
Abstract

ZOU, WEI. Transcriptional Regulatory Patterns in Yeast Revealed through Expres-
sion Quantitative Trait Locus Mapping. (Under the direction of Dr. Zhao-Bang
Zeng.)

Expression Quantitative Trait Locus (eQTL) mapping combines large scale mRNA

expression analysis and classical quantitative genetics methods to find the correlated

variation between genome and transcriptome. We applied a sequential genome scan

method to build genetic architectures for expression traits in a published yeast eQTL

mapping data set. We compared mapping results from several variants of the method.

We used the threshold controlling the genome-wise type I error rate to declare eQTLs,

and used False Discovery Rate (FDR) to assess the overall error rate in the whole

mapping study. In this mapping population, expression traits tend to be mapped

onto its own sequence and avoid being mapped onto their transcriptional factors.

Sequence variations around transcriptional factors are not preferentially associated

with transcript abundance variation of their regulatory target genes, though the ex-

pression traits of transcriptional factors and their targets tend to have overlapping

eQTL regions. Indirect trans-regulation mechanisms play a significant role in order to

connect trans-acting eQTLs with certain biological pathways. We have developed a

graphical tool to visualize the myriad relationships suggested by eQTL analysis. The

tool allows dynamical superimposition of biological annotation onto declared eQTLs

to find the matching cases between statistical patterns inferred from this mapping

population and results of biological investigation on this organism. Finally, we pro-

posed a probabilistic way of combining statistical patterns with biological annotations

based on Bayes’ Theorem. The resulting posterior probability that a gene in an eQTL

causes the trait variation can be used to prioritize genes in an eQTL.
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1.1 Introduction

Quantitative genetics studies the variation of quantitative traits. When Fisher laid

down the basic theoretical foundations of quantitative genetics, the focus of study

was to partition the overall variation into genetic and environmental ones. With the

development of polymorphic markers for many species, current research interest is to

partition genetic variation to individual quantitative trait loci (QTLs) in the genome

as well as interaction among them (Zeng et al., 1999). A QTL is a chromosomal

region that is likely to contain genes that affect the phenotypic variation under study.

Given a mapping population, the fundamental information that any modern QTL

mapping procedure relies on is chromosome recombination events in the population.

Recombination creates small or large difference in the segregation pattern of DNA

segments in the population. When the genome is properly tagged with genetic mark-

ers (section 1.2), QTL analysis discriminates DNA segments according to how their

associated markers co-segregate with trait variation, and claims QTL when the asso-

ciation is significant in the mapping population (section 1.3).

In model-based QTL studies, markers are generally not attached with any geno-

typic effects. QTL can be anywhere between marker intervals. QTL position and

effects are parameters to be estimated. In non-parametric approaches, markers are

generally treated as explanatory variables for phenotypic variation. Linkage disequi-

librium (LD) (section 1.4) between invisible causal genes for the trait and visible

markers surrounding the causal genes attaches genetical meaning to these markers.

Statistical details of QTL analysis are discussed in section 1.5. Section 1.6 is devoted

to discuss thresholds for declaring QTL. Section 1.7 discusses a few attempts to go

from a QTL to causal genes.
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Recent research interest in systems biology makes transcriptome expression a sub-

ject of quantitative genetics study. Expression QTL (eQTL) analysis is the focus of

this thesis. Section 1.8 gives the research outline on the topic.

1.2 Marker

Commonly used genetic markers are all DNA variations:

• restriction fragment length polymorphisms (RFLP)

• simple sequence repeats (SSR), or microsatellites

• variable number of tandem repeats (VNTR), or minisatellites

• single nucleotide polymorphisms (SNPs)

They have the following good properties: stably transmitted between generations,

polymorphic in the population to differentiate inheritance patterns of chromosome

regions, and there are efficient ways to measure marker genotypes.

SNPs have become a very popular kind of markers in the recent years for their

superior genetic characteristics: abundantly available (about 1 in every 1200 base

pair in human (http://www.hapmap.org/)); low mutation rate, much stabler than

microsatellites. Recent advance in microarray technology, which greatly decreases the

cost and increases the speed of genome-wise SNP genotyping (Wang et al., 1998), is

also an important factor for its wide application.

Markers are used to trace recombination events in the population. If significant

LD only exists in a small genomic neighborhood around markers, as in natural pop-

ulations, increasing marker density will increase the power and resolution to detect
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true underlying sequence variation for the trait. When there are only limited recom-

bination events in the sample, dense markers will not be very helpful. Neighboring

markers without any recombination event between them are equivalent with a sin-

gle marker in detecting association. However, when a QTL is claimed around these

non-recombinant markers, they are able to present more information about QTL

boundaries than a single marker.

Marker density in a genomic region should be commensurate with the recombina-

tion rate in the region. Genotyping too many markers can waste money and time that

may be used to increase the sample size. This is the rationale underlying the hier-

archical genotyping procedure and tag SNPs selection procedure in HapMap project

(The International HapMap Consortium, 2003).

1.2.1 Haplotype

A haplotype is a list of allelic types on a chromosome in their physical order. The

simplest haplotype consists of two alleles at two loci. The most complex haplotype is

the haploid genome.

It is always possible to combine individual markers into haplotypes and then

detect association between the trait and the genomic region covered by the haplo-

types. Haplotype-based analysis is motivated by biological observations like the case

of APOE gene’s effect on late-onset Alzheimer’s disease: the disease susceptibility

depends on the combination of alleles at two loci (Brouwer et al., 1996). In asso-

ciation studies, it is not hard to find examples where there is a strong ’interaction

effect’ of two markers on the phenotype; but there is no significant ’main effect’ for

either marker (Culverhouse et al., 2002; Hoh and Ott, 2003). Such association
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patterns will be hard to detect when markers are tested one by one, but easy for

haplotype-based analysis. There have been many studies on the power comparison

between single marker analysis and haplotype-based analysis, some of which favor the

former analysis (Long and Langley, 1999) and some of which favor the later(Akey

et al., 2001). Nielsen et al. (2004) suggested that these contradicting findings can

be explained by high order LD among two markers and one putative causal variant.

Haplotype-based analysis is favored when there are moderate to high levels of three

locus LD. To test markers one by one is a more powerful way when pairwise LD is

high.

Haplotype frequencies capture the association pattern in a limited genomic re-

gion. The frequencies will be too low and highly variable for haplotypes covering

an extended region. In order to detect joint effects of distant loci, or loci on differ-

ent chromosomes, searching for interaction effects between individual loci is still an

indispensable procedure to model quantitative traits.

1.3 Mapping population

Traditional QTL mapping experiment starts with two parental inbred lines, P1 and

P2, derived from natural populations of the organism. Putative causal loci and infor-

mative markers are assumed to be homozygotic within a parental line, but fixed with

different alleles between lines. Thus, phenotypic values of the trait of interesting,

genetically affected by those causal loci, follow the same distribution within a line,

and different distributions between lines. This is the basis of likelihood approaches

for QTL mapping.

5



Certain markers, which are polymorphic in the nature population, can be ho-

mozygotic across P1 and P2. Such markers are considered as ’non-informative’ for all

mapping populations derived from P1 and P2, because their alleles do not correspond

to a unique parental origin of their chromosomal regions. Similarly, there can be

multiple types of alleles at each causal gene. P1 and P2 only contain two of them.

This is one of the reasons that inferences and conclusions from a QTL analysis are

generally restricted to the mapping population.

P1 and P2 can be crossed to produce F1 population. Causal loci and informative

markers become heterozygotic with an allele frequency of 0.5 for either type of allele.

F1 can be crossed with either parental line to create a backcross population, or with

each other to create F2. The later process can be repeated multiple times among

relatives to create recombinant inbred lines (RIL).

Such well controlled cross designs are only available for animals and plants. In hu-

man, only observational studies are possible. Samples used for QTL mapping can be

related individuals: a large number of nuclear families or several extended pedigrees;

or unrelated ones from naturel population. Many pieces of information are missing in

such samples compared with experimental populations: recombination events are not

observed directly, but need to be inferred from pedigree structures; allelic frequencies

are unknown and need to be estimated from the sample. When samples are from

multiple families, there is much more genetic heterogeneity in forming the phenotype

than that in inbred populations. Special attention is also needed to guard against

population stratification.

6



1.4 Linkage disequilibrium (LD)

Two-locus LD is a measure of dependency between allele frequencies at two loci

(Weir, 1996). A basic two-locus LD measure, ‘D’, is the difference between the

two-locus haplotype frequency and the product of two allele frequencies at the two

loci.

Mapping populations differ a lot as discussed in section 1.3, but they share one

assumption in common: significant LD exists between putative causal genes and

their approximal markers, which makes these markers segregate in a similar pattern

as causal genes. Markers do not affect trait values by themselves genetically. But

they can have effects in statistical modelling. Such an effect is a function of the effect

of a causal gene, and LD between the causal gene and the marker.

In an experimental crossing population from inbred lines, LD between loci reach

their maxima in F1 populations, and expected to decrease in later sib-mating gener-

ations as more recombination events happen in meiosis. Parametric linkage analysis

explicitly models the dependency of allele frequencies at marker loci and causal genes

as a function of recombination rates among them (section 1.5).

For a natural population, when a new mutation was initially introduced, it was

in perfect association with the haplotype on the chromosome where it was located.

If it survived after generations of drift, it could propagate in the population. How-

ever, in the meanwhile, the recombination event would gradually erode the correlation

between the mutant allele and alleles at neighboring loci on the original haplotype,

unless certain allele combination on the haplotype was favored by selection as a whole

(eg: high LD in MHC region of human genome due to balancing selection (Slatkin,

2000)). It would not take long before only those loci, which are very close in genetic
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distance with the mutant locus, could still preserve significant LD with the mutant.

The assumption of a common historical mutation event underlying disease suscepti-

bility for the general population is a key idea under whole-genome association study

in human (Kruglyak, 1997). Similar arguments can be applied to linkage analysis in

pedigrees: a mutation for disease susceptibility is introduced into the family through

a founder.

Terwilliger et al. (1998) showed that excessive LD would exist between a dis-

ease predisposing allele and surrounding markers without a historical mutation or

haplotype. They viewed a population as divided into two sub-populations with or

without the disease allele; recombination was modelled as symmetric genome flow

between two sub-populations; additional mutation at the disease locus as unidirec-

tional gene flow; selection on the disease locus as sub-population size changes, etc.

The elevated genetic drift in the smaller subpopulation carrying the disease allele will

incur higher LD around the disease allele than other genomic area.

Besides recombination and drift, LD can be affected by the following effects.

• Selection. Selection is a constant force affecting allele frequencies given

an environmental setting. If certain allele combinations from neighboring

sites (eg: MHC locus) are favored by balancing selection, high and ex-

tended LD can be maintained in the population (Slatkin, 2000). When

positive selection favors an allele of a single locus, due to ’hitchhiking ef-

fect’, the haplotype where the allele is located will also be favored. The

resulting increase in homogeneity of haplotypes in the chromosome region

would increase LD surrounding the locus under positive selection.

• Population admixture. When two populations are mixed, LD will be

8



generated around loci with different allele frequencies in the two original

populations.

• Inbreeding and associative mating, which make recombination less effec-

tive in eroding LD (Terwilliger et al., 1998)

• Population expanding, which makes drift less effective in forming new LD

in the population.

Affected by many random effects, LD itself is not so good a measurement of

physical proximity between loci as recombination rate.

1.5 Statistical methods for QTL mapping

1.5.1 Single marker analysis

The basic principle of QTL mapping has been established in Sax (1923)’s work

in beans. If there is co-segregation between the causal gene and a marker locus,

mean values of the trait under study will differ among subject groups with different

genotypes at the marker locus (Mackay, 2001a).

Such a principle leads immediately to a test procedure like student’s t-test, where

the difference between association study for natural populations and linkage analysis

for experimental populations blurs.

However, in an experimental population, given a clear genetic map of markers,

a formal likelihood approach can be applied (Zeng, 2000). Assuming normal error

distribution of trait values, a likelihood ratio test can be performed to contrast the

hypothesis that the recombination rate between the marker and a putative causal

gene of the trait is 0.5 (unlinked), versus the hypothesis that the recombination rate
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is less then 0.5 (linked). Such an analysis reveals that the test statistic is not only

affected by the map distance, but also by the genetic effects of putative causal genes.

1.5.2 Interval mapping (IM)

Lander and Botstein (1989) provided a likelihood based framework of IM to esti-

mate causal gene locations within marker intervals. Compared with the single marker

analysis, IM allows separate tests for QTL location and effects.

The likelihood function in IM is composed of two parts (Ott, 1999):

• conditional probability of a QTL genotype given neighboring marker geno-

types, containing QTL location parameters;

• conditional probability of phenotype given a QTL genotype, containing

QTL effect parameters. For binary traits (diseased or not), the notion of

penetrance is used instead of genetic effects (eg: main effects, dominant

effects) for continuous traits. Penetrance is the probability of showing

the disease phenotype when a subject carries a disease allele. Continu-

ous trait values are usually assumed to be random variables from normal

distributions with means as linear functions of genetic parameters.

For a backcross population produced by crossing F1 and P1, for j-th individual

(j = 1..N), let yj be the trait value, Qij be the genotype of a putative causal locus in

the genomic interval bounded by marker Mij and M(i+1)j; let 1 indicate heterozygosis

at a locus and 0 indicate homozygosis. Table 1.1 shows Pr(Qij|Mij,M(i+1)j) .

Assuming individuals with Qij = 0 have trait values sampled from N(u, σ2), and

individuals with Qij = 1 have trait values from N(u + b, σ2), the likelihood function

10



Table 1.1: Conditional probabilities of QTL given its flanking markers in a backcross
design

Marker genotype Expected frequency QTL genotype
of Marker Genotype Qij = 0 Qij = 1

Mij = 0,M(i+1)j = 0 (1− r0)/2 1 0
Mij = 0,M(i+1)j = 1 r0/2 1− ρ ρ
Mij = 1,M(i+1)j = 0 r0/2 ρ 1− ρ
Mij = 1,M(i+1)j = 1 (1− r0)/2 0 1

ρ = r1/r0, where r0 is the recombination rate between Mij and m(i+1)j,
and r1 is the recombination rate between Mij and Qij. Probability for
double crossing-over is ignored.

that Qij is a causal locus for the trait is given by

L(u, b, σ) =
N∏

j=1

[p0jφ(
yi − u

σ
) + p1jφ(

yi − u− b

σ
)] (1.1)

p0j = Pr(Qij = 0|Mij,M(i+1)j) (from table 1.1)

p1j = Pr(Qij = 1|Mij,M(i+1)j) (from table 1.1)

where φ is the standard normal density function, b is the difference of mean trait

values between individuals with Qij = 1 and Qij = 0. b is thus the genetic main

effect of Qij. Maximal likelihood estimate (MLE) of r1, the map distance between

Mij and Qij, is not obtained analytically, but estimated through a grid search in the

genome. We can perform the following analysis at equally spaced positions (eg: 1cM

apart, i.e., set r1 = 1cM, 2cM, ...) within each marker interval. It is called genome

scan in QTL mapping studies.
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Expectation-maximization (EM) algorithm can be used to compute MLE for pa-

rameters in formula 1.1 after cycling through a series of expectation (E) and max-

imization (M) steps until convergence of estimates (Zeng, 2000). In the E-step of

cycle t, posterior probability Pr(Qij = 1|Mij,M(i+1)j, yi), denoted as P
(t)
j , can be

obtained as

P
(t)
j =

p1jφ(yi−u−b
σ

)

p1jφ(yi−u−b
σ

) + p0jφ(yi−u
σ

)

In the M-step, derivatives of log likelihood function (formula 1.1) with respect to

parameters are equated to zero to solve for MLE of cycle t.

∂ log L

∂b
=

N∑
j=1

P
(t)
j

yj − u− b

σ2

∂ log L

∂u
=

N∑
j=1

P
(t)
j (yj − u− b) + (1− P

(t)
j )(yj − u)

σ2

∂ log L

∂σ2
=

N∑
j=1

P
(t)
j (yj − u− b)2 + (1− P

(t)
j )(yj − u)2

2σ4
− N

2σ2

In this likelihood approach, we can test the existence of a QTL r1 away from Mij

using likelihood ratio statistic LRS = −2 log[L(ũ, b = 0, σ̃2)/L(û, b̂, σ̂2)]. We could

not compare the statistic to a χ2
1 distribution to determine the significance, because

the huge number of such tests are performed through the genome scan. We will

discuss the issue of choosing a threshold to declare QTLs in section 1.6.
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1.5.3 Composite interval mapping (CIM)

Given three consecutive markers xi−1, xi, xi+1, when crossover interference can be

overlooked, i.e., Pr(xi+1|xi, xi−1) = Pr(xi+1|xi), Zeng (1993) found that conditional

on xi,

• the covariance between xi−1 and xi+1 is zero,

• the expected partial regression coefficient of trait values on xi−1 will not be

affected by possible QTLs between xi and xi+1 or beyond xi+1, if further

ignoring epistasis.

