
ABSTRACT

BROWN, JONATHAN D. N-symplectic Quantization. (Under the direction of Dr. Larry
Norris.)

A quantization scheme based on n-symplectic geometry is defined. Using this new

definition a generalized Van Hove prequantization is given for the frame bundle of Rn, LRn.

The full set of operators of the generalized Van Hove prequantization is full rank irreducible

and the components of these tensor valued operators are essentially self adjoint. However,

this prequantization is reducible when it is restricted to the Heisenberg algebra. Several

full quantizations are also given for LRn proving there is no Groenwold Van Hove type

obstruction for quantizing LRn. Using the covering theory of n-symplectic geometry we

analyze why this quantization fails under symplectic quantization. Throughout the paper,

emphasis is placed on comparison to the symplectic theory.
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Chapter 1

Introduction

The purpose of this thesis is to develop a definition of quantization based on n-

symplectic geometry rather than the traditional symplectic geometry. The major result of

this dissertation is that not only can we develop a quantization scheme based on n-symplectic

geometry but this quantization scheme also removes some, if not all, of the obstructions to

quantization encountered in the symplectic case. To appreciate the results we first must

understand the problems of quantization. To do this we will address two questions. First,

“Why change from symplectic geometry?” and second, “Why use n-symplectic geometry?”

Quantization is the relation between classical mechanics and quantum mechanics.

A classical configuration space is often a symplectic manifold and classical observables are

function on that manifold. A quantum configuration space is a Hilbert space and quantum

observables are symmetric operators on that Hilbert space. The classical system has a

natural Lie algebra structure on the observables induced by the Poisson bracket, while the

quantum observables form a Lie algebra with the commutator bracket. A quantization is

basically a Dirac map Q between these two spaces that satisfies additional requirements,

the most important being an irreducibility requirement for the “important” observables. A

Dirac map is a linear map between two Lie algebras such that the map L satisfies the Dirac

condition [Lx,Ly]=L{x,y}, L(1)=1.

“Why change from symplectic geometry” The process of quantization based on

symplectic geometry is plagued by difficulties. For example, if one wishes to try to quantize

a simple system of n moving particles one runs into a famous obstruction theorem. The

classical space for n moving particles is the cotangent bundle T ∗Rn ∼= R2n. To be physically

acceptable this quantization must be unitarily equivalent to the Schrodinger representation



2

Q(qi) → qi and Q(pj) → −i~∂/∂qj . This quantization must also be a Dirac map. There

have been many attempts made to find such a map. When Dirac described his canoni-

cal quantization rule in [1] he made an interesting remark. Dirac acknowledged that his

“Poisson bracket→commutator” rule holds for all quantizable functions “or at any rate the

simpler ones of them.” His hesitation was well deserved. In [2] Groenwold proved that it

is impossible to quantize the set of all polynomials, in qi and pj , of R2n consistent with

the Schrodinger representation. Explicitly, taking n=1 for simplicity, he proved that when

one quantizes both sides of the equation {q3, p3} = 3{q2p, p2q} the quantizations are not

equal, Q({q3, p3}) 6= 3Q({q2p, p2q}). In [3], Van Hove later refined Groenwold’s work by

proving a stronger result. The result being that there exists no quantization of C∞(R2n).

It is important to note that the Groenwold-Van Hove theorem only applies to the pairs

(P [qi, pj ],R2n) and (C∞(R2n),R2n). Furthermore the theorem only holds if Q(qi) = qi and

Q(pj) = −i~∂/∂qj . The Stone von Neumann theorem made the theorems of Groenwold and

Van Hove much stronger. The Stone von Neumann theorem states that any pair of opera-

tors that are irreducible on L2(Rn) and that satisfy the Heisenberg commutation relations

are unitarily equivalent to the Schrodinger representation, modulo technical difficulties [4].

This theorem improved the Groenwold-Van Hove theorem to the following.

Theorem 1.1 There exists no quantization of (P [qi, pj ],R2n), respectively (C∞(R2n),R2n)

such that the operators Q(qi) and Q(pj) act irreducibly.

A strong theorem indeed. This theorem shows that the Lie algebra of C∞(R2n) with the

Poisson bracket, which is explicitly related to the symplectic structure of the cotangent bun-

dle of Rn, is incompatible with the Lie algebra of symmetric operators with the commutator.

Other papers [5] and [6] have also emphasized this fact. The symplectic space R2n is not

the only symplectic space that exhibits obstruction to quantization. The symplectic mani-

folds S2, T ∗S1, also exhibit similar obstructions to quantizations[5]. The author believes

the inherent incompatibility of the Lie algebra structures necessitates a change of setting

for the classical systems. A natural choice for the replacement of symplectic geometry is

n-symplectic geometry. n-Symplectic geometry is one of three generalizations of symplectic

geometry that originated in the late 80‘s and early 90‘s. See [7] for a review of all three

theories side by side. Playing the role of the cotangent bundle T ∗M , the frame bundle of

a manifold LM is the canonical n-symplectic manifold. The n-symplectic potential is the

soldering 1-form, which is Rn valued. The tensor valued nature of the n-symplectic form
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drives the main differences between symplectic and n-symplectic geometry. The symplectic

geometry of polynomials can be completely recovered using n-symplectic geometry[8]. In

this way, n-symplectic geometry is a covering theory for symplectic geometry. This fact

makes n-symplectic geometry a natural choice to replace symplectic geometry.

In chapter one we review the preliminary ideas needed to study a quantization

based on n-symplectic geometry. In sections one and two we review symplectic geometry

and n-symplectic geometry to highlight the similarities of the two structures. In section

three we review the definition of quantization based on symplectic geometry.

In chapter two we give the definition of an n-symplectic quantization. This def-

inition is similar to the definition of symplectic quantization given in chapter one. The

main difference is that the domain of the Dirac map is now functions on an n-symplectic

manifold.

In chapter three we generalize a lesser known result of Van Hove and give the

first full prequantization of LRn. We show that the prequantization is full rank irreducible

and the components are essentially self adjoint but the operators becomes reducible when

restricted to a certain subset of the domain. For completeness, a recent paper [9], by

Tuynman proves the Van Hove prequantization is irreducible for all symplectic manifolds.

I suspect the results of this dissertation could be extended to prove the prequantization in

chapter three works for the frame bundle of any manifold.

Finally, in chapter four we give our main result. We show there exists a full

polynomial quantization of LRn. Therefore there is no Groenwold Van Hove theorem for

n-symplectic quantization. We investigate the difference that allows a quantization to exist

for LRn but not for T ∗Rn. As a result of these observations we give some restricted no-go

theorems. As a final remark we use the covering properties of LM over T ∗M to study why

this quantization on LRn does not give rise to a quantization on T ∗Rn.

For convenience, we list some notation used throughout the thesis.

• L2(M) denotes square integrable functions of a manifold M .

• LM is the bundle of linear frames of a manifold M .
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• ⊗s denotes symmetric tensor product.

• ⊗p
sRn denotes repeated symmetric tensor product of Rn, ⊗p

sRn = Rn⊗s . . .⊗s︸ ︷︷ ︸
p times

Rn

• We will use the multi-index notation f Ip = f i1...ip for functions and r̂Ip = r̂i1 ⊗s . . .⊗s

r̂ip for vectors.

• A multi-index on π̂k, q̂i
j , or r̂k denotes repeated symmetric tensor product over multiple

indicies, q̂Ia
Jb

= q̂i1
j1
⊗s . . .⊗s q̂

ia
jb

.

• Parenthesis around indicies means symmetrize the indicies.

• Denote the set of vector fields on a manifold M by X (M).
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Chapter 2

Preliminary Material

2.1 The Canonical n-Symplectic Manifold LM

In symplectic geometry the canonical symplectic manifold is P = T ∗M , the cotan-

gent bundle of a manifold M. The symplectic structure, in local symplectic coordinates

(qi, pj), is given by the differential of the canonical one form θ̃ = pjdq
j . To each observable

f ∈ C∞(T ∗M) one assigns a Hamiltonian vector field by the structure equation

df = Xf dθ̃

Each symplectic coordinate is C∞ and hence is an allowable observable for T ∗M . The

corresponding Hamiltonian vector fields are

Xqi = − ∂

∂pi
, Xpj =

∂

∂qj

Definition 2.1 An n-symplectic manifold is a manifold P together with an Rn valued non-

degenerate two form ω = ωir̂i. Here {r̂i} is the standard basis of Rn.

An equivalent definition for a polysymplectic manifold is given by Gunther [10]. For n-

symplectic geometry the canonical n-symplectic manifold is P = LM , the linear frame

bundle of an n dimensional manifold M . Define coordinates on LM in the standard

way. Let (q̃i, U) be a chart on M and π : LM → M the standard projection to M.

For a point (m, ei) ∈ π−1(U) ⊂ LM define coordinates (qi, πi
j) by qi(m, ei) = q̃i(m) and

πi
j(m, ek) = ei(∂/∂q̃j |m). The n-symplectic structure is given by the differential of the Rn

valued soldering one form θ = θir̂i defined by θ(m, ei)(X) = ei(dπ(X))r̂i. In local coor-

dinates it has the form θ = θir̂i = πi
jdq

j r̂i. Here the similarity with symplectic geometry
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starts to differ. The set of observables are ⊗pRn valued. Moreover, the observables are no

longer all of C∞(LM) but rather are polynomials in the momenta πi
j with coefficients in

C∞(M). The observables naturally split into symmetric tensor valued Hamiltonian func-

tions, SHF , and totally antisymmetric tensor valued Hamiltonian functions, AHF [11].

For the remainder of this paper we will only consider SHF leaving the antisymmetric case

to a future work. On LM, all ⊗p
sRn valued functions, for which there exists a ⊗p−1

s Rn valued

Hamiltonian vector field, are denoted SHF p. Following [11] we assign to each f̂ ∈ SHF p an

equivalence class [Xf̂ ] of ⊗p−1
s Rn valued Hamiltonian vector fields by the structure equation

df̂ I
p = −p!X(Ip−1

f̂
dθip)

The equivalence class of ⊗p−1
s Rn valued vector fields is denoted by [Xf̂ = XIp−1 r̂Ip−1 ]. In

local (qi, πj
k) coordinates, the vector fields can be written for f̂ ∈ SHF p

X
Ip−1

f̂
=

1
p!
∂f̂ Ip−1b

∂πb
a

∂

∂qa
− 1
p!
∂f̂ Ip−1a

∂qb
+ T

Ip−1a
b

∂

∂πa
b

where T (Ip−1a)
b = 0. (2.1)

The equivalence classes of Hamiltonian vector fields generated by SHF form a Lie Algebra

relative to the bracket defined in [11] as follows. For f̂ ∈ SHF p and ĝ ∈ SHF q, define the

bracket of their corresponding Hamiltonian vector fields by

[[Xf̂ ], [Xĝ]] = [[XIp−1

f̂
r̂Ip−1 ], [X

Jq−1

ĝ r̂Jq−1 ]]
def
= [XIp−1

f̂
, X

Jq−1

ĝ ]r̂Ip−1 ⊗s r̂Jq−1

The bracket on the right hand side is the ordinary Lie bracket of vector fields, and X
Ip−1

f̂

and XJq−1

ĝ are arbitrary representatives of the equivalence classes [XIp−1

f̂
] and [XJq−1

ĝ ]. The

symmetrization on the upper indices in the bracket destroys the non uniqueness making

the bracket independent of choice of representative. These vector fields also preserve the

n-symplectic form.

Lemma 2.1 Let ĝ ∈ SHF q and [XJq−1

ĝ ] the corresponding Hamiltonian vector field. This

vector field preserves the n-symplectic form dθ in the sense that,

L
X

(Jq−1
ĝ

dθi) = 0

Proof

The Lie derivative of forms satisfies the familiar relation

LXω = X dω + d(X ω)
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Therefore we have

L
X

(Jq−1
ĝ

dθi) = X
(Jq−1

ĝ d(dθi)) + d(X(Jq−1

ĝ dθi)) = 0

The last relation being zero since X(Jq−1

ĝ dθi) = − 1
q!dg

Jq and d2 = 0. 2

In contradistinction to the situation on T ∗M , the local coordinates of LM are no

longer observables. Each observable must be ⊗p
sRn valued. However, the local coordinates

define some basic observables.

qi → q̂i
j

def
= qir̂j (2.2)

πa
k → π̂k

def
= πa

k r̂a (2.3)

The corresponding Hamiltonian vector fields are

Xq̂i
j

= − ∂

∂πj
i

, Xπ̂k
=

∂

∂qk

These are not the only observables we can construct. We can create many observables from

the coordinates, one for each SHF p. For example, qir̂j , qir̂j ⊗s r̂k, qir̂j ⊗s r̂k ⊗s r̂l, etc. are

all different observables created from the coordinate qi.

2.2 Poisson Bracket on LM

The Poisson bracket on LM plays a fundamental role in our discussion. In this

section we review the Poisson bracket for LM . We define the Poisson bracket of two

symmetric Hamiltonian functions as follows:

Definition 2.2 Let f̂ ∈ SHF p and ĝ ∈ SHF q then {f̂ , ĝ} ∈ SHF p+q−1 where {., .} is

defined by

{f̂ , ĝ} = p!XIp−1

f̂
(ĝJq)r̂Ip−1 ⊗s r̂Jq

Here Xf̂ is any representative of the equivalence class of symmetric Hamiltonian vector

fields of f̂ .
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In [11] it is shown that this bracket is independent of choice of representative and hence

well defined. The bracket is anti-symmetric and satisfies the Jacobi identity. Also, it is

fundamental to a later discussion to note

{SHF p, SHF q} ⊂ SHF p+q−1 (2.4)

The Poisson bracket in n-symplectic geometry is linked to the bracket of Hamiltonian vector

fields. We extend the result in [11].

