
Abstract

HICKS, GREGORY PHILIP. Modeling and Control of a Snake-like Serial-link Struc-

ture (Under the direction of Kazufumi Ito).

The topic considered is the modeling and control of a snake-like serial-link struc-

ture. The system is assumed to have torque controls about the joints, is considered

to lie in an isotropic plane, and is assumed to interact with this plane in a manner

which adheres to some suitable friction laws. Such a structure is hyper-redundant,

making the robotic realization thereof potentially robust with regards to mechanical

failure and highly suited for obstacle avoidance tasks and terrain adaptability. It is for

these reasons that the structure is studied. Lagrangian mechanics is used to develop

a mathematical model for the system. The resulting dynamics possess symmetries

which allow them to be placed in a reduced form. Using this form in conjunction with

a technique known as feedback linearization, one finds that the dynamics are driven

by a three state system describing the evolution of generalized momenta with respect

to the device’s internal shape progression. The problem is to determine whether or

not there is a shape trajectory that can elicit bulk structure movement. In order to

determine the appropriate shape for this task a two-pronged approach is taken. One

approach is to make a shape selection based on the principle mechanism of undulatory

locomotion. The other approach is to set up a variational problem to determine an

optimal locomotive shape.
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Chapter 1

Introduction

1.1 The Topic of Study and its Motivation

The primary content of this writing concerns the modeling and locomotion control

analysis of a snake-like serial-link structure. This structure is thought to, at least

from a primitive morphological point of view, model the structure of a snake or eel.

The interest in this structure is to determine how it enables the animal to attain

steady and directed bulk locomotion. The majority of this interest is founded in the

potentials of the snake to be highly adaptable to its environment and the transfer of

these potentials to robots that may carry out tasks that are unsuitable for humans

and other standard mechanisms. Some of these tasks are now briefly reviewed for the

purpose of providing a legitimate motive for our studies.

We begin with discussion of the latent capability of a snake-like device for de-

livering non-destructive evaluation (NDE) technologies. It was this potential that

initially prompted this research, which has been funded by the NDE group at the

NASA Langley Research Laboratory. NDE refers to the inspection of areas or objects

which is carried out in a manner that is non-degenerative with respect to the structure

being inspected and its function. In response to the need for NDE in industry, many

indirect, crafty methods have been developed. These methods typically involve the

1



CHAPTER 1. INTRODUCTION 2

introduction of some stimuli such as electric current, heat, or vibrations to the system

and some measure of the system’s response to these inducements via accelerometers,

magnometers, etc. The data for both damaged and non-damaged samples are then

studied to determine if there are some consistent and fundamental differences between

them that would allow one to differentiate the cases and perhaps even different types

of damage.

Even though many of these methods have proven to be highly applicable, they

tend to have a localization weakness. As an example, consider methods that depend

upon disturbances in the magnetic field associated with eddy currents formed by the

introduction of electric current to the system. Applying such a technique to an airfoil

would produce magnetic fields about the foiling and thus would be applicable to the

metal sheathing itself and near-surface interior workings. However, the field may not

be strong enough to detect deterioration in the inner framework of the wing. The

same could be said for other technologies that invoke, in a similar manner, thermal

and radiant energies. Thus, for complete assessment, the sensing medium must be

taken closer to the inner workings of some systems. A snake would be ideal for such a

task. Thus, the desire of those who develop NDE devices to investigate the possibility

of a snake-like device that, like a real snake, would have the capability to navigate

the inner workings of convoluted, condensed structures.

Another application of a snake-like robot, though along the same lines, is mine

detection and elimination. According to [26], a snake-like robot would be the most

appropriate vehicle for carrying sensors of various types into areas for the purpose

of mine detection. As pointed out in this article, it is often the case that areas sus-

pected of mine habitation lie dormant for extended periods of time. This results in

overgrowth of these locals making them unsafe for most types of approach. Snakes,

however, can traverse a variety of media, such as water, grass, and typical overgrowth

with ease and without an intrusive presence. Snakes can pass over rough, uneven

ground and their long, slender bodies allow them to manipulate winding paths. Fur-
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ther, snakes have little difficulty moving over areas where the ground is softened.

This is a result of their apparent capability to use the length of their body along with

a continuum of contact with the surface to distribute their weight as is fitting for a

given situation. Snakes also have a naturally stable form which leaves little concern

for difficulties with balance. Finally, since snakes are short and have no appendages,

their chances of activating mines via trip wires is significantly reduced. After the

authors of [26], “...they are nearly the perfect mine detectors.”

A precedent in technologies that permeate the exterior of physical bodies with

the notion of probing the interior workings has been in place for some time now in

robotics. An example of such a contrivance is the use of large robotic ”snakes” to

search for human life amongst earthquake rubble and other tragic occurrences that

yield massive destruction in populated and developed areas. Additional applications

include the inspection and maintenance of narrow sewage pipes [40] and the inspection

of feeder cables [53], to name a few.

It is hoped that these examples indicate the need to study snake-like structures.

The potential utility of robots that can maneuver and manipulate their surroundings

like an actual snake is hard to fathom. With this being said we now turn to the efforts

that have been made heretofore so that we may put into perspective the objectives

and contributions of our research. We make the note that this review is complete only

to the extent that should be expected. Obviously, we did not study every publication

in existence. However, we do believe that we have given appropriate attention to

those that have significant bearing on our efforts and that we may safely claim that

we are aware of the current level of maturation present in the subject area.

1.2 Survey of the Literature

The study of snake locomotion and of structures designed to mimic this form of

transport began quite a long time ago. However, as pointed out by S. Hirose [33], the
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first investigation of true engineering merit that focused solely on this phenomena was

presented in 1946 by experimental biologist J. Gray [28]. In this paper Gray identifies

and examines the 4 modes of locomotion observed amongst the genera of snakes.

Although some of the conclusions reported in this article had been made previously

by zoologist W. Mousour in 1932 [52], Gray provided, from the engineering point-of-

view, comparably rigorous explanations of the locomotory capacity of the animal by

appealing to the fundamental principles of Newtonian mechanics. A portion of this

work followed easily from his earlier research on fish and eels [27]. Further, Gray made

considerable efforts to confirm his mechanical insights via experimentation with actual

snakes. These efforts were extended by the work of Gray’s colleague and collaborator,

fellow experimental biologist, H.W. Lissmann. Lissmann independently studied the

sidewinding mode of locomotion in 1946. In 1949 he published a study with Gray in

which they worked to gather a quantitative understanding of the forces acting on the

snake’s body during locomotion through experimentation [29].

The efforts of Gray and his peers within the research community seem to have

ushered in a new area of study known today as biomechanics. The core of this branch

of biology/zoology/morphology is to use the basic principles of mechanics to verify

or predict the functionality of animal musculature and/or other morphological or

anatomical features. By doing so, inference may be made into evolution of species,

etc. After some period of dormancy, the analysis of limbless locomotion was revis-

ited by the biomechanics community. In 1962, Carl Gans presented an essay on the

subject [21]. In this essay Gans essentially presents the work of Gray and Lissmann.

However, he added discussions on how modifications of the mechanisms of locomo-

tion over differing classes of animals relate to selective advantage, he presented some

additional experimental evidence, and did add some commentary on the morphology

of the snake’s skin/scale patterns and its apparent effect on the differing modes of

locomotion. It would seem that this essay was well accepted and became something of

a standard. The topic received little further attention until the late 1980’s, other than
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a few studies such as the one in skin morphology via scanning electron micrographs

made by C. Gans and D. Baic in 1977 [23]. In this study the authors extrapolate scale

functionality from examination of the rough-tailed snake. It was their conclusion that

it was the function of the smooth ventral shields of most snakes to reduce friction

and wear, thus aiding the undulatory mode of snake locomotion.

Upon completion of his thesis work in 1985, B.C. Jayne released a series of papers

based on this work on snake locomotion. In 1988 Jayne provided his results on the

mechanical properties of snake skin [36]. As part of this study he addressed possi-

ble correlations between the mechanical properties of snake skin and specializations

in locomotion. One of the more interesting observations made was that localized

thickenings of snake scales may contribute to the development of anisotropic or direc-

tionally dependent friction characteristics in snake skins. Although such a possibility

was hinted at by the data collected during the experiments of Gray and Lissmann,

they did not comment on the matter. In that same year, Jayne published his work

on the muscular activity of two species of colubrid snakes during the lateral undula-

tion mode of locomotion [37]. These EMG results indicated epaxial muscle activity

consistent with muscular shorting during lateral undulation and were in agreement

with the patterns and shortening that were predicted by Gray using very simple, but

powerful, energy arguments.

This work was followed by a similar experiment by J.-P. Gasc et. al., reported

in 1989 [24]. These researchers examined the muscle activity, as measure via EMG,

of a Python regius when making use of a single rigid peg to obtain leverage for

displacement. It would seem that the patterns observed were different from those of

Jayne. However, Jayne was making use of a system of pegs in his experiments and it

seems relatively clear that one would not expect the muscle activity observed to be

consistent after so drastically changing the advantages of the snake’s environment.

After a gap of several more years, other works directed at the complete understand-

ing of snake locomotion of some significance have been produced by the biomechanics
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community. In 1998, C. Gans and B. Moon published [50]. This research returned

to the study of the muscle activity in snakes during locomotion that was produced

by contact with one or more rigid pegs. Using EMG analysis along with videography

analysis, they attempted to establish some relationship between the observed muscle

activity and the axial bending and propulsion observed during locomotion. Their

conclusions indicate that, as with Jayne’s observations, Gray was probably correct

in his evaluation of muscle shortening. However, it is also pointed out that a good

deal of variability exists between the magnitude of the EMG bursts observed and

the amount of axial bending observed. Thus indicating that muscles other than the

epaxial muscles are involved in creation of the winding shape of the animal.

Another relatively recent article that is of interest is [32]. This work was produced

by J. Hazel et. al. in 1998 and deals with the surface morphology of snake skin.

Being more specific, multi-mode scanning probe microscopy was used to study the

structure of the snake skin at the nanoscale level. It was found that the skin of the

snake featured many structural properties which would seem to lend themselves well

to aiding locomotion. One such feature was a forward-backward friction anisotropy.

It is interesting to note that some of the features pointed out in this paper can

also be observed from the microscopy results of [23]. However, advancement in the

technologies involved allowed a higher resolution microscopy and some of the features,

such as the existence of interlocking longitudinal ridges along the borders between

two skin cells, were more deeply examined.

This brings us to the present with regards to those contributions to the subject

of snake locomotion made by, roughly speaking, biologists. However, the face of the

subject of snake locomotion was altered by the study of the topic made by S. Hirose.

This study was Hirose’s Ph.D. thesis work and was submitted to the Tokyo Institute

of Technology in 1976. After more than 10 years of lying dormant, Hirose republished

the work in the form of a book in 1987, citing an apparent need for such research

to emerge [33]. The most impressive part of Hirose’s study is its breadth. A single
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statement is insufficient to describe the tasks that he performed.

Firstly, Hirose studied the biomechanics of snakes and applied some of his obser-

vations to conclude (although incorrectly) that none of the descriptions of the gliding

form of snakes up to that point were worthy of merit, being unnatural from the point

of view of muscular physiology. He proposed that a sinusoidal pattern for muscle

contraction was most natural and upon assuming a direct relation of this activity to

the axial bends of the snakes vertebrae structure, he derived a curve to describe the

gliding form of the snake that is mathematically expressed using Bessel functions. He

called this function the serpenoid curve. Hirose claimed that this curve was a good

match to that taken by actual snakes in a certain controlled environment.

Using the continuum point-of-view for the form of the snake and assuming that

a serial-link structure model of the snakes vertebra was an approximation to the

continuum, Hirose developed kinematic expressions for the continuum form by the

limiting process. Using these kinematic expressions in conjunction with his self-named

serpenoid curve, Hirose drew the conclusion that decoupled directionally dependent

friction was necessary to attain undulatory locomotion. Assuming this necessity to be

the case, he went on to derive a variety of expressions for physical quantities related

to snake gait, such as the power and motive force required for steady motion. This

portion of the study took on an engineering flavor that was beyond the more mild

hint of mechanics used by the forefathers of biomechanics.

Impressive was the extent to which Hirose went to confirm the validity of the

kinematic expressions that he derived via actual experimentation with live snakes.

Amongst these were admittedly less successful experiments used to determine the

frictional nature of the ventral portion of the animal and some experimentation to

obtain EMG measures of the normal force exerted by snakes during the lateral un-

dulation form of locomotion. Many of the methods that Hirose employed were quite

progressive given the extent and nature of previous studies up to that point. Cer-

tainly, he provided a fine contribution to the field of biomechanics as it concerns
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snakes.

As if this were not enough, Hirose took the validation of the information obtained

concerning the locomotion of snakes to a new level when he actually constructed

a snake-like robot that performed the lateral undulation form of snake locomotion.

This was the first time that a robot was to use a method of propulsion other than

standard drive wheel mechanisms. This was revolutionary in the realm of robotics

and would anew interest in the topic of snake locomotion and how it may relate to

the advancement of technologies.

Since that time, a plethora of research efforts from the robotics and general engi-

neering communities have been accrued and we now provide a survey of some of those

that we have come to be aware of. The discussion of these efforts is broken down

into two categories: those projects that are associated with affiliates of the California

Institute of Technology (Caltech) and those that are not. This may seem like an odd

dichotomy, but during the last several years the efforts produced by affiliations with

Caltech are distinctive in the way that the subject matter of robotics, and dynamical

systems in general, is handled.

We begin with those works that are independent of the Caltech trademarks. These

studies tend to be of one of two types, those that deal with both the actual construc-

tion of a robot that uses a snake-like mode of locomotion and a control method and

those that deal solely with topic of how to mathematically formulate a control method

to be utilized by these structures. With regards to the former, our interest lies in the

mechanism through which locomotion was achieved (i.e., the control method) and not

so much with the technical details of the actual robot’s architecture. We have already

mentioned that the first snake-like automated locomotion device, to our knowledge,

was constructed by S. Hirose in the early part of the 1970’s. This robot’s name was

the ACM III or Active Cord Mechanism Mark III. Hirose has constructed several

snake-like robots since that time including descendants of the ACM III, namely the

ACM IV, ACM V, and the ACM VI; the Koryu I and Koryo II robots; and the ACM
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R1 [33, 20, 34, 18]. Each of these robots was a serial-link structure which made the

use of wheel pairs to create a no side-slip condition for each of the links. In the case

of all of these robotic realizations the so-called serpenoid curve and variants thereof

were used for locomotion control. Being more specific, the differential angles between

adjacent links were forced to follow sinusoidal trajectories that were slightly out of

phase with one another. The effect is to bring about a wave propagation along the

length of the structures body resulting in oriented displacement. For turning, a bias

was given to the robots differential angles resulting in an undulatory locomotion along

a circular arc whose radius of curvature is proportional to the bias selected. No true

mathematical method for selection of the sinusoid parameters and bias was employed.

Of the articles cited, [18] provides the most detail in this regard.

In 1996 a team of German researchers from the German National Research Cen-

ter for Information Technology (GMD) introduced a prototype for a snake-like robot

called the GMD-Snake [70]. This robot was different from those that had previously

been constructed in that the team, Rainer Worst and Ralf Linnemann, had conceptu-

alized a design that did not include wheels, legs, or any other appendages. As in the

case of Hirose’s robots, this robot was comprised of series of individual units. How-

ever, these units were flexible, being made up of several octagonal pieces of aluminum

connected by rubber pieces. The segments were bent by a combination of drives and

strings. These men were working toward something that seemed even closer to nature

than the robots that had been previously developed. To elicit movement from this

structure, the team used trial and error to determine a set of basis motions that were

to be used in combination to construct motions satisfying more complex requirements.

In other words, they used a table look-up method for actuation patterns. Indeed, it

would appear that the researchers were able to demonstrate the capability of a snake-

like creeping motion, though the basis patterns used to accomplish this task were not

provided in their report. One of the prototype flaws, due to its flexibility, was that

it experienced unexpected torsional effects, etc. The team indicated that they would
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next envelope the structure in an elastic skin to provide a greater stability to the

body. Unfortunately, it does not appear, to our knowledge, that this was followed up.

The GMD-Snake2 was introduced in 1999 [40]. Apparently, the composition of

the research team had been altered, to Bernhard Klassen and Karl L. Paap, and so

had the design of the GMD-snake, completely. This device was a serial-link structure

that was actively driven by wheels and used the clothoid curve as a basis for motion

control. This curve has been used for years in the design of highways and is also

related strongly to the serpenoid curve proposed by Hirose. Being it so that the

entire method of propulsion had been altered, this structure ceased to be snake-like.

In fact we only mention this robot at all because a portion of the studies made into

how to design the motion are quite intriguing with regards to some of the findings

of our current research. In order to determine what the motion of the GMD-Snake2

should be, the group at GMD devised an optimization scheme [43, 60]. They proposed

that the structure should follow the path such that the energy dissipation due to the

friction experienced would be minimized via a method known as the “Davidson-

Fletcher-Powell Method for Minimization”. They attributed friction to two causes.

The first source being the friction experienced between joints and the second being

due to the differential between the direction of motion of the wheels and that of the

segment to which the wheels were connected. It was found that the optimal motion

would be one such that differential angles of the structure took on constant and equal

measures. That is, they determined that the structure should always follow a circular

path to move from location to location. For technical purposes, the team at GMD

used the clothoid curve.

Only recently, a team of researchers comprised of M. Saito of Hatachi, M. Fukaya

of the Tokyo Intitute of Technology, and T. Iwasaki of the University of Virginia, have

constructed a snake-like serial link structure [62]. This structure differs from those of

Hirose in that rails are used in place of wheels to attain a virtual no side-slip condition

on the links. The creators of this robot claim that this alteration leads to higher
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terrain adaptability. The control methodology used by the team to steer this robot

is worth making note of. Like Hirose, the robot uses phase shifted sinusoidal changes

in the differential angles between adjacent links to elicit the lateral-undulation form

of snake locomotion. However, unlike Hirose and others, these researchers devised a

feedback scheme to update the frequency and bias of these sinusoidal forms in order

to alter the robots speed and direction, respectively, that makes use of the system’s

dynamics. The idea was to make use of feedforward simulation using the sinusoidal

shape functions to heuristically determine an optimal value of the phase shift for a

given number of links and amplitude for a given ratio of “friction” coefficients. Then

PID and H∞ controllers were used to design feedback control of the frequency and bias

of the differential angles. The simulations presented were convincing. This was quite

a good effort in beginning to developing a feedback control for the lateral undulation

form of locomotion.

An interesting departure away from the robots and locomotion types discussed

thus far is the MS-1 and MS-2 robots of Yansong Shan and Yoram Koren of Michigan

State University. These researchers developed a serial-link structure whose links are

supported by costers and carry a solenoid (MS-1). In the later design (MS-2), the

costers were removed. The robots use the concertina type of locomotion. Essentially,

a certain portion of the structure is held fixed to the ground via the solenoids while

the actuation of the joints is used to reposition the free portion of the robot. A

pattern of forward motion was devised using this mechanism. A motion planning

method was then implemented to adapt this motion to the task of direction control.

There are several more robots that are typically included in the general category

of “snake-like” robots, such as the NTUA Robotic Snake [63, 49]. However, for the

most part, these robots are simply articulated and do not actually use a propulsive

mechanism observed in snakes. For this reason, they will not be discussed.

We next move on to discuss a few contributions to the literature that are purely

focused on the control of actual snake-like serial-link structures. One such effort is pro-
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vided by K. Dowling in [17]. His idea was to use a table look-up method, as suggested

by the GMD group. However, instead of using trial and error to determine locomotive

patterns, he made the suggestion of using Fourier series coefficients as parameters for

the functional form of the structure’s body, and ideas of learning for selection of those

parameters. He suggested the use of specific resistance as a measure of gait success.

This non-dimensional quantity is given by sr = Power/(Weight × V elocity). So,

for a fixed weight structure, it is the ratio of Power to Velocity. Then, parameters

are sought to minimize this quantity. Little detail is provided concerning specific

expressions for this quantity and the techniques used for optimization. However, it

is purported that by using this method that 3 of the 4 typical modes of locomotion

used by snakes appeared. Again, little tangible information concerning specifics of

the resulting Fourier expansions were provided.

In 2000 a group of colleagues from the Tokyo Institute of Technology introduced a

control methodology for serial-link structure with a no side-slip condition based on the

concept of dynamic manipulability [15, 16]. This concept had first been introduced

in the context of manipulator arms, however, it was easily extended to the snake-like

articulated structure. The basic idea is to use either constraint equations or some

portion of the system’s dynamics to solve for position acceleration in terms of applied

torques at the structure’s joints. The resulting coefficient matrix of the torques is

called the manipulability matrix, as it indicates the extent to which the mechanism’s

acceleration can be affected by application of torque. With a certain amount of

algebraic manipulation the image of this mapping can be viewed as an ellipsoid.

The lengths of the axes, or certain ratios thereof, are considered to be a measure of

manipulability. The control technique then proposed, is one that attempts to strike

a compromise between motion in a desired direction and maintaining a suitably high

measure of manipulability. i.e., the structure should move toward the target but at

the same time should do so in a manner that facilitates its capability to continue to

make progress. It would appear that when doing this, the shapes determined often
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had a zigzag geometry. To eliminate this, the team added the condition of also trying

to minimize the side constraint forces. Upon doing so, a smoothing or regularization

effect was obtained and a wave-like geometry developed which produced a locomotion

that is strikingly similar to that obtained via sinusoidal differential angles. This is

most impressive. To our knowledge, this is the only effort other than our own where

a mathematical control construct was used in conjunction with system dynamics to

elicit a snake-like motion from the structure that satisfied some sort of optimality

criterion and made no reference to predetermined forms.

We now turn our focus to the review of those works concerning snake locomotion

generated by associates of Caltech. To begin, we consider the work of G. Chirikjian

and J. Burdick. Burdick and Chirickjian are well known in several research commu-

nities for their persistent contributions to the study of so-called hyper-redundant or

high degree-of-freedom robots. Hyper-redundant is a term that they coined to de-

scribe robots with structural morphologies similar to that of snakes, elephant trunks,

etc. An example of such robots are manipulator arms with high degrees of freedom

(HDF) and serial-link snake-like robots. In the respective works [13, 14] of 1991 and

1992, concerning HDF manipulators, the team took the perspective that HDF sys-

tems approximate continuum forms, which they would call backbone curves. Using

this perspective they were able to describe the geometry of articulated structure via

generalized curvature functions written in terms of time and arc-length varying tan-

gent length and angle functions. Modal approximations to these length and angle

functions were then used along with the end effector coordinates to determine al-

gorithms for inverse kinematic solutions in the presence of obstacle constraints. In

other words, a backbone curve was determined from the constraints and the desired

location of the end effector. The backbone curve was then used to determine the

appropriate time varying geometry of the articulated system.

Using this same perspective, Burdick and Chirickjian were able to take up the

topic of locomotion for such structures with only a few modifications [12, 10]. In this
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case, the machinery of the moving frame was added and the modal approximations

were selected so as to create stationary-wave, varying-amplitude and travelling-wave,

constant-amplitude body forms. Upon the application of some physical constraints

and certain no-slip conditions, the problem of locomotion via these modal forms was

made a strictly kinematic problem that could be solved for the modal approximation

parameters in the same manner as the inverse kinematics problem for the fixed-end

manipulator. Although this technique is ill-suited for the analysis and control of the

lateral undulation and concertina snake locomotion types, it is well-suited for the

production of rectilinear and side-winding forms, which were both illustrated in these

efforts.

It would seem that once the problem of locomotion was taken up at Caltech,

many doors were opened. This institution is one of the few that actively approach

the subject of mechanics from a differential-geometric perspective. The foundations of

this approach to the subject were laid by the masters themselves: Lagrange, Poincaré,

Poisson, Lie, Laplace, Newton, Euler, and many others. Oddly, it would seem that

the general treatment of the subject of dynamics from this point-of-view has never

been wholly adopted by the scientific community. It is the opinion of the author

that this is not too difficult to understand. This perspective is almost always made

to be unduly technical and as such, demands a mathematical fluency and knowledge

base possessed by, relatively speaking, few. However, in recent times it has seen a

resurgence in development, understanding, and use in the explanation of physical

phenomena [44]. This is particularly the case in the Caltech community. There, the

locomotion problem, including that of snakes, has been placed under the modern

analytic mechanics umbrella. This is the distinguishing feature of the studies coming

out of that community of researchers.

Inspired by the work of Joel Burdick and Gregory Chirikjian, P.S. Krishnaprasad

and D.P. Tsakiris would take the problem of undulatory locomotion of HDF systems

to the geometric context in their 1994 paper [41]. In particular, they modelled the
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no side-slip constraints of serial-link structure units (i.e, early Hirose type snake-

like robots), which are members of the general class of nonholonomic constraints,

as a connection on a principle fiber bundle. They then proceeded to show that

shape variations (i.e., differential angle variations) would elicit geometric phase (i.e.,

displacement) in the coordinates of the structures imposed body frame through the

connection form (i.e., by using the huge differential between normal and tangent

reaction forces from the substratum). One of the important features of this work was

the decomposition of the mathematical parameters of the serial-link structure into

the translation variables and the shape variables. The translation or body coordinate

frame variables would be called the group variables, for their possible values form a

group G. The researchers attempted to coin the term G − snakes to refer to such

structures.

In 1994, S. Kelly and R. Murray of Caltech released a publication on locomotion

which also casted the topic in a geometric context [39]. As did Krishnaprasad and

Tsakiris, they modelled kinematic constraints as connections on principle fiber bun-

dles and used the concept of geometric phase to dynamically explain the capability of

structures to attain gait. Also similar was the explicit decomposition of the structures

phase space into translation or group variables and shape variables. However, this

work was different in several respects. To begin, they opened up the problem to all

forms of locomotion under nonholonomic constraints which result in a principle kine-

matic connection and were propulsion is attained through this connection by cyclic

changes in the shape variables. Thus, the sidewinding and inchworm gaits of Burdick

and Chirikjian fall under this framework as specific cases. Furthermore, they showed

how the modeling of constraints on a principle fiber bundle can be used to more easily

assess the system’s controllability via geometric control methods. Finally, this work

is commendable for its attention to application via several complete examples.

Shortly following this work was that of Jim Ostrowski under the advisement of

Joel Burdick [57], 1996 (also see [58, 59]). Ostrowski expanded the work of Kelly
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and Murray in several ways. To begin, he generalized the work to encompass the

modeling of constraints through connections that were not necessarily of the principle

kinematic type. This would allow the inclusion of systems whose dynamic effects are

crucial to the resulting motion of the system, such as later Hirose type snake-like

robots whose constraints do not completely determine the motion of the robot. In

fact, he uses his results to explain via the mathematical construct of the connection

why the out of phase sinusoidal differential angle trajectores elicit a displacement

of the robot. Secondly, he demonstrated how system symmetries could be utilized

to perform system reduction in a straight forward manner. As a byproduct of this

reduction, which we have found to be the most useful in our present effort, is a

partial decoupling that clearly illustrates the relations between a system’s control

and shape and the system’s shape and momentum. Further, he demonstrated that

this form of the dynamics could always be attained for locomotion systems, both

constrained and unconstrained. Ostrowski also extended the controllability results of

Kelly and Murray to this larger class of systems with mixed constraints and illustrated

how to use the components of the reduced equations to furnish a quick check of

the controllability conditions. Perhaps the nicest feature of Ostrowski’s contribution

however, is its readability. His presentation of the material risks demystifying the

geometric perspective on the locomotion problem to the point that most scientists

can understand it with some effort.

Finally, we conclude with review of the very recent work of Ostrowski and his stu-

dent K. McIsaac [47, 48, 46]. They considered the dynamics of a serial-link structure

and the propulsive mechanism of the lateral undulation form of gait. Their stud-

ies are quite good. Using the reduction theory and in particular the Euler-Poincaré

equations, they developed a model of the structure that exhibits the before mentioned

partial decoupling by using Ostrowski’s calculation procedures. To model the interac-

tion of the system with the environment, they did not place no side-slip constraints on

the links of the structure. Instead, they considered the case of the snake in a fluid and
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used a viscous friction model taken from the work of Ekeberg to create a normal to

tangent pressure force differential along the centerline axis of the structure. Using the

resulting dynamics they demonstrated the propagation that the system can achieve

by using a sinusoidal pattern for the structure’s differential angles or shape. To aid

in their understanding of the effects of the input parameters on the resulting gen-

eralized momenta, they assumed a small amplitude perturbation ε in the sinusoidal

forms and proceeded to express the momenta as an expansion about ε. By comparing

certain terms, information about the system’s response was extracted. In particular,

as determined in previous work, they found that an offset or bias in the shape form

may be used to steer the system. Using this feature they developed a hierarchical

approach to motion planning for the system and showed that this scheme could be

used successfully. This differs from the method originally employed by Hirose only

in that there is a feedback mechanism that can be employed to make the control

autonomous. This work along with that of [62] are the only two efforts known to us

that use a feedback mechanism in conjunction with sinusoidal shape variable forms

to direct the lateral undulation type of locomotion.

1.3 Statement of Purpose

We now attempt to indicate the purpose of our research, in what way we pursue that

purpose, and the success of the directions that we have taken. This project began

with a very simple query, “Is a snake-like robot feasible?”, and the purpose of our

research has been to provide a satisfactory answer. Paraphrasing this question we

have, “Can a robot navigate throughout its environment the way that a snake can?”

It requires little thought to come to the conclusion that this problem is actually

two! The first is, “How does a snake move about its surroundings?” or “What is

its locomotory mechanism?”. Then there is the secondary question, “Is it possible to

build a machine that could utilize that same mechanism?” Both are very interesting
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questions. We make progress in answering the first of these, confining our attention

to the lateral undulation type of motion.

Our efforts are exerted in two differing, though related, directions. As one of these,

we expend a great deal of effort to convey the fact that the general question concerning

the mechanism of gait has already been answered but that only a remnant of this

answer remains in the conscience of those who are pursuing snake-like locomotion

simulators. John Gray completely solved this problem in 1946 [28]. It would seem that

there has been a good deal of confusion in this matter. Perhaps the confusion began

when S. Hirose claimed that his was the first work that connected the gliding form of

the snake with the animal’s capability to attain locomotion via lateral undulations.

This was not the case, and in fact Hirose proposed the same gliding form that Gray

had constructed only as an example of a form that a snake could use to elicit motion.

However, Hirose’s claim has apparently stuck, and now it is common place to read in

publications on the subject that Hirose showed that snakes follow a winding curve,

which he named, the serpenoid curve. By assuming this as the beginning and end of

snake locomotion, most people miss out on the fact that this form is but one that is

acceptable to attain the lateral-undulation type of locomotion and that the underlying

principles that Gray used to originally construct this form possess a generality that is

far-reaching in utility and potential. It was for this reason that Gray only presented

the now so-called clothoid curve or its smoothing, the serpenoid curve, as an example.

However, by not making the more singular claim that he had discovered “the” gliding

form of snakes, Gray’s efforts have been partially obscured. Thus, one of our goals is

to revive his conclusions and to place them in their rightful place as “the” explanation

of mechanism of locomotion in snakes. In particular, the explanation of the lateral

undulation form of locomotion.

We approach this task in the following manner. We begin by developing with suf-

ficient rigor a mathematical model of a serial-link structure. We then return to Gray’s

conclusions concerning lateral undulation and following his development of the basic
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and most general criterion for educing motion via lateral undulations. Based on these

criterion we reconstruct Gray’s example of a possible gliding form for snakes. Fol-

lowing this, we show how the shape Gray proposed can be expressed mathematically.

Further, we describe the shape which leads to the so-called composite clothoid and

serpenoid curve gliding forms. In doing so we show that the composite clothoid shape

is the shape proposed by Gray. Further, we show via a Fourier series approximation

that the serpenoid shape is the proper smoothing of Gray’s proposed shape. Next we

illustrate through simulation that indeed the shape proposed by Gray evokes gait and

after doing so, illustrate that the reason for this is that the shape was constructed

to be in accord with Gray’s general criterion. We end this exercise by discussing the

generality of the criterion and then illustrating that other shapes adhering to them

will also educe gait.

Several contributions to the literature are made by this undertaking:

Contribution 1. To begin, our modeling approach is somewhat unique. We

apply the geometric mechanics approach to the derivation of the system

dynamics. Although this technique is not new in general, it is not yet

widely in use and its application in the context of the serial-link struc-

ture locomotion problem in the absence of no side-slip constraints is

new. Unfortunately for us, after having made this effort, it was discov-

ered that Ostrowski and McIsaac had reported a similar undertaking

[47] as part of an IEEE proceedings. This work had initially eluded our

literature survey due to the fact that the title makes reference to an

underwater eel robot instead of a terrestrial snake robot. All the same,

we believe our work to be a contribution as an independent work.

Contribution 2. Our treatment of friction modeling as it is applied to the

planar rigid body is also new. In the literature the topic of friction is

only discussed in rare instances. Typically the subject is avoided all
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together by assuming frictionless environments. We take an elemen-

tal approach. By doing so, we avoid the pitfall of applying friction

only to a body’s center of mass. Additionally, using this approach,

we develop and apply a method for describing dry friction forces and

directionally dependent dry forces. This allows illustration of the ef-

fects of anisotropic snake-skin for the first time. Namely, we properly

show that the anisotropy of a snake’s skin is not responsible for the

locomotive capability of lateral undulations.

Contribution 3. By reviving Gray’s research it is believed that we make a

profound contribution. Firstly, we properly show that J. Gray was the

first to introduce the wave form that now receives such high acclaim as

“the” gliding form of snakes. Further, we explain how this form was

developed from more generic criterion that contain the freedom in ap-

plication that has arisen the interest of the scientific community in the

animal. For those who truly want to realize the complete functionality

of a snake-like locomotor, the understanding of the generality of these

criterion and the separation from the notion that there is “a” gliding

form for snakes will be essential. We hope to begin this realization.

The second direction of our efforts is toward the determination of optimal gait

eliciting shapes. It is interesting that S. Hirose claimed that he was able to show

through experimentation that the shape actually taken by real snakes while perform-

ing lateral undulation over an essentially uniform surface is very well approximated

by the example shape proposed by J. Gray. Thus the question, why is this so? Is

this shape truly what is most natural for the animal when placed in the ideal con-

ditions of a uniform planar environment? Of course, there are all sorts of notions

of what is natural. But, following the principle of least action, it makes sense that

what “should” be natural is a motion that produces the displacement desired by the

animal with minimal exertion of effort or loss of energy.



CHAPTER 1. INTRODUCTION 21

Thus the second of our goals is to establish what the natural or optimal gait

generation shape is. We do so by developing a methodology for determining optimal

control/shapes. Using this method we determine the natural locomotive tendencies

of the serial link structure that we use as a representation of a snake.

By the completion of this task we make these additional contributions to the

literature:

Contribution 1. The optimization method introduced is quite unique in

several regards and can be applied to provide optimal periodic locomo-

tion shapes for a wide class of systems, including the class of systems

with symmetries enveloped by Ostrowski’s work.

Contribution 2. We are the first researchers to successfully obtain optimal

gait inducing shapes for the planar snake-like serial-link structure in

the absence of constraints (or with them for that matter). The desire

for such a result has been widely expressed in the current literature.

Contribution 3. Particular features of the optimal snake locomotion pat-

terns illustrate the pertinence of our efforts to emphasize a return to

the basic principles set forth by J. Gray. In this regard, we contribute

to the merit of the afore mentioned contributions.

1.4 Thesis Layout

The presentation of our efforts follow the ensuing program. In Chapter 2 descriptions

of two systems that will be discussed throughout the remainder of the work, and some

discussion of these systems with regards to the physical scenarios that they represent,

are presented. In Chapter 3 we discuss the use of Lagrangian mechanics for developing

the dynamical models of the systems described in Chapter 2 and the use of geometric

mechanics in the reduction of these dynamics. Chapter 4 is a continuation of sorts
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of Chapter 3, addressing the description of the forcing terms that appear in the

system dynamics and finalizing the form of the dynamics that will be used, more or

less, for the remainder of the work. These chapters essentially comprise the requisite

preparatory work that will be used to study undulatory locomotion in snakes.

In Chapter 5 we take up the resuscitation of the work of J. Gray on undulatory

locomotion using the mathematics developed in the foregoing portion of this writing.

Finally, the thesis ends with the optimal control formulation and its results being

presented in Chapter 6.

Should one be perusing this work and find this outline too vague, it is suggested

that the introductions to the individual chapters be consulted. A good deal of effort

has been made to provide detailed chapter outlines as part of these prefaces. It

was felt that providing the more detailed delineation at those junctures rather than

here served the greater function of structuring and directing the focus of the chapter

contents and the document as a whole.



Chapter 2

The System Descriptions

2.1 Introduction

In this chapter we shall describe the two systems that will serve as the objects on

which we shall experiment mathematically. The first of these objects, a mass-spring

system, will primarily be of interest only as an example. This system’s description will

be simplistic enough to allow intuition on the qualitative level and ease of complete

calculations on the quantitative side of things. The second object will be a serial-

link structure used to model the locomotive morphology of snakes. This system is

a bit more complex and as a result can elude intuition and provide computational

challenges. Our descriptions are comprised of the following components. In each case

we provide qualitative descriptions of the systems, identify generalized coordinate sets

and related coordinate transformations, provide some basic kinematic expressions,

and include some qualitative description of the forces that are to act on the systems.

By doing so, we set up the potential to describe the systems’ dynamics.

23
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2.2 The Mass-Spring System

We consider a system made up of a large mass, a smaller mass, and a spring. The

masses are viewed as blocks, a large one and a small one. Let the large block be

denoted B1 and the small block B2. B1 will lie on a line. B2 is then attached to

the top of the larger one via the spring. This is, qualitatively, the system. Refer to

Figure 2.1 for an illustration of the mass-spring system.

x

Friction

s
u(t)

B

B

1

2

Figure 2.1: The simple mass-spring system.

An inertial reference frame is imposed on the line that supports B1. The line is

assigned the typical euclidian frame. We denote the position along this axis by x.

Let x1 denote the position of B1 and x2 the position of B2. These two coordinates

completely specify the configuration of the system with respect to the imposed frame

and thus comprise a generalized coordinate set or vector. As an alternative to this, we

may select x1 as before, renaming it g, and select as a second coordinate the position

of B2 relative to B1, say s. Then g and s completely specify the state of the system

and as such, also comprise a set or vector of generalized coordinates. Being it the

case that there are no geometric constraints for this system (technically there are,

but none that we wish to formally impose), its degrees of freedom are df = 2− 0 = 2.

Thus, both generalized coordinate sets are independent ones. However, the second

of these is of the type that is desired most for future purposes. For g indicates the

position of the system as a unit and s its internal configuration or shape at that

particular position.
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We shall denote the coordinate vector (x1, x2)
t by z and the coordinate vector

(g, s)t by q. The vector z may be expressed in terms q via the the coordinate trans-

formation

z(q) =


z1

z2


 =


 x1

x1 + (x2 − x1)


 =


 g

g + s


 =


1 0

1 1


 q . (2.1)

From this relationship, the relation between the kinematics of the system in z coordi-

nates are easily related to the kinematics of the system in q coordinates and visa versa.

Although there is no utility in doing so, we state the kinematic relations between the

coordinates sets. The coordinate velocities are related by the equation

ż =


1 0

1 1


 q̇ ,

and the coordinate accelerations by the equation

z̈ =


1 0

1 1


 q̈ .

The final component in the description of this system is a statement of the applied

forces that are assumed to act on it. Firstly, we envision friction acting on B1 as a

result of its tangential motion over the surface of the line. Secondly, it is assumed

that B2 experiences some friction or damping, such as air resistance or a dashpot

effect. Finally, we allow ourselves a way to contribute or act on the system. That is,

we introduce a control. It shall be assumed that a translational force may be placed

in the direction of the variable s. This force is denoted by u.

Before leaving this system, a differing qualitative description is expressed, along

with the purpose of introducing it. We see the mass-spring system as a crude model of

the following physical situation. Imagine a person on top of a crate, facing a particular

direction. The person is B2, the crate is B1, and the direction is the positive x-axis.
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Further, imagine that there is no object that may be used for leverage and thus the

only way to apply a force to the system is to rock it back and forth by the shifting of

body weight. This shifting is the control u and of course there is some muscle action,

and this is represented by the spring. When the person on the crate begins to rock

back and forth, the crate will have a tendency to displace along the direction that the

individual is facing. This tendency is opposed by a reaction force due to the surface

interaction between the crate and the substratum on which it rests. This reaction

force is called friction whence its inclusion in the modeling as an applied force. Why

would the person rock the crate? To try to get it to slide along the ground...to attain

locomotion! Now come the questions. Is it possible for this individual to make any

progress? If so, why? In order to try to answer these questions, we will use the system

description provided to formulate the systems dynamics and then ask the questions

at a later juncture in the language of mathematics.

