
ABSTRACT 

 

Wang, Zhi. Spectral Analysis of Protein Sequences. (Under the direction of Dr. 

William R. Atchley and Dr. Charles E. Smith.) 

    The purpose of this research is to elucidate how to apply spectral analysis 

methods to understand the structure, function and evolution of protein sequences.  

     In the first part of this research, spectral analyses have been applied to the basic- 

helix-loop-helix (bHLH) family of transcription factors. It is shown that the periodicity 

of the bHLH variability pattern (entropy profile) conforms to the classical α-helix 

periodicity of 3.6 amino acids per turn. Further, the underlying physiochemical 

attributes profiles (factor score profiles) are examined and their periodicities also 

have significant implications of the α-helix secondary structure. It is suggested that 

the entropy profile can be well explained by the five factor score variance 

components that reflect the polarity/hydrophobicity, secondary structure information, 

molecular volume, codon composition and electrostatic charge attributes of amino 

acids.  

    In the second part of this research, complex demodulation (CDM) method is 

introduced in an attempt to quantify the amplitude of periodic components in protein 

sequences. Proteins are often considered to be “multiple domain entities” because 

they are composed of a number of functionally and structurally distinct domains with 

potentially independent origins. The analyses of bZIP and bHLH-PAS protein 

domains found that complex demodulation procedures can provide important insight 

about functional and structural attributes. It is found that the local amplitude 



minimums or maximums are associated with the boundary between two structural or 

functional components. 

    In the third part of this research, the periodicity evaluation of a leucine zipper 

protein domain with a well-known structure is used to rank 494 published indices 

summarized in a database (http://www.genome.jp/dbget/aaindex.html). This 

application allows us to select those amino acid indices that are strongly associated 

with the protein structure and hereby to promote the protein structure prediction. This 

procedure can be used to reduce some redundancy of the amino acid indices.     
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Introduction 

Spectral Analysis 
 

    The broad application of genome sequencing methodology has generated a 

huge amount of protein sequence data. Parallel development of sophisticated 

computational and statistical methodology for analyzing sequence data has 

equipped us with many tools to investigate and explore protein evolution as well as 

the relationship between protein sequence and structure. Of particular importance 

has been the application of methodology permitting simultaneous consideration of 

many amino acid sites to elucidate “patterns” of variability over large portions of 

particular proteins. Often such multivariate analyses have focused on the 

multidimensional patterns of covariation among amino acid sites.  

    An integral part of analyzing the multidimensional nature of sequences is the 

description of periodicity in the attributes among sequence elements. Periodicity of 

sequence elements can reveal important structural and functional characteristics of 

the molecule. A typical method for studying periodicity is spectral analysis, which 

characterizes the frequency content of a measured signal. Spectral analysis has 

been widely used to analyze time series data, and indeed can be used to analyze 

protein sequences data if the amino acid is represented by numeric values. There 

are many kinds of spectral analysis methods, including Fast Fourier Transformation 

(FFT) method, Yule-Walker method, Burg method, Least Squares method and 
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Maximum likelihood method as well (Marple, 1987; Percival and Walden, 1993).  

The FFT method has a number of advantages over other methods. (i) The only 

assumption FFT makes is that the data are wide-sense stationary. However, the 

non-classical methods require additional assumptions. Only when the non-classical 

model is an accurate representation of the data, these spectral estimates can 

outperform the classical spectral estimators (e.g., the periodogram) (Marple, 1987). 

(ii) Statistical property of the periodogram method has been well addressed over 

other methods (Percival and Walden; 1993).  The FFT is more easily interpreted in 

terms of partitioning of variance (Warner, 1998). (iii) The FFT algorithm is the most 

computationally efficient spectral estimation method available (Marple, 1987).  

The FFT method has been used to detect the residue repeat of a protein 

sequence (Mclachlan,1977) and a web server designed for locating periodical 

pattern of a sequence exists (Pasquier et al., 1998). In the latter case, a sequence 

of N residues is represented as a linear array of N items, with each item given a 

weight. The sequence of weights is used to create a “pulse”, which can be 

analyzed by Fourier analysis. For example, selecting a weight of 1 for “D” and 2 for 

“L”, the sequence ‘AAILVADMLIA’ is transformed into the array {0 0 0 2 0 0 1 0 2 0 

0}. In Fourier theory such numeric array pattern can be decomposed into a number 

of sine and/or cosine waves, consisting of integer multiples of the basic frequency.  

The period is the same as the inverse of the frequency.   

Other methods have been proposed because of the low-resolution limitation 

of the FFT method. These include the Yule-Walker method, the Burg method, the 

Least Squares method and the Maximum likelihood method. All of these methods 
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are based on parametric spectral estimation and hereby they can compensate for 

the low-resolution of FFT method. They can maintain or improve high resolution 

without sacrificing stability (Marple, 1987; Naidu, 1996).  

     Few applications of spectral analysis methods to the protein sequences have 

been reported. Therefore, in Chapter 1, both the FFT method and the Burg method 

are applied to conduct spectral analyses to the variability profiles of the 

basic-helix-loop-helix (bHLH) protein domains. Rigorous statistical tests have been 

included in this research. The Burg method was explored over other methods 

because: (i) The Burg method is computationally more efficient than the Maximum 

Likelihood method (Kay 1988, Percival and Walden, 1993). (ii) The Burg method 

produces stable and more reasonable estimates for short data series, which is 

useful in studying short protein sequences (Matlab Help 2004, Percival and Walden, 

1993).  

    Warner (1998) recommends some preliminary data analysis on the sequence 

data before the spectral analysis.  First, it is recommended determining whether 

there is a linear trend (change in level over residues). If a trend is present, it needs 

to be removed before assessing periodic component. Second, it is recommended 

that one ascertain if the data series is stationary. If the stationary assumption is 

violated, an overall FFT or spectral analysis on the entire data series can be 

somewhat misleading.  In the latter instance, the complex demodulation method 

described in the Chapter 2 is suggested. Third, it is recommended that one 

determine if the data series represents white noise, i.e., observations uncorrelated 

with each other. In the context of spectral analysis, white noise means no individual 



 4

periodic component explains a larger share of the variance than the other periodic 

component. The spectrum shows a flat line under the null hypothesis. Finally, one 

conducts the spectral analysis with FFT method or others to protein sequences and 

analyzes the results.  

 

Variability Profiles in Entropy and Factor Scores 
 

    To accurately and robustly define the variability of alphabetic data, we apply 

tools from information theory.  Specifically, we use entropy profiles to measure the 

residue diversity of each amino acid in multiple alignments. Entropy profile 

procedures are widely accepted in many fields of science and are frequently 

employed in physics, chemistry, biology, mathematics, statistics, etc. (Atchley, 

1997, 1999, 2000, 2005). Once one has accurately described differential variability 

in a set of aligned sequences with entropy profile, the next step is to resolve the 

origin and underlying causality of the observed sequences variability.  We need to 

understand the underlying physiochemical causes of sequence variability, not 

simply describe them as a “molecular natural history” phenomenon.  

However, there are serious statistical problems associated with analyzing the 

amino acid variability in biological sequence data, the so-called “sequence metric 

problem” (Atchley, 2005). Protein sequences are composed of long strings of 

alphabetic letters rather than arrays of numerical values. Lack of a natural 

underlying metric for comparing such alphabetic data significantly inhibits 

sophisticated statistical analyses of sequences, modeling structural and functional 

aspects of proteins, and related problems. For example, the amino acid leucine (L) 
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is more similar in its physiochemical properties to valine (V) than leucine is to 

alanine (A). Currently, no reliable quantitative measure exists to summarize the 

extent of the physiochemical divergence among amino acids. These differences 

must be quantified before periodicity analysis of physiochemical variability can be 

understood for protein sequences.  

Previous authors circumvented sequence metric problems in different ways. 

Some generated ad hoc quantitative indices to summarize amino acid variability 

(Grantham, 1974; Sneath, 1966). However, ad hoc indices generally summarize 

only part of the total variability in amino acid attributes. If a numerical index 

approach is to be effective, indices must (i) represent the proximate causes of 

amino acid variability; (ii) reflect interpretable partitions of total amino acid variation; 

and (iii) resolve intercorrelations among relevant amino attributes (Atchley et al, 

2005).  

An on-line database (AAIndex) exists that summarizes many attributes of 

amino acids (www.genome.ad.jp/dbget/aaindex.html). A total of 494 indices are 

found at this website that include general attributes, such as molecular volume or 

size, hydrophobicity, and charge, as well as more specific measures, such as the 

amount of nonbonded energy per atom or side chain orientation angle.  

However, there is much redundancy in these data making selection of 

appropriate indices for analyses much more difficult Atchley et al. (2005) used the 

multivariate statistical procedure of factor analysis to produce a subset of numerical 

descriptors that would summarize the entire constellation of amino acid 

physiochemical properties.  Factor analysis is a powerful exploratory statistical 
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procedure, that can simplify high-dimensional data by generating a smaller number 

of ‘‘factors’’ that describe the structure of highly correlated variables. The resultant 

factors are linear functions of the original data, fewer in number than the original, 

and reflect clusters of covarying traits that describe the underlying or ‘‘latent 

structure’’ of the variables. High-dimensional attribute data are summarized by five 

multidimensional patterns of attribute covariation that reflect polarity, secondary 

structure, molecular volume, codon diversity, and electrostatic charge.  

    Thus, the entropy profiles and factor scores permit me to conduct spectral 

analysis on the periodicity of proteins to investigate their structure, function and 

evolution in this dissertation.  

 

Complex Demodulation  

    Suppose that a set of data contains a perturbed periodic component 

cos( )t t t tX A t zλ φ= + +  where At is a slowly changing amplitude instead of a 

constant, and tφ  is a slowly changing phase. Complex demodulation is to extract 

approximations to the series At and tφ . Description of the amplitude and the phase 

of a particular frequency by rigorous mathematical tools can be very informative to 

solve the puzzle of the complicated structure and function of protein sequences. 

However, spectral analyses, such as those based on the FFT method, cannot be 

used to assess sudden, time-dependent (i.e. amino acid site-dependent for protein 

sequences) changes in the amplitude of a particular frequency.  
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The complex demodulation method (CDM) has been developed to provide a 

continuous assessment of the amplitude of numeric protein sequences and thereby 

identify changing events (Bloomfield, 1976). While CDM has been widely applied in 

many other scientific field (Hayano, et al., 1993; Lipsitz, et al., 1998; Babkoff, et al., 

1991; Rutherford and D’Hondt, 2000), it has apparently never been applied in 

computational biology and bioinformatics.  I explored the application of CDM on 

the entropy and factor profiles of basic-ZIP (bZIP) and basic-Helix-Loop-Helix-PAS 

(bHLH-PAS) protein domains. These results are summarized in Chapter 2.   

Currently there are several on-line bioinformatics tools of analyzing the 

hydrophobicity profiles of protein sequences. For example, the tool at 

http://arbl.cvmbs.colostate.edu/molkit/hydropathy can make plots that characterize 

the hydrophobic character of protein sequences, which may be useful in predicting 

membrane-spanning domains, potential antigenic sites and regions that are likely 

exposed on the protein's surface. Generally, windowing techniques have been 

used in analyses of the hydrophobicity profiles where window size refers to the 

number of amino acids examined to determine hydrophobic characteristics. 

