17.85 7.85 0.59 -0.055 -0.126 0.21
3 16.45 6.45 0.71 -0.088 -0.224 0.10
4 18.73 8.73 0.50 -0.099 -0.212 0.10

2 1 77.52 47.52 8.93 -0.056 -0.091 0.39
2 85.59 55.59 4.27 -0.053 -0.082 1.49
3 80.70 50.70 8.66 -0.061 -0.098 -0.50
4 91.68 61.68 3.47 -0.075 -0.112 1.02

3 1 84.16 49.16 7.05 -0.078 -0.133 0.56
2 96.77 61.77 3.56 -0.063 -0.098 1.01
3 87.51 52.51 8.28 -0.080 -0.134 0.56
4 96.40 61.40 3.41 -0.069 -0.109 -0.32

4 1 140.63 90.63 36.80 -0.074 -0.115 -5.37
2 162.84 112.84 7.84 -0.105 -0.152 2.05
3 146.49 96.49 35.00 -0.069 -0.105 -5.73
4 171.37 121.37 7.03 -0.079 -0.111 1.96

* Run Time in seconds, all others in days
** Positive value indicates increase; negative value indicates decrease

All Model B scenarios had improvements in Cmax and Lmax for all plans.  Again, almost

every improvement in Lmax was significant.  Increases in the run time required were

insignificant.

The remaining loading rules, Goal90, Goal95 and WholeList, had identical results

in Cmax and Lmax for all plans and all scenarios.  Of these three rules, the WholeList option

had the shortest run times.  The results for the WholeList option are displayed in Table

5.13.  The relative change shows the difference between the WholeList rule and the

Fail75 rule.
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Table 5.13  Model B WholeList Results
Relative Change**

Scenario Plan Cmax* Lmax* Run Time* Cmax Lmax Run Time
1 1 16.70 6.70 1.05 -0.018 -0.045 0.13

2 17.16 7.16 0.73 -0.040 -0.098 0.14
3 15.45 5.45 0.95 -0.065 -0.184 0.25
4 17.53 7.53 0.78 -0.068 -0.159 0.29

2 1 70.38 40.38 21.30 -0.102 -0.177 12.37
2 79.21 49.21 21.16 -0.081 -0.130 16.89
3 73.48 43.48 19.49 -0.098 -0.166 10.84
4 87.14 57.14 15.23 -0.052 -0.079 11.76

3 1 76.58 41.58 16.71 -0.099 -0.182 9.66
2 89.44 54.44 15.04 -0.082 -0.135 11.48
3 79.51 44.51 18.49 -0.101 -0.180 10.21
4 88.67 53.67 14.44 -0.087 -0.144 11.03

4 1 126.78 76.78 86.86 -0.109 -0.180 50.07
2 159.30 109.30 80.00 -0.022 -0.032 72.16
3 131.18 81.18 85.16 -0.117 -0.189 50.16
4 156.04 106.04 61.98 -0.098 -0.145 54.95

* Run Time in seconds, all others in days
** Positive value indicates increase; negative value indicates decrease

The additional improvements in Lmax were significant in almost every instance.  The

improvements in many Cmax results were also significant.  The increase in run time

incurred by using the WholeList loading rule remained small for the first three scenarios,

but was quite significant for the last scenario with an increase of about one minute.

Overall, the number of significant improvements in Cmax and Lmax warranted the increase

in run time.  The WholeList option was the best loading rule in all Model B scenarios.  In

comparing the scheduler plans used (using the WholeList rule), either plan 1 or plan 3

yielded the best results for Cmax and Lmax.
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The same comparison was performed on different scenarios of Model C.  The

input parameters for the different Model C scenarios are presented in Table 5.14.

Table 5.14  Model C DSAT Input Parameters
Parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4
# STONs 20,583 36,217 77,374 129,590

# Jobs 1,690 6,416 7,479 17,942
# Vehicles to Each Route

C17 40 80 60 90
C5 40 80 60 90

C130 100 100 100 100
FSS 2 2 2 2
Train 2 2 2 2

The baseline results for the Model C scenarios are presented in Table 5.15.

Table 5.15  Model C Baseline Results
Scenario Plan Cmax Lmax Run Time

1 1 22.72 -2.28 0.92
2 22.72 -2.28 0.51
3 23.56 3.56 0.79
4 23.56 3.56 0.48

2 1 43.38 3.38 3.27
2 53.00 13.00 1.65
3 46.15 6.15 3.41
4 58.25 18.25 1.85

3 1 63.30 33.30 5.57
2 86.26 56.26 2.17
3 63.52 33.52 4.85
4 75.63 45.63 1.98

4 1 125.62 70.62 26.13
2 172.04 117.04 5.01
3 110.56 55.56 25.20
4 140.19 85.19 4.60

Note:  Run Time in seconds, all others in days
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Using the Fail75 loading rule led to some interesting results for the Model C scenarios.

The results for this rule are shown in Table 5.16.

Table 5.16  Model C Fail75 Results
Relative Change**

Scenario Plan Cmax* Lmax* Run Time* Cmax Lmax Run Time
1 1 22.72 -2.28 0.90 0.000 0.000 -0.01

2 22.72 -2.28 0.64 0.000 0.000 0.13
3 23.56 3.56 0.91 0.000 0.000 0.12
4 23.56 3.56 0.61 0.000 0.000 0.13

2 1 41.17 1.17 3.38 -0.054 -1.889 0.11
2 50.17 10.17 2.10 -0.056 -0.278 0.45
3 42.49 3.56 3.82 -0.086 -0.728 0.41
4 54.40 14.40 2.38 -0.071 -0.267 0.53

3 1 61.58 31.58 6.27 -0.028 -0.054 0.71
2 80.92 50.92 2.95 -0.066 -0.105 0.78
3 60.97 31.09 5.33 -0.042 -0.078 0.48
4 72.95 42.95 2.57 -0.037 -0.062 0.59

4 1 101.96 46.96 24.11 -0.232 -0.504 -2.02
2 158.99 103.99 6.86 -0.082 -0.125 1.85
3 112.37 57.37 24.33 0.016 0.031 -0.87
4 130.24 75.24 6.17 -0.076 -0.132 1.56

* Run Time in seconds, all others in days
** Positive value indicates increase; negative value indicates decrease

For the first scenario, there was no change in Cmax or Lmax for any of the scheduler plans.

For the fourth scenario, using scheduler plan 3 resulted in a slight increase in both Cmax

and Lmax.  All other scenarios and scheduler plans showed a reduction in both Cmax and

Lmax; some reductions were very significant.  All run times were only slightly longer

using this loading rule.
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The remaining loading plans resulted in identical Cmax and Lmax values.  Of the

three rules, the WholeList option had the shortest run times.  The results for the

WholeList rule are displayed in Table 5.17.  The relative changes reflect the difference

between the WholeList rule and the Fail75 rule.

Table 5.17  Model C WholeList Results
Relative Change**

Scenario Plan Cmax* Lmax* Run Time* Cmax Lmax Run Time
1 1 22.72 -2.28 1.11 0.000 0.000 0.21

2 22.72 -2.28 0.78 0.000 0.000 0.14
3 23.56 3.56 1.06 0.000 0.000 0.16
4 23.56 3.56 0.77 0.000 0.000 0.16

2 1 36.54 -1.94 6.08 -0.127 -1.604 2.70
2 49.01 9.01 5.43 -0.024 -0.129 3.33
3 43.25 3.56 6.97 0.018 0.000 3.15
4 51.10 11.10 5.91 -0.065 -0.297 3.53

3 1 59.54 29.54 11.92 -0.034 -0.069 5.64
2 72.65 42.65 12.62 -0.114 -0.194 9.68
3 58.15 31.09 9.87 -0.048 0.000 4.54
4 66.97 36.97 7.12 -0.089 -0.162 4.55

4 1 105.30 50.30 61.69 0.032 0.066 37.58
2 142.47 87.47 63.89 -0.116 -0.189 57.03
3 108.07 53.07 54.86 -0.040 -0.081 30.53
4 119.14 64.14 41.05 -0.093 -0.173 34.89

* Run Time in seconds, all others in days
** Positive value indicates increase; negative value indicates decrease

In all but one case, the Lmax value either remained the same or was improved.  Most of

these improvements were significant.  In two cases, the Cmax values increased slightly.