2.3 The Snake-Like Serial-Link Structure

Consider a series of absolutely rigid rods joined together in a fashion similar to that

of a snake’s vertebrae structure. This system is placed in a plane onto which an

inertial reference frame is imposed. This frame is selected to be the typical Euclidian

type and we denote the position along the horizontal and vertical axes by x and y,

respectively. In this plane, a rod is considered to be a line segment which has a linear

mass density function ρ and half-length l attributed to it. To a given rod another

is attached at one of its endpoints via a revolute joint and in this fashion one may

continue connecting rods one to another at free endpoints (previously unconnected)

until n rods are joined one with another. That is, we construct a continuous piecewise

linear function in the plane. Each piece of this function is to be considered a rod or

vertebra and these rods may rotate relative to one another. Each of the n vertebrae

are labelled in the following manner. Choose one of the two vertebra that have a free
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end and call it B1. This segment will be known as the head. Label the rod adjacent

to B1, B2 and continue in the logical fashion to label each of the segments in the

system. The final segment in the labelling will be Bn and is to be considered the tail.

So we have a sequence of n rigid bodies {Bi}n
i=1 which comprises the system, denoted

S. Denote the half-length of body Bi, li, and the mass density function for that body,

ρi. For us, the length and mass density of the rods will be uniform along the system.

However, for the sake of generality, the model is developed with the potential to allow

rods of differing mass and length.

For each rigid body Bi, three coordinates completely describe the state thereof:

Two translational coordinates, denoted xi and yi, and one orientation coordinate,

denoted θi. The translational coordinates can be those of any particle of Bi. We

choose to select the coordinates of the particle located at the body’s center of mass,

which we denote in vector form by Ri = (xi, yi)
t. Thus we may completely describe

the state of the system S by specifying the coordinate vector z
.
= (Rt

1, θ1, . . . , R
t
n, θn)t.

See Figure 2.2. Due to this fact, z is a generalized coordinate vector.

θ

Bn
B i

B

(x,y)
(x,y)

body centroid
body

body

body

y

body centroid

θi

i

1

1

1

x

Figure 2.2: The snake-like serial-link structure described in terms of the generalized
coordinate vector zd.
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It is noted that the positions of the bodies comprising this system are not inde-

pendent. In fact, since the connected endpoints of adjacent bodies must translate

in identical fashion, it is clear that at each such joint there are two constraints, one

corresponding to horizontal translation in the plane of motion and another to vertical

translation in the plane of motion. Since there are 3 needed parameters per body and

2 constraints per joint, the system degrees of freedom are df = 3n− 2(n− 1) = n+2.

i.e., there are precisely n + 2 parameters in an independent generalized coordinate

set. In this case, it is clear by inspection that z̃ = (Rt
1, θ1, . . . , θn)t is an independent

generalized coordinate vector.

Expressions for the body centroids; R2, . . . , Rn; in terms of the independent co-

ordinates are now provided. These expressions will be of later use. To begin, we

recognize θi as the angle coordinate of a particle P of body Bi whose location in a

frame located at Ri is given in polar coordinates by (d(P ), θi). Of course, we can

locate any other point along the rod by simply assigning the correct value of d(P ),

−li ≤ d(P ) ≤ li, as θi is fixed over the range of the body. Using the polar coordinates

of a particle P of body Bi, the particle’s coordinates in the global/inertial xy-frame

may be attained by first determining the euclidian coordinates in the frame imposed

at Ri from the polar coordinates (d(P ), θi) and then adding the result to the coordi-

nates Ri. This is a conversion from a body fixed coordinate system to a global one.

The idea of the body coordinate system is a very important one and a more formal

discussion of this will be given at a later juncture. We shall call the global coordinates

of point P , r
d(P )
i . As described,

r
d(P )
i = Ri + d(P )


cos(θi)

sin(θi)


 . (2.2)

The joint constraints may now be expressed mathematically via equation (2.2) as

r−li
i = r

li+1

i+1 , i = 1, . . . , n − 1. From these relations we arrive in an inductive manner
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at the expression

Ri = R1 − l1


cos(θ1)

sin(θ1)


−

i−1∑
j=2

2lj


cos(θj)

sin(θj)


− li


cos(θi)

sin(θi)


 , (2.3)

which is also clear from the geometry. This relation defines a coordinate transfor-

mation from the independent generalized coordinate vector z̃ to the dependent gen-

eralized coordinate vector z. The remaining kinematic relationships between the

coordinate vectors z̃ and z are now stated. These relations are

Ṙi(z) = Ṙ1 − l1


− sin(θ1)

cos(θ1)


 θ̇1 −

i−1∑
j=2

2lj


− sin(θj)

cos(θj)


 θ̇j − li


− sin(θi)

cos(θi)


 θ̇i , (2.4)

and

R̈i(z) = R̈1 − l1


− sin(θ1)

cos(θ1)


 θ̈1 −

i−1∑
j=2

2lj


− sin(θj)

cos(θj)


 θ̈j − li


− sin(θi)

cos(θi)


 θ̈i

+ l1


cos(θ1)

sin(θ1)


 θ̇2

1 +
i−1∑
j=2

2lj


cos(θj)

sin(θj)


 θ̇2

j + li


cos(θi)

sin(θi)


 θ̇2

i . (2.5)

Unlike the additional kinematic relations that were obtained for the coordinate rela-

tions of the mass-spring system, these relations, at least the first, will reappear at a

later portion of this writing and will actually be a critical element in the proof of a

primary theorem.

Although an independent generalized coordinate set has been identified for this

system, it must be observed that this set is not of the type that will be desired

as our development progresses. That is, the coordinate vector z̃ does not naturally

decompose into coordinates describing the position of the system and those that

describe its internal configuration. The selection is half satisfactory. For it is the

case that x1, y1, and θ1 can be used to identify the position of the system. So let
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us make the assignment g
.
= (x1, y1, θ1)

t. However, the remainder of the coordinates,

θ2, . . . , θn, suffer from the fact that they are determined by making reference to the

global coordinate frame. Hence, the values of these coordinates are not internal to

the system. However, it is geometrically clear that the values of the relative angles

φi
.
= θi − θi+1 , (2.6)

i = 1, . . . , n − 1, depend only on the relative positioning of the links and are thus

internal to S. See Figure 2.3. Let us denote the vector of these relative coordi-

nates (φ1, . . . , φn)t by s. Then q
.
= (gt, st)t completely determines the state of S and

naturally decomposes in the manner desired. Furthermore, the cardinality of q is

n + 2, which equals the system degrees of freedom. Therefore, q is an independent

generalized coordinate vector. The definitions of equation (2.6) define the coordinate

transformation z̃(q) and consequently z(q). We now state the kinematic relation in-

volving the velocities q̇ and ż which comes about through the kinematic relation (2.4).

The relation

Ṙi(q) = Ṙ1 − l1


− sin(θ1)

cos(θ1)


 θ̇1

−
i−1∑
j=2

2lj


− sin(θ1 −

∑j−1
k=1 φk)

cos(θ1 −
∑j−1

k=1 φk)




(
θ̇1 −

j−1∑

k=1

φ̇k

)

− li


− sin(θ1 −

∑i−1
k=1 φk)

cos(θ1 −
∑i−1

k=1 φk)




(
θ̇1 −

i−1∑

k=1

φ̇k

)
(2.7)

describes the translational velocity of the dependent bodies B2, . . . , Bn. The rota-

tional velocity of these bodies is given by

θ̇i(q) =

(
θ̇1 −

i−1∑

k=1

φ̇k

)
. (2.8)
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Lastly, we have the relations described by the equation

(Ṙt
1, θ̇1)

t = ġ . (2.9)

Bn
B

B1body

body

body

y

x

φ

φ

φ

i

The Relative Angles and Torques

u i+1

u

u i
i+1

i−1

i−1

i

Figure 2.3: The snake-like serial-link structure described in terms of the independent
generalized coordinate vector q. φi represents the relative angle between adjacent
bodies Bi and Bi+1 and ui represents the torque applied to the joint connecting these
bodies via the muscle-like actuator.

Still there is the matter of the applied forces that will act on S. These forces are

now described beginning with those forces that we shall assume to be controls. To

each body Bi, a massless segment of length 2lr is attached at length lr along itself and

perpendicular to the body at Ri. These segments are to be thought of as the ribs of

a snake. We consider the endpoints of these massless segments to be attached one to

another in a longitudinal manner via a massless muscle-like actuator. This actuator

may contract or relax, and by doing so, apply a torque around the joint connecting

the adjacent bodies to which the actuator is attached. In addition to the actuator

forces, friction is also assumed to occur due to the tangential contact between S and
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the surface on which it lies. It is assumed that the surface of contact is uniform.

The external forces that induce torque and friction forces lie in the plane of motion.

As a result, all moments are perpendicular to the plane of motion. That is, the system

does not experience torsion.

As indicated already, our intent is to liken this system’s physical circumstances to

that of a snake on a relatively homogeneous surface. Now we may ask the locomo-

tion question and those questions related to it. Can the serial-link structure attain

significant locomotive capability via its interaction with the substratum by use of its

actuators? If so, what should the muscle contractions or control forces be? Why does

the motion happen? What is the most efficient way to move from one position to

another? Is this motion like a snake’s?

A disclaimer of sorts is in order at this point. This caveat concerns the extent to

which this system’s locomotive capability should be comparable to that of a snake’s.

We only expect to get out what we put in, which may or may not be much. The fol-

lowing notes on basic snake morphology are taken from the well-known bio-mechanics

text [22].

Feature 1. Limbless life forms such as snakes tend to be elongated. It is pos-

tulated that such elongation makes two of the primary motions utilized

by snakes more readily attainable and more effective.

Feature 2. In animals such as snakes one finds a high vertebra count in the

range of 100 to 300.

Feature 3. There is a pair of ribs to each vertebra present.

Feature 4. In a snake there are at least 20 discrete muscles on each side of

each vertebra. These muscles are used to connect vertebra to vertebra,

vertebra to rib, vertebra to skin, rib to rib, and rib to skin. Muscles are

also found that attach to longitudinal tendons whose vertebrae span

may be quite large.
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Commenting on this list it is first noted that our system description is flexible

enough to allow for elongation and a high vertebra count. However, the modeling and

analysis of such a system, although not impossible, is complicated by this feature. It

is easier to handle S with a lower body count. This could make it seem as though

we should concede failure from the beginning with respect to comparing our system

to a snake. However, note that the claim is that the elongation makes certain snake

motions efficient. This is not to say that it is a primary factor in the underlining

mechanisms of locomotion.

Also, we have included in S the existence of a pair of ribs per vertebra. However,

we have only included in our description 2 muscle-like actuators per joint which

extend from rib tip to rib tip. Thus, from the outset, we have excluded the effects of

19 or more other elements that may affect a snake’s potentials for movement. It is

purported in [28] that

“From a mechanical point of view, the axial skeleton of a snake can be

regarded as a series of rigid rods hinged together to form a chain, whilst the

axial musculature can be regarded as a series of elastic elements operating,

laterally to the hinges, between adjacent rods.”

No in-depth explanation of this statement is given. However, it would seem that this

description has been used to embody the snake system, as it concerns its locomotive

capacity, in every study up to the present. We shall do the same. However, upon

viewing musculature diagrams such as those found in [52] and [21], it is fairly clear

that the positioning of many of the muscles connecting rib to rib are not parallel

to the ground and thus more than likely have the potential to collectively produce

significant spacial moments. How much such moments may affect locomotion is still

unclear in the opinion of the author. However, being it the case that we are not

experimental biologists, we will for the course of this writing, follow this description,

as the discussion thus far should indicate.

In the case of the mass-spring description provided in section 2.2 we were able to
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give some qualitative description of the control actuation that should take place for

a person to scoot a crate in a particular direction. It makes sense to simply state

that a periodic shifting of the individual’s body weight is the natural thing to do. It

is natural because every person has performed this experiment at some point, albeit

informally, as a child (or perhaps adult) while playing. However, not too many people

have slithered across a floor like a snake and thus there is not a whole lot of reliable

intuition that can be utilized in a qualitative description of motion. Thus it makes

sense that we must rely on observations of snake motions as a source for what “types”

of motion can be expected to bring about meaningful displacement of the serial-link

structure. Three primary forms of motion have been observed amongst most snake

genera. These forms are lateral undulation, concertina motion, and rectilinear motion.

The first of these motion types is the most common and is the only one observed when

a snake moves at a steady velocity in a specified direction. The other two forms rely

on manipulation of static frictional forces and they operate in a sort of discrete fashion

and tend to be observed only in very particular scenarios [22]. We now describe all

three of these motions qualitatively, closely following the descriptions found in [22].

The essence of lateral undulation is as follows. A series of alternating contrac-

tions occur throughout the trunk of the snake inducing alternating “planes” along a

wave-form facing left and right, being it assumed that we view the snake along its

longitudinal axis. These planes apply force against the surface (water, sand, etc.),

which provides a returning force that is used to obtain leverage.

The mechanism and description of the concertina type motion is in fact simple.

Consider a snake whose body is split into two states, one that is in motion and

one that is not. Along the portion of the body that is not in motion, the weight

of the snake applies a ventral force against the substratum. If the surface has a

non-negligible friction coefficient, this weight force will allow a horizontal force of a

bounded magnitude to be applied to stationary points of contact without slippage.

This horizontal force merely needs to be less than the maximum static friction force.
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In this case, no net force and thus no acceleration can take place. Thus, these points

act as anchors to be used for leverage by the remainder of the animal’s trunk, which is

in motion. The snake may then extend the remainder or a portion of its trunk (here

is where the horizontal component of an extension or muscle force is applied in the

direction of motion) into a new position. In this new position the anchor mechanism

is induced by the portion of the body previously in motion and then the portion

following behind, previously at rest, may slide forward and the process is repeated.

Of course, there is a continuous transition along the body of the animal from the

state of rest to that of motion. The ventral portion of the animal acts as the legs and

the upper portion moves steadily along like the human torso.

The third type of motion to be described is the rectilinear motion. This motion is

actually very similar to human running. While running or jogging, the human torso

moves at a relatively constant velocity. However, the actuating members do not move

in such a continuous fashion. One leg is removed from the substratum and is propelled

forward with sharp acceleration so as to overtake, with respect to displacement, the

torso. The other member is planted on the ground and anchors via static friction

to obtain leverage for horizontal or forward propulsion. The anchoring is aided with

muscle work. Near the end of the forward thrust of the free leg, it decelerates and

instantaneously comes to a stop. At or near that moment, a horizontal force is applied

to the planted member so as to invoke slippage so that both legs are temporarily

removed from the substrate. The anchor leg is accelerated and then decelerated into

the kick position as the other member is positioned to then act as the anchor. This is

iterated to obtain forward propulsion. A snake can mimic this sort of motion along

the length of its body in order to creep forward in a straight-line fashion.

We are not really interested rectilinear motion, where alternating points of contact

are used to attain locomotion. This phenomena has been extensively studied in the

case of bipeds and quadrupeds. We are interested in the case of motion in the presence

of continuous contact along the length of the body, as in the case of the mass-spring
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system. Secondly, we do not intend to give attention to the concertina motion, where

static friction is utilized. Our interest is in the kinetic, continuous motion case. This

is the type most commonly observed amongst all limbless life forms. Thus, undulatory

locomotion serves as our intuition concerning the nature of the controls to be used to

attain locomotion from the serial-link structure.



Chapter 3

Modeling and System Reduction

3.1 Introduction

In this chapter a framework is established from which mathematical models of system

dynamics can be extracted. This framework, and thus this chapter, is composed of

two primary parts. The first of these components deals with the topic of Lagrangian

dynamics. The second of the components is an exposition on system reduction via

symmetries. This development loosely follows the work of Ostrowski [58].

Lagrangian dynamics makes use of a well-known variational principle, known as

as Hamilton’s principle, to extract system dynamics from a function known as the

system’s Lagrangian. This Lagrangian is defined to be the difference between a sys-

tem’s kinetic and potential energies. Thus, the following program is followed with

regards to this component of the chapter. We begin by describing, in a very concise

fashion, the idea of the body coordinate frame for a planar rigid body. We then

develop an expression for the velocity of a particle of a body in terms of the body

coordinate frame. This velocity expression is used to define the concept of kinetic

energy. Immediately thereafter, the concept of potential energy is defined and the

Lagrangian is formulated. Upon completing the description of the Lagrangian, we

appeal to Hamilton’s principle and extract the well-known Euler-Lagrange equations.

37
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The Euler-Lagrange equations are the system dynamics.

Reduction is the process of eliminating particular groups of coordinates involved

in the mathematical expression of a system’s dynamics by taking advantage of sym-

metries (cyclic coordinates) or certain properties of invariance present therein. The

program for describing this process is as follows. To begin, a good deal of math-

ematical language borrowed from differential geometry is described. This language

is then used to put the idea of symmetry or invariance on more solid ground math-

ematically. The resulting mathematical definition of invariance is used to develop

the reduced Lagrangian, which is the Lagrangian under the coordinate change that

eliminates the cyclic coordinates. We then acquire a bit more technical background,

taking up the subject of Lie-algebras. This background will allow us give form to

some of the reduction calculations that follow its introduction. We then revisit the

Euler-Lagrange equations developed during the first part of the chapter. These equa-

tions are rewritten in terms of the reduced Lagrangian. Upon doing so we arrive at

partially decoupled system dynamics that are free of cyclic coordinates and highlight

the natural separation of the configuration space Q = G× S.

3.2 Part I: Lagrangian Dynamics

3.2.1 The Body Frame and Associated Kinematic Expres-

sions

Here, some kinematics of the planar rigid body Bi, a member of a multi-body system

{Bi}n
i=1, are described in terms of a body coordinate system. Consider the standard

xyz inertial coordinate frame on R3 with standard basis B = {e(1), e(2), e(3)}. The

body Bi is assumed to act in the x-y plane of this coordinate system. A body

fixed coordinate system is set up for Bi in the following way. Consider the coordinate

transformation that rotates e(1) and e(2) through the angle θi, which is used to indicate
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the orientation of the body. Namely,

Ai(θi) =




cos(θi) − sin(θi) 0

sin(θi) cos(θi) 0

0 0 1


 .

Let e
(j)
i = Ai(θi)e

(j), j = 1, 2, 3, and let Ri = (xi, yi, 0)t denote the coordinate vector of

the center of mass of body Bi in the inertial frame. Then affixing e
(j)
i , j = 1, 2, 3, to Ri

establishes a local body-fixed coordinate system for Bi. Given a point or particle P of

body Bi, it may be identified in the body coordinate system by means of a coordinate

vector, say ri. This same point may be identified by means of another coordinate

vector with respect to the global coordinate system. This global identification is given

by ri = Ri + Airi. As an example of such a body coordinate frame see Figure 3.1,

which is an illustration of the body coordinate frame for a body of the serial-link

structure S.

y

x

n

t

θ

The Body Coordinate System

i

o
(x,y) i

Figure 3.1: The body coordinate frame for the body Bi of the serial-link structure.
In this case, the fixed body frame is comprised of normal and tangential axes n and
t, respectively.
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The time derivative of this expression for the global position of the particle P will

provide an expression for the particle’s velocity. The resulting velocity expression is

ṙi = Ṙi + Ȧiri, (3.1)

where

Ȧi(θi, θ̇i) =




− sin(θi) − cos(θi) 0

cos(θi) − sin(θi) 0

0 0 0


 θ̇i.

Let ωi
.
= θ̇ie

3. Then it can be shown that Ai(ωi×ri) = Ȧiri. Note that ωi×ri = ω̃iri =

−r̃iωi, where the ·̃ symbol indicates the matrix defined on the vector ν = [ν1, ν2, ν3]t

as follows:

ν̃ =




0 −ν3 ν2

ν3 0 −ν1

−ν2 ν1 0


 .

So, equation (3.1) becomes

ṙi = Ṙi − θ̇iAir̃ie
3 =

[
I3×3 −Air̃ie

3

]

Ṙi

θ̇i


 . (3.2)

3.2.2 System Kinetic and Potential Energies

We now derive expressions for the kinetic and potential energies of the planar rigid

body. The following definition is required:

Definition 3.1 (Kinetic Energy). Suppose that the body Bi has uniform mass

density ρi, and generalized volume Vi. Then, if ri denotes the position vector of an

element or particle of this body, the kinetic energy of this body is defined to be

Ti =
1

2

∫

Vi

ρi(ṙi)
2 .
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Using equation (3.2) provides us with the expression

(ṙτ
i )

2 = ṙτ
i · ṙτ

i

=
[
Ṙt

i θ̇i

]

 I3×3

−(Air̃ie
3)t




[
I3×3 −Air̃ie

3

]

Ṙi

θ̇i




=
[
Ṙt

i θ̇i

]

 I3×3 −Air̃ie

3

−(e3)tr̃t
iA

t
i (e3)tr̃t

ir̃ie
3





Ṙi

θ̇i


 ,

where we have observed that Ai is an orthogonal matrix. Hence, we have

Ti =
1

2

[
Ṙt

i θ̇i

]



∫

Vi

ρi


 I3×3 −Air̃ie

3

−(e3)tr̃t
iA

t
i (e3)tr̃t

ir̃ie
3








Ṙi

θ̇i


 .

The development of this expression is continued by carrying out the integration in a

block-wise fashion. Firstly note that since the body is planar,

r̃i =




0 0 r2
i

0 0 −r1
i

−r2
i r1

i 0


 .

From this it is easily seen that (e3)tr̃t
ir̃ie

3 = (r1
i )

2+(r2
i )

2. Hence, the block integrations

that follow.

mRR
i

.
=

∫

Vi

ρiI
3×3 = ρiViI

3×3 ,

mRθ
i

.
= −Ai

(∫

Vi

ρir̃i

)
e3 = 0 ,

as the origin of the body coordinate system is located at the center of mass and thus
∫

Vi
ρiri = 0 necessarily, and

mθθ
i

.
=

∫

Vi

ρi((r
1
i )

2 + (r2
i )

2) .
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Let

Mi
.
=


 mRR

i mRθ
i

(mRθ
i )t mθθ

i


 =




ρiVi 0 0 0

0 ρiVi 0 0

0 0 ρiVi 0

0 0 0 mθθ
i




.

The matrix Mi is know as the mass matrix for the system body Bi. So, it is seen

that the body’s kinetic energy can be expressed in terms of the body’s mass matrix

as

Ti =
1

2

[
Ṙt

i θ̇i

]
Mi


Ṙi

θ̇i


 =

1

2
mi(ẋi)

2 +
1

2
mi(ẏi)

2 +
1

2
mθθ

i (θ̇i)
2 , (3.3)

where mi
.
= ρiVi is the total mass of the body. The system kinetic energy is defined

by the expression T =
∑n

i=1 Ti.

To solidify the concept described here, attention is turned to the particular systems

described in Chapter 2. The kinetic energy of these two systems is now calculated

from equation (3.3).

Example 3.1 (The Mass-Spring System). To begin, we note that since the masses

are treated as particles, they have no orientation. Thus, θi = 0. Further, it is noted

that due to the assumption that the particles lie on the x-axis, yi = 0. Referring to

Figure 2.1 we have body B1 of mass m1 with position x1 and body B2 of mass m2 with

position x2. Thus, by equation (3.3),

T1 =
1

2
m1ẋ

2
1 ,

T2 =
1

2
m2ẋ

2
2 .

This, of course, illustrates the consistency of the extension of the definition of kinetic

energy, for when the body is considered to be a particle, the definition reduces the

familiar expression for the kinetic energy of a particle. The kinetic energy of the

system is T = T1 + T2 = 1
2
m1ẋ

2
1 + 1

2
m2ẋ

2
2.
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Example 3.2 (The Serial-link Structure). For this system, we recognize that the

generalized volume Vi is simply the length of the link or body Bi, which is 2li. So, mi,

the total mass of body Bi, is 2ρili. It remains to specify precisely what the rotational

mass mθθ is. We start by noting that r2
i = 0 for the body. Hence,

mθθ
i =

∫ li

−li

ρiσ
2 dσ

= mi
l2

3
,

and it is seen through equation (3.3) that the kinetic energy of link Bi is

Ti =
1

2
miẋ

2
i +

1

2
miẏ

2
i +

mi

2

l2

3
θ̇2

i .

Of course T =
∑n

i=1 Ti for the n-link structure S .

We now wish to describe how one may formulate an expression for the kinetic

energy of a planar system in terms of an independent generalized coordinate vector q.

So, consider the planar multi-body system {Bi}n
i=1. It has already been explained that

the configuration of each of these bodies may be completely described by assigning

values to the position coordinates (xi, yi) of the centroid of each body and the orienta-

tion θi of each body. Label these coordinates (z3i−2, z3i−1, z3i). Then z
.
= (z1, . . . , z3n)

is a generalized coordinate vector for the system. It was shown that the body kinetic

energy is given by Ti = 1
2
m3i−2ż

2
3i−2 + 1

2
m3i−1ż

2
3i−1 + 1

2
m3iż

2
3i, where m3i−2 and m3i−1

are the total body mass mi and m3i is its rotational mass mθθ
i . This creates an in-

consistency in labelling. However, in an attempt to keep the index i associated with

body Bi we will temporarily make the abuse and continue with the new meaning of

the subscripted m whose index now runs from 1, . . . , 3n. We arrive at T by summing

these energies over all n bodies. Thus,

T =
1

2

3n∑
j=1

mj ż
2
j . (3.4)
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Now suppose that zj = zj(q). Then żj =
∂zj

∂q
q̇ and ż2

j =
∑m

k

∑m
l

∂zj

∂qk

∂zj

∂ql
q̇kq̇l. Going

back to equation (3.4) and gathering terms corresponding to the product q̇kq̇l we

arrive at the expression T (q, q̇) = 1
2

∑m
k

∑m
l mklq̇kq̇l, where mkl =

∑3n
j=1 mj

∂zj

∂qk

∂zj

∂ql
.

Let [Mj]kl
.
= [mj

∂zj

∂qk

∂zj

∂ql
]. Then the matrix Mj is given by mj∇zj(∇zj)

t and T (q, q̇) =

1
2
q̇tMq̇, where M =

∑3n
j=1 Mj. M is known as the system’s generalized mass matrix.

Note that since zj(q), ∇zj is a function of q and thus M = M(q).

We shall illustrate the calculations just detailed via the mass-spring system and S.

Determining the kinetic energies of each system in terms of the generalized coordinate

vector q identified for them in Chapter 2.

Example 3.3 (The Mass-Spring System Kinetic Energy). As seen in Chap-

ter 2, we may define the so-called shape variable s to be x2−x1 and upon doing so, the

system my be described in terms of q = (g, s)t. Doing so, we arrive at the expressions

z1(q) = g ,

z2(q) = x2 = g + s .

With these equations at hand, the process of calculating the kinetic energy in terms

of the coordinate set q becomes algorithmic. We have

M1 = m1∇z1∇zt
1 M2 = m2∇z2∇zt

2

= m1


1 0

0 0


 , and = m2


1 1

1 1


 .

So,

M = M1 + M2 =


m1 + m2 m2

m2 m2



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and thus

T (q, q̇) =
1

2
q̇tMq̇

=
1

2
((m1 + m2)ġ

2 + 2m2ġṡ + m2ṡ
2)

=
1

2
(m1ġ

2 + m2(ġ + ṡ)2) .

By noting that ġ + ṡ = ẋ2, it is seen that one arrives at the same expression of kinetic

energy as found in Example 3.1.

Example 3.4 (The Serial-link Structure Kinetic Energy). It is clear that the

primary element of calculating the kinetic energy with respect to generalized coordi-

nates is the gradient of zj. Hence, to initiate this example, the appropriate derivatives

are now specified. Consider first xi = z3i−2,

∂xi

∂x
= 1 ,

∂xi

∂y
= 0 ,

∂xi

∂θ
= l1 sin(θ) +

i−1∑
j=2

2lj sin(θj) + li sin(θi) ,

and

∂xi

∂φp

=





−∑i−1
j=2 2lj sin(θj)− li sin(θi) , if p < i− 1;

−li sin(θi) , if p = i− 1;

0 , otherwise.

Likewise, for yi = z3i−1,

∂yi

∂x
= 0 ,

∂yi

∂y
= 1 ,

∂yi

∂θ
= −l1 cos(θ)−

i−1∑
j=2

2lj cos(θj)− li cos(θi) ,



and

∂xi

∂φp

=





∑i−1
j=2 2lj cos(θj) + li cos(θi) , if p < i− 1;

li cos(θi) , if p = i− 1;

0 , otherwise.

Finally, considering θi = z3i,

∂θi

∂x
= 0 ,

∂θi

∂y
= 0 ,

∂θi

∂θ
= 1 ,

and

∂θi

∂φp

=





0 , if p ≥ i;

−1 , otherwise.

Referring to Example 3.2 it is seen that m3i =
m(i)l2i

3
is the rotational mass, where

as a consequence of our notation abuse we are forced to make the definition m(i) =

m3i−2 = m3i−1. Now it is simply the process of calculating M =
∑3n

j=1 mj∇zj∇zt
j and

performing the matrix multiplication T = 1
2
q̇tMq̇. This is, admittedly, easier said

than done. We may carry out the calculations with computer algebra software such

as Maple, however, for large n, the resulting expressions are intractable. Hence, this

system needs to be handled computationally.

Despite this note, the resultant mass matrix M is provided here for the case of

S with n = 2 by Maple for the sake of completion:

> restart;

> with(linalg);

> z[1] := x;

z1 := x

> z[2] := y;

z2 := y

> z[3] := theta;



z3 := θ

> z[4] := x - l*cos(theta)-l*cos(theta - phi[1]);

z4 := x− l cos(θ)− l cos(−θ + φ1)

> z[5] := y - l*sin(theta)-l*sin(theta - phi[1]);

z5 := y − l sin(θ) + l sin(−θ + φ1)

> z[6] := theta - phi[1];

z6 := θ − φ1

> for i from 1 by 1 to 6 do

> gz[i]:= grad(z[i],[x,y,theta,phi[1]]);

> end do;

gz 1 := [1, 0, 0, 0]

gz 2 := [0, 1, 0, 0]

gz 3 := [0, 0, 1, 0]

gz 4 := [1, 0, l sin(θ)− l sin(−θ + φ1), l sin(−θ + φ1)]

gz 5 := [0, 1, −l cos(θ)− l cos(−θ + φ1), l cos(−θ + φ1)]

gz 6 := [0, 0, 1, −1]
> for i from 1 to 6 do

> if (i mod 3 = 0) then

> m[i]:=(1/3)*m*l^2;

> else

> m[i]:=m;

> end if;

> end do;

> M := evalm(m[1]*(gz[1]*transpose(gz[1])));

M :=




m 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



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> for i from 2 to 6 do

> M := evalm(M + evalm(m[i]*(gz[i]*transpose(gz[i]))));

> end do:

> print(M);




2 m, 0 , m %4 , m l %2

0 , 2 m, m %3 , m l %1

m %4 , m %3 ,
2

3
ml2 + m %42 + m %32 , m %4 l %2 + m %3 l %1− 1

3
ml2

m l %2 , m l %1 , m %4 l %2 + m %3 l %1− 1

3
m l2 , m l2 %22 + ml2 %12 +

1

3
ml2




%1 := cos(−θ + φ1)

%2 := sin(−θ + φ1)

%3 := −l cos(θ)− l %1

%4 := l sin(θ)− l %2

The concept of potential energy for a body Bi is now defined.

Definition 3.2 (Potential Energy). Suppose that a force F acts on the body Bi

and that there exists a differentiable function P (q) such that −∇P = F . Then the

potential energy of body Bi due to the force F is said to be P (q).

A force which has a potential function is said to be conservative. The potential

energies related to the mass-spring system and S are now discussed.

Example 3.5 (The Mass-Spring System Potential Energy). It is assumed that

the spring used in the mass-spring example responds to compression or elongation

with the returning force F = −k(1 + a2s2)s, where k is the so-called spring constant

and a is a stiffness parameter. Note that if a = 0, the Hookean or ideal spring results.

Other values of a correspond to so-called soft or hard springs. This force may be

obtained via the potential function P (s) = 1
2
ks2 + 1

4
ka2s4, as −∇P = F . All other
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forces acting on the mass-spring system, namely the control and the friction, are non-

conservative and do not contribute to the system’s potential energy. Thus, P is the

potential for the mass-spring system.

The only forces acting on the serial-link structure are control and frictional forces.

These forces are non-conservative and due to this fact, S has no potential energy

expression P .

3.2.3 The Lagrangian, Virtual Work, Hamilton’s Principle,

and the Euler-Lagrange Equations

With the ideas of kinetic and potential energy set forth, the definition of the mechan-

ical Lagrangian can now be stated.

Definition 3.3 (The Mechanical Lagrangian). Consider a system described with

generalized system coordinates q that has total kinetic energy T (q, q̇) and total potential

energy P (q). The mechanical Lagrangian for that system is defined to be

L(q, q̇) = T (q, q̇)− P (q) .

Example 3.6 (The Mass-Spring System Lagrangian). No calculation needs to

be done here. Simply referring to the expressions obtained in Examples 3.3 and 3.5

we obtain

L(q, q̇) = T (q, q̇)− P (q)

=
1

2
(m1ẋ

2
1 + m2(ẋ1 + ṡ)2)−

(
1

2
ks2 +

1

4
ka2s4

)
.

As for the Lagrangian of the serial-link structure, P = 0 and thus the system

Lagrangian is simply the system’s kinetic energy. i.e., L = T .

The concepts of virtual work and the generalized force are now introduced for the

planar rigid body. Consider a force Fi acting on the body Bi ∈ {Bi}n
i=1 at the point P
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with global coordinates rP
i = Ri + Airi. Consider a virtual displacement or variation

of this particle’s position, δrP
i . The virtual work done by the force Fi is then defined

to be δWi = F t
i δr

P
i . This is similar to the ordinary definition of work. However, it is

labelled virtual since the variation in the position is not actually due to the dynamics

of the body. Calculating the variation in rP
i due to variations in Ri and θi provides

the expression

δrP
i = δRi + Aθ

i riδθ

=
[
I(2×2) Aθ

i ri

]



δxi

δyi

δθi


 ,

where Aθ
i is the entry-wise partial of the matrix A with respect to θ. Thus,

δWi =
[
F t

i F t
i A

θ
i ri

]



δxi

δyi

δθi


 . (3.5)

Noting that F t
i A

θ
i ri = ±‖Airi × Fi‖ = MFi

, the moment of force Fi about the center

of mass, this expression implies a very well-known result. For a rigid body, we may

translate a force from anywhere on the body to the center of mass so long as the

corresponding moment of the force is accounted for.

Now, suppose that the body coordinates ~zi
.
= (z3i−2, z3i−1, z3i)

t = (xi, yi, θi)
t, as

defined in previous discussion, may be expressed in terms of some other generalized

coordinate vector q. Then

δ~zi(q) =
∂~zi

∂qk

δqk .

Upon substitution of this equation into Equation (3.5) we arrive at the equation

δWi =
[
F t

i MFi

] ∂~zi

∂qk

δqk . (3.6)
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Indeed it may be the case that more than one force acts on a particular body. However,

all of the quantities discussed follow some type of superposition principle and thus we

look at Fi as a composite force with the knowledge that these same calculations may

be carried out force-by-force. The total virtual work of the system due to the forces

{Fi}n
i=1 is δW =

∑
i δWi. Using equation (3.6) we obtain the following expression:

δW =
n∑

i=1

m∑

k=1

[
F t

i MFi

] ∂~zi

∂qk

δqk

=
m∑

k=1

(
n∑

i=1

[
F t

i MFi

] ∂~zi

∂qk

)
δqk

=
m∑

k=1

Qkδqk ,

where

Qk =
n∑

i=1

[
F t

i Mi

] ∂~zi

∂qk

.

The Qk, k = 1, . . . , m, are known as the system’s generalized forces. Given that Fi

and Mi represent a cumulative force and corresponding cumulative moment on body

i, it is seen that we obtain a single generalized force for each generalized system

coordinate. Explicit expressions for the non-conservative generalized forces acting on

the mass-spring and serial-link structure systems, namely controls and friction, will

be discussed in detail in Chapter 4.

The progression has brought the discussion to the point where Hamilton’s Prin-

ciple may be introduced. Hamilton’s principle is

δ

∫ t2

t1

L(q(t), q̇(t)) dt +

∫ t2

t1

δWnc dt = 0 . (3.7)

Here, q(t) is the trajectory of a system’s generalized coordinates, q̇(t) = d
dt

q(t), q(t1)

and q(t2) are fixed, and δWnc is the virtual work of the system due to non-conservative

forces. An account of the derivation of this principle may be found in texts on
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mechanics and the calculus of variations [19].

At this juncture a brief discussion on those aspects of the calculus of variations

that will be useful in extrapolating system dynamics from Hamilton’s principle will

be presented. Consider the integral functional J : C1[t1, t2] 7→ R defined by

J(x) =

∫ t2

t1

g(t, x(t), ẋ(t)) dt ,

for x ∈ C1[t1, t2]. Here, t1 and t2 are fixed, the values of x(t) are fixed at these values,

and it is assumed that g is smooth enough to allow the calculations that are to follow.

An expression for the first variation of this functional due to a variation in x is sought.

What we intend by variation is to be made clear as we progress with the calculation

thereof. To begin, consider the one parameter family of variations defined by

xα = x(t) + αX(t) ,

where α is a sufficiently small scalar quantity and X is a smooth function on [t1, t2]

satisfying the boundary conditions

X(t1) = X(t2) = 0 . (3.8)

In this way, it is assured that xα will belong to a particular class of functions, typi-

cally referred to as the admissible set or the set of admissible variations. Define the

functional Φ : R→ R through J by

Φ(α) = J(xα) =

∫ t2

t1

g(t, xα(t), ẋα(t)) dt .

Since precautions have been made to ensure that Φ is sufficiently smooth, Taylor’s

theorem may be applied to Φ to arrive at the expression

Φ(α) = Φ(0) + α
dΦ

dα
(0) + R(α) ,
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where R is the familiar remainder term.

δJ = α
dΦ

dα
(0)

is known as the first variation of J due to the variation in x, δx
.
= αX.

The calculations are continued by stating

∫ t2

t1

(gx(t, x, ẋ)X + gẋ(t, x, ẋ)Ẋ) dt

as the expression of dΦ
dα

(0) upon application of the chain rule. Performing integration

by parts on the second term of this integration results in the expression

∫ t2

t1

gẋẊ dt = gẋX
∣∣t2
t1
−

∫ t2

t1

d

dt
(gẋ)X dt

= −
∫ t2

t1

d

dt
(gẋ)X dt ,

where the boundary conditions of equation (3.8) have been observed. Thus one has

δJ =

∫ t2

t1

(
gx − d

dt
gẋ

)
δx dt . (3.9)

This is precisely the expression needed to acquire what is desired from Hamilton’s

principle and no more talk of the calculus of variations will ensue.

Returning to Hamilton’s principle with Equation (3.9) in hand we may restate the

principle as ∫ t2

t1

(
d

dt

∂L

∂q̇
− ∂L

∂q
−Qnc

)
δq dt = 0 ,

where Qnc is the vector of generalized non-conservative forces. Given sufficient

smoothness of Qnc, it is relatively clear that the only way this principle is to hold is

if
d

dt

∂L

∂q̇
− ∂L

∂q
= Qnc . (3.10)
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These equations are the so-called Lagrange-D’Alembert equations in mechanics and

the Euler-Lagrange equations in the realm of general optimization mathematics. They

provide a system of ODEs in the independent generalized coordinates that describe

the dynamics of the system under consideration.

3.3 Part II: Symmetry and Reduction

3.3.1 Geometric Mechanics: Some Basic Language

This section begins with a very quick introduction to some definitions and nomen-

clature used quite often in the field of geometric mechanics. This exposition is pro-

vided primarily to allow the use of the language and to provide some intuition. The

mathematics involved is quite standard and we wish to emphasize this point, as the

geometric perspective can burden the understanding of some end results by mystify-

ing things in a quagmire of terminology. There will be no talk of connections, forms,

and other such terms that usually accompany this type of discussion.

Firstly, the definition of a Lie group is given. This definition is constructed on the

object known as a manifold. We do not wish to get into very mathematically rigorous

descriptions of manifolds. Instead, suffice it to say that an n-dimensional manifold is

a space that has a natural correspondence at the local level with Rn via objects known

as charts . This includes Rn itself but also includes surfaces such as the generalized

spherical surface Sn. The point is that, if there is a natural correspondence of a space

with Rn, then we can have a calculus on this space defined through this mapping.

We feel confidant that the manifolds discussed herein leave little to the imagination

and thus there is no problem of thinking in Rn. Also, the concept of the algebraic

construct known as a group is used. We assume that this concept is well understood.

Definition 3.4 (Lie Group). A manifold G with a group structure is said to be a

Lie group if the product mapping hg : G × G → G as well as the inverse mapping

g−1 : G → G are C∞ mappings.
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The best interpretation of the Lie group for the purposes here is to consider these

objects as sets of coordinate changes. This interpretation is facilitated by provid-

ing appropriate examples and examining the resultant objects closely. This is done

directly.

