ABSTRACT

BROWN, JONATHAN D. N-symplectic Quantization. (Under the direction of Dr. Larry
Norris.)

A quantization scheme based on n-symplectic geometry is defined. Using this new
definition a generalized Van Hove prequantization is given for the frame bundle of R™, LR™.
The full set of operators of the generalized Van Hove prequantization is full rank irreducible
and the components of these tensor valued operators are essentially self adjoint. However,
this prequantization is reducible when it is restricted to the Heisenberg algebra. Several
full quantizations are also given for LR"™ proving there is no Groenwold Van Hove type
obstruction for quantizing LR™. Using the covering theory of n-symplectic geometry we
analyze why this quantization fails under symplectic quantization. Throughout the paper,

emphasis is placed on comparison to the symplectic theory.
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Chapter 1

Introduction

The purpose of this thesis is to develop a definition of quantization based on n-
symplectic geometry rather than the traditional symplectic geometry. The major result of
this dissertation is that not only can we develop a quantization scheme based on n-symplectic
geometry but this quantization scheme also removes some, if not all, of the obstructions to
quantization encountered in the symplectic case. To appreciate the results we first must
understand the problems of quantization. To do this we will address two questions. First,
“Why change from symplectic geometry?” and second, “Why use n-symplectic geometry?”

Quantization is the relation between classical mechanics and quantum mechanics.
A classical configuration space is often a symplectic manifold and classical observables are
function on that manifold. A quantum configuration space is a Hilbert space and quantum
observables are symmetric operators on that Hilbert space. The classical system has a
natural Lie algebra structure on the observables induced by the Poisson bracket, while the
quantum observables form a Lie algebra with the commutator bracket. A quantization is
basically a Dirac map Q between these two spaces that satisfies additional requirements,
the most important being an irreducibility requirement for the “important” observables. A
Dirac map is a linear map between two Lie algebras such that the map L satisfies the Dirac
condition [Lx,Ly|=L{x,y}, L(1)=1.

“Why change from symplectic geometry” The process of quantization based on
symplectic geometry is plagued by difficulties. For example, if one wishes to try to quantize
a simple system of n moving particles one runs into a famous obstruction theorem. The
classical space for n moving particles is the cotangent bundle T*R" =2 R?". To be physically

acceptable this quantization must be unitarily equivalent to the Schrodinger representation



Q(¢") — ¢' and Q(pj) — —ihd/dq¢’. This quantization must also be a Dirac map. There
have been many attempts made to find such a map. When Dirac described his canoni-
cal quantization rule in [1] he made an interesting remark. Dirac acknowledged that his
“Poisson bracket—commutator” rule holds for all quantizable functions “or at any rate the
simpler ones of them.” His hesitation was well deserved. In [2] Groenwold proved that it
is impossible to quantize the set of all polynomials, in ¢° and pj, of R?" consistent with
the Schrodinger representation. Explicitly, taking n=1 for simplicity, he proved that when
one quantizes both sides of the equation {¢3,p3} = 3{¢’p, p?q} the quantizations are not
equal, Q({¢>,p*}) # 3Q({¢*p,p?q}). In [3], Van Hove later refined Groenwold’s work by
proving a stronger result. The result being that there exists no quantization of C°°(R?").
It is important to note that the Groenwold-Van Hove theorem only applies to the pairs
(Plg', pj],R?™) and (C°°(R?"), R?"). Furthermore the theorem only holds if Q(¢') = ¢* and
Q(p;) = —iho/ 9¢?. The Stone von Neumann theorem made the theorems of Groenwold and
Van Hove much stronger. The Stone von Neumann theorem states that any pair of opera-
tors that are irreducible on L?(R™) and that satisfy the Heisenberg commutation relations
are unitarily equivalent to the Schrodinger representation, modulo technical difficulties [4].

This theorem improved the Groenwold-Van Hove theorem to the following.

Theorem 1.1 There exists no quantization of (Plq’, pj],R*"), respectively (C>(R?"), R*")
such that the operators Q(q') and Q(p;) act irreducibly.

A strong theorem indeed. This theorem shows that the Lie algebra of C°°(R?") with the
Poisson bracket, which is explicitly related to the symplectic structure of the cotangent bun-
dle of R™, is incompatible with the Lie algebra of symmetric operators with the commutator.
Other papers [5] and [6] have also emphasized this fact. The symplectic space R?" is not
the only symplectic space that exhibits obstruction to quantization. The symplectic mani-
folds S%, T*S!, also exhibit similar obstructions to quantizations[5]. The author believes
the inherent incompatibility of the Lie algebra structures necessitates a change of setting
for the classical systems. A natural choice for the replacement of symplectic geometry is
n-symplectic geometry. n-Symplectic geometry is one of three generalizations of symplectic
geometry that originated in the late 80‘s and early 90‘s. See [7] for a review of all three
theories side by side. Playing the role of the cotangent bundle 7% M, the frame bundle of
a manifold LM is the canonical n-symplectic manifold. The n-symplectic potential is the

soldering 1-form, which is R™ valued. The tensor valued nature of the n-symplectic form



drives the main differences between symplectic and n-symplectic geometry. The symplectic
geometry of polynomials can be completely recovered using n-symplectic geometry[8]. In
this way, n-symplectic geometry is a covering theory for symplectic geometry. This fact
makes n-symplectic geometry a natural choice to replace symplectic geometry.

In chapter one we review the preliminary ideas needed to study a quantization
based on n-symplectic geometry. In sections one and two we review symplectic geometry
and n-symplectic geometry to highlight the similarities of the two structures. In section
three we review the definition of quantization based on symplectic geometry.

In chapter two we give the definition of an n-symplectic quantization. This def-
inition is similar to the definition of symplectic quantization given in chapter one. The
main difference is that the domain of the Dirac map is now functions on an n-symplectic
manifold.

In chapter three we generalize a lesser known result of Van Hove and give the
first full prequantization of LR™. We show that the prequantization is full rank irreducible
and the components are essentially self adjoint but the operators becomes reducible when
restricted to a certain subset of the domain. For completeness, a recent paper [9], by
Tuynman proves the Van Hove prequantization is irreducible for all symplectic manifolds.
I suspect the results of this dissertation could be extended to prove the prequantization in
chapter three works for the frame bundle of any manifold.

Finally, in chapter four we give our main result. We show there exists a full
polynomial quantization of LR™. Therefore there is no Groenwold Van Hove theorem for
n-symplectic quantization. We investigate the difference that allows a quantization to exist
for LR™ but not for T*R"™. As a result of these observations we give some restricted no-go
theorems. As a final remark we use the covering properties of LM over T*M to study why
this quantization on LR"™ does not give rise to a quantization on T*R".

For convenience, we list some notation used throughout the thesis.

e L?(M) denotes square integrable functions of a manifold M.

e LM is the bundle of linear frames of a manifold M.



®s denotes symmetric tensor product.

®@ER™ denotes repeated symmetric tensor product of R”?, @iR"” = R" ®; ... ®R"
——

p times

We will use the multi-index notation f» = f#- for functions and Tr, =Ty Qs .. Qs

74, for vectors.

A multi-index on 7y, d;, or 7', denotes repeated symmetric tensor product over multiple
3 L ~la _ A1 ~lq
indicies, 4y, =45 ®s --- Qs G5

Parenthesis around indicies means symmetrize the indicies.

Denote the set of vector fields on a manifold M by X (M).



Chapter 2

Preliminary Material

2.1 The Canonical n-Symplectic Manifold LM

In symplectic geometry the canonical symplectic manifold is P = T* M, the cotan-

gent bundle of a manifold M. The symplectic structure, in local symplectic coordinates
' p;), is given e differential of the canonical one form = p;dg’. To each observable
(¢",pj),is g by the differential of th 1 f 0 = p;dg’. T h ob bl

f € C°(T*M) one assigns a Hamiltonian vector field by the structure equation

df = X;_1 df
Each symplectic coordinate is C°° and hence is an allowable observable for T*M. The

corresponding Hamiltonian vector fields are

= o0
Definition 2.1 An n-symplectic manifold is a manifold P together with an R™ valued non-

degenerate two form w = w'?;. Here {#;} is the standard basis of R™.

An equivalent definition for a polysymplectic manifold is given by Gunther [10]. For n-
symplectic geometry the canonical n-symplectic manifold is P = LM, the linear frame
bundle of an n dimensional manifold M. Define coordinates on LM in the standard
way. Let (¢,U) be a chart on M and = : LM — M the standard projection to M.
For a point (m,e;) € m~1(U) C LM define coordinates (qim;) by ¢'(m,e;) = ¢ (m) and
7T§(m, ex) = €(0/0¢|,,). The n-symplectic structure is given by the differential of the R"
valued soldering one form 6 = 0'7; defined by 6(m,e;)(X) = e'(dn(X))#;. In local coor-

dinates it has the form 6 = 7; = W;dqui. Here the similarity with symplectic geometry



starts to differ. The set of observables are ®PR™ valued. Moreover, the observables are no
longer all of C*°(LM) but rather are polynomials in the momenta 7r§ with coefficients in
C>°(M). The observables naturally split into symmetric tensor valued Hamiltonian func-
tions, SHF', and totally antisymmetric tensor valued Hamiltonian functions, AHF [11].
For the remainder of this paper we will only consider SH F' leaving the antisymmetric case
to a future work. On LM, all ®%5R" valued functions, for which there exists a ®§71]R” valued
Hamiltonian vector field, are denoted SHFP. Following [11] we assign to each f € SHF? an

equivalence class [X f] of @~ 'R" valued Hamiltonian vector fields by the structure equation

dfl = —p!X}IP‘l_l o)
The equivalence class of @2 'R" valued vector fields is denoted by [X =X Ip_l'f'[pil]. In

local (¢, Fi) coordinates, the vector fields can be written for f € SHF?

xlor _ LOf 0 1 oft i 0
f p! orb 0q* p! Ogb b Oy
The equivalence classes of Hamiltonian vector fields generated by SHF form a Lie Algebra

relative to the bracket defined in [11] as follows. For f € SHF? and § € SHFY, define the

where Tb(l”*la) =0. (2.1)

bracket of their corresponding Hamiltonian vector fields by

Ip_1 A d I,— Jg—114 ~
137, [X]) = (X7, X X o 8,

The bracket on the right hand side is the ordinary Lie bracket of vector fields, and X]If’l

Jg—1 A
_1], [ng 1TJq—1H

and X 5 9~ are arbitrary representatives of the equivalence classes [XJI?” '] and [X ; ~']. The
symmetrization on the upper indices in the bracket destroys the non uniqueness making
the bracket independent of choice of representative. These vector fields also preserve the

n-symplectic form.