Although using the WholeList loading rule does significantly increase the computer run

time, the results this rule presents are significantly superior to the Fail75 results.  Using
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the WholeList loading rule, scheduler plan 1 or 3 always yielded the best results for both

Cmax and Lmax.

Based on the above analysis, the following conclusions and recommendations can

be made.  First, the WholeList rule was the best loading rule for all three deployment

models and should be incorporated into the scheduler code for later DSAT versions.  All

remaining work concerning scheduler routine improvement uses scheduler plans that

incorporate the WholeList loading rule.  Second, two scheduler plans, plans 2 and 4, were

clearly dominated and should be removed from further consideration.  Scheduler plans 1

and 3 are the only plans considered in further analysis.

The remaining analysis deals with determining the preferred number of

reallocation iterations to use within a given scheduling plan.  The different options under

consideration all use a variable number of iterations.  The stopping rule halts further

execution after x consecutive iterations with no improvement found.  The different

versions are:  20, 30, 40 and 50 consecutive iterations.  Again, the different options will

be compared with respect to Cmax, Lmax and computer run time.  The results for the Model

A scenarios are shown in Table 5.18.  The relative change data for the various options are

computed for Cmax, Lmax and computer run time.  The computer run time information is

simply the difference in runtimes between the 20Consec and Original options, the

30Consec and 20Consec options, the 40Consec and 30Consec options and the 50Consec

and 40Consec options, respectively.  A positive number indicates an increase in run time

while a negative number indicates a decrease in computer run time.  The relative change

in Cmax for various options is computed by dividing the difference in Cmax values between
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two options by the Cmax value of the indicated option.  For example, the 20Consec

relative change in Cmax is computed as:

max

maxmax
 20

  -  
CConsec

CriginalOC20Consec
Change Relative �

A negative number indicates the percentage of reduction in Cmax gained while a positive

number indicates the percentage of increase in Cmax gained.  The relative change for Lmax

values are computed in a similar manner.  A 10% reduction in either Cmax or Lmax is

considered a significant change.  The relative change data in Table 5.18 indicates that

increasing the iteration count beyond the 20Consec option yields insignificant

improvements in either Cmax or Lmax.  The corresponding increases in run time usually

remained insignificant, but some run time increases were over one minute.
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Table 5.18  Model A Iteration Count Results
Relative Change**

Iterations Scenario Plan Cmax* Lmax* Run Time* Cmax Lmax Run Time
20 1 1 6.26 0.26 0.48 0.000 0.002 0.31

3 6.26 0.26 0.35 0.000 0.002 0.18
2 1 20.53 13.53 6.80 -0.009 -0.014 4.80

3 19.91 12.91 11.21 -0.015 -0.023 9.20
3 1 31.33 10.33 18.48 -0.003 -0.010 13.07

3 31.81 10.81 13.45 0.000 0.000 7.73
4 1 49.72 18.72 56.31 -0.032 -0.086 42.66

3 49.15 18.15 97.54 -0.038 -0.102 82.40
30 1 1 6.26 0.26 0.48 0.000 0.000 0.00

3 6.26 0.26 0.47 0.000 0.000 0.12
2 1 20.53 13.53 8.29 0.000 0.000 1.49

3 19.91 12.91 12.87 0.000 0.000 1.67
3 1 31.33 10.33 23.13 0.000 0.000 4.66

3 31.81 10.81 18.09 0.000 0.000 4.64
4 1 49.72 18.72 66.08 0.000 0.000 9.77

3 49.15 18.15 107.11 0.000 0.000 9.57
40 1 1 6.26 0.26 0.61 0.000 0.000 0.13

3 6.26 0.26 0.60 0.000 0.000 0.12
2 1 20.53 13.53 9.86 0.000 0.000 1.57

3 19.91 12.91 14.35 0.000 0.000 1.48
3 1 31.33 10.33 27.88 0.000 0.000 4.74

3 31.66 10.66 51.67 -0.005 -0.015 33.58
4 1 49.72 18.72 77.51 0.000 0.000 11.42

3 48.93 17.93 168.39 -0.004 -0.012 61.28
50 1 1 6.26 0.26 0.73 0.000 0.000 0.12

3 6.26 0.26 0.72 0.000 0.000 0.12
2 1 20.53 13.53 11.40 0.000 0.000 1.54

3 19.91 12.91 15.91 0.000 0.000 1.56
3 1 31.33 10.33 32.64 0.000 0.000 4.76

3 31.66 10.66 56.08 0.000 0.000 4.41
4 1 49.72 18.72 88.69 0.000 0.000 11.18

3 48.93 17.93 177.52 0.000 0.000 9.13
** Negative number indicates decrease; Positive Number indicates increase
*Run Time measured in seconds; all others in days
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The results for Model B scenarios are shown in Table 5.19.  The relative change

data is computed in the same manner as for Table 5.18.  This data shows no significant

changes in Cmax or Lmax at iteration counts beyond the 20Consec option.  The largest

reduction in Cmax or Lmax for the 20Consec option occurred in the fourth scenario with

plan 3; this indicated a 3% reduction in Lmax.

The results for Model C scenarios are shown in Table 5.20.  The relative change

data is computed in the same manner as for the Models A and B data.  This data also

shows no significant improvements in Cmax or Lmax at iteration counts exceeding the

20Consec option.
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Table 5.19  Model B Iteration Count Results
Relative Change**

Iterations Scenario Plan Cmax* Lmax* Run Time* Cmax Lmax Run Time
20 1 1 16.70 6.70 2.21 0.000 0.000 1.16

3 15.45 5.45 2.15 0.000 0.000 1.19
2 1 70.38 40.38 47.28 0.000 0.000 25.99

3 73.33 43.33 90.90 -0.002 -0.003 71.40
3 1 75.77 40.77 46.08 -0.011 -0.020 29.38

3 78.83 43.83 64.25 -0.009 -0.015 45.76
4 1 125.08 75.08 219.49 -0.014 -0.023 132.63

3 128.50 78.50 553.21 -0.021 -0.034 468.06
30 1 1 16.70 6.70 3.08 0.000 0.000 0.87

3 15.45 5.45 2.90 0.000 0.000 0.76
2 1 70.38 40.38 61.83 0.000 0.000 14.55

3 73.33 43.33 107.14 0.000 0.000 16.25
3 1 75.77 40.77 59.07 0.000 0.000 12.99

3 78.83 43.83 75.63 0.000 0.000 11.38
4 1 125.08 75.08 275.95 0.000 0.000 56.45

3 128.50 78.50 610.05 0.000 0.000 56.84
40 1 1 16.70 6.70 3.99 0.000 0.000 0.91

3 15.45 5.45 3.61 0.000 0.000 0.71
2 1 70.38 40.38 78.61 0.000 0.000 16.77

3 73.33 43.33 122.94 0.000 0.000 15.79
3 1 75.77 40.77 72.43 0.000 0.000 13.36

3 78.83 43.83 89.27 0.000 0.000 13.64
4 1 125.08 75.08 333.03 0.000 0.000 57.08

3 128.50 78.50 666.68 0.000 0.000 56.63
50 1 1 16.70 6.70 4.83 0.000 0.000 0.84

3 15.45 5.45 4.37 0.000 0.000 0.75
2 1 70.38 40.38 92.45 0.000 0.000 13.84

3 73.33 43.33 136.93 0.000 0.000 13.99
3 1 75.77 40.77 85.67 0.000 0.000 13.25

3 78.83 43.83 101.96 0.000 0.000 12.69
4 1 125.08 75.08 388.80 0.000 0.000 55.77

3 128.50 78.50 726.35 0.000 0.000 59.67
** Negative number indicates decrease; Positive Number indicated increase
*Run Time measured in seconds; all others in days
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Table 5.20  Model C Iteration Count Results
Relative Change**