Example 3.7 (The Lie Group SE(1)). Consider the smooth manifold G = R and

the group structure G = (R, +). It is very obvious that both the product mapping,

which is addition, and the inverse mapping, which is negation, are infinitely smooth.

Thus, G is a Lie group. This group is known as the special Euclidean group of one

dimension and is denoted SE(1). This group is quite simply the translation group on

the real line.

It is noted that this Lie group can be identified with a matrix Lie group (a group of

matrices under ordinary matrix multiplication). Let G̃ be the manifold whose elements

have the form 
1 t

0 1


 ,

where t ∈ R. Clearly G̃ and G are identical as manifolds and in fact share charts. G̃

has a group structure under matrix multiplication.

ϕ(t)
.
=


1 t

0 1




provides the group isomorphism.

Example 3.8 (The Lie Group SE(2)). As a second example, consider the smooth

manifold G = R2 × S and two representative elements thereof, g = (x, y, θ) and

h = (a, b, α). Group multiplication on this manifold is defined by hg = (a+x cos(α)−
y sin(α), b+x sin(α)+y cos(α), θ+α) and as such, g−1 = (−x cos(θ)−y sin(θ), x sin(θ)−
y cos(θ),−θ). It is clear by these expressions that both the product and inverse map-

pings are smooth. Thus G is a Lie group. This group also carries a name. It is
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known as the special Euclidean group of two dimensions or SE(2). In simple terms,

this is the group of translations and rotations in the plane.

Like SE(1), SE(2) can also be identified with a matrix Lie group. The isomorphism

is given by the mapping

ϕ(g) =




cos(θ) − sin(θ) x

sin(θ) cos(θ) y

0 0 1


 . (3.11)

Given a Lie group, or simply group, one may define a mapping that corresponds to

left multiplication. To be more specific, for h ∈ G define Lh : G → G by Lh(g) = hg.

It is quite clear that this is a smooth mapping and that Lh has a smooth inverse map,

namely Lh−1 . Thus, Lh is a diffeomorphism. Now, we introduce the concept of the

tangent vector. Let h ∈ G (we think in Rn), then vh ∈ ThG, the tangent space at h,

is an element of Rn × Rn of the form (v, h). v is the tangent part and h is the point

of tangency. TG
.
=

⋃
h∈G ThG is known as the tangent bundle. Of course, Lh has a

tangent map Tg1Lh : Tg1G → TLh(g1)G. This map is given in coordinates as

Tg1Lh(vg1) =

(
∂Lh

∂g

∣∣
g1

v

)

Lh(g1)

. (3.12)

This verbiage is best accompanied with a continuation of examples.

Example 3.9 (Left Multiplication in SE(1)). Going back to G = SE(1), let

t1 ∈ G. Then for t ∈ G, Lt1(t) = t1 + t. L−t1 is the inverse of Lt1, as is clearly

illustrated with the calculation L−t1(Lt1(t)) = −t1 + (t1 + t) = t. The tangent map or

Jacobain here is the identity 1.

Example 3.10 (Left Multiplication in SE(2)). Here, the case of G = SE(2) is



CHAPTER 3. MODELING AND SYSTEM REDUCTION 57

dealt with. Let ht = (a, b, α) ∈ G. Then, for gt = (x, y, θ) ∈ G we have

Lh(g) =




a + x cos(α)− y sin(α)

b + x sin(α) + y cos(α)

α + θ


 ,

and the inverse of Lh is

Lh−1(g) =




(x− a) cos(α) + (y − b) sin(α)

(a− x) sin(α)− (b− y) cos(α)

θ − α


 .

The tangent map or Jacobian of Lh, which shall be denoted by [h], is seen to be the

rotation matrix

[h] =




cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1


 .

Additionally, the tangent map or Jacobian of the inverse map Lh−1, to be denoted

[h]−1 (= [h−1] = [h]t), is

[h]−1 =




cos(α) sin(α) 0

− sin(α) cos(α) 0

0 0 1


 ,

which is the planar rotation by −α.

It can now be made clear that these left multiplications are coordinate changes.

In the case of G = SE(1), suppose that the coordinate t indicates the position of

a particle relative to the origin of the real line. Then it is clear that Lh
.
=t1(t) is

the position coordinate relative to a coordinate system whose origin is located at

h−1 = −t1. Furthermore, the tangent mapping provides the velocity of the particle t′
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in the new coordinates to be [t1]t
′ = 1t′ = t′. This says that the velocity is unchanged

by the new coordinate selection. Note however, that velocities are elements of the

tangent bundle TG, and as such have two components, the tangent component, and

the position component to which the velocity is attached. As seen in equation (3.12),

the new location of the velocity is Lt1(t) = t1+t, which is exactly as expected. At this

juncture, the most important concept behind the reduction process can be explained.

Suppose that a particle on the real line is at position t. Then the coordinate change

L−t(t) should tell us the coordinates of this particle if the origin of the new system

were to be t. Well, that position is 0, and that is precisely what L−t(t) is. Also, note

that in this case, the velocity of the particle [h−1]t′ is always attached to the identity

of the group e = 0 and as such, is contained in TeG. It has been made quite clear

that Lh is smooth with respect to h. So, we can continuously and smoothly change

coordinates so that the origin of the coordinate system is always on the particle.

That is, by continuously altering the coordinate system, the position of the particle is

always 0. It is the concept of the body frame, or in this case, the particle frame. Thus,

SE(1) is precisely the group needed to describe a particle frame for the mass-spring

example.

As is true for the case of G = SE(1), there is an interpretation of Lh for h ∈ G =

SE(2) as simply a coordinate change. Without providing a plethora of explanation,

the interpretation is this. Suppose that we place a body coordinate system on a planar

rigid body. Then the origin of the body coordinates lie at the centroid of the object,

say (x, y), and the frame has an orientation, say θ. Together, these coordinates make

up g ∈ G = SE(2). Then Lh(g) provides the origin and orientation of this body

frame if the inertial frame is reselected to be h−1. So, suppose we once again wish to

select the frame so as to coincide with g. Then Lg−1(g) does precisely this. Also, it

is mentioned that the tangent operator [h] maps the velocity in the existing frame to

the components of the velocity for the frame with position and orientation given by

h−1. Unlike the one dimensional example, where the components of the velocity were
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unchanged, the components here are changed. In fact they are rotated. Translation

of the frame should not affect the velocity, but rotation does. This is exactly why the

tangent map for SE(2) is simply a planar rotation matrix. Also note that, just as in

the 1-dimensional case, the velocity in the new coordinate system [g−1]ġ is attached

to the group identity e, which is 0. That is, this velocity is contained in TeG for

this particular coordinate selection. The point is, Lie groups, at least for the purpose

here, are nothing more than collections of coordinate change matrices. Also, note

that G = SE(2) is precisely the group needed to describe coordinate changes for the

serial-link structure.

Continuing, recall now that for both of the systems being considered, the con-

figuration manifold Q, comprised of independent generalized coordinates, has been

partitioned to be Q = G× S, where a point q = (gt, st)t ∈ Q is partitioned to reflect

g, the position and orientation of the mechanism at hand, and s, the internal shape

of the complete system. It should now be clear that G has a Lie group structure and

it is for this reason that it was labelled in this manner. G is sometimes called the

group fibres. S represents what is called the base manifold of the principle trivial fiber

bundle. These terms will not be discussed here except to say that researchers often

speak of motion across the group fibers and motion along the base manifold. Motion

along the group fibers alludes to changes in the position and orientation of the system

with no change in internal configuration. Motion along the base manifold is change

to internal configuration without any change to the system position and orientation.

It is not a stretch of the imagination to see that there cannot be pure motion along

the group fibers or the base manifold for the systems that we are interested in. That

is, these are coupled. Hence, the goal is the following: to elicit change in the group

variables g via change in the shape variables s. This will soon be made more clear.

First, let the definition of the left action Lg be extended to the entire configuration
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manifold Q. This is accomplished with the map Φg : Q → Q = G× S given by

Φg(q) = Φg(h, s) = (Lg(h), s)

This is simply a coordinate change. The shape s is internal and is unaffected by a

coordinate change and the definition reflects this. Now, the following definition:

Definition 3.5 (Lifted Action). The lifted action is the map TΦg : TQ → TQ

defined by TΦg(q, v) = (Φg(q), TqΦg(v)).

This is nothing more than the coordinate change once again. We now, for the

purpose of later convenience, write down some explicit expressions for the lift actions.

Example 3.11 (Lift Action for G = SE(1)). Firstly, let it be noted that we shall

denote the lifting of both the coordinate vector q and its associated tangent vector vq

with the up arrow. e.g., q ↑ Φg(q) and vq ↑ TqΦg(vq). Let q = (g, s)t ∈ Q and suppose

we have the tangent vector vq. Then, for g1 ∈ G,

q ↑ Φg1(q) =


Lg1(g)

s


 =


g1 + g

s


 ,

vq ↑ TqΦg1(vq) =


[g1] 0

0 1


 v = v ,

Recalling from Example 3.9 that [g1] = 1.

Example 3.12 (Lift Action for Serial-Link Structure). Let q = (gt, st)t ∈ Q

and suppose h ∈ G, where gt = (x, y, θ) and ht = (a, b, α). From Example 3.10 we

have

q ↑ Φh(q) =


Lh(g)

s


 =




a + x cos(α)− y sin(α)

b + x sin(α) + y cos(α)

θ + α

s




.
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From that same example we see that

vq ↑ TqΦh(vq) =


[h] 0

0 I(n−1)


 v =


[h]vg

vs


 ,

where n is the total number of links, 0 is understood to be a matrix with zero entries

of appropriate dimensions, and as stated before,

[h] =




cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1


 .

3.3.2 System Invariance and the Reduced Lagrangian

Now the definition that is of primary interest.

Definition 3.6 (Group Invariance of the Lagrangian). A Lagrangian L : TQ →
R is said to be G invariant if for each h in the group G and each (q, vq) in TQ one

has

L(Φh(q), TqΦh(vq)) = L(q, vq) .

That is, the value of the Lagrangian is unaffected by the coordinate change.

The Lagrangian for both of the systems that this study includes are invariant

with regards to their respective groups, as illustrated in the following example and

theorem.

Example 3.13 (Invariance of the Mass-Spring System Lagrangian). Contin-

uing with the results of Example 3.11 and the Lagrangian of Example 3.6 we have,

with component arguments,

L(g1 + g, s, vg, vs) =
1

2
(m1v

2
g + m2(vg + vs)

2)−
(

1

2
ks2 +

1

4
ka2s4

)

= L(g, s, vg, vs) .
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This says that the mass-spring system is G = SE(1) invariant.

Theorem 3.1 (SE(2) invariance of the serial-link Lagrangian). The Lagrangian

of the serial-link structure is G = SE(2) invariant for all n.

Proof. We establish the invariance of the body kinetic energy Ti = 1
2
m3i−2ẋ

2
i +

1
2
m3i−1ẏ

2
i + 1

2
m3iθ̇

2
i . Let us begin with the kinematic expression


ẋi

ẏi


 =


ẋ1

ẏ1


 + l1


 sin(θ1)

− cos(θ1)


 θ̇1 +

i−1∑
j=2

2lj


 sin(θj)

− cos(θj)


 θ̇j + li


 sin(θi)

− cos(θi)


 θ̇i

for ẋi and ẏi, where θj = θ1 −
∑j−1

i=1 φi. Using this expression we focus on the sum

of squares ẋ2
i + ẏ2

i , as the term of Ti involving θ̇ is not affected by the lift action of

SE(2), which is described in Example 3.12. Recall that our group variable here is

comprised of the components x1, y1, θ1 and note that these variables, along with the

tangent vector components corresponding to these variables, denote them vx1 , vy1 ,

and vθ1 , are the only variables affected by the lift action. In fact, since θ1, vx1 , and

vy1 are the only components amongst these to appear in the expression for ẋi and

ẏi, we need only concern ourselves with how these variables are affected by the lift

action. It is clear that θ1 ↑ θ1 + α and that


ẋ1

ẏ1


 ↑ A(α)


ẋ1

ẏ1


 , (3.13)

where A is the 2× 2 rotation matrix

A(α) =


cos(α) − sin(α)

sin(α) cos(α)


 .

Continuing, we note that, for 1 ≤ k ≤ i,

sin(θk) ↑ sin(θk + α) = sin(θk) cos(α) + cos(θk) sin(α) ;
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cos(θk) ↑ cos(θk + α) = cos(θk) cos(α)− sin(θk) sin(α) .

These expressions lead to the following observation.


 sin(θk)

− cos(θk)


 ↑ A(α)


 sin(θk)

− cos(θk)


 . (3.14)

Putting together equations (3.13) and (3.14) we have


ẋi

ẏi


 ↑ A(α)


ẋi

ẏi


 .

Thus, under the lift action,

ẋ2
i + ẏ2

i =
[
ẋi ẏi

]

ẋi

ẏi


 ↑

[
ẋi ẏi

]
A(α)tA(α)


ẋi

ẏi


 =

[
ẋi ẏi

]

ẋi

ẏi


 = ẋ2

i + ẏ2
i .

This says that the body kinetic energy Ti is SE(2) invariant and thus the Lagrangian

for the entire serial-link system is invariant, as L = T =
∑n

i=1 Ti.

There is a lot of machinery here and some more to come, but we are getting

closer to actually discussing reduction. A hint at the reduction idea is the following.

L is an energy functional and as seen with the development of the Euler-Lagrange

equations, the dynamics of a system depend on this energy functional and the non-

conservative generalized forces. If a Lagrangian is G invariant and the virtual work of

the non-conservative forces are in some sense, to be described later, G invariant, then

it stands to reason that the position and orientation coordinates of the system, or the

group variables, have no real bearing on the validity of Hamilton’s principle or the

dynamics that result therefrom, as they can be arbitrarily changed, and in fact, set

to zero without affecting the governing quantities . In these circumstances the energy

associated with the system is due to its shape and its inertia, not its location. The
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process of reduction is simply the realization of this observation through the resultant

dynamical system described by a system of ODEs. With the next theorem we take a

step toward this formal realization.

Theorem 3.2 (The Reduced Lagrangian). Let G be a Lie group. Further suppose

existence of the Lagrangian L(q, q̇) = 1
2
q̇tM(q)q̇ − P (q), where q ∈ Q = G × S. We

may rewrite L in terms of the decomposition of q. This provides us

L(g, ġ, s, ṡ) =
1

2

[
ġt ṡt

]
M(g, s)


ġ

ṡ


− P (g, s) .

Then, if L is G invariant, the Lagrangian may be written

L(g, ġ, s, ṡ)
.
= l(ξ, s, ṡ) (3.15)

=
1

2

[
ξt ṡt

]

 I(s) IA(s)

AI(s) m(s)





ξ

ṡ


− P̃ (s) . (3.16)

Proof. The proof of this conjecture is not that involved. It is in fact a simple matter

of using the invariance of the Lagrangian and labelling. To begin, write L in block

format as follows

L(g, ġ, s, ṡ) =
1

2

[
ġt ṡt

]

M11(g, s) M12(g, s)

M21(g, s) M22(g, s)





ġ

ṡ


− P (g, s) .

Then, since L is G invariant we have

L(g, ġ, s, ṡ) = L(Φg−1(q), TqΦg−1(vq))

=
1

2

[
([g]−1ġ)t ṡt

]

M11(g

−1g, s) M12(g
−1g, s)

M21(g
−1g, s) M22(g

−1g, s)





[g]−1ġ

ṡ


− P (g−1g, s)

=
1

2

[
ξt ṡt

]

M11(e, s) M12(e, s)

M21(e, s) M22(e, s)





ξ

ṡ


− P (e, s) .
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Making the definitions

I(s)
.
= M11(e, s) , IA(s)

.
= M12(e, s) ,

AI(s)
.
= M21(e, s) , m(s)

.
= M22(e, s) ,

P̃ (s)
.
= P (e, s) , ξ

.
= [g]−1ġ ,

l(ξ, s, ṡ) is obtained and the proof is complete.

Calculation of the reduced Lagrangian for a system is quite simple as the proof

indicates. All that one has to do is evaluate the mass matrix M and the potential

functional P at the identity element of the Lie group and swap ġ for ξ. The simplicity

of this is now shown by carrying out the computations for the mass-spring and serial-

link structures.

Example 3.14 (Mass-Spring System Reduced Lagrangian). Note that in this

example, M is constant and the potential does not depend on the group variable g.

Therefore, all that is needed to obtain the reduced Lagrangian is replacement of ġ by

ξ. So,

l(ξ, s, ṡ) =
1

2
(m1ξ

2 + m2(ξ + ṡ)2)−
(

1

2
ks2 +

1

4
ka2s4

)
.

Example 3.15 (The Serial-Link Structure Reduced Lagrangian (n = 2)).

To acquire the reduced Lagrangian for S we shall identify the appropriate components

of reduced mass-matrix by simply evaluating M of Example 3.4 at θ = 0. Doing so

provides

I =




2 m 0 −ml sin(φ1)

0 2 m −ml (1 + cos(φ1))

−ml sin(φ1) −ml (1 + cos(φ1)) 2/3 ml2 (4 + 3 cos(φ1))




,
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IA =




ml sin(φ1)

ml cos(φ1)

−1/3 ml2 (4 + 3 cos(φ1))




,

and m = 4
3
ml2. Of course, AI = IAt. This is all the needed information, as there is

no potential functional for this system.

3.3.3 Introduction to Lie Algebras and the Adjoint Action:

A Precursor to Reduction Calculations

One last tool is required before attention is turned to the reduction calculations. This

tool is the idea of the Lie algebra ð associated with the Lie group G. First, the Lie

algebra is defined.

Definition 3.7 (Lie Algebra). Let V denote a vector space over the field F. If there

exists a vector valued product or bracket on this space say, [·, ·] : V × V → V , that

satisfies the following properties for all v1 , v2 , v3 ∈ V and for all c1 , c2 ∈ F:

• linearity:

[c1v1 + c2v2, v3] = c1[v1, v3] + c2[v2, v3] ;

• skew-symmetry:

[v1, v2] = −[v2, v1] ;

• Jacobi identity or product rule:

[v1, [v2, v3]] = [[v1, v2], v3] + [v2, [v1, v3]] ,

then V is said to be a Lie algebra under this product.

Now the Lie algebra associated with the matrix Lie group G̃ is described. Consider

a path c : R → G̃ such that c(0) = I, where I is the identity matrix and, of course,
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the group identity. Then the value ξ = c′(0) is defined to be an element of the

Lie algebra associated with G. Here, the derivative of c is taken component-wise.

Considering all such paths defines the entire vector space G̃. Using the commuter

bracket [A,B] = AB − BA for matrices one acquires the Lie algebra ð̃. It should

be clear that ξ ∈ TeG for those groups that have non-matrix counterparts such as

the special Euclidean groups, orthogonal groups, etc. It is in fact the case that

ð̃ ' ð .
= TeG as Lie-algebras, with the bracket on TeG being

[ξ, η] = TgLg−1 [TeLgξ, TeLgη]

= [g]−1[[g]ξ, [g]η] ,

for ξ and η in TeG. The brackets [·, ·] on the right-hand side of this equation are the

well-know Jacobi-Lie derivative for vector fields given by

[v, w]i =
∂wi

∂g
v − ∂vi

∂g
w . (3.17)

In coordinates, using the Einstein convention for summation over indices,

[ξ, η]b = [g]−1
ba [[g]ξ, [g]η]a ,

where

[g]ξ = [g](·)dξd [g]η = [g](·)fηf .

We find that

[[g]ξ, [g]η]a =
∂([g]afηf )

∂g
([g](·)dξd)− ∂([g]adξd)

∂g
([g](·)fηf )

=
∂([g]afηf )

∂gc

([g]cdξd)− ∂([g]adξd)

∂gc

([g]cfηf )

=

(
∂[g]af

∂gc

ηf

)
([g]cdξd)−

(
∂[g]ad

∂gc

ξd

)
([g]cfηf ) .
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Changing up the order of summation and making use of the commutative and distribu-

tive properties will provide the following expression for the Lie brackets of tangent

vectors.

[ξ, η]b = [g]−1
ba [[g]ξ, [g]η]a

= ηf

(
[g]−1

ba

(
∂[g]af

∂gc

([g]cdξd)

))
− ηf

(
[g]−1

ba

((
∂[g]ad

∂gc

[g]cf

)
ξd

))
.

So, consider the adjoint action adξ(·) .
= [ξ, ·] on the Lie algebra. The above expression

indicates how one may write the matrix associated with this operator:

[adξ]bf = [g]−1
ba

((
∂[g]af

∂gc

[g]cd − ∂[g]ad

∂gc

[g]cf

)
ξd

)
. (3.18)

All of this is made clear through examples related to the systems we have created.

Example 3.16 (The Lie Algebra se(1)). Consider a path c through the identity

of the matrix Lie group SE(1), denoted G̃. Such a path looks like

c(t) =


1 g(t)

0 1


 ,

where g(0) = 0. Then

ξ = c′(0) =


0 g′(0)

0 0


 .

Thus ð̃ is comprised of elements of the form

ξ =


0 ξ1

0 0


 .

To show that every matrix of this form can be generated from some path in G̃, g(t) =

eξ1t − 1 is selected. It is clear that g(0) = 0 and g′(0) = ξ1. For ξ and η in ð̃, it is

easy to verify that the commuter bracket is the zero bracket, i.e. [ξ, η] = 0. Thus, the
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Lie algebra is abelian.

ð̃ ' T0G = ð and the isomorphism is clearly ξ → (ξ1)0. Also, in this case

[g] = [g]−1 = 1, and thus equation (3.18) provides [adξ] = 0, which is in congruence

with fact that the algebra is abelian. This Lie algebra has a special denotation. It is

labelled se(1).

Example 3.17 (The Lie Algebra se(2)). Here attention is turned to the matrix

version of the Lie group SE(2), denoted G̃. As explained in Example 3.8 an element

of G̃ has the form

g =




cos(θ) − sin(θ) x

sin(θ) cos(θ) y

0 0 1


 .

Thus, a parameterized path through the identity matrix may be provided by any smooth

functions x(t), y(t), and θ(t), such that x(0) = y(0) = θ(0) = 0. Call this path c(t).

It follows that

c′(t) =




− sin(θ)θ̇ − cos(θ)θ̇ ẋ

cos(θ)θ̇ − sin(θ)θ̇ ẏ

0 0 0


 .

Creating the labels ξθ = θ̇(0), ξx = ẋ(0), and ξy = ẏ(0), it is seen that

c′(0) =




0 −ξθ ξx

ξθ 0 ξy

0 0 0


 .

These matrices make up the Lie algebra ð̃ associated with G̃. It is quite clear that

(ξx, ξy, ξθ)
t ∈ TeG, where G is the Lie group SE(2) and this is the manner through

which the Lie-algebras for the differing forms of SE(2) are identified with one another.
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It remains to show that given any element of TeG, say ve = (ξx, ξy, ξθ)
t, the matrix




0 −ξθ ξx

ξθ 0 ξy

0 0 0




can be attained by differentiation of some path c(t) passing through the identity matrix

evaluated at 0. It doesn’t take much contriving to arrive at such a curve. The 2 × 2

skew-symmetric portion of this matrix may be obtained through the matrix exponential

thereof, i.e.

t 7→ exp





 0 −ξθ

ξθ 0


 t


 =


cos(ξθt) − sin(ξθt)

sin(ξθt) cos(ξθt)


 .

The elements ξx and ξy are respectively captured by the curves t 7→ eξxt − 1 and

t 7→ eξyt − 1.

Continuing then; let Eij be the unit matrix [δikδjl]; k, l = 1, . . . , 3. It is clear that

a basis for ð̃ is given by the skew-symmetric matrix f3 = E21 −E12 and the matrices

f1 = E13, f2 = E23. By bracketing these matrices we acquire the structure of the

entire Lie algebra due to the requisite linearity of the bracket. Doing this yields for

us

[f1, f2] = 03×3 , (3.19a)

[f1, f3] = −f2 , (3.19b)

[f2, f3] = f1 . (3.19c)

Now, let ξ, η ∈ ð̃. Then these vectors are expressed as ξ = ξxf1 + ξyf2 + ξθf3 and

η = ηxf1 + ηyf2 + ηθf3. Making use of equations (3.19) repeatedly one arrives at the

result [ξ, η] = (ξyηθ − ηyξθ)f1 + (ξθηx− ηθξx)f2. Therefore, in coordinates with respect
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to the basis, which is the identification with ð, one has

[ξ, η] =




ξyηθ − ηyξθ

ξθηx − ηθξx

0


 .

It directly follows that

[adξ] =




0 −ξθ ξy

ξθ 0 −ξx

0 0 0


 . (3.20)

Of course, this could be verified by appealing directly to equation (3.18). The approach

here is shown, because quite often, mixing calculations in G and G̃ as well as ð and

ð̃ occurs at convenience. The Lie algebra discussed in this example has a special

denotation. It is se(2).

3.3.4 Reduced Dynamics

Finally, we derive the reduced dynamics for the G invariant system. We begin with

derivation of the so-called reduced Euler-Lagrange equations for the group variables.

This simply means that we are going to rewrite the Euler-Lagrange equations in terms

of the reduced Lagrangian. Recall or note the following vector relations:

ġ = [g]ξ , ξ = [g]−1ġ ,

or coordinate relations

ġb = [g]bcξc , ξb = [g]−1
bc ġc .
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Using these relations and repeated use of the chain rule we may write down the pieces

of the E-L equations.
∂L

∂ġa

=
∂l

∂ġa

=
∂l

∂ξb

∂ξb

∂ġa

.

So that,

d

dt

∂L

∂ġa

=
d

dt

(
∂l

∂ξb

∂ξb

∂ġa

)

=
∂l

∂ξb

d

dt

(
∂ξb

∂ġa

)
+

d

dt

(
∂l

∂ξb

)
∂ξb

∂ġa

=
∂l

∂ξb

d

dt
([g]−1

ba ) +
d

dt

(
∂l

∂ξb

)
[g]−1

ba

=
∂l

∂ξb

∂[g]−1
ba

∂gc

ġc +
d

dt

(
∂l

∂ξb

)
[g]−1

ba

= [g]−1
ba

d

dt

(
∂l

∂ξb

)
+

∂l

∂ξb

∂[g]−1
ba

∂gc

gcdξd .

Also,

∂L

∂ga

=
∂l

∂ga

=
∂l

∂ξb

∂ξb

∂ga

=
∂l

∂ξb

∂([g]−1
bc ġc)

∂ga

=
∂l

∂ξb

∂([g]−1
bc )

∂ga

ġc

=
∂l

∂ξb

∂([g]−1
bc )

∂ga

[g]cdξd .

Subtracting the two terms now gives us

d

dt

∂L

∂ġa

− ∂L

∂ga

=
d

dt

∂l

∂ġa

− ∂l

∂ga

= [g]−1
ba

d

dt

(
∂l

∂ξb

)
+

∂l

∂ξb

∂[g]−1
ba

∂gc

gcdξd − ∂l

∂ξb

∂([g]−1
bc )

∂ga

[g]cdξd .

Let us denote this quantity (EL)a, as this is the Euler-Lagrange equation correspond-

ing to the group variable ga.
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We know that [g]−1[g] is the identity matrix and as such, its entries have partials

of value 0 with respect to any unknown. This fact is used to obtain the identity,

([g]−1[g])eb = [g]−1
ea [g]ab = δeb.

So, taking the derivative of this expression provides for us

0 =
∂([g]−1[g])eb

∂gc

=
∂([g]−1

ea [g]ab)

∂gc

=
∂([g]−1

ea )

∂gc
[g]ab +

∂([g]ab)

∂gc
[g]−1

ea .

This implies that for any b, e, and c,

∂([g]−1
ea )

∂gc
[g]ab = −∂([g]ab)

∂gc
[g]−1

ea . (3.21)

We make immediate use of this identity. Multiplying (EL)a by [g]ae and summing

over the index a we obtain an expression for ((EL)[g])e. This expression is

d

dt

(
∂l

∂ξb

)
([g]−1

ba [g]ae) +

(
∂l

∂ξb

(
∂[g]−1

ba

∂gc

(gcdξd)

))
[g]ae

−
(

∂l

∂ξb

(
∂([g]−1

bc )

∂ga

([g]cdξd)

))
[g]ae .

Proceeding with the sum over b in the first term and using the above identity then

yields for us,

d

dt

(
∂l

∂ξe

)
− ∂l

∂ξb

((
∂[g]ae

∂gc

(gcdξd)

)
[g]−1

ba

)
+

(
∂l

∂ξb

((
∂[g]cd
∂ga

ξd

)
[g]−1

bc

))
[g]ae .

We further manipulate this expression by making use of commutative and distributive

laws, changing summation orders, and switching the dummy indices a and c in the
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third term. The result is

((EL)[g])e =
d

dt

(
∂l

∂ξe

)
− ∂l

∂ξb

(
[g]−1

ba

((
∂[g]ae

∂gc

[g]cd

)
ξd

))

+
∂l

∂ξb

(
[g]−1

ba

((
∂[g]ad

∂gc

[g]ce

)
ξd

))

=
d

dt

(
∂l

∂ξe

)
− ∂l

∂ξb

(
[g]−1

ba

((
∂[g]ae

∂gc

[g]cd − ∂[g]ad

∂gc

[g]ce

)
ξd

))

=
d

dt

(
∂l

∂ξe

)
− ∂l

∂ξb

[adξ]be

=

(
d

dt

(
∂l

∂ξ

))

e

−
(

∂l

∂ξ
[adξ]

)

e

,

where we have used equation (3.18). From this statement we conclude that the

Euler-Lagrange equations for the group variables expressed in terms of the reduced

Lagrangian are

(EL)[g] =
d

dt

(
∂l

∂ξ

)
− ∂l

∂ξ
[adξ] .

However, EL = τg, where τg is the row vector of non-conservative generalized forces

acting in the group directions. Thus,

d

dt

(
∂l

∂ξ

)
− ∂l

∂ξ
[adξ] = τg[g] . (3.22)

This equation along with the Euler-Lagrange conditions for optimality allows one to

write the dynamics for the shape variable sk in the following form:

d

dt

(
∂l

∂ṡk

)
− ∂l

∂sk

=

[
d

dt
(
∂l

∂ξ
)− ∂l

∂ξ
[adξ]− τg[g]

]
Ak + τk , (3.23)

where Ak is the kth column of the submatrix A(s) of the reduced Lagrangian and

τk is the kth component of the vector of non-conservative generalized forces acting

in the direction of sk. Going back to Theorem 3.2, it is readily discovered that
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∂l
∂ξ

t
= Iξ + IAṡ. Let pt .

= ∂l
∂ξ

. Then

ξ = I−1p− Aṡ . (3.24)

This implies that l(ξ, s, ṡ) = lc(p, s, ṡ)
.
= l(I−1p − Aṡ, s, ṡ). This is known as the

constrained Lagrangian. We now compute the left-hand side of equation (3.23) for

the shape variables in terms of lc.

∂lc
∂ṡk

=
∂l

∂ṡk

+
∂l

∂ξb

∂ξb

∂ṡk

=
∂l

∂ṡk

− ∂l

∂ξb

Abk

=
∂l

∂ṡk

− ptAk .

Taking the time derivative of this expression provides us

d

dt

∂lc
∂ṡk

=
d

dt

∂l

∂ṡk

− d

dt
(ptAk)

=
d

dt

∂l

∂ṡk

−
[
ṗtAk + pt d

dt
(Ak)

]
.

Further,

∂lc
∂sk

=
∂l

∂sk

+
∂l

∂ξb

∂ξb

∂sk

=
∂l

∂ṡk

+ pt

(
−∂Ab(·)

∂sk

ṡ +
∂I−1

b(·)
∂sk

p

)

=
∂l

∂ṡk

− pt ∂A

∂sk

ṡ + pt ∂I−1

∂sk

p ,

where the partial derivatives of vectors and matrices here are taken component-wise.
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Putting it all together we have

d

dt

∂l

∂ṡk

− ∂l

∂sk

=
d

dt

∂lc
∂ṡk

− ∂lc
∂sk

=

[
d

dt

∂l

∂ṡk

− ∂l

∂sk

]
− ṗtAk − pt d

dt
(Ak) + pt ∂A

∂sk

ṡ

− pt ∂I−1

∂sk

p + τk

=
[
ṗt − pt[adξ]− τg[g]

]
Ak − ṗtAk − pt d

dt
(Ak) + pt ∂A

∂sk

ṡ

− pt ∂I−1

∂sk

p + τk

= −pt[adξ]Ak − pt

(
∂Ai

∂s
ṡ− ∂A

∂sk

ṡ +
∂I−1

∂sk

p

)

+ τk − τg[g]Ak .

(3.25)

We shall now calculate the d
dt

(∂lc/∂ṡk) − (∂lc/∂sk) directly. Carrying out the block

matrix multiplication implied in equation (3.15) we obtain the equation

l(ξ, s, ṡ) =
1

2
[ξtIξ + ξtIAṡ + ṡtAtIξ + ṡtmṡ]− P̃ (s) .

So,

lc(p, s, ṡ) = l
∣∣
ξ=I−1p−Aṡ

=
1

2
ṡ(m− AtIA)ṡ +

1

2
ptI−1p− P̃ (s) .

This expression is rewritten as

lc =
1

2
ṡM̃ ṡ +

1

2
ptI−1p− P̃ (s) , (3.26)
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where M̃ = m− AtIA. We calculate term by term through equation (3.26).

∂

∂ṡk

(
1

2
ṡtM̃ṡ

)
=

1

2

∂

∂ṡk

(ṡk1M̃k1k2 ṡk2)

=
1

2
M̃k1k2(ṡk1δk2k + ṡk2δk1k)

=
1

2
M̃k1kṡk1 +

1

2
M̃kk2 ṡk2

= M̃kk2 ṡk2 ,

using the fact that M̃ is symmetric. Thus,

d

dt

∂

∂ṡk

(
1

2
ṡtM̃ṡ

)
= M̃kk2 s̈k2 +

d

dt
(M̃kk2)ṡk2

= M̃kk2 s̈k2 +

(
∂M̃kk2

∂sk1

ṡk1

)
ṡk2

= M̃kk2 s̈k2 +
1

2

((
∂M̃kk2

∂sk1

ṡk1

)
ṡk2 +

(
∂M̃kk1

∂sk2

ṡk2

)
ṡk1

)
.

We now calculate the other partial that is needed.

∂

∂sk

(
1

2
ṡtM̃ṡ

)
=

1

2

∂

∂sk

(ṡk1M̃k1k2 ṡk2)

=
1

2

∂M̃k1k2

∂sk

ṡk1 ṡk2 .

It follows from this equation that

d

dt

∂

∂ṡk

(
1

2
ṡtM̃ṡ

)
− ∂

∂sk

(
1

2
ṡtM̃ṡ

)
= M̃kk2 s̈k2 +

1

2
Ckk2k1 ṡk2 ṡk1 , (3.27)

where

Ckk2k1 = (
∂M̃kk2

∂sk1

+
∂M̃kk1

∂sk2

− ∂M̃k1k2

∂sk

) .
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Moving on to the second term of equation (3.26) we have

∂

∂ṡk

(
1

2
ptI−1p)− ∂

∂sk

(
1

2
ptI−1p) = −1

2
pt(

∂I−1

∂sk

)p . (3.28)

Finally, for the third term of equation (3.26), we obtain

∂

∂ṡk

(−P̃ )− ∂

∂sk

(−P̃ ) =
∂

∂sk

(P̃ ) . (3.29)

Therefore, by equations (3.27), (3.28), and (3.29),

d

dt

(
∂lc
∂ṡk

)
− ∂lc

∂sk

= M̃kk2 s̈k2 +
1

2
Ckk2k1 ṡk2 ṡk1 −

1

2
pt(

∂I−1

∂sk

)p +
∂

∂sk

(V ) , (3.30)

and we have the equation

−pt[adξ]Ak − pt(
∂Ak

∂s
ṡ− ∂A

∂sk

ṡ +
∂I−1

∂sk

p) + τk − τg[g]Ak

= M̃kk2 s̈k2 +
1

2
Ckk2k1 ṡk2 ṡk1 −

1

2
pt(

∂I−1

∂sk

)p +
∂

∂sk

(V ) ,

(3.31)

resulting from equations (3.25) and (3.30). Let N = pt[adξ]Ak + pt(∂Ak

∂s
ṡ − ∂A

∂sk
ṡ).

Then this equation becomes

M̃kk2 s̈k2 +
1

2
Ckk2k1 ṡk2 ṡk1 + N +

1

2
pt(

∂I−1

∂sk

)p +
∂V

∂sk

= τk − τg[g]Ak . (3.32)

At this point another important concept must be introduced to finalize the dis-

cussion of reduced dynamics, that of a force that is invariant with respect to a Lie

group.

Definition 3.8 (G-Invariant Force). Let G be a Lie group and suppose that the

configuration manifold of a given system is Q = G×S, the product of group and shape

spaces. Let τ(q, q̇) be a vector of applied forces. If τ(Φh(q), TqΦh(vq)) = τ(q, vq)[h]−1

for all (q, vq) ∈ TQ and h ∈ G, then τ is said to be G invariant.
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The need for this definition is shown immediately. Suppose that the forces acting

in the group directions involved in equations (3.24), (3.22), (3.32), namely τg, are G

invariant. Then τg(g, s, ġ, ṡ)[g] = τg(g
−1g, s, ξ, ṡ)

.
= τ̃ t(ξ, s, ṡ). Examining the effect

of this invariance on the equations we arrive at the system

ξ = I−1p− Aṡ , (3.33)

ṗ− [adI−1p−Aṡ]
tp = τ̃ , (3.34)

M̃kk2 s̈k2 +
1

2
Ckk2k1 ṡk2 ṡk1 + N +

1

2
pt(

∂I−1

∂sk

)p +
∂V

∂sk

= τk − τ̃ tAk . (3.35)

This system of ODEs is the so-called reduced dynamics of a G invariant system.

Note that the form of these equations indicate that G invaraince is a rather desirable

property for a force acting in the group direction to have. For, in this case, a nice

partial decoupling has been established and under some additional circumstances,

namely, the G invaraince of the τk, the group variables are no longer present.

For both of the systems we are examining, friction is the only force that acts in

the group directions. Both the control and friction forces act in the shape directions.

So, upon a proper introduction of friction, we shall seek to establish that it indeed has

this property under the correct assumptions and thus the resultant system dynamics

will have the above form. However, for the time being, we shall assume that this is the

case and proceed to illustrate the results of reduction in the presence of G invariance

through the examples.

Example 3.18 (The Mass-Spring Dynamics). By taking care of calculations as

we have went along, it takes very little calculation effort to now write down the system

dynamics. Firstly, note that I = m1 + m2, m = m2, and that IA = m2. Therefore, it

is easily seen that I−1 = 1
m1+m2

, A = I−1IA = m2

m1+m2
, and M̃ = m1m2

m1+m2
. From these

calculations alone we may proceed.
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Recall Equation (3.24), ξ = I−1p− Aṡ. Thus the equation

ξ =
1

m1 + m2

p− m2

m1 + m2

ṡ . (3.36)

Further, recall from Example 3.16 that [adξ] = 0. Thus equation (3.22) leads us

to the equation

ṗ = τg .

Here, as will be discussed in Chapter 4, τg is a dry friction expression of the form

F (ξ, ṡ). Upon substitution of equation (3.36) we have

ṗ = F̃ (p, ṡ) . (3.37)

All that remains is the equation for the dynamics of the shape variable s. Referring

to Equation (3.32) and referring to the calculations leading into the present example,

we have that N = 0, ∂I−1

∂s
= 0, and Cijk = 0. Also, from an earlier example ∂P̃

∂s
=

ks(1 + a2s2). Thus the equation

M̃s̈ + ks(1 + a2s2) +
m2

m1 + m2

F (ξ, ṡ) = u + Fv(ṡ) , (3.38)

where τk
.
= u + Fl(ṡ) is the controller plus the linear viscous friction term due to

the dashpot effect on the system. Equations (3.36), (3.37), and (3.38), comprise

the reduced mass-spring system dynamics. Note that these equations are partially

decoupled, for ξ drives s, s in turn drives p, and p drives ξ. The system is reduced

in the sense that g is not needed at all. That is, in fact, the entire point. Due to the

fact that the system Lagrangian is G invariant, or that the energy does not depend on

g, neither do the resulting dynamics.

