
Abstract

RAO, HARSHAVARDHANA KAYYUR. Contagion in Financial Markets: Two Sta-

tistical Approaches. (Under the direction of Peter Bloomfield.)

Financial markets in di↵erent countries undergo crises at one point in time or

another. These crises can have di↵erent causes but they could a↵ect other markets due

to trade relations and capital mobility. Some crises a↵ect markets in other countries

more than what market fundamentals would dictate. We will model this phenomenon,

also defined as contagion, using two approaches viz., one-factor model and volatility

spillover, and compare these approaches.
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Introduction
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From time to time a country may undergo a crisis in its financial market. While

the crisis may be of its own doing, sometimes market fundamentals indicate a stable

economy and still we can observe a fall in the stock market levels. In certain situations,

we see crises in one country followed almost immediately by crises in other countries,

near and far. Each country’s economy is strongly influenced by trade and capital

inflow and outflow from other countries. This leads to a mechanism wherein a crisis

in one country “flows” into other economies.

How much do trade and capital flows and other variables a↵ect the ability to

spread crises from one country to another? A study of these international financial

crises leads us to believe that there is a transmission mechanism which depends on

trade and exchange rate fundamentals and other macroeconomic variables. Since

many times crises occur when they are not expected, or where the e↵ects seem to be

greater than expected, we shall analyze this unexpected reaction of markets. This

phenomenon is also referred to as financial contagion by many economists.

We shall analyze this mechanism using statistical methodology. The paper is or-

ganized as follows. In Chapter 1 we look at the di↵erent models used to analyze

contagion. Chapter 2 charts a brief history of contagion in the literature. In Chap-

ter 3 we study in detail the one-factor model. Section 3.1 delves into the identifiability

of the model. In Section 3.2 and Section 3.3, we scrutinize two strategies to handle

the one-factor model. Chapter 4 uses a conditionally-heteroscedastic approach to an-

alyzing contagion. In Section 4.1 we analyze the complexities of using a conditionally
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heteroscedastic approach to modeling volatility of multivariate data. In Section 4.2,

we consider one such approach to analyzing volatility of stock market returns. In

Section 5.1 we consider the similarities and di↵erences of the two approaches. In Sec-

tion 5.2 we investigate the presence of conditional heteroscedasticity in the one-factor

model. Finally in Chapter 6, we state our conclusions and propose future work.
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Chapter 1

Contagion

Stock markets in di↵erent countries tend to exhibit movement in the same direc-

tion. This movement leads us to believe that stock markets around the world are

strongly dependent on each other. During periods of crisis, this dependency could

be magnified, due to market fundamentals such as trade and capital mobility. This

phenomenon results in crises in countries where we don’t expect one, or where the

e↵ects of crises seem to be stronger than one would expect. This e↵ect is referred to

by many economists as financial contagion and is the focus of many recent studies.

According to a study by Pericolli and Sbracia (2003), contagion has quite a few

definitions . We will take a detailed look at all the definitions, and then build statis-

tical models based on those definitions.

The basic premise for contagion as laid out in definition 1 by Pericolli and Sbracia

is predicated on a significant increase in probability of crisis in one country conditional
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on the occurrence of a crisis in another country. A crisis can be of many types, viz.

default by the country on its debt, devaluation of currency, a significant drop in the

country’s stock market, etc. This definition, however, does not lead to an e↵ective

statistical model, since we would need to define a crisis, describe contagion according

to this crisis, and then measure it e↵ectively.

One way to look at periods of crises as suggested by Pericolli and Sbracia is to

consider the volatility of assets during a period of crisis. During times of crises, we

can expect volatility to be at a higher level than during a calm period. This idea

leads us to two other definitions for contagion.

• Contagion is a significant increase in co-movements of prices and quantities

across markets, conditional on a crisis occurring in one market or group of

markets.

• Contagion occurs when volatility “spills over” from the crisis country to the

financial markets of other countries.

The above definitions are based on volatility in a loose sense. The first definition

actually looks at the covariance or to be more specific the correlation and variances of

returns of some assets. A significant increase in the correlation and variances would

be a sign of contagion. The second definition considers the e↵ect of an increase in

volatility in the crisis country on the volatility levels of the second country. In other

words, we would like to know if higher volatility levels in the crisis country leads to
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increased volatility in the second country.

We can consider statistical models based on these definitions, since we can view

the stock markets of these countries as the base assets. We can measure levels and

volatility of the stock market based on the indices of the respective countries.

In Chapter 3, we suggest a likelihood-based technique to analyze the model as

suggested by the first definition and in Chapter 4 we look at a model, based on the

second definition of contagion, which uses GARCH, a methodology used to model

non-constant variances, to describe volatility levels. In Chapter 5 we compare the

properties of the two models to infer whether they are testing for contagion in the

same manner.
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Chapter 2

Previous Work

The word contagion takes its roots from medical literature where it is used to

describe the spread of diseases by direct or indirect contact. It is aptly used to

describe the spread of financial crises from one country to another, with or without

economic fundamentals dictating the possibility of such a spread.

The concept of financial contagion in the literature is equivocal, i.e., there are

multiple definitions of the term. The statistical tools used to analyze the presence

of contagion depend on the definition and hence are subject to debate. In recent

years there has been an e↵ort to classify the di↵erent statistical models based on the

definitions, and hence study the properties of these models. However very little has

been said about the di↵erence between these definitions and what they bring to the

models.

Pericolli and Sbracia (2003) and Dungey, Fry, González-Hermosillo, and Martin



8

(2003) have conducted extensive studies of the literature in this field. They detail

the spread of the concept of financial contagion, its influences and the methodology

used to model this phenomenon. Pericolli and Sbracia in particular consider di↵erent

definitions of contagion in financial literature and define statistical models based

on these definitions of contagion. These definitions help us to chart the growth of

contagion in the literature.

Dungey et al. studied the growth of financial contagion. They look at in particular

the one-factor model charting the growth of the statistical analyses based on this

model. They tie in the di↵erent analyses based on this methodology. However they

do not tie in the class of models based on volatility spillovers with the models based

on the one-factor approach.

The term “contagion” in financial literature started to emerge around the late

80’s and early 90’s. The stock market crash of 1987 was the starting point of studies

exploring the spread of the crises from the US to other countries. King and Wadhwani

(1990) and Engle, Ito, and Lin (1990) look at the concept of crises spreading into other

markets, and modeled this phenomenon. They considered the spread of crises from

market to market looking at them from di↵erent perspectives. King and Wadhwani

looked at the stock market crisis of 1987, and how it spread through di↵erent financial

markets. Their approach was based on market fundamentals, using economic theory

to model this episode of contagion. They consider a one-factor model approach to

model contagion.
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Engle et al. modeled intra-day volatility of exchange rates, testing for the exis-

tence of volatility spillovers from other exchange rates against only the presence of

autocorrelation. They described the existence of volatility spillovers as meteor show-

ers and the presence of autocorrelation only as heat waves. They describe this event

using a GARCH model for the volatility of the exchange rates, and use the exchange

rates from other markets to investigate whether they influence current exchange rates.

These two papers emerged as the seminal papers in dealing with how crises spread

from one financial market to another. King and Wadhwani’s paper appears to lay

the ground work for the common factor model. This apparently led to di↵erent

approaches to analyze this model, as indicated by the work of Forbes and Rigobon

and Corsetti, Pericolli, and Sbracia.

Engle et al. (1990)’s paper, on the other hand, is the foundation for the spillover

approach. His work led to many papers testing for factors that a↵ect volatility.

Edwards looked at the spread of interest rate volatility from Mexico to Argentina

and Chile using a spillover model. He modeled interest rates with a specific country

factor and defined contagion to be any unexplained residual terms.

There are a couple of other approaches to defining and modeling contagion. Peri-

colli and Sbracia also define contagion based on changing regimes.

Another interesting development was the use of SWARCH (Switching ARCH) to

model periods of di↵erent volatility. Edwards and Susmel analyzed the interest rates

of five countries to explore the grouping of high interest rate volatility in di↵erent
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countries during the same period.

Many other analyses of the presence of contagion in financial markets have been

carried out, based on co-movements or excess volatility. Pericolli and Sbracia (2003)

and Dungey et al. (2003) are excellent sources of techniques pursued in these areas.

Another good reference on contagion, its related transmission mechanisms and

techniques to prevent contagion is a paper by Dornbusch, Park, and Claessens (2000).

They study causes of contagion and evaluate approaches to reducing the risk of con-

tagion.
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Part II

Alternative Statistical Analyses
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Chapter 3

Structural Change in a

Common-Factor Model

The first definition of contagion is based on excess co-movements of stock market

returns. Contagion is defined as follows

“Contagion is a significant increase in co-movements of prices and quantities across

markets, conditional on a crisis occurring in one market or a group of markets.”

The one-factor model was constructed with this definition of contagion in mind.

