
ABSTRACT

CUSHER, AARON ANTHONY. A Design and Analysis Approach for Drag Reduction on
Aircraft with Adaptive Lifting Surfaces. (Under the direction of Professor Ashok Gopalarath-
nam).

Adaptive lifting surfaces, which can be tailored for different flight conditions, have

been shown to be beneficial for drag reduction when compared with conventional non-

adaptive surfaces. Applying multiple trailing-edge flaps along the wing span allows for

the redistribution of lift to suit different flight conditions. The current approach uses the

trailing-edge flap distribution to reduce both induced- and profile- components of drag with

a trim constraint. Induced drag is reduced by optimally redistributing the lift between the

lifting surfaces and along the span of each surface. Profile drag is reduced through the use

of natural laminar flow airfoils, which maintain distinct low-drag-ranges (drag buckets) sur-

rounding design lift values. The low-drag-ranges can be extended to include off-design values

through small flap deflections, similar to cruise flaps. Trim is constrained for a given static

margin by considering longitudinal pitching moment contributions from changes in airfoil

section due to individual flap deflections, and from the redistribution of fore-and-aft lift due

to combination of flap deflections. The approach uses the concept of basic and additional

lift to linearlize the problem, which allows for standard constrained-minimization theory

to be employed for determining optimal flap-angle solutions. The resulting expressions for

optimal flap-angle solutions are presented as simple matrix equations.

This work presents a design and analysis approach which is used to produce flap-

angle solutions that independently reduce induced, profile, and total drag. Total drag is

defined to be the sum of the induced- and profile-components of drag. The general drag

reduction approach is adapted for each specific situation to develop specific drag reduction

schemes that are applied to single- and multiple-surface configurations. Successful results

show that, for the application of the induced drag reduction schemes on a tailless aircraft,

near-elliptical lift distributions are produced which match the classical result for minimum

induced drag. Application of the profile drag reduction schemes produce solutions which

force the wing to operate in the low-drag-ranges of the natural-laminar-flow airfoil sections,

thereby lowering profile drag. The total drag reduction schemes use a curve-fit routine that

generates airfoil drag polars given flap angle and Reynolds number. The approximated drag

polars allow the prediction of profile drag values to be combined with induced drag values



to form a total drag function, which is utilized with a constrained nonlinear optimizer that

determines best flap angles for total drag and trim. The different drag reduction schemes

each produce independent flap-angle solutions and lift distributions for a given aircraft

configuration and operating condition, and provide valuable insight for aerodynamic design

and trade studies. The drag reduction approach is intended to be applicable to arbitrary

aircraft configurations, and can be adapted to use surface incidence, twist, and flap angles

as optimization variables, thereby creating a powerful and flexible aerodynamic design and

analysis tool.
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Chapter 1

Introduction

This chapter presents an introduction to adaptive aircraft concepts and unconventional

configurations which provides motivation for the current work. The first section discusses

adaptive aircraft, beginning with historical examples that provide early concepts relating to

the current methods. Several modern examples follow that show drag reduction potential

for more recent adaptive configurations. Multiple trailing-edge (TE) flaps are introduced

as a method for wing adaptation, and several examples are presented highlighting previous

studies using multiple TE flaps for drag reduction. The next section discusses unconven-

tional aircraft configurations, beginning with tailless aircraft to provide insight into their

potential and to highlight specific design considerations of tailless configurations. Multiple

surface and canard configurations are introduced next to show how multiple surfaces can

be used for drag reduction and also display some shortcomings of canard configurations.

The next section presents research objectives for this dissertation. Finally, an outline of the

dissertation is provided.

1.1 Adaptive Aircraft

1.1.1 Historical Examples

Aircraft that are designed to change shape in flight are said to be adaptive, indicating that

the geometry can be adapted to suit different operating conditions. The most common

examples of adaptive techniques used on modern aircraft occur on the wings, or primary

lifting surface. Methods for changing the shape of an aircraft’s wings have been employed
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since the earliest designs. Consider the 1903 Wright Flyer, the first heavier-than-air machine

to achieve sustained powered flight.2 The Wright Flyer used a system where the pilot

lay on a cradle that shifted sideways on tracks to cause wing warp.3 The wing warping

was a physical twisting of the wingtips by a pulley system attached to the cradle, and

provided lateral control of the aircraft. As time progressed, aircraft design tended toward

flap-type control surfaces, in which a portion of the wing surface is hinged to modify the

surface’s shape and overall lift. In 1908, Glenn Curtiss made the first flight of his June

Bug aircraft, which had flap-type lateral controls.3 These Curtiss ailerons marked an early

advance in lateral-control ability beyond the Wright brothers’ wing warping, and ushered in

a mainstay technique for wing adaptation. Today, virtually every aircraft design uses some

form of hinged surface for control purposes. These control surfaces have grown so familiar

that aircraft utilizing them are seldom considered adaptive aircraft. However common,

these methods for controlling the aircraft represent the earliest forms of wing shape being

changed to adapt an aircraft for different flight conditions.

Shape change of wings have been employed not only for directional, lateral, and

yaw control of the aircraft, but also for tailoring aircraft performance to suit specific flight

regimes. For example, an aircraft typically encounters its lowest velocities during take-off or

landing to ensure the safety of the aircraft and its passengers or cargo. To accommodate the

slower speed, high-lift systems are used on the leading and trailing edges of wings. Typically,

high-lift devices consist of trailing-edge flaps and leading-edge slats which are deflected

symmetrically to increase the curvature of the wing, thereby increasing its maximum lift

potential. High-lift systems are common amongst general aviation, commercial, and military

aircraft and are often the only way for an aircraft to adapt itself for different flight conditions.

However, less common methods of wing adaptation exist, such as variable wing sweep,

which was used by the Air Force’s supersonic F-111 aircraft.3 Sweeping the wings forward

benefited performance when flying at low subsonic speeds, such as for take-off and landings,

while sweeping the wings back reduced drag during supersonic flight. While unconventional,

variable wing sweep has proven to be a successful method for adapting an aircraft for

different flight regimes. Evidence for this is shown by the longevity of the Grumman F-14

Tomcat, which has been operational in the United States since the early 1970s.

Natural examples provide motivation and insight into the potential for adaptive

configurations. Birds of every species use their ability to change wing shape, size, and
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angle to gain superior control and efficiency. Similar to the way humans use their senses

and coordination for balance, birds almost continuously change their bodies as they fly,

adapting to variations in speed, altitude, and endurance. For example, they can tuck their

wings into their bodies for high speed flight, or puff out their feathers and camber their

wings to produce high lift and drag for deceleration and slower speed. Further, they have

the ability to shift their weight fore and aft to produce a variable center of gravity, providing

stability over a wide range of flight conditions. When considering the potential for adaptive

configurations, birds should be considered as the ultimate example. In fact, researchers

such as Spillman4 have used birds as motivation for adaptive spanwise camber studies and

indicated drag reduction benefits for adaptive wings versus similar fixed wings.

1.1.2 Modern Examples

As the demand for efficient aircraft increases, adaptive configurations which can easily

tailor themselves for low drag at different flight conditions become likely substitutes to

fixed configurations. Several modern examples exist which attempt to reduce drag through

the use of adaptive surfaces. Zink, Love, and Youngren5 presented results for an adaptive

tailless aircraft aircraft which uses mission adaptive trailing-edge flaps and fuel state control

through fuel pumping. The flaps used on this configuration included both conventional

flaps and conformal flaps that provide smooth, continuous camber change and allow for flap

twisting. Results for this large, high-endurance adaptive configuration (wing area = 1717

sq. ft. and wingspan = 181 ft.) showed that between 5 and 15% increase in range could be

achieved by using optimal flap scheduling and fuel pumping. This increase in range relates

to hundreds of miles gained through the use of these adaptive methods.

In 2004, Neal and Good et al.6 presented wind tunnel test results for a fully

adaptive aircraft configuration. The adaptive model used for that study was designed to

achieve large scale wing shape changes, including variable sweep, span, and twist. Tests

were conducted to investigate the drag response of five specific configuration examples, each

with a different combination of wing sweep angle, wingspan, and wing twist distribution.

Wind tunnel results showed that the different configurations resulted in minimum drag

over wider CL range then a similar fixed configuration. The authors concluded that using

a configuration which can change shape results in low drag, with specific benefits shown

through changing wing sweep and span.
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Ricci and Terraneo7 presented results for an Active Adaptive Wing Camber (AAWC)

concept, which is based on a device that is able to continuously change the camber of a

wing. The AAWC concept uses traditional leading-edge and trailing-edge devises to change

the camber of the wing at multiple locations along the wingspan. An optimizer is employed

for determining the spanwise camber distribution for minimum induced drag. The authors

theorize that using such an adaptive concept leads to improved aerodynamic efficiency,

increased Mach number capability, improved buffet boundary, increased operational flexi-

bility, reduced structural weight, and in general reduced fuel burn. Results were presented

for a three-surface aircraft which had 12 camber design points on the wing. Results for this

aircraft showed induced drag reduction ranges from 15.17% to 5.9% when using the AAWC

concept versus using a similar configuration with standard control surfaces.

The above examples highlight some modern attempts at adaptive configurations

for low drag which are similar to the methods derived for this work. Each example presents

a different concept for wing adaptation, however the results are the same. Drag is reduced

when implementing a well designed adaptive concept versus a standard fixed configuration.

These examples provide motivation for exploring adaptive configuration concepts and show

potential for their use.

1.1.3 Multiple TE Flaps

Trailing-edge flaps are a simple and effective methods for wing adaptation, and are very

familiar to modern aircraft design. Multiple trailing-edge flaps distributed along the span

of a wing builds on these benefits and has great potential for drag reduction. Just as a

single flap uses camber change to affect the lift properties of a wing over the flap area,

several trailing-edge flaps may be used in conjunction with one another to change the

camber of the entire wing span. This adaptive camber change technique can be used to

redistribute of lift of a wing for optimum drag. Benefits of this adaptive method has

been shown in several studies,4,8–11 and adaptive trailing-edge flaps are used frequently

on high performance sailplanes today. While simple, trailing-edge flap deflections which

redistribute the wing lift are a powerful and efficient method for drag reduction, which

provides motivation for their usage. Figure 1.1 displays a wing with multiple trailing edge

flaps.
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Multiple TE Flaps

Figure 1.1: Wing displaying a multiple trailing edge flap configuration.

The N.C. State Applied Aerodynamics Group has conducted several adaptive wing

projects using multiple trailing edge flap configurations that have provided direction for

this dissertation. King and Gopalarathnam12 presented a method for determining ideal lift

distributions and flap angles for adaptive wings using distributed flaps. The methods were

designed to minimize induced and profile drag without trim constraints, as it was assumed

that the adaptive wings were part of a wing-tail configuration and the tail would be used

for trimming the airplane. Ideal lift distributions were first determined from aerodynamic

theory, then flap angles were determined to produce lift distributions that matched the ideal

distributions. This method was shown to be successful for drag reduction on both planar

and non-planar wings examples.

Cusher and Gopalarathnam13 extended the methodology developed by King and

Gopalarathnam by adding a trim constraint. This work explored in-depth the pitching mo-

ment contributions that multiple trailing-edge flaps have on an adaptive aircraft. Optimal

trimmed lift distributions were produced based on aerodynamic theory which solves for lift

distributions resulting in minimum induced drag with constraints, and flap angle setting

were determined to produce lift distributions to match. Induced and profile drag mini-

mization routines were developed. The method was applied to an example tailless aircraft

configuration to highlight the capabilities for producing reduced drag and trim. Segawa

and Gopalarathnam14 conducted similar studies on roll control of a multiple TE flap con-

figuration. In those studies the TE flap distribution was used for determining optimal lift
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distributions with lateral rolling moment constraints. Shipley and Gopalarathnam15 further

studied multiple TE flap configurations by considering static aeroelastic effects of adaptive

wings.

Several other adaptive airfoil and wing studies have been conducted at N.C. State

relating to multiple TE flaps, including the development of an automated cruise flap by

McAvoy and Gopalarathnam.16 This automated cruise flap uses a sense-and-adapt routine

which analyzes pressure readings taken from the upper and lower surfaces of the airfoil to

optimally position the airfoil stagnation point for low drag. Stability and control issues of

a wing with automated cruise flaps were addressed by Vosburg and Gopalarathnam17 as

well as Cox, Gopalarathnam, and Hall.18,19 Jepson and Gopalarathnam20 conducted wind

tunnel experiments of a wing with multiple automated cruise flaps.

The efforts presented above show the power and potential for using multiple TE

flaps as a wing adaptation method. They provide valuable insight into the fundamentals

necessary for successful drag reduction approaches and give the background for the work of

this dissertation.

1.2 Unconventional Configurations

1.2.1 Tailless Aircraft

Over the past 100 years, although most aircraft have been designed with a wing (as the

primary lifting surface) and an aft tail (for stability and trim), there have been several un-

conventional configurations. Tailless aircraft are examples of unconventional configurations.

However modest, tailless configurations have found popularity along side tailed configura-

tions in particular applications. These applications include sailplanes and gliders, light

airplanes, unmanned aerial vehicles (UAV), high-speed military planes, supersonic airlin-

ers, and hypersonic re-entry vehicles.21 One need not look any further than the Northrup

B-2 “stealth”-bomber in order to get a sense of the potential that future tailless designs

hold. And because only one lifting surface is used, it has often been proposed that drag

benefits should be realized and design costs kept lower when implementing a tailless design

verses a comparable tailed design.22 Despite these positives, tailless configurations have seen

limited use in general aviation and commercial aircraft design, most likely due to inherent

complexity in the aerodynamic design of tailless aircraft and perhaps also due to the over-
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whelming history of tailed-aircraft use, giving indication of the need for the advancement

in tailless design technology.

One hindrance to the development of tailless aircraft is the idea that these aircraft

present difficulty for achieving longitudinal stability and trim, as pointed out by Kroo.23

With seemingly limitless parameters used in modern aircraft design, including wing and tail

geometry variables, engine size, and operational parameters for several flight conditions, it

is understandable that the conservative tailed design has stood the test of time as it satisfies

trim with little optimization necessary.24 However, analysis by Kroo has shown that the

removal of an aircraft’s tail can result in aircraft gross weight, fuel consumption, and direct

operating cost reduction when compared to similar tailed configurations.24 And further, by

employing the design philosophy of Reimar and Walter Horten of Germany that has the lift

at the wing tips nearly zero and utilizes twist to push much of the lift inboard, a tailless

aircraft that is very stable longitudinally is possible.22 In fact, this method describes the

classic bell-shaped lift distribution that is typical of successful designs employed on modern

tailless aircraft.

Although tailless aircraft have found most favor with UAV and military applica-

tions, there is evidence that such a configuration may one day be utilized by the commercial

airline industry. The Boeing Company, in a joint venture with NASA, has recently been ex-

ploring a “blended-wing-body” (BWB) concept that has shown preliminary improvements

in airliner efficiency.22 Boeing studies have shown 15% reduction in sized take-off weight,

20% improvement in L/D, 27% reduction in fuel usage, 27% lower thrust, and 12% lower

operating empty weight when compared to a similar tailed design.25 The design has a

large delta-shaped wing/fuselage center section which accommodates a two-story passenger

cabin. Such a design leads to reductions in root bending moment stresses, as the fuselage is

largely incorporated in the wing section. It seems that this a design most suited for a very

large airliner, however negatives such as a large, windowless cabin may lead to passenger

discomfort, and need to be addressed.

Figure 1.2 displays an adaptive tailless aircraft with multiple TE flaps along its

span. Noted is the location of the aerodynamic center to highlight its importance for suc-

cessful design. Similar adaptive tailless configurations will be studied in upcoming chapters

of this dissertation to show drag reduction methods. A single surface configuration offers
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Figure 1.2: Planform of wing with multiple trailing-edge flaps (right side shown). Location
of wing aerodynamic center is marked.

simplicity for describing specific aspects of drag reduction schemes with trim constraints,

and highlights the aerodynamic trade-offs associated with constraints.

1.2.2 Canard and Multiple-Surface Configurations

Multiple-surface configurations have been studied extensively in the past, where Prandtl’s

biplane equation26 served as the first popular approach for induced drag prediction. Noted

for its simplicity, the biplane equation assumes elliptically loaded surfaces and results in span

efficiency that varies with changes in span and vertical gap ratios alone. While Prandtl’s

equation enabled several early studies, modern analysis methods have shown that elliptical

distributions on each surface, particularly those operating in the downwash field of an-

other surface, do not necessarily result in minimum induced drag. Several researchers have

provided modified versions of Prandtl’s equation27–29 for multiple surface configurations,

each presenting steps forward in understanding optimal spanwise lift and surface lift ratios.