Windowing techniques can smooth the hydrophobicity profiles and reduce 

fluctuation in the original signal. Unfortunately, such procedures result in the loss of 

some biological information, especially the information contained in the 

high-frequency components. In other words, the removal of short-range oscillations 

results in the loss of some biological information.  

The CDM method is a mathematical tool that can be used to analyze the 

amplitude and phase of the high-frequency components without the loss of 
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information because it does not use windowing techniques. Therefore, it can be 

regarded as a complementary procedure to other computational tools of analyzing 

sequence profiles. Indeed, it can also analyze low-frequency components. The 

analyses of the changing amplitude of the 3.6-aa periodic component of bZIP and 

bHLH-PAS protein domains in Chapter 2 prove that CDM is a sound procedure to 

reveal the biological information contained in high-frequency components.  

 

Evaluation of Amino Acid Indices  

    Interaction with water of the amino acid side chains is a major determinant of 

protein structure. The hydrophobic scales are semiempirical quantities based on 

both computation and experimental measurements that describe the interaction 

between amino acid and water. The hydrophobic scales are helpful in analyzing the 

protein biochemical structures because they are associated with the free energy of 

folding and formation of structure (Fasman,1989). However, there are numerous 

indices proposed to measure residue hydrophobicity and there is a lot of 

redundancy of these indices.    

   In Chapter 3, periodicity evaluation is proposed as a method to make 

comparison among those indices that are closely associated with the helix 

formation. If the periodicity of a certain amino acid index profile conforms to the 

observed periodicity of a well-known structure, then such amino acid index can be 

assumed as a good one.  
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Goal of Research 

    The application of spectral analysis methods on protein sequences is poorly 

investigated. Therefore, the goal of my dissertation work is to explore the potential 

application of these methods.  

    This research is to demonstrate how spectral analysis methods such as FFT, 

Burg method and complex demodulation can be used to analyze the biological 

signals contained in protein sequences. This research is to elucidate that the 

entropy profile can be decomposed into underlying physiochemical components. 

This research is to elucidate that the complex demodulation method is a promising 

method to quantify the amplitudes of periodic components of protein sequence 

signals. And the research suggests that the amplitudes are predictors of protein 

structure and function. Finally, this research presents an approach to rank the 

amino acid indices based on their periodicity parameters, which is valuable to 

determine the best amino acid index for computation.    
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Chapter 1 

 

 

Spectral Analysis of Sequence Diversity in  
 

basic-Helix-Loop-Helix (bHLH) Protein Domains 

 

by 

 

Zhi Wang1,* and William R. Atchley1,2 

 

1Graduate Program In Biomathematics And Bioinformatics and 2Department 

Of Genetics and Center For Computational Biology, North Carolina State 

University, Raleigh, NC 27695-7614, USA 

 

 

Key words: spectral analysis, entropy, factor, periodicity, helix 
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ABSTRACT 

Using the basic helix-loop-helix (bHLH) family of transcription factors as a 

paradigm, we explore whether periodicity patterns of amino acid diversity have 

implications of its helix secondary structure.  Further we wish to ascertain whether 

statistical analyses will clarify the underlying causes of periodic amino acid 

variation. A Boltzmann-Shannon entropy profile was used to represent site-by-site 

amino acid diversity in the bHLH domain. Spectral analysis showed that the 

periodicity of the bHLH entropy profile and provided strong statistical evidence that 

the amino acid diversity pattern conforms to the classical α-helix three-dimensional 

structure periodicity of 3.6 amino acids per turn. Then, amino acid attribute indices 

derived from multiple factor analysis of almost 500 amino acid attributes were used 

to explore the underlying causal components of the bHLH variability patterns.  

These five multivariate attribute indices reflect patterns in i) polarity / hydrophobicity 

/ accessibility, ii) propensity for various secondary structures, iii) molecular volume, 

iv) codon composition and v) electrostatic charge. The periodicity analyses of these 

indices also have significant implications of the underlying helix secondary 

structure.  Further, multiple regression analyses of the entropy values and the 

underlying physiochemical attributes represented by factor score means/variances 

can decompose the variation in entropy values into their underlying structural 

components. These analyses have significant implications of the statistical 

estimations of important attributes of protein secondary structure.   

Availability: http://www.atchleylab.org/spectral/bhlh.htm 
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Introduction 
 

Much of contemporary research in biological, medical and agricultural 

sciences focuses on complex traits.  Complex traits are generally characterized as 

being composed of various component parts that are interdependent, dynamic and 

multi-regulated. Some classic examples include mammalian body weight, 

craniofacial form, human diseases like diabetes, heart disease and cancer, human 

behaviors like schizophrenia and alcohol addiction, and other important traits.  

Protein molecules often fit this classification as well.  Protein molecules: i) may 

contain multiple structural and functional domains, ii) protein domains are 

composed of many different amino acid sites with varying degrees of 

intercorrelation, iii) the various amino acids contribute differentially to structure and 

function, iv) the separate domains may have distinct evolutionary origins, v) they 

are integrated through processes like domain shuffling, and vi) different domains 

(and their constituent amino acids) may be subjected to separate selection regimes 

based on their functioning.  To adequately understand protein evolution and 

structure requires a deeper knowledge of these component parts of proteins, their 

characteristics, dynamics, integration and divergence.  

In a series of papers, we have employed a computational biology approach 

to exploring a number of structural and evolutionary aspects of the basic 

helix-loop-helix (bHLH) family of proteins.  The bHLH proteins are a collection of 

important transcriptional regulators that are involved with the control of a wide 

variety of developmental processes in eukaryote organisms (Murre et al., 1989, 
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1994; Sun and Baltimore, 1991; Atchley and Fitch, 1997; Ledent and Vervoort, 

2001).   

Our previous analyses have focused on a number of important questions 

including estimating amino acid diversity, describing phylogenetic relationships 

(Atchley and Fitch, 1997), elucidating networks of covarying amino acid sites 

(Atchley et al., 2001; Buck and Atchley, 2005), describing the relationships 

between sequence covariability and protein structure (Atchley et al., 2001), 

exploring the underlying causes of sequence covariation (Wollenberg and Atchley, 

2000; Atchley et al., 2001), describing sequence signatures (Atchley et al., 2000; 

Atchley and Fernandes, 2005), exploring domain shuffling (Morgenstern and 

Atchley, 19xx) and other fundamental questions about this important group of 

proteins.  In all of these analyses, we have sought to provide results and 

methodology that can be incorporated in results of other types of structural and 

functional analyses. 

Herein, we use a battery of computational methods to explore the nature of 

amino acid diversity in the bHLH proteins to better understand the underlying 

causes of sequence variability and covariability. Specifically, we wish to ascertain 

whether the patterns of amino acid diversity in the bHLH domain over large 

numbers of sequences (as shown by Atchley et al., 2000) correspond to the 

structural geometry of single proteins, as described by crystal structure studies 

(e.g., Ferre-D’Amare et al., 1993; 1998 Shimizu et al., 1997). Previously, we have 

used a mutual information approach to describe differential variability and 

covariability among amino acid sites in large aligned sequence databases (Atchley 
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et al., 1999, 2000; Wollenberg and Atchley, 2000).  In the present paper, we 

evaluate the null hypothesis that the observed patterns of amino acid diversity in 

the bHLH domain exhibit a systemic periodicity that corresponds to known 

structural geometry.   

A number of previous authors have suggested that analyses of periodicity 

among sequence elements can elucidate important characteristics in molecular 

structure, function and evolution (Eisenberg et al., 1984; Pasquier et al., 1998; 

Leonov and Arkin, 2005).  For example, an α-helix adopts an amino acids spiral 

configuration of 99 7±� �

 around the helical axis, generating a range in 

periodocity of 3.40 - 3.91 aa per turn.  The conventionally accepted average 

periodocity value is about 3.60 aa per turn (Kyte, 1995). Mutations that disrupt such 

structural geometry are expected to be subject to strong natural selection
 
(Patthy, 

1999). Hence, there should be significant changes in the patterns of amino acid 

diversity at different positions in the α-helix that are conserved over large numbers 

of evolutionarily related proteins.  Indeed, our previous quantitative analyses of 

the bHLH domain suggest a strong relationship between levels of amino acid 

diversity and the amphipathic nature of the α-helices that comprise the bHLH 

domain (Atchley et al., 2000). 

Herein, we use spectral analysis, information theory and multivariate 

statistical methods to examine the periodic nature in amino acid variability in the 

bHLH domain.  Our goal is to:  1) describe the periodicity patterns in amino acid 

diversity within the highly conserved bHLH protein domain; 2) ascertain whether 

the diversity in amino acid composition conforms to estimates of secondary 
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structure known from previous crystal structure analyses; and 3) decompose the 

variability in entropy patterns into their underlying structural components.  

 

Methods 
 

Definition and Structure of the bHLH Domain
  

    

 The bHLH domain is a highly conserved domain comprised of 

approximately 60 amino acids (Atchley and Fitch, 1997). It is best modeled as two 

separate α-helices separated by the loop (Ferre-D’Amare et al., 1993; Shimizu et 

al., 1997).  The domain is comprised of a basic DNA binding region (b) of about 14 

amino acids that interacts with a consensus hexanucleotide E-box (CANNTG). The 

basic region is followed by two amphipathic α-helices (H) separated by a variable 

length loop (L).  The helix regions are involved with protein-DNA contacts and 

protein-protein interaction, i.e., dimerization.  The loop region is of variable length 

and may range from approximately 5 to 50 residues that are generally quite difficult 

to homologize among different bHLH subfamilies (Morgenstern and Atchley, 1999)   

The bHLH proteins are conventionally classified into 5 major DNA-binding 

groups (A, B, C, D, and E) based on how the proteins bind to the consensus E-box 

and other attributes (Atchley and Fitch, 1997; Ledent and Vervoort, 2001).  Herein, 

we analyze a total of 196 bHLH sequences chosen to reflect the diversity of the 

bHLH subfamilies and DNA binding groups.  These data include 83, 72, 16, 9 and 

16 sequences belonging to groups A, B, C, D and E, respectively.  These 

sequences are part of a standard bHLH dataset used in a number of previous 
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computational analyses (Atchley and Fitch, 1997; Atchley et al., 2000; Atchley et al., 

2005).   

 

Data preparation  

    The sequences were initially aligned using both local and global type 

alignment algorithms and the resultant preliminary alignments then corrected by 

eye when the results of the two alignment algorithms did not agree.  

Representatives of the aligned subfamilies can be found in Atchley and Fitch 

(1997).  As is previous analyses, the break points between components follows 

the structural analyses of Ferre-D’Amare et al., (1993). where the basic region 

includes amino acids 1—13; helix 1 involves  14—28; the loop comprises 29—49 

and helix 2 includes 50—64.     

To facilitate subsequent analysis, the loop region between residues 32 and 

46 was removed.  The loop region is highly divergent in both length and 

composition among groups of bHLH proteins making accurate decisions about 

homology difficult for much of this region Atchley and Fitch, 1997; Morgenstern and 

Atchley, 1999).  Unless an accurate alignment can be achieved, subsequent 

statistical analyses are of dubious value.  Thus, much of the loop has been 

removed and only 49 columns of the multiple alignments remain further spectral 

and statistical analysis. Removal of the non-homologous portion before 

subsequent analyses is standard procedure for such analyses.  Preliminary 

spectral density plots of the profile containing the whole loop region was compared 

with the one used in this paper. The results were not significantly affected by 

removing this highly variable portion of the loop region. 