Example 3.19 (The Reduced Dynamics for the Serial-Link Structure). As

above, we shall begin with equation (3.24). We simply need to identify the matrices

I−1 and A. We know I and IA from Example 3.15 and so calculation is taken up
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from there. According to Maple, I−1 = 1
det(I)

W , where W is the symmetric matrix

with entries

w11 = −1/3 m2l2
(−13− 6 cos(φ1) + 3 (cos(φ1))

2) ,

w12 = m2l2 (1 + cos(φ1)) sin(φ1) ,

w13 = 2 m2l sin(φ1) ,

w22 = 1/3 m2l2
(
13 + 12 cos(φ1) + 3 (cos(φ1))

2) ,

w23 = 2 m2l (1 + cos(φ1)) ,

w33 = 4 m2 ,

and

det(I) =
26

3
m3l2 + 4 m3l2 cos(φ1)− 2 m3l2 (cos(φ1))

2 − 2 m3l2 (sin(φ1))
2 .

Also by the magic of Maple we obtain

A =
1

det(I)




1/3 (5 + 3 cos(φ1)) sin(φ1)l
3m3

1/3
(−5 + 3 (cos(φ1))

2 + 2 cos(φ1)
)
l3m3

−2/3 (5 + 3 cos(φ1)) m3l2




.

Thus the first of the reduced equations is

ξ = I−1p− Aṙ . (3.39)

Moving on, recall from equation (3.20) that

[adξ] =




0 −ξθ ξy

ξθ 0 −ξx

0 0 0


 .
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and from equation (3.39) we have an expression for ξ. Thus we may write down the

second reduced equation as

ṗ = [adξ]
tp + F (p, ṡ) ,

where it has been presupposed that [g]−1τ t
g = F (p, ṡ) for some appropriately chosen

F . The fact that this is the case will be shown in Chapter 4.

Finally, the third equation of the reduced dynamics should be stated. Clearly this

is a difficult calculation to carry out. It could be done in Maple, however there is

another way to avoid dealing with this equation that will be discussed in Chapter 4.

This example is provided to illustrate the fact that the reduction calculations are

not simple for the serial-link structure, even for n = 2, when performed algebraically.

In fact, for n = 3 this is quite intractable. However, from a numerical computation

point of view, there is not a lot to do. Matlab, for instance, can readily perform all the

requisite numerical calculations with ease. Thus, when dealing with systems of much

complexity, numerics are the way to go for performing the reduction and subsequent

analysis and simulation.



Chapter 4

Non-conservative Forces

4.1 Introduction

In the previous chapter we developed reduced mathematical models for the dynamics

of the mass-spring and serial-link systems. However, these models are incomplete.

Although we appropriately related the kinematics of these systems to the generalized

non-conservative forces that act on them, we did not provide specific mathematical

expressions or models for those forces. In this chapter we complete the system models

by describing friction and control forces, and how they are modelled, in detail.

As in the case of the previous chapter, this chapter is also divided into two primary

components. The first of these shall deal with the topic of friction and the second

with control. The evolution of the friction component is as follows. We open the topic

of friction with a discussion of classical dry-friction laws. This deliberation includes

some details of the origins of these laws, the appropriateness of their use, and how they

must be modified in order to use them in the context of Lagrangian dynamics. These

alterations are then demonstrated by using them to partially complete the modeling

of the mass-spring system. Attention is then turned to the frictional properties of

the snake skin as currently understood. A general method for calculation of the

cumulative frictional force acting on a link of the serial-link structure is developed.

83



CHAPTER 4. NON-CONSERVATIVE FORCES 84

Upon doing so, the procedure is used to generate friction models for the bodies

comprising the serial-link structure that are consistent with the frictional nature of

actual snake skins. Finally, we generalize the resultant frictional forces and show that

they are appropriately G invariant. Thus, they may be used along with the control

forces to complete the model for the serial-link structure.

The exposition on the control forces is much more straight forward and proceeds

as is now indicated. To begin we develop a model that relates the tension of muscle-

like actuators running parallel to the axial structure of the serial-link system to the

torque that these tensions produce about the joints of adjacent links. We then explain

our choice to assume that these torques may take on any values we care to specify and

upon doing so, take these torques directly as the control forces for the system. Next,

the technique of feedback linearization is used to demonstrate that for our systems, the

shape s is completely controllable. We move on to explain how the complexity of the

systems’ dynamics may be reduced significantly by making use of this controllability

and what advantage this holds in gaining insight into the locomotion of systems. This

advantage is illustrated through use of the mass-spring system and at this juncture

the study of this system is halted, narrowing the focus to the system of true interest,

namely S.

4.2 Part I: Friction Forces

4.2.1 Classical Dry Friction Laws

We begin the discussion of friction with a disclaimer. The subject of tribology, and in

particular, surface friction, is rather intractable in the sense that, unlike other physical

phenomena, there are no universal friction laws for media that are not continuous.

Thus, for scenarios such as the friction experienced between the surfaces of two bodies

in tangential contact, frictional phenomena must be handled case by case. There are,

however, a few empirical observations that serve as guidelines for dry/rubbing surface
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friction, like that experienced between two rigid bodies, that purportedly hold up

sufficiently well when applied to a variety of engineering applications. By well, it is

meant that they get the job done. These observations are as follows.

1. The frictional force F experienced between two surfaces in tangential contact is

proportional to their normal load N . Labelling the constant of proportionality

µ we have

F = µN . (4.1)

2. The frictional force F experienced between two surfaces in tangential contact

is independent of the apparent area of contact. This says that if one considers

two blocks of the same material and total mass, then the cumulative friction

they experience will be the same despite differing physical dimensions.

These two observations were first stated by Leonardo da Vinci, who was apparently

the first to think about friction in a scientific way, designing experiments that are still

in use today for measuring the phenomena. The French scientist Guillaume Amontons

rediscovered these principles and they often carry his namesake. Yet another name

associated with these laws is that of the French engineer, Charles Coulomb. Coulomb

also reconfirmed da Vinci’s observations and indeed added a third stating that friction

experienced by an object in motion is independent of the sliding velocity. This would

seem to be a redundant statement given the first principle, but yet it is often included

in formal discussions on the topic. Most likely, Coulomb’s name has come to be

associated with the friction principles due to the definite contribution that he made

in including something of an explanation for the observations. Coulomb hypothesized

that the friction phenomena was due to asperities in the surfaces that had settled into

one another like the pieces of a jigsaw puzzle. Taking this point of view the following

derivation of the equation F = µN was made.

Consider two horizontal surfaces S1 and S2 associated respectively with the bodies

B1 and B2. Suppose that these surfaces are in contact with one another under the
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pressure p1 = P/a due to the weight of body B1 . Here, P represents the weight of

body B1 and a the area of contact. Suppose that surface S1 slides over surface S2,

which is at rest. Further, suppose that the asperities of the surfaces are similarly

shaped and are distributed evenly with mean distance of λ between them. So, these

asperities interlock as if they were fitted. It must take a horizontal pressure to promote

one asperity of S1 over an asperity of S2. Let us label that pressure p2. Since the

period of asperity is λ we take λ2 to be the area taken up by one asperity. Thus

the horizontal force required for promotion of S1 is p2λ
2. It is now clear that the

average work done by this force is p2λ
3. The potential obtained due to the incline

of an asperity is ∆U = p1λ
2h, where h is the average height of the asperity. As the

asperity of S1 slides down the other side of the asperity of S2, this potential energy

is assumed lost in heat. Since the total work W is known to be −∆U , we have that

p2 = −(h
λ
)p1. Thus the magnitude of the frictional force per unit area is f = (h

λ
)p1.

This provides us with the series of equations

f

p1

=
fλ2

p1λ2
=

F

N
=

h

λ
= µ ,

where F and N are the frictional and normal force magnitudes, respectively. This

says that the ratio of the magnitude of the frictional force to the magnitude of the

normal force is constant, which was da Vinci’s first observation.

Euler would later add the observation that under this model with the assumption

of triangular asperities, µ = tan(γ), where γ is the slope of a triangle edge. In fact,

Euler is responsible for the use of the symbol µ for the so-called coefficient of friction.

To see that this “law” is fragile we merely need to pick at any of the assumptions

used to arrive at it. It is clear that none of them would hold outside of an extremely

controlled set of circumstances. Although many researchers have developed mod-

els that attempt to remedy one of more of the faulty presumptions, all fall short

of universal appeal. Some try to satisfy inconsistencies with the addition of elastic

or visco-elastic deformation of the surface asperities. Others have disregarded this
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Coulomb’s mode of thinking completely and have suggested the idea of adhesion due

to chemical or electro-magnetic forces as a basis for developing a satisfactory theory

of dry friction. Indeed, strong adhesion has been observed for materials with very

clean surfaces and it is true that one may also arrive at “Coulomb’s” law based on

the adhesion idea. However, like the surface roughness concept, there are counterex-

amples to its universality. In recent times, tribologists have come to accept that all

of these ideas are correct and that it is a very complex set of surface interactions that

collectively constitute the phenomena of dry friction. Models have been proposed that

include the effects of adhesion, deformation, surface geometry, and surface asperity

statistical distribution. However, as stated before, the observations made by da Vinci

are simple and purportedly hold at some level over a variety of working situations.

Therefore, we adopt this observation as our kinetic dry friction “law”.

Now consider the case where two solid bodies are in contact with one another

but not in relative motion. A frictional reaction force will still be experienced by the

bodies involved, so long as one of the bodies is subject to a force acting tangent its

surface. This force is known as static friction. Obviously, since the bodies are static,

this friction force must be equal and opposite to the applied tangential force. This

implies that this force, unlike the kinetic friction force, is not constant.

It then follows that dry friction cannot be written as a function of the velocities

of the bodies used to create it. Being more specific, consider a body lying on a fixed

substratum, either resting or translating with velocity ẋ. The friction experienced

by this body is multi-valued at ẋ = 0 and piecewise constant otherwise. It is often

assumed is that the frictional force vanishes at ẋ = 0. The harm in doing so is

probably situationally dependent and we will discuss this further as the discussion

develops. The good that comes out of this is that we then have a function to work

with, albeit discontinuous. So, we will adopt this convention. Call the resultant

function Fd. This function is illustrated in Figure 4.1 and is described mathematically
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by the expression

Fd(ẋ) =





−µfN if ẋ > 0;

0 if ẋ = 0;

−µbN if ẋ < 0,

where N is the normal load. For us, N = mg, where m is the mass of the sliding
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da Vinci’s Dry Friction Law

Figure 4.1: da Vinci’s dry friction model Fd.

body and g is the acceleration due to gravity. Note that we have made this expression

directionally dependent. That is, we apply da Vinci’s law to each sliding direction

independently. We have done this so that we may have an expression for the dry

friction of a body whose surface has an orientation or a ratcheting effect.

Also of interest to us is the use of a simple linear expression to represent dry

friction. This expression is Fl = −λẋ. Clearly this friction is not like that observed

for two dry solid bodies engaged in tangential interactions. However, it provides an

expression that is continuous, even in its directionally dependent form. Thus, it is

very simple to work with mathematically.
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We now turn attention to how to incorporate these friction expressions into the

models for the mass-spring and serial-link structure systems.

Example 4.1 (Frictional Forces Acting on the Mass-Spring Structure). As

stated in the system description of Chapter 2 we assume that the large mass B1

experiences dry friction between itself and the line on which it positioned. Due to its

discontinuity, the use of the piece-wise constant dry friction function Fd(ẋ) does not

allow for extrapolation of the Euler-Lagrange equations and doesn’t facilitate use of a

numerical integrator in the case of this system. This is not acceptable, as these tools

will be used, respectively, to produce and solve the system dynamics. Hence, we seek

to avoid the discontinuous nature of da Vinci’s law. We approximate Fd with

F̃d(ẋ) =




−µfN( 2

π
) arctan(cẋ) if ẋ ≥ 0;

−µbN( 2
π
) arctan(cẋ) if ẋ < 0.

This function is illustrated in Figure 4.2 along with Fd. Note that F̃d has asymptotes

fd = −µfN and fd = −µbN . Meaning that F̃d → Fd for ‖ẋ‖ large. The parameter

c determines the rate of this convergence. Also, F̃d(0) = Fd(0) = 0. Finally, F̃d is

continuous, which solves the problems presented by Fd. Is this a legitimate approxima-

tion? We do not claim that it is. However, for lack of something better, we will use

it anyway. Thus, the friction experienced by body B1 is given by τg
.
= F̃d(ẋ1) = F̃d(ġ)

with appropriate parameters.

Also included in the description of the mass-spring system was a dash-pot effect on

B2. Dash-pot effects are often described by a linear friction expression. We adopt this

description, claiming that the friction experienced by body B2 is given by Fl(ṡ) = −λṡ.

These friction descriptions are in terms of the generalized coordinate vector qt =

(g, s) selected for this system, and thus there is no need to generalize these forces.

Make note that τg is trivially a G invariant force. This is because τg is a function of

q̇ alone and the lift action acts as the identity on the tangent space of SE(1). Thus we
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da Vinci’s Dry Friction Law and It’s Approximation

Figure 4.2: da Vinci’s dry friction model Fd and its approximate F̃d. Here µf = 0.5,
µb = 1.5, and c = 5.

may simply replace g by ξ in the expression for τg. Referring back to equation (3.36)

we find that τg = F̃d(ξ) = F̃d

(
1

m1+m2
p− m2

m1+m2
ṡ
)
. This makes equation (3.37) of

Example 3.18 complete as

ṗ = F̃d

(
1

m1 + m2

p− m2

m1 + m2

ṡ

)
.

Also, we may nearly complete equation (3.38) of Example 3.18 by including the ex-

pression Fl as follows:

M̃s̈ + ks(1 + a2s2) +
m2

m1 + m2

F̃d(ξ) + λṡ = u .

Now we consider the task of obtaining expressions for the dry friction experienced

by S. Firstly, however, one must realize that any analysis of the formulated dynamics

will depend heavily upon the expression assumed to represent the tribological prop-
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erties of the snake or a snake-like machine. It seems relevant then, to now review

some results that indicate the tribological nature of the snake skins.

4.2.2 The Tribological Properties of Snake Skins

We begin with the results presented in a publication by Hazel et al [32]. This pa-

per summarized the findings of experimental investigation into the morphology and

micro-mechanical properties of snake skin. The experimentation was carried out via

multi-mode scanning probe microscopy, a recently emerging technology that has al-

lowed further investigation into structure and morphology at the nano-scale level.

The results of this experimentation are insightful to say the least. At the nano-level

the ventral portion of snake skins were found to have highly organized arrays of fibrils

that elicit significant friction anisotropy. These fibrils are oriented toward the caudal

portion of the animal, geometrically tapering off and raising slightly in the caudal

direction. The parallel or triangular arrays of these fibrils observed then function as

a ratcheting mechanism allowing the snake skin to pass easily over rough surfaces in

the forward tangential direction and preventing slip in the backward tangential direc-

tion. In fact, the study indicates that the friction force experienced in the backward

direction is 4 to 6 times the friction experienced in the forward direction. Further, it

was found that these fibers were extremely pliable, indicating that they may displace

easily when subjected to a force in the normal direction. This suggests that there

may not be such a large friction force differential between the normal and forward

tangential directions along the snake body. If it is the case that this micro-structure

affects the friction observed at the macro level then one must cede to the idea that any

point-mass dry friction law applied to the understanding of snake locomotion must

be made directionally dependent in accordance with these micro-scale observations.

There is in fact some very early evidence that the conclusions of [32] are valid.

Consider the work of Gray and Lissmann, two of the pioneering researchers in biome-

chanics and in particular the problem of snake locomotion. In [29] they considered
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the friction forces involved in serpentine or undulatory movements of snakes. They

grouped these forces into two categories. The first is the friction acting between the

ventral portion of the snake and the ground. The second is the lateral friction ex-

perienced between the sides of the body of the snake and external resistances in the

lateral direction. At the present, the ventral frictional forces will be the objects of

interest. In [29] the longitudinal ventral friction forces along the path of motion are

estimated. Each segment of the snake was assumed to follow that of the segment an-

terior to itself so that every point along the body follows the path of the head. Thus,

these researchers felt that it was only necessary to make this unidirectional friction

estimate. To make their calculations, a dead snake of a given weight W was dragged

rectilinearly and the force required for this displacement was recorded. Assuming that

the kinetic friction force experienced was proportional to the weight, in accordance

with da Vinci’s dry friction law, f = µW , the friction coefficient µ was calculated

to be f/W . Table 4.1 indicates their findings as presented in the study. The same

table may be found in their paper, with the exception of the column indicating the

coefficient of friction for the backward tangential direction. Indeed, there seems to

be a macro friction anisotropy.

In neither of these two studies, which are the only two that we have seen which

deal with the friction experienced between a surface and snake skins, where the snakes

or their skins dragged in a direction normal to the head-to-tail elongation. This needs

to be done. For many make the claim that due to the scales of the snake skin, there

is a large normal friction response. In fact, there are articles, such as [47], that point

to [33] to validate this claim. However, Hirose did not measure the normal ventral

friction experienced by snakes. He did discuss the matter, but upon concluding that

friction in the normal direction is difficult to measure, he used the shape that he had

predetermined for elicitation of snake-like motion and some fixed tangential friction

coefficient to determine an expression for the normal frictional force. In other words,

he selected a friction description that elicited motion from the shape he had pre-fixed,
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Length of Weight (W) Towing Force in g.
Substratum snake of snake Head first Tail first TA/W TP /W

(cm.) (g.) (TA) (TP )
Glass(dry) 70 70 28 0.40
Glass(dry) 64 80 34 0.42
Glass(oil film) 70 70 90 1.30
Metal (dry) 70 70 24 0.34
Metal (dry) 78 180 60 60 0.33 0.33
Metal (oil film) 70 70 60 0.86
Wood (dry; smooth) 64 80 27 0.34
Cardboard (smooth) 67 83 20 0.24
Sandpaper (fine) 64 80 52 60 0.65 0.75
Sandpaper (medium) 64 80 52 70 0.65 0.88
Sandpaper (medium rough) 64 80 40 85 0.50 1.06
Sandpaper (rough) 64 80 35 105 0.44 1.31
Sandpaper (rough) 70 70 20 0.30
Sandpaper (rough) 66 57 25 120 0.44 2.11
Fibre mat 66 57 35 75 0.61 1.32

Table 4.1: Data collected from a ventral friction study performed by Gray and Liss-
mann (see [29]). An extra column has been added to the table as it is presented here.
This column includes calculation of the friction coefficient for motion in the posterior
direction.

not the shape that elicited motion from the friction.

The difficulty in measurement of the normal component of friction is clear to see.

Firstly, due to the vertebrae structure of the snake, the body of the animal does not

tend to “bend” when dragged from head-to-toe or visa-versa. On the other hand, if

a force is applied to the body in the normal direction, the vertebrae will rotate with

respect to one another and thus the direction of the applied force will no longer be

normal. Additionally, if a snake’s skin truly has anisotropic friction properties, the

entire snake may begin to rotate as a normal force is applied, due to the orientational

nature of the frictional force experienced. Once again, the direction of the applied

force would fail to remain normal. However, it seems to us that experimentalists

could probably resolve these issues in some fashion. For the complete story, the

friction experienced by the snake skin needs to be measured in enough directions to

determine a profile of its distribution.
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4.2.3 Friction for the Planar Rigid Body

Despite this lack of information concerning the true nature of the friction experienced

by the snake skin, we are in need of an expression for the residual frictional force F f
i

that acts on the body Bi ∈ S. We will take the information that exists and upon

extrapolation will suppose that we know and understand the nature of the friction

anisotropy created via the snake skin. However, even with this assumption there

remains something of a mystery concerning how one applies a dry friction law to a

rigid body. In most treatments of friction, such as those seen in introductory physics

texts, it is assumed that the body being studied is in motion along a line. In this

case, the friction is presumed to act on the velocity of the center of mass of the body.

This is an issue when we move to the planar picture. For in this setting, rotation of

the body is possible and the assumption of friction acting on a single point, such as

the center of mass, is in error. It does not take much to see this. Simply consider

imparting a spin upon a symmetric body about its center of mass. Since the fixed-

point experiences no motion and no other applied force, application of the friction

law to the center of mass will indicate that the body will not experience friction and

will spin forever. We know that this is not the case. As the other point masses

that comprise the body rotate about the center of mass, they experience friction due

to their motion relative to the surface. These frictional forces cancel one another

indeed. However, they produce moments with respect to the center of mass that

are not opposite in sense and thus double instead of cancelling. Hence, the body’s

rotation is opposed and eventually its energy dissipates and the body no longer spins.

Therefore, the friction rules adopted must be applied to the entire body, not simply

a single position such as the center of mass. We now provide a method for doing

this for the bodies of S that was conceived by the author upon the inception of this

research.

Consider an arbitrary element of the body Bi ∈ S with configuration coordinates

(xi, yi, θi). Letting rσ
i denote the position of a point along the body whose body
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coordinates are r = (σ, 0)t, −l ≤ σ ≤ l, an element may be described as the segment

rσ
i rσ+∆σ

i of length ∆σ. Consider such an element. The velocity of any particle of

this element is reasonably approximated by ṙσ?

i , where σ? ∈ [σ, σ + ∆σ]. Suppose

that ∆σ is small enough to consider the element under consideration to be essentially

a particle. Further, assume the existence of a particle “law” that determines a dry

friction distribution f for the body and substratum surface materials that is a function

of the particle velocity. Then the friction acting on the element while in motion is

approximately f(ṙi(σ
?))∆σ. If the entire body Bi is partitioned into N such elements

we obtain an estimate of the residual kinetic frictional force acting on the body by

summing N estimates of this type. Using F f
i to denote the total friction force acting

on body Bi we have F f
i ≈

∑N
j=1 f(ṙi(σ

?
j )) ∆σj. So long as f is Riemann integrable

we get F f
i =

∫ li
−li

f(ṙσ
i ) dσ upon allowing ‖∆σ‖ → 0. Applying this force at the body

center of mass Ri, there is a corresponding moment about the centroid of Bi, denote it

M f
i , that is defined in a similar manner, where moment approximations are summed

as opposed to force approximations. This moment is determined by the equation

M f
i =

∫ li

−li

Airi × f(ṙσ
i ) dσ .

Now, since all of the forces discussed lie in the x-y plane, the moment directions

are necessarily e(3) and thus the sense and magnitude of the moments are sufficient

to describe them. Hence, hereinafter, moments will be treated as scalars even though

no notational change will ensue.

4.2.4 Friction Models for the Serial-Link Structure

Some have showed hesitation when presented this development. However, as of the

moment of this writing, a good reason not to take this approach has not been provided.

It is in fact the case that this same approach has independently been taken in [62] as a

result of being faced with the same issue. Using this development, several directionally
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dependent friction models are now introduced. A couple of these friction descriptions

are taken from [62] or are adaptations thereof and the others are being proposed as

possible descriptions of the friction that may in fact be induced by actual snake skin

morphologies. We are the first to model such morphologies and include their effects

into the dynamics of snake-like devices.

Taking the time derivative of rσ
i we obtain

ṙσ
i =


ẋi

ẏi


 + σθ̇i


− sin(θi)

cos(θi)


 . (4.2)

The two terms of this expression are used represent the translational and rotational

velocity of the element rσ
i rσ+∆σ

i , respectively. These velocity components are pro-

jected along the directions of the body frame axes to obtain the tangential and normal

components of the velocity with respect to the body. The result is the expression


vσ

t

vσ
n


 .

= At
iṙ

σ
i = At

i


ẋi

ẏi


 +


 0

σθ̇i


 . (4.3)

We will generically label this body velocity vσ
b with the understanding that its com-

ponents depend on the body index i. With the velocity of ∆σ decomposed along the

body coordinate frame axes, one may define differing friction characteristics along

these respective directions. These tangent and normal components of friction are

denoted fσ
t and fσ

n , respectively, and this body friction will, as in the case of the

body velocity, be generically denoted fσ
b . Upon formulation, this friction vector will

be projected back into the inertial coordinate system. The result of this projection

will be labelled fσ. By describing the friction properties of the body Bi ∈ S in this

manner, the friction properties in every direction relative to the body are specified

under the appropriate assumptions. Examples of this are now given.

Example 4.2 (Linear Viscous Friction - After [62]). Suppose that we specify a
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simple linear viscous friction law, say

fσ
t = −g∆mctv

σ
t ;

fσ
n = −g∆mcnvσ

n ,

or 
fσ

t

fσ
n


 = −g


ct 0

0 cn





vσ

t

vσ
n


 ∆m

in matrix vector notation. Using the uniformity assumption on the mass of the rod

provides ∆m = mi∆σ
2li

. So,


fσ

t

fσ
n


 = −g

mi

2li


ct 0

0 cn





vσ

t

vσ
n


 ∆σ .

From this equation the approximation for the friction experienced by ∆σ can be ex-

pressed in the global frame of reference as


fσ

x

fσ
y


 = Ai


fσ

t

fσ
n


 .

Thus the residual translational friction experienced by the body is

F f
i =

∫ li

−li


fσ

x

fσ
y


 dσ .

Performing the integration one finds that the term of the integrand corresponding to

angular velocity integrates to zero and we are left with

F f
i = −gmiAi


ct 0

0 cn


 At

i


ẋi

ẏi


 .
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Further, due to the decomposition of the velocity into normal and tangent components,

the residual rotational friction is easily expressed as

M f
i =

∫ li

−li

σfσ
n dσ = −g

mil
2
i

3
µnθ̇i .

It is noted that this example includes the assumption of negligible tangential

friction by taking µt = 0. This is the assumption to be found in [47, 48, 46].

Example 4.3 (da Vinci’s Viscous Friction - After [62]). As another example

consider applying da Vinci’s friction “law” along the normal and tangent directions

of the body Bi. In this case one obtains

fσ
t = −g∆mctsgn(vσ

t ) ;

fσ
n = −g∆mcnsgn(vσ

n) ,

or 
fσ

t

fσ
n


 = −g


ct 0

0 cn





sgn(vσ

t )

sgn(vσ
n)


 ∆m

in matrix vector notation. Thus, this expression allows one to write an expression

for the residual frictional force felt by the link in terms of the Riemann integral. This

expression is

F f
i =

∫ li

−li


fσ

x

fσ
y


 dσ .

Performing the integration one finds that

F f
i = −migAi


ct 0

0 cn





 sat(vσ

t , 0)

sat(vσ
n, liθ̇i)


 .

Further, due to the decomposition of the velocity into normal and tangent components,
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the residual rotational friction is easily expressed as

M f
i =

∫ li

−li

σfσ
n = −1

2
µnmigli dzs(vσ

n, liθ̇i) .

The intent of these examples is quite clear. However, the end result is deceptively

in violation of basic principle and practice as it regards dry friction. Consider, in the

body frame, the velocity vector rσ
i with magnitude d and orientation with respect to

the body frame of γ. That is, vσ
t = d cos(γ) and vσ

n = d sin(γ). The slope of the line

of action of this vector is given by

tan(γ) =
vσ

n

vσ
t

in the body frame. However, the frictional force acting on the body due to the particle

at rσ
i is, for the simple viscous Example 4.2 derived above,


fσ

t

fσ
n


 = −


ct 0

0 cn





vσ

t

vσ
n


 ∆m .

Let β indicate the direction of the line of action of this force (not the sense). Then

the slope of the line of action in the body frame is given by

tan(β) =
cnv

σ
n

ctvσ
t

.

Therefore, for cn 6= ct, the frictional force does not act along the line of motion of

the particle. i.e., β 6= γ. This is contrary to the standard thinking that dry friction

acts along the direction of motion but in the opposite sense. These comments are

illustrated by Figure 4.3.

One can develop an expression for a directionally dependent friction that, for a

given particle velocity with polar coordinates (d, γ), has the same magnitude as the

friction vector given by the laws presented above, however, with the correct direction.
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Figure 4.3: The incorrect directionally dependent linear dry friction model.

To do so, we examine the magnitude of these friction expressions. For instance,

take the linear viscous friction model. Doing so we have fσ
n = −g∆mcnd sin(γ) and

fσ
t = −g∆mctd cos(γ). Thus,

‖fσ
b ‖2 = (g∆mcnd sin(γ))2 + (g∆mctd cos(γ))2 .

So, we define µ(γ) = (c2
n sin2(γ) + c2

t cos2(γ))
1
2 and describe the friction experienced

by the particle located at rσ
i by

fσ
b = −g‖vσ

b ‖∆mµ(γ)


cos(γ)

sin(γ)


 .

In this case, the direction of the friction is the same as vσ
b but opposite in sense and

the magnitude of fσ
b is precisely the same as the friction described in Example 4.2.

From Figure 4.4 it is clear that the intent of an elliptical directionally dependent
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Figure 4.4: The partially corrected directionally dependent linear dry friction model.

frictional characteristic is lost by the direction correction. However, one may math-

ematically capture such a feature and many other sensible distributions with correct

direction by simply defining a directionally dependent frictional force magnitude and

not a directionally dependent force direction (i.e. the direction is set by that of the

given velocity). We first describe the velocity in the body frame with polar coor-

dinates vσ
b = (d, γ). Then, the desired frictional force magnitude is described as a

function of the velocity direction, say µ(γ). This magnitude is placed in the direction

of the velocity but with the opposite sense yielding for us the expression

fσ
b = −g∆mµ(γ)


cos(γ)

sin(γ)


 . (4.4)

Note that with this description we may easily switch between a simple linear dry

friction model and da Vinci’s dry friction model by the inclusion or exclusion of

the factor ‖vσ
b ‖ in the definition of µ. Let us now completely recover the intent of
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Example 4.2 but with the correct direction. Knowing that x2

µ2
t

+ y2

µ2
n

= 1 describes an

ellipse in an x-y coordinate frame, we may simply substitute the polar coordinate

relations x = d cos(γ) and y = d sin(γ) into this expression and solve for d in order

to arrive at the expression

µ(γ) = ‖vσ
b ‖µtµn(µ2

n cos2(γ) + µ2
t sin2(γ))−

1
2 . (4.5)

The resulting force distribution acting on the unit velocity ball in the body frame is

given in Figure 4.5.
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Figure 4.5: The fully corrected directionally dependent linear dry friction model.

In addition to preserving the idea that dry friction directly opposes motion,

the concept of defining the directional dependence via the friction coefficient allows

greater freedom in describing anisotropy. The reason is that, if one defines the di-

rectional dependance via tangent and normal decomposition, as described in Exam-

ples 4.2 and 4.3, then every other direction is defined. So, for instance, we cannot

describe a forward to backward tangential friction differential as described in [29] and
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[32] using this approach. Defining the dependence through equation (4.4), we can ac-

complish such a description and in fact can assign nearly any friction profile that we

can imagine. As an example, consider altering the elliptic type friction distribution of

Figure 4.5 so that there is a large friction differential between forward tangential and

backward tangential directions relative to the body Bi. In this way, we try to capture

the tribological properties of the snake skin. To do so, we add a scaled gaussian

distribution on the interval −π
2
≤ γ ≤ π

2
to the basic elliptic definition of µ given by

equation (4.5). The gaussian distribution with mean γ̄ and standard deviation σγ is

G(γ̄, σγ) =
1

σγ

√
2π

exp

(
−γ − γ̄

2σγ

)
. (4.6)

This expression is scaled by the factor c
max(G)

to provide a maximum distribution value

of c. The distribution that we will add to the elliptical description has parameters

γ̄ = π, σγ = 0.5, and c = 5. This distribution is illustrated in Figures 4.6 and 4.7
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Figure 4.6: Gaussian distribution with parameters γ̄ = π, σγ = 0.5, and c = 5 over
0 ≤ γ ≤ 2π.
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Figure 4.7: Gaussian distribution with parameters γ̄ = π, σγ = 0.5, and c = 5 over
−π
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≤ γ ≤ π

2
.

Upon adding this to the elliptic definition of µ with parameters µn = 2 and µt = 1

one obtains the friction distribution of Figure 4.8

The drawback of this anisotropy description is that one probably cannot obtain

simple expressions for F f
i and M f

i such as those in Examples 4.2 and 4.3. However,

these quantities can be acquired numerically and an outline of the procedure is now

given.

Step 1. Obtain the direction γ of the velocity rσ
i in the body frame. To

do so, calculate vσ
b according to equation (4.3). Then, make careful

use of the relation tan(γ) = vσ
n

vσ
t

to obtain the appropriate value of the
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Figure 4.8: Snake scale friction distribution.

following function:

γ(vσ
b ) =





arctan(vσ
n

vσ
t
) if vσ

t > 0;

π
2

if vσ
n > 0 and vσ

t = 0;

0 if vσ
n = 0 and vσ

t = 0;

−π
2

if vσ
n < 0 and vσ

t = 0;

arctan(vσ
n

vσ
t
)− π if vσ

n < 0 and vσ
t < 0;

π + arctan(vσ
n

vσ
t
) if vσ

n > 0 and vσ
t < 0.

(4.7)

Step 2. Use γ to calculate the directionally dependent friction distribution

fσ
b using equation (4.4).

Step 3. Use a quadrature rule to approximate
∫ li

li
fσ

b dσ.

Step 4. Project the result of this calculation by left multiplication of Ai to
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obtain F f
i .

Step 5. Use fσ
n of Step 2 and quadrature to approximate M f

i =
∫ li

li
σfσ

n dσ.

This involves work and invariably computation time. However, sometimes work and

computation time is necessary to get what is desired. We shall use this approach to

obtain friction expressions for the snake-like serial-link structure.

There is but one issue left to address with generating forces in this manner. Recall

that in the case of the mass-spring system, it was necessary make a continuous ap-

proximation of da Vinci’s dry friction law. Here, such an approximation may or may

not be necessary. To obtain a cumulative friction force for Bi the friction distribution

over that body is integrated. This integration is not altered by what is occurring with

a single particle of the body. Thus, if one particle is experiencing the discontinuity

of da Vinci’s law, the integration over the body ignores it. Hence, a da Vinci type

friction distribution will only be a problem if the entire body simultaneously moves

through its discontinuity point. This is not likely to happen. All the same, a factor

of the form 2
π

arctan(c‖vσ
b ‖) may be included in the definition of µ to ensure that

everything is continuous.

Such an approximation might be advisable anyway, since it was suggested that

quadrature be used to compute the integration of the friction distribution. In order

for the accuracy of the quadrature to be ensured, continuity is a minimal requirement.

Certainly, due to the fact that vσ
b is a smooth quantity with respect to σ, so long as

γ(vσ
b ) is smooth and the definition of µ(γ) is smooth, fσ

b will be smooth and the

accuracy of a quadrature rule will be assured. However, γ can fail to be smooth and

in fact fails to be continuous at vσ
b = 0. To be specific, it would seem that the real

issue would come if σ corresponds to a quadrature node and vσ
b = 0. By including

the inverse tangent factor, we may eliminate this problem.

These issues may be avoided all together by using simple linear friction in lieu of

da Vinci’s law at the particle level.
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4.2.5 Generalized Friction Forces and Their Invariance

Once F f
i and M f

i are constructed, we have expressions of the friction forces in terms

of the coordinates {zj}3n
j=1 or the coordinate vector z. We seek to generalize these

forces. These zj are functions of the generalized independent coordinate vector q. i.e.,

zj = zj(q). Thus, as previously shown, the generalized force associated with qk that

is due to a force acting on Bi is given by

Qk =
n∑

i=1

[
(F a

i )t Ma
i

] ∂~zi

∂qk

.

Allowing the definition (F f )t .
= ((F f

1 )t,M f
1 , . . . , (F f

n )t,M f
n ) we acquire the m vector

of generalized forces due to the friction acting on the system by taking the product

(F f )t ∂z
∂q

. An expression for the gradient
∂zj

∂q
is stated in Example 3.4.

In addition to generalizing the forces we must also establish their group invariance

so that we may use system (3.33). This is now done for the serial-link structure.

Theorem 4.1 (SE(2) Invariance of Body-Borne Directionally Dependent

Friction). Any directionally dependent frictional force that is due to the anisotropy

of the serial-link structure is an SE(2) invariant force.

Proof. We begin by examining the result of applying the lift of SE(2) to equa-

tion (4.2). For convenience we repeat this equation:

ṙσ
i =


ẋi

ẏi


 + σθ̇i


− sin(θi)

cos(θi)


 .

Recall from the proof of Theorem 3.1 that


ẋi

ẏi


 ↑ A(α)


ẋi

ẏi


 . (4.8)
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Thus we need only concern ourselves with the second term of rσ
i . Due to the relations

− sin(θ + α) = − sin(θ) cos(α)− cos(θ) sin(α)

cos(θ + α) = cos(θ) cos(α)− sin(θ) sin(α) ,

it is seen that 
− sin(θi)

cos(θi)


 ↑ A(α)


− sin(θi)

cos(θi)


 .

Since the lift in SE(2) acts as the identity on θ̇i we may conclude that

ṙσ
i ↑ A(α)ṙσ

i .

The projection of the velocity into the body frame is given by vσ
b = At

iṙ
σ
i and as such,

applying the lifted action to vσ
b provides us with the result that

vσ
b ↑ At(θi + α)A(α)ṙσ

i = At
iA

t(α)A(α)ṙσ = vσ
b .

This says that any friction distribution fσ
b in the body frame based on the velocity of

body particles expressed in the body coordinates is SE(2) invariant. For, to express

the friction distribution in the global frame we arrive at fσ = Aif
σ
b , and the resultant

frictional force and moment are integrals and thus linear operators of this distribution.

This means that F f
i ↑ A(α)F f

i under the lift, as fσ ↑ A(θi + α)fσ
b = A(α)Aif

σ
b =

A(α)fσ.

Due to Theorem 4.1 and Theorem 3.1 it is seen that the serial link structure

dynamics take on the reduced form of equation (3.33).
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4.3 Part II: Control Forces

4.3.1 A Simple Actuator Model

At this juncture we present a simple model for the forces that arise in a snake due to

the tensioning of the muscles that join rib tips along the length of the snakes vertebrae

structure. We do so through the serial-link structure with muscle-like actuators as

described in Chapter 2.

Suppose that the muscle-like actuators of our serial-link system S can apply a

compressional force F
(·)
i1,i2

of magnitude f
(·)
i1,i2

between the “rib” tips of bodies Bi1 , Bi2 ∈
S. The index i1 will indicate which body the force is acting on and i2 will indicate

the other body used in creating this force. Recall that the muscles only connect

adjacent bodies and lie on one “side” of the system. Here the superscript will be

either l or r to indicate whether this force is due to the actuator lying to the left

or right, respectively, of the system, where the orientation is toward a decrease in

body index. Thus, with the exception of the head and the tail, body Bi ∈ S has

four forces acting on it. These forces are F r
i,i−1 and F r

i,i+1 acting at rr
i = (0,−lr)

t,

and F l
i,i−1 and F l

i,i+1 acting at rl
i = (0, lr)

t. r
(·)
i are the rib tip coordinates in the

local body coordinate system. In order to finish describing these forces a direction

and sense must be assigned to them. We assume that these forces act along the line

determined by the “rib” tips and in sense that indicates compression of the actuator

elements. These descriptions are now expressed mathematically. It is seen that the

rib tips for body Bi are located in the global coordinate system at rl
i = Ri + Air

l
i and

rr
i = Ri + Air

r
i . Thus, a unit vector having the same direction and sense of the forces

described above is easily obtainable and a summary is provided in Table 4.2.

Recall from Chapter 3 that since we are dealing with rigid bodies, we may create

a statically or dynamically equivalent system by allowing the forces described above

to act at the centroid Ri of body Bi and keeping track of moments about the centroid

associated with these forces. These moments are easily determined and are included
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Unit Vector Force Moment

ul
i,i−1 =

rl
i−1−rl

i

‖rl
i−1−rl

i‖
F l

i,i−1 = f l
i,i−1u

l
i,i−1 M l

i,i−1 = (rl
i −Ri)× F l

i,i−1

ur
i,i−1 =

rr
i−1−rr

i

‖rr
i−1−rr

i ‖ F r
i,i−1 = f r

i,i−1u
r
i,i−1 M r

i,i−1 = (rr
i −Ri)× F r

i,i−1

ur
i,i+1 =

rr
i+1−rr

i

‖rr
i+1−rr

i ‖ F r
i,i+1 = f r

i,i+1u
r
i,i+1 M r

i,i+1 = (rr
i −Ri)× F r

i,i+1

ul
i,i+1 =

rl
i+1−rl

i

‖rl
i+1−rl

i‖
F l

i,i+1 = f l
i,i+1u

l
i,i+1 M l

i,i+1 = (rl
i −Ri)× F l

i,i+1

Table 4.2: The muscle-like actuator force and moment expressions

in the Table 4.2. We will replace our system model with this equivalent one. Thus,

since the “ribs” were assumed massless, it is seen that they were only introduced

in the system description to properly describe the external control forces acting on

the bodies and are no longer in need of consideration. With the specification of

these forces given we do two things. Firstly, the desire exists to write the forces and

moments described in a matrix multiplication format. Secondly, the generalized force

vector Q associated with these forces is expressed. In this way we intend to make it

clear how these forces could be included directly within a simulation format.