Iterations Scenario Plan Cmax* Lmax* Run Time* Cmax Lmax Run Time
20 1 1 22.72 -2.28 2.27 0.000 0.000 1.16

3 23.56 3.56 2.07 0.000 0.000 1.00
2 1 32.38 -2.28 14.90 -0.128 -0.150 8.82

3 43.25 3.56 12.42 0.000 0.000 5.46
3 1 59.30 29.30 40.44 -0.004 -0.008 28.52

3 58.93 28.93 44.93 0.013 -0.075 35.06
4 1 99.60 44.60 137.07 -0.057 -0.128 75.38

3 99.89 44.89 138.31 -0.082 -0.182 83.45
30 1 1 22.72 -2.28 3.26 0.000 -0.001 0.99

3 23.56 3.56 2.95 0.000 -0.001 0.88
2 1 32.38 -2.28 19.47 0.000 0.000 4.57

3 43.25 3.56 15.17 0.000 -0.001 2.74
3 1 59.30 29.30 47.19 0.000 0.000 6.75

3 58.93 28.93 53.48 0.000 0.000 8.54
4 1 99.60 44.60 168.63 0.000 0.000 31.56

3 99.89 44.89 168.94 0.000 0.000 30.63
40 1 1 22.72 -2.28 4.25 0.000 0.000 0.99

3 23.56 3.56 3.79 0.000 0.000 0.84
2 1 32.38 -2.28 22.67 0.000 0.000 3.20

3 43.25 3.56 18.11 0.000 0.000 2.94
3 1 59.30 29.30 56.33 0.000 0.000 9.14

3 58.93 28.93 62.83 0.000 0.000 9.35
4 1 99.60 44.60 199.29 0.000 0.000 30.66

3 99.89 44.89 199.34 0.000 0.000 30.39
50 1 1 22.72 -2.28 5.22 0.000 0.000 0.97

3 23.56 3.56 4.64 0.000 0.000 0.86
2 1 32.38 -2.28 26.67 0.000 0.000 4.00

3 43.25 3.56 21.07 0.000 0.000 2.96
3 1 59.30 29.30 65.33 0.000 0.000 9.00

3 58.93 28.93 71.13 0.000 0.000 8.30
4 1 99.60 44.60 228.89 0.000 0.000 29.60

3 97.75 42.75 387.13 -0.022 -0.050 187.79
** Negative number indicates decrease; Positive Number indicated increase
*Run Time measured in seconds; all others in days
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Based on the above results, the best number of reallocation iterations to perform is

the 20Consec option.  Although some reductions in either Cmax or Lmax occur with the

other options, these changes were insignificant.  Furthermore, the increases in run time

were significant for all Models using the other options.

The plans’ performance in respect to Cmax and Lmax for all Models using the

20Consec option is now considered.  Table 5.21 summarizes both plans’ performance.

The “Best Results” column identifies, for each Model and scenario, the plan that yielded

the smallest Cmax and Lmax values.  The “Difference” columns show the difference in Cmax

or Lmax values between the best plan (plan 1 or plan 3) and the other plan (plan 3 or plan

1).  If the difference was less than 1 day, the plans were deemed equal in performance.

The last column shows the best plan for each scenario and model.  The run times for both

plans were essentially equivalent in all cases and are not considered in this comparison.

Table 5.21  Scheduling Plan Performance Summary
Model Scenario Best

Results
Difference

Cmax

Difference
Lmax

Best Plan

A 1 1,3 0.00 0.00 Tie
2 3 0.63 0.63 Tie
3 1 0.48 0.48 Tie
4 3 0.57 0.57 Tie

B 1 3 1.25 1.25 3
2 1 2.96 2.96 1
3 1 3.06 3.06 1
4 1 3.42 3.42 1

C 1 1 0.84 5.84 1
2 1 10.87 5.84 1
3 3 0.37 0.37 Tie
4 1 0.29 0.29 Tie
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Notice that for the twelve scenarios presented, plan 3 was the clear leader in performance

in only one instance.  Furthermore, when plan 1 was clearly better, it beat plan 3 by at

least 3 days.  When plan 3 beat plan 1, it did so by slightly more than one day.  In all

other instances the plans’ performance was equivalent.  Based on these observations, plan

1 performs better than plan 3 with respect to Cmax and Lmax values.  Finally, the overall

recommendation concerning future DSAT versions is to use the scheduler’s original pair

of heuristics in conjunction with the WholeList loading rule and the 20 consecutive

iterations stopping rule.
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Chapter 6

Evaluating DSAT’s Performance

This chapter will focus on evaluating the effectiveness of the Deployment Scheduling

Analysis Tool.  The tool’s effectiveness will be determined by two methods.  The first

method entails the determination of how well DSAT utilizes the transportation assets.

The second method entails the comparison of DSAT’s results in Cmax and Lmax to

DANTE’s lower bound for Cmax and COMFLOW’s lower bound for Lmax and the

corresponding conditional lower bound for Cmax.

6.1  Asset Utilization Analysis

For this paper, asset utilization will refer to how effectively a transportation asset moves

cargo over a specific route.  Each asset has several capacities to consider when loading its

cargo, these are its weight, volume and area capacities.  Rarely does an asset’s cargo fully

occupy all three capacities simultaneously.  An asset can be “full” with respect to one

capacity, say weight, and, at the same time, less than full with respect to the other

capacities.  An asset will be considered “fully utilized” if at least one of its capacities is

sufficiently utilized.  What is meant by “sufficiently utilized” is described next.
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6.1.1  TEA Deployment Analysis Information

The MTMC_TEA Pamphlet 700-5, Deployment Planning Guide, is published by the

Transportation Engineering Agency of the Military Traffic Management Command.  This

pamphlet provides broad transportation planning data designed to help planners make

gross estimates about transportation requirements.  It identifies the types and amounts of

transportation assets needed to deploy various military units.  The unit compositions used

in this guide are generic in structure and might not match actual units.  The unit

deployment requirements data presented in the pamphlet was generated by running

MTMC_TEA’s Transportability Analysis Reports Generator (TARGET) on a unit’s

Tables of Organization and Equipment (TOE).  A unit’s TOE is a generic description of

its organizational structure and composition.  It includes a standardized list of equipment

with its characteristic data (weight, height, width, length).  TARGET estimated the

number of missions, by asset type, necessary to move the selected unit equipment from

the CONUS installations to the ports of embarkation (POEs), from the POEs to the ports

of debarkation (PODs), and from the PODs to the tactical assembly area (TAA).  A

mission is one trip of a transportation asset to deliver cargo to a destination.

The Deployment Planning Guide does not provide information concerning the

weight capacities of FSSs.  Instead, ship mission planning requirements are based solely

on the unit square footage requirements and the individual ship’s square footage

capacities.  A FSS has an average useable space of 152,774 square feet.  There are 8 FSSs

in service today; based on their design characteristics, the average cargo deadweight

capacity is 16,156 STONs.
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The amount of weight a plane can carry for any mission is referred to as the

allowable cabin load (ACL).  The ACL for any plane is established by several factors

including the weather and the flight distance.  The greater the flight distance, the more

fuel the plane must carry, thus reducing the amount of cargo it can carry.  Using a 3,200

nautical mile leg, the following TEA data is based on an ACL of 178,000 pounds for a C5

and 130,000 pounds for a C17.  The C130 ACL of 38,200 pounds is based on a 1,000

nautical mile leg.

The TARGET estimated mission requirements to deploy an air assault division

and an armored division are identified in Table 6.1.  This table also identifies the units’

weight and square footage requirements.