Research performed by Kroo and McGeer30 on conventional, tailed and canard configura-

tions presented comparisons of surfaces twisted for minimum induced drag and trim, and

highlighted shortcomings of canard configurations. Most notable is the inability for canard

configurations to achieve the low induced drag values of comparable tailed configurations
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at the same static margins, due to the forward center of gravity location required by the

canard.

Three-surface configurations provide unique opportunities for aerodynamic anal-

ysis, as the additional surface adds variables for solving optimal lift with trim constraints.

With three surface lift variables available, there are infinite possibilities for producing lon-

gitudinal trim, thus allowing for optimal lift and trim to occur simultaneously. This redun-

dancy in design variables has led to interest in three surface aircraft, as indicated by several

references.31–33 Goodrich, et al.,34 studied a three surface aircraft optimized for induced

drag and trim. In that study, the incidence angles of the three surfaces were determined

using a linear optimization procedure similar to that developed here, and the suggested

incidence angles resulting in slightly negative loads on the aft tail.
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Figure 1.3: Example three surface airplane with eight adaptive trailing-edge flaps.

Figure 1.3 displays an example three-surface aircraft using multiple TE flaps on

each surface as a method for wing adaptation. The drag reduction approaches presented in

this dissertation will study similar adaptive configurations and present aerodynamic analysis

of adaptive three-surface aircraft. Previous study of multiple surface optimization27–34 has

shown both positives and negatives for their usage, and indicate complexity for the design of

adaptive multiple-surface aircraft with constraints. The research in this dissertation presents

an optimization procedure that seeks to simplify the aerodynamic design and optimization

process and give insight into the benefits and pitfalls of multiple surface configuration.
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1.3 Objectives of Dissertation

The focus of this dissertation is the development of a design and analysis method for adap-

tive subsonic aircraft utilizing multiple TE flaps. Previous adaptive wing studies performed

at N.C. State University are built upon which use the concept of basic and additional lift

to linearize flap-deflection effects on spanwise lift and downwash distributions. The current

approach seeks to exploit the drag-reduction potential shown by the previous approaches

to create a more universal aerodynamic design and analysis tool for determining optimal

lift distributions and reduced drag.

Specific objectives of this research were to:

1. Formulate the problem using standard mathematical definitions and follow constrained

minimization theory for determining optimal flap deflections.

2. Develop methods to universally accept single or multiple surface configurations and

optimize TE flap angles for minimum induced, profile, and total drag.

3. Allow the addition of longitudinal trim constraints and solve for optimal TE flap

angles for minimum trimmed drag.

4. Develop a drag polar approximation routine to accurately predict profile drag of a

NLF airfoil, and use the approximate drag polars for lowering profile and total drag

of a multiple TE flap configuration.

5. Produce methods that allow for several aerodynamic optimization variables, including

TE flaps, wing twist, and wing incidence.

6. Show results of the drag reduction methods applied to a tailless aircraft and highlight

how trim constraints affect drag on a single surface.

7. Show results of the drag reduction methods applied to a three-surface aircraft to

highlight the benefits of additional surfaces for producing minimum drag and trim

simultaneously.
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1.4 Outline of Dissertation

Chapter 2 presents background and methodology information pertaining to the develop-

ment of drag reductions schemes applied to multiple TE flap configurations. Background is

provided for well-known applied aerodynamic concepts, including: basic and additional lift

distributions, induced drag of superposed lift distributions, profile drag approximation of

airfoils, static margin and pitching moment constraints, and TE flap for drag bucket con-

trol. Further, a mathematical background is presented for relative minima of multi-variable

functions with constraints. The methodology section describes how pitching moment is

decomposed for the drag reduction methods, and how the TE flap angles are defined. Su-

perposition of lift distributions is described, and a drag polar approximation routine is

introduced. Finally, methodology is described for solving TE flap angles resulting in min-

imum drag, including: induced drag, trimmed induced drag, profile drag, and total drag.

This chapter addresses objectives 1 − 5.

Chapter 3 discusses the problem set up and results of the drag reduction methods

introduced in chapter 2 applied to a tailless aircraft. Specific drag reduction schemes are

provided which result in minimum trimmed induced, profile, and total drag. An example

configuration is provided and results are displayed for variations in wing sweep angle and

airfoil section. This chapter addresses objective 6.

Chapter 4 provides specific drag reduction schemes for multiple surface configu-

rations and presents results for an example three surface aircraft. These results discuss

the aerodynamic benefits of additional surfaces and show minimum drag results with trim.

This chapter addresses objective 7.

Chapter 5 summarizes the results of the research and presents conclusions. Possible

future work on adaptive configurations using multiple TE flaps is also provided.
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Chapter 2

Flap Angles for Minimum Drag

This chapter describes necessary background information that was used by this work as well

as the methodology for determining optimal lift distributions of an adaptive configuration

utilizing multiple trailing-edge flaps.

2.1 Background

This section provides background information on well-known applied aerodynamic and

mathematical principles that were used by this body of work. The background is pre-

sented in six subsections. Subsection 2.1.1 provides a description of the concept of basic

and additional lift distributions. Subsection 2.1.2 discusses how induced drag is derived

from superposed lift distributions. Profile drag of airfoils is introduced in the third sub-

section. The fourth and fifth subsections provide background information on constraints,

beginning with relative minima of multi-variable functions with constraints, followed by

airfoil static margin and pitching moment constraints. Lastly, subsection 2.1.6 presents a

brief review of how trailing-edge (TE) flaps are used to control the low-drag range of an

airfoil.

2.1.1 Basic and Additional Lift Distributions

Within the assumption of linear aerodynamics (linear Cl − α variation and linear Cl − Γ

relationship), the spanwise distribution of bound circulation (or alternatively, lift distribu-

tion) over a wing can be expressed as a sum of two contributions:35–37 i) basic distribution,
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Γb(y) and ii) additional distribution, Γa(y):

Γ(y) = Γb(y) + Γa(y) (2.1)

The basic distribution, Γb, is the Γ distribution at CL = 0, and is the result of

spanwise variation in geometric twist, aerodynamic twist due to camber, and flap deflections.

Further, the Γb distributions due to twist, camber, or flap deflection scale linearly with that

particular parameter, and individual Γb distributions can be added to equal the total Γb

distribution, as shown in Eq. 2.2

Γb(y) = Γb,twist(y) + Γb,camber(y) + Γb,flap(y) (2.2)

The additional Γ distribution, Γa(y), is due to changes to α for the wing with zero

geometric and aerodynamic twist, and therefore scales linearly with wing CL. Thus, the

additional Γ distribution for CL = 1, written as Γa,1, can be precomputed for a wing and

used to compute the Γa for any CL, as follows:

Γa(y) = CLΓa,1(y) (2.3)

If the component of the induced velocity along the freestream direction, v, is

assumed to be small compared to V∞, then the magnitude of the local loading is proportional

to the local Γ distribution:

L′(y) = ρ(V∞ + v(y))Γ ≈ ρV∞Γ (2.4)

leading to the following linear relationship between Γ and the load lift coefficient, Cl:

Cl(y) =
2Γ

cV∞

(2.5)

It is, therefore, possible to write the spanwise Cl distribution using superposition as follows:

Cl(y) = Clb,twist(y) + Clb,camber(y) + Clb,flap(y) + CLCla,1 (2.6)

2.1.2 Induced Drag of Superposed Lift Distributions

It is well known that for a given bound-circulation distribution, the induced drag, Dind, can

be obtained by integration along the wake trace in the Trefftz plane as follows:

Dind =
ρ

2

∫ b
2

−
b
2

Γ(y)w(y)dy (2.7)
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where, w(y) is the Trefftz-plane downwash distribution. This equation has been written for

a planar wing with a rigid wake spanning from y = − b
2 to y = b

2 .

In non-dimensional form, the induced drag coefficient, CDind
, can be written as:

CDind
=

1

2S

∫ b
2

−b
2

c(y)Cl(y)
w(y)

V∞

dy (2.8)

where w(y)
V∞

is the spanwise distribution of downwash angle in the Trefftz plane.

Noting that the w(y) distributions can also be constructed using superposition

of basic and additional distributions, just like the Cl(y) distribution of Eq. 2.6, the total

induced drag coefficient can be written using superposition. As an illustration, consider a

superposed lift distribution constructed from two distributions P and Q. The total induced

drag coefficient of the superposed lift distribution can be written as:

CDind
= CDPP

+ CDPQ
+ CDQP

+ CDQQ
(2.9)

where, for each term on the right-hand-side the first subscript indicates the source of the

c(y)Cl(y) distribution and the second subscript indicates the source of the w(y)
V∞

distribution.

For example,

CDPQ
=

1

2S

∫ b
2

−b
2

c(y)ClP (y)
wQ(y)

V∞

dy (2.10)

Further, using Munk’s mutual drag theorem,38 the expression for total induced

drag coefficient can be further simplified because CDPQ
= CDQP

, and so on.

2.1.3 Profile Drag Approximation for Wings

Profile drag at low subsonic Mach numbers is determined by skin friction when there is no

separated flow and associated pressure drag. To compute profile drag, the shape of an airfoil

needs to be considered, as airfoil shape determines the flow properties over the surface of

the airfoil. Reynolds number is a non-dimensional quantity which gives a measure the ratio

of viscous forces to inertial forces for a given flow field as follows:

Re =
ρV c

µ
(2.11)

where ρ is the density of the fluid, V is the velocity, c is a characteristic length (typically

the chord for airfoils), and µ is the coefficient of dynamic viscosity. In determining profile



15

drag for an airfoil, it is important to analyze the flow over the airfoil at the correct Reynolds

number.

The measure of profile drag for an airfoil is often plotted versus lift to form a Cd−Cl

plot, or drag polar. XFOIL39 is an analysis code which uses a high-order panel method with

an integral boundary-layer technique for determining aerodynamic characteristics, such as

lift and drag, of an airfoil. XFOIL takes an airfoil geometry as input and calculates Cl and

Cd for a range of angles-of-attack and an operating Reynolds number, outputting the drag

polar. For this dissertation, XFOIL was used to create the necessary drag polars. For the

range of operating conditions used in this study, XFOIL has been found to predict airfoil

characteristics that match well with experimental results.16,39

Airfoil drag polars can be used in combination with the spanwise lift distribution

to approximate the profile drag of a 3-D wing. Provided one or more drag polars describing

the Cl − Cd relationships of the airfoil section used on the wing, the spanwise Cd,pro(y)

distribution can be interpolated and integrated across the span as follows:

CDpro =
2

S

∫ b
2

0
c(y)Cd,pro(y)dy (2.12)

where S is the reference wing area and c(y) is the spanwise chord distribution. The factor

of 2 ahead of the integral accounts for the half-span integration limits. Several drag polars

may be used to increase the accuracy of the approximation to account for spanwise changes

in airfoil section and Reynolds number.

2.1.4 Relative Minima of Multi-Variable Functions with Constraints

Consider a function of several variables, f(x), which has first and second partial derivatives

everywhere. The necessary condition for a minimum in f is that the first derivative with

respect to all the variables x should be zero40 as follows:

∂f

∂x
= 0 (2.13)

The sufficient condition for a minimum is that the Hessian matrix composed of the terms

∂2
f

∂xi∂xj
, evaluated at the extrema from Eq. 2.13, be positive definite.

With the addition of an equality constraint, g(x) = 0, the constrained minimum

of x can be determined by using a Lagrange multiplier, λ. The new objective function to

be minimized is now written as H(x, λ) = f(x) + λg(x). The necessary condition for the
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constrained minimum is that the first derivative of H with respect to all x and λ should be

zero, as follows:

∂H
∂x

= 0, ∂H
∂λ

= 0 (2.14)

2.1.5 Static Margin and Pitching Moment Constraint

When designing a aircraft of any type, longitudinal stability and trim are of primary con-

cern. Traditionally most aircraft have been designed using a tailed configuration, which

utilizes a wing as the primary lifting surface and a tail for trim, stability and control pur-

poses. However, many configurations exist which lack this traditional design, such as tailless

aircraft and canard designs. For aircraft such as these it is of critical importance that the

lift distribution and airfoil section be designed with longitudinal trim and stability in mind.

Static margin (SM) is the distance between the aircraft center of gravity and neu-

tral point, and is typically non-dimensionalized using a reference chord length
(XNP−Xcg)

cref
.

Neutral point is the longitudinal location about which CM does not change with angle of

attack. It can be shown that the neutral point is at the centroid of the additional lift dis-

tribution. For positive longitudinal stability, the center of gravity should be designed to be

forward of the neutral point, thus requiring a positive value for static margin. The greater

value of SM, the greater the stability of the aircraft.

Static margin also plays an important role for longitudinal trim. An aircraft is

trimmed when there is no net pitching moment about the center of gravity, or CMcg = 0.

Equation 2.15 displays the relationship between SM and the moment coefficients for an

aircraft, and Fig. 2.1 provides a graphical presentation of the terms in this equation for an

airfoil. It is important to note that while an airfoil is displayed in the figure, the relationships

shown also apply to an aircraft configuration.

CMcg = CMNP
− CL

(XNP − Xcg)

cref

(2.15)
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Figure 2.1: Forces applied to an airfoil representing the relationship between pitching mo-
ments and SM.

It follows that for a given static margin and CL, the necessary condition for longitudinal

trim (CMcg = 0) can be rewritten in terms of a desired CMNP
, as shown in Eq. 2.16.

CMNP
= CL

(XNP − Xcg)

cref

(2.16)

Thus if an aircraft is required to fly at a desired CL with a known SM, the CMNP
needs

to be constrained as per Eq. 2.16. Because SM should be positive for longitudinal stability

and CL should also be positive, it follows that CMNP
will be a positive value.

For the current work it will be shown that CMNP
becomes the constraint on the

drag reduction schemes as it is critical for longitudinal stability and trim. Further, the

moment about the neutral point can be broken down into contributions from two distinct

sources: (1) the airfoil sections of a wing, and (2) the lift distribution of a wing. The benefit

of this breakdown will be evident when specific drag reduction schemes are introduced.
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2.1.6 TE Flap for Drag Bucket Control

For flight at low subsonic Mach numbers, wing profile drag is determined by skin-friction

when there is no separated flow and associated pressure drag. To minimize profile drag,

airfoils are often designed to have significant regions of favorable pressure gradient on both

the upper and lower surfaces to support laminar flow. Such natural laminar flow (NLF)

airfoils typically have a distinct low-drag range (LDR), or drag bucket, which is the range of

lift coefficients over which low drag is achieved. To extend the range of lift coefficients over

which low drag is achieved, a trailing-edge “cruise” flap is often used. First introduced by

Pfenninger,41,42 it has since been used on several airfoil designs,1,43–46 especially on airfoils

for high-performance sailplanes.44
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Figure 2.2: Example use of TE cruise flap to adjust the location of airfoil low-drag range:
(a) Geometry and (b) Drag polars from wind-tunnel experiments1 for the NLF(1)-0215F
airfoil at Reynolds number of 6 million.

Figure 2.2 illustrates the effect of a trailing-edge flap on a the low-drag range of

the NASA NLF(1)-0215F airfoil,1 used in this illustration as an example. It is seen that a

positive (TE down) flap angle results in the low-drag range moving to higher values of Cl

and vise-versa for a negative flap angle. Thus, it is seen that low profile Cd is achieved over a
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larger Cl range using a TE flap than without the flap. This benefit is limited to a small range

of flap angles, typically close to ±10 deg, beyond which flow separation at the flap hinge

results in large pressure drag, which negates the benefit from the reduction in skin-friction

drag. These limiting values of flap angle, when the flap is used for drag reduction, are

referred to in this dissertation as the most negative flap angle, δfmin
, and the most-positive

flap angle δfmax
. Using the results for the NLF(1)-0215F airfoil in Fig. 2.2 as an example,

low Cd can be achieved with δfmax
of +10 deg flap. For any value of operating Cl that lies

between Cllow
and Clup

, using a flap angle that is determined by linear interpolation between

δfmin
and δfmax

will result in a smooth variation of the TE flap angle with operating Cl,

while ensuring low Cd.

2.2 Methodology

Presented in this section are descriptions of the drag reduction techniques developed for

this work. Several important components of the work are described independently, and

are intended to be utilized in conjunction with one another when applied to a specific

problem. Because different configurations require different applications of the drag reduction

approaches, the methodology presented here is more generic and is intended to introduce

the fundamental drag reduction processes. The Results section will provide examples of

the methods applied to different configurations and specific drag reduction schemes will be

developed.

The methodology is presented in eight subsections. The first subsection shows how

aircraft pitching moment is defined as it pertains to this work. The next subsection presents

an approach for defining the TE flap-angle distribution. The third subsection discusses

superposition of lift distributions. Subsections four, five, and six present methodology for

solving flap angles resulting in minimum drag, including: unconstrained induced drag in

subsection four, trimmed induced drag in subsection five, and profile drag in subsection six.