 17

 Additional analyses can be found at 

http://www.atchleylab.org/spectral/bhlh.htm 

 

Entropy Profiles 

We use the Boltzmann-Shannon entropy E to quantify sequence variability of 

amino acid residues at each aligned amino acid site  as defined in Atchley et al. 

(1999, 2000).  It is calculated as 
21

1 2
( ) log ( )j j

j
E p p p== −∑ , where pj is the 

probability of a residue being a specific amino acid or a gap, and 

0 ( ) 4.39E p≤ ≤ . An “entropy profile” is given in a histogram (Fig.1.2a) where 

the height of the individual bars reflects the entropy value (residue diversity) at a 

particular aligned amino acid site. Small E values indicate a high degree of 

sequence conservation. 

 

Factor Score Profiles  

    Atchley et al. (2005) pointed out that statistical analyses of alphabetic 

sequence data are hindered by the lack of a rational underlying metric for 

alphabetic codes.   To resolve this “metric” problem, these authors generated a 

small set of highly interpretable numerical values that summarize complex patterns 

of amino acid attribute covariation.  This was accomplished through multivariate 

statistical analyzes of 495 separate amino acid attributes and.  Using factor 

analysis (Johnson and Wichern 2002), these authors defined five major patterns of 

amino acid attribute covariation that summarize the most important aspects of 
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amino acid covariability.  These five patterns or multidimensional indices were 

interpreted as follows:  Factor I = a complex index reflecting highly intercorrelated 

attributes for polarity, hydrophobicity, solvent accessibility, etc.  Factor II = 

propensity to form various secondary structures, e.g., coil, turn or bend versus 

alpha helix frequency. Factor III = molecular size or volume, including bulkiness, 

residue volume, average volume of a buried residue, side chain volume, and 

molecular weight. Factor IV = relative amino acid composition in various proteins, 

number of codon coding for an amino acid, and amino acid composition.  Factor V 

= electrostatic charge including isoelectric point and net charge.  A set of “factor 

scores” arising from these analyses provide a multidimensional index positioning 

each amino acid in these major interpretable patterns of physiochemical variation.   

Herein, we transform the original alphabetic amino acid codes to these five 

factor scores in the aligned sequence data.  This procedure generates five sets of 

numerical values that accurately reflect a broad spectrum of amino acid attributes. 

The factor score transformed data is then used for many of our subsequent statistical 

analyses.  For simplicity, we analyze the five factor score transformed data 

individually, i.e., one set of analyses for polarity/hydrophobicity, another for 

molecular size, etc, rather than do an analysis of all five factors simultaneously. 

To better understand the underlying causes of diversity in amino acids, we 

include analyses of both the factor score means as well as the factor variances 

(Fig.1.2.b-k).  The former replaces alphabetic data with the average amino acid 

attribute while the latter uses a multidimensional measure of attribute variability.   
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Spectral Analysis Based on Fourier Transformation  

    It is well known that amino acid sequences can exhibit a periodic pattern in the 

occurrence of certain types of amino acids.  What is not clear is whether the 

diversity of site-specific amino acids similarly exhibits periodic patterns.   

To explore this question, a time series model can be expressed in terms of sine 

and cosine components (Bloomfield, 1976) as 

               
1

( cos( ) sin( )) (1)
m

t
t i i i i

i

Y A t B t eω ω
=

= + +∑  

    where Yt is the original variable with n observations.  m=n/2 if n is even; 

m=(n-1)/2 , if n is odd. ωi specifies the Fourier frequencies, 2πi/n, where i =1, 2, …, 

m. Ai and Bi are the amplitude of the sine and cosine components. et is the error 

term. 

   The sum of squares of the Ai and Bi can be plotted against frequency or against 

wavelength to form periodograms. The periodogram can be interpreted as the 

amount of variation in Y at each frequency. If there is a significant sinusoidal 

component at a given frequency, the amplitude A or B or both will be large and the 

periodogram will have a large ordinate at that given frequency. If there is no 

significant sinusoidal component, then the periodogram will not have any large 

ordinates at any frequencies. Hamming window is applied to produce the spectral 

density plots, which is a general smoothing procedure in spectral analysis (Kendall 

and Ord, 1990). The spectral density plots (Fig.1.3) of entropy, factor score means 

and variances are produced by the Fast Fourier Transformation (FFT) procedure in 

SAS software (PROC SPECTRA).  



 20

      With Fourier Transformation, any waveform can be analyzed as a 

combination of sine waves of various amplitude, frequency and phase. For 

example, a signal which is a sum of sin(x) and 2cos(3x) can be analyzed by its 

spectral plot, in which there are two bars representing these two periodic 

components (Fig. 1.1). 

 

Spectral Analysis Based on the Burg Method 

The Burg method is a spectral analysis procedure based on the well-known 

autoregressive (AR) modeling technique for processing time-series data (Marple, 

1987; Kay, 1988). An AR model provides a parametric description for the 

time-series data being analyzed. For a given discrete data sequence xi for 1 ≤ i 

≤ n, the sample at index i can be approximated by a linear combination of 

previous k observations of the data sequence by 

1

   
k

ki i i i k i
k

X X e a X e
∧ ∧

−
=

= + = − +∑ where i k≥ . In the 

Burg method, the spectral density of the time series can be described in terms of 

AR model parameters and the corresponding modeling error variance by  
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where 
2

σ�  is the estimated modeling error variance, and T is the sampling 

interval. 

The Burg method is used to calculate the spectral density of the entropy and 

factor score variance series as an alternative method to the FFT method. Readers 

are referred to Marple (1987) for more details on the algorithms of the Burg 

method. Similar to the Fourier transformation method, the spectral density plot can 

be produced by the Burg method. The spectral density plots for entropy, factor 

score means and variances profiles produced by Matlab
 
software (version 6.5) are 

very similar to those listed in Fig.1.3 produced by FFT method.  

When spectral density plots are graphed, “large” peaks are generally noted, 

necessitating determination of their statistical significance and accuracy.  Several 

follow-up analyses were conducted to gain more information out of the spectral 

density plots.   

Fisher’s test is a useful and conservative test for identification of “major” 

periodic components (Warner, 1998). The premise behind the Fisher’s test 

rejection of the null hypothesis if the periodogram contains a value significantly 

larger than the average value (Brockwell and Davis, 1991; Warner, 1998). The test 

statistic g, gives the proportion of the total variance that is accounted for by the 

largest periodogram component. The critical values of the proportion of variance for 

the Fisher’s test at α=0.05 level (N=49) are 0.240, 0.156 and 0.122 for the first, 

second and third largest periodogram ordinates, respectively. The critical value 

0.240 means that if there are 49 data points in the numeric sequence, then the 
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largest periodogram ordinate must account for more than 24% of the variance to by 

judged significant at the 0.05 level. Note that in the special case of a constant time 

series (constant numeric sequence in this paper), the p-value returned by Fisher’s 

test is exactly 1 (i.e. the null hypothesis is not rejected). If the largest periodogram 

ordinate is statistically significant, then it is possible to go on and test the second 

and third largest periodogram ordinates for significance, and so on.  

       Given the major periodic components, harmonic analysis was used to fit 

the data with the cyclic components (Warner, 1998). As in regression analysis, 

harmonic analysis involves estimating the amplitude parameters A and B in the 

formula (1) given a fixed fundamental period parameter ω.  R-square (R2) 

measures the goodness of fit of the predictive model and estimates the percentage 

of total variance of the observations explained by the analysis. Therefore, with the 

period estimate from the spectral analysis as a prior, we are able to search for the 

best period estimate maximizing the R-square in a relative small range and its 

confidence interval (CI).  

For the entropy profile, a bootstrap simulation procedure is used to produce 

1000 random samples with replacement from the original bHLH multiple 

alignments.  For each sample, the harmonic analysis is conducted to detect the 

best period estimate with the largest R-square statistics. Assuming the 1000 period 

estimates have a normal distribution, the 95% confidence interval of the mean can 

be obtained.   

  Analysis of variance (ANOVA) is conducted to partition the total variance in 

the entropy data into the variance in factor scores for Factors I-V. The null 
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hypothesis in this analysis is that there is no difference between the total variation 

of the scores for Factor I-V and the error variance.   

Further, multiple regression analysis is conducted (dependent variable: 

entropy independent variable: five factor score variance components) to estimate 

β0, β1,…, β5 of the following regression model equation.  

Entropy = β0 + β1(Factor I Var) + β2(Factor II Var) + β3(Factor III Var)  

                     + β4(Factor IV Var) + β5(Factor V Var) + ε     (3) 

where ε is a normal distributed random variable with µε=0 and σε
2=σ2 

 

RESULTS 
 

Periodicity Analyses of Entropy Profiles 

The spectral density plot produced by the Fast Fourier transformation for the 

entropy profile is shown in Fig.1.3a.  The largest peak corresponds to a period of 

approximately 3.77 aa. The spectral density plot produced by the Burg method is 

very similar. Fisher’s test indicates that the periodogram ordinate at 3.77 aa is 

significantly different from the average periodogram, which confirms that the 

periodic component with a period of 3.77aa is statistically significant. However, the 

second and third largest periodogram ordinates are not significant. Thus, there is 

one statistically significant major periodicity component in the entropy profile and it 

corresponds to a value well within the range of known α-helix values.  

Limitations of the Fourier frequency reported by the FFT method permit the 

spectral analysis to give only an approximate periodicity estimate.  Thus, 

harmonic analysis was conducted to detect the best period estimate in the range 
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from 3.30 aa to 3.90 aa, with increments of 0.01. A predictive model was fitted and 

the associated R-square statistics (R2) was calculated each iteration.  The period 

maximizing the R-square statistics was recorded as the best period estimate. 

Results indicate that the entropy profile has a major periodic component of 3.6776 

aa repeat and this component can explain 45.7% of total variance (R2
 = 0.457 ).   

A 95% confidence interval of the period estimate calculated from 1000 

bootstrap entropy profiles gives an interval of  (3.6773 - 3.6778).  This finding 

substantiates our result that there is a major periodic component in the entropy 

profile of bHLH protein domain. Thus, the entropy profile of bHLH protein domain 

has a periodicity estimate very similar to the conventionally accepted value (3.60 

aa per turn) for the ideal α-helix. 

 

Periodicity of Factor Score Means 

The factor score means describe the average physiochemical attribute for 

each amino acid site for each factor (=multidimensional physiochemical attribute 

index).  The spectral density plot of Factor I (polarity) means is given in Fig.1.3b. 

The peaks located between 3-4 aa suggest the existence of periodic components. 

The periodogram data suggests three possible periodic components of 3.27 aa, 

3.77 aa and 2.58 aa. The Fisher’s test statistic g for the 3.27-aa periodic 

component is 0.196, which does not exceed the critical value 0.240. However, if it 

is assumed that the 3.27-aa component is significant and we continue to test the 

3.77-aa component, it is found that the Fisher’s test statistics g of the 3.77-aa 

periodic component is 0.176, which exceeds the critical value 0.156. These results 
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suggest that there are possible significant periodic components in the Factor I 

means profile.  