Motivated by these findings, CIM is proposed to add flanking markers as covariates

to the likelihood function as formula 1.1. As noted by Zeng (2000), CIM will reduce

the chance of interference from nearby QTLs on hypothesis testing and parameter

estimation for the current QTL. However, it will increase the variance of estimates

when introducing correlated explanatory variables into the model.

In the CIM procedure implemented in QTL cartographer (Basten et al., 1994),

unlinked but ‘important’ markers are also included in the likelihood function to con-

trol genetic variation unexplained by the current QTL. Those ‘important’ markers

are obtained by running a stepwise regression analysis for all markers across the

genome. Multiple interval mapping extends such use of unlinked controlling markers

into explicitly modelling quantitative trait architecture including multiple QTLs and

epistasis.

1.5.4 Multiple interval mapping (MIM)

It has been suggested that a major QTL’s effect should be considered when searching

for secondary QTLs (Paterson et al., 1988). Multiple interval mapping addresses
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this issue formally and suggests a model selection procedure to search for the best

genetic model for the quantitative trait (Kao and Zeng, 1997; Kao et al., 1999).

For m putative causal genes for the trait, the model of MIM is specified as (Zeng,

2000)

yi = u +
m∑

r=1

αrx
∗
ir +

t∑

r 6=s⊂(1,...,m)

βrs(x
∗
irx

∗
is) + ei (1.2)

where

• yi is the phenotypic value of individual i, i = 1, 2, ..., n;

• u is the mean of the model;

• αr is the main effect of r-th putative causal gene, r = 1..m;

• x∗ir is an indicator variable denoting genotype of r-th putative causal gene,

which follows a multinomial distribution with parameters similar to the

conditional probabilities shown in table 1.1;

• βrs is the possible epistatic effect between r-th and s-th putative causal

gene, assuming there are t such effects ;

• ei is an environmental effects assumed to be normally distributed

As shown by Kao and Zeng (1997); Kao et al. (1999), given a genetic model

(number, location and interaction of multiple QTLs), this linear model suggests a

likelihood function similar to formula 1.1 but more complex. EM algorithm can be

used to maximize the likelihood and obtain MLE of parameters.

The following model selection method is used to transverse the genetic model

space in QTL Cartographer (Basten et al., 1994):

1. Forward selection of QTL main effects sequentially. In each cycle of selection,

pick the best position of an additional QTL, and then perform a likelihood ratio
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test for its main effect. If a test statistic exceeds the critical value, this effect is

retained in the model. Stop when no more QTLs can be found.

2. Search for epistatic effects between QTL main effects included in the model, and

perform likelihood ratio tests on them. If a test statistic exceeds the critical

value, the epistatic effect is retained in the model. Repeat the process until no

more significant epistatic effects are found.

3. Re-evaluate significance of each QTL main effect in the model. If the test

statistic for a QTL falls below the significant threshold conditional on other

retained effects, this QTL is removed from the model. However, if a QTL is

involved in a significant epistatic effect with other QTL, it is not subject to

this backward elimination process. This process is performed stepwisely until

no effects can be dropped.

4. Optimize estimates of QTL positions based on the currently selected model.

Instead of performing a multi-dimensional search around the regions of current

estimates of QTL positions, estimates of QTL positions are updated in turn for

each region. For the r-th QTL in the model, the region between its two neighbor

QTLs is scanned to find the position that maximizes the likelihood (conditional

on the current estimates of positions of other QTLs and QTL epistasis). This

refinement process is repeated sequentially for each QTL position until there is

no change on estimates of QTL positions. However, this optimization procedure

is not used in my application because in this procedure, EM algorithm performs

not so well and convergence is very slow.
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An important issue in model selection is the significance level to include or elimi-

nate effects. In regression analysis, such threshold is usually decided based on infor-

mation criteria, which has the following general form

IC = −2(log Lk − kc(n)/2) (1.3)

where Lk is the likelihood of data (eg: formula 1.1) given a genetic model with k

parameters, c(n) can take following forms

• c(n) = log(n), (BIC)

• c(n) = 2, (AIC)

• c(n) = 2 log(log(n))

• c(n) = 2 log(n)

• c(n) = 3 log(n)

When the penalty for an additional parameter in the model is low, many main

effects will be includes, and much more epistatic effects will be tested, which result

in a very slow searching process. This is the case when c(n) = 2 log(n). On the other

hand, it is also a good idea to avoid high penalty like c(n) = 3 log(n), in order to

favor strong QTL interaction effects involving QTLs with less strong main effects.

In analyzing the yeast data, we would include a new QTL to the model if its

corresponding LRS is larger than the 90% quantile of the empirical null distribution

from permutation tests (section 1.6). That is equivalent to a penalty value between

2 log(n) and 3 log(n).
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1.5.5 Model selection in dense marker set

As there are more and more markers genotyped in the mapping population, it seems

less and less important to assume an unknown QTL locus between markers as in IM.

On the contrary, given current dense marker set from SNPs arrays and limited map-

ping resolution, QTL loci are expected to straddle over many markers. ‘Rudimental’

QTL scanning procedures, similar to those used by Sax (1923), begin to appear more

frequently in the literature. For example, non-parametric version of t-test, Wilcoxon-

Mann-Whitney test, on single markers was applied to backcross population in yeast

population (Brem et al., 2002).

When the number of markers greatly exceeds the number of observations, and

more than one markers are to be put into the model, QTL analysis turns out to be a

model selection process: selecting a subset of markers to find the best way to combine

them to explain the trait variation.

Using available methods, even two dimensional exhaustive search is a computa-

tional and statistical problem if we have thousands of markers across the genome

(Culverhouse et al., 2002; Hoh and Ott, 2003; Marchini et al., 2005), and have

thousands of traits, which is typical when doing expression QTL mapping (Brem

et al., 2002). Simulation studies, however, have shown that two dimensional search

is more powerful than single locus scanning even when the underlying genetic model

is additive one or with three way interaction (Marchini et al., 2005).

Rather than exhaustive search of all marker combinations, sequential search of

multiple loci for a trait, requires detectable main effect for the components of in-

teraction effect (Hoh and Ott, 2003), though it is more powerful (Storey et al.,

2005). Data mining technique like decision tree, and pattern recognition might give
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alternative research algorithms, though it is not as popular as linear models in asso-

ciation study community now (Cook et al., 2004; Shah and Kusiak, 2004; Storey

et al., 2005; Zhang and Bonney, 2000). Decision tree analysis, also known as an

automatic interaction detection method (Hartigan, 1975), handles all explanatory

variables as a component in certain interaction by default. High order interactions

are detected in the same way as two way interactions without significant increase in

computational complexity, though more samples are required.

1.5.6 Bayesian methods

Sen and Churchill (2001) proposed a Bayesian approach to sample QTL genotypes

from their posterior distribution conditional upon marker genotypes and phenotypes,

which offers an unified framework to handle various issues in QTL mapping: nonnor-

mal and multivariate phenotypes, covariates, and genotyping errors. Their multiple

imputation method differs from common Markov chain-Monte Carlo (MCMC) proce-

dures in that a two step approach is used to get the posterior distribution: first, QTL

genotypes are sampled only conditioning on marker genotypes; then, genotypes are

weighted by the likelihood of phenotypes given the sampled QTL genotype. Although

it is able to accommodate multiple QTLs and their interactions in the genetic model

for a trait, current computational power limits the model complexity that this type

of approach can handle in reasonable time.

1.5.7 LD mapping in natural populations

For natural populations, besides non-parametric methods based on contingency tables

for case-control studies, or transmission/disequilibrium test (TDT) for families, in
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the work of Luo et al. (2000), an analogous likelihood function as formula 1.1 for

linkage analysis was suggested. The difference between them is that, for natural

populations, the joint probability of flanking marker genotypes and a putative causal

gene genotype is a function of estimated marginal allele frequencies and LD coefficient

between the loci, instead of recombination rates. A table, which is similar to table

1.1, is parameterized by LD.

1.5.8 Estimation of recombination rates from natural popu-

lations

Li and Stephens (2003) showed that recombination rates could be estimated from

a random sample of a population while estimating haplotype frequencies based on

Ewens’ sampling theory (Ewens, 1972). Their algorithm was applied by Evans

and Cardon (2005) to samples from several human populations. They found that

estimate of recombination rates had a higher correlation coefficient across popula-

tions than that of LD measures. McVean et al. (2004) developed their bayesian

approach based on coalescent theory and found that recombination rates estimated

from random samples agreed well with those from pedigree data.

It has been known for a long time that LD coefficient, specially in a short range, is

highly affected by random factors other than by recombination (section 1.4). Larger

values of LD coefficient do not necessarily correspond to closer physical distance in

both empirical and theoretical studies (Abecasis et al., 2001; Pritchard and Prze-

worski, 2001). The irregular change of LD along chromosomes may pose a problem

to parametric LD mapping in natural populations. It will also cause problems to
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locate disease genes by searching the genome around markers showing significant cor-

relation with the phenotype according to non-parametric LD mapping results. On

the other hand, recombination rate is a better candidate as a measure of distance. It

is the unit of genetic maps. Although crossover interference will affect the additivity

of recombination rates estimated from two small neighboring chromosomal intervals,

it seems that it could only be a minor problem in pedigree data or experimental pop-

ulations with a small number of generations. In modelling the evolution of natural

populations, it is reasonable to view recombination events at each chromosomal sec-

tion as independent poisson events (Li and Stephens, 2003) taking place at different

generations of the population history.

It seems there is no theoretical difficulty in incorporating phenotypical data into

the likelihood function for haplotype reconstruction suggested by Li and Stephens

(2003) to extend their work into a QTL mapping algorithm:

• adding hypothetical QTL alleles to the haplotype to be reconstructed,

which corresponds to the multi-locus approach of defining correlation be-

tween markers and a QTL (Jorde, 2000);

• connecting QTL genotype to phenotypic observations using penetrance

functions (for binary traits) or assuming certain phenotypic value distri-

bution functions conditional on QTL genotypes (usually normal distribu-

tions for quantitative traits).

It is possible that using MCMC algorithm to get the posterior distributions of putative

QTL effects in each marker interval would bring huge computational burden.
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1.6 Threshold to claim QTL

When one of the QTL mapping methods discussed in section 1.5 is applied, one

important issue is how to choose a threshold to declare QTL. General asymptotic

results for regression and likelihood ratio tests are not applicable in genome scans,

given the large number of correlated tests and the limited sample size. Lander

and Botstein (1989) discussed this issue for interval mapping with some elegant

theoretical arguments.

1.6.1 Controlling type I error rates

When markers are dense and the sample size is lareg, Lander and Botstein (1989)

showed that an appropriate threshold for LOD score (1 LOD = 2 log 10 logarithm

of likelihood ratio statistic) is (2 log 10)tα, where tα solves the equation tα = (C +

2Gtα)χ2(tα). C is the number of chromosomes of the organism. G is the length of the

genetic map, measured in Morgans. χ2(tα) is the probability that a random variable

from a χ2
1 distribution is less than tα. Thus, it is not easy to get an analytic solution

of tα.

Although this threshold is derived under the assumption that the genome is com-

pletely covered by markers, their simulation studies showed that the threshold will

decrease quite slowly with the increase of the genetic distance between markers. Such

a conservative theoretical threshold will work in many applications.

Churchill and Doerge (1994) proposed a method based on permutation tests

to find an empirical threshold specifically for a QTL mapping study. Data were

shuffled by randomly pairing one individual’s genotype with another’s phenotype, in
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order to simulate the null hypothesis of no intrinsic relationship between genotypes

and phenotypes. Thus, this method taks into account the sample size, the genome size

of the organism under study, the genetic marker density, segregation ratio distortions,

and missing data.

According to Churchill and Doerge (1994), the genome-wise threshold to

control type I error rate for mapping a single trait can be found in the following

procedure.

1. shuffle the data N times by randomly pairing trait values with genotypes;

2. obtain the maximum test statistic in each of N shuffled data, which are assumed

to be sampled from a distribution FM ;

3. the 100(1− α) percentile of FM is the critical value.

Shuffle, or permute, is to break the original relationships in the data by randomly

pairing observed phenotypes and genotypes to form new samples.

This permutation procedure is equivalent to the Bonferroni correction for multiple

testing when test statistics are independent. Suppose there are n such statistics

ti, i = 1..n from a null distribution F . FM(T ), the distribution function of maximum

of n statistics, can be expressed as Pr(max(ti) < T ) = F (T )n. When we find a

threshold T , such that Pr(max(ti) > T ) = 1− Pr(max(ti) < T ) ≤ α, it is the same

as to require 1 − F (T )n = 1 − (1 − Pr(ti > T ))n ≤ α, or Pr(ti > T ) ≤ α/n, the

Bonferroni adjusted threshold. When test statistics are correlated, the permutation

method discussed above provides an empirical estimate of FM and imposes a stringent

genome-wise type I error control.
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A related permutation procedure was suggested by Doerge and Churchill

(1996) for mapping procedures like MIM where QTLs are declared sequentially using

a forward selection procedure. Two methods were suggested to find a genome-wise

threshold for the second QTL while controlling effects of the first QTL.

• Conditional empirical threshold (CET). Mapping subjects are put into

blocks according to the genotype of the marker identified as (or closest

to) the first QTL. Permutation is applied within each block. Following the

procedure described above by Churchill and Doerge (1994), maximal

null statistics of each genome scan are collected and CET is obtained.

One problem of CET is that markers linked to the first QTL will continue

to show association with the trait variation as in the original data. To

avoid CET being elevated by such markers, it is suggested to exclude the

complete chromosome where the first QTL is located when collecting null

statistics.

• Residual empirical threshold (RET). The residues from the genetic model

with the first QTL are used as new phenotypic values to be permuted.

Maximal null statistics from genome-wide scans are then collected to find

RET.

It can be noticed from table 1 and 2 of Doerge and Churchill (1996)’s paper,

the values of both CET and RET decrease in later cycles of the sequential genome

scan. Thus, such thresholds provide more power to declare multiple QTL than the

unconditional threshold.
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1.6.2 False discovery rate (FDR)

In QTL mapping, as the number of markers grows, it is less likely that a casual

variant is missed because it is not in LD with any marker. On the other hand, the

number of markers showing significant correlation with the phenotype by chance is

also expected to grow, when the type I error rate for each test is controlled at the

same level. To handle this multiple testing issue, stringent family-wise control of type

I error is usually applied, which is designed to control the probability of making at

least one false discovery in a genome-wise test. However, a more powerful approach

is to control false discovery rate (FDR) (Benjamini and Hochberg, 1995), or to

control the expected proportion of false discoveries among all the markers passing

a threshold, which is essentially to allow multiple false positive declarations when

many ‘significant’ test statistics are found. Such a relaxation is driven by the nature

of the problem under study: ”It is now often up to the statistician to find as many

interesting features in a data set as possible rather than test a very specific hypothesis

on one item” (Storey, 2003).

Table 1.2: Possible outcomes from m hypothesis tests
Accepted Null Rejected Null Total

Null true U V m0

Alternative true T S m1

W R m

According to the notation from Storey (2003), table 1.2 shows the possible

outcomes when m hypotheses H1, H2, ..., Hm are tested. For independent tests, Ben-

jamini and Hochberg (1995) provided a procedure (known as linear step-up pro-

cedure or BH procedure) to control expected FDR, i.e., E[V
R
|R > 0]× Pr(R > 0) at
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the desired level αm0

m
or α (since m0 is generally unknown, a conservative up-bound

estimate m0 = m is used) as following:

• sort P values from smallest to largest such that P(1) ≤ P(2)...P(m);

• starting from P(m), compare P(i) with α i
m

• let k be the first time P(i) ≤ α i
m

, reject all P(1) through P(k).