Subsection seven introduces a routine for approximating the drag polar of a NLF airfoil.

Lastly, methods for determining flap angles for minimum total drag using a constrained

optimization approach are described in subsection eight.
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2.2.1 Pitching Moment Decomposition for a Flapped Configuration

The drag reduction methods developed by this work are intended to be applicable to con-

figurations typical of subsonic aircraft, including tailed, tailless, and canard configurations.

It is important to consider longitudinal trim when analyzing such configurations. Shown in

Sec. 2.1.5 was the relationship between the neutral point (NP), center of gravity (cg), and

static margin (SM) of an airfoil. These relationships can be similarly applied to an aircraft.

Shown in Eq. 2.17 is the moment about the NP and how it relates to the moment

about the aircraft center of gravity and static margin,
(XNP−Xcg)

c̄
.

CMcg = CMNP
− CL

(XNP − Xcg)

c̄
(2.17)

For trim, CMcg is set equal to zero, and leads to the necessary condition that CMNP
is pos-

itive, assuming a positive SM for longitudinal static stability and positive CL, as displayed

here:

CMNP
= CL × SM (2.18)

Multiple surfaces and multiple TE flaps provide several variables for altering the

pitching moment about the NP. These variables are expanded and grouped as follows to

solve for neutral point pitching moment resulting from a series of TE flap deflection angles

δf :

CMNP
=

N
∑

j=1

(CMsections,j
+ CMbasic,j

)δf,j + CMsections,0
+ CMbasic,0

= CL × SM (2.19)

In the above equation the subscript sections refers to the airfoil section pitching moment,

and the subscript basic refers to the pitching moment on the configuration caused by a

basic lift distribution. Note that, by definition, the additional lift distribution does not

cause any pitching moment about the NP. CMsections,j
and CMbasic,j

are the pitching moment

contributions from a unit deflection of flap j. Thus, each flap produces a pitching moment

from two sources, each of which can be calculated for a unit deflection and stored, then

multiplied by a flap angle to get the pitching moment response for any deflection angle.

The CMsections,j
term is integrated as:

CMsections,j
=

2

Sc̄

∫ yj,end

yj,start

Cmδf ,j
c(y)2dy (2.20)
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and the CMbasic,j
term is integrated as:

CMbasic,j
=

2

Sc̄

M
∑

k=1

∫ b
2
(k)

0
c(y)Clb,δf ,j

(y)∆x(y)dy (2.21)

The Cmδf ,j
term in Eq. 2.20 is the flap effectiveness parameter predicted by thin airfoil

theory, and the Clb,δf ,j
(y) term in Eq. 2.21 is the basic loading resulting from a unit deflection

of flap j. The summation,
∑M

k=1, accounts for a M -surface configuration, where b
2(k) refers

to the half span of surface k. The ∆x(y) term refers to the longitudinal difference between

the local airfoil section aerodynamic center and aircraft NP and is equal to (x(y) − XNP ).

Finally, the CM0
terms of Eq. 2.19 are the moments produced by the aircraft at zero lift

and zero flap deflections, and incorporates the unflapped airfoil section pitching moments

(sections) and moment produced by the unflapped basic lift (basic). These two terms are

constant once the planform, twist, and airfoils are determined and lumped into one term,

CM0
, for the remainder of this work.

The upcoming section will discuss the sections and basic pitching moment in more

detail, specifically in regard to how the flap angle distribution is defined. It will be shown

that these two contributions to the pitching moment become critical design variables when

solving for both minimum induced and profile drag.

2.2.2 Flap Angle Decomposition

Previous adaptive wing studies 12,47,48 by the N.C. State University Applied Aerodynamics

Group have shown it advantageous to decompose the flap angles on a wing into a full-span

deflection angle, labeled the mean angle, and a set of variation angles about the mean,

labeled the variation angles. For a single surface, the two can be combined to form the

aggregate flaps angles, as shown in Eq. 2.22 where the mean flap angle is designated δ̄f and

the variation flap angles δ̂f .

{δf} = δ̄f + {δ̂f} (2.22)

While the specific usage of these flaps will be shown later, it can be noted that for a single

wing, the mean flap affects the lift in a manner similar to wing angle of attack, and can be

used to change wing CL without affecting the basic loading. And conversely, the variation

angles can be used to alter the basic loading without changing wing CL. It will be shown

that the mean angle can be used to directly target profile-drag reduction while the variation

angles play a critical role in induced-drag reduction via lift redistribution.
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By defining the flap-angle distribution as the sum of mean and variation angles,

it offers increased opportunity for changing the pitching moment about the aircraft neutral

point. An an example, consider a single wing surface with the pitching moment variables

CMsections
and CMbasic

presented in the previous section. For a single surface, a mean flap

deflection will mimic a change in wing angle of attack. Because a change in angle of attack

does not affect the basic loading of a wing, it follows that a mean flap deflection will not

alter the pitching moment due to basic loading (CMbasic
variable). A similar argument would

be that the aircraft neutral point is the location where pitching moment is independent of

angle of attack. And because a mean flap deflection is similar to a change in angle of attack,

the moment due to lift is unaffected. However, because a mean flap deflection changes the

camber of the airfoil sections along the span, there will be a change in the CMsections
variable.

Conversely, the variation angles are defined such that they do not contribute to wing CL,

and thus do not affect the additional loading of the wing. They will, however, directly

influence the basic loading of the wing and thus the CMbasic
variable. Because the variation

angles also change the airfoil section of the wing, it follows that the variation angles will

also affect CMsections
. This is compensated for through the use of a weighting factor, which

will be described in more detail in an upcoming section. Briefly, the weighting factor forces

the summed influence on CMsections
of each individual variation flap to zero, thus effectively

canceling the effect of each individual flap section change on the CMsections
variable.

It is important to note that the mean and variation flap angle distribution is

defined per wing, and thus multiple surfaces present the opportunity for multiple mean flap

variables. Displayed in Fig. 2.3 is an example of an adaptive three surface configuration

using multiple TE flaps. The figure illustrates both the mean and variation flap angles,

showing examples on the wing surface. This particular example is considered to have

three mean flaps and eight variation flaps. While several mean flap variables offer added

opportunity for aerodynamic design and drag reduction, the additional variables increase

complexity when determining trim.
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Mean flap distribution Variation flap distribution

Mean flap Variation flap

Figure 2.3: Multiple surface configuration illustrating mean and variation flap examples.

When multiple surfaces are considered, a single mean flap deflection may result in a change

to the aircraft basic loading, and thus a change to CMbasic
. Care must be taken by the de-

signer to properly distribute the flap variables and take into consideration pitching moment

contributions from all sources when developing drag reduction schemes. While multiple

surfaces somewhat alter the usage of the mean and variation flap angles, benefits can be

shown supporting their use in developing the flap-optimization approaches.

2.2.3 Superposition of Lift Distributions

The advantage of using the superposition concept is that the net Cl distribution for a

particular wing CL can be posed in terms of the unknown flap angles.

Cl = CLCla,1 + Clb,0 +
N

∑

j=1

Clb,jδf,j (2.23)

where, Clb,0 is the basic Cl distribution of the unflapped wing system, and Clb,j is the basic

Cl distribution of due to a unit deflection of flap j.
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As shown in Sec. 2.1.2, CDind
can be computed for superposed distributions, and

can be expressed for all pairs of distributions of an N -flap system as follows:

CDind
= CDaaC

2
L + CD00

+ (CDa0
+ CD0a

)CL+
N

∑

j=1

(CDaj
CL + CDja

CL + CD0j
+ CDj0

)δf,j+

N
∑

i=1

N
∑

j=1

CDij
δf,iδf,j

(2.24)

which can be written compactly in matrix notation as:

CDind
= fTDf (2.25)

where fT is the transpose of f, and written as:

fT = [CL 1 δf,1 . . . δf,N ] (2.26)

and the drag interdependency matrix, D, is written as:



















CDaa CDa0
CDa1

. . . CDaN

CD0a
CD00

CD01
. . . CD0N

CD1a
CD10

CD11
. . . CD1N

...
...

...
...

CDNa
CDN0

CDN1
. . . CDNN



















(2.27)

in which the elements are defined as in Sec. 2.1.2. The elements of the matrix shown in

Eq. 2.27 can be precomputed using any wing analysis method, such as a vortex lattice,

lifting line, or Weissinger-type, which outputs spanwise lift and spanwise downwash angle

in the Trefftz plane. For the work described in this dissertation, the AVL49 code was used

for computing the necessary distributions.

Displayed in Fig. 2.4 is an example of a planar, tapered wing which illustrates the

superposition concept. The wing has five evenly spaced flaps distributed along the trailing

edge, each with a flap to chord ratio of 0.2. For this example, the wing is assumed to

have zero geometric and aerodynamic twist, and zero camber. Plot (a) shows the Cla,1

distribution for the wing, as well as Clb distributions (scaled 10 times, for clarity) for 1-deg

flap deflections for (i) flap two (δf,2) and (ii) flap five (δf,5). Only the right hand side of the

wing is shown due to symmetry.
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The Cl distribution for this wing at CL = 0.5 is displayed in plot (b) with δf,2

deflected six degrees and δf,5 deflected negative four degrees. The solution from direct

analysis is compared with the solution from the superposition of (i) Cla,1 scaled by 0.5,

(ii) Clb for δf,2 scaled by six, and (iii) Clb for δf,5 scaled by negative four. Following the

methodology of the previous section, the variables CMsections
and CMbasic

where calculated by

integrating the individual distributions and found to be −0.00921 and 0.02957, respectively.

These two components sum up to a total moment about the NP of 0.02036. Direct analysis

for the configuration with δf,2 deflected six degrees and δf,5 deflected negative four degrees

predicts a moment about the NP equal to 0.02080. Further, when induced drag is considered,

superposition of lift distributions for this example gives a value of CDind
= 0.00715. The

direct analysis CDind
value is 0.00711. This very good agreement between direct analysis

and superposition for both CMNP
and CDind

highlights the capabilities provided by the

superposition method.
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Figure 2.4: Illustration of superposition: (a) basic and additional Cl distributions and
(b) Cl due to superposition compared with Cl from direct analysis. CM,NP = 0.02036 from
superposition and CM,NP = 0.02080 from direct analysis. (c) RHS of wing showing multiple
TE flap geometry.

2.2.4 Flap Angles for Unconstrained Minimum Induced Drag

A necessary condition for a minimum in the induced drag is that the first derivatives of the

CDind
with respect to all the flap angles should be zero. As an illustration, the derivative

with respect to flap j is set equal to zero as follows:

∂CDind

∂δf,j

= (CDaj
+ CDja

)CL + (CD0j
+ CDj0

) +
N

∑

i=1

(CDij
+ CDji

)δf,i = 0 (2.28)

The resulting system of N equations can be expressed compactly as:
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





CD11
. . . CD1N

...
...

CDN1
. . . CDNN

















δf,1
...

δf,N











= −











CLCDa1
+ CD01

...

CLCDaN
+ CD0N











(2.29)

in which Munk’s mutual-drag theorem has been used to simplify the vector on the right

hand side.

In many cases, when the multiple flaps occupy the entire span of the wing, the

square matrix on the LHS of Eq. 2.29 is singular and has a rank (N − 1) for a wing with

N flaps. In other words, the N equations are not linearly independent. The reason for

this behavior is explained by considering a wing with all flaps having the same flap-to-

chord ratio. For this wing, the basic loading due to a 1-degree deflection of flap j can be

replicated exactly by instead deflecting all the other flaps to −1 degrees. This lack of linear

independence poses a problem for the solution of Eq. 2.29, because there are an infinite

number of solutions for the optimum flap angles. Clearly, an additional equation is needed

to solve the system.

Discussed in Sec. 2.2.2 was the decomposition of a set of trailing-edge flap de-

flections into two components: (1) a mean angle, and (2) a set of variation angles. This

relationship helps to solve the linear independence problem stated previously for a wing

with flaps along its entire span. By definition, the variation flap-angle distribution does not

contribute to the wing CL. This offers the opportunity to construct an equation which sets

the weighted mean of the variation flap angles to zero, as follows:

W1δ̂f,1 + . . . + WN δ̂f,N = 0 (2.30)

where the weighting factor for each flap angle takes into consideration the relative influence

of that flap on the lift of the wing. For a planar wing, the weighting factor for a given flap

may be determined by simply taking the ratio of the area of the wing affected by the flap

to the total wing area. An alternate and more rigorous approach that is also applicable

to non-planar geometries can be developed, especially when using an analysis method for

determining the elements of the D matrix. In this approach, the weighting factor for a

given flap is the ratio of the angle of attack for the basic loading with a unit deflection of

this flap to the sum of the basic-loading angles of attack for all the flaps, as follows:

Wj =
αb,j

αb,1 + . . . + αb,N

(2.31)
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where, αb,j is the angle-of-attack for basic loading with 1-degree angle of flap j. These

angles-of-attack can be determined as a part of the same analysis used in the computation

of the elements of the D matrix without the need for any additional analysis. With the

addition of the equation to Eq. 2.29, the system of equations for a solution of the variation

flap angles for minimization of induced drag becomes:













CD11
. . . CD1N

...
...

CDN1
. . . CDNN

W1 . . . WN























δ̂f,1
...

δ̂f,N











= −























CLCDa1
+ CD01

...

CLCDaN
+ CD0N

0























(2.32)

As seen, Eq. 2.32 has N + 1 equations but only N unknowns. This system can be solved

either by eliminating any one of the first N equations or by solving the over-determined

system using a least-squares approach. Note also that the variation flap angles have been

used in Eq. 2.32, because the mean flap angle does not affect the basic loading and hence

does not affect the CDind
of a single wing.

While the above equation displays a solution for variation flap angles resulting in

minimum induced drag, it should be noted that the method can easily be adapted to solve

for flap variables other then variation flaps. For example, if multiple lifting surfaces exist

and mean flaps exist on each surface, then these mean flap variables can be substituted

provided the drag interdependency and RHS matrix are constructed appropriately. Such

examples will be studied in upcoming sections, while here only the fundamental method is

discussed.

2.2.5 Flap Angles for Minimum Trimmed Induced Drag

Discussed in Sections 2.2.1 and 2.2.2 are the relationships between flap deflections and

aircraft pitching moment. It was stated that, for this problem, there are two types of

flap deflections, mean and variation flaps, and that each flap variable presents specific

opportunities to affect that aircraft pitching moment. The methodology of the current

section seeks to solve for minimum induced drag with a pitching moment constraint. While

the multiple flap angles present multiple methods for solving the problem, for now the mean

flap angle will be ignored and the variation flaps will be the focus. Later drag reduction

schemes will show the need for constraining the variation flap angles.
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Previous sections discussed aircraft pitching moment and trim for a configuration,

and have derived expressions for determining the pitching moment of an adaptive config-

uration using multiple TE flaps. Further, background information (Sec. 2.1.4) has been

provided for finding relative minima of multi-variable functions with constraints. These

ideas can be combined for the purposes of this section, with the constraint introduced as

the pitching moment about the aircraft NP which satisfies the trim requirement for a de-

sired SM and CL. Introduced earlier as Eq. 2.19 was the total pitching moment about the

aircraft NP for any given flap deflections. This equation becomes the constraint, and is set

equal to zero, g(δf ) = 0, leading to Eq. 2.33.

g(δf ) =
N

∑

j=1

CMj
δf,j + CM0

− (SM × CL) = 0 (2.33)

In the above equation the CMj
term includes the moment contribution produced by a unit

deflection of flap j, which occurs both from a change in airfoil section pitching moment and

from a change in basic loading. These terms were labeled CMsections,j
and CMbasic,j

and were

expanded in Eqs. 2.20, and 2.21.

For a configuration with N flaps, the flap angles resulting in minimum trimmed

induced drag can be obtained by solving the system of linear equations expressed in matrix

form as:



















CD11
CD12

. . . CD1N
CM1
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

























(2.34)

In the above equation the flap angles to be optimized can be variation flaps, mean flaps, or

a combination of the two. It is only necessary that the terms of the drag interdependency

matrix and constraint equation be calculated and stored appropriately. If only variation

angles are to be optimized, then the weighting equation displayed previously in Eq. 2.30 can

be inserted, reducing the contribution from the airfoil section pitching moment. While the

weighting equation forces zero change in surface CL, not airfoil section pitching moment, the

small positive and negative flap deflection combinations necessary to zero out the CL will

act similar for zeroing out the airfoil section pitching moment contribution. And any small
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pitching moment that results can be negated with slight mean flap deflections. Upcoming

sections will show how the weighting equation can be used to simplify the constraint value to

be the basic pitching moment contribution alone. The weighting equation is shown inserted

as the (N + 1)th row of Eq. 2.35.
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(2.35)

Solution of the overdetermined system results in variation flap angles producing minimum

induced drag and trim. Upcoming sections will show how this can be used in combination

with other techniques for other drag reduction schemes.