Theorem 2.3 Let f̂ ∈ SHF p and ĝ ∈ SHF q then the Hamiltonian vector fields satisfy the

relation

CX{f̂ ,ĝ} = [Xf̂ , Xĝ]

The square bracket is the one defined in section 1 and C = (p+q−1)!
p!q! .

Proof

Let f̂ ∈ SHF p and ĝ ∈ SHF q. Using LXω = X dω + d(X ω) we get

[X(Ip−1

f̂
, X

Jq−1

ĝ ] dθi) = L
X

(Ip−1

f̂

(XJq−1

ĝ dθi))−X
(Ip−1

f̂
L

X
Jq−1
ĝ

dθi)

By lemma 2.1, L
X

Jq−1
ĝ

dθi) = 0. Our equation becomes

[X(Ip−1

f̂
, X

Jq−1

ĝ ] dθi) = L
X

(Ip−1

f̂

(XJq−1

ĝ dθi))

= X
(Ip−1

f̂
d(XJq−1

ĝ dθi)) + d(X(Ip−1

f̂
X

Jq−1

ĝ dθi))

= 0 + d(X(Ip−1

f̂
X

Jq−1

ĝ dθi))

The last line follows from the structure equation −q!X(Jq−1

ĝ dθi) = dgJq .

[X(Ip−1

f̂
, X

Jq−1

ĝ ] dθi) = d(X(Ip−1

f̂
X

Jq−1

ĝ dθi))

= d(X(Ip−1

f̂

1
−q!

dĝJqi))

=
1
−q!

d(X(Ip−1

f̂
(ĝJqi))

=
1

−q!p!
d({f̂ , ĝ}Ip−1Jq)

=
(p+ q − 1)!

p!q!
X

Ip−1Jq−1

{f̂ ,ĝ}
dθi) �
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The n-symplectic Poisson bracket and the bracket of equivalence classes of Hamiltonian vec-

tor fields are independent of choice of equivalence class. Hence we will no longer emphasize

the the equivalence class and simply refer to a representative Xf̂ .
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2.3 Momentum Mappings

The symplectic structure of T ∗M supports an object called a momentum mapping.

A generalization of this mapping to n-symplectic geometry will be useful for calculating

basic sets which will be defined in a later section. The definition given in Foundations of

Mechanics edition two [12] is the following.

Definition 2.4 Let Φ : G × T ∗M → T ∗M be a symplectic action of a Lie group G on

(T ∗M,ω = dqi ∧ dpi). The mapping J : T ∗M → G∗ is a momentum mapping if for each

ξ ∈ G
dĴ(ξ) = −ξ

T∗M
ω

where ξ
T∗M

is the infinitesimal generator of the action of G on T ∗M generated by ξ, and

Ĵ(ξ) : T ∗M → R is defined by

Ĵ(ξ)(u) =< J(u), ξ >

In the previous definition G is the Lie algebra for the Lie group G and a symplectic action

of a Lie group is one that preserves the symplectic form. Following [8] there is a momentum

map for n-symplectic geometry.

Definition 2.5 Let Φ : G × LM → LM be an n-symplectic action of a Lie group G on

(LM, dθ). The mapping J : LM → G∗ ⊗ Rn is a momentum mapping if for each ξ ∈ G

dĴ(ξ) = −ξLM dθ

where ξLM is the infinitesimal generator of the action of G on LM generated by ξ, and

Ĵ(ξ) : LM → Rn is defined by

Ĵ(ξ)(u) =< J(u), ξ >

The inner product < ., . > is the natural extension of the one on G × G∗.

< ξ, ξ∗ ⊗ r̂j >=< ξ, ξ∗ > ⊗r̂j

Similar to symplectic momentum maps, if {ξi} is a basis of G let {Ji} be the ⊗pRn valued

Hamiltonian functions for (ξi)LM . Define Ĵ by Ĵ(ξi) = Ji. This gives a n-symplectic

momentum map J with components Ji.
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2.4 Hilbert Spaces

The quantization we will define is a general Hilbert space based quantization. In

this section we will define the Hilbert spaces needed to discuss the properties of the operators

of these quantizations. Before we define the new Hilbert spaces we mention the standard

Hilbert spaces for some quantizations of T ∗Rn. For the metaplectic quantization [5] the

Hilbert space is the set of all measurable complex valued square integrable functions of Rn.

We commonly denote the Hilbert space of measurable complex valued square integrable

functions of M by L2(M,C). For the Van Hove prequantization [3] the Hilbert space

is essentially L2(R2n,C). The measure in both cases is the one induced by the canonical

volume form.

To describe the appropriate Hilbert spaces for LRn we first need to describe an

integral for LM . The volume for LM is given by dV = ∆(ω) ∧ (θ)n, where ω is a torsion

free connection on LM and θ is the soldering one-form. Let ωi
j be the associated one-forms

to ω. Define ∆(ω)
def
= ω1

1 ∧ ω2
1 ∧ · · · ∧ ωn−1

n ∧ ωn
n and (θ)n def

= n!θ1 ∧ · · · ∧ θn. This definition

is independent of choice of connection[13]. For the simple frame bundle LRn a judicious

choice of connection gives a more familiar volume dV = dq1dq2 · · · dqndπ1
1dπ

1
2 · dπn

n. We

have suppressed the wedge products in the previous and following equation. We also define

a volume for the affine frame bundle ARn, dW = dV dy1 · · · dyn. For the given volumes on

LRn and ARn we make the following definitions.

Definition 2.6 L2(LRn,C) is the Hilbert space of measurable square integrable functions

from LRn to C. Let φ, ψ ∈ L2(LRn,C) then the inner product is defined by

< φ,ψ >=
∫
φψ̄dV

Definition 2.7 L2(ARn,C) is the Hilbert space of measurable square integrable functions

from ARn to C. Let φ, ψ ∈ L2(ARn,C) then the inner product is defined by

< φ,ψ >=
∫
φψ̄dW

Definition 2.8 The Hilbert space Hp = {ψIpzIp |ψIp ∈ L2(LRn,C)}. Here zi is the standard

basis for Cn. Let φ, ψ ∈ Hp then the inner product is defined by

< φ,ψ >=< φIpzIp , ψ
IpzIp >=

∑
Ip

< φIp , ψIp >
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Definition 2.9 The Hilbert space H is the completion of the direct sum H̃ of Hp for all p.

H̃ =
∞⊕

p=1

Hp

The inner product is the standard inner product for a direct sum.

< ⊕∞
p=1ψ

Ip ,⊕∞
q=1ψ

Iq >=
∞∑

p=1

< φIp , ψIp >

For each ψ ∈ H there will be only finitely many non-zero terms, so this inner product is

well defined.
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2.5 Definition of Symplectic Quantization

We use the definition of a symplectic quantization given in [5] restricted to the

specific symplectic manifold T ∗M . A detailed explanation of the motivation behind each

condition is given in [5]. We choose this definition as it is independent of quantization

method. Let M be an n dimensional manifold. Then (T ∗M,dθ) is a symplectic manifold.

Definition 2.10 A prequantization of the cotangent bundle T ∗M is a linear map Q together

with a Lie subalgebra O of C∞(T ∗M) where Q takes observables f ∈ O to symmetric

operators on a dense domain D of a Hilbert space H such that the following hold:

(1) Q({f, g}) = i
~ [Q(f), Q(g)]

(2) If 1 ∈ O then Q(1) = Identity.

(3) If the Hamiltonian vector field Xf of f is complete, then Q(f) is essentially self-adjoint

on D.

Here {., .} denotes the symplectic Poisson bracket [14].

Definition 2.11 A basic set of observables b is a Lie subalgebra of C∞(T ∗M) such that:

(4) b is finitely generated,

(5) the Hamiltonian vector fields Xf , f ∈ b are complete,

(6) b is transitive and separating, and

(7) b is a minimal Lie algebra satisfying these requirements.

The conditions required for a basic set are modeled on the properties of the components of

a symplectic momentum map for an elementary system from geometric quantization [15].

A set of functions, F , on a symplectic manifold, M, is transitive if {Xf |f ∈ F} span TM .

We say a set of functions separates points if for x 6= y ∈M there exists an f ∈ F such that

f(x) 6= f(y).

Definition 2.12 A quantization of T ∗M is a prequantization (O, Q) such that for the basic

set b:

(8) Q(b) acts irreducibly on H,

(9) Q|b is faithful, and

(10) D contains a dense set of separately analytic vectors for Q(b).

To clarify condition 10, a vector φ ∈ D is analytic for an operator X on H given the series
∞∑

k=0

||Xk||φ
k!

tk
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is defined and converges for some t > 0. We say a vector φ ∈ D is separately analytic for a

set of operators {X1, .., Xk} defined on a common invariant dense domain D if φ is analytic

for each Xj. A vector is separately analytic for a Lie algebra if it is separately analytic for

the set of generators for that Lie algebra.

A quantization is said to be a full quantization if O = C∞(T ∗M).

Definition 2.13 P (b) is the polynomial algebra for a basic set b.

A quantization is said to be a full polynomial quantization if O = P (b).
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2.6 Definition of n-Symplectic Quantization

The definition of n-symplectic quantization is modeled on symplectic quantization.

Let M be an n dimensional manifold. Then (LM, dθ) is an n-symplectic manifold.

Definition 2.14 A prequantization of the frame bundle LM is a linear map Q together

with a Lie subalgebra O of SHF where Q takes observables f ∈ O to symmetric operators

on a dense domain D of a Hilbert space H such that the following hold:

(1) Q({f, g}) = i
~ [Q(f), Q(g)]

(2) If r̂i ∈ O then Q(r̂i) = ci. The constants ci are complex numbers.

(3) If the Hamiltonian vector field Xf of f is complete, then Q(f) is essentially self-adjoint

on D.

Here {., .} denotes the n-symplectic Poisson bracket [?].

Definition 2.15 A basic set of observables b is a Lie subalgebra of SHF such that:

(4) b is finitely generated,

(5) the Hamiltonian vector fields Xf , f ∈ b are complete,

(6) b is transitive and separating, and

(7) b is a minimal Lie algebra satisfying these requirements.

A set of functions, F , on an n-symplectic manifold, LM , is transitive if {Xf |f ∈ F} span

LM . We say a set of functions separates points if for x 6= y ∈ LM there exists an f ∈ F
such that f(x) 6= f(y).

Definition 2.16 A quantization of LM is a prequantization (O, Q) such that for the basic

set b:

(8) Q(b) acts irreducibly on H,

(9) Q|b is faithful, and

(10) D contains a dense set of separately analytic vectors for Q(b).

Separately analytic has the same meaning here as it does for the symplectic quantization

since it is defined in terms of operators.

A quantization is said to be a full quantization if O = SHF .

Definition 2.17 P (b) is the polynomial algebra for a basic set b.

A quantization is said to be a full polynomial quantization if O = P (b).
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Chapter 3

Generalization of the Van Hove

Prequantization

In 1951 Leon Van Hove proved in his thesis [3] that the ”Van Hove Prequantiza-

tion,” which is the prequantization of geometric quantization, is irreducible on the set of

all operators generated by square integrable functions on R2n and reducible on the smaller

sub set of operators generated by L ∼= R[p, q]2. He also proved that these operators are

essentially self adjoint on the Hilbert space of square integrable functions on R2n. In the

following sections we prove a similar theorem for a generalized Van Hove n-symplectic pre-

quantization of the frame bundle of Rn.

3.1 Vector Fields on AM

Consider the affine frame bundle AM with base space LM , the linear frame bundle

of M . For the manifold M = Rn, LRn and hence ARn have globally defined coordinates

(qi, πi
j) and (qi, πi

j , y
i) respectively. On the bundle β : ARn → LRn, there exists the Rn

valued one-form

σ = β∗θ + dλ

In the above equation λ = yir̂i and θ = (πi
jdq

j)r̂i and σ is a connection on β : ARn → LRn.

The set of all real vector fields on ARn which preserve the connection σ, i.e. that satisfy

the equations
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L
ξ(Ip−1σ

ip) = 0

are generated by functions of the base bundle f̂ ∈ SHF p and have the specific form [8]

ξf̂ = X#

f̂
+

1
p!
ηf̂

The symbol X#

f̂
is the horizontal lift of the Hamiltonian vector field for f̂ to ARn and ηf̂ is

a vertical vector field involving the partial with respect to yi. See [8] for details as the next

equation is more important here. In global (qi, πi
j , y

i) coordinates, the vector fields can be

written for f̂ = f̂ Ip r̂Ip ∈ SHF p,

ξ
Ip−1

f̂
=

1
p!
∂f̂ Ip−1b

∂πb
a

∂

∂qa
− 1
p!
∂f̂ Ip−1a

∂qb

∂

∂πa
b

+
1
p!

[
∂f̂ Ip−1b

∂πb
a

πc
a − f̂ Ip−1c]

∂

∂yc
(3.1)

If we let ξf̂ act on a specific element of L2(ARn,C) ψ = eiαjyj
φ(q̂, π̂) we have

ξ
Ip−1

f̂
ψ =

[
1
p!
∂f̂ Ip−1b

∂πb
a

∂

∂qa
− 1
p!
∂f̂ Ip−1a

∂qb

∂

∂πa
b

− iαc
1
p!