Benjamini and Yekutieli (2001) showed that ”if test statistics are positively

regression dependent on each hypothesis from the subset corresponding to true null

hypotheses (PRDS), the BH procedure controls FDR at level αm0

m
”. For QTL map-

ping, PRDS can be interpreted as following (Sabatti et al., 2003): if two markers

have correlated allele frequencies and neither is related biologically to the trait, test

statistics associated with the two markers should be positively correlated. Such pos-

itive correlation is intuitively correct and supported by simulation results (Sabatti

et al., 2003).

To check the performance of BH procedure on FDR control in genome-wise QTL

scan for a single trait, Sabatti et al. (2003) considered a simulated case-control study

in human. Three susceptibility genes are simulated to affect the disease status. They

do not interact with each other and are located on different chromosomes. The results

confirm that BH procedure does control the expected value of the FDR for single-trait

genome-wise scan, although the actual FDR in a certain simulation replicate might

exceed the rate that BH procedure tries to control. For multiple-trait QTL analysis,

Benjamini and Yekutieli (2005) considered 8 positively or negatively correlated

traits. Using simulation study, they showed BH approach works for multiple trait

analysis too.

According to Benjamini and Yekutieli (2005), to control FDR for QTL analysis
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in each trait at level α does not always mean the overall FDR for these multiple traits

is also α: if there are k independent and nonheritable traits, the overall FDR should

be 1− (1− α)k ≈ kα. It is safer to control FDR for all the tests simultaneously.

Yekutieli and Benjamini (1999) suggested to make use of dependency struc-

ture in data, rather than treat them as annoying cases. They expected an increase

of testing power when using an empirical true null statistic distribution instead of

assuming some theoretical ones. Empirical null distributions are used extensively in

pFDR and local FDR as discussed in later sections of this chapter.

Though BH approach is a handy and intuitive tool supported by strict statistical

theories, it should be used with caution.

• BH approach controls the expected value of FDR. Simulation studies

showed that the actual FDR for a particular data set can be higher

(Sabatti et al., 2003).

• E(FDR) = E[V
R
|R > 0]Pr(R > 0) can be controlled at a designed level α

by reducing Pr(R > 0) instead of E[V
R
|R > 0] (Storey, 2002). Weller

et al. (1998) are the first ones to apply FDR criteria in QTL mapping area.

They claimed that 75% of the 10 QTLs declared in their study were true by

controlling FDR at 25% using BH approach, Zaykin et al. (2000) pointed

out that the interpretation was wrong because E[V
R
|R > 0] could be much

higher than E(FDR) = 25% when Pr(R > 0) is small. It is E[V
R
|R > 0],

also known as pFDR discussed in the next section, that corresponds to

the proportion of false discovery. Thus, when Pr(R = 0) = 1−Pr(R > 0)

is high, or the number of positive findings from a test is low, FDR control

is not appropriate because FDR is misleading in this situation.
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• Fortunately, Weller (2000) could argue back by the fact that Pr(R > 0)

in their case should be close to 1: given R = 10 and assuming R follows

a Poisson distribution, Pr(R = 0) is very small. In later FDR literature,

the assumption that Pr(R > 0) ≈ 1 is widely adopted (Benjamini and

Yekutieli, 2005; Storey and Tibshirani, 2003).

1.6.3 positive discovery rate (pFDR)

pFDR, or E[V
R
|R > 0] was initially advocated by Storey (2002, 2003). Benjamini

and Hochberg (1995) considered pFDR in their 1995 paper, but preferred FDR

mainly because of its property brought about by the flexibility of Pr(R > 0). One

can not determine an arbitrary threshold α, α < 1 and guarantee that pFDR ≤ α

regardless of the actual proportion of true null hypothesis in all tests. When m0

m
= 1,

pFDR should be fixed at 1 and cannot be controlled at α. In this case, however,

FDR=pFDR×Pr(R > 0). Its value can be lowered to α by reducing the rejection

region and pushing Pr(R > 0) towards α.

Given a traditional type I error control procedure and conditional on R > 0, pFDR

works naturally for estimation (instead of control) of the proportion of true/false

discovery in R positive findings. Storey (2002) presented a bayesian interpretation

of pFDR, and an estimation procedure for tests based on P values. Assuming there

are m tests H1, H2, ..., Hm with associated P values P1, P2, ..., P3, and

• Hi = 0 denoting the i-th null hypothesis is true, and Hi = 1 otherwise;

• to model the uncertainty in each hypothesis test, each Hi is viewed as an

identical and independent random variable from a Bernoulli distribution

with Pr(Hi = 0) = π0 and Pr(Hi = 1) = π1 = 1− π0;
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• Pi follows a distribution f0 if Hi = 0, and f1 if Hi = 1; follows a mixed

distribution unconditionally: fm = π0f0 + π1f1;

• Γ = [0, γ] is the common rejection region for all Hi;

then

pFDR(γ) = Pr(Hi = 0|Pi ∈ Γ) (1.4)

=
Pr(Hi = 0) Pr(P ≤ γ|Hi = 0)

Pr(P ≤ γ) Pr(R > 0)
(1.5)

where Pr(Hi = 0) = π0; Pr(P ≤ γ|Hi = 0) = γ, which is the pre-defined type I error

rate; Pr(P ≤ γ) can be estimated by R
m

; Pr(R > 0) can be estimated by its lower

bound 1− (1− γ)m. Pr(R > 0) equals to its lower bound when the power of the test

Pr(P ∈ Γ|H = 1) = γ.

Define A = [λ, 1] as an ‘accept region’, i.e., assume Pr(H = 0|P ∈ A) ≈ 1, Efron

et al. (2001) gave an upper bound of π0:

∫
A

fm(z)dz∫
A

f0(z)dz
=

∫
A

[π0f0(z) + (1− π0)f1(z)]dz∫
A

f0(z)dz
≥

∫
A

π0f0(z)dz∫
A

f0(z)dz
= π0 (1.6)

Applying formula 1.6 to this case, Storey and Tibshirani (2003) suggested that

π0 =
#{P > λ}/m

(1− λ)
(1.7)

Thus a conservative estimator of pFDR is

pF̂DR(γ) =
#{P > λ}γ

R(1− λ)[1− (1− γ)]m
(1.8)
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To remove arbitrariness in choosing λ, two methods have been proposed.

• Bootstrap method (Storey, 2002): form bootstrap samples of P1, P2, ...Pm,

find a λ through grid search in the interval (0, 1) that minimizes the vari-

ability of pFDR estimation.

• Extrapolation method (Storey and Tibshirani, 2003): use a natural

cubic spline smoothing method to find the upper bound of π0 when λ → 1,

or the accept region A approaches an empty set.

Benjamini and Yekutieli (2005) stated explicitly the following: ”pFDR is not

a pFDR-controlling testing procedure. It is capable only of estimating the pFDR

once a fixed rejection threshold is being used...”. Storey (2002), however, proposed

q value, a pFDR analogue of P value, to find a rejection region Γ given a specific

pFDR rate. q value is the minimal pFDR when rejecting a hypothesis with P value

Pi, or mint≥Pi
pFDR(t).

Storey and Tibshirani (2003) hypothesized that the above procedures would

result in conservative estimates of pFDR and q values when there is weak dependence

among test statistics. For gene expression traits, ”because genes behave dependently

in small groups (i.e., pathways), with each group essentially being independent of the

others”, the weak dependence condition will hold.
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1.6.4 local FDR

The Bayesian interpretation of pFDR extends naturally to local FDR (Efron et al.,

2001), denoted as fdr in this paper:

fdr(Ti) = Pr(Hi = 0|Ti) (1.9)

=
π0f0

π0f0 + π1f1

=
π0f0

fm

(1.10)

where Ti is the test statistic associated with Hi; Hi = 0 denoting the i-th null hy-

pothesis is true, and Hi = 1 otherwise; Ti follows a distribution f0 if Hi = 0, and f1

if Hi = 1; follows a mixed distribution unconditionally: fm = π0f0 + π1f1.

There is great similarity between formula 1.4 and formula 1.9, Efron (2005)

showed that q value associated with Ti is equivalent with Et≥Ti
fdr(t). Such a con-

nection is used by Storey et al. (2005) to control FDR in expression QTL mapping

(his formula 9, 10 and 11).

The key part in estimating fdr is to estimate f0

fm
. It is possible to assume certain

standard distribution as f0 and estimate fm directly with non-parametric regression

(Efron, 2005). The following is an alternative method (Efron et al., 2001; Storey

et al., 2005) that is used extensively in my thesis work:

1. permute data under null hypothesis B times, and obtain test statistics zij, i =

1..m, j = 1..B;

2. estimate f0

fm
from Ti and zij (see below);

3. estimate π0 using formula 1.7.
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f0

fm
is estimated in the following way:

1. pool all Ti and zij into bins;

2. create an indicate variable y, let y = 1 for each Ti and y = 0 for each zij. Thus,

Pr(y = 1) = fm

fm+Bf0
in each bin;

3. obtain a smooth estimate of P̂r(y = 1) in each bin from an overall regression

curve across bins, by combining natural cubic spline with generalized linear

models for binomially distributed response variables;

4. equate P̂r(y = 1) with fm

fm+Bf0
, and get a moment estimate of f0

fm
.

It can be noticed that Hi and its associated Ti or Pi are assumed to be from

a mixture distribution in both pFDR and fdr estimation. Thus, as pointed out by

Storey (2003), there is a connection between multiple hypothesis testing and clas-

sification. For each test, the test procedure is to classify Hi as 0 or 1, or accepted or

rejected. Classification decisions can be made based upon Ti, with a rejection region

Γ: if Ti ∈ Γ, we classify Hi as 1. In chapter 4, we use such connection to classify a

gene in an eQTL as ’affecting the trait’ or not.

1.7 From QTL to gene

Most of QTLs identified through a linkage study will be 3-10 cM wide (Mackay,

2001b). LD study was originally proposed as a fine mapping procedure following a

linkage study to further reduce the possible regions where candidate genes might be

located (Snell et al., 1989). With the recombination events accumulated in gener-

ations, LD study was considered to be able to locate causal genes with a resolution
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≤ 1 cM in the best cases (de la Chapelle and Wright, 1998). It is possible

to confirm or eliminate candidate genes one by one experimentally using deficiency

and complementation mapping (Mackay, 2001b), though it is an expensive and slow

process.

In recent expression QTL (eQTL) analysis, where the traits of interest are the

complete transcriptome, Hubner et al. (2005) noticed the overlapping of physical

locations between

• pQTLs (p for physiological traits) for spontaneously hypertension in SHR

rat, and

• eQTLs detected in a recombinant inbreed strain obtained by crossing SHR

and BN strain.

For example Cd36 is believed to contribute to hypertension with its null mutation

(Aitman et al., 1999) in SHR. A strong cis-acting eQTL for Cd36 transcript abun-

dance, detected in both fat and kidney tissues of the mapping population, was found

within previously detected hypertension pQTL. Similarly, Bystrykh et al. (2005)

presented 8 genes as candidate genes for hematopoietic stem cell (HSC) turnover. All

8 genes had a cis-acting eQTL in known pQTLs for HSC turnover. And 3 of them

had already been implicated with the phenotype.

It seems that a major reason for the enthusiasm on relating pQTL with cis-acting

eQTL comes from the stable statistical properties of cis-acting eQTLs and clear bio-

logical interpretation for pQTL (Bystrykh et al., 2005; Hubner et al., 2005):

• when raising the significant level of claiming an eQTL, the percentage of

cis-acting eQTL increases gradually to 100%;

• cis-acting eQTLs were shared between different tissues and organisms;
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• cis-acting eQTL can demonstrate a large effect so that the inherence mode

of an expression trait behaves like a Mendelian one;

It should be noticed that when declaring an eQTL as cis-acting, it is the same as

to reduce the possible location of genetic determinants for an expression trait from

a cis-acting eQTL to an even smaller genomic region containing only the gene itself,

since it is very unlikely that a cis element for a gene is located in another gene.

It should also be noticed that when declaring a cis-acting eQTL, genomic location

information of the transcript is used. This would remind us to use the comprehensive

gene annotation information organized in Gene Ontology (Ashburner et al., 2000),

or other biological knowledge to prioritize genes in an eQTL.

1.8 Outline of research for expression QTL map-

ping

The classical traits in quantitative genetics are morphological ones. QTL mapping

is to search genetic factors for them, with the knowledge that these traits are the

results of gene expression and protein interaction controlled by these genetic factors.

Systemical study of gene expression has become possible with the microarray-based

gene expression assay. Better understanding of the genetic architecture for the tran-

scriptome, an intermediate layer in Central Dogma, will not only tell us the overall

picture of transcriptional control, but can also associate morphological variations with

certain genes’ transcription profiles (Schadt et al., 2003) and the biochemical path-

ways that these genes participate in. See table 1 by Gibson and Weir (2005) for

summary of eQTL studies performed as far.
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In Chapter 2, eQTL data in yeast published by Brem and Kruglyak (2005)

were reanalyzed using MIM. Permutation tests were performed to find genome-wise

thresholds for individual QTL. pFDR was further estimated to assess false discoveries

in the rejection regions. Consistency and inconsistency with previous analysis were

investigated. In order to find biological explanations for declared eQTLs, available

genome annotation for yeast was superimposed onto statistical patterns, based upon

gene name comparison. Chapter 3 describes a web-based software to visualize eQTL

distribution patterns with known gene networks overlayed. Chapter 4 presents a

Bayesian approach to prioritize genes in an eQTL according to their posterior prob-

abilities of affecting the trait. Chapter 5 suggests future works on eQTL mapping.
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2.1 INTRODUCTION

Transcriptional control is one of the most important steps for an organism to express

the genetic information stored in its sequence as well as to respond to environmental

changes (Ihmels et al., 2004). Recent advance of genomic technology has made it

possible to quantify transcript abundance systematically, as well as to genotype ge-

netic markers covering the whole genome in a segregating population. Provided with

these tools, expression QTL (eQTL) analysis has been applied to study inheritance

of thousands of similar traits in hope to find general rules of genetic control of tran-

scriptional regulation (Brem et al., 2002; Bystrykh et al., 2005; Chesler et al.,

2005; Schadt et al., 2003).

On the other hand, the basic idea of comparing trait means among groups in the

mapping population with different allelic types at a genetic locus, could be traced back

to Sax (1923). This idea of directly analyzing markers one by one was implemented

as Wilcoxon-Mann-Whitney Test by Brem et al. (2002); Yvert et al. (2003) and

as single marker analysis by Bing and Hoeschele (2005), and applied to the yeast

data published by Brem et al. (2002); Yvert et al. (2003).

Brem and Kruglyak (2005) re-analyzed the data, focusing on genetic archi-

tecture of expression traits and suggesting that the majority of heritable traits are

controlled by multiple eQTLs. Storey et al. (2005) presented a sequential search

algorithm and declared 170 2-QTL models for the expression traits in the same data

while controlling false discovery rate (FDR) at 10%. In this paper, we applied multi-

ple interval mapping (MIM) analysis (Kao et al., 1999) to the data once again. The

idea of MIM is to simultaneously fit multiple main and epistatic genetic effects in a

model to integrate searching QTLs with inferring genetic architecture of quantitative
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traits (Zeng et al., 1999). With MIM, 1242 traits were found with at least 2 eQTLs

while overall FDR is estimated as 8%.

QTL mapping result is a summary of correlation patterns between expression

phenotypes and genotypes, while biological annotation of yeast genome is a sum-

mary of biological investigation of yeast for years. Our bioinformatics analysis of

the mapping result reveals that the correspondence between the two kinds of sum-

maries not only provides probable biological explanations for the detected statistical

correlation; but also suggests transcription control as the result of mixing two kinds

of genetical information in this mapping population. As a key step of biological ac-

tivity, transcriptional control affects the whole genome’s mRNA expression through

genetically coded transcriptional regulatory networks, or the direct trans-acting ef-

fect. On the other hand, the network activity is modulated by genetic variations

across the genome through the indirect trans-acting mechanism, where the effect is

passed along biochemical pathways and affects genes with shared biological functions.