We will use the one-factor model to test for the presence of contagion using two di↵er-

ent techniques for estimation, viz., Generalized Method of Moments and Maximum

Likelihood.
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3.1 The model

The general one-factor model as suggested by Corsetti et al. (2003) is

r1 = ↵1 + �1 ⇥ F + ✏1

r2 = ↵2 + �2 ⇥ F + ✏2 (3.1)

In this model we have the two returns r1 and r2 which could be the returns on two

individual stock markets. Also, ↵1 and ↵2 are the intercepts and F is the common

factor driving both markets. We could interpret F as the global market and the ✏’s

are the shocks that drive the individual countries’ stock market returns.

From these expressions we can understand that the returns from the two markets

are related. This would imply that an increase in correlation is not necessarily proof

of presence of contagion. This is because of the fact that the common factor could

be the entity increasing the correlation. During a crisis period, an increase in co-

movement is merely an indication of inter-dependence rather since both the markets

depend on F .

A specific shock to a country results in an increase in the volatility of the returns

on the stock market. During a time of crisis, we expect the volatility of the returns of

the stock market in the crisis country to increase. We shall assume that it increases

by a factor of (1+�), i.e. if C denotes the period in which country 1 has a crisis, then

Var(r1|C) = (1 + �)Var(r1)

Thus � represents the size of the crisis. This does not necessarily imply the
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presence of contagion, since F is common to both r1 and r2 and so an increase in

correlation could be explained by the presence of the common factor term.

One way to model contagion is to introduce a structural breakdown in the model.

In this case, we could model it by an increase in the value of parameter �1. We will

assume that, if contagion occurs, we will have �1 increase by a factor of (1 + ⌘).

Our test case will be the Hong-Kong and Singapore market indices, viz., the Hang

Seng and the Straits Times. On October 20th, 1997, the Hong-Kong stock market saw

a significant drop in its levels, which a↵ected many other markets around the world.

We shall look at the Singapore market in greater detail to study the relationship

between the two markets. Figure 3.1 shows the movements of the returns of the

stock markets in the two markets prior to and after the crisis of October 1997. These

returns were calculated as follows. The stock market levels (daily) were multiplied by

the exchange rate of that day. The returns were obtained as the di↵erence of the log

levels of the current and one-day old values. The stock market levels were obtained

from Yahoo! Finance and the exchange rates were obtained from Pacific Exchange

Rate Service. The purpose of the conversion from local currency to dollar values was

to help compare and to make the perspective that of a US investor.

Figure 3.1 displays the returns of the Hong Kong stock market index Hang Seng

in bold and the Singapore stock market index Strait Times in a lighter shade during

1997. The vertical black line is the date of the crisis October 20th, 1997. We can see

how the Singapore market index, the Strait Times, follows the Hong Kong market
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Figure 3.1: Daily Returns of the Hong Kong and Singapore stock market indices,
Hang Seng and Straits Times : Red - Singapore, Black - Hong Kong, the black
vertical line indicating the date of the crisis.(Source: Yahoo! Finance)

index during the three months following the crisis. We will use this data set in all

the modeling that we do.

3.1.1 A closer look at the One-Factor Model

The one-factor model is driven by the variance-covariance matrix of the log-returns

of the two countries in question. We have six pieces of information viz., the variances

and the covariances of the returns in the two markets in the pre-crisis and post -crisis

periods.
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We will define inter-dependence as the lack of structural breakdown of the pa-

rameters. This definition indicates that an increase in correlation and/or variances

can be explained completely by the presence of the common factor. We will then

define contagion to be the existence of a structural breakdown viz., the parameter �1

increases by a factor of (1 + ⌘). We can hence test for the presence of contagion by

using the following hypothesis H0 : ⌘ = 0 v/s H
a

: ⌘ > 0. The model basically has

six parameters of interest under the alternative hypothesis of H
a

: ⌘ > 0. The key

point is that a structural breakdown during the crisis period leading to a positive ⌘

implies that one of the causes of an increase in correlation is contagion.

Another reason for contagion in the one-factor model could be the presence of a

country-specific shock which becomes regional during the time of a crisis. This model

is also referred to as the two-factor model. We then define the model to be

r1 = ↵1 + �1.F + (⌫ + ✏1)

r2 = ↵2 + �2.F + ✓.⌫ + ✏2 (3.2)

This model under the null hypothesis of H0 : ✓ = 0 is the same as the one-factor

model where we can look at ⌫ + ✏1 as ✏1. In this case the second common factor is

⌫ and would become common in the presence of contagion. Our test for contagion

would involve ✓, i.e., testing H0 : ✓ = 0 but since we have only six degrees of freedom,

the model is over-parametrized having 7 parameters, including �
⌫

, the variance of the

second common factor. We could argue for the case where �
⌫

= 1 also, but then we

will be giving a lower bound to the variance of (⌫ + ✏1). As such this model is not



17

easliy analyzed using maximum likelihood techniques.

Let us make a few simplifying assumptions.

1. ↵1 = ↵2 = 0, i.e. the intercept term is 0.

2. F has a normal distribution with mean 0 and standard deviation 1.

3. ✏1 and ✏2 have normal distributions with mean 0 and standard deviations �1

and �2 respectively.

4. F , ✏1 and ✏2 are independent of each other.

Assumptions 1 and 2, even though simplifying, can be justified since we cannot es-

timate �1 and �2 independent of the variance of F and we can use mean-di↵erenced

values to remove the intercepts ↵1 and ↵2. Assumption 4 is required to make sure

that there is only one factor driving the correlation of the returns of the two markets.

We do note that the assumption of normality is over simplifying. Based on these

assumptions we can write our model in the following manner

r1 = �1.F + ✏1

r2 = �2.F + ✏2 (3.3)

during the calm period and

r1 = (�1.(1 + ⌘).F + ✏1).
q

(1 + �)

r2 = �2.F.
q

(1 + �) + ✏2 (3.4)
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during the crisis period, when we expect contagion. If we calculate the variances and

the covariances between the two returns during the non-crisis and crisis periods we

get

⌃ =

0

BBB@

�2
1 + �2

1 �1�2

�1�2 �2
2 + �2

2

1

CCCA

as the variance-covariance terms in the non-crisis period and

⌃C =

0

BBB@

�2
1(1 + ⌘)2(1 + �) + �2

1(1 + �) �1(1 + ⌘)�2(1 + �)

�1(1 + ⌘)�2(1 + �) �2
2(1 + �) + �2

2

1

CCCA

as the variance-covariance terms in the crisis period.

3.1.2 Problems in the Model

The common-factor model used to analyze the returns of two countries has some

inherent defects. One of the key shortcomings of this model is its lack of identifiability.

The pre-crisis part of the model has 4 parameters and only the variance-covariance

matrix of the returns as our information set. This implies that this model cannot be

identified by just the pre-crisis data. When we can analyze the two periods together,

we need the variance-covariance matrices in the two periods to be di↵erent. If they

are not, we are back to the pre-crisis situation and we cannot identify the model.

Even in the case where the two variance-covariance matrices are di↵erent, we will

show that the parameter estimates need not be unique in the case of H
a

: ⌘ > 0.

This estimation problem leads to confusion in interpretation of the estimated

parameters. It is very di�cult to analyze the parameters and their estimates, since
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we have two values satisfying all the conditions of the model and yet the di↵erence in

magnitude suggests that they cannot have the same interpretation. We shall show why

these shortcomings could have serious consequences for interpreting the parameters

in this model.

If the components of ⌃ and ⌃
C

were defined as follows

⌃(11) = a ⌃(12) = b ⌃(22) = c

⌃
C(11) = d ⌃

C(12) = e ⌃
C(22) = f

we have the following identities from Appendix A, viz.,

�2=
b

�1

�2
1=a� �2

1

�2
2=

c.�

2
1�b

2

�

2
1

�=(f � c)�
2
1

b

2

⌘=
⇣

e.b

b

2+(f�c)�2
1

⌘
� 1

Solving the above (see Appendix A) simultaneously, we find �1 must satisfy the 6

degree polynomial

�(f�c)2�6
1+(a(f�c)2�2b2(f�c))�4

1+(e2b2+2ab2(f�c)�b4�db2(f�c))�2
1+ab4�db4 = 0

(3.5)

The above equation has only 3 unique roots, since it’s a polynomial of degree 3 in

�2
1 , and �1�2 = b. Also, since we expect the variance of the returns in the non-crisis

country to also increase, we expect f > c and so we expect the coe�cient on �6
1 to be

negative indicating that the function is going to �1 as �1 increases. We also expect
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the variance of the returns of the crisis country to be greater in the crisis period than

in the non-crisis period, leading to d > a, which implies that the constant term is also

negative. This indicates that the function has either two unique real roots in �2
1 or no

real roots. We simulated values for a, b, c, d, e and f , based on the above conditions,

and chose values of the parameter estimates which satisfied the requirements of the

parameters. Out of a simulation of 100,000 values, we found 20 cases where the

parameter estimates all satisfied the following conditions.