[
∂f̂ Ip−1b

∂πb
a

πc
a − f̂ Ip−1c]

]
ψ (3.2)

Denote the operator acting on ψ on the right hand side of this equation by ξ(α)

f̂
.
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3.2 Irreducibility and Reducibility of the Generalized Van

Hove Prequantization

3.2.1 Notation

It is convenient to define some notation that is unique to this chapter.

• L is a sub Lie algebra of SHF. It is the infinite Lie algebra on LRn generated by

polynomials up to polynomial degree two in π̂ and q̂.

• Let F be the set of all f̂ ∈ SHF such that the n-symplectic Hamiltonian vector field

Xf̂ is complete.

• In this section we will be working exclusively with ξ
(α)

f̂
defined in (3.2). Hence, we

will simply write ξf̂ for convenience.

• A delta used with only 1 upper or 1 lower index should be interpreted as follows; for

hM−δk , M − δk = m1 − δ1k, m
2 − δ2k, · · · ,mn − δn

k

• The symbol
∑
/ means “no sum”.

3.2.2 The Transformation W

In this section we define an important unitary operator on L2(LRn,C). Fix an

α = αir̂
i ∈ Rn∗ such that αi 6= 0 for each i. Define the inverse of α, by βa = 1

|α|2 δ
abαb. For

φ(π, q) ∈ L2(LRn,C) define the transformation W : L2(LRn,C) → L2(LRn,C) by

Wφ(πi
j , q

k) =
(

1
2π

)n2/2 ∫
eiw

a
b πb

aφ(wi
j , q

k − βlwk
l )dw (3.3)

where the convention
∫
dw =

∫∞
∞
∫∞
∞ · ·

∫∞
∞ dw1

1dw
1
2 · ·dwn

n has been used for simplification.

Note that W is a Fourier transform of ψ(π) = φ(π, q − απ); therefore by the Plancherel

theorem W is unitary. Also since W is a Fourier transform it has an inverse W−1. Now

consider the following operators on L2(LRn,C):
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Aa
b = −iβa ∂

∂qb

Bja
b =

1
n
δa
b q

j

Āa
b = −i ∂

∂πb
a

Bi
j = πi

j . (3.4)

Given these definitions, one can check the following relations.

P a
b ≡ WAa

bW
−1 = −iβa ∂

∂qb
= Aa

b

Qja
b ≡ WBja

b W
−1 =

1
n

[δa
b q

j + iδa
bβ

c ∂

∂πc
j

]

P̄ a
b ≡ WĀa

bW
−1 = −πa

b − iβa ∂

∂qb

Q̄a
b ≡ WBa

bW
−1 = −i ∂

∂πb
a

= Āa
b (3.5)

It is important to note the following;

P a
b = −iβaξπ̂b

Qja
b = −iβaξ

q̂j
b

(3.6)

where βa is the inverse of αa defined by βa = 1
|α|2 δ

abαb. Therefore the operators P, Q

satisfy various commutation relations induced by their relations to ξ, e.g. [P a
b , P

k
l ] =

−βcβk[ξ(π̂b), ξ(π̂l)] = 0.

3.2.3 Function of Operators

Now we want to represent ξf̂ as a function of the operators P,Q, P̄ , Q̄ defined

above. First notice that we have the following relations

qj = Qja
a + βcQ̄j

c

πi
j = P i

j − P̄ i
j . (3.7)
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These are clear from equations (3.5). When we do not want to stress the indices, we will

denote each of the previous bases symbolically by q = Q+β · Q̄ and π = P − P̄ . Now recall

from (3.2), f̂ ∈ SHF p+1

ξ
Ip

f̂
ψ =

[
1

(p+ 1)!
∂f̂ Ipb

∂πb
a

∂

∂qa
− 1

(p+ 1)!
∂f̂ Ipa

∂qb

∂

∂πa
b

− iαc
1

(p+ 1)!
[
∂f̂ Ipb

∂πb
a

πc
a − f̂ Ipc]

]
ψ

Collecting terms on ∂f̂
∂π and ∂f̂

∂q we get

ξ
Ip

f̂
ψ =

1
(p+ 1)!

[iαcf̂
Ipc +

∂f̂ Ipb

∂πb
a

(−iαcπ
c
a +

∂

∂qa
)− ∂f̂ Ipc

∂qb

∂

∂πc
b

]ψ. (3.8)

Finally, using (3.5,3.7) and this last equation we can write

ξ
Ip

f̂
ψ =

1
(p+ 1)!

[iαcf̂
Ipc(P − P̄ , Q+ β · Q̄) +

∂f̂ Ipb

∂πb
a

(P − P̄ , Q+ β · Q̄)iαcP̄
c
a

− ∂f̂ Ipc

∂qb
(P − P̄ , Q+ β · Q̄)iQ̄b

c]ψ. (3.9)

Therefore we have proved the following result:

Theorem 3.1 For f̂ ∈ F and for αi 6= 0 one has the equality

ξf̂ψ =
1

(p+ 1)!
i[αj f̂(P − P̄ , Q+β ·Q̄)+

∂f̂

∂π
(P − P̄ , Q+β ·Q̄)αjP̄ −

∂f̂

∂q
(P − P̄ , Q+β ·Q̄)Q̄]ψ

This theorem allows us to write any Hamiltonian vector field as a function of these special

operators P,Q, P̄ , Q̄.

3.2.4 Choosing a Basis

Our proof is a generalization of a proof by Van Hove[3]. For the proof of reducibility

of U (α)
L = {ξf̂ |f̂ ∈ L} and subsequent proof of full rank irreducibility of U (α)

Γ = {ξf̂ |f̂ ∈
SHF} we need to construct a certain basis of the Hilbert space H. Recall that the Hermite

functions of one real variable have the form

hm(x) = ex
2/2 d

m

dxm
e−x2

, m = (0, 1, 2..).
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They enjoy the following well-known properties

xhm(x) = mhm−1(x) +
1
2
hm+1(x),

d

dx
hm(x) = mhm−1(x)−

1
2
hm+1(x),

1
2
(x2 − d2

dx2
)hm(x) = (m+

1
2
)hm(x). (3.10)

The last property we need is that the Hermite functions form an orthogonal basis for

L2(R,C). Now we want to extend these in a natural way to L2(LRn,C). Define

hM
K = hm1(q

1) · ·hmn(qn)hk1
1
(π1

1)hk2
1
(π2

1) · ·hkn
n
(πn

n) (3.11)

These new functions form an orthogonal basis in the Hilbert space L2(LRn,C) since prod-

ucts of 1-variable functions are dense in functions of more than one variable. Now consider

the transformation of these functions by W. Define

h̃M
K = WhM

K . (3.12)

These new functions also form an orthogonal basis for L2(LRn,C) since W is unitary. This

is the basis of the proof we have in mind. Notice that this basis depends on choice of α

since W depends on α. Finally a basis for H can be constructed from the following objects.

For each Ip let Ip h̃r̂Ip (
∑
/ Ip) be an ⊗p

sRn valued Hermite function. Denote the set of

these objects

Bp = {Ip h̃r̂Ip (
∑
/ Ip)} (3.13)

These form an orthogonal basis for Hp. Since H is the completion of the direct sum of all

Hp then the union of all Bp forms an orthogonal basis for H. Denote this set

B =
∞⋃

p=1

Bp (3.14)

Now we will look at the operation of some combinations of the operators P,Q, etc.

on this basis. Since the components of each basis element is a Hermite function it is enough

to show the action on an arbitrary Hermite function.
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1
2
((αaP

a
k )2 + (Qkb

b )2)(h̃M
N ) = (mk +

1
2
)(h̃M

K )

1
2
((P̄ k

l )2 + (Q̄k
l )

2)(h̃M
N ) = (nk

l +
1
2
)(h̃M

K ) (3.15)

iαaP
a
b (h̃M

K ) = [mb(h̃
M−δb
K )− 1

2
(h̃M+δb

K )]

iαaP̄
a
b (h̃M

K ) = αa[ka
b (h̃M

K−δbδa)−
1
2
(h̃M

K+δbδa)] (3.16)

From equations (3.6) and equation (3.15) we immediately have

1
i22

∑
a

βaβa(αaαa[ξ(π̂b)]2 + [ξ(q̂b
a)]

2)(h̃M
K ) = (mb +

1
2
)(h̃M

K ). (3.17)

Direct applications of Theorem 3.1 give

ξ
q̂j
b q̂i

c
=

i

2
αb[
∑

a

Qja
a Q

ia
a −

∑
s

βsβsQ̄j
sQ̄

i
s]r̂c (3.18)

ξπ̂kπ̂l
=

i

2
αb[P a

k P
b
l − P̄ a

k P̄
b
l ]r̂a (3.19)

ξq̂i
j π̂k

=
i

2
δa
j [αcQ

ib
b P

c
k + P̄ l

kQ̄
i
l]r̂a (3.20)

ξqiπ̂k
=

i

2
[αcQ

ib
b P

c
k + P̄ l

kQ̄
i
l] (3.21)

3.2.5 Reduction of L

First notice that our set of operators U (α)
Γ is highly reducible in the traditional

sense. For example let Hk be the set of all Hermite polynomials of rank k. Then U (α)
Γ

preserves the subset
⊕∞

m=k for each k. However if we force our subsets to be full rank we

eliminate this possibility.

Definition 3.2 A subspace of H is full rank if it contains at least one non zero element of

each tensor rank. A set of operators X is full rank irreducible if X(A) ∈ A where A a full

rank subset then A = H.

In this section we will give the proof of reducibility for U (α)
L . Again, we follow Van Hove’s

guidance and apply his method of proof to our unique spaces. We start by assuming there



23

exists a decomposition of H into a direct sum of full rank linearly closed manifolds invariant

under U (α)
L . The structure of our Hilbert space, namely our special basis, forces conditions,

written as a series of lemmas, on these manifolds. Finally, we show there exists a unique

decomposition.

Suppose we can decompose H into a direct sum of two full rank linearly closed

manifolds M1 and M2 invariant under transformations by U (α)
L . Let Ei represent the or-

thogonal projection to each space Mi. Then for each ψ ∈ H, ψ = E1ψ+E2ψ. Furthermore:

Lemma 3.1 Every element satisfying equations (3.15) is of the form λh̃ where λ is some

complex scalar and h̃ is a generalized Hermite function .

Proof

Suppose ψ = ψIp r̂Ip ∈ Hp such that ψIp satisfies (3.15). If ψIp = 0 we are done. Suppose

ψIp 6= 0. Since Bp forms an orthogonal basis forHp we can write ψIp =
∑

M,K a
K(Ip)
M(Ip)

Iph
M(Ip)
K(Ip)

where M and K are functions of the multi-index Ip. The sum is over all possible multi-

indices M and K, and aK
M =< ψIp ,Ip hM

K >. For this proof denote 1
2((αaP

a
k )2 + (Qkb

b )2) =

Opk. Since ψIp satisfies (3.15) we know

Opk(ψIp) = (m′
k(Ip) + 1/2)ψIp ∀k

In the equation directly above, m′
k(Ip) is a fixed function of Ip, for each Ip. Expanding

ψIp =
∑

M,K a
K(Ip)
M(Ip)

Iph
M(Ip)
K(Ip) and substituting we get

Opk(
∑
M,K

a
K(Ip)
M(Ip)

Iph
M(Ip)
K(Ip) ) = (m′

k(Ip) + 1/2)
∑
M,K

a
K(Ip)
M(Ip)

Iph
M(Ip)
K(Ip) (3.22)

To analyze the components, bracket Opk(ψIp) with the basis element, Iph
M̃(Ip)

K̃(Ip)
∈ Bp. Since

Opk is an essentially self adjoint operator, we have the following

< Opk(ψIp), Iph
M̃(Ip)

K̃(Ip)
>=< ψIp , Opk(Iph

M̃(Ip)

K̃(Ip)
) >

Substituting from (3.22) above and using (3.15) to expand Opk(Iph
M̃(Ip)

K̃(Ip)
) the equation

becomes
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< (m′
k(Ip) + 1/2)

∑
M,K

a
K(Ip)
M(Ip)

Iph
M(Ip)
K(IP ),

Iph
M̃(Ip)

K̃(Ip)
>

= <
∑
M,K

a
K(Ip)
M(Ip)

Iph
M(Ip)
K(IP ), (m̃(Ip) + 1/2)(Iph

M̃(Ip)

K̃(Ip)
) >

Evaluating both of the brackets yields

(m′
k(Ip) + 1/2)aK̃(Ip)

M̃(Ip)
= (m̃k(Ip) + 1/2)aK̃(Ip)

M̃(Ip)

This statement implies: either

m′
k(Ip) = m̃k(Ip) ∀k

or

a
K̃(Ip)

M̃(Ip)
= 0

Since ψIp 6= 0 and the basis element, Iph
M̃(Ip)

K̃(Ip)
, was arbitrarily chosen, without loss of

generality we can assume aK̃(Ip)

M̃(Ip)
6= 0. Hence, we have m′

k(Ip) = m̃k(Ip) ∀k. Since this is

true for all k,

M̃(Ip) = M ′(Ip)

Therefore, for every basis element Iph
M̃(Ip)

K̃(Ip)
such that aK̃

M̃
=< ψIp ,Ip h

M̃(Ip)

K̃(Ip)
>6= 0 we have

Iph
M̃(Ip)

K̃(Ip)
= Iph

M ′(Ip)

K̃(Ip)
. Hence, we can write ψIp =

∑
K bK(Ip) Iph

M ′(Ip)
K(Ip) . By a similar

argument, one can show there is only one K ′(Ip), therefore Ipψ = BIph
M ′(Ip)
K′(Ip) .2

Lemma 3.2 The subspace Bk defined by EkB = Bk forms a basis of Mk (k=1,2).