Lemma 2.1 Let g € SHFY and [X!;’q*l] the corresponding Hamiltonian vector field. This

vector field preserves the n-symplectic form dO in the sense that,

LXEJq_l doY =0
g

Proof

The Lie derivative of forms satisfies the familiar relation

Lyw=X_1dw+d(X_ w)



Therefore we have

Jo-1

i Jq— i i
L (0,07 = XS0 d(d9?) + d(x)" 0 dg?) = 0
g

The last relation being zero since X éJq_l_I do?) = —%dgt]q and d? = 0. O

In contradistinction to the situation on 7™M, the local coordinates of LM are no
longer observables. Each observable must be @YR™ valued. However, the local coordinates

define some basic observables.

¢ - @Y (2.2)

= i, (2.3)

The corresponding Hamiltonian vector fields are

5" " on)

These are not the only observables we can construct. We can create many observables from

the coordinates, one for each SHFP. For example, ¢'?;, ¢'7j @, 7, ¢'Tj Rs T Qs T, ete. are

all different observables created from the coordinate ¢'.

2.2 Poisson Bracket on LM

The Poisson bracket on LM plays a fundamental role in our discussion. In this
section we review the Poisson bracket for LM. We define the Poisson bracket of two

symmetric Hamiltonian functions as follows:

Definition 2.2 Let f € SHFP and § € SHFY then {f,j} € SHFPYI1 where {.,.} is
defined by

PR o1/ ados 4 A
{f.9} =piXy NgT) L, ®s T,
Here Xf is any representative of the equivalence class of symmetric Hamiltonian vector

fields of f



In [11] it is shown that this bracket is independent of choice of representative and hence
well defined. The bracket is anti-symmetric and satisfies the Jacobi identity. Also, it is

fundamental to a later discussion to note
{SHFP SHF?} c SHFPTI~1 (2.4)

The Poisson bracket in n-symplectic geometry is linked to the bracket of Hamiltonian vector

fields. We extend the result in [11].

Theorem 2.3 Let f € SHFP? and g € SHFY then the Hamiltonian vector fields satisfy the

relation

CXifgy = X Xl
The square bracket is the one defined in section 1 and C = (p—;‘!]q_ll)!.
Proof

Let f € SHFP and § € SHFY. Using Lyw = X_| dw + d(X_l w) we get

[X}[p-l,X"q N de) = L xti- (X de)) ~ J(fp "Ly, doY)

Xt
By lemma 2.1, LXJq_ldHi) = 0. Our equation becomes
g
I J, i Jq- i
[X}p LXNa a0 = LX;,p,l(ng 1 dg))
= XX dgY) + d(X [ X deY)
- o+d(X]§ X deY))

The last line follows from the structure equation —qg!X é‘]qfl_l do?) = dg”a.

[X}(fp X de) = d(x




The n-symplectic Poisson bracket and the bracket of equivalence classes of Hamiltonian vec-
tor fields are independent of choice of equivalence class. Hence we will no longer emphasize

the the equivalence class and simply refer to a representative X 2
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2.3 Momentum Mappings

The symplectic structure of 7% M supports an object called a momentum mapping.
A generalization of this mapping to n-symplectic geometry will be useful for calculating
basic sets which will be defined in a later section. The definition given in Foundations of

Mechanics edition two [12] is the following.

Definition 2.4 Let ® : G x T*M — T*M be a symplectic action of a Lie group G on
(T*M,w = dq* A dp;). The mapping J : T*M — G* is a momentum mapping if for each
£eg

dJ(€) = ~&pey w

where & 1s the infinitesimal generator of the action of G on T*M generated by &, and

A

J(&) : T*M — R is defined by

T*M

J(€)(w) =< J(u),& >
In the previous definition G is the Lie algebra for the Lie group G and a symplectic action
of a Lie group is one that preserves the symplectic form. Following [8] there is a momentum

map for n-symplectic geometry.

Definition 2.5 Let & : G x LM — LM be an n-symplectic action of a Lie group G on
(LM,df). The mapping J : LM — G* @ R™ is a momentum mapping if for each § € G

dJ(§) = &, db

where &,,, 1s the infinitesimal generator of the action of G on LM generated by &, and

J(€) : LM — R" is defined by

J(E)(u) =< J(u),§ >
The inner product < .,. > is the natural extension of the one on G x G*.
<& >=<E > @

Similar to symplectic momentum maps, if {{;} is a basis of G let {J;} be the @R" valued
Hamiltonian functions for (&;)ras. Define J by J (&) = Ji. This gives a n-symplectic

momentum map J with components J;.
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2.4 Hilbert Spaces

The quantization we will define is a general Hilbert space based quantization. In
this section we will define the Hilbert spaces needed to discuss the properties of the operators
of these quantizations. Before we define the new Hilbert spaces we mention the standard
Hilbert spaces for some quantizations of T*R™. For the metaplectic quantization [5] the
Hilbert space is the set of all measurable complex valued square integrable functions of R".
We commonly denote the Hilbert space of measurable complex valued square integrable
functions of M by L?(M,C). For the Van Hove prequantization [3] the Hilbert space
is essentially L?(R?",C). The measure in both cases is the one induced by the canonical
volume form.

To describe the appropriate Hilbert spaces for LR™ we first need to describe an
integral for LM . The volume for LM is given by dV = A(w) A (0)", where w is a torsion
free connection on LM and 0 is the soldering one-form. Let wj- be the associated one-forms
to w. Define A(w) = WiAWI A AW AWE and (0) /10" A - A O™, This definition
is independent of choice of connection[13]. For the simple frame bundle LR™ a judicious
choice of connection gives a more familiar volume dV = dg'dg®--- dq”dﬂ%dﬂ% -dmy. We
have suppressed the wedge products in the previous and following equation. We also define
a volume for the affine frame bundle AR", dW = dVdy'---dy™. For the given volumes on
LR™ and AR™ we make the following definitions.

Definition 2.6 L?(LR",C) is the Hilbert space of measurable square integrable functions
from LR™ to C. Let ¢, € L>(LR™,C) then the inner product is defined by

<o.0>= [oudv

Definition 2.7 L?(AR",C) is the Hilbert space of measurable square integrable functions
from AR™ to C. Let ¢,v € L>(AR",C) then the inner product is defined by

<6.0>= [uaw

Definition 2.8 The Hilbert space HP = {iTrz; |y'» € L?(LR™,C)}. Here z; is the standard
basis for C". Let ¢, € HP then the inner product is defined by

< ¢ >=< ¢lrap, Wz, >=) " <ol gl >

I



12
Definition 2.9 The Hilbert space H is the completion of the direct sum H of HP for all p.
5 [e.e]
H=EH
p=1
The inner product is the standard inner product for a direct sum.

o
<eppl ep iyl >= " < ¢l ylr >
p=1

For each ¢ € H there will be only finitely many non-zero terms, so this inner product is

well defined.
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2.5 Definition of Symplectic Quantization

We use the definition of a symplectic quantization given in [5] restricted to the
specific symplectic manifold T*M. A detailed explanation of the motivation behind each
condition is given in [5]. We choose this definition as it is independent of quantization

method. Let M be an n dimensional manifold. Then (7*M, df) is a symplectic manifold.

Definition 2.10 A prequantization of the cotangent bundle T*M is a linear map Q) together
with a Lie subalgebra O of C°(T*M) where @Q takes observables f € O to symmetric
operators on a dense domain D of a Hilbert space H such that the following hold:

(1) Q({f. g}) = [Q(f), Q(9)]

(2) If 1 € O then Q(1) = Identity.

(3) If the Hamiltonian vector field Xy of f is complete, then Q(f) is essentially self-adjoint
on D.

Here {.,.} denotes the symplectic Poisson bracket [14].

Definition 2.11 A basic set of observables b is a Lie subalgebra of C*°(T*M) such that:
(4) b is finitely generated,

(5) the Hamiltonian vector fields X¢, f € b are complete,

(6) b is transitive and separating, and

(7) b is a minimal Lie algebra satisfying these requirements.

The conditions required for a basic set are modeled on the properties of the components of
a symplectic momentum map for an elementary system from geometric quantization [15].
A set of functions, F, on a symplectic manifold, M, is transitive if {Xf|f € F} span T'M.
We say a set of functions separates points if for x # y € M there exists an f € F such that

flx) # f(y)-

Definition 2.12 A quantization of T*M is a prequantization (O, Q) such that for the basic
set b:

(8) Q(b) acts irreducibly on H,

(9) Q| is faithful, and

(10) D contains a dense set of separately analytic vectors for Q(b).

To clarify condition 10, a vector ¢ € D is analytic for an operator X on H given the series

S X o
k!
k=0
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is defined and converges for somet > 0. We say a vector ¢ € D is separately analytic for a
set of operators { X1, .., Xy} defined on a common invariant dense domain D if ¢ is analytic
for each X;. A wvector is separately analytic for a Lie algebra if it is separately analytic for

the set of generators for that Lie algebra.
A quantization is said to be a full quantization if O = C*°(T*M).
Definition 2.13 P(b) is the polynomial algebra for a basic set b.

A quantization is said to be a full polynomial quantization if O = P(b).
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2.6 Definition of n-Symplectic Quantization

The definition of n-symplectic quantization is modeled on symplectic quantization.

Let M be an n dimensional manifold. Then (LM, df) is an n-symplectic manifold.

Definition 2.14 A prequantization of the frame bundle LM is a linear map Q) together
with a Lie subalgebra O of SHEF where (Q takes observables f € O to symmetric operators
on a dense domain D of a Hilbert space H such that the following hold:

(1) QU{f.9}) = Q). Q(9)]

(2) If 7; € O then Q(7;) = ¢;. The constants ¢; are complex numbers.

(3) If the Hamiltonian vector field Xy of f is complete, then Q(f) is essentially self-adjoint
on D.

Here {.,.} denotes the n-symplectic Poisson bracket [?].

Definition 2.15 A basic set of observables b is a Lie subalgebra of SHE such that:
(4) b is finitely generated,

(5) the Hamiltonian vector fields Xy, f € b are complete,

(6) b is transitive and separating, and

(7) b is a minimal Lie algebra satisfying these requirements.

A set of functions, F, on an n-symplectic manifold, LM, is transitive if {X¢|f € F} span
LM. We say a set of functions separates points if for x # y € LM there exists an f € F

such that f(z) # f(y).

Definition 2.16 A quantization of LM is a prequantization (O, Q) such that for the basic
set b:

(8) Q(b) acts irreducibly on H,

(9) Qlb is faithful, and

(10) D contains a dense set of separately analytic vectors for Q(b).