The spectral density plot of factor II and III means (Fig.1.3d) exhibit some 

peaks in the spectral density plot and several large periodogram ordinates. 

However, none are statistically significant in the Fisher’s test. The spectral density 

plot of Factor IV means (Fig.1.3h) has three large periodogram ordinate at 2.58 aa, 

3.27 aa 4.9 aa.  The 2.58-aa component is not significant. However, the Fisher’s 

test statistics g of the 3.27-aa component is significant, which indicate that there is 

possible significant periodic component the Factor IV means profile.  Finally, 

Factor V has no statistically significant values according to the Fisher’s test. 

 In summary, these analyses suggest that the factors I and IV means profiles 

contain periodicity components which conform to the periodicity of helix secondary 

structure, although the statistical significance is not strong.  Factor I is a 

multidimensional attribute relating to covariation in polarity, hydrophobicity, 

accessibility and free energy. Factor IV is related to relative amino acid composition 

in various proteins, number of codon coding for an amino acid, and amino acid 

composition  (Atchley et al., 2005).  Other factors have large values around 3.3 to 

3.7 but the results do not reach the level of statistical significance in the Fisher’s 

tests. 

 

Periodicity Analyses of the Factor Score Variances 

      An entropy profile (Fig.1.2a) is a description of the total site-by-site amino 

acid diversity without regard to the underlying causal physiochemical attributes.  
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Consequently, analyses relating the entropy values to the variances in factor 

scores at each site should permit decomposition of the total variability at each 

amino acid site into its underlying components of attribute variability.   

An analysis of variance of the factor score variances has a statistically 

significant F-test value =52.77 (P<0.0001) indicating that the explained variation is 

large relative to unexplained variance.  Hence, we can reject the null hypothesis 

that there is no difference between the total variation of Factor I-V and the error 

variance. A multiple regression analysis was carried out of the form:  

Entropy = β0 + β1(Factor I Var) + β2(Factor II Var) + β3(Factor III Var)  

                     + β4(Factor IV Var) + β5(Factor V Var) + ε 

This analysis gave parameter estimates of β0 = 0.564 (P<.0001), β1 = 0.470  

(P=0.052), β2 = 0.468  (P=0.062), β3 = 0.154  (P=0.023), β4 = 1.263 (P< .0001) 

and β5 = 0.174 (P=0.054). The proportion of the total variation explained by the 

model has an R2
 = 0.86 meaning that 86% of the variation in entropy values could 

be explained by these five complex attribute index variables. 

The spectral density plot of Factor I variances (Fig.1.3c) has peaks at three 

periodogram ordinates (2.58 aa, 3.77 aa and 3.27 aa) but none are statistically 

significant by the Fisher’s test.  However, analyses of the Factor II variances 

profile is Fig.1.3e, give a major peak at 3.77 aa, which is statistically significant in 

the Fisher’s test. A follow-up harmonic analysis gives an accurate period estimate 

as 3.69 aa (R2
=0.285).  Similarly, Factor III variances (Fig.1.3g) gave a major 

peak at 3.77 aa that is also statistically significant in the Fisher’s test. The follow-up 

harmonic analysis gives an accurate period estimate as 3.71 aa (R2=0.379).  The 
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spectral density plot of Factor IV variances (Fig.1.3i) had three peaks at 

periodogram ordinates at 7 aa, 5.44 aa and 2.13 aa but none are statistically 

significant.  However, the spectral density plot of Factor V variances (Fig.1.3k) 

had large periodogram ordinates at 3.27 aa, 3.77 aa, and 5.44 aa.  The value at 

3.77 aa is statistically significant in the Fisher’s test.  

        Thus, Factors II, III and V variances have statistically significant 

patterns of periodicity.  In each instance, the peak occurs at approximately 3.6 – 

3.7 aa, which is close to the conventionally accepted value for an α-helix pattern. 

Factor I and IV variances profiles have no significant periodic components. 

 

Discussion 

         Herein we describe the application of spectral and multivariate 

statistical analyses to the patterns of amino acid periodicity in a diverse array of 

bHLH domain-containing proteins. Our results suggest that these computational 

techniques can be powerful estimators of important structural features in proteins.  

Our analyses show that analyzing sequence elements as highly interpretable factor 

score attribute indices can facilitate other quantitative analyses to explore important 

evolutionary and structural phenomena in proteins. 

These analyses of sequence variability give periodicity estimates that 

deviate only slightly from the conventionally accepted value of 3.60 aa for an 

α-helix.  Indeed, they fall well within in the known range of 3.40 - 3.91 aa (Kyte, 

1995).  

What phenomena might be responsible for variable estimates in amino acid 
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periodicity?  First, there is variability in sampling.  Our analyses are based on a 

single family of transcription factors containing two short amphipathic α-helices.  

Thus, we might expect some variability in periodicity among different families of 

proteins.  For example, it has been reported that the number of residues per 

α-helical turn of a leucine zipper protein is about 3.64 (Thepaut et al., 2004), a 

value still very similar to that reported here. 

Second, more complicated structural phenomena may be at work that adds 

noise to the estimates.  For example, in the basic region of the bHLH protein/DNA 

complex in Pho4, there are non-regular α-helical turns and the basic region is 

mostly unfolded relative to residual helical content in the absence of DNA (Cave et 

al., 2000).  Studies on the bHLH-leucine zipper protein Max when uncomplexed 

with DNA has the first 14 residues of the basic region mostly unfolded.  However, 

the last four residues of the basic region form a persistent helical turn while the loop 

region is observed to be flexible (Sauve et al., 2004). Therefore, the basic region 

and loop regions may exhibit different periodicity values relative to helix 1 and helix 

2. This topic is certainly worthy of further investigation. 

The removal of some part of the highly variable loop region (such as done in 

this report) may distort the long-range periodicity (low-frequency components) 

evaluation of profiles of multiple alignments. However, removal of part of the loop 

region has little impact on the short-range periodicity (high-frequency components) 

as analyzed in this report.  Thus, our short-range evaluations in this paper are 

robust. 

      It is important to consider the stationarity property of a numeric sequence 
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profile since it can affect the periodicity evaluation.   Spectral analysis has a 

stationary assumption (Warner, 1998), i.e., the mean and variance of the numeric 

sequence are constant over amino acid sites and structure depends only on the 

relative position of two observations (Kendall and Ord, 1990). However, different 

regions of a protein sequence may be subject to different selection pressures 

during evolutionary divergence.  As a consequence, they may display entropy and 

factor score patterns that are not stationary. In the bHLH case, partitioning the 

sequence into several short homogeneous regions and then investigating the 

periodicity for the basic region, Helix 1 and Helix 2 separately could improve the 

accuracy of the periodicity evaluation.  Such findings are expected because 

structurally and evolutionarily homogeneous regions intend to be more stationary 

than the entire sequence.  Several suggestions have been made for this problem.  

For example, Warner (1998) has suggested a log transformation of the data might 

reduce this heterogeneity somewhat. Also, complex demodulation methods (e.g., 

Bloomfield, 1976) make it possible to describe the change in amplitude of the 

periodic component across amino acid sites more precisely for nonstationary 

series.      

The ANOVA and multiple regression results described here demonstrate that 

the overall variation (entropy) in alphabetic amino acids can be significantly related 

to variation in their major underlying physiochemical attributes. Through studying 

the influence of these physiochemical components, we are able to understand and 

explain the causes of the variability patterns observed in protein sequences. Based 

on the simple model described in this paper, more complex models can be 



 30

developed that including interaction effects as well as more components. 

      In summary, our results demonstrate that the major periodic components in 

the entropy profile and as well as data on several factor score index variances 

exhibit reflect the classical α-helix periodicity of 3.6 aa. The variances of the factor 

score for propensity for secondary structure (Factor II), molecular volume (Factor 

III) and electrostatic charge (Factor V) are significant underlying causal 

components to site-by-site amino acid diversity in the bHLH domain.  Further, the 

factor score means for polarity and codon composition also contain information 

related to the helix secondary structure.  

These results suggest that periodicity patterns in amino acid diversity reflect 

significant secondary structure information.  Further, entropy as a measure of 

diversity at each amino acid site can be decomposed into its causal components.  

These findings should facilitate formal dynamic modeling of both the variability in 

sequence elements and their underlying causes.  Such analyses would provide 

valuable new information for structural and evolutionary biologists.  

It is clear from these analyses that spectral analysis in combination with 

other powerful statistical procedures can provide valuable information about the 

periodicities in variability patterns of protein domains.  Methods, like those 

described here, can be used to significantly enhance our understanding of protein 

variability, structure, function and evolution.  
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Fig.1.1 
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Fig. 1.2  
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Fig.1.3



 35

Figure Legends 
 
 
 
Fig.1.1 Illustration of the spectral plot of the signal sin(x)+2cos(3x) produced by 
Fourier Transformation. 
 
 
 
Fig.1.2 Entropy and Factor profiles of bHLH protein domains. (a) Entropy vs. Amino 
Acid Sites. (b) Factor I Means vs. Amino Acid Sites. (c) Factor I Variance vs. Amino 
Acid Sites. (d) Factor II Means vs. Amino Acid Sites. (e) Factor II Variances vs. 
Amino Acid Sites. (f) Factor III Means vs. Amino Acid Sites. (g) Factor III Variance 
vs. Amino Acid Sites. (h) Factor IV Means vs. Amino Acid Sites. (i) Factor IV 
Variances vs. Amino Acid Sites. (j) Factor V Means vs. Amino Acid Sites. (k) Factor 
V Variances vs. Amino Acid Sites. 
 
 
 
 
Fig.1.3 Plots of the spectral density distribution of entropy, Factor score means and 
variances profiles produced by the Fast Fourier transformation. (a) Spectral density 
plot of entropy profile. (b) Spectral density plot of Factor I means profile. (c) 
Spectral density plot of Factor I variances profile. (d) Spectral density plot of Factor 
II means profile. (e) Spectral density plot of Factor II variances profile. (f) Spectral 
density plot of Factor III means profile. (g) Spectral density plot of Factor III 
variances profile.  (h) Spectral density plot of Factor IV means profile. (i) Spectral 
density plot of Factor IV variances profile. (j) Spectral density plot of Factor V 
means profile. (k) Spectral density plot of Factor V variances profile.  
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Supplement 

 

 

Supplemental Fig.1.1 Three-dimensional Structure of bHLH protein domain of 
MYC Proto-Oncogene Protein 

 

 

 

Supplemental Table 1.1 Five groups of bHLH protein domains 

 

 

 

Group Example 
Protein 

Characteristics 

A Myod binds to CAGCTG  

B Myc binds to CACGTG 

C Sim doesn’t bind directly 

D Id no basic region/doesn’t bind  

E Hes may bind CACGCG or CACGAG 
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White Noise Tests 

 

    In the context of spectral analysis, white noise may be defined more formally 

as an equal mixture of all the frequencies. In other words, there is no individual 

periodic component that can explain a larger share of the variance over other 

periodic components (Warner,1996). Instead of showing peaks in the spectrum of 

the signal ( e.g. the data series), white noise shows a flat straight line due the same 

contribution of individual periodic components.  