Proof

Consider the basis element Ip h̃r̂Ip . This basis element can be written Ip h̃ = E1
Ip h̃+E2

Ip h̃

and satisfies equations (3.15). Since the operators P,Q etc. are linear Ei
Ip h̃ satisfies (3.15)

for each i. Therefore Ei
Ip h̃ = a

Ip

i h̃ for some scalar ai. This implies that a1 + a2 = 1.

Finally, M1 and M2 are orthogonal so one of the scalars a1, a2 must be zero. 2
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Lemma 3.3 Let Ip h̃M
K r̂Ip ∈ B1

∑
/ Ip and M , K fixed multi-indices. Then Ip h̃M ′

K r̂Ip ∈
B1 ∀M ′ ∑

/ Ip and f IcIp h̃M ′
K r̂Ip ⊗s r̂Ic ∈ B1 ∀c,M ′,

∑
/ Ip,

∑
/ Ic

where f Ic is a complex scalar for all i1, · · · , ic. Similarly for B2

Proof

To prove this lemma we will need a couple of propositions.

Suppose Ip h̃M
K r̂Ip ∈ B1 ⊂ M1

∑
/ Ip and M , K fixed multi-indices. Then by equation

(3.15),

ξπ̂b
(Ip h̃M

K ) = αaP
a
b (Ip h̃M

K ) = [mb(Ip h̃M−δb
K )− 1

2
(Ip h̃M+δb

K )] (3.23)

The right hand side of this equation is also in M1 since U (α)
π̂b
M1 ⊂M1.

Proposition 3.1 If Ip h̃M
K r̂Ip ∈ B1

∑
/ Ip, and M , K fixed multi-indices,

then Ip h̃M−δb
K , Ip h̃M+δb

K ∈ B1. Similarly for B2.

Proof

Suppose not, then Ip h̃M−δb
K , Ip h̃M+δb

K /∈ B1. Since the right hand side of (3.23) belongs to

M1 we can expand in terms of elements of B1.

αaP
a
b (Ip h̃M

K ) = [mb(Ip h̃M−δb
K )− 1

2
(Ip h̃M+δb

K )] =
∑

M ′,K′

aK′
M ′

Ip h̃M ′
K′

where the sum is over all M ′, K ′ such that Ip h̃M ′
K′ ∈ B1. Now bracket both sides with an

element of B1, Ip h̃M ′
K′ . The LHS will always be zero since by supposition Ip h̃M−δb

K , Ip h̃M+δb
K /∈

B1. We have the condition,

0 = aK′
M ′ ∀M ′,K ′

This implies all components are zero and hence mb(Ip h̃M−δb
K ) − 1

2(Ip h̃M+δb
K ) = 0. This is

a contradiction since mb(Ip h̃M−δb
K ) − 1

2(Ip h̃M+δb
K ) can never be zero. Therefore, one or the

other of Ip h̃M−δb
K , Ip h̃M+δb

K is in B1. Since M1 is a linearly closed manifold, the other must

belong to B1 as well.2

Consider the symmetric Hamiltonian function f Ic π̂br̂Ic ∈ L (
∑
/ Ic), where f Ic

is a complex scalar for all i1, · · · , ic, and the operator generated by this function ξfIc π̂b
r̂Ic ∈

U (α)
L . Let this new operator act on Ip h̃M

K r̂Ip ∈ B1,
∑
/ Ip.
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ξfIc π̂b
r̂Ic(

Ip h̃M
K r̂Ip) =

1
(c+ 1)!

f Ic [mb(Ip h̃M−δb
K )− 1

2
(Ip h̃M+δb

K )]r̂Ic ⊗s r̂Ip

∑
/ Ip

Again, since M1 is closed the right hand side also belongs to M1.

Proposition 3.2 If Ip h̃M
K r̂Ip ∈ B1

∑
/ Ip and M , K fixed multi-indices, then

f IcIp h̃M−δb
K , f IcIp h̃M+δb

K ∈ B1 ⊂M1
∑
/ Ic

Similarly for B2.

A similar argument to the proof of proposition 3.1 will prove this one as well. 2

In other words, closure under the operators U (α)
L depends only on the lower(π)

indices. We now investigate the specific requirements on those indicies.

Lemma 3.4 If Ip h̃M
K r̂Ip ∈ B1

∑
/ Ip and M , K fixed multi-indices, then

Ip h̃M
K−δkδb+δjδa r̂Ip ,

Ip h̃M
K−δkδb−δjδa r̂Ip ,

Ip h̃M
K+δkδb+δjδa r̂Ip ∈ B1 ⊂M1

Similarly for B2.

Proof

Consider the operator ξπ̂j π̂k
∈ U (α)

L and let it act on the basis element Ip h̃M
K r̂Ip ∈ B1,

∑
/ Ip.

Recall from (3.19) that

ξπ̂j π̂k
=
i

2
αb[P a

j P
b
k − P̄ a

j P̄
b
k ]r̂a

Then using equations (3.16) we see

ξπ̂j π̂k
(Ip h̃M

K r̂Ip) =
i

2
αb[P a

j P
b
k − P̄ a

j P̄
b
k ]r̂a(Ip h̃M

K r̂Ip)

=
i

2
αb[P a

j P
b
k − P̄ a

j P̄
b
k ](Ip h̃M

K )r̂a ⊗s r̂Ip

= [
−i
2
βa{mk[(mj − δj

k)
Ip h̃

M−δk−δj

K − 1
2

Ip h̃
M−δk+δj

K ]

− 1
2
[(mj + δj

k)
Ip h̃

M+δk−δj

K − 1
2

Ip h̃
M+δk+δj

K ]}

+
i

2
αb{kb

k[(k
a
j − δb

aδ
j
k)

Ip h̃M
K−δkδb−δjδa −

1
2

Ip h̃M
K−δkδb+δjδa ]

+
1
2
[(ka

j + δb
aδ

j
k)

Ip h̃M
K+δkδb−δjδa

− 1
2

Ip h̃M
K+δkδb+δjδa ]}]r̂a ⊗s r̂Ip (3.24)
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All the terms which have the form faIp h̃M̄
K r̂a ⊗s r̂Ip belong to B1 by lemma (3.2). All the

other terms which vary in the lower multi-index have the form faIp h̃M
K̄
r̂a ⊗s r̂Ip . These

belong to B1 by using a linear combination arguement similar to the proof of (3.1).2

Notice that the parity, either even or odd, of the sum of the lower multi-indices, K, does

not change after evaluation by ξπ̂j π̂k
. Now we come to the one of the main theorems.

Theorem 3.3 The only possible choices forM1 and M2 are the manifoldsM(α)
+ and M(α)

− ,

where M(α)
+ has the basis B(α)

+ ={Ip h̃M̄
K r̂Ip |

∑
K is even, M anything} and M(α)

− has the basis

B(α)
− ={Ip h̃M̄

K r̂Ip |
∑
K is odd, M anything}.

Proof

Lemmas (3.3) and (3.4) show that M(α)
+ and M(α)

− are possible choices, i.e. the operators

used in the proofs of these lemmas don’t change the parity of the basis elements. All that

is left to show is uniqueness. If we can show one is strictly even then the orthogonality

(and direct sum property) of these manifolds proves the other is strictly odd. Suppose
Ip h̃M

K r̂Ip ∈ B1
∑
/ Ip such that

∑
K is even and Ia h̃M ′

K′ r̂Ia ∈ B2
∑
/ Ia such that∑

K ′ is also even. Without loss of generality assume p > a. From lemma (3.4) it is clear

that we can change the lower multi-index, K, of Ip h̃M
K r̂Ip by a multiple of two, and thus not

change the parity of the sum of the lower index, and stay in B1. We can do this multiple

times, adding 1 to k1 and -1 to k4 or adding +2 to k3 etc., to get

f IcIp h̃M
K′ r̂Ip ⊗s r̂Ic ∈ B1 (

∑
/ Ip) (

∑
/ Ic) (3.25)

Note two things. We have changed the lower index to K ′ but the operators used to do this

have increased the tensor rank by some constant c, f Ic ∈ C. However, from our starting

assumption, Ia h̃M ′
K′ r̂Ia ∈ B2. This implies, by lemma (3.3),

f̃ Ic+(p−a)Ia h̃M ′
K′ r̂Ia ⊗s r̂Ic+(p−a)

∈ B2 (
∑
/ Ia, Ic+(p−a))

Let f̃ Ic+(p−a) = f cδ
Ip−a

Ip−a
, then we have

f̃ Ic+(p−a)Ia h̃M ′
K′ r̂Ia ⊗s r̂Ic+(p−a)

= f cδ
Ip−a

Ip−a

Ia h̃M ′
K′ r̂Ia ⊗s r̂Ic+(p−a)

= f cI(p−a)+a h̃M ′
K′ r̂Ic ⊗s r̂I(p−a)+a

by rearranging the symmetric indices

= f cIp h̃M ′
K′ r̂Ic ⊗s r̂Ip ∈ B2 (

∑
/ Ic, Ip) (3.26)
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Equations (3.25, 3.26) give a contradiction since they violate the first part of lemma

(3.3). Therefore, both of the basis elements given at the beginning of the proof must be in

either B1 or B2. 2

It will make the following proofs easier if we investigate M(α)
+ and M(α)

− a little further.

If a basis element Ip h̃K
M is even or odd then the corresponding Hermite function IphK

M =

W−1Ip h̃K
M is even in the π variables. In other words, M(α)

+ and M(α)
− are determined only

by the π slots of a Hilbert space element ψ(π, q) ∈ H. From these two observations we see

W−1M(α)
+ = {ψ ∈ H| ψ(−π1

1, · · · ,−πn
n, q

1, · · · , qn) = ψ(π1
1, · · · , πn

n, q
1, · · · , qn)}

W−1M(α)
− = {ψ ∈ H| ψ(−π1

1, · · · ,−πn
n, q

1, · · · , qn) = −ψ(π1
1, · · · , πn

n, q
1, · · · , qn)

It is left to show that M(α)
+ andM(α)

− are indeed full rank invariant linearly closed manifolds

that orthogonally decompose H.

Theorem 3.4 M(α)
+ and M(α)

− , as defined above, are the unique linearly closed manifolds

that orthogonally decompose H, H = M(α)
+ ⊕M(α)

− such that M(α)
+ and M(α)

− are invariant

subspaces of U (α)
L .

Proof

The spaces M(α)
+ and M(α)

− clearly span Hn. The spaces M(α)
+ and M(α)

− are orthogonal

since B(α)
+ and B(α)

− are orthogonal. These spaces, M(α)
+ , M(α)

− , are vector spaces and hence

are linearly closed. Finally, we will show that M(α)
+ and M(α)

− are invariant subspaces. Let
Ip h̃M

K r̂Ip ∈ B
(α)
+

∑
/ Ip. By definition of B(α)

+

∑
K is even. The subspace L is generated by

five operators, {ξπ̂j π̂k
, ξπ̂k

, ξq̂i
j π̂k
, ξq̂i

j q̂a
k
, ξq̂i

j
}. We will investigate each of these in turn.

In the proof of lemma 3.4, we found

ξπ̂j π̂k
(Ip h̃M

K r̂Ip) = [
−i
2
βa{mk[(mj − δj

k)
Ip h̃

M−δk−δj

K − 1
2

Ip h̃
M−δk+δj

K ]

− 1
2
[(mj + δj

k)
Ip h̃

M+δk−δj

K − 1
2

Ip h̃
M+δk+δj

K ]}

+
i

2
αb{kb

k[(k
a
j − δb

aδ
j
k)

Ip h̃M
K−δkδb−δjδa −

1
2

Ip h̃M
K−δkδb+δjδa ]

+
1
2
[(ka

j + δb
aδ

j
k)

Ip h̃M
K+δkδb−δjδa −

1
2

Ip h̃M
K+δkδb+δjδa ]}]r̂a ⊗s r̂Ip

It is clear that this operation does not change the parity of Ip h̃M
K r̂Ip , since the lower indicies

always change by two. We see from 3.15 that
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ξπ̂b
(Ip h̃M

K ) = αaP
a
b (Ip h̃M

K ) = [mb(Ip h̃M−δb
K )− 1

2
(Ip h̃M+δb

K )]

This operator does not change the parity of Ip h̃M
K r̂Ip as the lower index remains unchanged.