2.2.6 Flap Angles for Minimum Profile Drag

Discussed in Sec. 2.1.6 were cruise flaps and their ability to achieve lower profile drag for

NLF airfoils. A primary benefit for decomposing the flap angle distribution as in Sec. 2.2.2

is that a deflection of the mean flap is the same as deflecting a full-span flap, which is

similar to a TE flap on an airfoil. Thus, the mean flap can be used similar to a cruise flap

for shifting the LDR of the wing sections, and allows for profile drag reduction.

For profile drag reduction, a method for setting the mean flap δ̄f for a given wing

CL needs to be in place to ensure that the majority of the wing sections are operating within

the low-drag ranges of their respective sections. This is achieved by linear interpolation

between (Cllow
,δfmin

) and (Clup
,δfmax

) for the operating CL, as follows:

δ̄f = δfmin
+

CL − Cllow

Clup
− Cllow

(δfmax
− δfmin

) (2.36)

While this linear variation of δ̄f with CL works well for wings with NLF airfoils having well-

defined drag buckets, other variations may be desirable for airfoils such as those used on low

Reynolds number aircraft. By simply providing airfoil-specific values for (Cllow
,δfmin

) and

(Clup
,δfmax

), it becomes an easy task to determine a mean flap deflection angle for ensuring

low profile drag.
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Considering the system of multiple flap variables presented earlier for a single

surface, if the mean flap angle is fixed at a value for drag-bucket control (profile drag opti-

mization), then the variation flap angles can be constrained to produce minimum induced

drag and trim by utilizing the methodology presented in Sec. 2.2.5. However, if multiple

mean flap variables exist, for example on a multiple surface configuration, then it is pos-

sible for the mean flap variables to be solved using the same matrix optimization routine.

Consider a system of flap variables, which could be mean or variation flaps. Fixing a single

flap variable for the purposes of reducing profile drag results in additional known values

to the system. The flap variable that is known will be removed from the variable vector,

along with a row and column from the drag interdependency matrix. The removed column

multiplied by the known flap value is then subtracted from the RHS matrix.

Displayed in Eq. 2.37 an example of a system containing several flap variables, of

which flap j has been fixed to be a value of Xf,j . As shown, δf,j has been removed from

the variable vector as well as the row and column from the drag interdependency matrix

associated with δf,j . The RHS shows how the fixed flap value Xf,j is introduced back into

the system. For this example, the order of the system reduces by one and the remaining

flap variables can still be optimized for minimum CDind
and trim.
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[ Xf,j ]

(2.37)

The preceding methodology shows the flexibility of the drag reduction system for

reducing profile drag. The Results sections will explore different types of configurations and

utilize the methods presented to provide insight into aerodynamic design possibilities.

2.2.7 Drag Polar Approximation Routine

The previously introduced methodology has shown capabilities for minimizing both induced

and profile drag with a trim constraint. While these methods are powerful aerodynamic

analysis and design tools, there was a significant shortcoming in the method for profile

drag reduction. Because the drag polar of an airfoil changes with flap angle and Reynolds

number, it is difficult to accurately predict specific values of profile drag for a wing. The

methods for minimizing profile drag have focused on exploiting linear trends of the low-drag

ranges of NLF airfoils, and Sec. 2.2.6 has described how to ensure minimum profile drag

is achieved for a wing, however it does not give a profile drag value. That value is only

achieved once the optimum flap angles are determined and an airfoil analysis method such

as XFOIL can be utilized to predict the drag polars as a post-processing exercise. On the

other hand, induced drag results from the lift distribution alone. The methodology has
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shown that by pre-computing and storing the basic and additional lift distributions for a

multiple flap configuration, specific induced drag values can be solved for directly with flap

angles. Therefore, it becomes desirable to develop a method for approximating the drag

polar using curve fit, and using these curve fits for predicting the drag polar of an airfoil to

be used directly by the optimization scheme, thus increasing the design capabilities.

For the current work, the two most important factors influencing the drag polar of

an airfoil are flap angle and Reynolds number. Section 2.1.6 discussed the effect that flap

deflection has on NLF airfoils, shifting the drag bucket to higher and lower Cl values and

effectively increasing the low-drag range that the airfoil can operate in. Reynolds number

effects on the drag bucket differ from flap effects in that changes in Reynolds number

typically act to shrink or expand the drag bucket, as well as shifting it to higher or lower

drag values. Figure 2.5 displays the resulting change to the drag bucket of a NLF airfoil

with Reynolds number.
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Figure 2.5: Change in airfoil drag bucket with Reynolds number.

The figure shows that as Reynolds number increases, the drag bucket shrinks to encompass a

smaller Cl range and also shifts to lower minimum drag values. The shift to lower minimum
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drag values is explained by the classic result that local skin friction coefficient decreases with

increasing Reynolds number for incompressible laminar flow. Thus, the Reynolds number

increase results in the drag bucket shifting left on the Cd−Cl plot. The shrinking of the drag

bucket is a consequence of decreasing stability of a laminar boundary layer with increasing

Reynolds number, resulting in an increased tendency for the laminar boundary layer to

transition to turbulent boundary layer at higher Reynolds numbers. At higher Reynolds

numbers, even a small deviation of the operating Cl from the ideal Cl results in movement

of the transition location towards the leading edge, and increase in Cd.

The simple example displayed in Fig. 2.5 introduces several difficulties for approx-

imating a drag polar for an airfoil. Flow properties such as boundary layer transition and

separation location are difficult to predict accurately for a single example case without

considering flap angle changes and Reynolds number effects. Further, the relationships dis-

cussed above tend to be non-linear, as small changes in Reynolds number can cause large

drag changes, and are very dependent on airfoil design. For example, NLF airfoils are typ-

ically designed for a single operating Reynolds number and Cl, and thus the pronounced

low-drag range surrounding its design location. When operating outside of this condition,

the airfoil will mostly likely incur large drag penalties.

Adding further complication are the regions of the drag polar that exist outside

of the drag bucket. These regions are as important as the drag bucket, as design examples

may not be focusing on low profile drag, indicating that much of the wing will be operating

in the regions outside the drag bucket. These regions are non-linear, they change with

Reynolds number and flap angle, and are very specific to airfoil design. Each of these facts

needs to be considered for proper design. Figure 2.6 displays the regions of the drag polar

graphically, and splits it up into three distinct regions: (1) the upper region, (2) the drag

bucket, and (3) the lower region.
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Figure 2.6: Graphical representation of drag polar regions for an NLF airfoil. Re = 6e6 and
no flap deflection.

The routine for modeling the drag polar designed for this work focuses on the

three regions displayed in Fig. 2.6 and builds them independently from a common starting

point. Because the characteristics of the drag polar are very dependent on airfoil geometry,

several drag polars are created for an airfoil to define how the polars change with flap angle

and Reynolds number. These drag polars are selected to encompass the operating region

typical of the design problem. Displayed in Fig. 2.7 is an example of a set of polar files

that are provided as inputs to the curve-fit development routine. Plots (a), (c), and (e)

provide information for how the drag polars change with flap angle, while plots (b), (c), and

(d) provide information for how the drag polars change with Reynolds number. The drag

bucket limits for each drag polar are provided as input separately. Section 2.1.6 mentioned

that cruise flap effectiveness tends to be limited to ±10 degrees deflection, and therefore

plots (a) and (e) were chosen with these limits. The Reynolds number for this example

varies from 2- to 10-million, and were selected based on values that are expected for the

particular design problem.
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Figure 2.7: Example input polar files for the drag polar approximation routine. Plots (a),
(c), and (e) illustrate changes in TE flap angle. Plots (b), (c), and (d) illustrate changes in
Reynolds number. The different drag polar regions are highlighted.

The first step for constructing the drag polar is to determine a starting point on

the Cd−Cl axis, which is decided to be the center of the drag bucket. For a NLF airfoil, the

center of the drag bucket is typically designed to be the location of minimum drag. Reynolds

number has very non-linear effects on the drag of an airfoil, and thus unpredictably effects

the specific placement of the drag polar on the Cd − Cl axis. However, plots (b), (c), and

(d) of Fig. 2.7 show that as Reynolds number changes, the drag buckets are largely centered

around the same Cl value (Cl = 0.4 in this example). Thus, constant Cl value can be used

for each flap angle independent of Reynolds number which will relate to the center of the

drag bucket. The airfoil can analyzed at this Cl value for several Reynolds numbers to gain

a more accurate model for minimum drag location. For the displayed example, airfoil drag is
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computed for Reynolds numbers spanning 1-million to 11-million in increments of 1-million,

or 11 total Reynolds numbers. This was done for each flap-angle deflection (-10 degrees, 0

degrees, 10 degrees), thus resulting 33 total additional analysis runs. While this might seem

like a time consuming process, because only minimum drag approximations are required,

the entire drag polars do not need to be predicted for each of the 33 runs. Instead, the

airfoil is only analyzed at 33 different (Re,Cl) points, and Cd is stored for each. If an airfoil

analysis code such as XFOIL is used, this process takes little time. Linear interpolation is

used to approximate how the (Cd,Cl) location of the drag bucket center changes with both

flap angle and Reynolds number. This value, labeled (Cd, Cl)center, becomes the starting

point for constructing the drag polar and positions the plot.

The next step for constructing the drag polar is to define its shape. Highlighted

in Fig. 2.7 are the three regions of interest for each drag polar, namely the upper region,

drag bucket, and lower region. It is necessary to construct each of these regions for an

airfoil given a flap-angle deflection and Reynolds number. Each region is constructed in a

similar manor, beginning by isolating the data from the region for each drag polar provided

as input. The data from the drag polars are normalized to span a common area, then 6th

order polynomials are fit to each line. The coefficients for the polynomials are stored, and

linear interpolation is used for determining how the coefficients change with both flap angle

and Reynolds number. Once the polynomial coefficients are interpolated for a specific case,

they can be used to produce a line which represents that region of the drag polar. This is

done independently for each of the three regions, then pieced together to form the final drag

polar. The drag polar is positioned such that the center of the drag bucket corresponds to

the (Cd, Cl)center value interpolated previously. Matlab is used in this work for fitting the

polynomial coefficients and for the linear interpolation.

The optimization method for induced drag is powerful in that once the basic and

additional loading information is created, it can be stored and reused for future analysis.

Similarly, the method provided here for predicting the drag polar of an airfoil makes use of

a one-time process of creating specific data files that can be reused for any configuration

using that airfoil. The ability to predict the drag polar for an airfoil, given Reynolds number

and flap angle, greatly increases the design capabilities of the routine, as profile drag can

be optimized with along with induced drag to insure minimum total drag. Figure 2.8

illustrates an example adaptive wing and displays drag polars predicted by both XFOIL and



38

the approximate curve-fit method discussed here for comparison. This particular example

is a single planar wing with five trailing edge flaps distributed evenly along its span, and

is analyzed for a wing CL = 0.4. The top plot indicates flap angle for each section, and

Reynolds number is displayed below each drag polar. Reynolds number is changing in the

spanwise direction due to wing taper. As shown, the approximated drag polars match well

with the drag polars predicted by XFOIL, indicating the success of the method. The profile

component of CD predicted for this wing using the XFOIL drag polars is 3.335e−3, while

the value when using the approximate drag polars is 3.219e−3, providing further validation.

When the necessary data files are pre-computed, creation of the approximate drag polars

take insignificant amounts of time to compute. Conversely, producing the five polar plots

for this example using XFOIL takes several minutes on a fast computer.
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Figure 2.8: Example displaying drag polars predicted by the approximate method versus
drag polars predicted by XFOIL. RHS of wing geometry with multiple TE flaps also shown.
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2.2.8 Flap Angles for Minimum Total Drag

Total drag is defined in the current work as the sum of the profile and induced components

of drag. Methodology has been previously described for minimizing both induced and

profile drag independently. While these methods provide much opportunity for aerodynamic

insight and analysis, often these drag components present trade-offs in terms of total drag.

If TE flap angles are set so that induced drag is minimized, for example, profile drag may

suffer due to the airfoil sections operating outside their drag buckets. Similarly, if the flaps

are determined to ensure the majority of the wing is operating in the low-drag range, the

lift distribution may be skewed from optimal such that induced drag significantly suffers. It

becomes desirable, then, to create a method that chooses flap angles resulting in minimum

total drag.

The previous methodology of Secs. 2.1.2 and 2.1.3 provide the opportunity for a

drag function to be created which gives total drag for a configuration geometry, CL, and

series of TE flap angles. Provided the basic and additional loading information, induced

drag CDind
can be solved for given flap deflection angles and CL using Eq. 2.24. The

same flap angles are provided as input to the drag polar model of Sec. 2.2.7 and used

to approximate airfoil section drag polars. These drag polars are interpolated using the

spanwise lift distribution to form the profile drag component Cd,pro(y) of Eq. 2.12 and solve

for profile drag CDpro . The induced and profile drag components are summed as in Eq. 2.38

to produce total drag CDtot .

CDtot = CDind
+ CDpro (2.38)

A function which takes TE flap angles and CL as inputs and outputs total drag can be

used with a nonlinear optimizer for minimizing total drag with a specified constraint on the

CMNP
. The optimizer used by this work is the built-in Matlab optimizer function fmincon,

which finds minimums of nonlinear multivariable functions with equality constraints.

Using an optimizer for determining flap angles introduces limitations on the solu-

tion. First of all, very little aerodynamic insight can be gained from the solutions, as the

flap angles are not set based on any specific aerodynamic goal. The lift distribution and

airfoil sections, for example, are allowed to be altered by the optimizer and solutions result

that present no correlation between these variables and drag reduction. In fact, perhaps

the only analysis conclusion drawn might be that is that total drag is minimized by the
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optimized flap angles. Even this should be questioned, however, as a second important

limitation of optimizers is their sensitivity to starting values. For this problem, starting

values for the flap angles need to be provided to the optimizer. Upcoming sections will

show that the optimizer is reliant on the starting flap angles as they greatly affect results.

The sensitivity can be explained by considering the drag polar approximation routine de-

scribed in the previous subsection. That routine uses curve-fit techniques to build a drag

polar in three sections. Often times, especially for cases with particularly large and small

flap deflection angles, sharp corners exist on the drag polars at the junctions of the three

sections. The sharp transition areas can cause the optimizer to get stuck, and leads to the

optimizer finding minimums near to the starting values. While these limitations exist, the

optimized solutions do offer valuable comparisons for the drag reduction approaches which

focus on specific drag components, as they provide a value for lowest possible total drag.
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Chapter 3

Optimal Lift Distributions for a

Tailless Aircraft

Presented in this chapter are descriptions and examples of how the methodology of Chap-

ter 2 can be applied to a tailless configuration. Section 3.1 describes specific drag reduction

schemes that are derived from the previous methodology, and includes subsections dedicated

to induced drag reduction, profile drag reduction, and total drag reduction. Section 3.2 de-

tails the configuration information for the adaptive tailless aircraft used in this chapter for

illustrating the methodology. Section 3.3 presents induced, profile, and total drag results

for a range of CL values for different variations of the tailless aircraft configuration in the

first four subsections. Also displayed are flap-angle solutions and spanwise lift distribution

examples for each configuration variation. The final subsection presents an optimizer start-

ing value sensitivity study. Section 3.4 presents conclusions pertaining to the drag reduction

schemes applied to a tailless configuration.

3.1 Drag Reduction Schemes for a Tailless Aircraft

3.1.1 CDind
Minimization (Scheme A)

The first drag reduction scheme presented here is intended to minimize induced drag CDind
.

Aerodynamic theory provides the classical result for minimum induced drag of a planar

wing to occur when the spanwase loading, or spanwise lift coefficient Cl times the chord
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distribution c, is elliptical in shape. Therefore, the drag reduction scheme is intended to

produce near-elliptical loading on the wing using the flaps.

Section 2.2.2 decomposed the TE flap angle distribution into two unique flap types,

a full-span mean flap and a set of variation flaps. For a tailless aircraft these flap variables

offer different methods for affecting both the aircraft lift distribution and pitching moment

about the neutral point. A deflection of the mean flap is comparable to a change in angle-of-

attack, and thus results in no change to the basic loading of the wing. Therefore, elliptical

loading can be achieved by changing the variation flaps alone. The method for determining

flap angles resulting in minimum induced drag was displayed previously in Eq. 2.32, and

re-displayed here:
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(3.1)

where the (N + 1)th row is the weighting function presented in Eq. 2.30.