Moving directly to the delineation of the former task, we write the composite

actuator force, denoted F a
i , as a matrix-vector multiplication. Using Table 4.2 this

takes on the form

F a
i =

[
ul

i,i−1 ur
i,i−1 ul

i,i+1 ur
i,i+1

]




f l
i,i−1

f r
i,i−1

f l
i,i+1

f r
i,i+1




= uifi ,

where it is noted that F
(·)
1,0 = F

(·)
n,n+1

.
= 0. In a similar manner, the composite actuator
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moment, denoted Ma
i , may be written

Ma
i =

[
ml

i,i−1 mr
i,i−1 ml

i,i+1 mr
i,i+1

]




f l
i,i−1

f r
i,i−1

f l
i,i+1

f r
i,i+1




= mifi ,

where m
(·)
i1,i2

.
= ‖M (·)

i1,i2
‖/f (·)

i1,i2
. Let

K =





u1

m1




. . . 
un

mn







,

f̃ t = (f t
1, . . . , f

t
n) ,

and

(F a)t = ((F a
1 )t, (Ma

1 )t, . . . , (F a
n )t, (Ma

n)t) .

Then, F a = Kf̃ . Note that although F
(·)
i,i+1 6= F

(·)
i,i−1 it is the case that f

(·)
i,i+1 = f

(·)
i,i−1.

So, let

f t = (f l
1,2, f

r
1,2, . . . , f

l
n−1,n, f r

n−1,n) ,

S =


I2×2

I2×2


 ,
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and

T =




02×2(n−1)

S
. . .

S

02×2(n−1)




.

Then f̃ = Tf . So, F a = KTf . All of these quantities can be constructed in an

algorithmic way using a software package such as MATLAB.

4.3.2 Generalized Actuator Forces and Modeling Assump-

tions

We now seek to accomplish the later of the two pre-ascribed tasks. Once F a is

constructed, we have expressions for the actuator forces in terms of the coordinates

{zj}3n
j=1 or the coordinate vector z. These zj are functions of the generalized indepen-

dent coordinate vector q. i.e., zj = zj(q). As previously shown, the generalized force

associated with qk due to a force acting on body Bi is given by

Qk =
n∑

i=1

[
(F a

i )t Ma
i

] ∂~zi

∂qk

.

Thus, by taking the product (F a)t ∂z
∂q

, the m vector of generalized actuation forces is

acquired. An expression for the gradient of the zj is stated in Example 3.4.

For the experimentation and simulation that we pursue, these actuator force for-

mulations are not employed. Instead, we recognize that the entire intent of these

actuators is to produce a bidirectional torque capability about the revolute joints

of the serial-link structure. Thus, we simply assume such an actuation is possible

and do not involve ourselves in how this actually occurs. More formally speaking,

from the above formulation, generalized forces corresponding to the relative angles

s = (φ1, . . . , φn−1) between links, namely Q4, . . . , Qn+2, are acquired. We separate
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the portion of τk due to friction, denoted in its reduced form by τ̃ f
k , away

from τk and from henceforth use τ to indicate the forces along the shape

directions due to control action. Letting τk
.
= Qk+3, with k = 1, . . . , n − 1, we

assume that we get to pick the τk directly and forget about any talk of actuation

mechanisms.

One may bring up the very good question of “Why bother to begin with ?” The

reason is the following. As indicated in the literature review, there have been many

investigations into the muscle activity of snakes, the patterns of this activity, and

how this activity contributes to propulsion. There have also been studies on snake

locomotion via multi-body models such as the one proposed herein. Often, these

studies refer to one another. However, a study that merges these efforts has not

been produced to date, so much as we are aware. It would be nice to make a direct

connection between the experimental biology world and the mathematical engineering

world. We believe that the modeling efforts put forth in this writing are sufficiently

well described so as to facilitate this possibility. Upon settling parameter issues

for existing muscle models, the experimentalist could directly feedforward muscle

contraction data via f and observe the resulting model motion. Likewise, it may also

be a possibility for one to use the control inputs τk used to obtain locomotion in the

serial-link structure model to determine f . f could then be compared to data. For

a complete scientific picture it would seem that one of these two studies must take

place at some point.

4.3.3 Feedback Linearization and the Shape Equation

We now return to the fact that the third of the equations in (3.33) can be rather

convoluted for systems of much complexity. This equation is restated here, respecting

force notation changes, for ease of reference and is referred to hereafter as the shape
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equation.

M̃kk2 s̈k2 +
1

2
Ckk2k1 ṡk2 ṡk1 + N +

1

2
pt(

∂I−1

∂sk

)p +
∂V

∂sk

= τk + τ̃ f
k − τ̃ tAk . (4.9)

The intractability of the shape equation is unfortunate since it is this equation that

involves the control torques τk and ultimately we are interested in the control prob-

lem. Hence, other possibilities for control formulation must be pursued. One such

possibility is to employ the so-called feedback linearization technique. This approach

uses a form mocking step to recast a nonlinear problem as a linear one. It so happens

that in the case of fully actuated mechanical system, this procedure can be applied

in a rather straight forward manner. Let us now delineate this process.

Consider the fully actuated dynamics:

Λ(q)q̈ + Υ(q, q̇) + Ud = τ , (4.10)

where q is the vector of independent system coordinates; Λ is a spd mass matrix; Υ

is a matrix that combines other system contributions which often include centripetal

and Coriolis forces, friction, gravity, and other modelled entities; Ud is some unknown

contribution or disturbance; and τ is the vector of generalized forces due to control

action. Consider the control

τ = Λ(q)u + Υ(q, q̇). (4.11)

Substituting this expression into the dynamics provides us the equation

Λ(q)(q̈ − u) = −Ud ,

or

q̈ = u− Λ(q)−1Ud.
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Thus, in the presence of perfect modeling (i.e., Ud = 0), we have the linear control

problem

q̈ = u . (4.12)

For obvious reasons, this equation is known as Newton’s equation.

Suppose that we desire q to follow some known trajectory ς. Paraphrasing, a

control u is desired such that q ≈ ς or e ≈ 0, where e
.
= ς − q. From this error

expression it follows that

ë = ς̈ − q̈ = ς̈ − u.

Let

u
.
= ς̈ − ue . (4.13)

Then the linear stability problem

ë = ue

results. If this system is controllable, then we may choose any of several classical

control techniques to define ue. Define

w =


w1

w2


 =


e

ė


 .

Then we have

ẇ =


ẇ1

ẇ2


 =


0 I

0 0





e

ė


 +


0

I


 ue

=


0 I

0 0


 w +


0

I


 ue

= Aew + Beue .

Let C =
[
Be AeBe . . . A2m−1

e Be

]
denote the system’s controllability matrix. See-
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ing that A2
e = 0 and thus Am̄

e = 0, m̄ ≥ 2, it follows that rank(C) = rank
([

Be AeBe

])
.

But
[
Be AeBe

]
=


0 I

I 0


 ,

which is invertible, and hence rank(C) = 2m. This implies that the system is indeed

controllable! So, ue can be selected so as to drive e to zero. Once ue is selected, u is

determined to be u = ς̈ − ue by equation (4.13), which in turn defines τ to be

τ = Λ(q)(ς̈ − ue) + Υ(q, q̇) , (4.14)

by equation (4.11). This method of control is known in the robotics literature as

computed torque control. This is because τ typically corresponds to applied torques

at link joints for robot manipulators, etc. We now discuss several linear systems

controls that may be incorporated into the feedback linearization scheme to bring

about the tracking control objective.

Example 4.4 (Feedback Control). We begin with the most elementary of the linear

controls, namely, pole placement via state feedback. The following theorem holds:

Theorem 4.2. Given A ∈ Rn×n and B ∈ Rn×m, ∃K ∈ Rm×n s.t. the eigenvalues of

A − BK can be assigned to arbitrary, real or complex conjugate, locations iff (A,B)

is controllable.

Since we have shown that the exact linearization of the fully actuated mechanical

system is controllable, this result says that we can find a gain matrix K ∈ Rm×2m s.t.

ue = −Kw stabilizes the error system. That is, we can make e, ė → 0 as t → ∞.

Using this proportional feedback control yields the following control scheme:

τ = Λ(q)u + Υ(q, q̇)

= Λ(q)(ς̈ − ue) + Υ(q, q̇)

= Λ(q)(ς̈ + Kw) + Υ(q, q̇) .

(4.15)
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Due to the fact that the error plant is linear, there is a straight forward way to

determine a gain K that is in fact optimal in some sense. Consider the quadratic

cost functional

J(ue, w0) =

∫ ∞

0

(wT Qw + ut
eRue) dt ,

where the weight matrices Q ≥ 0 and R > 0 are design parameters. Making use of

the calculus of variations and the so-called sweep-method it can be shown that the

control that minimizes J subject to the dynamics of w is the state feedback control law

described by

u = −Kw ,

K = R−1Bt
eΠ ,

(4.16)

where Π satisfies the so-called algebraic Riccati equation,

ΠAe + At
eΠ− ΠBeR

−1BtΠ + Q = 0 .

In fact, this is the method we shall employ when illustrating this procedure in the

context of the serial-link structure in Chapter 5. The software package MATLAB

makes this synthesis simple, since it includes routines that provide the gain K.

Example 4.5 (PD and PID Computed Torque). Another well-known classical

control method for linear systems is the PD control or the proportional-derivative

control. This control has essentially the same effect as the simple feedback control.

However, the derivative is used to obtain local information about the future of the

error and enables adjustment based on that prediction. The PD controller has the

form ue = −Kvė−Kpe, where Kd and Kp are positive definite matrices. The resulting

error system is known to be stable. The control scheme is given by

τ = Λ(q)u + Υ(q, q̇)

= Λ(q)(ς̈ − ue) + Υ(q, q̇)

= Λ(q)(ς̈ + Kdė + Kpe) + Υ(q, q̇) .

(4.17)



CHAPTER 4. NON-CONSERVATIVE FORCES 118

This control can be appended with a smoothing or integral term. This term enables

the control to adjust to constant unknown disturbances and can go quite a ways in

dealing with other benign interference. We introduce the dynamic ε̇ = e and add a

constant multiple of ε to the controller ue. This yields

τ = Λ(q)(ς̈ + Kdė + Kpe + Kiε) + Υ(q, q̇) . (4.18)

We now return to the shape equation to determine what feedback linearization

produces. Indeed, by assumption, both of the systems that we have been developing

have fully actuated shape variables. That is, we have a direct force input correspond-

ing to each component of s. Thus, letting

Υ(q, q̇)k
.
=

1

2
Ckk2k1 ṡk2 ṡk1 + N +

1

2
pt(

∂I−1

∂sk

)p +
∂V

∂sk

+ τ̃ tAk − τ̃ f
k (4.19)

and

Λ(q)
.
= M̃ (4.20)

we see that the shape equation may be handled by the feedback linearization tech-

nique. This provides s̈ = u for the shape variable dynamics and system (3.33) becomes

ξ = I−1p− Aṡ , (4.21a)

ṗ− [adI−1p−Aṡ]
tp = τ̃ , (4.21b)

s̈ = u . (4.21c)

This is a surprisingly simple and elegant statement of the system dynamics. Note

that

1. The equation for the shape is Newton’s equation. Therefore, the shape is com-

pletely controllable and we can make the shape and the shape velocity whatever

we desire.
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2. The shape and its velocity drives the generalized momentum equation and the

momentum, shape, and shape velocity in turn drive the Lie algebra element

ξ. The Lie algebra element’s flow determines the group variable g. This clear

relation between system states is the beauty of the partial decoupling produced

by reduction.

3. The two remarks above indicate the following. Should we so desire, we could

view the shape s as a control variable. Using this control we could look to

manipulate g. The first of equations (4.21) indicates the coupling between the

shape and the group dynamics.

4. The shape equation caste as Newton’s equation can be deceptive. It would seem

that in this case, s is decoupled from g. This is not so if its true that one uses

a feedback on the group variable as part of a control scheme. In that situation,

the control u defined by the feedback linearization, and thus τ , would depend

on the group. However, the partial decoupling remains intact.

With this being said, we state that the third of these notes provide the control

philosophy that we follow. We seek to determine shapes such that locomotion of the

mass-spring system and the serial-link structure is achieved.

4.4 Additional Matter

To draw an end to this chapter we illustrate our control philosophy of using the shape

to elicit gait from our systems. Our illustration will make use of the mass-spring

system. In the case of this system, the selection of a shape that elicits locomotion

is a somewhat intuitive matter. We should simply rock the small mass back and

forth. Or, in mathematical terms, we select the sinusoidal shape s = a sin(ωt). For

demonstration we take a = 1
2

and ω = 2π. Further, we make the selections of

Table 4.3 for the system’s physical parameters. Note that the table indicates two
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m1 (kg) m2 (kg) µb µf λ
1 3 10 µb

6
/µb 0.5

Table 4.3: The mass-spring parameters

physical scenarios, one which uses a forward to backward friction differential and

one that does not. The results of our feedforward shape selection are provided in

Figure 4.9.

There are many things to be learned from simulations such as these. Firstly, note

how essential it is for true displacement that there is a friction differential present.

Obviously, if the substratum “feels” the same to B1, rocking back and forth in a uni-

form manner does not result in any directional preference for displacement and the

block simply oscillates about the origin of the global reference frame, as seen in Sub-

figures 4.9(a) and 4.9(b). Upon the introduction of a friction differential, B1 doesn’t

lose nearly the amount of forward momentum to friction as backward momentum.

Thus, upon displacing forward during the first half cycle of its motion, the block

cannot completely return to its previous position, resulting in a net displacement

thereof. This is illustrated in Subfigure 4.9(c). Also, there is a related net positive

system momentum created by the friction differential, as seen in Subfigure 4.9(d).

This effect comes about due to the fact that the momentum of B1 is biased toward

the positive direction, as its negative momentum is transferred to the substratum

in the creation of heat and other dissipative effects. Though B1 does attain a small

negative momentum, this is easily offset by the forward momentum of B2 as it returns

to its forward thrust. Hence, the system as a whole retains a forward momentum.

It is absolutely impossible for the B1 to experience steady, continuous forward

motion. Friction, being the only external force acting on B1, would oppose motion,

resulting in a continuous deceleration of the system. The only way to pump forward

momentum back into the system is to “push backward” against the friction wall that

has been created by the friction anisotropy of the surface of B1. Similar observations
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Figure 4.9: The resulting motion of the mass-spring system elicited through the
sinusoidal feedforward shape selection.
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will be made for the serial-like structure.

At this juncture we break off our study of the mass-spring system, focusing solely

on the serial-link structure S, which is the system of interest. Hopefully the mass-

spring system made it an easy task for the reader to follow the model development

up to this point and illustrates how this model form can be used to test shapes for

their potential to produce locomotion. In the next chapter we discuss, as we did here

for the mass-spring system, a feedforward gait eliciting shape for S and the principles

underlying this shape and others that will produce locomotion.



Chapter 5

Gray’s Tribute

5.1 Introduction

This chapter makes tribute to the first mechanical description of the lateral undulation

mechanism of locomotion used by snakes, which was due to James Gray [28]. This

tribute entails iterating the findings that he enunciated, expanding upon them, and

placing them in the context of modern modelling and computation. This context

will illuminate the validity of the qualitative and quantitative results of Gray. It

would seem that Gray’s work has gone unnoticed, misinterpreted, and in some cases

unfairly criticized. This is most likely due to the fact that Gray appealed to free-body

diagram type mechanical arguments and verbal descriptions of certain phenomena,

rather than making use of mathematical formulae. However, a correct observation is

a correct observation, no matter how it is expressed. We have reserved our judgement

of Gray and by doing so have found his work to be solid, carrying with it a generality

that we do not believe can be improved upon.

The chapter is divided into two logical portions. The first of these units is a

statement of Gray’s observations as we have come to understand them. We begin by

explaining why it is the case that that any patterned motion observed in snakes must

be due to periodic actuation. From there we explain in detail why the manipulation of

123
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dry-friction cannot be the fundamental cause for steady bulk motion of the animal or

S. Although it may be redundant, for emphasis we also state this as a formal theorem

and provide a proof for emphasis, as this point seems to be continually in confusion.

Next, we revisit the free-body diagram analysis of Gray and the conclusions deduced

thereby. These results are the necessary conditions for locomotion via undulation.

Based on these criterion we recreate an example gliding form for snakes following

Gray.

In the second portion of the chapter we make use of the serial-link structure and

friction models to illustrate the validity and sufficiency of Gray’s observations and

criterion. To begin we describe how to mathematically formulate Gray’s gliding form

description in terms of the shape s of S and discuss several other shapes that have

been proposed by early expositions on the matter of snake locomotion. As part

of this shape construction process we point out that the highly celebrated clothoid

gliding form contributed to Y. Umetani is in fact the same shape constructed by

Gray. Additionally, we show that the sinusoidal shape proposed by Hirose and used

everywhere today is nothing more than the smoothing of the clothoid shape by means

of Fourier series expansion. Having acquired this smooth version of Gray’s shape,

we demonstrate that friction of the dry type cannot be used to elicit undulatory

locomotion, even if the snake’s skin has the highly anisotropic properties indicated

by some research. Following this we introduce normal reaction forces due to lateral

contacts, and the drag associated with them, by making use of viscous friction models.

It is shown that these contacts allow lateral undulation to proceed as pointed out

by Gray, thusly establishing sufficiency. This is expanded upon by carrying out

an experiment designed by C. Gans [21, 22] to illustrate that dry friction is always

debilitating to motion. Proceeding, we take a look into the roll played by the length of

the snake and the parameters of the sinusoidal wave form adopted in gait generation.

Included in these studies is the waveform phase shift parameter. We show that gait

is lost as this shift vanishes, thus establishing the necessity of the first of Gray’s
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conditions. Finally, we show that tracking shapes that elicit gait produces actuation

that is consistent with the remaining propulsive criterion of Gray, which concern the

pattern of muscle contraction taken during locomotion.

5.2 Part I: Gray’s Observations

5.2.1 The Necessity of Periodic Actuation: An Energy Ar-

gument

Consider the vertebrae-rib-actuator structure of the snake or snake-like mechanism

S. How is it possible to free the energy from muscles(actuators) for the purpose of

locomotion? Like a spring, as muscle-like actuators are elongated, their potential

energy is increased. This potential is released by compression. In the case of the

snake it is necessary that, as one actuator associated with a joint compresses, the

opposing actuator elongates. This elongation restores the potential to the system lost

by the associated compression. Thus, by periodically compressing and elongating the

musculature, the snake-like mechanism can continuously maintain a pool of potential

energy and at the same time can continuously release energy to maintain the work

required to overcome the frictional forces opposing displacement.

Being it the case that the shape or curvature of the snake or S is clearly determined

by the compressions and elongations of the actuators, this observation alone explains

the need for the shape variables to be periodic. Thus, it is seen that no theorems need

to be stated or equations provided in order to make the claim that that the shape or

the control inputs for S must be periodic in order for it to maintain a steady rhythmic

gait. All the same, we will state this as a theorem, without proof, for emphasis.

Theorem 5.1. The shape variables of the snake-like device must be periodic in order

for the mechanism to achieve locomotion.

These periodic shapes are referred to as or defined as gaits in [10, 12]. However,
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we will not adopt this terminology.

5.2.2 The Inability of Snakes to Attain Steady Gait via Ma-

nipulation of Dry Friction

It is in no way possible for a snake or S to maintain a continuously forward bulk

motion along some specified direction by manipulation of dry friction via bidirec-

tional torque actuation about its joints. The reason for this is quite simple. If the

bulk motion is steady along some direction, i.e., the velocity of this bulk motion is

constant, then the net force acting on the system must be zero. That is, there can be

no net frictional force. On the other hand, if all particles of the system are moving

forward along some specified trajectory, then there must be a residual or net fric-

tional force acting to oppose the motion in the direction of the bulk displacement.

This is a contradiction. Hence, the conclusion is that if S is to attain gait, it must

do so via external resistances other than friction, i.e., lateral constraints of the en-

vironment. Gray stated this conclusion in a very passive manner and contributed it

to Mosauer [52]. We now state and prove this observation as a theorem in order to

emphasize its definiteness and importance.

Theorem 5.2. It is impossible for the serial-link structure S to attain continuously

forward, steady displacement in a specified direction via the manipulation of dry-

friction in the presence of free side-slip .

Proof. To begin, let us identify the position of an arbitrary particle of the serial-link

structure at time t via the arc-length parameter %, where the length is measured

from the head B1 toward the tail Bn. Such a parameterization is possible being it

true that the shape s at time t fixes the geometry of the structure for a given set of

physical parameters. We denote this position r(t, %). The structure will be said to
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move continuously forward in the direction ~u ∈ B(0, 1), if it is the case that

〈ṙ(t, %), ~u〉 > 0 ∀t, % .

We assume that the structure moves continuously forward. Under this supposition,

〈F (t, %), ~u〉 < 0 ∀t, %

and thus ∫

%

〈F (t, %), ~u〉 < 0 ∀t ,

where F is the dry frictional force acting on the particle. This conclusion comes from

the observation that F acts in the same direction but opposite sense of ṙ. Therefore,

the net frictional force in opposition to motion in direction ~u cannot be balanced and

consequently this motion cannot be steady, as there must be deceleration.

Example 5.1. As an example of Theorem 5.2, suppose that each point along the

centerline of a snake follows the sinusoidal path r(t) = (t, sin(t))t. Then it follows

that for the arc-lengths %1 and %2, r(t, %2) = r(t− td(%2), %1), where td(%) is some time

delay . See Figure 5.1 for an illustration. This figure may be viewed as a snapshot

of the snake at a given time t or as a single period of the trajectory of a single point

along the animal’s centerline. The velocity of the motion along the path is given

by ṙ(t) = (1, cos(t))t and the average direction of bulk motion is given by the unit

vector ~u = (1, 0)t. 〈ṙ(t), ~u〉 = 1 > 0. Thus, the snake moves continuously forward

along the direction ~u at the steady pace of 1. Now, further suppose that the particles

of the system experience some type of dry friction, say da Vinci friction, so that
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F = −δmgµ ṙ
‖ṙ‖ . Then the net friction acting to oppose the motion in direction ~u is

∫

%

〈F , ~u〉 d% = −ρgµ

∫

%

1

‖ṙ‖ 〈ṙ(t, %) , ~u〉 d%

= −ρgµ

∫

%

1

‖ṙ‖ 〈ṙ(t− td(%), 0) , ~u〉 d%

= −ρgµ

∫

%

1

‖ṙ‖ d%

≤ −ρgl
µ

2
,

where l is the total length of the snake and ρ is its mass density. So, there is a net

opposing force implying deceleration in the direction of ~u for all time t. Hence, the

velocity in the direction ~u cannot constantly be 1.
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Figure 5.1: The trajectory of a particle travelling a sinusoidal path along with its
velocity vectors.
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5.2.3 How Normal Reaction Forces are Utilized by Snakes to

Attain Steady Locomotion

Since we have established that dry friction cannot be at the root of steady propulsion,

let us suppose that S is subject to some external resistances or constraints. How are

the potential energies released by the actuation of the device transferred into net

displacement via these constraints? This question was answered by Gray as follows.

Consider the motion of the 3-link structure in the configuration shown in Figure 5.2.

Suppose that lying normal to the center of mass of the three links are smooth rigid

posts that can rotate about their z-axis. By Theorem 5.2, there exists a residual

frictional force directed toward the posterior of the structure so as to oppose forward

bulk motion. Call this force F f . In order for a steady motion to take place in

a particular direction, the following must be the case. The reaction forces attained

through the interaction of the serial-link structure and the pegs must affect the system

so as to cancel the friction force opposing motion. Label these reaction forces F r
1 , F r

2 ,

and F r
3 respectively in accordance with the links B1, B2, and B3 that create them.

Now assume that the moment τ1 is selected so that the shape variable φ1 remains

constant. We seek to establish the conditions under which τ2 may be selected so as

to offset F f .

To do so, we accept that the horizontal components of friction offset themselves

over a completer period of actuation or shape due to symmetry. Thus we need only

balance the reactions and F f . Balancing the force components in the direction of

motion, the lateral force components, and their moments about the joint between B2

and B3, provides for us the system of equations

−F f − F r
1 sin(φ1) + F r

3 sin(φ2) = 0 ; (5.1a)

F r
2 − F r

1 cos(φ1)− F r
3 cos(φ2) = 0 ; (5.1b)
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Figure 5.2: A free-body diagram for the motion of a 3-link system with rigid lateral
resistance.

and

lF r
2 + lF r

3 − lF r
1 (1 + 2 cos(φ1)) = 0 . (5.1c)

Solving the latter two of equations (5.1) for F r
2 and equating them provides us

with the relation

F r
1 = F r

3

1 + cos(φ2)

1 + cos(φ1)
.

Substitution of this relation into the first equation of system (5.1) and resolving this

expression for F f brings about the equation

F f = −F r
3

(
1 + cos(φ2)

1 + cos(φ1)
sin(φ1)− sin(φ2)

)

= −F r
3

(
sin(φ1)− sin(φ2) + sin(φ1) cos(φ2)− sin(φ2) cos(φ1)

1 + cos(φ1)

)

= −F r
3

(
sin(φ1)− sin(φ2) + sin(φ1 − φ2)

1 + cos(φ1)

)
.
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It is then noted that τ2 = lF r
3 and thus

F f = −τ2

l

(
sin(φ1)− sin(φ2) + sin(φ1 − φ2)

1 + cos(φ1)

)
. (5.2)

From this simple expression comes the most insightful observations concerning the

locomotion of snakes to be made. Note the following necessary criterion for steady

displacement:

Criterion 1. For the serial link structure S with n = 3, steady bulk motion

cannot occur in a given direction if φ1 = φ2.

Criterion 2. If φ1 < φ2 and τ2 > 0, then steady forward motion along a

given direction can be attained.

Criterion 3. If φ1 > φ2 and τ2 < 0, then steady forward motion along a

given direction can be attained.

In reality, φ1 need not be fixed and that τ1 may serve to alter this angle rather than

resist its change. Thus, the complete picture. For the 3-link structure, the shape

variables must be periodic and must be out of phase in order for the structure to

obtain steady locomotion in a specified direction by means of lateral reaction forces.

5.2.4 Using Gray’s Criterion to Construct a Possible Gliding

Form for Snakes

We proceed with observations that Gray used to arrive at an explanation via exam-

ple of the sigmoidal form that snakes take on when exhibiting lateral undulation.

Consider the sequence of configurations illustrated in Figures 5.3 and 5.4 for the

serial-link structure S with n = 3 links. We label this configuration sequence Ct with

t = 1, . . . , 12. In configurations C1, . . . , C6, φ1 < φ2. Thus, according to Criterion 2,

τ1 and τ2 should be selected so as to increase the magnitude of the curvature φj in the
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negative direction. In this way it is at least possible to sustain a steady bulk motion

in the forward direction. In configurations C7, . . . , C12, φ1 > φ2. In this case, to be in

accord with Criterion 3, τ1 and τ2 should be selected so as to increase the magnitude

of the curvature φj in the positive direction. Again, this will allow for the feasibility

of a steady bulk motion. Assume then that the motion incurred by each of these

configurations thrusts S into the successive configuration so that this sequence may

be iterated. Then the structure could indefinitely retain steady bulk motion along a

particular direction.

CC C321

φ = −π/4

φ = −π/6

φ = −π/6

φ = 0

φ = −π/12

φ = −π/12

1

2

1

2

1

2

(a)

CC C654

φ = 0

φ = π/12

φ = π/12

φ = π/4

φ = π/6

φ = π/6

1

2

1

2

1

2

(b)

Figure 5.3: The first group of 6 out of 12 proposed configurations for locomotion.
The curvature differential for these configurations is negative.
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φ = π/4

φ = π/6

φ = π/6

φ = 0

φ = π/12

φ = π/12

1

2

1

2

1

2

(a)

CC C121110

φ = 0

φ = −π/12

φ = −π/12

φ = −π/4

φ = −π/6

φ = −π/6

1

2

1

2

1

2

(b)

Figure 5.4: The second group of 6 out of 12 proposed configurations for locomotion.
The curvature differential for these configurations is positive.
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Continuing, we consider the serial-link structure S with n = 14. We select

the shape of the system, st = (φ1, . . . , φ13) such that successive triples of bodies;

(B1, B2, B3), (B2, B3, B4), etc.; correspond to C1, . . . , C12. By doing so, it is ensured

that each portion of this structure can feasibly maintain a steady bulk motion. Fur-

thermore, under these constraints it is seen that the result is a sigmoidal form. By

assuming that each configuration provides the thrust needed to attain the following

configuration, it is clear that the sigmoidal form will be repeatedly traced out by

the structure. A snapshot of this form is illustrated in Figure 5.5. In this figure the

n = 1

2

3

8 11

4

5

6

9 10

127

13

14

Figure 5.5: J. Gray’s example gliding form.

progression of the configuration changes over time is assumed to be such that the

head B1 begins C5. Following the head, B2 begins C6. This continues until B12, B13,

and B14 comprise C4. At this point it should be noted that the differential in the

curvature of this curve, which is ≈ φj − φj+1, is constant. Hence, this curve is not a

sine wave. This is emphasized due to the fact that some researchers who have followed

Gray’s efforts, including Hirose [33], have falsely made the claim that Gray exclaimed

the moving form of the snake to be a sine wave. Indeed, it is true that Gray used the

term “sinusoidal” loosely and interchangeably with “sigmoidal”. However, it is clear

by context that the use of this term was not intended to imply the functional form

f(t) = sin(t).
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5.3 Part II: Validation and Completion of Gray’s

Work

5.3.1 Shape Forms

What is missing from the analysis of Gray? There are two primary, however related,

components missing. Firstly, although Gray mentions that it would be possible to

develop a dynamical model based on the principles that were set forth in his writing,

he did not do so. Secondly, although he did provide some necessary conditions for the

retention of steady motion, he did not demonstrate that they were in fact sufficient.

It was assumed that by meeting the requirement in the curvature differential and by

applying the torques τj in some appropriate way that each of the three link segments

could simultaneously thrust forward and into a position such that the process could

be repeated. This is was big assumption.

We are fortunate enough to have the agents to complete this study. Firstly, using

the modeling tools of Chapter 3 we have already developed a dynamical model for

the snake-like serial-link structure S that Gray described. Secondly, using our model

along with the appropriate friction description and control formulation we can check

the sufficiency of Gray’s criterion. More specifically, being it the case that we have full

controllability with respect to the shape of the structure, we may force the shape s to

adhere to the configuration evolution described in Figures 5.3 and 5.4. Note however

that our control ends there. We cannot ask that we have the specified shape and that

appropriate torques be applied so as to cancel the net opposing frictional force. Gray

did not know this. We shall have to hope that by simply keeping the shape criterion,

the conditions concerning the torques is consequentially satisfied. With this being

said, we will now complete the study.

To begin we shall need a functional form s = Gs(t) for the shape configurations

described by Gray as a function of time. This is not a difficult task. If we assume
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Figure 5.6: Gray’s shape Gs for n = 3. Here a = 1 and ω = 2.

that the Ct are time-uniform snapshots, then we may describe a period of φ1 by

φ1(t) =





2a(ω
π
t) , if 0 ≤ t <

pf

4
;

2a
(
1− ω

π
t
)

, if
pf

4
≤ t <

3pf

4
;

2a
(

ω
π
t− 2

)
, if

3pf

4
≤ t < pf ,

(5.3)

where a is the amplitude of the wave, ω its frequency, and pf = 2π
ω

its fundamental

period. We define φ1(t) on R by evaluating the restriction equation (5.3) at tmod pf
.

Note that the only difference between φ1 and φj is a time delay. Thus, to define the

remainder of the shape, we merely need to specify the appropriate time delay. To do

this, we divide the fundamental period by n and expound that φj(t)
.
= φ1(t−(j−1)

pf

n
).

Gs(t) is now specified.

For a large number of links, S approaches a continuum form and its shape s tends

toward the signed curvature of that form. By realizing this one can elicit many manner

of shape functions that adhere to the necessary geometric conditions for motion by
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starting from the continuum and moving toward the piecewise linear approximation of

the form. Indeed, as shown in [62], one can actually work through a discretization over

an arc-length parameterization of a form, calculating the relative angles determined

by the resultant linear segments. However, this is really unnecessary. In fact, in

some cases it is nearly impossible (try something as simple as sine). So long as the

continuum form is periodic, all that is truly needed is the signed curvature thereof.

This can be readily had in some cases. Once the curvature is determined as a function

of time over a single period we may employ the same steps taken to define Gs(t).

Being very specific, suppose that the path taken by a point along the form (due

to the assumption that the form is periodic, all the points will follow the same path)

is given by the smooth curve r(t) = (x(t), y(t))t. Then the signed curvature is given

by

K(t) =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)
3
2

. (5.4)

Taking φ1(t)
.
= K(t) and φj(t)

.
= φ1(t−(j−1)

pf

n
), where again, pf is the fundamental

period of r(t), a shape is defined.

Some care must be taken in applying this approach to formulating gait generating

shapes. Firstly, if we select n small then S will not be an accurate piecewise linear

approximate to the continuous form. Additionally, if the amplitude and frequency of

r are too large, then the resulting shape variables φj can take on values outside of a

desirable range and the links could begin to intersect one another. With this caveat

as a prologue, we will develop some additional shapes using this technique that are

important for comparison to Gs. We proceed directly to a relevant example.

Example 5.2 (The Sinusoidal Shape). Suppose that we do believe that the form

of a snake during steady undulatory locomotion is a sine wave. Then to determine the

shape s of the snake we simply need to determine the curvature of the smooth curve
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Figure 5.7: The sinusoid shape Sins for n = 3. Here a = 8
π2 and ω = 2.

r(t) = (t, a sin(ωt))t. Using formula (5.4) we obtain

K(t) =
−ω2a sin(ωt)

(1 + (ωa cos(ωt))2)
3
2

.

To ensure that the shape angles do not become much too large due to the frequency of

the sine wave, we select a = ã
ω2 . In this way we obtain

K(t) =
−ã sin(ωt)

(1 + ( ã
ω

cos(ωt))2)
3
2

,

which was the expression used in related simulations. Now, let φ1(t)
.
= K(t) and

φj(t)
.
= φ1(t − (j − 1)

pf

n
). Then the sinusoidal shape, which we denote Sins(t), is

specified for any given serial-link structure size n. See Figure 5.7.

Example 5.3 (The Composite Arc Shape). As a second example of the technique,

and an example that does not adhere to Criterion 1, we consider the composite arc

shape. A shape that was once proposed as “the” gliding form of snakes. This shape



CHAPTER 5. GRAY’S TRIBUTE 139

is made up of two half circles pieced together. Consider the half circles

r1(t) =

(
t,

√(pf

4

)2

−
(
t− pf

4

)2
)t

and

r2(t) =


t,−

√(pf

4

)2

−
(

t− 3

4
pf

)2



t

.

We make the following composite curve by adjoining these two pieces:

r(t) =





r1(t) , if 0 ≤ t <
pf

2
;

r2(t) , if
pf

2
≤ t ≤ pf .

This form is a piece-wise smooth periodic function with fundamental period pf . The

form is illustrated in Figure 5.8.

It is well known that the circle has a constant curvature equal to the reciprocal of

its radius. Thus, without appealing to equation (5.4) or any other curvature formula,

we have

K(t) =





4
pf

, if 0 ≤ t <
pf

2
;

− 4
pf

, if
pf

2
≤ t ≤ pf .

These equations are defined only for a single period. As in the case of Gray’s shape,

we extend the definitions to R by evaluating the period formulations at tmod pf
. Having

the formula extension for the curvature of the composite arc wave we again make the

definitions φ1(t)
.
= K(t) and φj(t)

.
= φ1(t− (j−1)

pf

n
). Then the composite arc shape,

which we denote Arcs(t), is specified for any given serial-link structure size n. This

shape is illustrated in Figure 5.9.

Another method for producing possible gait producing shapes is simply to follow

Gray’s example and directly specify a curvature function. Working in this manner

we do not need to have some functional expression for the continuum form. Of



CHAPTER 5. GRAY’S TRIBUTE 140

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

x−coordinate

y−
co

or
di

na
te

Composite arc wave form

Figure 5.8: The composite arc gliding form. Here pf = 2π.

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

Time−t

S
ha

pe

Composite arc shape Arc
s
 for n=3

φ
1

φ
2

Figure 5.9: The composite arc shape Arcs for n = 3. Here pf = 2π.
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course, upon specification of the curvature of a form, that curve is then specified up

to position and orientation and one can use reversed engineering to determine the

continuum functional form. However, for the determination of shape, the curvature

is the important part and there is not a true need to find a functional expression for

the continuum form. If we are truly interested in seeing it we merely need to make

simulations with large n. Here are a few examples of simply specifying the curvature.

Example 5.4 (The Serpinoid Shape). By specifying curvature directly Hirose de-

veloped his now well-known serpenoid curve and the so-called clothoid curve. Making

the same observation that Gray made concerning the relationship between muscle con-

traction and the shape (i.e., curvature) of the structure or animal, Hirose decided that

all of the forms previous to those proposed by himself were “unnatural”. In partic-

ular, he pointed out that the piece-wise constant curvature, which leads to an arc or

triangular shape, is discontinuous. Thus by correlation of this curvature to muscle

contraction it would seem an unlikely action. The muscles would be performing a

bang-bang control. This type of action, although often optimal for given criterion, is

highly damaging to the structure that it operates on. He also pointed out that curva-

ture related to the sine form is complex and that it would seem difficult to imagine

muscular activity of this kind.

To remedy the unnatural state of these suggested shapes, Hirose proposed two

other curvature forms. The first of these he credits to the work of Y. Umetani. The

continuum curve is described by Hirose as one for which the antagonistic muscles

repeat contracting and relaxing motions alternatively every half cycle at a uniform

speed. Or, a curve such that the curvature is continuous and the curvature differential

is constant on a half cycle. The corresponding continuum functional form is called the

clothoid curve and at the piece-wise level it corresponds to Curnu’s spiral. However,

note that Gray’s suggestion Gs is continuous and increases and decreases at a steady

rate. That is, G′
s is constant on each half cycle. So, in fact, this suggestion had

already been made! Gray suggested the clothoid curve! We emphasize this point
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because Hirose makes the claim in [33] that

“After pointing out that no suggestions of great value concerning the

creeping curve of the snake have previously been made, I proposed two

types of curve, and stated that in terms of motor physiology these are

natural and do not appear to be forced.”

This was an extreme overstatement. One of the two curves that he introduced had

already been suggested by the very person he claimed suggested the sinusoidal wave

form.

Upon examining the clothoid curve, Hirose determined that this was still unnatural

due to the fact that the curvature of this form has corners and is thus not differentiable

at these points. To remedy this, Hirose suggested the form φ1(t)
.
= K(t) = a sin(ω(t))

and φj(t)
.
= φ1(t−(j−1)

pf

n
). This way, the muscle activity would be smooth and non-

complex. The continuum form corresponding to this selection of curvature is given by

the equations

x(%) =

∫ %

0

cos(h(%̄)) d%̄ y(%) =

∫ %

0

sin(h(%̄)) d%̄ ,

where h(%̄)
.
= a cos(b%̄) + c%̄, % is the arc-length of the curve, and a, b, and c are

parameters to be selected. Hirose called this curve the serpenoid curve.

We make a comment on the serpenoid shape, which we shall denote Ss. This shape

is truly the smoothing of Gs. This is now made clear. We begin with the statement

of a well-known theorem.

Theorem 5.3. Suppose that f is a piece-wise smooth periodic function with funda-

mental period pf . The Fourier series of f is given by

f̃(t) = a0 +
∞∑

k=1

(
ak cos

(
2kπ

pf

t

)
+ bk sin

(
2kπ

pf

t

))
, (5.5)
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Figure 5.10: The serpinoid shape Ss for n = 3. Here a = 8
π2 and ω = 2.

where

a0 =
1

pf

∫ pf

0

f(t) dt ,

ak =
2

pf

∫ pf

0

f(t) cos

(
2kπ

pf

t

)
dt ,

bk =
2

pf

∫ pf

0

f(t) sin

(
2kπ

pf

t

)
dt .

The Fourier series of f , f̃(t), converges to f(t) if f is continuous at t and to f(t−)+f(t+)
2

otherwise.

This theorem naturally implies that we may approximate the piece-wise smooth

function f by the truncated series

f̃k̄(t) = a0 +
k̄∑

k=1

(
ak cos

(
2kπ

pf

t

)
+ bk sin

(
2kπ

pf

t

))
.

Now, the component φ1(t) of Gs is certainly continuous and piece-wise smooth peri-
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odic with period pf = 2π
ω

. Therefore, it has a convergent Fourier series. Using Maple

it is an easy matter to determine that the series coefficients are

a0 = 0 , (5.6)

ak = A
4

π2k2

(
cos

(
πk

2

)
− 1− cos

(
3πk

2

)
+ (cos(π k))2

)
, (5.7)

bk = A
4

π2k2

(
sin

(
πk

2

)
− sin

(
3πk

2

)
+ cos(π k) sin(π k)

)
. (5.8)

So let us consider the approximation φ1(t) ≈ f̃2(t). Using equation (5.6) we obtain

φ1(t) ≈ 8

π2
A sin(ωt) .