For the last three operators it is useful to notice

W−1Qja
b = Bja

b W
−1 (3.27)

=
1
n
δa
b q

jW−1

W−1Q̄a
b = Ba

bW
−1 (3.28)

= πa
bW

−1

Also recall that W−1 is linear, and

Q̄a
b Q̄

c
k = WBa

bW
−1WBc

kW
−1 = WBa

bB
c
kW

−1

Similar relations hold for Q, P , and P̄ . Now from (3.18) we have

ξ
(q̂j

b)2
=
i

2
αb[
∑

a

Qja
a Q

ja
a −

∑
s

βsβsQ̄j
sQ̄

j
s]r̂b

From above, acting by W−1 gives

W−1ξ
(q̂j

b)2
ψ =

i

2
αb[qjqj −

∑
s

βsβsπj
sπ

j
s](W

−1ψ)r̂b

The right hand side will have the same parity as ψ since the only added terms are q2 and

π2, neither of which alter the parity in the π variables. Now consider the operator ξq̂i
j
. From

(3.6) we have

ξq̂i
j
ψ = iαaQ

ia
j ψ

Let W−1 act on both sides to get

W−1ξq̂i
j
ψ = iαa

1
n
δa
j q

iW−1ψ

Clearly this does not alter the parity of the π variables. Finally, from (3.20) we have

ξq̂i
j π̂k

=
i

2
δa
j [αcQ

ib
b P

c
k + P̄ l

kQ̄
i
l]r̂a
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Again we let W−1 act on both sides to get

W−1ξq̂i
j π̂k
ψ =

1
2
δa
j [qi ∂

∂qk
ψ − (δi

kψ + πi
l

∂

∂πk
l

ψ)]r̂a

The first term of the right hand side only involves q’s so it does not change the parity of

the π variables. Likewise, the second term does not change the parity since it is just the

identity. It is clear that the third term will not change the parity of polynomials or e(π)2 .

Since a Hermite function is a product of these two types of functions, the third term will

not change the parity of a basis element. Since none of the generators change the parity of

the basis element that one starts with, M(α)
+ and M(α)

− are invariant subspaces of U (α)
L .2

We get a main result of this paper as a corollary to Theorem 3.4.

Corollary 3.5 The subspace of operators U (α)
L is (full rank) reducible.

3.2.6 The Irreducibility of U (α)
Γ

In this section we will prove the full rank irreducibility of U (α)
Γ . The hard work

of the previous sections reduces the proof of this statement to essentially giving a counter

example. We begin with the statement of the theorem.

Theorem 3.6 The space of operators U (α)
Γ is full rank irreducible.

Proof

Any full rank subspace of H that is invariant under transformations by U (α) must be invari-

ant under transformations by U (α)
L since L ⊂ Γ. By Theorem 3.4, the only possible choices

for full rank invariant subspaces are M(α)
+ and M(α)

− . Consider the operator ξf̂ generated

by the function f̂ = f ir̂i, where f1 = e−(q1)2 and fA = 0, ∀A 6= 1. By theorem 3.1,

ξf ir̂i
ψ = i[α1 + 2Q1Q̄1

1 + 2βcQ̄1
cQ̄

1
1]e

−(q1)2ψ

Taking the transform of both sides by W−1 and using the identity W−1(φe−(q1)2) =

e−(q1+βaπ1
a)2W−1(φ) we have

W−1ξf ir̂i
ψ = i[W−1α1 + 2q1π1

1 + 2βcπ1
cπ

1
1]e

−(q1+βcπ1
c )2W−1ψ (3.29)

If M(α)
+ was invariant under this transformation, then for ψ ∈ M(α)

+ this would imply

ξf ir̂i
ψ ∈ M(α)

+ . However, the above computation (3.29) shows this is not true for this
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operator. This operator takes even functions of π to odd functions. Thus by theorem 3.4,

U (α)
Γ is irreducible.2
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3.3 The Operators of the Generalized Van Hove Prequanti-

zation are Essentially Self Adjoint

3.3.1 The Group Γ

In the following section, we will show that a subset of the vector fields, ξ(α)

f̂
,

described in(??) are in one to one correspondence to infinitesimal generators of a certain

one parameter subgroup of transformations. In this section, we describe the group Γ and

some of it’s properties. The definition given is generalization of the definition of Γ in [3].

The main differences being a different space ARn verses (q, p, s) and an Rn valued one form

rather than an R valued one form.

Definition 3.7 Denote by Γ the set of all bijective, C∞ transformations from ARn to ARn

that leave σ invariant.

We can write the invariance of σ in several ways. First, let γ ∈ Γ. The invariance

of σ gives

γ∗σ = σ (3.30)

This follows immediately from dpγ(X) = Xγp, for p ∈ ARn and X ∈ X (ARn).

Secondly, let (qi, πi
j , y

j) be global coordinates on ARn, then σ has the global co-

ordinate representation

σi = dyi + πi
jdq

j

Let γ ∈ Γ with γ(qi, πi
j , y

i) = (q′i, π′ij , y
′i). The invariance of σ gives the equality

dyi + πi
jdq

j = dy′i + π′ij dq
′j (3.31)

From (3.31) we see that dσ is invariant as well as exterior products (dσ)n and σ ∧ (dσ)n.

We get the following relations from the invariance of dσ, (dσ)n, and σ ∧ (dσ)n; respectively

dπi
jdq

j = dπ′ij dq
′j (3.32)

dq1 · · · dqndπ1
1dπ

1
2 · · · dπn

n = dq′1 · · · dq′ndπ′11 dπ′12 · · · dπ′nn

dy1 · · · dyndq1 · · · dqndπ1
1dπ

1
2 · · · dπn

n = dy′1 · · · dy′ndq′1 · · · dq′ndπ′11 dπ′12 · · · dπ′nn
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We want to use the equations above to show transformations by Γ have a restricted form.

Proposition 3.3 Let γ be a transformation in Γ. If γ(qi, πi
j , y

i) = (q′i, π′ij , y
′i) then

q′i = q′i(qi, πi
j)

π′ij = π′ij (qi, πi
j)

y′i = yi + ρi(qi, πi
j)

Here ρ is an Rn valued C∞ function of q̂ and π̂.

Proof

Let γ be a transformation in Γ such that γ(qi, πi
j , y

i) = (q′i, π′ij , y
′i). Expanding the differ-

entials dq′i and dπ′ij and using the equality (3.32) we have(
∂q′i

∂qj

∂π′ki
∂πk

j

− ∂q′i

∂πk
j

∂π′ki
∂qj

)
= 1 (3.33)(

∂q′i

∂qa

∂π′ki
∂yb

− ∂q′i

∂yb

∂π′ki
∂qa

)
= 0 (3.34)(

∂q′i

∂πa
b

∂π′ki
∂ym

− ∂q′i

∂ym

∂π′ki
∂πa

b

)
= 0 (3.35)

Equations (3.33,3.34) give

∂π′ij
∂ya

=
∂q′i

∂ya
= 0

Now for the y′i. Consider the vector field X = ∂
∂yi = ∂y′a

∂yi
∂

∂y′a . Compute σ(X) using both

sides of (3.31) to get

∂y′a

∂yi
= δa

i

This shows y′i = yi + ρi(qi, πi
j).2

3.3.2 Infinitesimal Generators

Definition 3.8 Let F ⊂ SHF be the set of all f̂ ∈ SHF such that the Hamiltonian vector

field of f̂ , Xf̂ , is complete.
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Theorem 3.9 There is an bijective correspondence between C∞ infinitesimal transforma-

tions of Γ and the observables F .

Proof

We know that all vector fields on AM that satisfy the relation LX(Iσj) = 0 have a special

form (3.1), and are generated by SHF . We show that Lξ
LM
σ = 0 for all ξ ∈ l(Γ), the Lie

algebra of Γ. We know (3.30),

γ∗σ = σ ∀γ ∈ Γ

Therefore ∀ξ ∈ l(Γ),

exp(tξ)∗σ = σ

Recall exp(tξ) is the flow of ξLM . Hence we have

Lξ
LM
σ =

d

dt
exp(tξ)∗σ

=
d

dt
σ = 0 (3.36)

Therefore the infinitesimal transformation of Γ must have the form ξf̂ for some f̂ . The

relation ξf̂ → f̂ is one to one. If one tries to generate a group element γ given a function

f̂ one sees that not all f̂ work. Writing out the equations one would need to integrate it is

not hard to see that the f̂ that generate a γf̂ ∈ Γ are the ones such that the Hamiltonian

vector fields Xf̂ , are complete. 2

3.3.3 Operator U (α)
γ

In this section we will define an important unitary operator U (α)
γ . We will show

this operator gives a copy of L2(LRn,C) in L2(ARn,C) for each α. Finally we will use

this unitary operator to prove our prequantization is essentially self adjoint. To do so,

write points of ARn as (ω, yi) where ω = (q̂, π̂). For all transformations γ ∈ Γ, denote

γ(ω, yi) = (ω′, yi′) where ω′ = γ(ω) and yi′ = yi + ρi
γ(ω).

Definition 3.10 For each γ ∈ Γ and α = (αi) ∈ Rn such that αi 6= 0 let U (α)
γ : L2(LRn,C) →

L2(ARn,C) be given by

U (α)
γ ψ(ω) = eiαjρj

γ(γ−1ω)ψ(γ−1ω)

Proposition 3.4 The operator U (α)
γ is unitary for all γ ∈ Γ and for all α = (αi) ∈ Rn such

that αi 6= 0.
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Proof

Let ψ, φ ∈ H.

< U (α)
γ ψ(ω),U (α)

γ φ(ω) > =
∫

ARn

U (α)
γ ψ(ω)U (α)

γ φ(ω)dW

=
∫

ARn

eiαjρj
γ(γ−1ω)ψ(γ−1ω)e−iαjρj

γ(γ−1ω)φ(γ−1ω)dW

=
∫

ARn

ψ(γ−1ω)φ(γ−1ω)dW

=
∫

ARn

ψ(ω)φ(ω)dγW

=
∫

ARn

ψ(ω)φ(ω)dW

= < ψ(ω), φ(ω) > �

Given

ρi
γ1γ2

(ω) = ρi
γ1

(ω) + ρi
γ2

(γ1ω)

we have

U (α)
γ1γ2

= U (α)
γ1
U (α)

γ2

Finally, let γ0 be the identity transformation in Γ. Using the definition of U we see

U (α)
γ0
φ(ω) = eiαjρj

γ0
(γ−1

0 ω)φ(γ−1
0 ω) = ei0φ(ω) = φ(ω)

By a theorem of Stone(B,C page 8 [3]) the above implies there exists a unique self adjoint

operator, call it Hα[f̂ ] such that

U (α)

γf̂
t

= eitH
α[f̂ ] (3.37)

In the above equation γf̂
t is the one parameter group generated by the infinitesimal trans-

formation ξf̂ . The domain of Hα[f̂ ] is the set of functions of L2(LRn,C) such that

limt→0 t
−1

[
U (α)

γf̂
t

φ− φ

]
exists. We denote this domain Dα[f̂ ].

Using equation (3.37) and expanding the exponential one easily sees

limt→0
1
t

[
U (α)

γf̂
t

φ− φ

]
= iHα[f̂ ]φ ∀φ ∈ Dα[f̂ ] (3.38)
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We want to construct a formula for Hα[f̂ ]. With this in mind consider the infinitesimal

generator ξf̂ and let it act on ψ ∈ H. By definition

ξf̂ψ(ω, yi) = limt→0
1
t

[
ψ(γf̂

t (ω), yi

γf̂
t

)− ψ(ω, yi)
]

This last equation can be rewritten

ξf̂ψ(ω, yi) = lim−t→0
1
−t

[
ψ(γf̂

−t(ω), yi

γf̂
−t

)− ψ(ω, yi)
]

(3.39)

Since yi
γ = yi + ρi

γ(ω) the inverse is yi
γ−1 = yi − ρi

γ(γ−1ω). Also we have the relation

γf̂
−t = (γf̂

t )−1. Now take a specific function ψ(ω, yi) = eiαjyi
φ(ω) for φ ∈ Dα[f̂ ] and use

equation (3.39).

ξf̂e
iαjyi

φ(ω) = limt→0
1
t

[
e
iαjyi

γ
f̂
−tφ(γf̂

−t(ω))− eiαjyi
φ(ω)

]
= limt→0

1
t

[
eiαj(y

j−ρj
γ(γ−tω)φ(γf̂

−t(ω))− eiαjyi
φ(ω)

]
= limt→0

1
t

[
eiαjyj

e−iαjρj
γ(γ−tω)φ(γf̂

−t(ω))− eiαjyi
φ(ω)

]
= eiαjyj

limt→0
1
t

[
U (α)

γf̂
t

φ(ω)− φ(ω)
]

(3.40)

Hence we have

ξf̂e
iαjyi

φ(ω) = eiαjyj
limt→0

1
t

[
U (α)

γf̂
t

φ(ω)− φ(ω)
]

Using (3.37) and (3.2) this equation becomes

Hα[f̂ ] = −iξ(α)

f̂
∀φ ∈ Dα[f̂ ] (3.41)

Thus,

Theorem 3.11 The components of the vector fields Hα[f̂ ] = −iξ(α)

f̂
are self adjoint on

Dα[f̂ ].

3.3.4 Essentially Self Adjoint on L2(LRn, C)

Let D be the set of all C∞ functions in L2(LRn,C) vanishing outside of compact

sets.
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Theorem 3.12 For all f̂ ∈ SHF and all αi ∈ R − {0}, the restriction of Hα[f̂ ] to the

domain D is essentially self adjoint.

Proof

Notice that D is a subset of Dα[f̂ ]. Furthermore, Hα[f̂ ] is an automorphism of D. Given

these two facts and the lemma in Foundations of Mechanics 2nd edition page 141 [12] gives

the operator Hα[f̂ ] restricted to D is essentially self adjoint on D. 2
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Chapter 4

Quantization of LRn

4.1 The Basic Set for LRn

Before we compute the basic set for LRn we review the basic set for the cotangent

bundle of Rn. In [5] the basic set for T ∗Rn is the Heisenberg algebra b2n ⊆ C∞(Rn)

b2n = span{qi, pj , 1} ∼= h(2n) (4.1)

This basic set consists of the span of the components of the momentum map created by the

action of Heisenberg group H(2n) acting on R2n[14]. This is the basic set needed for the

Schrödinger representation.