Separately analytic has the same meaning here as it does for the symplectic quantization

since it is defined in terms of operators.
A quantization is said to be a full quantization if O = SHF.
Definition 2.17 P(b) is the polynomial algebra for a basic set b.

A quantization is said to be a full polynomial quantization if O = P(b).
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Chapter 3

Generalization of the Van Hove

Prequantization

In 1951 Leon Van Hove proved in his thesis [3] that the ”Van Hove Prequantiza-
tion,” which is the prequantization of geometric quantization, is irreducible on the set of
all operators generated by square integrable functions on R?” and reducible on the smaller
sub set of operators generated by £ = R[p,q]?. He also proved that these operators are
essentially self adjoint on the Hilbert space of square integrable functions on R?”. In the
following sections we prove a similar theorem for a generalized Van Hove n-symplectic pre-

quantization of the frame bundle of R".

3.1 Vector Fields on AM

Consider the affine frame bundle AM with base space LM, the linear frame bundle
of M. For the manifold M = R™, LR™ and hence AR™ have globally defined coordinates
(qi,ﬂé) and (qi,ﬂj,yi) respectively. On the bundle 8 : AR"™ — LR", there exists the R"
valued one-form

o = 30+ d\

In the above equation A = y'#; and 6 = (Wédqj)fi and o is a connection on 3 : AR™ — LR™.
The set of all real vector fields on AR™ which preserve the connection o, i.e. that satisfy

the equations



£§<Ip—l O-ip) = 0

17

are generated by functions of the base bundle f € SHF? and have the specific form [8]

1
L= XF LT,
gf_Xf+p!nf

The symbol X?E is the horizontal lift of the Hamiltonian vector field for f to AR™ and 7 i is

a vertical vector field involving the partial with respect to y*. See [8] for details as the next

%

equation is more important here. In global (¢*, 7%, y*) coordinates, the vector fields can be

Y ]’
written for f = flpfjp € SHFP,

§Ip71 laflpﬂb 9 laflpqa o l 8J3[p,1b

. 9
— _ c__ plp_1cy Y
i ponl 9¢°  pl O omp p![ arb @ fr]

oy°

If we let ff act on a specific element of L2(AR"™,C) v = ew‘ﬂ'yjqﬁ((j, 7) we have

oy [1070 0 vophn o o
f p! omh 9¢¢ p! O¢b Onf “plt Omb

g — [

)

Denote the operator acting on 1 on the right hand side of this equation by 5}0‘ .

(3.1)

(3.2)
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3.2 Irreducibility and Reducibility of the Generalized Van

Hove Prequantization

3.2.1 Notation

It is convenient to define some notation that is unique to this chapter.

L is a sub Lie algebra of SHF. It is the infinite Lie algebra on LR™ generated by

polynomials up to polynomial degree two in 7« and q.

Let F be the set of all f € SHF such that the n-symplectic Hamiltonian vector field

X i is complete.

e In this section we will be working exclusively with 5](;1) defined in (3.2). Hence, we

will simply write & i for convenience.

e A delta used with only 1 upper or 1 lower index should be interpreted as follows; for

hM_‘Sk,M—ék:ml—é,i, m2—6,%,~-,m”—5g

The symbol Y. means “no sum”.

3.2.2 The Transformation W

In this section we define an important unitary operator on L?(LR",C). Fix an
a = a;" € R™ such that a; # 0 for each i. Define the inverse of «, by % = ﬁé“bab. For

é(m,q) € L>(LR",C) define the transformation W : L?(LR",C) — L?*(LR",C) by

1

W) = (o nm/ i g (i, ¢ — Bluf)d 3.3
]>q o7 € d)(wjaq /Bwl) w ( . )

where the convention [dw = [7° [+ [ dwidw; - -dw] has been used for simplification.
Note that W is a Fourier transform of ¢(7) = ¢(w,q¢ — am); therefore by the Plancherel
theorem W is unitary. Also since W is a Fourier transform it has an inverse W~1. Now

consider the following operators on L?(LR",C):
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a - na 0
Ab = —2,8 87(117
" 1,
Bi = gébq]
- 0
Ap = —i—
b Zawg
B, = n (3.4)

Given these definitions, one can check the following relations.

[ a - ~aa a
Pt = WAW 1:—15877:141,

, , 1 , B
— —1 .
Q) = WBI'W™ = ~lpq + o]
J
- - 0
P = WAWW ' =z —ip*——
b b b g
_ o) _
Q¢ = WBIW ™= —ig g =4 (3.5)
a
It is important to note the following;
Pba = _Iiﬁagﬁ'b
Qi“ = —iﬁagqg (3.6)
where (% is the inverse of «, defined by (¢ = ﬁé“bab. Therefore the operators P, Q

satisfy various commutation relations induced by their relations to &, e.g. [P,f,Plk] =

—BB*[E(R), (1)) = 0.

3.2.3 Function of Operators

Now we want to represent & jasa function of the operators P,Q, P,Q defined

above. First notice that we have the following relations

¢ = QE+EQ

T = P - P (3.7)
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These are clear from equations (3.5). When we do not want to stress the indices, we will

denote each of the previous bases symbolically by ¢ = Q + 3-Q and m = P — P. Now recall
from (3.2), f € SHFP+!

1 affx* 9 1 affre 9 1 offt

L, _+ YJ7 v o - £lpc
U o on 0@ a1l of o prnilom e STV
Collecting terms on g—f; and g—{j we get
I, , e 8flpb iy . 0 B af‘fpci
éf 1/] - (p _|_ 1)' [zaCf + aﬂ_g ( Zacﬂ-a + aqa) 8qb aﬂ_g}w (38)

Finally, using (3.5,3.7) and this last equation we can write

p 1 . rI,c D A aflpb 5 AN DC
&V = Grpliacf (P =P.Q+8-Q+ 5P P.Q+ 8- Qiack;
afre 5 Vi AP
Tqb(P—P,Q-Fﬂ‘Q)ZQcW- (3.9)

Therefore we have proved the following result:

Theorem 3.1 For f € F and for a; #0 one has the equality

o f(P=P.Q+5-Q)+ 5L (P P.Q+5-Q)ayP— 5L

m 9

1
(p+1)!

€= (P—P.Q+6-Q)QI

This theorem allows us to write any Hamiltonian vector field as a function of these special

operators P,Q, P, Q.

3.2.4 Choosing a Basis

Our proof is a generalization of a proof by Van Hove[3]. For the proof of reducibility
of M[(:a) = {¢&;] f € £} and subsequent proof of full rank irreducibility of Ulsa) = {&] fe
SHF'} we need to construct a certain basis of the Hilbert space H. Recall that the Hermite

functions of one real variable have the form

hm(x) = ezz/zd—eﬂrg, m=(0,1,2..).

dxz™



21

They enjoy the following well-known properties

Thm(z) = mhp_1(z) + ihm+1(.’13),
L) = mhia(@) = 3 b (2)
drm xr) = Mmhm-1{T B m+1(T),
1 d? 1
5(1‘2 - @)hm(x) = (m+ §)hm(a:) (3.10)

The last property we need is that the Hermite functions form an orthogonal basis for

L?*(R,C). Now we want to extend these in a natural way to L?(LR", C). Define

B = By (4Y) - o, (4"t (7 g (22 - - () (3.11)

These new functions form an orthogonal basis in the Hilbert space L?(LR", C) since prod-
ucts of 1-variable functions are dense in functions of more than one variable. Now consider

the transformation of these functions by W. Define

M =whni, (3.12)

These new functions also form an orthogonal basis for L?(LR", C) since W is unitary. This
is the basis of the proof we have in mind. Notice that this basis depends on choice of «
since W depends on «a. Finally a basis for H can be constructed from the following objects.
For each I, let vhiy, (Y I,) be an @ER™ valued Hermite function. Denote the set of
these objects

B = {"hir, (¥ L)} (3.13)

These form an orthogonal basis for HP. Since H is the completion of the direct sum of all

‘HP then the union of all BP forms an orthogonal basis for H. Denote this set

B=JpB" (3.14)
p=1

Now we will look at the operation of some combinations of the operators P, @), etc.
on this basis. Since the components of each basis element is a Hermite function it is enough

to show the action on an arbitrary Hermite function.
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S (@aPE + @)Y = (mict ()

SBR?+ @Y = f+ ) (315)
i PR = [y (B ) — 2 (RO
0uPEY) = @k g) — 5 (M 500 (3.16)

From equations (3.6) and equation (3.15) we immediately have

% > B8 (aatal€ (7)) + [E(G)1P) (R = (ms + %)(h%). (3.17)

Direct applications of Theorem 3.1 give

7

Spar = o[> QUQw -3 A8 QLQ (3.18)
brr = sulPER— PR}, (319)
Gin = 50ilacQUPL + PLQF, (320)
Epn = SlacQiPE + PLQ) (321)

2

3.2.5 Reduction of L

First notice that our set of operators Z/llga) is highly reducible in the traditional
sense. For example let Hj be the set of all Hermite polynomials of rank k. Then L{ﬁa)
preserves the subset @,°_, for each k. However if we force our subsets to be full rank we

eliminate this possibility.

Definition 3.2 A subspace of H is full rank if it contains at least one non zero element of
each tensor rank. A set of operators X is full rank irreducible if X(A) € A where A a full
rank subset then A = H.

In this section we will give the proof of reducibility for U éa). Again, we follow Van Hove’s

guidance and apply his method of proof to our unique spaces. We start by assuming there
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exists a decomposition of H into a direct sum of full rank linearly closed manifolds invariant
under L{éa). The structure of our Hilbert space, namely our special basis, forces conditions,
written as a series of lemmas, on these manifolds. Finally, we show there exists a unique
decomposition.

Suppose we can decompose H into a direct sum of two full rank linearly closed

(a)

manifolds My and M3 invariant under transformations by U, ’. Let E; represent the or-

thogonal projection to each space M;. Then for each ¢ € ‘H, ¥ = E11¢+ Est. Furthermore:

Lemma 3.1 Every element satisfying equations (3.15) is of the form b where X is some

complex scalar and his a generalized Hermite function .