    Therefore, two white noise tests, Fisher’s Kappa tests and Bartlett's 

Kolmogorov-Smirnov (BKS) are conducted (SAS, 1992) to analyze the bHLH 

protein domain. The results are shown in Table 2. Although these statistical tests 

can provide statistical information about periodicity patterns, we should be cautious 

when applying the results to explain the numeric sequence profile and equating 

statistical and biological significance. For example, even if a periodic component is 

not statistically significant by the Fisher’s test, it still may have some biological 

meaning.  Even if a numeric sequence profile is assumed to be white noise, the 

corresponding amino acid sequence may still contain biological information about 

structure, function and evolution.  

      The entropy and Factor III variances profiles are rejected as white noise. 

Factor II and Factor V variances profiles are also susceptible as white noise 

because both p-values are less than 0.1.  Other profiles are not rejected as white 

noise in both statistical tests. 



 38

 
Supplemental Table 1.2 Results of white noise tests for the entropy, factor score 
means/ variances profiles. 
 

 

 

 

 

 

 

 

 

 

         White Noise  

               Tests 

Profile 

Fisher's Kappa  

Test Statistics 

Bartlett's Kolmogorov- 

Smirnov (BKS) Test 

Statistics 

Entropy 7.38 (p<0.01) 0.217 ( p = 0.21) 

Factor I Means 4.70 (p>0.1) 0.16 (p=0.55) 

Factor I Variances 3.27 (p>0.1) 0.18 ( p = 0.38) 

Factor II Means 3.61 (p>0.1) 0.15 (p=0.63) 

Factor II Variances 5.24 (0.05<p<0.1) 0.17 ( p = 0.47) 

Factor III Means 3.70 (p>0.1) 0.11 (p=0.92) 

Factor III Variances 7.65 (p<0.01) 0.27 ( p = 0.06) 

Factor IV Means 4.03 (p>0.1) 0.18 (p=0.43) 

Factor IV Variances 3.46 (p>0.1) 0.11 ( p = 0.93) 

Factor V Means 3.01 (p>0.1) 0.13 (p=0.85) 

Factor V Variances 5.42 (0.05<p<0.1) 0.24 ( p = 0.12) 
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Supplemental Table 1.3 Summary of the fundamental periods of the entropy 
profiles for the whole sequence, Basic region, Helix 1 and Helix 2. The percentage 
of variance indicates the percentage of total variance contributed by the periodic 
component with major periods. 

Entropy 
Profile 

Fundament
al Period 

Model R
2
 

Whole 
Domain 

3.68 2 2
Yt 2.497-0.2915 sin( ) 0.8963cos( )

3.68 t 1,2,. . . 49   

t t
T T

T

π π
= +

= =

 0.457 

Basic 
Region 

3.56 2 2
Yt 2.5238+0.1713sin( ) 0.9431cos( )

3.56 t 1,2,. . . 13   

t t
T T

T

π π
= +

= =

 0.463 

Helix 1 3.59 2 2
Yt 2.5423 0.3335sin( ) 0.9567 cos( )

3.59 t 14,15,. . . 28   

t t
T T

T

π π
= + +

= =

 

0.530 

Helix 2 3.59 2 2
Yt 2.3744+1.3057 sin( )+0.0028 cos( )

3.59 t 35,36,. . . 49   

t t
T T

T

π π
=

= =

 0.777 
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Spectral Density Plots Produced by Burg Methods 
 
 
 

 
 

Supplemental Fig.1.2 Spectral density plot of entropy profile  
           produced by Burg method. 

 

 
 
 

Supplemental Fig.1.3  Spectral density plot of Factor I means  
                 profile produced by Burg method. 
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Supplemental Fig.1.4  Spectral density plot of Factor I variances  
               profile produced by Burg method. 

 
 
 

 
 

Supplemental Fig.1.5  Spectral density plot of Factor II means  
                 profile produced by Burg method. 
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Supplemental Fig.1.6  Spectral density plot of Factor II variances  
               profile produced by Burg method. 

 
 
 

 
 

Supplemental Fig.1.7 Spectral density plot of Factor III means  
               profile produced by Burg method. 
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Supplemental Fig.1.8  Spectral density plot of Factor III variances  
              profile produced by Burg method. 

 
 
 

 
 

Supplemental Fig.1.9  Spectral density plot of Factor IV means  
                profile produced by Burg method. 
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Supplemental Fig.1.10  Spectral density plot of Factor IV variances 
               profile produced by Burg method. 

 
 
 

 
 

Supplemental Fig.1.11  Spectral density plot of Factor V means  
                  profile produced by Burg method. 
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Supplemental Fig.1.12  Spectral density plot of Factor V variances  
                profile produced by Burg method. 

 
 

 

Supplemental Plots of Analyses on Entropy profile 
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Supplemental Fig.1.13 Plot of the observed entropy profile (smooth curve) and   
the predicted entropy profile (dotted curve) with a period of 3.68 aa.      
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Supplemental Fig.1.14 Plot of the observed and predicted entropy profiles for 
each region. (a) Plot of the observed entropy profile (smooth curve) and the 
predicted entropy profile (dotted curve) with a period of 3.56 aa for the Basic 
region.  (b) Plot of the observed entropy profile (smooth curve) and the predicted 
entropy profile (dotted curve) with a period of 3.59 aa for the Helix 1 region.  (c) 
Plot of the observed entropy profile (smooth curve) and the predicted entropy 
profile (dotted curve) with a period of 3.59 aa for the Helix 2 region.   
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ABSTRACT 

 
Proteins are built with molecular building blocks such as α-helix, β-sheet, loop 

region and else, which is an economic way of constructing complex molecules. 

Periodicity analysis of protein sequences has allowed us to obtain meaningful 

information of their structure, function and evolution. In this work, complex 

demodulation (CDM) is introduced to detect functional regions in protein 

sequences data. We analyzed bZIP and bHLH-PAS protein domains and found that 

complex demodulation can provide insightful information of changing amplitudes of 

periodic components in protein sequences. Furthermore, it is found that the local 

amplitude minimum or local amplitude maximum of the 3.6-aa periodic component 

is associated with protein structural or functional information due to the observation 

that they are mainly located in the boundary area of two structural or functional 

regions. 
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Introduction   

     Recent developments in computational methodology have provided 

mechanisms to statistically transform alphabetic sequence information   into 

biologically meaningfully arrays of numerical values (Atchley et al., 2005). Using a 

multivariate statistical approach, these authors generated five multidimensional 

indices (factors) of amino acid attributes that reflect polarity, secondary structure, 

molecular volume, codon diversity, and electrostatic charge of sequences. This 

advance will make possible a number of statistical and mathematical analyses that 

will facilitate our understanding of the structure and function of biological sequence 

data.  

 For example, it has been suggested that periodicity of a sequence can be 

evaluated by Fourier transformation or spectral analysis (Pasquier et al., 1998). 

Periodicity of biological sequences is an important indicator of protein structure and 

DNA folding (Herzel et al., 1999; Schieg and Herzel, 2004). However, the Fourier 

analysis or spectral analysis is not useful in assessing the changes in cycle 

parameters, such as amplitude and phase of the periodic components over the 

sequence.  

 Recently, the technique of complex demodulation (CDM) has been introduced 

to provide a continuous assessment of the periodic amplitude and thereby identify 

regions of change in structural and functional aspects of biological sequences. 

Complex demodulation has been widely used in many fields such as physiology, 

psychology and oceanography research (Hayano et al., 1993; Lipsitz et al., 1998; 
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Babkoff et al., 1991; Rutherford and D’Hondt 2000). However, there are obviously 

no applications of CDM procedures in computational biology and bioinformatics.  

    Therefore, this paper is to illustrate the application of CDM method on protein 

sequences with the case study of bZIP and bHLH-PAS protein domains. This paper 

is also an exploratory work to ascertain if the amplitude of a certain periodic 

component of a protein sequence has biological information. The bZIP and 

bHLH-PAS proteins are selected because of the complexity of their function and 

structure, which can represent the complex characteristics of biological signals.  

     In this article, we show that CDM can describe the changing amplitude of a 

certain periodic component. The amplitude pattern of the 3.6-aa periodic 

component is closely associated with the secondary structure of the protein 

sequences. It is found that the amino acid sites with local amplitude maximums and 

local amplitude minimums mostly occur at the boundaries of helices and strands. 

This strongly suggests that CDM method is a new computational tool of helping us 

to understand biological sequences. There are several methods available to predict 

the regular secondary structure, however, the number of correctly predicted α-helix 

start positions was just 38% (Wilson, 2004). This research should trigger more 

interests in CDM and more exploration works to apply CDM method to analyze the 

biological sequences.  
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Methods   

Principle of Complex Demodulation  

     Not every “periodic” series has simple representation in terms of cosine or sine 

functions. A perturbed periodic component may have changing amplitude and 

changing phase. Therefore, the goal of complex demodulation is to quantify the 

amplitude and phase as a function of time. The amplitude and phase are 

determined by the data in the neighborhood of t, rather than by the whole series. 

The principle of complex demodulation has been well documented by Bloomfield 

(1976) so that it is briefly described here before showing the case study results on 

the bZIP and bHLH-PAS proteins. Given the fundamental period of a biological 

sequence, CDM can extract approximations of the changing amplitude and 

changing phase as a function of the position of nucleotides or amino acid residues.  

If numerical series data xt of a biological sequence is known to include a component 

oscillating around a frequency of λ (the amplitude and the phase may varies), then xt 

can be written as  

cos( ) (1)t t t tX A t zλ φ= + +  

where At and Øt are the changing amplitude and phase of the periodic component 

and zt  is residue including all other components and noises. Fig.2.1 is a good 

illustration of power spectrum analysis and complex demodulation of simulated 



 52

data (Hayano et al., 1993).  It is obvious from this figure that CDM is able to 

extract approximations of At (amplitude) as a function of time.  Øt can be also 

represented as a function of time, but this phase plot hasn’t been shown here.  

    In factor, the real-valued time series (1) can be regarded as complex-valued 

series and hereby can be easily processed in computation. With the Euler relation 

cos sin exp( )i iλ λ λ+ = , the time series Xt in (1) is converted to its complex 

analogue  

1
{exp[ ( )] exp[ ( )]} (2)

2
t t t t tX A i t i t zλ φ λ φ= + + − + +  

where i is a complex number and i2= -1. 

    We then obtain a new signal yt by shifting all the frequencies in Xt by –λ. This 

procedure is called CDM and yt is expressed as 

2 exp[ ] (3)t ty x i tλ= −  

Inserting equation (2) into (3), equation (3) then becomes  

exp( ) exp[ (2 )] 2 exp( ) (4)t t t t t ty A i A i t z i tφ λ φ λ= + − + + −  

The first item of equation (4) is smooth (the frequency is around zero), the second 

term oscillates at a frequency of -2λ and the third item is assumed to contain no 

component around the zero frequency from the definition of zt. Therefore, when we 

let Yt be the signal obtained by passing yt through a low-pass filter, we would obtain 

Yt in complex version as 

                       exp( ) (5)tt tY A iφ=  

    Here Yt is represented by a set of complex numbers in terms of its magnitude 
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 and phase, At and Øt. The instantaneous amplitude of the periodic component is 

defined as 

                      
* (6)t t t tA Y Y Y= =  

where Yt* is the complex conjugate of Yt . The phase Øt can be then caculated.     