1. �2
1 > 0 and �2

2 > 0 (which is satisfied automatically)

2. �2
1 > 0 and �2

2 > 0

3. � > 0 and ⌘ > 0 (since � is a variance inflation parameter and ⌘ is the factor

by which �1 increases)

An example of one such variance-covariance matrix is given below.

⌃ =

0

BBB@

18.77 7.51

7.51 27.76

1

CCCA

⌃C =

0

BBB@

34.08 13.48

13.48 31.19

1

CCCA

The corresponding parameter estimates, (which make sense in a statistical and

economical sense!) are presented in table 3.1

We have two sets of parameter estimates for a given set of variance-covariance

matrices. We cannot use the parameter estimate of ⌘ to say anything about the size
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Parameter Estimates for variance-covariance matrix

Estimates �1 �2 �1 �1 � ⌘
Solution 1 9.68 5.83 9.09 21.94 0.59 0.13
Solution 2 11.99 4.70 6.78 23.06 0.73 0.04

Table 3.1: Table of Parameter Estimates for the given ⌃ and ⌃ values.

of the e↵ect of contagion. Also, we cannot use the parameter estimate of � which

estimates the size of the crisis, (it is the multiplier on the volatility of the returns after

crisis). Since we have two estimates of � there is no clear indication as to what exactly

is the increase in volatility. However, since we use maximum likelihood, we can still

test for the existence of contagion. The inference from the parameter estimates will

not be correct since we have multiple values for each estimate.

The other defect with this model is that it fails to take into consideration the

fat-tailed distribution of the returns of stock markets. We will test for this possibility

and also introduce fat-tailed distributional assumptions to the model.

3.1.3 Testing for Contagion

In any case we shall look at the analysis done by Corsetti et al. (2003) using

Fisher’s z-transformation. We will then give another approach based on Maximum

Likelihood to test for contagion.
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3.2 Fisher’s z-transformation

Corsetti et al. (2003) use the one-factor model to test for contagion. Their ap-

proach uses Fisher’s z-transformation to estimate their test statistic �, which is based

on H0 : ⌘ = 0. The value of � (shown in Appendix I of Corsetti et al. (2003) is)

�(�
j

,�C

j

, �, ⇢) ⌘ ⇢

2

664

 
1 + �

j

1 + �C

j

!2
1 + �

1 + ⇢2


(1 + �) 1+�j

1+�C
j
� 1

�
(1 + �

j

)

3

775

1/2

(3.6)

Here � is the theoretical correlation which is then compared with the actual observed

correlation during the crisis period. The observed correlation before the crisis is ⇢

and j refers to the crisis country. If ⇢C , the correlation during the crisis period is

greater than the estimated value of �, we will assume that to be a sign of contagion.

In this model, � is the ratio of the volatilities of the common factor and the error,

i.e.,

� =
var(✏1)

var(�1F )
=
�2

1

�2
1

(3.7)

We shall assume that the shock a↵ects both the common factor and the country-

specific shock equally, which implies that the variance of the common factor and the

variance of the crisis country’s shocks increase by the same factor of (1 + �). Then

�C =
var(✏1)

var(�1F )
=

(1 + �)�2
1

(1 + �)�2
1

=
�2

1

�2
1

= � (3.8)

Under this assumption we get a test for H0 : ⌘ = 0, based on

�(�,�, �, ⇢) = ⇢

"
1 + �

1 + �⇢2(1 + �)

#1/2

(3.9)
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It has to be noted that � is not a true correlation coe�cient in the sense of correlation

calculated from values of two variables and as such does not have the sampling dis-

tribution of a sample correlation coe�cient. It is an estimate of what the correlation

coe�cient should be in the absence of contagion. This is an important assumption

since the test for existence of contagion is based on correlation coe�cients.

3.2.1 Estimation

Corsetti et al. (2003) do not try to estimate the size of the contagion e↵ect, since

they do not have a specific alternative. They only test for the presence of contagion

and have the test setup for di↵erent types of contagion, viz., a structural breakdown in

the factor loading on the crisis country, or country specific shocks becoming regional

or common. This test does not depend on the specification of the alternative. In the

case of the two-factor model from Equation 3.2 it is clear that the null hypothesis of

H0 : ⌘ = 0 and H0 : ✓ = 0 (which is the null hypothesis of the two-factor model) can

be both evaluated with the same Fishers-test statistic.

3.2.2 Testing for Contagion

The test for contagion is based on the Fisher’s z-transformation

z(⇢̂) =
1

2
ln

1 + ⇢̂

1� ⇢̂
, (3.10)

where ⇢̂ is the estimated correlation coe�cient. The comparison of the two correla-

tions, viz., the estimated and the calculated (under H0 : ⌘ = 0) is done assuming
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independence of the pre-crisis and post-crisis samples. Stuart and Ord (1991) and

1994 show that the di↵erence of the transformed estimated correlations of the two

samples is approximately

N
✓
0,

1

n1 � 3
+

1

n2 � 3

◆

where n1 and n2 are the two sample sizes. Under the assumption that �=�C , Corsetti

et al. (2003) derive the threshold value �̄ for some fixed confidence level as

�̄ =

8
>>><

>>>:

⇢h
⇢̂ !̂+1
!̂�1

i2 ⇣
1 + �̂

⌘
� 1

�
1
�̂⇢̂

� 1 if !̂ > 1

+1 if !̂  1

where !̂ = exp[2(z(⇢̂) � l�
z

)], �
z

=
⇣

1
n1�3 + 1

n2�3

⌘1/2
, l is the constant based on the

required confidence level and �̂ is the estimated increase in variance from the pre-

crisis to the post-crisis period of the returns. Corsetti et al. note that since �̂ is

used in calculating ⇢̂C and in calculating �̂, the assumption of independence does

not hold. They adjust for this by calculating the significance level based on observed

correlations from Monte-Carlo simulations.

Given the value of �̄ and �
j

they reject the null hypothesis of interdependence if

�
j

> �̄. Under this testing framework they reject the null hypothesis of interdepen-

dence for 5 out of 17 countries whereas Forbes and Rigobon (2002) reject the null in

1 case out of 17.
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3.3 Maximum Likelihood: Likelihood Ratio Tests

We start again with our basic one-factor model. We will state our assumptions

again for completeness.

1. ↵1 = ↵2 = 0, i.e. the intercept term is 0.

2. F has a normal distribution with mean 0 and standard deviation 1.

3. ✏1 and ✏2 have normal distributions with mean 0 and standard deviations �1

and �2 respectively.

4. F , ✏1 and ✏2 are independent of each other.

Based on these assumptions we can write our model in the following manner.

r1 = �1.F + ✏1

r2 = �2.F + ✏2.

Since we have F , ✏1 and ✏2 are normally distributed, it follows that the returns are

also normally distributed. We can use a multivariate normal distribution to describe

the vector of returns as follows.

r ⇠ N(0, ⌃)

where r is the vector of returns and ⌃ is given by
0

BBB@

�2
1 + �2

1 �1�2

�1�2 �2
2 + �2

2

1

CCCA
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during the pre-crisis period. Note that the value of ⌃ will change in the crisis period

and the value will depend on whether we have contagion or not.

Using the above notation we can calculate the correlation during the non-crisis

period. We have

⇢ =
Cov(r1, r2)q

V ar(r1).V ar(r2)

=
�1�2q

(�2
1 + �2

1)(�
2
2 + �2

2)

In our model, when country 1 is a↵ected by a crisis we have an increase in the variance

of r1 by a factor of �. If we assume that the factor of increase in variance is equal

between the common factor and the country-specific error term then we have

V ar(r1|C) = (1 + �)V ar(r1) = �2
1(1 + �) + �2

1(1 + �)

This would imply that the variance of r2 would increase, since we assume that the

variance of the common factor increases,

V ar(r2|C) = �2
2(1 + �) + �2

2.

And in turn the covariance between r1 and r2 will also increase to

Cov(r1, r2|C) = �1�2(1 + �).

We have the variance of

⌃C =

0

BBB@

�2
1(1 + �) + �2

1(1 + �) �1�2(1 + �)

�1�2(1 + �) �2
2(1 + �) + �2

2

1

CCCA
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We can hence calculate the correlation between r1 and r2 in the period of crisis.

⇢
C

=
Cov(r1, r2|C)

q
V ar(r1|C).V ar(r2|C)

=
�1�2(1 + �)

q
((�2

1 + �2
1)(1 + �))(�2

2(1 + �) + �2
2)

There are a few points to note.

1. Index returns are typically long-tailed and/or heteroscedastic. This fact implies

that normality may not be the best assumption.

2. We will use a working likelihood approach. We can study how this model

performs and we will explore the presence of heteroscedasticity.