Recall a technique mentioned earlier. If {ξi} is a basis of G let {Ji} be the ⊗pRn

valued Hamiltonian functions for (ξi)LM . Define Ĵ by Ĵ(ξi) = Ji. This gives a n-symplectic

momentum map J with components Ji. This is the procedure we outline below. Before we

begin recall also that LRn ∼= Rn×Gl(n) and we have a global chart from LRn → Rn×Gl(n)

given by the coordinates (qi, πi
j). To compute the n-symplectic momentum map needed to

construct the basic set for the frame bundle LRn we define a new group.

Definition 4.1 Define the group

H(LRn) = X (LRn)×n S1

with product

(u1, z
1, . . . , zn) · (u2, w

1, . . . , wn) = (u1 + u2, z
1w1exp(

i

2
A1), . . . , znwnexp(

i

2
An))

In the above equation Ak = dθk(u1, u2) evaluated at the identity (0, I).
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For every element (u, ~z) we have the inverse (−u, ~z−1). Notice the similarity to the Heisen-

berg groupH(2n). Given this similarity and following Guillemen and Sternberg [14] (section

15) we may identify the Lie algebra of this group h(LRn) with X (LRn)×nR = X (LRn)×Rn.

The bracket for the Lie algebra being

[(u1, ~v), (u2, ~w)] = (0, dθ1(u1, u2), . . . , dθn(u1, u2)) = (0, dθi(u1, u2)r̂i)

Now we are ready to compute the components of the n-symplectic momentum map for

H(LRn) acting on LRn. Identify LRn with a subset of h(LRn) by qir̂j → q̂i
j → (Xq̂i

j
, 0),

πj
kr̂j → π̂k → (Xπ̂k

, 0). Also identify the identity r̂k → (0, r̂k) and letH(LRn) act on h(LRn)

via the adjoint action. For the elements ξ = ξc
r q̂

r
c + ξlπ̂l, m = mb

aq̂
a
b +mkπ̂k ∈ h(LRn)

ξ
LRn (m) = [ξ,m] = (0, dθi(ξ,m)r̂i) = dθi(ξ,m)r̂i = (ξb

am
a −mb

l ξ
l)r̂b (4.2)

Given the above identification, a basis for h(LRn) is {q̂i
j , π̂k, r̂k} → {Xq̂i

j
, Xπ̂k

, r̂k}. Using

(4.2) we compute the infinitesimal generators of the basis, (q̂i
j)LRn = ∂

∂π̂j
i

, (π̂k)LRn = ∂
∂q̂k ,

and (r̂k)LRn = 0. The components of the momentum map are the Hamiltonian functions

for these infinitesimal generators:

Ja
b = q̂a

b , Jk = π̂k, Jj = r̂j

We choose our basic set for LRn to be the span of the components of this n-symplectic

momentum map.

bL = span{q̂i
j , π̂k, r̂j} ∼= h(LRn) (4.3)

This is the analogue of the Heisenberg algebra for LRn. The Poisson brackets are

{q̂i
j , π̂k} = δi

kr̂j

From the bracket we see bL is a subalgebra of SHF . The Hamiltonian vector fields for

the subalgebra bL are {−∂/∂πi
j , ∂/∂q

k, 0} respectively. The integral curves of these vector

fields are linear and hence defined for all time. The set bL is finitely generated and since

qi and πi
j are global coordinates on LRn they separate points. Likewise their Hamiltonian

vector fields span T (LRn). Thus bL is indeed a basic set for LRn. The fact that we get the

“hatted” versions of the coordinates instead of the coordinates themselves is a consequence

of the fact that all observables on LRn must be Rn valued.
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4.2 Comparison of the Poisson Algebra of Polynomials for

T ∗Rn vs LRn

The existence of a “no-go” theorem for T ∗Rn and the absence thereof for LRn

stems from the difference in their Poisson algebras, as we will see in a later section. In this

section we explicitly show the differences.

4.2.1 The Polynomial Algebra P (b2n)

Recall the basic set b2n = span{qi, pj , 1} ⊆ C∞(Rn) for T ∗Rn from equation (4.1).

Then P (b2n) is just polynomials of the variables (qi, pj), and the bracket is the standard

Poisson bracket for T ∗Rn.

Computing a few important Poisson brackets we see

{qi, pj} = δi
j

{(qi)a, (qj)b} = 0

{(pi)a, (pj)b} = 0

{(qi)2, (pj)2} = 4δi
jq

ipj

{(qi)3, (pj)3} = 9δi
j(q

i)2(pj)2

{(qi)2pb, q
a(pj)2} = 3δa

b (qi)2(pj)2 (4.4)

The notations (qi)a and (pj)a denote an a-fold product in the underlying commutative

algebra P (b2n). The last two relations are the Poisson relations that lead to the Groenwold

obstruction. Notable subalgebras of P (b2n) are polynomials of degree two or less and the

affine subalgebra, which is the subalgebra of all polynomials linear in pj . The Poisson

algebra P (b2n) has no non-trivial ideals and satisfies

[P (b2n), P (b2n)] = P (b2n)

4.2.2 The Polynomial Algebra P (bL)

Recall bL = span{q̂i
j , π̂k, r̂k} from equation (4.3) and consider the Poisson algebra

P (bL) with bracket defined in section 2.2. Elements of P (bL) are polynomials of (q̂i
j , π̂k, r̂k)

and hence are ⊗m
s Rn valued functions on LRn, m being the degree of the polynomial.



41

A typical monomial looks like q̂In
Jn
π̂Km r̂Ml

∈ SHFn+m+l. Here the multiplication is the

symmetric tensor product, q̂i
j π̂k ≡ q̂i

j ⊗s π̂k.

Using the n-symplectic Poisson bracket defined in section 2.2 we compute some

relevant brackets.

{q̂i
k, π̂j} = δi

j r̂k

{(q̂i
k)

a, (q̂j
l )

b} = 0

{(π̂i)a, (π̂j)b} = 0

{(q̂i
k)

2, (π̂j)2} = 4δi
j q̂

i
kπ̂j r̂k

{(q̂i
k)

3, (π̂j)3} = 9δi
j(q̂

i
k)

2(π̂j)2r̂k

{(q̂i
k)

2π̂b, q̂
a
c (π̂j)2} = 3δa

b (q̂i
k)

2(π̂j)2r̂c (4.5)

Notice the similarity to the symplectic Poisson brackets above. The main difference is the

⊗p
sRn valued rank. We also have for any two polynomials f̂ , ĝ ∈ P (bL)

{f̂ ⊗Ik
s r̂Ik

, ĝ ⊗Jl
s r̂Jl

} = {f̂ , ĝ} ⊗Mk+l
s r̂Mk+l

The multi-index Mk+l is (Ik, Jl). Now we define some important subalgebras.

Definition 4.2 The set of all polynomials of degree 2 or less in q̂i
j , π̂k with no restriction

on the degree of r̂k is denoted P 2
L.

Definition 4.3 The set of all polynomials linear in π̂k is denoted CL.

Notice that the last part of definition 4.2 is necessary since the linear space of all polynomials

of degree no greater than 2 no longer closes for P (bL).

Next we define an important set within P (bL).

Definition 4.4 The set of all polynomials of q̂i
j and π̂k is denoted P (q̂, π̂)

This is just a subspace of P (bL) and not a subalgebra, unlike T ∗Rn where P (q, p) = P (b2n).

Specifically it follows from the equations (4.5) that

{P (q̂, π̂), P (q̂, π̂)} = P (q̂, π̂)r̂

However, we can partition P (bL) using P (q̂, π̂).

P (bL) =
∞⊕

k=0

P (q̂, π̂)r̂Ik

This direct sum gives us an easy way to find ideals of P (bL).
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Definition 4.5 Define subalgebras Pm of P (bL) by Pm =
⊕∞

k=m P (q̂, π̂)r̂Ik

These subalgebras are nested

P 1 ⊃ P 2 ⊃ P 3 ⊃ . . .

Furthermore, for each m, Pm is an ideal of P (bL) since

{Pm, P s} ⊂ Pm+s−1 (4.6)

The previous equation is the most important feature of P (bL). This equation states that

one cannot decrease rank in P (bL) by taking Poisson brackets.

4.3 Go theorem for L(Rn)

Theorem 4.6 There exists a full polynomial quantization of the polynomial algebra P (bL)

for the space LRn.

We prove this existence theorem by giving two examples!

4.3.1 Ideal Quantization

Recall from section 4.2 equation (4.6) that

{Pm, P s} ⊂ Pm+s−1

Also recall that Pm =
⊕∞

k=m P (q̂, π̂)r̂Ik
is a Lie ideal for each m. Therefore we can write

P (bL) = bL + P 1

In the above equation, + represents semi-direct sum with bracket given by

{(ξ1, η1), (ξ2, η2)} = ({ξ1, ξ2}, {ξ1, η2} − {ξ2, η1}+ {η1, η2}}

Thus we can obtain a full quantization of P (bL) by quantizing bL and setting Q(P 1) = 0.

This is the approach taken by Gotay [5] when he exhibited a quantization of T ∗R+. Quantize

bL as follows:

Q(q̂i
j) = αjq

i (4.7)

Q(π̂k) = −i~ ∂

∂qk
(4.8)

Q(r̂k) = αk (4.9)
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For the last equation the αk are constants such that αk 6= 0 for all k. It is trivial to check

this map satisfies the definition of a prequantization. The Hilbert space is L2(Rn,C) and

the domain is the Schwartz space of all C∞ rapidly decreasing functions. When restricted

to bL the quantization map is faithful and is equivalent to the n-symplectic Schrodinger

representation. Irreducibility of Q(bL) follows from the fact that the Schrodinger represen-

tation {qi, ∂
∂qk } is irreducible on L2(Rn,C). Likewise the operators Q|bL

are essentially self

adjoint on D. Finally, it is known that the Hermite polynomials form a dense set in D of

separately analytic vectors for the Schrodinger representation.

Corollary 4.7 There is no Groenwold van Hove type obstruction for quantizing LRn.

By Groenwold van Hove type obstruction we mean an obstruction to quantization that:

• arises as a consequence of the irreducibility condition and the Poission bracket goes

commutator condition and

• requires a restriction of the quantization to a subalgebra of observables to correct.

4.3.2 Another Full Polynomial Quantization

Let A = (Ai
j) be a constant n× n Hermitian matrix. Another full quantization is

given by the map Q(P 2) = 0 and

Q(r̂k) = αk Q(q̂Im
Jm
π̂Kt r̂s) = 0

Q(q̂i
j) = αjq

i Q(π̂k) = −i~ ∂
∂qk

Q(q̂Im
Jm

) = m
∑m

p=1A
i1i2···̂ip···im
Jm−1

αjmq
ip Q(π̂Km) = αMcπ

Mc
Km

∀m 6= 1

Q(q̂Im
Jm
r̂k) = AIm

Jm
αk Q(π̂Km r̂s) = 0

Q(q̂Im
Jm
π̂k) = −i~AIm

Jm

∂
∂qk Q(q̂Im

Jm
π̂Kt) = AIm

Jm
αMcπ

Mc
Kt

∀t 6= 1

(4.10)

In the above we have used the notation AIm
Jm

= Ai1
j1
· · ·Aim

jm
. This quantization is also easy

to check since the only significant brackets have the form

{q̂It
Jt
, q̂Lm

Rm
π̂k} =

t∑
p=1

−tδip
k q̂

i1i2···̂ip···it
Jt−1

q̂LM
Rm

r̂jt

Computing the commutator of the operators we have
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i

~
[Q(q̂It

Jt
), Q(q̂Lm

Rm
π̂k)] =

i

~
[t

t∑
p=1

A
i1i2···̂ip···it
Jt−1

αjtq
ip ,−i~AIm

Jm

∂

∂qk
]

= −t
t∑

p=1

δ
ip
k A

i1i2···̂ip···it
Jt−1

ALm
Rm
αjt = −t

t∑
p=1

δ
ip
k Q(qi1i2···̂ip···it

Jt−1
q̂LM
Rm

r̂jt)

Notice that when restricted to the basic set this quantization is the same as the previous

one. Thus the map Q satisfies the definition of a quantization given in section ??.

4.3.3 Subalgebras of P (bL)

We can also quantize the two subalgebras mentioned in section 4.2. First consider

the subalgebra P 2
L. Define a map

Q(r̂k) = αk Q(q̂i
j π̂k) = −i~

(
αjq

i ∂
∂qk + δi

k
1
2

)
Q(q̂i

j) = αjq
i Q(π̂k) = −i~ ∂

∂qk

Q(q̂i
j q̂

a
b ) = αjαbq

iqa Q(π̂kπ̂b) = −~2 ∂2

∂qk∂qb

(4.11)

Extend this map to all of P 2
L by linearity and the generalized von Neumann rule

Q(f̂ r̂k) = Q(f̂)αk ∀f̂ ∈ P 2
L

In fact this particular choice of Q(q̂i
j π̂k) forces the generalized von Neumann rule above to

apply. This quantization of the subalgebra P 2
L is the direct analogue of the extended meta-

plectic quantization?? of polynomials of degree 2 or less on T ∗Rn, and hence these operators

are essentially self adjoint. Unfortunately, like its counterpart in symplectic geometry, this

quantization cannot be extended to all of P (bL). See section 4.5 for a proof. We can also

quantize the subalgebra CL. Recall

CL = {(f̂ Ikiπj
i + ĝIkj)r̂Ikj},

where f̂ Iki and ĝIkj are polynomials of q̂ only. For each ν the map

Qν(f̂ Ikiπj
i + ĝIkj)r̂Ikj) = −i~αIk

((f̂ Iki ∂

∂qi
+ [

1
2

+ iν]
∂f̂ Iki

qi
) + αj ĝ

Ikj)

is a quantization of CL. In the above equation αIk
= αi1αi2 · · ·αik For ν = 0 this is the n-

symplectic version of the coordinate representation of all polynomials linear in pi on T ∗Rn.