Based on our mapping result and with careful interpretation, a much stronger signal

of direct trans-acting regulation by transcriptional factors was detected, as compared

with Yvert et al. (2003). However, indirect transcription control was still impor-

tant to account for most of trans-acting eQTLs observed. On one hand, for about

28% eQTLs, we could find that at least one gene within an eQTL interacts with the

trait gene according to current knowledge about yeast biology. On the other hand,

50 groups of trait genes were found to share both eQTL and Gene Ontology (GO)

(Ashburner et al., 2000) annotations, while the annotation was further shared by

a gene in the shared eQTL region. We developed scalable vector graphics (SVG) to

dynamically display all types of superimposed annotation on the background of eQTL
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mapping result (http://statgen.ncsu.edu/~wzou/svg/svg2.htm).

2.2 METHODS

The data contains 6195 unique expression traits of 112 haploid segregants obtained

by crossing laboratory (BY) and wild (RM) strains of budding yeast (Brem et al.,

2002; Brem and Kruglyak, 2005; Yvert et al., 2003). 2956 genetic markers were

genotyped with about 1000 markers showing at least one recombinant .

2.2.1 QTL Mapping

Log ratio of expression signals were normalized according to the two step procedure

by Wolfinger et al. (2001) and standardized before supplied to MIM procedure in

QTL Cartographer (Basten et al., 2002).

Likelihood ratio tests (LRT) have been playing a key role in QTL mapping since

the introduction of interval mapping (Lander and Botstein, 1989). A QTL would

be declared if a locus is significantly more likely to carry the causal genetic variation

than otherwise. In MIM, multiple QTLs could be included into a genetic model in a

series of genome scans. In each cycle of genome scan, LRT were performed on and

between genetic markers conditional upon QTLs found in previous cycles. Maximal

likelihood ratio statistics (LRS) in one pass of genome scan for a trait will give rise to

a QTL if it is above certain threshold. For each trait, we permuted the data 20 times

and applied one pass of genome scan for each permuted data. Maximal LRS from

each permutation was pooled to form the null distribution of unconditioned LRS.

The 90% quantile of the distribution was used as the threshold. The choice of 90%
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quantile was to favor possible interaction effects with minor main effects (Marchini

et al., 2005).

Because of the limitation of computational power, we could not get conditional null

distributions for maximal LRS in the 2-nd cycle or later genome scans. We assumed

these distributions should be similar as the unconditional one. Furthermore, accord-

ing to the conditional empirical threshold estimation (CET) procedure (Doerge and

Churchill, 1996), markers around previously declared QTLs should be excluded in

the conditional genome scan, which would reduce the number of genome-wise tests

and lower the maximal null LRS as well as the threshold. To test the idea, we ran re-

gression analysis between trait values and marker genotypes on permuted data, where

F statistics associated with markers are asymptotically equivalent with LRS. The null

distribution of genome-wise maximal F statistics for unconditional scans is with mean

11.16 and standard deviation 2.86. We followed the CET procedure (Doerge and

Churchill, 1996) to obtain the null distribution of maximal F statistics conditional

upon the marker showing strongest association with the trait. The distribution looks

very similar to the unconditional one (Figure 2.1), with mean 11.14 and standard

deviation 2.86. Thus, compared with the unconditional null distribution, conditional

null distributions would skew a little bit towards small values of statistics. As the re-

sult, using the unconditional threshold for conditional scans will lead to a conservative

inference.

Only main effects were considered above. We used the same threshold to add

interaction effects into genetic models of traits with at least two QTLs. After that,

backward elimination processes were applied to insure all declared genetic factors

were statistically significant.
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Figure 2.1: Null distributions of F statistics. A: The null distribution of genome-wise
maximal F statistics for the first eQTLs. B: The conditional null distribution of
genome-wise maximal F statistics for the second eQTLs, given the existence of the
first eQTLs, obtained using CET.

After the model selection process, a LRS profile surrounding each QTL, condi-

tional upon all the other significant genetic effects in the model, was obtained to get

interval estimation of QTLs. For those QTLs with LRS peak above 15.4 (95% quan-

tile of the null distribution ), a 1.5 LOD support interval around a peak was declared

as the QTL region.

2.2.2 FDR in Sequential Genome Scan

Empirical threshold discussed above is supposed to control genome-wise type I error

for each eQTL. To find the overall errors for all the traits, we obtained empirical

Bayesian estimate of the probability being a true eQTL for each eQTL according its

LRS (Efron and Tibshirani, 2002; Efron et al., 2001). For a list of maximal LRS

obtained in one cycle of genome scan, the prior probability that a LRS in the list is

associated with a false eQTL was calculated according to Efron et al. (2001). More
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specifically, all LRS that are smaller than the lower quartile of the list were considered

to be purely generated by false eQTLs, resulting in a conservative estimation of the

prior probability and hence FDR (Storey and Tibshirani, 2003). Let Qij the j-

th eQTL of trait i; Qij = 1 denote the eQTL is true. Then, Pr(Qij = 1|LRS),

the posterior probability that Qij is true given its LRS was obtained using a non-

parametric logistic regression described by Efron et al. (2001); Storey et al. (2005).

Thus, the probability that the multiple eQTL model for trait i is correct can be

expressed as
∏

j Pr(Qij = 1|LRS). FDR for sequential genome scan is the average

rate of declaring a false genetic model (Storey et al., 2005):

FDR =
1−∑

i

∏
j Pr(Qij = 1|LRS)

number of traits
(2.1)

2.2.3 From eQTLs to Gene Lists

Biological interpretation of eQTL mapping result using bioinformatics approach is

expected to be fruitful for Saccharomyces cerevisiae, one of the most studied organ-

isms. For this purpose, we obtained the gene lists for all detected eQTLs. SNPs with

known position in both the genetic and physical maps serve as anchors to translate

eQTL genetic map intervals into sections of chromosome with physical boundaries.

Lists of genes located in the intervals were then produced. Open Reading Frames

(ORF) in these eQTL intervals are called ’pORF’ in this paper since they are close

to DNA polymorphism co-segregating with traits. Those ORFs, whose expression

levels were used as traits, are called ’eORF’ hereafter. We focused on ORFs since all

trait genes are ORFs and most of non-ORF genes are not well annotated in the GO

system which makes further analysis difficult. Mapping results are visualized in a two
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dimensional plot (Fig 2.2), where the 16 chromosomes of yeast are concatenated to

form the horizontal and vertical axis; each eQTL is plotted as a small horizontal bar,

whose vertical coordinate corresponds to the eORF and two horizontal coordinates

are determined by the physical positions of the first and last pORFs of the eQTL.

Thus, cis-acting eQTLs would be along the diagonal, while trans-acting eQTLs are

not.

2.2.4 Generation of Random Mapping Results

Random mapping results were simulated to assess the probabilities that the observed

eQTL distribution patterns could appear out of random if the same number eQTLs

are declared. In the simulation,

• number of eQTLs for each eORF was generated according to the empirical

distribution of number of eQTLs per trait in the real mapping result;

• the chromosome where an eQTL would be located was picked with the

probability proportional to the chromosomal length;

• eQTL position was then picked from the chromosome randomly;

• length of the eQTL was generated according to a gamma distribution with

shape parameter 1.96 and scale parameter 25659.8. These two values were

obtained by fitting the versatile gamma density function to the histogram

of eQTL physical length from the real mapping result.

100000 hypothetical mapping results were simulated in this way.
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2.2.5 Indirect trans-acting effects between functionally re-

lated genes

When a pORF, as a transcriptional factor, was found within an eQTL of an eORF,

as a corresponding target of the transcriptional factor, the eQTL was considered as

supportive for the direct trans-acting mechanism and the effect of the transcriptional

factor would be a probable biological explanation for the eQTL. However, such a

mechanism is quite rare in this mapping population according to Yvert et al. (2003)

and the results reported below. Thus, indirect trans-acting effects among genes par-

ticipating similar biological processes may be needed as an explanatory biological

mechanism for the off-diagonal eQTLs in Figure 2.2. To systemically detect eQTL

distribution patterns which were compatible with current knowledge of gene func-

tion in yeast, off-diagonal bars were interpreted as two different types of lists: one

was a horizontal list of pORFs in an eQTL; the other was a vertical list of eORFs

whose eQTLs contain a common pORF. In a horizontal list (or an eQTL), we tried

to identify a pORF that was related with the corresponding eORF using binary gene

relationship stored in various yeast gene interaction datasets. For a vertical list of

eORFs, we tested whether a similar annotation was shared by both the underlying

pORF and multiple eORFs in the list, and tested whether such multiplicity could

happen in a random collection of eORFs. In this step, unitary gene annotation for

each gene was used. This approach was similar to finding a shared function for a

subset of eORFs in a group of eORFs mapped to the same genomic bin by Brem

et al. (2002), but without subjectively dividing the genome into bins and with an at-

tempt to find an underlying pORF to explain the functional clustering. We consider

this orthogonal dissection of mapping results very helpful in applying bioinformatics
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analysis following eQTL analysis.

It is straightforward to apply binary information between gene pairs onto those

horizontal lists. To utilize unitary annotation for vertical lists, GO annotation for each

eORF in a list was supplied to GO:TermFinder package (http://search.cpan.org/

~sherlock/GO-TermFinder-0.7/) to detect over-represented GO terms in it. The

package detects a subgroup of eORFs sharing the same GO term and tests whether

the size of the subgroup could be expected by chance. GO terms for an eORF

subgroup passing the significant test are called over-represented terms. We applied

an additional requirement that those over-represented GO terms should match GO

terms of the pORF in the shared eQTL region in ’cellular component’(’C’), ’molec-

ular function’ (’F’) and ’biological process’(’P’) ontology simultaneously. Statistical

significance associated with matching in three ontologies guarded against random

coincidence and allowed more confidence in further biological interpretation.

2.3 RESULTS

2.3.1 Mapping Result

5182 eQTLs for 3367 eORFs were detected by MIM. Table 2.1 shows the detailed

process of sequential search. Very few interaction cases were retained: 49 interacting

pairs for 38 expression traits. Overall FDR was estimated at less than 0.08. Average

1.5 LOD support interval of eQTLs is 50kb, containing about 27.7 ORFs in each inter-

val. Their distribution across the genome is shown in Figure 2.2. Among the detected

eQTLs, excluding those associated with 2 trait genes without location information,

737 eQTLs cover the physical locations of the corresponding eORFs, indicating the
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possibility of cis-regulation. These eQTLs are referred to as ’cis-acting eQTLs’ in

the following text. 409 eQTLs are on the same chromosomes of the corresponding

eORFs, but do not overlap with the eORFs. The rest 4033 eQTLs are on different

chromosomes from their eORFs.

Table 2.1: Sequential Genome Scan Results

cycle #scanned1 #found2 #retained3

1 6195 3367 3354
2 3367 1617 1242
3 1617 578 422
4 578 197 122
5 197 66 37
6 66 10 5

1 Number of traits for which a genome scanning was performed in the cycle
2 Number of traits with one eQTL found in the cycle, controlling type I error rate at
10%. This threshold was liberal, in order to favor eQTLs involved in strong
interaction effects but with main effects below a stricter threshold.
3 Number of traits with one eQTL finally retained in the cycle, controlling type I
error rate at 5% to declare each eQTL

The number of cis-acting eQTLs is much larger than that obtained under the ran-

dom mapping scheme: where the number is normally distributed (verified through

normal Q-Q plot) with mean 196 and standard deviation 14. Thus, just as discov-

ered previously (Bing and Hoeschele, 2005; Chesler et al., 2005) and shown in

Figure 2.2 , ‘cis-acting’ is a major non-random pattern of expression regulation. In

transcriptional regulation, cis-acting mechanism relies on cis-acting elements: DNA

segments within or around the structural portions of a gene that interact with trans-

acting factors in controlling its expression. The large number of cis-acting eQTLs in
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the mapping population suggests that the cis-acting mechanism could be a simple,

unified piece of explanation for all such eQTLs. We will have more discussion about

this pattern later.

2.3.2 Trans-regulation through Transcriptional Factor

The biological effect of a transcriptional factor (TF) on its regulatory target (TG) can

cause the statistical correlation between expression variation of the TG and sequence

variation around the TF. In yeast, 3417 genes are such TGs at certain physiological

conditions (Luscombe et al., 2004). In this mapping population, expression profiles

of 1886 TGs are mapped to at least one eQTL. However, there are only 49 cases, where

a TG’s eQTL overlaps with the DNA sequence of its corresponding TF (Figure 2.2).

These 49 TF-TG pair-wise relationship include the 3 TGs mapped to their common

TF YJL206C, which is the only TF regulation case reported by Yvert et al. (2003).

Under the null hypothesis that eQTLs are generated randomly, the probability of

observing 49 or less TGs mapped onto their TFs is close to zero. The null distribution

is normal (verified through normal Q-Q plot) with mean 225 and standard deviation

16. Thus, contrary to cis-acting eQTLs, there is a clear statistical tendency for TGs

to avoid being mapped onto their TFs.
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Table 2.2: Transcriptional factor-target pairs supported by

eQTL mapping

Target (eORF) Transcriptional

Factor (pORF)

Distance (bp)1 Correlation2

YDR214W YGL073W NA 0.01736359

YGR289C YGR288W NA 0.34216383

YPL032C YIL131C NA 0.10612629

YIR031C YIR023W NA 0.16205202

YPL275W YJL206C NA 0.07768735

YBL038W YKL112W NA 0.07175296

YJL026W YLR176C NA -0.1139548

YPR141C YMR070W NA 0.05703913

YDL210W YML027W 182727 -0.00229373

YGL089C YCR040W 0 0.81213402 ?

YKL178C YCR040W 0 0.91238004 ?

YPL187W YCR040W 0 0.89949137 ?

YGL035C YGL035C 0 1

YKL007W YJR060W 0 0.42612154

YHR008C YLR256W 0 -0.38249603

YML054C YLR256W 0 -0.21111789

YOR065W YLR256W 0 -0.48566585

YNL216W YNL216W 0 1

YER001W YOL089C 0 -0.29943447

YNL113W YBR182C -1 -0.22808445

YDR132C YCR065W -1 -0.32850968
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Table 2.2 (continued)

Target (eORF) Transcriptional

Factor (pORF)

Distance (bp) Correlation

YNL087W YDR259C -1 -0.3886451

YDR224C YER111C -1 0.12128574

YDR500C YER111C -1 0.11894158

YIR020W-A YER111C -1 -0.16581042

YKR042W YER111C -1 -0.13435156

YMR136W YER111C -1 0.21488443

YOL012C YER111C -1 0.10482232

YOR153W YGL013C -1 0.12909517

YNL007C YGL073W -1 0.02660671

YOR298C-A YGL073W -1 0.0200029

YBR040W YHR006W -1 0.03004001

YKL175W YJL056C -1 0.80896981 ?

YLR130C YJL056C -1 -0.28244773

YNL254C YJL056C -1 0.69537845 ?

YOR388C YJL206C -1 -0.00526971

YPL276W YJL206C -1 0.02872369

YPR191W YKL109W -1 0.59426705

YGR180C YLR176C -1 -0.17621602

YIL066C YLR176C -1 -0.00360481

YGR250C YLR403W -1 0.31036973

YLR109W YML007W -1 -0.1577697

YPL265W YML099C -1 0.20270183
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Table 2.2 (continued)

Target (eORF) Transcriptional

Factor (pORF)

Distance (bp) Correlation

YBL033C YNL068C -1 -0.24002106

YBR037C YNL068C -1 -0.30796576

YDR452W YNL068C -1 -0.28456703

YER078C YNL068C -1 -0.09968361

YLR439W YNL068C -1 -0.07303374

YPR035W YNL068C -1 0.23687292

1The closest distance between an eQTL of a pORF (also a target of a tran-

scriptional factor in this table) and the pORF sequence itself. ‘NA’ means

no eQTL was found for the pORF. 0 means there is overlapping between

the trans-acting eQTL of the target (the eQTL contains the corresponding

transcriptional factor) and cis-acting eQTL of the transcriptional factor, i.e.

suggesting the secondary TG eQTL scenario. ‘-1’ means no eQTL of the pORF

was on the same chromosome as the pORF sequence.

? These TF-TG pairs are among the 143296 ORF pairs with most correlation

in expression, i.e, the absolute value of correlation coefficient is larger than

0.65.

2Pearson correlation of expression abundance between the target and the tran-

scriptional factor.
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The direct trans-acting mechanism is also difficult to detect by expression profile

analysis. 47 known TF-TG pairs could be found in the 143296 most correlated gene

pairs in terms of their expression levels (143296 is the total number of pORFs in all

the eQTLs). This comparison shows that by implicating a certain number (143296

here) of gene pairs, eQTL mapping has the similar efficiency in including true TF-TG

pairs as expression profile analysis. However, only 5 TF-TG pairwise relationships

are shared by the two sets. Thus, relying on a different type of information than

co-expression studies, eQTL mapping is able to capture some unique signal in tran-

scriptional variation.