For this drag reduction scheme, there is no pitching moment constraint as purely

elliptical loading is desired. The variation flap vector displayed in Eq. 3.1 is solved, resulting

in variation flap settings that produce elliptical loading. These flap angles contribute to a

pitching moment, which can be solved using the variables CMsections
and CMbasic

presented

in Sec. 2.2.1. For trim, a desired SM is given and CMNP
is known. The mean flap can then

be altered to achieve this value, as a mean-flap deflection will not upset the basic loading

of the wing, but will produce a change to CMsections
. Lastly, α is varied to achieve desired

CL.

By following these steps, it is possible to create a tailless aircraft that maintains

elliptical loading (minimum induced drag), longitudinal trim, and desired lift. It should

be noted that no constraints were placed on the value of the flap settings or on α. It is

assumed that the airfoil design, twist distribution, etc., of an aircraft using this system

will be such that extreme flap angles will not be necessary. Minimizing induced drag is

typically desirable at high-CL flight conditions such as for long range, longer endurance,

and for climb.
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3.1.2 CDpro
Minimization (Scheme B)

Profile drag CDpro reduction is primarily focused on reducing skin friction, and ensuring

that the wing is operating in the low-drag ranges of the airfoil sections becomes the goal

of this drag reduction scheme. A mean flap deflection of a wing is similar to an airfoil flap

deflection, and can be used for drag bucket control. For this drag reduction scheme, the

mean flap is set to ensure minimum profile drag then the variation flaps are set to provide

the best induced drag while achieving trim.

To determine the mean flap deflection resulting in minimum profile drag, the

methods of Sec. 2.2.6 are used, specifically Eq. 2.36, reproduced here:

δ̄f = δfmin
+

CL − Cllow

Clup
− Cllow

(δfmax
− δfmin

) (3.2)

This equation uses linear interpolation for determining δ̄f , and works well for wings with

NLF airfoils having well-defined drag buckets. The requirement for trim at a given SM

determines the value of CMNP
. Because the mean flap deflection does not influence the

basic loading of the wing, the only pitching moment contribution will be to the CMsections

variable. The mean flap determines the value of CMsections
, which can be subtracted from

CMNP
along with the zero-lift moment CM0

determined by the configuration geometry,

shown in Eq. 3.3.

CMbasic
= CMNP

− (CMsections
+ CM0

) (3.3)

This CMbasic
is the moment that has to be generated by the basic lift to trim, and, is inserted

as a constraint on the variation flaps.
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(3.4)

The above equation solves for minimum induced drag with a constraint on the CMbasic
. This

ensures that the pitching moment produced by the variation flaps results in longitudinal
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trim. While this will most often not result in elliptical loading, the induced drag value

will be as small as possible while allowing for the mean flap to minimize profile drag. The

(N + 1)th row of Eq. 3.4 displays the weighting function for the multiple flap system. This

not only ensures that additional lift added by the variation flaps is zero, but also acts to

minimize effects to the CMsections
variable. Because the variation flaps do result in airfoil

section changes, CMsections
could be upset when setting the variation angles. The weighting

function acts to negate the affect on lift, and also negates the affect on CMsections
. However,

if trim is not achieved due to small sections moments introduced by the variation flap

angles, an iteration process is used to adjust the constraint on CMbasic
and re-solving for

the variation angles.

The above steps ensure that, for the desired SM, the wing will operate in the LDR

(minimizing profile drag), and set variation flaps which achieve the lowest possible induced

drag while trimming the aircraft. Just as SchemeA uses the variation flap angles to ensure

minimum induced drag and utilized CMsections
for trim, SchemeB conversely sets the mean

angle to ensure minimum profile drag and utilizes CMbasic
to trim.

3.1.3 CDtot
Minimization (Scheme C)

While Scheme A and Scheme B are successful for reducing their respective components of

drag, often times total drag CDtot is not minimized in either case. Total drag is defined as

the sum of induced and profile drag, and can suffer in either case because of requirements to

trim. For example, if the variation flaps are set to produce elliptical loading and minimum

induced drag, the mean flap needs to be set to trim the aircraft. The setting of the mean

flap may cause a large increase in profile drag, and thus large total drag.

Minimizing total drag requires the use of an optimizer as discussed in Sec. 2.2.8.

The total drag function which outputs total drag based on configuration geometry and flap

angles is used by the optimizer as the function to minimize, and the pitching moment about

the neutral point is the constraint. The total drag function makes use of the drag polar

model for predicting profile drag. Starting values provided to the optimizer are selected

to be those flap angles from either Scheme A or B, whichever produces lower total drag.

By choosing starting flap angles in this manner it increases the likelihood of the optimizer

finding lowest total drag, guarding against the starting value sensitivity limitation of op-

timizers discussed in Sec. 2.2.8. For this example, the built-in Matlab optimizer function



45

fmincon was used which finds minimums of nonlinear multivariable functions with equal-

ity constraints. The simplex algorithm was used as the optimization algorithm and the

tolerance level of the optimizer was set at 1.0e−9.

3.2 Configuration Information

In order to demonstrate the drag reduction schemes developed in this chapter, a hypothetical

tailless aircraft was used as the example platform with characteristics displayed in Table 3.1.

Table 3.1: Assumed parameter values for the example tailless aircraft.

Static Parameters Value

Gross weight (W) 14,200 N (3,200 lbf)
Mean aerodynamic chord (c̄) 1.01 m (3.31 ft)
Reference area (S) 12.0 m2 (130 ft2)
Wing aspect ratio (AR) 12
Static margin (SM) 10 % c̄
Number of half-span TE flaps (N) 5
Flap-to-chord ratio (all flaps) 0.2

Variable Parameters Value
1
4 chord sweep angle (Λ) 20 deg

35 deg
Airfoil section A - Cm0

= −0.0802
B - Cm0

= 0.055

As shown, certain parameters were varied, namely quarter-chord sweep angle and airfoil

section, in order to provide test cases pertaining to the specific methods used for drag

reduction and trim. The aircraft weight (W) along with flight CL were used to solve for

Reynolds number at each flap section location across the span of the tapered wing in order

to more accurately predict the effects of the flap deflections. As shown, the aircraft static

margin was chosen to be 10% of the mean aerodynamic chord. For each case, the number

of TE flaps along the wing half-span was selected to be five, with each flap maintaining a

flap-to-chord ratio of 0.2. Figure 3.1 displays the planform of this aircraft when Λ = 20 deg

and shows the equally-spaced TE flaps.
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b/2 = 6 m

Λ = 20 deg

c
r
 = 1.2 m

c
t
 = 0.8 m

Figure 3.1: Example planform for Λ of 20 degrees and 5 TE flaps per half span.

Indicated by the variable parameter section of Table 3.1 are the two airfoil sections

that were tested during this study, which are labeled A and B. Airfoil A is a cambered NLF

airfoil which has a zero lift pitching moment coefficient (Cm0
) of −0.0802. This airfoil was

selected due to its well defined low-drag range, or drag bucket, which surrounds the Cl value

of 0.5. Airfoil B is a reflexed NLF airfoil which was designed to have a positive Cm0
value

of 0.055. It was chosen to study an airfoil of this type because reflexed airfoils are often

used on tailless aircraft due to the need for positive lift while also maintaining near-zero or

positive pitching moment. Both airfoil A and B were created using the multi-point inverse

airfoil design method PROFOIL,50,51 which allows for the specification of airfoil Cm0
as a

design parameter.
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Figure 3.2: (a) Geometry and Cp distribution, airfoil A, (b) drag polar Re
√

Cl = 3e6, airfoil
A, (c) Geometry and Cp distribution, airfoil B, and (d) drag polar Re

√
Cl = 3e6, airfoil B.

Figure 3.2 displays the properties of these airfoils as predicted by XFOIL39 calcu-

lated at a Re
√

Cl of three million, as well as their corresponding geometries. It should be

noted that care was taken in the design of airfoil B to place the center of the drag bucket

at Cl = 0.5 in an attempt to mimic the lift and drag properties of airfoil A. By doing so, it

is believed that more accurate comparisons can be made between the airfoils pertaining to

drag reduction as well as sweep angle and Cm0
influence with respect to trim.
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As previously stated, the two airfoils whose aerodynamic properties are displayed

in Fig. 3.2 were utilized for the wing planform shown in Fig. 3.1 at sweep angles of 20

deg and 35 deg. This results in four specific configurations, which are presented here as

example cases. For each case, spanwise lift plots were produced and validated verses an

optimum distribution that was derived from a previous adaptive wing study. In that study,

methodology developed by R.T. Jones52 was followed which solved for optimal loading given

a constraint. For the current application, that constraint was modified to be the pitching

moment about the neutral point, therefore resulting in the optimal distributions presented

here.

3.3 Tailless Results

3.3.1 Cambered airfoil with 20 degree sweep

The first example discusses airfoil A applied to the tapered wing planform with a sweep

angle of 20 degrees. Presented in Fig. 3.3 are the total drag numbers for each drag reduction

scheme along with their induced and profile components for a range of CL values. Recall

that total drag is the sum of the induced and profile components. Also displayed is the

span efficiency for the configuration, which provides a measure of induced drag that is often

easier to distinguish. From this figure it is easy to deduce how successful each scheme is for

reducing either induced or profile drag, and how that relates to total drag reduction.
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Figure 3.3: Comparison of induced, profile, and total drag for different implementations of the minimization scheme. Results
presented for the adaptive tailless configuration with a cambered airfoil and 20 degree wing sweep. Span efficiency results are
also shown.
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Figure 3.3 shows some important and interesting results regarding the drag reduc-

tion schemes. Scheme A is focused on reducing induced drag, as is shown to be successful

in that objective compared to the other schemes. This is indicated by lower CDind
for the

entire CL range and a span efficiency of 1. For a single wing, a span efficiency value of 1 is

achieved through elliptical loading. While SchemeA acts well to reduce induced drag, there

are penalties in profile drag when compared to SchemeB, which is the scheme that reduces

profile drag. SchemeB is shown to have lower profile drag for the majority of the CL range,

which is expected. At the limits of the CL range Scheme B is shown to produce higher

profile drag then the other schemes, which is due to extreme flap angles and separated flow.

While SchemeB successfully reduced profile drag over the majority of the CL range, it was

shown that induced drag suffers. This is because the mean flap was set to ensure low profile

drag, and the lift distribution was set to trim, and is thus off-optimal.

Analyzing the results from SchemesA and B proves that each is working properly

to reduce either induced or profile drag. However, penalties for each scheme in terms of

the non-optimized drag component are evident. This leads to higher total drag for both

schemes. SchemeC optimizes the flap angles such that total drag is reduced, and the result

is shown in Fig. 3.3. While total drag is lower for this scheme, it is interesting to note that

both the induced- and profile-drag components are not minimized. Rather, the flap angles

find a balance between the drag components that leads to total drag reduction.

Further analysis of the drag reduction schemes is obtained from spanwise lift plots,

which are displayed for this example in Figs. 3.4 and 3.5. For each scheme the RHS of the

wing is plotted with spanwise Cl and overlaid drag polars as predicted by XFOIL. Above

each lift plot is a graph of the flap angles as predicted by each scheme. The y-axis is flipped

because traditionally trailing-edge down indicates positive flap angles. The lone arrowhead

on the right side of each flap angle plot indicates the mean flap deflection angle. Also

shown is an optimal Cl distribution for each case, indicated by the spanwise circles. For

Schemes A and C (plots (a) and (c) of the figures), the circles indicate elliptical loading.

For SchemeB the optimal Cl distribution is produced by following methodology developed

by R.T. Jones52 which solves for optimal loading given a pitching moment constraint.

A low CL case of 0.3 was chosen as an example for Fig. 3.4. Plot (a) displays

SchemeA, and shows that elliptical loading is achieved, and thus the high span efficiency for

this case. While induced drag is minimized for this case, it comes at the price of profile drag,
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shown by the highly negative flaps angles and wing operating outside of the drag buckets.

The airfoil used on this configuration is a cambered airfoil with a negative pitching moment

(Cm0
= -0.0802). To offset this moment the flaps need to be deflected negatively (upwards),

and thus the large negative angles. When profile drag is minimized the wing should operate

within the drag buckets, which is displayed in Scheme B. For this scheme, the flap angles

are more reasonable, with the mean flap angle only slightly negative. The shifting of the

drag buckets is evident in plot (b), as well as the lift distribution being off-optimal. Recall

that for this scheme the lift distribution is used to trim the aircraft, and thus requires more

inboard loading. Plot (c) presents a balance between the two previous schemes, as total

drag is reduced in SchemeC. Shown in the plot is that the Cl distribution is off-optimal, as

indicated by the line not matching with the circles. Also, the wing is operating in the upper

portion of the drag buckets, indicating some profile drag penalty. However, the penalties

for each drag component are balanced such that total drag is minimum.
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Figure 3.4: Spanwise Cl and drag polar plots to show how drag is reduced at CL = 0.3 for
each drag reduction scheme using TE flaps. RHS shown for the adaptive tailless configura-
tion with a cambered airfoil and 20 degree wing sweep.

Figure 3.5 presents spanwise lift plots for the high CL case of 0.7. Each of the

three drag reduction schemes are again represented, and similar arguments can be presented.

Plot (a) shows that once again elliptical loading is achieved, and that at higher CL more

negative flap angles are required to trim. This leads to more profile drag for this case. Plot

(b) displays the attempt to reduce profile drag. For this scheme, the mean flap is set such

that the wing is operating in the low-drag range, and the variation flaps are set to trim the

aircraft via the lift distribution. As shown by the most inboard flap, the off-optimal lift

distribution requires a large flap deflection and leads to degeneration of the drag polar due
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to flow separation. At high CL values this can often be the case as cruise flaps have limited

effectiveness. The spike in profile drag shown by Scheme B in Fig. 3.3 indicates the effects

of flow separation. The spanwise plot for Scheme C highlights the benefits for operating

without flow separation, as total drag is minimized for this CL with lesser flap deflection

angles. Again, the Cl distribution is off-optimal and the drag buckets are not perfectly

aligned for low profile drag, however a balance is achieved which reduces total drag on the

configuration.
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Figure 3.5: Spanwise Cl and drag polar plots to show how drag is reduced at CL = 0.7 for
each drag reduction scheme using TE flaps. RHS shown for the adaptive tailless configura-
tion with a cambered airfoil and 20 degree wing sweep.
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The analysis provided above presents insight into the drag reduction schemes and

their capabilities. It can has been shown that for this particular configuration, trimmed

examples reducing both induced and profile drag can be achieved. Aerodynamics is often

a science of trade-offs, which was displayed by the total drag results. If total drag is to be

lowest, the lift distribution should be designed to consider both induced- and profile-drag

components.

3.3.2 Cambered airfoil with 35 degree sweep

The second example case presents a 35 degree sweep configuration again using Airfoil A.

Changes in sweep provide interesting results for the drag reduction schemes because the lift

distribution is critical for trim on a tailless aircraft. With a larger sweep angle the neutral

point location moves further aft, and changes how optimal lift is distributed fore-and-aft.

Figure 3.6 displays similar results to the last example, showing the induced- and profile-drag

components of the drag reduction schemes over a range of CL values, and how they combine

for total drag.
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Figure 3.6: Comparison of induced, profile, and total drag for different implementations of the minimization scheme. Results
presented for an adaptive tailless configuration with a cambered airfoil and 35 degree wing sweep. Span efficiency results are
also shown.
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Figure 3.6 once again shows that Scheme A effectively minimizes induced drag,

and achieves a span efficiency of 1 for the entire CL range. Profile drag suffers for this

scheme, as expected, and leads to higher total drag. Scheme B presents interesting results

and shows that while profile drag is minimized as expected, the penalties to induced drag is

not as severe as in the 20 degree sweep case. This can be explained by considering that, for

this sweep angle the NP is shifted aft, and it turns out that a near-elliptical loading ends

up trimming the wing in Scheme B. Thus, Scheme B results in induced drag values similar

to Scheme A, and therefore lower total drag. Scheme C seeks to balance the induced and

profile components of drag to minimize total drag, which is does. However, the amount

of drag reduction is vary small, as Scheme B already is acting to reduce profile drag and

results in good induced drag numbers. Only minimal gains are seen by Scheme C for this

configuration.