Table 6.1  TEA Extract of TARGET Analysis
Unit Data Strategic Missions Theater  Missions

Division Type STONs SQ FT C171 C52 FSS4 STONs5 C1303

Air Assault 34,938 913,387 766 600 7 22,819 1,999
Armored 99,921 1,406,284 1,722 1,284 9.8 26,540 2,234

1Based on Allowable Cabin Load of 130,000 lbs. for C17, critical leg of 3,200 nm.
2Based on Allowable Cabin Load of 178,000 lbs. for C5, critical leg of 3,200 nm.
3Based on Allowable Cabin Load of 38,200 lbs. for C130, critical leg of 1,000 nm.
4Based on Average Useable Square Footage of 152,774 sq. ft. for FSS.
5 TEA table indicated this weight moved by C130 missions.

The number of missions identified in the strategic missions columns reflects the

estimated number of asset specific missions required to deploy 100% of the unit to the

strategic APOD or SPOD by that specific asset.  The number of missions identified in the
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theater missions column reflects the estimated number of C130 missions required to

deploy the identified unit weight requirement to the theater APOD.

The information presented in Table 6.1 was used to compute the average

percentage of asset weight or area capacity used per mission during the deployment of a

particular type division.  This information represents the accepted average percentages

that deployment planners use in planning their various deployments.  This information is

presented for both strategic and intra-theater lift assets in Table 6.2.

Table 6.2  TEA Analysis:  Asset Average Percentage of Capacity Utilization
Unit Data Strategic Lift Analysis
Division Type Asset Average Payload

Weight (STONs /
Missions)

Average Payload
Area (Sq. Ft /

Missions)

Average % Weight
Capacity Utilized
(Payload / ACL)

Average % Area
Capacity Utilized

(Payload / Useable
Area)

Air Assault C17 45.61 0.70
C5 58.23 0.65
FSS 4,991.14 130,483.86 0.31 0.85

Armored C17 58.03 0.89
C5 77.82 0.87
FSS 10,196.02 143,498.37 0.63 0.94

Unit Data Theater Lift Analysis
Division Type Asset Average Payload

Weight (STONs /
Missions)

Average Payload
Area (Sq. Ft /

Missions)

Average % Weight
Capacity Utilized
(Payload / ACL)

Average % Area
Capacity Utilized

(Payload / Useable
Area)

Air Assault C130 11.42 0.60
Armored C130 11.88 0.62

The average percent of weight capacity utilized per mission for the FSS is based on the

average cargo deadweight capacity of today’s FSS fleet.  The values in Table 6.2 will be
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used for comparison with the asset utilization percentages computed as a result of

DSAT’s deployment schedule.  If the asset utilization percentages are at least equivalent

to those in Table 6.2, then DSAT’s schedule would “sufficiently utilize” the deployment

assets.

6.1.2  DSAT Deployment Analysis Information

Special care must be taken to construct deployment scenarios for DSAT so that an

accurate comparison of asset utilization percentages can be made.  For this portion of

DSAT analysis, five special deployment scenarios are presented.  The first four scenarios

involve either the 101st Air Assault Division or the 1st Armored Division; the unit will

deploy entirely by air.  A strategic lift (from home base to Ramstein AB) will utilize only

either C17 or C5 assets.  An intra-theater lift (from Ramstein to Saudi Arabia) will use a

mix of assets similar to the mix used in MTMC_TEA’s pamphlet.  The last scenario

involves both units deploying by rail to separate seaports and strategic sea lift (from port

to Saudi Arabia) using FSSs.  In all scenarios, DSAT used the ACLs and useable area as

stated in the previous section.  The special scenarios are summarized in Table 6.3.

Table 6.3  Special Deployment Scenarios
Scenario Unit Strategic Lift Asset Intra theater Asset

1 101st C17 C130, C17
2 101st C5 C130, C5
3 1st C17 C130, C17
4 1st C5 C130, C5
5 1st and 101st FSS NA
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As the scheduler routine in DSAT simulated the deployment, information concerning

each asset’s cargo load was obtained.  DSAT captured information concerning weight and

volume utilization of air and rail assets and weight and area utilization of sea assets.  This

information was printed out in a text file.  Post processing the information contained in

this text file allowed one to compute the number of asset missions conducted, the total

weight moved by that asset type, the average asset payload in STONs and volume or area

and the average percentage of asset capacity utilized.  This information is presented in

Table 6.4.

Table 6.4  DSAT Analysis:  Asset Average Percentage of Capacity Utilization
Unit Data Strategic Lift Analysis
Division Type Asset Average Payload

Weight (STONs /
Missions)

Average Payload
Volume or Area

(capacity /
Missions)

Average % Weight
Capacity Utilized
(Payload / ACL)

Average % Volume
or Area Capacity

Utilized (Payload /
Capacity)

Air Assault C17 52.89 10,944.10 0.81 0.83
C5 69.88 15,681.44 0.79 0.83
FSS 9,958.78 146,642.43 0.62 0.96

Armored C17 62.33 7,483.36 0.96 0.57
C5 85.36 10,648.45 0.96 0.56
FSS 12,261.67 140,872.00 0.76 0.92

Unit Data Theater Lift Analysis
Division Type Asset Average Payload

Weight (STONs /
Missions)

Average Payload
Volume or Area
(# / Missions)

Average % Weight
Capacity Utilized
(Payload / ACL)

Average % Volume
or Area Capacity

Utilized (Payload /
Capacity)

Air Assault C130 13.52 2,811.25 0.71 0.94
Armored C130 16.32 2,639.43 0.85 0.89

These asset utilization percentages are comparable to the standard planning factors for

asset utilization as generated by TARGET.  The DSAT generated deployment schedule
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has a higher weight capacity utilization percentage for all strategic and intra theater air

assets.  These results were higher by at least 7%.  The strategic sea lift asset utilization

percentages for both weight and area capacity are also comparable.  The DSAT generated

deployment schedule had a higher FSS weight capacity utilization percentage for all sea

lift assets.  This utilization was larger by at least 13%.  Regarding the ship’s area capacity

utilization percentages, the DSAT generated schedule for the air assault division was

higher by 11%.  The TARGET generated utilization percentage for the armored division

was higher by a mere 2%.  Overall, DSAT appears to sufficiently utilize all assets.

These results, however, are based on very simplistic deployment scenarios.  Each

unit had dedicated assets for its deployment.  In no scenario are deployment assets shared

between units.  Furthermore, most scenarios involve only one mode of deployment, air.

There is only one scenario with multiple modes, rail and sea.  DSAT’s power and

versatility comes from its ability to rapidly schedule large deployments using all modes of

transportation.  Recall the three deployment models presented in Chapter 5.  The

following selection of graphs detail capacity utilization for individual missions for

various assets employed in the different models.  Each graph shows the simultaneous

weight and volume (for air and rail assets) or weight and area (for sea assets) capacity

utilization percentage for individual missions performed throughout the duration of the

deployment.  The VF time interval in each graph refers to the Virtual Factory’s internal

calendar time at which the asset was unloaded at its destination.  The Virtual Factory

counts time in 15 minute intervals.
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The asset utilization information for all C130 aircraft operating in a Model A

deployment scenario is shown in Figure 6.1.  The initial missions unloading from time

period 130 to 163 are characterized by a significantly lower percentage of utilized

capacity in either category.  As the amount of equipment at the Ramstein AB increased,

so does the C130 utilization.  More available equipment creates more choices to fill

remaining capacity for later missions.  The remaining missions, except the last, met or

exceeded MTMC_TEA’s planning factors for average percentage of capacity utilization.

Figure 6.1  Model A C130 Asset Utilization Information

The asset utilization information for C5’s operating on the Ft. Hood AAF to

Ramstein AB route in a Model B scenario is shown in Figure 6.2.  Note that every

mission, except the last one, was completely filled with respect to either weight or

volume.
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Figure 6.2  Model B C5 Asset Utilization Information

The asset utilization information for C17’s operating from Ft Campbell AAF to

Dhahran in a Model B scenario is shown in Figure 6.3.  Note that every mission, except

the last one, was completely filled with respect to either weight or volume.