This is the form of the φ1(t) for the serpinoid shape Ss! As a consequence of the

definition of the remaining φj(t), the same observation holds for each component of

Gray’s shape Gs and Hirose’s suggestion Ss. We could of course take more terms

of the Fourier series for an approximation, but this added frequency content would

result in what Hirose described as overly complex muscle activity.

This is interesting indeed, as it would seem that in fact no suggestions of great

value concerning the shape of a snake during locomotion has been made since Gray!

See Figure 5.11 for a comparison of the defining curves for Gs and Ss. It would also

seem that for particular parameters the differences between the sinusoidal shape Sins

and the serpinoid shape Ss are minute. This is illustrated in Figure 5.12. There

is some difference between Gs, Ss, and Sins and it would seem that there is some

data, such as that presented by Hirose in [33], that support the conjecture that

the serpenoid shape comes closer to that of snakes than the other proposed shapes.

However, it would not appear as though there is a significant difference, statistically or

dynamically in these shapes. The intent of this comment is that Hirose’s studies were

not statistically designed experiments and although there were some differences in the

data, there was no theoretical basis for interpreting the statistical significance of the
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Figure 5.11: A comparison of the defining function for Gray’s shape and that of its
approximating serpinoid shape. Here a = 1 and ω = 2 for Gray’s shape and the
amplitude is scaled appropriately by 8

π2 for the serpinoid shape.
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results. Visually, the differences are so small it is doubtful that they are significant.

Additionally, as we have confirmed through simulations, the locomotion achieved by

Gray’s, the sinusoid, and the serpinoid shapes do not differ significantly. Thus the

mechanical remark. Nonetheless, the serpenoid shape is a helpful shape to utilize

because it is a smooth version of Gray’s shape and it has a simple functional form.

Therefore, it is easier to deal with mathematically.

5.3.2 A Demonstration of the Inability of Snakes to Move

via Dry-Friction

Now that we have Ss and understand its intimate relation to Gs, we may proceed

to demonstrate some of Gray’s points. We begin with the fact that S cannot attain

steady forward motion along a particular direction in the presence of dry friction

alone. Thus, Gray’s conditions for motion are not sufficient upon removal of the lateral

resistance assumptions used to derive them. This is so no matter how directionally

dependent the skin or surface of the structure is. To show this we perform simulations

using the equations of model (4.21), which are repeated here for convenience,

ξ = I−1p− Aṡ ,

ṗ− [adI−1p−Aṡ]
tp = τ̃ ,

s̈ = u .

The following list summarizes the simulation set up:

1. Selecting n = 7, the shape Ss is tracked by S in the presence of uniform dry

friction, elliptical dry friction with major axis in the normal directions, and the

scale-like dry friction.

2. Ss has amplitude and frequency parameters. We will use (a, ω) =
(

8
π2 , 2

)
. In

this way, the shape corresponds to Gs with (a, ω) = (1, 2).
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3. The physical parameters of S used for the presentation are ρ = 6 kg/m, l =

1/12 m, and g = 9.8 m/s2. For the sake of understanding what this means in

terms of the links it is noted that each link has length 2l. Thus, we are selecting

the length to be 1/6 m. Using the conversion factor 1m ≈ 3.28 ft it is seen

that each link ≈ 0.55ft. Using this length, each link has mass 2lρ = 1 kg. 1 kg

at gravity acceleration g provides a force of ≈ 2.20 lb.

4. We also require parameter values for the dry friction coefficient models. In

all cases we use the simple linear elliptic model determined by equation (4.5),

repeated here for convenience:

µ(γ) = ‖vσ
b ‖µtµn(µ2

n cos2(γ) + µ2
t sin2(γ))−

1
2 .

In the uniform case we take µt = µn = 0.5. This value is along the order of those

presented in Table 4.1. In this case equation (4.5) reduces to µ(γ) = µt‖vσ
b ‖

and the meaning of the word uniform is quite clear, as there is no orientational

bias to this force. In the case of the elliptical frictional force we shall use

equation (4.5) along with the parameter values of µt = 0.5 and µn = 3. Finally,

in order to create the scale-like dry friction we add the gaussian term described

in equation (4.6) to the elliptical model. The resultant model is

µ(γ) = ‖vσ
b ‖

(
µtµn(µ2

n cos2(γ) + µ2
t sin2(γ))−

1
2 +

µb

max G
G(γ̄, σγ)

)
.

In this model we use the parameters µt = 0.5, µn = 1, µb = 2.5, γ̄ = π, and

σγ = 0.5. This is consistent with the observations of [32, 29].

5. As explained in Chapter 4, numerical integration is required to calculate the

dry frictional forces. For simulation we use the MATLAB routine quad8. This

integration algorithm is a high order method that recursively employs an adap-

tive Newton-Cotes quadrature scheme to meet a specified relative and absolute
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tolerance, RelTol and AbsTol. For our calculations, tol
.
= [RelTol AbsTol] =

[10−6 10−5].

6. We select zero initial conditions. With this selection the structure will initially

experience 0 friction and will experience some bulk displacement. Additionally,

it takes a few seconds for the shape tracking to converge. Thus, there is some

transient behavior observed before the structure illustrates the steady-state be-

havior of the shape in the dry friction scenario. For the presentation we separate

the transient and steady-state performance in the following manner. We run

an initial simulation for 5 s in order to reach steady-state. We then take the

terminal conditions qt of this initial simulation, set gt = 0, and perform another

simulation spanning the time interval of [5, 17]. The repositioning of the group

positions back to the origin provides us with a simple reference point for the

resultant steady-state motion.

The collected evidence is now presented and interpreted. With respect to related

figures, the trajectories of x1 and p1 are shown as solid “–” curves, the trajectories

of y1 and p2 are dashed “- -” curves, and the trajectories of θ1 and p3 are displayed

as dotted “:” curves. We begin with the uniform dry friction case. Table 5.1 pro-

vides some numbers while Figures 5.13 and 5.14 provide illustrations of the motion

and associated quantities. Let us begin with the table. At none of the times corre-

sponding to the 6 snap-shots presented is the position of the structure’s head outside

of the 1 ft ball about its steady state relocation to the origin. We see the futility

of the undulations more clearly when viewing the snapshots of the entire structure

corresponding to the table values. These are provided in Figure 5.13. The structure

is not going anywhere once it settles in to its steady-state. If the snapshots provided

are not sufficient to convince one of this, we refer the reader to Subfigures 5.14(a)

and 5.14(b). In the first of these we see the initial activity of the group variables.

Even during the transient behavior it is seen that the positions x1 and y1 return to

the zero state after one fundamental period of π. As indicated in the second of these
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subfigures, the head of the structure is simply swinging as the shape moves through

its periodic evolution. Note that every π units the head returns to the origin with the

same orientation. Perhaps more illustrative is the generalized momentum trajectories

illustrated in Subfigures 5.14(c) and 5.14(d). There is no need to observe patterns

here, we simply note that the magnitudes of these values are on the orders of 10−16

and 10−10 respectively, which is 0 in computational terms. Finally, Subfigures 5.14(e)

and 5.14(f) illustrate the motion and velocity, respectively, of the head of S along the

the average direction of the structure. The structure does not have any bulk motion

along this direction whatsoever.

time t (s) x1 (ft) y1 (ft) θ1 ‖(x1, y1)
t‖ (ft)

t =7 -0.19 -0.62 -0.04 0.65
t =9 -0.23 -0.58 -1.64 0.62
t =11 -0.04 -0.00 0.50 0.04
t =13 -0.36 -0.75 -0.69 0.83
t =15 -0.05 -0.40 -1.27 0.40
t =17 -0.05 -0.16 0.67 0.16

Table 5.1: Group variable values corresponding to the motion of a serial-link structure
in a uniform simple dry friction environment. Related Figures: 5.13 and 5.14.

We now move on to the simulation results obtained for S when experiencing

elliptic directionally dependent dry friction. Table 5.3 provides relevant data for the

6 snapshots of motion illustrated in Figure 5.15. As the table and figure indicates, it is

again the case that at no time does the head of the structure venture beyond the bound

of the 1 ft ball about the steady-state relocation to the origin. It would seem that even

in the case of the directionally dependent dry friction, the structure cannot attain

meaningful displacement. However, when we look a bit closer there is something

different about what occurred in the presence of the directional dependence. We

refer the reader to Figure 5.16. In Subfigure 5.16(b) it is clear that the head does

not return to the origin of coordinates and in fact x1 makes a steady climb away

from the origin. This indication of motion is further supported by Subfigure 5.16(d).
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(e) Config. at time t = 15 s.
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(f) Config. at time t = 17 s.

Figure 5.13: The motion of the serial-link structure tracking the Serpenoid shape Ss in
a uniform simple dry friction environment. The friction parameters are µt = µn = 0.5
and the scale of the snapshots is 1 ft.
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(a) Transient group behavior.
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(b) Steady state behavior
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(c) Transient momenta.
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(d) Steady state momenta.
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(e) Directional displacement.
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(f) Directional velocity.

Figure 5.14: The motion of the serial-link structure tracking the Serpenoid shape Ss

in a uniform simple dry friction environment continued. Individual features of the
motion.
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Note the positive generalized momentum component p1 of the head. This says that

the momentum of the system projected into the body frame of the head is positive

along the direction tangent to the head. So, the system tends to move forward along

the direction of head. However, continuous forward motion is not obtained and it

is painfully clear that the directional dependence is not the impetus behind snake

locomotion. We have selected friction in the normal direction to be 6 times that of

the tangent direction and the payoff in momentum is almost negligible.

time t (s) x1 (ft) y1 (ft) θ1 ‖(x1, y1)
t‖ (ft)

t =7 -0.15 -0.65 -0.04 0.67
t =9 -0.14 -0.61 -1.62 0.62
t =11 0.07 -0.07 0.49 0.10
t =13 -0.20 -0.83 -0.69 0.86
t =15 0.15 -0.48 -1.26 0.51
t =17 0.18 -0.28 0.67 0.33

Table 5.2: Group variable values corresponding to the motion of a serial-link structure
that is subject to elliptic friction anisotropy. Related Figures: 5.15 and 5.16.

Interpretation of simulations for the scale-like dry friction is nearly identical. See

Table 5.3 and Figures 5.17 and 5.18. The only slightly interesting difference is in

the relatively calmer behavior of the generalized momenta as compared to the case

of the elliptic dry friction. It would seem that the addition of the backward friction

anisotropy does have a stabilizing property. This might indicate an auxiliary benefit of

the morphology of snake skin, where, as mentioned in earlier discussion, a significant

difference is seen between friction experienced by a snake skin along the forward and

backward tangential directions. However, this friction differential is not a primary

component of achieving some type of steady bulk displacement of the animal. It seems

more likely that this anisotropy has been developed to aid in the effectiveness of those

forms of snake locomotion that make use of static friction. Assuming that the shapes

used in these simulations are reasonable models of shapes taken on by snakes, and

they are, it would seem that Gray and his predecessors were absolutely correct in
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(e) Config. at time t = 15 s.
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(f) Config. at time t = 17 s.

Figure 5.15: The motion of a serial-link structure that is subject to elliptic friction
anisotropy. The scale of the snapshots is 1 ft.
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(a) Transient group behavior.
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(b) Steady state behavior.
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(c) Transient momenta.
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(d) Steady state momenta.
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(e) Directional displacement.
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(f) Directional velocity.

Figure 5.16: The motion of a serial-link structure that is subject to elliptic friction
anisotropy, continued. Individual features of the motion.
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(f) Config. at time t = 17 s.

Figure 5.17: The motion of a serial-link structure that is subject to scale-like friction
anisotropy. The scale of the snapshots is 1 ft.
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(a) Transient group behavior.
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(b) Steady state behavior.
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(c) Transient momenta.
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(d) Steady state momenta.
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(e) Directional displacement.

6 8 10 12 14 16

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

time−t sec

D
ire

ct
io

na
l V

el
oc

ity

(f) Directional velocity.

Figure 5.18: The motion of a serial-link structure that is subject to scale-like friction
anisotropy, continued. Individual features of the motion.



CHAPTER 5. GRAY’S TRIBUTE 157

time t (s) x1 (ft) y1 (ft) θ1 ‖(x1, y1)
t‖ (ft)

t =7 -0.17 -0.64 -0.04 0.66
t =9 -0.17 -0.59 -1.63 0.62
t =11 0.02 -0.04 0.49 0.05
t =13 -0.26 -0.80 -0.69 0.84
t =15 0.07 -0.45 -1.27 0.45
t =17 0.09 -0.23 0.67 0.25

Table 5.3: Group variable values corresponding to the motion of a serial-link structure
that is subject to scale-like friction anisotropy. Related Figures: 5.17 and 5.18.

their statement that the motion of the snake is not primarily due to dry-friction or

manipulation thereof via snake skin morphologies.

5.3.3 The Introduction of Normal Reaction Forces: Gait Ob-

tained

As already discussed, it has been recognized that in order for S to move, it must be

capable of eliciting substantial reaction forces normal to itself via interaction with

significant protrusions from the substratum over which it moves. Examples of such

protrusions being grass thickets, shrubs, and sand into which the body can partially

embed itself. Gray likened these protrusions to smooth rigid cylindrical pegs.

The use of lateral resistance in propulsion generation can be observed when consid-

ering the locomotion of eels and fish. This motion occurs in a fluid, where viscous-like

frictional forces are experienced. By viscous, it is meant that the pressure or reac-

tion forces experienced by the object can be decoupled into those components that

act normally and those that act tangentially. The pressure of a fluid in the normal

direction acts like a wall that may be used to push against. The friction experienced

by the object as the displaced fluid moves tangentially over its surface accounts for

the tangent component. These viscous forces are indeed like the reaction forces that

a snake could produce by interaction with a smooth peg or other fairly rigid lateral
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protrusions. The normal force experienced by the snake will be approximately equal

to the force it levies against the peg. Hence, the peg would act as a wall. Further,

when the snake moves past the outgrowth, the dry friction resulting from their tan-

gential contact will be minimal due to the smoothness of the peg and the anisotropy

of the lateral scutes found on the animal. Thus, we may model the presence of these

peg-like protrusions envisioned by Gray as viscous forces.

Models for viscous friction forces have already been produced and discussed in

Examples 4.2 and 4.3 of Chapter 4. One of these is a da Vinci type friction law and

the other is linear. As indicated in [62], from whence these expressions originated,

these models behave similarly. Thus, for simplicity, we shall make use of the linear

model of Example 4.2. Relating this model directly to the matter at hand, ct will

indicate the smoothness of the protrusions and the lateral portion of the snake or

serial-link structure. cn will be used to indicate the strength of the normal reaction.

If this parameter is large, then the protrusion is like a wall. If smaller, then this “wall”

either has some give or elasticity to it or may actually slide slightly when subjected

to large contact forces.

Now we return to the simulation process, replacing the dry friction model with

the viscous friction model. For comparative purposes, we use the same values for the

parameters ct and cn as used for µt and µn, respectively, during the simulations with

the elliptic dry friction model. In this way, the only difference between these models

will be the direction in which the friction force acts.

Presented in Table 5.4 is the data for the coordinates of B1 corresponding to

the 6 motion snapshots illustrated in Figure 5.19. Indeed, the data would appear

to indicate that a steady bulk motion is achieved in the presence of lateral reaction

forces. This can, of course, be seen with ones own eyes by viewing the snap-shots.

The most revealing evidence, however, is illustrated in the subfigures of Figure 5.20.

As indicated in Subfigures 5.20(d) and 5.20(e), respectively, the structure has a steady

momentum preservation with mean of ≈ 0.8 and the head travels ≈ 6 ft along the
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time t (s) x1 (ft) y1 (ft) θ1 ‖(x1, y1)
t‖ (ft)

t =7 0.55 -1.16 -0.09 1.28
t =9 1.53 -1.33 -1.49 2.02
t =11 2.46 -1.42 0.43 2.84
t =13 2.96 -2.56 -0.68 3.92
t =15 4.17 -2.46 -1.15 4.84
t =17 4.93 -2.95 0.58 5.75

Table 5.4: Group variable values corresponding to the motion of a serial-link structure
that is subject to lateral forces. Related Figures: 5.19 and 5.20.

steady-state direction of motion.

Furthering the discussions, not only is it the case that dry/sliding friction is not at

the root of snake-like locomotion, it is in fact the case that the presence of dry friction,

both ventral and lateral, will only serve to retard the potentials for motion. To

demonstrate that this is so we shall now perform, through simulation, an experiment

described by Carl Gans in [22]. He wrote

“...Consequently, lateral undulation might be expected to proceed most ef-

fectively in a frictionless system. I tested this concept by constructing

a field of cylindrical, high friction, rough surfaced pegs, each of which ro-

tated on adjustable pin bearings. A small indicator pin on each peg showed

those in contact with the snake. The horizontal surface could be lubricated

with wax and the bearings could be tightened to make the pens more diffi-

cult to turn. The effective friction of each peg opposing forward progress

increased drastically when the propulsive contact between snake and pen

shifted from rolling to sliding; snakes moved freely across the field when

the pegs spun loosely, but were significantly slowed as the bearings were

tightened or the floor roughened. Hence friction at the ventral surface and

the lateral points definitely decreased the speed and increased the muscular

effort needed for progression.”
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(e) Config. at time t = 15 s.

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x
1
(t)

y 1(t
)

(f) Config. at time t = 17 s.

Figure 5.19: The motion of a serial-link structure that is subject to lateral forces.
The scale of the snapshots is 1 ft.
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(a) Transient group behavior.
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(b) Steady state behavior.
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(c) Transient momenta.
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(d) Steady state momenta.
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(e) Directional displacement.
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(f) Directional velocity.

Figure 5.20: The motion of a serial-link structure that is subject to lateral forces,
continued. Individual features of the motion.
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Gans cites his own work, in particular [21], as a reference relating to this experiment.

Interestingly enough, however, when going to this reference Gans cites personal ob-

servations as the basis for these claims and does not provide any details (i.e. data).

Undoubtedly, Gans did observe these phenomena. But simply for scientific edification

we shall reinvent this experiment by using the models we have developed.

We shall use the linear viscous friction model of Example 4.2 to model both

the normal reaction forces of the pegs in Gans’ experiment and the friction due

to tangential contact between the snake and the peg. The elliptical and scale-like

linear dry-friction models are used to describe the ventral friction experienced by the

snake. Thus, we combine these two models to determine an appropriate expression

for the reduced frictional force τ̃ . Instead of tightening the bearings of pegs, we

simply increase the value of ct in the viscous friction model. Also, we have the added

flexibility of being able to change the resistance imposed by the post via cn. We

will not use this flexibility. Opting instead to make the resistance quite large so as

to imitate the fixed peg. Further, instead of waxing or roughening the substratum

on which the snake travels, the values of µt, µn, and µb may simply be reduced or

increased in a fitting manner. Note also that, in our case, there is always a virtual

peg normal to each segment of the snakes vertebrae, like swimming in a fluid. Thus,

there is no need to worry with issues such as variability due to peg spacing, etc.

Being more specific, during the first half of the simulated experiment it is assumed

that the substratum on which the structure/animal lies is slick. By slick we mean

that the structure experiences negligible ventral friction. Under these conditions the

posts are fixed by selecting cn = 10 and then we observe what occurs by successively

tightening the pegs, incrementing ct uniformly from 0 to 10 with step size ∆ct = 1.

The average of the first component of the generalized momentum p1 is used as the

measure of how well the snake is capable of moving. Since the parameters of the shape

used do not change from trial to trial, this is a legitimate measure of progression.

The findings of this experiment are shown in Figure 5.21. The results are con-



CHAPTER 5. GRAY’S TRIBUTE 163

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

c
t

ge
ne

ra
liz

ed
 m

om
en

ta

Relation between momenta and c
t
 : c

n
; c

n
=10

Figure 5.21: The debilitating effects of lateral friction.

sistent with Gans’ observations of actual snakes. As the pegs are tightened, the

locomotive capability of S is lost. Our results obviously fall out of the realm of the

peg analogy after ct is increased beyond a particular point. For if the actual pegs

were completely tightened, ct would not take on the value of 10 and thus the snake

would still be capable of movement, albeit impaired. It is interesting to note just how

sharply the momentum is decreased upon the first few increases of ct. As pointed out

in the literature, this should probably explain the morphology of the scutes present

on the lateral portion of most snakes. It would seem that these scales are designed

to effectively minimize ct.

For the second portion of the experiment the focus is shifted to the debilitating ef-

fects of ventral friction. Thus we completely loosen the pegs, maintaining the settings

ct = 0 and cn = 10 and increment µ = µt = µn from 0 to 10 with step size ∆µ = 1.

Hence we are applying a uniform dry friction. Being it so that no true locomotive

advantage was gained by use of the elliptical and scale-like frictions in our study
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heretofore, it seems appropriate to do so. Again, the average of the first component

of the generalized momentum vector is used as a measure of motion capability.

The findings of this experiment are shown in Figure 5.22. Just as in the case of the
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Figure 5.22: The debilitating effects of ventral friction.

presence of lateral friction, ventral friction is seen to have drastic effects on locomotive

capability. Unlike the case with lateral friction however, when the coefficient of ventral

friction becomes 10, thus enabling the friction to have an influence equal to that of

the normal resistance, locomotion is not completely lost. It is the case though, that

the average momentum becomes so low that the capability is effectively lost.

Based on these results the following conclusion is clear. The lateral undulation

mode of snake locomotion is most effective in a frictionless environment.
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5.3.4 The Need for a Phase Shift in Shape and Small Inves-

tigations Into Other Parameter Effects

In the previous section we established the plausibility of the assertion that a snake

could only acquire gait in the presence of normal reaction forces and furthered this

observation by showing that the motion proceeds more effectively in a low friction

environment. With that being established we proceed to demonstrate the necessity

of the phase shift applied along the shape variables for the acquisition of gait. That

is, we illustrate the correctness of Criterion 1.

The serial-link structure dynamics for n = 3 are utilized. In this way we avoid the

nonphysical situation of having the links interact with one another as the phase shift

between the adjacent links is diminished. Beginning with a uniform phase shift along

the structures gliding curve, this phase shift will be decremented exponentially. Being

more specific we use the alteration of Ss shape defined by φ1(t)
.
= K(t) = A sin(ω(t))

and φj(t)
.
= φ1(t− (j−1)

pf

(n−1)k−1
), with k = 1, . . . , 10. This will allow examination of

the resultant effect on the system’s capability to elicit locomotion. This capability will

again be measured by the average value of the steady state momentum component

p1. In order for this structure to be given as much of an advantage for successful

gait as possible, we allow it to move in a frictionless environment with stiff lateral

resistance. i.e., µ = 0, ct = 0 and cn = 10. Such will be the case for the remainder of

the investigations presented in this section unless otherwise stated.

The data acquired from this small study are provided in Figure 5.23 along with

the spline interpolation thereof. As predicted by Criterion 1, if there is no phase

shift between the differential angles of the structure, the resistance to the structure’s

movement cannot be equalized and the capability to maintain momentum is thus

lost. One of the more interesting features of the data is the initial increase in average

momentum with the decrease of phase shift. This suggests that for a given set of

prefixed system and shape parameters, there is an optimal phase shift. Although this

data does not illustrate it, our personal observations have shown that the optimizing
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Figure 5.23: The loss of motion experienced as the shape tends toward a composite
arc. i.e., a shape with zero phase-shift.

phase shift value is certainly different than the uniform selection that has been made

from the onset of the shape definitions. Of course, this optimizing value is dependent

on the other system and shape parameter values. One fact that remains constant,

however, is Criterion 1.

Attention is now turned to another of the shape parameters, the frequency pa-

rameter ω. The relationship between locomotion and frequency of the shape variables

should be quite obvious. If the structure moves 3 ft at a given frequency over a speci-

fied time period, then a distance of 6 ft can be travelled during the same span of time

by doubling that frequency. That is, of course, given that the external resistances are

in fact rigid and capable of returning the additional force exerted on them. All the

same, for the sake of completion, we shall demonstrate that this is indeed the case.

We vary ω over the range 1 to 2.5π by increments of ∆ω = 0.25π. At each of these

values the average of p1 is calculated. The resulting data is presented in Figure 5.24.

There is nothing unexpected or distinguishing about this result. However, we would
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Figure 5.24: The effect of wave form frequency on momentum preservation.

like to point out that although this figure would make it appear as if there is no

limit to the locomotive capacity of the structure, the reality of the matter is that the

frequency would have an upper-bound determined by the capacity of the actuators

driving the differential angles and the rigidity of the lateral resistances.

Continuing, we examine the effects of the amplitude parameter of the serpenoid

shape. Upon initial experimentation with this parameter, we were a little surprised to

find that the average momentum along the head direction decayed with very modest

increments in amplitude. Feeling that the increased angle taken by the head of the

structure due to the amplitude change may have obscured the true trend of the system

momentum change, we altered our measure of progress to the average directional

velocity of the head. This measure was determined for amplitude values ranging from

0.1-1 in increments of ∆a = 0.1 and the results are shown in Figure 5.25(a). Just as in

the case of our previous observation, the locomotive capacity of the structure quickly

declines after the initial increase in the value of a. After some thought we found
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(a) Ideal lateral resistance.
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Figure 5.25: The relationship between shape amplitude and directional velocity and
the dependence of this relation on the lateral forces.
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that the reason for this was the frictionless environment ct = 0. If the structure is

absolutely straight then it will not move, thus some amplitude is necessary. However,

it is clear that once in motion, the least resistance is found by the 0 amplitude

configuration. Thus, the increase of amplitude only served to create more resistance

to motion.

However, the story is quite different if one allows a tangential resistance. In

Figure 5.25(b) results are presented for the parameter value of ct = 0.25 and in

Figure 5.25(c) results corresponding to the assignments of ct = 0.5 and cn = 3, our

original simulation setup values, are provided. In these cases it is seen that in the

presence of only a slight tangential resistance, there is a much added utility to larger

values of a. All of these figures indicate that there is an optimal amplitude, given

that all the other system parameters are prefixed.

As a final glance at the large effects that the system and shape parameters can have

on the structure’s capability to preserve a certain amount of momentum, the effect of

the size n of the structure is considered. Again, we look at average momentum along

the head as a measure of the effects. Structures with 3 to 13 links are considered.

The results are shown in Figure 5.26, and are quite interesting. For it would seem

that for a given set of shape and physical parameters, there is an optimal size for the

snake. This is sort of surprising and the reason for why this may be the case does

not seem obvious. At first glance one might conclude that our results are erroneous.

However, as pointed out in [22], one should reserve that judgement. Gans wrote,

“The literature contains a single report that suggests that considerations of

the energy expended are indeed appropriate in snake locomotion. Heckrote

(1967) chased various-sized specimans of the garter snake, Thamnophis s.

sirtalis, through an array of pegs on one inch centers. He found that the

snake’s speed in terms of the number of body lengths per second increased

as he used larger specimans, reached a maximum, and then decreased for

the largest; this suggested that there was an optimal size for a snake.”
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Figure 5.26: The relationship between the length of the the serial-link structure and
its momentum preservation.

Quite amazing indeed. We are unaware of any results that take up the topic further,

but our simulations support this claim. Also, one cannot help but notice the consis-

tency of the simulation results with nature. Given that the links were chosen to have

a length of approximately 1
2

ft, the simulations indicate that the optimal length for

the snake is about 5ft. This is eerily close to the stretched length of many of these

animals.

5.3.5 Actuation V’s Geometry: How the Phase-shift is Uti-

lized

To conclude our review and demonstration of the correctness of Gray’s work on un-

dulatory locomotion we investigate Criterion 2 and 3. This requires returning to the

shape tracking control scheme, which is now restated for convenience. Recall that for
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the desired shape ς we select

τ = Λ(q)(ς̈ + Kw) + Υ(q, q̇) ,

where w = (et, ėt)t is the vector of error and error velocities and

Λ(q)
.
= M̃ ,

Υ(q, q̇)k
.
=

1

2
Ckk2k1 ṡk2 ṡk1 + N +

1

2
pt(

∂I−1

∂sk

)p +
∂V

∂sk

+ τ̃ tAk − τ̃ f
k ,

with

M̃ = m− AtIA ,

Ckk2k1 = (
∂M̃kk2

∂sk1

+
∂M̃kk1

∂sk2

− ∂M̃k1k2

∂sk

) ,

N = pt[adξ]Ak + pt(
∂Ak

∂s
ṡ− ∂A

∂sk

ṡ) .

It is clear that the analytical calculation of τ is rather out of the question. We have

already seen that the calculation of I and A can be difficult to carry out and the

resulting expression intractable. Our solution to this problem was to carry out the

computations numerically with software such as MATLAB. One should continue in

this vein and that is what we do. All of the partials and gradients indicated by the

above expressions can be computed numerically with a centered difference scheme.

This scheme is second order and is consequently quite accurate for sufficiently small

variation in shape. In our calculations we take ∆s = 10−6.

Now that we have a way to calculate τ we look to establish its relationship with the

curvature differential δs
.
= (s1, . . . , sn−2)

t − (s2, . . . , sn−1)
t. It was Gray’s conclusion

that during lateral undulation locomotion the animal should contract its musculature

so as to increase signed curvature toward the right side (viewed from tail to head)

of the animal along those portions of the body where the curvature differential was
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positive, thus making the torque negative. The opposite being the case for those

portions where the curvature differential is negative. By doing so, he reasoned that

the result would be preservation of forward momentum along the path of the animal.

It was found that the shape of S can be controlled and that by maintaining the

shape deduced by Gray, satisfactory locomotion is achieved. So, we look to show that

while this was happening, the torque to curvature differential relationship was in fact

following the pattern suggested by Gray. It is somewhat difficult to devise a way to

establish this relationship via simulation. However, we determined that in order to

cope with the phase-shift built into the shape selection and the fact that there are

differing numbers of actuation points and differential curvature components, that the

average torque along the structure should be compared with the average differential

curvature along the structure over time. Thus, when the snake tends to have a

positive differential curvature along the length of the body, the average torque should

be negative and visa versa.

To determine if this is generally the case lateral undulation was elicited via Ss

with structures of lengths n = 3, 7, 10 and we simply plotted the average torque

against the average curvature differential over time. The results of this experiment

are provided in Figure 5.27. These simulation results would seem to indicate that,

again, Gray was correct. He should be. The criterion he developed came through

correct application of Newton’s laws. Because these criterion are so solid, had our

simulation experiments not agreed with them, we would have had to conclude that

our simulation setup was in error.

5.4 Additional Matter

The purpose of this chapter was to indicate that the basic principle of undulatory

locomotion was clearly and full explained by J. Gray in [28]. His insight was founded

in many years of animal locomotion research and in particular, the motion of eels and
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(b) The 7 link example.
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Figure 5.27: The relation between actuation and curvature.
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fish [30, 27]. Having come to understand the method of propulsion in these animals,

it was something of an easy transition to the principles of lateral undulation for the

snake, for they are the same within idealized conditions. Namely, the condition of

being emersed in a fluid. Concerning this idealization and others, it is felt that the

most useful observations were made by J. Gray in the conclusion of his defining study.

Therefore, for the sake of completion and progress, it seems more than fitting to now

recall these observations. We will directly quote them, for they are stated in the most

clear and elegant manner and we would risk deterioration of their value if we were to

attempt to paraphrase. These observations are:

Generalization 1. “In no case is the amplitude of the muscular contraction,

or the difference in phase between successive segments, exactly the same

for all segments, nor is the duration of the contraction phase of the

muscular cycle necessarily the same as that of the relaxation phase.

None of these facts, however, affects the main principle. The actual

form of the body of a gliding snake is an expression of the precise form of

the muscular cycle carried out by each group of segmental muscles and

of the phase difference between the muscles of successive segments; in

every case, however, gliding motion depends on the same fundamental

relationship between the position of the contracting axial musculature

in respect to an increase in body curvature towards the same side of the

body.”

Generalization 2. “It has been assumed that each segment of the body is

subjected to external restraint which prevents its movement in a direc-

tion normal to its own longitudinal axis. In nature, an approximation

to such conditions exists when the animal is moving over a surface such

as gravel of small stones, or when the animal is moving through close

herbage or grass. Again, when moving over soft dry sand (into which

the body tends to sink, or which tends to be heaped up at the sides by
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the animal’s own movements) each segment is subjected to a resistance

acting normally to its surface. On the other hand, the distribution of

external resistances can be restricted to a limited number of points along

the body,...Precisely similar arguments apply to such conditions...”

Generalization 3. “In the idealized system ... it is possible to assume that

the energy liberated, when the muscles operating across each joint pass

from one phase of the contraction cycle to the next, is just sufficient

to move the segment concerned from from its original position to that

previously occupied by the segment immediately anterior to itself. In

a living snake this condition is by no means fulfilled; more frequently,

some regions provide some or all of the energy required to move other

parts of the body. The fundamental principles are, however, unaffected,

... ”

It is the belief of the author that those who desire to build snake-like robot tech-

nologies in order to mimic the depth of adaptability observed amongst real snakes

should heed these generalizations and make them the goals for which they strive. It

is clear that the functionality that motivates the research in this area is ultimately

wrapped up in these remarks. Although the use of the idealized gliding form sug-

gested by Gray to elicit directed gait from snake-like robots is an amazing indication

of the feasibility of using the lateral undulation mechanism for propulsion and should

be commended, one must be careful not to become fixed to this form. For by doing

so, the potentials of the mechanism will be lost.

We leave this discussion with an example. Namely, the eel. As pointed out in

[27], the eel will illustrate two of the three generalizations discussed, namely Gener-

alizations 1 and 3, when swimming. The amplitude of the differential angles increase

along the vertebrae structure of the eel while in motion. It is unclear whether or not

the reason for this is head stabilization or pressure manipulation. However, supposing

that it is for the purpose of head stabilization, we see that the eel uses amplitude and
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phase modulation along the length of this body, and by doing so, transfers the ma-

jority of the burden of locomotion effort to the posterior portion of the body. Along

the same vein, for certain fish, nearly all of the propulsive effort is exerted from the

posterior of the animal. To partly capture such an effect we construct the following

shape: φ1(t)
.
= a sin(ω(t)) and φj(t)

.
= 3

2

(
j

n−1

)
φ1(t − (j − 1)

pf

n
). Using the same

parameters as those used to generate Figures 5.19 and 5.20, we track this shape and

observe the locomotion. The results are provided in Figures 5.28 and 5.29. As can

clearly be seen in the motion snapshots, breaking the serpenoid form did not destroy

locomotion and we were able to stabilize the anterior portion of the structure (Note

that the anterior always remains straight).
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Figure 5.28: The motion of a serial link structure mimicking an eel-like shape.
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(c) Transient momenta.
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(d) Steady state momenta.
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(e) Directional displacement.
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Figure 5.29: The motion of a serial link structure mimicking an eel-like shape, con-
tinued. Individual features of the motion



Chapter 6

Numerical Optimal Control

6.1 Introduction

In this last chapter we considered the fundamental mechanism of the lateral undu-

lation form of snake locomotion, carefully noting the generality of it. Using this

mechanism we constructed an example gliding form for S after the construction of

Gray and illustrated its locomotive capability in simulation. Hirose had claimed that

this form was quite in line with that of actual snakes when introduced to an ap-

proximately uniform substratum. However, as emphasized by Gray, the shape or

differential angle relations that he developed were simply a way to realize a sigmoidal

form and by doing so, a way to indicate why snakes take such a form during loco-

motion. There are a number of similar periodic relationships that elicit the same

effect, as indicated by our use of the sinusoidal wave form to derive differential angle

relations which were qualitatively identical to the sinusoidal relations though not of

that form. Additionally, even within the adoption of the sinusoidal shape variables

there is much room for adaptation that has never been utilized. For instance, as

indicated at the closing of Chapter 5, it is quite possible that the sinusoidal shape

variables could exploit differing amplitudes and phase-shifts. We illustrated this with

the eel example. Thus the question, what is optimal? What form should the snake’s

179
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shape variables take on for locomotion in a relatively uniform environment? Are the

sinusoidal shape variable forms with uniform amplitude and phase-shift indeed what

is natural? These questions have not, at the time of this writing, been answered from

an analytic perspective.

In this chapter, an optimal control methodology is developed for determining the

optimal gait eliciting shapes for under-actuated systems with symmetries. As pointed

out in the work of Ostrowski, the class of systems that fall into this framework

is rather large and diverse. Biological examples are abundant, including worms,

amoeba, fish, eels, and of course the topic we are currently investigating, snakes.

Satellite reorientation and other applications also fall under this guise. It is noted

that Ostrowski has also made efforts in this way, presenting a discussion of an optimal

control methodology in [56].

To initiate the development of the methodology, Gaussian quadrature is intro-

duced. This will be followed by the development of implicit Runge-Kutta methods

for solving ODEs that are based on collocation. Using the Gaussian quadrature

nodes as collocation points we arrive at the high order Gaussian integrators. Next,

the traditional optimal control problem is introduced. Using the union of Gaussian

quadrature and Gaussian integration, a high order discretization of the optimization

problem is obtained. We then develop optimality conditions from this discretization.

After obtaining the optimality conditions in a very general setting, it is shown

how they can be adapted with minimal effort to apply to the dynamics of locomotion

systems with symmetries. There are two primary tools used in the adaptation. One

of these, as indicated before, is to view the shape variables as control variables. The

other is to use the idea of the periodic derivative to perform the minimization of

the cost over the space of periodic functions. After providing a good deal of detail

concerning the resulting optimality conditions and their solution we then use the

method to determine the optimal gait pattern for the S and explore the changes in

the optimal solution which occur due to changes in parameter values.



CHAPTER 6. NUMERICAL OPTIMAL CONTROL 181

6.2 Gaussian Quadrature

Consider the function f ∈ C[t0, tf ]. We wish to determine s nodes c1, . . . , cs and s

weights b1, . . . , bs such that the approximation

∫ tf

t0

f(t) dt ≈
s∑

i=1

bif(ci)

is as accurate as possible. Being it the case that the space of polynomials P is dense in

C[t0, tf ], we will measure accuracy by how well this approximation performs for f ∈ P .

It is noted that the approximation scheme has 2s unknowns that we are free to select.

Therefore, it makes sense to choose these unknowns so that the approximation is

exact for the subspace P2s−1 of polynomials comprised of polynomials with degree

≤ 2s− 1. For, due to the fact that integration is a linear operator, this task may be

accomplished by asking that the approximation is exact for the basis {1, t, . . . , t2s−1} of

this subspace. This provides 2s conditions with which to determine the 2s unknowns

for the integration approximation. Consider the following examples.

Example 6.1 (A One Term Approximation). Suppose that s = 1 and [t0, tf ] =

[−1, 1]. Then the desire is to find c1 and b1 such that the approximation

∫ 1

−1

f(t) dt ≈ b1f(c1)

is exact for all f ∈ P1. This requires exactness of the approximation for f = 1, t.

Hence, we solve the two equations

b1 =

∫ 1

−1

1 dt = 2 ;

b1c1 =

∫ 1

−1

t dt = 0 .

Doing so reveals that the most accurate one term approximation is provided by the

parameters b1 = 2 and c1 = 0, and that this approximation is 2f(0).
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Example 6.2 (A Two Term Approximation). Suppose that s = 2 and retain the

interval of integration [t0, tf ] = [−1, 1]. Then the desire is to find c1, c2 and b1, b2 such

that the approximation

∫ 1

−1

f(t) dt ≈ b1f(c1) + b2f(c2)

is exact for all f ∈ P3. This requires exactness of the approximation for f = 1, t, t2, t3.

Hence, we solve the system of equations

b1 + b2 =

∫ 1

−1

1 dt = 2 ;

b1c1 + b2c2 =

∫ 1

−1

t dt = 0 ;

b1c
2
1 + b2c

2
2 =

∫ 1

−1

t2 dt =
2

3
;

b1c
3
1 + b2c

3
2 =

∫ 1

−1

t3 dt = 0 .

For this system the solution cannot simply be read from the equations. However, there

is a solution and it is b1 = b2 = 1, c1 = −
√

3
3

, and c2 =
√

3
3

. Thus, the most accurate

two term approximation to the integral is given by f(−
√

3
3

) + f(
√

3
3

).

The latter of these two examples makes it clear that for large s, solution of the

resulting system of equations for the approximation parameters is not feasible. How-

ever, there is something special about the values of ci found in these two examples.

These values are roots of the Legendre polynomials of degrees 1 and 2, respectively.

The Legendre polynomials comprise an orthonormal basis for P with respect to the

L2 norm on P [−1, 1]. It turns out that for any given s, ci should be selected as

the roots of the Legendre polynomial of order s, and bi should be assigned the value

bi
.
=

∫ 1

−1
Li dt, where Li is the ith Lagrange interpolating polynomial corresponding

to the ci. Thus, the following theorem.
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Theorem 6.1 (Gaussian Quadrature). Let c1, . . . , cs be the roots of the Legendre

polynomial of degree s and define

bi =

∫ 1

−1

s∏
i=1
i6=j

(t− ci)

(cj − ci)
dt

for i = 1, . . . , s. Then ∫ 1

−1

f(t) dt ≈
s∑

i=1

bif(ci)

is exact for f ∈ P2s−1.