Proof

Suppose ¢ = wlpffp € ‘HP such that ' satisfies (3.15). If 1/’» = 0 we are done. Suppose

K(Ip) | hM(]p)
M(Ip) K(Ip)

where M and K are functions of the multi-index I,,. The sum is over all possible multi-
indices M and K, and af; =< % f» b3 > For this proof denote %((aaP,?)Q +(QF)?) =
Opy,. Since ¥!» satisfies (3.15) we know

Y!» £ 0. Since BP forms an orthogonal basis for HP we can write /> = S MK

Opr(¥™r) = (mi(Ip) + 1/2)y™ Vk

In the equation directly above, mj (I,) is a fixed function of I, for each I,. Expanding

e ZM K aM(( p))l h (( ;")) and substituting we get

K I K 1, M I

To analyze the components, bracket Opy,(1/'?) with the basis element, 7 7 ((II” )) € BP. Since
P

Opy, is an essentially self adjoint operator, we have the following

S=< wlp Opk(lphf\zf(lp)) >

< Opr(¥™), "hy K(Iy)

M(Ip)
K(Ip)
Substituting from (3.22) above and using (3.15) to expand Opk(IPhK((I”))) the equation
becomes



24

< (mi(Ip) +1/2) Z“M \7h (( ))’ Ith((Ip))
I
= <Y th(zﬁ))’ (1) + 1/2)( Rl #)) >

Evaluating both of the brackets yields

(i (1) + 1/2)ay ) = (i (Iy) +1/2)ag ™

This statement implies: either

or )
%ty = 0
Since 1 # 0 and the basis element, »h ((I[:)), was arbitrarily chosen, without loss of
generality we can assume CLM((I’;)) # 0. Hence, we have m) (I,) = mi(I,) Vk. Since this is
true for all k,
M(I,) = M'(I)
Therefore, for every basis element ?h’. M(Iy) such that a C =< ple I h >7é 0 we have

K(Ip) (

Ip hi\f((i)) =1 hM(Ep)) Hence, we can write 1/» = YK pEr) [phM((i))- By a similar
argument, one can show there is only one K'(I,), therefore vty = Bl» hM ((I”)).

Lemma 3.2 The subspace By, defined by ExBB = By, forms a basis of My, (k=1,2).

Proof

Consider the basis element » izfjp. This basis element can be written »h = Ey Inp 4 E5 Inp
and satisfies equations (3.15). Since the operators P,Q etc. are linear E; '»h satisfies (3.15)
for each i. Therefore E; rh = ailp h for some scalar a;. This implies that a1 + a9 = 1.

Finally, M; and My are orthogonal so one of the scalars ay, as must be zero. O
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Lemma 3.3 Let IP?L]\K/[fIP eBi Y I, and M, K fized multi-indices. Then Ipﬁ%lfjp S
B VM Y I, and fl My @y 7y, € B Ve, M, ¥ L, ¥ I

where fle is a complex scalar for all iy, - -+ ,i.. Similarly for By

Proof

To prove this lemma we will need a couple of propositions.

Suppose Ipﬁ%fjp € B c My Y I,and M, K fixed multi-indices. Then by equation
(3.15),

- - - 1, -
&, ("hil) = 0Py (hil) = [ma(hyd =) — 5 (hye ™)) (3:23)

The right hand side of this equation is also in M since ngf)./\/ll C M.

Ky

Proposition 3.1 If Ipﬁ%f[p eBr Y Iy, and M, K fized multi-indices,

then Ipﬁlﬂg*‘sb, IPE%HI’ € Bi. Similarly for Bs.

Proof
Suppose not, then IP}NL%_‘S*’, Ipﬁ]\[é“r(sb ¢ B;. Since the right hand side of (3.23) belongs to

M we can expand in terms of elements of 5.

~ ~ 1 ~ 7 ~ /
I,7 M I,7 M= I,7 M+5 K'I,iM
ao By (Phig) = [mp(Thye ™) = S(Th )] = > anpThid
M' K’
where the sum is over all M’, K’ such that Ipib%l € B1. Now bracket both sides with an
element of By, I ﬁ][‘(/f,, The LHS will always be zero since by supposition ﬁlj\g_dl’, Iy B%Mb ¢

Bi. We have the condition,

0=al, VM K’

This implies all components are zero and hence mb(IPﬁ%_é” ) — %(IPBJ\K/[M”) = 0. This is
a contradiction since my (% ﬁ%ﬂ;b) — (v iL%Hb) can never be zero. Therefore, one or the
other of 1» BJ\K/[_&’, Ip B%Hb is in By. Since M is a linearly closed manifold, the other must
belong to B; as well.O

Consider the symmetric Hamiltonian function flesyf;, € £ (Y. I.), where fle
is a complex scalar for all i1, -+ , i, and the operator generated by this function 1.z, 71, €

Z/{gl). Let this new operator act on [PBAK/[f[p €B, Y, I,
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1
2

€pren i (RiL) = g (R = SR eur, T,

Again, since M is closed the right hand side also belongs to Mj.

Proposition 3.2 If ]sz%ﬁp eBy Y I, and M, K fized multi-indices, then
flclpilﬂzgisba flclphﬁ(/pﬂsb eBicM; Y I

Similarly for Bs.

A similar argument to the proof of proposition 3.1 will prove this one as well. O

(a)

In other words, closure under the operators U’ depends only on the lower(m)

indices. We now investigate the specific requirements on those indicies.

Lemma 3.4 If IPBAK/[f’Ip eBy Y I, and M, K fized multi-indices, then

I,7 M L7 M s LM A
"Wk sp5045,50 T K _s,50—5,60T Ty PR 45,046,001, € BL C M
Similarly for Bs.

Proof
Consider the operator &z 7, € Z/{l(:a) and let it act on the basis element Ipﬁ%fjp B, Y I.
Recall from (3.19) that

i —
S = §ab[Pj‘P£ — P{ P,
Then using equations (3.16) we see
1
Ermn (PR FL) = iab[Pka PePpia("Phil i, )
i LM
= GoulPPPL = BB 1,

:[2

1
_ 2[(mj +5])[phM+6k 0; 2[ hM+6k+6 ]}

a G0 1 5149
B mil(m; = 61100 = Sl

1
+ *Oéb{kk[( — 0550 P hiyl s s 550 I "hil 5sb+5,00)

a b
+ 5[(’%‘ + 8000) PRy s s 5,50
1; -

9 ph]\K/[+6k5b+5j5a]}]7za ®s 71, (3.24)
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All the terms which have the form faIPfLAKZfa ®s 71, belong to By by lemma (3.2). All the
other terms which vary in the lower multi-index have the form faIPiLJ\K! Tq Qs T1,. These
belong to By by using a linear combination arguement similar to the proof of (3.1).0

Notice that the parity, either even or odd, of the sum of the lower multi-indices, K, does

not change after evaluation by &z z,. Now we come to the one of the main theorems.

Theorem 3.3 The only possible choices for M1 and Ms are the manifolds Mf) and M(_a),
where Mf)has the basis Bs_a) :{IPB]\KZfIP| > K is even, M anything} and M has the basis
B :{IPEKMﬁp| YK is odd, M anything}.

Proof

Lemmas (3.3) and (3.4) show that Mf) and M) are possible choices, i.e. the operators
used in the proofs of these lemmas don’t change the parity of the basis elements. All that
is left to show is uniqueness. If we can show one is strictly even then the orthogonality
(and direct sum property) of these manifolds proves the other is strictly odd. Suppose
IP?L[]‘(J?IP € B Y I,such that 3" K is even and lehli; € By Y I, such that
Y K’ is also even. Without loss of generality assume p > a. From lemma (3.4) it is clear
that we can change the lower multi-index, K, of I BAK/[ 71, by a multiple of two, and thus not
change the parity of the sum of the lower index, and stay in B;. We can do this multiple

times, adding 1 to k1 and -1 to k4 or adding +2 to k3 etc., to get

felebdlip @i, €eBr (L L) (Y L) (3.25)

Note two things. We have changed the lower index to K’ but the operators used to do this
have increased the tensor rank by some constant ¢, flc € C. However, from our starting

assumption, e iz%,/f’[a € By. This implies, by lemma (3.3),

1 T 7 M 4 A
fleve-alapMp; @, Ploripay € By (Y Ia,IC+(p_a))

_ I,
Let flete-a) = fcdli’_a, then we have
Tl ooy Lo T M 4 A

f +(p—a) hK,Y’[a R "It (p—a)

Ip—al, 7 M 4 .

— fcdjﬁ_a hio 71, s Tl (o)

Tp—a)ra i M 4 A . S
= fAo-otahyl f1 @ Iy aysa DY rearranging the symmetric indices

i, s € By (Y Iy 1) (3.26)
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Equations (3.25, 3.26) give a contradiction since they violate the first part of lemma
(3.3). Therefore, both of the basis elements given at the beginning of the proof must be in
either By or By. O
It will make the following proofs easier if we investigate Mf) and M) a little further.
If a basis element Ipizﬁ is even or odd then the corresponding Hermite function Iphﬁ =
W_”PBAK/[ is even in the 7 variables. In other words, M(f) and /\/l(f) are determined only

by the 7 slots of a Hilbert space element (7, q) € H. From these two observations we see

W_IMS_Q) = {’1/1 S H’ w(_ﬂ-%v 5_7r27q17"' 7qn) :1/1(71'%: ’7T27q1"” 7qn)}

a - {%Z) € H| ¢( 7T1,' : 7—7r;r1,l)q1a"' 7qn) = —7#(7&, ,7r7TzLaql,"' ’qn)
It is left to show that M(f) and M(_a) are indeed full rank invariant linearly closed manifolds
that orthogonally decompose H.

Theorem 3.4 ME,_Q) and /\/l(_a), as defined above, are the unique linearly closed manifolds
that orthogonally decompose H, H = Mf) @ ./\/l(,a) such that /\/lgf“) and /\/l(,a) are mvariant

subspaces of Z/{[(:a)

Proof
The s MY and MY clearl H". Th MY and M@ th |

paces T al - ceary Span . € spaces + an - are or ogona
(@)

since B(f) and B(_ ) are orthogonal. These spaces, /\/l M(_a), are vector spaces and hence
are linearly closed. Finally, we will show that Mi) and ./\/l(,a) are invariant subspaces. Let
Iy E% 71, € B(f) Y. I,,. By definition of Bf) > K is even. The subspace L is generated by
five operators, {éﬁjﬁk,éﬁk,fq;ﬁk,543-_4’%,54;}. We will investigate each of these in turn.

In the proof of lemma 3.4, we found

Gy (PRETL,) = [jﬁ“{mk[( j— o)k T —;IPhM )
- %[(mj _|_5J)1phM+5k 8 1IphM+5k+5 mn
+ *O‘b{kk[( — a8l R 550 gioa ;I hi_ 5,85 +560]
bl R s s 50— 5 s el @,

It is clear that this operation does not change the parity of » BJ\K/[ 71,, since the lower indicies

always change by two. We see from 3.15 that
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: o L
&, ("hi) = 0P (PR = [y (PR ) — S (PR

This operator does not change the parity of ﬁ% 71, as the lower index remains unchanged.