Figure 6.3  Model B C17 Asset Utilization Information
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Rail utilization from Ft Campbell to the Beaumont seaport is shown in Figure 6.4.

Each mission, except the last is fully utilized with respect to either weight or volume

capacity.

Figure 6.4  Model C Rail Asset Utilization Information

Finally, the FSS utilization for ships operating between Beaumont and Dammam

is shown in Figure 6.5.  This chart shows that each FSS mission utilized below 50% of
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Figure 6.5  Model C FSS Asset Utilization Information

These various graphs represent typical asset utilization performance achieved by all

transportation assets in the deployment scenario as a result of DSAT’s deployment

schedule.  These graphs indicate that DSAT, even in complex multi-mode deployments,

creates deployment schedules which effectively utilize all transportation assets.

6.2  DSAT Comparison to Different Lower Bound Tools

This section will concentrate on determining how well DSAT schedules equipment to

meet its due date.  To do this, DSAT’s schedule results for Cmax and Lmax will be

compared to similar results from different planning tools.  The first comparison will be

made between DSAT and DANTE.  DANTE will establish a lower bound for the
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COMFLOW will showcase a different method of computing port throughput rates.

Initially, COMFLOW will use the same method used by DANTE, this will establish a

lower bound for both deployment closure time and maximum lateness.  These values will

be compared to DSAT’s results and will show any differences between DANTE’s and

COMFLOW’s closure time estimation.  Next, COMFLOW will use both the alternate port

throughput rate computation methods described in Chapter 4.  These comparisons will

help to establish the effect that port throughput rates have on the effectiveness of a lower

bound.  The deployment models and scenarios developed in Chapter 5 are used for each

comparison.

6.2.1  DSAT and DANTE

All Model A scenarios are easily converted into an equivalent DANTE problem.  All

assets operating on the Campbell to Ramstein route are Strategic Air Assets.  Those

assets operating on the Ramstein to Dhahran route are Theater Air Assets, and finally,

those assets operating on the Campbell to Dhahran route are Through Air Assets.  The

distances between the ports remain the same, as do the speeds of the assets.  Because the

load times, unload times and capacities of each asset must be integer values in DANTE,

they are rounded as necessary.  The largest air asset that can be accommodated at each

port is the C5.  Therefore, all ports have the same throughput rate, expressed as STONs

per day.  The MOG for each port is 5 so that each port’s throughput rate is 1,731 STONs

per day.  The DANTE input data, common to all Model A scenarios, is in Table 6.5.  The

information specific to each scenario is in Table 6.6.
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Table 6.5  Model A DANTE Standard Input
Strategic Air Distance (nm) 3958
Thru Air Distance (nm) 6330
Theater Air Distance (nm) 2402
Speed C17 (knots) 410
Speed C5 (knots) 409
Speed C130 (knots) 270
Capacity C17 (stons) 45
Capacity C5 (stons) 61
Capacity C130 (stons) 12
Load time C17 (hrs) 2
Load time C5 (hrs) 4
Load time C130 (hrs) 2
Unload time C17 (hrs) 2
Unload time C5 (hrs) 3
Unload time C130 (hrs) 2
CONUS AP capacity (stons/day) 1731
Strategic AP capacity (stons/day) 1731
Theater AP capacity (stons/day) 1731

Table 6.6  Model A Scenario Specific Data
Assets Scenario 1 Scenario 2 Scenario 3 Scenario 4

# Strategic C17 5 50 60 70
# Strategic C5 5 50 60 70
# Thru C17 5 50 60 70
# Thru C5 5 50 60 70
# Theater C130 15 90 90 100
Lift (# stons) 2,233 11,134 21,095 32,210

The following figure, Figure 6.6, displays both DSAT’s closure time and DANTE’s

closure time for all Model A scenarios.
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Figure 6.6  DSAT and DANTE Closure Times; Model A

Converting the Model B scenarios to equivalent DANTE problems was slightly

more complicated.  There are two strategic air distances (Ft. Campbell to Ramstein and

Ft. Hood to Ramstein) as well as two throughput air distances (Campbell to Dhahran and

Hood to Dhahran).  The larger distance was used in both cases.  The number of strategic

air assets, by type, was the sum of all strategic air assets, by type, operating from

Campbell and Hood.  The throughput air assets were similarly combined.  The two

CONUS airport capacities were merged into one port with a capacity equal to the sum of

both.  The DANTE standard input data and scenario specific data are shown in Tables 6.7

and 6.8, respectively.
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Table 6.7  Model B DANTE Standard Input
Strategic Air Distance (nm) 4546
Thru Air Distance (nm) 6895
Theater Air Distance (nm) 2402
Speed C17 (knots) 410
Speed C5 (knots) 409
Speed C130 (knots) 270
Capacity C17 (stons) 45
Capacity C5 (stons) 61
Capacity C130 (stons) 12
Load time C17 (hrs) 2
Load time C5 (hrs) 4
Load time C130 (hrs) 2
Unload time C17 (hrs) 2
Unload time C5 (hrs) 3
Unload time C130 (hrs) 2
CONUS AP capacity (stons/day) 3462
Strategic AP capacity (stons/day) 1731
Theater AP capacity (stons/day) 1731

Table 6.8  Model B Scenario Specific Data
Assets Scenario 1 Scenario 2 Scenario 3 Scenario 4

# Strategic C17 100 140 170 180
# Strategic C5 100 140 170 180
# Thru C17 100 140 170 180
# Thru C5 100 140 170 180
# Theater C130 100 100 100 100
Lift (# stons) 12,151 59,013 62,925 106,224

Figure 6.7 shows the closure time results for both DSAT and DANTE for the Model B

scenarios.
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Figure 6.7  DSAT and DANTE Closure Times, Model B

Converting the Model C scenarios into equivalent DANTE problems followed a

similar procedure regarding sea port consolidation.  However, there were several key

differences between the DANTE and the Model C network for rail and sea movement.

DANTE does not model CONUS rail movement.  Instead, the origin node or “Fort” is

connected to the CONUS seaport by a network connector with no time or capacity

restrictions.  The strategic seaport is connected to the “Fight” or network terminal node

by theater rail (or highway or waterway routes) which have both time and capacity

restrictions based on the distance.  The Model C network, as far as rail and sea

movement, is almost completely structurally reversed.  The origin nodes or “forts” are

connected to various CONUS seaports, each connection with associated time and
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network terminal node by a network connector with no time or capacity restrictions.  To

model the theater rail movement in DANTE, Model C’s longest CONUS rail distance

was used to determine the time and capacity restrictions.  All CONUS train assets were

consolidated into theater rail assets.  To model the ship movement between the CONUS

and strategic seaports, the longest Model C sea distance was used.  All ship assets were

consolidated onto this route and the resulting time and capacity restrictions were used.

DANTE’s standard input data for the Model C scenarios is shown in Table 6.9.  This is in

addition to the standard input air data shown in Table 6.7.

Table 6.9  Model C DANTE Standard Input
Strategic Sea Distance (nm) 8583
Speed FSS 27
Load time FSS (hrs) 48
Unload time FSS (hrs) 48
Capacity FSS (stons) 28560
CONUS SP capacity (stons/day) 57120
Strategic SP capacity (stons/day) 57120
Theater rail time (days) 4
Theater rail capacity (stons/day) 4953

The Model C scenario specific data is shown in Table 6.10.
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Table 6.10  Model C Scenario Specific Input
Assets Scenario 1 Scenario 2 Scenario 3 Scenario 4

# Strategic C17 80 160 120 180
# Strategic C5 80 160 120 180
# Thru C17 80 160 120 180
# Thru C5 80 160 120 180
# Theater C130 100 100 100 100
# Strategic FSS 4 4 4 4
# (Theater) Trains 4 4 4 4
Lift (# stons) 20,582 36,215 77,371 129,587

Figure 6.8 shows the results in closure time for the Model C scenarios.