The proof of this theorem is omitted. However, the crux of the argument is that

the Legendre polynomials are orthonormal. See [68] for more detail.

The Gaussian quadrature formula may be applied for integration over any con-

nected compact subset of R, [t0, tf ]. This is accomplished by making use of the

coordinate transformation

σ(t) =
2t− t0 − tf

tf − t0
.

By Fubini’s theorem,

∫ tf

t0

f(t) dt =
tf − t0

2

∫ 1

−1

f

(
(tf − t0)σ + t0 + tf

2

)
dσ , (6.1)

which may be approximated by Gaussian quadrature. Let us consider the following

examples.

Example 6.3 (A One Term Approximation: Reprise). Let [0, 1] be the interval

of interest and suppose that we desire a 1 term approximation to the integral

∫ 1

0

f(t) dt .
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Applying equation (6.1) we see that this integral is equivalent to

1

2

∫ 1

−1

f

(
σ + 1

2

)
dσ .

Then, according to Example 6.1, we have f(1
2
), the midpoint value, as the best 1 term

approximation to this integral. We make note that the weight has been altered to 1

and the nodal value to 1
2
.

Example 6.4 (A Two Term Approximation: Reprise). Again, let [0, 1] be the

interval of interest. However, now we shall require a 2 term approximation to the

integral ∫ 1

0

f(t) dt .

As before, this integral is equivalent to

1

2

∫ 1

−1

f

(
σ + 1

2

)
dσ .

According to Example 6.2,

1

2
f

(
−√3 + 3

6

)
+

1

2
f

(√
3 + 3

6

)
,

is the best 2 term approximation to this integral. It is noted that the weights have

been altered to 1
2

and the nodal values to
√

3±3
6

.

As indicated by this discussion. If we like, we may redefine the gaussian nodes

and weights by the relations

bi ← bi

2
,

ci ← ci + 1

2
,

and translate integration on arbitrary compact connected intervals to integration on
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[0, 1] instead of reverting back to integration over the interval [−1, 1]. This choice

is quite common and since it holds advantage for our development, we make these

assignments.

One may ask how accurate Gaussian quadrature is in general. Although it is the

case that this technique provides exact results for P2s−1, this is not a guarantee of

satisfactory performance when it is applied to functions that are not contained in this

space. The following theorem addresses this issue in part.

Theorem 6.2 (Gaussian Quadrature Error Estimate). Let f ∈ C2s[−1, 1] and

let ci, bi; i = 1, . . . , s; be the Gaussian quadrature nodes and weights. Then

∫ 1

−1

f(t) dt−
s∑

i=1

bif(ci) =
f 2s(ζ)

(2s)!
‖Ls‖L2 ,

where ζ ∈ (−1, 1) and Ls is scalar multiple of the Legendre polynomial of degree s.

For a proof of this theorem, see [68]. The result basically says that if the function

f is sufficiently smooth or does not change “much” over the interval of integration,

then the approximation is quite good.

This theorem hints to us that the quadrature method should not be used for entire

intervals of integration. Instead, the interval of integration should be partitioned

into subintervals with Gaussian quadrature applied to each of these. Being more

specific, consider the partition of the interval [t0, tf ] determined by the nodal points

tk = t0 + k∆t, k = 0, . . . , N , with ∆t =
tf−t0

N
. Using this partition we may write

∫ tf

t0

f(t) dt =
N∑

k=1

∫ tk

tk−1

f(t) dt ,

and Gaussian quadrature may be applied to each of the integrals comprising the sum

to arrive at a very accurate approximation to the integral over the larger time span.

The result is ∫ tf

t0

f(t) dt ≈ ∆t

N∑

k=1

s∑
i=1

bsf(τki) ,
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where τki
.
= tk−1 + ci∆t. By localizing the integration, we take the fullest advantage

of Theorem 6.2.

6.3 Collocation Methods and the Implicit Runge-

Kutta Scheme

Here, implicit Runge-Kutta (RK) integration methods based on collocation are in-

troduced in a unified manner. Consider the ODE x′ = f(t, x), subject to the initial

condition x(0) = x0, with an interval of integration [t0, tf ]. This interval of integration

is partitioned into N subintervals using the uniformly spaced nodes {tk}N
k=0 with the

typical condition tk−1 < tk , k = 0, . . . , N . On the subinterval [tk−1, tk], s collocation

points, τki = tk−1 + ci∆t, 0 ≤ c1 < c2 < . . . < cs ≤ 1, are selected. A polynomial φ(t)

with the following properties, called the collocation conditions, is sought:

φ(tk−1) = xk−1 ,

φ′(τi) = f(τi, φ(τi)) ,∀i .

Let τ = tk−1 + σ∆t , 0 ≤ σ ≤ 1 and consider the Lagrange interpolating polynomial

Lj(τ) =
s∏

i=1
i6=j

τ − τi

τj − τi

or

Lj(τ) = Lj(tk−1 + σ∆t) =
s∏

i=1
i6=j

tk−1 + σ∆t− tk−1 − ci∆t

tk−1 + cj∆t− tk−1 + ci∆t

=
s∏

i=1
i6=j

σ − ci

cj − ci

= Lj(σ) .
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Then the s − 1 degree polynomial uniquely determined by φ′(τ)
.
=

∑s
j=1 Lj(σ)fkj,

fkj .
= f(τi, φ(τi)), and the condition φ(tk−1) = xk−1, satisfies the collocation condi-

tions.

Now that an expression for φ′ is available, some simple integrations will lead to

an implicit RK method. Integrating φ′ on [tk−1, τi] provides us the equation

φ(τi)− φ(tk−1) =
s∑

j=1

fkj

∫ tk−1+ci∆t

tk−1

Lj(τ) dτ

= ∆t

s∑
j=1

fkj

∫ ci

0

Lj(σ) dσ .

In a similar manner, integration of φ′ on [tk−1, tk] yields for us the equation

φ(tk)− φ(tk−1) =
s∑

j=1

fkj

∫ tk

tk−1

Lj(τ) dτ

= ∆t

s∑
j=1

fkj

∫ 1

0

Lj(σ) dσ .

Let aij
.
=

∫ ci

0
Lj(σ) dσ and bj

.
=

∫ 1

0
Lj(σ) dσ. Then the following RK scheme ensues:

xki .
= φ(τi) = xk−1 + ∆t

s∑
j=1

aijf
kj , i = 1, . . . , s .

xk
.
= φ(tk) = xk−1 + ∆t

s∑
j=1

bjf
kj .

The RK scheme can be conveniently represented by the Butcher diagram:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...

cs as1 as2 · · · ass

b1 b2 · · · bs

.

The most commonly used implicit RK methods based on collocation are those that
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correspond to certain quadrature methods. In particular, Gaussian quadrature pro-

vides us with a collocation RK method. The method is determined by using the

Gaussian quadrature points ci over the interval [0, 1] to define the collocation nodes

τi, for each of the subintervals determined by discretization. This is illustrated by the

following example.

Example 6.5 (Gaussian RK Schemes). Taking s = 1 and referring back to Ex-

ample 6.3 we obtain the implicit midpoint scheme

1
2

1
2

1

and for s = 2 we have

3−√3
6

1
4

3−2
√

3
12

3+
√

3
6

3−2
√

3
12

1
4

1
2

1
2

after referencing Example 6.4.

There are a couple of properties of Gaussian RK methods that should be noted.

We now state these properties as theorems, but do not provide proofs, as these state-

ments are common knowledge and a proof may be found in many texts that deal with

the subject.

Theorem 6.3 (Order). The order of an s-stage Gaussian Runge-Kutta method is

2s.

The proof of this theorem follows from the precision of Gaussian quadrature, which

is 2s. This says that the implicit midpoint rule is a second order ODE solver.

Theorem 6.4 (Stability). Gaussian Runge-Kutta methods are A-stable.

This theorem follows from the implicit nature of these methods and tells us that

our discretization step size need not be taken exceedingly small in order to guarantee
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that the scheme does not diverge. This allows the method to be used on mildly stiff

problems, though it is ill-suited for very stiff problems.

We directly show how the techniques of quadrature and their corresponding col-

location RK methods can be used to solve optimal control problems.

6.4 The Optimal Control Problem

Consider the standard optimal control problem. Given an autonomous system with

dynamics ẋ = f(x, u) and initial state x0, we wish to select a control input u so as to

drive the state trajectory to a specified final state xtf at some specified final time tf ,

in an optimal manner. By optimal we shall mean that the desire is to select u ∈ A,

A being some admissible set of controls, such that a cost functional of the form

Jtf (x0, u(t)) = g(x(tf )) +

∫ tf

0

(l(x(t)) + v(u(t))) dt , (6.3)

is minimized subject to the conditions

d

dt
x(t) = f(x(t), u(t)) ; (6.4)

x(0) = x0 . (6.5)

It is typical to make use of the calculus of variations in conjunction with the

theorem of Lagrange multipliers to derive necceassary optimality conditions for the

solution to this minimzation problem. However, this results in a two-point boundary-

value (TPBV) problem that is rather intractable. In most cases, other than the linear

dynamics case, an analytical solution of the TPBV problem is impossible to obtain.

In these situations the typical approach to procuring a solution is to discretize the

optimality conditions using a uniform mesh and then solve the resulting non-linear

system via Newton’s method. This is a very clever idea. However, this approach

does not always include assurances of accuracy and stability. If the system is stiff,
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the mesh norm may have to be selected to be small so as to compensate for this

system property. This selection in turn leads to the issue of error accumulation and

propagation.

A new approach that works toward the resolution of these complications has been

proposed [35]. The philosophy is to discretize the system dynamics and the cost

functional before deriving optimality conditions. In this way, Gaussian quadrature

and the corresponding implicit RK scheme may be utilized to ensure accuracy and

stability in the approximation. We will make use of this approach and now discuss

the details thereof.

Applying composite Gaussian quadrature to the objective function (6.3) and ap-

plying the corresponding implicit RK method to the constraining ODE (6.4) we arrive

at the following discrete optimization problem: Defining uN
.
= {uki}N,s

k,i=1 ∈ A, where

uki .
= u(τki) and A is the space of admissible control sequences, we desire

min
uN∈A

JN(uN) ,

where

JN(uN) = g(xN) + ∆t

N∑

k=1

s∑
i=1

bi(l(x
ki) + v(uki)) , (6.6)

subject to the constraints

fki = f(xki, uki) ,

xki .
= φ(τki) = xk−1 + ∆t

s∑
j=1

aijf
kj ,

xk
.
= φ(tk) = xk−1 + ∆t

s∑
j=1

bjf
kj ,

with k = 1, . . . , N and i = 1, . . . , s. To solve this constrained optimization problem
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the multipliers pk and pki are introduced and used to define Lagrangian L,

L(x·, u·,·, f ·,·; p·, p·,·) = g(xN) +
N∑

k=1

s∑
i=1

bi(l(x
ki) + v(uki))∆t

+ ∆t

N∑

k=1

s∑
i=1

bi p
ki · (f(xki, uki)− fki)

−∆t

N∑

k=1

pk ·
(

xk − xk−1

∆t
−

s∑
i=1

bif
ki

)
.

The Lagrange multiplier theorem may now utilized to determine necessary conditions

for the optimization of L. We begin by calculating the needed derivatives of L. Let

us predicate these calculations by noting that

∂xki

∂fmq
= δmkaiq∆t , (6.7)

and
∂xki

∂xm
= δ(m+1)k , (6.8)

where δ is the Kronecker delta. Proceeding with the variable fmq it is seen that

∂L

∂fmq
=

N∑

k=1

s∑
i=1

(
bilx(x

ki)
∂xki

∂fmq

)
∆t− bq(p

mq)t∆t

+
N∑

k=1

s∑
i=1

(
bi p

ki · fx(x
ki, uki)

∂xki

∂fmq

)
∆t + bq(p

m)t∆t ,

where equation (6.8) has been employed. Summing over the index k, observing equa-

tion (6.7), and combining a couple of terms leads to us to the equation

∂L

∂fmq
=

s∑
i=1

(bi p
mi · (fx(x

mi, umi) + lx(x
mi))aiq∆t2)− bq(p

mq)t∆t + bq(p
m)t∆t .

Making the assignment, gmi .
= f t

x(x
mi, umi)pmi + ltx(x

mi), we finally arrive at the
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expression

∂L

∂fmq
=

s∑
i=1

(bi(g
mi)taiq∆t2)− bq(p

mq)t∆t + bq(p
m)t∆t . (6.9)

Now consider the argument pmq. It is easy to see that

∂L

∂pmq
=

N∑

k=1

s∑
i=1

bi(f(xki, uki)− fki)t ∂pki

∂pmq
∆t .

Summing over k and i yields for us the equation

∂L

∂pmq
= bq(f(xmq, umq)− fmq)t∆t , (6.10)

as ∂pki

∂pmq = δmkδqiI. Continuing, the argument pm is considered next.

∂L

∂pm
= ∆t

N∑

k=1

(
xk − xk−1

∆t
−

s∑
i=1

bif
ki

)t
∂pk

∂pm
.

This equation, upon observing that ∂pk

∂pm = δmkI and summing over k, resolves to the

expression

∂L

∂pm
= ∆t

(
xm − xm−1

∆t
−

s∑
i=1

bif
mi

)t

. (6.11)

Moving on, xm is considered. The partial differentiation of L with respect to this

particular variable is carried out and presented here on the term level, as there are

cases, and they are more easily summarized in this manner. For m = 1, . . . , N − 1;

∂

∂xm

N∑

k=1

s∑
i=1

bil(x
ki)∆t =

N∑

k=1

s∑
i=1

bilx(x
ki)

∂xki

∂xm
∆t

=
s∑

i=1

bilx(x
(m+1)i)∆t ;

(6.12)

where summation over k has been performed and relation (6.8) observed. For m =
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0, . . . , N − 1;

∂

∂xm

N∑

k=1

s∑
i=1

bi(p
ki)tf(xki, uki)∆t =

N∑

k=1

s∑
i=1

bi(p
ki)tfx(x

ki, uki)
∂xki

∂xm
∆t

=
s∑

i=1

bi(p
(m+1)i))tfx(x

(m+1)i, u(m+1)i)∆t ;

(6.13)

where again, summation over k has been performed and relation (6.8) observed. Also,

noting that ∂xk

∂xm = δmkI, one finds that

− ∂

∂xm

N∑

k=1

pk · xk = −(pm)t , m = 1, . . . , N ; (6.14)

∂

∂xm

N∑

k=1

pk · xk−1 = (pm+1)t , m = 0, . . . , N − 1 . (6.15)

From equations (6.12), (6.13), and (6.14) and the definition of gik it follows that

∂L

∂xm
=





∑s
i=1 bi(g

1i)t∆t + (pm+1)t , if m = 0 ;

∑s
i=1 bi(g

(m+1)i)t∆t− (pm)t + (pm+1)t , if m = 1, . . . , N − 1 ;

−(pN)t + gx(x
N) , if m = N .

(6.16)

Finally, differentiation of L with respect to umq provides us the equation

∂L

∂umq
=

N∑

k=1

s∑
i=1

bivu(u
ki)

∂uki

∂umq
∆t +

N∑

k=1

s∑
i=1

bi(p
ki)tfu(x

ki, uki)
∂uki

∂umq
∆t

= bq(vu(u
mq) + (pmq)tfu(x

mq, umq))∆t ,

(6.17)

where the sums have been taken and the fact that ∂uki

∂umq = δmkδqiI has been used.

With all of the requisite partials of L we may proceed to use the theorem of Lagrange
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multipliers. The directional derivative or variation of L in direction h is

δL[h] =
∑

k

∂L

∂xk
hxk +

∑

ki

∂L

∂uki
huki +

∑

ki

∂L

∂fki
hfki +

∑

k

∂L

∂pk
hpk +

∑

ki

∂L

∂pki
hpki .

The Lagrange multiplier theorem allows us to treat the directions of the arguments

of L as independent. It is known then that in order to obtain an optimal value of

the functional L, δL[h] = 0 must hold for all directions h. This then implies, along

with the pseudo independence of the argument directions, that ∂L
∂(·) = 0. These are

the necessary optimality conditions.

The necessary conditions extrapolated from the theorem of Lagrange multipliers

are now given form. Let us begin with equation (6.9). Setting this expression equal

to zero and transposing provides us the equation

s∑
i=1

(big
miaiq∆t2)− bqp

mq∆t + bqp
m∆t = 0 (6.18)

↔ ∆t

s∑
i=1

(
bi

bq

gmiaiq)− pmq + pm = 0 (divide by ∆t and bq) (6.19)

↔ pmq = pm + ∆t

s∑
i=1

(a(s+1)−q,(s+1)−ig
mi)

(
bi

bq

aiq = a(s+1)−q,(s+1)−i

)
. (6.20)

Equating expression (6.11) with zero and transposing yields the equation

xm − xm−1

∆t
−

s∑
i=1

bif
mi = 0 . (6.21)

Continuing, the equation

fmq = f(xmq, umq) (6.22)

is obtained by equating expression (6.10) with zero and transposing. Next, by setting



CHAPTER 6. NUMERICAL OPTIMAL CONTROL 195

expression (6.16) equal to zero and transposing it is found that








−pm+1 = ∆t

∑s
i=1 big

1i , if x0 is free;

x0 = x0 , if x0 is fixed;

, if m = 0;

−pm+1−pm

∆t
=

∑s
i=1 big

(m+1)i (divide by ∆t) , if m = 1, . . . , N − 1;



pN = gt
x(x

N) , if xN is free;

xN = xtf , if xN is fixed;

, if m = N ;

. (6.23)

Finally, setting expression (6.17) equal to zero provides us with the condition

vt
u(u

mq) + f t
u(x

mq, umq)pmq = 0

or

umq = ψ(xmq, pmq) , (6.24)

for appropriately defined ψ. These necessary optimality conditions are now summa-

rized, for appropriate index ranges, as follows:





xm−xm−1

∆t
=

∑s
i=1 bif

mi ;

fmq = f(xmq, umq) ;

xmq = xm−1 + ∆t
∑s

j=1 aqjf
mj ,

(6.25a)





−pm+1−pm

∆t
=

∑s
i=1 big

(m+1)i ;

gmq = fx(x
mq, umq)pmq + lx(x

mq) ;

pmq = pm + ∆t
∑s

i=1(a(s+1)−q,(s+1)−ig
mi) ,

(6.25b)

umq = ψ(xmq, pmq) , (6.25c)
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


−pm+1 = ∆t

∑s
i=1 big

1i ;

x0 = x0 ,

(6.25d)





pN = gx(x
N) ;

xN = xtf .

(6.25e)

These equations may be solved via Newton’s method, or some other root finder, to

determine the optimal control and state approximations.

6.5 Selection of Optimal Gaits

In this section an adaptation of the optimal control methodology introduced that

allows determination of optimal locomotive shapes for underactuated systems with

symmetries is presented. The development is predicated by the following preparatory

discussion.

The shape s is viewed as the control variable and equations (4.21) as the dynamics

for the systems we now focus on. These equations are repeated here for convenience:

ξ = I−1p− Aṡ , (6.26a)

ṗ− [adI−1p−Aṡ]
tp = τ̃ . (6.26b)

Defining x
.
= (g, p)t and recalling that ġ = [g]ξ, it is seen that equations (6.26) provide

us with a system plant of the form ẋ = f(x, s, ṡ). Unlike the form we assumed for

the dynamics presupposed in the previous development of the previous section, this

plant depends explicitly on ṡ, the derivative of the shape.

Furthermore, for locomotion systems, we wish to restrict our attention to those

shapes that are periodic so that we stay in line with the notion that repeated and

patterned contraction and relaxation of the muscle-like actuators is a requisite for a

steady rhythmic motion. Thus, the condition of s(t + pf ) = s(t), ∀t ∈ R, where pf is
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the fundamental period selected is imposed. This narrows the admissible control space

A. In the more generic development it was tacitly assumed that the admissible control

space was, to the extent which still allows use of optimization criterion, unrestricted.

With these two remarks in mind we follow the strategy of the previous section.

The cost functional

J(s) = g(xtf ) +

∫ tf

0

(l(x) + v(s, ṡ, s̈)) dt , (6.27)

along with the dynamics,

ẋ = f(x, s, ṡ) ,

x0 = x(0) ,

are discretized using the implicit R-K scheme with s = 1. When s = 1, c1 = 1
2
,

a1,1 = 1
2
, and b1 = 1. Thus, the discrete cost criterion

JN = g(xN) + ∆t
N∑

k=1

(l(xk) + v(sk, ṡk, s̈k)) , (6.28)

and the discrete dynamics

fk = f(xk, sk, ṡk) , (6.29a)

xk = xk−1 +
∆t

2
fk , (6.29b)

xk = xk−1 + ∆tfk . (6.29c)

Here, the notations sk, ṡk, and s̈k indicate the respective functions s, ṡ, and s̈, evalu-

ated at the gaussian node τk1 = tk + 1
2
∆t. This is the midpoint rule and is known to

be a second order numerical integration scheme.

We wish to determine the unknown controls {sk}N
k=1 such that the functional JN

is minimized subject to the constraint imposed by the discrete dynamics. In addition
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to the explicit appearance of ṡ in the system plant, this functional has also been

altered to depend on the unknowns ṡk and s̈k, k = 1, . . . , N , which makes it different,

albeit only slightly, from the cost of the previous section. It is noted that we may

use the values sk along with center difference schemes to determine approximations

of these quantities. The estimates are

ṡk ≈ sk+1 − sk−1

2∆t
(6.30a)

s̈k ≈ sk+1 − 2sk + sk−1

∆t2
. (6.30b)

These approximations are known to be second order and as such their use will not

diminish the order of the implicit midpoint integrator. Therefore, the approximations

are used and henceforth, when we write ṡk or s̈k, it is to their approximates that we

refer and it should be understood that these quantities are linear functions of the sk.

By making this approximation, v depends only on sk and we return to framework of

the previous section.

To minimize JN over ~s
.
= ((s1)t, . . . , (sN)t)t ∈ A, subject to the discrete dynamics

of equation (6.35), we use the method of Lagrange multipliers. Let {pk}N
k=1 and

{pk}N
k=1 be a vector-valued sequences of Lagrange multipliers. Using these multipliers

the appended cost functional or Lagrangian is defined. This functional is,

L = g(xN) + ∆t

N∑

k=1

(l(xk) + v(sk, ṡk, s̈k))

+ ∆t

N∑

k=1

(pk)t(f(xk, sk, ṡk)− fk)

+ ∆t

N∑

k=1

pt
k

(
xk − xk−1

∆t
− fk

)
.

(6.31)

This cost is minimized without constraint over the set of periodic sequences of A
of fundamental period pf . The unknowns are the state sequence xk, the costate



CHAPTER 6. NUMERICAL OPTIMAL CONTROL 199

sequences pk and pk, the control sequence sk, and the vector field sequence fk. The

theorem of Lagrange multipliers guarantees that unconstrained minimization of the

appended cost is equivalent to minimization of the original cost with constraint.

Before discussing the necessary optimality conditions for the minimization of L it

must be explained how the constraint on the admissible space of controls is enforced.

Some of the parameters of the problem must be chosen appropriately. Firstly, tf

should be selected so as to be a multiple of the fundamental period pf , say tf = qpf .

Secondly, ∆t or N should be selected so that k̄∆t = pf for some iterate k̄. Then

it is demanded that sk = s(k mod k̄). This demand is imposed through the periodic

derivative. By periodic derivative our intended meaning is that calculation of ṡk and

s̈k make use of the relations sk = s(k mod k̄). Continuing with the vector notations,

we make the assignments

~̇s
.
= ((ṡ1)t, . . . , (ṡN)t)t ;

~̈s
.
= ((ṡ1)t, . . . , (ṡN)t)t ,

and

~si
.
= ((s(i−1)k̄+1)t, . . . , (sik̄)t)t ;

~̇si
.
= ((ṡ(i−1)k̄+1)t, . . . , (ṡik̄)t)t ;

~̈si
.
= ((s̈(i−1)k̄+1)t, . . . , (s̈ik̄)t)t ,

for i = 1, . . . , q. The latter of these expressions represent vectors containing the q

periods of the sequence {sk}N
k=1 and its first and second derivative approximations.
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We also define the following k̄ × k̄ matrices:

D1 =




0(n−1) I(n−1) −I(n−1)

−I(n−1) . . . . . .

. . .

I(n−1)

I(n−1) −I(n−1) 0(n−1)




(6.32)

and

D2 =




2I(n−1) −I(n−1) −I(n−1)

−I(n−1) . . . . . .

. . .

I(n−1)

−I(n−1) −I(n−1) 2I(n−1)




. (6.33)

It should then be clear by making reference to equations (6.30a) and (6.30b) as well

as the periodicity relations that the following equations hold

~̇si = D1~si ; (6.34a)

~̈si = −D2~si . (6.34b)

Now, the necessary conditions for optimality may, for the most part, be read

from (6.25). Beginning with the equations (6.25a) we have

fk = f(xk, sk, ṡk) , (6.35a)

xk = xk−1 +
∆t

2
fk , (6.35b)

xk = xk−1 + ∆tfk . (6.35c)
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Solving equation (6.35c) for fk yields for us the equation

fk =
xk − xk−1

∆t
. (6.36)

Equation (6.36) is substituted into equation (6.35b) to determine that

xk =
xk−1 + xk

2
.

This equation along with equation (6.36) are then substituted into equation (6.35a)

to provide us with a single equation for the discrete dynamics, namely

xk − xk−1

∆t
= f

(
xk−1 + xk

2
, sk, ṡk

)
. (6.37)

These dynamics are accompanied by the initial condition x0 = x(0) taken from equa-

tion (6.25d).

Next, consider equation set (6.25b), which provides us with

−pk − pk−1

∆t
= gk , (6.38a)

gk = f t
x(x

k, sk, ṡk)pk + ltx(x
k) , (6.38b)

pk = pk +
∆t

2
gk . (6.38c)

Substitution of equation (6.38a) into equation (6.38c) will provide for one the relation

pk =
pk + pk−1

2
. (6.39)

Substitution of equation (6.39) into equation (6.38b) and then placing the result in

equation (6.38a) yields to us the discrete costate dynamics

pk−1 − pk

∆t
= f t

x

(
xk−1 + xk

2
, sk, ṡk

)(
pk + pk−1

2

)
+ ltx

(
xk−1 + xk

2

)
. (6.40)
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These dynamics are accompanied by the terminal condition pN = gx(xN), as indicated

by equation (6.25e).

The remaining optimality condition is equation (6.25c). Due to the fact that v is

now both implicitly and explicitly dependent upon ~s, the derivation of this condition

must be considered anew. The condition comes through the demand that δL[h~s] = 0.

This derivative is fairly simple to calculate. However, notation can be awkward. The

following definitions are made in hope that the discussion concerning the calculation

of this variation will flow most easily. Let

y
.
=

∑

k

vk ,

where

vk .
= v(sk, ṡk, s̈k) .

Further, upon making the assignments

pfsk
.
= (pk)t ∂f

∂sk
(xk, sk, ṡk) ,

pfṡk
.
= (pk)t ∂f

∂ṡk
(xk, sk, ṡk) ,

the associations

pf~s
.
= (pfs1 , . . . , pfsN ) ,

pf~̇s = (pfṡ1 , . . . , pfṡN ) ,

are made. The variation of interest is then

δL[h~s] = ∆t

(
∂y

∂~s
h~s +

∂y

∂~̇s
ḣ~s +

∂y

∂~̈s
ḧ~s

)

+ ∆t
(
pf~sh~s + pf~̇sḣ~s

)
.

(6.41)
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Rewriting this variation so as to reflect the periodicity of ~s provides us with

δL[h~s] = ∆t

q∑
i=1

(
∂y

∂~si

h~si
+

∂y

∂~̇s i

ḣ~si
+

∂y

∂~̈si

ḧ~si

)

+ ∆t

q∑
i=1

(
pf~si

h~si
+ pf~̇si

ḣ~si

)
,

or, appealing to the periodicity relations along with the difference relations of equa-

tions (6.34a) and (6.34b),

δL[h~s] = ∆t

q∑
i=1

(
∂y

∂~si

h~s1 +
∂y

∂~̇s i

D1h~s1 −
∂y

∂~̈s1

D2h~s1

)

+ ∆t

q∑
i=1

(
pf~si

h~s1 + pf~̇si
D1h~s1

)
.

From here the final optimality condition may be stated. It is necessary that δL[h~s] = 0

for all appropriate directions h~s ∈ A. That is to say that it should be the case that

at a minimizer

[
q∑

i=1

(
∂y

∂~si

+
∂y

∂~̇s i

D1 − ∂y

∂~̈si

D2

)
+

q∑
i=1

(
pf~si

+ pf~̇si
D1

)
]

h~s1 = 0 ,

for all appropriate directions h~s1 . Hence we have the necessary condition

q∑
i=1

(
∂y

∂~si

+
∂y

∂~̇s i

D1 − ∂y

∂~̈si

D2

)
+

q∑
i=1

(
pf~si

+ pf~̇si
D1

)
= 0 .

The optimality conditions for the periodic synthesis are now summarized as fol-

lows:

xk − xk−1

∆t
= f

(
xk−1 + xk

2
, sk, ṡk

)
; (6.42a)

x0 = given ; (6.42b)
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pk−1 − pk

∆t
= f t

x

(
xk−1 + xk

2
, sk, ṡk

)(
pk + pk−1

2

)
+ ltx

(
xk−1 + xk

2

)
; (6.42c)

pN = gt
x(xN) ; (6.42d)

q∑
i=1

(
∂y

∂~si

+
∂y

∂~̇s i

D1 − ∂y

∂~̈si

D2

)
+

q∑
i=1

(
pf~si

+ pf~̇si
D1

)
= 0 . (6.42e)

Formulae for the optimality conditions summarized in (6.42) using specific func-

tionals v, g, and l are now delineated. To begin, because we are concerned primarily

with obtaining a final positional state, we shall select l(x) = 0 and

g(x) =
1

2
α

∑
a

(xa − xa
d)

2 , (6.43)

where xa represents the positional coordinates of interest and xa
d is the desired final

value of these states. Additionally, a very simple functional v is selected, although

others could be used.

v(sk, ṡk, s̈k)
.
=

1

2
(w1(s

k)2 + w2(ṡ
k)2 + w3(s̈

k)2) , (6.44)

where w1, w2, and w3 are scalar weights. This definition for v implies

y =
1

2

q∑
i=1

(w1(~si)
2 + w2(~̇si)

2 + w3(~̈si)
2) (6.45)

as an expression for y. Using this expression and the difference relations (6.34a) and

(6.34b) along with the periodicity relations, it is clear that

∂y

∂~si

= w1(~si)
t ,

∂y

∂~̇s i

= w2(~̇si)
t = w2(~s1)

tDt
1 ,

∂y

∂~̈si

= w3(~̈si)
t = −w3(~s1)

tD2 .

We now return to equation set (6.42) with these functional choices and their conse-
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quences and state the equations to be during our investigations. These equations are

xk − xk−1

∆t
= f

(
xk−1 + xk

2
, sk, ṡk

)
; (6.46a)

x0 = given ; (6.46b)

pk−1 − pk

∆t
= f t

x

(
xk−1 + xk

2
, sk, ṡk

)(
pk + pk−1

2

)
; (6.46c)

pN = gx(xN) ; (6.46d)

q
(
w1I

k̄×k̄ − w2D
2
1 + w3D

2
2

)
~s1 +

q∑
i=1

(
pf t

~si
−D1pf

t
~̇si

)
= 0 . (6.46e)

In order to determine the minimizer ({xk}, {pk}, {sk}) of L, equations (6.46) must

be solved. One approach to this task is to use Newton’s method to determine a zero

of the variation δL. The appeal of using Newton’s method is that, if the approximate

gets within a sufficiently small ball of a root, the method is quadratically convergent.

However, there are a couple of issues with using Newton’s method in this instance,

one of which is the following. Newton’s method requires a derivative of the function

whose root is sought. This requires taking a second derivative of f . Even if finite

difference approximations are used, the resulting difference operators are not easily

described, especially when the requirement of periodicity is introduced.

In lieu of this, we employ a fixed-point method or time marching scheme. This

method and the manner in which it is implemented is now explained.

1. The method is initiated by selecting an initial shape sequence {sk}k̄
k=1 over the

fundamental period pf . We shall denote this initial shape s0. This sequence

is then repeated over the time interval selected to arrive at the full sequence,

denoted in vector form, ~s.

2. Next, the iteration process begins. Using s0, equation (6.46a) is solved for

the sequence {xk}N
k=1. This solution is denoted x0 and the successive solutions
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of this equation xj. Note that a superscript with index j is used instead of

a subscript with index k on x in order to clarify that we are referring to an

iteration of the optimal control solution method rather than an iterate of the

sequence {xk}N
k=1.

3. Once x0 and s0 are formed, equation (6.46c) can be solved for the sequence

{pk}N
k=0. This solution is denoted p0 and the notation pj is used for successive

iterations. Again, note that a superscript with index j is used for clarity.

4. Having formed x0 and p0, these sequences along with s0 are applied to create

the second term, pf
.
=

∑q
i=1

(
pf t

~si
−D1pf

t
~̇si

)
, of equation (6.46e).

5. Finally, consider the following fixed point iteration scheme in sj:

sj+1 − sj

δt
+ q

(
w1I

k̄×k̄ − w2D
2
1 + w3D

2
2

)
sj+1 + pf(sj) = 0 . (6.47)

δt is some small quantity that has meaning only in the context of this scheme

and has nothing to do with the earlier discritizations. From this scheme we

obtain sj+1 and create ~s. We then return to step 2 and continue to repeat these

steps until acceptable convergence is attained.

Before moving on with discussion of implementation note that the scheme of step 5

is consistent with the optimal control or gait objective. For suppose that xj → x∗,

pj → p∗, and sj → s∗. Then s∗ is a fixed point of the equation implied by (6.47) and

we arrive at the expression

q
(
w1I

k̄×k̄ − w2D
2
1 + w3D

2
2

)
s∗ + pf(s∗) = 0 , (6.48)

indicating that (x∗, p∗, s∗) satisfy the necessary optimality conditions of equation

set (6.46).

There is a little bit of detail concerning the implementation of this iteration scheme

that should be discussed. Firstly, concerning step 2 we note that the vector field f
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is non-linear and the iterates xj
k are implicitly defined. Thus, we cannot simply

determine a closed form expression that will allow time-marching of the state x. To

determine the iterate xj
k from xj

k−1 Newton’s method is used to search out a root of

the equation

E(x)
.
=

x− xj
k−1

∆t
− f

(
xj

k−1 + x

2
, sk

j , ṡ
k
j

)
. (6.49)

Of course Newton’s method requires an initial guess at the root x = xj
k that is

sought. Since f is a continuous vector field, if ∆t is sufficiently small, xj
k−1 should

be near xj
k. Thus by using the initial guess x = xj

k−1 it only takes a few iterations

of Newton’s method before its quadratically convergent nature takes hold and the

approximate arrives at the value desired. In fact, we only use 3 Newton iterations in

our implementation.

Once xj is obtained it is a simple task to determine pj. Since equation (6.46c) is

linear in the iterates pj
k, equation (6.46d) along with xj

N are used to calculate pj
N , and

then pj
k is marched backward in time.

The iteration scheme of equation (6.47) is also designed to be linear in the iterates

sj. So, after xj and pj have been captured, one may solve for sj+1 from sj in a single

iteration. Let us discuss this scheme in a bit more detail. If we should rewrite

equation (6.47) as follows:

sj+1 = sj − δt (q
(
w1I

k̄×k̄ − w2D
2
1 + w3D

2
2

)
sj+1 + pf(sj))

= sj − δt dj ,

it is seen that this scheme has the form of a typical optimization scheme with search

direction dj and step length δt. This is only in form due to the fact that the search

direction,

dj
.
= q

(
w1I

k̄×k̄ − w2D
2
1 + w3D

2
2

)
sj+1 + pf(sj) ,

is dependent on both sj and sj+1. One should recognize dj as an approximation to



CHAPTER 6. NUMERICAL OPTIMAL CONTROL 208

the gradient of L with respect to ~s, and from this point of view, this scheme is a

rendition of the method of steepest descent. As such, it is relatively clear that dj is

a legitimate search direction. However, as is well known, one must be careful with

step length selection, δt. If one moves too far, or not far enough, along the chosen

direction, the iteration scheme may diverge or become stagnant. Often it is the case

that some adaptive method of selecting δt from iteration to iteration is employed. It

is the line search and trust region methods that we speak of [55, 5]. We do not employ

such a scheme in our implementation. Instead, we simply select δt conservatively, say,

on the order of 10−4. We found that although the scheme does not illustrate rapid

convergence behavior, it does make sufficient progress toward convergence.

Now that the optimal control method and its implementation have been described

and discussed, attention is turned to its use in determining optimal gaits and answer-

ing some scientific questions of interest. The next section is devoted to this end.

6.6 Optimal Control Results

This section includes excerpts of several “experiments” in optimal locomotive shape

selection for the serial-link structure S. A large portion of the experimentation pre-

sented is oriented toward discovering the effects that particular optimization design

parameters can have on performance. In general, the selection of these parameters

can be very important and thus such an effort is justified. We begin with a set of

parameters that appear to achieve, at some level, the basis task of directed locomo-

tion. From that point we will graduate to some small experiments directed at either

improving the performance of the resulting control or altering the shape in some

specified way while preserving the performance. At all times, however, our focus will

be on the trends of the resulting shape. After exploring optimization design, we will

then use our methodology to explore some issues of more general scientific interest.

In particular, we explore the effects that lateral forces can have on optimal locomotive
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shapes and to what extent propulsion and locomotive shape depend on the length of

the device.

6.6.1 The Initial Experiment and Results

To begin, the values of physical parameters of S and its environment that are to be

used for the majority of the experimentation are specified. With exception to the

size of S, which shall be taken to be n = 5, we will take these values to be the same

as those used for the simulation experiments of Chapter 5. It is hoped that this

will allow for some comparison and intuition concerning the validity of experimental

results.

With an instance of the physical system selected, the goal of the initial control

design experiment may be described. The requests are levied by means of the cost

functional parameters. Firstly, it is required that the shape s of S be selected to

be periodic with fundamental period pf . The second request is that this shape must

elicit a displacement of the head B1 with zero system initial conditions from an initial

location at the origin of coordinates (i.e. (x1, y1)
t = (0, 0)) to a point that lies away

from the origin of coordinates in one of the following eight directions: east, southeast,

south, southwest, west, northwest, north, and northeast. The points that lie along

these directions are selected with ordinate values of magnitude 0 and 3. The ordinate

values represent length in the units of ft. Thus, these points lie on a box of side

length 3 ft centered at the origin. The value of 3 was selected due to the fact that

the structure that has been selected has a total longitudinal length of ≈ 2.5 ft. So, by

this selection, we are starting out with a somewhat modest request that the structure

crawl just over a body length in a specified direction. The directions described, the

coordinates of the corresponding terminal points along those directions, as well as the

notation that will be used hereafter to refer to these directions and their associated

points, are summarized in Table 6.1.

The choice of parameter values related to the optimization method which shall be
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South Southeast East Northeast North
Notation S SE E NE N
(x1, y1)d (0,−3) (3,−3) (3, 0) (3, 3) (0, 3)

Northwest West Southwest
Notation NW W SW
(x1, y1)d (−3, 3) (−3, 0) (−3,−3)

Table 6.1: Directions used in the control experiments, their related notations, and
the specific destination coordinates.

used during this initial experiment is provided in Table 6.2. The initial shape iterate

Functional Parameters α w1 w2 w3

Parameter Values 500 1 1 0.1

Discretization Parameters tf ∆t N pf

Parameter Values 5 0.05 100 1

Table 6.2: Cost functional, discretization, and periodicity parameters used for optimal
shape experiments.

is selected to be s0 = {(φk
1, φ

k
2, φ

k
3, φ

k
4)

t}k̄
k=1, where φk

j
.
= 0.1 sin(2πtk − 0.7(j − 1)).

The reasoning for doing so should be transparent. The selection of the amplitude and

phase-shift parameters of this shape are rather random.

Performing minimization for each of the directions of Table 6.1 we arrived at a

minimizing shape sequence {sk}k̄
k=1, which will simply be called the optimal shape

s, state sequence {xk}N
k=1, and costate sequence {pk}N

k=1. Figures 6.1, 6.2, and 6.3

illustrate two periods of the optimal shape and the resulting behavior of the states

x1 and x2 (y1) upon driving the dynamics (6.26) with a cubic-spline interpolation of

the optimal shape. The shape only covers a time span of a single period and thus

was repeated as necessary to cover the time span of the feedforward integration. For

these simulations we integrated the dynamics over the time span of 0 to 15 sec. Thus
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the optimal shape was repeated 3q times.