For the last three operators it is useful to notice

w-lQlt = Bl'w! (3.27)
1 .
= —Gqdw!
n
w1y = Byw! (3.28)
= W?Wfl

Also recall that W1 is linear, and

QLQS = WBIW 'WBiW ™! = WBIBfW !

Similar relations hold for Q, P, and P. Now from (3.18) we have

i = 53 Qi = 30 QI

From above, acting by W~ gives

W_lg(qi)2¢ = %O‘b[qjqj - Z ﬁsﬁsﬂgﬂg](w_llb)fb

The right hand side will have the same parity as v since the only added terms are ¢ and

72, neither of which alter the parity in the 7 variables. Now consider the operator & gi- From
J

(3.6) we have

Et = i Qi

Let W~ act on both sides to get

_ I
1474 1§q§¢=za%5jqw Ly

Clearly this does not alter the parity of the 7 variables. Finally, from (3.20) we have

i N
5@;‘.@ = 55?[0%@22 Py + PQiltq
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Again we let W~ act on both sides to get

WGy, = 30 5~ Ohv -+ nl g il
The first term of the right hand side only involves q’s so it does not change the parity of
the m wvariables. Likewise, the second term does not change the parity since it is just the
identity. It is clear that the third term will not change the parity of polynomials or e(™?
Since a Hermite function is a product of these two types of functions, the third term will
not change the parity of a basis element. Since none of the generators change the parity of
the basis element that one starts with, MELO‘) and /Vl(_a) are invariant subspaces of U éa).D

We get a main result of this paper as a corollary to Theorem 3.4.

Corollary 3.5 The subspace of operators Z/Igl) is (full rank) reducible.

3.2.6 The Irreducibility of /"

In this section we will prove the full rank irreducibility of ul(f‘)_ The hard work
of the previous sections reduces the proof of this statement to essentially giving a counter

example. We begin with the statement of the theorem.
Theorem 3.6 The space of operators uﬁa) 1s full rank irreducible.

Proof
Any full rank subspace of H that is invariant under transformations by ¢(®) must be invari-
ant under transformations by U ]ga) since L C I'. By Theorem 3.4, the only possible choices

for full rank invariant subspaces are Msra) and ./\/l(,a). Consider the operator & i generated

by the function f = fi#;, where f! = e~ (@) and fA =0, VA # 1. By theorem 3.1,

Epir = il +2Q' Q1 +26°Q1Qile )y
Taking the transform of both sides by W~! and using the identity W‘1(¢6_(q1)2) =
e~ @+’ W—1(¢) we have

Wl pin ) = iW g + 2¢' ] + 285w tml]e” @+ 1y (3.29)

If MS?) was invariant under this transformation, then for ¢ € MSLQ) this would imply

Srir b € Mf). However, the above computation (3.29) shows this is not true for this



31

operator. This operator takes even functions of 7 to odd functions. Thus by theorem 3.4,

Ulga) is irreducible.O
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3.3 The Operators of the Generalized Van Hove Prequanti-

zation are Essentially Self Adjoint

3.3.1 The Group I
(@)

In the following section, we will show that a subset of the vector fields, & P
described in(??) are in one to one correspondence to infinitesimal generators of a certain
one parameter subgroup of transformations. In this section, we describe the group I' and
some of it’s properties. The definition given is generalization of the definition of I" in [3].
The main differences being a different space AR™ verses (g, p, s) and an R™ valued one form

rather than an R valued one form.

Definition 3.7 Denote by I the set of all bijective, C* transformations from AR™ to AR"™

that leave o invariant.

We can write the invariance of ¢ in several ways. First, let v € I'. The invariance

of o gives

o=0 3.30
¥ (3.30)

This follows immediately from dpy(X) = X, for p € AR™ and X € X(AR").
Secondly, let (qi,7r§-, /) be global coordinates on AR™, then o has the global co-

ordinate representation

ol =dy' + Wédqj

Let v € T with (¢, 773», v = (¢, ﬂ;i, y'""). The invariance of o gives the equality

dy’ + ﬂ}dqj =dy" + w}idq’j (3.31)
From (3.31) we see that do is invariant as well as exterior products (do)” and o A (do)".

We get the following relations from the invariance of do, (do)", and o A (do)™; respectively

dﬂ';- d = dﬂ}idq'j (3.32)

dg'---dg"dnlidnl---dn" = dqt---dg"drldrl - drl"

n n

dy'---dy"dq - - - dg"dmidrmy - dx? = dyt---dy"dgt - - dgMdmitdal - drl®

n
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We want to use the equations above to show transformations by I' have a restricted form.

Proposition 3.3 Let v be a transformation in T'. If y(qi,ﬂ';-, y') = (q’i,ﬂ'?,y’i) then

¢ = ')
m = m(d 7))
y' o= v o)

Here p is an R™ valued C*° function of ¢ and 7.

Proof

Let v be a transformation in I' such that v(¢%, 7%, y*) = (¢/*, 7", y"). Expanding the differ-
J J

entials d¢’* and dw}i and using the equality (3.32) we have

oq" orlk  oq' orlk
-t — L =1 3.33
(86]9 87r;? 87r;? OqI (3.33)
oq onlk  aq"t onlk
( o 0 " ogae) = O (3.34)
oq't orlk  0q't 877”“)
Lo z = 0 3.35
(8%{} oym™  Oy™ Oy ( )

Equations (3.33,3.34) give

aﬂ';i . 8(]/7'

oye Oy -

Now for the 3. Consider the vector field X = 8?;1' = %Ly/j 63,1. Compute o(X) using both

sides of (3.31) to get

8y/a
oyt — %

This shows " = 3 + p'(¢’, W;).D

3.3.2 Infinitesimal Generators

Definition 3.8 Let F C SHF be the set of all f € SHF such that the Hamiltonian vector
field of f, Xf, is complete.
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Theorem 3.9 There is an bijective correspondence between C° infinitesimal transforma-

tions of I' and the observables F.

Proof
We know that all vector fields on AM that satisfy the relation L X([O'j ) = 0 have a special
form (3.1), and are generated by SHF. We show that L¢ o =0 for all £ € I(I), the Lie
algebra of I'. We know (3.30),

vo=0 VyeTl

Therefore V¢ € I(T),
exp(t&)*oc =o

Recall exp(t€) is the flow of £15/. Hence we have

d .
Le, o = gexp(tf)a
d
= —o0=0 3.36
i (3.36)

Therefore the infinitesimal transformation of I' must have the form & i for some f . The
relation & P f is one to one. If one tries to generate a group element  given a function
f one sees that not all f work. Writing out the equations one would need to integrate it is
not hard to see that the f that generate a -y s I' are the ones such that the Hamiltonian

vector fields X > are complete. O

3.3.3 Operator U

In this section we will define an important unitary operator L[ga). We will show
this operator gives a copy of L?(LR™,C) in L?(AR",C) for each a. Finally we will use
this unitary operator to prove our prequantization is essentially self adjoint. To do so,

write points of AR™ as (w,y') where w = (g,#). For all transformations v € T, denote
Y(w,y") = (&, y") where ' = y(w) and y” = ' + pt (w).
Definition 3.10 Foreachy € I' and o = (o) € R™ such that o;; # 0 let L{W(a) : L2(LR™,C) —
L?(AR™,C) be given by

UL () = o0 w)
Proposition 3.4 The operator Uga) is unitary for ally € T and for all « = (o) € R™ such
that a; # 0.
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Proof
Let v, ¢ € H.

CUPHDUD > = [ U o

— / emjp%(v*1w>¢(7—1w)e—iajp£(v*lw)WdW

Given

we have

U, = Uiy

Finally, let o be the identity transformation in I'. Using the definition of U we see

U g(w) = €375 00 ) (157 w) = ePg(w) = p(w)

By a theorem of Stone(B,C page 8 [3]) the above implies there exists a unique self adjoint

A

operator, call it H[f] such that

U = eteld] (3.37)
o

f

In the above equation v; is the one parameter group generated by the infinitesimal trans-

formation ;. The domain of H® [f] is the set of functions of L2(LR",C) such that

lim; ot~ ? [Z/{(?)qb — ¢| exists. We denote this domain Da[f}.
gl
Usingt equation (3.37) and expanding the exponential one easily sees

nmtﬂo% [uij:%b - 4 = iH*(fl¢ V¢ € D[] (3.38)
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A,

We want to construct a formula for H*[f]. With this in mind consider the infinitesimal

generator £ i and let it act on ¢ € H. By definition

E0(ntf) = limiag [0 @) ) = vl

t

This last equation can be rewritten

Egplins’) = limima s [T (@) ) = vl (3.39

SiAnce yly = Y+ pi/(w) the inverse is yi,l =9y — piy(v_l ). Also we have the relation
’Yit = (%f)fl. Now take a specific function 9 (w,y’) = €'Y ¢(w) for ¢ € Da[f] and use
equation (3.39).

e o(w) = limioy emjyi%wft(w))—emf‘yisb(w)]
= i [0, ) — (0|
= limioy [0 TR0 () — o ()]
= timeot [uUo0) - o) (3.40)

Hence we have

§fei°‘jyigb(w) = eio‘-fyjlimtﬂo% [Z/{(?)d)(w) - gb(w)]

Mt
Using (3.37) and (3.2) this equation becomes

Ho[f] =~ o € D[] (3.41)

Thus,

A

Theorem 3.11 The components of the vector fields HY[f] = —ifj(@a) are self adjoint on
Delf].
3.3.4 Essentially Self Adjoint on L?(LR",C)

Let D be the set of all C* functions in L?(LR", C) vanishing outside of compact

sets.
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Theorem 3.12 For all f € SHF and all o' € R — {0}, the restriction of H®[f] to the

domain D is essentially self adjoint.

Proof
Notice that D is a subset of D®[f]. Furthermore, H*[f] is an automorphism of D. Given
these two facts and the lemma in Foundations of Mechanics 2nd edition page 141 [12] gives

A,

the operator H®[f] restricted to D is essentially self adjoint on D. O
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Chapter 4

Quantization of LR"

4.1 The Basic Set for LR"

Before we compute the basic set for LR™ we review the basic set for the cotangent

bundle of R". In [5] the basic set for T*R" is the Heisenberg algebra by, C C*°(R")

by, = span{qi,pj, 1} 2 h(2n) (4.1)
This basic set consists of the span of the components of the momentum map created by the
action of Heisenberg group H(2n) acting on R?"[14]. This is the basic set needed for the
Schrodinger representation.