The spanwise lift plots shown below in Fig. 3.7 for a low CL case of 0.3 provide

insight into the ideas presented above. Scheme A shows that elliptical loading is achieved,

however highly negative flap angles are required for trim and the wing is operating just out-

side the low-drag-range. This configuration uses the same cambered airfoil as the previous

example, and the negative flap angles compensate for the negative Cm0
. Plot (b) shows

Scheme B which acts to position the drag buckets for low profile drag. However, when

compared to Scheme B for the 20 degree swept wing in Fig. 3.4(b), the loading is spread

out more evenly along the span and is closer to elliptical. This shows how induced drag

does not suffer much for this configuration. Plot (c) shows that total drag is reduced using

flap angles which are very similar to those in plot (b), indicating that reducing profile drag

is most important for this particular configuration.
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Figure 3.7: Spanwise Cl and drag polar plots to show how drag is reduced at CL = 0.3 for
each drag reduction scheme using TE flaps. RHS shown for the adaptive tailless configura-
tion with a cambered airfoil and 35 degree wing sweep.

Figure 3.8 displays spanwise results for the high CL case of 0.7. Many of the same

arguments exist for this example, specifically that profile drag suffers in SchemeA and that

the loading for Scheme B is nearly elliptical, leading to Scheme B having lower total drag.

Because for each scheme the lift distribution is nearly elliptical, it follows that profile drag

reduction will be most important for minimizing total drag. An interesting note is that the

total drag reduction scheme, Scheme C, found flap angles resulting in lower profile drag

then SchemeB, as was shown in Fig. 3.6. This is due to approximations being used for the

drag polar model and possible unexpected results from flow separation. Considering plots
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(b) versus (c), total drag is very slightly lower for plot (c). However the poorly defined drag

polar shows that the most inboard flap experiences separated flow. Thus, it is more likely

that the flap angles from plot (b) avoid this separation and this result indicates limitations

of the approximated drag polar model.
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Figure 3.8: Spanwise Cl and drag polar plots to show how drag is reduced at CL = 0.7 for
each drag reduction scheme using TE flaps. RHS shown for the adaptive tailless configura-
tion with a cambered airfoil and 35 degree wing sweep.

The results of this section highlight specific attributes of the drag reduction schemes

and show the results are affected by changes in wing sweep. There are some clear benefits to

the higher sweep angle, specifically the ability to operate with nearly elliptical lift for each
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case. These ideas give general insight into design trends for tailless aircraft with cambered

airfoils.

3.3.3 Reflexed airfoil with 20 degree sweep

This section presents results produced by a tailless configuration with 20 degrees of sweep,

shown in Fig. 3.1, and with a reflexed airfoil section, Airfoil B. Information regarding the

airfoil section is presented in Fig. 3.2(c) and (d). It is interesting to study a reflexed airfoil

section for this problem because they are often used on tailless configurations which require

a nearly zero Cm0
due to the lack of secondary lifting surface. As shown, this reflexed

airfoil maintains some laminar flow along its upper and lower surfaces, and has a defined

drag bucket similar to the cambered airfoil. The Cm0
for this airfoil is 0.055.

Displayed in Fig. 3.9 are total drag results for this configuration over a range of

CL values. As expected, Scheme A results in lower induced drag and a span efficiency of

1 for the CL range due to elliptical loading. Profile drag suffers for this scheme at high

and low CL values, however at mid-range CL values, the profile drag is as low as that

from Scheme B. This result is coincidental, as the positive Cm0
of this airfoil will require

a slightly positive mean flap deflection for trim, and thus places the wing inside the drag

buckets of the airfoil section. SchemeB shows that when profile drag is minimized, induced

drag suffers particularly at low CL values. However, the lower profile drag of Scheme B

leads to lower total drag for the low and high CL cases when compared to Scheme A. The

most curious results are those of Scheme C, which minimizes total drag. While total drag

is primarily lower for the CL range, the drag results tend to jump around at low CL values.

This can be explained by the sensitivity that the optimizer used by this work has on input

flap angles. For example, at CL = 0.1 the starting flap angles provided to the optimizer

were those resulting in minimum induced drag (from SchemeA). The solution is optimized

and finds lower drag in the vicinity of the starting values, giving high span efficiency. At

CL = 0.3, flap angles from Scheme B are used as starting values, and the solution is

optimized with lower span efficiency. This particular example highlights the limitations of

the optimizer for finding minimum total drag, as it is very dependent on starting values.

Section 3.3.5 focuses on the starting value dependency of the optimizer and shows results

produced from different starting values to illustrate this limitation of the optimizer for the

example configuration.
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Figure 3.9: Comparison of induced, profile, and total drag for different implementations of the minimization scheme. Results
presented for an adaptive tailless configuration with a reflexed airfoil and 20 degree wing sweep. Span efficiency results are
also shown.
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Figures 3.10 and 3.11 show spanwise lift results for the example case and allows

further analysis of the drag reduction schemes. Figure 3.10 presents the results for the low

CL case of 0.3 for each scheme. Plot (a) shows that SchemeA does indeed result in elliptical

loading, however the wing is operating well outside the drag buckets, leading to increased

profile drag. Plot (b) shows the opposite, as the wing is operating in the low drag ranges of

the airfoil sections, but is very far from optimal, leading to increased induced drag. Plot (c)

shows results from Scheme C, and looks similar to plot (b). The flap angles for this case

are optimized starting with the flap angles from Scheme B, and minimal gains are shown

from there.
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Figure 3.10: Spanwise Cl and drag polar plots to show how drag is reduced at CL =
0.3 for each drag reduction scheme using TE flaps. RHS shown for the adaptive tailless
configuration with a reflexed airfoil and 20 degree wing sweep.

The high CL case of 0.7 is displayed in Fig. 3.11 for each drag reduction scheme.

For this CL each of the drag reduction schemes predict very similar solutions, as shown by

the shape of the lift distribution and the flap angles. An explanation for this result is that

both Scheme A and B coincidentally lead to similar flap deflections, which also happen to

be optimal for low total drag. The positive Cm0
produced by the reflexed airfoil used on

this configuration leads to similar mean flap angles required for trimming the aircraft when

elliptical loading is achieved and when the wing is operating within the low-drag range. As

a consequence of similar flap angles, the drag results are also similar.
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Figure 3.11: Spanwise Cl and drag polar plots to show how drag is reduced at CL =
0.7 for each drag reduction scheme using TE flaps. RHS shown for the adaptive tailless
configuration with a reflexed airfoil and 20 degree wing sweep.

This example provides interesting insight into the benefits of using an airfoil with

a positive pitching moment. It was shown that by using such an airfoil, flap angles predicted

by each drag reduction schemes will be similar, and lead to low total drag for each scheme.

Also shown by this example were limitations for using an optimizer for solving total drag.

Specifically, the optimizer is shown to be very sensitive to input flap angles and leads to

results that can be non-intuitive.
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3.3.4 Reflexed airfoil with 35 degree sweep

The final example presented for the tailless configuration is a sweep angle of 35 degrees

utilizing the reflexed airfoil, Airfoil B. Previous wing sweep analysis for the configuration

using the cambered airfoil concluded that increasing sweep allowed for load distributions

close to elliptical due to the shift in the fore-and-aft distribution of lift relative to the

NP. When using the reflexed airfoil, however, the positive Cm0
of the airfoil requires that

the lift distribution produce a nose-down moment for trim. This will lead to off-elliptical

loading, and thus induced drag penalties are shown by SchemeB in Fig. 3.12. The induced

drag penalties of Scheme B are not significant, however, and low total drag is achieved by

the profile drag scheme for the majority of the CL range. Scheme C shows results that

produce low total drag, while again displaying sensitivity at low CL values. The results

from Scheme C provides little insight, which is another limitation of using an optimizer for

minimizing drag.
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Figure 3.12: Comparison of induced, profile, and total drag for different implementations of the minimization scheme. Results
presented for an adaptive tailless configuration with a reflexed airfoil and 35 degree wing sweep. Span efficiency results are
also shown.
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The spanwise plots in Fig. 3.13 again show how the induced and profile drag

reduction schemes act to minimize drag at a low CL value of 0.3. As mentioned above,

when using a cambered airfoil the loading shown by plot (b) was nearly elliptical due to the

fore-and-aft distribution of lift relative to the neutral point. For the configuration of this

example, which uses the reflexed airfoil, plot (b) shows that the loading is far from elliptical,

and results in induced drag penalties. Plot (c) once again shows a solution similar to plot

(b), and indicates the influence that the starting values derived from Scheme B have on

the optimizer.
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Figure 3.13: Spanwise Cl and drag polar plots to show how drag is reduced at CL =
0.3 for each drag reduction scheme using TE flaps. RHS shown for the adaptive tailless
configuration with a reflexed airfoil and 35 degree wing sweep.
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For the high CL case of 0.7 displayed in Fig. 3.14, each of the spanwise lift plots

look similar. This indicates that each of the drag reduction schemes are acting similar to

reduce drag, and is a coincidental result for this configuration. The total drag plots shown

in Fig. 3.12 support this result, as for each drag reduction scheme at high CL the total drag

values are nearly the same.
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Figure 3.14: Spanwise Cl and drag polar plots to show how drag is reduced at CL =
0.7 for each drag reduction scheme using TE flaps. RHS shown for the adaptive tailless
configuration with a reflexed airfoil and 35 degree wing sweep.

The configuration discussed here displays similar results to those of the 20 degree

sweep case using the same airfoil. For the particular drag reduction schemes it seems that

there is little benefit increasing wing sweep.
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3.3.5 Optimizer Starting Value Sensitivity Study

Discussed in Sec. 2.2.8 was the sensitivity to starting values that the optimizer has when

determining optimal flap angles. Further, results presented in this chapter have highlighted

this sensitivity, and showed how input flap angles influence total drag solutions. This section

focuses on the optimizer sensitivity, and presents results from the total drag optimizer over

a range of CL values when provided different starting values. The configuration used in

this study is identical to that of section 3.3.4, which is the tailless aircraft with 35 degree

wing sweep and the reflexed airfoil section. Figure 3.15 shows drag values in a manner

similar to previous results. Total drag is displayed along with the induced- and profile-drag

components. For each case, the total drag reduction scheme (SchemeC) was used with the

specified starting flap values provided to the optimizer.

The obvious result shown by Fig. 3.15 is that, despite the fact that each case is

attempting to minimize total drag, different drag values are produced by each case. Clearly,

the optimizer converges on different minimums and produces very different solutions based

on starting values. As shown, the results from the case which uses starting values from the

induced drag reduction scheme maintain low induced drag. This is evident from the high

span efficiency over the entire range of CL values. On the other hand, the results shown from

the case using starting values from the profile drag reduction scheme show more induced

drag and less profile drag for the CL range. The last set of results shown is from the

optimizer with starting values of zero degrees for each flap. These results show values that

differ from the other two cases, and have neither low induced nor low profile drag for the

entire CL range. The case with zero flap angles as starting values is shown to produce

total drag results that are sometimes less than the other cases, and sometimes greater than

the other cases depending on the CL value. These results cannot be anticipated, further

reinforcing the sensitivity of this scheme to starting flap values.

These results clearly show the limitation of using an optimizer for the current

problem, highlighting the sensitivity that the solution has on starting flap values. While

the flap angle solutions provided by the optimizer have been shown to be valuable for

producing low total drag results in some cases, caution must be taken to ensure that the

flap angles are truly indicative of the lowest total drag solution. These flap angle solutions

provide good opportunity for comparison versus other drag reduction schemes, however

their ability to provide insight into aerodynamic design is limited.
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Figure 3.15: Comparison of drag produced by the total drag reduction scheme (Scheme C) when provided different starting
flap-angle values to the optimizer. Starting flap-angle values are: zero degrees for all flaps, flaps produced by the induced drag
reduction scheme, and flaps produced by the profile drag reduction scheme. The results show the starting flap-angle sensitivity
of the optimizer.
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3.4 Tailless Aircraft Summary and Conclusions

This chapter has presented specific methodology for determining optimal flap angles for

an adaptive tailless aircraft. Tailless configurations are of interest due to their design

simplicity and theoretical gains in efficiency. Building on the background and methodology

presented in Chapter 2, specific drag reduction schemes were introduced for minimizing

induced, profile, or total drag. Example cases were presented which studied how changes in

wing sweep and airfoil section affect the drag reduction schemes. These examples utilized

a cambered NLF airfoil, as well as a reflexed NLF airfoil which is more typical of tailless

configurations.

The example cases highlighted the success that each drag reduction scheme has for

minimizing their respective components of drag. For each configuration example, the drag

reduction scheme which intends to minimize induced drag led to spanwise elliptical loading

of the wing. While the scheme which reduces profile drag led to the wing operating within

the low-drag ranges of the airfoil sections. Each drag reduction scheme presented trade-offs

in terms of their non-optimized component of drag. For example, when induced drag was

minimized, profile drag increased, and vice-versa. The total drag scheme acted to balance

this trade-off and solved for flap angles resulting lower total drag.

When using a cambered airfoil with a negative Cm0
, minimizing induced drag led

to high total drag because large, negative mean flap deflections were necessary to trim.

This led to higher profile drag. When more sweep was introduced into the configuration,

low induced drag was achieved for each drag reduction scheme due to the shifting of the

distribution of lift relative to the neutral point. This allowed for the spanwise load to take

on a more elliptical shape, and thus low induced drag. For the reflexed airfoil, sweep was

not as beneficial, as the positive Cm0
required the spanwise loading outboard to produce

a nose-down pitching moment and trim. The reflexed airfoil examples showed benefits in

that the mean flap angles to trim and to achieve low profile drag are similar. In particular

at higher CL values, the examples using the reflexed airfoil showed that flap angle settings

predicted by the drag reduction schemes can be similar, thus resulting in similarly optimal

total drag results.

The example cases also brought out some limitations of using an optimizer for

determining flap angles. While the optimizer successfully reduced total drag in most cases,

the results were very sensitive to input flap angles. Further, the solutions predicted by the
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optimizer provides little insight into successful design, and merely produce flap angles to be

plugged into an analysis routine.

This chapter has introduced the usefulness of the adaptive methodology and has

applied it successfully to example configurations. The methodology provides useful aero-

dynamic insight for tailless configurations, and shows the trade-offs that are involved in

aerodynamic design. For each example case, the schemes act differently indicating that

no one scheme is universal for reducing total drag. However, the methodology can be

considered a powerful design tool for analyzing tailless configurations with constraints.
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Chapter 4

Optimal Lift Distributions for a

Three-Surface Aircraft

This chapter explores drag reduction using multiple TE flaps on an example adaptive three-

surface aircraft configuration. The three-surface example is a planar configuration consisting

of a wing, aft-tail, and canard. The configuration was chosen due to the increased design

opportunities provided by the additional surfaces. Section 4.1 introduces specific drag re-

duction schemes in five subsections. The first two subsections discuss the minimization of

induced and profile drag. The third subsection provides a two-step optimization approach

for drag reduction and aerodynamic analysis. The fourth subsection discusses total drag

reduction. The fifth and final subsection displays a surface lift study which validates the

methods. Section 4.2 details the configuration information for the three-surface adaptive

aircraft used as an example in this study. Section 4.3 presents induced, profile, and total

drag results for a range of CL values for the three-surface aircraft configuration. Also dis-

played are flap-angle solutions and spanwise lift distribution examples for the configuration

and discussion pertaining to the flap angles is provided. Section 4.4 presents conclusions

pertaining to the drag reduction schemes applied to a three-surface configuration.
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4.1 Drag Reduction Schemes for a Three-Surface Aircraft

4.1.1 CDind
Minimization

The first drag reduction scheme presented focuses on minimizing CDind
. It was stated that

for a wing, minimum induced drag results from elliptical loading. For the tailless aircraft

example presented in Chapter 3, flap angles were determined such that induced drag was

minimized and elliptical load was achieved. Multiple surface configurations provide different

results, as often surfaces operate in wake regions of other surfaces, affecting the flow over

the surface and its lift and drag properties. Thus, for a multiple surface example, the shape

of the loading on the wing for minimum induced drag is not unique and is dependent on

vertical separation between the lifting surfaces. To validate if minimum induced drag is

achieved, the span efficiency of the configuration can be compared to a single wing, and

should equal or exceed unity.

Section 2.2.5 introduced a system of equations which solve for minimum induced

drag with a constraint on the pitching moment. This method is closely followed for the

multiple-surface example as it is the simplest method optimizing a configuration for induced

drag. Given a configuration with N flaps, the flap angles resulting in minimum trimmed

induced drag can be obtained by solving the system of linear equations expressed in matrix

form as:
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(4.1)

It is important to note that in the above equation the flap angles to be optimized can

be variation flaps, mean flaps, or a combination of the two. It is only necessary that the

terms of the drag interdependency matrix and constraint equation be calculated and stored

appropriately. Because the flaps exist on multiple surfaces, ensuring linear independence

of the matrix equations is not an issue for a multiple configuration. Thus, the weighting

factor equation is not present in Eq. 4.1.
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4.1.2 CDpro
Minimization

Decomposing the TE flap angles into mean and variation angles allows for the use of drag

reduction techniques similar to those presented for the tailless configuration. Recall that

for a single surface, a deflection of the mean flap is similar to deflecting the flap of an airfoil,

and acts as a cruise flap for reducing profile drag CDpro . For a multiple surface configuration

utilizing a primary lifting surface that is much larger then the secondary surfaces, profile

drag caused by the primary surface will dominate the total profile drag of the aircraft due

to its much larger surface area. Profile drag can be sufficiently reduced by setting the

mean flap of this primary surface to ensure the surface is operating in the low-drag range.