It would seem that, for the most part, the initial experiment was a successful

one. Figure 6.1, which illustrates the eastern directions, is the most convincing of

the plates. However, the others also indicate promise. In the case of the eastern

directions, it is noted that the general direction of the head displacement seems

correct. Especially when one keeps in mind that the directive under which the shape

operated was to deliver the head to the position coordinates of Table 6.1 at the end

of precisely 5 periods. If we only look at the direction of the first five periods of the

head trajectory it is seen that the head was on a direct course toward the desired

terminal points.

The results for the western directions of SW , W and NW , presented in Figure 6.2,

were not quite as in line with the requests that have been made. However, there was

more going on with these simulations than an initial glance will allow one to perceive.

Recall the form of the initial shape iterate s0 or more precisely, the form of φk
j . There

is a −0.7 s time delay or phase shift along the index j. For an actual snake, this

delay represents the wave of muscle contraction which propagates along the length

of the animal in order to produce locomotion. The fact that the delay is negative

indicates that the wave begins at the head B1 and travels toward the tail Bn of the

structure or the animal. As can be seen for the eastern directions, upon convergence

to the optimal shape, there was still a presence of the phase shift or delay and the

propagation in the direction of the tail also remained. However, when looking at the

optimal shapes for the western directions we find something that is most interesting.

Indeed, there was still a phase shift or time delay present among the shape variables.

However, the ordering of the shape curves were opposite to that of the initial iterate.

That is, the propagation of the wave moved from the tail Bn to the head B1. This

observation means quite a lot. Note that due to the initial condition x0 = ~0 and

the initial shape iterate s0, the structure S was positioned to move head first in the

eastern direction. However, it would make sense that if the structure needs to move
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(e) Optimal SE shape.
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(f) Feedforward motion.

Figure 6.1: The optimal shapes for producing snake locomotion in the eastern direc-
tions along with the feedforward motion of B1 corresponding to each of them.
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(e) Optimal SW shape.
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(f) Feedforward motion.

Figure 6.2: The optimal shapes for producing snake locomotion in the western direc-
tions along with the feedforward motion of B1 corresponding to each of them.
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(a) Optimal N shape.
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(b) Feedforward motion.
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(c) Optimal S shape.
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(d) Feedforward motion.

Figure 6.3: The optimal shapes for producing snake locomotion in the pole directions
along with the feedforward motion of B1 corresponding to each of them.
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in a western direction it would not be optimal to move in the eastern direction, turn

around, and then come back toward the west. What is optimal, given the initial

conditions, is for the structure to treat its tail Bn as if it were its head B1 and

simply travel tail first in the western direction. For in our formulation, the head

is qualitatively no different from the tail. This is precisely what the optimal shape

method has determined. Instead of moving head first, the shape was selected so as

to produce a tail first locomotion, dragging the head toward the desired direction.

As already mentioned, the resulting head trajectories seem to indicate that there

is some accuracy lost in this transition. For the first five cycles of the head trajectory

in the western directions did not seem nearly as in line with their the target as those

for the eastern directions. But still, the fact that the method we are employing is

robust enough to completely change the direction of shape wave propagation along

the structure when asked to move in the direction opposite that for which it is initially

oriented, is quite impressive.

Lastly, there is the pole directions N and S. Again, the results for these direction

are found in Figure 6.3. In these cases S failed to move in the desired direction. In

some sense, this is not surprising. For, based on the the initial data x0, we were

requesting that the structure move normal to itself. That would seem difficult to do.

In the case of the parameter selection for this initial experiment, it was apparently

too difficult. The optimal thing for S to do was nothing, as indicated by the optimal

shape and corresponding head trajectories. Although the head did move toward the

target, it did not expend any effort to do so. Since both contribute to the cost, the

results seem to indicate that the effort that it would take to make the directed motion

outweighs the cost of zero displacement.

In addition to the failure of the initial control design in the pole directions, it

must be admitted that the displacements observed for the other directions were also

less than completely satisfactory. For although there was a correct directed displace-

ment, the structure fell short of its target and did not accomplish a displacement of
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approximately one body length. In our next experiment we shall attempt to remedy

this.

Before leaving this initial effort, however, we would like to indicate that there

seems to be a recognizable pattern for the optimal shape. Firstly, the shape forms

seem to be very sinusoidal. This observation is in part confirmed by plotting the shape

velocity and acceleration. Figure 6.4 contains plots of the optimal shape velocity

(left column) and optimal shape acceleration (right column) corresponding to the

eastern directions under the initial experimental setup. Note that these velocities and

accelerations are also sinusoidal. This observation would seem to provide support for

Hirose’s claim that sinusoidal curvature changes are the most natural [33].

Secondly, there are amplitude modulations and phase shifts. In light of (5.2),

both are expected. The author personally had anticipated amplitude modulations

that brought about shape trajectories similar to those of an eel or fish. In all cases

considered we found that the amplitude of the structure’s differential angles would

be selectively increased from the head of the system to the midpoint thereof, just as

in the case of the eel. However, at that point, the optimization method was clever

enough to determine that instead of continuing this increase along the length of the

body, it was just as effective to then reverse the trend, decreasing the amplitude along

the posterior portion of the structure. This makes very good sense. For the ability

of the structure to equalize its opposing friction is found in the magnitude of the

curvature differential, not necessarily its sign. Hence, by decreasing the amplitude of

the differential angles along the posterior of the system, the same curvature differential

magnitude is obtained as would be produced by a continued amplitude increase, but

the actuation effort used to obtain this differential is reduced.

The phase shift seems to work toward grouping together, in some sense, φ1 with

φ2 and φ3 with φ4. Further phase shifting and the amplitude modulation tend to

ensure that φ2 and φ3 are out of phase with φ1 and φ4, respectively, and that the

trajectories of φ2 and φ3 have an amplitude such that they approximately intersect
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(a) Optimal NE velocity.
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(b) Optimal NE acceleration.
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(c) Optimal E velocity.
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(d) Optimal E acceleration.
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(e) Optimal SE velocity.
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(f) Optimal SE acceleration.

Figure 6.4: The optimal shape velocities and accelerations used for producing snake
locomotion in the eastern directions.
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the maximum and minimum values of φ1 and φ4, respectively.

Finally, the trajectory of the head appears to oscillate about circular trajectories.

The radius of curvature of these trajectories and the direction of the principle unit

normal vector or curvature vector are clearly related to the bias of the optimal shape

trajectories away from zero. This makes perfect sense. Recall that the shape variables

actually represent a curvature differential. Thus, if these variables have a constant

bias in the positive direction the structure will arc left along its length. If the shape

variables have a constant bias in the negative direction, then the structure will arc

right along its length. The magnitude of the constant bias corresponds to the radius

of curvature of the arc formed by the body and that of the trajectory ultimately

followed by the head. Other than this bias or offset, there doesn’t appear to be any

difference in the optimal shapes used for turning or straight path motion. In fact,

taking the point-of-view that lines are degenerate circles, we can claim that it appears

that the centerline path of the structure always follows a circular path to reach the

desired target, altering the radius of curvature appropriately to change the direction.

This is in complete agreement with the heuristic steering approach taken by Hirose

et. al. [18], and the feedback direction controls proposed by Ostrowski and McIsaac

[46] and Saito et. al. [62].

It is recalled that the German team of Linnemann, Paap, Klaassen, and Vollmer

had illustrated that the optimal trajectories for a serial-link structure driven by wheels

were circular arcs [43]! Apparently, even though the nature of the serial-link structure

we consider requires a non-constant curvature to elicit gait, it is still most optimal

to take circular paths, varying away only as necessary to make use of the undulatory

propulsive mechanism.

6.6.2 Experimentation with the Design Parameter α

The second control design experiment that we perform investigates the role that the

parameter α can play in the performance of the resulting optimal shape/controller.
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This parameter effectively penalizes the discrepancy between the coordinates of the

final position of the head and the coordinates desired. It was noted that the per-

formance of the optimal shapes obtained from the design of Table 6.2 were slightly

unsatisfactory in the sense that the head did not make it to the desired coordinates

specified in Table 6.1. In the case of the pole directions, the resulting optimal shapes

were a complete failure with respect to motion. So, it makes sense that we should try

increasing α to close this gap between the desired performance and the performance

obtained.

The directions of N , NE, and E are selected to experiment with. We could, for

completion, work with all of the directions. However, it does not seem as though this

is or should be necessary. Firstly, although there is no difference between the tail

and the head of the structure qualitatively speaking, there is a difference from the

point of view that, although perhaps at a crude level, the resulting motions of the

serial-link structures are likened to those of an actual snake. Therefore, head first

motions are preferable. The initial experiment indicated that when the structure is

asked to move in a direction more in line with the tail, it travels tail first. Thus we

shall avoid asking that the structure move in such directions, which are the western

directions. Secondly, it is rather clear that the directions S and SE are, with the

exception of sign, no different than the respective directions N and NE directions.

For instance, the optimal shape for the SE direction should be the negative of the

optimal shape for the NE direction. Thus, we no longer concern ourselves with these

directions either.

For each direction we obtain optimal shapes corresponding to modification of the

value of α from 500 to 1000 and then 1500. Again, to gauge the performance of the

minimizing shape, we examine plots of the optimal shape along with the corresponding

feedforward head trajectory over the time span of 15 s. The results for α = 1000 are

provided in Figure 6.5 and those for α = 1500 are provided in Figure 6.6. At first

glance of the results for α = 1000 it would seem that this change had little impact.
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(a) Optimal E shape.
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(b) Feedforward motion.
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(f) Feedforward motion.

Figure 6.5: The optimal shapes for producing snake locomotion in the specified direc-
tions along with the feedforward motion of B1 corresponding to each of them. Here
α has been increased to 1000.
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(d) Feedforward motion.
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(e) Optimal N shape.
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(f) Feedforward motion.

Figure 6.6: The optimal shapes for producing snake locomotion in the specified direc-
tions along with the feedforward motion of B1 corresponding to each of them. Here
α has been increased to 1500.
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The E and NE shapes and head trajectories look about the same as those initially

obtained and the structure still did not move in the N direction. However, upon

closer examination it is seen that there are differences. To begin, note that in the

case of the directions E and NE the structure travelled further in its allotted 5 s.

For α = 500 the head did not even travel 1.5 feet in the eastern direction over the

time span of 5 periods. However, in the case of α = 1000, the head moved ≈ 2 ft

in a 5 period span of time. A distance differential can also be observed for the NE

direction. Further, note that in the case of α = 500, allowing the structure to continue

its pattern of motion beyond the time period specification of tf = 5 s did not result in

the head making it to its desired termination point. However, looking at the results

for direction E with α = 1000, we see that the shape had been selected in such a way

so as to align the coordinates of the head with its rendezvous point of (3, 0). So, the

shape in this case took B1 further and put it in line with the specified directive, even

though it still failed to ultimately obtain it. That is an improvement. In the case

of direction NE, similar improvements were observed. However, it was still the case

that it is more optimal for the structure not to move at all than it is for the head to

travel normal to itself.

The results of the design with α = 1500 show that further improvement can be

made in the selection of the shape by increasing α. Again, in the case of direction

E and direction NE, the structure traveled further in a 5 period time span and

was more in line to actually intersect the rendezvous points of those directions upon

continuation of the motions. Note that in the case of the E direction B1 actually

travelled a whole body length in the 5 period time span. Also, in the case of the NE

direction, the head came much closer to (3, 3) than before. Additionally, we finally

got the head to move in the northern direction. In fact, the head moved over a body

length in a 5 period time span and upon continuation the head trajectory intersected

its target coordinates of (0, 3). From this simulation it became clear why this behavior

was not elicited from the previous designs. When travelling in the northern direction
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the amplitude of the shape variable φ1 increases significantly when compared to the

trajectory obtained for φ1 in the other directions. This, of course, increased the cost

incurred by the shape and led it to outweigh the cost of not moving in the specified

direction.

The conclusion of this experiment is that we must select α large to obtain the

desired performance. We could increase this value further and continue to seek im-

provements of the types we have seen. However, we shall accept the results of the

alteration of the value of α from 500 to 1500 as sufficient and move on to experiment

with the effects of other parameters.

6.6.3 Experimentation with the Initial Fixed-Point Scheme

Iterate

The matter of selecting the initial shape iterate s0 is now given further consideration.

It is good measure to experiment with initial iterates other than that previously se-

lected, namely those that do not contain the bias toward locomotion, to determine

what effects these selections can make on the optimal shape obtained upon conver-

gence of the optimization method. The possibility of multiple local minima is always

present. So, it could perhaps be the case that different, and perhaps, better shapes

could be obtained should it be so that a different initial shape iterate is used.

In the attempt to obtain a glimpse of what variability is present in the resulting

optimal shape we try three initial shape iterates that are different from the one used up

to this point and ask that the structure move in direction E. We only work with this

single direction hereafter, for there is little to be learned concerning the optimal shape

by altering directions at this point. The first alteration comes in destroying the phase

shift in the initial iterate. Thus, we make the selection s0 = {(φk
1, φ

k
2, φ

k
3, φ

k
4)

t}k̄
k=1,

where φk
j

.
= 0.1 sin(2πtk). Two periods of this iterate are shown in Figure 6.7(a).

The optimal shape that resulted from this initial guess at the shape is shown in

Figure 6.7(b) and the the corresponding feedforward head trajectory in Figure 6.7(c).
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It was found that there is some difference between the optimal shape trajectories

determined here and those resulting from the previous initial shape iterate. Namely,

it seems that the amplitude modulation is slightly different. However, the fact that

the amplitude of the inner shape variables is significantly larger than that of the

outer shape variables remains unchanged. Other than this alteration and a change in

bias, however, there does not appear to be any other differences between the results

and their performance with regards to the displacement of the head is similar. This

observation confirms the essential nature of the phase shift for locomotion. The same

type of phase shift modulations occur, even though no hint at the need for a phase

shift was provided in the initial shape iterate.

We next address the question of whether or not it may be beneficial to provide an

initial iterate with a more structured phase shift than previously used. In particular,

we would like to know if the uniform phase shift used in defining the shapes of

Chapter 5 would provide a different optimal shape sequence. This uniformity was

used to guarantee that at each instance in time the structure would conform its

shape to a corresponding time instance of a complete period of a travelling wave.

So, this inquiry is used to get a hint at whether there was any advantage in this

selection of a uniform phase shift along a period. The initial iterate to be used is

s0 = {(φk
1, φ

k
2, φ

k
3, φ

k
4)

t}k̄
k=1, where φk

j
.
= 0.1 sin(2π(tk − (j−1)

n
)). The same illustrations

as provided for the initial shape iterate with no phase-shift are provided in the right

column of Figure 6.7. As in the previous experiment, the resulting optimal shape

trajectories did differ from those previously obtained in both amplitude modulation

and bias. However, again it was the case that with the exception of these differences,

there does not appear to be any significant changes in the results obtained for an

initial shape iterate with uniform spacing along a period and that obtained for initial

iterate with the a randomly selected uniform phase shift of −0.7.

Due to the fact that the outcome of these experiments do not illustrate any great

advantage or disadvantage in biasing the initial iterate with a phase shift, we do
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not see any purpose in continuing to do so and thus adopt an initial iterate with no

phase shift for experimentation henceforth. As our final trial in experimenting with

the effects of de-biasing the initial shape iterate, we remove the sinusoidal functional

form from the initial iterate. By doing so, we hope to ensure that the sinusoidal

functional form of all the optimal shapes determined up to this point was not simply

a repercussion of beginning with this form. Thus we select the initial shape iterate

s0 = {(φk
1, φ

k
2, φ

k
3, φ

k
4)

t}k̄
k=1, where φk

j
.
= 0.01. This is about the flattest periodic initial

iterate that could be imagined. The zero initial iterate could be selected, but this is a

singular point of the dynamics and results in the zero sequence {sj}∞j=0, sj = 0. Thus,

we start a very small bias in the curvature. Figure 6.8 illustrates the results of this

choice. Subfigure 6.8(a) is a plot of the initial shape iterate, Subfigure 6.8(b) shows

the result of 2 iterations of the fixed-point procedure, and Subfigures 6.8(c) and 6.8(d)

illustrate the optimal shape and feedforward trajectory obtained for the head of the

structure. The shape after two iterations of the method is provided to illustrate how

quickly the shape began to evolve away from the constant initial iterate. Interestingly

enough, the resultant optimal shape and its performance were almost precisely the

same as that obtained for the sinusoidal initial iterate with no phase shift. In fact,

we would guess that they are in fact identical with the difference being that one of

the two of these shapes is a bit closer to exact convergence than the other. Thus,

the conclusion is that absolutely nothing was gained with respect to the resulting

optimal shape by selecting an initial shape iterate of sinusoidal form, and that the

approximately sinusoidal results that have been observed up to this point were not

due to such a selection. One advantage, however, that was gained by choosing the

sinusoidal initial iterate was increased convergence speed. It takes a significantly

longer time to reach convergence when beginning with a constant iterate. For this

reason, we shall use a sinusoidal initial iterate for the remainder of the experiments.
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(b) s0 with uniform shift.
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(c) Optimal s, no shift.
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(d) Optimal s, uniform shift.
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(f) B1 motion, uniform shift.

Figure 6.7: Optimality results for initial shape iterates with phase-shift changes.
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(d) Motion of B1.

Figure 6.8: Optimality results for an initial shape iterate with no form.
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6.6.4 The Effects of the Shape/Control Weights

Since we have satisfied the question of whether or not the results we obtained in

the first few experiments were overly influenced by the selection of the initial shape

iterate s0, we may return to concerning ourselves with the effects of the cost design.

We have already experimented slightly with the parameter α of g. Thus it remains

to determine the possible sensitivity of the resulting optimal shape sequence to the

selection of the parameters w1, w2, and w3 of v.

Before moving directly to blind experimentation, it is probably worthwhile to

make some observations concerning the purpose of these weights. Going back to the

definition of the functional v of equation (6.44), it is seen that these weights serve as

penalties on the magnitudes of s, ṡ and s̈. Being it the case that ṡ and s̈ describe the

nature of s, all of these weights penalize the shape s. More specifically, the parameters

w2 and w3, being the weights on the derivatives of s, serve to control the smoothness

of s. Now, it would make sense that s needs to be smooth, being it the case that

the optimization method employs discretization. Also, following the logic of [33], this

should also be the case for actual snakes due to physiological considerations. Thus,

these weights should not be taken too small.

At the same time, allowing the value of these parameters to be quite large, will

not permit the shape to exhibit variability and will force it to tend toward the most

smooth of objects, a straight line. It has already been observed that the resulting

optimal shape sequence values appear to have components that are approximately

sinusoidal in form. So we will appeal to this form, φ(t) = A sin(ωt), to illustrate this

point further. Using the calculations φ̇(t) = Aω cos(ωt) and φ̈(t) = −Aω2 sin(ωt) it is

clear that ‖φ‖∞ = A, ‖φ̇‖∞ = Aω, and ‖φ̈‖∞ = Aω2. So, the cost v may be thought of

as a quantity enveloped by a correct multiple of the form v̄ = w1A
2+w2A

2ω2+w3A
2ω4.

In the case of the method devised herein, the frequency related quantity ω is fixed.

Up to this point in the experimentation this value has been 2π. Thus, for a given set

of weights, the only way to reduce v̄ and consequently v is to decrease the amplitude
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A. If the weights are too high, in particular w3, then A must be taken very small

to keep v̄ small and the sinusoidal form of the shape components consequently gets

compressed into a horizontal line. It is for this reason in fact that w3 was selected

to be smaller for the initial trials of the method than the other two weights. This

tradeoff may be the point of blame for the low amplitude results we have obtained

for the optimal shape up to this point and is more than likely at the root of the need

to select a large value of the parameter α to obtain reasonable performance.

In the next experiments that we shall perform we seek to effectively reduce the

restriction on the amplitude of the high frequency shape by reducing the values of the

parameters w2 and w3. By looking at v̄ it is seen that one need only question the effects

of the values of these parameters, for they are the coefficients of the dominant terms

of v. We begin by fixing w1 and w3 at their default values of 1 and 0.1. respectively,

and varying w2. The first alteration is the reduction of w2 from 1 to 0.5 and the

second is a further reduction to 0.1. The results of performing this experiment are

provided in Figure 6.9. The top of this figure, Subfigures 6.9(a) and 6.9(a), correspond

to the optimal shape and feedforward head trajectory for w2 = 0.5. The bottom of

the figure, Subfigures 6.9(c) and 6.9(d), contain the same information corresponding

to w2 = 0.1. It takes little more than a glance at the optimal shapes presented in

these figures to determine that for each decrease made in the value of w2 there is a

corresponding increase in shape amplitude. However, the decrease is only very slight

and is hardly meaningful. Thus we move on to working with the parameter w3.

In the case of alteration of w3, the value of w2 is returned to 1 held fixed along

with w1. Then we decrease the value of w3. The first reduction is from the value of

0.1 to 0.05 and the second reduction alters the value to 0.01. We provide the results

of making these changes in Figure 6.10. The format of this figure is the same as

that provided for the trials of w2. Just as in the case of w2, although there was an

increase in amplitude correlating to the decrease in the parameter value, this increase

is unsubstantial.
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(a) Optimal s, w2 = 0.5.
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(c) Optimal s, w2 = 0.1.
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(d) Motion of B1.

Figure 6.9: Optimality results corresponding to decrements in w2.
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(a) Optimal s, w3 = 0.05.

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x−ft

y−
ft

(b) Motion of B1.
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Figure 6.10: Optimality results corresponding to decrements in w3.
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These results could mean one of two things. Going back to the expression v̄, it

is clear that this quantity is much more easily reduced through the amplitude value

A than by means of w2 and w3, for each term is quadratic in this factor. Thus, for

a large frequency such as 1, the modest reduction of w2 and w3 may not be capable

of compensating for the cumulative effect the smaller amplitude has on the cost v.

Of course, one could try more radical reduction of these parameters. However, as we

have already stated, this destroys the regulation of the shape and this is undesirable.

On the other hand, it may simply be the case that for a high frequency mode of

operation, the structure operates more optimally in a low amplitude state. Of course,

if we appeal, as we did at the outset of this experimentation, to the argument that

regularization of the shape derivatives makes sense from the point-of-view of muscular

physiology, then we should take this conclusion as the acceptable one. Since we can

take this view, we do. Furthermore, we shall henceforth make fixed the settings

w1 = 1, w2 = 1, and w3 = 0.05.

6.6.5 Experimentation with Shape Frequency

Having concluded at the close of the previous section that reasonable regularization of

the shape is appropriate it would now seem that, keeping all other factors fixed, should

the minimum of the cost remain approximately the same, a decrease in frequency

would result in an increase in amplitude. We come to this conclusion by once again

referring to the expression v̄. In fact, due to the presence of higher order terms

in the frequency related parameter ω in this expression, it would seem that each

incremental decrease would demand consecutively larger significant increases in the

amplitude. We shall now carry out an experiment to determine whether or not this

is the case. Of course, there is no good reason to believe that the optimal cost should

remain the same, and we will do nothing to try to enforce such a condition. This was

strictly a supposition.

The experiment is quite simple. We increase tf from 5 to 6 and select pf values
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of 1, 1.5, and 2 as trial parameter values. For each of these values we determine

the optimal shape. These shapes along with the corresponding feedforward head

trajectories obtained are provided in Figure 6.11. The rows of these tiled illustrations

correlate respectively to the trial values of pf as listed.

The results indicate that our expectations concerning the resulting effects of the

shape frequency were sound. Each time the frequency is lowered compensation is

made by a visibly significant increase in amplitude. It is probably the case that the

cost functional value does remain approximately the same because the objective of

translation to the terminal coordinates of (3, 0) remains unchanged and a very tight

restriction has been placed on this restriction via α.

We must comment on the fact that some strange behavior occurred in the case

of the optimal shape component φ1 for pf = 2. See Figure 6.11(d). This behavior

is more than likely due to the decrease in the regularization of the shape velocity

from w3 = 0.1 to w3 = 0.05. This illustrates the negative effects that can occur due

to discretization in the presence of non-smoothness. Ultimately, the method that we

employed did not fail. As seen in Figure 6.11(f), the structure did move in the eastern

direction. However, a stronger value of w3 would probably have resulted in a more

convincing optimal shape.

6.6.6 The Effects of Changing Demands

One of the earlier observations that was a bit unsettling was that S was never capable

of completely delivering B1 to the desired destination coordinates under the demands

of the cost. Most likely it was the contribution of v to the optimization cost that

created this threshold. This would explain why the value of α had to be taken

large to elicit motion in the northern direction. Previously, the cost incurred by the

shape must have dominated the total cost. Likewise, for the other directions. For a

large value of α, the contribution of g probably dominated the cost until the head

was delivered within a ball of a given radius about the destination coordinates. Upon
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(f) Motion of B1.

Figure 6.11: Optimality results corresponding to decreases in frequency.
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breaking the threshold of the ball the cost of the shape over the specified time interval

must have exceeded the cost incurred by g and thus the optimal thing to do was to

produce a shape that almost delivered the head to the destination but didn’t quite

make it.

As stated before, we could attempt to circumvent this situation by increasing the

value of α beyond its currently fixed value of 1500 to determine if this is in fact the

case. In lieu of this we will illustrate the correctness of this notion by asking that

the structure deliver its leading link to a point even further along the the eastern

direction than we had previously. The optimal thing to do should be to strike a

balance between the effort of the shape and the demand that the head make it to

its destination. In doing so, it should be the case that the structure will exert the

effort to travel further along the eastern direction than it did previously, although

still falling short of the desired target.

The destination coordinates of (5, 0)t are used in place of (3, 0)t for the first trial,

and the coordinates (7, 0)t are used for the second. The resulting optimal shape and

feedforward head trajectories are provided in Figure 6.12. The top row of the tiled

illustrations correspond to the desired displacement of length 5 ft and the bottom

row corresponds to the desired displacement of 7 ft.

It would appear that things are precisely as we had believed. When we asked

the structure to move 5 ft instead of 3 ft over the period of 5 s it responded by

increasing its shape amplitude, moving approximately 4 ft and reaching the desired

destination upon continuation 1 s thereafter. When asked to move still further, the

structure again increased its shape amplitude just slightly, allowing it to displace its

head at the rate of approximately 1 ft/sec . However, it is noted that we quickly

push the compliance of the structure to our demands toward its limit by means of

these changes. In the case of the 7ft request, the structure did not near its target in

the continuation. This suggests that the structure was truly being asked to perform

outside its capabilities under the given penalties. It is probable that the structure
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Figure 6.12: Optimality results corresponding to increased displacement demands.
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needs more leverage in some form to perform what is asked of it. This will bring us

to our final two experiments. But before moving on, note that henceforth we will ask

that the structure displace its head from the origin to the destination coordinates of

(5, 0)t, as this request resulted in satisfactory shape performance during the present

experimentation and we seek to push the shape to adapt as we progress.

6.6.7 The Effects of the Friction Pool on Shape and Structure

Capability

Since the outset of the research contained herein, it has been clear that the ability

of snakes or snake-like structures to achieve locomotion lies in the coupling of the

geometry of the structure and the nature of the friction pool created by the contact

between the structure and its environment. Having worked thoroughly through the

basic principles and ideas presented by Gray and having found them to be sound, it

has become clear that, of the interactions of the snake with its environment, it is the

interactions that involve the lateral portion of the animal that are responsible for the

geometry or shape of the snake that we observe while they are performing the lateral

undulation mode of motion.

Since coming to this realization we have been eager to search out a satisfactory

answer to the following secondary question. How, or should, the generic sigmoid

locomotory shape of the snake be altered as the nature of these lateral reaction forces

acting normally to the body change? Recall from the discussions of Chapter 4 that

as the magnitudes of the coefficients of the viscous friction model change, so does the

direction of the resultant friction force. More specifically, it has been demonstrated

that as the ratio ct

cn
approaches 1 from below, the locomotive capability of a fixed

instance of the serpinoid shape dissolves rapidly. It is wondered if it is possible for

the shape to, in part, make up for this loss by alteration of its geometry in accordance

with directional changes of the friction.

The experiment used to examine the query is quite simple. We fix the current



CHAPTER 6. NUMERICAL OPTIMAL CONTROL 238

value of the viscous friction parameter ct at 0.5 and then vary its counterpart cn

over the set of values {10, 5, 2.5, 1}, observing the outcome of the optimal shape and

feedforward head trajectories. The results of these experiments are shown in the rows

of Figures 6.13 and 6.14, respectively. Looking at these plots we see that the true
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Figure 6.13: The effects of lateral forces on locomotion. Results indicating the pure
necessity of a high normal reaction to lateral friction force ratio in the attainment of
directed locomotion.

character of the optimal shape remained the same, as has been the case throughout

our experiments. It is the case that, as friction ratio decreases, the structure, finding

it more difficult to accomplish its designated task, makes small adaptations in the
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Figure 6.14: The effects of lateral forces on optimal locomotion. Results indicating
the pure necessity of a high normal reaction to lateral friction force ratio in the
attainment of directed locomotion.
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way of scaling and bias. But generically speaking, the optimal form of the structure

is quite fixed or mathematically speaking, appears global. It would be a pointless

endeavor to speak of these now redundant alterations.

There are only a couple of notes about these results that we believe merit men-

tion. Firstly, for a high friction coefficient ratio, the structure actually accomplished

its prescribed task of displacing its head to the destination of (0, 5)t in the allotted

time limit of 5 s for the first time, illustrating both speed and accuracy. Secondly, at

the other end of the spectrum the performance of the optimal shape was a complete

failure. The structure simply flailed around like a fish out of water. This is precisely

what it was. A fish knows without thought that the only way to propagate itself

is through lateral undulation. However, in the absence of the pressure differential

created by a pool of fluid, the motion is futile. Dry friction anisotropy cannot pro-

vide aid. A snake cannot attain steady bulk motion in a specified direction without

significant normal reaction forces and we have, for the first time to our knowledge,

mathematically demonstrated (at least for this instance of the system) that this is

the case without assuming anything about the geometry of the serial-link structure.

6.6.8 A Look at the Role of the Size of the Serial-Link Struc-

ture

For our last experiment we investigate the role of the size n of S with regards to

optimal locomotive shapes. Having noticed in Chapter 5 that the size can have a

dramatic effect on the amount of momentum the structure can preserve, we would

expect that by adding links to the structure it may more easily be able to accomplish

the displacement tasks that we devise. Additionally, having only utilized the 5-link

structure up to this point, we do not know whether or not the generic character of

the optimal shape that has come to be redundant by now transcends this structure

size. Of course, the number of configurations that the structure could possibly take

on increases exponentially, base 2, with the number of links minus 1. Hence, perhaps
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it is possible that the optimal tendencies could change with an increase in the number

of links.

Three different structure sizes, n = 3, 6, 10, are considered. The interest in the

3-link structure comes out of its use in Gray’s analysis. The 6-link structure provides

an example near to that of the 5-link structure that we have examined heretofore but

one that has an even number of links. It seems interesting to see what happens with

the “extra” shape variable. The 10 link structure provides a sample of what happens

on the higher end of things and a second sample of an odd number of shape variables.

Before presenting the results, it should be noted that for the 10-link example the

discretization parameters are altered from those of Table 6.2. In order to speed up

the numerics we select a more coarse mesh, selecting ∆t = 0.1.

The shape and the head trajectory for each trial value of n are presented respec-

tively in the rows of Figure 6.15. Just as in the case of the 5-link structure, it was

the optimal tendency of the structure to develop a phase shift between the shape

variables, and to accentuate the amplitude of the shape variables toward the medial

portion of the structure. Again, the increased potential of S to preserve momentum

with higher link counts is observed. Note that in the case of the 10-link structure

the destination target of (5, 0)t was reached in the allotted 5 sec time period. This

is only the second occurrence of complete success in the accomplishment of the ob-

jective amongst all the experimental trials. Recall that in the case of the previous

success the friction ratio ct

cn
was near ideal being 0.5

10
. However, here we used the more

realistic ratio of 0.5
3

. This indicates for the second time now that effective structures

need to be long and more than likely this is the answer to adaptation to the friction

environment. The vertebra count of actual snakes, as discussed in Chapter 2 would

seem to support this observation.
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Figure 6.15: The effects of length on optimal locomotion. Results indicating that
elongation aids in efficiency.



Chapter 7

Conclusions and Future Directions

7.1 Summary and Conclusions

Let us recapitulate this effort and put the results into perspective. In Chapter 2

we described the serial-link structure and explained its purpose in roughly modeling

the morphology of snakes as locomotive devices. In Chapter 3 we examined how

Lagrangian mechanics could be used to formulate the dynamics of the serial link

structure and how these dynamics could be put into a reduced form using the inher-

ent symmetries of the system and the forces acting on it. In Chapter 4 we finished our

modeling discussions by providing details concerning how to model friction and ac-

tuator forces. In the discussions on friction we illustrated how one could incorporate

the idea of snake skin with anisotropic friction characteristics into the dynamics and

showed that such forces were indeed symmetric and thus could be used in the context

of the reduction described in the previous chapter. Additionally, our control discus-

sions indicated the fact that the shape of the serial-link structure was completely

controllable and we discussed a method for tracking arbitrary shapes. By doing so we

were able to explain how the shape equation portion of the reduced dynamics could

be effectively ignored and how the shape itself could be regarded as the control for the

system, focusing our efforts on the appropriate selection of shape for the acquisition
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of gait. That is essence of the first half of this work.

In the second half of our efforts we approached the problem of determining snake

shapes for the purpose of the production of undulatory locomotion from two fronts.

The first of these, presented in Chapter 5, involved rediscovering the work of J.

Gray. Essentially, we reinvented his study on undulatory locomotion and discussed

how he was able to deduce a shape that would produce locomotion by application

of a few very simple and exceedingly general criterion that embody the mechanism

of the undulatory form of locomotion. We further detailed how the smoothing of

this example form gives rise to the so-called serpenoid shape that is used by nearly

everyone who has successfully completed a study on the subject of the autonomous

control of snake-like machines. However, upon doing so, we were careful to point

out, as did Gray, that this form is only an example of how snakes make use of the

more general criterion underlying lateral undulation. This point was illustrated via

an eel-like example.

The second approach to formulating gait evoking shapes involved setting up an

optimal control problem utilizing periodic shape forms as control inputs and was

developed in the first half of Chapter 6. There were many reasons for taking this ap-

proach. One such reason was to determine if the serpenoid shape was in some sense

optimal. Hirose had presented data in his work [33] indicating that this shape was

quite in line with the shape actually used by snakes while in motion over a uniform

substratum. Based on this data, Hirose concluded that the serpenoid curve was “the”

natural choice of gliding form used by snakes for locomotion. Many researchers have

adopted this perspective. However, in light of Gray’s criterion, it seemed doubtful to

us that this form was the most natural. For only phase modulations are employed

by this shape to create the necessary curvature differential for motion. It appeared

more natural to us that the snake should also take advantage of amplitude modula-

tion in its acquisition of locomotion, further accentuating curvature differential and

increasing its capability to preserve a steady forward momentum. It was believed
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that the need for such adjustment would be heightened as the friction pool provided

by lateral resistance was weakened. By developing a methodology for determining

optimal shapes for locomotion, we were able to let mathematics decide what form

provides the most suitable balance between effort exertion and propulsive capacity.

What we found during our optimal shape investigations, which were presented

in the latter half of Chapter 6, was a balance between our belief that amplitude

modulation was natural for taking the greatest advantage of Gray’s criterion and the

need to decrease this amplitude for the purpose of minimizing the energy exerted

by actuation. As suspected, a constant shape amplitude is not consistent with the

objective of preserving as much steady-state momentum during motion as possible.

Thus, the serpenoid gliding form is not the most natural in the sense of satisfying

standard optimality criterion. It is more productive to take advantage of both am-

plitude and phase-shift modulations along the length of the structure. This falls in

line with Gray’s criterion and further validates our conclusion that it is more fitting

to give attention to the analysis that led Gray to the introduction of the composite

clothoid gliding form rather than focusing on this form itself as “the” locomotive form

of snakes.

Turning focus away from the differences between optimal shapes and the serpenoid

shape, it would seem that the use of a bias in conjunction with low amplitude sinu-

soidal shape inputs is quite consistent with optimality results. In this regard, our

results agree with the conclusions of Hirose. Additionally, it appears to us that the

feed-back mechanisms currently employed in [46] and [62] for the direction control of

the snake-like serial-link structure are on the right track.

7.2 Future Directions

With regards to future directions it must be said that the topic of snake locomotion

and in particular, the use of lateral undulations for obtaining gait, is still wide open



CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 246

in many respects. The scientific investigations that relate to and have a significant

bearing on this topic, which need to and should be performed, are too many to

mention. In addition to the shear number of issues, the spectrum of disciplines

that need to be involved in their deliberation is immense. Thus we will focus our

attention here on those matters that may be taken up directly by control engineers

and mathematicians and which directly relate to the conclusions of this study.

Immediately, studies into the liberation of the undulatory locomotive mechanism

should be taken up using the serial-link structure model. Shape patterns of the generic

form

φj(t) = a(t, j) sin(ωt + d(t, j)) + b(t, j) .

should be considered as a means of localizing undulations along the centerline of

the structure. Simple experimental investigations through simulation could indicate

quite a lot. For instance, we illustrated at the close of Chapter 5 that a(t, j) could

be selected in such a way so as to stabilize the head of the serial-link structure.

Through this function alone one could experiment with the idea of stabilizing the tail

and medial portions of the structure while still maintaining steady directed motion

with the other portions of the structure. Though the latter will likely call for use

of longer structures. If one could make these possibilities functional, then the time

component of the amplitude function could be applied to pass the localization of

the undulations to any point along the length of the device while still maintaining

directed motion. This would certainly begin to capture the true capabilities of the

snake’s hyper-redundancy, as indicated by the generalizations of Gray quoted at the

closing of Chapter 5.

Further, b(t, j) could be used to not only steer and direct the serial-link structure

as a bulk object, but also to do so locally. This feature along with localization of

the propulsive mechanism could allow the a serial-link structure of sufficient length

to not only pass through narrow openings but also the narrow winding passages that

snakes appear to navigate effortlessly.
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It is unclear at this point whether or not there is some advantage in a continuum

representation of the snake. Although, with the number of links that snakes actually

possess and the relatively small length thereof, these animals can appear to be some-

what like inextensible cables. The author had at one point conceived the notion that

the snake should be modelled in precisely that way, as an inextensible cable. Upon

doing so, one could assume that through actuation about the “infinite” number of

vertebrae, the curvature of the animal could be controlled, just as the relative angles

of the discrete serial link structure are controlled. Hence, the shape would be a soli-

tary signed curvature functional K(t, s) parameterized by time and the arc-length of

the snake’s winding curve. A form for this functional could be taken. Namely, we

could easily adapt the sinusoidal form used for the differential angles of serial link

structure so as to apply to the continuum by simply replacing the joint parameter j

with the arc-length parameter s to arrive at the functional

K(t, s) = a(t, s) sin(ωt + d(t, s)) + b(t, s) .

It turns out that this was precisely the technique applied by Burdick and Chirikjian to

treat the motion control of kinematic hyper-redundant manipulators and locomotion

devices [13, 12, 14, 10]. Additionally, as indicated by F. Matsuno and S. Hara [45],

there could be some control formulation advantages inherent in the use of a distributed

parameter system model. Whether this is the case or not, it seems like it would

be good measure to consider the potentials of the continuum approach to lateral

undulation and snake locomotion in general.

Each of the queries just described could and should, for the sake of simplicity,

be taken up in a uniform planar environment with an assumption of a viscous type

interaction law that will allow independent choice of lateral reaction and friction

forces. However, after appropriately exploring these possibilities, the uniform plane

assumption should be dropped along with the friction assumption. As expressed

before, pragmatists care about the terrain adaptability and stability properties of
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the snake. Thus, what a serial-link structure can do under ideal conditions is in

some sense beside the point. As pointed our by Gans [21], the lateral undulation

mechanism hardly requires a continuum of lateral reaction forces. For this reason,

this same mechanism can be used by the animal to climb trees and produce directed

motion in the presence of nothing more than a series of rigid pegs, as demonstrated

now several times by those who perform experiments with actual snakes. Hence, some

effort needs to be exerted to capture this adaptability to and use of the environment.

As the matter currently stands, there is not a single study in which the snake-like

mechanism uses its environment for the generation of the lateral reaction forces needed

for motion. In every case, including our own, it is either assumed that the capacity

to elicit significant normal reaction forces is some how built into the structure, such

as no side-slip wheels and sled mechanisms, or that the structure is emersed in a

fluid. Ultimately, this mold must be broken. Only then will we begin to develop

the understanding needed to capture those features of the snake that have such great

potential in engineering technologies.

We believe that these tasks we have discussed can and will be done given sufficient

time and effort. We look forward to contributing our own efforts in this regard and to

sharing in the understanding of those works that are produced by the many talented

scientists who have also taken up the study of the analysis and control of snake-like

locomotors.
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