TGs are mapped to their TFs for different reasons. In these 49 pairs, the trans-

acting eQTLs of 2 TGs (YGL035C and YNL216W) could be regarded as cis-acting

eQTLs as well since these two TGs are TFs of themselves. In another 8 cases, the

trans-acting eQTLs for the TGs overlap with the cis-acting eQTLs for the TFs. This

coincidence brings some ambiguity for biological interpretation. One possible ex-

planation is that there are two underlying genetic factors, one affecting expression

variation of the TG, and another for the TF. An alternative explanation is that there

is a single genetic factor affecting the expression of the TF only. The TF’s abun-

dance change could then possibly cause the TG’s expression variation. In this case,

there could still be correlation between the TG’s expression and the genetic factor’s

sequence variation, which directly affects the TF’s expression, and hence the TG will

have an eQTL around the genetic factor. This is referred to as the ’secondary TG

eQTL scenario’ later on. Under this scenario, high correlation of transcript abun-

dance between the TF-TG pair is expected. In the 8 pairs, it is found that the 3 TGs

that are mapped onto transcriptional factor YCR040W are highly correlated at the
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expression level with their common TF (with Pearson correlation coefficient larger

than 0.8). However, the correlations for the rest of 5 pairs are not always positive

and high, suggesting heterogeneity of transcriptional regulation (Table 2.2).

More candidates for the ’secondary TG eQTL scenario’ could be found if we look

into the overlapping eQTLs for all the known TF-TG pairs. That is, we do not require

the genomic regions to contain corresponding TFs but collect all eQTL distribution

patterns that are compatible with the scenario.

318 TF-TG pairs (excluding possible self-regulation ones) were found with at least

one overlapping eQTLs. Correlation coefficients of their transcript abundance had a

mean of 0.13 (corresponding roughly to the 75% quantile of all pairwise correlation)

and a median of 0.19 (82% quantile of all correlations) . If only considering 180

pairs with positive correlation, the mean and median were 0.4(96% quantile of all

correlations). See Figure 2.3 for the histogram of these 318 correlations.

Using the same random mapping simulation procedure, the null distribution of

the number of TF-TG pairs sharing eQTLs was found to be normal (verified through

normal Q-Q plot) with mean 184 and standard deviation 35. Thus, it is unlikely

that these eQTL-sharing cases were all generated through a random eQTL assigning

process for TFs and TGs separately and independently. Possible explanations include

that the TF-TG pairs have the tendency to be mapped together, or the ’secondary

TG eQTL scenario’, which is more convincing and parsimonious. In this scenario, a

trans-acting eQTL affects the expression variation of a TF. Current knowledge about

the transcriptional regulatory network in yeast could not relate the TF with any

of genes in the eQTL. It is possible that there is a unknown TF in the eQTL; or

that the eQTL represents a link in some feedback loops to fine-tune the activity of
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transcriptional regulation networks, or that the underlying mechanism for the eQTL

is the variation in a signal transduction process which coordinates the TF’s activity

with intracellular and extracellular changes.

Thus, our mapping results could suggest at most 2.6% (49 of 1886) of known TGs

with at least one eQTL were regulated through sequence variation around their cor-

responding TFs. Secondary TG eQTL scenario is able to suggest somewhat stronger

and significant signals of trans regulation of TG expression through TF. Still only a

small portion of trans-acting eQTLs could be attached with some biological explana-

tions, if we restrict ourselves in a direct trans-acting relationship between TFs and

TGs.

We offer explanation for the deficiency of statistical patterns reflecting the biolog-

ical effect of TFs, and the abundance of statistical patterns for cis-acting mechanisms

as follows. 1) The mapping population is composed of yeast cells in various stages

of their cell cycles. Most TFs are only active during a certain phase of cell cycle

(Luscombe et al., 2004). There could be internal inconsistency of active regula-

tory network topology among yeast segregants. Such inconsistency would lower the

statistical power to detect co-segregating patterns between expression traits and poly-

morphic sites at the candidate loci. In this sense, a mapping population under certain

external stimuli is expected to represent more faithfully the underlying regulation by

TFs in response to stimuli. On the other hand, sequence variability in cis-acting

elements can affect the basal transcriptional level of nearby genes in a consistent

way across cell cycles. Thus, it is much easier to catch cis-acting mechanisms in the

population. 2) TF might be too critical to accumulate sequence variation in normal

laboratory strains or wild strains. They are more likely to exert large phenotypic
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effect and push the organism out of the phenotypic threshold of being normal. On

the other hand, the direct influence from a cis-acting genetic polymorphism is al-

ways limited in its neighborhood. Purifying selection pressure is expected to be much

stronger on transcriptional factors than on their targets. 3) We could not rule out the

possibility that MIM procedure might have missed some epistatic eQTLs which could

have supported more roles played by transcriptional factors. However, the complex

biochemical interactions in transcriptional regulation networks would not guarantee

complex statistical interactions (Barton and Keightley, 2002). All gene prod-

ucts act together with other genes’ product in a cell, directly or indirectly, however,

most of them have ‘main effects’ attributed to their own, and a lot of them have no

detectable ’interaction effect’ statistically.

2.3.3 Horizontal list analysis: biological relationships com-

patible with eQTLs

pORFs, which were functionally related to corresponding eORFs, were picked out

using the following sets of information. That is, we collected matching cases between

an eQTL, as a statistical pattern, and a biological relationship between a gene pair

identified outside the current mapping study. Many biological relationships discussed

below are not transcriptional regulations. But each of them has the potential to result

in an indirect trans-acting effect between the gene pair. On the other hand, even an

observation that an eQTL contains a transcriptional factor for the trait gene does not

pinpoint the transcriptional factor as the causal gene for the eQTL. Each matching

case suggests a plausible explanation for the eQTL, which should be the first hypoth-

esis to be tested during in-depth study of the eQTL. 1) FinalNet (Lee et al., 2004),
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which implements the idea of probabilistic view of gene relatedness by summarizing

heterogeneous knowledge about yeast: mRNA co-expression across 497 microarrays,

protein interaction predicted from genomic context of protein sequence (gene fusion

and gene co-occurrence across organisms), functional relatedness inferred from lit-

erature co-citation and protein interaction experiments(mass spectrometry analysis

for co-precipitated protein complexes, high throughput yeast two hybrid assays, and

high-throughput synthetic lethal screens). Within each evidence, log likelihood score

(LLS) for a pair of genes was calculated to represent the likelihood of functional link-

age between the pair given the evidence. The finally reported LLS is a weighed sum of

LLS scores from different lines of evidence. Only gene pairs with LLS ≥ 1.5 were used

in the following comparison. 2) Three sets of annotation from Saccharomyces Genome

Database (http://www.yeastgenome.org/, accessed Feb 19,2005) (Balakrishnan

et al., 2005): Complex GO-Slim, genes in macromolecular complexes; synthetic lethal,

gene pairs put together because double mutation of the pair will be lethal to yeast;

two hybrid, protein pairs physically interact with each other confirmed through yeast

two hybridization assay. 3) MIPS (Mewes et al., 2002), another protein complex

database. 4) Transcriptional factor-target pairs (Luscombe et al., 2004) as dis-

cussed previously. Figure 2.2 marks out matching cases between eQTLs and part of

annotations listed above (check http://statgen.ncsu.edu/~wzou/svg/svg2.htm to

dynamically view all matching patterns). Table 2.3 lists the number of matching cases

with each annotation.

In all types of annotation information, finalNet offers the most matching cases:

747 pairs of eORF-pORF can be found in finalNet with LLS ≥ 1.5. This is expected

since finalNet is based upon various sources of information. Assuming the number of
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matching cases is with a hyper-geometric distribution under the null hypothesis that

these matching pairs appear by chance, the probability of observing 747 or more pairs

is zero. Thus, eORF-pORF relationships obtained from eQTL analysis concentrate

functionally related gene pairs in a statistically significant way. Indirect transcrip-

tional modification between these related pairs from finalNet is a likely mechanism

underlying certain trans-acting eQTLs. However, gene pairs which are related in fi-

nalNet do not overlap well with those in other kinds of evidence, which with specific

focus and more concrete experimental support. The idea of building ’bottom-up’

relationship network of gene functions (Fraser and Marcotte, 2004) has a lot of

potential. Certainly there is room to improve its algorithm and to include more pieces

of evidence including eQTL mapping results.

In all the 5182 declared eQTLs, 1442 have some connection with the biological

evidences listed in table 2.3, or are compatible with the cis-acting mechanism. For

the rest of eQTLs, they might be statistical artifact, but it is much more likely that

they reveal novel biological connections between eORFs and pORFs. eQTL mapping

should be treated as an important genome annotation tool in post-genomic era.
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Figure 2.2: Two dimensional plot of mapping results. Red dots: 50 vertical lists of
eORFs with over-represented GO terms matching GO terms of the gene in their shared
eQTL region. In each vertical list, only eORFs annotated with the over-represented
GO terms are marked. Blue dots: eORF-pORF relationship found in finalNet. Green
dots: pORF-eORF is a known transcriptional factor-target pair. This picture is
a screenshot from our SVG viewer, where users are allowed to zoom and pan the
2 dimensional plot to check detailed information about certain eQTLs, or to view
different types of matching patterns as their request.
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Figure 2.3: Histogram of correlation coefficients of transcript abundance between
transcriptional factor and its target which have overlapping eQTLs. (A) For All 318
TF-TG pairs. Mean of correlation is 0.13. (B) 197 positively correlated TF-TG pairs
only. Mean of correlation is 0.40
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Table 2.3: Mapping results confirmed through various sources

evidence #trait1 #eQTL2 #match3 #shared4 #known5 #genes6

finalNet 553 592 747 NA 72693 5349
Complex GO-Slim 227 277 734 74 117390 1242

MIPS 48 50 51 31 8250 871
Synthetic Lethal 29 30 34 0 4118 1048

Two hybrid 15 15 15 4 2007 1367
TF regulation 49 49 49 4 7073 3456

1 number of traits with at least one pORF, where the eORF-pORF relationships are
supported by the evidence
2 number of eQTLs containing at least one pORF, which is related with the correspond-
ing eORF according to the evidence
3 total number of pORFs that are related with the trait genes according to the evidence
4 number of eORF-pORF relationships supported by both the current evidence and by
finalNet.
5 total number of known pairwise relation in evidence
6 total number of genes involved in the evidence
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2.3.4 Vertical list analysis: shared biological functions and

shared eQTLs among multiple eORFs

There are more obvious ways to detect such patterns other than using GO. For ex-

ample, we tried to find whether gene pairs in the same MIPS protein complex or the

same KEGG pathway (Kanehisa et al., 2004) tend to share eQTLs. Most positive

finding is related with mitochondrion. For example, 29 of 32 genes in mitochondrial

ribosomal large subunit have at least one eQTL mapped in the genome. All of them

have one eQTL in the middle of chromosome 14, overlapping with each other. In

F0/F1 ATP synthase (located at mitochondrial inner membrane), 14 member genes

have at lease one eQTL. 81 pairs of eORFs have shared eQTL regions. Besides using

MIPS database, according to KEGG, eQTLs of eORFs in pathway ’Oxidative phos-

phorylation’ clearly gather at Chromosome 15 (http://statgen.ncsu.edu/~wzou/

svg/yeastExample/group.svg).

Sophisticated analysis detected more patterns of eQTL clustering. 50 full match-

ing cases were detected between over-represented GO terms in vertical lists of eORFs

and GO terms of pORF in all three GO ontologies. Such a fully matching means

that the subgroups of eORFs annotated with over-represented GO terms and the

underlying pORFs work at similar cellular component, with similar function and in

similar biological process. See Table (2.4) for more information about the 50 lists.

67



Table 2.4: Over-represented GO terms detected in a verti-

cal list which match GO terms of the pORF underlying the

vertical list

pORF1 #eORF2 prob C3 prob F4 prob P5 #matching6

YBR001C 29 1.22× 10−8 1.07× 10−7 4.73× 10−8 5

YBR003W 29 1.22× 10−8 1.07× 10−7 4.73× 10−8 5

YBR142W 189 7.29× 10−5 1.93× 10−2 1.35× 10−3 5

YBR154C 442 1.73× 10−2 3.21× 10−2 1.35× 10−7 9

YBR167C 154 5.45× 10−6 3.25× 10−2 9.71× 10−3 12

YCL004W 162 1.08× 10−6 1.39× 10−2 7.29× 10−5 27

YCL005W-A 174 1.23× 10−6 7.03× 10−3 8.55× 10−4 59

YCL009C 174 1.23× 10−6 7.03× 10−3 8.55× 10−4 59

YCL017C 234 8.77× 10−9 1.15× 10−3 1.29× 10−8 97

YCL018W 234 8.77× 10−9 1.15× 10−3 1.29× 10−8 97

YCL019W 236 5.75× 10−9 1.25× 10−3 1.39× 10−8 98

YCL024W 261 1.37× 10−9 4.64× 10−2 4.96×10−10 110

YCL030C 126 1.15× 10−2 4.93× 10−2 4.45× 10−4 50

YCR005C 160 1.68× 10−6 2.67× 10−2 1.23× 10−4 26

YCR011C 157 3.23× 10−6 1.84× 10−2 1.77× 10−3 54

YCR012W 157 3.23× 10−6 1.84× 10−2 1.77× 10−3 54

YCR014C 157 3.23× 10−6 1.84× 10−2 1.77× 10−3 54

YCR024C 112 2.90× 10−3 1.70× 10−2 5.15× 10−4 41

YCR027C 85 1.52× 10−2 4.20× 10−3 1.55× 10−4 35

YER129W 152 3.31× 10−4 9.76× 10−3 4.84× 10−3 23

YER133W 121 6.65× 10−3 1.28× 10−3 2.72× 10−2 15
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Table 2.4 (continued)

pORF1 #Total2 prob C3 prob F4 prob P5 #matching6

YER138C 89 1.77× 10−5 2.75× 10−5 8.27× 10−5 8

YGR289C 7 4.01× 10−2 3.09× 10−4 4.20× 10−4 2

YHR005C-A 117 2.19× 10−6 5.27× 10−4 5.98× 10−3 37

YLR155C 17 5.62× 10−8 8.86× 10−9 7.65× 10−9 4

YLR157C 17 5.62× 10−8 8.86× 10−9 7.65× 10−9 4

YLR158C 17 5.62× 10−8 8.86× 10−9 7.65× 10−9 4

YLR160C 17 5.62× 10−8 8.86× 10−9 7.65× 10−9 4

YLR258W 201 3.69× 10−4 2.14× 10−4 4.56× 10−3 98

YLR260W 200 4.38× 10−4 2.08× 10−4 4.45× 10−3 97

YLR262C 206 1.62× 10−3 2.42× 10−4 5.02× 10−3 99

YLR450W 11 4.60× 10−2 8.46× 10−3 3.79× 10−2 2

YNL067W 298 4.72×10−19 1.11× 10−6 4.29× 10−4 39

YNL069C 370 4.42×10−23 9.52× 10−8 4.76× 10−5 47

YNL070W 370 6.91×10−31 1.04× 10−2 4.76× 10−5 11

YNL071W 370 1.34×10−19 7.21× 10−3 3.40× 10−2 121

YNL072W 370 1.34×10−19 7.21× 10−3 3.40× 10−2 121

YNL073W 395 8.19×10−21 2.46× 10−2 3.07× 10−6 127

YNL079C 562 1.86×10−37 2.57× 10−4 7.00×10−14 13

YNL081C 575 6.92×10−51 1.92×10−17 1.64×10−14 81

YNL082W 575 1.44× 10−3 1.25× 10−6 3.63×10−14 208

YNL088W 566 1.25× 10−3 9.48× 10−8 9.30×10−15 204

YNL090W 536 7.99× 10−4 3.90× 10−8 9.43×10−15 196

YNL093W 430 2.36× 10−3 1.92× 10−7 7.84×10−11 164
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Table 2.4 (continued)

pORF1 #Total2 prob C3 prob F4 prob P5 #matching6

YNL097C 327 6.29× 10−3 8.14× 10−4 4.87× 10−8 130

YNL098C 268 7.84×10−14 1.22× 10−4 1.07× 10−6 109

YNL099C 268 7.84×10−14 1.22× 10−4 1.07× 10−6 109

YOL086C 399 7.28×10−12 3.14× 10−4 2.71× 10−3 23

YOR130C 101 5.10×10−12 2.37×10−31 9.48×10−10 32

YOR136W 61 4.23× 10−2 8.79× 10−8 1.01× 10−4 10

1pORF with GO terms in all three ontologies matching over-represented GO

terms detected in the vertical list above it.