The method for determining the mean-flap setting resulting in low total drag was shown in

Sec. 2.2.6, and Eq. 2.36 is specifically used to interpolate the optimal value.

Considering the system of multiple flap variables presented earlier, if one of the flap

angles is fixed at a value for drag-bucket control (profile drag optimization), the dimension

of the system reduces by one and the remaining flaps can still be optimized for minimum

CDind
. Displayed in Eq. 4.2 is the example where flap j has been fixed at a value of Xf,j .
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Thus, it is possible to fix the value of flap j to some value which ensures minimum profile

drag for that surface, and still achieve the minimum CDind
value by optimum selection of the

remaining flap angles. For a multiple surface example, flap j would represent the mean-flap

on the primary surface. The remaining N − 1 flap variables represent the variation flaps of

the configuration as well as the mean flaps of the secondary surfaces. The (N + 1)th row is

the pitching moment constraint which ensures trim.

4.1.3 Two-Step Optimization Approach

While the above methods provide powerful and elegant approaches for minimizing drag, it

may be desirable to formulate the problem in other ways in order to gain additional insight

into the aerodynamic principles at work in such a complex system. For instance, the Results

section of this chapter explores a three-surface aircraft which has eight flaps distributed on

three surfaces. And while all eight flaps could be inserted into Eq. 4.1, producing a valid

solution, it would be very difficult to speak intelligently about the solution angles, except to

say that CDind
is minimized. The two-step optimization approach presented in this section

is intended to not only provide the solution, but also provide valuable insight and control

over some flap angles for profile drag minimization. For this approach, the eight flaps are

decomposed into three mean flaps (one for each surface) and eight variation flaps, resulting

in 11 flap variables.

The two-step approach is as follows. First, only the three mean flaps are optimized

for trimmed CDind
as displayed in Eq. 4.3, providing specific insight into optimal trimmed

lift ratios for the three surface aircraft.
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In Eq. 4.3, the bars designate mean flaps and the subscripts indicate the surface (wing, tail,

or canard) being considered. Second, the eight variation flap angles are solved such that

each individual surface CL is unchanged, and the added section pitching moment due to

variation flap deflection is forced to zero.
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With the trim constraint solved in the first step (Eq. 4.3), the eight variation flaps are

the unknowns. There are, however, four additional equations, creating an over determined

system when solving for optimal variation flaps. In the first three added equations, the

terms CLw,1
, CLt,1

, CLc,1
, etc. represent the lift added to each individual surface (denoted

by subscripts w, t, and c for wing, tail, and canard) by the variation flaps. As explained

above, each equation is set to zero to ensure that the variation flaps change the lift ratios

produced by the mean flaps. The fourth added equation forces the change in airfoil section

pitching moment produced by the variation flaps to zero.

Approaching the problem in this manner allows the variation flaps to only redis-

tribute the lift laterally along each surface, ensuring that the lift ratios produced by the

mean flaps are maintained and the trim condition is unaltered. While this two-step process

is technically unnecessary, the decoupling of the mean and variation flaps provides addi-

tional insight. Specifically, the variation flap angles that laterally distribute the lift show

how spanwise lift is optimized for the aircraft, and the mean flap angles provide insight into

optimal lift ratios for trim.
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4.1.4 CDtot
Minimization

The previous methods provide the ability to adapt a configuration with multiple TE flaps to

achieve minimum induced and profile drag. As was stated in several previous sections of this

work, minimizing either induced or profile drag does not necessarily ensure the minimization

of total drag CDtot . Recall that total drag is defined as the sum of induced and profile drag.

The method for total drag reduction used on the tailless aircraft example, de-

scribed in Sec. 3.1.3, can also be used for a multiple surface configuration. An optimizer

is employed to solve for optimal flap angles with a constraint on the pitching moment.

A total drag function which outputs total drag based on configuration geometry and flap

angles is used by the optimizer as the function to minimize. The drag polar model de-

scribed in Sec. 2.2.7 is used to predict the profile drag of the surfaces. For this example, the

built-in Matlab optimizer function fmincon was used which finds minimums of nonlinear

multivariable functions with equality constraints. The simplex algorithm was used as the

optimization algorithm and the tolerance level of the optimizer was set at 1.0e−9.

4.1.5 Surface Lift Validation Study

A simple way to determine optimal lift ratios of a three surface aircraft is by studying the

effect of changes to the incidence of the canard and tail relative to the wing incidence.

For validation purposes, a study was performed to mimic that of Goodrich, et al.,34 which

optimally adjusts the incidence angles of the surfaces on a three-surface aircraft in order to

minimize induced drag with trim. Figure 4.1 compares the results from the current method

with those from LOTS (Linear Optimum Trim Solution)34 for a static margin of 10% and

a CM0
= −0.1. While it was not possible to completely replicate the configuration used in

the LOTS study,34 the correlations for how the surfaces are loaded are excellent, validating

the effectiveness of the current optimization method. As shown in Fig. 4.1, both methods

call for the wing to carry the primary loading while maintaining a slightly negative load on

the aft tail.
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Figure 4.1: Surface lift comparison for a three surface aircraft. Optimization variables are
the canard and tail incidence angles.

4.2 Configuration Information

To demonstrate the multiple-surface optimization methods derived in the previous sections,

an example three-surface aircraft was created with multiple flaps and multiple locations at

which twist could be specified, as displayed in Fig. 4.2. It should be noted that while the

methodology was presented for flap variables, wing twist and incidence can be substituted

easily, as a flap deflection is comparable to twisting the wing. Twist, incidence, and flaps

were all explored as optimization variables and are presented below.
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Figure 4.2: Planform for example aircraft. LHS shows twist locations. RHS shows flap
locations.

The twist and flap locations are symmetric on each side of the aircraft, but labeled separately

in Fig. 4.2 for clarity. The incidence on the tail and canard also exist as variables to be

optimized. Table 4.1 details the geometry specifications for the individual surfaces. A three

surface configuration was chosen because the added variables should allow for optimal CDind

and trim to be achieved simultaneously. Other aircraft parameters include W = 18, 000 N,

c̄ = 3.933 ft, and S = 177.9 ft2.

Table 4.1: Individual surface geometry for the example three-surface aircraft.

Surface Aspect ratio Span 1
4 -chord sweep Taper z/c̄ l/c̄

(ft) (deg)

Wing 12.95 48 0 0.4 0.0 0.0
Aft tail 4.53 16 25 0.75 1.8 4.32
Canard 5.04 12 0 0.75 -0.62 -6.0

The airfoils used on the configuration were a natural laminar flow (NLF) airfoil on

the wing, the MH 201 airfoil on the canard, and the NACA 0012 airfoil on the tail. Specific

information about the airfoil sections is presented in Table 4.2.
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Table 4.2: Airfoil characteristics for the example three-surface aircraft.

Surface Cm0
Thickness Flap hinge

Wing -0.0802 16% 0.8c
Aft tail 0 12% 0.8c
Canard -0.1161 13% 0.8c

Figure 4.3 shows drag polar plots and Cp distributions for each the airfoils, not including

the NACA 0012. The NLF airfoil used on the wing section (plot (a)) is the same airfoil

used on two of the tailless example cases of Sec. 3.3. The MH 201 airfoil shown in plot (b)

was designed by Martin Hepperle for use on a canard airplane.53
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Figure 4.3: Cp distributions and polar plots for the wing and canard airfoils. Results are
shown for Re

√
Cl = 3e6.

The wing airfoil was chosen due to its distinct low-drag range and previous success for

achieving low profile on the tailless aircraft study. The canard airfoil was chosen because it

was designed specifically to be used on a canard.
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4.3 Three-Surface Results

4.3.1 Induced Drag Reduction

Presented in this section are the results from different implementations of the induced drag

minimization schemes described in Sec. 2.2. Both constrained and unconstrained results are

presented and compared with each other. The results include plots of induced, profile, and

total drag, as well as span efficiency, and will be referred to in the following subsections.

4.3.1.1 Unconstrained CDind
minimization with twist

In order to gain a baseline understanding of the configuration, and multiple surface con-

figurations in general, it was desired to study how the scheme would perform when no

constraints are present. Canard configurations have been shown by studies ?? to be inferior

to tailed configurations for achieving low trimmed induced drag with a positive static mar-

gin. The reasoning for this is that with the use of a forward surface the NP moves forward.

It was shown in Sec. 4.1.5 that for low induced drag the wing carries the majority of the

load. Consider the moment about the NP required for trim, presented earlier in Eq. 2.18.

For positive longitudinal static stability at a positive CL the moment at the NP needs to

be positive. Typical NLF airfoils have negative Cm0
values, which means that the lift must

produce a positive moment for trim. But a highly loaded wing and a forward neutral point

leads to a negative (nose-down) pitching moment. Therefore, the fore-and-aft lift distribu-

tion needs to be off-optimal if a positive SM is necessary. Presented in Fig. 4.4 variations

of are CDind
and span efficiency with SM at CL = 0.5 for the example configuration when

twisted optimally. The eight twist variables along with the canard and tail incidence angles

were used as variables for constrained optimization using the methodology of Eq. 4.1. As

shown, CDind
is minimum at a negative SM value. At CL = 0.5, the minimum value of

CDind
is 0.00601 achieved at SM = −35%c̄. For a SM of 10%c̄, the CDind

is 0.00619.
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Figure 4.4: CDind
and span efficiency plots for a range of SM values, showing minimum

drag at a negative SM for the canard configuration, CL = 0.5.

Presented as solid lines in Fig. 4.5 are CDind
and span efficiency results as a function

of CL for the unconstrained case. For this case, the eight twist variables displayed in Fig. 4.2

along with tail and canard incidence were used as variables in the optimization scheme, and

the constraint equation was removed. The results represent the best CDind
values for the

example configuration, as the lift distribution is free to take any shape. At CL = 0.5, the

CDind
is 0.00601, which matches that from the constrained optimization with the optimum

SM = −35%c̄.

4.3.1.2 Constrained CDind
minimization with twist

For this section, the eight twist variables displayed in Fig. 4.2 plus tail and canard incidence

were optimized for trimmed induced drag over a range of CL values. The static margin was

set at 10%. Because wing twist does not alter the airfoil section, it will not alter the airfoil

section pitching moment (sections terms in Eq. 2.19). Any moment added by the twist

distribution will be due to the change in spanwise loading, again forcing the lift distribution

to trim the aircraft. As discussed in the previous section, for a twisted canard configuration

the best trimmed induced drag is expected to be worse than the unconstrained optimal,

as the longitudinal distribution of lift needs to be off-optimal to satisfy trim. Displayed in

Fig. 4.5 as dashed lines are the results for the constrained, twisted configuration. As shown,

both the CDind
values and span efficiency are worse than that for the unconstrained case.
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4.3.1.3 Constrained CDind
minimization with flaps

It was shown for the canard configuration that twisting the wing for trimmed induced

drag reduction results in less than optimal induced drag. This resulted because the lift

distribution was required to produce a positive pitching moment about the NP, as the

airfoils have negative Cm0
values. First impressions for solving this problem might suggest

using airfoils with positive Cm0
values, such as reflexed airfoils. While valid, reflexed airfoils

tend to have characteristics, such as low CLmax values, that make them undesirable.

Flaps, as opposed to twist, not only change the lift distribution, but also affect the

section pitching moment. It might be possible, then, to deflect a series of flaps such that

the moment contribution added by the section pitching moment produces the necessary

positive moment at the NP, while still maintaining optimal fore-and-aft distribution of lift.

To explore this possibility, the eight flaps shown in Fig. 4.2 were used to generate

11 variables (three mean flaps and eight variation flaps) for the optimization scheme. Again,

the SM was fixed at 10%. A baseline twist distribution, optimized for induced drag and trim

at CL = 0.5, was selected and was kept unchanged during this study. Methods presented in

Sec. 4.1.3 were employed, where first the mean flap angles were set to produce an optimal lift

ratio for trim, then the variation flaps were deflected to redistribute the lift in the spanwise

direction for low induced drag. The results for all CL values indicate that the mean flaps are

forced to negative deflection angles (flap-up), thereby producing a positive section pitching

moment, much like a reflexed airfoil.

With a positive moment being produced by the mean flaps, the variation flaps were

provided greater flexibility for redistributing the basic load, and thus CDind
approached that

of the unconstrained case. The flapped, constrained drag values are presented as dotted

lines in Fig 4.5. Also displayed for this case is profile drag response, leading to high total

drag. This will be explained further in the following section.
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Figure 4.5: Comparison of induced, profile, and total drag for the three-surface configuration with multiple TE flaps. Shown
are results from drag reduction schemes using unconstrained twist variables, constrained twist variables, and constrained flap
variables for induced drag reduction. Span efficiency results are also shown.
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Displayed in Figs. 4.6 and 4.7 are spanwise Cl plots with drag polars from XFOIL39

superimposed over each flap section to display how well profile drag is being reduced. In-

duced drag reduction is shown by a comparison of the Cl distribution for the drag reduction

scheme (solid line) versus the Cl distribution corresponding to the loading for unconstrained

minimum CDind
(circles). In the plots, the vertical dotted lines indicate where each flap

section begins and ends. Above the lift plots are deflection values for the flaps at each

section, where the line indicates the value of the flap and the arrowhead points to the mean

flap value for each surface. The vertical axis of these plots are reversed because negative

flap angles refer to upward deflections. As shown in the plots, the flap angles straddle the

mean flap values of each surface because the total flap angle is the addition of the mean

and variation angles.

The first set of plots in Fig. 4.6 show the results for minimizing induced drag using

(a) twist and (b) TE flaps at a wing CL = 0.3. The previous discussion of using twist for

optimizing the configuration stated that because twisting the wing results in no change to

the airfoil section pitching moment, the list distribution must be altered to trim. This is

seen in plot (a), and the lift on the secondary surfaces is off-optimal, resulting in higher

induced drag. A flap deflection results in a pitching moment contribution due to the change

in airfoil section, which can be used to trim. The lift distribution is then free to optimize

for minimum induced drag. Plot (b) shows that for the flap case, nearly optimal induced

drag is achieved with trim.
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Figure 4.6: Spanwise Cl and drag polar plots to show how drag is reduced at CL = 0.3 for
CDind

minimization using twist and flap variables. RHS shown for the adaptive three-surface
configuration.

Figure 4.7 displays similar plots for the high CL case of 0.7. Induced drag for this

CL responds similar to the CL = 0.3 case above. Profile drag at this CL is more interesting,

as clearly the flap angles shown in plot (b) are causing the wing to operate well outside

the airfoil section low-drag ranges. Plot (a) shows that when only wing twist is employed,

the airfoils maintain well defined drag buckets and allow lower profile drag. While profile

drag is not optimized for the twist case, it is clearly lower than that for the flapped case.

Recall that for induced drag reduction using flaps, the mean flap angles were being forced to

highly negative values as to produce a positive airfoil section pitching moment and optimal
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lift. Plot (b) shows this, and also indicates the increase in profile drag. Clearly, the wing is

operating well outside of the airfoil section drag buckets, which have little definition due to

the highly negative flap angles. While using flaps allow for optimal induced drag and trim

to be achieved, the consequence of higher profile drag outweighs the induced drag benefit

and leads to higher total drag. The higher total drag result was shown in Fig. 4.5 for the

constrained, flapped case at high CL values.
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Figure 4.7: Spanwise Cl and drag polar plots to show how drag is reduced at CL = 0.7 for
CDind

minimization using twist and flap variables. RHS shown for the adaptive three-surface
configuration.
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4.3.2 Profile Drag Reduction

In this section profile drag is the focus, making use of the methodology presented in

Sec. 4.1.2. Recall that for profile drag reduction it is important that the surfaces oper-

ate in the airfoil low-drag range, and that the mean flap of a surface can be used like a

cruise flap for this purpose. For this example, it was chosen to fix the mean flap on the

wing. Because of its much larger surface area, the wing will contribute more to profile drag

than the tail or canard. With the wing mean flap fixed, the optimization scheme will adjust

the other flap angles resulting in the best possible CDind
values, which are hopefully not too

far from optimal for reduction of total drag. Figure 4.8 presents results in a similar style to

Fig. 4.5, displaying the response to induced, profile, and total CD, as well as span efficiency

as a function of CL for this case with the wing mean flap set for profile drag reduction.