A working likelihood approach is a good idea when we are not sure about the data

generating mechanism which in other words is the true model. Blume (2004) examines

the concept of a working likelihood in a normal regression model. Blume details

the benefits and drawbacks from this approach. In general, working models can be

chosen based on predictive ability, or so that they characterize the statistical evidence

correctly. We shall hence begin with the normal regression model and comprehend

what the model means.

3.3.1 Contagion according to the model

We can now define contagion, given that we have a model for the correlation

after a crisis event that increases volatility beyond what this model suggests. One
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way to define contagion would be to use a model that changes either �1 or �2 or

a model which might introduce more covariance if the country specific error terms

were somehow correlated. Due to identifiability restrictions (we have only 6 pieces

of information), we cannot di↵erentiate between the di↵erent types of contagion that

might occur. We restrict our model to the one where �1 increases to �1(1 + ⌘) in the

post-crisis period. If ⌘ = 0 that leads us back to the no contagion model. We have

our variance-covariance matrix as

⌃C =

0

BBB@

�2
1(1 + ⌘)(1 + �) + �2

1(1 + �) �1(1 + ⌘)�2(1 + �)

�1(1 + ⌘)�2(1 + �) �2
2(1 + �) + �2

2

1

CCCA

Note that we can now assign our null hypothesis to be H0 : ⌘ = 0 and our alternative

to be H
a

: ⌘ > 0. When H0 is true we get no contagion since our model reduces to

the one of interdependence whereas if H0 was not true then we have contagion. We

can hence calculate the correlation between r1 and r2 in the period of crisis under the

alternative hypothesis.

⇢
C

= Cov(r1,r2|C)p
V ar(r1|C).V ar(r2|C)

= �1(1+⌘)�2(1+�)p
((�2

1(1+⌘)+�2
1)(1+�))(�2

2(1+�)+�2
2)

3.3.2 Likelihood for ⌘

The likelihood-ratio test statistic may be used to test the hypothesis H0 : ⌘ =

0 v/s H
a

: ⌘ > 0. In Corsetti et al. (2003) the authors use a direct correlation

testing approach. They use the Fisher’s z-transformation to compare the hypothesized

correlation with the observed correlation. However they do agree that they violate an
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assumption of independent samples by using �̂ in both the samples. Moreover they do

not have a specific alternative to describe contagion and so they have the flexibility

of just testing for interdependence.

We will use the likelihood based approach to testing this problem because we

can assume that the returns are a random sample of observations. The likelihood is

constructed based on the multivariate normal distribution. We have the returns of

the two countries during the pre-crisis and the post-crisis periods. The multivariate

normal distribution is given by Hinkley, Reid, and Snell (1991)

f(r) =
1

(2⇡)p

1
q
|⌃|

e{�0.5(r0t⌃
�1

rt)}

where p is the order of the normal distribution. Since we have a bivariate normal

distribution we plug p = 2.

The likelihood is given by

L(⌃) = (
1

(2⇡)
)np(

1
q
|⌃|

)ne{�0.5
P

t
(r0t⌃

�1
rt)}

and so -2 times the log likelihood is

�2l(⌃) = np(ln(2⇡)) + n(ln(|⌃|)) +
X

t

(r0
t

⌃�1r)

If � = �2{l(⌃|H0)� l(⌃̂
MLE

)}, then � has a �2
1 distribution.

3.3.3 Estimation

The results of the analysis of Hong Kong market returns and Singapore market

returns (as indicated in Figure 3.1) are presented below. The data for the Hong Kong
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market is based on the Hang Seng Index and the data for the Singapore market is

based on the Straits Time index. The returns were calculated as the di↵erences of

the logs of consecutive values after being converted from the local currency to dollar

values using daily exchange rate data (Source:Pacific Exchange Rate Service).

The statistical analysis was done using R. The values of -2 log likelihood were

calculated and minimized to give us the parameter estimates. The estimates under

the null hypothesis are presented in Table 3.2.

�1 �2 �1 �2 � ⌘

0.7345 0.7333 1.3693 0.7186 2.0844 0

Table 3.2: Parameter estimates under the null hypothesis H0 : ⌘ = 0.

The value of -2 log likelihood is 1684.288. The estimates under the alternative

hypothesis are presented in Table 3.3

�1 �2 �1 �2 � ⌘

0.4589 0.9569 1.4845 0.3068 1.7271 1.2763

Table 3.3: Parameter estimates under the alternative hypothesis H
a

: ⌘ > 0.

Note that the estimates of �1 and �1 are sign invariant, i.e., we can use the absolute

values of these estimates here.

The value of -2 log likelihood in this case is 1681.879 and this implies that the
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null hypothesis of interdependence is not rejected. (Since the value of � = 1684.288�

1681.879 = 2.409 and the �2 critical value for 1 df at ↵ = 5% is 3.84). Since we fail to

reject H0, we fail to reject the null hypothesis of no contagion. There is no evidence of

excessive co-movement of stock-market prices in between the stock-markets of Hong

Kong and Singapore.

3.3.4 Profile Likelihood

In many likelihood analyses we are interested in only one of the many parameters

that need to be estimated. In that case the other parameters are referred to nuisance

parameters. Estimating the nuisance parameters is not really necessary as we are not

really interested in their estimates. We can use the profile likelihood technique to

look at the one parameter of interest.

The profile likelihood technique is based on maximizing the likelihood at each

value of the parameter of interest. From Severini (2000), we have p(y; ✓) as the

density of y. Suppose ✓ = ( ,�) where � is the nuisance parameter. The profile

likelihood of  , given by L
p

( ) = L(✓̂
 

), where ✓̂
 

denotes the maximum likelihood

estimate of ✓ for a fixed value of  , i.e. ✓̂
 

can be denoted by ( , �̂
 

) where �̂
 

is

the maximum likelihood estimate of � for a fixed value of  . We can then define the

likelihood ratio statistic for testing  =  0 to be

W = 2[l
p

( ̂)� l
p

( 0)]

where  ̂ is the profile maximum likelihood estimate and l
p

( ) = log L
p

( ) is the
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profile log likelihood function.

We are interested in testing H0 : ⌘ = 0 and hence we are concerned only with ⌘.

Therefore, the other parameters viz., �1, �2,�1,�2 and � are nuisance parameters in

this regard. In this case our likelihood ratio statistic

W = 2[l
p

(⌘̂)� l
p

(⌘0)]

where ⌘0 = 0 under H0 : ⌘ = 0. Figure 3.2 shows us the profile of -2log-likelihood of

⌘.

From the figure we can see that there are multiple minima for -2 log likelihood of

⌘. Since we have two minima, we have two estimates for ⌘, the contagion parameter.

The statistical aspect of the issue does not di↵erentiate between the two estimates of

⌘. However the economic issues lead us to one estimate. We expect that contagion

will cause an increase in the correlation and hence we expect the value of ⌘ to be

greater than 0. This leads us to choosing the positive value for our estimate of ⌘.

The profile likelihood estimates and likelihood values are similar to those obtained

using straight maximum likelihood estimation techniques. Under H0 : ⌘ = 0, we

observe that the maximized likelihood values for both methods are the same, and so

on for H
a

: ⌘ > 0. The profile likelihood technique reinforces the fact that there are

two estimates for the values of ⌘.
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Figure 3.2: Profile of -2 Log Likelihood(⌘) for the Returns of the two Countries.

3.3.5 Adjusting the Profile Likelihood

The profile likelihood technique is very useful to obtain estimates of parameters

using a likelihood approach. If we needed to estimate  in ( ,�) we calculate the

maximum likelihood estimators of � keeping  fixed and we obtain ✓̂
 

= ( , �̂
 

). We

obtain the resulting log profile likelihood L
p

( ) = L(�̂
 

).

We have to recognize the fact that L
p

( ) is not a true likelihood function in the
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Figure 3.3: E↵ect of Multiplier on the Q-Q Plot

sense of being based on the density function of a random variable.

We use a simple adjustment technique similar to Bartlett Adjustment (Hinkley

et al. 1991; p.249) based on multiplying the likelihood to satisfy certain conditions on

the score function of the test statistic. This is an exploratory analysis, and we obtain

the multiplier from simulations, using the Q-Q plot to help determine the best value

for the multiplier.

We generated values based on the null hypothesis estimates in Table 3.2. The

null hypothesis values had ⌘ = 0. The data was then used to calculate the maximum

likelihood estimates and the value of the likelihood ratio test. The likelihood ratios
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were plotted against �2(1) quantiles to generate a Q-Q plot. The ideal Q-Q plot is

a straight line angled at 45o from the origin. Figure 3.3 gives an idea how how the

Q-Q plots look before and after the adjustment.

To adjust the Q-Q plot we divided the values of the maximized likelihood by

values ranging from 0.7 to 1. The value of 0.80 seemed to be the best adjustment

factor. We used 10,000 simulated sets of data in calculating the adjustment factor.

The value of the adjusted likelihood ratio test is 2.409/0.8=3.011. This value is still

not significant at the 5% level.