Recall a technique mentioned earlier. If {¢;} is a basis of G let {.J;} be the ®”R"
valued Hamiltonian functions for (&;)zs. Define J by J(&) = J;. This gives a n-symplectic
momentum map J with components J;. This is the procedure we outline below. Before we
begin recall also that LR™ = R"™ x Gl(n) and we have a global chart from LR"™ — R"™ x Gl(n)
given by the coordinates (¢’, 7T;) To compute the n-symplectic momentum map needed to

construct the basic set for the frame bundle LR™ we define a new group.
Definition 4.1 Define the group
H(LR") = X(LR") x" §*

with product

1

(ug, 2%, ..., 2") - (ug, w!

yoew™) = (ug + ug, zlwlemp(%Al), cee z”w"exp(%A”))

In the above equation A* = dO*(uy,us) evaluated at the identity (0,1).
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For every element (u, Z) we have the inverse (—u, Z!). Notice the similarity to the Heisen-
berg group H (2n). Given this similarity and following Guillemen and Sternberg [14] (section
15) we may identify the Lie algebra of this group h(LR"™) with X'(LR™)x"R = X' (LR™) xR".
The bracket for the Lie algebra being

[(u1, D), (ug, W)] = (0,d0 (u,us),...,d0" (u1,uz)) = (0,dd (u1, uz)7;)

Now we are ready to compute the components of the n-symplectic momentum map for

H(LR") acting on LR". Identify LR™ with a subset of h(LR") by ¢'f; — (j;'. — (X4, 0),
. J

iy — 7k — (X4,,0). Also identify the identity 7, — (0, 7) and let H(LR™) act on h(LR™)

via the adjoint action. For the elements & = £47 + €l m = mg(jg + mF#), € h(LR™)

Epan (M) = [€,m] = (0,d0" (€, m)7:) = dO'(&, m)F; = (Egm® — my€')Fy (4.2)

Given the above identification, a basis for h(LR") is {(j;-,frk,fk} — {X;i, Xz, Tk} Using
J

o)

(4.2) we compute the infinitesimal generators of the basis, ((jj-)LRn = g%, (Tk) an = B

and (7)

for these infinitesimal generators:

.an = 0. The components of the momentum map are the Hamiltonian functions

Jy =aqy, Iy =Tk, Jj =17

We choose our basic set for LR™ to be the span of the components of this n-symplectic

momentum map.

This is the analogue of the Heisenberg algebra for LR™. The Poisson brackets are

{qA;a T} = 511'4721'
From the bracket we see by, is a subalgebra of SHF. The Hamiltonian vector fields for
the subalgebra by, are {—9/ 8712-, 0/0q",0} respectively. The integral curves of these vector
fields are linear and hence defined for all time. The set by, is finitely generated and since
q" and 7T§~ are global coordinates on LR"™ they separate points. Likewise their Hamiltonian
vector fields span T'(LR™). Thus by, is indeed a basic set for LR™. The fact that we get the

“hatted” versions of the coordinates instead of the coordinates themselves is a consequence

of the fact that all observables on LR"™ must be R™ valued.
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4.2 Comparison of the Poisson Algebra of Polynomials for

T"R" vs LR"

The existence of a “no-go” theorem for T*R™ and the absence thereof for LR™
stems from the difference in their Poisson algebras, as we will see in a later section. In this

section we explicitly show the differences.

4.2.1 The Polynomial Algebra P(b,,)

Recall the basic set by, = span{q’,pj, 1} C C>°(R") for T*R" from equation (4.1).
Then P(by,) is just polynomials of the variables (¢%,p;), and the bracket is the standard
Poisson bracket for T*R".

Computing a few important Poisson brackets we see

{¢,p;} = 0
{(@) (@)} = 0
{(p)*, ()" = 0
{(¢') (pj)*} = 46iq'p;
{@) ) = 963(¢")*(py)?
{(@)?p,a*(0)?} = 355(d")*(p))° (4.4)

a

The notations (¢*)* and (p;)® denote an a-fold product in the underlying commutative
algebra P(ba,). The last two relations are the Poisson relations that lead to the Groenwold
obstruction. Notable subalgebras of P(bg,,) are polynomials of degree two or less and the
affine subalgebra, which is the subalgebra of all polynomials linear in p;. The Poisson

algebra P(bs,,) has no non-trivial ideals and satisfies
[P(b2n), P(b2n)] = P(bay)

4.2.2 The Polynomial Algebra P(by)

Recall by, = span{(j;, 7k, 7} from equation (4.3) and consider the Poisson algebra
P(by) with bracket defined in section 2.2. Elements of P(by) are polynomials of ((j;-, Ty Th)

and hence are ®'R"™ valued functions on LR", m being the degree of the polynomial.
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A typical monomial looks like (j{,’iermel € SHFE™ ™t Here the multiplication is the
symmetric tensor product, (j;-frk = q;i ®s Tk
Using the n-symplectic Poisson bracket defined in section 2.2 we compute some

relevant brackets.

{Gi. 7} = O
{@)" @) = o
{(®)% (7;)"} = 0
{(G.)° (7)*Y = 4854;7,7
{(@)% (1) = 985(q1)* (7)) Fn
(@), G2 (7% = 307(d5,)% (7)) e (4.5)

Notice the similarity to the symplectic Poisson brackets above. The main difference is the

®PR™ valued rank. We also have for any two polynomials f,§ € P(byp)
; L . 2oy Mg -
{f ol tr,goft iy} = {f, 9} @5 Py,
The multi-index My is (I, J;). Now we define some important subalgebras.

Definition 4.2 The set of all polynomials of degree 2 or less in (j;-, T with no restriction

on the degree of 71 is denoted Pg.
Definition 4.3 The set of all polynomials linear in 7y, is denoted Cf,.

Notice that the last part of definition 4.2 is necessary since the linear space of all polynomials
of degree no greater than 2 no longer closes for P(byz).

Next we define an important set within P(byr,).
Definition 4.4 The set of all polynomials of (j} and 7y is denoted P(q,T)

This is just a subspace of P(by) and not a subalgebra, unlike T*R™ where P(q,p) = P(bay).
Specifically it follows from the equations (4.5) that

{P(q,7), P(q,7)} = P(q, 7)7
However, we can partition P(by) using P(q, 7).
o
P(b) = P P(4.7)is,
k=0

This direct sum gives us an easy way to find ideals of P(byz).
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Definition 4.5 Define subalgebras P™ of P(by) by P™ = @y, P(q, )71,
These subalgebras are nested

PloP?o P 5.
Furthermore, for each m, P™ is an ideal of P(by,) since

{pm™, Ps} c pmtsTl (4.6)

The previous equation is the most important feature of P(by). This equation states that

one cannot decrease rank in P(br) by taking Poisson brackets.

4.3 Go theorem for L(R")

Theorem 4.6 There exists a full polynomial quantization of the polynomial algebra P(br)
for the space LR"™.

We prove this existence theorem by giving two examples!

4.3.1 Ideal Quantization

Recall from section 4.2 equation (4.6) that
(P, ps} ¢ prtsl
Also recall that P™ = @y, P(4, 7)71, is a Lie ideal for each m. Therefore we can write
P(bg) = by + P!
In the above equation, + represents semi-direct sum with bracket given by

{(&1,m)s (Gasme) = ({&1, &} {&me} — {&,m )t + {m.me}}

Thus we can obtain a full quantization of P(by) by quantizing by, and setting Q(P!) = 0.
This is the approach taken by Gotay [5] when he exhibited a quantization of T*R . Quantize

b;, as follows:
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For the last equation the aj are constants such that ag #% 0 for all k. It is trivial to check
this map satisfies the definition of a prequantization. The Hilbert space is L?(R", C) and
the domain is the Schwartz space of all C* rapidly decreasing functions. When restricted
to by the quantization map is faithful and is equivalent to the n-symplectic Schrodinger
representation. Irreducibility of Q(byz,) follows from the fact that the Schrodinger represen-
tation {¢', 8%’6} is irreducible on L?(R", C). Likewise the operators Q|,, are essentially self
adjoint on D. Finally, it is known that the Hermite polynomials form a dense set in D of

separately analytic vectors for the Schrodinger representation.
Corollary 4.7 There is no Groenwold van Hove type obstruction for quantizing LR™.

By Groenwold van Hove type obstruction we mean an obstruction to quantization that:

e arises as a consequence of the irreducibility condition and the Poission bracket goes

commutator condition and

e requires a restriction of the quantization to a subalgebra of observables to correct.

4.3.2 Another Full Polynomial Quantization

Let A = (A%) be a constant n x n Hermitian matrix. Another full quantization is

given by the map Q(P?) = 0 and

Q(iy,) = Qi 7, 7s) = 0

Q(G) = QUite) = —ihl

Q) = Zp_ ARG, g Qi) = an, e Vim £ 1 (4.10)
Q(ghmin) = Al oy, Qi 7s) =0

Q) = zhAﬂ’” 2% Qi 7w,) = Al anmile Vi £1

In the above we have used the notation AS’ZL = A;ll e Azz This quantization is also easy

to check since the only significant brackets have the form

It ip Azlzg---zp---zt NV
{dz quWk} E, —10,74y,", ARy, i

Computing the commutator of the operators we have
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i . ivigein i 0
h[Q(Q{Ji) Q(QR k)] Z:Ajf1 P, g zhA{, " Bq =)

o ip 1122--~’Lp'“lt L o ip zlzg-nzp-uztALMA
——tgéA AR" g, = tE(SQJt R T,)

1

Notice that when restrlcted to the basic set this quantlzatlon is the same as the previous

one. Thus the map Q) satisfies the definition of a quantization given in section 77.

4.3.3 Subalgebras of P(by)

We can also quantize the two subalgebras mentioned in section 4.2. First consider

the subalgebra Pg. Define a map

Q(q)) = ajq’ Q(fk) = —ihgl (4.11)
QEER) = ajand'e”  Qliniy) = —h? 505

Extend this map to all of P? by linearity and the generalized von Neumann rule

Q(fte) = QN Vf € P}
In fact this particular choice of Q(cjjfrk) forces the generalized von Neumann rule above to
apply. This quantization of the subalgebra P]% is the direct analogue of the extended meta-
plectic quantization?? of polynomials of degree 2 or less on T*R"™, and hence these operators
are essentially self adjoint. Unfortunately, like its counterpart in symplectic geometry, this
quantization cannot be extended to all of P(by). See section 4.5 for a proof. We can also

quantize the subalgebra Cp. Recall

CL= {(flkzﬂ'i + glkj)ffkj}v

where fl’”' and ¢'*J are polynomials of ¢ only. For each v the map

0 1 O fIxi
B4 Z+[*+iu] !

is a quantization of Cr. In the above equation aj, = o, ;, - - oy, For v = 0 this is the n-

Qu(f™a] + ™ )irg) = —ihar (F )+ a;g')

qi

symplectic version of the coordinate representation of all polynomials linear in p; on T*R".