Figure 6.8  DSAT and DANTE Closure Times; Model C
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The results demonstrate that DANTE does indeed provide a lower bound for the

deployment closure time, LB(Cmax), for a given deployment scenario.  In most cases,

however, this lower bound is weak.  COMFLOW was developed to provide a lower

bound for Cmax and for the maximum lateness, Lmax.

6.2.2  DSAT, DANTE and COMFLOW

DSAT’s results in Cmax and Lmax for all models and scenarios will be compared to

different COMFLOW results for the same scenarios.  The initial comparison,

COMFLOW(1), will involve results based on using the same port throughput rate

computed for the previous DANTE analysis.  The COMFLOW(1) analysis is designed to

show any improvement in the estimation of LB(Cmax) gained over DANTE’s estimation.

An iterative application of COMFLOW(1) will also provide a value for LB(Lmax).

The subsequent comparisons involve COMFLOW analyses using the proposed

port throughput computation methods described in Chapter 5.  These analyses focus on

further improving the LB(Cmax) and LB(Lmax) values.  COMFLOW(2) uses a port

throughput rate based on the maximum individual asset throughput rate.  At all airports

the maximum asset throughput rate was that of the C17 aircraft at 300 STONs per period.

The seaport asset throughput rates were based on the FSS throughput rate and the number

of assets operating at the individual ports.  The Beaumont and Savannah ports each had

two ships operating there, yielding a port throughput rate of 7,140 STONs per period.

The Dammam port has a total of four ships operating there for a port throughput rate of

14,280 STONs per period.  As mentioned in Chapter 3, using this port throughput rate in
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DANTE will provide a lowerbound for Cmax.  This same rate used in COMFLOW will

provide a lowerbound for Lmax and a corresponding conditional lowerbound for Cmax.

COMFLOW(3) uses a weighted average port throughput rate based on the size and

composition of the deployment asset fleet operating at each port.  The computed port

throughput rate for each port in each scenario is identified in Table 6.11.

Table 6.11  Computed Port Throughput Rates (STONs per Period)
Model Scenario Campbell Hood Ramstein Dhahran Savannah Beaumont Dammam

A 1 274.589 178.744 166.929
2 274.589 199.762 186.176
3 274.589 207.598 193.736
4 274.589 209.696 195.798

B 1 274.589 274.436 222.916 209.732
2 274.589 274.436 236.275 223.931
3 274.589 274.436 243.338 231.732
4 274.589 274.436 245.311 233.949

C 1 274.589 274.436 213.515 200.151 7140 7140 14280
2 274.589 274.436 241.19 229.338 7140 7140 14280
3 274.589 274.436 230.309 217.503 7140 7140 14280
4 274.589 274.436 245.311 233.949 7140 7140 14280

Using this port throughput rate in DANTE or COMFLOW does not guarantee establishing

a lowerbound for Cmax or Lmax since this method could underestimate the actual port

throughput rate in early periods.

The final comparison, COMFLOW(4), uses the same airport throughput rates as

identified in the table above.  The sea port throughput rates, however, are based on the

assumption that only 50% of the FSS weight capacity is used.  This assumption yields a
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throughput rate of 3,570 STONs per period for Beaumont and Savannah and a throughput

rate of 7,140 STONs per period for Dammam.

6.2.2.1  Model A Analysis

The input parameters for COMFLOW require individual commodity movement

requirements and deployment horizon lengths in addition to the number of transportation

assets assigned to each route.  Table 6.12 shows the scenario specific input parameters for

all Model A scenarios.  These parameters are in addition to the standard asset operating

characteristics identified in Chapter 5 and the computed port throughput rates.

Table 6.12  Model A COMFLOW Input Parameters
Scenario com id stons due C5 C17 C130 T

1 1 1,265 5 5 5 15 10
2 968 6

2 1 1,265 5 50 50 90 25
2 5,330 6
3 4,539 7

3 1 4,049 15 60 60 90 45
2 9,605 17
3 2,219 19
4 5,222 21

4 1 4,049 15 70 70 100 60
2 9,605 19
3 7,442 23
4 5,784 27
5 5,330 31

Based on the input parameters, the COMFLOW analysis resulted in a linear program (LP)

characterized by a number of variables, constraints, and a solution time.  A single
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application of COMFLOW was required to ultimately establish LB(Lmax) for the Model A

scenarios.  Table 6.13 shows the resultant LP size, and solution time for each COMFLOW

iteration and the number of COMFLOW iterations needed to establish the lower bound

for maximum lateness.

Table 6.13  Model A LP Information
Scenario # variables # constraints Runtime # Iterations

1 920 928 0:00:01 1
2 3,540 2,959 0:00:03 1
3 8,560 6,430 0:00:10 1
4 14,300 10,021 0:00:21 1

The deployment closure time and maximum lateness results (in days) for the different

scenarios and models are included in Table 6.14.

Table 6.14  Model A Results: DSAT, DANTE and COMFLOW
DSAT DANTE COMFLOW(1) COMFLOW(2) COMFLOW(3)

Scenario Closure Lateness Closure Closure Lateness Closure Lateness Closure Lateness
1 6.26 0.26 5.25 5.75 -0.25 5.75 -0.25 5.75 -0.25

2 20.53 13.53 7.25 7.25 0.25 10.25 3.25 15.75 8.75
3 31.33 10.33 13.00 13.00 -8.00 18.50 -2.50 28.00 7.00
4 49.72 18.72 19.50 19.50 -10.00 27.75 -3.25 42.00 11.00

Note that in most instances, the closure time results for DANTE and COMFLOW(1) were

equivalent.  COMFLOW(1) provided a slightly better closure time estimate for the first

scenario because, for this instance only, the port throughput rate was not the most

restrictive element in the network.  For this instance, the asset movement arcs with their
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associated capacities were the limiting factor.  DANTE’s movement arc capacity was

computed based on an integer approximation of the roundtrip time while COMFLOW

computed the movement arc capacity based on the computed roundtrip time and included

maintenance sessions.  The models’ results are graphically presented in the following

figures.  Figure 6.9 shows the deployment closure time results established by DSAT,

DANTE and each COMFLOW version.  Note that the COMFLOW established LB(Cmax)

is actually a conditional value; it is the LB(Cmax) given that LB(Lmax) is minimized.

Figure 6.10 shows the maximum lateness results established by DSAT and each

COMFLOW version.

Figure 6.9  Model A Deployment Closure Time Results
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Figure 6.10  Model A Maximum Lateness Results

The different port throughput computation methods greatly improved the effectiveness of

the lower bound estimate for Cmax and Lmax.  It also appears that DSAT quite effectively

schedules these small scale deployments in order to meet established delivery dates.

6.2.2.2  Model B Analysis

The Model B scenario specific input parameters for the different COMFLOW versions are

contained in Table 6.15.  The resultant LP size, solution time for each COMFLOW
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Table 6.15  Model B COMFLOW Input Parameters
Scenario Origin Com Id Stons Due C5 C17 C130 T

1 C 1 2,234 5 50 50 100 18
H 2 9,917 10

2 C 1 4,469 20 70 70 100 70
C 2 10,291 25
H 3 19,834 25
H 4 24,419 30

3 C 1 8,900 25 85 85 100 100
C 2 5,784 35
H 3 24,752 20
H 4 15,534 25
H 5 7,955 30

4 C 1 7,555 20 90 90 100 120
C 2 7,207 30
C 3 17,448 40
H 4 24,752 25
H 5 22,630 35
H 6 26,632 50

Table 6.16  Model B LP Information
Scenario # Variables # Constraints Runtime # Iterations

1 1,681 2,124 0:00:02 1
2 13,346 11,702 0:00:15 1
3 23,879 19,129 0:00:40 1
4 34,419 25,840 0:01:29 1

The deployment closure time and maximum lateness results (in days) for the different

scenarios and models are included in Table 6.17.
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Table 6.17  Model B Results:  DSAT, DANTE and COMFLOW
DSAT DANTE COMFLOW(1) COMFLOW(2) COMFLOW(3)

Scenario Closure Lateness Closure Closure Lateness Closure Lateness Closure Lateness
1 16.70 6.70 8.00 8.00 -2.00 11.00 1.00 15.25 5.25

2 70.38 40.38 35.00 35.00 5.00 50.00 20.00 66.75 36.75
3 75.77 40.77 37.25 37.25 4.25 53.25 18.50 68.75 33.75
4 125.08 75.08 62.25 62.25 12.25 89.50 39.50 114.50 64.50

Note that in all scenarios the port throughput rate was the restricting network element.