We can also use the modified profile likelihood from Severini (2000). This ap-

proach is based on approximating a marginal or conditional likelihood function and

is computationally intensive when one considers models with a large number of pa-

rameters. We did not follow up on this approach.

3.3.6 Some Remarks

The one-factor model is used to test for the presence of contagion. In this regard,

some of the key assumptions may not hold viz., normality may not hold. We used

a working model to describe the likelihood using the assumption of normality and

we tested for contagion. Since we used a working likelihood we explored adjusting

the likelihood by using techniques similar to Bartlett’s adjustment. The working

likelihood does give us a reasonable technique to test for the presence of contagion.

However we will need to also consider the possiblity that normality may not be the
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right assumption. We will look at that possibility in Chapter 5.
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Chapter 4

Volatility Spillover

We will use the second definition of contagion to help build the model to test

for the presence of contagion in Singapore’s stock market returns during the crisis of

1997. The second definition of contagion is as follows.

“Contagion occurs when volatility spills over from the crisis country to the finan-

cial markets of other countries.”

Volatility is another expression for the variance of a time series process. One of the

standard assumptions for a linear model is that the variance of the error or shocks that

drive the process is constant. Another assumption is that the errors or shocks that

drive the process are independent. The assumption of constant variance is not satisfied

all the time. Models have been designed to take into account increasing/decreasing

variances of the errors/shocks that drive the process.

Time series processes in the finance industry have tended to exhibit variances that
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change instantly. Most statistical models do not account for variances that change

dynamically. A lot of work has been done in the past to model variances mostly in

the financial world.

4.1 The model

To construct a model based on this definition of contagion we have to model the

volatility of the returns of the two countries. The approach to modeling volatility

of stock market returns has been well documented and we will use a conditional

heteroscedastic approach to model the volatility of the returns from the Hong Kong

and Singapore stock markets. Heteroscedastic variances imply that the variances are

not constant. A conditional heteroscedastic approach to modeling variances would

suggest that the variances are modeled in a time series fashion, wherein they would

depend on either previous observations or previous values of variance. Stock market

returns tend to have fat-tailed distributions, and are not normally distributed. How-

ever, using a conditional heteroscedastic approach takes into account the fat-tailed

nature of these distributions.

The conditional heteroscedastic model comes from Engle (1982) and is widely used

to describe fat-tailed observations in time series models. The model uses variances

which are conditioned on past values of the series, and hence can e↵ectively model

values with non-constant variances. This model is alro alluded to by its acronym

ARCH which stands for Auto-Regressive Conditional Heteroscedasticity. Bollerslev
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in 1986 extended this model to use variances conditional on past observations and also

past variances. These models are widely used in finance to model stock market returns

and exchange rates. Bollerslev’s model is designated as GARCH for Generalized

Auto-Regressive Conditional Heteroscedasticity.

We investigated the returns of the stock markets individually in both the countries

viz., Hong Kong and Singapore, for GARCH. The variances of the returns from both

countries stock markets did show strong heteroscedastic nature.

The GARCH(p, q) model for a value X
t

is as follows (Chan 2002; p.105)

X
t

= �
t

✏
t

, ✏
t

⇠ N(0, 1),

�2
t

= ↵0 + ⌃p

i=1�i

�2
t�i

+ ⌃q

j=1↵j

X2
t�j

(4.1)

where X
t

are the demeaned returns of the stock market indices pre-multiplied by the

exchange rates.

We can observe from the manner in which the model for �2
t

is specified that the

current observation’s variance depends on past variances and squares of past observed

values. Conditions on ↵’s and �’s need to be imposed for Equation 4.1 to be well

defined. Since finding exact conditions for a general GARCH(p, q) can be tricky,

one has to resort to a full case by case study. Nelson (1990) contains a glimpse of

the technical aspect of this problem. A GARCH(1,1) model was fit to returns from

both the countries. The parameter estimates and their standard errors are given in

Table 4.1 and Table 4.2.



40

GARCH model estimates - Hong Kong

↵0 ↵1 �1

Estimates 0.2566 0.2403 0.7096
Standard Errors (0.1128) (0.527) (0.0564)

Table 4.1: Estimates from Univariate GARCH(1,1) fit for Hong Kong Stock Market.

GARCH model estimates - Singapore

↵0 ↵1 �1

Estimates 0.0666 0.2522 0.7511
Standard Errors (0.0282) (0.0614) (0.0484)

Table 4.2: Estimates from Univariate GARCH(1,1) fit for Singapore Stock Market.

All the GARCH parameter estimates are significant at least at the 5% level. The

Jacque Bera test of normality for the residuals still rejects H0 : that the residuals

are normally distributed. On the other hand the Box-Ljung test rejects the null

hypothesis of serial auto-correlation.

The residual plot, however, in Figure 4.1 shows how the model explains some of

the non-constant nature of the volatility Hong Kong’s stock market.

The residual plots in Figure 4.2 also indicate how the GARCH model rationalizes

the fluctuating behavior of the volatility in Singapore’s stock market.

The above GARCH models do account for the presence of conditional heteroscedas-

ticity in these data, but to test for volatility spillover we need a mechanism which will

demonstrate the influence of one country’s volatility on the other. To explore this
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Figure 4.1: Scatter Plot of r1 values and residuals from GARCH(1,1) fit

idea we need to use a multivariate GARCH model where there is a flow of volatility

from one component to another. Multivariate GARCH is used to model variances or

volatilities of multiple stock market returns or exchange rate series among many time

series.

The basic form of the multivariate GARCH(p,q) model for a series X
t

as given by

Chan (2002) is based on the vech notation of a matrix. The vech operator is defined
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Figure 4.2: Scatter Plot of r2 values and residuals from GARCH(1,1) fit

as follows.

vech

0
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=
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The vech operator is applied to symmetric matrices so that we can separate the

elements of the matrices.
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Let X
t

= H
1/2
t

Z
t

where E(X
t

X 0
t

|F
t�1) = H

t

and F
t�1 = �(X

t�1, Xt�2, ...) is the

sigma field generated by the past information until time t. Then the GARCH(p, q)

structure for the variance gives us

vech(H
t

) = A0 + ⌃p

i=1Ai

vech(X
t�i

X 0
t�i

) + ⌃q

j=1Bj

vech(H
t�j

)

The main requirement of this model is H
t

be positive definite. This condition is

not satisfied easily with this specification of the model. There is another problem

when using the model as specified. The model is not tractable. The number of

parameters in the model for the case where we have 2 countries and a GARCH(1,1)

model is 21. When the number of countries is 3 the number of parameters to be

estimated increases to 108.

We use a factor model to analyze the returns of the stock markets of Hong Kong

and Singapore. Pericolli and Sbracia suggested the model based on the definition of

contagion using volatility spillovers.

R
t

= A + Bf
t

+ U
t

, U
t

⇠ (0, ⌃
t

) (4.2)

where R = [r1, r2]0 is the vector of returns, A = [↵1,↵2]0 is a vector of constants, B

denotes a matrix of factor loadings and f
t

= [f1, f2]0 is a vector of global factors. The

vector of country specific shocks U = [u1, u2]0 has a covariance matrix given by ⌃.

To model the variances of the returns ⌃, we use the following GARCH model.

⌃
t

= C 0C + D0⌃
t�1D + E 0U

t�1U
0
t�1E
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This GARCH structure is a special case of the model suggested by Engle and

Kroner (1995).

⌃
t

= C 0C + ⌃K

k=1D
0
k

⌃
t�1Dk

+ ⌃K

k=1E
0
k

U
t�1U

0
t�1Ek

(4.3)

where C, D
k

and E
k

are matrices of constants. This model is also referred to as the

BEKK model and was given by Engle and Kroner, and is a commonly used multivari-

ate GARCH model. The model described by Equation 4.3 has a vech representation

and most GARCH models in the vech representation can be rewritten using the BEKK

structure, typically with K = 1. However, there are a few which cannot be rewritten

in the BEKK form. We typically use K = 1 to help make the model tractable. The

case of K = 1 gives the GARCH structure that we use in our model. This model has

nice properties, the main one being that with very mild restrictions on the matrices

C, D and E, we can guarantee a positive definite covariance matrix for the country

specific shocks. The BEKK structure has more tractability. In the case of 2 countries

there are 11 parameters to be estimated and in the case of 3, we need to estimate 24

parameters. The case of K > 1 is needed when we cannot replicate the multivariate

GARCH model with just one set of D’s and E’s.

We can test for volatility spillovers by looking to see how shocks and volatility

levels from the crisis country a↵ect volatility levels for the non-crisis country.
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4.1.1 Model Specifications

A close examination of the model suggested by Pericolli and Sbracia for testing

for the existence of contagion in the volatility spillover aspect leads to a couple of

observations.