2total number of eQTLs in the vertical list over the pORF used by TermFinder.

Some eORFs with unknown annotation were dropped by TermFinder.

3corrected (for multiple tests within a vertical list above a pORF) P value

reported by GO:termFinder package. This P value is associated with a GO

term in Cellular Component ontology. The GO term annotates an eORF

subgroup in a vertical list over the pORF. When multiple over-represented

GO terms (and hence multiple P values) were found for a same subgroup of

eORF, the minimal P value was reported.

4corrected P value for Molecular Function ontology.

5corrected P value for Biological Process ontology.

6number eORFs in the subgroup with matching over-represented GO terms.
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The popularity of full matching cases within eQTL hot-spots (Fig 2.2) suggests

that trans-acting transcriptional control in this mapping population can be executed

by genes’ ‘coworkers’, or ‘indirect transcriptional effects’ from ‘perturbed pathways’

(Brem et al., 2002), as well as by their supervisors: transcriptional factors. For each

of these 50 full matching cases, we suggest the sequence variation around the pORF

(as appears in the first column of table 2.4) introduces functional perturbation to

the local cellular network around the pORF. As the effect is disseminated along the

pathways, the neighboring genes along the pathways will response to it in various

ways, which include adjusting their own transcript abundance.

2.4 DISCUSSION

2.4.1 Mapping Strategy

LRT based interval mapping strategy still has a few advantages when compared with

a direct correlation study between trait variation and marker variation, even in this

mapping population with dense markers. The underlying EM algorithm can handle

very well the situation of missing markers and occasional large marker intervals. It

provides a straightforward way to find an interval estimate of eQTL location. The

speed of calculation is still acceptable. It took about one day in a ten node cluster

machine to get all LRS for eQTLs of 6195 traits in a data set with about 3000 markers

and 112 individuals.

Permutation tests can deal with the multiple test issue in a genome scan for one

trait, but not for all traits. Here we provide some intuitive explanation for why more

than 10000 (summation of ’#scanned’ column in table 2.1) such tests would end up
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with FDR at 8%. For example, in the first cycle of MIM, with type I error rate 5%,

the up bound of expected number of false eQTLs is roughly 6195× 5% = 310. Such

a number could be devastating in certain cases, but not here. With 3354 declared

eQTL (table 2.1), we can claim FDR is roughly 310/3354 = 9%. Similar argument

can be applied to eQTL detected in other cycles. More rigorous computation could

be found in the method section. The elevated type I errors due to multiple testing

would be still acceptable in terms of FDR if we have sufficient positive discovery,

which is the case for expression QTL mapping.

Storey et al. (2005) presented an elegant way to control FDR while performing

model selection. However, Storey et al. (2005) declared only 170 traits with two

eQTLs while controlling FDR at 10%. Different ways in pre-processing data and

handling missing information do not seem sufficient to explain the discrepancy. A

careful examination of their sequential search algorithm reveals: the best marker

chosen at the second cycle of genome scan had either strong main effect or strong

interaction effect with the first eQTL or both. We tried to replicate their procedure

and found 182 traits with 2 eQTLs at FDR 10%, which shared 125 traits in common

with Storey’s 170 traits. It is noticed that the 25%, 50%, 75% quartiles of F statistics

for the second eQTL main effect (type I test) are 4.54, 9.94, 14.54, respectively. For

those second eQTLs with main effect F statistics less than 4.54, the mean F statistics

for epistatic effect is 13.3. Thus, this search algorithm is targeted for interaction

effects. However, if sacrificing this feature and modifying the original algorithm by

considering only main effects when searching the second eQTL, which is fairly close

to MIM procedure, we found a two QTL model with main effects only for 729 traits

while controlling FDR at 10%. There was fewer number of strong interaction effects
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between these eQTL pairs (Figure 2.4), but apparently we traded them for more main

effects.

Storey’s method is able to control FDR for all the two eQTL models, which is

statistically very attractive but also means that no inference is made when there is

only one eQTL in the model. The algorithm will search for a second eQTL no matter

how small the maximal test statistic for the first eQTL is, which would be excluded

in MIM. Thus, by making decision at each step of sequential search, MIM effectively

reduces the number of unnecessary tests: if a trait is unlikely to have its first eQTL,

we just do not search for the second eQTL. The reduction would be more significant

in later cycles of sequential search (table 2.1). In terms of Bayesian estimate of FDR

(Efron et al., 2001), it is to reduce the prior probability that a test statistic belongs

to a false eQTL. In terms of exploring the solution space, it is to discard certain part

of the space where the chance that the best solution is in it will be low. This is a

feature shared by many heuristic search algorithms. We tried to altered his algorithm

by only searching for the second eQTL when the F statistic of the first QTL is larger

than 13.94. We picked this value just to show what we could gain if restricting the

search for the second QTL. Controlling FDR at 10%, a two QTL model was declared

for 704 traits. Because more traits were declared with a two QTL genetic model,

and interaction effects were taken into account during genome scans, the number of

strong interaction effects detected using the restricted search was even larger than

that from the original method in Storey et al. (2005) (Figure 2.4).
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Figure 2.4: Histograms of F statistics of interaction effects between two QTLs de-
tected through various methods. Numbers above each bar show the number of traits,
or the number of two QTL interaction effects with type I F statistics in the bin. A:
The significance of the interaction effects in the two QTL models claimed using the
original method from Storey et al. (2005). B: Based on the two QTL models from
sequential searches involving only main effects, the significance of the interaction
between each QTL pair for a trait was tested. C: The significance of the interac-
tion effects in the two QTL models, while restricting the search for the second QTL
according to the F statistics of the first QTL.
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2.4.2 QTL Mapping as a Genome Annotation Tool

In Figure 2.2, for each eORF, there are a horizontal list of genes in its eQTL, which are

much more likely to include the causes of expression variation of the eORF compared

with the genome background. In the meanwhile, above each pORF, there are a

vertical list of genes, each of which has a transcript abundance profile co-segregating

with the sequence variation around the pORF.

These horizontal lists were obtained through eQTL mapping’s ability to classify

genomic region according to its relevance to the expression variation. They can be

easily incorporated into other bioinformatics studies such as a probabilistic view of

gene relationship (Fraser and Marcotte, 2004). These vertical lists demonstrated

the ability of eQTL mapping, in the context of genetical-genomics study, to identify

co-regulated gene expression clusters. Central Dogma suggests that the genomic

segments delineated by recombination events serve as pivotal random variables in

studying the correlation structure of expression profiles.

2.4.3 Scale-free network

Many cellular networks, including both protein-protein interaction (Han et al., 2004)

and regulatory network by transcriptional factors (Luscombe et al., 2004), belong

to a scale-free network. (Barabasi and Oltvai, 2004). Let k be the number of links

from one node (gene) to the rest of the genome; p be the probability distribution

of k. The characteristic of a scale-free network is that most genes have very few

connections, while a small number of genes are directly connected to a large number

of genes; or numerically, k has a power-law distribution, i.e., Pr(K = k) ∝ k−r,

where r is a positive constant. On the contrary, Pr(K = k) ∝ e−k is for a random
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network. In our case, most of pORFs were covered by one or two eQTLs, while

a few genomic segments affect as many as 600 expression traits. The probability

density, p, for a pORF to have k eORFs mapped onto it could be well fitted with a

function proportional to k−1.66 (index was obtained by linear regression of log(p) onto

log(k), see Figure 2.5). Compared with a random network, a scale free network has

a much shorter mean path length to connect gene pairs, allowing a local fluctuation

in biochemical pathways easily amplified to hundreds of its near or far neighbors.

Thus, a single sequence variation can have pleiotropic effects on hundreds of genes’

expression. Such a wide spread change in the transcriptome has certain potential

to buffer the adverse effect associated with the sequence variation. In this way, a

high heritable expression variation can be maintained in the population because of

its minor effect on fitness (Barton and Keightley, 2002).
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Figure 2.5: QTL mapping results suggest transcriptional regulation network follows
scale free property. After collecting the numbers of expression traits mapped onto
each pORF, these numbers were put into a frequency table with bin size of 10. Let p
be the frequency and k be the mid-bin value. Based on the frequency table, we tried
to estimate the empirical density function using parametric curve fitting. Left: Log–
transformed frequencies log(p) were regressed onto log-transformed mid-bin values
log(k). The linear regression function is logp = 2.24 − 1.66 ∗ logk. Right: Observed
and fitted density function: Pr(k) = e2.244 × k−1.66.
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Chapter 3

eQTL Viewer: visualizing how sequence

variation affects transcription

82



3.1 Abstract

3.1.1 Background

Expression Quantitative Trait Locus analysis methods have been used to identify the

genetic basis of variation in gene expression. In such studies, thousands of expression

profiles are related with marker data from thousands of sequence regions and each

sequence region can include many genes. There is a need for new tools to explore

these results in a way that looks across many genes at once.

3.1.2 Results

We have developed a web-based tool to visualize the relationships inferred by such

an analysis in Scalable Vector Graphics. The resulting plot is able to display ge-

nomic data with high resolution, and dynamically superimpose biological annotation

provided by users onto mapping results.

3.1.3 Conclusions

Our tool provides an efficient and intuitive way for bioinformaticians to explore ex-

pression Quantitative Trait Locus results, and to ask questions about the biological

mechanisms and transcriptional regulation patterns suggested by the analysis.

3.2 Background

Transcriptional control is a crucial step in development and cellular environmental

response. Recent studies have demonstrated that mRNA levels vary in both natural
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and experimental populations (Oleksiak et al., 2002). Expression Quantitative Trait

Locus (eQTL) mapping seeks to explain this variation by identifying relationships

between transcript abundance and specific genomic markers (Schadt et al., 2003).

While classical QTL mapping focuses on one or few traits, an eQTL mapping study

may have thousands of expression traits. Since several marker regions may affect each

expression trait, many thousands of eQTLs are often identified. The patterns among

these eQTLs allow us to ask questions that we cannot address by the traditional

approach. For example, this type of analysis has been used to gain insights into the

relative proportion of cis- and trans- acting regulatory regions in yeast (Brem et al.,

2002; Brem and Kruglyak, 2005; Yvert et al., 2003), mice and rat (Bystrykh

et al., 2005; Chesler et al., 2005; Hubner et al., 2005). Such findings provide a

starting point for additional exploration. A marker region that associates with several

expression traits for genes belonging to a specific pathway may suggest a master

transcriptional regulation region for that pathway. A sensible next step is to query a

genomic database to find if there is a candidate transcription factor located in that

region. Inversely, what does it mean if many distinct sequence regions are linked to

the expression of a particular gene? These analyses require the ability to view eQTL

results at a variety of scales: across all expression traits, among the genes of a single

pathway, and at the level of a single gene. Additionally, researchers need a quick and

straightforward means to explore genes that comprise interesting features. We have

addressed these needs with the software tool we present here. We have developed

eQTL Viewer, a web-based tool that presents eQTL mapping results visually. We

display the results for thousands of expression traits in a single plot, which makes

features such as trans- and cis- regulatory readily identifiable. We extend the basic
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plot with the ability to link graphical features and external bioinformatics resources,

thus providing an intuitive platform for discovery. See figure 3.1 for the role of eQTL

Viewer in eQTL mapping.

Figure 3.1: Role of eQTL Viewer in eQTL mapping
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3.3 Implementation

eQTL Viewer leverages the power of Scalable Vector Graphics (SVG), an open stan-

dard for graphical display recommended by World Wide Web Consortium (W3C)

http://www.w3.org/TR/SVG/. Instead of creating a static graphic, SVG is a set of

instructions for drawing a graphic written in eXtensible Markup Language (XML).

As such, an SVG graphic element can be viewed at a wide variety of resolutions

without sacrificing quality. Virtually unlimited text information can be associated

with each graphic element and users can control what information is displayed at one

time. These features make SVG well suited for visualizing genomic data, and SVG

has been used for a variety of bioinformatics applications (Tanoue et al., 2002).

eQTL analyses produce a list of contiguous genetic markers significantly associ-

ated with the expression trait of each gene. Alternately, users can identify genes

corresponding to these markers and describe an eQTL as a list of genes. We offer

auxiliary programs to do such a transformation in our website. These data are input

into eQTL Viewer in a simple XML format that is detailed online. This basic data

are converted into a graph with all expression traits on the vertical axis and genetic

markers (or genes) on the horizontal axis. This displays the relationships between

marker regions and expression traits inferred by eQTL mapping and allows biologists

to explore them at the whole genome level.

Several novel features extend the usefulness of the graph. Users can supply known

gene-gene relationships and highlight all correspondence between them and eQTL

mapping results. Users can search and highlight QTLs in the graph by their trait

gene names. One use of this function is to highlight all QTLs associated with a

metabolic pathway. Users can also rearrange expression traits along the vertical
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axis as their research hypotheses. For example, eQTLs associated with a specific

pathway can be clustered together. Each genetic element in the graph can be linked

to annotation in an external database such as NCBI. This provides a framework for

exploratory analysis in which the user can drill down on genes of interest and use the

linked biological information to interpret results. New and customizable annotation

easily can be superimposed onto the graph. The strength of this approach is that the

graph becomes a platform for synthesis as additional biological knowledge becomes

available. All these features make eQTL Viewer a unique tool for asking biological

questions from eQTL mapping results.

3.4 Results

We applied multiple interval mapping (Kao et al., 1999) to the data from Brem and

Kruglyak (2005) to illustrate these features. We associated 5182 eQTLs with 3367

expression traits and used eQTL Viewer to display the result (Figure 3.2). eQTLs

on the diagonal line are located at the same genomic location as an expression trait

gene. This can be interpreted as a cis-acting regulatory region. Large number of trans-

acting eQTLs cluster in certain regions of chromosome 2, 14 and 15 (Figure 3.2). As

directly implied by eQTL analysis, transcript abundances of those genes with trans-

acting eQTLs in a column may be associated with sequence variation of the same set

of genetic factors, or different genetic factors in close linkage. Thus, it is not surprising

to find that transcript abundance levels themselves are highly correlated. These two

types of association suggest that the genomic region is biologically responsible for the

correlated transcriptional pattern for the cluster of genes.
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Using features described above, the graph shows 49 cases where a trait gene’s

eQTL contains the transcriptional factor for the gene (Luscombe et al., 2004). Such

a matching case suggests a hypothesis that the genomic region encoding the tran-

scriptional factor contains causal sequence variations for the expression variation of

the trait gene in this mapping population. eQTLs of genes in the Oxidative phospho-

rylation pathway (Kanehisa et al., 2004) cluster in the middle of chromosome 15.

The pathway traps the energy from the mitochondrial electron transport assembly

to synthesize ATP, which provides extensive energy support for cell functions. Such

a clustering pattern suggests a important regulatory control gene or genes affecting

the pathway could be located there. These patterns can be found in our supporting

website.
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Figure 3.2: The graph shows all eQTLs as small bars. Each eQTL’s associated
trait gene determines its vertical coordinate, while genes in the eQTL determine its
horizontal coordinate. These genetic features are arranged along both axes according
to their physical location. The user can zoom in on regions of interest. When the
mouse pointer is over a specific eQTL, the names of genes in the eQTL, and the name
of the expression trait gene appear in the right sidebar.
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3.5 Discussion

We emphasize gene-gene relationships in eQTL Viewer, which are the key questions

biologists will ask after eQTL mapping. eQTLs can span physically large genomic re-

gions, and the precision of eQTL location is limited by the experimental design. Due

to these considerations it is difficult to know exactly which gene within an eQTL is

the gene of interest (Mackay, 2001). This presents a dilemma to the eQTL commu-

nity, because the many public bioinformatics resources are gene-centric. By linking

expression traits and physical markers to their corresponding genes, our implemen-

tation will help scientists conceptualize each eQTL as a list of pairwise relationships

between a trait gene and the multiple genes in the eQTL. This goes a step further

than just showing the relationship between RNA probes and polymorphic markers.

Combining experimental results with external sources is the essence of exploration in

the age of bioinformatics.