DANTE and COMFLOW(1) had identical deployment closure time results.  The models’

results are graphically presented in the following figures.  Figure 6.11 shows the

deployment closure time results established by DSAT, DANTE and each COMFLOW

version.  Figure 6.12 shows the maximum lateness results established by DSAT and each

COMFLOW version.

Figure 6.11  Model B Deployment Closure Time
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Figure 6.12  Model B Maximum Lateness Results

The different port throughput rate computation methods again provided better lower

bound estimates for these deployment scenarios.  DSAT appears to effectively schedule

these increasingly larger and more complex deployments to meet established due dates.

6.2.2.3  Model C Analysis

The Model C scenario specific input parameters for the different COMFLOW versions are

contained in Table 6.18.  The resultant LP size, solution time for each COMFLOW

iteration and the required number of iterations to establish the lower bound for maximum

lateness are contained in Table 6.19.
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Table 6.18  Model C COMFLOW Input Parameters
Scenario Origin Com Id Stons Due C5 C17 C130 Train FSS T

1 C 1 2,234 20 40 40 100 2 2 20
H 2 18,348 25

2 C 1 5,784 20 80 80 100 2 2 30
C 2 3,570 25
H 3 8,365 25
H 4 8,342 35
H 5 10,154 40

3 C 1 3,797 20 60 60 100 2 2 60
C 2 8,254 25
H 3 45,668 25
H 4 19,652 30

4 C 1 14,912 25 90 90 100 2 2 90
C 2 12,076 35
C 3 5,222 40
H 4 45,668 35
H 5 24,690 45
H 6 27,019 55

Table 6.19  Model C LP Information
# Iterations

Scenario # variables # constraints Runtime (1) (2) (3) (4)
1 2,991 3,658 0:00:02 1 1 1 1
2 12,069 9,521 0:00:21 1 15 3 2
3 20,702 17,784 0:00:55 1 1 1 1
4 53,136 42,809 0:06:56 1 3 1 1

The results listed in Table 6.19 highlight an interesting difference between Model C and

the previous two deployment models.  For both Models A and B, regardless of the version

of COMFLOW used, the first iteration COMFLOW analysis established the LB(Lmax)

estimate.  For Model C scenarios, the port throughput rate (different in each COMFLOW
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version) appeared to effect the number of iterations of COMFLOW analysis required to

establish the LB(Lmax) estimate.  In most cases, the number of iterations required was

small.  The results for the different models are shown in Table 6.20.

Table 6.20  Model C DSAT, DANTE and COMFLOW Results
DSAT DANTE COMFLOW(1) COMFLOW(2) COMFLOW(3)

Scenario Closure Lateness Closure Closure Lateness Closure Lateness Closure Lateness

1 22.72 -2.28 8.75 12.75 -12.25 18.00 -7.00 21.25 -3.75
2 32.38 -2.28 13.25 20.50 -14.00 22.75 -9.25 23.75 -5.00
3 59.30 29.30 23.25 27.50 -1.00 30.75 1.75 33.00 3.50
4 99.60 44.60 31.25 36.75 -8.25 41.50 -5.25 43.75 -3.50

Note that there are now significant differences between DANTE and COMFLOW(1)

deployment closure time results.  This is due, at least in part, to the differences in the

network structures for the different tools.  If theater routes (in addition to theater air lift)

are included in the DANTE input parameters, cargo flows using strategic air lift can use

any of the theater lift routes (rail, highway, waterway or air) to reach the “Fight”.  In the

model developed for the COMFLOW analysis, strategic air lift flows are restricted to

theater air lift assets to reach the sink node.  The different results are graphically

displayed in Figures 6.13 and 6.14.  Figure 6.13 shows the deployment closure time

results.  Figure 6.14 shows the maximum lateness results.
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Figure 6.13  Model C Deployment Closure Time Results

Figure 6.14  Model C Maximum Lateness Results
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demonstrated estimate for both is still weak.  The weakness of the lower bound estimates

is due to the inclusion of ships into the deployment model.  One FSS can carry the same

weight carried by approximately 465 C5 aircraft (the C5 has the largest weight carrying

capacity of all aircraft).  Ships, as mentioned previously, rarely carry their capacity in

weight.  Instead, they carry their capacity in area.  An assumption used in both DANTE

and COMFLOW is that all assets can utilize 100% of their weight carrying capacity.

According to historical data gathered by TEA, this is a valid assumption if considering

movement by air, rail or highway (trucks, trailer, etc) assets.  This is not a valid

assumption when considering movement by ship.  The final version of COMFLOW

presented, COMFLOW(4), uses the same port throughput computation method as

COMFLOW(3) with the following two assumptions.  First, all rail and air assets utilize

100% of their specific weight carrying capacity.  Second, ships, in this case FSS, use only

50% of their weight carrying capacity.  The 50% figure was derived from information

presented in MTMC_TEA’s Deployment Planning Guide.  The strategic sealift mission

requirements to deploy all identified units, with specified weight requirements, was

analyzed to determine the average percentage of FSS weight capacity used for all types of

unit movements.

The COMFLOW(4) results for the LB(Cmax) and LB(Lmax) estimates are identified

in Table 6.21.  These results are included in the graphical representations in Figures 6.15

and 6.16.
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Table 6.21  COMFLOW(4) Results
Scenario Closure Lateness

1 22.00 -3.00
2 26.50 -5.00
3 42.00 12.00
4 60.00 5.25

Figure 6.15  Model C Deployment Closure Time Results
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Figure 6.16  Model C Maximum Lateness Results

This last version of COMFLOW does provide a much better estimate for the lower
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with the assumptions concerning the percentage of asset weight capacity utilized yields

the best estimated lower bound values for Cmax and Lmax.  Although this method does not

guarantee a lower bound for Lmax and a corresponding conditional lower bound for Cmax,

it will provide a very effective estimate for the lower bound values.  In all models
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delivered to the final destination was period 4.  This flow was delivered by the direct C17

route from Campbell to Dhahran.  Dhahran’s port throughput rate, based on active routes

and the optimal schedule, was 300 STONs in this period.  This rate is larger than any

value computed for the Dhahran port in Table 6.11.  In the next period, period 5 and

many subsequent periods, the optimal solution had flow arriving to Dhahran from all

possible air routes.  The actual port throughput rate, based on active routes and the

optimal solution, was the values as identified in Table 6.11.  Finally, at some point in

time, the amount of equipment at one (eventually both) origin(s) was depleted.  The

actual Dhahran port throughput rate for this time span, based on active routes and the

optimal solution was a value less than the rate shown in Table 6.11.  In model C, all

equipment sent by rail and ship went to the final destination seaport of Dammam.  This

port throughput rate was based on the weighted average arrival rate of the FSS ship.