The first observation is based on the existence of the common factor which is

independent of the country specific shocks. These country specific shocks are modeled

with a multivariate GARCH structure. This implies that the past shocks and past

variances influence the current observations and their variances and covariances. The

past values of the common factor do not a↵ect the present values of the country

specific shocks since they are independent of each other. This leads to the issue of

how the model can “remember” the past shocks but not the past common factor

values. One way to correct for this is to model the past observed values of f , the

common factor into the variance-covariance model for the country-specific shocks.

The other approach is to ignore the existence of the common factor completely and

model the variance of the returns of the stock markets of the two countries using

multivariate GARCH techniques.

The second approach has definite advantages over the first one, since we do not

observe the common factor nor the country-specific shocks individually. This fact

leads us to the second observation about the initial model suggested by Pericolli and

Sbracia. The complexity of modeling unobserved components of the model, when we

consider that we need to have not only estimates of the parameters of the model,



46

but we need to filter the values of f , the common factor and U ’s, the country spe-

cific shocks, is very high. Sentana and Fiorentini (2001) look at estimating condi-

tional heteroscedastic factor models, but most such procedures require the existence

of shocks which are independent of each other, which when studying for the existence

of spillover, may not be possible.

Based on these two observations we consider the following model for modeling the

returns of the stock markets.

R
t

= U
t

, U
t

⇠ (0, ⌃
t

)

⌃
t

= C 0C + D0⌃
t�1D + E 0U

t�1U
0
t�1E (4.4)

where C, D and E are matrices of constants, and the only requirement is that C be

lower triangular. The key di↵erence between Equations 4.3 and 4.4 is the absence of

the common factor from Equation 4.2. The vector of constants can be assumed to be

zero, since we use de-meaned returns in the data.

4.2 BEKK structure for volatility

To understand how volatility could spillover from one country to another we will

take a closer look at the model of the error variance. The GARCH error model has a

BEKK structure and this model was chosen because it requires very few conditions to

maintain positive definiteness and the model is tractable. The other advantage of the

BEKK model is that it can be estimated using widely available computer software.
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We can get parameter estimates for the model from SAS and S-Plus.

The general BEKK structure for GARCH(1,1) is given by Engle and Kroner

⌃
t

= C 0C + ⌃K

k=1D
0
k

⌃
t�1Dk

+ ⌃K

k=1E
0
k

U
t�1U

0
t�1Ek

This general model encompasses most GARCH representations. We will however

restrict our attention to the case where K = 1, which gives

⌃
t

= C 0C + D0⌃
t�1D + E 0U

t�1U
0
t�1E

The conditions for identifiability of this model from Engle and Kroner (1995) are

as follows.

1. The diagonal elements of C are restricted to be positive.

2. The values of d11 and e11 are also restricted to be positive.

The diagonal elements of C are restricted to be positive since they emerge as squared

terms in C 0C. The reason for restricting d11 to be positive is that we cannot di↵er-

entiate between d11 and �d11. The same holds for e11.

After expansion of D0⌃
t�1D and E 0U

t�1U
0
t�1E we get

⌃
t

= C 0C +

0

BBB@

g11 g12

g21 g22

1

CCCA+

0

BBB@

h11 h12

h21 h22

1

CCCA
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where, from Appendix B we have

g11=d2
11�11,t�1 + 2d11d21�21,t�1 + d2

21�22,t�1

g12=d11d12�11,t�1 + (d11d22 + d12d21)�12,t�1 + d21d22�22,t�1

g21=g12

g22=d2
12�11,t�1 + 2d12d22�21,t�1 + d2

22�22,t�1

and

h11=e2
11u

2
1,t�1 + 2e11e21u1,t�1u2,t�1 + e2

21u
2
2,t�1

h12=e11e12u
2
1,t�1 + (e12e21 + e11e22)u1,t�1u2,t�1 + e21e22u

2
2,t�1

h21=h12

h22=e2
12u

2
1,t�1 + 2e12e22u1,t�1u2,t�1 + e2

22u
2
2,t�1

Since we are looking at the flow of volatility from country 1 to country 2, we need

to check for feedback from last period’s volatility levels of country 1 to this period’s

volatility levels of country 2, and from last period’s shocks from country 1 to this

period’s volatility levels of country 2, viz., we need to test H0 : d12 = e12 = 0. We

shall test for contagion in the form of volatility spillover using this specification.

4.2.1 Testing for Spillover

Our analysis was done using Proc Varmax in SAS. The data of returns is the same

as in Figure 3.1. The estimates of the BEKK model are given in Table 4.3 with their

corresponding standard errors.

There a few noteworthy observations. The estimates of the matrix C are not

significantly di↵erent from 0. The estimates of d21, e11 and e22 are also not significantly



49

Coe�cients for C

c11 c12 c21 c22

0.0334 0.5221 0 0.1009
(6.7161) (0.4003) (19.9592)

Coe�cients for D

d11 d12 d21 d22

0.5902 0.0305 0.2111 -0.2037
(0.1320) (0.1306) (0.0659) (0.1135)

Coe�cients for E

e11 e12 e21 e22

0.0129 -1.3157 -0.5352 0.0236
(17.0669) (0.1489) (0.0672) (0.2191)

Table 4.3: Table of BEKK Parameter Estimates

di↵erent from 0. The Proc used the Newton-Raphson optimization technique.

Proc Varmax has a test statement to test combinations of parameters. Since

we are interested in testing for spillover of volatility, we tested H0 : d12 = e12 =

0. The corresponding �2 statistic has 2 degrees of freedom and a value of 93.72

with a corresponding P -value less than 0.0001. We reject H0 to conclude that there

is spillover from the volatility of Hong-Kong’s stock market into Singapore’s stock

market.
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Chapter 5

Relationship Between The Two

Approaches

5.1 Two Definitions

From Pericolli and Sbracia (2003) we can see that contagion has many definitions

and that leads one to wonder if these di↵erent definitions leading to di↵erent tests

are really testing the for the same thing. We looked at the following two definitions

of contagion.

• Contagion is a significant increase in co-movements of prices and quantities

across markets, conditional on a crisis occurring in one market or group of

markets.

• Contagion occurs when volatility spills over from the crisis country to the fi-
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nancial markets of other countries.

These two defintions led to two approaches for testing for the presence of con-

tagion, modeled using the one-factor model and the BEKK form of the multivariate

GARCH structure. The manner of testing for contagion in these two approaches seem

di↵erent but they are based on variances and covariances of the returns of the stock

markets of the two countries. This similarity in the two approaches directs us to the

question “Are these two concepts answering the issue of lack of contagion in the same

manner?”

We will use the following idea to compare the approaches. The one-factor approach

has two time periods, viz., a pre-crisis period and a post-crisis period. The variance-

covariance matrix of returns changes from pre-crisis to post-crisis, and this change is

what we model in the one-factor model. The conditional heteroscedasticity approach

basically has many time periods and we model the change in variance for all time

periods. If at the time of crisis, the variance-covariance matrix in the one-factor

model changes in the same manner as the change in the conditional heteroscedastic

approach, when we observe a large innovation in the crisis country (corresponding to

a crisis), then we could compare the two approaches.

To use this idea, we consider the variance-covariance matrices from the one-factor

model before and after the crisis. We compare the variances and covariances from this

model with the variances and covariances obtained when we observe a large innovation

in the conditional heteroscedastic approach and the change in the pre-crisis and post-
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crisis variances due to that.

The pre-crisis and post-crisis variance-covariance matrices are given by

⌃ =

0

BBB@

�2
1 + �2

1 �1�2

�1�2 �2
2 + �2

2

1

CCCA =

0

BBB@

a b

b c

1

CCCA (5.1)

as the variance-covariance terms in the non-crisis period.

⌃C =

0

BBB@

�2
1(1 + �) + �2

1(1 + �) �1�2(1 + �)

�1�2(1 + �) �2
2(1 + �) + �2

2

1

CCCA =

0

BBB@

d e

e f

1

CCCA (5.2)

is the variance-covariance terms in the crisis period when we model under H0 : ⌘ = 0.

From Appendix A we have the following values for the parameter ⌘.

⌘ =
e.b

b2 + (f � c)�2
1

� 1

Under H0 : ⌘ = 0 we get

eb = b2 + (f � c)�2
1

) eb� b2 = (f � c)�2
1

) b(e� b)

f � c
= �2

1

(5.3)

Also from Appendix A we have

(�2
1 + �2

1)(1 + �) = d (5.4)

and since we have values for these parameters, we can substitute it in Equation 5.4

to get the following.

) a

 

1 +
(f � c)

b2

b(e� b)

(f � c)

!

= d
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) ae

b
= d

) ae = bd

) b

a
=

e

d
(5.5)

From Equation 5.5 we see that for interdependence to hold (as opposed to con-

tagion, according to the one-factor model), the ratio of the covariance of the returns

and the variance of the returns in the crisis country in the two periods has to be the

same.