Mueller et al. (2006) recently introduced their eQTL Explorer package in a

similar spirit. While both software packages provide features for exploring this eQTL

results, they have differing approaches and fulfil complementary functions. While

eQTL Explorer excels as a clearinghouse and management tool for eQTL data, eQTL

Viewer uniquely addresses the problem of visualizing eQTLs for the complete tran-

scriptome simultaneously. Capturing thousands of traits and genome-wide markers

in one plot emphasizes the complex interactions in transcriptional control as graphic

features. With eQTL Viewer one can see clearly not only where a particular trans-

acting eQTL is located in the genome, but also every expression trait associated with

that eQTL.
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3.6 Conclusions

eQTL Viewer is a simple and robust web service that generates a scalable graph to

visualize such relationships between genotype and expression profile. It is our intent

to help form a bridge between quantitative genetic analysis and systems biology by

superimposing biological information onto eQTL mapping results.
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4.1 INTRODUCTION

Transcriptional control is one of the most important steps for an organism to express

the genetic information stored in its sequence as well as to respond to environmental

changes (Ihmels et al., 2004). Recent advance of genomic technology has made it

possible to quantify transcript abundance systematically, as well as to genotype ge-

netic markers covering the whole genome in a segregating population. Provided with

these tools, expression Quantitative Trait Locus (eQTL) analysis has been applied

in yeast (Brem et al., 2002; Yvert et al., 2003), drosophila (Schadt et al., 2003)

and mouse (Bystrykh et al., 2005; Chesler et al., 2005) to find chromosomal re-

gions (i.e. eQTL) affecting the expression variation. Statistical procedure involved in

eQTL mapping would guarantees that eQTL are significantly more likely to harbor

biological elements affecting the expression traits than the rest of the genome. How-

ever, huge amount of experimental work will be needed before we can know which

gene in an eQTL actually underlies the biological processes that cause the phenotypic

variation in the mapping population (Mackay, 2001).

Biochemistry and genetics studies have shown that gene expression is regulated

by cis-acting elements (such as in promoter regions) and trans-acting factors. Gene

products of trans-acting factors, such as a transcriptional factor, may work directly

on the cis-acting elements of their regulation targets. Also, mechanisms like feedback

control allow indirect ‘trans-acting transcriptional effects’ in ’perturbed pathways’

(Brem et al., 2002).

The advantage of performing eQTL mapping in well studied organisms is that

knowledge through previous biological investigation can help eQTL experimenters to
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have certain biological interpretation of their mapping results before further experi-

mental investigation. For these organisms, an eQTL can readily be transformed into

a one (trait) gene to many genes (in the trait genes’ eQTL) relations, or a list of

pairwise gene relationships. When a gene pair from such a list is found to be involved

in same biological processes or functionally related according to certain annotations,

an annotation can be super-imposed onto the eQTL. The annotation could serve as

a plausible biological explanation for the QTL and a hypothesis to test in future

experiments.

For example, trait gene’s genomic location is a rudimental annotation, which has

been used by most published eQTL analysis to find cis-acting eQTL. Most biological

network topology can be reduced to a set of related gene pairs. In yeast, comparison

between known transcriptional regulatory network composed of transcriptional factor-

target pairs and eQTL showed few matching cases (Yvert et al., 2003), which made

indirect transcriptional effect an important alternative mechanism.

There are several disadvantages in these approaches.

• Superimposition based on string comparison of annotations is ‘hard’ in

the sense that it will only give result of ‘yes’ or ‘no’. Thus, multiple

superimpositions for an eQTL are treated similarly as ’yes’.

• Statistical patterns are treated equally. Lists of pairwise gene relationships

from different eQTLs are compared with biological annotations in the

same way. However, each eQTL is declared with different likelihood ratio

statistics.

• Pairwise biological annotations are treated equally. Neighborhood connec-

tivity is barely taken into account when the known relationship between
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a gene pair is compared with statistical patterns. Since the result of com-

parison is either ‘yes’ or ‘no’, delicate network structures in annotation

are simplified as ‘related’ or ‘not related’ pairwise gene relationships.

• When several sources of annotations can be superimposed onto an eQTL,

there is no ready way to weight different types of annotations differently.

Annotations are created using different technologies, aiming to detect dif-

ferent aspects of biological activities. They might overlap with each other,

but have more or less unique information of their own.

In this paper, using the yeast data published by Brem and Kruglyak (2005) as

an example, we present a Bayesian approach to prioritize a list of genes in an eQTL

with loose or strong functional relationship with the trait gene. In our Bayesian anal-

ysis framework, statistical significance associated with an eQTL provides information

to estimate the prior probability that a gene is a biological factor underlying the sta-

tistically detected eQTL; global biological connection scores (GCS) between a gene

and the corresponding trait gene can be used to update the prior to give the pos-

terior probability. We inferred GCS from pairwise scores for functional relationship

among yeast gene pairs in finalNet (Lee et al., 2004), which incorporates annotation

information from different biological experiments and databases.

4.2 METHODS

The yeast data (Brem and Kruglyak, 2005) include 6195 unique expression traits

assayed in 112 haploid yeast obtained by crossing a standard laboratory strain and a

wild strain isolated from a California vineyard. 2956 SNPs markers were genotyped
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across the genome.

4.2.1 eQTL Mapping

We applied Multiple Interval Mapping (Kao et al., 1999) (MIM) to search the yeast

genome for the best statistical model for each expression trait. Multiple eQTL could

be included in a model through a series of genome scans. In each cycle of genome scan

for an expression trait, likelihood ratio tests were performed on and between markers

conditional upon QTL found in previous cycles. No scan would be performed for a

trait if no eQTL was found for the trait in the previous cycle of genome scan. The

maximal likelihood ratio statistic (LRS) in one pass of genome scan will give rise

to an eQTL if it is above certain threshold. We used the 95% quantile of genome-

wide null LRS distribution as the threshold, to declare the 1.5 LOD support interval

around a LRS peak as an eQTL. SNPs with known position in both the genetic and

physical maps serve as anchors for eQTL regions in translating eQTL genetic map

intervals into chromosome regions with physical boundaries. Gene lists located in the

regions were then produced.

4.2.2 Prior Probability of not Being an Underlying Gene

To adapt current ‘hard’ superimposition method to a Bayesian approach, we summa-

rized eQTL mapping results as prior probabilities. We indexed genes in the genome

as gi. Since eQTL are chromosome segments, gi usually means a gene in an eQTL.

We indexed traits as ek. Since in eQTL study, each trait is the mRNA level of a gene,

ek also refers to the k-th gene whose expression level is a trait. Thus, gi and ek are

sampled from the same gene pool. For each ek, denote its j-th eQTL region as Rk,j,
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which contains γk,j > 0 candidate genes which may or may not be the underlying

gene affecting ek but are all physically located in the region Rk,j. Define an index

variable Qkj associated with Rk,j, where Qkj = 1 denotes that Rk,j contains at least

one underlying gene, or that Rk,j declared through the mapping procedure is a ‘true’

eQTL; and Qkj = 0 for otherwise. Pr(Qkj = 1) is related to a parameter pkji, the

prior probability that a particular gene gi in eQTL Rk,j is not the underlying gene,

as following:

Pr(Qkj = 1) = 1−
γkj∏
i=1

pkji, (4.1)

where we assume genes affect ek independently. pkji represents eQTL mapping results

as prior information to our Bayesian analysis. eQTL analysis has little power to

discriminate genes within an eQTL in terms of their relevance to the trait: variation

of LOD scores at different position within an eQTL is less than 1.5 according to our

mapping procedure. Thus, we assume pkji is identical for different gi in Rk,j and

denote the prior probability as p
(kj)
0 , or p0 to simplify the notation while keeping in

mind that p0 differs among eQTL.

Storey et al. (2005) described an empirical Bayesian method to find the posterior

probability of an eQTL to be true given its test statistic in the framework of multiple

locus linkage analysis. Their method attaches Bayesian probabilities for both individ-

ual eQTL in a multiple eQTL model and the overall model for each expression trait.

We applied their method on our MIM results. For a list of maximal LRS obtained

in one cycle of genome scan, the prior probability that a LRS in the list is associated

with a false eQTL was calculated according to Efron et al. (2001). More specifi-

cally, all LRS that are smaller than the lower quartile of the list were considered as

purely generated by false eQTL. The estimated prior probabilities range from 0.33 to
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0.5, each of which is larger than the corresponding estimate using QVALUE package

(Storey and Tibshirani, 2003), resulting in a conservative estimation of posterior

probabilities. We did not use the estimation from QVALUE because it is sometimes

unlikely small. Then, Pr(Qkj = 1|LRS), the posterior probability that Rk,j is true

given its LRS was obtained using non-parametric logistic regression method. This

procedure is a variant of the empirical Bayesian method introduced by Efron et al.

(2001) and was first applied to QTL analysis by Storey et al. (2005). See sec-

tion 1.6.4 for computational details. We used this posterior probability to estimate

Pr(Qkj = 1), and hence p0 using formula (4.1).

4.2.3 Connection Scores Between Gene Pairs

A connection score between a gene pair quantifies their functional relatedness sug-

gested by biological annotations. Transforming annotations to scores makes them

amenable for numerical processing and probabilistic superimposition.

Ideally, a connection score would be a summary statistic of comprehensive biolog-

ical observations involving a gene pair. A possible way to obtain such scores is to use

semantic similarity measure of GO terms associated with gene pairs (Lord et al.,

2003). However, finalNet (Lee et al., 2004), an available weighed connected graph,

seems a better choice to illustrate our algorithms. It nicely weights and combines

heterogeneous knowledge (co-expression, protein interaction inferred from sequence

similarity and biochemical/genetical experiments) from yeast studies. The graph con-

tains 5545 yeast genes as nodes. A log likelihood score (LLS) between a gene pair

forms a weighted edge between the nodes. LLS quantifies ‘functional linkage’ be-

tween a gene pair supported or not supported by various evidences. A study of their
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algorithm suggested that the computation of a LLS only takes into account the evi-

dences regarding to the gene pair under question. A similar argument can be applied

to scores from semantic similarity based upon GO terms.

We call scores like LLS ‘direct connection scores’ to emphasize that they represent

pairwise functional relatedness without considering the global network structure. In

the following text, we will introduce globalized connection scores, or GCS, denoted

as C(ek, gi), between a trait gene ek and gi, gi ∈ Rk,j. GCS will be larger if there are

more gene nodes clustered around the gene pair (ek, gi) with edges connecting each

other. The following biological considerations suggest that GCS are more appropriate

in our application.

• The complex topology of biological networks (Ihmels et al., 2004; Lus-

combe et al., 2004) indicates that a gene’s transcriptional activity is mod-

ulated globally: all active regulators in the genome will act simultaneously.

• Mechanisms like hierarchical regulation (Barabasi and Oltvai, 2004)

and feedback control suggest that regulation can be exercised directly

between a gene pair, or indirectly through a chain of genes on a pathway.

To convert direct connection scores into GCS, we made slight modification of RANKPROP

algorithm by Weston et al. (2004). Inspired by google’s PAGERNK algorithm to

infer global internet structure from hyperlinks among individual web pages, Weston

et al. (2004) presented RANKPROP algorithm to globally rank sequence similarity

between a query protein and the rest of proteins, which had been already connected

with weighted edges of similarity scores from BLAST or PSI-BLAST. Treating final-

Net as a similar weighted network input, we applied the following algorithm.
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Algorithm 1 Derive GCS from LLS

1: for all ek in genome do
2: Yk = {yi}, where
3: Let Yt

k = {yt
i} be the value of Yk in iteration t, Y0

k = 0
4: repeat
5: for all gi in genome do
6: if i 6= k then
7: yt+1

i = LLS(gi, ek) + α
∑

j 6=i,k

LLS(gi, gj)× yt
j

8: else
9: yt+1

i = 0
10: end if
11: end for
12: normalization: yt+1

i =
yt+1

iP
i

yt+1
i

13: until ‖Yt+1
k −Yt

k‖ < 10−6 or t > maxT
14: report yi ’s rank in Yk as C(ek, gi)
15: end for
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In the algorithm, for each trait gene ek, we tried to obtain a vector Yk. The i-th

element of the vector, yi, quantifies the globalized functional connection between gi

and ek. In line 7 of the algorithm, an estimated value of yi in cycle t + 1 is updated

by the summation of the direction connection (LLS(ek, gi)) and indirect connection

between ek and gi through gj. gj can be any gene in the genome other than ek and

gi. For a specific junction gj, the indirect connection part is formed by the product

of direction connection between gi and gj (LLS(gi, gj)) and globalized connection

between gj and ek (yt
j) obtained in previous cycle. α, a tuning parameter affecting the

speed that indirect connection scores diffuse into global scores suggested by Weston

et al. (2004), was set as 0.9. To ensure convergence, Yk is normalized into a unit vector

in line 12 after each cycle. Such normalization processes make connection scores in

different Yk not directly comparable. To solve the problem, rank statistics from Yk

are reported as GCS, which rank the global functional relatedness between a specific

ek and the rest of genes in the genome. As the result, GCS between two different

genes range from 1 to 5544, with larger scores for stronger biological connections

between gene pairs. A gene’s connection score with itself was manually assigned as

5545. Maximal number of iteration, maxT , was set as 20. Most Yks converged before

10 cycles. LLS(ek, gi) was set as zero when direct connection between ek and gi is

missing from finalNet.

4.2.4 Mixed and Null Distribution of Connection Scores

Transcriptional regulation is an important component of functional regulation. Genes

participating in different biological processes are less likely to affect the expression of

each other than genes in the same process. We will allow C(ek, gi) to modify our belief
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about gi as an underlying gene for expression variation of ek in the mapping popu-

lation, assuming the connection between functional relatedness and transcriptional

regulation.

Assume a distribution f1, composed of C(ek, gi) where gi affects ek; and a distri-

bution f0 for GCS where gi does not affect ek. If functional relatedness between a

gene pair is independent of whether there is transcriptional regulation between the

pair, we expect to find f0 is similar with f1, or any mixture of f0 and f1. On the

other hand, if closer functional relationship does suggest more possible transcriptional

interference, the probability mass of f1, or any mixture of f0 and f1, is expected to

shift towards larger values of GCS compared with f0. The difference between f0 and

f1 is the ultimate reason that from the value of the GCS, we can extract useful in-

formation about whether a GCS is sampled from f0 or f1, and hence whether a gene

affects its trait gene.

Since there could be one or more or zero gene in an eQTL that truly affects ek, GCS

between ek and gi in Rk,j are sampled from a mixed distribution. Let zi ≡ C(gk, gi)

for gi in Rk,j:

fm(zi) = p0f0(zi) + (1− p0)f1(zi) (4.2)

where p0 is the probability that gi is not an underlying gene as defined previously.

fm will vary as the change of p0, or vary from eQTL to eQTL.

Just like we have declared high LRS regions from MIM as eQTL, low LRS regions

for an expression trait are considered unlikely to contain genetic factors for the trait.

For each gi in Rk,j, we sampled 20 consecutive genes from low LRS regions of ek.

Their GCS with ek are assumed to follow the distribution of f0.
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4.2.5 Posterior Probability Given Connection Score

With the previous definitions about f0, f1 and p0, for expression trait ek and gi in

Rk,j, we are able to assess the posterior probability whether an observed zi is from f1

rather than f0 given zi:

p1f1(zi)

p0f0(zi) + p1f1(zi)
= 1− p0

f0(zi)

fm(zi)
. (4.3)

We arrange eQTL into 12 groups according to the p0 associated with a gene in the

eQTL, so that p0 for different eQTL are similar within a group. Assuming fm, as a

function of p0, does not change much as a small change of p0 within each of the 12

groups, we applied non-parametric logistic regression method described by Efron

et al. (2001) and Storey et al. (2005) to estimate f0/fm. Then, with formula (4.3),

we can estimate the probability that zi is from f1, or the probability that gi is the

biological factor affecting ek. It is actually the same method we used to estimate

Pr{Qkj = 1}.

4.3 RESULTS and DISCUSSION

We only considered those genes included in finalNet. 4772 eQTL for 3109 expression

traits were detected by MIM. LRS for eQTL vary from 15.4 to over 300. The number

of genes in each eQTL varies from one gene to 123 genes, with an average at about

23. The whole mapping results were translated into 109668 pairwise relationships

between trait genes and genes in the corresponding eQTL.