     The FORTRAN program of CDM was listed by Bloomfield (1976). From a 

frequency-domain perspective, the power spectrum of xt has a peak around a 

frequency of λ. As the result of CDM, the peak is moved leftward to around zero 

frequency in the power spectrum of yt (in the PSD-frequency plot). For example in 

Fig. 2.1, if CDM is applied to the low-frequency periodic component A with a 

frequency around 0.09 HZ, then the Low-frequency peak will move leftward to 

around zero frequency. The peaks of all other components in xt, if any, are also 

moved leftward, those at an original frequency above λ do not reach zero 

frequency, and those below λ move into the negative part of the frequency axis.      

      Thus, is is desirable for a low-pass filter to exclude all components except 

the zero-frequency component and then the amplitude can be determined. The 

low-pass filter is designed according to the least squares filter design method 

presented by Bloomfield (1976). The transfer function of the ideal low-pass filter is  

1 0
( )

0

c

c

if
H

if

ω ω
ω

ω ω π
≤ ≤

= 
< ≤

     (7) 

where ωc is the cutoff frequency. The Fourier coefficients of H(ω) are  

sin
1

c

u

u
h u

u

ω
π

= ≥    and 0

c

h
ω
π

=    (8) 
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We have to construct a smoothing function to approximate the ideal low-pass filter 

in computation. Convergence factors are used to accelerate the convergence of 

Fourier series and achieve better approximation of the transfer function H(ω) in 

equation (7). According to Bloomfield, the smoothed function approximating H(ω) is 

  

~

0

1

sin / 2
( ) 2 cos

/ 2

s

s u

u

u
H h h u

u

δ
ω ω

δ=
= + ∑   (9) 

The multiplier 
sin 2 /(2 1)

2 /(2 1)

u s

u s

π
π

+
+

 is an example of convergence factor. The 

smoothed transfer function, which are initially 1 and decay to smoothly 0, are a 

smooth approximation to the ideal filter H(ω). Fig.2.2 shows the smoothed transfer 

functions for s=5 (an 11-term filter) and s=20 (a 41-term filter), and the ideal 

transfer function.  

      It is important to note that the amplitudes obtained with the use of complex 

demodulation are relative rather than absolute measures. This is due to several 

factors, including the following: (i) the signal is not exactly sinusoidal. And (ii) the 

absolute measures of the amplitude represents the sum of high and low frequency 

periodic components, however, complex demodulation separates out the 

amplitudes at each frequency. 

 

Computational Procedures 

     First, we transform the biological sequences into numeric values. In our case 

study, a protein sequence is transformed into a numeric array of factor scores
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(Atchley et al., 2005). The variability of protein multiple alignments is measures as 

a numeric array of entropy values.  

     Second, spectral analysis is conducted to produce power spectral density 

(PSD) plot (as shown in Fig.2.1). Through examining the PSD plot, certain periodic 

component of interests can be selected for the following CDM procedure.  

     Third, given a periodic component of interests, CDM is applied to produce a 

plot of instantaneous amplitude and phase of the periodic component of interests 

as a function of amino acid sites. 

 

Data Types 
 

     The data utilized in this study are basic region-leucine zipper (bZIP) protein 

domain and basic region-helix-loop-helix-PAS (bHLH-PAS) protein domain. The 

bZIP proteins and bHLH-PAS are both very important transcription factors. bZIP 

proteins contain a basic region mediating sequence-specific DNA-binding, followed 

by a leucine zipper region, which is required for dimerization (Podust et al., 2001). 

Both the basic region and the leucine zipper region have a helix form.  Binding to 

DNA induces a coil-to-helix transition of the basic DNA-binding region. The leucine 

zipper region exhibits a stable helix form. bZIP domain is one of the simplest types 

of DNA-binding domains. However, the bZIP transcription factors are capable of 

recognizing a diverse range of DNA sequences and regulate the gene transcription. 

The collection of 321 bZIP protein sequences (clad bzip_2) was retrieved from the 

database Pfam (Dec,2004).  
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       The second group of proteins to be analyzed are the bHLH-PAS proteins. 

They are a family of sensor proteins involved in signal transduction in a wide range 

of organisms. The bHLH-PAS domains contain a structurally conserved α/β-fold. 

There are basic region-helix-loop-helix motif, PAS-1 and PAS-2 motifs in the 

domain. The illustration of structure-based sequence alignment and the structure of 

bHLH-PAS domains can be found in Supplemental Fig.2.2 -2.3.  Both PAS-1 and 

PAS-2 motifs contain a five-stranded antiparallel β-sheet with one face flanked by 

several α –helices (Yildiz et al., 2005). The PAS-1 and PAS-2 motifs are connected 

by a short linker.  

      The choice of bZIP and bHLH-PAS proteins is based on their structural and 

functional attributes. Since there are subtle differences among different regions of 

the sequences, it is intriguing to distinguish the differences between these various 

regions and to explore a novel approach to identifying the boundary of each region. 

It is hypothesized that CDM can distinguish the subtle differences among the 

structural and functional regions of sequences with a similar helix conformation. If 

CDM is able to distinguish the subtle differences, it is expected to work better for 

regions of sequences have more structural and functional differences. bHLH-PAS 

contains complex α/β-fold which provides us with a complicated data set to 

examine the CDM procedure.  

 

Results  

bZIP Protein Domain 

   An entropy profile was calculated (Fig.2.3) based on the method described by 
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Atchley et al. (2000). Such a profile is a numeric representation of the residue 

diversity at each amino acid site in a set of aligned proteins. Large entropy values 

represent high variability for that site while small values represents low variability. 

In our aligned sequence database, the basic region in bZIP proteins ranges from 

residue 1 to 27 while the leucine zipper region extends from residue 28 to 55.  

There are interesting oscillations of the entropy values and the periodic component 

was identified by spectral analysis (Bloomfield, 1976).  

     A spectral density plot (Fig.2.4) for this entropy profile was produced by the 

spectral analysis method-Fast Fourier Transformation (Bloomfield, 1976) using 

SAS software (PROC SPECTRA). The peak at around 3.6 aa indicates that there is 

a major significant periodic component of at that point in the entropy profile. 

Increases of spectral density in the period range from 13.75aa to 56 aa indicate 

that there is also low-frequency periodic component, whose period estimate is 

much larger. The largest period estimate can be the length of the whole numeric 

sequence, but such estimate is meaningless.  

     We focus on the high-frequency periodic component at around 3.6aa that 

conforms to the average 3.6 aa per turn for an ideal α-helix. The CDM procedure 

was then used to analyze the amplitude of the 3.6-period component as a function 

of amino acid sites. We are particularly interested in locating the boundary between 

the basic region and the leucine zipper region. 

    The amplitude of the periodic component at 3.6 aa vs. residue is plotted in the 

dotted line in Fig.2.3. We found there is amplitude decrease in the boundary region 

between the basic and leucine zipper regions. The entropy amplitude at residue 27 
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achieved a local minimum. Structural studies indicate that residue 27 is the last 

residue of the basic region and the ZIP region starts at residue 28 (Pfam, 2005) 

    These results indicate that the entropy amplitudes of residues located in the 

end of the basic region and near the start of the ZIP region are significantly smaller 

than the average values (t-test: p-value<0.05). The maximal entropy amplitude 

occurs at residue 42. These latter findings indicate that some residues in leucine 

zipper region are highly conserved while others are highly variable.  The latter 

results in large amplitude which is reflected by large fluctuations in the entropy 

values.  

 These findings suggest that the existence of local minimum entropy 

amplitude identifies the boundary of specific structural or functional regions.  It is 

interesting that the entropy amplitude at residue 4 has global minimal amplitude 

and the amplitude increases beyond residue 4. This observation suggests a 

functional and structural difference of these residues that warrants further 

investigations.   

      Next, we investigate the Factor I profile (Atchley et al., 2005) of the bZIP 

domain of the well-studied transcription factor C-fos shown in Fig.2.5.  The 

sequence of the domain (primary accession number: P01100; secondary accession 

number:  P18849, Glover, 1995) is : 

139-KRRIRRERNKMAAAKCRNRRREL|TDTLQAETDQLEDEKSALQTE IANLLKEKEKLEFI LAAH-200     

          Basic Region     |             Leucine Zipper                         
 

       The spectral plot of c-fos factor I profile does not reveal a significant 

periodic component at around 3.6 aa (Fig.2.6). However, implemented the CMD 



 59

method assuming that there is a periodic component of 3.6 aa and we obtain the 

amplitude of it (dotted curve in Fig.2.5). 

      Based on the known structure of the c-fos protein (Glover, 1995), the leucine 

zipper region starts at residue 162 (labeled in Fig.2.5).  However, the amplitude of 

the 3.6-aa periodic component of Factor I at residue 162 is not significantly different 

from the average (t-test, p>0.05) and indeed the local minimum is not at residue 

162. However, the minimal amplitude of factor I occurs at residue 164, which is 

close to the leucine zipper starting residue of 162. This result suggests that the 

CDM method is somewhat robust to predict the start point of a new structural or 

functional region, even if there is no significant 3.6-aa periodic component of Factor 

I. The deviation of the leucine zipper start residue from the residue with a minimal 

amplitude is possibly related to the absence of a statistical significant 3.6-aa 

periodic component of Factor I.  This observation provides us with an interesting 

topic that may trigger further investigation. 

 

PAS Protein Domain 
 

Within the bHLH/PAS proteins the PAS region is involved in protein 

dimerization with another protein of the same family (Ponting and Aravind, 1997; 

Hefti et al., 2004; Zhulin et al., 1997). It has also been associated with light 

reception, light regulation and circadian rhythm regulators (clock). In bacteria, the 

PAS repeat is usually associated with the input domain of a histidine kinase, or a 

sensor protein that regulates a histidine kinase.  77 bHLH-PAS protein domains 
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were obtained from PFAM database (version 17.0 May, 2005). The entropy profile 

of 77 bHLH-PAS domains is shown in Fig.2.7.    

The spectral density plot of the entropy profile of bHLH-PAS protein domains 

is given in Fig.2.8.  Only short-range periodicity (i.e. high-frequency components) 

is shown in Fig.2.8. There are peaks located in the 3.40-3.91 aa range that signal 

the existence of an α-helix (Kyte, 1995). Therefore, CMD method is conducted to 

produce the amplitude of the 3.6-aa periodic component as a function of amino 

acid site (in dotted curve in Fig. 2.7). 

Further, we investigate the Factor I profile of a well-known bHLH-PAS protein 

Arnt_human protein (p27540/ gi:114163) , whose  secondary structure has been 

determined (Hoffman et al., 1991). It is a 789 aa-length protein containing 

bHLH/PAS1/PAS2 domains (Basic region: 90..102 ;  Helix-loop-helix region:   

103..143;  PAS 1 domain:   161..235; PAS 2 domain   349..419).  Regions 

1-50 and 468-789 are removed because of they are included in  the bHLH/PAS 

domain.   The estimated secondary structure of the Arnt protein is obtained via 

Prediction protein web server. 