Unfortunately, this quantization of CL can not be extended in P (bL) either.
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4.4 Groenwold Van Hove Obstruction for T ∗Rn

To better understand these results a careful study of the proof of the Groenwold

Van Hove obstruction for T ∗Rn is needed. Complete proofs are given in [5],[2],[3], and [12]

to name a few. Below we give a part of the proof given in [5]. We will show a contradiction.

Suppose Q is a symplectic quantization of (P (b2n), b2n). The first step is to determine

Q((qi)2) and Q((pi)2). Let ∆(i)=Q((qi)2)-(Q(qi))2. Now we will compute the brackets

[∆(i), Q(qk)]

[∆(i), Q(pk)]

From the definition of a quantization property (1) we have

[Q(qk), Q(pj)] = i~δk
j

Therefore,

[∆(i), Q(qk)] = [Q((qi)2), Q(qk)]− [(Q(qi))2, Q(qk)] (4.12)

= 0− 0 = 0 (4.13)

We also have

[∆(i), Q(pk)] = [Q((qi)2), Q(pk)]− [(Q(qi))2, Q(pk)]

= 2i~δi
kQ(qi)− [(Q(qi))2, Q(pk)]

= 2i~δi
kQ(qi)− {(Q(qi))2Q(pk)−Q(pk)(Q(qi))2}

= 2i~δi
kQ(qi)− (Q(qi))(Q(pk)Q(qi) + i~δi

k)

− (Q(qi)Q(pk)− i~δi
k)Q(qi)}

= 0 (4.14)

The algebraic irreducibility ([5] prop. 5) of Q(pk) and Q(qi) implies

Q((qi)2) = (Q(qi))2 + EI

A similar argument gives
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Q((pi)2) = (Q(pi))2 + FI

Computing more brackets, [5] one sees for the constants E and F that E = F = 0 or

Q((qi)2) = (Q(qi))2

Q((pi)2) = (Q(pi))2

These relations lead to higher Von Neumann rules and eventually to an obstruction.

4.4.1 n-Symplectic Case

Now compute the same relations for an n-symplectic quantization of (P (bL), bL).

We start our computation with the same goal: to determine Q((q̂i
j)

2). Let ∆(i, j)=Q((q̂i
j)

2)-

(Q(q̂i
j))

2. Compute the brackets

[∆(i, j), Q(q̂k
l )]

[∆(i, j), Q(π̂k)]

From the definition of an n-symplectic quantization property (1) we have for some

constant cl

[Q(q̂k
l ), Q(π̂j)] = i~δk

j cl (4.15)

and moreover,

[∆(i, j), Q(q̂k
l )] = [Q((q̂i

j)
2), Q(q̂k

l )]− [(Q(q̂i
j))

2, Q(q̂k
l )] (4.16)

= 0− 0 = 0 (4.17)

We also have, using the definition of an n-symplectic quantization property (1) and equation

(4.15),
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[∆(i, j), Q(π̂k)] = [Q((q̂i
j)

2), Q(π̂k)]− [(Q(q̂i
j))

2, Q(π̂k)]

= 2i~δi
kQ(q̂i

j r̂j)− [(Q(q̂i
j))

2, Q(π̂k)]

= 2i~δi
kQ(q̂i

j r̂j)− {(Q(q̂i
j))

2Q(π̂k)−Q(π̂k)(Q(q̂i
j))

2}

= 2i~δi
kQ(q̂i

j r̂j)− (Q(q̂i
j))(Q(π̂k)Q(q̂i

j) + i~δi
kcj)

− (Q(q̂i
j)Q(π̂k)− i~δi

kcj)Q(q̂i
j)}

= 2i~δi
kQ(q̂i

j r̂j)− 2i~δi
kQ(q̂i

j)cj (4.18)

Hence, [∆(i, j), Q(π̂k)] is not necessarily zero for all quantizations Q! Compare this with

the computation leading to equation (4.14). The difference being that {P (q̂, π̂), P (q̂, π̂)} =

P (q̂, π̂)r̂ for the n-symplectic case. The irreducibility of Q(π̂k) and Q(q̂i
j) implies nothing

unless we choose the generalized Von Nuemann relation

Q(q̂i
j r̂j) = Q(q̂i

j)cj

An identical argument yields the same result for (π̂k)2, namely

Q(π̂kr̂j) = Q(π̂k)cj

These results and other similar observations lead to the restricted no-go theorems of section

4.5.

4.5 No-Go theorems

The examples from section 4.3 prove there is no global “no-go” theorem for quan-

tizing LRn. However, some simple conditions lead to “no-go” theorems. Explicitly,

Theorem 4.8 There is no full quantization of LRn such that Q(bL) acts irreducibly and

Q(f̂ r̂i) = Q(f̂)Q(r̂i) ∀f̂ ∈ SHF .

Proof

This is the exact condition needed to make n-symplectic quantization behave like a symplec-

tic quantization. Suppose Q is a quantization of (P (bL), bL). Let ∆(i, j)=Q((q̂i
j)

2)-(Q(q̂i
j))

2.

Compute the brackets
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[∆(i, j), Q(q̂k
l )]

[∆(i, j), Q(π̂k)]

From property (1) and (2) of an n-symplectic quantization we have for some constants cl

[Q(q̂k
l ), Q(π̂j)] = i~δk

j cl (4.19)

Since Q(f̂ r̂i) = Q(f̂)Q(r̂i) we have

Q(π̂kr̂j) = Q(π̂k)cj

Q(q̂i
j r̂j) = Q(q̂i

j)cj

Therefore,

[∆(i, j), Q(q̂k
l )] = 0

[∆(i, j), Q(π̂k)] = 2i~δi
kQ(q̂i

j r̂j)− 2i~δi
kQ(q̂i

j)cj = 0

By the algebraic irreducibility of Q(q̂k
l ) and Q(π̂k), we have ∆(i, j) = EI, where E is some

constant matrix. Hence,

Q((q̂i
j)

2) = Q(q̂i
j)

2 + EI (4.20)

A similar argument for Q((π̂i)2) gives

Q((π̂i)2) = Q(π̂i)2 + FI (4.21)

From equation (4.5) we have {(q̂i
j)

2, (π̂k)2} = 4δi
kq̂

i
j π̂kr̂j . To get the quantization ofQ(δi

kq̂
i
j π̂k)

we will quantize both sides of the previous equation. To illustrate the type of computation

we put the full calculation here. Using relations (4.19), (4.20), and (4.21) to simplify, we
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see

Q({(q̂i
j)

2, (π̂k)2}) = [Q((q̂i
j)

2), Q((π̂k)2)]

= [Q(q̂i
j)

2 + E,Q(π̂k)2 + F ]

= Q(q̂)2Q(π̂)2 −Q(π̂)2Q(q̂)2

= Q(q̂)Q(q̂)Q(π̂)Q(π̂)−Q(π̂)2Q(q̂)2

= Q(q̂)[Q(π̂)Q(q̂) + i~δi
kcj ]Q(π̂)−Q(π̂)2Q(q̂)2

= Q(q̂)Q(π̂)Q(q̂)Q(π̂) + i~δi
kcjQ(q̂)Q(π̂)−Q(π̂)2Q(q̂)2

= [Q(π̂)Q(q̂) + i~δi
kcj ]Q(q̂)Q(π̂) + i~Q(q̂)Q(π̂)−Q(π̂)2Q(q̂)2

= Q(π̂)Q(q̂)Q(q̂)Q(π̂) + 2i~Q(q̂)Q(π̂)−Q(π̂)2Q(q̂)2

= Q(π̂)Q(q̂)[Q(π̂)Q(q̂) + i~δi
kcj ] + 2i~δi

kcjQ(q̂)Q(π̂)−Q(π̂)2Q(q̂)2

= Q(π̂)Q(q̂)Q(π̂)Q(q̂) + i~δi
kcjQ(π̂)Q(q̂)

+ 2i~δi
kcjQ(q̂)Q(π̂)−Q(π̂)2Q(q̂)2

= Q(π̂)[Q(π̂)Q(q̂) + i~δi
kcj ]Q(q̂) + i~δi

kcjQ(π̂)Q(q̂)

+ 2i~δi
kcjQ(q̂)Q(π̂)−Q(π̂)2Q(q̂)2

= 2i~δi
kcjQ(π̂)Q(q̂) + 2i~δi

kcjQ(q̂)Q(π̂)

(4.22)

Therefore we have the quantization relation

Q({(q̂i
j)

2, (π̂k)2}) = Q(δi
kq̂

i
j π̂kr̂j) = Q(δi

kq̂
i
j π̂k)Q(r̂j) =

1
2
δi
k(Q(q̂i

j)Q(π̂k) +Q(π̂k)Q(q̂i
j))cj

Quantizing the Poisson bracket relations {(q̂i
j)

2, q̂i
j π̂k} = −2δi

k(q̂
i
j)

2r̂j and {(π̂k)2, q̂i
j π̂k} =

2δi
k(π̂k)2r̂j and simplifying, we see that E = F = 0. Using similar techniques one can show

Q((q̂i
j)

n) = Q(q̂i
j)

n

Q((π̂k)n) = Q(π̂k)n

Q((q̂i
j)

2π̂k) =
1
2
[Q(q̂i

j)
2Q(π̂k) +Q(π̂k)Q(q̂i

j)
2]

Q((π̂k)2q̂i
j) =

1
2
[Q(π̂k)2Q(q̂i

j) +Q(q̂i
j)Q(π̂k)2]

Now consider the Poisson bracket relation {(q̂i
j)

3, (π̂k)3} = 3{(q̂i
j)

2π̂k, q̂
i
j(π̂k)2}. Quantizing

both sides and using the above to simplify, we have the desired contradiction. Specifically,

quantizing {(q̂i
j)

3, (π̂k)3} gives
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9Q(q̂i
j)

2Q(π̂k)2 − 18i~Q(q̂i
j)Q(π̂k)− 6~2I (4.23)

Quantizing 3{(q̂i
j)

2π̂k, q̂
i
j(π̂k)2} gives

9Q(q̂i
j)

2Q(π̂k)2 − 18i~Q(q̂i
j)Q(π̂k)− 3~2I (4.24)

2

An important corollary to the previous theorem is the following:

Corollary 4.9 There exists no full quantization of L(Rn) such that Q acts like an anti-

commutator, Q(f̂ ĝ) = 1
2(Q(f̂)Q(ĝ) +Q(ĝ)Q(f̂)).

Proof

Let ĝ = r̂k, and then use Theorem 4.8. 2

Another interesting theorem is given by the following observation. Suppose that

Q(bLr̂Kp) = Q(bL)Q(r̂Kp) = Q(bL)cKp for all p. Given the quantization of the basic set

Q(bL) acts irreducibly, then Q(bLr̂Kp) = Q(bL)cKp acts irreducibly for all p.

Theorem 4.10 There is no full quantization of L(Rn) such that Q(bLr̂Kp) acts irreducibly

for any fixed p and Q(f̂ r̂i) = Q(f̂)Q(r̂i) ∀f̂ ∈
⊕∞

m=p P (q̂, π̂)r̂Km.

Proof

The proof of this theorem is identical to the main theorem of this section. Replace every

polynomial f̂ with f̂ r̂Kp and all the computations follow through. The contradiction arises

from the classical equation {(q̂i
j)

3r̂Kp , (π̂k)3r̂Ks} = 3{(q̂i
j)

2π̂kr̂Km , q̂
i
j(π̂k)2r̂Kt} where p+s =

t+m. Notice that the proof of the main theorem only uses P (bL) and not all of SHF . So the

requirement of the generalized von Neumann rule only for
⊕∞

m=p P (q̂, π̂)r̂Km is sufficient.

2

As a corollary we get the results stated in section 4.3.

Corollary 4.11 The extended metaplectic n-symplectic quantization cannot be extended

past P 2
L in P (bL).

Proof

Let the quantization of P 2
L be the extended metaplectic n-symplectic quantization given in

section 4.3.3. Extend P 2
L by any monomial q̂Il

Jl
π̂Km r̂Nc . The subalgebra P 2

L is “maximal” in
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the sense that adding q̂Il
Jl
π̂Km r̂Nc will generate every monomial of Pc, but no lower. Hence

the smallest subalgebra containing P 2
L and q̂Il

Jl
π̂Km r̂Nc is {P 2

L, } ∪ Pc. The quantization of

q̂i
j π̂k forces the generalized von Nuemann rule Q(f̂ r̂i) = Q(f̂)Q(r̂i) ∀f̂ ∈ Pc. Finally the

irreducibility of Q(bL) implies the irreducibility of Q(bL)cKc . 2

Corollary 4.12 The n-symplectic version of the coordinate representation cannot be ex-

tended past CL in P (bL).