Unfortunately, this quantization of Cf, can not be extended in P(by,) either.
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4.4 Groenwold Van Hove Obstruction for 7T*R"

To better understand these results a careful study of the proof of the Groenwold
Van Hove obstruction for 7*R" is needed. Complete proofs are given in [5],[2],[3], and [12]
to name a few. Below we give a part of the proof given in [5]. We will show a contradiction.
Suppose @ is a symplectic quantization of (P(ba,),ba,). The first step is to determine
Q((¢H?) and Q((ps)?). Let A(1)=Q((¢")*)-(Q(¢"))?. Now we will compute the brackets

(A1), Q(q")]
[A(2), Q(pr)]

From the definition of a quantization property (1) we have

[Q(d"), Q(py)] = ihd}

Therefore,

(A0, Qd")] = [Q((d")%),Q(d"] - [(Q(g")% Qd")] (4.12)
= 0-0=0 (4.13)

We also have

(A1), Qpr)] = [Q((¢)%), Qpr)) — (Q(d))?, Q)]
= 2ih6jQ(q") — [(Q(¢"))*, Q(px)]
= 2in6,Q(q") — {(Q(¢))*Q(pr) — Q(pr)(Q(¢"))*}
= 2ih0;Q(q") — (Q(a))(Q(pr)Q(q") + ihd},)
— (Q(d"Q(pr) — ih3})Q(q")}
- 0 (4.14)

The algebraic irreducibility ([5] prop. 5) of Q(px) and Q(q*) implies

Q")) = (Q(g")* + EI

A similar argument gives
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Q((pi)*) = (Q(pi))* + FI

Computing more brackets, [5] one sees for the constants E and F that E = F =0 or

Q((pi)?) = (Q(p:))?

These relations lead to higher Von Neumann rules and eventually to an obstruction.

4.4.1 n-Symplectic Case

Now compute the same relations for an n-symplectic quantization of (P(br),br).
We start our computation with the same goal: to determine Q(((j;)z) Let A(4,)=Q(( A;'.)?)_
(Q(d;-))Q. Compute the brackets

(A, 5), Q)]

From the definition of an n-symplectic quantization property (1) we have for some

constant ¢

[Q), Q(#))] = ihd} ey (4.15)

and moreover,
[AG5), QD)) = [RUEN), QGN] - (Q(4)*, Q(d)] (4.16)
= 0-0=0 (4.17)

We also have, using the definition of an n-symplectic quantization property (1) and equation

(4.15),
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(A, ), Q)] = [Q((dﬁ-)z),Q( ] = Q@))% Q)]
= 2ih8,Q(4;75) — [(Q(4))* Q(7w)]
= 2ih8.Q(q;7;) — {(Q(4)))*Q () — Q(7x)(Q(d;))*}
= 2ih8,Q(4;75) — (Q(a))(Q(71)QG;) + ihdic))
— (Qa)Q(7k) — ihdye;)Q(d5)}
= 2zh5kQ("“) 2ih6kQ(qj)cj (4.18)

Hence, [A(i,7), Q(7k)] is not necessarily zero for all quantizations Q! Compare this with
the computation leading to equation (4.14). The difference being that {P(q, ), P(4,7)} =
P(g, )7 for the n-symplectic case. The irreducibility of Q(7;) and Q(c_};) implies nothing

unless we choose the generalized Von Nuemann relation

Q7)) = Q(d))e;

An identical argument yields the same result for (7;)?, namely

Q(rj) = Q(7k)c;
These results and other similar observations lead to the restricted no-go theorems of section

4.5.

4.5 No-Go theorems

The examples from section 4.3 prove there is no global “no-go” theorem for quan-

tizing LR™. However, some simple conditions lead to “no-go” theorems. Explicitly,

Theorem 4.8 There is no full quantization of LR™ such that Q(byr) acts irreducibly and
Q(ffi) = QUNQ(") VfeSHF.

Proof

This is the exact condition needed to make n-symplectic quantization behave like a symplec-
tic quantization. Suppose @ is a quantization of (P(br,),byr). Let A(i,j):Q((qA})Q)—(Q(qA;))?
Compute the brackets



48

[Ai, ), Q)]

From property (1) and (2) of an n-symplectic quantization we have for some constants ¢;

[Q@r), Q)] = indje (4.19)
Since Q(f#) = Q(f)Q(#;) we have
Q7)) = Q(Fk)c;
Q(d575) = Q(d5)c;
Therefore,
(A, ), Q)] =0
[A(i, §), Q(7x)] = 2ih6,Q(q}#;) — 2ihd6,Q(q})e; = 0

By the algebraic irreducibility of Q(¢F) and Q(#), we have A(i, j) = EI, where E is some

constant matrix. Hence,

QU(dH)?) = Q(G))* + EI (4.20)

A similar argument for Q((#;)?) gives

Q((7:)%) = Q(&:)* + FI (4.21)

From equation (4.5) we have {(cj;)Q, (7x)%} = 452@§ﬁkfj. To get the quantization of Q(é}cq?ﬁ'k)

we will quantize both sides of the previous equation. To illustrate the type of computation

we put the full calculation here. Using relations (4.19), (4.20), and (4.21) to simplify, we
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see

QU (7)*) = 1QU(E)%), QU(7r)*)]
= [Q(@)* + E,Q(#r)* + F)
= Q(*Q(7)* - Q(7)*Q(a)?
= QRMQQ(7) — Q(7)*Q(4)°
= QQH)Q(G) + ihsic;Q(F) — Q(7)2Q(4)?
= Q)QHQ)QF) + ihsic,Q@)Q(F) — Q(7)2Q(4)?
Q(M)Q(Q) + ihdj,c;)Q(D)Q(F) +ihQ(D)Q(7) — Q(7)*Q(q)?
= QMRDADQF) +2ihQ(Q(7) — Q(7)*Q(q)*
QM)QIQ(MQ(G) + ihdje;] + 2ihde;Q(DQ(F) — Q(7)*Q(4)*
()
(

q

Q(MQQQ(F)Q() + ihdc; Q(7)Q(4)

+ 2ihd¢;Q(HR(T) — Q(7)*Q(g)?
= QMQHQ) +ihdie;)Q(q) + ihdhe;Q(F)Q(d)
+ 2ihdc;Q()Q(7) — Q(7)*Q(4)*

= 22h5kCJQ(7T)Q(q)+22h5ijQ( 71)Q(7)
(4.22)

Therefore we have the quantization relation
~i A iAo A i i A L Y ) (4 A ~i
QU(@)?, (7r)*}) = Q(Spd,775) = Q(61.4}7%)Q(75) = 50k(Q(g5)Q () + Q) Q(d5))e;
Quantizing the Poisson bracket relations {(Q;)Q,déﬁk} = —25,@(@;)2@ and {(ﬁk)2,Q§ﬁk} =
25,@(7%;3)27@]- and simplifying, we see that £ = F' = 0. Using similar techniques one can show
Q((G)"™) = Q(g;)"
Q(Fr)") = Q(7r)"
AN A 1 A1 ~ ~ 7
Q(G;)*7k) = 5[@(%)2@(%) +Q(7r)Q(d5)%]
~ ~7 1 ~ ~7 ~1 ~
QUA*E)) = 51Q(F)*Q(q)) + Q&) Q)]
Now consider the Poisson bracket relation {(cj;)‘g, (7x)3}) = 3{(@;)2ﬁk, cj;(ﬁ'k)Q} Quantizing
both sides and using the above to simplify, we have the desired contradiction. Specifically,

quantizing {(Q§)3, (71)3} gives
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9Q(6))*Q(r)* — 18ihQ(4)Q7y) — A1 (4.23)

Quantizing 3{(@;)27?;9, q; (7x)?} gives

9Q(6))*Q(7r)* — 18ihQ(4)Q7y) — 381 (4.24)

An important corollary to the previous theorem is the following;:

Corollary 4.9 There exists no full quantization of L(R™) such that Q acts like an anti-
commutator, Q(f4) = 3(Q())Q(9) + Q(I)Q(])).

Proof
Let g = 7, and then use Theorem 4.8. O

Another interesting theorem is given by the following observation. Suppose that
Q(brrk,) = Q(br)Q(7k,) = Q(br)ck, for all p. Given the quantization of the basic set
Q(br) acts irreducibly, then Q(br7k,) = Q(br)ck, acts irreducibly for all p.

Theorem 4.10 There is no full quantization of L(R™) such that Q(br7k,) acts irreducibly
for any fized p and Q(f7;) = Q(f)Q(#) Vf € D=y P4, 7)1k, -

Proof

The proof of this theorem is identical to the main theorem of this section. Replace every
polynomial f with fpr and all the computations follow through. The contradiction arises
from the classical equation {(q?)?’fkp, (7r)3PK, ) = 3{(@;)2ﬁkam, (j;(ﬁk)QfKt} where p+s =
t+m. Notice that the proof of the main theorem only uses P(by,) and not all of SHF'. So the
requirement of the generalized von Neumann rule only for @f;’:p P(q,7)7k,, is sufficient.
O

As a corollary we get the results stated in section 4.3.

Corollary 4.11 The extended metaplectic n-symplectic quantization cannot be extended

past P? in P(by).

Proof
Let the quantization of PE be the extended metaplectic n-symplectic quantization given in

section 4.3.3. Extend P? by any monomial (j(?l 7k, PN,. The subalgebra P? is “maximal” in
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the sense that adding (jﬁ’l TK,,"N, Will generate every monomial of P, but no lower. Hence
the smallest subalgebra containing P? and QﬁﬁKmch is {P? } U P.. The quantization of
g;7y, forces the generalized von Nuemann rule Q(f7;) = Q(f)Q(7;) Vf € Pe. Finally the
irreducibility of Q(br) implies the irreducibility of Q(br)ck.. O

Corollary 4.12 The n-symplectic version of the coordinate representation cannot be ex-

tended past Cr, in P(br).

The proof is the same as the last corollary with the following observations. First the n-
symplectic version of the coordinate representation obeys the generalized von Neumann
relation Q(f7;) = Q(f)Q(#;) Vf € Cr. The subalgebra of Cy, is again weakly maximal.

Hence, adding any monomial cjf,i 7k, 7N, forces one to consider {Cr, } U P..