If we perform a regression with the returns of the crisis country being the ex-

planatory (independent) variable and the returns of the non-crisis country being the

response (dependent) variable, the estimate of the coe�cient of the returns of the cri-

sis country is given as the ratio of the covariance of the two returns and the variance

of the returns of the crisis country. From Equation 5.5 the estimates of the regression

coe�cients of a conditional regression of the returns of country 2 on the returns of

country 1 need to be a constant for the two time periods, viz., the pre-crisis and

post-crisis periods. This implies that there is constant regression in the two time pe-

riods and the regression parameter does not change. We will exploit this relationship

among the parameters to explore the relationship between the one-factor model and

the conditional heteroscedasticity approach.

Specifically, we look for conditions under which the conditional variance matrices

in the Conditional Heteroscedasticity approach change in the same manner as the

unconditional variance matrices in the structural change (one-factor) approach.
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The variance-covariance matrix for the vector of returns (r1, r2)0 in the conditional

heteroscedastic model is given by

⌃
t

= C 0C + D0⌃
t�1D + E 0U

t�1U
0
t�1E

The individual components of the variance-covariance matrix are given by

�
t,11 = c2

11 + d2
11�

2
t�1,11 + 2d11d21�t�1,12 + d2

21�
2
t�1,22 + e2

11u
2
t�1,1

+2e11e21ut�1,1ut�1,2 + e2
21u

2
t�1,2

�
t,12 = c11c12 + d11d12�

2
t�1,11 + (d21d12 + d11d22)�t�1,12 + d21d22�

2
t�1,22

+e11e12u
2
t�1,1 + (e21e12 + e11e22)ut�1,1ut�1,2 + e21e22u

2
t�1,2

�
t,22 = c2

12 + c2
22 + d2

12�
2
t�1,12d12d22�t�1,12 + d2

22�
2
t�1,22 + e2

12u
2
t�1,1

+2e12e22ut�1,1ut�1,2 + e2
22u

2
t�1,2

To model the change in the variance-covariance matrix from pre-crisis to post-

crisis period, we consider an innovation of 1 for u
t�1,1 and an innovation value of

zero for u
t�1,2. This is just to indicate the di↵erence between a large innovation

and a small one. Using this definition of a large innovation we have the following

variance-covariance matrix for the conditional heteroscedastic model.

�
t,11 = c2

11 + d2
11�

2
t�1,11 + 2d11d21�t�1,12 + d2

21�
2
t�1,22 + e2

11

�
t,12 = c11c12 + d11d12�

2
t�1,11 + (d21d12 + d11d22)�t�1,12 + d21d22�

2
t�1,22

+e11e12

�
t,22 = c2

12 + c2
22 + d2

12�
2
t�1,12d12d22�t�1,12 + d2

22�
2
t�1,22 + e2

12
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Let the crisis time period be defined to be T . Then the pre-crisis variance-

covariance matrix ⌃ and post-crisis variance-covariance matrix ⌃C are

⌃ =

0

BBB@

�
T�1,11 �

T�1,12

�
T�1,21 �

T�1,22

1

CCCA

and

⌃C =

0

BBB@

�
T,11 �

T,12

�
T,21 �

T,22

1

CCCA

We would like to compare these values with the variance-covariance matrices of

the one-factor model in Equations 5.1 and 5.2 and exploit the property of constant

regression. Hence from Equation 5.5 we need

�
T�1,12

�
T�1,11

=
�

T,12

�
T,11

(5.6)

This leads to

�
T�1,12

�
T�1,11

=
c11c12 + d11d12�

2
T�1,11 + (d21d12 + d11d22)�T�1,12 + d21d22�

2
T�1,22 + e11e12

c2
11 + d2

11�
2
T�1,11 + 2d11d21�T�1,12 + d2

21�
2
T�1,22 + e2

11

(5.7)

which from Appendix C gives

�d11d12�
4
T�1,11 � (c11c12 + e11e22)�

2
T�1,11

+(c2
11 + e2

11)�T�1,12 + 2d11d22�
2
T�1,12

+(d2
11 � d12d21 � d11d22)�

2
T�1,11�T�1,12

+d21(d21�T�1,12 � d22�
2
T�1,11)�

2
T�1,22 = 0 (5.8)
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These equations do not give any reasonable method of adjusting the GARCH

parameters. The only reasonable conclusion we can draw is that the condition is very

di�cult to satisfy.

To model the phenomenon of absence of contagion we have to make sure that

regression parameters stay constant. To achieve this our variance model needs to have

constant ratio of �12 over �11. This would entail the creation of a new heteroscedatic

model where only �22 is free, keeping the other terms pegged to the constant ratio of

�12
�11

.

5.2 Conditional Heteroscedasticity in One-Factor

Model

In Section 3.3 we considered a one-factor model approach to analyzing contagion

in the structural breakdown form. We used maximum likelihood techniques and

estimated the model. We assumed that the common factor and the innovation terms

were independent and identically distributed. We will test for this assumption by

implementing the following.

We will examine another approach to considering conditional heteroscedasticity

in analyzing the contagion models. We shall scrutinize the one-factor model from

Section 3.3 with the idea of introducing non-normality in the form of non-constant
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variance.

r1 = �1 ⇥ F + ✏1

r2 = �2 ⇥ F + ✏2 (5.9)

The assumptions of the one-factor model Equation 5.9 required the common factor

F to be normal with mean 0 and variance 1. We consider a di↵erent approach

exploring for the presence of conditional heteroscedasticity in F , or even in the error

terms, ✏1 and ✏2, which are also assumed to be normally distributed. To explore this

option we decided to filter out the estimates of F and ✏1 and ✏2 and analyze them for

conditional heteroscedasticity.

We follow the approach of Diebold and Nerlove (1989) in analyzing the model.

Diebold and Nerlove examined exchange rates from 7 countries, using a factor analysis

and Kalman filter approach. We use the same approach, but since our model has only

returns from 2 countries, we do not have the degrees of freedom to analyze the model

in their approach.

The joint distribution of (r1, r2, F, ✏1, ✏2)0 is multivariate normal with mean (0, 0, 0, 0, 0)0

and variance 0

BBBBBBBBBBBBBBBBBB@

�2
1 + �2

1 �1�2 �1 �2
1 0

�1�2 �2
2 + �2

2 �2 0 �2
2

�1 �2 1 0 0

�2
1 0 0 �2

1 0

0 �2
2 0 0 �2

2

1
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under the calm period. Under H0 : ⌘ = 0, and in the crisis period the variance is

0

BBBBBBBBBBBBBBBBBB@

(�2
1 + �2

1)(1 + �) �1�2(1 + �) �1(1 + �) �2
1(1 + �) 0

�1�2(1 + �) �2
2(1 + �) + �2

2 �2(1 + �) 0 �2
2

�1(1 + �) �2(1 + �) 1 + � 0 0

�2
1(1 + �) 0 0 �2

1(1 + �) 0

0 �2
2 0 0 �2

2

1

CCCCCCCCCCCCCCCCCCA

To get the estimates of (F, ✏1, ✏2), we consider their conditional expectation, viz.,

E((F, ✏1, ✏2)0|(r1, r2)0). The conditional expectation can be obtained in the following

manner:

E((F, ✏1, ✏2)0|(r1, r2)0)=E(X|R)

=Cov(X, R) ⇤ (V ar(R))�1 ⇤R

where X = (F, ✏1, ✏2)0 and R = (r1, r2)0.

Since we don’t know these parameters, we will use the parameter estimates. We

can filter out the values for F , ✏1 and ✏2. We will fit GARCH(1,1) models to these

filtered values. The output of the GARCH fit for F , the common factor is given in

Tables 5.1 and 5.2.

The parameter estimates for the GARCH(1,1) models are significant for the most

part, with only ↵0 and ↵1 not being significant at least at the 5% level. This indicates

that there is at least some evidence of conditional heteroscedasticity which has not

been addressed in previous work on the one-factor model.
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Parameters ↵0 ↵1 �1

Estimates 0.0223 0.1282 0.8412
(0.0158) (0.0639) (0.0743)

Table 5.1: GARCH Model for F in pre-crisis period

Parameters ↵0 ↵1 �1

Estimates 1.1041 0.3534 0.5666
(1.1326) (0.2527) (0.2111)

Table 5.2: GARCH Model for F in post-crisis period

The strongest evidence for the GARCH model for the common factor comes from

the fitting of the GARCH model for the common factor from the combined periods.

All the parameters of the GARCH(1,1) fit are significant. The values of Table 5.3 con-

tain the parameter estimates of the GARCH(1,1) fit of F in the two periods together,

with their corresponding standard errors. We have to note that the stationarity con-

ditions for the GARCH(1,1) model. viz., ↵0 + �0 < 1 is violated here.

Parameters ↵0 ↵1 �1

Estimates 0.0301 0.3559 0.7019
(0.0126) (0.0685) (0.0364)

Table 5.3: GARCH Model for F in combined periods

Furthermore, the residuals from the GARCH(1,1) fit show no heteroscedasticity
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or long-tailed nature as evidenced by the graphs in Figures 5.1 and 5.2.
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Figure 5.1: Scatter Plot of combined F values and residuals from GARCH(1,1) fit

The ACF’s in Figure 5.2 indicate that the residuals are very close to being white

noise. The GARCH(1,1) fit does account for the long tailed nature of the returns.