The spectral density plot of the Factor I profile of Arnt protein has been 

produced in Fig.2.9. There are some peaks located in the 3.40-3.91 aa range which 

signals the existence of α-helix, especially there is a large peak at around 3.6 aa 

(Kyte, 1995). 

 The Factor I profile of Arnt protein domain is show as histogram in Fig.2.10. 

The CMD method produces the amplitude as a function of amino acid sites for the 

3.6-aa periodic component (curve in Fig.2.10).   
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      Many local amplitude minimums have implication for the boundary of the 

α-helix regions or beta-sheets (Table 2.1). Local minimum residue 102 is the 

ending residue of the basic region of the bHLH conserved domain.  Local 

minimum 158 is close to the beginning residue 161 of PAS domain 1 ranging from 

residue 161 to 235.  Local minimum 344 is close to the beginning residue 349 of 

PAS domain 2 ranging from residue 349 to 419. 

      Most local amplitude maximums have implication the boundary of the α-helix 

regions or beta-sheets (Table 2.1).  The results are: Local maximum residue 143 

is the ending residue of the 2nd helix of the HLH region. Local maximum residue 

171 is the ending residue of an α-helix; local maximum residue 291 is close to the 

ending residue of a predicted α-helix; local maximum residue 273 is located 

between two beta-sheets; local maximum residue 313 is close to the ending 

residue of a predicted beta-sheet; local maximum residue 334 is the beginning 

residue of a predicted beta-sheet; local maximum residue 355 is the beginning 

residue of a predicted beta-sheet; local maximum residue 397 is the 2nd beginning 

residue of a predicted beta-sheet. The only exceptions are: local maximum residue 

220 is located within a predicted α-helix region; local maximum residue 413 is 

located in a predicted beta–sheet region. 

 

Discussion 

      From the case study of well-known protein sequences of bZIP and 

bHLH-PAS proteins, the amplitude of certain periodic component is proved to 

contain meaningful biological information. The complex demodulation procedure is 
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able to quantify the amplitude and phase of periodic components of protein 

sequences. It is the first time to introduce and illustrate the applications of complex 

demodulation on biological sequences. The analyses reveal that the minimums or 

maximums of amplitudes of the 3.6-aa periodic component of protein profiles (i.e. 

entropy and factor I profiles) are predictors of the boundaries of helices secondary 

structures. The results in the paper should trigger the scientific interests of 

investigating the application of the CDM method on computational biology and 

bioinformatics. Possiblely the analyses of the amplitudes or phased of periodic 

components through the CDM method could reveal very important functional and 

structural information. Also it may be used to improve the accuracy of the prediction 

for N-termini of α-helices because the current prediction accuracy is just 38% 

(Wilson, 2004). 

     Hayano (1993) has address three concerns of the CDM performance. 1) Is 

the resolution sufficient enough to distinguish between the LF and HF components? 

2) Is the estimation of amplitude robust against alterations in the frequencies of the 

components? 3) What is the upper limit of rapid changes in amplitude that can be 

detected by the analysis? Hayano examined a cosine wave that had a linearly 

increasing frequency from 0 to 0.5 Hz during 1,000 s and had a constant amplitude 

of 50. CDM calculated the Low-frequency and High-frequency amplitude only when 

the instantaneous frequency was between 0.055 and 0.125 Hz and between 0.175 

and 0.445 Hz, respectively. Hayano reported that the CDM can not only distinguish 

the Low-frequency and High-frequency amplitudes but also exclude the influence of 

the DC trends (those frequency<0.022HZ) on the Low-frequency amplitude. To 
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examine the alterations in the frequencies of the component, Hayano simulated a 

signal by adding two sine waves whose frequencies were fluctuating between 0.06 

and 0.12 Hz and between 0.18 and 0.44 Hz. The Low-frequency and 

High-frequency amplitude are then calculated by CDM. The results showed slight 

fluctuations of only 1.6 and 4.5%, whereas the power spectral plot showed 

wide-based multiple peaks reflecting the fluctuating frequencies of the components. 

These results indicate that the amplitude estimated by CDM is sufficiently robust 

against the alterations in the frequency of the signal. Further, the simulation of 

Hayano suggests that CDM provides a reliable estimate of amplitude when the 

frequency of amplitude fluctuations was below 0.034 Hz for the LF component and 

below at least 0.040 Hz for the HF component.  

     During the filtering procedure, the input signal will be truncated at both ends 

because the use of the low-pass filter is analogous to the use of a data window. In 

the practice of analyzing series, the standard way is to extend the input signal with 

arbitrary numeric sequences like 0000000 or 1111111111 so that the original data 

is not truncated. In this research, I find that this may be influence of the arbitrary 

numeric sequences on the estimation of amplitudes. Therefore, the moving 

average can be considered as an alternative of the arbitrary numeric sequences. 

Also in this research, the phase plot produced by the CDM method is not included 

because Hayano (1993) has stated that the phase alternation (i.e. the frequency 

alternation) has little influence on the amplitude estimation. The results in this 

research are based on case studies on the bZIP and bHLH-PAS protein domains. It 
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is expected that more representative protein sequences are examined with this 

CDM method. 

    All in all, the CDM method is a promising computational procedure to quantify 

the amplitude of the numeric profiles of protein sequences, which contains a lot of 

unknown biological information and signals. A lot follow-up applications of the CDM 

methods are expected to promote our understanding of the complex protein 

sequences and structures.  
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Figure 
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Fig. 2.3 
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Fig. 2.4 
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Fig. 2.5 

 

 

Leucine zipper region starts 

3.6-aa Periodic Component  



 67

 
Fig. 2.6 
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Fig. 2.7 
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Fig. 2.8 
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Fig. 2.9 
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Fig. 2.10 
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Figure Legends 
 
 
Fig. 2.1 Comparison between autoregressive power spectrum analysis and 
complex demodulation (CDM) of simulated data containing two periodic 
components A and B. A: simulated low-frequency (LF) component. B: simulated 
high-frequency (HF) component. X1t and X2t, 0.09 and 0.25 Hz sine functions with 
a fluctuating amplitude, respectively. C: time series generated by adding 2 sine 
functions (X1t +X2t). D: autoregressive power spectrum density (PSD). E: time 
series of instantaneous amplitude of LF and HF components obtained by CDM. 
(Figure from Hayano et al., 1993) 
 
Fig. 2.2 Transfer functions of least squares low-pass filters with convergence 
factors applied, s=5 and s=20 (Figure from Bloomfield, 1976) 
 
Fig. 2.3 Entropy profile of bZIP protein domains and the amplitude of the 3.6-aa 
periodic component. The entropy profile is represented by the histogram. Large 
entropy value represents high variation at that residue while small one represents 
low variation. Basic region: residue 1-27 Leucine zipper region: residue 28-55.  
The amplitude of the 3.6-aa periodic component vs. amino acid site is in dotted 
curve produced by CMD method. 
 
Fig. 2.4 Spectral density plot of the entropy profile of bZIP protein domains in the 
range from 2 to 10aa (the periodic component of around 3.6 aa period is labeled). 
 
Fig. 2.5 Factor I profile of a bZIP protein domain of transcription factor c-fos protein. 
The amplitude of the periodic component at 3.6 aa vs. amino acid site is in dotted 
curve produced by CMD method. 
 
Fig. 2.6 Spectral density plot of the factor I profile of a bZIP protein domain of 
transcription factor c-fos protein in the range from 2 to 10aa (the periodic 
component of around 3.6 aa period is labeled).  
 
Fig. 2.7 Entropy profile of bHLH-PAS protein domains and the amplitude of the 
3.6-aa periodic component.  The entropy profile is represented by the histogram. 
The amplitude of the 3.6-aa periodic component vs. amino acid site is in dotted 
curve produced by CMD method. 
 
Fig. 2.8 Spectral density plot of the entropy profile of bHLH-PAS protein domains in 
the range from 2 to 10aa (the periodic component of around 3.6 aa period is 
labeled).  
 
Fig. 2.9 Spectral density plot of the Factor I profile of Arnt protein in the range from 
2 to 10 aa (the periodic component of around 3.6 aa period is labeled).  
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Fig. 2.10 Factor I profile of Arnt_human protein and the amplitude of the 3.6-aa 
periodic component (residue 14 - 499, other residues are trimmed in the process of 
CDM). The changing amplitude as a function of amino acid sites is produced by 
CDM and plotted as the curve. 

 

 

Table 

Table 2.1 Summary of the locations of local amplitude minimums and maximums of 
the 3.6 aa periodic component of the Factor I profile. It is found that the local 
amplitude minimums and maximums often occur in the boundary area of the 
α-helices and beta-sheets. 
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Supplement 

 

 

Supplemental Fig. 2.1 Overall Structure of Complex: DNA bended by Fos and 

Jun bZIP proteins (from Glove, 1995).  
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Supplemental Fig.2.2   Structure-Based Sequence Alignment of bHLH-PAS 
Transcription Factors (from Yildiz, 2005).  
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Supplemental Fig.2.3  Domain Architecture and 3D Structure of Drosophila 
Period PAS protein  (A) Domain architecture of full-length Drosophila PERIOD 
PAS protein.  (B) Ribbon presentation of the Period PAS dimer. Molecule 1 is 
shown in red and gray, molecule 2 in yellow and blue. (C) Superposition of Period 
PAS molecules 1 (red) and 2 (blue). Molecule 2 is superimposed onto PAS-2 of 
molecule 1. (from Yildiz, 2005). 
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Abstract 

It is difficult to select a proper amino acid scale to study protein secondary 

structure out of the available 494 amino acid indices because some of them are 

very similar.  Till now, there are no comparisons and evaluations of these indices 

being made. This research proposes a ranking method based on the periodicity 

parameters of well-known protein sequences. We use a well-know periodicity 

parameter of a Leucine zipper helix structure to rank the amino acid indices.  

 

 

Introduction 

An amino acid index is defined as a set of 20 numerical values representing any 

of the different physicochemical and biochemical properties of amino acids.  494 

published indices are summarized in a database 

(http://www.genome.jp/dbget/aaindex.html).  As stated in a cluster analysis of 

amino acid indices for prediction of protein structure and function (Nakai, etc. 

1988), all these 492 indices have been clustered into six categories: (i) Alpha and 

turn propensities (ii) Beta propensity  (iii) Composition (iv) Hydrophobicity (v) 

Physicochemical properties (vi) Other properties. Therefore, many indices are 

similar with each other or measures of the same physiochemical trait.  Such 

situation could raise some confusion in application. For example, it is difficult to 

select the hydrophobicity scale because of too many different hydrophobicity 

indices proposed in the database. Therefore, it is necessary to make evaluation 
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and comparison among those scales based on some well-known structure 

information of protein sequences.   

       In this chapter, the α-helix periodicity property of the leucine zipper protein 

domain is used to evaluate these amino acid scales, who play an important role in 

the formation of secondary structure. This ranking information should be very 

useful to promote our secondary structure prediction or develop better 

bioinformatics tools to understand protein sequences. Those indices that have 

similar periodicity as that of the secondary structure of protein sequences are 

assumed as the most useful indices in protein structure prediction.   