4.6 Map From LM to T*"M

In [8] it is shown that for all @« € R™ such that a; # 0 Vi there is a map « :
STP — C°°(T*M) which recovers symplectic geometry. The space STP is the set of all
symmetric Hamiltonian observables with homogeneous degree p in 7. There is also an
induced map 1, : AM — L*, where AM is the affine frame bundle of a manifold M and
L* is the C* bundle of geometric quantization. The author has extended the map «a to

SHFP — C(T*M) for each p.

Definition 4.13 For the symmetric Hamiltonian observable f = fIPf]p € SHFP define the
map o : SHFP — C®(T*M) by
Oé(f) = Oélpfl”

For the purpose of this paper we can use a simpler version of 1, which we will also denote

Ya-

Definition 4.14 Let u = (p,e;) be a point in LM . Define the map 1, : LM — T*(M) by

’Qba(,u) = sz)a(p7 61') = (pv aiei)

In this definition {e’} is the dual basis to {e;}. Let f denote the observable on T* M obtained

A

by a(f). Before we give the next theorem recall that a Hamiltonian vector field on LR™ is
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®ER™ valued X = X]IE” 71,- Notice that for p = 0 the Hamiltonian vector field is R valued.

Hence for all p > 0, X'ra 1, is an R" valued Hamiltonian vector field of LR".

Theorem 4.15 Let f € SHFP, then
I
dwa(Xff’ajp) = Xa(f) = X; (4.25)

In the above theorem X 7 is the symplectic Hamiltonian vector field on 7% M generated by
f , and X i is the n-symplectic Hamiltonian vector field on LM generated by f .
Proof

Using definition 4.14 we first compute
d%(a?r;i) = O‘i%’
d¢a(a(zi) = 8?11'

Let u € LM and let w = by (u). For fl»+1 € SHFPT! the Hamiltonian vector field X is
given by (3.1). Let w = 1y (u) with v € LR™. Computing we find:

19fle-1t 9 1 9flb-1a g

Ip—1 —
Pl (X ar, )(u) = P!d%(;! ot @—HW@%—J(“)
) 0 19 fhe )
= anb Qfpq Tqa(w) - ETQbOZIp_l%afm(w)
of o of o
= o™ " agp oy,
= X; (4.26)

The third line depends on the relation 82,1 = aaaipb. Hence diy, has the required property.
b

OThis map preserves the Poisson bracket in each respective space. Denote the set of equiv-
alence classes of n-symplectic Hamiltonian vector fields on LM by HV(LM). Denote the
set of symplectic Hamiltonian vector fields on T*M by HV (T*M).

Definition 4.16 Let X = X'»#; € HV(LM) then define the map T : HV(LM) —
HV(T*M) as follows

T(X)=T(X",) = (p+ 1)ldpa(Xay,)

From above we have
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Theorem 4.17 The map T : HV(LM) — HV (T*M) is a Lie algebra homomorphism.

Proof
From section 2.1 we have

(X7, X5) = C

pXal=CX 0

From standard symplectic geometry on T*M we have
X5 Xl = X751
Using these relations one has

T[X;X;] = T(CX

2 (4}

= OXoiiay
= OXig

= C[X;X;] O (4.27)

The map T can be extended to a map 7" : op(Hrgrn) — op(Hp+rn) for operators of a specific

form. First some notation. Denote a differential operator of op(Hyrn) by
ToAmJdr (i .
F = FB’:" (q’L? Tr;)l)aqlk © aﬂ—g:z r-]r

def 9 F)
= 0---0 .
and 671_Az 67‘(;11 (971';7”

Note also that if all differential indicies are zero, F' is a multiplication operator F' = F/r#; .

. . . def 9 9
This equation uses the notation J,r, = BaT © 0 Bat

Extend T in a natural way by the following definition.

Definition 4.18 Let F = Fé’“AmJT(qi,Wg)ﬁqfkﬁwAmer € op(Hrrr) and define the map
m Bm
T : op(Hrn) — op(Hregn) by

T(F) = T(Fg " (¢', 7)) 0,104 5,) = g, g7 (¢, ) dba (Ogai )dba (9 )
For a multiplication operator F = F/r¢ ;.

T(F) = a(F)
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) . ) def
In this definition we have used the notation di, (8q1k) = dig (6%) o---0dig, (811%) and
Ao (0 _am) = dipo <68a1> 0«0 dipy ((%Lam). This map clearly maps into op(Hp+gn).

Bm ﬂ-bl bm

Definition 4.19 Let Qp+rn be the map induced on T*R™ given a quantization () on LM.

= Qre-({f,3}) (4.28)

The map « can be thought of as a map P(by) — P(bg,) and T : op(Hrgrr) — op(Hp+grn).
However the map Qp«gr does not give a quantization on T*R". Using the maps above we
can map the quantization of LR™ to T*R" and see where it breaks down. In n-symplectic
geometry the observables qA;: and Q;fk are distinctly different. Quantizing each as in the full

polynomial quantization of section 8.2 we get

Q) = ayq’
Q(Gi7k) = Alay,

Using the above maps we see that oz(cj;) = ¢'a; and a(q?fk) = ajarq’ on T*R™. Using

definition 4.18 we have
Qrern(a;q") = Qrern(a(q))) = T(Q(G))) = T(a;q") = a;q'
Also, we have
Qrere(arajq’) = Qrere (@) = T(Q(G7r)) = T(Ajor) = Ajoy

Hence, on the cotangent bundle, Qp+gr is not a linear map since Qp+grn (ozkozjqi) #*

akQT*Rn(ajqi). In fact, the map « removes the Lie ideals in the Poisson algebra!
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Chapter 5

Conclusion

To avoid the obstructions to quantizing the canonical symplectic manifold T*R"™
something must change. The most obvious candidates for modification are either Dirac’s
“Poisson bracket — commutator” quantization rule or the underlying setting of quanti-
zation. The symplectic geometry of polynomial observables on T*R" is induced from the
n-symplectic geometry of LR™. Hence, n-symplectic geometry is the natural choice of a
larger geometry in which to base quantization. As shown in chapter 4, the n-symplectic
geometry of LR™ allows for the existence of ideals in the Poisson algebra of polynomials.
On the other hand there are no such ideals in the Poisson algebra of polynomial observables
on T* M. The existence of ideals in the Poisson algebra of polynomial observables on LR"
allows the frame bundle of R” to support full polynomial quantizations.The author believes
this is a necessary and sufficient condition. With that conjecture in mind it is important to
notice that ideals exist in the Poisson algebra of polynomial observables of LM for all M.

The change from symplectic geometry to n-symplectic geometry is better than
weakening Dirac’s “Poisson bracket — commutator” quantization rule because of an im-
portant observation in [5]. There is an apparent link between obstructions to Hilbert space
based quantization and the absence of a strict deformation quantization. In response to
these observations Gotay makes the following comment,

It is generally believed that the existence of Groenwold-Van Hove obstructions
necessitates a weakening of the Poisson Bracket — commutator rule(by insisting

that it hold only to order %), but these observations indicate that this may not
suffice to remove the obstructions.

The existence of full polynomial quantizations for LR™ and none for T*R" is just
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one more reason n-symplectic geometry is a rich subject with great physical potential. The
theory of n-symplectic quantization is also fertile ground for new research. I would like to

emphasize some important topics that need further consideration.

e Momentum maps play an important role in quantization. They are the foundation
that the basic sets are built on. The momentum mapping for n-symplectic geometry is
only roughly understood. A full treatment of momentum maps would be useful. The
definition of basic set for n-symplectic geometry given here is based on the properties of
a symplectic momentum map. A better understanding of the n-symplectic momentum

mapping could lead to a better definition of an n-symplectic basic set.

e The only space considered in this paper is LR"™. There are other manifolds that cannot
be quantized namely S? and T*S'. The n-symplectic quantization of these manifolds
has yet to be studied. The natural n-symplectic analogue of 7*S', or T*S™ in general,
is the frame bundle of S™, LS™. The n-symplectic analogue of S? is more subtle. A

general n-symplectic manifold, not necessarily a frame bundle, may be required.

e The quantization given here is just a specific example of a quantization for a specific
n-symplectic manifold. We have made no attempt to develop a quantization method
to instantly quantize every n-symplectic manifold. However, this would be a desirable

result.

e There exists a map from the set of polynomials of degree 3 or less to e.s.a. operators
on the Hilbert space, £. This map satisfies all the requirements of a quantization
except the space is not a subalgebra of P(by). We note that this map is not possible

in symplectic geometry because of the Greonwold obstruction for cubic polynomials.



The specific map is:
Q(q; @b 7y
Q(Fk ®F 7y
Q(ix @ 7,
Q((g))* &% 7y

Q((7x)? ®F 74)

)
)
)
)

Q(4i7x)
Q(3i7k ®F )

Q((4))* &k )

o7

(—1)fayq’ ®'§ 7
0
k
g ®5 7
a;q'ql @5 7

82
B ko k
0q"dq

®k+1 7

0 i, O
qjak+537ra

0
(4G + k) &K

(aqu(qj) — 3amr) ®k P

83
A N3 kAN 2242 122 k+1
Q((Trk) ®S Tb) - ﬁ r (8qk8qk8q /8 ) b

~i\2 A e 0
Q(5)*#y) = (qj)25q+qr
: 0 8 0

)20 = §ie PP 1

Q(7k)"q;) 5090 0" (5.1)

What makes this map remarkable is the the relation

[QU(5)?), Q((F)*)] = 31Q(4))*#k), Q(71)G))]

This is the relation that leads to the Groenwold Van Hove obstruction for R?" (see
equations (4.23,4.24)). The author believes that this map cannot be extended to a full
polynomial quantization but has not proved this statement at this time. Since there
is no Groenwold Van Hove obstruction for n-symplectic geometry, it is interesting to
search for a full quantization that includes the metaplectic quantization or some close

variant thereof.

We have only studied a quantization for the symmetric observables of LR™. There is
another class of observables, the totally antisymmetric Hamiltonian functions AHF'.
In [11] it is shown that these functions form a graded Poisson algebra and the anti-
symmetric Hamiltonian vector fields form a graded Lie algebra. A quantization for
these observables would be very interesting. For example, consider LR? with AHF.
The antisymmetric observables are again polynomials in the 7. By the properties of

the wedge product these polynomials terminate after degree three. Therefore the map
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given in (5.1) is a full polynomial quantization of LR3! Given the graded nature of
AHF this could also have implications for supersymmetry. Obviously, this is an area

that needs investigation.

e Finally, we have made no attempt to analyze these results physically.
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