We also modeled the error terms ✏s for GARCH(1,1). They do not seem to exhibit

any conditional heteroscedasticity and the parameters are not significant at all. This

indicates that the common factor term takes into account most of the non-constant

variance that is characteristic of most financial data.

The one-factor model does seem to be a good fit for the data. The common factor
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Figure 5.2: ACF of combined F values and residuals from GARCH(1,1) fit

exhibits conditional heteroscedasticity, which takes into account the non-constant

volatility of market returns. The countries’ own stock markets contribute through

the ✏s, and they do not demonstrate conditional heteroscedasticity. The one-factor

model with this change is a good fit, and testing for contagion in this scenario is an

improvement, as it takes into account the non-constant nature of the volatility and

still we can model interdependence and test for contagion.
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Part III

Summary
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Chapter 6

Conclusions and Future Work

Contagion is still not a very well defined concept. There have been many attempts

at defining and modeling contagion. Pericolli and Sbracia and Dungey et al. (2003)

and Dornbusch et al. (2000) have compiled the di↵erent viewpoints on contagion

and suggested models based on these viewpoints. Pericolli and Sbracia (2003) have

consolidated the literature to suggest a couple of definitions and statistical models to

go along with these definitions. We have considered two definitions of contagion and

analyzed their corresponding models. It is hence of interest to examine the di↵erences

in these models and therefore in the definitions themselves.

The two approaches we considered are the structural break in a one-factor model

and the volatility spillover model. We have shown that the one-factor model has some

inherent identifiability problems. However we could still test for contagion based on

maximizing the likelihood. By failing to reject the null hypothesis of no contagion we
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have concluded that there was no contagion present in between the Hong Kong and

Singapore stock markets, as any increase in correlation is explained by the common

factor. We have also shown that the common factor model in the one-factor approach

has conditional heteroscedasticity, which will rationalize the presence of long-tailed

observations.

The volatility spillover approach uses a multivariate GARCH structure for the

error. We used a BEKK model to analyze the flow of volatility from Hong Kong’s

market into Singapore. We established the existence of spillover of volatility.

It has to be noted that these two approaches di↵ered in their conclusions about

the existence of contagion. In the common factor approach the data did not exhibit

significant evidence of a structural breakdown of the parameters (which is the sign of

presence of contagion according to the one-factor model) and did exhibit significant

evidence that there was spillover of volatility from Hong Kong to Singapore (which

is the sign of presence of contagion from the second approach). This in due course

led to the question of whether the two approaches were testing for contagion in the

same manner.

We hence looked at the relationship between the two approaches. We observed

fundamental di↵erences in their approaches, as one models the regression parameters

as a constant (based on the definition of inter-dependence), and the other approach

works based on the change of volatility from one period to another, and the factors

a↵ecting that change. This fact explains the basis for the apparent contradictory
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conclusions of the two concepts of contagion.

We could build a conditional-heteroscedasticity model which models the regression

parameters as a constant. We can also consider a volatility-spillover model, which

works on the same approach as the common factor model, with the exception that

the model lets volatility flow from the crisis country to the non-crisis country, but

not the other way. This approach will be explored in future work.

Lastly, from Sentana (1998), we can construct a model with a GARCH structure

for the variance of the returns which has the same properties as the one-factor model

in which we are interested. We can then study the properties of the one-factor model

with conditionally heteroscedastic factors and the volatility spillover models. This

should lead to new insight into the di↵erent definitions of the concept of financial

contagion. This approach will also be examined in future research in this area.
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Appendix A

Identifiability Restrictions

In Chapter 3, we looked at the identifiablity issue in the common-factor model.

In the common-factor model we have two periods viz., the calm or non-crisis and the

crisis periods. The identifiablity problem basically implies that we could have one

set of observed values and two sets of di↵erent estimates which lead to confusion in

interpreting the values of the estimates.

The variance-covariance matrices under the non-crisis and crisis periods are as

follows. For the non-crisis period we have

⌃ =

0

BBB@

�2
1 + �2

1 �1�2

�1�2 �2
2 + �2

2

1

CCCA

and for the crisis period under the alternative of H
a

: ⌘ > 0, we have

⌃C =

0

BBB@

�2
1(1 + ⌘)(1 + �) + �2

1(1 + �) �1(1 + ⌘)�2(1 + �)

�1(1 + ⌘)�2(1 + �) �2
2(1 + �) + �2

2

1

CCCA
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Since we also defined our variance covariance matrices under the non-crisis to be

⌃ =

0

BBB@

a b

b c

1

CCCA

and crisis periods to be

⌃C =

0

BBB@

d e

e f

1

CCCA ,

we get the following six equations by equating the parameters and the observed values.

�2
1 + �2

1 = a (A.1)

�1�2 = b (A.2)

�2
2 + �2

2 = c (A.3)

�2
1(1 + ⌘)(1 + �) + �2

1(1 + �) = d (A.4)

�1(1 + ⌘)�2(1 + �) = e (A.5)

�2
2(1 + �) + �2

2 = f (A.6)

From Equation A.1 we get

�2
1 = a� �2

1 (A.7)

From Equation A.2 we get

�2 = b/�1 (A.8)

From Equations A.3 & A.8 we get

�2
2 = c� �2

2 = c� (b/�1)
2 =

c.�2
1 � b2

�2
1

(A.9)



74

From Equations A.6 A.8 & A.9 we get

(b/�1)
2(1 + �) +

c.�2
1 � b2

�2
1

= f ) b2

�2
1

+ �
b2

�2
1

+ c� b2

�2
1

= f ) � = (f � c)
�2

1

b2
(A.10)

From Equations A.5 A.8 & A.10 we get

�1(1+⌘)(b/�1)(1+
(f � c)�2

1

b2
) = e) (1+⌘) =

e.b

b2 + (f � c)�2
1
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e.b
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1

�1

(A.11)

From Equations A.4 A.7, A.10 & A.11 we have

d =
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1 .

(e.b)2
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1)2

+ (a� �2
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!

) d =
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2
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!

) db4 + db2(f � c)�2
1 = e2b2�2
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1
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1

And we get

�(f�c)�6
1+(a(f�c)2b(f�c))�4

1+(2ab2(f�c)�b2+e2b2+db2(f�c))�2
1�(db4�ab4) = 0

(A.12)

We used the polyroot function in R to give us the roots for 100000 simulated

values for a, b, c, d, e and f . Out of the 100000 values of the roots (i.e., �2
1), we found

20 which had multiple positive values for �2
1 , �

2
2 , �

2
1, �

2
2, � and ⌘.
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Appendix B

BEKK Expansions

The BEKK model has the following form for the variance-covariance matrix.

⌃
t

= C 0C + D0⌃
t�1D + E 0U

t�1U
0
t�1E (B.1)

where, in the bivariate case, C is a lower triangular matrix having 3 parameters, and

D and E are 2 2x2 square matrices with 8 parameters, leaving us with 11 parameters

to estimate.

To understand how volatility and the shocks from the crisis country, viz., country 1

flow into the non-crisis country (country 2), we will expand the variance-covariance

matrix ⌃
t

. We just need to look at D0⌃
t�1D and E 0U

t�1U
0
t�1E, since C is a constant.

In any case we have

C 0C =

0
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c11 0

c12 c22
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c11 c12

0 c22
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12
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12 c2

12 + c2
22

1
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We are interested in testing for volatility spillovers from country 1 to country 2,

since when country 1 has a crisis, we would like to see if it a↵ects the volatility of

country 2. To this end, we will look at the volatility term of country 2 to test for the

presence of volatility from country 1.

The volatility for country 2 is given by �
t,22 and is given by B.2

�
t,22 = c2

12+c2
22+d2

12�
2
t�1,112d12d22�t�1,12+d2

22�
2
t�1,22+e2

12u
2
t�1,1+2e12e22ut�1,1ut�1,2+e2

22u
2
t�1,2

(B.2)

For no volatility spillover from country 1 to country 2 we need to make sure that

�
t�1,11 and u

t�1,1 do not appear in the above expression. If d12 and e12 are equal to

0, then the expression for �
t,22 reduces to B.3

�
t,22 = c2

12 + c2
22 + d2

22�
2
t�1,22 + e2

22u
2
t�1,2 (B.3)

Hence to test for the absence of volatility spillover we test the null hypothesis

H0 : d12 = e12 = 0
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Appendix C

Constant Regression in GARCH

We considered the e↵ect of constant regression on the GARCH factors in the

BEKK model. We have from Equation 5.7 that the regression coe�cients of series 2

on series 1 is the same at times T � 1 and T if and only if
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(C.1)
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Equation C.2 was previously shown in Equation 5.8.
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