Since no other ship with different capacities was used, the Dammam port throughput rate

was a constant as represented in Table 6.11.  If ships with different capacities were used,

the Dammam port throughput rate would most likely change over time as a function of

the active routes in a given period of time.  The weighted average port throughput rate

computation method, assuming all routes are active, appears to establish a good estimate

of the average port throughput rate for the duration of the deployment and therefore

should provide a good estimate for the lower bound for maximum lateness and

deployment closure time.  These estimated values appear to be very good for deployments

involving only air movement.  These estimates might yet be weak when dealing with ship

movements.
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DSAT generates deployment schedules which quite efficiently utilize all

transportation assets, surpassing MTMC_TEA’s established asset utilization planning

factors.  This effective utilization of assets holds true for every model and scenario

evaluated.  DSAT appears to create very good deployment schedules, in terms of

deployment closure time and maximum lateness, for deployments involving air

movement.  DSAT may or may not perform as well for deployments involving sea

movement.
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Chapter 7

Conclusions and Future Research

7.1  Conclusions

This research encompassed several distinct objectives.  A much-used deployment

planning tool, DANTE, was presented in great detail.  DANTE models all deployments

using a generalized deployment network.  A proof, presented in the third chapter, showed

that DANTE’s minimum cost objective function also minimized the completion time of

the deployment, Cmax.

DANTE’s concept of deployment modeling was expanded to include due date

information.  COMFLOW was developed as a multi-commodity variation of DANTE.

The commodities are uniquely identified by an origin-due date pair of defined equipment

characteristics.  An iterative application of COMFLOW established the maximum

lateness of any commodity in a deployment scenario.  Both DANTE and COMFLOW are

relaxations of the original military deployment problem and therefore can be used to

establish lower bounds for Cmax and Lmax, respectively.

Finally, this research briefly introduced a new deployment planning tool, DSAT.

A key internal aspect of DSAT, the scheduling routine developed from the Virtual

Factory, was presented in greater detail.  DSAT allows a deployment planner to rapidly

model any deployment scenario.  DSAT feeds the user constructed deployment scenario
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to the scheduler routine and creates a schedule designed to minimize Lmax.  Work done in

this research yielded measurable improvement to DSAT in terms of reduced deployment

closure time and maximum lateness.  Results from DSAT’s schedules were compared to

various standards to evaluate the tool’s effectiveness in developing deployment

schedules.  This analysis showed that DSAT’s schedules very effectively utilized all

transportation assets throughout the deployment process.  DSAT’s asset utilization, in

terms of the average percentage of weight and area or volume capacity utilized per asset

mission, was significantly higher than established and accepted asset utilization planning

factors published by MTMC_TEA.  DSAT’s schedule results for Cmax and Lmax were

compared to the corresponding lowerbound values established by DANTE and

COMFLOW.  The gap between DSAT’s results and COMFLOW’s results (for both

LB(Lmax) and LB(Cmax)) was small for deployments involving air assets.  This indicated

that DSAT generated near optimal deployment schedules for these deployment scenarios.

The gap between DSAT and COMFLOW is significantly larger for deployment scenarios

involving rail and ship movement.  This gap could be due to a weak lowerbound or poor

DSAT schedule results or a combination of both.  Further research needs to focus on

reducing the gap between DSAT and COMFLOW for deployment scenarios involving rail

and ship movement.

7.2  Future Research

Several objectives are planned in furthering this research.  A current version of DSAT,

compatible with Windows 2000, is on site at MTMC_TEA.  Issues and recommendations
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concerning software usability and scenario storage and retrieval have been identified for

resolution.  Some additional short term objectives include additional improvements to

DSAT which should further reduce the gap between DSAT’s and COMFLOW’s results

for deployment closure time and maximum lateness.  Two additional long term objectives

include the addition of highway movement scheduling and time phased transportation

asset – route reallocation into DSAT.

7.2.1  Short Term Improvements to DSAT

During a recent demonstration of DSAT to members of MTMC_TEA, several issues

were presented for inclusion into future versions of DSAT.  One requires expansion of

the unit database information inherent in DSAT.  This database should be expanded to

include information concerning prepositioned equipment.  This equipment, although

strategically located about the world, if included in the deployment package, would

eventually compete for space on some of the transportation assets in the deployment

network.  Another issue was the capability to include intermediate refuel stops.

Currently, all selected hubs act as transshipment nodes.  Arriving assets simulate the

unloading of their cargo and maintenance operations prior to departure for its next cargo

load pickup.  Assets moving cargo forward from that location simulate the upload of

cargo prior to departure for the next location.  The addition of intermediate refuel stops

would simulate the necessary refueling operations required for longer routes without

transloading cargo.
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Some additional improvements are specifically planned for the scheduling routine

included in the DSAT program.  The first involves the creation of additional fake jobs for

the rail and sea routes in the deployment network.  A single train and ship can both carry

much more equipment than multiple planes.  Fake jobs serve to create additional asset

movement in the schedule.  These scheduled asset movements become choices or

opportunities for the job-route reallocation heuristic that recreates job routings based on

actual asset arrival times.  More fake jobs on the rail and ship routes would increase the

number of asset movements scheduled and could serve to further reduce the deployment

closure time and maximum lateness.

The second improvement concerns the accuracy of the deployment simulation

itself.  This particular issue is concerned with only the intermediate or transshipment

nodes at which vehicle loading and unloading operations could occur simultaneously at

the same port.  An example is the Ramstein Airbase described in the three deployment

models used in this paper.  At this node, planes arrive from other locations and unload

their cargo before returning to their origins.  Other planes load cargo at Ramstein before

departing for their destination.  As the simulation starts, all planes operating at the ISB

are hovering in the air so that loaded planes arriving at the ISB from other locations can

land and unload their cargo before returning to their origins.  Empty assets always

“hover” to deconflict the competition for space at the ports.  This ensures that loaded

assets always have priority to “land” at the ports and unload their cargo.  The newly

arrived cargo is immediately loaded onto the waiting hovering planes.  Once these

hovering planes are given access to the ISB to land, they then simulate landing,
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maintenance and loading operations prior to departing for their next destination.  The

proposed change would ensure that these hovering planes were not loaded until they had

actually landed and undergone maintenance.  This change would improve the quality of

the simulation and could affect the results regarding deployment closure time and

maximum lateness.  If the planes operating out of the ISB were loaded during the

simulated load time, then it could be more fully utilized since more equipment would

have previously been received at the ISB.

7.2.2  Highway Movement Scheduling

Not all units or equipment deploy by rail to a designated seaport of embarkation.  Some

units or portions of units self deploy or are delivered to the SPOE by tractor-trailer

movement over the highways.  For example, the 101st Air Assault Division would self

deploy or fly all helicopters to the seaport.  Military transportation units would carry other

unit equipment as cargo in their trucks while they deployed by highway convoy to the

SPOE.

If the seaport is relatively close to the base, highway movement is usually much

less time consuming and costly than rail movement to the same location.  The addition of

highway movement scheduling into DSAT could reduce the amount of time needed to

deploy units and equipment to the SPOE.
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7.2.3  Transportation Asset – Route Reallocation

Currently, DSAT schedules deployment over a static deployment network.  As mentioned

previously, a static deployment network is one in which the transportation asset to route

allocation is fixed for the duration of the deployment.  This fixed allocation does not

accurately depict the usual deployment process.  Transportation assets are rigidly

managed and tend to be used where they are most needed.  A surplus of transportation

assets on a route with little or nothing to transport would be reassigned to alternate routes

with fewer assets and more equipment to move.

Modifying DSAT to allow transportation asset – route reallocation over time

would provide the capability to simulate deployment utilizing a dynamic deployment

network.  This would result in a more accurate estimation of the deployment closure time

and the maximum lateness.  These “dynamic” DSAT results could be compared to results

from the Dynamic Transportation Asset Allocation Model developed by Trainor [34].

This model determines the optimal allocation over time of available transportation assets

to routes in a deployment network.  The dynamic allocation was designed to minimize the

deployment closure time of a deployment package.

In conclusion, several areas within the DSAT program could be modified.  These

modifications could enhance the effectiveness and possibly the accuracy of DSAT.

Further experimentation is needed to determine the effects of the proposed modifications.
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