 

Materials 

    The structure of conserved leucine zipper domain of Geminin, a polypeptide of 

about 25 kDa, occurs in the nuclei of higher eukaryotes and functions as both a 

negative regulator of genome replication and coordinator of differentiation, has 

been well studied (Thepaut, 2004). Geminin was discovered as a protein that is 

degraded when cells exit from mitosis, by the large ubiquitin–ligase complex known 

as the cyclosome or anaphase-promoting complex, APC.  
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Fig.3.1 Organization, sequence alignment and the structure of human geminin 
protein domain. (from Thepaut, et al., 2004) (A) Functional domain organization of 
geminin. The LZ domain is indicated by the hatched area,110–144. (B) Vertebrate 
geminin sequences alignment of the DNA replication inhibition domain. Letters 
above the sequences indicate the heptad repeat a,b,c,d,e,f,g positions assigned 
according to the crystal structure. Strictly conserved residues are in red and similar 
residues are in green. (C) The overall structure of HsGem-LZ peptide (L2-A37) in 
Cα trace representation. (D) Ribbon diagram of the view. 
 

       According to the crystal structure analysis (Thepaut, 2004), the structure of 

the HsGem-LZ peptide is a parallel homodimer coiled coil with a typical α-helical 

structure. The number of residues per α-helical turn is about 3.64 aa, a value more 
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closely related to a regular α-helix (3.6 aa) than to a classical coiled coil (3.5 aa).  

 

Methods 

    The HsGem-LZ helices have an periodicity of about 3.64 aa observed from the 

experimental data. We then transform the HsGem-LZ domain protein sequences 

into numeric arrays by replacing the alphabetic codes with the 494 indices. Then 

spectral analysis method (Burg method) has been applied to these numeric 

sequences to evaluate their periodicities in Matlab. Those indices who have the 

closest periodicity to 3.64 aa are listed in Table 3.1.  Only those periods between 

the interval (3.458, 3.822) which is within the 5% error range from 3.64 are reported 

in Table 3.1.   

 

Results  

    It is found that some indices have a period very close to 3.64 aa and some 

indices are not.  Among those indices, most are related to the formation of 

secondary structure. A majority of indices falls into the hydrophobicity category, 

which proved the important role the hydrophobicity plays in the formation of helical 

structure. This result allows us to do comparison between different hydrophobicity 

indices and helps us to determine which hydrophobicity scale is the best in terms of 

secondary structure prediction.  
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Table 3.1 Ranking of amino acid indices according to the their periodicity estimate 
of HsGem-LZ protein domain. Only those periods between the interval (3.458, 3.822 
) which is within the 5% error range from 3.64 are reported here.   
 

Amino Acid Index Name Series # Period 

Normalized van der Waals volume  (Fauchere et al., 1988) 
P. Physicochemical properties 

80 3.6312 

Activation Gibbs energy of unfolding, pH9.0 (Yutani et al., 
1987) 
H.  Hydrophobicity 

396 3.6184 

Frequency of the 4th residue in turn (Chou-Fasman, 1978b) 
A.  alpha and turn propensities 

52 3.6184 

Radius of gyration of side chain (Levitt, 1976) 
P. Physicochemical properties 

157 3.6056 

The number of bonds in the longest chain (Charton-Charton, 
1983) 
P. Physicochemical properties 

29 3.5930 

pK (-COOH) (Jones, 1975) 
H.  Hydrophobicity 

133 3.6968 

Accessible surface area (Radzicka-Wolfenden, 1988) 
H.  Hydrophobicity 

319 3.7101 

Optimized transfer energy parameter (Oobatake et al., 
1985) 
H.  Hydrophobicity 

220 3.5679 

Refractivity (McMeekin et al., 1964), Cited by Jones (1975) 
P. Physicochemical properties 

177 3.5679 

STERIMOL minimum width of the side chain (Fauchere et 
al., 1988) 
P. Physicochemical properties 

82 3.5679 

Optical rotation (Fasman, 1976) 
A.  alpha and turn propensities 

74 3.5556 

Distance between C-alpha and centroid of side chain (Levitt, 
1976) 
P.  Physicochemical properties 

154 3.5433 

Residue accessible surface area in tripeptide (Chothia, 
1976) 
H.  Hydrophobicity 

33 3.5433 

STERIMOL length of the side chain (Fauchere et al., 1988) 
P. Physicochemical properties 

81 3.5310 

Size (Dawson, 1972) 
P. Physicochemical properties 

63 3.7647 

Optimized side chain interaction parameter (Oobatake et al., 
1985) 
H.  Hydrophobicity 

222 3.5068 

Flexibility parameter for two rigid neighbors (Karplus-Schulz, 144 3.7926 
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1985) 
C.  Composition 

Average relative fractional occurrence in AL(i) 
(Rackovsky-Scheraga, 1982)  C.  Composition 

302 3.4949 

Relative preference value at N4 (Richardson-Richardson, 
1988) 
A.  alpha and turn propensities 

328 3.4830 

Average interactions per side chain atom (Warme-Morgan, 
1978) 
H.  Hydrophobicity 

382 3.4830 

Weights for coil at the window position of -6 
(Qian-Sejnowski, 1988  )  
H.  Hydrophobicity 

284 3.4830 

Percentage of exposed residues (Janin et al., 1978) 
H.  Hydrophobicity 

129 3.4712 

Residue accessible surface area in folded protein (Chothia, 
1976) 
H.  Hydrophobicity 

34 3.4712 

Molecular weight (Fasman, 1976) 
P.  Physicochemical properties 

72 3.4712 

Proportion of residues 100% buried (Chothia, 1976) 
H.  Hydrophobicity 

36 3.4595 

Transfer free energy (Janin, 1979) 
H.  Hydrophobicity 

131 3.4595 

Average accessible surface area (Janin et al., 1978) 
H.  Hydrophobicity 

127 3.4595 

Weights for beta-sheet at the window position of -4 
(Qian-Sejnowski, 1988  )  
H.  Hydrophobicity 

273 3.4595 

Side chain orientational preference (Rackovsky-Scheraga, 
1977) 
H.  Hydrophobicity 

299 3.4595 
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Summary 

 

     This dissertation describes several powerful computational techniques to 

conduct spectral analysis on protein sequences.  Spectral analysis has not been 

widely used in protein sequences and it is the first time to apply it to analyze the 

periodicity of variability pattern of protein domains.  

    In Chapter 1, spectral analysis is conducted to study the periodicity of the 

variability pattern of bHLH protein domains represented by the entropy profile. It is 

found that there is a significant periodic component of about 3.6 aa in the entropy 

profile, which has implication of the underlying helix structure. In order to 

understand the physiochemical causes of the variability, we decompose the 

variability into five factor scores representing i) polarity / hydrophobicity / 

accessibility, ii) propensity for various secondary structures, iii) molecular volume, 

iv) codon composition and v) electrostatic charge. The periodicities of these factor 

means/variances profiles also have implications of the helix structure. 

   In Chapter 2, complex demodulation method (CDM) is a complementary method 

of the spectral analysis method used in Chapter 2 because it can describe the 

changing amplitude of a certain frequency of the data. And therefore, it can provide 

very meaningful information that FFT method cannot provide. Although CDM has 

been widely applied into other scientific fields, it is the first report that CDM has been 

introduced into computational biology. With the analysis of bZIP protein domains 
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and more complex bHLH-PAS protein domains, CDM proves to be a very useful 

technique of description of the amplitude of a certain frequency. The analyses on 

the amplitude of the periodic component of about 3.6 aa reveal that the local 

maximums/minimums have implications of the boundary of the secondary structure 

α-helix and β-sheet. For bZIP protein domain, the CDM method can separate the 

basic region and ZIP region very well. And even there are no significant 3.6-aa 

periodic components in the bZIP Factor I profile, CDM still shows some robustness 

to indicate the boundary of the basic region and the ZIP region. 

    In Chapter 3, spectral analysis is conducted to evaluate and compare the amino 

acid indices to see if their periodicity property conforms to the observed 3.64-aa 

periodicity of a Leucine Zipper domain. It seems that the periodicity parameter can 

be a criteria of selecting a proper amino acid index for the goal of studying protein 

structure, function and evolution.  In this way, the redundancy of the amino acid 

indices can be largely reduced. 
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Appendix A: Spectral Analysis Based on the Burg Method  

    The procedure of Burg method is briefly described here. For more details, 

please refer to the books by Kay, 1988 and Marple, 1987. Spectral analysis is 

applied to determine the spectral content of a random process based on a finite set 

of observations from that process. The power spectral density (PSD denoted by 

Pxx(f) , of a complex wide sense stationary (WSS) random process x[n] is defined 

as  

               
1 1

( ) [ ]exp( 2 )
2 2

xx xx

k

p f r k j fk fπ
∞

=−∞

= − − ≤ ≤∑  

Where rxx[k] is the autocorrelation function (ACF) of x[n] defined as  

rxx[k] = E ( x*[n]x[n+k] ) 

E is expectation operator. The PSD function describes the distribution of power 

with frequency of the random process.  

     When the autoregressive (AR) modeling assumption is valid, spectral 

estimators are obtained which are less biased and have a lower variability than 

conventional Fourier based spectral estimators. To estimate the PSD using an AR 

model we need to estimate the parameters of the model. The theoretical PSD is 

given as below 
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The estimate of the PSD is obtained by replacing the theoretical AR parameters by 

their estimates to yield 

2

2
( )

1 [1]exp( 2 ) ... [ ]exp( 2 )

ARp f

a j f a p j f
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π π

∧
∧

∧ ∧
=
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In order to estimate AR parameters, the basic idea is to minimize the average of 

the forward and backward prediction error. 

               Forward predictor    
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               Backward predictor    
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Minimization of the average errors yields an optimal estimate of Kk 
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where e is the prediction error 

This kk
∧

 is used in each stage of the Levinson-recursive algorithm to produce  

[1]a
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, [2]a
∧

,…, and [ ]a p
∧
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Appendix B: Critical Values for the Fisher Test of Significance  

   The critical values in Tables B.1 and the description of Fisher Test presented 

below are from Warner (1998). 

   To compute the test statistic g, compute the periodogram for the time series. 

Find the sum of all the periodogram ordinates, and then divide the periodogram 

intensity for each frequency by this sum to yield an estimate of the proportion of 

variance in the time series that is accounted for by each frequency component 

represented in the periodogram. The test statistic g is simply the proportion of the 

total variance in the time series that is accounted for by a particular frequency in the 

periodogram analysis. 

    Select the largest values of this proportion, that is, the proportions of variance 

that are explained by the first largest, second largest, third largest, fourth largest, 

and fifth largest periodogram ordinates. The tables provided here give critical 

values to test the significance of the peaks that are ranked first through fifth largest 

in the proportion of variance accounted for. 

   To choose the appropriate critical values, you need to know N (number of 

observations in the time series), and the alpha level for your significance tests. 

Critical values of g are given for α = .05 in Table B.1. Within the table, the columns 

headed r1, r2, r3, r4, and r5 give the critical values used to test the significance of 

the peaks that are ranked first, second, …,fifth in the periodogram. 

    Start with the largest obtained proportion of variance and compare this to the 

critical value in the r1 column (critical value of g for the largest periodogram 

ordinate). If the obtained proportion of variance exceeds the critical value given in 
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the table then this first peak is statistically significant. Smaller peaks may be tested 

only if the larger peaks were significant.  

 

TABLE B.1. Critical Values of the Proportion of Variance for the Fisher Test, α = .05 

 

 