In these plots, the flapped cases in which induced and profile drag reduction are the focus

are displayed versus the unconstrained case. Of interest is the expected result that with

the mean flap of the wing constrained, the profile drag is much lower through most of the

CL range, however induced drag suffers, as shown clearly in the span efficiency plots. This

CDind
penalty is not significant, though, as it is shown in the total drag plot that the profile

drag case achieves as good or better drag than the unconstrained case for the entire CL

range. This is a positive result, as it can be concluded that using flaps as a method for wing

adaptation, low drag can be achieved for a three-surface configuration with a positive SM.
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Figure 4.8: Comparison of induced, profile, and total drag for the three-surface configuration with multiple TE flaps. Shown are
results from drag reduction schemes using unconstrained twist variables, constrained flap variables for induced drag reduction,
and constrained flap variables for profile drag reduction. Span efficiency results are also shown.
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Figures 4.9 and 4.10 show spanwise lift results that are similar to those presented

above. Example CL cases of 0.3 and 0.7 are again displayed. Distributions from the flapped

case which minimizes induced drag are repeated in the following figures to provide side-by-

side comparisons of the induced drag scheme versus the profile drag scheme.

The first set of plots in Fig. 4.9 show the results when flaps are used for reducing

(a) induced drag and (b) profile drag at CL = 0.3. Figures 4.5 and 4.8 showed good drag

numbers for this CL, and these plots show why. Plot (a) shows that for minimizing induced

drag, the mean flaps are set negative to produce a positive airfoil section pitching moment

and optimal lift. It was mentioned that these negative flap deflection should result in poor

profile drag. However, at this low CL a coincidental result occurred where the wing is largely

operating in the low drag range, as shown by the polar plots. Therefore, this case results in

both low induced and profile drag, and thus total drag, even though no effort was made to

ensure this. Plot (b) displays results from the profile drag reduction attempts, which fixed

the wing mean flap, in this case to −2.1 deg. The tail and canard mean flaps, along with

the variation flaps, were then allowed to find the best solution for trimmed induced drag.

The lift distribution for this case is skewed further from the unconstrained lift, especially

on the secondary surfaces, thus resulting in more induced drag. As desired, the polar plots

indicate that the wing is operating with low profile drag, as each drag bucket is clearly

defined and the local Cl values fall inside the drag bucket. The result is that this case

sacrifices some induced drag for gains in profile drag, which was the target. As a result,

total drag is reduced.
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Figure 4.9: Spanwise Cl and drag polar plots to show how drag is reduced at CL = 0.3
for CDind

minimization and CDpro minimization using flap variables. RHS shown for the
adaptive three-surface configuration.

At higher a CL some pros and cons of the different drag reduction schemes are

more clearly illustrated. Displayed in Fig. 4.10 are spanwise lift plots at a CL = 0.7. Fig-

ure 4.10(a) again shows that for induced drag reduction the mean flaps are highly negative.

And while this provides good induced drag results, the drag polars show the surfaces op-

erating far outside of the low drag range, as the drag buckets are nearly nonexistent. This

explains the high profile drag shown in Figs. 4.5 and 4.8. By forcing the wing to operate in

the low drag range with the wing mean flap, Fig. 4.10(b) shows that the mean flap value

for the wing is no longer negative, and the drag buckets become well defined. For this case
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the mean flap of the wing was forced to be 2.5 deg. And while there is some sacrifice of

induced drag, this penalty does not weigh heavily on the total drag numbers. In fact, at

higher CL values, this scheme is predicting lower total drag than the unconstrained case.
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Figure 4.10: Spanwise Cl and drag polar plots to show how drag is reduced at CL = 0.7
for CDind

minimization and CDpro minimization using flap variables. RHS shown for the
adaptive three-surface configuration.

4.3.3 Total Drag Reduction

The previous sections showed examples and results for the drag reduction schemes which

used both twist and flaps for minimizing induced and profile drag. Highlighted was the

benefits for using flaps versus twist, as the additional pitching moment contribution from
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the change in airfoil section allowed for nearly minimum induced drag and trim to be

achieved simultaneously. Further, benefits to total drag was shown through the use of flaps,

and the wing could be constrained to operate with low profile drag, resulting in low total

drag. Section 4.1.4 discusses a method for reducing total drag which is similar to the one

used for the tailless aircraft example. Benefits were shown for the tailless configuration

in Sec. 3.3 when using the total drag scheme, and thus it was used on the three-surface

configuration for comparison.

Figure 4.11 displays results from the total drag reduction scheme plotted with the

results from the induced and profile drag minimization schemes using flaps. As shown,

the total drag results match well with the results from the profile drag reduction scheme,

indicating that for this configuration profile drag is of primary importance. The total drag

reduction scheme does lead to slightly lower total drag for the CL range, as it has found

solutions which have less profile drag and the lower and upper CL limits, and less induced

drag for mid-range CL values. Starting values for the optimizer are again chosen from either

the induced or profile drag reduction scheme, whichever has lower total drag. The sensitivity

to these starting values could also explain why the total drag results match closely with the

profile drag results, as the profile drag case resulted in lower total drag and were most often

chosen as starting flap values for the optimizer.



94

0.85 0.9 0.95 1 1.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
L

Span Efficiency (e)
0 0.005 0.01 0.015 0.02

C
D,induced

0 0.005 0.01 0.015 0.02 0.025
C

D,profile

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
C

D,total

 

 

Flapped, total drag reduction
Flapped, induced drag reduction
Flapped, profile drag reduction

Figure 4.11: Comparison of induced, profile, and total drag for the three-surface configuration with multiple TE flaps. Shown
are results from drag reduction schemes using constrained flap variables for total drag reduction, induced drag reduction, and
profile drag reduction. Span efficiency results are also shown.
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Figures 4.12 and 4.13 provide spanwise lift plots for comparison of the total drag

reduction scheme versus the profile drag reduction scheme. The high and low CL cases

of 0.3 and 0.7 are again displayed. As expected, the side-by-side comparison at each CL

shows that the two cases are very similar, indicating only small opportunity to optimize

the solution for total drag. This indicates both the importance that profile drag reduction

has for achieving low total drag, as well as the aerodynamic opportunities presented by the

three surface configuration. The multiple surfaces allow for low induced drag, low profile

drag, and trim to be achieved simultaneously.
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Figure 4.12: Spanwise Cl and drag polar plots to show how drag is reduced at CL = 0.3
for CDind

minimization and CDtot minimization using flap variables. RHS shown for the
adaptive three-surface configuration.
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Figure 4.13: Spanwise Cl and drag polar plots to show how drag is reduced at CL = 0.7
for CDind

minimization and CDtot minimization using flap variables. RHS shown for the
adaptive three-surface configuration.

4.4 Three-Surface Aircraft Summary and Conclusions

This chapter presented specific methods for determining optimal lift distributions of adap-

tive multiple-surface configurations. The drag reduction schemes developed were derived

from the background and methodology introduced in Chapter 2. Induced, profile, and total

drag reduction schemes were developed which optimize configuration variables including

TE flaps (variation and mean flaps), wing twist, and wing incidence. As an example, the

drag reduction schemes were applied to a three-surface configuration with multiple twist
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and flap variables on each surface. A three-surface configuration was chosen because the

additional surfaces provide unique opportunity to solve for optimal lift and trim simulta-

neously. Results from each drag reduction scheme were analyzed to show their capabilities

and potential.

Typical results for a three-surface configuration showed that when optimally twisted,

minimum induced drag occurs at a negative static margin, due to the forward cg location.

With a trim constraint, using wing twist variables to optimize lift led to off-optimal loading

because the lift distribution was adjusted for trim at a positive static margin. When flaps

were used instead of twist, however, results showed that minimum induced drag could be

achieved at a positive static margin because of the positive section pitching moment con-

tributions from negative flap angles. Particularly at high CL values, minimizing induced

drag required highly negative flap angles to produce the proper pitching moment about the

aircraft neutral point. These highly negative flap angles led to high profile drag, and thus

high total drag. Methods were then employed to set the mean flaps for low profile drag,

and the variation flaps were allowed to redistribute the lift for low induced drag. Results

show that this system produced near optimal induced drag numbers and lower profile drag,

therefore leading to lower total drag.

The additional surfaces of the three-surface configuration provided the opportunity

to find solutions with low induced and profile drag, as well as trim at a positive static margin.

When the total drag reduction scheme was employed, only small gains were possible due

to the success of the profile drag reduction scheme. The total drag scheme did find slightly

better solutions in terms of total drag, however the results matched closely with the results

from the profile drag reduction scheme. This either indicates that the profile drag reduction

scheme results in nearly optimal flap angles, or that the optimizer used by the total drag

reduction scheme was heavily influenced by the starting flap angles. For these results, the

flap angles used as input for the optimizer were from the result of the profile drag scheme.

While acknowledging the sensitivity of the results from the total drag minimization scheme

to inputs, it can be concluded that the results from the total drag scheme validate the

success of the drag reduction scheme for reducing drag.

This chapter has extended the adaptive methodology to multiple surface configu-

rations and has shown its potential for reducing drag. Further, the methods have proven

to be versatile for use on different applications and design variables. While there are cer-
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tainly several other design considerations for multiple-surface aircraft, drag reduction is an

important goal. The drag reduction methods can form an important part of a designer’s

toolbox for complex configurations and for adaptive lifting surfaces.
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Chapter 5

Concluding Remarks

5.1 Summary of Research

Adaptive aircraft which can tailor themselves for different flight conditions have gained

popularity due to their ability to achieve lower drag and higher efficiency. Methods for

wing adaptation have evolved from simple geometry changes required to control the air-

craft, to more complex changes that seek to tailor an aircraft for specific flight regimes. No

matter the complexity, wing adaptation is central to aircraft design and represents future

opportunity for increased efficiency. Recent advancements in adaptive wing technology has

led to the desire for applying that technology to unconventional configurations. Uncon-

ventional configurations have proven their worth is several instances. Specifically, tailless

configurations present theoretical gains in efficiency due to the lack of secondary surface.

Also, three-surface configurations provide redundant surfaces for achieving optimal lift and

trim simultaneously. These examples provide motivation for further study of adaptive and

unconventional configurations. The current work is derived from this desire, and is focused

on applying multiple trailing-edge (TE) cruise flaps to various aircraft configurations in an

effort to reduce drag. Multiple TE flaps act to optimize a lift distribution by redistributing

the spanwise lift of a wing for low drag at various flight conditions.

An aircraft with multiple TE flaps presents complexity for determining the lift

distribution resulting from a series of flap deflections and aircraft CL. However, the concept

of basic and additional lift can be used to simplify, and linearize, the problem. Under

the assumptions of linear aerodynamics, a configuration lift distribution can be built from
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the superposition of the additional lift distribution multiplied by the lift coefficient and

individual basic lift distributions resulting from unit flap deflections scaled by the flap

angles. If follows that superposition of lift distributions can be used to solve for the induced

drag of a multiple flap configuration given flap angles. Provided a linear formulation of

induced drag in terms of flap angles, standard constrained minimization techniques can be

used to solve for flap angles resulting in minimum induced drag and trim. The research

presented methodology which develops matrix expressions derived from the additional and

basic lift distributions of a multiple TE flap configuration, which can be solved to produce

optimal lift distributions and trim.

Profile drag of airfoils at low subsonic speeds is largely the result of skin friction

when no flow separation is present. For low profile drag, natural laminar flow airfoils have

been designed which have distinct low-drag-ranges (drag buckets) surrounding a design

value. Cruise flaps have been developed which utilize small angle deflections to raise and

lower the drag bucket limits of an NLF airfoil. Methods were presented by the research that

sets the TE flap angles optimally such that an aircraft is operating within the corresponding

airfoil drag buckets, and thus achieving low profile drag. Further, a routine which predicts

the drag polar of an NLF airfoil has been developed by this research that approximates the

shape of the drag polar based on Reynolds number and flap angle. This allows for profile

drag values to be predicted by the drag optimization routines, and methods for determining

TE flap angles resulting in minimum total were derived.

A hypothetical tailless aircraft configuration was created to explore the drag reduc-

tion capabilities on a single surface. Specific drag reduction schemes were developed which

solve for minimum induced and profile drag and trim. The drag reduction schemes utilize

specific definitions of the flap angle distribution, decomposing it into a full-span mean flap

value and a set of variation flaps taken about the mean. These two variables were utilized

independently for reducing induced and profile drag, as they each have specific affects on

the lift distributions and pitching moment. It was shown that the mean flap can be used

to reduce profile drag and the variation flaps can be used to reduce induced drag. Results

were presented for the tailless aircraft configuration with different sweep angles and airfoil

sections. The results highlighted the aerodynamic trade-offs associated with tailless air-

craft. Methods for reducing induced drag resulted in elliptical loading, however profile drag

typically suffered. Conversely, methods for minimized profile drag led to the wing operat-
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ing within the drag buckets of the airfoil sections, however induced drag suffered. For each

specific drag reduction scheme, total drag was higher then optimal due to the trade-off. A

scheme was developed with optimized the flap angles for total drag reduction which pro-

vided a solution that optimally balanced induced and profile drag. These solutions showed

that minimum total drag often resulted at the expense of some induced and profile drag,

and that configuration variables such as wing sweep and airfoil section provide opportunity

to optimize a configuration for low drag and trim.

Multiple surface drag reduction schemes were developed which focused on induced,

profile, and total drag. As an example, a three-surface aircraft with multiple TE flaps

was developed to explore the drag reduction possibilities on a configuration with multiple

surfaces. The specific drag reduction schemes similarly used the mean and variation flap

angle definitions to independently solve for minimum induced and profile drag, where the

mean flap was used to lower profile drag and the variation flaps were used to lower induced

drag. Results for the three-surface aircraft were similar to the tailless aircraft in that when

induced drag is minimized, profile drag suffers and thus total drag is higher. Profile drag

was minimized by forcing the wing surface to operate in the airfoil section drag bucket, and

the canard and tail surfaces were used to trim the aircraft. Results showed that when profile

drag is reduced, the additional surfaces allow for low induced drag to be achieved as well as

trim. Total drag reduction schemes showed that the trade-offs associated with the tailless

aircraft were not as prevalent on the three-surface aircraft due to the additional surfaces.

Thus, minimizing profile drag for the three-surface configuration typically resulted in best

results.

5.2 Future Work

A primary benefit of the research presented in this dissertation is the capability to apply

it to any aircraft configuration. The methods were designed to be universal and allow for

not only different configurations to be considered, but also different optimization variables.

Therefore, flap variables could be inputted into the drag reduction approach along with wing

twist or wing incidence variables. The universal nature of the method allows limitless design

opportunity for aircraft of various configurations. Further, the mathematical formulation

of the constrained minimization technique allows for any constraint which is described in
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terms of the optimization variables to be easily inserted into the routine for solving minimum

constrained induced drag.

The research presented focused only on planar configurations. Non-planar configu-

rations, such as wings with winglets, are well known for their capabilities for achieving high

span efficiency. The current methods can be easily applied to non-planar designs, creating

opportunity for analyzing and designing adaptive non-planar configurations. Future studies

could focus on the span efficiency gains shown by the non-planar configurations and use

flap, or other, variables for optimizing these configuration for low drag.

It was discussed in several sections that using an optimizer for solving flap angles

introduces limitations on the solution of total drag. The use of an optimizer provides

very little insight into the aerodynamic design, as the optimizer acts as a “black box” for

providing flap angles resulting in low total drag. A drag reduction approach that solves

for minimum total drag in a more concise and elegant manner, similar to the induced and

profile drag reduction schemes presented in this work that where based on aerodynamic and

mathematical fundamentals, would extend the capabilities of the drag reduction approach

and provide greater opportunity to an aerodynamic designer.

The optimizer starting value sensitivity was another important limitation of the

total drag reduction scheme shown by this work. To combat this, the design space could be

further explored by a more powerful optimization tool, such as a genetic algorithm (GA).

The advantage of a GA versus an optimizer is that the GA can first seed the design space

with several random starting points, and exploit promising design space locations to find

the minimum value. The GA is less likely to get stuck in areas surrounding the starting

values as it is free to more completely explore the design space and seek out other minimum

values. With a more powerful optimization tool, such as a GA, the issue of starting value

sensitivity could be reduced and total drag results could be presented with more confidence.

Further, it was discussed that the optimizer starting value sensitivity was due in part to

the drag polar approximation routine which builds the airfoil drag polar in three sections.

The sectional nature of the drag polars leads to sharp edges at the transition points where

the sections come together, and these sharp edges cause the optimizer to get stuck in those

regions. The drag polar approximation routine could be improved to better account for

these transition areas, and optimized flap-angle results for total drag minimization could

be improved.
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