Figure 4.1A shows the histogram of p0 associated with each of the 109668 pairs.
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Figure 4.1: Results of probabilistic superimposition of annotations. A: histogram
of p0 for each gene in an eQTL not as an underlying gene. 11 small ticks between
the graph and x-axis indicate how eQTL were groups into 12 groups B: pooled fm.
Individual fm for each of the 12 groups varies, but not greatly from the pooled distri-
bution. Figure C: pooled f0. Figure D: histogram of maximal posterior probability
being an underlying genetic factor among genes in an eQTL
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p0 was obtained from Pr(Qkj = 1), which was estimated by Pr(Qkj = 1|LRS). This

probability turns out to be an increasing function of LRS. Together with formula

(4.1), our procedure ensures that genes in eQTL with higher LRS and including

less genes will have lower p0. It is a very desirable feature. LRS is the ratio of the

likelihood that there is an eQTL in the genomic region versus the likelihood of no

eQTL there. The higher LRS, the more support from the data for the existence of an

eQTL. Assuming number of yeast genes in a chromosome segment is approximately

proportional to the length of the segment, eQTL including less genes tend to be

shorter. An eQTL in the genetic map could be roughly interpreted as a confidence

interval (CI) of the position of the genetic factor underlying the eQTL. Shorter CI

generally means smaller sampling variability in estimating eQTL location. Thus, both

higher LRS and shorter length deserve more credibility, and correspondingly, low p0

for every gene in the eQTL.

As noted by Storey et al. (2005), Pr(Qkj = 1|LRS) is conditional on assuming

Qkj′ = 1 for all j′ ∈ [1, j − 1], j > 1. There could be some issues about using such

a conditional probability to estimate Pr(Qkj = 1). It is true that Pr(Qkj = 1|LRS)

depends not only on the significance of the current eQTL, but also on assumptions

about the rest of eQTL declared for the same trait. However, LRS in a statistical

model seems always associated with certain assumptions about other factors. In the

case where there is only one eQTL found for a trait, we can still consider the LRS

for this eQTL was obtained while assuming there were no other eQTLs for the trait.

On the other hand, there is an apparent trend for multiple eQTL of the same trait

declared through MIM to have little correlated genotypes, which results in a nearly

balanced design, and orthogonality among LRS for multiple factors in a linear model.
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We did not assess the probability of affecting a trait for genes outside the trait’s

eQTL. Those genes have essentially been assigned with negligible prior probabilities

of being underlying genes, or p0 → 1, and then overlooked in Bayesian analysis. In

this way, p0 helps to preserve eQTL distribution pattern for the over 6000 expression

traits. Most eQTL studies have showed that eQTL are distributed highly unevenly

across the genome: most genomic regions contain one or two eQTL; a small portion

are eQTL ‘hot-spots’, each affecting hundreds of traits. In our approach, genes in the

former regions are assigned with p0 < 1 for only a few traits; while genes in hot-spots

will have intermediate p0 for many traits.

Figure 4.1B shows fm for GCS associated with 109668 pairwise relationships from

eQTL study. The probability density has a little trend to increase as GCS increases.

There is a sharp contrast when it is compared with f0 (Fig 4.1C), whose density

is flat for most scores, but drops suddenly when scores are larger than 5000. To

estimate the posterior probability as formula (4.3), actually fm and f0 were estimated

separately in each of the 12 groups. They differ from each other but generally adopt

the characteristics of the pooled fm and f0 shown in figure 4.1. These differences

between estimated fm and f0 support our assumption about the connection between

functional relatedness and transcriptional regulation.

Though the probability as an underlying gene for a few genes can be negative,

which has been noticed since the introduction of the procedure (Efron et al., 2001),

the maximum of such probabilities for genes in a single eQTL, denoted as maxP ,

seems desirable for most eQTL. Figure 4.1D shows their histogram.
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Table 4.1: A singe gene as the most probably gene for large number of traits
gene max1 all2 annotation3

YNL067W 92 294 Protein component of the large (60S) ribosomal subunit
YNL069C 116 367 N-terminally acetylated protein component of the large

(60S) ribosomal subunit
YBR154C 146 436 RNA polymerase subunit ABC27, common to RNA poly-

merases I, II, and III; contacts DNA and affects transacti-
vation

YNL096C 224 325 Protein component of the small (40S) ribosomal subunit
YOL077C 284 452 Nucleolar protein, constituent of 66S pre-ribosomal particles

1 number of traits mapped not the gene with the gene as the most probable underlying
gene
2total number of genes mapped onto the gene
3from http://www.yeastgenome.org/
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When two trait genes have overlapped eQTL, there is chance that the two genes

associated with maxP in the two eQTL are a same one. Table 4.1 shows some extreme

examples, where a single gene is considered as the most probably underlying gene for

a large number of traits. They are unlikely to be explained by coincidence. It can

be noticed that most genes listed there are related with ribosome function, which

essentially suggests the process of protein synthesis will affect transcript abundance

of a large amount of genes. It is quite easy to understand: proteins push yeasts

through cell cycles, while cell cycle is tightly associated with genome-wide oscillation

of transcriptional activity (Klevecz et al., 2004). Variability in protein production

affects cell cycles and hence transcription.
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5.1 FDR control in MIM

Let pkj = Pr(Qkj = 1|Data) for j-th QTL of trait k, where Qkj = 1 denotes the

QTL is true, Qkj = 0 for otherwise. See the introduction chapter for details about

this quantity. Given a rejection region and a list of declared QTL, pFDR can be

calculated as (Storey et al., 2005)

pFDR =

∑K
k=1 1− Pk

K
(5.1)

Pk =

Jk∏
j=1

pkj (5.2)

where K is the number of traits with at least one QTL, Jk is the number of QTLs

declared for trait k. Thus, FDR is not for detected QTLs, but for the estimated

genetic architecture of traits. We think such FDR estimation procedure agrees with

the statistical procedure (sequential genome scan) to find QTL.

Storey et al. (2005) showed a way to declare QTL using a sequential genome

search while controlling a specific FDR. That is, the rejection region is estimated after

performing all sequential tests.

In order to do that, however, they pre-defined a value J = 2, the maximal number

of QTL for each trait, and did the genome scan for J times for each trait. In each

sequential genome scan, they calculated pkj as a function of the maximal likelihood

ratio statistic (LRS) across the genome for trait k. Since the LRS for the second

QTL is obtained conditional upon the existence of the first QTL, Storey et al.

(2005) considered pk2 as a conditional probability given Qk1 = 1, or pk2 = Pr(Qk2 =

1|Qk1 = 1, Data). Thus, after finishing J cycles, Pk, the joint probability that all J
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QTL of trait k are true, can be obtained as in formula 5.2. Pk are sorted in descending

order. The first K Pk are claimed as significant while controlling FDR at α, where K

is the maximal number of Pk such that pFDR ≤ α according to formula 5.1. For the

yeast data by Brem and Kruglyak (2005), the estimated rejection region included

K = 170 traits with the minimal Pk = 0.84.

Thus, if pkj < 0.84 for the j-th QTL of trait k, Pk will also be less than 0.84, and

trait k will not reside in the rejection region. This suggests that we can specify a

tuning parameter λ, in a way that if pkj ≤ λ for trait k in the j-th cycle of the genome

scan, the joint probability Pk will unlikely be one of the largest K joint probabilities.

We will discuss how to specify λ later. Suppose we have already had such a λ. If we

have pkj ≥ λ, we include Qkj into the candidate QTL pool. Qkj has not been declared

as significant yet. Significance tests will be made after finishing all the genome scan.

For pkj < λ, Qkj is still included in the candidate QTL pool; but no more QTL will

be searched for trait k in the following cycles of the genome scan. There are two

reasons for this stopping procedure.

• LRS tends to decrease for QTL detected in the later cycle of sequential

search. pkj, which is usually a monotonously increasing function of LRS,

tends to decrease as well. We generally do not expect that a true QTL’s

correlation pattern will show up when conditioning on the effect of dubious

QTL.

• If the value of Pk is brought down remarkably by a newly added pkj, this

would suggest that it is unlikely that trait k will have j QTL. It could be

very likely that it has j− 1 QTL; and it is not sensible to find more QTL.

Introducing λ, appearing to be ad hoc, has the following advantages.
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• It restricts the parameter space that we want to explore to find the opti-

mal solution. In the setting of sequential genome scan, introducing λ is

an attempt to avoid testing hypotheses that apparently tend to be null,

and thus to decrease the proportion of true null hypothesis in all the

hypotheses to be tested.

• It provides a stopping rule: stop searching for more QTL of trait k when

pkj < λ. The value of Jk (as in 5.2) is determined in the meanwhile. We

do not have to specify J , the maximal number of QTL per trait.

We summarize our proposal to claim as many QTL as possible given a FDR level

α in Algorithm 1.

In the algorithm, line 7 ensures that if the j-th QTL for trait k is claimed as

significant, all previous j−1 QTLs are also included. LRS and pkj generally decrease

as j increases. So line 7 is designed to deal with exceptions. Line 18 is designed

to deal with the cases that the specified λ is too stringent. This step allows a grid

search for the optimal λ, starting from a certain large value. ∆λ can be 0.05 or

smaller, depending on the computational burden to do additional genome scans and

to estimate the non-linear function between LRS and pkj.

In the QTL analysis for this yeast population, we can set λ = 0.8 from inspecting

Storey et al. (2005)’s results. For a general case, if we want to control FDR ≤ α,

we can set the initial value of λ at 1− α.

5.2 Borrow testing power from correlated traits

Lan et al. (2006) noticed that many transcripts with similar biological annotations
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Algorithm 2 FDR control in MIM

1: Obtain the null distribution of genome-wise maximal LRS using a permutation
test.

2: Forward selection of QTL main effects as in MIM. For Qkj, compare its LRS to
the null distribution to get pkj, and find all pkj ≥ λ .

3: Sort all pkj from largest to smallest such that p
(1)
kj ≥ p

(2)
kj ... ≥ p

(m)
kj (suppose that

m LRS are collected)
4: Let Γ be a rejection region, which is to be determined in the following steps.
5: for i = 1 to m do
6: include p

(i)
kj in Γ

7: for j′ = 1 to j − 1 do
8: if pkj′ is not in Γ then
9: include pkj′ in Γ

10: end if
11: end for
12: calculate pFDR as formula 5.1 given Γ
13: if pFDR > α then
14: remove all pkj included in this cycle (starting from line 5) from Γ
15: exit iteration
16: end if
17: end for
18: if all m pkj are in Γ and pFDR < α then
19: decrease λ by ∆λ and go to line 2 of the algorithm to collect more pkj

20: end if
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have linkage statistic peaks at the similar genomic location, though many peaks are

below the significant threshold. Such an observation is a perfect example for the joint

analysis of multiple genetic related traits.

The difference between the joint analysis of multiple traits and the single trait

analysis is that, a more complex model is used in the former approach: correlation

structure of multiple traits are explicitly modelled, and thus, data of these multiple

traits can be analyzed together. Such an approach could potentially increase the

statistical power of QTL detection and also the accuracy of QTL localization.

It is impractical to expand this approach to thousands of traits as in the case for

eQTL mapping. An alternative approach is to fit a multiple trait model for a smaller

cluster of correlated traits (Lan et al., 2003), however, this requires a procedure to

group traits. It is also possible to do dimension reduction using principle components

(Lan et al., 2003), however, it will be hard to interpret QTL for such composite

traits.

Here, I suggest an eQTL detection method in which

• each trait is analyzed separately

• information is borrowed from all traits with correlated expression profiles

in the sample

• correlation structure among trait phenotypes is not explicitly estimated

Kendziorski et al. (2006) suggested a new angle of expression QTL mapping

by borrowing statistical research effort in detecting differential expressed (DE) genes

from microarray data: instead of identifying QTLs for each expression trait one by

one, a ‘marker based’ approach is to test markers one by one for DE among sample

subgroups fixed with different genotypes at the marker. It is not a simple change in
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the order of testing. The key point is that many DE test procedures use information of

the complete set of expression profiles when testing the DE of a single trait. Optimal

discovery procedure (ODP) (Leek et al., 2006) is such a test.

Assuming each marker has G types of genotypes, we can number each genotype

from 1 to G. Let Mkj = g, g = 1, 2, ..G denote that the k-th marker of individual

j has the genotype g. Let yij be the gene i’s transcript abundance of individual

j, i = 1..m, j = 1..n. The expression profile of a single gene is written as yi =

(yi1, yi2, ..., yin). Define a set Jkg as all the j such that Mkj = g, i.e, the subset of

individuals who have genotype g on the k-th marker. Thus, yi = (yig), g = 1..G,

where yig = (yij)j∈Jkg
,i.e., a partition of yi according to individuals’ genotype at Mkj.

We will assume an independent normal distribution for each yij given a trait i.

Under the null hypothesis that all yij have a same mean, or no differential expression

among yig, we can write out the likelihood function as

L(yi; ui0, σ
2
i0) ∝ exp[−

∑n
j=1(yij − ui0)

2

2σ2
i0

] (5.3)

Under the alternative hypothesis that given the k-th marker, individuals in dif-

ferent Jkg have different mean expression level of gene i: uig, but the same variance

σ2
i1, the likelihood function for the data is

∏
g

L(yig; uig, σ
2
i1) ∝ exp[−

∑G
g=1

∑
j∈Jkg

(yij − uig)
2

2σ2
i1

] (5.4)

Following Storey (2005), we can calculate thk, the ODP statistics for expression
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trait h on marker k as:

thk =

∑m
i=1

∏
g L(yhg; ûig, σ̂

2
i1)∑m

i=1 L(yh; ûi0, σ̂2
i0)

(5.5)

where

ûi0 =
n∑

j=1

yij/n (5.6)

ûig =
∑
j∈Jkg

yij/ng, ng is the length of Jkg (5.7)

σ̂2
i0 =

n∑
j=1

(yij − ûi0)
2

n− 1
(5.8)

σ̂2
i1 =

G∑
g=1

∑
j∈Jkg

(yij − ûig)
2

n−G
(5.9)

Storey (2005) suggested that yij be centered around zero within each trait to ensure

5.5 is statistically justifiable. Thus, ûi0 = 0.

It should be noted that in formula 5.5, we insert yh into the likelihood functions of

each expression trait under both null and alternative hypotheses. That is the unusual

feature of ODP. However, in this way, any gene i with similar variation patterns as

gene h will contribute substantially to the ODP statistic of gene h. From formula 5.3

and 5.4, it is also clear that the contribution from gene i is weighted by its variance

under null and alternative hypothesis.

In 5.5, likelihood functions for different expression traits are summed together.

ODP statistic avoids explicitly modelling the correlation structure for multiple traits,

which can be over thousand traits in eQTL mapping settings, but is still able to

borrow statistical power from correlated traits.
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ODP statistic is explicitly designed to maximize the expected number of true

positive declarations with each expected false positive inference, and thus turns out

to be much powerful than other methods (Leek et al., 2006; Storey, 2005).

Based on ODP statistic thk, we can perform a forward selection for multiple mark-

ers (QTL) co-segregating with trait h.

1. Calculate thk for all traits across the genome.

2. Suppose that for trait h, thk is maximized at marker M(h1) in the 1st cycle of

the sequential search. Record the maximum as thM(h1). Perform the analysis

for all traits.

3. For each trait h, regress phenotypic values onto M(h1), and replace the value

of yhj with its corresponding residual in the regression. Center these new yhj

around zero so that
∑

j yhj = 0. Go back to step 1 to find M(hi), i = 2, 3..,

the marker where the ODP statistic for trait h is maximized in cycle i of the

sequential genome. Record the corresponding thM(hi), i = 2, 3..

4. Stopping rules for the sequential genome scan based on likelihood ratio statistics,

or F statistics can be applied to ODP statistics.

• We can follow Storey et al. (2005) by restricting ourselves in all

2-QTL models. thM(hi), i = 1, 2 are then compared with their null dis-

tributions (from permutation tests) to declare co-segregating markers

while controlling FDR at certain level.

• We can fix a type I error rate for genome-wise scan of a single trait and

obtain the corresponding threshold for thM(hi) through permutation

tests (Churchill and Doerge, 1994; Doerge and Churchill,
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1996). The sequential search for QTLs of trait h stops when the first

time thM(hi), i = 1, 2, 3... is below its threshold. pFDR, the average

probability of declaring a false multiple QTL model for a trait can be

obtained as in 5.1.
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