The proof is the same as the last corollary with the following observations. First the n-

symplectic version of the coordinate representation obeys the generalized von Neumann

relation Q(f̂ r̂i) = Q(f̂)Q(r̂i) ∀f̂ ∈ CL. The subalgebra of CL is again weakly maximal.

Hence, adding any monomial q̂Il
Jl
π̂Km r̂Nc forces one to consider {CL, } ∪ Pc.

4.6 Map From LM to T ∗M

In [8] it is shown that for all α ∈ Rn such that αi 6= 0 ∀i there is a map α :

ST p → C∞(T ∗M) which recovers symplectic geometry. The space ST p is the set of all

symmetric Hamiltonian observables with homogeneous degree p in π̂k. There is also an

induced map ψα : AM → L×, where AM is the affine frame bundle of a manifold M and

L× is the C× bundle of geometric quantization. The author has extended the map α to

SHF p → C∞(T ∗M) for each p.

Definition 4.13 For the symmetric Hamiltonian observable f̂ = f̂ Ip r̂Ip ∈ SHF p define the

map α : SHF p → C∞(T ∗M) by

α(f̂) = αIp f̂
Ip

For the purpose of this paper we can use a simpler version of ψα which we will also denote

ψα.

Definition 4.14 Let u = (p, ei) be a point in LM . Define the map ψα : LM → T ∗(M) by

ψα(u) = ψα(p, ei) = (p, αie
i)

In this definition {ei} is the dual basis to {ei}. Let f̃ denote the observable on T ∗M obtained

by α(f̂). Before we give the next theorem recall that a Hamiltonian vector field on LRn is
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⊗p
sRn valued Xf̂ = X

Ip

f̂
r̂Ip . Notice that for p = 0 the Hamiltonian vector field is R valued.

Hence for all p ≥ 0, XIpαIp is an Rn valued Hamiltonian vector field of LRn.

Theorem 4.15 Let f̂ ∈ SHF p, then

dψα(XIp

f̂
αIp) = Xα(f̂) = Xf̃ (4.25)

In the above theorem Xf̃ is the symplectic Hamiltonian vector field on T ∗M generated by

f̃ , and Xf̂ is the n-symplectic Hamiltonian vector field on LM generated by f̂ .

Proof

Using definition 4.14 we first compute

dψα( ∂
∂πi

j
) = αi

∂
∂pj

dψα( ∂
∂qi ) = ∂

∂qi

Let u ∈ LM and let w = ψα(u). For f̂ Ip+1 ∈ SHF p+1 the Hamiltonian vector field Xf̂ is

given by (3.1). Let w = ψα(u) with u ∈ LRn. Computing we find:

p!dψα(XIp−1

f̂
αIp−1)(u) = p!dψα(

1
p!
∂f̂ Ip−1b

∂πb
a

∂

∂qa
− 1
p!
∂f̂ Ip−1a

∂qb

∂

∂πa
b

αIp−1)(u)

=
∂f̂ Ip−1b

∂πb
a

αIp−1

∂

∂qa
(w)− 1

p

∂f̂ Ipa

∂qb
αIp−1αa

∂

∂pb
(w)

=
∂f̃

∂pa

∂

∂qa
(w)− ∂f̃

∂qb

∂

∂pb
(w)

= Xf̃ (4.26)

The third line depends on the relation ∂
∂πa

b
= αa

∂
∂pb

. Hence dψα has the required property.

2This map preserves the Poisson bracket in each respective space. Denote the set of equiv-

alence classes of n-symplectic Hamiltonian vector fields on LM by HV (LM). Denote the

set of symplectic Hamiltonian vector fields on T ∗M by HV (T ∗M).

Definition 4.16 Let X = XIp r̂Ip ∈ HV (LM) then define the map T : HV (LM) →
HV (T ∗M) as follows

T (X) = T (XIp r̂Ip) = (p+ 1)!dψα(XIpαIp)

From above we have

T (Xf̂ ) = Xαf̂ = Xf̃
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Theorem 4.17 The map T : HV (LM) → HV (T ∗M) is a Lie algebra homomorphism.

Proof

From section 2.1 we have

[Xf̂ , Xĝ] = CX{f̂ ,ĝ}

From standard symplectic geometry on T ∗M we have

[Xf̃ , Xg̃] = X{f̃ ,g̃}

Using these relations one has

T [Xf̂ , Xĝ] = T (CX{f̂ ,ĝ})

= CXα{f̂ ,ĝ}

= CX{f̃ ,g̃}

= C[Xf̃ , Xg̃] � (4.27)

The map T can be extended to a map T : op(HLRn) → op(HT ∗Rn) for operators of a specific

form. First some notation. Denote a differential operator of op(HLRn) by

F = F IkAmJr

Bm
(qi, πa

b )∂qIk ◦ ∂πAm
Bm

r̂Jr

This equation uses the notation ∂qIk

def
= ∂

∂qi1
◦ · · · ◦ ∂

∂qik
and ∂

πAm
Bm

def
= ∂

∂π
a1
b1

◦ · · · ◦ ∂
∂πam

bm

.

Note also that if all differential indicies are zero, F is a multiplication operator F = F Jr r̂Jr .

Extend T in a natural way by the following definition.

Definition 4.18 Let F = F IkAmJr

Bm
(qi, πa

b )∂qIk∂πAm
Bm

r̂Jr ∈ op(HLRn) and define the map

T : op(HLRn) → op(HT ∗Rn) by

T (F ) = T (F IkAmJr

Bm
(qi, πa

b )∂qIk∂πAm
Bm

r̂Jr) = αJrF
IkAmJr

Bm
(qi, πa

b )dψα(∂qIk )dψα(∂
πAm

Bm

)

For a multiplication operator F = F Jr r̂Jr

T (F ) = α(F )
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In this definition we have used the notation dψα(∂qIk )
def
= dψα

(
∂

∂qi1

)
◦ · · · ◦ dψα

(
∂

∂qik

)
and

dψα(∂
πAm

Bm

)
def
= dψα

(
∂

∂π
a1
b1

)
◦ · · · ◦ dψα

(
∂

∂πam
bm

)
. This map clearly maps into op(HT ∗Rn).

Definition 4.19 Let QT ∗Rn be the map induced on T ∗Rn given a quantization Q on LM.

QT ∗Rn(f̃) = T (Q(f̂))

From the definition of a quantization

Q({f̂ , ĝ}) = [Q(f̂), Q(ĝ)]

T [Q(f̂), Q(ĝ)] = T (Q({f̂ , ĝ}))

= QT ∗Rn(α{f̂ , ĝ})

= QT ∗Rn({f̃ , g̃}) (4.28)

The map α can be thought of as a map P (bL) → P (b2n) and T : op(HLRn) → op(HT ∗Rn).

However the map QT ∗Rn does not give a quantization on T ∗Rn. Using the maps above we

can map the quantization of LRn to T ∗Rn and see where it breaks down. In n-symplectic

geometry the observables q̂i
j and q̂i

j r̂k are distinctly different. Quantizing each as in the full

polynomial quantization of section 8.2 we get

Q(q̂i
j) = αjq

i

Q(q̂i
j r̂k) = Ai

jαk

Using the above maps we see that α(q̂i
j) = qiαj and α(q̂i

j r̂k) = αjαkq
i on T ∗Rn. Using

definition 4.18 we have

QT ∗Rn(αjq
i) = QT ∗Rn(α(q̂i

j)) = T (Q(q̂i
j)) = T (αjq

i) = αjq
i

Also, we have

QT ∗Rn(αkαjq
i) = QT ∗Rn(α(q̂i

j r̂k)) = T (Q(q̂i
j r̂k)) = T (Ai

jαk) = Ai
jαk

Hence, on the cotangent bundle, QT ∗Rn is not a linear map since QT ∗Rn(αkαjq
i) 6=

αkQT ∗Rn(αjq
i). In fact, the map α removes the Lie ideals in the Poisson algebra!
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Chapter 5

Conclusion

To avoid the obstructions to quantizing the canonical symplectic manifold T ∗Rn

something must change. The most obvious candidates for modification are either Dirac’s

“Poisson bracket → commutator” quantization rule or the underlying setting of quanti-

zation. The symplectic geometry of polynomial observables on T ∗Rn is induced from the

n-symplectic geometry of LRn. Hence, n-symplectic geometry is the natural choice of a

larger geometry in which to base quantization. As shown in chapter 4, the n-symplectic

geometry of LRn allows for the existence of ideals in the Poisson algebra of polynomials.

On the other hand there are no such ideals in the Poisson algebra of polynomial observables

on T ∗M . The existence of ideals in the Poisson algebra of polynomial observables on LRn

allows the frame bundle of Rn to support full polynomial quantizations.The author believes

this is a necessary and sufficient condition. With that conjecture in mind it is important to

notice that ideals exist in the Poisson algebra of polynomial observables of LM for all M.

The change from symplectic geometry to n-symplectic geometry is better than

weakening Dirac’s “Poisson bracket → commutator” quantization rule because of an im-

portant observation in [5]. There is an apparent link between obstructions to Hilbert space

based quantization and the absence of a strict deformation quantization. In response to

these observations Gotay makes the following comment,

It is generally believed that the existence of Groenwold-Van Hove obstructions
necessitates a weakening of the Poisson Bracket → commutator rule(by insisting
that it hold only to order ~), but these observations indicate that this may not
suffice to remove the obstructions.

The existence of full polynomial quantizations for LRn and none for T ∗Rn is just
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one more reason n-symplectic geometry is a rich subject with great physical potential. The

theory of n-symplectic quantization is also fertile ground for new research. I would like to

emphasize some important topics that need further consideration.

• Momentum maps play an important role in quantization. They are the foundation

that the basic sets are built on. The momentum mapping for n-symplectic geometry is

only roughly understood. A full treatment of momentum maps would be useful. The

definition of basic set for n-symplectic geometry given here is based on the properties of

a symplectic momentum map. A better understanding of the n-symplectic momentum

mapping could lead to a better definition of an n-symplectic basic set.

• The only space considered in this paper is LRn. There are other manifolds that cannot

be quantized namely S2 and T ∗S1. The n-symplectic quantization of these manifolds

has yet to be studied. The natural n-symplectic analogue of T ∗S1, or T ∗Sn in general,

is the frame bundle of Sn, LSn. The n-symplectic analogue of S2 is more subtle. A

general n-symplectic manifold, not necessarily a frame bundle, may be required.

• The quantization given here is just a specific example of a quantization for a specific

n-symplectic manifold. We have made no attempt to develop a quantization method

to instantly quantize every n-symplectic manifold. However, this would be a desirable

result.

• There exists a map from the set of polynomials of degree 3 or less to e.s.a. operators

on the Hilbert space, L. This map satisfies all the requirements of a quantization

except the space is not a subalgebra of P (bL). We note that this map is not possible

in symplectic geometry because of the Greonwold obstruction for cubic polynomials.
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The specific map is:

Q(q̂i
j ⊗k

s r̂b) = (−1)kαjq
i ⊗k

s r̂b

Q(π̂k ⊗k
s r̂b) = (−1)k ∂

∂qk
⊗k

s r̂b

Q(r̂k ⊗k
s r̂b) = αk ⊗k

s r̂b

Q((q̂i
j)

2 ⊗k
s r̂b) = αjq

iq̂i
j ⊗k

s r̂b

Q((π̂k)2 ⊗k
s r̂b) = −β ∂2

∂qk∂qk
⊗k+1

s r̂b

Q(q̂i
j π̂k) = q̂i

j

∂

∂qk
+ δi

k3π̂
∂

∂π

Q(q̂i
j π̂k ⊗k

s r̂b) = (−1)k(q̂i
j

∂

∂qk
+ δi

k

1
2
)⊗k

s r̂b

Q((q̂i
j)

3 ⊗k
s r̂b) = (αjq

i(q̂i
j)

2 − 3απ̂r̂)⊗k
s r̂b

Q((π̂k)3 ⊗k
s r̂b) = β2r̂2(

∂3

∂qk∂qk∂qk
+ r̂2β2 ∂

∂π
)⊗k+1

s r̂b

Q(q̂i
j)

2π̂k) = (q̂i
j)

2 ∂

∂q
+ q̂r̂

Q(π̂k)2q̂i
j) = q̂i

j r̂
∂

∂q

∂

∂q
+

∂

∂q
r̂r̂ (5.1)

What makes this map remarkable is the the relation

[Q((q̂i
j)

3), Q((π̂k)3)] = 3[Q(q̂i
j)

2π̂k), Q(π̂k)2q̂i
j)]

This is the relation that leads to the Groenwold Van Hove obstruction for R2n (see

equations (4.23,4.24)). The author believes that this map cannot be extended to a full

polynomial quantization but has not proved this statement at this time. Since there

is no Groenwold Van Hove obstruction for n-symplectic geometry, it is interesting to

search for a full quantization that includes the metaplectic quantization or some close

variant thereof.

• We have only studied a quantization for the symmetric observables of LRn. There is

another class of observables, the totally antisymmetric Hamiltonian functions AHF .

In [11] it is shown that these functions form a graded Poisson algebra and the anti-

symmetric Hamiltonian vector fields form a graded Lie algebra. A quantization for

these observables would be very interesting. For example, consider LR3 with AHF .

The antisymmetric observables are again polynomials in the π. By the properties of

the wedge product these polynomials terminate after degree three. Therefore the map
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given in (5.1) is a full polynomial quantization of LR3! Given the graded nature of

AHF this could also have implications for supersymmetry. Obviously, this is an area

that needs investigation.

• Finally, we have made no attempt to analyze these results physically.
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